
HP 9000 Computers

HP Windows/9000
User's Manual

Welcome to ...

HP Windows/90oo

Flin- HEWLETT
~I!.II PACKARD

wmTI~[Q)(Q)
lM1~ WNlTIlN1[Q)@

§®©©©

HP Windows/9000
User's Manual

for HP 9000 Computers

Manual Reorder No. 97069-90000

@ Copyright 1985 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of HewIett­
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (bX3XB) of the Rights
in Technical Data and Software clause in DAR 7-104.9(8).

1IewIetI-PIIck eomp.n,
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

December 1985 ... First Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT UMITED TO,

THE IMPUED WARRANTIES OF MERCHANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shaI not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Ii

Table of Contents
Chapter 1: Getting Started

Other Windows Documentation .. 2
Conventions ... 2
User's Manual Contents ... " 3

Chapter 2: Concepts
The Desk Top Analogy .. 6
Why Use Windows? ... 8
Window Types ... 9

The Terminal Window Type. .. 9
The Graphics Window Type 9

Window Structure .. 10
The User Area .. 11
The Border .. 11

Selected Window. " 12
The Pointer (Echo). .. 13
Display Screen Coordinates .. 14

The Origin ... 14
Maximum Screen Coordinates .. 15

Cursor ... " 17
Moving the Pointer ... 18

The Mouse .. 18
Graphics Tablet .. 19
Keyboard .. 20

Pop-Up Menus .. 22
Activating a Pop-Up Menu .. 22
Pop-Up Menu Format ... 22
Using the Pop-Up Menu .. 24
Exiting a Pop-Up Menu .. 25

Icons .. 26
Why Use Icons? ... 26
Icon Format .. 26
Icon Types ... 27

iii

Chapter 3: Interactive Use
Starting HP Windows/9000. .. 30

The wconsole Window. .. 30
Automatic Startup .. 31
Executing the wmstart Command , 31

Leaving HP Windows/9000 .. 32
Creating a Terminal Window .. 35
Destroying a Window or Icon. .. 38
Moving a Window ... , 40
Changing a Window's Size. .. 42
Selecting Windows. .. 44
Bringing a Window to the Top of the Stack , 46
Putting a Window on the Bottom of the Stack , 47
Changing a Window to an Icon .. 48
Moving an Icon .. 49
Changing an Icon to a Window .. 50
Pausing Terminal Window Output 52
Scrolling Information in a Window .. 53
The Save Option .. 54
Repainting the Screen .. 55

Chapter 4: Using Commands

iv

Starting the Window System .. 58
Concepts. .. 58
Executing wmstart(1) .. 60
The wmready(1) Command 62
Automatically Starting Windows/9000 from Login 65

Stopping the Window System ... 67
Executing wmstop(1) ... , 67
Precautions .. 67

Creating a Window .. , 68
Concepts. , 68
Executing wcreate(1) .. 73

Creating a Window with a Shell. .. 77
Concepts. .. 77
Executing wsh(1) to Create a Window 79
Executing wsh(1) to Start a Shell. .. 82

Destroying a Window. .. 83
Executing wdestroy(1) .. 83
Examples .. 83
Precautions .. 83

Setting a Window's Autodestroy Attributes 84
Concepts .. , 84
Executing wdestroy(l) .. 84

Selecting a Window. .. 86
Concepts .. 86
Executing wselect(1) .. 86
Example " , 86
Precautions , 86

Moving a Window or Icon .. 87
Concepts. .. 87
Executing wmove(l) ... 87
Precautions .. 88

Changing a Window's Size ... , 89
Executing wsize(l) ... , 89

Shuffling Windows .. 91
Shuffling the Top Window Down (-d) 91
Shuffling the Bottom Window Up (-u) , 91

Changing a Window's Representation. .. 92
Concepts. .. 92
Executing wdisp(l) .. 93

Controlling a Window's Border .. 96
Concepts .. , 96
Executing wborder(l) ... , 98

Managing Terminal Window Fonts. .. 101
Concepts .. " 101
Executing wfont(l) .. 105

Listing Window Status .. " 109
Executing wlist(l) ... 109

Chapter 5: Customizing Your System (Environment Variables)
Concepts. .. 114

What Are Window System Environment Variables? 114
Why Set Environment Variables? .. 114
A Summary of Environment Variables 115

Setting Environment Variables " 119
Setting Variables on the Command Line. .. 119
Setting from System-Wide Initialization Scripts. .. 120
Setting from Your Login Shell Script. .. 121
Changing Your Copy of wmstart(l) 122

v

vi

Special Files 123
Pseudo-tty (pty) Special Files. .. 124
The $ WMDIR Directory .. 124
Master and Slave ptys - WMPTYMDIR and WMPTYSDIR 125
Defining the Starting Name for ptys - WMPTYNAME 125
Defining the Size of the pty Set - WMPTYCNT .. 125
Example .. 126
The Display Screen Device - WMSCRN. .. 126
Keyboard Input - WMKBD 127
The Locator Device - WMLOCATOR , 128
The HP-HIL Input Controller - WMINPUTCTLR .. 128

The Bit-Mapped Display Driver - WMDRIVER .. 129
The WMDRIVER Variable .. 129
Setting WMDRIVER ... 129

Graphics Tablet Scaling - WMLOCSCALE 130
Why Use Graphics Tablet Scaling? .. 130
Default Value. .. 130
Setting WMLOCSCALE. .. 131
Examples ... 133
Precautions. .. 135

Configuring the Interactive User Interface - WMIUICONFIG , 136
The WMIUICONFIG Variable 136
Setting WMIUICONFIG .. 136
The Default Value. .. 139
Examples ... 139

Default Fonts .. , 140
The Font Directory - WMFONTDIR 140
Base and Alternate Fonts - WMBASEFONT and WMALTFONT 141
Pop-Up Menu Font - WMMENUFONT .. 141
The Window Border Font - BANNERFONT 142
The Icon Label Font - ICONFONT 142
The Softkey Label Font - WMSFKFONT 143
Examples ... 143

Changing the Desk Top Dither Pattern - WMDESKPTRN 144
What Is a Dither Pattern? 144
The WMDESKPTRN Variable 144
Setting WMDESKPTRN .. 145

Default Colors .. 146
Changing Desk Top Colors - WMDESKFGCLR and WMDESKBGCLR 146
Default Window Border Colors - WMBDRFGCLR and WMBDRBGCLR 147

Interactive Timeout and Tracking - WMIATIMEOUT " 148
Specifying Timeout .. 148
Tracking. .. 149
Examples ... 151

Changing Window Server Priority - WMRTPRIORITY .. 152
Setting WMRTPRIORITY .. 152
Default Value. .. 152

Windows/9000 Shared Memory 153
Controlling Shared Memory Location - S8_DISPLAY _ADDR " 153
Setting the Size of Shared Memory - WMSHMSPC 153

Appendix A: Resource Usage Considerations
Process Limits .. 156
Pseudo-Tty (pty) Limitations ... 157
Maximum Number of Open Files. .. 158
Shared Memory Usage. .. 159

Window Processes .. 160
How Do Window Processes Use Shared Memory? " 160
Shared Memory Problems .. 161
A Close-Up of Shared Memory 162
Shared Memory Environment Variables 163
Changing Shared Memory .. 165
Side Effects from Changing Variables .. 165
Kernel Configuration Limitations 167
Example .. 169
Increasing Performance by Decreasing Memory. .. 171

Configuring Swap Space .. 173
Window System Swap Space Requirements .. 173
Computing Window System Swap Space Requirements 174
Example " 175

Good-Citizen Processes .. 176

Appendix B: Glossary.. 177

Appendix C: Series 500-Specific Information
Installing HP Windows/9000 .. 187
Multiple-Seat Systems .. 188

The Display Station. .. 188
Multiple-Seat Special Files .. 190
Window System Environment Variables 194
Examples ... 196

vii

viii

Getting Started 1

Welcome to the HP Windows/9000 User's Manual. This manual is intended for any new user
of the window system, but can also be used as a reference by experienced users. This manual:

• explains rudimentary window system concepts, so you'll better understand how the system
works and how to use it

• shows how to use the system interactively via the keyboard, mouse, and graphics tablet

• illustrates the use of window system commands

• describes different methods for starting the window system

• shows how to customize HP Windows/9000 via window system environment variables

• defines window system terminology

• describes information specific to the Series 500 Windows/9000 system.

Getting Started 1

Other Windows Documentation
In addition to this manual, other HP Windows/9000 documentation exists:

• HP Windows/9000 Programmer's Manual-describes how to use window system library
routines from your C programs. If you are developing applications that make use of
windows, you should use this manual.

• HP Windows /9000 Reference-contains HP-UX reference pages for window system com­
mands (section 1) and library routines (section 3W).

• TermO Reference Manual-describes various escape sequences that can be used with
termO windows (Le., textual windows, described in more detail later). You would use this
manual mainly if you are developing applications that run in termO windows.

Conventions
The following conventions are used throughout this manual:

• Italics indicate the names of files and HP-UX commands, system calls, subroutines, etc.
found in the HP-UX Reference (e.g., wsh(l)).

• Boldface is used when a word is first defined (as termO) and for general emphasis (never
do this).

• Computer font indicates a literal, either typed by the user or displayed by the system.
Keys are shown capitalized and enclosed in a rounded envelope. For example:

wmstart I Return I

• Environment variables, such as WMDIR and WMIATIMEOUT, are represented in upper­
case letters.

2 Getting Started

User's Manual Contents
Chapter 1: Getting Started
This chapter describes the scope, goals, conventions, organization, and content of the User's
Manual. Other HP Windows/9000 manuals are described also.

Chapter 2: Concepts
This chapter explains window system concepts used throughout this manual. You should be
sure to read this chapter before using the system.

Chapter 3: Interactive Use
This chapter shows how to start and stop the window system. However, the main purpose of
this chapter is to show you how to interactively use the window system-i.e., how to use the
keyboard, mouse, and/or graphics tablet to manipulate windows.

Chapter 4: USing Commands
This task-oriented chapter illustrates the use of window system commands. You can· use com­
mands to start and stop the system, and you can use commands to manipulate windows or
display information about windows.

Chapter 5: Customizing Your System (Environment Variables)
The window system has a number of environment variables that control the way the system
performs. These variables are set to default values-values most users should find sufficient.
However, some users may wish to alter system characteristics. This chapter describes how to
customize your system by altering the value of window system environment variables.

Appendix A: Resource Usage Considerations
This appendix describes resrouce usage limitations inherent with windows, and discusses how
to get around these obstacles where possible.

Appendix B: Glossary
Terms found throughout HP Windows/9000 documentation are defined in this glossary.

Appendix C: Series SOO-Specific Information
HP Windows/9000 is an optional product on Series 500 HP-UX. In addition, Windows/9000
can run on more than one (up to three) bit-mapped displays at once, known as multiple-seat
usage. This appendix describes Windows/9000 installation and multiple-seat usage.

Getting Started 3

Notes

4 Getting Started

Concepts 2
This chapter discusses concepts essential to understanding the window system and how to use
it. Specifically the following topics are presented:

• the desk top analogy

• rationale for using windows

• window types

• window format

• selected window

• the pointer (echo)

• the keyboard, mouse, and graphics tablet

• pop-up menus

• icons

HP Windows/9000 architecture and data flow is not covered in great detail in this chapter.
If you require more detail than is presented here, read the "Concepts" chapter of the HP
Windows/9000 Programmer's Manual, which contains much more detailed information on the
intrinsic structure of the window system.

Concepts 5

The Desk Top Analogy
Most of us are familiar with the picture of a desk scattered with papers. Some papers may be
memos, others reference materials, and others current projects. As you place these papers on
the desk, the most current are placed on top of others. Ouring the course of the work day,
papers are shuffled, bringing some on the bottom of the stack to the top. You may even work
on several papers at the same time, thus performing several tasks simultaneously.

Figure 2-1. A Typical Desk Top

Now lets take this scenario and apply it to computers: In the past, before window systems existed,
you basically performed one task at a time per computer terminal. Performing several tasks at
once-i.e., running several programs at once-at a single terminal was often inconvenient or
infeasible.

With window systems, however, this problem is eliminated. HP Windows/9000 allows you to
have several windows on a single display screen. You can execute a different application in each
window, and all applications can execute simultaneously.

Figure 2-2 shows a typical display screen with windows. Note how windows can be organized
like papers on a desk top. Each window can be thought of as a terminal in which you perform
a task. You can execute commands and run programs in each window, and you interact with
each program within the border of the window. It's like having several terminals on the same
screen.

6 Concepts

••. ",_
Figure 2-2. A Typical Window System Screen

Concepts 7

Why Use Windows?
As mentioned above, Windows/9000 provides a break from the traditional user-computer inter­
face. Traditionally, you would interact with a single terminal, entering commands to perform one
task at a time at that terminal. Using windows, you can visually separate tasks on the display
screen. The confusion of running multiple tasks from one terminal is reduced. In addition, you
can observe the interaction between various programs on the same screen.

Another advantage of Windows is the ability to organize your tasks in the same manner you
have done for years with paper. Like papers on your desk top, windows can be moved and
shuffled. In fact, almost any task that is practicable with papers can also be performed with
windows. For example:

• papers can be moved on the desk top; windows can be moved on the display screen

• you can throwaway a paper; windows can be destroyed

• you can place papers in desk drawers; windows can be concealed

• you can set papers off in a corner until they're needed later; windows can be changed to
icons (small, pictoral representations of windows, discussed later)

• papers can be folded (for example, to make them smaller); a window's size can be changed.

8 Concepts

Window Types
There are basically two types of terminals: graphics displays and non-graphics (text) terminals.
Graphics applications run on graphics displays; applications that do not require graphics run in
text terminals.

Windows/9000 supports two window types: terminal and graphics windows. Graphics appli­
cations run in graphics windows, and non-graphics programs usually run in terminal windows.

The folloWing discussion describes these window types in more detail. If you are satisfied with
the description above, then move on to the next section, "Window Structure"; otherwise you
should read the next two sub-sections.

The Terminal Window Type
The terminal window type (also known as termO, pronounced "term-zero") emulates an HP 2622
terminal without block or format mode. In addition, termO windows support HP 2627 color
escape sequences.

Most non-graphics applications will run in termO windows. For example, all HP-UX commands
can be executed from termO windows. For greater detail on termO windows, see the HP
Windows/9000 Programmer's Manual and the TermO Reference Manual.

The Graphics Window Type
Graphics windows emulate the bit-mapped displays supported by HP Windows/9000. Starbase
Graphics Library routines can be used to perform graphics in graphics windows. Applications
that perform Star base graphics can be run in graphics windows.

For more details on graphics windows, see the HP Windows/9000 Programmer's Manual and
the Starbase Device Drivers Library.

Concepts 9

Window Structure
Although there are two window types, all windows have basically the same structure (format).
Figure 2-3 shows a terminal window. Every window, whether it's a terminal or graphics window,
is comprised of two main parts: the user area and the border.

Move Control Box Icon Control Box

~ Window Label

~

:+ tuconsole

HP-UX Prompt

~ Pointer

,
Cursor

USER AREA

,
1\

Scroll Arrow

V
.C :;v~ I " <z::::::: Sa~1 Arrow \

Pause Control Box Size Control Box

Figure 2-3. Window Structure

10 Concepts

The User Area
Interaction with programs take place through the user area (also known as the contents area).
In other words, when a program executes in a window, you see the program's output through
the user area. The user area is analogous to a terminal screen.

For example, suppose you have a shell running in a window. Any commands you type at the
keyboard will appear in the window's user area; in addition, any output from the commands
goes to the user area also. Its just as if you're typing commands at a regular terminal, except
that the output appears within the window, instead of the whole screen.

The Border
The border surrounds the user area. Notice in the previous Figure 2-3 that the left edge of a
window has a thin border while the other edges are wider; this is normal. Within the border are
the window's name, symbols representing the status of the window, and areas that allow you
to control the window and its relation to other windows. Note the names and locations of the
various parts of the label-they will become important when you start manipulating windows
interactively.

The window shown in Figure 2-3 has a normal border. Each window can also have a thin
border. Figure 2-4 shows a window with a thin border. Notice that none of the normal border
areas-window name and interactive control areas-exist in a thin border.

Figure 2-4. A Thin Border

Concepts 11

Selected Window
In Figure 2-3, note the asterisk (*) preceeding the window name, and the presence of a line
extending throughout the middle of the entire border. This indicates that this window is selected.

The selected window is important because anything you type at the keyboard is sent only to
the selected window. The keyboard is associated with one window at a time, therefore it is
important to know which window is currently being used. You can tell which window is selected
by looking for an asterisk in front of the window name and a line in the border (as in Figure 2-3).

Applications running in a non-selected window cannot take input from the keyboard. Therefore,
it is important to know how to select a window. Selecting a window is discussed in detail in the
"Interactive Use" and "Using Commands" chapters.

12 Concepts

The Pointer (Echo)
When the window system is running, there is a display pointer. You can move this pointer to
different locations on the display screen by using keys on the keyboard, or the optional mouse
or graphics tablet. (The subsequent section, "Moving the Pointer," describes how to move the
pointer via either the keyboard, mouse, or graphics tablet.)

The pointer is also called an echo. It gets this name because it echoes the screen location
specified through the keyboard, mouse, or graphics tablet.

As the pointer moves on the screen, it changes shape over different areas. Table 2-1 shows the
various pointer shapes and describes which screen area causes the pointer to take the shape.

Pointer

D
+

Table 2-1. Standard Pointer Shapes

Screen Area

When the pointer is not located over any windows or softkeys, that is, when it is
located over the screen background area, the pointer is a box with a dot in the
middle.

When positioned over a window's border, the pointer is a small cross-hairs.

When located over a window's user area or a shifted softkey, the pointer is an
arrow pointing up and left.

When positioned over an unshifted softkey, the pointer is an arrow pointing down
and left.

Concepts 13

Display Screen Coordinates
Some window system commands, such as wmove(l), wcreate(l), wsh(l), and ws ize , require an
understanding of display screen coordinates. This section discusses display screen coordinates
in detail.

The Origin
The upper-leftmost pixel on the display screen (known as the origin) has coordinates 0,0. The
x coordinates increase as you move to the right; y coordinates increase downward. Figure 2-5
illustrates this concept.

--------------------x ----------------~~~

origin (01 0)

y

Figure 2-5. Display Screen Coordinates

14 Concepts

Maximum Screen Coordinates
The coordinates of the lower-rightmost pixel on the display screen depend on the resolution
of your display screen. HP Windows/9000 supports two resolutions: high-resolution and low­
resolution.

Low-Resolution Displays
Low-resolution displays are 512 pixels wide by 400 pixels high. This means the range of
displayable coordinates is from 0,0 to 511,399. Figure 2-6 illustrates this concept and shows
some example coordinates.

origin (0,0)

(0,199)

(0,399)

(255,0)

(511,0)

I (255,199)

-L--­
I
I
I
I

(511, 199}

(255, 399}

(511,399)

Figure 2-6. Low-Resolution Display Coordinates

Concepts 15

High-Resolution Displays
High-resolution displays are 1024 pixels wide by 768 pixels high. Therefore, the valid range of
coordinates is 0,0 to 1023,767. Figure 2-7 shows a high-resolution screen with some sample
coordinates.

16 Concepts

origin (0,0) (1023,0)

I (511,383)

-L--­
I
I
I
I

(1023,383)

Figure 2-7. High-Resolution Display Coordinates

Cursor
The pointer is not the same as a cursor. A cursor is a special character which is used to mark
where the next character typed at the keyboard will appear in a terminal window.

For example, a cursor is present when an HP-UX shell is running (as in Figure 2-3). A shell can
run in a window, and thus the window contains a cursor. Remember that a cursor is confined
to a window, but the pointer is not.

Note that it is possible to turn the cursor off, and some applications may do this. (The TermO
Reference Manual and the HP Windows/9000 Programmer's Manual describe how to turn the
cursor off in a window.)

Concepts 17

Moving the Pointer
The window system accepts instructions from various devices. While it is possible to use only a
keyboard to interact with Windows/9000, a graphic input device (such as a mouse or graphics
tablet) is much more effective. These devices allow fast and easy interaction with the window
system.

The Mouse
The mouse is one of the most commonly used HP-HIL input devices (see Figure 2-8). As you
move the mouse along a flat surface, such as your desk top, the pointer moves correspondingly
on the display screen.

Figure 2-8. The Mouse

The left button on the mouse (as you face the cord, see Figure 2-8) is the select button. You
perform interactive operations with the mouse by moving the pointer to some location on the
screen, such as a window's border, and clicking the select button.

For example the box in the upper left corner of the border on a window represents the move
operation. By moving the pointer to that area and clicking the select button, the move operation
is activated. You can select a window in a similar manner. (Performing interactive operations
with a mouse is described in the "Interactive Use" chapter.)

18 Concepts

Graphics Tablet
An HP-HIL graphics tablet can also be used as an interactive device with the window system.
You can use a puck (flat device with selection buttons) or a stylus (pen device) with the graphics
tablet. Figure 2-9 shows a graphics tablet puck (on the left) and stylus (on the right).

The tablet stylus or puck moves the pointer in nearly the same manner as the mouse. However,
the graphics tablet is unique in that every point on the screen corresponds to a point on the
graphics tablet.

You can take the mouse off the table surface, place it in another location, and the pointer will
respond only when the mouse actually moves on the table. With the graphics tablet, lifting the
stylus or puck off the tablet and placing it in another location affects the pointer's location on
the screen immediately.

SELECT BUTTON

\

\
Figure 2-9. The Puck and Stylus

Like the mouse, the puck and stylus also have a select button. The select button on the puck is
the leftmost button facing the cross-hairs. The stylus select button is activated by pressing the
point of the stylus onto the graphics tablet.

As with the mouse, you can perform interactive operations by moving the pointer to a position
on the screen and pressing the select button.

Concepts 19

Keyboard
If you have neither the mouse nor the graphics tablet, you can still use windows. Using keys on
the keyboard, you can move the pointer and perform the same operations as with the mouse or
graphics tablet.

Moving the Pointer
To move the pointer via the keyboard, press an arrow key while holding down the I CTRL I key. To
keep the pointer moving, hold the keys down. Releasing the keys stops the pointer movement.
Table 2-2 shows the key combinations required to move the pointer.

If you fail to press the I CTRL I key along with the arrow keys, the pointer will not move.

Table 2-2. Moving the Pointer Using Keys

Key Operation

ICTRLH3] Moves the pointer left.

ICTRLKB Moves the pointer right.

ICTRL0 Moves the pointer up.

I CTRL KYl Moves the pointer down.

The Keyboard Select Button
Like the mouse and graphics tablet, the keyboard too has a select button-the I Select I key.
Pressing the I Select I key has the same effect as pressing the other devices' select buttons.

Special Keys
In addition to the pointer keys and the I Select I key, other keys perform special functions when
pressed within the window system. Table 2-3 shows these keys and describes their function.

20 Concepts

Key

I System I

Table 2-3. Special Keys

Description

Shuffles windows on the display screen. The resulting topmost window is auto­
matically selected.

Stops execution of the program in the selected window.

Pauses output to the selected terminal window . To resume output after it has
been paused, simply press this key again. This key works only with terminal
windows.

Controls whether or not a softkey menu is displayed at the bottom of the display.
If no softkey menu is currently displayed, then pressing I Menu I will cause a softkey
menu to be displayed for the selected window. If a softkey menu is displayed,
then pressing I Menu I turns off the softkey menu.

If no softkey menu is displayed for the selected window, then pressing I Shift ~
I User I has the same effect as the I Menu I key-the softkey menu for the selected
window is displayed at the bottom of the screen. However I Shift H User I does not
turn softkey labels off. Note that this key works only with terminal windows.

Causes the selected window's terminal configuration menu to appear at the bottom
of the screen. Note that this key works only with terminal windows.

Concepts 21

Pop-Up Menus
Operations on windows can be performed three ways:

• by executing commands

• interactively with a pointer in a window's border

• interactively via the pointer and pop-up menus.

Pop-up menus are useful when you don't wish to use commands and when you want to perform
an operation on a window whose border is inaccessible (e.g., covered by other windows or off
screen).

Activating a Pop-Up Menu
Pop-up menus are activated by moving the pointer to a special screen location and pressing the
select button. The location of the pointer when the select button is pressed determines which
window the pop-up menu is invoked for:

• If the pointer is not over any window, that is, if it is over the background pattern on the
screen, then a pop-up menu is displayed for the selected window.

• To get a pop-up menu for a window other than the selected window, you must move
the pointer over the desired window's border-not over any of the control boxes in the
window's border.

Pop-Up Menu Format
Activating a menu causes it to pop up at the screen location specified by the pointer. Once the
menu is displayed, you can make selections from the menu. Figure 2-10 shows a typical menu
for a window.

22 Concepts

Figure 2-10. A Pop-Up Menu

The name of the window for which the menu was invoked appears at the top of the menu, and
the various menu selections appear underneath the name.

Some items in the menu may not be selectable. Items that are not selectable appear in grey
letters, while selectable items appear in black letters.

Note also that the last three items in the menu-Exit WS, Repaint, and Create Window-are
separated from the other items by a horizontal bar. All items above this bar apply only to the
window for which the menu was invoked; these items are called local items because they are
local to the window. Selections below the bar have no relation to the window and are known
as global items. Global items are normally always selectable, whereas some local items may not
be selectable.

Concepts 23

Using the Pop-Up Menu
To select an item, simply move the pointer to the item and press the select button. You will
notice that selectable items will be highlighted (inverted) as the pointer moves over them; non­
selectable items are not highlighted. Figure 2-11 shows a menu for the window named wconsole;
the Moue item is highlighted.

Figure 2-11. Selecting an Item from a Pop-Up Menu

After you press the select button, the operation specified by the menu item will be performed.

24 Concepts

Exiting a Pop-Up Menu
Sometimes you may want to exit a pop-up menu without making a selection. To abort a pop-up
menu, you can do one of the following:

• move the pointer in a quick motion out of the menu area (unless bit Ox0400000 of the
WMIUICONFIG variable is set; see the "Customizing Your System" chapter for details)

• press any disabled button (by default, the rightmost mouse button and puck switch buttons
other than the leftmost button abort the menu)

• press any key on the keyboard (other than I Select D

• wait for a sufficiently long time (by default, 60 seconds) and the menu will disappear

• move the pointer to a non-selectable item and press the select button.

If you do any of these, the menu will disappear from the screen, and you'll hear a beep to
indicate that the menu was aborted.

Concepts 25

Icons
At any time, a window is in one of three states: concealed, normal, or iconic. When in an
iconic state, a window is represented by a graphic picture known as an icon. An icon can be
thought of as the shrunken form of a window.

Why Use Icons?
To understand the usefulness of icons, let's return to the desk top analogy. Suppose your desk
top is becoming covered with papers-becoming less managable as you have more tasks to
maintain. To fix this problem you might set the less-important papers-i.e., papers that don't
require your immediate attention-off in a corner of your desk top until they are needed later.

You can do the same with windows. For example, if you have applications running in several
windows at once, you can turn less-important windows into icons. Then when you need to use
the application later, simply change the icon back to a window.

Note that changing a window to an icon does not stop any application running in the window:
the application will still continue to run, and any output sent to the window (when in the iconic
state) will be lost.

Icon Format
Although an icon is referred to as the "shrunken form of a window," its format is somewhat
different. Unlike a window, it has no user (contents) area. Instead, it is comprised of two
components: the top portion is known as the picture; the bottom part is the label. Figure 2-12
defines the layout of an icon.

Picture

Label

Figure 2-12. Icon Format

Clicking the locator over the icon's picture or window label will invoke a pop-up menu for the
icon.

Two interactive manipulation symbols appear within the label area:

I~I moves the icon

I_I returns the window to normal representation

26 Concepts

Icon Types
T ermO and graphics windows each use default, predefined pictures when an icon is displayed.
This is so that you can distinguish between the icon for a terminal window and a graphics
window. Figure 2-13 shows a terminal window icon (on the left) and a graphics window icon (on
the right).

Figure 2-13. A Terminal Icon and Graphics Icon

Concepts 27

Notes

28 Concepts

Interactive Use 3
HP Windows/9000 allows you to perform many interactive window operations via the keyboard
and optional mouse or graphics tablet. for example, you can move windows, change their size,
and change them to icons. This chapter discusses how to perform interactive operations with
windows; specifically, the following topics are covered:

• starting the window system

• leaving the window system

• creating a terminal window

• destroying a window (or icon)

• moving a window

• changing a window's size

• selecting a window

• bringing a window to the top of the stack

• putting a window on the bottom of the stack

• changing a window to an icon

• moving an icon

• changing an icon to a window

• pausing terminal window output

• scrolling window information

• saving a window

• repainting the screen

NOTE

This chapter uses many terms and concepts from the "Concepts" chap­
ter. for example, it is assumed that you understand how to move the
pointer on the screen via the keyboard, mouse, or graphics tablet, and
that you understand pop-up menus. Therefore, be sure to read the
"Concepts" chapter before proceeding with this chapter.

Interactive Use 29

Starting HP Windows/9000
Before discussing how to interactively manipulate windows, the window system must be running.
This section discusses how to start up the window system.

The wconsole Window
By default when the window system starts up, a terminal window named wconsole is created
and displayed in the upper-left corner of the display (see Figure 3-1). This window contains an
HP-UX shell (either a Bourne shell or C-shell, depending on the value of the SHELL environment
variable; for details, see the "Concepts" section of the "Using Commands" chapter).

Figure 3-1. The wconsole Window

The window is selected when it is created; therefore, anything you type at the keyboard will
be sent to this window. To execute HP-UX commands or non-graphics applications from this
window, simply enter the command or program name as you would from a regular terminal.

30 Interactive Use

Automatic Startup
Depending on how your HP-UX operating system is configured, HP Windows/9000 mayor
may not automatically start up on its own when you log in. If your system is configured to
automatically start windows, then the wconso/e window should be displayed shortly after you
log in. If this is the case, then you needn't worry about starting the system and can move onto
subsequent sections in this chapter.

NOTE

The "Starting Windows/9000" section of the "Using Commands" chap­
ter describes the various methods for automatically starting the system.

Executing the wmstart Command
If your window system does not automatically start running when you log in, then you must start
the system via the wmstart(1) command. Simply enter the command to the HP-UX prompt:

wmstart I Return I

Shortly thereafter, the wconsole window will appear, and you can start performing interactive
operations described in the remainder of this chapter.

Interactive Use 31

Leaving HP Windows/9000
When you are through using the window system, you should exit from it. When you leave the
window system, most processes associated with the system are killed (exceptions are nohuped
process; see nohup(1) in the HP-UX reference, for details}.

This means that not only does the window system itself die, but also any programs that are
running when you kill it. You should, therefore, be absolutely sure you are ready to leave the
system before performing this operation.

When you exit the window system, the screen is cleared; and depending on how your system is
configured, you'll either:

• be returned to the HP-UX command prompt, or

• be logged off of the HP-UX system.

Action
There are two ways to exit the window system: via the wmstop(1) command or the pop-up
menu.

The WIn.top Command
To leave the window system, simply enter the wmstop command from a selected terminal window
(such as the wconsole window):

wmstop I Return I

The Pop-Up Menu
To leave via the pop-up menu:

1. Invoke a pop-up menu. You can do this by moving the pointer over the background
pattern and clicking the select button. (See the "Pop-Up Menus" section of the "Concepts"
chapter for details on getting a pop-up menu.)

32 Interactive Use

2. Highlight the Exit WS option of the pop-up menu. This is done by moving the pointer
to this option in the menu. Figure 3-2 shows a pop-up menu with the Exit WS option
highlighted.

Size
Icon

Save

Des1.roy

Figure 3-2. Highlighting the Exit WS Option

3. Select the Exit WS option. This is done by clicking the select button when this option is
highlighted. After selecting this option, a verification menu will appear (as shown in Figure
3-3).

Interactive Use 33

Figure 3-3. The Verification Menu

4. Select Yes or No. If you do want to leave the window system, then highlight and select
Yes from the verification menu; if you wish to remain in the window system, then highlight
and select No.

Things That Can Go Wrong
It is possible to aCcidentally activate the Exit WS item of a pop-up menu. If you've accidentally
activated this option and would like to abort, you can easily cancel the menu using any of the
following methods:

• choose the No option of the verification menu

• press a disabled button-a button other than the select button

• press a key other than I Select I

• quickly move the pointer out of the verification menu

• wait sufficiently long (by default, 60 seconds) for the pop-up menu to time-out (automatically
abort after 60 seconds).

In any case, you'll be returned to the window system.

34 Interactive Use

Creating a Terminal Window
New terminal windows can be created via the pop-up menu. (Note that only terminal windows,
and not graphics windows, can be created interactively via the pop-up menu; you must use
commands to create graphics windows.)

New windows are created in a stair-step fashion: the first window (wconsole) is created at the
upper-left corner of the display, and subsequent windows are create':! down and to the right of
the previous window.

When a new window is created, it automatically becomes the selected window. In addition, each
new window is given a default name by the window system:

windown

where n is a sequential number starting at one. For example, the first window created after
wconsole is named windowl; the second, window2; and so on. (Note that when you create a
window via commands, you have the option of assigning a name other than the default.)

Figure 3-4 shows wconsole and three more windows, created via the pop-up menu. Note how
the windows stair-step down from the upper-left corner of the screen, and how the last window
created, window3, is selected. The stair-step pattern is repeated after every fifth window.

Interactive Use 35

Figure 3-4. Stair-Stepping Windows

Action

1. Invoke a pop-up menu. You can do this by moving the pointer over the background
pattern and clicking the select button. (See the "Pop-Up Menus" section of the "Concepts"
chapter for details on getting a pop-up menu.)

2. Highlight the Create Window option of the pop-up menu. This is done by moving the
pointer to this option in the menu. Figure 3-5 shows a pop-up menu with the Create
Window option highlighted.

36 Interactive Use

Figure 3-5. Highlighting the Create Window Option

3. Select the Create Window option by clicking the select button when this option is high­
lighted. After selecting this option, a new terminal window will appear.

Things That Can Go Wrong

• If you select the wrong item in the pop-up menu (such as Repaint) you will have to bring
up the menu again.

• You cannot create an infinite number of windows. The maximum number of windows that
you can create is somewhere between four and twenty-seven (27), depending on the amount
of memory in your computer system, kernel configuration for such things as maximum
number of user processes, and the value of certain environment variables. (For details on
the maximum number of windows, see the chapter "Resource Usage Considerations.")

Interactive Use 37

Destroying a Window or Icon
When you are through using a window or an icon, you can destroy it-Le., remove it totally
from the system. The pop-up menu is used to interactively destroy a window.

All processes (programs) in the destroyed window (or icon) are killed (except nohuped processes;
see nohup{l) in the HP-UX Reference}. Therefore, make sure you really wish to destroy a
window or an icon before you perform this task.

If you destroy the selected window, the resulting topmost window in the stack becomes the
selected window.

Action

1. Bring up a pop-up menu for the window you wish to destroy .

• To get the pop-up menu for a window, move the pointer over the window's border
and click the select button .

• To get the pop-up menu for an icon, move the pointer over the icon's picture and
click the select button.

(See the "Pop-Up Menus" section of the "Concepts" chapter for more information.)

2. Verify the menu name. Compare the name at the top of the pop-up menu with the name
of the window you want destroyed. If the names are not the same, you have selected the
wrong window; exit the pop-up menu and try again.

3. Highlight the Destroy option.

4. Click the select button to activate the Destroy item. The window, and programs running
in it, will disappear from the screen.

38 Interactive Use

Things That Can Go Wrong
If you accidentally destroy a window, you cannot retrieve the window. Therefore, be prudent
when using this option. Remember that you don't have to make a menu selection; you can abort
the menu if you wish.

If you aCcidentally destroy all windows on the screen, you can still access a System Menu pop-up
menu. You can perform only global options from this menu: Exit WS, Repaint, and Create
Window (see Figure 3-7). Therefore you can either leave the system, repaint the screen, or
create a new window. You will not, however, be able to retrieve the destroyed windows.

Figure 3-7. The System Menu

Interactive Use 39

Moving a Window
This operation allows you to move a window to different locations on the screen. The window
can be moved anywhere on the screen and can be moved partially off of the screen.

Note that moving a window does not affect its position in the display stack.

Action
You can interactively move a window either by the move control box or a pop-up menu.

Using the Move Control Box

1. Move the pointer to the upper-left box in the border of the window you wish to move.
This box is known as the move control box. The pointer changes to cross-hairs when in
this box. Make sure the pointer is in the box as shown in Figure 3-8.

Figure 3-8. The Move Control Box

2. Click the select button to activate the move operation. A dotted rectangle will appear,
surrounding the user area. Notice that you can move this rectangle much the same way
that you move the pointer. This rectangle is important because you use it to designate
the new location for the window.

Figure 3-9 shows a window for which the move operation has been activated. In this case,
the window will be moved down and to the right, as specified by the dotted rectangle.

40 Interactive Use

Figure 3-9. Moving a Window

3. Move the dotted rectangle to the desired new location for the window; click the select
button when the rectangle is at the location. The window will move to the new area.

Note the dotted rectangle corresponds to the user area and not the border, and you may
want to compensate for the border (if you get close to the screen edge).

Using a Pop-Up Menu
If the move control box is inaccessible, you may wish to use the pop-up menu for the move
operation:

1. Invoke a pop-up menu for the desired window.

2. Highlight the Move item.

3. Click the select button and follow step 3 above.

Interactive Use 41

Changing a Window's Size
You can interactively change the size of any window. The largest a window can be is the size it
was when you created the window. There is also a minimum size for a window. You can find
these sizes by experimenting with this operation.

You can change the size of a window from its size when created to a smaller size if desired. But
what happens to the information in a terminal window when you shrink it? The information is
not lost, the viewing area simply becomes smaller.

You will see later (in the section "Scrolling Terminal Window Information") that it is possible to
scroll the information in the viewing area of a terminal window up, down, left, and right to view
the information in this smaller window.

Action
You can change a window's size by using either the size control box or the pop-up menu.

Using the Size Control Box

1. Move the pointer to the box in the lower right corner of the border. This is known as
the size control box (see Figure 3-10).

Figure 3-10. Size Control Box

2. Click the select button to activate the size operation. As with the move operation, a
dotted rectangle appears around the user area of the chosen window. Note that you can
change the size of this rectangle by moving the pointer device. This rectangle is important
because you specify the window's new size with it.

3. Change the dotted rectangle to the desired new size for the window. As an example,
the wconsole window shown in Figure 3-11 will be changed to approximately one-fourth
of its original size, as specified by the size rectangle.

42 Interactive Use

Figure 3-11. The Size Rectangle

4. When you've changed the rectangle to the desired window size, Click the select button.
The window will change to the size of the rectangle.

Using a Pop-Up Menu

1. Bring up a pop-up menu for the desired window.

2. Highlight the Size option.

3. Click the select button to perform the size operation.

4. Follow steps 3 & 4 from the "Using the Size Box" section above.

Interactive Use 43

Selecting Windows
As mentioned in the "Concepts" chapter, keyboard input is sent only to the selected window,
and only one window can be selected at a time. In order to communicate with an application in a
particular window, you must first select the window. Once the window is selected, all keystrokes
are sent to the window.

NOTE

It is possible to select an icon. In this case the icon name is preceeded
by an asterisk. Anything typed while the icon is selected cannot be seen;
you must first change the icon to a window before seeing output.

Actions
There are three methods for interactively selecting a window:

• you can select it and automatically bring it to the top of the window stack as it is selected

• you can select it but leave it at its position within the window stack

• you can shuffle the bottom window to the top and have it automatically selected.

Selecting and Topping
This method of selection automatically brings the window to the top of the stack of windows:

1. Move the pointer to the user area of the window you wish to select.

2. Click the select button. The window becomes the selected window and moves to the top
of the stack.

Selecting a Window without Topping It
If you wish to select a window without moving it in the stack, this method keeps the selected
window in place:

1. Bring up a pop-up menu for the desired window.

2. Highlight the Select option.

3. Click the select button to activate the select operation. The window becomes the selected
window, but does not move within the display stack.

44 Interactive Use

Shuffling Windows
Shuffling windows brings the window on the bottom of the stack to the top and selects that
window. The other windows in the stack remain in the same position with respect to each other.

To shuffle windows in this manner, simply press the ~ and ~ keys Simultaneously. The
window on the bottom of the stack moves to the top and automatically becomes the selected
window.

Things That Can Go Wrong

• If you do not position the pointer in the user area when selecting a window, you may
activate the wrong operation or a pop-up menu. Remember that the pointer is in the
shape of an arrow while in the user area.

• You may inadvertently select the wrong window. In this case, simply perform the select
operation again to select the correct window.

• If you do everything correctly and nothing happens, you may have selected a window which
is already selected. If you use a pop-up menu, make sure the Select item is highlighted. If
your pointer is over the window name, nothing will happen. If the Select item is greyed,
you have chosen a window already selected.

Interactive Use 45

Bringing a Window to the Top of the Stack
If you have more than one window on the screen, and some overlap, you may find it useful
to bring a window to the top where its information can be viewed easily. This operation is
performed via the pop-up menu.

Note that bringing a window to the top does not select the window. See "Selecting a Window"
for details on selecting a window when bringing it to the top.

Action

1. Invoke a pop-up menu for the window that you wish to bring to the top of the window
stack.

2. Highlight the Top option.

3. Click the select button. The window is then displayed as the top window in the stack.

46 Interactive Use

PuHing a Window on the BoHom of the Stack
This operation is useful when you have overlapping windows, and you want to move one window
underneath the others. The pop-up menu is used to place a window on the bottom of the display
stack.

Action

1. Bring up a pop-up menu for the window to place on the bottom of the stack.

2. Highlight the Bottom option.

3. Click the select button. The window will move to the bottom of the stack.

Note that moving a window to the bottom of the display stack does not affect its selection status.
See the "Selecting a Window" section for details on selecting a window.

Interactive Use 47

Changing a Window to an Icon
As mentioned in the "Concepts" chapter, changing a window to an icon is useful when you
temporarily want to move a window out of the way. When the window is needed later, it can
be changed back to a window.

Action
You can change a window to an icon using either the icon control box or a pop-up menu.

Using the Icon Control Box

1. Move the pointer to the box in the upper right comer of the window's label. This is
known as the icon control box (see Figure 3-11).

Figure 3-11. Icon Control Box

2. Press the select button to change the window to an icon. The window will disappear from
the screen, and an icon will appear on the lower left portion of the screen. The icon will
display the name of the window. If the icon covers part of another window, applications
in the covered window will still execute properly.

Using a Pop-Up Menu

1. Bring up a pop-up menu for the window you wish to change to an icon.

2. Highlight the Icon option.

3. Click the select button to change the window to an icon.

48 Interactive Use

Moving an Icon
Like windows, icons can be moved on the display screen. You can use either the icon move
box or a pop-up menu.

Action
Using the Icon Move Box

1. Move the pointer to the leftmost box in the icon's label. This is known as the icon
move box. Figure 3-12 shows a terminal window's icon with the icon move box labelled;
be sure to center the pointer within this box.

Icon Move Box

Figure 3-12. The Icon Move Box

2. Click the select button. A small dotted rectangle will appear around the icon. You specify
the icon's new location by moving the rectangle, similar to the way you move a window.

3. Move the rectangle to the desired new location.

4. Click the select button. The icon moves to the new location.

Using a Pop-Up Menu

1. Invoke a pop-up menu for the icon that you wish to move. You can get a pop-up menu
for an icon by clicking the select button when the pointer is over the icon's picture.

2. Highlight the Move option of the pop-up menu.

3. Perform steps 3 and 4 from the section above.

Interactive Use 49

Changing an Icon to a Window
When you need a window that is currently iconic, you can change it back to a window using
either the icon control box or the pop-up menu.

Action
Using the Icon Control Box

1. Move the pointer to the rightmost box in label of the icon that you wish to change
back to a window. This box is known as the icon's icon control box. Figure 3-13 shows
a terminal window's icon with the icon control box labelled; be sure to get the pointer
directly over this box when performing this task.

Icon Control Box

Figure 3-13. The Icon Control Box

2. When the pointer is over the icon control box, click the select button. The icon is changed
back to a window.

Using a Pop-Up Menu

1. Invoke a pop-up menu for the icon by moving the pointer over the icon's picture area
and clicking the select button.

2. Highlight the Normal option of the pop-up menu, as shown in Figure 3-14.

50 Interactive Use

Figure 3-14. Icon-to-Window Pop-Up Menu

3. Click the select button. The icon will then change back to a window. It will be in the
same location and will contain the same information that it had when it was changed to
an icon.

Interactive Use 51

Pausing Terminal Window Output
This operation allows you to halt and restart output in a terminal window. For example you
may have window output (resulting from a command or program) which is scrolling too qUickly
for you to read. You can stop the scrolling with this operation and restart it when ready.

Note: This operation works only with terminal windows. You cannot pause graphics window
output via this operation.

Action
You can use either the pause control box or the keyboard to pause output in a terminal window.

Using the Pause Control Box

1. Move the pointer to the box in the lower left comer of the desired window, known as
the pause control box. Figure 3-15 shows the pause control box.

Figure 3-15. The Pause Control Box

2. When you wish to pause the window output, click the select button. Note that the
hexagon becomes highlighted. This indicates that the pause operation is activated.

3. To restart the output. click the select button again over the pause control box. The
area in the shape of a stop sign will return to its original form.

USing the Keyboard

1. Press the ~ key to pause window output.

2. To restart output, press ~ again.

52 Interactive Use

Scrolling Information in a Window
This operation allows you to scroll the information in the user area of a window. This operation
is especially useful when a window contains more information than can be shown in its user area.
You can scroll a window's contents up, down, right, or left.

Inside the right and lower border of a window you will see small arrows near the control boxes
(see Figure 3-16). The scroll arrows scroll the screen in the indicated directions.

• • lUconsole ------ III

SCROLL ARROWS

Figure 3-16. Scroll Arrows

Action

1. Move the pointer to a scroll arrow that points in the direction that you wish to scroll.

2. Click the select button. The information is scrolled one character for each click of the
select button.

Note: If you wish to scroll rapidly, hold down the I Select I key on the keyboard while the pointer
is over the scroll arrow.

Things That Can Go Wrong
If the information does not move it could be due to not having the pointer correctly over a
scroll arrow. Also, the information will not scroll if there is no more information to scroll in the
window's scroll buffer. For example, a graphics window created with its raster the same size as
its view is not scrollable in any direction because all the information (the entire graphics picture)
is already completely viewable.

Interactive Use 53

The Save Option
You have the option to specify a window to be saved or not saved.

If you have an application running in one or several windows there are two options that can
occur when the application has stopped: the windows created can either stay on the screen or
they can be automatically destroyed. Using the save option keeps a window on the screen when
all processes of that window are terminated.

You can have windows which are not saved. Windows that are not saved will be automatically
destroyed when all processes running in them are terminated.

By default, windows created via the pop-up menu are not saved. To change a window's state
to saved, you should use the Save item in the pop-up menu for the window. Therefore, for all
windows created via the pop-up menu, the only option is to save the window.

Once you have saved a window, you cannot make it un-saved via the pop-up menu. That is,
changing a window to un-saved is not possible via the pop-up menu; however, it can be un-saved
via commands (discussed in the "Using Commands" chapter).

Action

1. Bring up a pop-up menu for the window you wish to save.

2. Highlight the Save item.

3. Click the select button to change the window's status to saved.

Things That Can Go Wrong
If the save item is not highlighted when you move the pointer over the item area, the save option
is already turned on for this window.

54 Interactive Use

Repainting the Screen
At some point you may be running a program that prints outside of or over a window. The
repaint operation redraws the screen and restores most windows to their original format. Graphics
windows with a retained raster may not be repainted properly.

Action

1. Bring up a pop-up menu.

2. Highlight the Repaint option.

3. Click the select button to execute the Repaint item. The screen will be repainted.

Things That Can Go Wrong
You may try the Repaint item and notice that nothing changed. This is probably due to having
nothing to repaint. If there has been no change of the screen format (over the windows, for
example), repaint duplicates the window format (since it is already in correct format).

Interactive Use 55

Notes

56 Interactive Use

Using Commands 4
In addition to HP Windows/9000's interactive capabilities, you can also use window system
commands to accomplish windowing tasks. This chapter discusses how to use window system
commands; specifically, the following topics are discussed:

• starting the window system

• stopping the window system

• creating a window

• creating a window with a shell

• destroying a window

• changing a window's autodestroy attributes

• selecting a window

• moving a window or icon

• changing a window's size

• shuffling windows

• changing a window's representation (iconic, concealed, or normal)

• controlling a window's border

• managing terminal window fonts

• listing window status information

Using Commands 57

Starting the Window System
The wmstart(l) command starts the window system running on a bit-mapped display. wmstart,
which is a modifiable Bourne shell script, performs several functions when it is executed. But
before discussing what wmstart does or how to use it, you must understand essential concepts.

Concepts
Window System Environment Variables
The window system maintains several environment variables. These variables, which are
initially set in the wmstart shell script, define the environment in which the window system
executes. By altering these variables, you can affect how the window system operates. Changing
window system environment variables is discussed in the chapter "Customizing the Environment
(Environment Variables}."

The Window Manager
When the wmstart command is executed, it invokes a special server process (jusr/lib/wm) known
as the window manager. The Window manager runs as a user process, and only one invocation
of the window manager is allowed per graphics display. The window manager is the program
that runs the window system.

The window manager process heads a window group which typically consists of numerous
process groups (see setgrp(2)). A window group is essentially all the processes associated with
a single instance of the window manager-all processes running in windows on a single physical
display.

Window groups are important because signals can propogate through them. For example, when
you exit the window system (e.g., via wmstop(l)), all processes in the window group are signalled
to stop executing.

The window manager runs as a single, setuid (super-user) process. It has no knowledge of login
security. Once it is running, anyone can interactively get a shell in a window by using the pop-up
menu or commands. Running getty(1M) within a window is both difficult and useless; in other
words, it doesn't make sense to log in users in a window. (Note, however, you can still use su(l)
from a window.}

58 Using Commands

Input Devices
The window system must run on a bit-mapped graphics display, and must use an HP-HIL
keyboard for input. You can also use an optional mouse or graphics tablet with the system.

The Intemal Terminal Emulator (ITE)
When the window system is not running, programs interact with the bit-mapped display and its
keyboard through an internal terminal emulator (ITE). The emulator makes the hardware look
like a simple terminal. /dev/console is a typical path name of the special file (tty(4)) for this
terminal. The ITE ignores the optional mouse or graphics tablet if they are present; it accepts
input only from the keyboard. Figure 4-1 illustrates this architecture.

C?
read(2)
write(2)

KERNEL
(ITE)

tty(4)

KEYBClARO ¢ I OUT USERS IN I ¢ BlT-IoW'PED
• DISPLAY

Figure 4-1. ITE Architecture

Using Commands 59

Window System Architecture
When the window system starts executing, the window manager takes control of the keyboard
from the ITE, thus blocking input to the ITE (but not output from it). In addition, the window
manager starts listening to the optional mouse or graphics tablet through their special files.

The window manager determines which device special files to use for input and output by looking
at window system environment variables. The variables used and their default values are defined
in Table 4-1.

Table 4-1. Environment Variables and Special Files

Variable Description Default

WMDIR Directory where window special files are main- /dev/screen
tained by the window manager.

WMSCRN Special file of the display device where windows /dev/crt
will appear.

WMKBD Special file for the HP-HIL keyboard. /dev/hilkbd

WMINPUTCTLR Special file of the input controller which handles /dev/rhil
HP-HIL input devices.

WMLOCATOR Special file for the optional locator device- /dev/locator
either a mouse or graphics tablet, but not both
at the same time.

Executing wmstart(1)
Depending on how your system is configured, the window system may automatically start up
when you log in. If the system does not automatically start up, then you must start it yourself
by executing the wmstart command from the HP-UX shell.

Default Action
Before discussing the syntax of wmstart, you must understand the default actions taken when
it is executed. The action of wmstart is summarized as follows; you may wish to refer to the
wmstart shell script (found in /usr/lib) when reading this:

1. Set environment variables to their default values. If a variable is undefined, then it
defaults to a value predetermined by wmstart or the window manager itself.

2. Check if the window manager is running. If the window manager is already running,
then terminate with exit status 1; otherwise, continue execution.

60 Using Commands

3. Remove any leftover special files in the WMDIR directory. The window system uses a
number of special files to communicate with windows. These special files are kept in the
directory specified by the WMDIR environment variable. If the window system terminates
abnormally for some reason, window special files might be left over in this directory.
wmstart ensures the proper execution of the window system by removing all character
special files in $WMDIR before starting the window manager.

IMPORTANT

The window manager removes all character special files in the directory
specified by WMDIR. Therefore you should never change WMDIR to the
path name of a directory containing non-window system special files (such
as the /dev directory). For details on changing WMDIR, see the chapter
"Customizing Your System (Environment Variables}."

4. Start the window manager. The window manager is executed via the sh(1) special
command exec as follows:

exec /usr/lib/wm command_line

This way, the caller of wmstart can wait for the wmstartprocess to terminate as the window
manager.

5. Execute a window command. The window manager process (jusr/lib/wm) can receive
a command line as an argument. By default, the argument supplied to wm when it is
invoked in step 4 is:

/usr/bin/wsh -ak wconsole

which creates a terminal window named wconso/e as the first window in the system.
However, you can execute a different command, perhaps a window application of your
own, as described in the "Syntax" section below.

When these steps are successfully completed, the window manager will take control of window
system input/output devices, the screen desk top pattern will be displayed, a window named
wconsole will appear in the upper-left corner of the display screen, and a shell from which you
can execute commands is spawned in the window.

Using Commands 61

The SHELL Environment Variable
The type of shell used in the initial wconsole window, and in any windows created via the pop­
up menu or wsh(l) command, depends on the value of the SHELL environment variable when
wmstart is called. If $SHELL is /bin/sh, then a Bourne shell is used; if $SHELL is /bin/csh,
then the C-shell is used.

Syntax
To start HP Windows/9000, execute the wmstart command which has the following syntax:

wmstart [optionaCargs]

If you want wmstart to execute in the default manner, as defined in steps 1 through 5 above,
then simply enter the command to the HP-UX prompt. For example, if you simply wish to start
the window system, enter the following to the HP-UX prompt:

wmstart I Return I

You can alter the default action of wmstart by specifing the optionaCargs with the command.
If you specify optionaCargs, they are passed to wm instead of the default command described
in step 5. For example, suppose you have a customized window application that you want to
execute, without having the wconsole window come up first; the name of your application is
window_sys, and it is found in the /usr/contrib/bin directory; then you would enter the following:

wmstart /usr/contrib/bin/window_sys I Return I

The wmready(1) Command
Occasionally, you may wish to determine if the window manager is running before you attempt
to execute the wmstart command. The wmready(l) command is used for this purpose.

As an example of how you might use this command, suppose you have a multi-user system
with one graphics display devoted to HP Windows/9000. You're seated away from the graphics
display and cannot see if anyone is using the system. You can use the wmready command to
determine if the window system is already in use.

The wmready command determines if the window manager is running by looking at the value of
the WMDIR environment variable. For example, if WMDIR is set to /dev/screen, wmready will
look in this directory for the window manager's device interface (jdev/screen/wm). If the device
interface exists, then wmready verifies that there is an active window manager associated with
the special file. If there is, then the window manager is running; otherwise the window manager
is not running.

62 Using Commands

Syntax

NOTE

Because wmready is typically executed outside the window system (e.g.,
from a non-window system terminal), and because wmready requires the
vaiue of the WMDiR environment variabie, you may want to set WMDIR
to the appropriate value before executing this command, for example:

env WMDIR=/dev/screen wmready

See the chapter "Customizing Your System (Environment Variables)" for
details on setting environment variables.

wmready has the following syntax:

wmready [-v]

Return Value
When wmready is executed, it returns a value indicating whether or not the window manager
is running. If 1 is returned, the window manager is not currently running; if 0 is returned, the
window system is in use. The method for getting this return value depends on which shell you
use.

If you use the Bourne shell, you can interrogate the $1 shell parameter, which contains the value
returned by the last synchronously executed command.

If you use the C-shell, interrogate the $status environment variable, which contains the status
returned by the last command.

Examples
The following Bourne shell script displays a message indicative of whether or not the window
system is currently running:

env WMDIR=/dev/screen wmready
if [$1 -eq 1]
then

echo IIwindow system is free to use ll

else
echo IIwindow system is already in use ll

fi

Using Commands 63

The next C-shell script performs the same function as the above Bourne shell script:

determine if window manager is already in use

env WMDIR=/dev/screen wmready
if ($status == 1) then

echo "window system is free for use"
else

echo "window system is already in use"
endif

The -y Option
Rather than having to interrogate the status returned from wmready, you can use the verbose
(-v) command option. If you specify -von the command line:

env WMDIR=/dev/screen wmready -v

one of two messages will be displayed.

If the window manager is not running, the following message is displayed:

Window manager (/dev/screen/wm) is not ready.

This simply means that the window manager process is not running and, therefore, cannot accept
any requests that would be made if it were running.

If the window manager is running, this message is displayed:

Window manager (/dev/screen/wm) is ready.

This means that the window manager is running, and the window manager process is named
/deu/screen/wm. The base name of the window manager process will always be wm, but the rest
of the path name (jdeu/screen in this case) will depend on the value of the WMDIR environment
variable.

64 Using Commands

Automatically Starting Windows/9000 from Login
Depending on your needs, you may wish for the window system to automatically start up
whenever you log in. This section describes various methods for automatically starting HP
Windows/9000 when logging in to your system.

NOTE

The topics discussed here are probably more advanced than most users
require. You should consult your system administrator for help in per­
forming any of the described tasks.

There are two primary methods for starting the window system on login:

• you can execute wmstart from your .profile or ./ogin initialization script

• you can make wmstart your login shell.

Other more-obscure methods can be used, but they are not discussed here. Ask your system
administrator for more information on automatically starting the window system.

From .profile or .Iogin
Two initialization shell scripts are associated with HP-UX: .profile and .Iogin. Both are kept in
your home directory. When you log in to your computer system, commands from these files are
executed, depending on which shell you use as your login shell.

If you log in to the Bourne shell, commands in the .profile initialization script are executed.
If you use the C-shell, commands in the .login script are executed. Therefore, if you want to
immediately start up the window system after logging in, you should add the wmstart command to
your .profile or .login file (depending on which is your login shell). Ask your system administrator
if you are unsure of which login shell you use.

Using Commands 65

Running as a Subprocess vs. Executing Directly
Two methods can be used to execute wmstarffrom your .profile or .login shell script; the results
of each method differ:

• You can run the command as a subprocess:

/usr/bin/wmstart

The .profile or .login script waits for window manager termination. When the window
system terminates, you are returned to an HP-UX shell from which you can manually start
the window system again .

• You can execute the command directly via exec(2):

exec /usr/bin/wmstart

In this case, the .profile or ./ogin script is replaced by the window manager process. When
the window system terminates, you'll be logged out of the system.

Executing wmstart as Your Login Shell
To put wmstart in /etc/passwd as your login shell, the following must be done:

1. Make a custom version of wmstart, and name it something that does not contain the letter
r, for example, my_wmgo. This must be done because if the login program sees a login
shell containing the letter r, it assumes that it is a restricted shell.

2. In the custom version, explicitly set SHELL to the appropriate value. If you want to use
the Bourne shell:

SHELL=II/bin/sh ll ;export SHELL

If you wish to use the C-shell:

SHELL=II/bin/csh ll ;export SHELL

3. Have your system administrator put the name of the custom wmstart script in /etc/passwd.
Or you can use the chsh(l) command to change it yourself.

66 Using Commands

Stopping the Window System
The wmstop(l) command is used to terminate the window system after you have entered it.
wmstop stops the window system for one display, normally the display from which it was invoked.
It may be called by any process.

wmstop looks at the environment variable WMDIR to find the window manager process's special
file ($WMDIR/wm). It then uses the wmki1l(3W) window library routine to kill the window
manager. This causes the window manager to terminate gracefully, destroying all windows and
clearing the screen.

When the window manager terminates, control of keyboard input is returned to the ITE.

Executing wmstop(1)
To stop the window sytem, execute the wmstop command which has no optional arguments; its
syntax is:

wrnstop

To execute the command, simply enter it to the HP-UX prompt in a terminal window (from
wconsole for example).

Precautions
Executing wmstop normally causes all processes in the window group to terminate, gracefully or
not. Therefore, you should be absolutely sure that you want to exit the window system before
executing this command.

In some cases, processes started from the window system will not terminate when the window
system exits (for example, processes started with nohup(l), and background processes}. Output
from these processes may be lost or may overwrite portions of the screen asynchronously, unless
it was redirected away from a window.

Using Commands 67

Creating a Window
Once the window system is running, you can create new windows via the wcreate(1) command.
This section discusses the use of the wcreate command and its various parameters.

NOTE

Windows created via wcreate do not automatically contain an HP-UX
shell. Creating a window that contains an HP-UX shell is discussed
in the next section "Creating a Window with a Shell." However, you
should still read this section because it contains important prerequisite
information for the next section.

Concepts
Before discussing wcreate, you should understand some basic concepts concerning windows.

Window Location
The wcreate command allows you to specify the screen location for each new window's anchor
point. A window's anchor point is the upper-leftmost pixel in the window's user (contents) area
(see Figure 4-2).

68 Using Commands

Anchor Point

Figure 4-2. The Anchor Point

Coordinates are specified in X,Y pixels. The upper-leftmost pixel on the display screen is location
0,0; x coordinates increase to the right; y coordinates increase downward (see Figure 4-3).

------x ------

origin (0,0)

y

Figure 4-3. Display Screen Pixel Coordinates

Maximum x,y coordinates depend on the type of display screen used with the system. For
example, if the resolution of your display screen is 1024 by 768 pixels, then maximum X,y

coordinates are 1023,767. See the "Display Screen Coordinates" section of the "Concepts"
chapter for details on the display screen coordinates.

If you do not specify a new window location, the window is placed at default, stair-step coordinates
returned by the window manager.

Using Commands 69

Normal or Thin Border
Each window can be created with either a normal or thin border. A normal border has the
window label and control boxes visible (as in Figure 4-2). A thin border does not have any of
the normal border areas present: it is simply a thin line surrounding the user area (see Figure
4-4).

Figure 4-4. A Thin-Bordered Window

Note that you still can get a pop-up menu for the window by clicking the locator over the border.
It's just a little more difficult to get the pointer over the border when it's thin.

Window Size
You can also specify a window's size when it is created. Terminal window size is specified in
columns and rows (known as the logical screen size); graphics window size, in pixel width and
height. A window is initially displayed at the specified size.

If you do not specify a window size, then a default window size is assigned to the window.
Terminal windows default to 80 columns by 24 rows; graphics windows default to 200 by 200
pixels.

70 Using Commands

Raster/Buffer Size
Closely related to window size is raster and buffer size. Raster size refers to graphics windows,
and buffer size refers to terminal windows.

A graphics window's raster size is the size of the virtual graphics display being emulated by the
window. In other words, it is the pixel width and height of the graphics display the window
emulates. A window's size must always be less than or equal to its raster size. Any graphics
performed in a graphics window will be performed in the entire raster, not just the visible portion
given by the window's size. If you do not specify the raster size, it defaults to the window size.

Each terminal window has a screen buffer. This buffer holds information that scrolls out of the
user area. Buffer size specifies the size of this screen buffer for the given window. If you do not
specify a buffer size, it defaults to 80 columns by 48 rows (two full window user areas of text)
or to the window size, whichever is larger.

Figure 4-5 illustrates the relationship between a graphics window's raster and window size, and
a terminal window's buffer and logical screen size.

r

VIEW INTO
RASTER

~ ,

a:::
w
f0-
Ul

~

,p---------------------------

~~-------------------------;

co
a::: v
w
t:: x
::J
(DO

co

Figure 4-5. Relationship between Raster/Buffer and Window Size

Using Commands 71

Maximum Window Size
Once a window is created, you can shrink and increase its size. The maximum size for a graphics
window is its raster size; the maximum size for a terminal window is its logical screen size (the
size at which it was created).

Retained Graphics Window Raster
By default when a graphics window is created, it has a retained raster. This means that
memory is allocated for the window, one byte per pixel. The benefit of a retained raster is that
any graphics performed to the window, when it is non-viewable, are preserved in the retained
memory; the window manager takes care of maintaining the window's contents when the screen
is updated.

The disadvantage of retained rasters is that they consume shared memory. For example, a
1024- by 512-pixel retained-raster window uses half a megabyte of shared memory. (See the
appendix "Resource Usage Considerations" for details on shared memory.)

Fortunately, wcreate allows you to create windows with non-retained rasters. The user area of
non-retained windows cannot be redrawn from memory; therefore, windows with non-retained
rasters have the potential to become mussed. You must ensure that the window's user area
remains accurate.

For example, if the window system screen is repainted, the window manager cannot repaint
non-retained graphics windows from memory; you must catch the repaint signal and repaint the
window yourself.

The advantage of non-retained rasters is that they don't consume shared memory. They are
also especially useful for graphics programs that mantain a vector list from which the window
can be easily redrawn when the screen needs to be updated.

Window Type Device Interface
Each window created has a corresponding special file through which communication with the
window is possible. These special files are known as window type device interfaces and are
stored in the directory specified by the WMDIR environment variable. The path name for each
special file is $WMDIRjwindow_name, where window_name is the name used when the window
is created.

72 Using Commands

Executing wereateli)
To create a terminal or graphics window, execute the wcreate command which has the following
syntax:

wcreate [-w type] [-kboitnv] [-1 x,y] [-s w,h] [-r w,h] [window_spec ...]

Optional parameters are shown in brackets O. Descriptions of each parameter follow.

Specifying Window Name (window_spec ...)
If you do not specify a window name, a default window name will be taken from the window
manager. Default window names are assigned sequentially, and have the format:

windown

where n is a sequential number starting at one. For example, the first window created after
wconsole is windowl; the second, window2; and so on.

To specify a window name other than the default, give the window name as the last parameter
(window_spec). You can create more than one window by giving more than one name. For
example:

wcreate win1 win2 my_win

creates three windows: winl, win2, and my_win.

NOTE

For details on different ways of specifying window_spec, see the HP
Windows/9000 Reference page for windows(l}.

Specifying Window Type (-w)
The -w parameter is used to specify the type of the window to create. Recognized values for
the type are: graphics and termO (for terminal windows). When this parameter is omitted, a
terminal window is created by default.

The space between -wand the window type is optional.

The following creates a graphics window named my_grwin:

wcreate -wgraphics my_grwin

Using Commands 73

The next example creates a terminal window with a default name:

wcreate -w termO

You can leave off the -w parameter since termO is the default window type.

Selecting the Window (-k)
To automatically select a window upon creation, use the -k option, which attaches the keyboard
to the newly created window. If you create more than one window, the keyboard is attached to
the last window specified on the command line.

The following creates a graphics window named wqix and selects it:

wcreate -wgraphics -k wqix

The next example creates three terminal windows-win 1 , win2, and win3-and attaches the
keyboard to win3:

wcreate -k win2 win1 win3

Placing the Window on Bottom (-b)
By default, new windows are placed on the top of the displayed stack of windows. If you want
a window to be placed on the bottom, use the -b option.

The following creates a terminal window named bottom_win on the bottom of the stack and
attaches the keyboard to it:

wcreate -kb bottom_win

Note that only one of the -b and -0 options can be specified at a time; attempting to give both
will result in an error.

Concealing a Window (-0)
By default, new windows are displayed in their normal form. You can cause a window to be
concealed (not displayed on the screen) by using the - 0 option.

Once a window is concealed, you can make it visible using the wdisp(1) command. (See the
section "Changing a Window's Representation" for details on using wdisp.)

The following creates a default-named graphics window, but conceals it:

wcreate -wgraphics -0

Note that only one of the -b and -0 options can be specified at a time; attempting to give both
will result in an error.

74 Using Commands

Making the Window Iconic (-i)
Normally a new window is displayed in its normal form. The -i option is used to make the
window an icon initially.

Note that this option can be used with the -0 option. Using them together causes the window
to be a concealed icon. Then when the window is displayed, using wdisp(1) , it is displayed as
an icon.

The following creates an iconic terminal window named splork:

wcreate -i splork

Thin Border (-t)
To give a window a thin border, as described in the "Concepts" above, use the -t option. If -t

is not specified, the window will have a normal border.

The following creates a terminal window named thin_border; the keyboard is attached to it:

wcreate -kt thin_border

Non-Retained Graphics Window Raster (-n)
All graphics windows, by default, have a retained raster, as described in "Concepts" above. To
create a graphics window with a non-retained raster, use the -n option.

The following creates a non-retained graphics window named nOJetain; the window is created
to the default size (Le., no window or raster size is specified):

wcreate -n no_retain

Verbose Mode (-v)
If you would like wcreate to display the path name of the window's device interface when the
window is created, use the -v option.

Verbose mode is useful when you don't give window_spec-when you allow the window manager
to create a name for you. You can capture new window names in a shell variable. For example,
if you are a Bourne shell user:

win_path:'wcreate -vw graphics'
win_name:'basename "$win_path"'

creates a graphics window with the default window manager name; the path name of the
window's device interface is stored in win_path; and the window's name is stored in win_name.

Using Commands 75

Specifying Location (-I)
The window's new location is specified using the -1 option. Coordinates are specified in X,Y

pixels. If no coordinates are given, the window is placed at default coordinates taken from
the window manager. (For details on screen coordinates, see the "Display Screen Coordinates"
section of the "Concepts" chapter in this manual.)

The following creates a graphics window, with default size and a thin border, at location 100,150:

wcreate -w graphics -t -1 100.150

The space between -1 and the X,Y coordinates is optional.

If you specify coordinates and create more than one window, all windows will be placed at the
same location.

Specifying Size (·s)
A window's size is specified with the -s option. If this option is omitted, terminal windows
default to 80 columns by 24 rows, and graphics windows default to 200 by 200 pixels.

The following creates a non-retained graphics window named my_gr; the window is created 400
pixels wide by 200 pixels high:

wcreate -wgraphics -n -s 400.200 my_gr

The space between the -s and the width and height can be omitted. The next example creates
a terminal window that is 80 columns by 48 rows:

wcreate -s80.48

Specifying Raster/Buffer Size (.,)
A window's raster or buffer size is specified via the -r option. If no raster size is specified
(for graphics windows), the raster defaults to the window size. If no buffer size is specified (for
terminal windows), the scroll buffer defaults to 80 columns by 48 rows of characters (two default
window screens of information) or to the window size, whichever is larger.

The following creates a graphics window named gr _win; its size is 200 by 200 pixels, but its
raster size is 800 by 400 pixels; the raster is retained; and the window has a thin border:

wcreate -w graphics -t -1100.100 -s200.200 -r 800.400

The space between the -r and the raster width and height is optional. The next example creates
a terminal window named four _screens; it is created to the default columns and rows (80 by
24); but its scroll buffer can hold up to four screens (80 columns by 96 rows) of information:

wcreate -r80.96 four_screens

76 Using Commands

Creating a Window with a Shell
The wsh(l) command is used to create a terminal window containing an HP-UX shell, or to put
a shell in an existing terminal window. This section discusses the use of wsh and its various
parameters.

NOTE

This section uses essential concepts from the previous "Creating a Win­
dow" section. You should be sure to read that section before continuing
with this one.

Concepts
Before discussing how to create a window containing a shell, you should understand the following
essential concepts.

The SHELL Environment Variable
The window system uses the SHELL environment variable to determine which shell to put in a
window. The SHELL variable is, by default, set to the path name of the shell you use.

The SHELL variable, by default, is set to the path name of your login shell as defined in
/etc/passwd. For example, if you use the Bourne shell, SHELL is set to /bin/sh; if you use the
C-shell, SHELL is set to /bin/csh.

You can determine the value of SHELL by using the echo(1) command. Type the following from
HP-UX, and HP-UX will display the value of SHELL:

echo $SHELL

When a new window is created with a shell, the window system looks at SHELL to determine
which shell to put in the window.

Using Commands 77

Setting SHELL
For most users, SHELL is automatically set when they log in or power up their system. However,
some users may wish to use a different shell than the default. To change SHELL, you should
set it in your personal .profile or ./ogin initialization script.

For example, if you want the Bourne shell in your windows, you should put the following in your
.profile shell script:

SHELL=/bin/sh ; export SHELL

and the following in your .login script:

setenv SHELL /bin/sh

Inherited Environment
All windows created via the pop-up menu inherit their run-time environment from the existing
environment when wmstart(l) is invoked. For example, if wmstart is executed from the directory
/usr/lib/hpwindows/demo, all windows created will have their current working directory initially
set to the same.

Unlike windows created using the pop-up menu, windows created via wsh(l) inherit the environ­
ment that existed when wsh was executed, which may be different from the environment that
existed when wmstart was executed.

Terminating a Window Shell
A shell in a window can be terminated in the same manner as a shell at a terminal. Simply
execute the appropriate command (e.g., exit for the Bourne shell; logout for the C-shell).

Once you've terminated a shell in a window, you cannot execute any more commands from the
window. Depending on the options used when the window was created, it may automatically
disappear when the shell is terminated (discussed next in "Automatic Window Destruction").

A window that is not automatically destroyed when its shell is terminated is in the same state
as a terminal window created via wcreate(l)-it is simply a terminal window with no programs
running in it.

78 Using Commands

Automatic Window Destruction
By default, when all the processes in a window (including the shell) terminate and the window's
device interface (special file) is closed by all processes, the window remains intact in the system
until you explicitly destroy it via the pop-up menu's Destroy option or the wdestroy(l) command.

By using special command options with wsh, you can cause the window to be automatically
destroyed when its device interface is closed by all processes. For example, you can cause the
window to be destroyed when its shell terminates.

A window that is marked to be automatically destroyed is said to be recoverable.

You can also control when the window is destroyed:

• It can be destroyed immediately when its device interface is closed by all processes that had
it open. In window terminology, a window in this state is recoverable and autodestroyable.

• It can be destroyed subsequently when a new window is created, either via the pop-up menu
or commands. In window terminolgy, the window is recoverable, but not autodestroyable.

The -a and -d options are used for this purpose; they are described below.

Executing wSh(1) to Create a Window
As mentioned earlier, wsh can be used to create a window containing a shell, or it can be used
to attach a shell to an existing window. Using wsh to create a window with a shell is discussed
here.

Syntax
When used to create a window containing a shell, the wsh command has the following syntax:

wsh [-w type] [-kboitnv] [-1 x,y] [-s w,h] [-r w,h] [-gad]
[-c commandline] [Window_spec ...]

wcreate(i) Options
All of the options avaible for the wcreate command are also available for wsh. The meaning
of these options also remains the same for wsh. Table 4-2 summarizes the common options
between wsh and wcreate.

For details on these options, see "Executing wcreate{l)" in the previous "Creating a Window"
section.

Using Commands 79

Option

-w type

-k

-b

-0

-i

-t

-n

-v

-1 X,Y

-s w,h

-r w,h

Table 4-2. Common Options between wsh(l) and wcreate(l)

Summary

Specifies the name{s) of the window{s) to create. If you do not give a window
specification, a default name is assigned by the system to the new window. For
details on specifying window_spec, see the windows(1) reference page in the HP
Windows/9000 Reference.

Gives the type-graphics or termO-for the window to create. Normally you
would just omit this parameter, as it defaults to terminal type (termO). However,
if you need to execute a graphics application from a shell, set the window type
to graphics (see the example in "Destroy Upon Close (-a)" below).

If present, it means to select (attach the keyboard to) the window after it is created.

Says to make the window the bottom window in the display stack. You cannot
specify both -band - 0 at the same time.

Conceal the window. The window is invisible. Only one of -b and -0 can be
specified at a time.

Make the window iconic.

Gives the window a thin border.

If the window is a graphics window, give it a non-retained raster.

Verbose mode. Display the path name of the window's device interface when the
window is created.

Gives the window's x,y-pixel location. If not specified, it defaults to a system­
determined stair-step location.

For a terminal window, this gives the number of columns and rows of characters
for the window; if omitted, window size defaults to 80 columns by 24 rows. For
graphics windows, this option gives the pixel width and height of the window; if
not specified, it defaults to 200 by 200 pixels.

For a terminal window, this gives the size of the scroll buffer; if omitted, the scroll
buffer default to 80 columns by 48 rows (enough for two default-sized window
screens of information). For graphics windows, this gives the width and height (in
pixels) of the virtual raster; if not specified, it defaults to the window's size.

Passing a Command l-c)
Occasionally, you may wish to create a window for nothing but the purpose of executing a
command or application in the window. The - c option allows you to start a command or
application in a window, without ever getting an interactive HP-UX shell in the window.

80 Using Commands

For example, the following creates a terminal window named vCwindow for nothing but the
purpose of editing a file named flebnee:

wsh -c'vi flebnee' vi_window

In this example, when you exit from vi{l) , you'll have a dead window, a window containing
no shell or application. You must explicitly destroy the window. However, it is possible to
have the window automatically destroyed when you're finished with it; this is described later in
"Destroying upon Close (-a)" and "Destroying upon Next Create (-d)."

"aking a Login Shell (-9t
When you create a new window with a shell, you may want the shell initialization scripts to
be executed, just as if you had logged into the window. For example, if you're creating a
Bourne-shell window, you may want /ete/profile and $HOMEj.profile executed when the shell
is created in the window. And if you create a C-shell window, you may want the /ete/esh.login,
$HOMEj.eshre, and $HOME/.Iogin scripts executed. The -g option causes the login initialization
sequence to be performed when the shell is created in the window.

Destroying upon Close (-at
If you want a Window to be automatically destroyed when its shell (or application) terminates,
use the -a option. If -a is specified, the window is immediately destroyed when all commands
or applications executing in the window close the window's device interface.

For example, suppose you create a window for the sole purpose of editing a file named stuff.dat.
When you are through editing the file, you want the window to disappear. The following performs
this task:

wsh -kga -c'vi stuff.dat' vi_window

Note that the keyboard is attached to the window (-k), and login scripts are read (-g).

For the next example, suppose you have a graphics application named graph_master that requires
a graphics screen that is 512 pixels wide by 512 pixels high. If you wish to create a graphics
window that simply executes graph_master and terminates when it is finished, use:

wsh -w graphics -ka -r 512.512 -c graph_master

Using Commands 81

Destroying upon Next Create (-d)
The -d option is similar to the -a option, except that the window is not destroyed until a new
window is created. When a new window is created, the window that is marked with the -d
option will be automatically destroyed.

The following example lists the contents of the current directory in a window named Is_window.
The window will continue to exist until you create another window or destroy the window
explicitly (via the pop-up menu or wdestroy(l) command:

wsh -d -cIs Is_window

Executing wsh(1) to Start a Shell
A dead window is a window whose shell or application has terminated, but which has not yet
been destroyed. The window is basically inactive: anything you type at the window is ignored.
This section discusses how to start a shell in a dead window.

Syntax
When used to start a shell in a dead window, wsh has the following syntax:

wsh -e [-gad] [-c commandline] window_spec ...

Descriptions of each parameter follow.

Specifying the Window (window_spec ...)
Whereas giving the window specification is optional when creating a window, the ·window spec­
ification must be given when using wsh to start a shell in a dead window. Otherwise, wsh does
not know which window to start the shell in.

Start a Shell (-e)
The - e option tells wsh to start a shell in the specified window. The - e option should not be
used when creating a window.

Suppose you have a dead window named dead-un. To start a shell in the window, you would
use:

wsh -e dead-un

The -gade Options
The -g, -a, -d, and -c options can also be used with wsh in this case. They work the same as
described previously.

82 Using Commands

Destroying a Window
When you are finished using a window, you can destroy it using either the Destroy option of the
pop-up menu, or the wdestroy(1) command.

wdestroy can also be used to set a window's auto-destruction status, as described in the next
section, "Setting a Window's Autodestroy Attributes."

Executing wdestroy(1)
When wdestroy is used simply to destroy a Window, its syntax is:

wdestroy window_spec ...

You can destroy more than one window by giving the window name of each window to destroy.
To destroy the window attached to standard input (Le., the window from which wdestroy is
executed), use - for the window_spec (see the third examle below).

Examples
The following destroys the window named my window:

wdestroy my window

The next example destroyes three windows-win, my win , and gerschwin:

wdestroy win my win gerschwin

To destroy the window attached to standard input, use:

wdestroy -

Precautions

• Destroying a window completely removes it from the window system. Any programs
executing in the window cannot be retrieved. You should be certain you want to destroy
a window before using this command .

• When a window is destroyed, all of its pty special files are removed from the $WMDIR
directory. They then become available in the pool of ptys to create new windows.

Using Commands 83

Setting a Window's Autodestroy Attributes
In addition to destroying windows, the wdestroy(l) command can be used to mark an existing
window to be automatically destroyed when the window's shell (or application) terminates.

Concepts
By default, when all the processes in a window (including the shell) terminate and the window's
device interface (special file) is closed by all processes, the window remains intact in the system
until you explicitly destroy it via the pop-up menu's Destroy option or the wdestroy(l) command.

By using special command options with wdestroy, you can cause the window to be automatically
destroyed when its device interface is closed by all processes. For example, you can cause the
window to be destroyed when its shell terminates.

A window that is marked to be automatically destroyed is said to be recoverable.

You can also control when the window is destroyed:

• It can be destroyed immediately when its device interface is closed by all processes that had
it open. In window terminology, a window in this state is recoverable and autodestroyable.

• It can be destroyed subsequently when a new window is created, either via the pop-up menu
or commands. In window terminolgy, the window is recoverable, but not autodestroyable.

The -a and -d options are used for this purpose; they are described below.

Executing wdestroy(1)
When used to set a window's autodestroy attributes, wdestroy has the following syntax:

wdestroy -adn [window_spec ...]

Only one of the -a, -d, or -n options may be used at a time, and the window_spec is optional.
You can set the autodestroy status for more than one window by giving the name of each
window for Window_spec. If no window_spec is given, wdestroy destroys the window connected
to standard input (typically, the window from which wdestroy was executed).

84 Using Commands

Destroy Upon Clo.e (-a)
If you want a window to be automatically destroyed when its shell terminates, use the -a option.
If -a is specified, the window is immediately destroyed when all commands or applications
executing in the window close the window's device interface.

For example, suppose you have terminal window named termOwin which contains a shell; the
window was created in the following manner, using wsh(1):

wsh -k termOwin

Because the -a option was not used when the window was created, the window will not be
automatically destroyed when the shell terminates. To change this-i.e., to automatically destroy
the window immediately when its shell terminates-use wdestroy as follows:

wdestroy -a termOwin

Destroy upon Next Create (-d)
The -d option is similar to the -a option, except that the window is not destroyed until a new
window is created. When a new window is created, the window that is marked by the -d option
will be automatically destroyed.

Suppose that in the previous example, you want the window to be automatically destroyed when
a new window is created. You would use:

wdestroy -d termOwin

Turn off Autodestroy (-n)
You can turn auto-destruction off via the -n option. Using -n tells the window system to not
automatically destroy the window when its shell (or application) terminates.

For this example, suppose you've created a terminal window named f1ebnee, and it was created
with auto-destruction turned on (-a):

wsh -a flebnee

To turn auto-destruction off for the window, you would use:

wsh -n flebnee

Using Commands 85

Selecting a Window
In addition to using the pop-up menu to select a window, you can use the wselect(l) command.

Concepts
As mentioned in the "Concepts" chapter, keyboard input can be read from a window only when
the window is selected. That is, only when a window is selected can processes read keyboard
(and locator information) from the window's device interface.

For example, if you have a shell running in a particular window, you cannot enter HP-UX
commands in the window until the window is selected.

Executing wselect(1)
To select a window, use wselect(l) which has the following syntax:

wselect [window_spec]

The window specified by window_spec will become selected. If no window_spec is given, then
the window attached to standard input (typically, the window from which the command was
executed) is selected.

Executing wselect without the window_spec parameter would typically be used from a script.
The window in which the script is running might not be the selected window, but when the
wselect command is executed in the script, it becomes the selected window.

Example
Suppose you create a new window, but you forget to attach the keyboard to the window when
it is created:

To select the window via the wselect command, you would use:

wselect vi_window

After which you can begin using vi(l) within the window.

Precautions
Remember that keyboard input can be taken only from the selected window. You can only use
the keyboard with one window at a time.

86 Using Commands

Moving a Window or Icon
Every window and icon has a location on the display screen. The wmove(1) command is used
to change a window's location.

Concepts
Each window's location on the display screen is given in X,y pixel coordinates. When you move
a window, you should specify coordinates which are valid for your display device-they should
be within the resolution of the display screen to guarantee that you can see the window after
the move operation is finished. (For details on display screen coordinates, refer to the "Display
Screen Coordinates" section of the "Concepts" chapter in this manual.)

Executing wmove(1)
To move a window or icon, execute wmove; its syntax is:

wmove [-i] [-1 x,y] [window_spec ...]

Each parameter is optional. Descriptions of each follow.

Specifying the Window (window_spec .•.)
The window_spec parameter is a list of one or more windows to move. All specified windows are
moved to the desired location. If window_spec is not given, wmove moves the window connected
to standard input (typically, the window from which the command was executed).

Specifying Location (-I)
The -1 option is used to specify the new window location. The new window location is given
in x,y-pixel coordinates. If no window location is specified, the window(s) will be moved to the
next default stair-step location, returned by the window manager.

For example, to move a window named my win to pixel location 100,150, you would use:

wmove -1 100,150 mywin

The space between the -1 and X,y is optional.

The next example moves the window wconsole to the next default stair-step location:

wmove wconso1e

Execute this command several times with your wconsole window to see how the window stair­
steps down the display screen.

Using Commands 87

Moving an Icon (-i)
Each window's icon has a location attribute also, distinct from the window's location. To move
an icon's location, use the -i option.

The following example moves the icon for a window named xx317 to x,y-pixel coordinates
123,456:

wmove -i -1123,456 xx317

Precautions
The results of attempting to move a window via wmove may not be immediately visible, if the
window is:

• concealed

• located off-screen

• occluded by other windows

• normal, but its icon is moved

• iconic, but its normal form is moved.

88 Using Commands

Changing a Window's Size
You can use the wsize(l) command to change the size of one or more windows.

Executing wsize(1)
To change a window's size, execute wsize; its syntax is:

w8ize [-8 w,h] [window_spec ...]

Each parameter is optional. Descriptions of each follow.

Specifying the Window (window_spec ...)
The window_spec parameter specifies the name(s) of the window(s) for which the size will be
changed. All specified windows are changed to the same size. If no window is specified, wsize
changes the size of the window attached to standard input (typically, the window from which it
was executed).

Specifying Size (-s)
The -8 option is used to specify the new window size. w,h are in units appropriate to the window
type: for terminal windows, w,h are columns and rows of characters; for graphics windows, w
and h are pixels.

Attempting to change a window to a size larger than its maximum results in the window being
changed to its maximum size.

Attempting to change a window to a size smaller than its minimum results in the window being
changed to its minimum size. For thin-bordered windows, a terminal window's minimum size is
one character cell; a graphics window's minimum size, one pixel. For normal-bordered windows,
the minimum size is such that all manipulation areas in the border (Le., control boxes, scroll
arrows, and the first character of the window's label) can be seen.

If no size is specified, and the window is a terminal window, then the window is changed to its
maximum size. If the window is a graphics window, then the window is changed to a size such
that its lower-right corner is flush with the lower-right corner of its raster.

Using Commands 89

Examples
The following changes a graphics window named grwin to 100 pixels wide by 200 pixels high:

w8ize -8 100,200 grwin

The space following -8 is optional.

The next example changes the window connected to standard input (typically, the window from
which wsize is called) to its maximum size:

w8ize

90 Using Commands

Shuffling Windows
As you accumulate more than one window on the display screen, they may become overlapped.
When windows are piled in this manner, they are thought of as being in a display stack. Windows
can be shuffled up or down through the displayed stack of windows using the wdisp(1) command.

NOTE

wdisp is also used to control the representation-normal, iconic, or
concealed-of windows. This is discussed in the next section, "Changing
a Window's Representation."

Shuffling the Top Window Down I-d)
To move the top window in the display stack to the bottom, and move the remaining windows
up one position, use wdisp as follows:

wdisp -d

The resulting topmost window in the display stack automatically becomes the selected window.

Shuffling the Bottom Window Up I-u)
To move the bottom window in the display stack to the top, and move the remaining windows
down one position, use wdisp as follows:

wdisp -u

The new top window automatically becomes the selected window when wdisp is used in this
manner.

Using Commands 91

Changing a Window's Representation
Each window has two possible representations: normal or iconic. In addition, windows can
be concealed, that is, made invisible. The wdisp(l) command is used to change a window's
representation or concealment.

Concepts
Before using wdisp, you should understand the following basic concepts.

Normal vs. Iconic Representation
As mentioned previously, each window can be either normal or iconic. Figure 4-9 shows the
wconso/e window in its normal form.

Figure 4-9. Normal Representation

Terminal and graphics windows each use different default pictures for their iconic representations.
This is so that you can distinguish between the icon for a terminal window and a graphics window.
Figure 4-10 shows a terminal window icon (on the left) and a graphics window icon (on the right).

Figure 4-10. A Terminal Icon and Graphics Icon

92 Using Commands

Concealed va. Displayed
Each· window, regardless of whether it is normal or iconic, is also either concealed or displayed.
It is not possible to see concealed windows or icons on the display screen: they are not displayed.

You might want to conceal a window or icon when you temporarily want to remove it from the
display screen. For example, if you are playing a video game in a graphics window (but you're
supposed to be generating quarterly reports), and your boss is coming over, you can conceal the
graphics window until she's gone.

Note, however, that programs will still execute in concealed windows. You should temporarily
stop any applications running in a window before concealing the window, if you don't wish to
lose the application's output. (For example, if you don't temporarily stop the video game in the
above example, you might get eaten by 4,927 ganglion invaders.)

Note also: even though a window or icon is displayed does not ensure that it will be visible on
the display screen. It may be off-screen or occluded (covered) by other windows or icons.

Top va. Bottom Window
When you have more than one window on the display screen, they tend to overlap, The "pile"
of overlapped windows is known as the display stack. The wdisp command also allows you to
move a window to the top or bottom of the display stack.

Executing wdisp(1)
To change a window to an icon, or vice versa, and/or to control the concealment or displayability
of a window or icon, use wdisp with the following syntax:

wdisp [-tbo] [-nil [window_spec ...]

Each parameter is optional. The -n and -i options are mutually exclusive, that is, you cannot
use both of them at the same time. The -t, -b, and -0 options are also mutually exclusive and
cannot be combined.

If no options are specified, then -tn is used as the default. For example,

wdisp my_window

produces the same effect as:

wdisp -tn my_window

Detailed descriptions of each parameter follow.

Using Commands 93

Specifying the Window (window_spec .••)
The window_spec parameter specifies the name(s) of the window(s) for which to change repre­
sentation, displayability, and/or position in the display stack. All specified windows are affected.
If no window is specified, only the window attached to standard input (typically, the window
from which wdisp is executed) will be affected.

Changing from Normal to Iconic Representation (-i)
To change a window from normal to iconic, use the -i option. This option assumes, of course,
that the specified window is currently in normal representation.

Note: This option cannot be used with the -n option.

The following example changes the wconsole window to an icon:

wdisp -i wconsole

Changing from Iconic to Normal Reresentation (-n)
To change from iconic to normal representation, use the -n option. Likewise, this option assumes
the specified window is currently iconic.

Note: This option cannot be used with the -i option.

This example changes the wconsole window from its iconic state back to normal representation:

wdisp -n wconsole

NOTE

Neither the -n or -i options, by themselves, affect a window's conceal­
ment or position in the display stack. They merely control the window's
representation.

94 Using Commands

Displaying a Window as Ihe Top Window (-I)
To display a window as the top window in the display stack, use the -t option. Note, this option
works, regardless of whether a window is normal or iconic; in other words, an iconic window
can be the top window in the stack, even though it is an icon.

The following example displays the wconso/e window as the top window in the display stack:

wdisp -t wconsole

The -n and -i options can be used in combination with -to For example, the following changes
wconsole to an icon and makes it the top window in the display stack:

wdisp -ti wconsole

Displaying a Window as Ihe Bottom Window (-b)
To display a window as the bottom window in the display stack, use the -b option. Like the -t

option, this option works regardless of whether a window is normal or iconic.

The following example move the window named wconsole to the bottom of the display stack:

wdisp -b wconsole

As with -t option, -b can be combined with -n or -i. However, the -b and -t options cannot
be combined. The following example changes wconsole to an icon and displays it as the bottom
window in the stack:

wdisp -bi wconsole

Concealing a Window (-0)
To conceal a window, use the -0 option. This option can be combined with the -n or -i options,
but cannot be used with -t or -b.

The following changes wconsole to normal representation and conceals it:

wdisp -on wconsole

The next example conceals a graphics window, ganglion_game:

wdisp -0 ganglion_game

Using Commands 95

Controlling a Window's Border
Via the wborder(l) command, you can control certain attributes of a window's border. This
section discusses the use of wborder and its options.

Concepts
Before discussing wborder, you should understand some rudimentary concepts about window
borders.

Normal or Thin Boreler
A window's border can be either normal or thin border. A normal border has the window label
and control boxes visible (as in Figure 4-11).

Figure 4-11. A Normal-Bordered Window

A thin border does not have any of the normal border areas present: it is simply a thin line
surrounding the user area (see Figure 4-12).

96 Using Commands

Figure 4-12. A Thin-Bordered Window

Note that you still can get a pop-up menu for the window by clicking the locator over the border.
It's just a little more difficult to get the pointer over the border when it's thin.

Foreground and Background Border Colors
Each window has a foreground and background border color. By default, the background color
is white and the foreground color is black. The wborder command allows you to specify new
foreground and background colors for a window's border.

A color is actually an index into the graphics device's color map. Table 4-3 shows the default
colors used when you power up your system. Note that the mapping in this table is valid only
as long as you don't change the default color map for your system. In addition, although you
may not explicitly change the color map, some other Starbase/DGL/ AGP graphics application
running to the screen or a window may change the color map; you should be aware of this fact.

NOTE

On monochromatic (black-and-white) systems, only black and white (0
and 1) colors are valid. Colors other than black or white default to the
color map entry for white (1).

Using Commands 97

Table 4-3. Default System Color Map

Color Value

black 0

white 1

red 2

yellow 3

green 4

cyan 5

blue 6

magenta 7

Window Label
The wborder command also allows you to change a window's label. The window label is the
name displayed in the window's border and icon. Normally, the window label is the same as the
window name.

Note: Changing a window's label does not affect the window name. The window name remains
the same. All commands still require you to use the window's name, if the label is different from
the name.

Only the first 12 characters of the label are displayed in the window's border.

Executing wborder(1)
The wborder command has the following syntax:

wborder [-nt] [-c fcolor,bcolor] [-1 labe~ [window_spec]

All parameters are optional. Descriptions of each follow.

Specifying the Window (window_spec ...)
The window_spec parameter specifies the name(s) of the window(s) whose border is to be
changed. All specified windows are affected. If no window is specified, only the window attached
to standard input (usually, the window from which wborder is executed) will be affected.

98 Using Commands

Making Ihe Border Thin (-I)
The -t option is used to make a window's border thin. This option assumes, of course, that
the border is currently normal.

The following example changes the wconsole window's border to thin:

wborder -t wconsole

Making Ihe Border Normal (-n)
The -n option returns a window's border to normal representation. Likewise, this option assumes
the window's border is currently thin.

The following example changes the wconsole window's border back to normal:

wborder -n wconsole

The -n and -t options cannot be used together, nor would it make any sense to do so.

Note: Using the -n option with wborder may fail if the window is too small to leave room for
manipulation areas in the border.

Specifying Foreground and Background Colors (-c)
The -c option is used to set a window's foreground and background border colors. Colors can
be specified either as color indexes (Le., values from Table 4-3) or as abbreviations of color
names (also from Table 4-3).

IMPORTANT

Foreground and background colors must be distinct (that is, they must
be different from each other); otherwise the wborder command will fail.

For example, the folloWing sets wconsole's foreground and background colors to yellow and
green, respectively:

wborder -c 3,4 wconsole

So does the following:

wborder -c yellow,green wconsole

Using Commands 99

And so does the following:

wborder -c y.4 wconsole

NOTE

On monochromatic (black-and-white) systems, only black and white (0
and 1) colors are valid. Colors other than black or white default to the
color map entry for white (1).

Keeping in mind that foreground and background colors must be distinct,
if follows that black should always be one of the specified colors on
monochromatic systems. For example,

wborder -c yellow.green

will fail because both colors default to white. However,

wborder -c black.red

will work because the colors will default to black and white.

Note that you can also set foreground and background colors for characters displayed in terminal
windows. These colors are set via termO escape sequences. For details on setting terminal
window foreground and background colors, see the TermO Reference Manual and the "TermO
Windows" chapter of the HP Windows/9000 Programmer's Manual.

Setting the Window Label (-I)
To change a window's label to something other than its name, use the -1 option. Remember:
changing a window's label does not change its name; you must still use the window's name as
the window_spec for any command.

The following changes the label of the wconsole window to HELLO:

wborder -1 HELLO wconsole

If the new label contains imbedded spaces, then you must enclose it within single (') or double
(") quotes. The following changes the name of the wconsole window to my window:

wborder -l'my window' wconsole

100 Using Commands

Managing Terminal Window Fonts
HP Windows/9000 allows you to use different fonts in each terminal window. The wfont(l)
command is used to manage fonts in terminal windows.

Concepts
Before proceeding with the discussion on wfont, you should understand the following essential
concepts for font management.

What Is a Font?
In computer terminology, a font is a complete set of character representations, all of the same
sty~ and usually of the same cell size. This definition itself produces two new terms: style and
cell size.

Font Style
Perhaps the best way to define style is to give some examples. The text you are now reading
is all of the same style, this text is of a different style-italic, and this text is of yet a
different style-computer style.

Cell Size
Each character displayed in a terminal window is displayed in a rectangle known as a cell. The
cell is not normally visible; only the character is displayed.

All the fonts displayed in a given terminal window at a single time must all be of the same cell
size. You can intermix different styles of fonts, but all the styles must be the same size.

Cell size is simply the pixel width and height of the cell in which characters of a font are displayed.
Figure 4-13 should help clarify the idea of cell size.

Using Commands 101

CELL HEIGHT CELL HEIGHT

~ CELL WIDTH CELL WIDTH ~
Figure 4-13. Font Cell Size

Base and Altemate Fonts
At anyone time, each terminal window has a base and alternate font. By default, all text in the
window's user area is displayed in the base font; text is not normally displayed in the alternate
font.

Typically, these fonts will be of different styles. For example, when Windows/9000 is used with
a high-resolution display, terminal windows use an 8-by-16-pixel line printer font for the base
font-that is, for all text displayed within the user area. By default, an 8-by-16-pixel bold line
printer font is used as the alternate font; normally you cannot see this font.

Maximum Number of Fonts
Any window can have up to eight fonts loaded (Le., available for use) simultaneously. The wlont
command controls which fonts are loaded and which loaded fonts are designated as the base
and alternate fonts. Consequently, this means you could see characters displayed in up to eight
fonts at the same time in a window.

102 Using Commands

Selecting the Altemate Font
As mentioned above, text is not normally displayed in the alternate font. To cause text to be
displayed in the alternate font, you must send a special ASCII control character to the window,
the SOl character (which stands for Shift Out of the base font).

You can send this character to a window by pressing the I CTRL I and letter N keys at the same
time. Try typing the following to the HP-UX prompt in a terminal window (press the I CTRL I and
[]] keys together at the same time):

echo liThe base font. ~ The alternate font." I Return I

HP-UX will respond by displaying the first phrase in the base font and the second phrase in the
alternate font.

Selecting the Base Font
The base font is reselected (returned to) when either of the following conditions is met:

• an ASCII 511 character (which stands for Shift In to the base font) is sent

• you leave the current line by any means (e.g., by an ASCII line-feed {LF2}, escape se­
quence, etc.)

In the previous example, the I Return I key forced a new line (LF), thus causing the base font to
be reactivated. To activate the base font using the 51 character, press the I CTRL I and letter 0

keys at the same time.

Font Files
Fonts are defined in font files. Font files contain such information as font cell size, font style,
and raster definitions for each character. In order for a font to be used as the base or alternate
font, it must be loaded from a font file and activated.

Font file names are descriptive and indicate font style and character set size. A typical example
of a font file name is /p.b.BU. This means the font is a line printer font (Ip), is bold (b), and is a
Roman-8 font (8U).

1 Decimal 14; octal 016.
1 Decimal 15; octal 017.
2 Decimal 10; octal 012.

Using Commands 103

Font Directories
Font files are stored in font directories; all font directories are located under the directory
specified by the WMFONTDIR environment variable, typically /usr/lib/raster. All fonts of the
same cell size are stored in a single directory; the name of the font directory indicates the size
of fonts contained in that directory. For example, the directory /usr/lib/raster/12x20 contains
font files for all 12-by-20-pixel fonts.

Figure 4-14 illustrates the font directory structure.

~usr~ib~raster

6xB Bx16 7x10 12x20 1 BxJO

I I I I I
font font font font font

files files files files files

Figure 4-14. Font Directory Structure

Default Base and Alternate Fonts
As mentioned above, the window system uses default base and alternate fonts in terminal win­
dows. These fonts are defined by two environment variables:

• WMBASEFONT - defines the default base font to use in newly created terminal windows.
Normally this variable is left undefined by the wmstart(1) shell script. On most displays when
undefined or null, WMBASEFONT defaults to an 8-by-16-pixel, Roman-8, line printer font:
/usr/lib/raster/Bx16/lp.BU However, when Windows/9000 is used with low-resolution
Series 300 displays, WMBASEFONT defaults to /usr/lib/raster/6xB/lp.BU.

• WMALTFONT - defines the alternate font to use in newly created terminal windows.
Again, the variable is normally undefined in wmstart. For most displays, when WMALT­
FONT is undefined or null, it defaults to an 8-by-16-pixel, bold, Roman-8, line printer font:
/usr/lib/raster/Bx16/lp.b.BU However, Windows/9000 is used with low-resolution Series
300 displays, WMALTFONT defaults to /usr/lib/raster/6xB/lp.b.BI.

104 Using Commands

You can change the default base and alternate fonts by changing the values of these variables;
however, the defaults are quite adequate for most users and should not be changed unless
absolutely necessary. (For details on changing these variables, see the chapter "Customizing
Your System (Environment Variables)."}

Font Management Escape Sequences
In addition to using the wfont command to manage fonts, you can use terminal window escape
sequences. Escape sequences are special sequences of characters starting with the ASCII ESC!
character. When sent to a terminal window, escape sequences tell the window to perform some
task, for example, to activate a font. For details on using escape sequences in terminal windows,
see the TermO Reference Manual and the "TermO Windows" chapter of the HP Windows/9000
Programmer's Manual.

Executing wfont(1)
Depending on how wfont is used, it has three different syntaxes:

wfont [-F base_fonCpath alt-fonCpath [window_spec ...]]

wfont -f fonCpath [window_spec ...]

or

wfont [-ar] fonCpath [Window_spec ...]

In all cases, if no window_spec parameter is given, wfont affects the window attached to standard
input (typically, the window from which it was executed).

A Word About Font Paths
Font paths (fonCpath, base-fonCpath, and alt-fonCpath) are common to each syntax of wfont
The font path is simply the path name of the font file to load.

To specify a font path, you can either give the whole path name from the root (for example,
/usr/lib/raster/8x16/lp.b.8U), or you can specify the font path relative to the WMFONTDIR
environment variable (8x16/lp.b.8U for the previous example). You can also specify a relative
path name (begining with ./ or . ./).

1 Decimal 27; octal 033.

Using Commands 105

Replacing Both the Base and Alternate Fonts (-F)
The - F option is used when you wish to replace both the base and alternate font. It can also be
used to switch to a pair of different-sized fonts.

When used with -F, wfont repaints the window's contents area so all characters written in the
old alternate font are changed to the new alternate font; all others are changed to the new base
font.

The following changes the wconso/e window's base and alternate fonts to 8-by-16-pixel bold and
italic fonts respectively:

wfont -F 8x16/1p.b.8U 8x16/1p.i.8U wconsole

The following changes wconsole's base and alternate fonts to 12-by-20-pixel courier and boid
courier fonts. Note that the window will change size accordingly when you switch to a different­
sized font:

wfont -F 12x20/cour.OU 12x20/cour.b.OU wconsole

Note: If you attempt to change to a smaller font, and doing so would cause the window to be
sized smaller than its minimum size, wfont will fail. A thin-bordered terminal window's minimum
size is one character cell, so this case will always work. However, a normal-bordered terminal
window must be big enough so all manipulation symbols and part of the window's label can be
seen-so this case could fail.

Returning to Default Base and Alternate Fonts (no parameters)
If wfont is invoked with no parameters, then the current base and alternate fonts are returned to
default values. The window is repainted so all characters written in the previous alternate font
are changed to the default alternate font; all others are changed to the default base font.

Executing wfont with no parameters is analogous to using wfont with the -F option as follows:

wfont -F base-fonCpath alt-fonCpath

where base-fonCpath and alt-fonCpath are the path names for the default base and alternate
fonts.

106 Using Commands

Replacing All Fonts with One Base Font (-f)
When you want to replace both the current base and alternate fonts with a new base font, use
the -f option. Using this option causes the window's user (contents) area to be repainted; all
characters are redisplayed in the new base font, even those that were displayed in the alternate
font.

The following flushes the current base and alternate font from the wconsole window and replaces
them with 8-by-16-pixel line printer font:

wfont -f 8x16/1p.8U wconsole

Activating a New Alternate Font (-a)
To load and activate a new alternate font, use the -a option. This option by itself does not cause
the window's user area to be repainted. Only subsequent alternate-font characters are displayed
in the new alternate font; old alternate-font characters remain unchanged.

The following activates 8-by-16-pixel italic as the new alternate font in the wconsole window:

wfont -a 8x16/1p.i.8U wconsole

NOTE

The -a option can be used only with same-size fonts. In other words,
if the current font cell size is 8-by-16 pixels, then replace the alternate
font only with an 8-by-16-pixel font.

Replacing the Base Font and Repainting (-r)
The -r option, when specified alone, causes the current base font to be replaced, and all
characters in the old base font are repainted in the new base font.

The follOWing replaces wconsole's current base font to 8-by-16-pixel bold line printer font:

wfont -r 8x16/1p.b.8U wconsole

NOTE

The -r option can only be used with same-size fonts. In other words,
if the current font cell size is 8-by-16 pixels, then replace the base font
only with an 8-by-16-pixel font.

Using Commands 107

Replacing the Altemate Font and Repainting (-ar)
The -a and -r options, when used together, replace the alternate font and repaint all characters
displayed in the old alternate font with the new alternate font.

For example, the following replaces the current alternate font with the 8-by-16-pixel math font:

wfont -ar 8x16/math.OM wconsole

NOTE

This usage of wfont is valid only with same-size fonts. In other words,
if the current font cell size is 8-by-16 pixels, then replace the base font
only with an 8-by-16-pixel font.

Activating a New Base Font (neither -a nor -r)
To load and activate a new base font, invoke wfont with only the path name of the new base
font to use. This option by itself does not cause the window's user area to be repainted. Only
subsequent base-font characters are displayed in the new base font; old base-font characters
remain unchanged.

The following activates 8-by-16-pixel math font as the new base font in the wconso/e window:

wfont 8x16/math.OM wconsole

NOTE

This usage of wfont is valid only with same-size fonts. In other words,
if the current font cell size is 8-by-16 pixels, then replace the base font
only with an 8-by-16-pixel font.

108 Using Commands

Listing Window Status
Using the wlist(1) command, you can list status information for windows. For example, you can
discover which fonts are currently in use in a window, or a window's type, location, and select
status.

NOTE

This section borrows many essential concepts from previous sections in
this chapter. For example, it is assumed you understand the ideas of
window location and size, and terminal window fonts.

Executing wlist(1)
To list window information, execute wlist which has the following syntax:

w1ist [-f1] [window_spec ...]

All parameters are optional. Descriptions of each follow.

Default Action (no options)
When neither -f nor -1 is given, wlist simply displays the full path name(s} of the window
type device interface(s} for the specified window(s}. When no window specification is given, the
path name for the window attached to standard input (typically, the window from which wlist is
executed) will be displayed.

For example, the following displays the path name of the device interface for the wconso/e
window:

w1ist wconso1e

The next example lists device interface path names for all existing windows:

w1ist '*'

This could also by typed as:

w1ist *

Using Commands 109

Typically, this example might list something like:

/dev/screen/wconso1e
/dev/screen/windowl
/dev/screen/graphwin

In the above example, three windows exist: wconsole, windowl, and graphwin. The device
interface for each window is found in the WMDIR directory, /dev/screen.

Listing Brief Font Information (-f)
When used alone, the -f option lists the device interface path name of each specified window
(as above), followed by the full path names of all fonts loaded in the window. Note that this
option works only with terminal windows.

The following example lists all the loaded fonts in the wconsole terminal window:

w1ist -f wconso1e

Assuming that wconsole contains only the default fonts loaded when it was created, the above
example will typically produce a report like:

/dev/screen/wconso1e:
/usr/1ib/raster/8x16/1p.8U
/usr/1ib/raster/8x16/1p.b.8U

Listing Extended Font Information (-fl)
The -f and -1 options, when used together, produce a report similiar to the -f option alone,
except that it contains additional font status information. Specifically, each font's size is displayed,
along with an activation indicator:

size activation_indicator jonCpath

110 Using Commands

The activation indicator can have one of the four values described in Table 4-4.

Table 4-4. Activation Indicators

Indicator Description

b/a The font is both base and alternate font.

base The font is the base font.

a1t The font is the alternate font.

- The font is currently neither the base nor the alternate font.

The following example lists extended font information for a window named many-fonts:

w1ist -f1 many_fonts

Let's assume the hypothetical window many-fonts has three fonts loaded, all 8-by-16-pixel fonts.
The base font is the Roman-8 line printer font; the alternate font is the Roman-8 italic line
printer font; and an additional, inactive font, Roman-8 bold line printer, is also loaded. The
report produced by the above command would look like:

/dev/screen/many_fonts:
8x16 base /usr/1ib/raster/8x16/1p.8U
8x16 /usr/1ib/raster/8x16/1p.b.8U
8x16 a1t /usr/1ib/raster/8x16/1p.i.8U

Listing Window Status Information (-I)
When invoked with only the -1 option, wlist generates a columnar report giving status information
for all specified windows. Descriptive headers are printed at the top of each column. Figure
4-15 shows a sample report generated by using this option.

WT KDTIA LOCX LOCY WIDE HIGH PANX PANY RASW RASH ILCX ILCY FGC BGC WINDOW
to kt--- 10 28 80 24 ? ? 80 48 10 560 0 1 wconso1e
to -b-id 114 236 80 24 ? ? 80 48 10 505 0 1 icon_win
gr --t-a 619 510 300 300 0 0 300 300 10 450 1 0 gang1ions

Figure 4-15. A Sample wlist(1) Report

Using Commands 111

Table 4-5 describes the columnar data displayed by this report.

Column

WINDOW

WT

K

D

T

I

Table 4-5. Descriptions of wlist(l) Report Columns

Description

Each window's name is listed in the last column.

This columns contains a two-character code for the window's type: to for terminal
windows, gr for graphics windows.

If the window is selected, a k appears in this column; otherwise a - is displayed.

Gives the window's display status. If the window is the top window in the display
stack, a t is displayed; if the window is the bottom Window, a b is shown; if the
window is concealed, c; otherwise, if the window is neither top nor bottom but is
displayed, a - is shown.

Indicates the window's border style: - indicates a normal border, t means a thin
border.

Iconic status: - indicates that the window is in normal form, i means that the window
is iconic.

A Indicates the window's current autodestroy state: - means that the window is not
recoverable; that is, it will not be automatically destroyed. An a in this columns
indicates the window is recoverable and autodestroyable; that is, it will be automatically
destroyed when its shell or application terminates. A d in this column means the
window is recoverable but not autodestroyable; in other words, it will be automatically
destroyed when a new window is created, after its application closes it (usually at the
termination of the application).

LOCX, LaCY These columns give the X,Y location (in pixels) for the window when it is in normal
form.

WIDE, HIGH The columns display the window's width and height: columns and rows for terminal
windows, and pixel width and height for graphics windows.

PANX, PANY Give the current pan position into a graphics window. Pan position is the X,Y offset (in
pixels) of the graphics window's view into its raster. These columns have no meaning
for terminal Windows, and are filled with a question mark (1).

RASW, RASH The width and height of the window's raster (for graphics windows) or scroll buffer (for
terminal windows). For graphics windows, units are in pixels; for terminal windows,
units are columns and rows of characters.

ILCX, ILCY The location of the window's icon is given by these columns. Coordinates are in x,y

pixels.

FGC, BGC These columns give the window's foreground and background border colors, respec­
tively. Colors are given as indices into the system color map.

112 Using Commands

Customizing Your System
(Environment Variables) 5
This chapter discusses the use of window system environment variables. Most users will not
require the information provided here. However, if you need to "fine tune" your system, that
is, if you need to alter default window system characteristics, then this is the chapter to read.

The following topics are discussed in this chapter:

• concepts essential to understanding the use of window system environment variables

• setting window system environment variables

• input! output special files

• the bit-mapped display driver

• graphics tablet scaling

• configuring the interactive user interface

• default fonts

• default colors

• desk top pattern

• interactive timeout and locator tracking

• pseudo-tty (pty) special files

• setting window manager real-time priority

• shared memory.

Customizing Your System 113

Concepts

What Are Window System Environment Variables?
A number of window system environment variables define the window system's default run­
time environment. Only a few of these variables are set when the window system starts executing;
they are set to default values in the wmstart(1) shell script which starts the window system. (For
details on how wmstart works, see the section "Starting the Window System" in the "Using
Commands" chapter).

The remaining variables needn't be set for the window system to work properly. If a variable
is not set before the window manager starts executing, the window manager assumes a reason­
able default value. Note, however, you still can set them if you wish to alter certain default
characteristics of the window system.

Why Set Environment Variables?
For most users, the default window system configuration is quite acceptable and no changes
need be made. There are two primary reasons why you might want to set window system
environment variables to values other than the defaults:

• If you have specialized needs/applications, you may need to alter the system configuration.

• Series 500 multiple-seat systems require that certain variables be redefined for each in­
stance (seat) of the window system.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that if you decide to
alter environment variables, change only those which absolutely need to
be set.

114 Customizing Your System

Reconfiguring Your System
By setting window system environment variables to values other than the defaults, you can alter
the way the window system runs. Following are examples of the types of things configurable via
environment variables:

• the interactive user interface

• the mapping the graphics tablet to the display screen

• the path names of window system input and output special (device) files

• default fonts to use in window borders, icon labels, pop-up menus, terminal windows, and
softkey labels

• the location and size of window system shared memory

• default window border foreground and background colors.

Series 500 Multi-Seat Systems
On Series 500 computers only, if you have the correct hardware configuration, you can have
more than one user (up to three users) running HP Windows/9000 simultaneously. Each user
has a bit-mapped display and HP-HIL devices. This is known as a multi-seat system, and to
work properly it requires that certain environment variables be changed.

Configuring multi-seat systems is described in detail in the appendix "Series 500-Specific Infor­
mation."

A Summary of Environment Variables
Table 5-1 lists window system environment variables along with a brief description of each and
the variable's default value. More-detailed descriptions of the variables are found later in this
chapter.

Customizing Your System 115

Variable

TERM

WMDIR1

WMINPUTCTLR1

WMLOCATOR1

WMSHMSPC

WMFONTDIR

WMSCRN1

Table 5-1. Window System Environment Variables

Description

This HP-UX shell variable is usually set to hp9836 hp9836
for the window system. This variable is set by
wmstart.

Default

Directory where the window manager's device in- /dev/screen
terface (special file) and window device interfaces
are put by the window manager. (For details, see
the "Special Files" section in this chapter.) This
variable is set by wmstart.

Special file for the keyboard. (See the "Special /dev/hilkbd
Files" section.) This variable is set by wmstart.

Special file for the HP-HIL input controller. (See /dev/rhil
the "Special Files" section.) This variable is set by
wmstart.

Special file for the HP-HIL locator device (e.g., /dev/locator
mouse or graphics tablet) used with your system.
(See the "Special Files" section.) This variable is
set by wmstart.

The maximum size of window system shared mem- Ox200000 (2Mb)
ory used by the window manager and window pro-
cesses. (See the "Shared Memory" section in this
chapter.) This variable is set by wmstart.

Gives the path name of the directory under which /usr/lib/raster
font directories and font files are stored. (See the
"Default Fonts" section in this chapter.) This vari-
able is set by wmstart.

Special file of the physical display where the window /dev/crt
system executes.

WMDRIVER The Starbase device driver used when writing to Depends on your display
your display. model.

S8_DISPLAY _ADDR Memory address in the user address space of the OxbOOOOO (l1Mb)
Starbase shared memory. Used to configure win-
dow system shared memory.

On multipie-seat Series 500 systems, these variables may need to be altered. For details on how these variables are affected, read the
appendix "Series 5O().Specific Information."

116 Customizing Your System

Variable

WMLOCSCALE

WMPTYMDIR

WMPTYSDIR

WMPTYNAME

WMPTYCNT

WMIATIMEOUT

WMIUICONFIG

WMRTPRIORITY

WMDESKPTRN

WMDESKFGCLR

WMDESKBGCLR

WMBDRFGCLR

WMBDRBGCLR

Table 5-1. Window System Environment Variables, Con't

Description Default

Maps a sub-portion of the graphics tablet (if used on The entire screen maps to
your system) to the window system physicai dispiay the entire graphics tabiet.
screen.

Path name of the directory where master psuedo-tty /dev/ptym
(pty) special files are located.

Path name of the directory where slave pseudo-tty /dev/pty
(pty) special files are located.

Starting name of the set of pseudo-tty (pty) special ttyp8
files used for windows.

Number of contiguous pseudo-ttys (ptys) used by the 31
window manager.

Gives: (1) the timeout period (in seconds) for inter­
active operations, and (2) the number of millisec­
onds relinquished by the window manager during
tracking.

Oxlc003c
See "Interactive Timeout
and Tracking -
WMIATIMEOUT."

Allows you to reconfigure the window system's in- Ox80781
teractive configuration. See "Configuring the Inter­

active User Interface -
WMIUICONFIG. "

Real-time priority for the window manager and Ox787c - i.e.,
window servers. Ranges from a (highest) to 127 120 for window manager,
(lowest). 124 for servers.

Dither pattern for desk top. Current valid values 50
are 0, 25, 50, 75, 100.

Foreground color for the desk top.

Background color for the desk top.

0: black, unless the
system color map has
changed from default.

1: white, unless the
system color map has
changed from default.

Default foreground color used for new window $WMDESKFGCLR
borders.

Default background color used for new window $WMDESKBGCLR
borders.

Customizing Your System 117

Variable

WMMENUFONT

WMSFKFONT

ICONFONT

BANNERFONT

WMBASEFONT

WMALTFONT

Table 5-1. Window System Environment Variables, Con't

Description

Font used for pop-up menu text.

Font used for softkey labels.

Font used for icon labels.

Font used in window borders.

Default

Depends on screen size.

Depends on screen size.

Depends on screen size.

$WMMENUFONT

Default font to load as the base font in newly created Depends on screen size.
terminal windows. We recommend that you never
change this variable unless absolutely necessary.

Default font to load as the alternate font in newly Depends on screen size.
created terminal windows. We recommend that
you never change this variable unless absolutely
necessary.

118 Customizing Your System

Setting Environment Variables
Window system environment variables can be set primarily through the following four methods;
detailed descriptions of each method, along with examples, are described below:

• on the command line when wmstart is invoked

• from the system-wide login initialization scripts (jete/profile for Bourne shell users,
/ete/esh.login for C-shell users)

• from your personal login initialization script ($HOME/.profile for Bourne shell users,
$HOME/ . login for C-shell users)

• in your personal copy of wmstart.

Descriptions of each method are discussed next.

NOTE

Attempting to set window system environment variables when the win­
dow system is already running will not work. You must set environment
variables before the window manager starts executing, as discussed in
the following methods.

Setting Variables on the Command Line
Perhaps the simplest, and safest, method for setting environment variables is setting them on the
command line when wmstart is invoked. To set variables on the command line, use the env(1)
command.

The env command, when used to start the window system, has the follOWing syntax:

env VARIABLE=value ••• wrnstart

where VARIABLE is the name of the environment variable you wish to set, and value is its value.
The " ... " simply means that you can set more than one variable on the command line.

For example, suppose you wish to change the desk top dither pattern from the default (50) to a
brighter pattern (25); you also wish to change the default menu font to a larger, 12-by-20-pixel
courier font. You would use env as follows:

env WMDESKPTRN=25 WMMENUFONT=/usr/lib/raster/12x20/cour.OU wrnstart I Return I

Customizing Your System 119

Setting from System-Wide Initialization Scripts
A more permanent method for setting environment variables is to set them in the system-wide
login initialization scripts: /ete/profi/e for Bourne shell users, /ete/esh.login for C-shell users.
Commands in these scripts are executed for every user who logs in (on multi-user systems) or
when you power up (on single-user systems). Therefore, window system environment variables
that are set and exported in these scripts will be used by the window system.

NOTE

Only the super-user can set window system environment variables using
this method. This is because the /ete/profile and /ete/esh.login shell
scripts must be edited, and only the super-user has write permission for
these files.

The advantage of using this method is that window system environment variables are automati­
cally set for all users of the system when they log in. This way the window system has the same
configuration for all users. In addition, users can still alter the values of environment variables,
if so desired, by setting them on the command line.

This method is also good for setting environment variables for multiple-seat Series 500 systems.
(See the appendix "Series SOO-Specific Information" for details.)

Setting Variables from jete/profile
To automatically set window system environment variables when users log in to a Bourne shell,
you must set and export the desired variables in /ete/profile. Variables are exported from
/ete/profile to users via the export command.

Adding the following to /ete/profile sets the WMDESKPTRN and BANNERFONT variables to
new values for all users of the Bourne shell:

WMDESKPTRN=75 ; export WMDESKPTRN # change the desk top dither pattern
BANNERFONT=/usr/lib/raster/7xl0/lp.8U
export BANNERFONT # change the default border font

120 Customizing Your System

Setting Variables from /ete/esh.login
To automatically set window system environment variables when users log in to a C-shell, you
must set and export the desired variables in /etc/csh.login. The setenv and export commands
are used to set the variables and export them to users.

The following, when added to /etc/csh.login, performs the same tasks as the Bourne shell
example above, except that it sets environment variables for all C-shell users:

setenv WMDESKPTRN 75 # change the dither pattern
setenv BANNERFONT /usr/lib/raster/7x10/lp.8U # change the border font

Setting from Your Login Shell Script
You can also set window system environment variables from your login initialization script:
$HOME/.profile for Bourne shell users, $HOME/.login for C-shell users. When you log in
(on multi-user systems) or power up (on single-user systems), commands in these scripts are
automatically executed. Therefore, any window system environment variables you set and export
from these scripts will be used by the window system.

The advantage of using this method is that you can customize window system environment
variables without affecting other users of the window system. The variables set in your login
script will not affect other users of the window system.

Setting Variables from $HOME/. profile
If you are a Bourne shell user, then you should set the environment variables in your .profi/e
login script. As with the jete/profile script, you must set and export the variables that you wish
to change.

For example, if you want the timeout period for interactive operations to be 15 seconds instead
of the default 60 seconds, you would enter the following in your $HOME/.profile file:

WMIATIMEOUT=15 ;export WMIATIMEOUT # set interactive timeout to 15s

Setting Variables from $HOME/.login
If you are a C-shell user, then you should set the environment variables in your .login initialization
script. The variables must be set and exported, as with the /ete/esh.login script.

The following example sets the default softkey font to 8-by-16-pixel bold line printer font:

setenv WMSFKFONT /usr/lib/raster/8x16/lp.b.8U # reset default softkey font

Customizing Your System 121

Changing Your Copy of wmstart(1)
The final method for setting environment variables is to set them in a personal copy of the
wmstart shell script-not the actual wmstart script itself. Rather than actually changing the
wmstart shell script, we strongly suggest that you make a personal copy of wmstart, rename
it to something other than wmstart, and set the environment variables in your personal copy.
Thereafter, when you want to execute windows, run your personalized copy instead of wmstart.

The reason we suggest making a personal copy of wmstart is so that the original wmstart script
will always remain intact. In addition, making a personal copy ensures that your copy of wmstart
won't get destroyed if you update your system.

Window system environment variables should be set using Bourne shell syntax:

VARIABLE=value ; export VARIABLE

122 Customizing Your System

Special Files
Because HP Windows/9000 is interactive, it makes intensive use of input and output devices.
For output, Windows/9000 requires a bit-mapped display; for input, HP-HIL devices such as a
keyboard and optional mouse or graphics tablet are useda

Each input or output device has an associated special file (also known as a device file) through
which communication with the device is facilitated. In addition, HP Windows/9000 makes ex­
tensive use of pseudo-tty (pty) special files to communicate with windows. This section discusses
HP Windows/9000 inputjoutput devices and their special files, pty special files, and how they
relate to window system environment variables.

NOTE

This section does not give a detailed discussion of the inputj output ar­
chitecture of HP Windows/9000. If you require this information, you
should read the "Concepts" chapter of the HP Windows/9000 Program­
mer's Manual.

NOTE

It is assumed the reader knows how to use HP-HIL devices with HP-UX.
For details on HP-HIL devices, you should read the tutorial Using HP­
HIL Devices with HP-UX in Volume 7 of HP-UX Concepts and Tutorials:
Facilities for Series 200, 300, 500.

Customizing Your System 123

Pseudo-tty (pty) Special Files
To perform input from and output to windows, Windows/9000 uses pty(4) special files. Each
window has three associated ptys, and each pty is comprised of a slave pty and master pty.
The window manager also has a pty through which communication with the window manager is
facilitated.

For details on pty special files, see your System Administrator Manual and the pty(4) page in the
HP-UX Reference. For details on how ptys are used with the window system, see the "Concepts"
chapter of the HP Windows/9000 Programmer's Manual.

You may also want to read the "Pseudo-tty (pty) Limitation" section of the appendix "Resource
Usage Considerations" in this manual: it provides details on why you might want to change the
pty-related environment variables discussed here.

The $WMDIR Directory
All window system pty special files are stored in the directory specified by the WMDIR environ­
ment variable. The wmstart shell script sets WMDIR to /dev/screen by default.

You can see all the window system ptys by listing the $WMDIR directory from an HP-UX shell
in a window:

11 -a $WMDIR

If you change this variable, be sure to set it to the path name for a valid directory; otherwise
the window system will fail.

IMPORTANT

As one of its tasks, the wmstart shell script removes all character­
type special files in the $WMDIR directory before starting the window
manager. Therefore, you should be sure not to set WMDIR to the
path name of a directory containing character special files that you want
to keep. Never set WMDIR to / dev. because all character special
files for devices in your system will get destroyed when wmstart is
executed.

124 Customizing Your System

Master and Slave plys - WMPTYMDIR and WMPTYSDIR
As mentioned at the start of this section, each pty is comprised of master and slave ptys.
The WMPTYMDIR variable gives the path name of a directory containing master ptys; the
WMPTYSDIR variable, the path name of a slave pty directory.

The wmstart shell script does not set WMPTYMDIR or WMPTYSDIR. When these variables are
not set or null, the window manager uses /dev/ptym for the directory containing master ptys
and /dev/pty for the directory containing slave ptys.

Defining the Starting Name for ptys - WMPTYNAME
When the window manager starts creating windows and their associated pty special files, it must
know which master and slave ptys it can take from the $WMPTYMDIR and $WMPTYSDIR
directories. The WMPTYNAME tells the window manager the starting name of a contiguous set
of pty special files to take from the $WMPTYMDIR and $WMPTYSDIR directories.

This variable should follow the following pty naming convention:

tty[P-v][O-9a -f]

By default, wmstart does not set this variable, and the window manager assumes the starting pty
to be ttypB.

Defining the Size of the ply Set - WMPTYCNT
In addition to knowning the starting location of the set of ptys, the window manager must
know the size of the contiguous set of ptys to take from the master and slave directories. The
WMPTYCNT variable defines the size of the pty set.

IMPORTANT

Nothing ensures that the ptys defined by WMPTYMDIR, WMPTYSDIR,
WMPTYNAME, and WMPTYCNT will not be used by applications un­
related to the window manager. If the window manager's ptys are con­
sumed by some other application, then the window manager cannot use
them and cannot go outside the bounds of its defined pty set to get other
ptys.

By default, the wmstart script does not set WMPTYCNT, and the window manager assumes 31
to be the size of the pty set.

Customizing Your System 125

NOTE

This number directly affects the maximum number of windows attain­
able with the window sytem. You should refer to the "Pseudo-tty (pty)
Limitations" section of the "Resource Usage Considerations" chapter in
this manual for details on the implications of setting this and other pty

environment variables.

Example
The following example sets the maximum number of ptys to 21; in addition, the starting set of
ptys is changed from the default, ttyp8, to ttyqO:

WMPTYNAME=ttyqO ; export WMPTYNAME
WMPTYCNT=21 ; export WMPTYCNT

The Display Screen Device - WMSCRN
To visually interact with users, HP Windows/9000 requires a bit-mapped display. The special
file for your display screen is created when the window system is installed. Typically, the special
file is named crt and is found in the / dev directory V dev / crt).

The WMSCRN Variable
The WMSCRN environment variable specifies the path name of the bit-mapped display used
with your window system. When the window manager starts executing, it looks at WMSCRN
to determine which special file to open as the display screen.

Setting WMSCRN
If WMSCRN is not set or is null (as is the default case), the window manager assumes the display
screen's special file path name is /dev/crt, and opens it for output. Otherwise, if WMSCRN
is set, the window manager attempts to open the specified path name as the window system
output device.

Possible Erron
If WMSCRN is set to an invalid value (for example, if it is set to the path name of a non­
bit-mapped terminal, or if it is set to an invalid path name), the window manager will fail and
terminate.

126 Customizing Your System

Keyboard Input - WMKBD
HP Windows/9000 allows you to have an HP-HIL keyboard. The special file for your HP-HIL
keyboard is created when the window system is installed. By default, the window system looks
for the keyboard special file named /dev/hilkbd.

If WMKBD is null, then the window manager assumes there is no keyboard, and keyboard input
to windows is disabled.

The Cooked Keyboard Driver
When used with the window system, the HP-HIL keyboard has two special files:

• a standard HP-HIL special file which uses the standard HP-HIL input driver-the raw
keyboard driver-and has an HP-HIL address, based on its position in the HP-HIL device
loop

• a special file which uses a cooked keyboard driver-the /dev/hilkbd special file.

HP Windows/9000 uses the cooked keyboard special file for all keyboard input, instead of the
standard (raw) HP-HIL special file.

Note that keyboard input can be read from raw HP-HIL special files-Le., those using the
raw HP-HIL driver. However, reading keyboard input from a raw HP-HIL special file can be
somewhat cumbersome. HP Windows/9000 uses the cooked driver special file so keyboard
input is easier to read for the window system.

The WMKBD Variable
The WMKBD environment variable specifies the path name of the cooked-driver special file
for your system's HP-HIL keyboard. When the window manager starts executing, it looks at
WMKBD to determine which special file to open for keyboard input.

Setting WMKBD
By default, WMKBD is set to /dev/hilkbd in the wmstart shell script. If you change WMKBD to
null (as WMKBD=""), keyboard input will be disabled in the window system.

Possible Errors
If WMKBD is set to an invalid value (for example, if it is set to the path name of a raw HP-HIL
special file, or if it is set to an invalid path name), unpredictable results will occur. If you change
this value, you should be absolutely sure it is set to a valid value.

Customizing Your System 127

The Locator Device - WMLOCATOR
HP Windows/9000 allows you to have a single locator device such as a mouse or graphics
tablet stylus or puck. The device file for the locator is named /dev/locator by default, and is
automatically linked to /dev/hiI2 when Windows/9000 is installed. If you add a locator device
later, or change the locator's address in the HP-HIL device loop, you must update /dev/locator
accordingly.

The WMLOCATOR Variable
The WMLOCATOR environment variable specifies the path name of the locator device's special
file. When the window manager starts up, it looks at WMLOCATOR to determine which special
file to open for locator device input. If WMLOCATOR is set to null, then locator input will be
disabled.

Setting WMLOCATOR
By default, WMLOCATOR is set to /dev/locator in the wmstart shell script; /dev/locator is
linked to the HP-HIL special file corresponding to the locator device used with your system.

For example, suppose you use a mouse device with your system, and the mouse is the second
device in the HP-HIL loop. If you list the / dev directory, you'll see a standard HP-HIL special
file for the mouse device, typically /dev/hiI2. In addition, you would see the locator special file
/dev/locator linked to /dev/hiI2.

Possible Errors
If WMLOCATOR is set to an invalid value (for example, if it is set to the path name of an invalid
locator device such as a button box), unpredictable results will occur. If you change this value,
you should be absolutely sure it is set to a valid value.

The HP·HIL Input Controller - WMINPUTCTLR
HP Windows/9000 also must be able to communicate with the HP-HIL input controller. The
special file for this processor is typically named / dev / rhil.

The WIlINPUTCTLR Variable
The WMINPUTCTLR environment variable specifies the path name for the input controller's
special file.

Setting WIlINPUTCTLR
WMINPUTCTLR is set, by default, to /dev/rhil in the wmstart shell script. If set to null (as
WMINPUTCTLR=" "), keyboard input and the beeper will be disabled.

As always, if you change WMINPUTCTLR, you should be sure change it to a valid value.
Otherwise, unpredictable results may occur.

128 Customizing Your System

The Bit-Mapped Display Driver - WMDRIVER
As mentioned in the previous section, the WMSCRN variable specifies the path name of the
special file for the graphics display used with your window system. Each display special file has
an associated device driver which allows ~lOU to write information to the bit-mapped display. The
WMDRIVER environment variable specifies which driver to use.

The WMDRIVER Variable
The WMDRIVER environment variable is normally not set by wmstart. When it is not set (or is
null), the window manager uses a default driver, based on your computer system (Series 200,
300, or 500) and the type of bit-mapped display used with your system. Table 5-3 shows the
different drivers used.

Table 5-3. Bit-Mapped Display Drivers

Driver Hardware

hp98700 Series 200/300 with a 98700 display, or on Series 500 window systems.

hp9837 Series 200/300 with a 9837 display.

hp3001 Series 200/300 with 98542A/43A displays.

hp300h Series 200/300 with 98544A/45A displays.

Setting WMDRIVER
Normally you should never need to set this variable because the window manager automatically
selects the correct driver. However, if you should need to change it from the default, be sure
to set it to one of the valid values shown in Table 5-3.

Customizing Your System 129

Graphics Tablet Scaling - WMLOCSCALE
Windows/9000 allows you to map a specific rectangular portion of the graphics tablet to the
entire display screen of your window system. In other words, you can define a sub-area of the
graphics tablet to map to the entire display screen. The window system environment variable
WMLOCSCALE is used to map the graphics tablet to the display screen.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

Why Use Graphics Tablet Scaling?
Graphics tablet scaling is useful when you have a window system application that uses the
graphics tablet as a locator device. By using scaling, only part of the graphics tablet is required
by the window system, and the remaining areas can be used by your application.

For example, suppose you have a template that overlays the graphics tablet; different areas of the
template correspond to different functions that can be performed by the application. Graphics
tablet scaling allows a specific area of the graphics tablet to be devoted to window system use;
the remaining areas can be used by your application.

Default Value
When WMLOCSCALE is not set (or is null), then the entire graphics tablet maps to the entire
display screen. This is the default case.

130 Customizing Your System

Setting WMLOCSCALE
The WMLOCSCALE variable requires four values, all specified in a string:

WMLOCSCALE="xl y1 x2 y2"

These values specify the coordinates of a sub-rectangle on the graphics tablet that will map to
the screen. The xl and yl coordinates correspond to the lower-left corner of the display screen;
x2 and y2 correspond to the upper-right corner of the screen. Figure 5-1 illustrates the relation
between graphics tablet coordinates (xl ,yl ,x2,y2) and the display screen.

origin (0,0)

DISPLAY SCREEN

Figure 5-1. Graphics Tablet Scaling

Coordinates can be specified as either absolute or percentage. Absolute coordinates correspond
to actual graphics tablet coordinates and are specified by whole numbers; percentage coordinates
correspond to a percentage location of the tablet and are specified as whole numbers with a
trailing percent sign.

Absolute Coordinates
Absolute coordinates require knowledge of the resolution of the graphics tablet The lower-left
corner of the graphics tablet is usually the origin (location 0,0). The x coordinates increase to
the right; y coordinates increase upward. Figure 5-2 illustrates this concept.

Customizing Your System 131

Figure 5-2. Graphics Tablet Absolute Coordinates

Percentage Coordlnat ••
Percentage coordinates are handy because you don't need to know any specifics on the size of
the graphics tablet; they just estimate a portion (location) of the tablet. The lower-left corner
of the graphics tablet has percentage coordinates 0%, 0%; the upper-right corner (regardless of
graphics tablet size) has coordinates 100%, 100%. Figure 5-3 illustrates percentage coordinates.

132 Customizing Your System

Figure 5-3. Graphics Tablet Percentage Coordinates

Combining Absolut. and Percentage Coordlnat ••
Absolute and percentage coordinates can be combined. For example, the following is valid:

WMLOCSCALE="0 0 60% 76%"

Examples
In the following example, the screen is mapped to a rectangle that is one-half the graphics tablet
size, and which is centered in the graphics tablet (as shown in Figure 5-4):

WMLOCSCALE="26% 26% 76% 76%"

Customizing Your System 133

CORRESPONDS TO
LOWER-RIGHT
CORNER OF

DISPLAY SCREEN

Figure 5-4. Scaling Example 1

The next example maps the lower-left corner of the tablet to the lower left-corner of the screen,
using absolute coordinates; the upper-right corner of the display maps to the center of the
graphics tablet. In other words, the lower-left quadrant of the graphics tablet maps to the entire
screen (as shown in Figure 5-5):

WMLOCSCALE="O 0 50% 50%"

134 Customizing Your System

Figure 5-5. Scaling Example 2

Precautions

• Mapping the screen to a tablet rectangle that has lower resolution than the screen will
cause there to be less than a one-to-one correspondence between screen pixels and tablet
coordinates .

• If you use this feature, the locator and echo can move to coordinates that are off the
screen. Normally this is not possible. However, using this feature, you can inquire locator
position on areas outside the screen rectangle and can define these areas to be special to
your application (as in the template example above).

Customizing Your System 135

Configuring the Interactive
User Interface - WMIUICONFIG
HP Windows/9000 allows you to reconfigure default interactive characteristics of the window
system. For example, you can disable any of the window control boxes, you can redefine the
select button, and you can disable pop-up menus over different screen areas. The WMIUICONFIG
variable is used to reconfigure the interactive user interface.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

The WMIUICONFIG Variable
The interactive user interace is defined by a string of bits. Each bit represents a particular
characteristic of the window system. By setting or clearing a bit, you can alter the interactive
user interface.

Normally, the WMIUICONFIG environment variable is not set. When this variable is not set,
the window manager uses a default configuration (defined later). If you want to alter the default
configuration, you must specify a new bit string via the WMIUICONFIG environment variable.

SeHing WMIUICONFIG
WMIUICONFIG is set to a number which represents the new bit string to use for the interactive
user interface. This number can be decimal, octal, or hexadecimal; however, we suggest you
use hexadecimal numbers since they are easiest to work with.

Table 5-4 briefly defines each bit in the interactive user interface definition. Bit positions are
given in hexadecimal values; the least-significant bit is referred to as bit O.

136 Customizing Your System

Table 5-4. Interactive User Interface

Bit(s) Description

Ox000007f The seven least-significant bits specify which buttons on the HP-HIL locator device are
used by the window manager for interactive window operations. If a bit is set, the
corresponding button on the HP-HIL input device is enabled; if the bit is not set, the
button is disabled. Bit 0 corresponds to button one (i.e., the leftmost mouse button,
the graphics stylus point, and the leftmost puck button); bit 1 corresponds to button
two (the rightmost mouse button and the rightmost puck button); and so on.

Independent of whether or not a button is enabled or disabled for interactive window
operations, a button press over a window or non-sensitive area of the border is sent
to processes sensitive to button input.

Ox0000080 If this bit is set, the I Select I key on the keyboard is enabled; if not set, it is disabled.

Ox0000100 This bit, if set, causes a window to automatically come to the top of the display stack
if the window is selected.

Ox0000200 If this bit is set, then whenever a window is changed from normal to iconic representa­
tion (or vice versa), the window automatically becomes the top window in the display
stack. If not set, the window's position is unchanged in the display stack.

Ox0000400 When this bit is set, a window automatically becomes the top window, if when moving
or changing the window's size, the window is unobscured by any other windows (not
occluded).

Ox0000800 This bit performs the opposite function of the previous bit (Ox0000400): a window
is automatically topped if moving it or changing its size causes the window to be
obscured (occluded) by another window.

Ox0001000 Setting this bit disables the move control box for every window and icon.

Ox0002000 This bit, when set, disables the icon/normal control box for every window and icon.

Ox0004000 Setting this bit disables the size control box for every window.

Ox0008000 This bit, when set, disables the pause control box for every window.

Ox0010000 Setting this bit disables the scroll arrows on windows.

Ox0020000 If this bit is set, window system pop-up menus are disabled over window borders-you
can't get a pop-up menu by clicking the pointer over a window's border. The effect
setting this bit is that you can get a system pop-up menu only for the selected window;
you can't get a menu for an unselected window.

Ox0040000 If this bit is set, window system pop-up menus are disabled over the screen desk
top-you can't get a pop-up menu by clicking the pointer over the desk top dither
pattern. When this bit is set, you can get pop-up menus only in a window's border.

Customizing Your System 137

Table 5-4. Interactive User Interface, Con't

Bit(s) Description

Ox0080000 Setting this bit causes windows to be unselected when changed to iconic representation.

OxOl00000 By default, the iconic representations of windows are placed in the lower-left quadrant
of the display screen. By setting this bit, you can cause icons to be placed in the
upper-right corner of the display by default.

Ox0200000 Some display hardware, such as the 98700H Display Station, has the capability to
do faster screen updates when the updated information is aligned along so called tile
boundaries. For example, a window move operation may occur more qUickly to an
even pixel address than an odd pixel address.

By default, interactive move operations are optimized in this manner. When you
interactively move or size a window, the window might not be moved or sized exactly as
you specified, although it will be extremely close-the difference, if any, is practically
unnoticeable.

If you wish to turn off tile boundary alignment on your system, set the bit described
here. Doing this will cause interactive move and size operations to be placed exactly
as you specify, but performance may decrease.

Ox0400000 If set, this bit allows the pointer to move outside a pop-up menu's boundaries without
aborting the menu.

Ox0800000 If this bit is set, then changing a window from iconic to normal representation causes
the window to be selected.

Oxl000000 To speed up terminal window creation via the pop-up menu, Windows/9000 keeps
a terminal window cache. This cache contains the next terminal window to create
via the pop-up menu. The window is not displayed, and you cannot use it until you
officially create it via the Create Window option of the pop-up menu.

The disadvantage of the terminal window cache is it consumes window resources. For
example, if you run applications that don't even require terminal windows, this option
is somewhat wasteful. To disable the terminal window cache, set this bit.

Ox2000000 By default, the window system allows you to create windows Simultaneously. For
example, you can create a window via the pop-up menu, and possibly before the
window appears, you can create another. By setting this bit, you disable simultaneous
window creation.

When this bit is set, the Create Window item of the pop-up menu will be "greyed"
whenever the system is busy creating a window.

Ox4000000 If this bit is set, audio feedback from interactive operation errors is disabled. In other
words, set this bit, and you won't get the window system beep.

138 Customizing Your System

The Default Value
As mentioned previously, this value is not set by wmstart. In this case, the window manager
uses the default value Ox080781. This gives the default characteristics:

• button one is enabled-i.e., is the select button

• the I Select I key is enabled on the ITF keyboard

• window's are automatically made the top window in the display stack under any of the
following circumstances:

• when the window is selected

• when the window is changed to an icon (or vice versa)

• when the window is moved or its size changed such that it is unobscured by any
other window licon

• all control boxes are enabled

• pop-up menus are enabled over the desk top and window borders

• the window is unselected when changed to an icon

• icons are placed at the lower-left corner of the display screen

• tiler alignment is enabled for optimum performance

• moving the pointer outside a menu's border aborts the menu

• the cache of pop-up terminal windows is enabled

• windows can be created simultaneously

• the system beeps if you make an error when using windows interactively.

Examples
The following sets WMIUICONFIG to the default value, except that the pointer can be moved
outside a menu's border without aborting the menu (Ox0400000), and the beeper is disabled
(Ox4000000):

WMIUICONFIG="0x4480781II

The next example sets WMIUICONFIG to the default value, except that pop-up menus are
disabled over a window's border, and the control boxes are also disabled; in other words, only
the scroll arrows work in the window's border:

WMIUICONFIG="OxOOaf781II

Customizing Your System 139

Default Fonts
By setting the value of certain environment variables, you can alter the default fonts used for
the following:

• items in pop-up menus

• the label in window borders

• the icon label area

• softkey labels

• base and alternate fonts for terminal window text.

NOTE

You should read the "Managing Terminal Window Fonts" section of the
"Using Commands" chapter before proceeding with this section.

The Font Directory - WMFONTDIR
The WMFONTDIR variable specifies the path name of the main font directory, the directory
under which all font directories and font files are stored. By default, this variable is set to
/usr/lib/raster by the wmstart shell script.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

If you set this variable to an invalid value-Le., a path name under which no fonts can be
found-then some commands, such as wfont(l) may not work properly.

140 Customizing Your System

Base and Alternate Fonts - WMBASEFONT and WMALTFONT
The WMBASEFONT and WMALTFONT variables specify the path names of the default base
and altenate fonts to use in newly created terminal windows. These variables are not set by
wmstart.

For all displays except the low-resolution Series 300 displays, if these variables are not set,
the window manager assumes the base and alternate fonts are /usr/lib/raster/Bx16/1p.BU and
/usr/lib/raster/Bx16/1p.b.BU, respectively. On Series 300 low-resolution displays, the window
manager uses /usr/lib/raster/6xB/lp.BU and /usr/lib/raster/6xB/lp.b.BI.

IMPORTANT

For most users, these defaults are quite adequate. Changing these vari­
ables may cause portability problems. Therefore, unless you absolutely
need to change these fonts, we strongly recommend you leave these
variables alone.

Pop-Up Menu Font - WMMENUFONT
The WMMENUFONT variable defines the font to use in pop-up menus. This variable is not set
by wmstart.

If this variable is not set, the window manager uses a default font based on display screen
resolution.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

Customizing Your System 141

The Window Border Font - BANNERFONT
The BANNERFONT variable defines the font used for the window label in window borders. This
variable is not set by wmstart.

If not set, the window manager uses $WMMENUFONT for window labels.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

The Icon Label Font - ICON FONT
The ICONFONT environment variabe specifies the path name of the font used in an icon's label
area. This variable is not set by wmstart.

If this variable is not set, the window manager uses a default font based on the display screen's
resolution.

iMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

142 Customizing Your System

The Softke, Label Font - WMSFKFONT
The WMSFKFONT variable specifies the path name of the font to use in softkey labels. This
variable is not set by wmstart.

if this variabie is not set, the window manager uses a default font based on the display screen's
resolution.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

Examples
To set the pop-up menu font to 8-by-16-pixel italic line printer font, set WMMENUFONT as
follows:

WMMENUFONT="/usr/lib/raster/8x16/1p.i.8U"

To set the softkey label font to 18-by-30-pixel courier, set WMSFKFONT as:

WMSFKFONT="/usr/lib/raster/18x30/cour.OU"

Customizing Your System 143

Changing the Desk Top
Dither Pattern - WMDESKPTRN
You can use one of five different dither patterns for the window system desk top area. These
patterns are specified via the WMDESKPTRN environment variable.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

What Is a Dither Pattern?
Dither patterns are created by displaying dots in a consistent pattern on the display screen.
Different patterns produce different shading effects. By default, the window system displays
black dots on a white background, thus producing a desk top pattern that ranges from white to
black, depending on the dither pattern used.

Note that you can change the default dither pattern foreground and background colors via
window system environment variables discussed in the next section, "Default Colors."

The WMDESKPTRN Variable
The WMDESKPTRN environment variable is used to specify a new dither pattern. Valid values
for this variable are: 0, 25, 50, 75, 100. Each number represents a specific dither pattern.
Figure 5-6 shows four of the five dither patterns along with the associated value. (Dither pattern
zero is not shown because, by default, it is solid white which doesn't show up on paper.)

144 Customizing Your System

III!I!!I!I!IIIIIIIII!I!II!I!IIII!II!

Dither Pattern 25 Dither Pattern 50

(Solid in the Foreground Color)

Dither Pattern 75 Dither Pattern 100

Figure 5-6. Dither Patterns

Note: People who use color displays will typically set WMDESKPTRN to 100; then pick a
pleasing background color. This way the entire desk top is solid in the color. Alternatively,
WMDESKPTRN values other than 100 may produce interesting "blends" as well.

Setting WMDESKPTRN
By default, WMDESKPTRN is not defined when the window system starts executing. When
WMDESKPTRN is undefined or null, the window manager assumes the dither pattern to be 50.

If you set WMDESKPTRN to a value other than 0, 25, 50, 75, or 100, the window manager
rounds it to the nearest significant value.

Customizing Your System 145

Default Colors
Through window system environment variables, you can change default colors for the following:

• desk top foreground and background colors

• initial border foreground and background colors used in newly created windows

Table 5-5 shows the default color map entries.

Table 5-5. Default Color Map Entries

Value Color

0 black

1 white

2 red

3 yellow

4 green

5 cyan

6 blue

7 magenta

Changing Desk Top Colors - WMDESKFGCLR and WMDESKBGCLR
The WMDESKFGCLR and WMDESKBGCLR variables, respectively, are used to change the
default desk top dither pattern's foreground and background colors.

The wmstart shell script does not set these values. If a variable is not set (or null), the window
manager assumes the foreground color to be 0 (black in the default system color map) and the
background color to be 1 (white in the default system color map).

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change these
variables only if absolutely necessary.

146 Customizing Your System

Default Window Border Colors -WMBDRFGCLR and WMBDRBGCLR
The WMBDRFGCLR and WMBDRBGCLR variables, respectively, are used to change the window
border foreground and background colors for newly created windows.

wmstart does not set these variables. If a variable is not set (or nuU), the window manager
assumes the foreground color to be the same as $WMDESKFGCLR, and the background color
the same as $WMDESKBGCLR.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change these
variables only if absolutely necessary.

Customizing Your System 147

Interactive Timeout and Tracking - WMIATIMEOUT
The WMIATIMEOUT environment variable serves two purposes:

• It specifies the timeout period (in seconds) for interactive operations .

• It determines the number of milliseconds the window manager will not process locator
changes. This allows other processes to run when the window manager is tracking.

Following are detailed descriptions for using WMIATIMEOUT for either purpose.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

Specifying Timeout
The two least-significant bytes of this variable (OxFFFF) specify the number of seconds of absolute
inactivity in the locator that the window manager will allow during an interactive operation. In
other words, if you start an interactive operation, such as moving or sizing a window, the
operation will be aborted after the specified number of seconds if there is no activity in the
locator during this time.

By default, WMIATIMEOUT is not set by wmstart. If this value is not set, or is less than or equal
to zero or null, then the window manager assumes a timeout period of 60 seconds. That is, an
interactive operation will be aborted if the locator remains inactive for 60 seconds.

Note that the maximum timeout period that can be specified is Oxffff-65535 seconds (ap­
proximately 18 hours and 12 minutes).

148 Customizing Your System

Tracking
The window manager reads information from the locator device whenever its position changes;
this is known as tracking. If the position changes frequently, the window manager (because it
is a high-priority process) may nearly consume the CPU, thereby causing other processes to run
slowly.

The Problem
If one or more other processes are also trying to track locator movement, their tracking becomes
jerky or stops because they are only able to read locator information when the window manager
has stopped tracking. Figure 5-7 illustrates this problem.

Q) Locator stops here. Now

processes can get the

locator's position.

(2) As the pointer moves,

the window manager is

the only process that
can track as it moves

between start and

stop points.

G) Locator starts here. Processes

other than the window manager

can get locator information,

until the locator moves.

Figure 5-7. The Locator Tracking Problem

Customizing Your System 149

The Solution
To more fairly allow other processes to run, the window manager temporarily ignores the locator
for a short period of time, thus allowing the other processes to run. Figure 5-7 illustrates this
solution to the problem.

®Locator

.... ~ -----... /
/.

Q) Other processes track

the locator during
these intervals.

stops here.

//

/"
/
• : .
I
• •

~

(2) Now, instead of constantly

tracking the locator, the

window manager relinquishes
the CPU at constant intervals.

During this time, other

processes can track the

locator's movement.

G) Locator starts here.

Figure 5-8. Solution to the Tracking Problem

Specifying Tracking Timeout Period
The length of time the window manager ignores locator input is called the tracking timeout pe­
riod. Windows/9000 allows you to change the tracking timeout period via the WMIATIMEOUT
variable.

Values are specified in the third byte of this environment variable (OxFFOOOO) and range anywhere
from 0 to 255 milliseconds.

If no value is specified or 0 is specified, then the window manager uses 30 milliseconds for the
tracking timeout period on Series 200/300. On Series 500, no time is relinquished (tracking
timeout period = 0) because tracking does not present the same problems on Series 500.

150 Customizing Your System

If the value is 255, then the window manager does not ignore tracking information (Le., the
tracking timeout period is set to 0).

Values from 1 to 254 can be used on both Series 200/300 and Series 500 computers. Keep
in mind:

1. As this number becomes lower, the echo tracks better on the screen, but user processes
won't track as well;

2. As this number becomes higher, the echo tracks worse on the screen, but user processes
track the locator at least as well as the window manager.

NOTE

Although time can be specified in one-millisecond increments, the Series
200/300 clock "clicks" every twenty milliseconds; and the Series 500
clock "clicks" every 100 milliseconds. Therefore, you might want to
specify time in 20-millisecond increments on Series 200/300.

Examples
The following example changes the interactive timeout period to 15 seconds, but the tracking
timeout period is left as the default value (the value is specified in hexadecimal):

WMIATIMEOUT=OxOf

The value shown here was specified in hexadecimal; however, you can specify values in decimal.
For example, the above would be specified as:

WMIATIMEOUT=15

The next example sets the tracking timeout period to 40 milliseconds but leaves the interactive
timeout period unchanged. The net effect is that user processes track better, but the window
manager tracks worse than normal:

WMIATIMEOUT=Ox280000

This last example sets the interactive timeout period to 30 seconds and the tracking timeout
period to 32 milliseconds:

WMIATIMEOUT=Ox20001e

Customizing Your System 151

Changing Window Server Priority
WMRTPRIORITY
Windows/9000 makes extensive use of servers, special processes that facilitate communication
between ptys and device special files. The window manager is a server, and each window has
an associated server. (The server for terminal windows is named /usrjlib/tOserver; the server
for graphics windows, jusr/libjgserver.)

Because a server is a process, you can change its real-time priority. The WMRTPRIORITY
environment variable is used to reassign the real-time priority for the window manager and
servers.

IMPORTANT

Window system environment variables are a resource. And like any
resource, using them can be costly-you don't get an unlimited number
of environment variables. We strongly recommend that you change this
variable only if absolutely necessary.

Setting WMRTPRIORITY
The least-significant byte of WMRTPRIORITY (OxOOff) gives the real-time priority for all window
servers; the next byte (OxffOO), the real-time priority for the window manager.

Valid values range from 0 (the highest priority) to 127 (lowest priority). If a value is specified
out of range, real-time priority is disabled.

Default Value
By default, wmstart does not set WMRTPRIORITY, and the window manager assumes a value
of Ox787c: window manager server priority is 120; window servers' priority is 124.

IMPORTANT

Do not change this variable unless you absolutely understand the con­
sequences. You might change this variable if you're writing real-time
applications with windows.

152 Customizing Your System

Windows/9000 Shared Memory
All processes associated with Windows/9000 share a contiguous section of memory through
which interprocess communication is facilitated. In addition, this shared memory contains re­
tained rasters for graphics windows. Two window system environment variabies can be used to
move the location and change the size of shared memory: SB_DISPLAY _ADDR and WMSHM­
SPC.

IMPORTANT

The purpose of this section is simply to give a brief overview of these
variables. You should read the "Shared Memory Usage" section of the
"Resource Usage Appendix" for details on how these variables are used.

Controlling Shared Memory Location - SB_DISPLAY ~DDR
The SB_DISPLAY _ADDR variable controls the location of windows shared memory. You should
refer to the "Shared Memory Usage" section of the "Resource Usage Appendix" for information
on setting this variable.

By default, wmstart does not set SB_DISPLAY _ADDR, and the window manager assumes an
address of OxbOOOOO (at 11Mb).

Setting the Size of Shared Memory - WMSHMSPC
The WMSHMSPC variable controls the size of the window shared memory space. You should
refer to the "Shared Memory Usage" section of the "Resource Usage Appendix" for details on
setting this variable.

By default, WMSHMSPC is set to Ox200000 (2Mb) by the wmstart shell script.

Customizing Your System 153

Notes

154 Customizing Your System

Resource Usage Considerations A
The following resource restrictions may cause problems when using the window system:

• process limits

• pseudo-tty (pty(4)) limits

• maximum number of open files

• window shared memory

• configuring swap space

• good-citizen processes.

Resource Usage Considerations 155

Process Limits
By default, the kernel allows a maximum of 25 processes per each user of the computer system.
The window system consumes processes as follows:

• The window manager is a process, charged to the user who starts the system.

• Whenever a window is created, a temporary process is used to help create the window;
when the window is created the temporary process disappears.

• Each window-terminal or graphics-requires a server, which is also a process charged
to the user of the window system.

• Each window consumes an additional process, if the window contains a shell (in the case
of terminal windows) or application (terminal or graphics windows).

Therefore, based on the limit of 25 processes per user, the maximum number of windows
attainable is 11:

25 (maximum processes to start with)
1 (temporary process used to create a window)
1 (for the login shell)
1 (for the window manager)

22

2 (two processes per window)

11 (maximum number of Windows)

Consider also that some windows may have more than one process executing, thus driving the
maximum number of windows down even further. In addition, some processes may use more
than one window. Therefore, the calculation made above is only an estimate.

To get around this limit, you must reconfigure the kernel to allow more than 25 processes per
user. Reconfiguring the kernel should be performed only by your system administrator. Refer
to your System Administrator Manual for details on reconfiguring this limit.

156 Resource Usage Considerations

Pseudo-Tty (pty) Limitations
The window manager heavily uses pseudo-ttys (see the "Concepts" chapter of the HP Win­
dows/9000 Programmer's Manual for details on how the window system uses ptys). pty usage
is summarized as follows:

• the window manager itself uses one pty

• each window requires three ptys.

The window manager consumes ptys from a pool of ptys, as defined by the environment variables
in Table A-I.

Table A-I. Pty-Related Environment Variables

Variable Definition Default

WMPTYMDIR Each pty is composed of a master and slave side; together they /dev/ptym
make a single pty. This variable gives the path name of the
directory containing the master sides for each pty.

WMPTYSDIR Specifies the path name of the directory containing the slave sides /dev/pty
for each pty.

WMPTYNAME Starting name of the set of ptys used by the window system. In ttypB
other words, this points to the start of the chunk of ptys used by
the window manager. Follows the naming convention:
tty[p-v][O-f].

WMPTYCNT Number of contiguous ptys that the window manager is allowed 31
to use. The window manager cannot exceed this limit. If WMP-
TYCNT is set to a value exceeding 82, the window manager
considers this out-of-range and uses the default of 31 instead.

Based on the default limit of 31 usable ptys, as determined by the WMPTYCNT variable, the
maximum number of windows is 10:

31 (maximum ptys usable by window system)
1 (pty for the window manager)

30

+ 3 (ptys required per window)

10 (maximum number of windows)

Resource Usage Considerations 157

IMPORTANT

Nothing ensures that the ptys used by the window manager won't be
used by some other application unrelated to the window manager. If
window manager ptys are used by another application, then even fewer
windows can be created. Note that this becomes important only when
some other application in your system uses ptys from the same pool as
the window manager.

Maximum Number of Open Files
Increasing the number of ptys by changing the pty environment variables still does not ensure
that you can create as many windows as desired. This is because the HP-UX kernel imposes
a limit of 60 open files per process. Based on this limit, the maximum number of windows
allowable per instance of the window manager is 27:

60 (maximum allowable open files)
1 (for the window manager device interface)
2 (for the display screen special file)
3 (for opened input devices)

54

• 2 (ptys opened per window by wm)

27 (maximum allowable windows)

You cannot circumvent this limit-the window manager cannot support more than 60 open files
at a time. Note, however, that you will probably encounter process and pty limitations much
sooner than this limitation.

158 Resource Usage Considerations

Shared Memory Usage
HP Windows/9000 on Series 200/300 has a virtual memory address space as shown in Figure
A-I. Stack space starts near the top of virtual memory, and the stack grows down from the top.
Code and data space start at the bottom (address 0) of virtual memory and grow up from the
bottom. Located between these two areas is Windows/9000 shared memory. The "Memory
Management" section of Chapter 3 of your Series 200/300 HP-UX System Administrator Manual
describes the organization of shared memory in detail.

IMPORTANT

The "Programming Environment" appendix of the HP Windows/9000
Programmer's Manual also contains information on window shared mem­
ory. The discussion of window shared memory contained in this appendix
is much more thorough, understandable, and accurate.

stack { ll---------tf

Shared Memory { IncreaSit

Code and Data { TL...---___ lt----

Top of Virtual Address Space

Logical Addresses

Bottom of Virtual Address Space

Figure A-I. Virtual Memory Map with Windows/9000

Resource Usage Considerations 159

Window Processes
Before discussing why and how Windows/9000 shared memory is used, you must understand
what a window process is. In general, a window process is any process that meets both of the
following conditions:

1. The process is linked with the window library (jusr/iib/libwindow.a) , and

2. The process performs Star base graphics in a window and/or uses any of the following
window library routines:

• wgetiocator{3W}

• wsetrasterecho{3W}

• wgetrasterecho{3W}.

A process must strictly meet these requirements to be a window process; processes not meeting
these requirements are not window processes and do not use windows shared memory.

The window manager, window servers, and graphics applications that run in graphics windows
are examples of window processes. In addition, any non-graphics application that runs in a
terminal window, but uses wgetiocator, wsetrasterecho, or wgetrasterecho, is also a window
process.

How Do Window Processes Use Shared Memory?
All window processes related to a given instance of the window manager use this shared memory
to get at global data pertinent to their window, and to maintain other global data associated
with the window system. For example, a graphics window with a retained raster keeps its raster
in this shared memory so both the window manager and any process(es) doing output to the
window can access the window's raster.

160 Resource Usage Considerations

Shared Memory Problems
Two main problems are encountered with Windows/9000 shared memory; each problem is
discussed in detail below:

• shared memory is too small

• code and data space is too small (shared memory is positioned too low in the virtual
address space)

NOTE

Because virtual memory is organized differently on Series 500 HP-UX,
Windows/9000 shared memory does not present the same problems
on Series 500 computers. However, you can still change the size of
shared memory (via the WMSHMSPC environment variable) on Series
500 computers, as described in this section.

Shared Memory Size
Usually, the contiguous block of shared memory used by Windows/9000 is two megabytes (2Mb)
in size. One problem encountered with shared memory is that it just isn't large enough for some
applications.

When an application attempts to use more shared memory (e.g., for retained rasters for newly
created graphics windows) than is available, the shared memory "get" fails and the application
terminates. This does not affect the window system, except that you run into a limit for the
number of retained-raster graphics windows you can create.

For example, suppose you have an application that uses many graphics windows with retained
rasters. Retained rasters are costly in terms of memory usage. Each pixel of the raster consumes
a byte of memory. Therefore, a window that is 1024 by 512 pixels consumes a half-megabyte
(O.5Mb) of memory. At this rate, windows shared memory will be completely consumed by four
such graphics windows (4 windows X O.5Mb = 2.0Mb), and you may not be able to create the
fourth (and any subsequent) window(s).

You can circumvent this problem via window system environment variables which control the
size and location of shared memory. The use of these variables is discussed in the remaining
sections of this appendix.

Resource Usage Considerations 161

Code and Data Space
All window processes (code and data space) reside in the contiguous block of memory imme­
diately below shared memory-the code and data space. By default the code/data space is
8.75Mb in size.

Because this shared memory space resides at the same address for all window processes, all
window processes must have a code/data space that will fit into the area below shared memory.
In other words, the shared memory must start at some address such that the largest code/data
space of all window processes will not collide (interfere) with the shared memory space.

For example, suppose you've written a C program to perform graphics in a graphics window.
Because of the nature of the program, it must allocate (via malloc(3)) enormous amounts of
dynamic data space. The program's code is 2Mb in length, but as it runs, it consumes up to
8Mb of dynamic data space (heap)-a total of 10Mb for both the code and its data. This will
exceed the default maximum code/data space size by approximately 1.25Mb (10Mb - 8.75Mb
max size = 1.25Mb over max).

This problem can be surmounted via window system environment variables. By moving shared
memory upward, you create more room for the code/data space.

A Close-Up of Shared Memory
Before discussing how to change shared memory to circumvent shared memory problems, you
should understand how the shared memory is organized. Figure A-2 shows the structure of this
shared memory.

Frame
Buffer (Typically 1 Mb)

Control Info (64Kb)

Starbase (256Kb)

Window
Information

~ --

}

Increasing t
Logical

Addresses

Size based on

WMSHMSPC

Figure A-2. Windows/9000 Shared Memory

162 Resource Usage Considerations

Table A-2 briefly describes the four components of shared memory.

Component

Frame Buffer

Control Information

Starbase

Window Information

Table A-2. Windows Shared Memory Close-Up

Description

This is the area of memory that corresponds to the screen of your display.
Each byte represents one pixel. Typically, this area is one megabyte in
size; however, it may be larger on future displays.

This area contains I/O device control information for the display hardware.

This is used by the Starbase Graphics system.

This area stores information pertinent to particular windows, such as re­
tained rasters for graphics windows and fonts.

Shared Memory Environment Variables
Two environment variables-SB_DISPLAY _ADDR and WMSHMSPC-control the location and
size of Windows/9000 shared memory. To configure the shared memory, you must change the
value of the appropriate variable(s) before starting the window manager process.

The SB_DISPLAY.JlDDR Variable
SB_DISPLAY _ADDR points to the address immediately above the Starbase area of shared
memory. Since the shared region is positioned relative to this address, you can change the
position of the region by changing the value of SB_DISPLAY _ADDR. If you do not set the value
of SB_DISPLAY _ADDR, it defaults to OxBOOOOO (11Mb), which leaves approximately 8.75Mb
for code/data space.

NOTE

This discussion applies only to Series 200/300 computers. Because
virtual memory is organized differently on Series 500 computers, this
variable is ineffectual.

Resource Usage Considerations 163

The WMSHMSPe Variable
The other environment variable for configuring shared memory is WMSHMSPC. This determines
the size of the window information area of the shared region. The wmstart(l) shell script sets
WMSHMSPC to Ox200000 (2Mb). However, if WMSHMSPC is undefined or null, the window
manager assumes a shared memory space of Ox20000 (128K).

NOTE

This discussion applies to both Series 200/300 and Series 500 comput­
ers. In other words: although you cannot control the location of Win­
dows/9000 shared memory on Series 500 computers, you can control
its size.

If WMSHMSPC is set to values less than Ox200000 (2Mb), then only one segment of the size
specified by WMSHMSPC (rounded to the next page boundary) is allocated. If WMSHMSPC is
set to values greater than 2Mb, then the window manager gets 2Mb initially, but waits until the
window space becomes full before allocating additional memory up to the value of WMSHMSPC.
Table A-3 shows how segments are allocated for various values of WMSHMSPC.

Table A-3. Example WMSHMSPC Values

WMSHMSPC Resulting Segments

Ox20000 (128Kb) one 128Kb segment

Oxl00000 (1Mb) one 1Mb segment

Ox200000 (2Mb) one 2Mb segment

Ox300000 (3Mb) one 2Mb segment and one 1Mb segment

Ox400000 (4Mb) two 2Mb segments

Ox500000 (5Mb) two 2Mb segments and one 1Mb segment

Note: The window manager is limited to allocating shared memory segments no more than 2Mb
in size. Therefore, you cannot create a window with a retained raster larger than 2Mb.

164 Resource Usage Considerations

Changing Shared Memory
If you decide that the default configuration for shared memory, as defined by the environment
variables SB_DISPLAY _ADDR and WMSHMSPC, is inadequate for your system, then you should
set these variables accordingly. In general, you should use the following rules when reconfiguring
windows shared memory:

• If you have processes requiring more shared window space than the default 2Mb, then you
should increase the value of WMSHMSPC to accomodate the amount of shared memory
required. (Note, however, that a single window requiring more than 2Mb of memory
cannot be accomodated by increasing the value of WMSHMSPC.)

• If you have processes that require more code and data space than the default 8.75Mb,
then increase the value of SB_DISPLAY _ADDR so the processes will fit in the code/data
space.

Side Effects from Changing Variables
The WMSHMSPC and SB_DISPLAY _ADDR environment variables are closely related; changing
one may affect the other. Before changing a variable, you should understand the possible side
effects.

WMSHMSPC
If you increase the value of WMSHMSPC but do not change the value of SB_DISPLAY _ADDR,
you effectively decrease the size of the code/data space by the increased size of the shared
area. This is because the window information area (defined by WMSHMSPC) resides below
SB_DISPLAY _ADDR (see Figure A-2); therefore, increasing the size of this area while holding
SB_DISPLAY _ADDR constant shrinks the code/data space (see Figure A-3).

Resource Usage Considerations 165

-- Top ., Of Memory -,.

-- S8_DIS - :'f_ADDR
...
~-r P~

Starba .. Starba ..

Window InformatIon
} WIASHIASPC

Befo

~

WMSHMSPC
Window InformatIon

After

Program/Heap Space
~

Program/Heap Space

o .--- --
Figure A-3. Squeezing Code/Data Space via WMSHMSPC

Conversely, if you decrease the size of shared memory while holding the S8_DISPLAY _ADDR
variable at a constant value, the code/data space will increase by the change in WMSHMSPC.

Equation A-I shows the relationship between code/data size and the variables WMSHMSPC and
S8_DISPLAY _ADDR.

code/data space = S8_DISPLAY _ADDR - 256Kb (Starbase) - WMSHMSPC

Equation A-t. Computing Code/Data Space

If you do not want the Code/Data space to change when you change the value of WMSHMSPC,
you must change S8_DISPLAY _ADDR likewise. For example, if you increase WMSHMSPC
from the default 2Mb to 3Mb (an increase of 1Mb), you must also increase S8_DISPLAY _ADDR
from the default 11Mb to 12Mb.

166 Resource Usage Considerations

SB_DISPLAY -ADDR
Whenever you increase the value of SB_DISPLAY _ADDR, you decrease the stack space available
to window processes. Stack space size is given by equation A-2.

stack space = highest memory address - SB_DISPLAY _ADDR
- frame buffer size l

- 64Kb (control info)

Equation A-2. Computing Stack Space

Most of the time, you needn't worry about consuming too much stack space. However, keep in
mind that on the Series 200 and Series 300/Model 310, you have a 16Mb address space; on
the Series 300/Model 320, theoretically a four-gigabyte address space. Just be sure that if you
change SB_DISPLAY _ADDR, you leave enough room for the process with the largest possible
stack.

Kernel Configuration Limitations
Even though Windows/9000 allows you to move and change the size of shared memory, there
are still some limitations to its location and size. These limitations are defined by kernel configu­
ration parameters. Consult your HP-UX System Administrator Manual for details on setting and
changing these parameters.

The shmmaxaddr Variable
The maximum (highest) address allowable for any shared memory is defined by the shmmaxaddr

kernel configuration variable. By default shmmaxaddr is defined as OxFFFFFF (16Mb). This means
the topmost address of Windows/9000 shared memory cannot exceed the value of shmmaxaddr

(OxFFFFFFF), as shown in Figure A-4.

Equation A-3 gives the relationship between shmmaxaddr and the SB_DISPLAY _ADDR variable:

SB_DISPLAY _ADDR ~ shmmaxaddr - stack space under shmmaxaddr

- frame buffer size! - 64Kb (control info)

Equation A-3. Relationship Between SB_DISPLAY _ADDR and shmmaxaddr

For current devices that support HP Windows/9000, you can assume the size of the frame buffer is 1Mb. For future devices, the frame
buffer's size may increase.

Resource Usage Considerations 167

Frame Buffer

Control Info

Starbo ..

Window Information

.. --

--

}w

--

Top Of Memory

this Address Must Be S shmmaxaddr

(16Mb by default)

MSHMSPC

o
Figure A-4. The shmmaxaddr Variable and Shared Memory

The Series 200 and Series 300/Model 310 address space cannot exceed 16Mb anyway, so
shared memory on these systems can be configured anywhere within the address space. How­
ever, on Series 300/Model 320 systems, which have potentially four gigabytes of address space,
shmmaxaddr does pose a limitation; if you wish to move shared memory higher than 16Mb on a
Model 320, you must reconfigure the shmmaxaddr variable.

The shmmax Variable
The window manager cannot work with memory segments other than 2Mb in size. The shmmax

kernel configuration variable defines the maximum allowable size of shared memory segments.
By default, this value is set to 0x200000 (2Mb). This does not mean shared memory is limited
to 2Mb maximum; it merely means the segments are limited to 2Mb.

You can set shmmax to values larger than 2Mb, but the window manager will still work only with
2Mb segments. If you set shmmax to a value less than 2Mb, the window manager will fail when
it attempts to allocate a 2Mb segment. Therefore, you should never set shmmax to values less
than 2Mb.

168 Resource Usage Considerations

Example
The following example should assist you in understanding how to use these variables: Suppose
you've written two C-language programs to perform Starbase graphics with graphics windows.
Program one (progl.c) will require large amounts of code/data space when it executes-greater
than the default amount. Program two (prog2.c) won't use as much code/data space as progl.c,
but makes heavy use of retained-raster graphics windows, and requires more window information
area than the default. Detailed descriptions of each program follow.

Program One (progl.c)
When compiled, progl.c's executable code size is just under 2Mb (say, OxleOf3b). For simplicity,
round the code size to 2Mb (Ox200000).

When the program executes, it allocates large amounts of dynamic data space (via malloc(3)).

Through diligent calculations you've determined that the program could theoretically allocate up
to 6.5Mb of memory from the dynamic data space (heap). Again, for simplicty, round this figure
to 7Mb (Ox700000).

The maximum code/data space consumed by this application is 9Mb, computed as follows:

Ox200000 (2Mb for executable code)
+ Ox700000 (7Mb for the program's data)

Ox900000 (9Mb total program and data space)

Program Two (prog2.c)
When running, prog2.c will create a maximum of four graphics windows, each with a retained
raster with dimensions 1024 by 512 pixels. The retained raster for each window consumes
0.5Mb; therefore the maximum amount of memory required by the retained rasters alone is
2Mb (4 windows at 0.5Mb each = 2Mb).

When determining the size of the window information area, you should also consider that other
windows will use the area also. For example, fonts for all windows are loaded into the window
information area. For safe measure, you might typically add 1Mb to the size of the window
information area to compensate for other windows' needs.

For this example, it gives a maximum size of 3Mb for the window information area-1Mb larger
than the default value for WMSHMSPC.

Resource Usage Considerations 169

Determining the Correct Value for SB_DISPLAY -ADDR
Now you know the maximum code/data space size (9Mb) and the maximum size of the window
information area of shared memory (WMSHMSPC = 3MB), so you can determine the correct
value for SB_DISPLAY _ADDR.

SB_DISPLAY _ADDR should be computed as follows:

SB_DISPLAY _ADDR = code/data size + WMSHMSPC + 256Kb (for the Starbase area)

Equation A-4. Determining 58_DISPLAY _ADDR

Using this equation, SB_DISPLAY _ADDR is computed to be 12.25Mb:

Ox900000 (9Mb code/data space for progl.c)
+ Ox300000 (3Mb window information area - WMSHMSPC)
+ Ox040000 (256Kb for the Star base area)

Oxc40000 (12.25Mb = SB_DISPLAY _ADDR)

Ensuring Correct Values
Before actually setting these values, you should be sure the values will not cause detrimental
side effects; mainly, there must be enough stack space for all window processes to execute, and
shared memory must be within the shmmaxaddr value.

First, using Equation A-2, compute the stack space based on the current SB_DISPLAY _ADDR
value; assume you have a 16Mb address space:

Oxffffff (highest address with 16Mb)
- Oxc40000 (SB_DISPLAY _ADDR)
- Oxl00000 (size of frame buffer area)
- OxOl0000 (control info area)

OxlaOOOO = 1.625Mb of stack area

SB_DISPLAY _ADDR passes the first test: This is over 1.5Mb of stack space, which is sufficient
for all processes in the system.

170 Resource Usage Considerations

Next, using equation A-3, ensure that the window shared memory area is within the bounds set
by the shmmaxaddr kernel configuration variable:

Oxffffff (default value for shmmaxaddr)

Oxl00000 (frame buffer size)

OxOl0000 (control info size)

Oxeeffff ~ S8_DISPLAY _AREA (Oxc40000)

S8_DISPLAY _ADDR also passes on this test: the window system shared memory is located
below shmmaxaddr.

Increasing Performance by Decreasing Memory
The previous discussion has centered mainly on increasing memory size to ensure that all win­
dow processes can execute without running into shared memory problems. At the other end
of the spectrum, you may be able to reduce memory usage, thus increasing window system
performance.

Decreasing memory requirements is practical when most of your window processes are small
and when your window shared memory requirements are minimal. For example, if none of your
window processes use more than 4Mb of code/data space (4.75Mb less than the default amount
available), and only terminal windows are used (Le., you don't need shared memory for retained
rasters), you can set S8_DISPLAY _ADDR and WMSHMSPC to values less than their defaults,
thus increasing the performance of your applications.

IMPORTANT

When computing the amount of code/data space required, keep in mind
that the window manager is also a window process in the same process
group as other window processes. Therefore, you must leave enough
code/data space for the window manager to execute.

Resource Usage Considerations 171

An Examp'e
The following example should help clarify how to decrease window process memory requirements
and improve performance: Suppose you've written a number of window applications that use
only terminal windows. You've calculated that none of the window processes will ever consume
more than 3.5Mb of code/data space when executing. For simplicity, round this figure to 4Mb.

Since only terminal windows are used by the applications, you've calculated that no more than
O.75Mb will be required for the window information area of shared memory. You round this
figure up to 1Mb just to be safe. This means WMSHMSPC should be set to Oxl00000 (lMb)
which is 1Mb less than the usual value of 2Mb (Ox200000).

Determining the Correct Value for Sa_DISPLAY ~DDR
Now you know the maximum code/data space required (4Mb) and the maximum size of the
window information area of shared memory (WMSHMSPC = 1Mb), so you can determine the
correct value for SB_DISPLAY _ADDR.

Using equation A-4, SB_DISPLAY _ADDR is computed to be 5.25Mb:

Ox400000 (4Mb maximum code/data space required)
+ Oxl00000 (1Mb window information area - WMSHMSPC)
+ Ox040000 (256Kb for the Starbase area)

Ox640000 (5.25Mb = SB_DISPLAY _ADDR)

172 Resource Usage Considerations

Configuring Swap Space
When configuring file system swap space on your Series 200/300 computer, you must ensure
that there will be enough swap space to handle the largest window system process. This section
describes the various window system memory requirements with respect to swap space, and
shows how to determine how much swap space to use in your file system.

NOTE

The discussion contained herein applies only to Series 200/300 com­
puters. Swap space is not applicable to Series 500 HP-UX. You should
consult your Series 200/300 HP-UX System Administrator Manual for
details on how to configure file system swap space.

Window System Swap Space Requirements
Window system swap space requirements can be divided into two main categories: non-variable
and variable. Non-variable swap space values always remain the same when configuring swap
space, whereas variable swap space values may be different and depend on how your window
system is configured.

Non-Variable Requirements
Table A-4 shows non-variable swap space requirements for the window system. (Units are given
in kilobytes - Kb.)

Table A-4. Non-Variable Swap Space Requirements

Amount Description

510Kb window system base requirement

65Kb per each terminal window

60Kb per each graphics window

Resource Usage Considerations 173

Variable Swap Space Requirements
Table A-5 shows variable swap space requirements for the window system (units in kilobytes -
Kb); default values are also shown.

Table A-S. Variable Swap Space Requirements

Description Computed As Default

shared memory size determined from $WMSHMSPC 2048Kb (2Mb)

pop-up menu font overhead 200 x menu font size 25Kb (high-res display)
9Kb (low-res display)

scroll buffer (per terminal 4 X number of chars in the window's 15Kb (4 x (80 x 48))
window) scroll buffer

icon (per window) 16Kb if the window has a user-defined OKb (when the default icon
icon is used)

user-defined pop-up menus menu character width x menu character OKb (when no user-defined
height x pop-up menu font size + 10% menus are used)
(to be safe)

Computing Window System Swap Space Requirements
Window system swap space requirements are computed simply by adding up all the non-variable
and variable requirements, as shown in Equation A-5.

window system base = 510Kb
+ non-variable terminal window = 65Kb x number of terminal windows
+ non-variable graphics window = 60Kb x number of graphics windows
+ shared memory size = WMSHMSPC (typically, 2Mb - 2048Kb)
+ pop-up menu font overhead = 25Kb (for high-res), 9Kb (for low-res)
+ scroll buffer = 15Kb x number of terminal windows
+ user-defined icons = 16Kb x windows not using default icons
+ user-defined pop-up menus = OKb (assuming no user-defined menus)

swap space requirements
+ at least 10% safety margin

TOTAL swap space requirements

Equation A-S. Computing Swap Space Requirements

174 Resource Usage Considerations

Example
The following example should help clarify how to configure Windows/9000 shared memory:
Suppose you've determined that your window system will have the following characteristics:

• there will never be more than 10 windows-four terminal windows and six graphics win­
dows

• WMSHMSPC will be set to 4Mb (4096Kb)

• a high-resolution display is used

• two of the windows will use user-defined icons (defined by window library routines)

• a maximum of six user-defined pop-up menus will be used at anyone time-each menu
is 12 characters wide by 20 rows.

With this in mind, the required swap space would be 6Mb, computed as follows:

510Kb (window system base requirement)
+ 260Kb (4 terminal windows X 65Kb non-variable overhead)
+ 360Kb (6 graphics windows X 60Kb non-variable overhead)
+ 4096Kb (shared memory size, WMSHMSPC)
+ 25Kb (pop-up menu font overhead for high-res display)
+ 60Kb (4 terminal windows X 15Kb per 80x48-scroll buffer)
+ 32Kb (2 windows with user-defined icons @ 16Kb each)
+ 2Kb (6 user-defined menus at 240 characters each + 10%)

5345Kb (minimum shared memory requirements)

6000Kb = 6Mb (rounded up for safety factor)

Resource Usage Considerations 175

Good-Citizen Processes
Unlike a graphics process running to a raw device, a process that performs graphics in a graphics
window must be a "good citizen" in the graphics world. Since the window manager, termO server,
and graphics server are all built upon the Starbase Graphics Library, they will cooperate with
other graphics processes that are also "good citizens."

A "bad citizen" is a process that changes global resources which are not process-dependent.
Examples of these resources are:

• color map values

• planes displayed

• planes blinking

;'.

For example, if a process had configured the window system to use one set of colors, and
a second process changes the color map to a different set of colors, the color map could
end up with duplicate colors-e.g., all entries could conceivably be black.

A good-citizen process will generally:

• use gescapes sparingly and in a manner considerate to other processes

• does not change the values of the color map (There may be an agreement to leave the
first 4 or 8 color map entries constant and allow all users to modify the remaining entries
in the color map, knowning that the others may also be changing these color entries.)

• does not double-buffer undisplayed planes

• does not blink planes

• does not tum Starbase clipping off, since this wit allow access outside the window
boundaries. (The exception here is when the user is absolutely certain that the
vdc_extent/device-bounds will never be exceeded.

176 Resource Usage Considerations

Glossary B
The foHovJing terms are used frequently when discussing the window system:

activate font

active font

affiliation

alternate font

anchor point

attached

banner

base font

1 Decimal 14; octal 016.
2 Decimal 10; octal 012.
3 Decimal 15; octal 017.

Make an already loaded character font the base or alternate font for a
termO. At the Font Manager or Fast Alpha Iibary level, make a font the
one to use next for printing characters. See also load font.

The font in which characters are currently being written.

Special relationship between a terminal or window and a process. User­
generated signals (such as SIGINT due to hitting I Break D from the terminal
or window are sent to all processes affiliated with the window. See also
process group.

For termO windows, the alternate font is a secondary font (other than
the base font) for writing characters. Characters can be written in the
alternate font by sending an ASCII SOl character. Characters continue to
be printed in the alternate font until either an ASCII LF2 or SI3 character is
encountered, after which characters return to the base font. The wfont(l)
command (or termO escape sequences) can be used to change the alternate
font.

Location of the upper left corner (coordinates O,O) of the window's user
(contents) area. Also called window location. (Also the stationary point of
a rubber-band echo.)

See selected.

Synonymous with window border (see border).

The base font is the default font used for displaying characters in a termO
window. To switch from the alternate font to the base font, use the ASCII
SI or LF characters. The wfont(l) command (or termO escape sequences)
can be used to change the base font for a termO window.

Glossary 177

bit-mapped display Display device which has one or more bits of memory for each pixel on the
screen. Images may be written to this memory by user processes. Then
the display is updated directly from memory, with minimal calculations.
HP Windows/9000 works only with bit-mapped displays.

border The portion of a window surrounding the user area and containing the
label and manipulation areas (control boxes and scroll arrows). Actually
formed from a second window unit which lies underneath the user unit.

border colors The foreground and background colors of a window border. The window's
label (name) and manipulation areas are displayed in the foreground color
on top of the background color. See color.

border style Status of a window border, either normal (label and manipulation areas
present) or thin (no maniupulation areas or label are present; only the
pop-up menu can be used to interactively manipulate windows).

bottom window Window which is lowest in the display stack; therefore it is occuled by any
window which overlaps it.

buffer size Width and height in columns and rows of the scroll buffer for a termO
window. By default, termO windows have a buffer size of 80 columns by
48 rows (two default screens of information). See also window size, logical
screen size, and raster size.

buttons

cell size

character font

color

color map

178 Glossary

Switches on a mouse or graphics tablet stylus or puck switch, used to
cause an event-i.e., send input to a window.

Width and height in pixels of the character cells for a given font. In
uniformly sized fonts, cell size will be the same for all characters in the
font. Only uniformly sized fonts are currently supplied with your system.

See font.

An index into the color map for the device. For black-and-white displays,
color is either a or 1. For color displays, typical ranges are a to 15, and
a to 255 (inclusive).

A table which maps index numbers (colors) into colors (intensities for each
primary color) on the display. There is usually one color map per physical
display, shared by all processes.

concealed

contents area

control box

desk top

display stack

displayable

echo

event

Fast Alpha

font

One of three ways of representing a window on the display; the other two
ways are normal and iconic. When a window is concealed, it is not visible.
As a consequence of being concealed, a window loses its position in the
display stack. It may still be selected (connected to the keyboard), receive
input and output, and be otherwise manipulated.

Synonymous with user area. This is the area of a window surrounded by
the border. It is the area of the window in which your applications execute
(e.g., write information to the window's contents area).

Anyone of the four boxes located in the corners of a normal window bor­
der. Each box can be used to interactively perform a windowing function.
See also icon control box, moue control box, pause control box, size control
box.

Any portion of the display screen not occluded by any window, pop-up
menu, or other displayed object.

When more than one window appear on the display screen, they form a
display stack. Each window has a position in the display stack, e.g., there
is a top window and a bottom window. The display stack is implemented
as an ordered list of displayable windows which contains information de­
termining which windows occlude others if they overlap.

Opposite of concealed; a window which is in normal or iconic form. Part
of the window is visible if it is not occluded or entirely off screen.

Synonymous with pointer. The pointer (sprite) on the display screen which
corresponds to the locator's position. The echo takes different forms when
it appears over different screen and window areas. It can be redefined, via
window library routines, to suit your applications needs.

Action of pressing I Select I on the keyboard, a mouse button, or the tablet
stylus switch. Also, the receiving of a signal by a window-smart process,
usually due to a user's interactively changing a window's attributes.

Set of library routines which let you display character information to graph­
ics windows at high data rates. Can also be used to display information to
the display device when the window system isn't running.

Collection of bit patterns and associated information which tell the window
system how to display characters on the screen. Each font has a charac­
teristic cell size-that is, the number of pixels each character is wide and
high. See also font file.

Glossary 119

font cache

font file

Font Manager

font path

generic name

graphics

icon

iconic form

An array (in Windows/9000 shared memory) that contains font information
loaded from font files. There is a termO font cache, used only with termO
font management routines, and a fast alpha-font manager font cache, used
only with the fast alpha and font manager libraries.

Ordinary HP-UX file, containing font description information, from which
a font is loaded into memory as needed. See also font path.

Set of library routines which let you use and control character fonts. Like
the Fast Alpha library, Font Manager routines can be used to display char­
acters to graphics windows or the bit-mapped display.

Full or relative pathname (filename) for a font file. If a font path does
not begin with "/", ". /", or " .. /", the value of the environment variable
WMFONTDIR is prepended to the font path.

This is the name of the original link to a window's pty special file, e.g.,
/dev/pty/pty03. Generic names are managed by the window manager
and are allocated to new windows (when the windows are created) by
linking them to window names you supply, or those you allow the window
manager to automatically choose.

Graphics display window type. See window type.

A symbolic representation for a Window, often referred to as the "shrunken
form of a window." Icons use very little space on the display. An icon
normally includes the window's label and both a move and icon control
box.

One of the three ways of representing a window on the display; the other
to ways are normal and concealed. See icon.

internal terminal em- Software which allows you to use the keyboard and bit-mapped display as
ulator a terminal-type device when the window system is not active.

ITE

label

load font

180 Glossary

The acronym for internal terminal emulator.

A string displayed with a window's normal form, icon, typing aids, and
pop-up menu. It defaults to the true name of the window, but may be set
to any value up to 12 characters long.

Bring a character font into memory from a font file. This makes the font
available for use in a termO window, or graphics window using Fast Alpha
or Font Manager routines, but it does not mean the font will necessarily
be used immediately after loading. See also activate font.

location See window location.

logical screen size The maximum size of the view into a terminal window's buffer. This is the
same size as given by the terminfo(5) eels and lines values. A terminal
window can be sized no larger than its logical screen size. By default,
termO windows have a logical screen size of 80 columns by 24 rows. See
also buffer size.

locator Any input device-such as cursor keys, mouse, or a tablet's stylus or
puck-which provides X,y location information (or changes in location).

manipulation areas Areas in a window's border which help you to interactively control the
window. These consist of control boxes and scroll arrows. For example,
using them, you can move the window, change its size, convert it to an
icon, or call up a pop-up menu.

move control box This control box, located in the upper-left corner of a window's border,
allows you to interactively move the window using a locator device such
as a mouse or graphics tablet stylus.

mouse 1: A small, furry rodent with a hairless tail, often used in scientific exper­
iments; considered vulgar and disgusting by most members of the human
species. 2: Also, a simple input device which glides around on the desk­
top and has one or more buttons (switches) on it. The mouse provides
location (locator) and event (button) input. Considered friendly by most
humans.

name

normal form

normal style

occluded

off-screen

See window name.

One of three ways of representing a window on the display; the other ways
are iconic and concealed. In normal form, the user unit (text, graphics, etc.)
is displayable, so it is visible if not off-screen or occluded.

See border style.

Window is normal or iconic (and not concealed), but it (or a portion of it)
is hidden by parts of other window(s). Occluded windows or parts are not
visible. (See also display stack.)

Window or portion of window is located outside the display screen area,
so it is not visible, even though it is displayable. Concealed windows may
have locations on-screen or off-screen, but they are not visible at all because
they are not displayable.

Glossary 181

pan position

pixel

pointer

pop-up menu

process group

pty

raster

raster size

repaint

182 Glossary

The X,Y pixel location of the view into the virtual raster of a graphics
window, Le., the position where a window's image is taken from, within
the virtual raster. A graphics window can grow no larger than its raster
size; at this maximum size, no panning is possible.

One picture element; the smallest displayable area of a display (one point
on the display). Each pixel may have multiple bits associated with it in
memory (Le., to control its color).

The graphics pointer (sprite) on the display screen which corresponds to
the locator's position. The pointer takes different forms when it appears
over different screen and window areas. It can be redefined, via window
library routines, to suit your applications needs. Also known as echo.

A list of interactive choices displayed in a rectangular box. The pop­
up menu pops up when I Select I, the left mouse button, or tablet stylus
is pressed. Most of the choices affect one of the window's attributes.
The menu disappears after: a choice is made, selection is done outside
the menu, or an interactive timeout period has elapsed (specified by the
WMIATIMEOUT variable).

You can also define your own pop-up menus via window library routines.

One or more processes which have a process group number in common.
Calling setgrp(2) makes a process a group leader by setting its number to
its process id; this is inhereted by its descendent processes. The first un­
affiliated process group leader that opens an unaffiliated window becomes
affiliated to that window. See also window group.

Pseudo-terminal (tty) special file. Each has two "sides"; the slave side
looks like a terminal-type device, while the master side allows capturing
and manipulation of data. See pty(4) for more details.

Pattern of lines which makes up the physical display; memory underlying
the image displayed on a graphics window. See also scroll buffer and
retention.

Width and height, in pixels, of the memory which records the data in a
retained graphics window. See also window size, screen size, and buffer
size.

Redisplay one window or the whole screen from memory. Only termO or
retained-buffer windows, typing aids, and the desk surface can be success­
fully repainted.

representation

retention

scroll arrows

scroll buffer

select button

selected

server

sfk

shuffle

size

See normal form, iconic form, and concealed.

Memory (a raster) is allocated to "back up" parts of a graphics window that
may become occluded. This is done at window creation and permits the
window to be repainted (redrawn) from memory if necessary. Non-retained
windows cannot be repainted if, say, a portion which was occluded becomes
visible. TermO windows are not retained, but the windows can be repainted
from character-level information which is always kept in the window's scroll
buffer.

Arrows which appear in a window's border. You can scroll information in
a window's contents area by clicking the select button when the pointer is
located over an arrow. Information will scroll in the direction indicated by
the scroll arrow.

Memory of characters and their attributes, underlying the image displayed
in a termO window. The scroll buffer is typically larger than the window
in vertical direction, so scrolling is possible. The default buffer size is
80 columns by 24 rows of characters, providing two default screens of
information scrollable per termO window. See also, logical screen size,
buffer size, and raster.

Button(s} on the locator device which activate interactive operations. Typ­
ically, the select button is set to button one (the leftmost mouse button,
the stylus point, and the leftmost puck switch button).

Window is attached to the keyboard and optional mouse buttons, table
stylus, or puck switch. Processes which read from the selected window
receive input from these devices.

Program (process), invoked for one window, which manages the window.
The server acts as a go-between for the window manager and user pro­
cesses.

An abbreviation for softkey.

Rotate the display stack either upwards (top window becomes bottom
Window) or downwards (bottom window becomes top window). There
is no visible change unless at least a portion of the top (bottom) window
occludes another window or portion thereof.

See cell size, window size, logical screen size, raster size, size control box,
or buffer size.

Glossary 183

softkeys

stack

stylus

tablet

termO

thin

top window

unit

user unit

viewing position

virtual device

visible

window

window-dumb

184 Glossary

Consisting of a label and definition, softkeys correspond to the function
keys on the ITF keyboard. Each window can have its own softkey labels
and definitions. The labels can be displayed optionally at the bottom of
the screen for each selected window. When a function key is pressed, the
definition string is returned through the selected window's device interface.
Definitions strings can be redefined for termO windows, but are constant
for graphics windows.

See display stack.

Pointing device on a tablet, which usually has a built-in switch.

A graphics input device from which locator and stylus switch information
is read.

Alphanumeric terminal emulator type of window. See window type.

See border style.

Window which is highest in the display stack. Therefore, it cannot be
occluded by any other window. (It may still be invisible if moved completely
off the screen).

See user unit and window unit.

Window unit which contains user data-alphanumeric text in termO win­
dows, and graphical output in graphics windows.

See pan position.

Each window is one of these, because each acts like an independent phys­
ical device of some type-that is, an alphanumeric terminal or graphics
display.

A window or portion thereof which is actually shown on the screen. A
window must be normal and displayed in order to be visible.

Collection of associated window units which act as a single entity. Windows
may be attached to the keyboard and receive input, receive output from
one or more processes, be moved, concealed, expanded or shrunk, etc.

Process doesn't "know" that is is running in the window system; it thinks
that it is running at a terminal or raw raster-graphics device, when it is
actually running in a window. In other words, the window system is invisible
to window dumb-programs.

window group

window location

window manager

window name

window size

window-smart

window spec

window type

window unit

wm

All processes which are associated with a single instance of the window
manager, that is, all processes running on one physical display. This in­
cludes the window manager, all server processes for windows on the dis­
play, and all user processes affiliated to any window on the display. It
includes more than one process group.

Screen location of the upper-left corner of the user unit, in pixels. Also
called anchor point. See also pan position.

Program (process) invoked once per physical display. The window man­
ager controls the aspects of the window system common to all window
processes. Its process name is wm.

True name of a window, specified when it is created (or chosen by the
window manager). Each window has an associated pty special file with
the same name which may be more than a basename (e.g., it may include
directories). See also generic name, and label.

The user area's width and height in pixels, or for termO window commands,
rows and columns. See also logical screen size, raster size, and buffer size.

Process "knows" it is running in the window system. It calls window library
routines and/or recognizes special window system signals.

A list of zero or more window names, supplied as parameters to window
system commands. Shell-like wildcards and ranges are allowed for the
window spec, including the special symbol "_". See windows(l}.

Kind of Window, determined when at window creation, and reflected in
the choice of the window server program (process). See also graphics and
termO.

Rectangular area of the display; smallest element of a window. One window
is made up of one or more associated window units-the border unit and
user (contents) unit.

The command name for the window manager.

Glossary 185

Notes

186 Glossary

Series SOO·Specific Information c
This appendix contains installation and multiple-seat configuration information specific to HP
Windows/9000 on Series 500 systems.

Installing HP Windows/9000
On Series 500 HP-UX systems, HP Windows/9000 is an optional product. Therefore, if you
purchase HP Windows/9000 separately, you must use the HP-UX update facility to install it.
The update procedure is described thoroughly in your Series 500 HP-UX System Administrator
Manual in "The System Administrator's Toolbox" chapter.

Your system administrator should install HP Windows/9000 by following the procedure described
in that chapter.

Series SaO-Specific Information 187

Multiple-Seat Systems
On Series 500 computer systems only, if you have the correct hardware configuration, more
than one user can run HP Windows/9000 simultaneously; a maximum of three users, each using
his/her own display station, can execute Windows/9000 at the same time. Each display station
is called a seat.

The Display Station
As mentioned above, each window system user has a display station (seat) on the Series 500
computer. This display station is known as the 98700H and consists minimally of the following
items:

• the 98700H display controller with

• four planes of graphics memory

• a color map

• an HP-HIL interface for connecting the HP-HIL keyboard and optional HP-HIL locator
devices such as a mouse or graphics tablet

• a 19-inch, high-resolution (1024 by 768 pixels), color display

• an HP-HIL keyboard.

Each display station might typically have the following optional items:

• a locator device such as a mouse or graphics tablet with a stylus or puck switch

• the HP98710H high-performance graphics accelerator-even though Windows/9000 does
not make use of the graphics accelerator.

Figure C-1 shows an example of a system with three display stations. Note how each display
station connects to a HP98288 Display Station Buffer (DSB) in the Series 500 MPB (stack).
Note also that stack slot numbers 4 through 7 are reserved for Display Station Buffers. The
importance of these slot numbers is discussed later.

188 Series SOo-Specific Information

MPB

o
,..-.---~

2
3 ~--------1

4
S~~~---1

6
7t------I

• • •

SERIES 500 COMPUTER

DISPLAY STATION .3

Figure C-l. Example Multiple-Seat System

Series SOO-Specific Information 189

The following summarizes how each display station is configured:

Display Station Configuration

seat 1 • connected to DSB in slot 4
• has an HP98700H display station
• has a mouse at HP-HIL address 2
• has an HP98710H graphics accelerator

seat 2 • connected to DSB in slot 5
• has an HP98700H display station
• has a graphics tablet and stylus at HP-HIL address 2

seat 3 • connected to DSB in slot 6
• has an HP98700H display station
• does not have an HP-HIL locator device

Multiple-Seat Special Files
Each display station has a set of special files for communicating with the display and associated
HP-HIL device(s).

The Display Special File
HP Windows/9000 requires that each display special file:

• must have a unique name which distinguishes it from the other display special files

• is a character special file

• uses driver number (major number) 29

• has device address (minor number) OxffAdoo where Ad is a two-digit address, determined
from the slot number:

Ad = DSB slot number - 4

190 Series 500-Specific Information

For the sample system shown in Figure C-l, you would use the following mknod(1M) commands
to create the appropriate display special files:

Physical Display I. . mknod

seat 1 /etc/mknod /dev/crt1 c 29 OxffOOOO

seat 2 /etc/mknod /dev/crt2 c 29 Oxff0100

seat 3 /etc/mknod /dev/crt3 c 29 Oxff0200

Note: The path names chosen for the special files were completely arbitrary; they could have
been named differently-e.g., /dev/crtO, /dev/crtl, and /dev/crtflebnee-and would still be
correct. However, the file type (c), major number (29), and minor numbers (OxffAdoo) must
remain as shown.

The HP·HIL Input Controller Special File
Each display station should also have a special file for an HP-HIL input controller. Each input
controller special file:

• must have a unique name to distinguish it from other input controller special files

• is a character special file

• uses driver number (major number) 41

• uses minor number OxffAdoo where ff means the DSB for the input controller is located
in the stack, and Ad is the address of the DSB:

Ad = DSB slot number - 4

For the sample system shown in Figure C-l, you would use the following mknod(lM) commands
to create the appropriate input controller special files:

rhil

seat 1

seat 2

seat 3

mknod

/etc/mknod /dev/rhil1 c 41 OxffOOOO

/etc/mknod /dev/rhi12 c 41 Oxff0100

/etc/mknod /dev/rhi13 c 41 Oxff0200

The path names for the special files were chosen arbitrarily; however, the file type (c), major
number (41), and minor numbers (OxffAdoo) must remain as shown.

Series SOO-Specific Information 191

The HP-HIL Keyboard Special File
HP Windows/9000 requires each display station's keyboard to have a keyboard special file
which:

• has a unique name to distinguish it from the HP-HIL keyboards for other display stations

• is a character special file

• uses driver number 43

• uses minor number OxffAdoo where Ad is the address of the DSS:

Ad = DSS slot number - 4

With this in mind, you would use the following mknod(lM) commands to create the special files
for the display stations shown in Figure C-l:

keyboard mknod

seat 1 /etc/mknod /dev/hilkbdl c 43 OxffOOOO

seat 2 /etc/mknod /dev/hilkbd2 c 43 OxffOl00

seat 3 /etc/mknod /dev/hilkbd3 c 43 Oxff0200

The path names for the special files were chosen arbitrarily; however, the file type (c), major
number (43), and minor numbers (OxffAdOO) must remain as shown.

The HP-HIL Input Devices' Special Files
In order for the locator device to be accessible to Windows/9000, it must have a special file.
For information on creating HP-HIL special files, you should refer to Using HP-HIL Devices with
HP-UX in Volume 7 of HP-UX Concepts and Tutorials.

192 Series SOo-Specific Information

All the HP-HIL special files must have unique names. In addition, they should have names that
group them with their corresponding DSB slot. For example, for the system in Figure C-l, you
might name the HP-HIL devices as follows:

HP-HIL Display Display Display
Device Station Station Station

Address 1 2 3
1 hill.l hill.2 hill.3

2 hil2.l hil2.2 hil2.3

3 hil3.l hil3.2 hil3.3

4 hil4.l hil4.2 hil4.3

S hilS.l hilS.2 hilS.3

6 hil6.l hil6.2 hil6.3

7 hil7.l hil7.2 hil7.3

The following table shows the mknod(lM) commands used to create the second device in the
HP-HIL loop for each seat. Note that each HP-HIL input device is a character device (c), uses
major number 42, and has minor number OxffOGAo where:

• G = DSB slot number - 4

• A = HP-HIL device address

2nd HP-HIL Device mknod

seat 1 /etc/mknod /dev/hi12.1 c 42 Oxff0020

seat 2 /etc/mknod /dev/hi12.2 c 42 Oxff0120

seat 3 /etc/mknod /dev/hi12.3 c 42 Oxff0220

The Locator Special File
To obtain locator input, HP Windows/9000 must know which HP-HIL special file to use. Typi­
cally, you would create a locator special file for each seat by linking it to the appropriate HP-HIL
special file (via In(1)).

Series SOO-Specific Information 193

For example, you would use the following In(1) commands to create a locator special file for each
system. Note that even though Display Station 3 does not have a locator device, we still link
its locator special file to the second HP-HIL device in the third set of HP-HIL special files. This
is done so that if a locator device is ever added immediately after the keyboard, the window
system will recognize it.

Locator In

seat 1 In hil2. 1 locator1

seat 2 In hil2. 2 locator2

seat 3 In hil2. 3 locator3

Window System Environment Variables
In order for more than one user to use the window system at the same time, certain window
system environment variables must be changed from their default values before the window
manager starts executing.

WMDIR
The window manager uses special files for communicating with terminal and graphics windows.
In addition, the window manager has a special file through which communication between it and
other processes is facilitated.

When the window manager starts executing, it looks at the WMDIR environment variable to
determine where to put these special files. By default, WMDIR is set to / dev / screen by the
wmstart(l) shell script.

On multiple-seat systems, WMDIR must be different for each display station. This is so that
special files for one instance of the window manager do not conflict with those of another.

You should create a separate directory for each seat, and you should set WMDIR to the path
name of that directory before starting the window manager. For example, you might create the
following WMDIR directories for the system shown in Figure C-l:

WMDIR Directory

seat 1 / dev / screen 1

seat 2 / dev / screen2

seat 3 / dev / screen3

194 Series SOO-Specific Information

Then, before starting the window manager at a given seat, you should set WMDIR to the
appropriate value. For example, before starting Windows/9000 at Display Station 2, set WMDIR
to / deu / screen2.

WMSCRN

IMPORTANT

Remember that the directory specified by WMDIR must exist before
starting the window manager; otherwise the window manager can't find
the directory and will fail. When creating the directory, you should give
read/write permission to all users (owner, group, and others).

The WMSCRN environment variable specifies the path name of the bit-mapped display device
to use for window system output. Since each seat uses a different bit-mapped display, you must
set WMSCRN to the path name of the appropriate display special file before starting the window
manager.

For example, in the system shown in Figure C-1, WMSCRN should be set to /deu/crt3 before
starting windows at seat 3.

WMINPUTCTLR
The window manager looks at the WMINPUTCTLR variable to determine the path name of the
special file for the HP-HIL input controller. Since each seat uses a different input controller, you
must set WMINPUTCTLR accordingly before starting the window manager at a given seat.

For example, in the system shown in Figure C-1, you would set WMINPUTCTLR to /deu/rhill
before starting windows at seat 1.

WMKBD
The window manager looks at the WMKBD variable to determine the path name of the cooked
keyboard special file to use for input. For example, in the system shown in Figure C-1, you
should set WMKBD to /deu/hilkbd3 before starting the window manager at Display Station 3.

Series SaO-Specific Information 195

WMLOCATOR
The window manager looks at the WMLOCATOR variable to determine the path name of the
special file for locator device. Because each seat uses a different set of HP-HIL special files, and
hence locator special file, you must set WMLOCATOR accordingly before starting the window
manager at a given seat.

For example, in the system shown in Figure C-l, you would set WMLOCATOR to /deu/loeator3
before starting windows at Display Station 3.

Examples
There are several methods for setting window system environment variables; all are discussed
in the chapter "Customizing Your System (Environment Variables}." The best of these methods,
with respect to multiple-seat systems, are:

• Create a customized version of wmstart(l) for each seat-e.g. wmstart.l, wmstart.2,
and wmstart.3 for seats 1, 2, and 3, respectively. Then whenever a user wishes to use
windows at a given seat, s/he must execute the appropriate version of wmstart-e.g.,
wmstart.2 at seat 2. Environment variables are set appropriately for the corresponding
seat-e.g., wmstart.l sets environment variables for seat 1, and so on. An example of
this method is given below.

• If you know you'll always use windows at a given seat, you can set environment
variables in your login initialization script-$HOME/.profile for Bourne shell users;
$HOME/ .login for C-shell users. For example, if you're a C-shell user, and you're absolutely
sure you'll always use windows at seat number three, then you can set and export the
environment variables in your .login script, as appropriate for seat 3. An example of this
method is described below.

• You can add code to the system-wide login scripts-jete/profile for Bourne shell users;
/ete/esh.login for C-shell users-to automatically set the environment variables when a user
logs in to a given seat. For example, if a Bourne shell user logs in to seat 1, /ete/esh.login
determines that the user has logged into seat 1 and sets and exports environment variables
accordingly. The tty(1) command can be used to determine at which seat a user has logged
in. Writing this code is left as an exercise for the user.

Creating Customized Versions of wmstart(i)
To create a customized version of wmstart for each seat, copy the original version to the new
version to create; for example:

cp /usr/bin/wmstart /usr/bin/wmstart.1 # wmstart for seat 1
cp /usr/bin/wmstart /usr/bin/wmstart.2 # wmstart for seat 2
cp /usr/bin/wmstart /usr/bin/wmstart.3 # wmstart for seat 3

196 Series SOO-Specific Information

When you've made a copy for each seat, you must set and export the appropriate window
system environment variables to the correct value for the corresponding seat. For seat 2 of
the example system shown in Figure C-l, you would set and export the following environment
variables in wmstart.2 as follows:

This code section overides default environment variable values
assigned by wmstart to WMDIR. WMSCRN. WMINPUTCTLR. WMKBD.
and WMLOCATOR.

You should put this code section immediately before the first
executable line in your customized version of wmstart.

Set WMDIR for seat 2:
'#
WMDIR=/dev/screen2 ; export WMDIR

If the WMDIR directory does not exist. create it:

if [! -d $WMDIR]
then

mkdir $WMDIR
chmod 777 $WMDIR
chgrp root $WMDIR
chown root $WMDIR

Make the directory.
Set rwx permission for all users.
Change the owner to root.
Change the group to root.

fi

Set WMSCRN for seat 2:

WMSCRN=/dev/crt2 ; export WMSCRN

Set WMINPUTCTLR for seat 2:

WMINPUTCTLR=/dev/rhiI2 ; export WMINPUTCTLR

Set WMKBD for seat 2:

WMKBD=/dev/hilkbd2 ; export WMKBD

Set WMLOCATOR for seat 2:

WMLOCATOR=/dev/locator2 ; export WMLOCATOR

Series SOO-Specific Information 197

Setting Variables in Your Login Script
As mentioned above, if you know you'll always log in at a given seat, then you can set environment
variables in your $HOME/ . profile (for Bourne shell users) or $HOME/ . login (for C-shell users)
script.

To set environment variables from your .profile script (Bourne shell users), use:

VARIABLE=value ; export VARIABLE

where VARIABLE is the name of the window system environment variable to set, value is its value,
and the export command exports the value of the variable to other processes.

To set environment variables from your .login script (C-shell users), use:

setenv VARIABLE value

where VARIABLE is the name of the variable to set, and value is its value. The setenv command
automatically exports VARIABLE to other processes.

C-shell users who always use seat 1 in the system system in Figure C-l would set window system
environment variables in their .login script as follows:

Set window system environment variables for seat 1:

Set WMDIR for seat 1:

setenv WMDIR /dev/screen1

Set WMSCRN for seat 2:

setenv WMSCRN /dev/crt2

Set WMINPUTCTLR for seat 2:

setenv WMINPUTCTLR /dev/rhil2

Set WMKBD for seat 2:

setenv WMKBD /dev/hilkbd2

Set WMLOCATOR for seat 2:

setenv WMLOCATOR /dev/locator2

198 Series SOO-Specific Information

Index

a
$? , 63
m .. 20
[!] , 20
~ .. 20
G .. 20
aborting a pop-up menu ... 25
absolute graphics tablet coordinates 131-132
activating a new alternate font ... 107
activating a new base font .. 108
activating a pop-up menu .. 22
activation indicator .. 111
alternate font .. 102
alternate font, default .. 118
altnernate font, selecting 103
anchor point .. 68-69
architecture .. 5, 60
architecure, ITE ... 59
auto-topping on selection ... 137
autodestroyable .. 79, 84, 112
automatic window destruction .. 79
automaticaly starting Windows/9000 31

b
BANNER FONT .. 118, 142
base font ... 102
base font, default ... 118
base font, selecting .. 103
/bin/csh .. , 62
/bin/sh ... 62
bit-mapped display driver ... 129
blinking planes ... 176
border ... 10-11

Index 199

border colors .. 97-98,112,117,147
border font .. 142
Bottom pop-up menu item ... 47
bottom window ... 93, 112
bottoming a window ... 47,95
bottoming a window upon creation ... 74
Bourne shell ... 62, 77
I Break I .. 21
buffer size ... 71

c
C-shell ... 62, 77
cell size .. 101
change default icon location ... 138
changing a window to an icon interactively 48
changing a window's representation 92-95
changing a window's size ... 89-90
changing a window's size interactively 42-43
changing an icon to a window interactively 50-51
changing border foreground and background colors (- c) .. 99-100
changing window label ... 100
chsh(l) .. 66
clipping .. 176
code/data space .. 162, 165-166
color .. 97-98, 146-147
color, border .. 97-98,117,147
color, desk background .. 117, 146
color, desk foreground ... 117, 146
color escape sequence ... 9, 100
color map, default ... 98, 146, 176
combining absolute and percentage graphics tablet coordinates 133
commands:

wborder ... 96-100
wcreate .. 68-76
wdestroy ... 83-85
wdisp ... 91, 92-95
wiont .. 105-108
wmove ... 87-88
wmready ... 62-64
wmstart .. 31, 58, 60-62
wmstop .. 32,67

200 Index

wselect .. 86
wsh ... 77-82

concealed window ... 26, 92, 95, 112
concealing a window .. 95
concealing a window upon creation ... 74
configuring swap space ... 173-176
configuring the interactive user interface 117, 136-139
contents area ... 72, 10-11
control box:

change icon to normal .. 26
changing a window to an icon .. 48
move an icon ... 49
move icon ... 26
move window .. 40-41
window size ... 42-43

control information .. 163
controlling a window's border ... 96-100
conventions ... 2
cooked keyboard ... 127
coordinates, graphics tablet ... 131-133
coordinates:

display screen .. 14-16, 69
maximum, high-resolution .. 16
maximum, low-resolution .. 15
origin ... 14

create options:
concealing the window (-0) ... 74
making the window iconic (-i) .. 75
placing the window on bottom (-b) 74
selecting the window (-k) .. 74
specifying location (-1) .. 76
specifying raster/buffer size (-r) ... 76
specifying size (- s) ... 76
thin border (-t) 75
verbose mode (-v) ... 75
window type (-w) .. 73
window_spec ... 73

Create Window pop-up menu item 35-37
creating a terminal window .. 35-37
creating a thin-bordered window ... 75
creating a window via wcreate ... 68-76

Index 201

creating a window with a shell ... 77-82
ICTAL 1-0 ... 20
ICTAL K:YJ ... 20
ICTRLG ... 20
ICTRLG ... 20
ICTAL H:ill .. 103
ICTRL~ .. 103
cursor .. 17
customizing wmstart ... 122, 196-197

d
default base and alternate fonts 104-105
defining the size of the pty set ...,"',............................... 125-126
definitions .. 177-185
dependencies, Series 500 ... 187-198
description of wlist report ... 111-112
desk top analogy ... 8, 6-7
Destroy pop-up menu item ... 38-39, 79
destroying a window .. 83
destroying a window interactively 38-39
destroying a window upon close .. 81, 85
destroying a window upon next create 81, 85
destroying an icon interactively ... 38-39
device interface, window type ... " 72
/dev/crt 60, 126
/dev/hilkbd .. 60, 127
/ dev / locator .. 60, 128
/dev/rhil .. 60, 128
/dev/screen .. 60, 124
/dev/screen/wm ... 62, 64
digitizer ... 19
disable audio feedback ... 138
disable icon control box .. 137
disable move control box ... 137
disable pause control box ... 137
disable scroll arrows ... 137
disable simultaneous window create 138
disable size control box .. 137
disable terminal window cache ... 138
disabling buttons ... 137
disabling fast screen updates .. 138

202 Index

disabling pop-up menus over desk top pattern 137
disabling pop-up menus over window borders 137
disabling I Select I key. .. 137
display screen coordinates ... 14-16, 69
display screen special file ... 126
display stack ... 93
Display Station Buffer .. 188-190
displaying softkeys ... 21
dither pattern .. 117, 144-145
driver, bit-mapped display 129
DSB, see Display Station Buffer .. °

e
echo ... 13
enabling buttons .. 137
enabling I Select I key ... 137
env(l) .. 119
environment, inherited , , , .. 78
environment variables, window system 3, 58, 60, 113-122, 116-118
environment variables, setting .. 119-122
environment variables:

BANNERFONT .. 118,142
ICONFONT ... 118, 142
SB_DISPLAY_ADDR 116,153,163-172
SHELL .. 30,62, 77-78
TERM ... 116
WMALTFONT ... 104, 118, 141
WMBASEFONT .. 104,118, 141
WMBDRBGCLR 117
WMBDRFGCLR .. 117, 147
WMDESKBGCLR 117, 146
WMDESKFGCLR ... 117, 146
WMDESKPTRN .. 117, 144-145
WMDIR 60,61,63, 116, 124, 194-195
WMDRIVER ... 116, 129
WMFONTDIR ... 116, 140
WMIATIMEOUT .. 117, 148-151
WMINPUTCTLR .. 60, 116, 128, 195
WMIUICONFIG ... 25, 117, 136-139
WMKBD .. 60, 116, 127, 195
WMLOCATOR .. 60, 116, 128, 196

Index 203

WMLOCSCALE .. 117, 130-135
WMMENUFONT ... 118, 141
WMPTYCNT .. 117,157,125-126
WMPTYMDIR ... 117,125,157
WMPTYNAME ... 117,125,157
WMPTYSDIR .. 117,125,157
WMRTPRIORITY ... 117, 152
WMSCRN ... 60, 116, 126, 195
WMSFKFONT ... 118,143
WMSHMSPC .. 116,153,163-172

escape sequence .. 9
escape sequence, definition. .. 105
/etc/csh.login .. 120-121
/etc/csh.login for multiple-seat ... 196
/etc/passwd ... 66, 77
/etc/profile ... 120
/etc/profile for multiple-seat ... 196
example multiple-seat configuration 196-198
example swap space configuration .. 174-175
exec . .. 61,66
executing HP-UX commands .. 30
exit .. 78
Exit WS pop-up menu item .. 32-34
exiting from a pop-up menu .. 25
exiting Windows/9000 ... 32-34

f
font:

alternate ... 102, 141
base 102, 141
border ... 142
cell size .. 101
defaults .. 118, 104-105, 140-143
definition ... 101
directories .. 104
directory ... 116
directory structure .. 104
escape sequences ... 105
file .. 103-104
icon label ... 142
loading and activating .. 103

204 Index

maximum number of .. 102
path name .. 105, 103-104
pop-up menu .. 141
selecting alternate font ... 103
selecting base font "."" .. ', ... ,', ... "',..................... 1 03
softkey .. 143
style .. 101

format of pop-up menus .. 22-23
frame buffer ... 163

9
gescape .. 176
getting a login shell in a window ... 81
getty(lM) .. 58
global menu items ... 23
glossary .. 177-185
good-citizen process ... 176
graphics icon ... 27
graphics, Starbase .. 160
graphics tablet ... 13, 19
graphics tablet coordinates .. 131-133
graphics tablet scaling .. 117, 130-135
graphics window .. 9

h
high-resolution display .. 16
HP Windows/9000 Programmer's Manual 2, 5, 9, 17, 100, 105, 123
HP Windows/9000 Reference ... 2
HP-HIL ... 59, 123, 188-190
HP-HIL input controller 60, 116, 128, 191
HP-HIL keyboard ... 127, 192
HP-HIL locator device ... 128
HP-UX shell .. 30
HP2622 ... 9
HP2627 ... 9
HP 98288, see Display Station Buffer 188-190
HP 98700H display station .. 188-190
HP 98710H graphics accelerator ... 188

Index 205

· I
icon ... 26-27
icon control box ... 48
icon control box, disabling .. 137
icon label ... 142
Icon pop-up menu item .. 48
icon:

changing from a window to an icon interactively 48
changing from iconic to normal representation .. 50-51
creating an iconic window .. 75
format .. 26
label font ... 142
location .. 87-88, 112
manipulation symbol .. 26
move box .. 26
moving .. 87-88
type .. 27

ICON FONT ... 118, 142
iconic representation 26-27,92,94,112
input controller, HP-HIL .. 191
input device .. 59
installation, Series 500 ... 3, 187
interactive timeout period ... 148
interactive user interface configuration 117, 136-139
interactive user interface, default configuration 139
internal terminal emulator, see ITE .. 0
invoking a pop-up menu, see activating a pop-up menu 0
ITE .. 59

k
kernel configuration limitations 167-168
keyboard ... 12, 13, 20-21
keyboard, HP-HIL .. 192
keyboard special file ... 127
keyboard:

pausing terminal window output 21, 52
pointer keys .. 20
I Select I key .. 20
shuffling windows ... 21, 45
special keys ... 20-21

206 Index

killing a program (process) ... 21
killing Windows/9000 .. 67

I
label, icon ... 26, 142
label, window ... 98
leaving Windows/9000 .. 32-34
LF character .. 103
listing window attributes .. 111-112
listing window status information 109-112
In(l) ... 193-194
loading and activating a font ... 103
local menu items .. 23
location, iconic ... 77-78, 112
location, window ... 68-69, 76,87, 112
locator ... 149-151, 193-194
locator device's special file .. 128
logical screen size 70
login ... 31, 65-66
.Iogin ... 65-66, 78, 121
.Iogin for multiple-seat ... 196, 198
login initialization script .. 65-66
login shell .. 66
logout .. 78
low-resolution display 15

m
making window borders normal ... 99
making window borders thin .. 99
malloc(3) ... 162
managing terminal window fonts 101-108
maximum number of fonts .. 102
maximum number of open files ... 158
maximum number of processes 156
maximum number of windows 37, 155-173
maximum window size ... 72,89
I Menu I .. 21
menu, see pop-up menu .. 0
menu, softkey .. 21
minimum window size .. 89

Index 207

mknod{lM) .. 191-193
mouse ... 13, 18
move control box ... 40-41
move control box, disabling. .. 137
move icon control box .. 49
Move pop-up menu item .. 41, 49
moving a window ... 87-88
moving a window interactively ... 40-41
moving an icon ... 87-88
moving an icon interactively .. 49
MPB, Series 500 ... 188-190
multiple-seat 3, 116, 114-115, 188-198
multiple-seat environment variables:

WMDIR .. 194-195
WMINPUTCTLR ... 195
WMKBD ... 195
WMLOCATOR .. 196
WMSCRN .. 195

multiple-seat /ete/esh.login .. 196
multiple-seat jete/profile .. 196
multiple-seat .login .. 196, 198
multiple-seat .profile ... 196, 198
multiple-seat special files:

display ... 190-191
HP-HIL input controller .. 191
HP-HIL input devices .. 192-193
HP-HIL keyboard ... 192
locator ... 193-194

n
nohup{l) 32, 38, 67
non-selectable menu item .. 24
non-variable swap space .. 173
normal border ... 11, 70, 96-97, 112
Normal pop-up menu item .. 50-51
normal representation 26, 92, 94, 112

208 Index

p
pan position ... 112
passing a command to a new window 80-81
pause control box 52
pause control box, disabling ... 137
pausing terminal window output ... 21
pausing terminal window output interactively , 52
percentage graphics tablet coordinates 132-133
performance, increasing .. 171-172
performance limitations .. 155-171
picture, icon .. 26
pointer .. ., 13
pointer, moving the ... 18-20
pop-up menu .. 22-25
pop-up menu items .. " 23-24
pop-up menu:

activating .. 22
Bottom . .. , 47
Create Window .. 35-37
Destroy .. 38-39
disabling abort by movement .. 138
disabling over desk top pattern ... 137
disabling over window borders ... 137
Exit WS .. 32-34
exiting from .. 25
font ... 141
format ... 22-23
global items .. 23
Icon .. 48
items ... 23
local items ... 23
Moue " '" 41,49
non-selectable item ... 24
Normal .. 50-51
Repaint ... 55
Save ... 54
Select . .. 44
selectable item .. 24
selecting items .. 24
Size .. 43
Top .. 46

Index 209

process, good-citizen .. 176
process limits .. 156
.profile .. 65-66, 78, 121
.profile for multiple-seat .. 196, 198
pseudo-tty special file, see pty ... 0
pty .. 117,124,152
pty directories ... 117
pty limitations ... 157-158
pty master/slave directories ... 125
pty naming conventions .. 125
pty starting name ... 125
puck switch .. 19
putting a window on the bottom of the stack 47

r
rapid scrolling with I Select I ... 53
raster, retained .. 72, 75, 161
raster /buffer size,.................................... 71, 112
real-time priority .. 117, 152
reconfiguring Windows/9000 .. 115
recoverable ... 79, 84
Repaint pop-up menu item ... 55
repainting the screen ... 55
replace the alternate font and repaint 108
replacing all fonts with one base font 107
replacing both base and alternate fonts 106
replacing the base font and repainting 107
resource sharing between processes 176
resource usage ... 3
retained raster ... 72, 75, 161
retaining a window's raster ... 75
returning to default base and alternate fonts 106
running Windows/9000 .. 30-31,58-66

5
Save pop-up menu item ... 54
saving a window .. 54
SB_DISPLAY_ADDR 116,153,163-172
scaling, graphics tablet ... 117, 130-135
scroll arrows .. 53

210 Index

scroll arrows, disabling ... 137
scrolling window contents .. 53
seat ... 188-190
select button .. 18, 19
! Select I key . . , , ., 20
Select pop-up menu item .. 44
selectable menu item ... 24
selected window .. 12, 18, 112
selecting a window interactively .. 44-45
selecting a window upon creation .. 74
selecting a window via commands , 86
selecting an icon interactively .. 44-45
selecting pop-up menu items , 24
Series 500 dependencies ... 187 -198
Series 500 installation ... 187
server, window 152, 156, 160
setenv ... 121
setgrp(2) ., 58
setting a window;s autodestroy attributes 84-85
setting environment variables .. 119-122
setting raster/buffer size ... 76
setting window location upon creation , 76
setting window size upon creation .. 76
sh(l) ... 61
shared memory 72, 116, 153, 159-172
shared memory close-up .. 162-163
shared memory example .. 169-171
shared memory size ... 161
sharing resources ... 176
SHELL .. 30,62,77-78
I Shift H Select I .. 21, 45
I Shift H User I .. 21
shmrnax kernel configuration variable 168
shmrnaxaddr kernel configuration variable , . , , , , , 167
shuffling bottom window up .. 91
shuffling top window down ... 91
shuffling windows ... 21, 91
shuffling windows interactively .. 45
SI character ... 103
size control box .. 42-43
size control box, disabling ... 137

Index 211

size of window, see window size .. 0
Size pop-up menu item .. 43
size, raster/buffer .. 71, 112
size, window .. 76, 89, 112
softkey font ... 143
softkey menu ... 21
special file, multiple-seat:

display ... 190-191
HP-HIL input controller .. 191
HP-HIL input devices .. 192-193
HP-HIL keyboard ... 192
locator ... 193-194

special file, window .. 72
special files, window system 116, 123-128
special keys ... 20-21
stack space ... 159-167
Starbase .. 160, 163, 176
Starbase Device Drivers Ubrary 9
starting a shell in a dead window .. 82
starting Windows/9000 .. 30-31, 58-66
starting Windows/9000 automatically 31, 65-66
starting Windows/9000 from login 65-66
$status ... 63
~ .. 21,52
stopping a program (process) ... 21
stopping the window manager .. 67
stopping Windows/9000 .. 67
stylus ... 19
su(l) ... 58
swap space, configuration example 174-175
swap space, non-variable .. 173
swap space requirements ... 173-176
swap space, variable ... 174
I System I ... 21
system-wide login script .. 120-121

t
TERM ... 116
termO ... 9
TermO Reference Manual 2, 9, 17, 100, 105
terminal .. 6

212 Index

terminal configuration ... 21
terminal icon ... 27
terminal window 9
terminal window cache ... 138
terminal window:

creating interactively .. 35-37
type ... " 9

terminating a window's shell .. 78
terminating Windows/9000 .. 67
thin border ... 11,70,75,96-97, 112
timeout for interactive operations ... 148
timeout, interactive operations ... 117
Top pop-up menu option .. 46
top when icon ... 137
top when obscured by move/size operation. .. 137
top when unobscured by move/size operation 137
top window .. 93, 112
topping a window ... " 46, 95
topping a window interactively .. 44
tracking .. 117, 149-151
tty(4) ... 59
turning off autodestroy status ... 85

u
unselect when changing to icon. .. 138
user area .. 10-11, 72
/usr/lib/gserver .. 152
/usr/lib/raster ... 104, 140
/usr/lib/tOserver ... 152
/usr/lib/window.a .. 160
/usr/lib/wm ... 58, 61
/usr/lib/wmstart .. 60

v
variable swap space ... 174
vdcextent/device-bounds 176
verification menu ... 33-34
virtual memory map ... 159

Index 213

w
wborder 96-100
wborder options:

making a border normal (-n) " 99
making a border thin (-t) .. 99
setting the window label (-1) .. 100

wconsole .. 30
wcreate .. 68-76
wdestroy ... 83-85
wdestroyoptions:

destroying upon close (-a) ... 85
destroying upon next create (-d) ... 85
turning off autodestruction (-n) .. 85

wdisp ... 91, 92-95
wdisp options:

changing to an icon (-i) ... 94
changing to normal representation (-n) 94
concealing window (-0) .. 95
displaying as bottom window (-b) .. 95
displaying as top window (-t) ... 95
shuffling bottom window up (-u) ... 91
shuffling top window down (-d) .. " 91

wfont .. 105-108
wfont options:

activating a new alternate font (-a) 107
activating new base font (neither -a nor -r) 108
replace alternate font and repaint (-ar) 108
replace base font and repaint (-r) 107
replacing all font with one base (-f) 107
replacing both base and alternate (- F) 106
returning to default base and alternate 106

wgetlocator(3W) .. 160
wgetrasterecho(3W) .. 160
window .. 6
window commands, see commands .. 0
window configuration menu .. 21
window environment .. 78
window group ... 58, 67
window information area ... 163
window label ... 98
window label, changing ... 100

214 Index

window location .. 112
window manager 58,60-63, 67,157-158
window manager, real-time priority .. 152
window name 35
window process .. 160
window representation:

concealed .. 26
iconic .. 26-27
normal .. 26

window server ... 152, 156, 160
window size .. 89, 112
window size:

changing interactively .. 42-43
definition .. 70
logical screen size .. 70
maximum .. 72
pixels ... 70
raster/buffer size .. 71

window specification .. 73
window structure ... 10-11
window system architecture .. 60
window system swap space requirements 173-176
window type .. 9, 112
window type device interface ... 72
window type:

graphics .. 9
terminal .. 9

windows, justification for using ... 8
windows{l) ... 73
window_spec ... 73
wlist ... 109-112
wlist options:

listing brief font information (-f) .. 110
listing extended font information (-f 1) 110-111
listing window attributes (-1) .. 111-112

wlist report .. 111-112
WMALTFONT ... 104, 118, 141
WMBASEFONT .. 104, 118, 141
WMBDRBGCLR .. 117,147
WMBDRFGCLR .. 117,147
WMDESKBGCLR .. , 117, 146

Index 215

WMDESKFGCLR ... 117, 146
WMDESKPTRN .. 117, 144-145
WMDIR 60,61,63, 116, 124, 194-195
$WMDIR directory .. 124
WMDRIVER ... 116,129
WMFONTDIR ... 116, 140
WMIATIMEOUT .. " 117,148-151
WMINPUTCTLR .. 60, 116, 128, 195
WMIUICONFIG ... 25, 117, 136-139
WMKBD .. 60, 116, 127, 195
WMLOCATOR .. 60, 116, 128, 196
WMLOCSCALE .. 117, 130-135
WMMENUFONT ... 118,141
wmoue ... 87-88
wmove options:

specifying iconic location (-i) ... 88
specifying location (-1) .. 87

WMPTYCNT .. 117,125-126,157
WMPTYMDIR ... 117,125,157
WMPTYNAME ... " 117, 125, 157
WMPTYSDIR .. 117, 125, 157
wmready ... 62-64
WMRTPRIORITY ... 117, 152
WMSCRN ... 60, 116, 126, 195
WMSFKFONT ... 118,143
WMSHMSPC .. 116,153,163-172
wmstart .. 31, 58, 60-62, 114
wmstart as your login shell ... 66
wmstart, customizing .. 122
wmstart, multiple-seat .. 196-197
wmstop .. 32, 67
wselect .. 86
wsetrasterecho(3W) .. 160
wsh ... 77-82
wsh options:

destroying upon close (-a) ... 81
destroying upon next create (-d) ... 81
in common with wcreate ... 80
making a login shell (-g) ... 81
passing a command (-c) .. 80-81
starting a shell in a dead window (-e) 82

216 Index

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD

HP Windows/9000
User's Manual

Manual Reorder No. 97069-90000

Please note the latest printing date from the Printing History (page ii) of this manual
and any applicable update(s); to help us know to which material the comments
apply _______________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins System Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

I II II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Reorder Number
97089·90000
Printed in U.S.A. 12/85

FliOW HEWLETT
':1:. PACKARD

II ~ III ~ IIII II
97Db9-9DbDD

Mfg. No. Only

