
SCSI Technical Reference 
UP 9000 Series 300 Computers 

HP Part Number 98265-90010 

FliJl HEWLETT 
a:~ PACKARD 

Hewlett-Packard Company 
3404 East Harmony Road, Fort Collins, Colorado 80525 



NOTICE 
The information contained in this document is subject to change without notice. 

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO. 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable 
for errors contained herein or direct. indirect. special. incidental or consequential damages in connection with the furnishing. performance. 
or use of this material. 

WARRANTY 
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local 
Sales and Service Office. 

Copyright © Hewlett-Packard Company 1988 

This document contains information which is protected by copyright. All rights are reserved Reproduction. adaptation. or translation without 
prior written premission is prohibited. except as allowed under the copyright laws 

Restncted Rights Legend 

Use. duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the 
Rights in Technical Data and Software clause in FAR 52.227-7013 

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs 
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations. is expressly prohibited 

Copyright © AT&T. Inc. 1980. 1984 

Copyright © The Regents of the University of California 1979. 1980. 1983 

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University 
of California. 

ii 



Printing History 

New editions of this manual will incorporate all material updated since the previous 
edition. Update packages may be issueo between editions and contain replacement and 
additional pages to be merged into the manual by the user. Each updated page will be 
indicated by a revision date at the bottom of the page. A vertical bar in the margin 
indicates the changes on each page. Note that pages which are rearranged due to changes 
on a previous page are not considered revised. 

The manual printing dat{' and part number indicate its current edition. The printing 
date changes when a new edition is printed. (Minor corrections and updates which are 
incorporated at reprint do not cause the date to change.) The manual part number 
changes when extensive technical changes are incorporated. 

Februrary 1988 ... Edition 1 

May 1988 ... Update. This update alters page v of Tabl{' of Contents, provides special 
instructions in front matter for lls{'rs having HP-UX r{'vision 6.0, and replaces 
Chapter 1. 

98265 90010. rev: 5/88 Printing History iii 



iv Printing History 



Table of Contents 

Chapter 1: Overview 
Getting Other Related Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 
Hewlett-Packard Company Disclaimers .................................... 3 
Installing or Adding and Unsupported SCSI Disk ........................... 4 

Supported and Unsupported Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
\Vhy Read This Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Installing or Adding Unsupported SCSI Disks .......................... 5 
How to Continue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

Describing SCSI ........................................................ 6 
Defining SCSI ...................................................... 6 
What SCSI Is ...................................................... 8 
What SCSI Is Not .................................................. 8 

Chapter 2: HP SCSI Compatibility Requirements 
Hardware System Checklist .......................................... 9 
The Installation Process and a SCSI Disk ............................. 10 
The Software System Checklist ...................................... 13 
The Rev C Boot ROM Checklist ..................................... 14 
Required SCSI Commands Checklist ................................. 15 
Continuing the Testing ............................................. 15 

Chapter 3: Testing SCSI Devices 
Getting Ready for Testing .............................................. 18 

Continuing ........................................................ 18 
Notes: ............................................................ 19 

Performing Low-level Tests .............................................. 20 
Using a Shell Script for Low-level Testing ............................. 21 
Trying Alternative Tests ............................................ 21 

Performing System-level Tests ........................................... 22 
Using a Shell Script for System-level Testing .......................... 22 
Performing Additional Tests ......................................... 23 
Continuing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

Performing Integration-level Tests ........................................ 24 
Moving On to User-level Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 
Measuring Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
Deciding How to Continue .......................................... 25 

9826590010, rev: 5/88 Table of Contents v 



Chapter 4: Introduction to SCSI Drivers 
Assumptions for Using Part 2 ........................................... 28 
Identifying Your Situation .............................................. 29 
SCSI and HP-UX I/O .................................................. 30 

Hardware Layer ................................................... 31 
The Software Layer ...................... . . . . . . . . . . . . . . . . . . . . . . . . .. 31 

An Overview of the SCSI Drivers ........................................ 34 
The Interface Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 
The Device Driver for Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 
Disc Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 
The Service Interrupt Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 
The HP Finite State Machine (FSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 

SCSI Requirements for Drivers .......................................... 42 
An Important Fijutsu Chip Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 

Notes: ............................................................ 44 

Chapter 5: The SCSI Drivers 
Dealing With Other Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 
Getting Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 

The Interface Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 
Hardware Characteristics (Fujitsu dependent characteristics) ............ 46 
Getting Interrupts ................................................. 46 

DMA (16/32 bit) ...................................................... 47 
Notes: ............................................................ 48 

Chapter 6: The SCSI Interfa~e Driver 
Initialization/Boot-up Routines .......................................... 50 

scsi_init ........................................................... 50 
scsi_make_entry ................................................... 50 
scsi_link .......................................................... 50 
scsi_do_isr ........................................................ 51 
scsi_call_isr ....................................................... 52 

The Selection Process .................................................. 54 
scsi_select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 
scsLdo_isr (cmd_complete and srv _reg) ............................... 55 

The Data Transfer Circuit .............................................. 56 
scsi_ transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
scsi_dmaisr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
scsi_program_xfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
scsLpart_prog_xfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 
scsi_man_xfr ...................................................... 57 

vi Table of Contents 



The Message/Status Transfer Circuitry ................................... 58 
scsLmesg_out, scsLmesg_in, & scsLstatus. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 
scsi_set_state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 

SCSI Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 
scsi_abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 

Chapter 7: The Disc Device Driver 
The SCSI Data Structures .............................................. 60 
Open and Close Routines ............................................... 60 

scsi_open ......................................................... 60 
scsi_close .......................................................... 61 
sunit_close ...................................................... " 61 
scsi_nop .......................................................... 61 

The Operating System Interface ......................................... 62 
scsi_strategy ...................................................... 62 
scsLread & scsL write .............................................. 63 
scsi_ioctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 

SCSI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64 
Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 
Writing to a Disc ...................................................... 66 

Noting the Queuing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 
Moving to Initial State ............................................. 67 
Continuing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 
Exiting ........................................................... 68 

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 
scsLreq_timeout, scsLselecLtimeout, & scsLdequeue ................... 69 
scsLdecode_status ................................................. 70 

Chapter 8: The Iodl Path 
The Header File ....................................................... 72 
The scsi-ioctl Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 
A CD-ROM Case Study ................................................ 76 

The Case ......................................................... 76 
Discussion ........................................................ 76 
Writing the First Program .......................................... 77 
Looking at the Code ............................................... 78 
Noting the Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 

Writing the Second Program ............................................ 80 
Looking at the Lines ............................................... 82 
Providing for All Users ............................................. 83 

Table of Contents vii 



Chapter 9: Miscellaneous Hints 
Some Hints ........................................................... 85 
A voiding Complex Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 
Working Effectively and Efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 
Debugging Techniques .................................................. 87 

First Steps in Debugging ............................................ 87 
Use printf With Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 

Having Source Code Control ............................................ 88 

viii Table of Contents 



Special Instructions for HP-UX, Revision 6.0 
Peopie who have the 6.0 revision of the HP-UX operating system need to account for 
two situations: 

1. The /source/newfs/usr/lib/drivers directory contains a file named Readme that 
you need to examine before you use any SCSI software. The "Readme" file: 

a. describes how to organize your work for code development and suggests 
directories you should make. 

b. defines terms related to the HP SCSI software. 

c. suggests that you archive the makefile. Following this, the README file 
discusses linking and loading operations and explains how to edit the makefile. 

d. explains how to recompile the source you received. 

2. Chapter 8 in this manual describes The foctl Path. The functionality provided hy 
this path was not provided in revision 6.0 of the HP-UX operating system. For 
HP-UX 6.0, you need to ignore or remove Chapter 8. If you plan to upgrade your 
system to revision 6.2 in the forseeable future, just ignore the material. 

Once you account for these situations, read the manual as required. 

98265 90010, new page: 5/88 Special Instructions for HP-UX, Revision 6.0 ix 



Overview 1 
This manual provides user and reference information for the Hewlett-Packard Company 
Small Computer Systems Interface (HP SCSI) which is based on the SCSI standard. 
(Differentiating between SCSI and HP SCSI is discussed later.) 

This manual helps you complete tasks shown in the following list: 

Major Task 

Install or add an unsupported 
SCSI disc 

Get a conceptual view of SCSI 

Determine if a SCSI device 
might work with HP drivers 

Test a SCSI device to see if it 
works with HP SCSI drivers 

Modify HP SCSI drivers so a 
SCSI device can use them. 

Where to get required information 

The section called ~~Installing or Adding an Unsup­
ported SCSI Disk" in this chapter helps you in­
stall or add an unsupported SCSI disk for which 
/etc/disktab has no entry. (You need to be an HP­
UX system administrator.) 

"Describing scsr' (in this chapter) defines SCSI, 
shows representative models, and explains how HP 
SCSI fits into the overall picture. (You need a 
conceptual grasp of the SCSI standard.) 

Chapter 2 contains this information. Before using 
a SCSI device with an HP system, you need to de­
termine that the device meets certain requirements. 
(You need to understand the SCSI standard and be 
an HP-UX system administrator.) 

Chapter 3 describes the procedures for testing a 
device. After you determine that a device might 
work (Chapter 2), you need to test it at various 
levels. (You need expert ability in using HP-UX. 
You should have a thorough grasp of SCSI.) 

Chapters 4 through 9 discuss ways to modify HP 
SCSI drivers. (You need expert knowledge of HP­
UX kernel drivers (e.g. system calls, C program­
ming, I/O subsystems, DMA, HPIB, kernel com­
piling and debugging, Fujitsu MB87030 chip, ANSI 
SCSI standard, SCSI I/O subsystem).) 

Besides this overview, the next two sections provide information about getting additional 
information and HP disclaimers. 

98265 90010, new page: 5/88 Ov('rvi('w 1 



Notes 

x Special Instructions for HP-UX, Revision 6.0 



Getting Other Related Information 
Table 1-1. Materials Related to SCSI, Drivers, and HP-UX 

Material Where to Obtain the Material 

ANSI Standard: Small Computer System AnH'rican National Standards Institute, 
Interface (SCSI) X3T9.2 Rev 17B 1430 Broadway, New York, N.Y. 10018 

Fujitsu MB87030 User's Manual Front Range Marketing, 
3100 Arapahoe Road, Suite 404 
Boulder, CO 80303, (303)-443-4780 

The manuals for your SCSI device Obtain from company making the device. 

Manuals for your HP SCSI board/cable HP Sales Representative. 

Source Code for HP SCSI Drivers scsi. c in /usr/lib/drivers in HP-UX 

HP- UX Driver Development Guide HP Sales Representative. 

HP-UX Installation Manual HP Sales Representative. 

HP-UX System Administrator Manual HP Sales Representative. 

2 Overview 98265 90010. new page: 5/88 

• 



Hewlett-Packard Company Disclaimers 
Because you might modify the HP-UX kernel and use nonHP implementations of SCSI, 
the following items note Hewlett-Packard Company disclaimers: 

• HP is committed to industry standards; and for this reason, while the HP SCSI 
cards and software adhere to the ANSI standard and provide considerable flexibility, 
their use with unsupported products is at the user's risk. 

• No products except the supported products sold by HP have b('en t('sted. Th(' 
operation of nontested products cannot be assured. 

• Some nonHP products require commands not included in the HP SCSI software. 
It might- not be possible for nonHP products to have full functionality. 

• It is possible for a user to modify the HP SCSI driver, and if the driver is modified, 
HP waives all responsibility for its proper operation. 

• With regard to the SCSI software, HP warrants only that it will not fail to ex('('utp 
its programming instructions due to defects in materials and workmanship as s('t 
forth in the HP "Warranty and Installation Terms" applicable to the softwar('. 

• HP makes no other warranty for the software, expressed or implied, written or oral. 
HP specifically disclaims the implied warranties of merchantability and fitn('ss for 
a particular purpose. 

• HP specifically disclaims all responsibility for the operation of the SCSI softwar(' 
according to any specifications for use of the software with nonHP products and 
for results connected with the use of the software. 

In short, you should carefully evaluate a decision to use an unsupported product with 
the HP SCSI hardware and software. 

98265 90010. new page: 5/88 Ov('rvi('w 3 



Installing or Adding and Unsupported SCSI Disk 
Recall that this chapter helps you determine if your SCSI device will work with the HP 
SCSI drivers. In this context, this section helps you answer questions concerning thC' 
installation or addition of a SCSI disk. 

Supported and Unsupported Disks 
From HP's viewpoint, you can have two categoriC's of SCSI disks: 

1. A supported disk (e.g. the HP 7957S, HP 7958S, and HP 7959S are supportC'd 
disks). A SCSI disk supported by HP should work, either during installation or as 
an added disk. No special configuration is required to make a supported disk work. 

2. An unsupported disk (e.g. a disk other than the disks mentioned above: and in 
particular, a disk whose vendor claims it meets the SCSI standard). Before you 
install or add an unsupported disk, be aware that HP does not recommend using 
such a disk. Variation in the implementation of SCSI among different vendors 
can cause unpredictable results, including the loss or incorrect recording of data. 
To ensure proper disk operation, the use of an HP supported disk is strongly 
recommended. With this in mind, if you do have an unsupported disk, continue 
reading this section. 

Why Read This Section 
Two conditions could make it necessary for you to read this section: 

1. During the installation of HP-UX on an unsupported disk, you could get a message 
saying that your disk does not appear in /etc/disktab. At this point (Step 6 in the 
HP- UX Installation Manual), you might need to move to Step 7 to alter the values 
for the following two file system parameters: 

a. 1024 byte sectors per track: The default value is 8 

b. tracks per cylinder: The default value is 7 

2. While adding an unsupported SCSI disk to an installed HP-UX system. you might 
need to create an entry in /etc/disktab for the disk. 

The table on the facing page describes how to deal with these two conditions. 

4 Overview 98265 90010. new page: 5/88 



Installing or Adding Unsupported SCSI Disks 

Condition 

In Step 6 of the installation, 
not having an entry in 
/etc/disktab sent you to 
Step 7 to alter values for two 
file system parameters and 
that step sent you here. 

On adding a disk and using 
newfs to create a file system, 
you discovered you had no 
entry for the disk in 
/ etc/disktab. 

How to Continue 

Procedure for Handling the Condition 

You need to alter the values for: 
1024 byte sectors per track: (default is 8) 
Tracks per cylinder (default is 7) 

Study your SCSI disk's reference manual, noting that: 
* Terminology can vary 

(e.g. tracks/cylinder might be read/write heads) 
* You might see something like: 

Cylinders 680 
Tracks per cylinder 5 
Bytes per track 16.384 

To get 1 Kbyte sectors per track, 16.38471024 = 16 
So you enter 16 for this parameter. 

For Tracks per cylinder, you enter 5 directly. 

In general, you need to have: 
* Shutdown your system, added the SCSI disk to the 

SCSI bus, and powered up the system again. 
* Used mknod to create d('vic(' files. 
* Ensured that /etc/conf/dfile contains scsi. 
* Used mediainit to format th(' SCSI disk. 

Before you use newfs to create a file system, work through 
/etc/disktab beginning with: 

DISK GEOMETRY AND PARTITION LAYOUT TABLES 
to create an entry for the unsupported SCSI disk. 

Then, use newfs. If you wish, the -t option sets the number 
of tracks per cylinder. You cannot optimize the number of 1 
Kbyte sectors per track unless you reinstall HP-UX (the above 
condition discusses these parameters). 

When you finish accommodating your disk, you have some choices: 

• During installation, continue the install process. Then, you should probably work 
through Part 1 of this manual. 

• For an added disk, you can: 

• use the disk without testing it and hope it works. 

• work through Part 1 of this manual. 

9826590010, new page: 5/88 Overview 5 



Describing SCSI 
This manual assumes you want to: 

1. determine if a SCSI device works with the HP SCSI driver: 

2. modify the HP SCSI driver; or 

3. perform both tasks. 

To provide a common background for discussion, this section examines SCSI in general. 

Defining SCSI 
SCSI is (via an American National Standards Institute (ANSI) standard) an inter­
mediate-level Input/Output bus that sits between a host adapter on the system bus 
and a controller for device-level interfaces. Figure 1-1 shows a general model with some 
examples that show the relative location of SCSI. 

Host 

CPU 

Host 

Adapter 

Bus I/O Bus 

I 

Control 

Unit 

Device-level 

Interface 

I 
e.g. e.g. e.g. e.g. 

IBM PC bus SCSI ESDI Disc Drive 

VMEbus IPI3 IPI2 Printer 

Figure 1-1. A General Model of a System Containing SCSI 

While SCSI is an I/O Bus, it can be implemented in several ways and used in several 
configurations. The point is: 

Your SCSI device might not work with the HP SCSI driver. You do not assume th(' 
driver fails to meet the SCSI standard. You might suspect your device has a different 
implementation of SCSI. 

Looking at SCSI requires accounting for the configuration you need in relation to available 
SCSI implementations. Figure 1-2 on the following page shows three configurations 
a complete SCSI implementation could provide. (Complete implementations ar(' not 
generally available at present; so beware in selecting your configuration.) 

6 Overview 98265 900lD, new page: 5/88 



Single Host to Single Controller Configuration 

Host 

CPU 

Single Host to Multiple Controller (up to 8) Configuration 

Host 

CPU 

Host 

Adapter 

SCSI 

bus 

Control 

Unit 

Control 

Unit 

Multiple Host to Multiple Controller Configuration 

Host Host SCSI Control ~ Peripheral I r-- -- -r-

CPU Adapter bus Unit 

Host Host Control H Peripheral J f--- ~ ~ 

CPU Adapter Unit 

Host Host Control ~ Peripheral I r--
CPU Adapter Unit 

Figure 1-2. Possible SCSI Configurations 

As you can see, a complete SCSI implementation allows a range of configurations 
that increase in complexity as you move beyond a single-host/single-controller setup. 
(Later, you will see that the HP SCSI allows up to a single-host/multiple-controller 
configuration. ) 

98265-90010, new page: 5/88 Overview 7 



What SCSI Is 
While you should read the ANSI SCSI standard to get a complete picture, the following 
items suggest what SCSI is or provides: 

• SCSI is an all encompassing specification (standard). It addresses mechanicaL 
electrical, and functional requirements (i.e. SCSI talks about physical connectors, 
voltage drops, bus timing, and so on). 

• Single-ended implementations provide asyncronous data transfer over a maximum 
distance of 6 meters at up to 1.5 Mbytes per second. 

• Differential implementations provide long-distance data transfers over a maximum 
distance of 25 meters and a synchronous transfer rate of up to 4 Mbytes per second. 

• You get a rich command set (e.g. INQUIRY, READ, TEST UNIT READY). 

• SCSI can provide messages (e.g. COMMAND COMPLETE, DISCONNECT, ABORT) 

• SCSI provides 18 signal lines with parity checking (9 for transfer of data and 9 for 
control). 

• Data transfer is block oriented. 

What SCSI Is Not 
The following items indicate what SCSI is not: 

• It is not a system or device interface. 

• It has no hierarchial architecture. 

• There are no master-slave relationships. 

As you gather information, keep terms such as standard, device, interface, and driver 
within the context of their use. People can easily use widespread misunderstanding to 
claim a peripheral is a SCSI device. Before you jump into anything: 

• Take time to understand SCSI. 

• Examine HP SCSI and its drivers. 

• Study the SCSI devices you want to use. 

• Determine if the devices are "plug-in" compatible. 

When a device is not compatible, you can think about modifying the HP SCSI drivers. 

8 Overview 98265 90010. new page: 5/88 



HP SCSI Compatibility Requirements 2 
This chapter provides checklists for determining if your SCSI device is sufficiently 
compatible with the HP SCSI drivers for you to proceed with the testing of the device. 
Work through the checklists to see if you are ready to test a device; and then work 
through Chapter 3 to test a device. 

At present, the only sure way to determine if a SCSI device 
works with the HP SCSI drivers is to test it. 

Hardware System Checklist 
The items in Table 2-1 let you determine that you have appropriate hardware. 
Power down your hardware according to its documentation before doing any installation. 

Table 2-1. Hardware System Checklist 

Component Checklist Items 

Computer Series 300 Model 319, 333, or 350 installed according to the manuals 
System that came with the components (e.g. CPU, monitor, disc drive). 

Interface HP SCSI card installed/tested during powerup according to User Note, 
Cards / Cables SCSI Interface pamphlet (HP Part Number: 98265-90601) 

Set Parity Switch to l. 
The Model 319 requires factory installation. 
All models have options. 
See your HP Sales Representative about possibilities. 

Your SCSI Install your SCSI device to the HP SCSI card according to the 
Device documentation for your device and the HP SCSI card. 

Go on to the next checklist. 

HP SCSI Compatibility Requirements 9 



The Software System Checklist 
The items in Table 2-2 let you determine that you have appropriate software. Depending 
on how you work, it might be necessary to reboot HP-UX and otherwise provide for 
system administration according to the HP- UX System Administer manual. 

Table 2-2. Software System Checklist 

Component Checklist Items 

Operating HP-UX revision 6.0 (or newer). Include the PDRIVERS fileset 
System which provides the SCSI driver and code. 

Device Files You need block and character device files: 
/dev/dsk/ must contain OsO and ls0. 
/dev/rdsk/ must contain files having the same names. 

If necessary, use mknod to make required device files. 

Drivers Make sure /etc/conf/dfile contains scsi. Your SCSI device 
needs this driver. 

If scsi is missing, add it to dfile and reconfigure the kernel. 

Go on to the next checklist. 

10 HP SCSI Compatibility Requirements 



The Rev C Boot ROM Checklist 
The items in Table 2-3 show the features your SCSI device must have for the Rev C boot 
ROM to load a system from your device. 

Table 2-3. Rev C Boot ROM Checklist 

Boot ROM Need Discussion 

Operations done only in Ignores negotiation of mode 
asyncronous mode 

No mid-operation No comment 
disconnects allowerl 

Parity error checking Must be enabled on the HP SCSI 
card (switch set to 1) 

Your SCSI device must be Recognized device types include: 
capable of direct access rearl Code Device Class/Description 
operations 0 DAD Direct Access R/W Devices 

4 WORM Write Once, Read Many 
5 RO Read Only 
7 MO Magnito-Optical R/W 
hex 7F Logical Unit not present 

Retries Attempt INQUIRY up to 4 times when boot ROM attempts 
to identify a device and up to 7 times for other commands 

Timeouts Wait 1 millisecond for SELECT to complete; 
Between phases or after SELECT, wait 15 

seconds for REQ; 
The boot ROM waits 2 seconds after bus reset 

before attempting other bus activity. 

Messages Accepts COMMAND COMPLETE (code 0). 
Reads extended messages, but does not examine them. 
Generates the ABORT message (code 6). 

Go on to the next checklist. 

HP SCSI Compatibility Requirements 11 



Required SCSI Commands Checklist 
The items in Table 2-4 show the commands (with hexadecimal opcodes) your SCSI device 
must utilize for the Rev C boot ROM to work with the device. 

Table 2-4. SCSI Commands Checklist 

Command Role or Function 

INQUIRY Has two purposes: 
hex 12 1) Determines device type (requests 2 bytes) 

2) Obtains vendor id and device name (requests 36 bytes): 
a) vendor id starts in bytes 4 and occupies 8 bytes; 
b) device name starts in byte 12 and occupies 16 bytes. 

Do set the lunit and length fields; set the others to 0 (zero). 

READ CAPACITY Required for boot ROM translations from internal 256 byte 
hex 25 sector address to device block size. 

Set lunit and length fields; other command fields are O. 
In returned data: 

Block size is a power of 2 within 32 bytes to 1 Mbyte; 
No restrictions on the number of blocks. 

REQUEST SENSE Set lunit and length fields; other command fields are O. 
hex 03 Requests 8 bytes; can send fewer. 

Check made only on sense-key field. 
Recognize sense-key codes 0-8 and 11 (hex B); 

other code causes boot ROM to stop device communications. 

READ Set lunit, block-number, and number _of-blocks fields; 
hex 28 other command fields are 0 

Boot ROM canot operate reliably with both 
long and short format reads. 

Most devices require or can use long format 
commands rather than short format. 

Continuing the Testing 
When you determine that your SCSI device meets the requisites shown in Tables 2-1 
through 2-4, test the device by working through Chapter 3. 

12 HP SCSI Compatibility Requirements 



Testing SCSI Devices 3 
Assuming you worked through Chapter 2 and determined that your SCSI device (disc) 
might work, this chapter describes how to verify if a device works with the HP SCSI 
drivers at some minimal level. Given the nature of SCSI, do not expect a thorough 
and complete procedure for qualifying a drive. The procedure gives a general guide to 
testing and demonstrates whether HP-UX can communicate at some minimal level with 
the device. 

Because the tests can vary, procedures are described instead of demonstrated. To some 
extent, you need to know how to complete each task. Other resources such as the HP- UX 
Reference manual and the HP- UX System Administrator manual can provide information. 

The items in Table 3-1 show the overall testing process. 

3-1. Testing Your SCSI Device 

Procedures Descriptions 

Getting Ready Describes the setup procedure and available 
diagnostic output. 

Low-level Testing Describes testing the device at low-levels (open a device, look at 
block sizes, simple reads/writes). Do this on a dedicated bus, if 
possible. 

System or High-level Describes the testing of timing, bus citizenship, error recovery, 
Testing and such by stressing the device in an environment that 

makes it perform complex file system tasks. 
If possible, put several peripherals known to be good on the bus 

with all devices active. 

Integration Testing Describes testing a device in an actual environment. 
Has two phases: 

1) Stress testing with a known load. 
2) Actual user testing. 

Testing SCSI Devices 13 



Getting Ready for Testing 
To test a device, you need to get ready and know where to get diagnostic information. 

Table 3-2 describes the process. Become the root user as required. 

Table 3-2. Getting Ready for Testing 

Task/Information Procedure /Description 

Setting Up 1) Shutdown your HP-UX system (shutdown -h). 
2) Attach the device (disc drive) according to its 

documentation and perform required self-tests. 
3) Reboot HP-UX and login as the root user. 
4) Use mknod to make block and character 

device files for your device (disc drive). 

Getting Diagnostic 1) The kernel message logs contain diagnostic output 
Information from the SCSI drivers. 

2) If configured, you can read usr/adm/messages. 
3) Otherwise, use the utility named dmesg to 

access the kernel message buffer. 

The diagnostic information lets you know what happens at all thrC'e levels of testing. 

Continuing 
On completing these tasks, do the low-level testing. 

14 Testing SCSI Devices 



Notes: 
Use this page for any notes you want to keep. 

Testing SCSI Devices 15 



Performing Low-level Tests 
Having installed your peripheral, powered up the system, and made necessary device 
files, you can begin low-level testing. 

• Table 3-3 describes a series of tests . 

• The facing page shows a read/write exerciser shell script for low-level testing. 

Table 3-3. Low-level Tests 

Test Description, Information, Procedure 

Run scsi -inquiry 1) Power cycle your disc drive. 
2) Run scsi_inquiry to determine if the device 

controller handles basic commands and tests: 
test_unit_ready 
read_capacity 
inquiry 

3) Read the dmesg buffer to see if it looks all 
right. This tests request_sence (i.e. the HP 
driver recognizes the extended sense data). 

Format Your Disc? If necessary, use mediainit to format your disc. 

Access the Drive Use shell scripts (the facing page has an example). 
Mechanism The idea is to try simple write/read tests. 

Vary the test using different block sizes. 
Test several devices on the bus at the same 

time, running the tests simultaneously. 
HP used the dd command, but other commands 

would work. 
For a more thorough write/read exerciser, write a 

known pattern to the entire disc, and then 
read the disk pattern back in, comparing the 
data with the pattern (use a C language program 
to do this). 

16 Testing SCSI Devices 



Using a Shell Script for Low-level Testing 
The following script performs several low-level tests. 

#Shell script (A) write/read exerciser 
# Parameter supplied is character device file 

# Check Parameters and create a 1 MByte image 
if [ $# = 1 ] 
then 

echo creating image 
dd < /dev/root > /tmp/1MByte bs=64k count=16 

else 

fi 

echo usage: $0 char_special_file 
exit 1 

# 10 Passes of test 
for i in 1 2 3 4 5 6 7 8 9 10 
do 

dd < /tmp/1MByte > $1 bs=64k count=16 
dd < $1 > /tmp/tmp_copy bs=16k count=64 
if cmp /tmp/tmp_copy /tmp/1MByte 
then 

rm -rf /tmp/tmp_copy 
echo pass 

else 

fi 
done 

echo failed 
exit 1 

rm -rf /tmp/1MByte 

Trying Alternative Tests 
Another valuable write/read exerciser is a random write/read test using the following 
algorithm: 

1. Write an ascending pattern to the entire disc (e.g. all O's to block 0, all 1 's to block 
1, etc.). 

2. Using a random number generator to generate logical block numbers, 

a. seek to random locations on the disc, 

b. read in the block, and 

c. compare the data. 

When you complete these tests, go on to System-level Tests. 

Testing SCSI Devices 17 



Performing System-level Tests 
File system testing is valuable for testing variations in timing, bus citizenship, and error 
recovery. For using a disc as an ordinary file system. the tests should stress the disc as 
a root disc under actual file system activity. One standard (basic) procedure has the 
following steps: 

1. Make a file system and mount the disc on a directory. 

2. Fire off several write/read exercisers. 

3. Umount the disc and use fsck to check the integrity of the disc. 

This page and the facing one show a script for doing these tests. 

Using a Shell Script for System-level Testing 
The following script shows system-level tests. 

# Shell script (C) file system write/read exerciser 
# User supplies two parameters: 
# - device special name (Not path name) 
# (Make sure the character file is prefixed with 'r') 
# E.g. /dev/rscsi.4 is char special file (addr 4) 
# /dev/scsi.4 is block special file 
# - blocksize (in lKBytes) of device 
# Usage: exer dev_name blksz 

DEV=$l 
SIZE=$2 

if [ ! $# = 2 
then 

fi 

echo usage 
exit 1 

mkfs /dev/r$DEV $SIZE 
mkdir /misc$$ 
mount /dev/$DEV /misc$$ I I 
mkdir /misc$$/lib /misc$$/h I I 

18 Testing SCSI Devices 

I I exit 1 
I I exit 1 

exit 1 
exit 1 



for i in 1 2 3 4 5 6 7 8 9 10 
do 
# Some miscellaneous file system activities 
cp /lib/* /misc$$/lib & 
cp /usr/include/*.h /misc$$/h & 
cp /hp-ux /misc$$ 
cmp /hp-ux /misc$$/hp-ux 
wait 

for file in /lib/* 
do 

cmp $file /misc$$/$file I I 
(echo compare failed; exit 1) 

done 
cd /usr/include; 

for file in *.h 
do 

cmp $file /misc$$/h/$file I I 
(echo compare failed; exit 1) 

done 
echo pass $i 
done 

wait 
umount /dev/$DEV 
fsck /dev/r$DEV 

Performing Additional Tests 
The testing becomes more complex, as you trust the integrity of the I/O subsystem. 

• The testing harness (using a shell script) fires off a sequence of slave shell scripts 
that mimic the above test. 

• You force a mixture of file activity ( copy, remove, move, and variations of file 
routines). 

• Using shell scripts, you should make other devices on the bus active. 

Continuing 
When you complete these tests, do the integration testing. 

Testing SCSI Devices 19 



Performing Integration-level Tests 
At this point, as the root user, make a bootable/rootable disc. Then, test the disc as a 
root file system. The long and extensive testing includes the following steps where the 
examples assume a device file in /dev named newdics: 

1. Use newfs to make a file system by making an entry in /etc/disktab according to 
instructions in the file. 

2. Execute ini t s to get into single-user state. 

3. Execute the following list of commands to copy your existing file system from 
your root disc onto the new disc, making sure files systems get mounted, found, 
unmounted, and so on. 

cd / 
mount /dev/newdisc /misc.XXXX 
find. -print I grep -v 'misc.XXXX' 
umount /dev/newdisc 
fsck /dev/newdisc 

Moving On to User-level Testing 

cpio -pdxlmu /misc.XXXX 

Having completed these tasks, reboot the system, hitting the spacebar during the process. 
Then, you can select the new disc as the root. For user-level testing. do the following 
things: 

• Set up stress tests that can be fired off regularly. 

• Make sure the disk can remain functional for long periods; for example. make some 
stress tests takes at least 24 hours to complete. 

• During the above work, track the diagnostic logs frolll the operating system. 

20 Testing SCSI Devices 



Measuring Performance 
During integration testing, you should have an estimate of the expected performance 
of your peripheral. For example, does a disc drive perform write oVerations as-well-as 
expected. File system tests that compare known (older) drives with the drive being 
tested can help you evaluate its performance. 

Getting an expected performance is a critical test. In this regard, for example, the 
following line shows how to use dd to time sequential transfers. 

# time dd < /dev/r<new_device> > /dev/null bs=64k count=1000 

The following items suggest some additional measures of performance: 

• Time some simple file copy routines. 

• Try using a random write/read exerciser that calculates the time. 

If these things go well, you should have a functional drive. 

Deciding How to Continue 
At this point, you probably have one of three situations: 

• Your peripheral works fine. You like the way it functions and have no intention of 
doing additional work. 

Set this manual aside and enjoy using the device. 

• Your peripheral works to some degree, but you want to make some modifications. 

You still have work to do, and reading Part 2 can be helpful. 

• Your SCSI peripheral does not work adequately. 

You need to decide whether to write a driver, not use the peripheral, or take some 
other action. If you decide to write a driver for the device, reading Part 2 and 
looking at the source code for the HP SCSI drivers can help. 

Testing SCSI Devices 21 



22 Testing SCSI Devices 



Introduction to the SCSI Drivers 4 
This chapter begins Part 2 which describes the HP SCSI drivers and how to modify them 
so they work with your SCSI device. The chapters in Part 2 number 4 through 8. If you 
modify a driver, you need to work through all of them. 

This chapter provides an overall picture. It shows the relationships among such things 
as hardware and software, HP SCSI and the Fujitsu chip, and the various drivers. Table 
4-1 describes the topics. 

Table 4-1. Topics in Chapter 4 

Topic Description 

Assumptions for Using Part 2 discusses what you need to do beyond working 
through Part 2. 

Identifying Your Situation discusses legitimate types of driver modifications. 

SCSI and HP-UX I/O provides information about hardware/software lay-
ers and drivers. 

Overview of Drivers provides information about the interface driver, 
HP SCSI implementation, service interrupt routine, 
device driver, disc transactions, and HP Finite 
State Machine. 

SCSI Requirements for Drivers mentions requirements for SCSI drivers and a fea-
ture (bug) in the Fijutsu chip. 

Introduction to the SCSI Drivers 23 



Assumptions for Using Part 2 
U sing this part assumes you: 

1. read Part 1; 

2. studied the ANSI SCSI standard; 

3. read the manual for the Fujitsu MB87030 chip; 

4. read the manual for your SCSI device; and 

5. have an expert knowledge of the C programming language and the HP-UX kernel. 

Besides assuming the requisite knowledge and skill just mflntionflo, this part assnmflS 
yon installed and tested your device according to procedures described in Part 1 and 
determined that you need to modify the HP SCSI driver. 

What If I Write My Own Driver 

If you intend to write your own driver, be aware that this manual 
does not sufficiently address the information required to make 
major changes to the HP SCSI driver or write a driver from scratch. 

Besides this manual and the manuals related to SCSI, the HP- UX 
Driver Development Guide has additional information. Be aware, 
however, that you are on your own if you decide to write a driver 
(as opposed to modifying existing HP drivers). 

24 Introduction to the SCSI Drivers 



Identifying Your Situation 
The organization and content of Part 2 assumes you have situations like those that follow: 

• Your peripheral works with the HP SCSI driver, but you want information about 
the HP SCSI I/O Subsystem. 

• You might be a hardware engineer designing a new peripheral, and in this context, 
you need to understand the software before you integrate software issues into a 
hardware design. 

• Your peripheral does not work with the HP SCSI drivers, but a slight modification 
will fix the problem. 

• You want to make significant modifications (e.g. provide support for a printer or 
streaming tape drive). To be realistict, you probably should not attempt this unless 
you have extensive knowledge about writing HP-UX kernel drivers. 

• Your peripheral works with the HP SCSI driver, but you need modifications such 
as; 

• Enhancing support for your peripheral (adding diagnostics, etc.). 

• Adding a new command not currently implemented. 

• Modifying the ioetl call to execute a specified routine. 

• Changing certain parameters (e.g. timeout characteristics). 

• Modifying the Finite State Machine to handle message bytes differently. 

• Enforcing some type of protection not anticipated by the current driver. 

• Adding additional fields to SCSI-only data structures. 

Introduction to the SCSI Drivers 25 



SCSI and HP-UX I/O 
If you decide to modify the HP SCSI driver so your SCSI device will work, you need to 
know how SCSI fits into the HP-UX Input/Output modeL Figure 4-1 shows the model 
and the location in the model of the components of the HP implementation of SCSI. 
Looking at the model, notice the following things: 

• Each hardware layer has a corresponding software driver. 

• HP has one driver per class of devices (e.g. if every device is a disc, there is only 
one driver.) 

• While you may need more than one devin' driver, the interface driver can work for 
all classes of devices. 

Private to 

Controller 
Below this Line 

(One or more physical blocks) 

... 

. . . 

Figure 4-1. The HP Input/Output Model 

26 Introduction to the SCSI Drivers 



The model shows that SCSI encompasses the hardware and software layers. 

Hardware Layer 
The interface is the HP 98265A SCSI card (or equivalent option), which connects a 
peripheral and the host adapter (this was shown in Part 1 in the general model of SCSI). 

The Software Layer 
This layer has two components. 

• The scsi_if. c interface driver handles the activities of the interface card. 

• Activities include: knowing the physical lines on the bus; processing inter­
rupts; selecting devices; and setting up DMA and other types of data trans­
fers. 

• The interface driver interacts directly with the SCSI interface card (i.e. the 
Fujitsu controller chip) and has detailed knowledge of the characteristics of 
the Fujitsu controller. 

• The driver knows nothing about commands or the structure of 6-byte or 10-
byte commands. It has no device-specific knowledge (i.e. it does not even 
know if a device is a disc~ tape~ or something else). 

• The higher-level scsi. c device driver makes various requests of the interface driver: 
selecting a device, determining the current bus phase reported by SCSI, and 
transferring a data buffer, which might be a command or real data. 

• The device driver knows about disc-dependent things (e.g. SCSI commands such 
as test_uni t_ready and read_capacity). It also knows about HP-UX system calls 
such as read and write. 

• The driver knows about the physical characteristics and geometry of the disc (it 
assumes a disc). When the driver issues a request to the disc (e.g. a command 
packet), it asks the interface driver to transfer a specified data buffer to a certain 
disc and wake the device driver up when done. 

The "heart" of the device driver is a complex mechanism called a "Finite State 
Machine". At present, no complete description of the FSM is available, but you 
can see it in use by studying the parts of scsi. c related to device drivers. 

< The following page has related information.> 

Introduction to the SCSI Drivers 27 



The device-driver level within the software layer could have several device drivers. At 
present, HP provides one device driver called scsi. c. which handles direct access devices. 
To envision requirements for device drivers assuming DEV 0 and DEV 1 in Figure 4-1 
are discs, DEV 2 is a printer, and DEV 3 is a 9-track tape; you could use scsi. c to access 
DEV 0 and DEV 1. You would need a printer driver for DEV 2 and a tape driver for 
DEV 3. While you would need three device drivers, all the device drivers could use the 
interface driver (scSi_if. c). Saying this in a different vein, since the SCSI specification 
encompasses interface and device driver levels, there could be some confusion about the 
use of drivers. HP-UX has a driver for the interface and a disc device driver that supports 
a range of disc-like peripherals (e.g. ordinary discs, WORMs, ROMs, Mas). The disc 
device driver cannot support printers, plotters, or 9-track tapes but the interface driver 
can. 

28 Introduction to the SCSI Drivers 



(This page is intentionally blank.) 

Introduction to the SCSI Drivers 29 



An Overview of the SCSI Drivers 
This section provides an overview of the SCSI drivers. By working through the section, 
you can get an overall picture of how the interface driver 1 service interrupt routine, disc 
device driver, disc transactions, and HP Finite State Machine work. 

The Interface Driver 
The SCSI standard provides various options for implementation. Always remember that 
the interface driver is strongly dependent on the logical characteristics of the Fujitsu 
MB87030 SCSI controller chip. To understand the interface driver and the characteristics 
of the chip, read Chapter 4 of the Fujitsu MB87030 User's Manual. Also relative to the 
interface driver, Table 4-2 on the facing page shows features of the HP SCSI design and 
implementation (i.e. the table shows what to expect from the interface driver). 

30 Introduction to the SCSI Drivers 



Table 4-2. HP SCSI Implementation of Interface Driver 

.I:eature .ueScnptiOil 01 J.Olplellleotation 

Arbitration A system option in SCSI implemented by HP, allowing single host/ 
multiple target environment. You can overlap multiple activities with 
arbitration. 

Single initiator The interface driver assumes it is the only initiator on the bus. 
(one host per bus 
with multiple targets) 

Target The interface driver cannot respond as a target. 

Parity HP implements it; every device on the bus checks parity. 

Data Transfers Asynchronous (synchronous mode not available). When DMA is 
available, transfers use DMA based on the availability of the DMA 
channel and the restrictions described below. 

DMA HP 9000 Models 330/350 SCSI card supports 16 and 32 bit DMA. 
HP 9000 Model 319 SCSI card uses 16 bit DMA. 
The SCSI drivers support both 16 bit and 32 bit DMA. 
The actual DMA path is determined by: 

availability of DMA 
the requested size 
the address of the buffer 

DMA Chip Buffer is long-word aligned for 32 bit DMA operations. 
Requirements Count is a multiple of four (latter always met since HP driver 

is for discs). 
Buffer is word aligned for 16 bit DMA. 
Buffer is byte aligned when using a processor-controlled 
fast-handshake routine (HP hardware does not allow byte-wide DMA). 

Commands Transferred by the fast-handshake routine. 

Message Bytes Use manual transfer option provided by Fujitsu chip. 

Status Bytes Use manual transfer option provided by Fujitsu chip. 

Introduction to the SCSI Drivers 31 



The Device Driver for Discs 
The HP SCSI device driver for discs implements the full "channel" concept of SCSI 
(i.e. the target can disconnect and reconnect at any point during a disc transaction, 
allowing multiple activities on the bus to overlap). 

The target devices drive the bus phase of SCSI. Messages are used to control the 
environment of the physical path. One or more messages of one byte each are sent 
between the host and the target to control a transaction. 

How the Driver Works 
In a typical read or write transaction: 

1. The host selects targets and sends a command. 

2. The target disconnects after the command has been issued to allow the device 
controller to decode the command and, if necessary, to seek the desired track. 

3. After the target is ready, a device waits for the bus to become free, arbitrates for 
the bus, and if successful, reselects the host. 

4. After identifying itself, the target then resumes its operation. Disconnect and 
reconnect may also occur several times during the disc transfer, if a large time delay 
is anticipated by the target (such as a seek to another cylinder, a seek to a spared 
cylinder, etc.). At this point the target changes bus phase from DATA_TRANSFER to 
MESSAGE_IN and receives a message to disconnect. This methodology provides the 
potential for a large bus bandwidth. 

Table 4-3 on the facing page provides additional information about the disc device driver. 

32 Introduction to the SCSI Drivers 



Table 4-3. HP Disc Device Driver Operation 

Item Description or Information 

Disc Driver scsi_open, scsi_strategy, and scsi_control. 
Entry Points 

File System Driver via scsi_strategy. Scsi_ioctl and 
Access scsi_open both use scsLcontrol. 

During scsi_open call, driver determines size parameters 
and who is "out there". 

Driver Requests Usually a request to transfer n blocks (read or write). 
Request takes a standard form: 
read, strtng logical blck on disc, no. blcks trnsfrd 
write, strtng logical blck on disc, no. blcks trnsfrd 

All requests such as size and offset in terms of blocks. 

Basic Transaction Consists of Command, optional Data_In or Data_out, 
and Status. 

Message bytes control the environment (See diagram). 

Getting More Information 
The HP- UX Driver Development Guide has more information about device drivers. 

Introduction to the SCSI Drivers 33 



Disc Transactions 
Figure 4-2 illustrates the relationship between transactions, bus phases, logical blocks, 
and physical blocks. The figure refers to the SCSI bus phases between a Selection or 
Reselection and the next Bus Free as a "Packet". This figure also shows disconnects 
which mayor may not be present depending on the current disconnect mode of the 
target (i.e. allowed by initiator in current transaction, etc.) 

DEVICE DEVICE DEVICE 

DRIVER DRIVER DRIVER 

l I I 
I 

Driver 
..-- (e.g. 

Interface 

Software (HP-UX kernel) 

Hardware (Computer CPU) 

Interface 

DEVICE 

DRIVER 

I 

~ 

(e.g. scsi.c 

disc driver 

other device 

drivers) 

scsi if.c dri ver) -

(host adapter) ..-- (e.g. SCSI card) 

(control unit) 

(e.g. peripherals 

..-- discs, tapes, 

and so on) 

Figure 4-2. HP SCSI Disc Device Driver Transactions 

34 Introduction to the SCSI Drivers 



The Service Interrupt Routine 
The interface interrupt service routine (ISR), named scsi_do_isr, provides interrupts as 
follows: 

Command Complete 

Service Required 

Disconnect 

Reselected 

Timeout 

Error 

indicates completion of a data transfer using the Hardware 
Transfer mode on the Fujitsu SPC or the completion of a 
SELECT comand. Hardware transfers made not using DMA (such 
as commands) or hardware transfers using the DMA mode 
both complete via this interrupt. (Manual transfers do not 
go through the ISR.) The SELECT command to the Fujitsu chip 
(which arbitrates and selects the device) also completes via this 
interrupt. 

occurs when the Fujitsu chip notices that the target has re­
quested another phase on SCSI. This typically happens during 
the data transfer: the target will change bus phase to MES­
SAGE_IN to tell the host it wishes it to disconnect. It typically 
sends two MESSAGE-IN bytes: SAVE_DATA_POINTERS and DISCON­
NECT. 

is not needed and not used. It probably should be used in 
a multi-host environment. In any case, it is unused and you 
cannot shut it off. 

After a target disconnects from the host (such as for a seek 
activity) the target will at a later point reselect the host to 
indicate that it is ready to transfer data. 

indicates that the selected bus device has not responded within 
a specified time. (The device is probably not present or not 
powered up.) 

The Fujitsu chip has detected a hardware failure (e.g. a parity 
problem). 

Introduction to the SCSI Drivers 35 



The HP Finite State Machine (FSM) 
To handle the complexity of disc transactions, HP uses the concept of a Finite State 
Machine (FSM). The FSM is a procedure that is reentered several times during a disc 
transaction. Use the ioctl kernel system call to determine extensive information about 
the drive and to perform drive specific functions. The call is also the hook into the driver 
to initialize the disc. 

How the FSM Works 
The following items provide insights into how the FSM works: 

• Local variables are not saved. 

• The FSM is stateless (i.e. no assumptions are made from one state to the next 
state) . 

• Two methods are used to determine the current state: 

• By setting the state from the previous state. 

• By the phase requested by SCSI (the target controls the bus phases). 

• The FSM is driven by the SCSI bus phases (hardware) or by software. Because of 
the potential for hardware failure, use START_TIME and END_TIME to trigger timers. 

36 Introduction to the SCSI Drivers 



A General Framework for the FSM 
The items in Table 4-4 show the general framework for the FSM: 

Table 4-4. A Framework for the Finite State Machine (FSM) 

Item Description or Comment 

queue up causes waiting for the select code. The bus might be busy. Some other 
device might be in the midst of an unrelated transaction. Locks the 
device. 

select device No comment. 

message_in phase the host sends an identity 

issue command No comment. 

disconnect No comment. 

reselected No comment. 

message_in phase target sends an identity 

data_ transfer phase No comment. 

message_in target disconnects 

reselect No comment. 

status No comment. 

message_in command complete (bus free) 

queuedone free up the device 

Getting More Information 
The Finite State Machine was developed at HP to provide a way to handle disc 
transactions. Beyond this explanation, you can get additional information by studying 
the source code for the SCSI drivers. 

Introduction to the SCSI Drivers 37 



SCSI Requirements for Drivers 
The interface and device drivers for the HP interface impose requirements for a SCSI 
device. Some requirements are features implicitly made by the drivers. Table 4-5 lists 
the major required features. The driver still might not work with all software distributed 
by HP because the list is not inclusive. The intent here is to show the things you consider 
in conjunction with looking at complete SCSI standard. 

Table 4-5. Required SCSI Features for Drivers 

Feature Description /Requirements 

Supported Discs scsi.c supports only winchester discs (HP98575, 85, 95). 

Driver Commands extended_read and extended_write 
inquiry (a minimum of 36 bytes returned) 
extended_sense 
read_capaci ty (return capacity and length of block in bytes) 
test_unit_ready 
format_unit 
mode_sense 

Messages The host can issue: 
identify (with bit 6 set) 
no-op 
abort (on being sent, target goes to bus free 

and clears the target's internal tables) 

Timeouts Do not allow a device timeout and go to bus free! 

Parity Device should detect PARITY and respond. 

38 Introduction to the SCSI Drivers 



An Important Fijutsu Chip Feature 
Besides the features shown in Table 4-4, the Fujitsu chip has a feature (i.e. bug) called 
the ATN glitch. This section merely points out the glitch. 

To see this, assume two or more devices on the bus and you allow disconnec­
tion / reconnection. 

1. After accessing one device, the device disconnects. 

2. Later, the host attempts to select the other device on the bus with ATN. 

a. If the host and the first device (reselecting the host) both arbitrate for the 
bus, and the host loses the arbitration, then the Fujitsu chip leaves the ATN 
line asserted. This is an illegal SCSI bus phase. Many targets could see this 
condition and drive the first bus phase (after reselection) to MESSAGE_OUT. 

b. If the host immediately sees MESSAGE_OUT it responds with a NO-OP and then 
expects the customary MESSAGE_IN phase. 

Introduction to the SCSI Drivers 39 



40 Introduction to the SCSI Drivers 



The SCSI Drivers 5 
This brief chapter describes some functional characteristics of the SCSI interface driver 
and DMA . 

• The Interface Driver section describes the characteristics of the Fujitsu chip and 
HP DMA . 

• The DMA section describes how to accommodate DMA. 

Dealing With Other Drivers 
The SCSI code has drivers other than the interface driver. In particular, it has a disc 
device driver that is described elsewhere. Beyond these drivers, you might want to modify 
a driver so it works with your SCSI device (e.g. a CD-ROM). To some extent, you need 
to already know how to make the modifications. The trick is to study the existing code 
and determine which changes to make. 

Getting Additional Information 
The information in this chapter provides an overview for examining Chapters 6 and 7. 
The HP- UX Driver Development Guide has additional information about drivers and 
DMA. In particular, it has information about physical addresses and their ranges. 

The SCSI Drivers 41 



The Interface Driver 
The interface driver interacts with the Fujitsu MB87030 chip and the controller for your 
SCSI device. In this regard 1 the following sections relate to dealing with the chip and 
HP DMA. While you read 1 remember that the SPC host adapter is the only initiator on 
the bus (HP's design decisions reflect this assumption). 

Hardware Characteristics (Fujitsu dependent characteristics) 
Assuming you read the Fujitsu MB87030 User's Manual, here are essential ideas: 

REGISTER EXPLANATION 

SCTL Functions allow parity, allow arbitration (always set), reset chip~ and 
pull RST on SCSI. 

SCMD Commands to Fujitsu SPC such as SELECT, set ATN on SCSI, and 
TRANSFER. Bit 2 indicates whether transfer is via DMA mode. 

PCTL Control of bus phase on SCSI. 

PMOD For synchronous transfer. 

TEMP Multi-purpose register for reading the data lines on SCSI. Used by the 
CPU-controlled fast-handshake routine, and for reading the device ID 
during reselection. 

PSNS Gives status of control lines SCSI. 

INTS Bitwise indication of the interrupting conditions. 

SSTL Indicates the SPC internal status. It indicates whether the Fujitsu 
chip is connected with SCSI, actively transferring data, executing the 
reselection phase, etc. 

TCL, TCM. TCH Transfer count registers. 

SERR Provides details of an error detected in SPC. An SPC hardware error 
interrupt occurs if an error is indicated at any of bits 3 to o. 

Getting Interrupts 
Issuing SELECT or TRANSFER to the SCMD Register results in an interrupt. A device 
reselecting the Fujitsu SPC also causes an interrupt. A device changing bus phase during 
a data transfer operation (e.g. to disconnect) causes a service required interrupt. 

42 The SCSI Drivers 



DMA (16/32 bit) 
You will need to accommodate DMA. This section provides minimal information about 
the HP DMA strategy. To get much more information about DMA and physical 
addresses, see the HP- UX Driver Development Guide. 

While DMA is based on physical addresses, the HP drivers work with logical address. 
Since physical pages usually have little to do with logical pages, the data buffer can span 
several physical pages (some or all of which may not be contiguouR). This leads to the 
following: 

• A physical page is always 4 Kbytes. 

• A data buffer can possibly span 17 physical pages. 

• A maximum transfer size is 64 Kbytes. 

• Since a buffer might not be page aligned, up to 17 chain elements are possible. 

The HP strategy passes the logical data buffer address to dma_build_chain which creates 
a linked chain of entries. The DMA chip has two channels which handle the chaining. 
After creating the chain, fire off the data transaction and expect the DMA routines to 
handle the chaining (i.e. on physical page boundaries, you get a DMA COMPLETE interrupt 
at level 7 and have the DMA software pick up the next element in the chain array and 
fire off the request in the chain without involving the interface driver). 

DMA has two requirements: 

Alignment 

Count 

long word transfers (32 bit) must start on long word boundaries; short 
word transfers must start on short word boundaries, 

long word transfers (32 bit) must be an integral multiple of long word; 
short word transfers must have an even count. 

All other transfers (byte aligned, or odd count) must be processor fast-handshaked over 
the bus. 

The SCSI Drivers 43 



44 The SCSI Drivers 



The SCSI Interface Driver 6 
This chapter provides a walkthrough of the routines, code, and information related to 
the interface driver. Table 6-1 lists and describes the topics. 

Table 6-1. Interface Driver Topics 

Topic Description 

Initialization/Boot-up The section describes these routines: 
Routines scsi_ini t (performs certain checks) 

scsLmake_entry (relates to console and card 
scsi_link (places SCSI in linked list) 
scsi_msus_for_boot (relates to msus and devices) 
scsi_saved_msus_for_boot (see above) 

Handling Interrupts The section describes these routines: 
scsi_isr (relates to Fujitsu chip) 
scsi_do_isr (handles INTS register interrupts) 
scsi_call_isr (handles ISR related events) 

Selection Process The section describes these routines: 
scsi_select (lets SCSI transactions commence) 
scsi_do_isr (cmd_complete and srv _reg) 

Data Transfer The section describes these routines: 
Circuit scsi_ transf er (effects transfers) 

scsi_dmaisr (relates to DMA) 
scsi_program_xfr (fast-handshake routine) 
scsi_part_prog_xfr (relates to partial sectors) 
scsi_man_xfr (transfers one data byte) 

Message/Status The section describes these routines: 
Circuitry scsi_mesg_out (relate to messages and status) 

scsi_mesg_in (see above) 
scsi_status (see above) 

SCSI Error The section describes these routines: 
Handling scsi_abort (gets to bus free) 

The SCSI Interface Driver 45 



Initialization/Boot-up Routines 
This sections describes routines used during the initialization and boot-up of SCSI. 

scsLinit 
Major functions: 

• initialization of card 

• initialization of data critical data structures. 

This routine is called just once, upon boot up, by the operating system. It also determines 
whether the interface uses 16/32 bit DMA or just 32 bit DMA. It checks whether the 
parity option has been selected. 

scsLmake_entry 
This routine is called just once, upon boot up, by the operating system. It prints the 
initial information to the console describing the interface. It informs the system that a 
card is indeed out there. 

scsLlink 
Places scsi in the linked list of routines to be called when an interrupt at that level occurs. 

scsLmsus_for _boot & scsLsaved_msus_for _boot 
Both of these are called by reboot (msus = "Mass Storage Unit Specifier"). It is the 
integer passed to the boot ROM to inform the boot ROM which device (if any) to reboot. 

46 The SCSI Interface Driver 



Handling Interrupts 
This sections describes routines for handling interrupts. 

scsLisr 
Interrupts generated by the Fujitsu chip are handled by the low-level interrupt service 
routine handler for the appropriate interrupt level. The routine eventually calls scsi_isr, 
which determines the corresponding select code structure and calls scsi_do_isr. 

scsLdo_isr 
This routine handles the interrupt(s) indicated by the INTS Register of the Fujitsu chip. 
(See the Fujitsu MB87030 User's Manual.) After reading and storing the register, it is 
reset. 

Bit Interrupt Explanation 

a Reset Condition An RST on SCSI has occurred. This is unexpected. Possible 
problem is a blown fuse. 

1 SPC Hardware Error Parity error is suspected. 

2 Timeout The SELECT command to the Fujitsu chip timed out. No 
device. 

3 Service required The target has changed bus phase. cmd_complete handles 
this interrupt. 

4 Command Complete The command to the Fujitsu chip has completed. Typically it 
is completion of SELECT or data transfer request. Determine 
the next state, clean up the DMA transaction (if necessary), 
compute the resid (if necessary), and call the SCSI FSM. 
Dequeue other activities afterward. 

5 Disconnected Interrupt discarded. 

6 Reselected A target has reselected the SPC. If the Fujitsu chip has 
glitched ATN, toss the next byte. Call scsi_calLisr (see 
below) to queue up the process waiting for the target to 
respond. 

7 Selected HP does not support the host being selected as a target. 

<Interrupt handler routines continue on the next page.> 

The SCSI Interface Driver 47 



scsLcalLisr 
To see this procedure, consider a device issuing a DISCONNECT message to a peripheral. 
The message implies: 

1. the target drives the bus to bus free; and 

2. at a future point, the ISR reselects the host and continues with the transaction. 

Looking at the FSM in scsi. c that handles this message, and assuming you received the 
DISCONNECT from a disc: 

1. start a timeout in case the target never reselects you (e.g. someone power cycles 
the drive at this instant or the drive dies during a seek activity [more on this later]), 

2. free up the bus (select code) for other processes, and 

3. set up a queue of processes waiting for a reselect. 

An Illustrative Routine 
While not all code is used, the following routine shows this: 

> HPIB_ppoll_drop_sc(bp. proc. sense) 
> register struct buf *bp; 
> int (*proc)(); 
> int sense; 
> { 
> register struct isc_table_type *sc; 
> register unsigned char mask; 
> int s; 
> /* dil needs this to be ok 
> if (bp->b_ba > 7) { 
> panic("bad ppoll bus address"); 
> } */ 
> sc = bp->b_sc; 
> bp->b_action = proc; 

> 
> bp->av_forw = NULL; 
> s = sp160; 
> if (sc->ppoll_f == NULL) { 
> sc->ppoll_f bp; 
> sc->ppoll_l = NULL; 
> } 

> else 
> sc->ppoll_l->av_forw = bp; 

< The code continues on the next page.> 

48 The SCSI Interface Driver 



> bp->av_back = sc->ppoll_l; 
> sc->pPoll_l = bp; 
> if (bp->b_flags-& B_DIL) /* handle dil ppoll right */ 
> mask = bp->b_ba; 
> else 
> mask = Ox80 » bp->b_ba; 
> (*sc->iosw->iod_pplset) (sc. mask. sense. 1); 
> unprotected_drop_selcode(bp); 
> splx(s); 
> } 

Comments 
Looking at the routine, you want to place the buf structure, bp, on a doubly linked list 
in the select code structure, sc. The pointers: 

sc - >ppoll_f 
sc->ppoll_l 

mark the head and tail of the list. (Ignore references to DIL. IOd_pplset is unused by 
HP, and is set to no-op in scsi. c). Then, drop the select code and exit. HP protects the 
reentrant code with the typical spl pair. 

Imagine now that you have received a message from the device to disconnect and the 
bus has been possibly used by other processes during the interim. 

1. The device is ready, it arbitrates for the bus, and reselects you. 

2. The Fujitsu chip issues a reselect interrupt, reads the mask from the TMP Register, 
and calls scsi_call_isr to find out which process is expecting that interrupt. 

3. Since only one process can communicate with a controller at a time, you compare 
via bus addresses. scsi_call_isr sets the state to reseleet and calls the b_action 
routine (typically the driver's FSM) and returns. 

Looking at this back in scsi_do_isr, you have an interesting problem. Because of the 
asynchronous nature of the HP operating system (O/S), you can not be guaranteed 
that the select code is free! When a process obtains a select code and attempts to 
select another device, the Fujitsu chip may be asynchronously handling the reselect. HP 
handles this in scsi_do_isr by dropping the select code for the other process. Other 
processes may try to get the select code but will fail because the bus is busy. 

The SCSI Interface Driver 49 



The Selection Process 
This section discusses the routines used in the selection process. 

scsLselect 
All SCSI transactions commence in the following way. 

1. The Fujitsu chip combines arbitration with selection. (See SELECT in the Fujitsu 
MB87030 User's Manual.) 

2. On the O/S, a process owns a select code and has locked the iobuf associated with 
the device. The HP strategy allows only one process to communicate with a device 
at a time. This does NOT preclude other activities from happening on the bus. For 
example, if HP locks device 0, other processes can be using the bus to communicate 
with other drives (besides 0) on the bus. 

Looking at the FSM in scsi. c, state initial is used to get the select code. HP enters 
state 1 when the select is obtained. HP then calls scsi_select; and if the bus is not free, 
HP resets the state to initial to retry at a later point and exit. Otherwise, HP issues the 
SELECT command to the bus. 

HP marks a flag (indicating issuing the SELECT command) and issues the command to 
the Fujitsu chip. Two possibilities can occur: 

1. On being able to select the device, HP gets a Command Complete interrupt. 

2. Otherwise, HP will timeout. 

In the case of the Command Complete interrupt, HP determines the phase requested by 
the target, sets the state accordingly, and proceeds. 

In a timeout HP gets a Timeout interrupt from the Fujitsu chip. HP sets the state to 
selecLnodev, drops the select code, and calls the driver's b_action routine. 

50 The SCSI Interface Driver 



scsLdojsr (cmd_complete and srv_reg) 
The same code handles both interrupts. If a service required interrupt occurs, reset the 
data transfer circuit of the Fujitsu SPC. 

If the previous phase was Data_ transf er, there are two tasks: reset the hardware and 
compute the residual. If the transfer method was a fast handshake, compute the residual 
data count. 

If the transfer was done via DMA, call dmaend_isr to reset the DMA hardware and call 
scsi_dmaisr to both reset the Fujitsu hardware and compute the residual. 

The residual might not go to zero; so update b_xadder and b_upcount with the new values. 
(To get another view of this: the host transfers a portion of the data buffer, and then the 
target disconnects. The pointers must be modified when the transfer is restarted later.) 

If the previous state was selection, reset the ATN line and indicate that the device is 
connected. 

On being connected, call the driver's FSM. On returning from the FSM, deqeue the 
activity. 

The SCSI Interface Driver 51 



The Data Transfer Circuit 
This section describes the routines in the data_transfer circuit. 

scsLtransfer 
First, determine the type of transfer. If a request for max_speed is indicated, negotiate 
for DMA (try_dma). The select code structure holds the buffer address, count, and flag 
(read / write). It then calls the appropriate transfer routine to kick off the action. HP 
always indicates fhs_tfr for command bytes and usually calls dma_tfr for data transfer. 

In the case of a DMA transfer, HP: 

1. calls dma_build_chain to set up the DMA chains; 

2. sets up the Fujitsu chip for the transfer; and 

3. kicks off the transfer with a call to dma_start. (Remember, the DMA routines will 
handle the chaining (at level 7)). 

The line: 

cp->scsi_scmd = TRANSFER 

actually starts the Fujitsu transfer, while dma_starts starts the DMA chip. 

scsLdmaisr 
This routine: 

1. drops the DMA channel; 

2. resets the SCSI cards buffers (a write to register scsi_hconf achieves this); and 

3. computes the residual count via the Fujitsu transfer count registers. 

scsLprogram_xfr 
This is the processor controlled "fast-handshake" routine that sets up the transfer count 
registers, sets up the peTL Register, fires off the command, and starts transferring. The 
one caveat is that the target may change bus phase, so HP has to check the interrupt 
register. 

52 The SCSI Interface Driver 



scsLparLproQ_xfr 
The HP operating system has certain paths that require a write or read from the disc 
consisting of a "'partial sector". SCSI does not allow this per se. The workaround is: 

1. if a partial sector is indicated by the driver, the partial sector flag is set. 

2. scsi_transfer intercepts the call when it detects a partial sector and calls this 
special fast-handshake routine. 

3. Then, HP calls the Fujitsu "Programmed Transfer" and handshakes in or out the 
requested amount - and then handshakes in or out null bytes. 

scsLman_xfr 
This routine transfers one data byte. It uses the standard algorithm specified in the 
Fujitsu MB87030 User's Manual. If the Fujitsu chip has glitched ATN, reset the ATN 
line. HP does it here the first byte after a reselection is guaranteed to be a message byte. 

The SCSI Interface Driver 53 



The Message/Status Transfer Circuitry 
This section discusses routines used for messages and status reports. 

scsLmes9_out, scsLmes9_in, & scsLstatus 
All three routines are rather similar. Each has a sanity check for the correct bus phase. 
All message bytes and status bytes are handshaked via scsi_man_xfr. 

scsLseLstate 
Find the next phase requested by SCSI. It may happen that the bus has gone to bus free, 
in which case you set the state to de/aul. During a manual transfer, you may experience 
an error, such as a parity error without getting an interrupt from the chip. Thus, after 
transferring data in manual mode, and then determining the next bus phase, you check 
the SERR Register to see if an error has occurred. If an error did occur 1 you print a 
diagnostic to the message buffer and set the state to scsi_error and exit. 

SCSI Error Handling 
This section discusses error handling routines. 

scsLabort 
This awkward and difficult routine provides a way to avoid pulling RST on SCSI. The 
goal is to get to bus free in case of a problem. Study the code and algorithm in the code 
for a complete explanation. Notice that you may have to clean up DMA. 

54 The SCSI Interface Driver 



The Disc Device Driver 7 
This chapter provides a walkthrough of the routines, code, and information related to 
the disc device driver. Table 7-1 lists and describes the topics. 

Table 7-1. Disc Device Driver Topics 

Topic Description 

The SCSI Data A brief description of data structures used by SCSI. 
Structures 

Open and Close Routines The section describes these routines: 
scsi_open (opens a device) 
scsi_close (closes a device) 
scsi_nop (auxillary procedures for open/close routines) 

The Operating The section describes these routines: 
System Interface scsi_strategy (performs read/write to peripheral) 

scsi_read (reads character device files) 
scsi_wri te (writes character device files) 
scsi_ioctl (controls I/O) 

SCSI Control Describes a utility for setting up activity other than reading or 
writing. 

The Finite State Machine The section describes these routines: 
scsi_fsm (the heart of the device driver) 

Writing to a Disc Describes the process for writing to a disc. 

Handling Errors Describes how to deal with errors. 

The Disc Device Driver 55 



The SCSI Data Structures 
The scsi disc driver maintains a structure per physical device (scsi_od). scsi_od has 
an iobuf for synchronizing activities per device. Only one process can access a device 
at a time. In addition, several other fields are maintained for issuing the request sense 
command, and for the special ioctl call. 

We also keep a structure (scsi_olun) for each opened unit. It maintains some unit specific 
data (such as the size of a block). We needed a separate structure from scsi_od since 
two units sharing a controller may have different characteristics. 

Open and Close Routines 
This section discusses the open and close routines. 

scsLopen 
If a device is not opened, the driver allocates a scsi_od structure and a scsi_olun for it. 
The driver then bumps the open counts and calls: 

1. scsL test_uni t to check that the drive is responding; 

2. scsi_inquiry to determine "what is out there"; and 

3. scsLread_capaci ty to determine the size of the drive and the size of a logical disc 
block in bytes. The values for these two last numbers are kept in: 

up->lunsize 
up->log2blk 

(size in blocks) 
(log2 of the block size) 

An "open device" structure and an "open logical unit" structure is kept per unit. Only 
one open device structure is allocated for all opens on individual units. The structure 
contains the device specific information. 

The scsi_od structures are allocated by sunit_open(bp). The per unit information (e.g. 
capacity and blocksize) are kept in scsi_olun and are allocated by scsi_olun. 

56 The Disc Device Driver 



scsLclose 
This is a simple routine except for the call to: 

(void)scsi_control(dp, up, scsi_nop, NULL, 0, NULL, 5*HZ, 1,0); 

which was inserted because of the asynchronous nature of HP's O/S. Upon shutdown 
the O/S issues the reboot intrinsic, which calls sync. It returns immediately and shuts 
the O/S down. But the driver may not be done! To synchronize, HP places a call to a 
trivial FSM that assures the request queue is flushed. 

suniLclose 
The routine deallocates the scsi_olun structure. The pool of structures, scsi_olun and 
scsi_od, are allocated and reused by possibly differing devices over several invocations 
of the open and close system calls. 

scsLnop 
Handles auxilIary procedures to the drivers open and close routines. It associates 
scsi_olun and scsi_od structures on a per device and per unit basis. 

The Disc Device Driver 57 



The Operating System Interface 
This section discusses routines that can invoke an activity on SCSI. 

scsLstrategy 
This routine is called by the file system to perform a read or write to the peripheral. It 
is also linked with the special ioctl path to issue a user supplied command. 

The routine initializes several values in the buf structure, sets b_clock_ ticks to the value 
COMMAND_TIME (this is maximum value a device is allowed to detach after receiving 
the command). For normal reads and writes it is 5 seconds. HP sets the ATN_REQ flag 
in b_flags to indicate allowing the target to disconnect. 

HP calls bp_check, which performs several activities on behalf of the driver: 

• Is the buffer odd-byte aligned? (it's not allowed) 

• Is the start of the transfer device sector aligned? 

• Is the length of the transfer a whole number of device sectors? 

• Driver strategy for handling end of volume: 

• b_resid is set to requested amount (b_bcount). 

• b_bcount is possibly cut back due to end of volume. 

• The driver attempts to transfer up to b_bcount bytes, 

• Decrements b_resid as it goes. 

• Afterwards, b_resid reflects residual due to either end of volume or error 

• Does the request start within range? 

• If the request goes beyond the end of volume, cut it back if it is a user raw request 
not from the pageout deamon. 

• Trim count to just the number of bytes remaining on device. 

• Return 0 if no error, else call iodone and return 1. 

58 The Disc Device Driver 



scsLread & scsLwrite 
This path (for character device files only) bypasses the file system buffer cache. Both 
routines call physio before calling scsi_strategy. 

physio is used for raw I/O. The arguments are: 

• The strategy routine for the device. 

• A buffer, which will always be a special buffer. 

• The header owned exclusively by the device for this purpose. 

• The device number. 

• Read/write flag. 

Essentially, the work amounts to computing and validating physical addresses. If the 
user has the proper access permissions, the process is marked delayed unlock and the 
pages involved in the I/O are faulted and locked. After the completion of the I/O, the 
above pages are unlocked. The routine eventually calls physstrat, which in turn calls 
the driver's strategy routine. 

scsLioctl 
This is a simple routine (except the CMD_MODE which is explained in a separate section 
below). Three parameters are used: 

• Buf header 

• Flag (to identify the request) 

• An address of a buffer. 

The Disc Device Driver 59 



SCSI Control 
The scsi_control utility sets up for activities other than read/write. It is used internally 
for open activities, and also by ioctl. It knows SCSI specific things. Items to consider 
include: 

• Open device pointer. 

• Open L UN pointer. 

• Requested FSM (usually scsi_fsm). 

• proc (command to be issued). 

• dev (device includes both Major and Minor number). 

• addr (address of data buffer). 

• clock_ticks (how long to wait after a command is issued and the device issues a 
disconnect) . 

• atn_flag - allow for device to disconnect. 

• parm - parameter to be passed in (such as interleave for the mediainit command). 

A buf header is obtained via a call to geteblk. Several entries in the buf header are 
initialized and the activity is enqueued. We wait for the activity to complete! 

If the device issues synchronous transfer data, mark it at this point. If no error 
has occurred, do several special activities. If the command (proc) was read_capacity, 
initialize the appropriate entries in the scsLolun structure. 

60 The Disc Device Driver 



Finite State Machine 
The FSM provided by the scsi_fsm routine is the heart of the entire device driver. Each 
SCSI bus phase has a corresponding state in the FSM. In fact, the states are driven by 
both hardware (SCSI bus phase requested by target) or the phase requested by software. 

states { 
/* States assigned by software */ 
initial=O. 
select. 
select_nodev. 
select_TO. 
transfer_TO. 
reselect. 
scsi_error. 

/* Following states assigned by ISR */ 
phase_data_out. 
phase_data_in. 
phase_cmd. 
phase_status. 
phase_mesg_out. 
phase_mesg_in. 

defaul /* default state - should never get there */ 
} 

The Disc Device Driver 61 



Writing to a Disc 
Consider a typical complete disc transaction for the WRITE command: 

SCSI Bus Phases 

..... bus free 
arbitration \ 
selection device with ATN / 

mesg_out 
command 
mesg_in 

· . . .. bus free .... 
mesg_in 
data_in/data_out 
mesg_in 
mesg_in 

· . . .. bus free .... 
mesg_in 
mesg_in 
data_in/data_out 
mesg_in 
mesg_in 

mesg_in 
status 
mesg_in 

· . . .. bus free .... 

DESCRIPTION 

<handled by Fujitsu 
chip as a single 
request> 

identify 
write 
disconnect 

identify 
<data transfer> 
save_data_pointer 
disconnect 

identify 
restore_pointers 
<data transfer> 
save_data_pointer 
disconnect 

identify 
status 
command complete 

FSM STATE 

initial 
select 

phase_mesg_out 
phase_cmd 
phase_mesg_in 

phase_mesg_in 
phase_mesg_in 

phase_mesg_in 
phase_mesg_in 

phase_mesg_in 
phase_mesg_in 

phase_mesg_in 
phase_status 
phase_mesg_in 

You can trace the above sequence via an HP-UX write request. (The non-driver details 
are left to the reader's imagination.) A request from the operating system to write to a 
disc is made to scsi_strategy. The type of request (write or read) is determined by the 
low-order bit of the b_flags entry of the buf structure. The buf header is initialized in 
the strategy routine, bpcheck checks various parameters and calls enqueue. 

62 The Disc Device Driver 



Noting the Queuing Strategy 
Enqueue enqueues requested activity on the iobuf (the per-device queue header). The 
iobuj is in the scsi_od structure. If the iobuf can be immediately serviced, the action for 
the queued item is started. All subsequent queuing is on the select code or DMA level, 
and thus, selcode_dequeue and dma_dequeue are called. 

Queuestart is called from enqueue, and if the device is free (iobuf is not locked) the 
b_state is initialized, and the b_action routine is called (the SCSI FSM in our case). 
Enter scsi_fsrn with state = initial. 

Moving to Initial State 
In scsi_fsrn ( state = initial), you follow the transitions in processing a transaction. 
Enter the FSM via queuestart. The state is initial, so set the next state to select, call 
get_selcode (which puts you on the queue of processes waiting for the select code, and 
exit. Completely out of the driver now, you are not sleeping, merely waiting. At some 
point, someone calls selcode_dequeue and your process is called with the state = select. 
Start time, and call scsi_select. One of two events should occur: 

• If no device responds, the Fujitsu chip will timeout, cause a Timeout interrupt, and 
set our state to selece nodev. Then the ISR calls the FSM so you enter the state 
select_nodev, drop the select code, call queuedone, and exit. 

• If the device responds, you get a Command Complete interrupt. The ISR sets the 
state for you, based on the requested bus phase. If you selected with ATN (usually 
the case), you expect but do not require the phase to be rnesg_out. 

Continuing 
The next entry to the FSM is via the ISR (either a Timeout or a Command Complete 
interrupt). If the command complete interrupt occurs and you assume going to 
phase_rnesg_out, you have a problem concerning the previous state. Since the FSM is 
stateless, keep the previous state in b_phase. If it is SCSI_SELECT, issue the identify 
message to set bit 6 on allowing disconnect/reconnect. Call scsi_mesg_out to send the 
byte out to the device and expect the target to respond with a new bus phase. Go to 
reenter. 

If the next phase is the command phase, proceed to that state in the FSM. HP stores the 
command in b_action2 (from scsi_control or scsi_strategy) and calls the corresponding 
procedure (such as scsi_xfer_cmd). This eventually filters down to the interface driver, 
which pumps the bytes out across the bus. In this state in the FSM, HP finally initializes 
the iobuf structure that holds the running transfer count and buffer address. The call to 
scsi_xfer_cmd initialize the values in the command string. 

< The following page continues the disc discussion.> 

The Disc Device Driver 63 



Exiting 
Exit the state machine, and wait for an interrupt. At that time, reenter the FSM with 
the state set to mesg_in and enter that state. This state calls scsi_mesg_in and reads 
all the message bytes available in the mesg_in phase (e.g. multiple message byte packets 
are anticipated). On getting the disconnect message, call WAIT_for_reselect and exit. 
Recall from the above discussion, that WAIT _for _reselect puts you on a queue of processes 
waiting for a reselection, and drops the select code, still having the iobuf locked. 

The device drives the bus to bus free, and does things private to the drive (e.g. decode the 
command, seek, internal maintenance, etc.). Eventually (milliseconds later), the device 
reselects HP. The Fujitsu chip will cause a Reselect interrupt, call scsi_call_isr (and 
find you are waiting for the interrupt), set the b_state to Reselect, and call the FSM. 
Although the bus is being driven by "your" device, you are not guaranteed that the select 
code is free. Call scsi_set_state, and then get_selcode and exit. Eventually, you return 
with the state mesy_ in (the device will send an identify and possibly other messages) 
and you eventually enter the FSM with the state set to data_transfer (phase_data_out 
since you are writing). 

Call scsi_transfer (with MAX_SPEED specified), which does all all the work in firing off 
the transfer. 

Eventually you get to the status routine. Read the status byte, and if it is non-zero, 
request status. 

Getting Additional Information 
While this provides an idea about how the FSM works, details cannot be easily described. 
Serious kernel hackers should do considerable code-walking and code-reading. The HP­
UX Driver Development Guide has some hints for code-walking. 

64 The Disc Device Driver 



ERROR Handling 
This section provides some hints for handling errors by discussing the error path. 

scsLreq_timeout, scsLselecLtimeout, & scsLdequeue 
Imagine you are in the FSM, more specifically, you are in phase phase_cmd and intend to 
write a command out to the unit. 

You can START_TIME with a timeout parameter of COMMAND_TIME~ set b_flags bit TO_SET, 

call the b_action2, and break. The START_TIME command which follows, 

START_TIME (scsi_req_timeout. COMMAND_TIME); 

is actually a macro that must be paired with END_TIME. 

The methodology is to call END_TIME as soon as you reenter the FSM (if the TO_SET 

bit in b_flags is set). The above command sets up a timeout that calls the rou­
tine scsi_req_timeout after COMMAND_TIME has expired. If END_TIME is called before COM­

MAND_ TIME ticks, the timeout is canceled. 

What If the Command Fails 
Suppose the command fails for unknown reasons and the timeout goes off (END_TIME has 
not been called). The clock ISR calls the specified routine at level 5. You now execute an 
error recovery path so that scsi_req_timeout prints a diagnostic to the message buffer 
and calls the macro TIMEOUT_BODY. 

TIMEOUT_BODY (iob->intloc.scsi_dequeue.bp->b_sc->int_lvl.O.transfer_TO) 

The function of the macro is to set up a software trigger that calls scsi_dequeue when the 
interrupt level drops down to bp->b_sc->int_l vl and sets the state to transfer_TO. (The 
o means BEFORE a real hardware interrupt at that level. A 1 would imply software 
trigger scsi_dequeue after any pending interrupts at that level.) 

You now wait until software_trigger triggers scsi_dequeue which immediately calls the 
FSM, drops into state transfer_TO, and escapes (the recovery routine is now entered). 
After the recovery routine completes, return to scsi_dequeue and loop de queuing 
activities on the select code and DMA. 

The Disc Device Driver 65 



scsLdecode_status 
HP issues the command scsi_request_sense whenever the status byte is non-zero. When 
HP receives the data back from the command, HP calls scsi_decode_status. 

scsi_decode_status decodes the information. The one important point is the strategy 
of retrying most commands exactly once. That is, if an error of some sort occurs (e.g. 
a parity error), retry the command once. A bit in the b_flags field determines whether 
the command is being retried and HP keys off of that bit. 

66 The Disc Device Driver 



The loctl Path 8 
A functionality called the ioctl path accomodates user's requirements for specialized SCSI 
support. It lets you add support without modification of the driver because the support 
is provided by userland programs alone (Le. you do not work in the kernel per se). 

Item 

Intended Use 

An Illustrative 
Situation 

Potential Users 

Requirements 

Table 8-1. Overview of the Ioctl Path 

Description 

The ioctl path lets users pass a specified command directly to a (disc) 
device conforming to the SCSI standard for DADs and requirements 
imposed by the HP-UX SCSI driver. 

You have a disc and want to access certain diagnostic logs. The SCSI 
device driver does not support such a command. Via the ioctl path, a 
userland program can package the command and have the driver pass it 
directly to the drive. 

A disc that does not fully work with the HP driver might need support; 
for example: 

* A CD-ROM player might need special 
commands to "play audio". 

* An autochanger disc unit might require commands 
to "load/unload" a media from a library. 

The devices might in all other respects conform to HP's ordinary concept 
of DAD. 

The unit must be "disc-like". The support resides solely in a userland 
program, no kernel modifications are expected. The command must 
conform to the basic SCSI command formats (6, 10, or 12 byte command; 
with the standard sequence of SCSI phases). Two special requirements 
are: 

* the effective user ID must be root, and 
* the unit must be locked (i.e. single access). 

The two requirements provide safety because the path lets a user 
download THEIR OWN COMMANDS DIRECTLY to a unit. The driver 
cannot check a call that might be very destructive. For example, a simple 
error in byte position might convert an innocent inquiry command into 
a format unit command! 

The Ioctl Path 67 



The Header File 
The scsi. h header file contains the required declarations shown in the following code: 

include <sys/scsi.h> 

#define CMO_LEN 12 

struct scsi_cmd_parms { 
char cmd_type; 
char cmd_mode; 
long clock_ticks; 

/* maximum # data bytes in the cmd message */ 

/* command type (6, 10, or 12 byte) */ 
/* environment (select with ATN) */ 
/* timeout for data xfr phase */ 

char command [CMO_LEN] ; /* SCSI Commnd to be sent */ 
}; 

This structure is used to specify the command, and establish the 
appropriate parameters for the driver. Specifically, 

'scsi_cmd_parms.cmd_type' is used to specify whether the command 
is 6, 10, or 12 bytes in length. 

'scsi_cmd_parms.cmd_mode' This is currently used only to allow 
the driver to select the target with ATN 
(which allows the Target to disconnect) . 
Other bits may be used at a future point. 

'scsi_cmd_parms.clock_ticks' Specifies the maximum disconnect time. 
Specifically, it is the maximum time from 
the disconnect message following the 
command phase, until the time the target 
res elects the host. 

'scsi_cmd_parms.command[]' The actual command. 

The following defines are used to access the special Ioctl feature: 

#define SIOC_SET_CMO 
#define SIOC_XSENSE 

68 The Ioctl Path 

This establishes the environment. It makes 
sure the effective 10 is super-user, and then 
locks the device (if not in use), otherwise 
it returns an error. 
Sets the command to be issued to SCSI. 
Returns the sense from the last request sense 
command. Notice, that if the returned status 
is 0, the 'request_sense' command is not issued. 



This page is intentionally blank. 

The Ioct! Path 69 



The scsi-ioctl Command 
The source code on this and the following page shows the scsi_ioctl command. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

scsi_ioctl(dev, order, addr, flag) 
dev_t dey; 
int order; 
caddr_t addr; 
int flag; 
{ 

struct scsi_od *dp; 
register struct scsi_olun *up; 
register int err=O; 
int i, blksize=1; 

if «up = sunit_opened(dev, &dp)) == NULL) 
panic("scsi_ioctl: unopened device"); 

switch (order) { 

case SIOC_CMD_MODE: 

} 

if (!suserO) { 
err = EPERM; 
break; 

if (*(int *)addr) { 

} else { 

} 
break; 

err = dp->cmd_mode_dev I I 
up->lun_open_cnt != 1 

? EBUSY : 0; 
if (!err) 

err (dp->cmd_mode_dev!= dey) ? EPERM 0; 
if (! err) 

dp->cmd_mode_dev = 0; 

case SIOC_SET_CMD: 
i = (int) «struct scsi_cmd_parms *)addr)->cmd_type; 
err = dp->cmd_mode_dev != dey ? EACCES 

(i != 6 && i != 10 && i != 12) ? 
EINVAL : 0; 

if (! err) 
bcopy(addr, &dp->cmd_parms, 

sizeof(struct scsi_cmd_parms)); 
break; 

70 The Ioctl Path 



43 
44 
45 
46 
47 
48 } 

case SIOC_XSENSE: 

} 
return err; 

bcopy(&dp->status, addr, sizeof(struct xsense)); 
break; 

The following table discusses the lines. 

Line Nos. Description 

Lines 1-5 In the scsi_ioctl declaration: 
dey is the device 
order is the specified ioctl command (e.g. SIOC_SET_CMD) 
addr is the address of buffer 
f lag is unused 

Line 12 The call to suni t_opened initializes the pointer to the scsi_od table (open 
device structure), and returns the pointer to scsi_olun (open logical unit 
structure) . 

Line 15 Swi tch on particular request (unrelated ioctl calls deleted here) 

Line 17 SIOC_CMD_MODE 

Line 18 If not super user, return error (EPERM) else on line 22, 

Line 22 If the first element of the buffer is non-zero, you are trying to open the 
device in command mode. If it is zero, you are shutting off command mode 
to allow normal access. 

Line 23 If the device is already opened in command mode, or the open count is 
non-zero, return error (EBUSY). Otherwise, open it in command mode. 

Line 29 The device you close in command mode better be the same device you 
opened! 

Line 34 SIOC_SET_CMD: (Decode scsLcmd_parms pointed to by addr) 

Lines 35-38 First element of structure is cmd_type. Check the value. 

Line 40 Copy the buffer into the internal scsi_cmd_parms structure maintained by 
the driver. Whenever the device is in command mode, the command sent 
to the drive is found here! This is why HP has exclusive opens!!! Normal 
reads or writes are not possible. 

Line 44 Return the last extended sense returned from that device. 

The IoctI Path 71 



A CD-ROM Case Study 
This section contains an example of how to use the ioctl path. The case is supplying 
complete support for a third-party CD-ROM player. While the case has relative 
simplicity, it shows a complete study of providing support for a third-party's product. 

The Case 
A CD-ROM will identify itself as a read-only device that can respond to common SCSI 
commands such as test_unit_ready, read_capacity, inquiry, and read. A CD-ROM will 
fail for a write command and for format_unit, but that is to be expected. 

To provide full support, the device needs additional functionality; specifically, to: 

1. control the audio features via special commands, and 

2. provide a way of ejecting the disc via software. 

Discussion 
In the world of CD-RaM's, there are two types of discs: AUDIO and DATA. The type of 
disc is determined by a header on the disc, and is accessible only via the unit's controller. 
When a data disc is inserted into the CD-ROM, the HP command set provides all the 
required functionality to access the disc except for ejecting the disc via software (the 
command is naturally called eject). (No front panel operation is available.) 

Beyond this, recall that you want to also provide a way to turn on and turn off the AUDIO 
mode when an AUDIO disc is inserted (so the user could plug-in their earphones and use 
the CD-ROM as a standard CD-ROM player). This means, you need to implement two 
new commands play_audio and pause. 

Finally, since there are two types of discs, you want a way to determine the type of disc 
currently in the player (and some additional status). A command called disc_information 
is needed. 

72 The loctl Path 



Writing the First Program 
As a start, you have the program named ej ect. c: 

1 #include <stdio.h> 
2 #include <sys/scsi.h> 
3 
4 struct scsi_cmd_parms scsi_cmd = { 
5 12, 1, 500, 
6 Oxe4, OxOO, OxOO, OxOO, OxOO, OxOO, 
7 OxeO, OxOO, OxOO, OxOO, OxOl, OxOO 
8 }; 
9 

10 main (argc, argv) 
11 int argc; 
12 char *argv[]; 
13 { 
14 int fd, ret, i, flag=l; 
15 unsigned char *ptr, buf[256]; 
16 
17 if (argc != 2) { 
18 fprintf(stderr, "Usage: %s device\n", argv[O]); 
19 exit(l); 
20 } 
21 if ((fd=open(*++argv, 2»<0) { 
22 perror("stop: error in open"); 
23 exit(l); 
24 } 
25 
26 if((ret ioctl(fd, SIOC_CMD_MODE, flag»<O) { 
27 perror("error in ioctl setup CMD MODE"); 
28 exit(l); 
29 } 
30 
31 
32 
33 
34 
35 
36 
37 } 

if (ioctl(fd, SIOC_SET_CMD, kscsi_cmd) <0 I I 

exit (0) ; 

(ret = read(fd, buf, Oxff» < 0 
perror("error in ioctl SET CMD MODE"); 
exit(l); 
} 

{ 

The loctl Path 73 



Looking at the Code 
Lines 4-8 

Line 17 

Line 21 

Lines 26-29 

Lines 31-35 

Initialize the structure so that: 
cmd_type is a 12-byte command; 
cmd_mode allows disconnect; 
clock_ticks does timeout for maximum disconnect (10 seconds); 
command is the hexadecimal encoding of actual command 

to be passed to drive. 

Checks for usage; 

Opens the device; 

Sets up CMD_MODE 

Issues the command; the "ioctP' call sends the command down to the 
driver and the read actually initiates the command. If the ioctl call fails, 
the read is not performed. A diagnostic is written if either command 
fails. 

74 The Ioctl Path 



Noting the Specifications 
You just looked at the code. Table 8-2 shows the description from the Specification 
Document for the CD-ROlvL Study the code, the specifications, and the foilowing 
comments on the lines to get the picture. 

Table 8-2. Eject Command Specifications 

Bit 

I I I I I I Byte 7 6 5 4 3 2 1 0 

0 Operation Code = OxE4 

1 LUN = 0 I Reserved = 0 

2 Reserved = 0 

3 Reserved = 0 

4 Reserved = 0 

5 Reserved = 0 

6 Reserved = 0 

7 Reserved = 0 

8 Reserved = 0 

9 Reserved = 0 

10 Reserved = 0 EJC 

11 VU = 0 I Reserved = 0 I 0 0 

The EJC bit field (Eject) is set. If you desire a check condition status, the CD-ROM has 
the medium removal condition set. 

The loctl Path 75 



Writing the Second Program 
The second program turns on the AUDIO mode so the user can play an AUDIO disc. 
The program appears on this and the next two pages. A following section examines the 
lines. 

#include <stdio.h> 
#include <sys/scsi.h> 

1 
2 
3 
4 
5 
6 
7 
8 
9 

struct scsi_cmd_parms get_info = { 
12, 1, 500, 
Oxe3, OxOO, OxOO, OxOO, OxOO, 
OxOO, OxOO, OxOO, OxOO, Ox03, 

}; 

struct scsi_cmd_parms pause = { 
12, 1, 500, 
Oxel, OxOO, OxOO, OxOO, OxOO, 
OxOO, OxOO, OxOO, OxOO, OxOO, 

}; 

struct scsi_cmd_parms spinup = { 
6, 1. 500, 
Oxlb, OxOO, OxOO, OxOO, OxOl, 

}; 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

struct scsi_cmd_parms play_tracks = { 

25 }; 
26 
27 

12, 1, 
Oxe2, 
OxOO, 

500, 
OxOl, 
OxOl, 

28 main(argc,argv) 
29 int argc; 
30 char *argv[]; 
31 { 

OxOl, OxOO, OxOO, 
OxOO, OxOO, OxOO, 

OxOO, 
OxOO 

OxOO, 
OxOO 

OxOO, 

OxOO, 
OxOO 

32 int fd, c, ret, i, flag=l, first_track=l, last_track, 
num_tracks=O; 

33 unsigned char buf[256]; 
34 char *name, *begin = NULL, *num NULL; 
35 
36 extern int opt err , optind; 
37 extern char *optarg; 
39 opterr=O; 

< Code continues on the following page.> 

76 The Ioctl Path 



40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

while « c = getopt(argc, argv, "t:T:n:N:"» != EOF) { 
switch (c) { 

} 

case'T': 
case 't': begin = optarg; 

sscanf(begin,"%d",&first_track); 
break; 

case )'lTJ. 
!~ • 

case 'n': 

default: 
} 

num = optarg; 
sscanf(num,"%d",&num_tracks); 
break; 
usage(argv[O]); 

if «name = argv[optind++])==NULL I I argv[optind] != NULL) 
usage (argv [0]) ; 

if «fd=open(name, 2»<0) { 
perror(lIplay : error in open"); 
exit (1) ; 
} 

if«ret = ioctl(fd, SIOC_CMD_MODE, flag»<O) { 
perror("error in ioctl setup CMD MODE"); 
exit (1) ; 
} 

if(num_tracks == 0) { 1* Play to the end *1 

} 

if «ret = ioctl(fd, SIOC_SET_CMD, tkpause»<O) 
perror("error in ioctl pause"), exit(1); 

ret = read(fd, buf, Oxff); 
sleep(1) ; 
if «ret = ioctl(fd, SIOC_SET_CMD, &get_info)<O» 

perror("error in ioctl get_infoll), exit(1); 
ret = read(fd, buf, Ox03); 
num_tracks = buf[2]-first_track+1; 

last_track = first_track + num_tracks-1; 

< The code continues and ends on the following page. > 

The Ioctl Path 77 



76 printf("first_track = %d last_track = 
%d\n".first_track.last_track); 

77 play_tracks.command[2] (unsigned char) (first_track & Oxff); 
78 play_tracks.command[7] = (unsigned char) (last_track & Oxff); 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 } 
90 
91 
92 

ioctl(fd. SIOC_SET_CMD. &pause); 
ret = read(fd. buf. Oxff); 
ioctl(fd. SIOC_SET_CMD. &spinup); 
ret = read(fd. buf. Oxff); 
ioctl(fd. SIOC_SET_CMD. &play_tracks); 
ret = read(fd. buf. Oxff); 

close(fd) ; 
exit (0) ; 

93 usage (name) 
94 char *name; 
95 { 
96 fprintf(stderr."usage: %s \n\ 
97 [-t <first track>] \n\ 
98 [-n <number of tracks>] \n". name) ; 
99 exit(1); 

100 } 

Looking at the Lines 

Line Nos. Description 

Lines 4-25 Specification of the several commands required to implement "play _audio" . 

Lines 39-52 You are getting fancy here: the user can optionally specify which track they 
wish to start playing, and how many tracks they want to listen. 

Lines 54-56 Error checking for usage. 

Lines 60-63 Set up command mode 

Lines 65-74 Details of how to compute what tracks to play. The parameters are used in 
the command play _tracks, and notice that the actual command is modified 
accordingly on lines 77 & 78. 

Lines 80-85 First pause disc (in case it is playing); next spin it up; finally play the disc. 

78 The loctl Path 



Providing for All Users 
The program called ej ect uses SIOC_SET_CMD, which requires root permission. Users need 
access to the command. So execute: 

% cc eject.c -0 eject 

to compile the program. Become the root user and execute: 

# chown root eject 
# chmod 755 eject 
# chmod u+s eject 

The Ioctl Path 79 



80 The Ioctl Path 



Miscellaneous Hints 9 
This chapter contains assorted information related to modifying, writing, and debugging 
drivers. The chapter has no particular order or structure. Read it according to your 
needs. 

Some Hints 
This section has ideas, hints, and ramblings about kernel development. 

After developing kernel code for several years, you learn about the facts of life the hard 
way. Many hours were lost on really dumb mistakes. Our tools are getting better all the 
time though. These tools (such as SCCS) help us recover from bad mistakes. Other 
tools, such as the kernel debugger and msg_printf help us develop much, much quicker. 
(As an example, scsi. c and scsi_if. c were developed from scratch to its current form 
in less than 9 months.) 

Avoiding Complex Tasks 
Avoid the tendency to jump into extremely difficult tasks that lie outside your ability 
and then call them challenges. Accepting a challenge can become an insurmountable 
problem. Make every attempt to minimize source changes. Instead of changing source 
code, use the ioctl path whenever possible (see Chapter 8). 

Miscellaneous Hints 81 



Working Effectively and Efficiently 
There always seems to be a shortage of tools. Never mind that. Use available tools and 
time-tested procedures to ease the burden of developing a driver. The following items 
mention useful ideas or procedures: 

• At each point in writing a driver, make extremely small changes and debug them 
before proceeding. 

• Delta each change into an SCCS file (RCS if you prefer). 

• Test EACH CHANGE. Have a test procedure or test suite available. 

In relation to testing changes, the following items suggest things to do: 

• Boot off of the device. 

• See if the device "rootable". 

• Design a test per change, making a test assure that changes are backward compat­
ible. 

• Run a write/read exerciser. 

• Run a full disc random write/read exerciser. 

• Try non-standard paths (besides the customary write/read) such as mediainit. 

• Try to force error paths (one technique is to use the debugger to set a breakpoint 
and force a timeout by using faulty equipment (keep bad tapes, bad microfloppies, 
discs with no spares available in your desk for QA!)). 

• Create a stress test that will run (hopefully) without an error for an extended 
period of time (try a 48-hour stress tests that thrashes the discs). 

• Create a session that imitates what users actually do with discs. 

Some of these techniques for debugging were discussed in other places, but in general, 
the manual assumes you know how to do these things. 

82 Miscellaneous Hints 



Debugging Techniques 
You need to use the kernel debugger. If necessary, learn how to boot HP-UX from the 
debugger and then learn to use the debugger before you start modifying source. If you 
need more information, the HP- UX Driver Development Guide has a chapter on using 
the kernel debugger. 

First Steps in Debugging 
The following items mention essential first steps in debugging a driver: 

1. setting breakpoints, 

2. dumping stacks, 

3. looking at registers, 

4. examining buffers, 

5. single stepping procedures, 

6. reading assembly code . 

Use printf With Caution 
To continue debugging, the kernel print! can provide diagnostic data, but it has 
drawbacks: 

• very intrusive 

• cannot be easily saved 

• difficult to implement in the interface routine. 

• do not obey userland rules (e.g. no AS or AQ). 

• alter the timing and should be used with care. 

In general, try not to create new problems with print/. Instead, msg_print! statements 
that can be turned off and on by poking registers with the debugger can provide diagnostic 
information. Such statements are not very intrusive and can be saved. For example, 
using: 

> Msgbuf/1000C 

dumps the message buffer to the debugger screen. Also, by turning the diagnostic on 
and off, you can avoid timing problems and still save a permanent copy on disc using 
dmesg from userland. 

Miscellaneous Hints 83 



Having Source Code Control 
You need to maintain control of your source code. The following items suggest things to 
do: 

• Use sees (or ReS) for maintaining revision levels. 

• Never make large delta's. 

• Test each delta thoroughly. 

• Do not use branches unless absolutely necessary. 

• Archive the sees files regularly. (Think of a worst-case scenario, such as 
accidentally doing an "rm *" of your files, and think of Murphy's law (imagine 
the worst case, and it will happen)). 

In short, use very systematic means to keep track of and control your source code. 

84 Miscellaneous Hints 



Index 

a 
assumptions for modifying a driver .......................................... 24 
audience: 

modifying drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
SCSI testing ............................................................. 1 

avoiding complex tasks ..................................................... 81 

b 
boot ROM checklist for SCSI ............................................... 11 

c 
cmd_complete ............................................................. 51 
command complete interrupt ............................................... 50 
commands checklist ........................................................ 12 
compatibility requirements .................................................. 9 
control utility for SCSI ..................................................... 60 

d 
data structures for SCSI ................................................... 56 
data tran::;fer circuit ....................................................... 52 
debugging techniques ...................................................... 83 
definition of SCSI .......................................................... 4 
device drivers ............................................................. 55 
device testing ............................................................. 13 
device testing process ...................................................... 13 
disc device driver .......................................................... 55 
disc transactions .......................................................... 34 
disc writing . . . . . . . . . . . . . . . . . . .. . ......................................... 62 
disclaimers ................................................................ 7 
DMA information ......................................................... 43 
DMA notes .............................................................. , 41 
drivers: 

an overview ............................................................ 30 
dealing with others ...................................................... 41 

Index 85 



disc device ......................................................... 32, 55 
disc device operation .................................................... 32 
disc transactions ........................................................ 34 
functional characteristics ................................................. 41 
HP implementation features .............................................. 31 
interface ........................................................... 30, 42 
interface walkthrough .................................................... 45 
introduction ............................................................ 23 
SCSI requirements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 

e 
error handling ........................................................ 54, 65 
exiting the state machine ................................................... 64 

f 
fast-handshake ............................................................ 52 
feature of Fujitsu chip ..................................................... 39 
Finite State Machine .................................................. 36, 61 
Finite State Machine framework .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37 
Finite State Machine: 

exiting it ............................................................... 64 
initial state ............................................................. 63 
queuing ................................................................ 63 

Fujitsu: 
ATN glitch ............................................................. 39 
chip feature ............................................................ 39 
getting interrupts ....................................................... 42 
interface driver dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42 

9 
getting information ......................................................... 2 
getting ready for testing .................................................... 14 

h 
handling errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54, 65 
hardware checklist for SCSI .................................................. 9 
HP disclaimers ............................................................. 7 
HP Finite State Machine ................................................... 36 
HP I/O Model ............................................................ 26 

86 Index 



HP SCSI: 
compatibility requirements ................................................ 9 

HP-UX I/O and SCSI ..................................................... 26 

. 
I 

information: 
manual contents ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 
related to SCSI .......................................................... 3 

initial state1 moving it ..................................................... 63 
integration-level tests ...................................................... 20 
interface driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30, 42 
interface driver characteristics .............................................. 41 
interface driver, HP implementation features .................................. 31 
interface driver walkthrough ................................................ 45 
introduction to SCSI drivers ................................................ 23 
I/O Model ............................................................... 26 

I 
low-level testing script ..................................................... 17 
low-level tests ............................................................. 16 

m 
measuring disc performance ................................................ 21 
message/status transfer circuitry ............................................ 54 
miscellaneous hints ........................................................ 81 
moving to initial state ..................................................... 63 

o 
operating system interface .................................................. 58 
operation of the disc device driver ........................................... 32 

p 
performance, measuring it .................................................. 21 
prerequisites for testing .................................................... 14 

Index 87 



q 
qEeuing strategy .......................................................... 63 

r 
requirements for drivers .................................................... 38 
routines: 

an example ............................................................. 48 
data transfer circuit ..................................................... 52 
error handling .......................................................... 65 
fast-handshake .......................................................... 52 
finite state machine ...................................................... 61 
handling interrupts ...................................................... 47 
initialization and boot-up ................................................ 46 
message/status .......................................................... 54 
open/close .............................................................. 56 
operating system interface ................................................ 58 
process for selecting them ................................................ 50 
service interrupt ........................................................ 35 
those in the interface driver .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 

s 
SCSI: 

configurations ............................................................ 5 
control utility ........................................................... 60 
data structures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
definition ................................................................ 4 
disc device driver ........................................................ 32 
drivers ................................................................. 41 
error handling .......................................................... 54 
general description ....................................................... 4 
hardware device checklist .................................................. 9 
HP-UX I/O ............................................................ 26 
integration-level tests .................................................... 20 
interface driver ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 
introducing drivers ...................................................... 23 
low-level tests ........................................................... 16 
modification situations ................................................... 25 
other sources of information ............................................... 3 
overview of drivers ...................................................... 30 
prerequisites for testing .................................................. 14 
required commands checklist .............................................. 12 

88 Index 



requirements for drivers .................................................. 38 
Rev C boot RO:M device checklist ......................................... 11 
software device checklist .................................................. 10 
system-level tests ........................................................ 18 
testing a device ......................................................... 13 
user-level tests .......................................................... 20 

scsi_abort ............................................................... 54 
scsi_call_isr ............................................................ , 48 
scsi_close ............................................................... 57 
scsi_decode_status ........................................................ 66 
scsi_dequeue ............................................................. 65 
scsi_dmaisr .............................................................. 52 
scsi_do_isr .......................................................... 35, 47 
scsi_fsm ................................................................. 61 
scsi_ini t ................................................................ 46 
scsi_ioctl ............................................................... 59 
scsi_isr ................................................................. 47 
scsi_link ................................................................ 46 
scsi_make_entry ........................................................... 46 
scsi_man_xfr ............................................................. 53 
scsi_mesg_in 
scsi_ntesg_out 

............................................................. 54 
54 

scsi_msus_for_boot ........................................................ 46 
scsi_nop ................................................................. 57 
scsi_open ................................................................ 56 
scsi_part_prog_xfr ........................................................ 53 
scsi_program_xfr .......................................................... 52 
scsi_read ............................................................... . 
scsi_req_ timeout ......................................................... . 
scsi_saved_msus_for _boot ................................................. . 

scsi_select_ timeout ...................................................... . 
scsi_set_state ........................................................... . 
scsi_status ............................................................. . 
scsi_strategy ............................................................ . 
scsi_ transf er ............................................................ . 
scsi_write .............................................................. . 

59 
65 
46 
50 
65 
54 
54 
58 
52 
59 

service interrupt routine .................................................... 35 
shell scripts: 

low-level testing ......................................................... 17 
system-level testing ...................................................... 18 

software checklist for SCSI ................................................. 10 

Index 89 



source code control ........................................................ 84 
sources of information ...................................................... 3 
srv_reg .................................................................. 51 
suni t_close .............................................................. 57 
system-level testing script .................................................. 18 
system-level tests .......................................................... 18 

t 
testing a device ........................................................... 13 
testing at a low-level ....................................................... 16 
testing at a system-level .................................................... 18 
testing at a user-level ...................................................... 20 
testing at an integration-level ............................................... 20 
testing prerequisites ....................................................... 14 
testing process for devices .................................................. 13 
timeout interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 
transactions, disc .......................................................... 34 
transfer circuitry .......................................................... 54 

u 
user-level tests ............................................................ 20 

working efficiently 
writing to a disc 

90 Index 

w 
............... '" ... " .... " .......... " ., ........ '" ... 82 

62 



fold--

MANUAL COMMENT CARD 

SCSI Technical Reference 

HP Part Number 98265-90010 2/88 

Please help us improve this manual. Circle the numbers in the following 
statement that best indicate how useful you found this manual. Then add 
any further comments in the spaces below. Thank you. 

The information in this rnanual: 

Is poorly organized 1 2 3 4 5 Is well organized 

Is hard to find 1 2 3 4 5 Is easy to find 

Doesn't cover enough 1 2 3 4 5 Covers everything 

Has too many errors 1 2 3 4 5 Is very accurate 

Particular pages with errors? 

Comments: ________________________________________________ ___ 

Name: ____________________________________________________ ___ 

Job Title: _________________________ _ 

Company: __________________________________________________ __ 

Address: __________________________________________________ ___ 

o Check here if you wish a reply. 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

LOVELAND,COLORADO 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



HP Part Number 
98265-90010 
Microfiche No. 98265-99010 
Printed in U.S.A. 2/88 

Flin- HEWLETT 
a:~ PACKARD 

98265-90610 
For Internal Use Only 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	010
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	replyA
	replyB
	xBack

