(ﬁ/’ HEWLETT

PACKARD

HP 98645A
Measurement Library
User’s Library

HP 98645A

Measurement Library

User’s Manual

A caciano

Update 3 (July 1988)

HEWLETT-PACKARD COMPANY Manual Part Number 98645-90001
Roseville Networks Division E0684
8000 Foothills Boulevard Printed in U. S. A,

Roseville, California 95678 June 1984

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included.
Periodically, update packages are distributed which contain replacement pages to be merged into the
manual, including an updated copy of this Printing History page. Also, the update may contain write-in
instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with
the user-inserted update information. New editions of this manual will contain new information, as well

as updates.

98645-90001
FirstEditionc0i0eu June 1984
Update 1. November 1985
Update 2. December 1987
Update 3. e e July 1988
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett~Packard Company.

Copyright © 1984, 1985, 1987, 1988 by HEWLETT-PACKARD COMPANY

Update 3 (July 1988)
il

MANUAL UPDATE

MANUAL IDENTIFICATION UPDATE IDENTIFICATION
Titlee HP 98645A Measurement Library Update Number: 3 (July 1988)
User’s Manual , 4 :

This update also Includes:

Part Number: 98645-90001 ~ Update 2 (December 1987)
Update | (November 1985)

This Update Goes With: First Edition (June 1984)

THE PURPOSE OF THIS MANUAL UPDATE
is to provide new information for your manual to bring it up to date. This is important because it
ensures that your manual accurately documents the current version of the product.

THIS UPDATE CONSISTS OF .

this cover sheet, 2 printing history page (if any), any replacement pages, and write-in instructions (if
any). Replacement pages are identified by the update number at the bottom of the page. A vertical
line (change bar) in the outside margin indicates new or changed text material. The change bar is not
used for typographical or editorial changes that do not affect the content of the text..

TO UPDATE YOUR MANUAL

identify the latest update (if any) already contained in your manual by referring to the printing
history page. Incorporate only the updates from this packet not already included in your manual
Following the instructions on the back of this page, replace existing pages with the update pages and
insert new pages as indicated. If any page is changed in two or more updates, such as the printing
history page which is furnished new for each update, only the latest page will be included in the
update package. Destroy all replaced pages. If write-in instructions are included they are listed on the

back of this page.

HEWLETT-PACKARD COMPANY 98645-90001
Roseville Networks Division . Uo788
8000 Foothills Boulevard Update 3
Roseville, California 95678 July 1988

TECHNICAL MANUAL UPDATE
(98645-90001)

Note that "™" indicates a changed page.

UPDATE ~ DESCRIPTION

3 Replace the following pages with the new pages attached:
‘Title*/ii*
All of Section 1.

1&2 Replace the following pages with the new pages attached:
- ii/ive
2-3/2-4*
index-1*/index-2*
index-3*/index-4

U-2

USING THE LIBRARY ‘

INTRODUCTION

The HP 9864 5A Measurement Library provides a set of easy-to-use subroutines for taking readings from
the HP 98640A Analog-to-Digital Converter (ADC) card. These subroutines can be used from the BASIC
or Pascal language systems on HP 9000 Series 200 or Series 300 computers. The subroutines are written
in Pascal, and are adapted to the BASIC language with the CSUB utility package. The Measurement
Library is compatible with BASIC 2.0, 2.1, 3.0, 4.0, 5.0, 5.1, and Pascal 2.0, 2.1, 3.0, 3. 1, 3.2

The Measurement Library subroutine calls are a superset of the "HP 14751A Computer Aided Test

Programming Package for the Model 6944A". BASIC programs written using the HP 14751A routines
should be able to use the Measurement Library software with very little modification.

Features
The HP 98645A Measurement Library allows you to:
Take a single reading from any of 8 channels at any of 4 gains.
Take readings by scanning across 1 to 8 channels, any number of times.

Take readings from channels in random order as specified in an address array. Optionally, you can
specify the gain and pace interval for each reading, and the readings can be repeated any number of

times.

Express readings in three different units:
Base units: binary integer returned from the ADC.
Standard units: base units adjusted for gain and calibration, expressed as real numbers.
User units standard units times a user multiplier plus a user offset.

Take calibration (zero) readings on a specified channel, and apply that calibration adjustment to all
readings.

Re-set gain or units at any time.

Take readings at the full 55 kHz sampling speed of the ADC card from either BASIC or Pascal.

Take readings under interrupt mode in BASIC.

Update 3 (July 1988)
1-1

Using the Library

Software Provided

The HP 9864 5A Measurement Library includes these subroutine packages:
MEAS__LIB for use with BASIC 2.0
MEAS_ LIB3 for use with BASIC 3.0
MEAS__LIB4 for use with BASIC 4.0
MEAS__LIBS for use with BASIC 5.0
MEASLIB42 for use with BASIC 4.0 on a Model 320 computer
MEASLIBS52 for use with BASIC 5.0 or 5.1 on a Model 320 computer
INTR2__1 for use with interrupt mode in BASIC 2.1
MEAS__LIB.CODE for use with Pascal 2.0/2.1
MEAS__LIB3.CODE for use with Pascal 3.0/3.1/3.2

MEASLIB32. CODE for use with Pascal 3.1/3.2 on a Model 320 computer.

The software is provided on the following media:
Option #630: 3-1/2" floppy disc
Option #655: 5-1/4" floppy disc

MEAS__LIB and MEAS__LIB.CODE will not use floating point hardware. MEAS_ LIB3, MEAS__ LIB4,
MEAS__LIBS, and MEAS__ LIB3,CODE will use a Floating Point Math card if it is installed in the system
otherwise they will use the Pascal floating point library routiness. MEASLIB42, MEASLIBS52, and
MEASLIB32.CODE will use the built-in floating point hardware in the Model 320 computer; these
routines are not compatible with any other processor.

THE GENERAL APPROACH

The way you write programs using the Measurement Library is pretty much the same whether you use the
BASIC or Pascal language system. There are, however, significant differences in the way you set up yow
system environment. We will discuss these differences in the next few paragraphs.

Using BASIC 2.1

If you are using the BASIC 2.1 system, take the following steps to get your application up and running:

1) Boot up BASIC 2.0.

2) Load the BASIC 2.1 extensions, The 2.1 extensions are located on the Extended BASIC 2.1 disc.
Insert that disc into the master drive and issue the command LOAD BIN "AP2__ 1"

3) Load the interrupt processing package if you will be taking readings in interrupt mode. (Interrup
mode readings are discussed later in this section.) The interrupt processing package is located on th
Measurement Library disc. Insert that disc into the master drive and issue the command LOAL

BIN "INTR2_ 1"

4) Load any other BASIC extensions that you need for your application. For example, this would b
the time to load Graphics 2.1.

§) Write your BASIC program or load a previously written program into memory. In the paragraph
below we will describe how to write your application program using the Measurement Library.

Update 3 (July 1988)
1-2

Using the Library

6) Load the Measurement Library subroutines if they are not already part of the program you wrote
in the pr.vious step. The subroutines are located on the Measurement Library disc. Insert that disc
into the master drive and issue the command LOADSUB ALL FROM "MEAS__ LIB".

7 Run your program. Debug as necessary (repeating steps 5 through 7).

Using BASIC 3.0, 4.0, 5.0, or 5.1

If you are using the BASIC 3.0, BASIC 4.0, BASIC 5.0, or BASIC 5.1 system, take the following steps to
get your application up and running:

- 1) Boot up BASIC 3.0, 4.0, 5.0, or 5.1.

2) Load the BASIC 3.0, 4.0, 5.0, or 5.1 10 binary if you will be taking readings in interrupt mode.
(Interrupt mode readings are discussed later in this section.) The IO binary is located on the BASIC
Language Binary disc. Insert that disc into the master drive and issue the command LOAD BIN

ulou‘

3) Load any other BASIC binaries that you need for your application. For example, this would be the
time to load graphics routines.

4) Write your BASIC program or load a previously written program into memory. In the paragraphs
below we will describe how to write your application program using the Measurement Library.

5) Load the Measurement Library subroutines if they are not already part of the program you wrote
in the previous step. The subroutines are located on the Measurement Library disc. Insert that disc

into the master drive and issue the command:

LOADSUB ALL FROM "MEAS_LIB3" or
LOADSUB ALL FROM "MEAS_LIB4" or
LOADSUB ALL FROM "MEAS_LIBS" or
LOADSUB ALL FROM "MEASLIB42" or
LOADSUB ALL FROM “MEASLIBS52"

as appropriate for your system. (Refer to the paragraphs on "Software Provided”, above, for
information on which software goes with which system.)

6) Run your program. Debug as necessary (repeating steps 4 through 6).

General BASIC Programming

The Measurement Library subroutines add approximately 23,700 bytes to your BASIC program. The
INTR2__1 binary adds approximately 1200 bytes.

Note that integer parameters used in the Measurement Library subroutine calls must be explicitly typed as
INTEGER. (You can find out which parameters are integers by looking at the parameter descriptions in
the subroutine call listings in Section 2 of this manual.) Real parameters and string parameters (those
ending in $) need not be explicitly typed. Literal constants of any type (integer, real, or string) may be
used. Note that integers must not contain a decimal point.

You can invoke Measurement Library routines by calling them (CALL statement) or simply by entering
them by name. When you use them in an IF . . THEN statement or an ON . . statement, the "CALL"
must be explicit.

Update 3 (July 1988)
1-3

Using the Library

Using Pascal 2.0, 2.1, 3.0, 3.1, or 3.2

You can call the Measurement Library subroutines from thc Pascal language by importing the
Measurement Library and using the library subroutines as procedure calls with the syntax described in
Section 2 of this manual. Typically, you import the Measurement Library with a compiler directive of

$SEARCH ‘MEAS_LIB'$ or
$SEARCH "MEAS_LIB3'$ or
$SEARCH "MEASLIB32"$

and an import statement of
IMPORT measurement_1lib;
in your code. Importing the Measurement Library adds about 17600 bytes to your Pascal program.

If the Pascal system modules INTERFACE and 10 have not been merged into the system library file, you
will also have to include the compiler directive

$SEARCH "INTERFACE. ,”"I10.’$
Note that the ." after each file name is significant.

The procedure calls for the Measurement Library are all exported from the file MEAS__LIB.CODE (or
MEAS__LIB3.CODE), along with the following types:

TYPE shortint = -32768..32767;
byte = 0..255;
str255 = string[255];
farraytype = ARRAY[O..maxint] OF shortint;
rarraytype = ARRAY[O..maxint] OF real;
rarraypt.= “rarraytype;
iarraypt = “iarraytype;

Due to the rigorous structure of the Pascal language, you can’t default parameters in the procedure calls.
However, to save you the bother of declaring real and integer arrays for the pace and gain array
parameters of the random__scan procedure, you can use the default pace or gain value (established by a
call to Config__ 0 or Set__gain) by specifying a O for the array size and a NIL for the array pointer. All
other parameters for all procedure calls must be explicitly provided in the procedure call as real, integer
(or shortint), or string variables, or as constants or literal constants. For all array parameters, make sure
that the array elements are of the correct type, real or shortint; do not substitute integer for shortint.
And take care that the size parameter you pass for an array does not exceed the actual size you declared
for that array. (If you exceed the declared array size, you can write all over the other variables in your
program, and cause yourself much anguish.)

Once your Pascal program has been written and compiled, it must be merged or linked to the
Measurement Library using the Pascal system librarian program. Be sure to transfer ALL the modules in
MEAS__LIB or MEAS_ LIB3. If IO is not in your system library file you will also have to transfer the
module IOCOMASM from the file 10 (found on your LIB: disc).

Interrupt mode operation is not supported in the Pascal environment. (That means we don’t guarantee
that it will work. If you try it and it doesn’t work, you can purchase consulting services from the nearest
HP sales and service office. See the back section of this manual for a list of sales and service offices.) An
interrupt service routine (ISR) is required for interrupt mode to work in Pascal, and we do not provide a
Pascal ISR with the Measurement Library. If you try to use interrupt mode in Pascal without a proper
ISR, you will probably crash your system. If you're an experienced Pascal programmer, you may be able to

Update 3 (July 19838)
1-4

Using the Library

write your own ISR. For more information on ISRs, refer to the Pascal 2. 0 System Designer’s Guide, part
numter 09826-90074.

WRITING THE PROGRAM

In both BASIC and Pascal, writing your application program involves two major activities: setting up the
card to take readings, and taking the readings. In addition, BASIC programs may take readings in
interrupt mode. We will cover these subjects in the paragraphs that follow. We will also say a few words
about externally paced readings.

All of the subroutine calls referred to below are described in detail in Section 2 of this manual.

Setting Up

Setting up an ADC card for readings requires allocation of a common area, as well as calls to at least three
subroutines: Meas__lib__init, Config__ 0, and Init.

The common area serves as the heap space for the subroutines in the Measurement Library. It is allocated
automatically in Pascal; in BASIC you must allocate it explicitly at the beginning of your program.
Reserve this area by including the following statement in your program:

20 COM/Heapcom/ INTEGER Heaparea(1:n)

where n is the size of the Heaparea array. The size of Heaparea is determined by the number of
configured names for ADC cards (more about that later) and the number of readings taken for calibration
(ditto). Use 53 integers for each ADC card configuration and 4 integers for each reading used in
calibration. We recommend using Heaparea(1:1300); this allows all 16 possible ADC card configurations
and a calibration run of 100 readings.

In both BASIC and Pascal, the subroutine calls to Meas__lib__init, Config__0, and Init do the following:

Meas__lib__init initializes the Measurement Library, and must be called before any other subroutines in
the library are called. Meas__lib__init needs to be called only once in your program.

Config_ 0 sets up an ADC card for taking readings. At a minimum, you specify a name by which you
will call the card and the model number of the card. In addition, you can specify the select code of the
card, its gain, a pace rate for taking readings, an error reporting parameter for normal mode overrange
errors, and the units (base, standard, or user) in which the readings will be reported. (Reporting units
are discussed below.) If you do not supply these optional parameters, Config__ 0 will supply default
values.

Init resets an individual card, disables interrupts for that card, and sets the calibration array for that
card to its default values. Init must be used before any other calls except Meas__lib__init, Config_ 0
and System__init. System__init is the same as Init, except that it initializes all cards that have been

configured.

Update 3 (July 1988)
1-5

Using the Library

The set-up portion of a typical BASIC program might look like this:

20 COM/Heapcom/ INTEGER Heaparea(1:1300)
30 INTEGER Select_code, Gain

40 Name$="ADC"

50 Model$="98640A"

60 Select_code=18

70 Gain=1

80 Pace=0.01

80 Error$="No"

100 Unit$="Standard"

220 Meas_lib_init
230 Config_OTName$ yModel$,Select_code,Gain,Pace,Error$,Unit$)
240 Init(Name$)

The analogous Pascal code would look like this;

CONST name = "ADC”;
model = "S8640A";
select_code = 18;
gain = 13
pace = 0.01;
error = ‘N0’
unites = “STANDARD’;
multiplier = 1.03
offeet = 0.0;

BEGIN
meas_lib_init;
config_OTname,model.select_code,gain,pace,error,units,multiplier,offeet);
init(name);

.

The most frequently used configuration parameters can be reset without reconfiguring the card; these
parameters are gain, pace interval, and units. The gain can be reset with a call to the Set_ gain
subroutine, or a new gain can be specified as a parameter to the Input or Random__scan subroutine. (The
Input and Random__scan subroutines are used to take voltage readings from the ADC; they are described
later in this section.) A new pacing interval can be specified as a parameter to the Input
Sequential__scan, or Random__scan subroutine. And the units can be reset with a call to the Set__units
subroutine. (Note that if you specify pace or gain parameters in an Input, Sequential__scan, or
Random__scan call, the specified pace or gain value holds only for the duration of the call; it reverts to its
previous value after the call completes.)

Update 3 (July 1988)
1-6

Using the Library

Calibration

Calibration gives you a way of compensating for offsets that are inherent to the ADC card. To use the
calibraiion feature, you must first reserve one of the channels on the card and short the + Input and
- Input terminals on that channel to card ground. Then use the Calibrate subroutine to take a specified
number of readings from that channel at a specified pace rate. The readings are taken at each of the gain
settings and the average at each gain is saved. These average readings are then used to calculate
correction values for positive and negative readings at each gain setting. When a subsequent reading is
taken on any of the other channels, the appropriate correction value is subtracted from the raw reading
before conversion to standard or user units.

Reporting Units

Reporting units come in three flavors: base, standard, and user; you specify one of these with the
Config__ O or Set__units command. The units are:

Base units, Base units are in the form of a 16-bit binary integer, of which twelve bits represent the
magnitude of the reading. Readings reported in base units are raw readings; gain factors and
calibration corrections are not applied to base units. The format of a base unit reading is:

15 14 13 12 11 10 9 8 7T 6 5 4 3 2 1 O
T s T e it St St it St bl STy Supapas

Ilelwjojs|polojpo|iD|ID|D|DIDID|ID|DI|D]I
S N s T R e it Sl Salan bt ST T S e ST Suppary

where:

B = BUSY. If bit 15 = 1, the ADC is busy. The reading is not taken and all other bits are invalid. If bit
15 = 0, a valid reading is returned.

W = WAIT. If bit 14= 1 the ADC card was in the wait state at the time of the reading. This means
that the card was not read within the interval specified in the pacing timer -- that is, a paced read
was not made at the correct time. (Generally you will not see this bit set, since the ADC Library
software reports an incorrectly paced read as an error and will not return a value for the reading.)

O = OVERRANGE. If bit 13 = 0, a common mode overrange condition occurred during this reading,
and the reading is invalid. (Common mode overrange errors are discussed later in this section.) If bit
13 = 1, no common mode overrange condition occurred during this reading. Note that the sense of

this bit is negative true.

S=SIGN. If bit 12 = 0, the value returned for the reading is positive. If bit 12 = 1, the value returned
for the reading is negative.

D = DATA. The data bits give the 12-bit binary magnitude of the voltage read from the ADC. (The
sign of the voltage is given by the S bit, bit 12.)

Note that all readings taken from the ADC card by the ADC Library software are returned to your
program through real number parameters. This includes readings in base units. Thus, while the base
unit readings have integer values, they look like real numbers to your program until you explicitly
convert them to integers. Assigning them to integer variables in BASIC, or using the trunc or round
function in Pascal, will make the conversion.

Update 3 (July 1988)
1-7

Using the Library

Standard units Standard units are base units adjusted for gain and calibration, expressed as rea
numbers. They are, in other words, volts.

User units, User units are standard units to which a user-specified multiplier and offset have beer
applied, expressed as real numbers. You specify the values for the multiplier and offset in a Config__(
or Set__units subroutine call. (The default values for multiplier and offset yield standard unit values.
You might use user units to change the units of your readings or to compensate for a known offset ir
your readings, or both.

For example, say you were taking readings from a 4-t0~20 mA current loop transmitter connected to g
flow meter. Say further that the range of the flow meter was from 0 to 50 gallons per minute, and
that you were making your voltage readings across a 250-ohm resistor. That would mean that a
reading of 1.0 volts corresponded to a flow rate of 0 gpm and that §.0 volts corresponded to 50 gpm.
Using y=mx+b, you can derive a multiplier of 12.5 and an offset of -12.5, and specify these as
parameters to a Config__0 call.

180 Config O("Flow","98640A",18,1,.01,"No","User",12.5,-12.5)

Then, whenever you take a reading from that current loop, the result is expressed directly in gallons per
minute. That’s a lot easier than making a conversion from standard units every time you take a voltage
reading.

Error Reporting and Handling

The Measurement Library reports errors for a variety of reasons. Typical errors include configuration
errors, pacing errors, and overrange errors. When such an error occurs, the Measurement Library forces a
system error and returns the error number. Your application program can trap and handle these errors
using the ON ERROR mechanism (in BASIC) or the Try-Recover mechanism (in Pascal). In BASIC, you
can get the error number with the ERRN function; in Pascal, use the ESCAPECODE function. (Certain
run time errors may be reported in BASIC as the Pascal error number plus 400. These errors are listed in
Appendix A.) If the errors are not trapped, your program will abort and the system will report the error.

The errors that can be returned by the Measurement Library are listed in Appendix A.

Note that one of the parameters of the Config__ 0 subroutine determines whether normal overranges are
reported as errors or not. Note also that if you are using base units, no overrange errors ~~ either normal
or common mode -~ are reported. (You can detect overrange conditions from the bits returned in base
unit format.) Overrange errors and pacing errors are discussed in more detail later in this chapter.

Multiple Configurations

The Measurement Library allows you to have up to 16 different ADC card configurations at any one
time. Each configuration requires a separate call to Config__ 0, and each call specifies a unique name for
a card. You can assign multiple names, and thus multiple configurations, to a single card if you wish.
This would allow you to take readings from different voltage sources on different channels of the same
card without reconfiguring the card all the time. For example, say you had flow meters connected to
channels 1, 2, and 3 of the card and thermocouples connected to channels 4, 5, 6, and 7. You could
specify one name for a flow meter configuration and another name for a thermocouple configuration:

Update 3 (July 1988)
1-8

Using the Library

180 Config__O(“Flow",'"'98640A",18,1,.01,"No","User",12.5,-12.5)
190 Config_O("Thermo","98640A",18,64,.01,"No","Standard")

When you want to take a reading from either type of voltage source, just specify the name of the
appropriate configuration in your reading call:

420 Input(“"Thermo",5,Tvolt)
430 Input(“Flow",2,Gpm)

.

If 16 different ADC configurations are not enough for your application, you can get more by re-using
existing names. Do this by making a call to Config__ 0 and specifying an existing name; the old
configuration parameters for that name will be erased and the new parameters (or their default values)
will replace them. You will then have to re-initialize the name with a call to the Init subroutine before

you can use the new configuration.

Note that the use of different names for the same ADC card will not work in interrupt mode. DO NOT
ATTEMPT TO ACCESS AN ADC BY A DIFFERENT NAME DURING INTERRUPT MODE DATA

TRANSFERS.

Taking Readings

Taking readings is the whole reason for having an ADC card. Now that you've got your system
configured, it’s time to start taking those readings. All readings from the ADC card are taken by three
subroutines: Input/Read__channe], Sequential _scan, and Random__scan. Here’s how you use them:

Input/read channel. Use the Input or Read__channel subroutine for taking a single reading from a
channel on the ADC card. Optionally, you can specify a gain and a pace interval in the subroutine call.

A call to Input would look like this in BASIC:
340 Input(“ADC",Chan,Volts)
The analogous call to Read__channel would look like this in Pascal:

read_channel("ADC’,chan,volts,gain,pace);

Input is the name of the routine as used in a BASIC program; in a Pascal program, use Read__channel.
Input was chosen for BASIC for compatibility with the HP 14751A software. Note that you must be
very specific when you call the Input subroutine: the I must be upper case and all the other letters must
be lower case; otherwise there will be a conflict with the BASIC keyword INPUT. The name Input
doesn’t work at all with Pascal (another keyword conflict), so Read__channel was chosen instead.
Whatever the name, the subroutine works the same way in either language.

Note that if you specify the optional parameters for gain and/or pace interval, they override the
existing values only for the duration of the subroutine call. After the call has completed, the gain and
pace interval parameters revert to their previous values.

Update 3 (July 1988)
' 1-9

Using the Library

The operation of the Input subroutine in interrupt mode is different from its normal operation. Refer

to the discussion of interrupt mode, later in this section, for more details.

Sequential _scan, Use the Sequential__scan subroutine to take readings on all channels in sequence
from a starting channel to an ending channel. These readings are all taken at the same pace rate (which
you specify) and the same gain (specified by the most recent call to Config_ 0 or Set__gain), and the
values are returned to a data array. Optionally, you can repeat the readings as many times as you want.
For example, if you wanted to take readings from channels 2 through 7 on an ADC card, at the same

gain and pace rate, Sequential__scan would be the appropriate subroutine to use.

In BASIC:

100
110

230
240
250
260
270

460

In Pascal:

CONST

TYPE

VAR

INTEGER Start, Stop, Repeat
REAL Data(1:6)

Name$="ADC"
Start=2
Stop=T7
Pace=0.01
Rept=1

.

Sequential scan(Name$,Start,Stop,Pace,Data(®),Rept)

name "ADC’ 3
pace 0.01;
start = 23

d_array = ARRAY [1..6] OF real;
d_ptr = “d_array;

data: d_ptr;

new(data);
sequential_scan (name,start,stop,pace,d_size,data,rept);

-

Update 3 (July 1988)

1-10

Using the Library

You must make sure that your data array is large enough to hold all of the readings that the
Sequential__scan call will generate. Note that if the call to Sequential__scan aborts, the contents of the
array will be undefined. (This is because the Sequential _scan subroutine uses the array space as
temporary storage for a variety of nasty, messy variables; it doesn’t fill the array with nice, clean data
until just before it returns to your program. If the subroutine aborts while the array space is filled with
garbage and your program tries to interpret the garbage as data, you may not be pleased with the
results.) :

The pace interval that you specify when you call Sequential__scan will be maintained only for the
duration of that call. After the readings have been taken, the pace interval will revert to its previous

value.

Random_scan. Use Random__scan when you need lots of flexibility. Random__scan lets you read
from the channels on a card in any order, and you can assign an individual pace interval and gain for
each reading. Additionally, you can repeat the set of readings as many times as you want.

The readings are controlled by a set of arrays. A channel array lists the order of the channels to be
read. A gain array lists the gains for the readings. A pace array lists the pace intervals that will elapse
between readings. - And a data array stores the results. The sizes of the channel, pace, and gain arrays
need not be the same. The Random__scan subroutine simply starts at the beginning of each array and
uses the values in sequence. After Random__scan uses the last element in an array, it goes back to the
beginning of the array for the next value. (Note that the gain and pace values do not start over just
because the channel array repeats.)

For example, consider an ADC card that has flowmeters attached to channels 2, 3, 4, and §, and
thermocouples attached to channels 6 and 7. Say that you wanted to take the following sets of

readings:

Channel 2 3 6 4 5 7
Pace .02 .02 .02 .02 .02 .02
Gain 1 1 64 1 1 64

To take these readings, you could set up the following arrays:
Channel 2 3 6 4 5 7

Pace .02
Gain 1 1 64

Update 3 (July 1988)
1-11

Using the Library

In taking readings from the channels in the channel array, the Random__scan subroutine will use the
pace array six times and the gain array twice.

The call sequence to take those readings once would be, in BASIC:

110 INTEGER Channel(1:6)
120 REAL Pace(1:1)

130 INTEGER Gain(1:3)
140 REAL Data(1:6)

150 DATA 2,3,6,4,5,7

160 READ Channel(#)

170 DATA .02

180 READ Pace(#)

190 DATA 1,1,64

200 READ Gain(%)

320 Repeat=1.
330 Random_scan("ADC",Channel(#),Data(#),Repeat,Pace(#),Gain(+))

.

Update 3 (July 1988)
1-12

In Pascal the sequence would be:

.

CONST name = “ADC’;

TYPE

VAR

new(channel)
channel~[1]
channel”[2]}
channel”[3]
channel”[4]
channel”[S]
channel”[6]

A
start = 2;
stop = T3
rept = 13
d size =
p_size =
g_size =

c_size

r_array = ARRAY [1..6] OF real;

r_ptr = “r_array;

i_array = ARRAY [1..6] OF

i ptr = %i_array;

data: r_ptr;
channel: i _ptr;
pace: r_ptr; :
gain: i_ptr;

ee o0 o5 ee 20 oo wo
Haonnnuan

~nadOWN

wo wo we we we we

new(pace);
pace~[1] := 0.02;

new(gain);
gain~[1] := 13
gain~[2] := 1;
gain~[3] := 64;

new(data);

random_scan (name,

c_size,channel,
d_size,data,
rept,
p_size,pace,
g_size,gain);

shortint;

Using the Library

Update 3 (July 1988)
1-13

Using the Library

In the general case, the ith reading is taken using the following array elements:

Channel: chan_array[i mod size_of(chan_array)]

Pace: pace_: “array[i mod size of(pace “array)]
Gain: gain array[i mod size of(gain array)]
Data: data[i]

Make sure that the data array is large enough to hold all of the readings that will be generated by the
Random__scan call. (Don’t forget to account for repeats.) As with Sequential scan, if the call to
Random__scan aborts, the contents of the array will be undefined.

The channel, pace, and gain arrays must be dimensioned as arrays, even if they are only single-valued.
Scalar variables can not be used.

The pace and gain values specified in Random_ scan are used only for the duration of the
Random__scan call. After the readings have been taken, pace and gain revert to their previous values.

Special Considerations in Taking Readings

Even though the Measurement Library can take readings at the full 55 kHz
sampling speed of the ADC card, it can’t return the results to your program that fast. The reason for this
is the system overhead of BASIC or Pascal and the overhead of the Measurement Library itself. For any
given set of readings the Measurement Library goes through the following steps:

a) Set up the card.

b) Take the reading(s) at the specified pace rate.

¢) Convert the readings to the requested data format. (This includes checking the WAIT bit to make
sure there wasn't a pacing error.)

The values below indicate the time required to process a reading sequence. The total time required is the
sum of item (a), item (b), and the appropriate value from item (c). Note that these are worst-case values.
You would get these values from Series 200 computers using an 8 MHz MC68000 processor chip and no
floating point math card. Processing times will be shorter for computers with later (futer) processor chips
and/or floating point math cards.

BASIC
Input
a) Set-up time: 2.0 msec
b) Read time: (pace intorval) # (one reading)*t

c) Data conversion time
BASE units: 1.0 msec
STANDARD units: 1.9 msec
USER units: 2.5 msec

Sequential scan .
a) Set-up time: 3.5 msec + 0.1 msec per reading
b) Read time: (pace interval) # (number of readings)
c) Data conversion time
BASE units: 0.3 msec per reading
STANDARD units: 1.2 msec per reading
USER units: 1.5 msec per reading

Update 3 (July 1988)
1-14

Random scan
a) Set-up time:
b) Read time:
c) Data conversion time:
BASE units:
STANDARD units:
USER units:

PASCAL

Read channel
a) Set-up time:
b) Read time:
c) Data conversion time
BASE units:
STANDARD units:
USER units:

Sequent ial scan
a) Set-up time:
b) Read time:
c) Data conversion time
BASE units:
STANDARD units:
USER units:

Random scan
a) Set-up time:
b) Read time:
c) Data conversion time
BASE units:
STANDARD units:
USER units:

Using the Library

3.0 msec + 0.4 msec per reading
(pace interval) # (number of readings)

1.3 msec per reading
2.2 msec per reading
2.4 msec per reading

2.0 msec -
(pace interval) # (one reading)t

1.0 msec
1.9 msec
2.2 msec

3.4 msec + 0.1 msec per reading
(pace interval) # (number of readings)

0.3 msec per reading
1.0 msec per reading
1.5 msec per reading

1.2 msec + 0.5 msec per reading
(pace interval) # (number of readings)

1.6 msec per reading
2.2 msec per reading
2.5 msec per reading

+NOTE: “Input" (BASIC) and "Read Channe!” (Pascal) take one reading each time they
are called. Refer to page 2-9 of this manual

Array size limits. The Measurement Library limits your maximum array size to 16,777,215 bytes. That’s
really a hardware limit, imposed by the width of the address bus on HP 9000 Series 200 and Series 300
computers. At 8 bytes per reading that works out to a maximum of 2,097,150 readings from any one call
to the Measurement Library, hardly a severe restriction. In practical terms, you will be limited by the size
of your physical memory long befor. you run into the Measurement Library limit.

How your system lets you access that memory can be a different étory. It’s no problem in a Pascal system,
since you can easily allocate an array large enough to take up all of your physical memory. Things are a
bit more subtle in BASIC, however.

At first BASIC appears to limit you to 32767 readings from any single call to the Measurement Library,
since that’s the largest number you can specify as an array dimension. But you can exceed that number of
readings by using a multi-dimensional array. You c¢an easily fill up all the memory you have using a
two-dimensional array. (BASIC allows you up to six dimensions in your arrays, so0 you can arrange your
data in whatever format is convenient.) The Measurement Library doesn’t care if your array is
multi-dimensional; 2]l it wants is the starting address of the array (which you supply by passing the name
of the array in the subroutine call). The only thing you have to take care of is reading your data out of
the multi-dimensional array in the correct order.

Update 3 (July 1988)
1-15

Using the Library

(Note that the ability to specify large data arrays does NOT constitute a continuous data acquisition
(CDA) scheme. The amount of data you can collect with the Measurement Library subrcutines is limited
by the amount of memory in your computer. The Measurement Library has no provision for, say, logging

high-speed data to a disc for indefinite periods without missing readings.)

The Pipeline
The ADC requires three operations to produce a reading:

1) provide the channel address for the reading
2) latch the voltage and convert it to a digital value
3) return the value to the host computer

For any given reading, these three operations must be done serially:

Figure 1-1. Analog input operation

However, to maximize throughput, the ADC card "pipelines" the readings. That is, while the value for one
reading is being returned, the voltage for the next reading is being latched and converted, and the channel
address is being provided for the reading after that. For example, during time period t3 in the figure
below the first reading is taken from the card while the second reading is being converted and the third

address is being supplied. '

U - PR —
| address 1 | convert 1 |ﬂ

----------- +
return 2 |
$ommmmmm———n PO — +
convert 3 | return 3 |
R e omemm—enn +
| address 4 | convert 4 | return 4 |
----------- U IR L
t1 t2 t4 tS t6
time ------c--rrccccrcmmr e oo e e e st re s e e s e e n e e >

Figure 1-2. Analog Input Pipeline

To start the flow of readings, the Measurement Library software primes the pipeline by taking two
“garbage" readings (at times t1 and t2 in the figure above); these two readings are thrown away. (Their
only purpose was to start pulling valid readings through the pipeline.) The third reading taken is the first
valid reading, since it is the first reading that has gone through all three stages of the pipeline; it is

written into the data array as the first reading.

For all readings taken in normal mode, the Measurement Library software takes care of priming and
emptying the pipeline; it does this by taking two more readings than are requested and throwing away the

Update 3 (July 1988)
1-16

Using the Library

two extra garbage values. This happens for each subroutine call; you never have to pay any attention to
it, since the software takes care of it all.

(Note that since each subroutine call incurs the extra time required for two readings, it is difficult (if not
impossible) to maintain accurate and even pacing of readings between one subroutine call and the next. If
your application requires accurate pacing for a block of readings, we suggest that you make all of those
readings with one subroutine call. Use Sequential__scan or Random__scan, as appropriate to your
application.)

For readings taken in interrupt mode, the Measurement Library software does not take care of the
pipeline for you. You must keep track of which readings are which (not a very taxing operation) and
throw out the garbage. More information on interrupt mode programming is contained later in this

section.

Overrange Errors

You can encounter two kinds of overrange conditions with the ADC card: normal mode overrange and
common mode overrange. Normal mode overrange occurs when the input voltage exceeds the range of
the analog-to-digital converter. Common mode overrange occurs when either side of the differential
input voltage exceeds the maximum input voltage of its input amplifier. The next several paragraphs
explain how these overrange conditions can affect your readings.

The voltage measured by the ADC card is the differential input voltage between the + Input and - Input
terminals of a channel on the card. The two sides of the input signal pass through separate input
amplifiers (op amps), and are then sent to an analog-to~digital (A~to~D) converter for conversion to a
numeric value. (The figures below show this circuit configured for a gain of 1.)

There are a couple of limitations that apply to this measurement circuit:

1) The voltage output from an input op amp can not exceed £10 volts, relative to system ground. Fora
gain of 1, this also means that the input voltage applied to the op amp can not exceed 10 volts,
again relative to system ground. (The situation gets rather more complicated for gains greater than
one; the formula for figuring the maximum input voltage is somewhat abstruse, involving various
voltages, gains, and a couple of 2s. We won’t get into the mathematics of it, but figure 1-6 shows an
example of the results that you may see.) Ezxceeding this input limit causes a common mode
overrange: the output of the op amp is clipped at its limit (+10 volts or -10 volts) and the overrange
flag (the O bit in a base unit reading) is set to 1.

2) The A-to-D converter, which compares the outputs of the op amps, can not measure a difference of
more than 10 volts. If the difference between those outputs is more than 10 volts, the A-to-D
converter clips its output value to 10 volts; this situation is defined as a normal mode overrange.

The next few figures show various combinations of input voltages and the outputs they produce. In the
figures, + Input and - Input voltages (relative to system ground) are shown in "stick" type, like this:

+4

The differential input voltages are shown in Roman type, like this:

+6

Update 3 (July 1988)
1-17

Using the Library

Figure 1-3 shows a typical reading that causes no problems. The input voltages propagate through the
op amps with no clipping, the differential voltage is well within the range of the A-to~D converter,and
the converter comes up with the correct value.

+4

+6

/

+4

+ Input

an

+6

- Input

\

A-to~-D
Converter

Figure 1-3. Reading OK

+6

Figure 1-4 shows a normal mode overrange condition. The + Input and ~ Input voltages are within the
range of their respective op amps, but the differential input voltage (+12 volts) is too great for the
A-to-D converter. The result is a normal mode overrange condition, yielding a full-scale (and
incorrect) reading from the A-to~D converter.

+6

+12

Update 3 (July 1988)
1-18

%

+6

+ Input

71[8

+12

- Input

\

A-to-D
Converter

Figure 1-4. Normal mode overrange

+10

Using the Library

Figure 1-$§ shows a common mode overrange condition. The + Input voltage of +12 volts is clipped to
+10 volts and the overrange flag (O bit) is set to 1. The differential voltage presented to the A-to-D
converter is within the range of the converter, so it converts the voltage correctly and comes up with
the wrong answer.

+1 z——-—\ +10
y
A=to~-D
+4 +2 Converter +2
+8

+8

-~

Figure 1-5. Common mode overrange

Figure 1-6 shows a subtler form of common mode overrange that you may encounter at gains greater
than 1. This is because the programmable gain amplifier amplifies the difference between the + Input
and - Input voltages before sending the result to the A-to-D converter. Even though the input
voltages appear to be acceptable, the amplifier may try to boost them out of the acceptable range. In
this case, the programmable gain circuit tries to boost the + Input voltage to 11. 5 volts, but the output
limit of the op amp keeps the voltage from exceeding +10 volts. The overrange flag (O bit) is set to one
and the clipped voltage is sent to the A-to-D converter. The resulting value is incorrect.

+10
+8 +1¥5
+ Input
: A-to-D
+1 % +6.5| a0 | .6.5
7 - Input
+ . -
35 Gain = 8

Figure 1-6. Common mode overrange at gain greater than 1

A normal mode overrange is indicated when a reading returns the maximum possible magnitude value,.
(This is the same as "clipping".) The maximum magnitude value depends on the units in use, as follows:

Base: 4095 (all D bits set to 1)

Standard: (4095 * Isb - calibrate) / gain

User: ((4095 * Isb - calibrate) / gain) * multiplier + offset
where: Isb= 10 / 4095 volts/bit

Update 3 (July 1988)
1-19

Using the Library

Note that it is not possible to tell the difference between a full scale reading and a normal mode
overrange reading.

By default, a normal mode overrange condition does not generate an error. However, by setting a
parameter in the Config_ O call you can cause an error to be generated when a normal mode overrange
OCCuTs.

Common mode overranges are harder to detect than normal mode overranges, since the value of the
reading may appear to be correct even though an overrange has occurred. For this reason, common mode
overranges are trapped as errors.

Note that the Measurement Library reports errors for normal mode and common mode overranges only
when you are operating in standard or user units. If you are operating in base units, no error will be
reported. To detect a normal mode overrange in base units, check the D bits for a full scale reading; to
detect a common mode overrange, check the O bit.

Pacing Errors

The pace counter on the ADC card is used to determine the duration of the sample portion of the sample
and hold cycle. The hold portion is always 9 microseconds, and the minimum sample portion is 9
microseconds. The Measurement Library lets you specify a pace interval that is the sum of these two time
periods. Thus you can set the pace at which readings are taken for ease in making accurate time domain
measurements of time-varying quantities.

If, due to outside factors (concurrent 1/0O transfers, keyboard interrupts, and so on), the Measurement
Library software is unable to read from the ADC card fast enough to keep up with a programmed pace
time, a pacing error will occur. This gives you the assurance that, in the absence of such errors, the time
domain measurements are being accurately paced.

While the ADC card and the Measurement Library are fully capable of taking readings every 18
microseconds, the variable gain input amplifiers on the card are not capable of slewing from maximum
positive to maximum negative during the 9 microsecond sample period that this pace rate requires. This
puts an upper limit on the signal frequency component that the ADC can measure accurately at the 18
microsecond sample rate. The following table shows that maximum frequency component for each gain,
for readings to within | Isb on a single channel.

Maximum Signal

Gain Frequency Component
1 27 kHz
8 27 kHz
64 15 kHz2
- 812 3.5 kHz

Update 3 (July 1988)
1-20

Using the Library

When more than one channel is being sampled (as in Sequential__scan and Random__scan operations) the
speed of accurate sampling by the ADC is limited as follows:

Minimum Pace Time for Equivalent Maximum
Gain Multichannel Scans Sampling Speed
1 50 microseconds 20000 readings per second
8 S0 microseconds 20000 readings per second
64 71 microseconds 14000 readings per second
512 1000 microseconds 1000 readings per second

interrupt Mode

Interrupt mode operation is supported only in the BASIC language system. (It is NOT supported in
Pascal.) Interrupt mode is useful when you want your program to continue execution between readings
and still maintain an accurate or externally controlled pace rate. There are two subroutines associated
specifically with interrupt mode: Enable__intr and Disable__intr. Appropriately enough, interrupt mode
is enabled by a call to Enable__intr and is disabled by a call to Disable__intr.

Only a limited subset of Measurement Library subroutine calls are allowed after you have entered
interrupt mode:

Input
Config_ 0
Init
System__init
Disable__intr

Use of any other Measurement Library calls in interrupt mode will result in an error.

When you are in interrupt mode, the Measurement Library does not automatically take care of setting up
and clearing out the input pipeline. (Refer to the description of the analog input pipeline earlier in this
section.) Thug when you take a reading with the Input subroutine, the result you get is the value of the
reading taken two readings ago. You should discard the data returned from the first two Input calls.

Interrupt mode does not handle multiple configurations of the same card cleanly. To avoid taking
erroneous readings, do not take readings from different configurations (names) for the same card while in

interrupt mode.

The shortest pacing interval usable in an interrupt mode application is dependent upon many factors. The
main factors are the speed of the CPU executing the BASIC program, and the type of BASIC program
instructions that are being executed while the ADC is taking readings. To properly understand these
factors it is important to understand how the BASIC operating system services interrupts. When BASIC
has been enabled to service interrupts for a specific select code with an "ON INTR sc, priority GOSUB
label” statement and an interrupt occurs on that select code, BASIC logs the fact that the interrupt has
occurred, but does not execute the GOSUB until BASIC has completed executing the current BASIC

program line.
When using the ADC library in interrupt mode and an ADC interrupt has occurred, if the time to

complete the current BASIC program line, plus the time to execute the GOSUB, plus the time to execute
all the BASIC lines until the ADC library “Input” routine actually takes the reading from the ADC card

Update 3 (July 1988)
1-21

Using the Library

exceeds the pace interval time, the ADC library will return an error 857 indicating that a reading was
missed. Therefore the time to service the interrupt depends upon the BASIC program line that is
executing when the interrupt occurs as well as the code path to the ADC library "Input” routine.

For the faster interrupt servicing in BASIC, the following tips are offered:
1) Make the ADC library "Input” routine the first statement in the interrupt service routine.

2) Keep the interrupt service routine short. Remember that the pace interval period starts
with the "Input" routine, but cannot be serviced until the interrupt service routing
"RETURN" statement has been executed.

3) Avoid BASIC instructions which take long times to execute like input/output operations or
matrix operations on large arrays.

4) Avoid other interrupt processing at a higher priority than the ADC interrupt service
routine.

) Set the 98640A ADC card at the highest physical interrupt level possible (in this case 6).
See the 98640A Reference Manual, HP part number 98640-90001, for details.

When using the interrupt mode it is important to determine experimentally that the pace interval being
used is compatible with the BASIC program instructions being executed while waiting for interrupts on
the particular computer family on which the program is executing.

The following example shows a BASIC program that takes readings in interrupt mode. Its purpose is to
take 8 voltage readings; to do that it takes 10 readings and ignores the first 2 (invalid) readings.

40 REAL Volts (-1:8)
S0 I=2

110 Config_O("ADC" ,''98640A",18,1,.036)
120 Init("ADC")

130 Enable_intr("“ADC")

140 ON INTR 18 GOSUB Service

150 Input("“ADC",5,Volts(-1))

.

.

340 Service: !

350 Input ("ADC",5,Volte(1-2))
360 I=I+1

370 IF I>10 THEN

380 OFF INTR 18

390 Disable_intr("ADC")
400 FOR J=1 TO 8

410 PRINT Volts (J)
420 NEXT J

430 STOP

440 END IF

450 RETURN

460 END

Update 3 (July 1988)
1-22

Using the Library

Note that the order of the Enable__intr call and the ON INTR statement is not critical. Enable__intr
does not physically enable interrupts on the ADC card; it only sets flags in the Measurement Library. The
card interrupts are physically enabled by the first Input call after Enable__intr (line 150 in this example).

External Pacing
You might use external pacing for ADC readings if:

-~ you want to use a pace interval longer than that allowed by the Measurement Library software
(0.0393336 second)

-~ you want the readings to be controlled by an external event, rather than by time

External pacing is primarily a hardware operation. It is largely controlled by two hardware control lines,
IPACDA (internal pace disable) and EPCON (external pace control). There’s not a lot of software
involvement, other than making the read requests that you would normally make for an internally paced
read. The timing of the execution of those read requests is controlled by the hardware. (There’s no
provision in the software for controlling IPACDA and EPCON directly; you'll have to build your own

circuits to control them.)

In the next several paragraphs we will look at some of the features of the hardware and software that
affect external pacing, and then we will see how they fit tégether in external pacing applications. In this
manual we’ll imit our discussion of the hardware to telling you when the IPACDA and EPCON control
lines must be set low or high; we won't give you instructions for building the circuits that control those
lines. You can, however, get more information about those control lines from the ADC hardware manual,

part number 98640-90001.

Hardware Considerations
There are two control lines of interest for external pacing:

IPACDA determines whether the readings are paced by the internal pacing timer on the ADC card. If
IPACDA is low, the internal pacing timer of the card is used; if IPACDA is high, the internal pacing
timer is bypassed and readings are taken at the free run speed of the card (one reading every 18
microseconds). Note that IPACDA must be high when readings start in order for the timing of the first
reading of a series to be accurately known. (IPACDA can be set low after the start of readings if you

want the readings to be paced by the internal pacing timer.)

EPCON controls whether or not any readings are taken. If EPCON is low, readings are taken whenever
they are requested. If EPCON is high, requested readings are held off; a read request will not complete
until EPCON goes low again.

In summary, when EPCON is low, readings are taken at the free run speed of the card (if IPACDA is high)
or at the time programmed into the internal pacing timer (if IPACDA is low). When EPCON is high,

readings stop.

Update 3 (July 1988)
1-23

Using the Library

Software Considerations

When making externally paced readings, you will have to allow for the software set-up time of the
various subroutines.

The set-up times in the BASIC language for the reading subroutines are:

Input 2.0 milliseconds

Sequential scan 3.5 milliseconds + 0.1 milliseconds per reading

Random_scan 3.0 milliseconds + 0.4 milliseconds per reading
Set-up times in Pascal are:

Read_channel 2.0 milliseconds

Sequential scan 3.4 milliseconds + 0.1 milliseconds per reading

- Random_scan 1.2 milliseconds + 0.5 milliseconds per reading
Applications

External pacing applications divide into two general types: single readings and bursts of readings.

Single readings. The idea behind taking single externally paced readings is that you keep EPCON high
until you want to take a reading, set it low only long enough to take the reading, and then set it high
again. The steps in taking a single reading are:

1) Set IPACDA high. IPACDA will remain high for the duration of externally paced readings.
2) Set EPCON high. This holds off all readings.

3) Issue a call to Input/read__channel, Sequential__scan, or Random__scan.

4) Wait. The length of time you wait should be at least the set-up time.

S§) When it is time to take a reading, set EPCON lov). Keep it low for 1 to 15 microseconds,
then set it high again. This will allow one (and only one) reading to be taken.

6) Repeat step 5 until you have taken all the readings that you requested with the subroutine
call in step 3. The subroutine will return to your application program only after all
requested readings have been taken.

As indicated in step 4, each subroutine call you make requires that you wait the set-up time before
pulsing the EPCON line to take the first reading. For Input (or Read__channel) calls made in normal
mode, that means that you must wait the set-up time before each reading. If you're using Input in
interrupt mode, the set-up time is required only before the first reading. Keep in mind, however, that the
EPCON pulses should be at least 36 milliseconds apart if you’re operating in interrupt mode.

Update 3 (July 1988)
1-24

Using the Library

Bursts of Readings. The idea behind taking readings in bursts is that you request multiple readings with
a subroutine call, and then take those readings in one burst by setting EPCON low until all of the readings
have been taken. These readings can be taken at the free run speed of the card, or they can be paced by
the card’s internal pacing timer. The following steps are for triggering burst readings that are paced by
the internal pacing timer.

)
2)
3)
4)

s)

6)

Set IPACDA and EPCON high.
Make a read request by issuing a call to Sequential__scan or Random__scan.
Wait. You should wait for at least the set-up time plus the pace interval.

Set the EPCON line low. The analog-to-digital conversion for the first reading will start in
approximately 3 microseconds.

Set the JPACDA line low. This must happen I to 15 microseconds after you set EPCON
low.

Hold EPCON and IPACDA low until all of the requested readings have been taken. (The
subroutine call will return to your application program after all of the readings have

completed.)

The requirement (in step 3) that you wait the set-up time plus the pace interval assures that the first
reading occurs at a more-or-less known time (within approximately 3 microseconds after EPCON is set
low), and that the voltage has been sampled for at least the prescribed sample time (pace interval minus 9
microseconds). _

Combinations, You can combine the above two methods of external pacing if your application requires.
We won't go into those combinations here; we leave that as an exercise for the interested reader. The
methods above should give you enough information to make your combination work.

Update 3 (July 1988)
1-25

The following pages are replacement pages from the
previous update. Pages superseded by the current
update are not included.

PREFACE

Purpose: This manual explains how to use the HP 98645A Measurement Library. It assumes that you
have a working knowledge of the BASIC or Pascal language system on the HP 9000 Series 200 or Series I
300 computers. It also assumes that you are generally familiar with the HP 98640A Analog-to-Digital
Converter card. (Refer to the manual for that card, HP part number 98640-90001, for more
information.) '

Organization: This manual is organized as follows:
Section I: How to use the HP 98645A Measurement Library.
Section 2: Alphabetical listing of Measurement Library subroutine calls.
Appendix A: Error messages.

Appendix B: Quick reference guide to Measurement Library subroutine call syntax.

Update 1 (November 1985)
iii

CONTENTS

Section 1
USING THE LIBRARY
IntrodUCtion .« .« . v vt i e e e e e e e e e e e e e 1-1
FeatUreS . . . i .t ittt i e e e e e e e e e e 1-1
Software Provided i e e e e 1-2
The General Approach. e e e e R)
Using BASIC 2. 1. . .. ittt i it it et ittt e e e 1-2
Using BASIC 3.0,4.00r 5.0,ottt ittt it ittt i e 1-3
General BASIC Programming.0 v vttt it i it et e e e 1-3
Using Pascal 2.0,2.1,3.0,3.1,0or 3.2, i, 1-4
Writing the Program e e e e e e e e 1-$
Setting Up...... e e e e e e e e e 1-§
Calibration. e e e e et e e e e e e e e e 1=7
Reporting Units. e e e e e e e e i e 1-7
Error Reporting and Handling. e e e e e 1-8
Multiple Configurations ¢ttt ittt 1-8
TakingReadings e e e e e e 1-9
Special Considerations in TakingReadings. 1-14
ThePipeline i i ittt es e e 1-16
OVerrange Errors. & o . . vt v ittt ittt ettt e e e 1-17
PaCing EIrOrs & . . ¢ ottt ittt ittt e e e e e e 1-20
Interrupt Mode. i it it e e e e e e e 1-21
External Pacing. et e e e et e e e e 1-23
Hardware Considerations. e e e e e 1-23
Software Considerations 1-24
APPHCAtIONS . . . v v v v ittt e e e e e e 1-24
Section 2
SUBROUTINE INFORMATION
CALIBRATE ittt ettt ittt i ettt i et e et easan 2-2
CONFIG _ 0 ittt ittt it it enn e 2-3
DISABLE_INTR ittt it iinennennn heeene e 2-6
ENABLE _INTR ittt ittt it e i e 2-7
INIT . . i e i i e e et e et e s e st e e et e e e e 2-8
8, 54 1 N 2-9
MEAS _LIB INIT ittt it ittt e 2-10
RANDOM_ SCAN . . ottt et ettt ettt e e e 2-11
READ_CHANNEL ittt ittt i e e 2-13
SEQUENTIAL _SCAN. ittt it e i 2-14
SET _GAIN. . . oottt e e 2-15
1) 238 W 052 i - 2-16
CSYSTEM _INIT & . oottt et it i it et e e i e 2-17
Appendix A
MESSAGES
Appendix B
QUICK REFERENCE

Update 2 (December 1987)

v

CONFIG_ 0

Config__0 sets up an HP 98640A ADC card for access by the Measurement Library subroutines.

Syntax

BASIC: Config_O(name,model[,select_code[,gain[,
paco[,report_orrorr,unita[,
multiplier[,offset]]]]11])

Pascal: PROCEDURE config_o(nane: str2s5s;
model: str255;
select_code: shortint;
gain: shortint;
pace: real;
report_error: str255;
units: str255;
multiplier: real;
offset: real);

Parameters

name: a string or string literal specifying the name used by the
Measurement Library software to refer to a particular ADC
configuration.

model: a string or string literal identifying the ADC card model
number (“S8640A").

select_code: an INTEGER giving the physical select code (address) of the
ADC card. This number is between 8 and 31, and is set by
hardware switches on the card (SWi, switches 1 through S).

gain: an INTEGER specifying the default ADC hardware gain., The
value must be 1, 8, 64, or 512.

pace: a REAL number defining the default pace time loaded into the
pace counter. This value can be from 0.000018 to 0.0393336
seconds, with a resolution of 600 nanoseconds.

report_error: a string or string literal enabling an error condition on
normal mode overrange readings. The value can be either yes

or no. (Only the first character is significant; only "y
and "Y" are taken as yes, all others indicate no.)

units: a string or string literal specifying the units to used to
return ADC data. The units can be base, standard, or user.
(Only the first character is significant.)

bagse = binary data read directly from the ADC
standard = (base # ADClsb - calibrate) / gain
user = standard * multiplier + offset

multiplier: a REAL number specifying the multiplier used with user units.

CONFIG__0

offset: a REAL number specifying the offset used with user units.

Default values:

select_code 18

gain 1

pace .001 second

report_error no

units standard

multiplier 1.0

offset 0.0
Discussion

Config__0 establishes a link between a name (which you supply) and an ADC card, and specifies operating
parameters for that name and card. Each ADC card used must be configured with a unique name. You
can configure the same card with several different names and parameter sets, and everything will work
except interrupt mode data transfers. DO NOT ATTEMPT TO ACCESS AN ADC BY ANOTHER NAME
DURING INTERRUPT MODE DATA TRANSFERS

A maximum of 16 names may be confxgured into the Measurement Library software. If you need more
configurations, names may be re-used. If a name is identical to an already used name, all configuration
parameters for the old name will be erased and the new confxguratxon parameters or defaults will be used.
The name will then have to be reinitialized with Init before it is accessed.

All readings taken by the ADC are reported in one of three reporting units: base, standard, or user. Base
units are in the form of a 16-bit binary integer, with the following format:

15 14 13 12 11 10 S 8 7 6 § 4 3 2 1 0
e et T e R i Gt i Dbt bt TEE TP PSS

lelwlolsj|ipjolojp|D|ODIDID|DID|D|D]
L e i it Dl i it bt LT TETE T TR

MSB LSB

where:

B =BUSY. If bit 15« |, the ADC is busy. The reading is not taken and all other bits are invalid. If bit
15 = 0, a valid reading is returned.

W = WAIT. If bit 14 = |, the ADC card was in the wait state at the time of the reading. This means
that the card was not read within the interval specified in the pacing timer ~- that is, a paced read
was not made at the correct time. (Generally you will not see this bit set, since the ADC Library
software reports an incorrectly paced read as an error and will not return a value for the reading.)

O = OVERRANGE. If bit 13 = 0, a common mode overrange condition occurred during this reading,
and the reading is invalid. If bit 13 = |, no common mode overrange condition occurred during this
reading. Note that the sense of this bit is negative true.

S = SIGN. If bit 12 = 0, the value returned for the reading is positive. If bit 12 = 1, the value returned
for the reading is negative.

Update 1 (November 1985)
2-4

INDEX

A

ADC card
calibration, 1-7
configuration, 1-5, 1-8 2-3
configurations, multiple, 1-8, 1-21, 2-4, 2-7
initialization, 1-5, 2-8, 2-17
input pipeline, 1-16
readings, 1-9
sampling speed, 1-1, 1-20
Analog input pipeline, 1-16, 1-21
Array size limits, 1-1§

Base units, 1-1, 1-7, 1-20, 2-4, 2-16
BASIC
common area, 1-5
error handling, 1-8
extensions, 1-2
heap area, 1-5
interrupt mode, 1-21
Joading the Measurement Library subroutines, 1-2, 1-3
Measurement Library subroutine size, 1-3
parameter typing, 1-3, 1-7, 2-§
programming, 1-2, 1-3, 1-§

C

Calibrate subroutine, 1-7, 2-2, B-2

Calibration, -1, 1-5, 1-7, 2-2

Common area, 1-5

Common mode overrange condition, 1-7, 1-8 1-17, 1-19, 1-20, 2-4
Configuration of ADC cards, 1-5, 1-8 2-3

Config__0 subroutine, 1-5, 1-7, 1-8 1-9, 1-10, 1-20, 1-21, 2-3, B-2
Control lines, IPACDA and EPCON, 1-23

CSUB package, 1-1

D

Data conversion times, 1-14
Disable__intr subroutine, 1-21, 2-6, B-2

Update 2 (December 1987)
INDEX-1

Index

E

Enable__intr subroutine, 1-21, 2-7, B-2
EPCON control line, 1-23

Error handling, 1-8

Error messages, A-1

Error reporting, 1-8

ERRN function, 1- 8

ESCAPECODE function, 1-8

External pacing, 1-23

G

Gain, 1-§, 1-6, 2-15§

H

Heap area, 1-$§
HP 14751A package, 1-1, 1-9, 2-1

Init subroutine, 1-§, 1-21, 2-8, 2-17, B-2

Initializing

ADC card, 1-§, 2-8, 2-17 .

Measurement Library, 1-5, 2-10

Input pipeline, 1-16, 1-21

Input subroutine, 1-6, 1-9, 1-21, 2-7, 2-9, B-2

Interrupt mode, 1-1, 1-2, 1-3, 1-4, 1-10, 1-17, 1-21, 2-4, 2-6, 2-7,2-9
IPACDA control line, 1-23

L

Least significant bit (LSB) values, 2~5§
Loading the Measurement Library subroutines, 1-2, 1-3
LSB values, 2-§

Measurement Library
features, 1-1
general information, 1-1
initialization, 1-5, 2-10
messages, A-2
programming, 1-2
quick reference, B-1
size, 1-3, 1-4
software provided, 1-2
subroutines, 1-2, 1-3

Update 2 (December 1987)
INDEX-2

Meas__lib__init subroutine, 1-5, 2-10, B-2

Messages, A-1

Multi-dimensional arrays, 1-15

Multiple configurations of an ADC card, 1-8, 1-21, 2-4, 2-7

Normal mode overrange condition, 1-5, 1-8, 1-17, 1-18, 1-19

o

ON ERROR mechanism, 1-8

Overrange condition

common mode, 1-7, 1-8, 1-17, 1-19, 1-20, 2-4
normal mode, 1-§, 1-8, 1-17, 1-18, 1-19

P

Pace interval, 1-§, 1-6, 1-20
Pacing errors, 1-20
Pacing, external, 1-23
Pascal
common area, 1-$§
error handling, 1-8
heap area, 1-~§ ,
importing the Measurement Library, 1-4
interrupt mode, 1-4, 1-21, 2-7
messages, A-3
Measurement Library size, 1-4
‘parameter passing, 1-4
parameter typing, 1-4, 1-7, 2-1, 2-§
programming, 1-4, 1-5
Pipeline, 1-16, 1-21
Programming
general, 1-2, 1-§
in BASIC, 1-2, 1-3, 1-§
in Pascal, 1-4, 1-§

Q

Quick reference guide, B-1

R

Random__scan subroutine, 1-6, 1-9, 1-11, 2-11, B-2
Readings, timing of, 1-14

Read__channel subroutine, 1-6, 1-9, 2-9, 2-13, B-2
Reporting units, 1-1, 1-5, 1-6, 1-7, 2-4, 2-16

Index

Update 2 (December 1987)
INDEX-3

Index

S

Sampling speed, 1-1, 1-20
Sequential__scan subroutine, 1-6, 1-9, 1-10, 2-14, B-2
Set-up times, 1-14
- Setting
error reporting parameter, 1-§
gain, 1-5, 1-6
pace interval, 1-5, 1-6
reporting units, 1-§, 1-6
Set__gain subroutine, 1-6, 1-10, 2-15, B-2
Set__units subroutine, 1-6, 1-7, 1-8, 2-16, B-2
Standard units, 1-1, 1-7, 1-8 1-20, 2-5, 2-16
Subroutine calls
Calibrate, 1-7, 2-2, B-2
Config_ 0, 1-5, 1-7, 1-8, 1-9, 1-10, 1-20, 1-21, 2-3, B-2
Disable__intr, 1-21, 2-6, B-2
Enable__intr, 1-21, 2-7, B-2
Init, 1-5, 1-21, 2-8, 2-17, B-2
Input, 1-6, 1-9, 1-21, 2-7, 2-9, B-2
Meas__lib__init, 1-§, 2-10, B-2
Random__scan, 1-6, 1-9, 1-11, 2-11, B-2
Read__channel, 1-6, 1-9, 2-9, 2-13, B-2
Sequential__scan, 1-6, 1-9, 1-10, 2-14, B-2
Set__gain, 1-6, 1-10, 2-15, B~2
Set__units, 1-6, 1-7, 1-8, 2-16, B-2
System__init, 1-§5, 1-21, 2-17, B-2
System__init subroutine, 1-§, 1-21, 2-17, B-2

T

Timing of readings, 1-14
Try-Recover mechanism, 1-8

U

Units, 1-1, 1-§5, 1-6, 1-7, 2-4, 2-16
User units, 1-1, 1-7, 1-8, 1-20, 2-5, 2-16

Update 1 (November 1985)
INDEX-4

HP Computer Systems

HP 98645A
Measurement Library
User’s Manual

i
AL R

e
Tl

/A cackaro

n HEWLETT
PACKARD

Waranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada,
this warranty applies for ninety (90) days from the date of
delivery.* Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service
Office to determine warranty terms.

HP 98645A
Measurement Library

User’s Manual

() preshet

" HEWLETT-PACKARD COMPANY | | ‘ MANUAL PART NO. 98645-90001
Roseville Networks Division ' EO684
8000 Foothills Boulevard : Printed in U. S. A.

Roseville, California 95678 June 1984

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included.
Periodically, update packages are distributed which contaia replacement pages to be merged into the
manual, including an updated copy of this Printing History page. Also, the update may contain write-in
instructions.

Each reprinting of this manual will incorporate all past updates, however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with
the user-inserted update information. New editions of this manual will contain new information, as well
as updates. -

,.Fi_r_st | 200 A 1o « ST June 1984

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTARBILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

i

Copyright © 1984 by HEWLETT-PACKARD COMPANY

PREFACE

Purpose: This manual explains how to use the HP 98645A Measurement Library. It assumes that you
have a working knowledge of the BASIC or Pascal language system on the HP 9000 Series 200 computers.
It also assumes that you are generally familiar with the HP 98640A Analog-to-Digital Converter card.

(Refer to the manual for that card, HP part number 98640-90001, for more information.)

Organization: This manual is organized as follows:
Section 1: How to use the HP 9864 5A Measurement Library.

Section 2: Alphabetical listing of Measurement Library subroutine calls.

Appendix A: Error messages.

Appendix B: Quick reference guide to Measurement Library subroutine call syntax.

iii

CONTENTS

Section 1
USING THE LIBRARY
5113 4711 T3 4 16) O O O U U U OP TP 1-1
FOatUIES. .. cvviieiieerenerierenrrneneoneenestensoronnaseessesensanarssanssnsnsassnannes Crreenesrnas 1-1
Software Provided........cccevveeeenn.. eeeerentrererenetresettacerenrarararons ceeeeenns ceereenae 1-2
The General APProach........o.iiniiiiiiiiiiiiiiiiiiiiiriierirreerieeronttesersessostonsonnensans 1-2
USING BASIC 2. Louuiiiiiiiiiiiniiieieiiiieieeieaiaecrssesnnsnsnes ereererereratenrieenranens 1-2
Using BASIC 3.0....cccconviniirininnnnnne. BTN eeeniiearenaans 1-3
General BASIC Programming........cccoiueiieiireeuieueernnenieenonsessensoreesereesonsnnnns 1-3
Using Pascal 2.0, 2.1,0r 3.0........c.ooiviniinniniinnnnnnee. ereeeereraresnsnns ceeerranenne 1-3
Writing the Programcoovieiiiiiiiiiiiiiiiiiiiiiarieeriernturaentacaareoecenssssasesaensennnas 1-4
Setting Up.....coceeiererineieieniiereienieensroionaraasens esereessisrnaretiereatesrsoraneratonan 1-5
Calibration...............cooeeieee e PP E
Reporting Units....c.oiiriiiiiiiiiiiiintiiiieiiaiieeieieecaeenanrescanancornnservasnssasernnns 1-7
Error Reporting and Handling........cccovvviiieiiiieiiiiieieiiiieiinieesneeensnnneaenns 1-8
Multiple Configurations.......c..coviiieiiriiiiirieieecriarerieresencenes cereeeerereeenaes 1-8
Taking Readings....cccoceeuveeenenne vt rrtererteaseneerenateeannntreeararennas ereerrernneeneas 1-9
The Pipeline............. b ehrete ittt esretentttearan ettt e eae e eaerararasentaeenncenn 1-14
Overrange Errors...........cccveeevvieenennnnns ereeenn eteieeeneneteteneneeraneresnenns oo 1-15
Pacing Errors................. Ceveererreraces ettbeeneethetieanenenrtttonraatraterbosantranen 1-19
Interrupt Mode.........cccoeviinnnnnn. cereeeaas vereseaes ceerreesnenaresasians crerersetararinee 1-19
EXterNal PaCing. . cveieireiniiiriiiniieretietecanrecsarerecseaseseennseensnseonsasnsanns ceres 1=21
Hardware Considerations............ ceveetrectnenscnsrass estereeteereararareranaransarnen 1-21
Software Considerations.......covvuverieiiiiriiieiiieicariicieerimesreeesesensnsenaesnas 1-21
Applications.......... eeteetereetettetateetatttanransresssstrnrnrsrnrentenennraseansassnienns 1222
Section 2
SUBROUTINE INFORMATION
CALIBRATE........... 44 eteeetareaeteoetatetatetttstteatesatibettatbarenetotsonns PPN 2-2
CONFIG __0...ouinieriiineiiiniienineniertaacecinsssesacronsssssssorossnsssonnes ceereereneees creeeeann 2-3
DISABLE _INTR.....oiiiiitiiiiiiiiittitieteatetateaiataiensastasatesaaresasasasosssssssaniasnns 2-6
ENABLE__INTR.............. fe et taetettereeneetaaaarerraeenaetraraannns e eerrereerereeenaraanaes 2-7
INIT. et eerraaraanes e eeneeteterentereretntteenantoeesiasasnenstartieosasnanas 2-8
INPUT.....cciiiiiianninans ereeaiaens e eeraterentireetereentneesrannarntanrnnnas teereeenrerararranns 2-9
MEAS_ LIB__INIT..........cccueueeee etereeresecareutteaciresiennnraanes Cetraereenns ceereennees 2-10
RANDOM__SCAN.....ociiiiiiitiiiiicaeeaereanarenernanaes eeeemerreenerreasrennantnnreanns 2-11
READ _CHANNEL................ et eteeteteterenteneneeraraaetaeanateenrarasararnrnrrnaenens 2-13
SEQUENTIAL__SCAN........ccvivivninmnianes teteeeeseterereterantateetonenteterentetenseranee 2-14
SET_GAIN...coiiiiiieeieeeieieeecereeeeeenteeeeeeeeateeseeaabeeeeeeaeeesesessneessonnees veeee 2-15
SE T UNIT S i uiiiieancenenrerrarnrneaeeasaasseensessnssrassscnsasesasssnsanns Ceereeeerenennns 2-16
SYSTEM __INIT......ccovviiiiiiiiiiiiiiiiniiiiinneaen teeeeseraseeensaennes Ceerreseentettranernaas 2-17
Appendix A
MESSAGES
Appendix B
QUICK REFERENCE

iv

SECT!ON

USING THE LIBRARY -l_——l

INTRODUCTION

The HP 98645A Measurement Library provides a set of easy~-to-use subroutines for taking readings from
the HP 98640A Analog-to-Digital Converter (ADC) card. These subroutines can be used from the BASIC
or Pascal language systems on the HP 9000 Series 200 computer. The subroutines are written in Pascal,
and are adapted to the BASIC language with the CSUB utility package. The Measurement Library is
compatible with BASIC 2. 1, BASIC 3.0, Pascal 2.0, Pascal 2.], and Pascal 3.0.

The Measurement Library subroutine calls are a superset of the "HP 14751A Computer Aided Test

Programming Package for the Model 6944A". BASIC programs written using the HP 14751A routines
should be able to use the Measurement Library software with very little modification.

Features
The HP 9864 5A Measurement Library allows you to:
Take a single reading from any of 8 channels at any of 4 gains.
Take readings by scanning across 1 to 8 channels, any number of times.
Take readings from channels in random order as specified in an address array. Optionally, you can
specify the gain and pace interval for each reading, and the readings can be repeated any number of
times.
Express readings in three different units:
Base units: binary integer returned from the ADC.
Standard units: base units adjusted for gain and calibration, expressed as real numbers.

User units: standard units times a user multiplier plus a user offset.

Take calibration (zero) readings on a specified channel, and apply that calibration adjustment to all
readings. '

Re-set gain or units at any time,
Take readings at the full 55 kHz sampling speed of the ADC card from either BASIC or Pascal.

Take readings under interrupt mode in BASIC.

1-1

Using the Library

Software Provided

The HP 98645A Measurement Library includes these subroutine packages:
MEAS__LIB for use with BASIC 2.0
MEAS__LIB3 for use with BASIC 3.0
INTR2__1 for use with interrupt mode in BASIC 2.1
MEAS__LIB.CODE for use with Pascal 2.0/2.1
MEAS__LIB3. CODE for use with Pascal 3.0

The software is provided on the following media:

Option #630: 3-1/2" floppy disc

Option #655: 5-1/4" floppy disc

THE GENERAL APPROACH

The way you write programs using the Measurement Library is pretty much the same whether you use the
BASIC or Pascal language system. There are, however, significant differences in the way you set up your
system environment. We will discuss these differences in the next few paragraphs.

Using BASIC 2.1
If you are using the BASIC 2.1 system, take the following steps to get your application up and running:
1) Boot up BASIC 2.0.

2) Load the BASIC 2.1 extensions, The 2.1 extensions are located on the Extended BASIC 2.1 disc.
Insert that disc into the master drive and issue the command LOAD BIN "AP2__ 1"

3) Load the interrupt processing package if you will be taking readings in interrupt mode. (Interrupt
mode readings are discussed later in this section.) The interrupt processing package is located on the
Measurement Library disc. Insert that disc into the master drive and issue the command LOAD

BIN "INTR2__1".

4) Load any other BASIC extensions that you need for your application. For example, this would be
the time to load Graphics 2. 1.

§) Write your BASIC program or load a previously written program into memory. In the paragraphs
below we will describe how to write your application program using the Measurement Library.

6) Load the Measurement Library subroutines if they are not already part of the program you wrote
in the previous step. The subroutines are located on the Measurement Library disc. Insert that disc
into the master drive and issue the command LOADSUB ALL FROM "MEAS__LIB".

7) Run your program. Debug as necessary (repeating steps § through 7).

1-2

Using the Library

Using BASIC 3.0
If you are using the BASIC 3.0 system, take the following steps to get your application up and running:
1) Boot up BASIC 3.0.
2) Load the BASIC 3.0 10 binary if’ you will be taking readings in interrupt mode. (Interrupt mode
readings are discussed later in this section.) The IO binary is located on the BASIC 3.0 Language

Binary disc. Insert that disc into the master drive and issue the command LOAD BIN "IO".

3) Load any other BASIC binaries that you need for your apphcatmn For example, this would be the
time to load graphics routines.

4) Write your BASIC program or load a previously written program into memory. In the paragraphs
below we will describe how to write your application program using the Measurement Library.

5) Load the Measurement Library subroutines if they are not already part of the program you wrote
in the previous step. The subroutines are located on the Measurement Library disc. Insert that disc
into the master drive and issue the command LOADSUB ALL FROM "MEAS_ LIB3".

6) Run your program. Debug as necessary (repeating steps 4 through 6).

General BASIC Programming

The Measurement Library subroutines add approximately 23,700 bytes to your BASIC program. The
INTR2__1 binary adds approximately 1200 bytes.

Note that integer parameters used in the Measurement Library subroutine calls must be explicitly typed as -
INTEGER. (You can find out which parameters are integers by looking at the parameter descriptions in
the subroutine call listings in Section 2 of this manual.) Real parameters and string parameters (those

ending in §) need not be explicitly typed. Literal constants of any type (integer, real, or string) may be
used. Note that integers must not contain a decimal point.

You can invoke Measurement Library routines by calling them (CALL statement) or simply by entering

them by name. When you use them in an IF . . THEN statement or an ON . . statement, the "CALL"
must be explicit. .

Using Pascal 2.0, 2.1, or 3.0

You can call the Measurement Library subroutines from the Pascal language by importing the

Measurement Library and using the library subroutines as procedure calls with the syntax described in

Section 2 of this manual. Typically, you import the Measurement Library with a compiler directive of
$SEARCH "MEAS LIB’S$

or

$SEARCH °"MEAS_LIB3°$

and an import statement of

1-3

Using the Library

IMPORT measurement_lib;
in your code. Importing the Measurement Library adds about 17600 bytes to your Pascal program.

If the Pascal system modules INTERFACE and IO have not been merged into the system library file, you
will also have to include the compiler directive

$SEARCH "INTERFACE.’,"10.°$
Note that the "." after each file name is significant.

The procedure calls for the Measurement Library are all exported from the file MEAS__LIB.CODE (or
MEAS__LIB3.CODE), along with the following types:

TYPE shortint = -32768..32767;
byte = 0..255;
str2s55 = string[255];
iarraytype = ARRAY[O..maxint] OF shortint;
rarraytype = ARRAY[O..maxint] OF real;
rarraypt = “rarraytype;
iarraypt = “iarraytype;

Due to the rigorous structure of the Pascal language, you can’t default parameters in the procedure calls.
However, to save you the bother of declaring real and integer arrays for the pace and gain array
parameters of the random__scan procedure, you can use the default pace or gain value (established by a
call to Config__ O or Set__gain) by specifying a O for the array size and a NIL for the array pointer. All
other parameters for all procedure calls must be explicitly provided in the procedure call as real, integer
(or shortint), or string variables, or as constants or literal constants. For all array parameters, make sure
that the array elements are of the correct type, real or shortint; do not substitute integer for shortint.
And take care that the size parameter you pass for an array does not exceed the actual size you declared
for that array. (If you exceed the declared array size, you can write all over the other variables in your
program, and cause yourself much anguish.)

Once your Pascal program has been written and compiled, it must be merged or linked to the
Measurement Library using the Pascal system librarian program. Be sure to transfer ALL the modules in
MEAS__LIB or MEAS__LIB3. If IO is not in your system library file you will also have to transfer the
module IOCOMASM from the file 10 (found on your LIB: disc).

Interrupt mode operation is not supported in the Pascal environment. (That means we don’t guarantee
that it will work. If you try it and it doesn’'t work, you can purchase consulting services from the nearest
HP sales and service office. See the back section of this manual for a list of sales and service offices.) An
interrupt service routine (ISR) is required for interrupt mode to work in Pascal, and we do not provide a
Pascal ISR with the Measurement Library. If you try to use interrupt mode in Pascal without a proper
ISR, you will probably crash your system. If you’re an experienced Pascal programmer, you may be able to
write your own ISR. For more information on ISRs, refer to the Pascal 2.0 System Designer’s Guide, part
number 09826-90074. '

WRITING THE PROGRAM

In both BASIC and Pascal, writing your application program involves two major activities: setting up the
card to take readings, and taking the readings. In addition, BASIC programs may take readings in

Using the Library

interrupt mode. We will cover these subjects in the paragraphs that follow. We will also say a few words
about externally paced readings.

All of the subroutine calls referred to below are described in detail in Section 2 of this manual.

Setting Up

Setting up an ADC card for readings requires allocation of a common area, as well as calls to at least three
subroutines: Meas__lib__init, Config__0, and Init.

The common area serves as the heap space for the subroutines in the Measurement Library. It is allocated
automatically in Pascal; in BASIC you must allocate it explicitly at the beginning of your program.
Reserve this area by including the following statement in your program:

20 COM/Heapcom/ INTEGER Heaparea(1:n)

where n is the size of the Heaparea array. The size of Heaparea is determined by the number of
configured names for ADC cards (more about that later) and the number of readings taken for calibration
(ditto). Use 53 integers for each ADC card configuration and 4 integers for each reading used in
calibration. We recommend using Heaparea(1:1300); this allows all 16 possible ADC card configurations
and a calibration run of 100 readings.

In both BASIC and Pascal, the subroutine calls to Meas__lib__init, Config__0, and Init do the following:

Meas__lib__init initializes the Measurement Library, and must be called before any other subroutines in
the library are called. Meas__lib__init needs to be called only once in your program.

Config__ 0 sets up an ADC card for taking readings. At a minimum, you specify a name by which you
will call the card and the model number of the card. In addition, you can specify the select code of the
card, its gain, a pace rate for taking readings, an error reporting parameter for normal mode overrange
errors, and the units (base, standard, or user) in which the readings will be reported. (Reporting units
are discussed below.) If you do not supply these optional parameters, Config 0 will supply default
values. .

Init resets an individual card, disables interrupts for that card, and sets the calibration array for that
card to its default values. Init must be used before any other calls except Meas__lib__init, Config_ 0.
and System__init. System__init is the same as Init, except that it initializes all cards that have been
configured.

1-5

Using the Library

The set-up portion of a typical BASIC program might look like this:

20 COM/Heapcom/ INTEGER Heaparea(1:1300)
30 INTEGER Select_code, Gain

40 Name$="ADC"

50 Model$="98640A"

60 Select_code=18

70 Gain=1

80 Pace=0.01

S0 Error$="No"

100 Unit$="Standard"

220 Meas_lib_init
230 Config_OTName$ »Model$,Select_code,Gain,Pace,Error$,Unit$)
240 Init(Name$)

3

The analogous Pascal code would look like this:

CONST name = "ADC”;
model = "98640A°;
select_code = 18;
gain = 13
pace = 0.01;
error = "NO”;
units = “STANDARD’;
multiplier = 1.0;
offset = 0.0;

BEGIN
meas_lib_init;
config_orname,model,select_pode,gain,pace,error,units,multiplier,offset);
init(name);

The most frequently used configuration parameters can be reset without reconfiguring the card; these
parameters are gain, pace interval and units. The gain can be reset with a call to the Set__gain
subroutine, or a new gain can be specified as a parameter to the Input or Random__scan subroutine. (The
Input and Random__scan subroutines are used to take voltage readings from the ADC; they are described
later in this section.) A new pacing interval can be specified as a parameter to the Input,
Sequential__scan, or Random__scan subroutine. And the units can be reset with a call to the Set__units
subroutine. (Note that if you specify pace or gain parameters in an Input, Sequential_scan, or
Random__scan call, the specified pace or gain value holds only for the duration of the call; it reverts to its
previous value after the call completes.) '

1-6

Using the Library

Calibration

Calibration gives you a way of compensating for offsets that are inherent to the ADC card. To use the
calibration feature, you must first reserve one of the channels on the card and short the + Input and
- Input terminals on that channel to card ground. Then use the Calibrate subroutine to take a specified
number of readings from that channel at a specified pace rate. The readings are taken at each of the gain
settings and the average at each gain is saved. These average readings are then used to calculate
correction values for positive and negative readings at each gain setting. When a subsequent reading is
taken on any of the other channels, the appropriate correction value is subtracted from the raw reading
before conversion to standard or user units.

Reporting Units

Reporting units come in three flavors: base, standard, and user; you specify one of these with the
Config__ 0 or Set__units command. The units are:

Base units. Base units are in the form of a 16-bit binary integer, of which twelve bits represent the
magnitude of the reading. Readings reported in base units are raw readings; gain factors and
calibration corrections are not applied to base units. The format of a base unit reading is:

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
et T S S S i e S R e N s bt bt TS

IBlwlo|ls|D|D|D|DI|D|D|D|DID|D|D]D]
e b et T N bt it bt ST T T PP PR

where:

B = BUSY. If bit 15 = 1, the ADC is busy. The reading is not taken and all other bits are invalid. If bit
15 = 0, a valid reading is returned.

W = WAIT. If bit 14 = |, the ADC card was in the wait state at the time of the reading. This means
that the card was not read within the interval specified in the pacing timer -- that is a paced read
was not made at the correct time. (You should never see this bit set, since the ADC Library software
reports an incorrectly paced read as an error and will not return a value for the reading.)

O = OVERRANGE. If bit 13 = 0, 2 common mode overrange condition occurred during this reading,
and the reading is invalid. (Common mode overrange errors are discussed later in this section.) If bit
13 = 1, no common mode overrange condition occurred during this reading. Note that the sense of
this bit is negative true.

S =SIGN. If bit 12 = 0, the value returned for the reading is positive. If bit 12 = 1, the value returned
for the reading is negative. ’

D = DATA. The data bits give the 12-bit binary magnitude of the voltage read from the ADC. (The
sign of the voltage is given by the S bit, bit 12.)

Note that all readings taken from the ADC card by the ADC Library software are returned to your
program through real number parameters. This includes readings in base units. Thus, while the base
unit readings have integer values, they look like real numbers to your program until you explicitly
convert them to -integers. Assigning them to integer variables in BASIC, or using the trunc or round
function in Pascal, will make the conversion.

1-7

Using the Library

Standard units, Standard units are base units adjusted for gain and calibration, expressed as real
numbers. They are, in other words, volts.

User units. User units are standard units to which a user-specified multiplier and offset have been
applied, expressed as real numbers. You specify the values for the multiplier and offset in a Config_ 0
or Set__units subroutine call. (The default values for multiplier and offset yield standard unit values.)
You might use user units to change the units of your readings or to compensate for a known offset in

your readings, or both.

For example, say you were taking readings from a 4-to-20 mA current loop transmitter connected to a
flow meter. Say further that the range of the flow meter was from 0 to 50 gallons per minute, and
that you were making your voltage readings across a 250-ohm resistor. That would mean that a
reading of 1.0 volts corresponded to a flow rate of 0 gpm and that S.0 volts corresponded to 50 gpm.
Using y=mx+b, you can derive 2 multiplier of 12.5 and an offset of ~12.§, and specify these as

parameters to a Config__0 call.

.

180 Config_0("Flow","98640A",18,1,.01,"No","User",12.5,-12.5)

Then, whenever you take a reading from that current loop, the result is expressed directly in gallons per
minute. That’s a lot easier than making a conversion from standard units every time you take a voltage

reading.

Error Reporting and Handling

The Measurement Library reports errors for a variety of reasons. Typical errors include configuration
errors, pacing errors, and overrange errors. When such an error occurs, the Measurement Library forces a
system error and returns the error number. Your application program can trap and handle these errors
using the ON ERROR mechanism (in BASIC) or the Try-Recover mechanism (in Pascal). In BASIC, you
can get the error number with the ERRN function; in Pascal, use the ESCAPECODE function. (Certain
run time errors may be reported in BASIC as the Pascal error number plus 400. These errors are listed in
Appendix A.) If the errors are not trapped, your program will abort and the system will report the error.

The errors that can be returned by the Measurement Library are listed in Appendix A.

Note that one of the parameters of the Config__ O subroutine determines whether normal overranges are
reported as errors or not. Note also that if you are using base units, no overrange errors -- either normal
or common mode -- are reported. (You can detect overrange conditions from the bits returned in base
unit format.) Overrange errors and pacing errors are discussed in more detail later in this chapter.

Multiple Configurations

The Measurement Library allows you to have up to 16 different ADC card configurations at any one
time. Each configuration requires a separate call to Config__ 0, and each call specifies a unique name for
a card. You can assign multiple names, and thus multiple configurations, to a single card if you wish.
This would allow you to take readings from different voltage sources on different channels of the same
card without reconfiguring the card all the time. For example, say you had flow meters connected to
channels 1, 2, and 3 of the card and thermocouples connected to channels 4, §, 6, and 7. You could
specify one name for a flow meter configuration and another name for a thermocouple configuration:

1-8

Using the Library

.

180 Config O("Flow","98640A",18,1,.01,"No","User",12.5,-12.5)
190 Config 0("Thermo","98640A",18,64,.01,"No","Standard")

.

When you want to take a reading from either type of voltage source, just specify the name of the
appropriate configuration in your reading call:

420 Input(“Thermo”,5,Tvolt)
430 Input("Flow",2,Gpm)

.

If 16 different ADC configurations are not enough for your application, you can get more by re-using
existing names. Do this by making a call to Config_ 0 and specifying an existing name; the old
configuration parameters for that name will be erased and the new parameters (or their default values)
will replace them. You will then have to re-initialize the name with a call to the Init subroutine before

you can use the new configuration.

Note that the use of different names for the same ADC card will not work in interrupt mode. DO NOT
ATTEMPT TO ACCESS AN ADC BY A DIFFERENT NAME DURING INTERRUPT MODE DATA

TRANSFERS.

Taking Readings
Taking readings is the whole reason for having an ADC card. Now that you’ve got your system

configured, it’s time to start taking those readings. All readings from the ADC card are taken by three
subroutines: Input/Read__channel, Sequential__scan, and Random__scan. Here’s how you use them:

Input/read channel. Use the Input or Read__channel subroutine for taking a single reading from a
channel on the ADC card. Optionally, you can specify a gain and a pace interval in the subroutine call.

A call to Input would look like this in BASIC:

340 Input("ADC",Chan,Volts)
The analogous call to Read__channel would look like this in Pascal:

read_channel ("ADC”,chan,volts,gain,pace);
Input is the name of the routine as used in a BASIC program; in a Pascal program, use Read__channel.
Input was chosen for BASIC for compatibility with the HP 14751A software. Note that you must be
very specific when you call the Input subroutine: the I must be upper case and all the other letters must
be lower case; otherwise there will be a conflict with the BASIC keyword INPUT. The name Input

doesn't work at all with Pascal (another keyword conflict), so Read__channel was chosen instead.
Whatever the name, the subroutine works the same way in either language.

1-9

Using the Library

Note that if you specify the optional parameters for gain and/or pace interval, they override the
existing values only for the duration of the subroutine call. After the call has completed, the gain and
pace interval parameters revert to their previous values.

The operation of the Input subroutine in interrupt mode is different from its normal operation. Refer
to the discussion of interrupt mode, later in this section, for more details.

Sequential scan, Use the Sequential__scan subroutine to take readings on all channels in sequence
from a starting channel to an ending channel. These readings are all taken at the same pace rate (which
you specify) and the same gain (specified by the most recent call to Config_ 0 or Set__gain), and the
values are returned to a data array. Optionally, you can repeat the readings as many times as you want.
For example, if you wanted to take readings from channels 2 through 7 on an ADC card, at the same
gain and pace rate, Sequential__scan would be the appropriate subroutine to use. In BASIC:

100 INTEGER Start, Stop, Repeat
110 REAL Data(1:6)

230 Name$="ADC"
240 Start=2

250 Stop=7

260 Pace=0.01
270 Rept=1

460 Sequential_scan(Name$,Start,Stop,Pace,Data(*),Rept)

3

In Pascal:

CONST name = "ADC”;
pace = 0.01;
start = 2;
stop = T3
rept = 1
d_size = 6;

TYPE d_array = ARRAY [1..6] OF real;
d_ptr = °d_array;

VAR data: d_ptr;

new(data);
sequential scan (name,start,stop,pace »d_size,data,rept);

1-10

Using the Library

You must make sure that your data array is large enough to hold all of the readings that the
Sequential__scan call will generate. Note that if the call to Sequential__scan aborts, the contents of the
array will be undefined. (This is because the Sequential__scan subroutine uses the array space as
temporary storage for a variety of nasty, messy variables; it doesn’t fill the array with nice, clean data
until just before it returns to your program. If the subroutine aborts while the array space is filled with
garbage and your program tries to interpret the garbage as data, you may not be pleased with the
results.)

The pace interval that you specify when you call Sequential _scan will be maintained only for the
duration of that call. After the readings have been taken, the pace interval will revert to its previous
value.

Random _scan. Use Random__scan when you need lots of flexibility. Random__scan lets you read
from the channels on a card in any order, and you can assign an individual pace interval and gain for
each reading. Additionally, you can repeat the set of readings as many times as you want.

The readings are controlled by a set of arrays. A channel array lists the order of the channels to be
read. A gain array lists the gains for the readings. A pace array lists the pace intervals that will elapse
between readings. And a data array stores the results. The sizes of the channel, pace, and gain arrays
need not be the same. The Random__scan subroutine simply starts at the beginning of each array and
uses the values in sequence. After Random__scan uses the last element in an array, it goes back to the
beginning of the array for the next value. (Note that the gain and pace values do not start over just
because the channel array repeats.) .

For example, consider an ADC card that has flowmeters attached to channels 2, 3, 4, and §, and
thermocouples attached to channels 6 and 7. Say that you wanted to take the following sets of
readings: ,

Channel 2 3 6 4) T
Pace .02 .02 .02 .02 .02 .02
Gain 1 1 64 1 1 64

To take these readings, you could set up the following arrays:
Channel 2 3 6 4 5 7

Pace .02
Gain 1 1 64

1-11

Using the Library

In taking readings from the channels in the channel array, the Random__scan subroutine will use the
pace array six times and the gain array twice. The call sequence to take those readings once would be,
in BASIC:

110 INTEGER Channel(1:6)
120 REAL Pace(1:1)

130 INTEGER Gain(1:3)
140 REAL Data(1:6)

150 DATA 2,3,4,5,6,7
160 READ Channel (%)

170 DATA .02

180 READ Pace(*)

190 DATA 1,1,64

200 READ Gain(#)

320 Repeat=1
330 Random_scan("ADC",Channel(#),Data(#),Repeat,Pace(#*),Gain(#))

In Pascal the sequence would be:

CONST name =
start =
stop =
rept =
d_size
p_size
g_size
c_size

Hunn - ~
we we N P

> we W 9o b g
~

we

MW=

TYPE r_array = ARRAY [1..6] OF real;

r_ptr =
i_array
i ptr =

“r_array;
= ARRAY [1..6] OF
~i_array;

VAR data: r_ptr;

channel

i i_ptrg

pace: r_ptr;
gain: i_ptr;

new(channel
channel”~[1]
channel”[2]
channel”[3]
channel”[4]
channel”[5]
channel”[6]
new(pace);

pace~[1] :=
new(gain);

gain~[1]
gain~[2]
gain~[3]

*e L1 R 1)
nnau

new(data);
random_scan

)3

NoOouswN

e ve w

we weo we

0.02;

Q) =~ -

I we we
e

(name,
c_size,channel,
d_size,data,
rept,
p_size,pace,
g_size,gain);

shortint;

Using the Library

Using the Library

In the general case, the ith reading is taken using the following array elements:

Channel: chan_array[i mod size_of(chan_array)]

Pace: pace_array[i mod size_of(pace_array)]
Gain: gain_array[i mod size_of(gain_array)]
Data: data[i]

Make sure that the data array is large enough to hold all of the readings that will be generated by the
Random__scan call. (Don’t forget to account for repeats.) As with Sequential__scan, if the call to
Random__scan aborts, the contents of the array will be undefined.

The channel, pace, and gain arrays must be dimensioned as arrays, even if they are only single-valued.
Scalar variables can not be used.

The pace and gain values specified in Random_ scan are used only for the duration of the
Random__scan call. After the readings have been taken, pace and gain revert to their previous values.

The Pipeline

The ADC requires three operations to produce a reading:
1) provide the channel address for the reading
2) latch the voltage and convert it to a digital value

3) return the value to the host computer

For any given reading, these three operations must be done serially:

e dommcmcne- $mmmmmm——- +

| address | convert | return |

$memm————— T - +
time ------- >

Figure 1-1. Analog input operation

1-14

Using the Library

However, to maximize throughput, the ADC card “pipelines" the readings. That is, while the value for one
reading is being returned, the voltage for the next reading is being latched and converted, and the channel
address is being provided for the reading after that. For example, during time period t3 in the figure
below the first reading is taken from the card while the second reading is being converted and the third

address is being supplied.

$ommm e eecmconcane +
| addrees 1 | convert 1 |
$occcconmae— RO P e K +
| address 2 | | return 2 |
o P T R —— +
| convert 3 | return 3 |
P R, P fommremm——— +
address 4 | convert 4 | return 4 |
---------- $ommmmremcmedom e
t1 t2 t4 t5 t6

Figure 1-2, Analog Input Pipeline

To start the flow of readings, the Measurement Library software primes the pipeline by taking two
"garbage" readings (at times t1 and t2 in the figure above); these two readings are thrown away. (Their
only purpose was to start pulling valid readings through the pipeline.) The third reading taken is the first
valid reading, since it is the first reading that has gone through all three stages of the pipeline; it is
written into the data array as the first reading.

For all readings taken in normal mode, the Measurement Library software takes care of priming and
emptying the pipeline; it does this by taking two more readings than are requested and throwing away the
two extra garbage values. This happens for each subroutine call; you never have to pay any attention to
it, since the software takes care of it all.

(Note that since each subroutine call incurs the extra time required for two readings, it is difficult (if not
impossible) to maintain accurate and even pacing of readings between one subroutine call and the next. If
your application requires accurate pacing for a block of readings, we suggest that you make all of those
readings with one subroutine call. Use Sequential scan or Random__scan, as appropriate to your

application.)

For readings taken in interrupt mode, the Measurement Library software does not take care of the
pipeline for you. You must keep track of which readings are which (not a very taxing operation) and
throw out the garbage. More information on interrupt mode programming is contained later in this

section.

Overrange Errors

You can encounter two kinds of overrange conditions with the ADC card: normal mode overrange and
common mode overrange. Normal mode overrange occurs when the input voltage exceeds the range of
the analog-to~digital converter. Common mode overrange occurs when either side of the differential
input voltage exceeds the maximum input voltage of its input amplifier. The next several paragraphs
explain how these overrange conditions can affect your readings.

Using the Library

The voltage measured by the ADC card is the differential input voltage between the + Input and - Input
terminals of a channel on the card. The two sides of the input signal pass through separate input
amplifiers (op amps), and are then sent to an analog-to-digital (A-to-D) converter for conversion to a
numeric value. (The figures below show this circuit configured for a gain of 1.)

There are a couple of limitations that apply to this measurement circuit:

1) The voltage output from an input op amp can not exceed £10 volts, relative to system ground. For a
gain of 1, this also means that the input voltage applied to the op amp can not exceed *10 volts,
again relative to system ground. (The situation gets rather more complicated for gains greater than
one; the formula for figuring the maximum input voltage is somewhat abstruse, involving various
voltages, gains, and a couple of 2s. We won’t get into the mathematics of it, but figure 1-6 shows an
example of the results that you may see.) Exceeding this input limit causes a common mode
overrange: the output of the op amp is clipped at its limit (+10 volts or -10 volts) and the overrange
flag (the O bit in a base unit reading) is set to 1.

2) The A-to-D converter, which compares the outputs of the op amps, can not measure a difference of
more than 10 volts. If the difference between those outputs is more than 10 volts, the A-to-D
converter clips its output value to 10 volts; this situation is defined as a normal mode overrange.

The next few figures show various combinations of input voltages and the outputs they produce. In the
figures, + Input and - Input voltages (relative to system ground) are shown in "stick" type, like this:

+4

The differential input voltages are shown in Roman type, like this:

+6

Figure 1-3 shows a typical reading that causes no problems. The input voltages propagate through the
op amps with no clipping, the differential voltage is well within the range of the A-to-D converter, and
the converter comes up with the correct value.

+4 \ +4
+ Input

. A—to-D

+6 +6 | converter | +6
\ -2

Figure 1-3. Reading OK

Using the Library

Figure 1-4 shows a normal mode overrange condition. The + Input and - Input voltages are within the
range of their respective op amps, but the differential input voltage (+12 volts) is too great for the
A-to-D converter. The result is a normal mode overrange condition, yielding a full-scale (and
incorrect) reading from the A-to-D converter.

+6

+12

/

+6

+ Input

7| N

+12

= Input

¥

- A=to-D
Canverter

Figure 1-4. Normal mode overrange

+10

Figure 1-5 shows a common mode overrange condition. The + Input voltage of +12 volts is clipped to
+10 volts and the overrange flag (O bit) is set to 1. The differential voltage presented to the A-to-D
converter is within the range of the converter, so it converts the voltage correctly and comes up with

the wrong answer.

+12——f

+4

+8

/

+10

+ input

/1IN

+8

+2

- Input

N

A-to-D
Converter

Figure 1-5. Common mode overrange

+2

Using the Library

Figure 1-6 shows a subtler form of common mode overrange that you may encounter at gains greater
than 1. This is because the programmable gain amplifier amplifies the difference between the + Input
and - Input voltages before sending the result to the A-to-D converter. Even though the input
voltages appear to be acceptable, the amplifier may try to boost them out of the acceptable range. In
this case, the programmable gain circuit tries to boost the + Input voltage to 11.5 volts, but the output
limit of the op amp keeps the voltage from exceeding +10 volts. The overrange flag (O bit) is set to one
and the clipped voltage is sent to the A-to-D converter. The resulting value is incorrect.

+10
+8 +1¥5
+ Input
A—to~-D
+1 % +6¢5 Conv‘rt.r +6¢6
+7 - Input
+3.5 Gain = 8

Figure 1-6. Common mode overrange at gain greater than 1

A normal mode overrange is indicated when a reading returns the maximum possible magnitude value.
(This is the same as "clipping”.) The maximum magnitude value depends on the units in use, as follows:

Base: 4095 (all D bits set to 1)
Standard: (4095 #* Isb - calibrate) / gain
User: (4095 * Isb - calibrate) / gain) * mulitplier + offset

where: Isb= 10/ 4095 volts/bit

Note that it is not possible to tell the difference between a full scale reading and a normal mode
overrange reading.

By default, a normal mode overrange condition does not generate an error. However, by setting a
parameter in the Config__ 0 call you can cause an error to be generated when a normal mode overrange

occurs.

Common mode overranges are harder to detect than normal mode overranges, since the value of the
reading may appear to be correct even though an overrange has occurred. For this reason, common mode

overranges are trapped as errors.

Note that the Measurement Library reports errors for normal mode and common mode overranges only
when you are operating in standard or user units. If you are operating in base units, no error will be
reported. To detect a normal mode overrange in base units, check the D bits for a full scale reading; to
detect a common mode overrange, check the O bit.

Using the Library

Pacing Errors

The pace counter on the ADC card is used to determine the duration of the sample portion of the sample
and hold cycle. The hold portion is always 9 microseconds, and the minimum sample portion is 9
microseconds. The Measurement Library lets you specify a pace interval that is the sum of these two time
periods. Thus you can set the pace at which readings are taken for ease in making accurate time domain
measurements of time-varying quantities.

If, due to outside factors (concurrent I/O transfers, keyboard interrupts, and so on), the Measurement
Library software is unable to read from the ADC card fast enough to keep up with a programmed pace
time, a pacing error will occur. This gives you the assurance that, in the absence of such errors, the time
domain measurements are being accurately paced.

While the ADC card and the Measurement Library are fully capable of taking readings every 18
microseconds, the variable gain input amplifiers on the card are not capable of slewing from maximum
positive to maximum negative during the 9 microsecond sample period that this pace rate requires. This
puts an upper limit on the signal frequency component that the ADC can measure accurately at the 18
microsecond sample rate. The following table shows that maximum frequency component for each gain,
for readings to within 1 Isb on a single channel.

Maximum Signal

Gain Frequency Component
1 27 kHz
8 27 kHz
64 15 kHz

512 3.5 kHz

When more than one channel is being sampled (as in Sequential _scan and Random__scan operations) the
speed of accurate sampling by the ADC is limited as follows:

Minimum Pace Time for Equivalent Maximum
Gain Multichannel Scans Sampling Speed
1 50 microseconds 20000 readings per second
8 50 microseconds 20000 readings per second
64 71 microseconds 14000 readings per second
512 1000 microseconds 1000 readings per second

Interrupt Mode

Interrupt mode operation is supported only in the BASIC language system. (It is NOT supported in
Pascal.) Interrupt mode is useful when you want your program to continue execution between readings
and still maintain an accurate or externally controlled pace rate. There are two subroutines associated
specifically with interrupt mode: Enable__intr and Disable__intr. Appropriately enough, interript mode
is enabled by a call to Enable__intr and is disabled by a call to Disable__intr.

Using the Library

Only a limited subset of Measurement Library subroutine calls are allowed after you have entered
interrupt mode:

Input
Config_ 0
Init
System__init
Disable__intr

Use of any other Measurement Library calls in interrupt mode will result in an error.

When you are in interrupt mode, the Measurement Library does not automatically take care of setting up
and clearing out the input pipeline. (Refer to the description of the analog input pipeline earlier in this
section.) Thus, when you take a reading with the Input subroutine, the result you get is the value of the
reading taken two readings ago. You should discard the data returned from the first two Input calls.

Interrupt mode does not handle multiple configurations of the same card cleanly. To avoid taking
erroneous readings, do not take readings from different configurations (names) for the same card while in
interrupt mode.

The shortest recommended pacing interval in interrupt mode is 36 milliseconds. This is very close to the
longest pacing interval available from the ADC card (39. 3336 milliseconds). You can get longer pacing
intervals by using external pacing. (External pacing is discussed later in this section.)

The following example shows a BASIC program that takes readings in interrupt mode. Its purpose is to
take 8 voltage readings; to do that it takes 10 readings and ignores the first 2 (invalid) readings.

40 REAL Volte (-1:8)
50 I=2

.

110 Config_O("ADC","98640A",18,1, .036)
120 Init("ADC")

130 Enable_intr("ADC")

140 ON INTR 18 GOSUB Service

150 Input(“"ADC",5,Volts(-1))

340 Service: H

350 Input ("ADC",5,Volts(I-2))
360 I=I+1

370 IF I>10 THEN

380 OFF INTR 18

380 Disable_intr("ADC")
400 PRINT Volts(1:8)
410 STOP

420 END IF

430 RETURN

440 END

Note that the order of the Enable__intr call and the ON INTR statement is not critical. Enable__intr
does not physically enable interrupts on the ADC card; it only sets flags in the Measurement Library. The
card interrupts are physically enabled by the first Input call after Enable__intr (line 150 in this example).

1-20

Using the Library

External Pacing
You might use external pacing for ADC readings if:

-~ you want to use a pace interval longer than that allowed by the Measurement Library software
(0.0393336 second)

-- you want the readings to be controlled by an external event, rather than by time

External pacing is primarily a hardware operation. It is largely controlled by two hardware control lines,
IPACDA (internal pace disable) and EPCON (external pace control). There’s not a lot of software
involvement, other than making the read requests that you would normally make for an internally paced
read. The timing of the execution of those read requests is controlled by the hardware. (There’s no
provision in the software for controlling IPACDA and EPCON directly; you’ll have to build your own
circuits to control them.)

In the next several paragraphs we will look at some of the features of the hardware and software that
affect external pacing, and then we will see how they fit together in external pacing applications. In this
manual we'll limit our discussion of the hardware to teliing you when the IPACDA and EPCON control
lines must be set low or high; we won’t give you instructions for building the circuits that control those
lines. You can, however, get more information about those control lines from the ADC hardware manual,
part number 98640-90001.

Hardware Considerations
There are two control lines of interest for external pacing:

IPACDA determines whether the readings are paced by the internal pacing timer on the ADC card. If
IPACDA is low, the internal pacing timer of the card is used; if IPACDA is high, the internal pacing
timer is bypassed and readings are taken at the free run speed of the card (one reading every 18
microseconds). Note that IPACDA must be high when readings start in order for the timing of the first
reading of a series to be accurately known. (IPACDA can be set low after the start of readings if you
want the readings to be paced by the internal pacing timer.)

EPCON controls whether or not any readings are taken. If EPCON is low, readings are taken whenever
they are requested. If EPCON is high, requested readings are held off; a read request will not complete
until EPCON goes low again.

In summary, when EPCON is low, readings are taken at the free run speed of the card (if IPACDA is high)
or at the time programmed into-the internal pacing timer (if IPACDA is low). When EPCON is high,
readings stop.

Software Considerations

When making externally paced readings, you will have to allow for the software set-up time of the
various subroutines. The set-up times in the BASIC language for the reading subroutines are:

Input 2.0 milliseconds
Sequential scan 3.5 milliseconds + 0.1 milliseconds per reading

1-21

Using the Library

Random_scan 3.0 milliseconds + 0.4 milliseconds per reading

You can use these set-up times for Pascal programming as well. Pascal set-up times are shorter than
those in BASIC, 50 the times listed above will give you plenty of margin in your Pascal applications.

Applications
External pacing applications divide into two general types: single readings and bursts of readings.

Single readings. The idea behind taking single externally paced readings is that you keep EPCON high
until you want to take a reading, set it low only long enough to take the reading, and then set it high
again. The steps in taking a single reading are:

1) Set IPACDA high. IPACDA will remain high for the duration of externally paced readings.
2) Set EPCON high. This holds off all readings.

3) Issue a call to Input/read__channel, Sequential __scan, or Random__scan.

4) Wait. The length of time you wait should be at least the set-up time.

S) When it is time to take a reading, set EPCON low. Keep it low for 1 to 1§ microseconds, then set it
high again. This will allow one (and only one) reading to be taken.

6) Repeat step S until you have taken all the readings that you requested with the subroutine call in
step 3. The subroutine will return to your application program only after all requested readings have

been taken.

As indicated in step 4, each subroutine call you make requires that you wait the set-up time before
pulsing the EPCON line to take the first reading. For Input (or Read__channel) calls made in normal
mode, that means that you must wait the set-up time before each reading. If you’re using Input in
interrupt mode, the set-up time is required only before the first reading. Keep in mind, however, that the
EPCON pulses should be at least 36 milliseconds apart if you’re operating in interrupt mode.

Bursts of Readings. The idea behind taking readings in bursts is that you request multiple readings with
a subroutine call, and then take those readings in one burst by setting EPCON low until all of the readings
have been taken. These readings can be taken at the free run speed of the card, or they can be paced by

the card’s internal pacing timer. The following steps are for triggering burst readings that are paced by
the internal pacing timer.

1) Set IPACDA and EPCON high.
2) Make a read request by issuing a call to Sequential__scan or Random__scan.
3) Wait. You should wait fo; at least the set-up time plus the pace interval.

4) Set the EPCON line low. The analog-to-digital conversion for the first reading will start in
approximately 3 microseconds.

$) Set the IPACDA line low. This must happen 1 to 15 microseconds after you set EPCON low.

6) Hold EPCON and IPACDA low until all of the requested readings have been taken. (The subroutine
call will return to your application program after all of the readings have completed.)

1-22

Using the Library

The requirement (in step 3) that you wait the set-up time plus the pace interval assures that the first
reading occurs at a more-or-less known time (within approximately 3 microseconds after EPCON is set
low), and that the voltage has been sampled for at least the prescribed sample time (pace interval minus 9
microseconds).

Combinations. You can combine the above two methods of external pacing if your application requires.
We won’t go into those combinations here; we leave that as an exercise for the interested reader. The
methods above should give you enough information to make your combination work.

1-23

SECTION

SUBROUTINE INFORMATION %

This section gives the subroutine call syntax for the subroutines in the HP 98645A Measurement Library.
The subroutine calls supported by the library are:

Calibrate **
Config__ 0 **
Disable__intr
Enable__intr *
Init

Input *
Meas__lib__init **
Random__scan *
Read__channel
Sequential__scan
Set__gain **
Set__units **
System__init

* These calls incorporate optional extensions beyond the HP 14751A Computer Aided Test
Programming Package for the Model 6944A).

** These calls do not exist in the HP 14751 A package.

In the following subroutine descriptions, these conventions apply:

-- The parameters list for the subroutine appears in parentheses: {). These parentheses must be
included in the subroutine call

-- Optional parameters (BASIC only) are contained within square brackets: [1.

String parameters for name and model number are case sensitive. (That is, don’t use lower case characters
in place of upper case, and vice versa.) All other string parameters are case insensitive,

Note that none of the parameters in Pascal calls are optional.
Pascal data types exported by the Measurement Library are as follows:

TYPE shortint = -32768..32767;
byte = 0..255;
str255 = string[255];
iarraytype = ARRAY[O..maxint] OF shortint;
rarraytype = ARRAY[O..maxint] OF real;
rarraypt = “rarraytype;

iarraypt = “iarraytype;

The remainder of this section gives the subroutine call syntax, arranged by subroutine in alphabetical
order. Note that parameters identified as INTEGER are of type INTEGER in BASIC, but of type shortint
in Pascal.

2-1

CALIBRATE

Calibrate allows you to measure and compensate for the various offsets in the ADC card. To do this,
Calibrate dedicates one channel on the card to making reference readings; the offsets derived from the
reference readings are used to adjust the readings taken on the remaining channels of the card.

Syntax
BASIC: Calibrate(name,channel,pace,number)

Pascal: PROCEDURE calibrate(name: str255;
channel: shortint;
pace: real;
number: shortint);

Parameters

name: a string or string literal specifying the ADC name from the
Config 0 call.

channel: an INTEGER specifying the reference channel (from 0 to 7) to
be used for calibration.

pace: a REAL number specifying the calibration pace rate, from
0.000018 to 0.0393336 seconds with a resolution of 600

nanoseconds.

number: an INTEGER specifying the number of readings to be taken for
this calibration. This number must be from 1 to 32767.

Discussion

‘To use the calibration feature, you must first short the + Input and - Input terminals of one of the
channels on the card to card ground; this gives a 0 volt input for that channel. Then you specify that
channel in the call to the Calibrate subroutine. When the Calibrate call is executed, the specified number
of readings are taken at all gain settings, and the average for each gain setting is saved. The offsets are
then used to calculate the proper correction values for positive and negative readings at each gain. When
subsequent readings are taken on other channels, the correction value is subtracted from the reading prior
to conversion to standard or user units. (No correction is applied to a reading expressed in base units.)

Note that occasionally a Calibrate call will abort with an error 860. This may be caused by temporary
transient electrical noise, especially on calibration calls with small numbers of readings. 860 errors from
Calibrate calls should routinely be re-tried several times, and the connections of the shorting wires at the
calibration channel checked, before you assume that the ADC card is defective.

Note that Calibrate temporarily requires 8 bytes of memory for each reading specified in the number
parameter. Large numbers of readings may cause errors due to not enough memory.

2-2

CONFIG_ O
Contig__0 sets up an HP 98640A ADC card for access by the Measurement Library subroutines.

Syntax

BASIC: Config O(name,model[,select code[,gain[,
pace[,report_prrorT,units[.
multiplier[,offset]]]]1]]])

Pascal: PROCEDURE config_O(name: str255;
model: str25s;
select_code: shortint;
gain: shortint;
pace: real;
report_error: str255;
units: str255s;
multiplier: real;
offset: real); -

Parameters

name: a string or string literal specifying the name used by the
Measurement Library software to refer to a particular ADC
configuration.

model: a string or string literal identifying the ADC card model
number ("98640A").

select_code: an INTEGER giving the physical select code (address) of the
ADC card. This number is between 8 and 31, and is set by
hardware switches on the card (SW1, switches 1 through 5).

gain: an INTEGER specif&ing the default ADC hardware gain. - The
value must be 1, 8, 64, or 512.

pace: a REAL number defining the default pace time loaded into the
pace counter. This value can be from 0.000018 to 0.0393336
seconds, with a resolution of 600 nanoseconds.

report_error: a string or string literal enabling an error condition on
normal mode overrange readings. The value can be either yes

or no. (Only the first character is significant; only "y
and "Y" are taken as yes, all others indicate no.)

units: a string or string literal specifying the units to used to
return ADC data. The units can be base, standard, or user.
(Only the first character is significant.)
base = binary data read directly from the ADC
standard = (base # ADClsb - calibrate) / gain
user = standard # multiplier + offset

multiplier: a REAL number specifying the multiplier used with user units.

2-3

CONFIG__ 0

offset: a REAL number specifying the offset used with user units.

Default values:

select_code 18

gain 1

pace .001 second

report_error no

units standard

multiplier 1.0

offset 0.0
Discussion

Config__ 0 establishes a link between a name (which you supply) and an ADC card, and specifies operating
parameters for that name and card. Each ADC card used must be configured with a unique name. You
can configure the same card with several different names and parameter sets, and everything will work
except interrupt mode data transfers. DO NOT ATTEMPT TO ACCESS AN ADC BY ANOTHER NAME

DURING INTERRUPT MODE DATA TRANSFERS.

A maximum of 16 names may be configured into the Measurement Library software. If you need more
configurations, names may be re-used. If a name is identical to an already used name, all configuration
parameters for the old name will be erased and the new configuration parameters or defaults will be used.
The name will then have to be reinitialized with Init before it is accessed.

All readings taken by the ADC are reported in one of three reporting units: base, standard, or user. Base
units are in the form of a 16-bit binary integer, with the following format:

1 t4 13 12 11 10 9 8 7 6 S5 4 3 2 {1 o
ks Dbt Tt bt ST TR PR P

IBlwlofs|plp|lOo|D|DID|DID|DID|D]|D]
R B el i bt St et R R it Dbt ¥

mMse LSB

where:

B = BUSY. If bit 15 = 1, the ADC is busy. The reading is not taken and all other bits are invalid. If bit
15 = 0, a valid reading is returned.

W = WAIT. If bit 14 = 1, the ADC card was in the wait state at the time of the reading. This means
that the card was not read within the interval specified in the pacing timer -- that is, a paced read
was not made at the correct time. (You should never see this bit set, since the ADC Library software
reports an incorrectly paced read as an error and will not return a value for the reading.)

O = OVERRANGE. If bit 13 = 0, a common mode overrange condition occurred during this reading,
and the reading is invalid. If bit 13 = |, no common mode overrange condition occurred during this
reading. Note that the sense of this bit is negative true.

S =SIGN. If bit 12 = O, the value returned for the reading is positive. If bit 12 = 1, the value returned
for the reading is negative.

2-4

CONFIG_ 0
D = DATA. The data bits give the 12-bit binary magnitude of the voltage read from the ADC. (The
sign of the voltage is given by the S bit, bit 12.)
MSB = most significant bit.
LSB = least significant bit.
Base unit readings are raw readings; no gain factors or calibration corrections are applied.

The value used by the Measurement Library for the ADC card least significant bit (ADClsb) is the 64-bit
floating point value of

10 volts / 4095 bits

or
2.442002442002442 millivolts per bit

The least significant bit (LSB) values used in each gain range are:
LSB = ADClsb / gain

Thus, the approximate LSB values in each gain range are:

Gain LSB
1 2.4420 millivolts
8 305.25 microvolts
64 38.156 microvolts
512 4.7695 microvolts

Standard units are real numbers representing true volts. They are equivalent to base unit values corrected
for gain and calibration (if any). User units are real numbers equivalent to standard units times a
multiplier plus an offset.

ADC readings are always returned from the Measurement Library calls as real numbers or real array
elements (IEEE 64 bit floating point binary representation in both BASIC and Pascal). Readings in
standard or user units should be stored and manipulated as real numbers. Readings in base units must be
converted into integer format by the user program prior to any manipulation of the data. Assignment to
an integer variable in BASIC, or using the trunc or round function in Pascal, will suffice.

Refer to "Setting Up" in Section 1 of this manual for a full discussion of ADC card configuration.

2-5

DISABLE__INTR

Disable__intr configures the ADC card for normal, non-interrupt mode operation.

Syntax
BASIC: Disable_intr(name)

Pascal: PROCEDURE disable_intr(name: stra255);

Parameter

name: a string or string literal specifying the ADC name assigned
by the Config O call.

Discussion

Interrupt mode operation is supported only for BASIC environments. Use of interrupt mode in Pascal is
not supported. Please refer to the discussion of the Enable__intr subroutine (next page) for further
information.

ENABLE_INTR

Enable__intr configures an ADC card for interrupt mode operation.
Syntax
BASIC: Enable_intr(name)

Pascal: PROCEDURE enable_intr(name: str255);

Parameter

name: a string or string literal specifying the ADC name assigned
by the Config 0 call.

Discussion

Interrupt mode operation is not supported in the Pascal environment. (That means you’re on your own if
you use it. If you have trouble making it work, you can purchase HP consulting, on a time and materials
basis, from your local HP sales and service office. HP sales and service offices are listed in the back of this
manual.) For interrupt mode to work in Pascal, you need to have an appropriate interrupt service routine
(ISR). If you use interrupt mode without one, you will probably crash your system. We don’t provide an
ISR as part of the Measurement Library, but if you’re a skilled Pascal programmer you may be able to
write one of your own. Refer to the Pascal 2. 0 System Designer’s Guide, part number 09826-90074, for
more information on ISRs.

Interrupt mode does work in BASIC. There are a few things you should be aware of:
1) The only Measurement Library calls allowed after an Enable__interrupt call are:

Input

Config_ 0

Init

System__init
Disable__interrupt

2) The Input subroutine functions differently in interrupt mode. Refer to the description of that
subroutine later in this section for more information.

3) Interrupt mode does not handle multiple configurations of the same ADC card well. To prevent
erroneous readings, do not try to take readings from different configurations (names) of the same
ADC card while in interrupt mode.

For a more complete explanation of interrupt mode programming, refer to Section 1 of this manual.

2-7

INIT

Init resets and disables interrupt mode on an ADC card, and sets the calibration array to its default
values,
Syntax
BASIC: Init(name)
Pascal: PROCEDURE init(name: str255);

Parameter

name: a string or string literal specifying an ADC name assigned by
the Config 0 call.

Discussion

The Init (initialize) call must be used prior to any other calls except Config__0 and System__init. A single
call to System__init may be substituted for individual Init calls for all currently configured cards.

INPUT

The Input or Read__channel subroutine takes one reading from a specified channel on an ADC card. .
Input is used in BASIC programs; Read__channel is used in Pascal programs.

Syntax
BASIC: Input(name,channel,datum[,gain[,pacel])

Pascal: PROCEDURE read_channel(name: str255;
channel: shortint;
VAR datum: real;
gain: shortint;
pace: real):

Parameters

name: a string or string literal specifying an ADC name assigned by
the Config 0 call.

channel: an INTEGER specifying the channel number (from 0 to 7) to be
read. ’

datum: a REAL variable to hold the value of a reading.

gain: an INTEGER spécifying the hardware gain. The value must be
1, 8, 64, or 512. 1If a value is not given for the gain, the
value specified in a Config O or Set_gain call is used.

pace: a REAL variable specifying the pace interval that elapses
before the reading. This value must be from 0.000018 to
0.0393336 seconds, with a resolution of 600 nanoseconds.

Discussion

The reading returned by a call to Input or Read__channel will be formatted according to the units
specified in a previous call to Config__ O or Set__units. If you specify values for gain or pace, those values .
will be used only for the duration of this Input (Read__channel) call.

The Input subroutine operates differently in interrupt mode. This involves the analog input pipeline.
(Section 1 of this manual has more information on the pipeline.) For any reading, it takes 3 read
operations to get that reading all the way through the pipeline. In normal mode, the Input subroutine
performs all 3 of these readings and returns the 1 valid reading. In interrupt mode, Input performs only 1
read operation and returns the value that was requested two operations before; it is up to your program to
keep track of the progress of your readings through the pipeline. (For more information on interrupt
mode programming, refer to Section 1 of this manual.)

Be careful of how you call the Input subroutine from BASIC: use "Input” (not "INPUT" or “input") to avoid
conflict with the BASIC keyword "INPUT". In Pascal, use "Read__channel".

The pace interval comprises the sample time and the analog—tb-digital conversion time for the reading.
Conversion takes 9 microseconds; thus, the sample time is the pace time minus 9 microseconds.

2-9

MEAS__LIB__INIT

Meas__lib__init initializes the global variables in the Measurement Library. In a BASIC environment, it
also initializes the heap area.
Syntax

BASIC: Meas_lib_init

Pascal: PROCEDURE meas lib_init;

Discussion

Your application program must call Meas_ lib__init before it calls any other Measurement Library
subroutines.

RANDOM__SCAN

Random__scan takes readings from channels in any order that you specify, with whatever pace and gain
value that you specify for each individual reading. '

Syntax

BASIC: Random_scan(name,chan_array(#),data_array(#)[,rept][,
pace_array(*)[,gain_array(#)]]])

Pascal: PROCEDURE random_scan(name: str255;
chan_size: integer;
chan_array: anyptr;
data_size: integer;
data_array: anyptr;
rept: shortint;
pace_size: integer;
pace_array: anyptr;
gain_size: integer;
gain_array: anyptr);

Parameters

name: a string or string literal specifying the ADC name assigned
by the Config O call.

chan_size: (Pascal only) an integer giving the size of the array of
channel numbers

chan_array: in BASIC, the name of an INTEGER array of channel numbers.
In Pascal, this is a pointer to the shortint array of channel
numbers. The channel numbers can range from 0 to 7.

data_size: (Pascal only) an integer giving the size of the array of
readings.

data_array: in BASIC, the name of a REAL array to hold readings from the
ADC card. In Pascal, this is a pointer to the real array of
readings.

rept: an INTEGER number of times to scan the channel array. This
number can be from 1 to 32767; the default value is 1.

pace size: (Pascal only) an integer giving the size of the array of pace
interval values. Specify 0 if you want to use the default
pace value.

pace_array: in BASIC, the name of a REAL array of pace interval values.
In Pascal, this is a pointer to the real array of pace
interval values. The values in the array must be from
0.000018 to 0.0393336 seconds, with a resolution of 600
nanoseconds. The default pace value is the value specified -
in the Config 0 call. In Pascal, you must specify NIL if you -
want to use the default value.

2-11

RANDOM__SCAN

gain_size: (Pascal only) an integer giving the size of the array of gain
" values. Specify 0 if you want to use the default gain value.

gain_array: in BASIC, the name of an INTEGER array of gain values. 1In
Pascal, a pointer to the shortint array of gain values. The
gain values in the array must be {, 8, 64, or 512. The
default gain value is the value specified in the Config 0 or
Set_gain call. In Pascal, specify NIL if you want to use the
default value.

Discussion

The sizes of the channel, pace, and gain arrays need not be the same. The Random__scan subroutine
simply starts at the beginning of each array and uses the values in sequence. After Random__scan uses
the last value in an array, it goes back to the beginning of the array for the next value. (Gain and pace
values do not start over just because the channel array repeats.) In the general case, the ith reading is
taken using the following array elements:

Channel: chan_array(i mod size_of(chan_array))
Pace: pace array(i mod size of‘(pace array))
Gain: gain_array(i mod size_of(gain_array))
Data: data(i)

Note that the data array must be large enough to hold all of the readings that will be generated by the
Random__scan call (including repeats).

Gain and pace values specified for a Random__scan call are valid only for the duration of that call
After the call has completed, the gain and pace values revert to their default values.

If you are programming in Pascal and you want to use the default pace interval value (the value that was
specified in the Config_ 0 call for the card), you must specify a value of O for the pace__size parameter
and a value of NIL for the pace__array parameter. Similarly, if you want to use the default gain value,
specify a value of O for the gain_ size parameter and a value of NIL for the gain__array parameter.

The channel, pace, and gain arrays must be dimensioned as arrays, even if they are only single-valued.
Scalar variables can not be used.

2-12

READ__CHANNEL

Read__channel is the Pascal equivalent of the Input subroutine. Refer to the discussion of Input earlier
in this section for information on Read__channel

2-13

SEQUENTIAL _SCAN

Sequential__scan takes readings from sequential channels on an ADC card.

Syntax

BASIC: Sequential scan(name,start,stop,pace,data_array(#)[,rept])

Pascal: PROCEDURE sequential_scan(name: str255;

Parameters

name:

start:

stop:

pace:

data_size:

data_array:

rept:

Discussion

Sequential__scan scans (reads) the channels on the ADC card sequentially, from the start channel to the
stop channel. You can repeat the scans as many times as you want (up to 32767 total scans). The data

start: shortint;
stop: shortint;
pace: real;
data_size: integer;
data_array: anyptr;
rept: shortint);

a string or string literal specifying the ADC name assigned
by the Config 0 call.

an INTEGER specifying the number of the first channel to be
read. This number must be from 0 to 7.

an INTEGER specifying the number of the last channel to be
read. This number must be from 0 to 7 and must not be less
than start.

a REAL number specifying the pace interval. This interval
must be from 0.000018 to 0.0393336 seconds, with a resolution
of 600 nanoseconds.

(Pascal only) an integer giving the size of the data array.

in BASIC, the name of a REAL array to hold the readings taken
from the ADC card. 1In Pascal, this is a pointer to the real
array that holds the readings.

an INTEGER giving the number of scans. This number must be
from 1 to 32767; the default value is 1.

array must be large enough to hold the total number of readings (including repeats) that you request.

One pace interval is used for all readings taken with the Sequential__scan routine. This pace interval is
valid only for the duration of the Sequential _scan call; after this call has completed, the pace interval

value reverts to the default value established with the Config__0 call

The gain value used by Sequential__scan is the default gain value set by the Config__0 or Set__gain call.

2-14

SET__GAIN

Set__gain sets the hardware gain used in taking readings from the ADC card.

Syntax
BASIC: Set_gain(name,gain)

Pascal: PROCEDURE set_gain(name: str255;
: gain: shortint);

Parameters

name: a string or string literal specifying the ADC name assigned
by the Config O call.

gain: an INTEGER specifying the gain to be used in making readings.
The gain must have a value of 1, 8, 64, or 512.

Discussion

The gain set by the Set__gain subroutine permanently overrides the gain set by a previous call to
Config__O or Set__ gain.

The description of the Config__0 subroutine in this section discusses the Isb values for each gain setting.

2-15

SET__UNITS

Set__units sets the reporting units for readings taken by the Measurement Library subroutines. These
units are base, standard, or user units.

Syntax
BASIC: set_units(name,units[,multiplier[,offset]]
Pascal: PROCEDURE set_units(name: stress;
units: str2ss;
multiplier: real;
offset: real);

Parameters

name: a string or string literal specifying the ADC name assigned
by the Config O call.

units: a string or string literal specifying the units to be used to
return ADC data. The units must be base, standard, or user.
(Only the first character is significant.)

multiplier: (user units only) a REAL number specifying the multiplier to
be used. (See the discussion, below.) This parameter is not

used with base or standard units.
offset: (user units only) a REAL number specifying the offset to be

used. (See the discussion, below.) This parameter is not
used with base or standard units.

Discussion

The three types of units are defined as:

base = raw ADC reading returned as a binary integer
standard = base unit reading adjusted for gain and calibration,
expressed as a real number
standard # multiplier + offset

user
Set__units permanently overrides any previous units specification made by a Config__ 0 or Set__units call.

For more information on reporting units, see the description of the Config__ 0 call in this section and the
discussion of reporting units in Section 1 of this manual

2-16

System__init initializes all configured cards.

subroutine.

Syntax
BASIC: System_init

Pascal: PROCEDURE system_init;

SYSTEM_INIT

For each card, it performs the same functions as the Init

2-17

APPENDIX

| e
MESSAGES | |—1__|

The Measurement Library reports errors with the messages listed on the next page. The list gives the
message number used, the meaning of the message, and the calls which can return the message.

On the page after that are listed the Pascal-related error messages that may be returned to your BASIC
program as a result of a Measurement Library subroutine call. .

Messages

Message
Number

801
804
812

815

835

837

838

850
851
8s2
853
854
855
856
857
858

859

860

Measurement Library Messages

Meaning
Unsupported Model
Array Too Small
Name Not Configured

Use of uninitialized name

Illegal select code

Specified card not at select
code

Illegal name

Unsupported Gain

Pace out of Range

Repeat Specification Error
Illegal Channel Number

Not allowed in Interrupt Mode
Common mode overrange

Normal ADC overrange (must be

enabled by Config_0)

Pace timing error

Unsupported units
Max number of names exceeded
Offsets out of range (card

defective or calibration
channel not shorted)

Reporting
Calls

Config O
Sequential_scan, Random_scan
All except System_init and Config 0O

All except Init, System_init, and
Config O

Config O

Init

Config_ O

Input, Random_scan, Set gain,
and Config 0

Input, Sequential_scan, Random_scan,
Calibrate, and Config 0

Sequential_scan, Random_scan, and
Calibrate

Input, Random_scan, Sequential_scan,
and Calibrate

Random_scan, Sequential_scan,
Set_gain, Set_units, and Calibrate

Input, Sequential scan, Random_scan,
and Calibrate

Input, Sequential_scan, Random_scan,
and Calibrate

Input (interrupt mode only),
Sequential_scan, Random_scan, and
Calibrate

Set_units, Config O

Config O

Calibrate

BASIC
Message
Number

400
399
398
397
396
395
394
393
392
391
390
389
388+
387
386
385
384
383
- 382
381
380
379
3718
3
3716
3718
374
an

Pascal
Message
Number

Messages

Pascal-related Messages

Meaning

Normal termination

Abnormal termination

Not enough memory

Reference to NIL pointer

Integer overflow

Divide by zero

Real math overflow; number too large
Real math underflow; number too small
Value range error

Case value range error

Non-zero 1/0 result

CPU word access to odd address

CPU bus error

Illegal CPU instruction

CPU privilege violation

Bad argument - SIN/COS

Bad argument - Natural Log

Bad argument - SQRT (square root)
Bad argument - real/BCD conversion
Bad argument - BCD/real conversion
Stopped by user

Unassigned CPU trap

Reserved

Reserved

Macro parameter not 0..8 or a..z2
Undefined macro parameter

Error in I/0 subsystem

Graphics error

* In a BASIC 2.0 system you may get this error if you try to initialize an ADC card for a select code that
contains no card.

APPENDIX

UICK REFERENC e
Q EFERENCE B

This appendix is a quick reference guide to the Measurement Library subroutine calls. We’ve squeezed
the call summaries into small type so that they fit onto the next page; you can take that page out of this
manual and hang it on your wall for quick reference. .

BASIC programmers please note that the parameters that you pass to the Measurement Library

subroutines must be properly typed (integer, real, or string). If you don’t know the type of a parameter,
you can look it up in Section 2 of this manual.

B-1

CALIBRATE
BRASIC: Calibrate(name,channel,pace,number)

Pascal: PROCEDURE calibrate(name: str2SS;
chan: shortint;
pace: real;
number: shortint);

CONFIG__0
BRSIC: Config_0(name,model[,select_code[,gain(,
pace[,report_error[,units(,
multiplier[,0ffset}]1])111)
Pascal: PROCEDURE config_O(name: str2SS;
model: str2SS;
select_code: shortint;
gain: shortint;
pace: real;
report_error: str2ss;
units: ster2855;

multiplier: real;
offset: real);

DISABLE__INTR
BRSIC: Disable_intr(name)

Pascal: PROCEDURE disable_intr(name: str25%);

ENABLE__INTR
BRSIC: Enable_intr(name)

Pascal: PROCEDURE enable_intr(name: str25S);

INIT
BASIC: Init(name)

Pascal: PROCEDURE init(name: str255);

INPUT / READ__CHANNEL
BASIC: Input(name,channel,datum[,gain[,pace}))

Pascal: PROCEDURE read_channel(name: str2S5;
channel: shortint;
VAR datum: real;
gain: shortint;
pace: real);

MEAS__ LIB__INIT
BRSIC: Meas_lib_init

Pascal: PROCEDURE meas_lib_init;

RANDOM__SCAN

BASIC: Random_scan(name,chan_array(*),data_array(*)[,
rept[,pace_arcay(*)[,
gain_array(*)]}])

Pascal: PROCEDURE random_scan{name: str255;
chan_size: integer;
chan_array: anyptr;
data_size: integer;
data_array: anyptr;
rept: shortint;
pace_size: integer;
pace_array: anyptr;
gain_size: integer;

gain_array: anyptr);
SEQUENTIAL__SCAN

BASIC: Sequential_scan(name,start,stop,pace,
data_array(x)[,rept])

Pascal: PROCEDURE sequential_scan(name: str25S;
start: shortint;
stop: shortint;
pace: real;
data_size: integer;
data_array: anyptr;
rept: shortint);

SET__GAIN
BASIC: Set_gain(name,gain)

Pascal: PROCEDURE set_gain{name: 3tr28$5;
gain: shortint);

SET__UNITS
BASIC: Set_units(name,units[,multiplier[,offset]}]))
Pascal: PROCEDURE set_units(name: str2S$;
units: str28S;
multiplier: real;
offset: real);
SYSTEM__INIT

BRSIC: System_init

Pascal. PROCEDURE system_init;

INDEX

A

ADC card
calibration, 1-7
configuration, 1-§, 1-8, 2-3
configurations, multiple, 1-8, 1-20, 2-4, 2-7
initialization, 1-§5, 2-8, 2-17
input pipeline, 1-14
readings, 1-9
sampling speed, 1-1, 1-19
Analog input pipeline, 1-14, 1-20

Base units, 1-1, 1-7, 1-18, 2-4, 2-16
BASIC
common area, 1-$
error handling, 1-8
extensions, 1-2
heap area, 1-§
interrupt mode, 1~-19
loading the Measurement Library subroutines, 1-2, 1-3
Measurement Library subroutine size, 1-3
parameter typing, 1-3,1-7, 2-5
programming, 1-2, 1-3, 1-4

C

Calibrate subroutine, 1-7, 2-2

Calibration, 1-1,1-§, 1-7, 2-2

Common area, 1-§

Common mode overrange condition, 1-7, 1-8, 1-1§, 1-16,1-17, 1-18, 2-4
Configuration of ADC cards, 1-§, 1-8, 2-3

Config__0 subroutine, 1-§, 1-7, 1-8,1-9, 1-10, 1-18, 1-20, 2-3

Control lines, IPACDA and EPCON, 1-21

CSUB package, 1-1

Disable__intr subroutine, 1-19, 2-6

E

Enaﬁlc_imr subroutine, 1-19, 2-7
EPCON control line, 1-21
Error handling, 1-8

INDEX-1

Index

Error messages, A—-1

Error reporting, 1-8

ERRN function, 1-8
ESCAPECODE function, 1-8
External pacing, 1-21

G

Gain, 1-5, 1-6,2-15

H

Heap area, 1-5
HP 14751A package, 1-1, 1-9, 2-1

Init subroutine, 1-5, 1-20, 2~-8, 2-17
Initializing
ADC card, 1-§5, 2-8, 2-17
Measurement Library, 1-§5, 2-10
Input pipeline, 1-14, 1-20
Input subroutine, 1-6, 1-9, 1-20, 2-7, 2-9
Interrupt mode, 1-1, 1-2, 1-3, 1-4, 1-10, 1-15, 1-19, 2-4, 2-6, 2-7, 2-9
IPACDA control line, 1-21

L

Least significan bit (LSB) values, 2-5
Loading the Measurement Library subroutines, 1-2, 1-3
LSB values, 2-5

Measurement Library
features, 1-1
general information, 1-1
initialization, 1-5, 2-10
programming, 1-2
quick reference, B-1
size, 1-3, 1-4
software provided, 1-2
subroutines, 1-2, 1-3
Meas__lib__init subroutine, 1-§, 2-10
Messages, A-1 ,
Multiple configuration of an ADC card, 1-8, 1-20
Multiple configurations of an ADC card, 2-4, 2-7

INDEX-2

Normal mode overrange condition, 1-5, 1-8 1-15,1-16, 1-17, 1-18

o

ON ERROR mechanism, 1-8

Overrange condition
common mode, 1-7, 1-8, 1-15,1-16, 1-17, 1-18, 2-4
normal mode, 1-5, 1-8, 115, 1-16,1-17,1-18

P

Pace interval, 1-§, 1-6, 1-19

Pacing errors, 1-19

Pacing, external, 1-21

Pascal
common area, 1-5
error handling, 1-8
heap area, 1-§
importing the Measurement Library, 1-3
interrupt mode, 1-4, 1-19, 2-7
Measurement Library size, 1-4
parameter passing, 1-4
parameter typing, 1-4, 1-7, 2-1, 2-§
programming, 1-3, 1-4

Pipeline, 1-14, 1-20

Programming
general, 1-2, 1-4
in BASIC, 1-2, 1-3, 1-4
in Pascal, 1-3, 1-4

Q

Quick reference guide, B-1

R
Random__scan subroutine, 1-6, 1-9, 1-11, 2-11
Read__channel subroutine, 1-6, { -9, 2-9, 2-13
Reporting units, 1-1, 1-§, 1-6, 1-7, 2-4, 2-16

S

Sampling speed, 1-1, 1-19
Sequential__scan subroutine, 1-6, 1-9, 1-10, 2-14
Setting

error reporting parameter, 1-5

gain, 1-§, 1-6

Index

INDEX-3

Index

pace interval, 1-5, 1-6
reporting units, 1-5, 1-6
Set__gain subroutine, 1-6, 1-10, 2-15
Set__units subroutine, 1-6, 1-7, 1-8, 2-16
Standard units, 1-1, 1-7, 1-8,1-18, 2-§, 2-16
Subroutine calls
Calibrate, 1-7, 2-2
Config_ 0, 1-5,1-7,1-8,1-9,1-10, 1-18, 1-20, 2-3
Disable__intr, 1-19, 2-6
Enable__intr, 1-19, 2-7
Init, 1-5, 1-20, 2-8, 2-17
Input, 1-6, 1-9, 1-20, 2-7, 2-9
Meas__lib__init, 1-§, 2-10
Random__scan, 1-6, 1-9, 1-11, 2-11
Read__channel, 1-6, 1-9, 2-9, 2-13
Sequential__scan, 1-6, 1-9, 1-10, 2-14
Set__gain, 1-6, 1-10, 2-15
Set__units, 1-6, 1-7, 1-8,2-16
System__init, 1-§, 1-20, 2-17
System__init subroutine, 1-5, 1-20, 2-17

T

Try-Recover mechanism, 1-8

U
Units, 1-1, 1-5, 1-6, 1-7, 2-4, 2-16
User units, 1-1,1-7, 1-8, 1-18, 2-5, 2-16

INDEX -4

HEWLETT
| PACKARD

Reosder No. or
Manual Part No.

98645-90001-E0684-U0788

