HEWLETT
PACKARD

A2

Device-independent Graphics Library

Programmer Reference Manual

Device-independent Graphics Library
Supplement for HP-UX Systems

Manual Part No. 97084-90001

© Copyright 1983, 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1979, The Regents of the University of Colorado, a body corporate.

This document has been reproduced and modified with the permission of the Regents of the University of Colorado, a
body corporate.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

November 1983...Second Edition
May 1985...Update

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer sys-
tem products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-
Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty
includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped
freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by
Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day,
Return-to-HP warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP
Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair
any defects. The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic
programs: 1) V2 Mbyte RAM; 2) HP-compatible 32" or 54" disc drive for loading system functional tests, or a system install
device for HP-UX installations; 3) system console consisting of a keyboard and video display to allow interaction with the CPU
and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Tele-
marketing Center at (800) 835-4747 or your local HP Sales and Support office.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

PREFACE

Who needs to use this manual?

The DGL Programmer Reference Manual is intended for wusers of
Hewlett-Packard's Device-independent Graphics Library (DGL). Application
programmers can use it to learn the features of DGL as well as for reference
material as they write their application programs. Operators of graphics
systems may better understand the system they use by reading the first two
thapters of this manual.

What does it cover?

This manual teaches the DGL system and contains reference information for
DGL. Designers and programmers will also find the Device Handlers Manual
helpful. This manual explains the effact that certain DGL routines have on
different devices. This manual does not contain reference information for
DGL calls that are operating system dependent. Refer to the particular sys-
tem supplement manual for this information.

What does it assume?

Very little is assumed by the DGL Programmer Reference Manual. An overall
understanding of basic concepts of computers (e.g. programs, peripherals)
is needed. Some familiarity with computer graphics is helpful. A thorough
reading and understanding of Chapter 1 can provide this. Also, knowledge
of the FORTRAN programming language is desirable, since that is the language
in which examples are written. Experience with additional languages, such
as Pascal, would complement the FORTRAN knowledge and allow those languages
to be used for graphics application production.

How is it organized?

This manual can be divided into two sections: a '"user's guide" and a
"reference manual". The '"user's guide", consisting of the first two chap-
ters, teaches the basic concepts of computer graphics and the functions of
the DGL system. This should be read by the first time user in order to gain
a general understanding of the DGL package. The third chapter comprises the
"reference manual". This chapter discusses information needed by every
programmer as well as more experienced DGL users.

iii/iv

Table

Chapter 1
Concepts of Computer Graphics

Introduction..........coiive..

Graphics Output Primitives.......

Primitive Attributes............
Viewing Transformations.........
Input....iiiiiiiiiiinininennnens

Control. .. vttt noeennnns

Alphanumeric Output.............

Chapter 2
Description of DGL Functions

General......iviieieiiinionnnans
Output....coviiiieiiiiieneninens
General Information..........
Graphics Output Primitives...
General........civeeenens
Starting Position.........
Lines.....coviiiiieroncnnns
TexXt.. it ieieenennnncnns
Markers......ooveeeeeecnns
Polygons...cveieeennnennss

Alphanumeric Output...........

Primitive Attributes............
Color....vvuvvnnnns PN
Highlighting......... N
Linestyle........ ettt
Linewidth........ccviiiienns
Character Size.........c.cvv0

Polygon Style.....ccviviivnnnnn
Viewing Transformations...........
General.....voeviiiinininnnnns
Logical Display Limits........

Aspect Ratio.................
Viewport.....oooviiivieneenn
WindoW. ..o vi ittt it iieenenns
Conversion of Units..........
Input Primitives................
General......cocoiieiirinnrenons
Button......ooviiiiiiinnnnnns

Keyboard.....oovveiiiivnennens
Locator. .o iininiinecnnannnns
General.......coiiieniennnnn
Locator Limits.............

Sampling the Locator......
Requesting Locator Input..

of Contents

.

.

..1-1
..1-3
..1-5
..1-6
..1-9
..1-9
.1-10

.
.
1

-

.
.

1 1 1
oOWVvwN~NFWwMPpPDOONVT FEREREER

PO PONDDNONDNDND

.
i

.
1

POV RN -
]
N e

1
n
=

n
U
n
w

.2-23

..2-26

.

.

.

.

.2-27

Valuator........ ittt e i eee st ses ettt ettt etes et s e eens
General.......ivoeiieerneensnnonns et et eseraseetesecatsennesnennos
Sampling a Valuator..... ettt ee et es ettt et esaetese o e
Requesting a Valuator......ccoitititiiniinissesssnsessscasssssnnnns

L6700 48 75 o« 0 PN

1678 £ V=T o - T

System Initialization and Termination........eeeevveeeeeoosnonnaosns

Device Control...... Cereeea Ceeeeeeaa e esereeerateeeseseeaaneanne
General.......... C et e s ee s s e s eses s e s e s s st e s s e asatrsetsseas e
Graphics Display DevicCe....ivieeieeesessessestossssssosssssccsnsns
Other Logical Devices...cvuiiriiroeroeororooosososansonsacnscanses 2-41

Clearing the Display Surface.......... AP g &

Controlling the Timing Modes........ Ceeeereeas P - 4

Making the Picture Current..... PP S 1

INQUIrYy FUNCtioNS. civvteiuerneennroreensconscsnssonssensonsanas ceee..2-U43

Escape Functions...... P - L |

MDD DODNONDNDN

.
.

1
EFLWWWWWwWwWwWwwWw
O \O\O 000000000~ —~

Chapter 3
Detailed Description of DGL Subroutines

System-Specific Calls...iveeeieriinrrseroscasosssssssssssssssssssasssnns 1
Definition Format........ e es e eees et ae ettt ettt es s 1
A Y 1) 2
ZALPH........... Gt ettt ettt 3
A) 2 - 5
ZBEGN........ ettt I N
ZBEND........oonvnnnn e et ettt ceesess.3-8
3-9

1

3

5

7

wuu;:uu

.
.

.

ZBMOD. .ttt vevennnnnnnannnn Ceeeean ceeenn Cessesesersesaesesccencsasraeneen
ZBUTN.......... ceeenn T 1 !
010) v G e |
/10) S ceseanes . e !
20 R 1o §
A D610 P e eecceseetrrasconanns cesesan 3-19
ZDEND.....covvvvvennnnn s tesceccscessteareasonees O T 44
ZDLIM....covvvvvnnnnn G R0
ZDPMM......... T B)
ZDPST.......... e PG Do)
ZDRAW. ... tiiiiiinnnnnnns e .3-29

A+ 1+ cestitesccesaacans G S) §
ZIACS........ Ceeeesiiertetnaansans Ceetrerecsenene ceesene B P 3-32
ZICOL. ...ttt terennnnnns Ceseccacssenann N Ceseseecenen ceteereccaanaess 3-33
ZIESC....covviviinennnnn cereseans tesecsanesstertesssasenen ceeeeeracans e...3-34
/% 1925 G RS 1<)

vi

A N

A (11

A 4 L0)

A) 1

A0 S

A 206 2] 3

A 24 €1 1)

A 20 1 P

A o 0 P

A 240) P

A S P

A 10

A N P

A 0

AT 1

A]

A 0

A 10

WWWwWwLWLWWwLbWLWLWWWLWLWWLWWLWLWWWWLWW
|
OO\
UVimvdnoo~NuvMwikRPrPoooAAERP OOV W

A AN P

Glossary

List of Figures

DGL System Structure.................. ettt ettt 1-2
Examples of Graphics Output Primitives............ S
Examples of Graphic Output Using DGL.........c0vuue B R 1
A Primitive Attribute: Linestyle........ N 1-6
Two Images Resulting From Different Windows.......... ettt 1-7
Two Viewports, One Object......... e e R e 1-8
The Result of the Viewing Transformation..........c.civiiineinnnnnns 2-2
Use of ZMOVE, ZDRAW and ZPOLY . .. ittt it iiinntiiienaneeeeeneennnnnns 2-6
Use of ZTERT . .. ittt ittt ineencennsnoannns et e 2-T
Examples of Polygon Sets.....vcvivieereneoenansonns N e 2-10
Red-Green=Blue Color CUube.....vvvierneeeenennennnn ettt eseesa2-15
Hue-Saturation-Luminosity Color Cylinder.........ccoeeuvee cheee...2-16
Types of Linestyles........covvveeenns ettt ceeaens2-19
Different Text Widths and Heights................. et cee...2-20
Standard Polygon Styles......... PN ettt 2-22
The Viewing Transformation........eoevieeereocnneness et e c.e..2-23
The DGL Viewing Transformation Process............ BN ve..2-2h
Distortion in the Window to Viewport Mapping......... et 2-26
Multiple Viewports............... ettt ettt et ..2-30
List of Tables
Standard Markers.......oveeeerneeeronenncons e et ...2-8
How Attributes Affect Graphics Primitives.......... ceereereeeeses.2-13
Virtual Coordinate Limits.....oiiteenerieeeenennns et e e .. 2-27
Aspect Ratio....viiiiiiiiiniiiiieiirinerneesnrosencsnnsnns ceeeeeee.3"5
Sample Colors Using the RGB Color Model................ ceesereeesa3-20
Sample Colors Using the HSL Color Model.........c.civvvennn, vee...3-20

ix

DGL SUBROUTINES

ZAEND Disables the enabled alphanumeric device.

ZAINT Enables the alphanumeric device.

ZALPH Outputs a text string to the alphanumeric device.

ZASPK. Redefines the aspect ratio of the virtual coordinate system.

ZBEGN Initializes the DGL system.

ZBEND Disables the enabled button device.

ZBINT Enables the logical button device.

ZBMOD Selects the timing mode for graphics output.

ZBUTN Returns a button value from the enabled button device.

ZCOLM Chooses the color model for interpreting parameters in the color table.
ZCOLR Sets the color attribute for line primitive with the exception of polygon interior fill.
ZCSsliz Sets the character size attribute for hardware text.

ZDCOL Redefines the color of an entry in the color table.

ZDEND Disables the enabled graphics display device.

ZDINT Enables a graphic display device.

ZDLIM Defines the logical display limits of the graphics display.

ZDPMM Converts from world coordinates to millimeters on the graphics display.
ZDPST Redefines the polygon style of an entry in the polygon style table.
ZDRAW Draws a line from the starting position in the world coordinate specified.
ZEND Terminates the DGL system.

ZHIGH Sets the highlighting attribute for subsequently output primitives.

ZIACS Given a desired character size, returns the actual character size that will be used by

the graphics display.

ZIcoL Inquires the color of an entry in the color table.

ZIESC Invokes a device ~-dependent escape function to inquire the graphics display.
ZIPST Inquires the polygon style of an entry in the polygon style table.

ZIWS Inquires characteristics of the DGL system.

ZKEND Disables the enabled keyboard device.

ZKINT Enables the keyboard device.

ZKYBD Returns a string from the enabled keyboard device.

ZLEND Disables the enabled locator device.

ZLINT Enables the locator device for input.

ZLLIM Defines the logical locator limits of the locator device.

ZLOCP Defines the locator echo position on the graphics display.

ZLPMM Converts from world coordinates to millimeters on the locator surface.

ZLSTL Sets the linestyle attribute.

ZLWID Sets the linewidth attribute.

ZMARK Displays a marker symbol at the current position.

ZMCUR Makes the picture current.

ZMOVE Sets the starting position to the world coordinate position specified.

ZNEWF Performs a new -frame -action on the graphics display.

ZOESC Performs a device -dependent escape function on the graphics display device.

ZPGDD Displays a polygon set in a device ~dependent manner.

ZPGDI Draws a polygon set in device -independent manner.

ZPICL Sets the polygon interior color attribute.

ZPILS Sets the polygon interior linestyle attribute.

ZPOLY Draws a connected line sequence starting at the specified point.

ZPSTL Sets the polygon style for polygon sets.

ZsLocC Samples the locator device and returns the locator point without waiting for operator
response.

ZSVAL Samples the enabled valuator device and returns the value of the subvaluator

specified without waiting for operator response.

ZTEXT Outputs graphics text on the graphics display.

ZVEND Disables the enabled valuator device.

ZVIEW Sets the boundaries of the viewport in the virtual coordinate system.

ZVINT Enables the logical valuator device.

ZWIND Defines the boundaries of the window.

ZWLOC Waits until activation of the locator button then reads from the enabled locator device.
ZWVAL Waits until activation of the valuator button then returns the value of the specified

subvaluator.

*System-specific Calls

xi/xii

Chapter 1
Concepts of Computer Graphics

INTRODUCTION

The Device-independent Graphics Library (DGL), is a set of graphics tools
that allows an application programmer to interact with and perform
graphics output to a variety of graphics display devices. A user can send
two types of output and receive four types of input from several devices.

To provide a device-independent interface, the DGL system is centered
around the concepts of a logical device and a work station. A logical
device is a hypothetical device which can perform some type of input or out-
put to different physical devices in a uniform manner. DGL has 6 different
types of logical devices:

OUTPUT INPUT
Graphics display Button
Alphanumeric display Keyboard

Locator
Valuator

DGL combines these logical devices into a ‘'super device"” called a
work station. A work station is a group of, at most, one each of the six
logical devices that DGL treats as a unit. It allows a single application
program to send different types of output and receive different types of in-
put from several devices. Figure 1-1 illustrates the structure of the DGL
system.

DGL is a set of building blocks upon which programmers can build a wide
variety of graphics tasks (which requires a minimal amount of program space)
without sacrificing performance. DGL is an extremely flexible product which
can be extended to support new peripherals as they become available.

The following sections describe the five major functional areas of DGL:
graphics output primitives, output primitive attributes, viewing transforma-
tions, input, and control. The concepts and examples introduced here will
be developed in detail in the following chapters.

1-1

USER PROGRAM

Figure 1-1. DGL System Structure

S\
DGL ROUTINES
> DGL
DEVICE DEVICE DEVICE DEVICE DEVICE DEVICE DEVICE
HANDLER HANDLER HANDLER HANDLER HANDLER HANDLER HANDLER
J
] A A A
I/O CALLS
/ / Y \ / 4
SYSTEM DRIVERS
L A L A
DISPLAY | ¢ .| BUTTON
DEVICE DEVICE
ALPHA-
NUMERIC VALUATOR
DEVICE DEVICE
LOCATOR | KEYBOARD
DEVICE DEVICE

GRAPHICS OUTPUT PRIMITIVES

Graphics output primitives are the building blocks of a graphics picture.
Just as an algorithm is broken into the simplest possible instructions to
create a computer program, a picture can be broken down into graphics output
primitives. DGL has six types of graphics primitives: 1lines, polylines,
text, markers, polygon sets, and moves.

o A line is a single line segment.

o A polyline is a a series of connected lines specified as one primi-
tive. Note that the polyline primitive can define the outline of a
polygon but not its interior region. The polyline primitive makes
it possible to draw a series of connected lines all at one time, in-
stead of making a series of draws. This is done by specifying the
number of points to be drawn and the X and Y arrays of the coor-
dinates to be connected.

o Text is a string of graphics text characters which is output. The
lower left corner of the first text character begins at the starting
position. Text is normally output by the device's hardware charac-
ter generator. For devices that do not generate graphics text, DGL
will output software-generated text.

o A marker is a symbol, such as a diamond or star, that represents a
data point.

o A polygon is a multisided, closed, plane figure that includes both
the edge or sides of the figure and the region enclosed by the edge.
A polygon set is a group of associated polygons each of which is a
closed plane figure bounded by straight lines. The polygon set
primitive allows the user to draw a series of connected lines to
form closed figures (polygons) in the world coordinate system. Like
polylines, the user specifies the number points to be drawn and the
X and Y arrays to be connected. Unlike polylines, the polygon set
primitive is planar and allows the user to specify how the interior
of these bounded regions is to be filled with a specific style and
color of fill pattern.

o A move redefines the starting position for the next graphics primi-
tive. Otherwise, each primitive begins where the previous primitive
ended.

In Figure 1-2, moves and lines were used to create the axes and grid,
markers generated the data points, and polylines connected the data points.
The move primitive positioned the labels on the axes, and the text primitive
wrote the labels.

1-3

90

80

LI

70

TTTT

60

. A /

. A\ /

20

TIr11

LI BLELI

LI

TT1T LELELIR

S W W W N TR W | VI W S U (SN O T TN S S W T S | U WS W W S T W | § IS WA WO (S NN N T N W Y W T ']

10 20 30 40 50 60 70 80 90 100

S rTTITY

Figure 1-2, Examples of Graphics Output Primitives

The location of each output primitive is specified in the world coordinate
system. The world coordinate system is an abstract, two-dimensional space
expressed in units selected by the user.

A point is defined by its X and Y coordinates. The starting point of an
output primitive is the ending point of the previous output primitive. A
line can be created by specifying a point to be connected to the previous
point. This action is known as a "draw". The end of that line then becomes
the starting point of the next output primitive and another line can begin
at those coordinates. The starting position can also be moved to another
point without drawing a line; this is known as a "move". In this way, a
picture can be drawn by successive moves and draws.

Using lines, polylines, text, markers, polygon sets, and moves, complex
graphics images can be constructed as shown in Figure 1-3.

1-4

M w
by [T »
PRN
"l
sia>—325 B~at SIR 2 [AND2_SIR2 *3
) T a1 SIR 3 '
1 €8 3
N 1
EnF Al =) £ 2 [u
b 12
v "
| msoocn NANDZ ENFI 1y ANOC2 PR .
P0PIO 1 a1 Sl F}
5061 0> I~a1 POPI0 2 FLGEN 1 12| e i
B 2v L FLAG BUFFER F| R1Ke1)
1500043 NANOZ PO 10 r o ez ewy _ _FLacEr FLoEN 2 " |
alsti 12 | v
st @ 52 i B e g e D 1 R 1 LA 12 ANOCZ FLG
i w— . i o= : 1 el
| 150051 NNz STe [FLGRR FLGRF_3 ' 1 FLG
NANDE FLGEN '
NAND3 FLGEN \ ! R1kc2)
I
o P i
1ax + 0 I
NANOZ TRQFF2
Pl v | AL/ w2z gy b LT e ey
w1300c8)
dars .
cur BRI 2330 1
| () v 12 T2
130007 Pty
1en
v >—2 asv 5 :‘
1
[%
300087 a3 CONTROL FF |
s u vz LT
ste>—2 ar [sree VR e awocx |
| Tﬂ 12 [T - |
N ;
| R150009) NANDZ STC 1
s ' [_ :
' ,
” 7
7,|m 1 2 | o 12 MN0C2 SR
cie — at [ac? [BF) at) |
Gl v 15} e [I
F1500000) W2 CLC | nan03 cunuerz |
B LN 4
1lees 1 o
cRs ar | s 2
[12
. 12
25| misoorin) NANDZ CRS. i a
S 575 1 5 sFs 2
o1
2 8 O—4¢ [wanos s
P15000123 Usc 2 13, 2~ a Sk5 1
7\ 1
e 1 ——-J
sre sl Mo sex
9 NAND3 SFC
1
| 2 NAND3 LSC O—
s M1 ___IS00013) 12 —_——— R
pos 16150 o[o
Lser 151 L5CC A il
106 e o7 &
RISOT grrsa0 $R1500 NANDZ LG
ae fos foe
v
PR 51 T TR Teiz
45y > 240 > a5y
' SR on_cwe
ovo_ov 221 To. 247N
onp 582861610 ; u
BB <
3 N Kt
a7 aalown -2 220
v n 4
o3 aa P 1
v Bty
R 126
IR I .
Pk +30v
~a0v > “30v

Figure 1-3. Examples of Graphic Output Using DGL

PRIMITIVE ATTRIBUTES

Primitive attributes are the visual characteristics of graphics primitives.
For example, a line has the attributes of color, highlighting, linewidth,

and linestyle.

different appearances shown in Figure 1-4.

Different values of the linestyle attribute give a line the

1-5

Figure 1-4. A Primitive Attribute; Linestyle

For most CRTs and all graphics plotters, primitive attributes are fixed when
they are output; they cannot be changed retroactively. To change the image
of an output primitive, clear the display, change the desired attribute
values, and display the primitive again.

VIEWING TRANSFORMATIONS

As objects are created, they are transformed for viewing. A
viewing transformation is the method whereby an object, a collection of
graphics primitives defined in an abstract coordinate system, is converted
to an image displayed on a physical graphics display device. The bounds of
the system in which an object is defined and the location of the object's
image on the display device can be defined by the user.

DGL's viewing transformations are all in two dimensions. To define the two-
dimensional viewing transformation, three questions must be addressed:

1. What portion of the world coordinate system will be used to define
and display the object (where is the window)?

2. Where will the window be mapped in the virtual coordinate system
(where is the viewport)?

3. Where will the virtual coordinate system be placed (what are the
logical display limts)?

Setting the window allows the application to specify which portion of the
world coordinate space is to be used. This provides the application program
with the flexibility of working in units that are relevant to the applica-
tion. Since the window is in the same coordinate space in which objects are
defined, the bounds of the window can affect the size of the image dis-
played. The larger the limits of the window, the smaller the object's im-
age. If the window is specified as having smaller limits than the object,
unpredictable device-dependent results will occur, since the DGL system does
not perform software clipping. Figure 1-5 shows the effect of two different
windows on the same object. The window on the left shows a window which is
approximately as large as the object contained within it. The window on the
right shows the same object in a larger window.

Figure 1-5. Two Images Resulting From Different Windows

1-7

The area on a display device where images appear is called a viewport. The
dimensions of the viewport are set in the virtual coordinate system, which
is the two-dimensional system whose units range from 0.0 to a maximum of
1.0. The viewport can map to any area on the surface of the graphics dis-
play device. Multiple viewports can be defined sequentially so that several
images can be displayed together. Figure 1-6 shows such an example.

Figure 1-6. Two Viewports, One Object

Once the window and viewport have been defined, output primitives within the
window are mapped into the viewport so that each point in the window cor-
responds to a point in the viewport. If the aspect ratio (height-to-width
ratio) of the window and viewport are not equal, this mapping will distort
(shrink or stretch) the image. This is the only stage of the transformation
process where distortion can occur.

To offer full flexibility in accessing display devices of different sizes
and shapes, DGL lets the application program control the mapping of the vir-
tual coordinate system to the display surface. The logical display limits
can be defined to alter the absolute size of the image that is produced.
These limits bound the logical display surface, making it the entire display
surface or some subset of it. The adjective "logical" distinguishes this
surface from the true surface of the display device itself, sometimes called
the physical display surface.

The steps in the mapping of objects in the window to images on a logical
display surface are somewhat complex. They are described more fully in
Chapter 2, where the DGL routines that control this mapping are presented.

1-8

INPUT

Input functions return information to an application program from input
devices. There are four available devices: button, keyboard, locator, and
valuator.

A button device returns an integer value corresponding to a button selected.
Button devices are used for applications that require only simple choices by
the operator (rather than complex strings of characters such as those en-
tered with a keyboard). A button device is analogous to a start/stop/select
device, such as a button on a slide projector.

A keyboard device allows the operator to enter a string of characters, typi-
cally from an alphanumeric keyboard. The keyboard function returns the
string that was entered and the number of characters in the string to the
calling program. This device is useful for complex responses by operators.

A locator device provides a means of inputting a real coordinate pair that
depicts a point on the view surface. Typical locator devices are graphics
tablets and the graphics cursor on a terminal. Using a locator is analogous
to using one's finger: With a finger, one can point to the location of a
city on a map thereby determining its latitude and longitude.

A valuator device allows the operator to return a value between 0.0 and 1.0
to the application program. The device can be a control dial or multiposi-
tion switch, analogous to a dimmer switch on a light. The dimmer can be
rotated to any position, which sets the light at the desired intensity.

DGL obtains information from the input devices by either requesting or sam-
pling the input. Before requested information can be returned to the ap-
plication program, the operator must enter a termination command (such as
pressing the return key). Sampled output is returned to the application
program immediately, with no operator interaction required. Information
from all logical input devices can be obtained by the request method. Only
the locator and valuator devices may be sampled.

CONTROL

Control functions are used to manage various aspects of a graphics applica-
tion. Some of these are initialization and modification of the graphics en-
vironment, inquiry of +the features currently in effect, and escape
functions.

ALPHANUMERIC OUTPUT

DGL supports a mechanism that allows the application program to send non-
graphics text and data to an alphanumeric display device. This call can be
used to send prompts, give status, or print other messages. To maintain the
integrity of communications between the DGL system and the devices accessed,
this mechanism, rather than I/0 mechanisms of other subsystems, should be
used to generate alphanumeric output on DGL devices.

1-10

Chapter 2
Description of DGL Functions

GENERAL

DGL is a set of graphics tools that allows the application programmer to in-
teract with and send output to a wide variety of graphics devices. A user
can send two types of output and receive four types of input in a uniform
manner from several devices. This chapter describes the functions of DGL.
Detailed descriptions of DGL routines are given in Chapter 3.

An application program can perform two types of output: graphics and al-
phanumeric. Graphics output creates elements of a graphics object. An ob-
Ject may consist of line segments, polylines, markers, text, polygon sets
and moves. The appearance of the graphics output can be controlled by vary-
ing the values of the primitive attributes: color, highlighting, linestyle,
linewidth, and character size.

Alphanumeric output can be used to send operator prompts and messages. It
is composed entirely of alphanumeric text and is not affected by the primi-
tive attributes.

DGL transforms objects that are expressed in terms of an abstract two-

dimensional space into visible images on a physical graphics device, by
means of a viewing transformation (see Figure 2-1).

2-1

Figure 2-1. The Result of the Viewing Transformation

To provide a device-independent interface, the DGL system is centered around
the concepts of a logical device and a work station. A logical device is a
hypothetical device which can perform a certain type of input or output in a
uniform manner independent of the physical device. For example, a logical
locator always returns an (X,Y) coordinate regardless of whether the physi-
cal device is an HP 9111 Data Tablet or an HP 2623 Graphics Terminal.

2-2

DGL has six different types of logical devices:

OUTPUT

Graphics display
Alphanumeric display

INPUT

Button - returns an integer

Keyboard - returns alphanumeric text

Locator - returns an (X,Y) point

Valuator - returns a real value between 0.0 and 1.0

Several 1logical devices can be combined to form a work station. A
work station is a collection of logical devices and can be thought of as a
"super" logical device. It can be composed of any or all of the logical
device types but cannot contain more than one of any type. For example, it
is not possible to have an HP 2623 locator and an HP 9111 locator in the
same work station. One work station can input data points from a locator on
a graphics tablet, input a text string from a keyboard on a terminal, and
display the data points on a CRT display.

An application program may also control when visual changes occur on the
graphics display. Graphics commands can either be sent immediately to a
device or can be placed in an internal DGL buffer before being transmitted.
The mode used affects the efficiency of the DGL system and the immediacy of
visual changes.

The DGL system allows an application program to inquire the status of the
system at any time after the program initializes the system.

In summary, DGL can perform many graphics tasks. This chapter gives a
description of each of the DGL functions as well as how to use them.
Example programs and their output illustrate héw one can use these functions
to easily create graphics application programs.

2-3

OUTPUT

General Information

This section discusses the two types of DGL output. The elements of
graphics output and how they can be used to create objects are presented
first. The method of sending alphanumeric messages is explained at the end
of the section.

Graphics Output Primitives
GENERAL

Graphics output primitives are used to define an object in terms of the
world coordinate system. This is an abstract two-dimensional space ex-
pressed in units defined by the user. The programmer can define an object
in familiar units, such as kilometers, seconds, or grams.

Graphics output primitives are interpreted as commands to generate lines,
markers, polygon sets, and graphics text at specified locations on the
graphics display device. Each primitive begins at the position where the
previous primitive ended. This means that the starting position of a primi-
tive is not explicitly specified, but rather implied by the previous output
primitive. For example, a marker is always output centered about the start-
ing position.

STARTING POSITION

ZMOVE (WX, WY) Define a starting position

The subroutine ZMOVE allows the user to specify a new starting position. A
call to this subroutine causes the next output primitive to start at the
coordinate point (WX,WY). This point will then be the endpoint of a line
segment, the left edge of a graphics text string, or the point that a marker
is centered around.

2-Y

LINES

ZDRAW (WX, WY) Draw a line to point (WX,WY)
ZPOLY (NPTS, XVEC, YVEC) Draw a connected line sequence

Line output primitives are used to draw graphics objects. A call to ZDRAW
causes a line to be drawn from the starting position to the world coordinate
point specified by (WX,WY). The starting position then becomes (WX,WY).

DGL also provides the capability to draw a series of connected lines by
making one call to the subroutine ZPOLY. This call first does a move to the
point specified by the first element of the arrays XVEC and YVEC, where XVEC
and YVEC contain a series of (X,Y) coordinate points. The line sequence
begins at this point and is drawn to the second specified point, then to the
third and continues until NPTS-1 lines are drawn. The starting position for
the next primitive becomes the point specified by XVEC(NPTS) and YVEC(NPTS).

The primitive attributes of color, highlighting, linestyle, and linewidth
affect the appearance of lines. Primitive attributes are discussed later in
this chapter. Figure 2-2 illustrates how a picture can be drawn using a
combination of ZMOVE and ZDRAW commands or one call to ZPOLY.

INTEGER NUMHOS, NUMTRE

REAL XHOUS(7), YHOUS(7), XTREE(23), YTREE(23)

DATA NUMHOS/7/, NUMTRE/23/

DATA XHOUS/—.69,-.69,-.15,—.15,-.h2,-.69,—.15/

DATA YHOUS/-.38,-.85,-.85,-.38,-.08,-.38,-.38/

DATA XTREE/.65,.65,.h6,.Sh,.50,.58,.5&,.62,.58,.65,.62,

* .69,.77,.73,.81,.77,.85,.81,.88,.85,.92,.73, .73/

 DATA YTREE/-.85,-.69,-. 69,- 62,-.62,- 5u -.54,-.46,-.46,-.38,
-.38,-.31,-.38,-.38,-.46,-.46,-.54,-.54,-.62,-.62,

* - 69a" 699' 85/
C
C Draw a house using a combination of ZMOVE & ZDRAW commands
c

CALL ZMOVE(XHOUS(1), YHOUS(1))

DO 20 I=2, NUMHOS

CALL ZDRAW(XHOUS(I),YHOUS(I))

20 CONTINUE
c
c Now draw the tree using one ZPOLY command
c

CALL ZPOLY (NUMTRE,XTREE,YTREE)

2-5

Figure 2-2. Use of ZMOVE, ZDRAW and ZPOLY

TEXT

ZTEXT (NCHARS, STRING) Generate graphics text

DGL provides the ability to draw graphics text at a desired location on a
graphics display device. Text is normally generated by a device's hardware
character generator. DGL will simulate hardware text generation for any
device that does not support a hardware character generator.

A call to ZTEXT outputs the first NCHARS number of characters contained in
the array STRING. The character string is drawn or displayed on the
graphics display device beginning at the starting position. Text is normal-
ly drawn from left to right and without character slant. The primitive at-
tributes, color, linestyle, linewidth, highlighting, and character size af-
fect graphics text.

ZTEXT leaves the current position at a device-dependent location. After
calling ZTEXT, define the starting position explicitly by calling ZMOVE,
ZPOLY, ZPGDD, or ZPGDI before generating more graphics primitives.

aaaaa

aQaaanmn

QaQaQ

INTEGER TITLE(11)
DATA TITLE/2H H,2HOM,2HE ,2H ,2HSW,2HEE,
* 2HT ,2H ,2HHO,2HME,2H /

Draw a house using a combination of ZMOVE &
ZDRAW commands

CALL ZMOVE (XHOUS(1),YHOUS(1))
DO 20 I=2,NUMHOS
CALL ZDRAW(XHOUS(I),YHOUS(I))
CONTINUE
Now draw the tree using one ZPOLY command
CALL ZPOLY(NUMTRE,XTREE,YTREE)
Write out the title, 'HOME SWEET HOME', using graphics text

CALL ZMOVE(X1,Y1)
CALL ZTEXT(22,TITLE)

HOME SWEET HOME

Figure 2-3. Use of ZTEXT

2-7

MARKERS

ZMARK (MARKNO) Generate a marker

Markers are used to identify individual points in the world coordinate sys-
tem. Markers are center-oriented symbols which are output at the starting
position. Depending on a particular display device's capabilities, DGL
utilizes either software or hardware to generate the marker symbols.

All graphics display devices support 19 standard marker symbols. The marker

used is specified by the value of MARKNO. MARKNO is an integer in the range
1-255. The 19 standard markers are defined as follows:

Table 2-1. Standard Markers

1-. T - rectangle 13 - 3
2 - + 8 - diamond 14 - 4
3 - 9 - rectangle 15 - 5
4y -0 with cross 16 - 6
5 - X 10 - 0 17 - 7
6 - triangle 1 -1 18 - 8

12 - 2 19 - 9

Besides these basic markers, each display device supports a device-dependent
number of other markers that use any special marker symbols of that device
(see the Device Handlers Manual). If the marker value specified is greater
than the number of distinct markers supported by a device, then marker 1
(".") is used.

The orientation of a marker is centered around the starting position. The
size of markers is device dependent and cannot be changed. The appearance
of markers is affected only by the color and highlighting attributes. The
starting position is unchanged after a call to ZMARK.

POLYGONS

ZPGDD (NPOINT,XVEC,YVEC,OPCODE) Draw a polygon set(device-dependent)
ZPGDI (NPOINT,XVEC,YVEC,OPCODE) Draw a polygon set(device-independent)

A polygon is a multisided, closed, plane figure. A polygon set includes one
or more polygons, which may overlap. The DGL polygon routines draw the edge
(the sides) of the polygon set, or the interior region bounded by the edge,
or both.

A polygon set is defined in a single call to ZPGDD or ZPGDI and treated as a
single polygon. The member polygons can intersect each other. The polygon
set has one edge and one interior (see below) but either or both may be
discontinuous.

The edge of a polygon set is the set of edges of its member polygons. The
edge of a member polygon is the set of edge segments, or sides of that
polygon. Since member polygons may be totally unconnected, the edge of a
polygon set may be discontinuous.

The interior of the polygon set is the region or regions enclosed by the
edge an odd number of times. A point which would be in the interior of a
member polygon if it were considered by itself could be in the exterior of
the polygon set. To decide whether a point is inside the set, draw a line
(a ray) in any direction from that point. If the ray intersects the edge an
odd number of times, the point is inside the polygon set. If the ray inter-
sects the edge an even number of times, the point is outside the set.

This test is useful to see how DGL will fill the interior of a set consist-
ing of concave, self-intersecting polygons, or multiple polygons. The test
is also useful if member polygons overlap or enclose one another. Figure
2-4 shows several examples of polygon sets. Some have one member polygon
(a,b,c), while the rest (d,e,f) have two or more.

2-10

a. Convex polygon.

b. Concave polygon.

c. Self-Intersecting
polygon,

&

d. Polygon-set with three
non-overiapping member
polygons.

JIS

LT

e. Polygon-set with two
Intersecting member
polygons.

f. Polygon-set with one
polygon member enclosed
in another.

Figure 2-4. Examples of Polygon Sets

NPOINT specifies the number of vertices in the polygon set. XVEC and YVEC
are arrays specifying the vertex locations in world coordinates. OPCODE is
an array which holds opcodes corresponding to each vertex in the polygon
set. The opcode for a vertex indicates whether it is the beginning vertex
of a member polygon or whether it is a subsequent one. If it is a sub-
sequent vertex, the opcode indicates whether the edge which connects this
vertex with the previous one is a displayable edge or a non-displayable
edge.

The first vertex specified in XVEC and YVEC must have the proper OPCODE
value for the beginning vertex of a member polygon. ZPGDI and ZPGDD move to
this first vertex and use the subsequent vertices to define the edge of the
first member polygon until NPOINT vertices are processed or a vertex is
reached which is marked as the beginning of a new member polygon.

In either case, if the last vertex of the member polygon is not the same as
its first vertex, DGL adds a non-displayable edge to close the figure. If
NPOINT vertices have not been processed, DGL processes the next member
polygon in the same way. When the entire polygon set is finished, the
starting position for the next primitive is at the first vertex of the last
member polygon.

ZPGDD does a fast approximation to a polygon set in the polygon, but the
results will vary with the capablities of the display device since ZPGDD
makes use of its available polygon functionality. 2PGDD instructs the
device to approximate visible polygon edges when the polygon style indicates
that edges are to be displayed. If the device cannot generate any polygon
edges, ZPGDD will simulate the functionality.

If filling is requested, ZPGDD instructs the device to fill the polygon set
in a device-dependent approximation of the current polygon style. If the
device cannot meet the request for fill at all, ZPGDD will not simulate fill
functionality.

However, when no fill is output although requested, and the polygon style
indicates that edges are not to be displayed, ZPGDD will generate an outline
of the polygon set so that there will be some representative visible output.
ZPGDD will generate this outline in the interior fill color and interior
linestyle and will output only those edges which have an opcode indicating
that they are displayable.

ZPGDI, by contrast, generates polygon sets with software; it will not use
the polygon capabilities of the device unless it could do so accurately for
the entire style range. ZPGDI creates polygon sets with reasonable accuracy
and uniformity on all devices, but on some not as quickly as ZPGDD.

2-11

Alphanumeric Output

ZALPH (NCHARS, STRING) Output to the alphanumeric display

Alphanumeric strings can be used to prompt for operator input, give status
reports, or output debugging messages. Because this output is not graphi-
cal, it is not affected by the graphics primitive attributes. A typical al-
phanumeric device is a terminal.

A call to ZALPH sends the first NCHARS number of characters contained in ar-
ray STRING to the alphanumeric device. A carriage-return line-feed (CRLF)
will normally be appended to STRING before it is sent to the device. If an
underscore is the last character of the string sent out, the CRLF will be
suppressed and the underscore will not be displayed.

If the alphanumeric display is physically the same device as the graphics
display device, there are some restrictions as to what may be passed in
STRING. Any escape codes which affect the graphics display should not be
sent, since they may place the graphics display in an unknown state. The
following program illustrates how ZALPH could be used to tell the operator
that the graphics is complete.

INTEGER MSG(17T)
DATA MSG/2HGr,2Hap,2Hhi,2Hng,2H o,2Hf ,2Hth,2He ,

* 2Him,2Hag,2He ,2His,2H c,2Hom,2Hpl,2Het,2He /
CALL HOUSE * Subroutine to generate the house
CALL TREE * Subroutine to generate the tree

.

Use ZALPH to tell the operator 'Graphing of the image is complete

aQaaaQ

CALL ZALPH (34,MSG)

2-12

PRIMITIVE ATTRIBUTES

Primitive attributes determine the appearance of the graphics output.
Attributes are divided into two clases: attributes that apply to polygon
interiors and attributes that apply to all other graphics primitives. As an
example, the linestyle attribute specifies the pattern (such as solid or
dashed) in which DGL draws lines. There are two separate linestyle at-
tributes: one that applies to polygon interiors and another that applies to
all other line segments.

Table 2-2 shows how attributes affect graphics primitives. Notice that
highlighting affects all primitives, including polygon interiors. However,
there are two distinct color attributes: the 'color' attribute that only
affects primitives outside of polygons and a second color attribute,
'polygon color' that only affects polygon interiors.

Table 2-2, How Attributes Affect Graphics Primitives

ATTRIBUTE PRIMITIVE

Line Polyline Marker Text Polygon Polygon

Edge Interior

Color X X X X X
Highlighting X X X X X X
Linestyle X X X X
Linewidth X X X X
Character Size X
Polygon color X
Polygon linestyle X
Polygon style X

Attributes will be applied to each primitive according to the devices'
capabilities. For instance, an HP 9872 plotter can apply linestyle to lines
and polylines, but not to text. See the Device Handlers Manual for a
description of device capabilities.

2-13

DGL maintains a table of values for each attribute. When DGL enables a
graphics device, each table is initialized with default values suited to the
device. The value of the current entry can be inquired, or a different
entry chosen, as long as the graphics display device stays enabled. Except
for the color and polygon-style tables, entries in the attribute tables can-
not be redefined.

Color

ZCOLM (MODEL) Choose color model

ZCOLR (COLOR) Choose color for graphics primitives
except polygon-set interiors

ZDCOL (COLOR,COLP1,COLP2,COLP3) Redefine entry in color table

ZPICL (COLOR) Choose color for polygon-set interiors

Every graphics device handler in DGL has its own default color table. For
some devices, the size of the color table may be changed before program ex-
ecution. Every default color table has at least an entry at index 1 and
display devices for which there is a background color have an entry at index
0. Color 1 is the default color for all primitives and color O is the
background color of the display device.

The user who does not wish to use the default color 1 for all primitives may
choose other entries in the color table to be used instead. The color entry
to be used for polygon interiors is chosen independently of the color entry
to be used for all other primitives. When ZPICL is called the color entry
specified is the color entry used to output subsequently defined polygon in-
teriors. A call to ZCOLR specifies an entry that is applied in the same way
to all other output primitives.

The user may redefine a color table entry using ZDCOL. A new color value
for the entry specified in parameter COLOR is set according to the values of
the parameters COLPl, COLP2 and COLP3. When the value of a color entry is
redefined through ZDCOL, any subsequently output primitives which use that
entry will reflect the newly defined value. The effect of redefinitions on
previously output primitives is device dependent.

ZDCOL accepts color definitions in two color models, RGB and HSL. 2ZCOLM al-
lows the user to specify which color model should apply to subsequent calls
to ZDCOL. RGB is the default specification. When ZCOLM is called, it does
not affect color definitions previously made using another model. When the
value of a color table entry is inquired, it is returned in the current
model, which may not be the model in which it was originally specified.

2-14

The RGB model, shown in Figure 2-5, is a color cube with the primary addi-
tive colors, red, green and blue, as its axes. Each point within the cube
has a red intensity value (X coordinate), a green intensity value (Y coor-
dinate) and a blue intensity value (2 coordinate). Each axis or intensity
ranges from zero to one, and each point defines a unique color.

CYAN WHITE
(0.1.1) (1.1.1)
/
/
/
/
/
/
/
GREEN /
(0,1,0) /
11,0
A / verLow
4//
SRR
S
/Q\‘v
BLUE MAGENTA
(0,0,1) 7/ (1.0.1)
/7
/
/
/
/
/
/
/
/
/4
.
BLACK RED

(0,0,0) (1,0,0)

Figure 2-5. Red-Green-Blue Color Cube

The HSL model, shown in Figure 2-6, is a color cylinder in which:

o The angle about the axis of the cylinder, in fractions of a circle,
is the hue.

o The radius is the saturation.

o The height is the luminosity (intensity or brightness per unit
area).

Angle, radius and height all range from zero to one, and each point within

the cylinder defines a unique color with a hue value, a saturation value,
and a luminosity value.

2-15

The RGB model is most useful in applications where the primary colors are
used. For example, in printed circuit board artwork layout, colors are used
to distinguish between different material layers. Here the user does not
care how bright the shade of red is, but simply that the color red is used.

The HSL model, however, is easier to use when objects are shaded to simulate
three-dimensional curvature. In this case, conceptual features like satura-
tion and luminosity enable the display of shaded polygons, taking into ac-
count the 1light sources, polygon characteristics, and the positions and
orientations of the polygons and sources.

HUE

0/3 = 3/3

— —— — — —

RED < PINK < WHITE
! &,

LUMINOSITY —
BLACK — GRAY — WHITE

«— SATURATION

Figure 2-6. Hue-Saturation-Luminosity Color Cylinder

2-16

In summary:

to display a graphics primitive in a particular color may require any or all
of the following actions:

o In the Device Handlers Manual, search the default color table of the
graphics display device for a color index that will produce the
desired color.

o If the desired color is not in the default table, call ZCOLM to
switch to a different color model. Call ZDCOL to change the color
definition assigned to an index.

o To specify the color of subsequent graphics primitives, call ZPICL
for polygon interiors, ZCOLR for line primitives.

Highlighting

ZHIGH (HIGH) Set highlighting

Highlighting is a means of emphasizing portions of an image. The DGL system
provides a highlighting attribute to control the way that graphics output is
displayed on the graphics device. A device may perform highlighting by
blinking or intensifying certain output primitives. There is a maximum of
255 types of highlighting, but the actual number supported on the graphics
display is device dependent. The mapping between the value of the high-
lighting attribute and the types of highlighting supported is also device
dependent, with the exception of the value of 1 which never produces
highlighting.

If highlighting is not supported on the selected graphics display device,
the attribute value will be set to 1. The DGL display device initialization
also sets the value of the attribute equal to 1.

Linestyle

ZLSTL (LSTYLE) Choose linestyle for graphics primitives
except polygon-set interiors

ZPILS (LSTYLE) Choose linestyle for polygon-set interiors

Each graphics device handler in DGL has a fixed linestyle table, shown in
the Device Handlers Manual. DGL maintains two indices to the table of the
current device: one for the hatch lines used to fill polygon interiors, and
one for other graphics primitives except markers. Markers are always drawn
using solid lines.

2-17

Both linestyle indices are set to 1 at display device initialization. ZPILS
chooses the index for the interiors of subsequent polygon sets. ZLSTL
chooses the index for lines, polylines, graphics text characters, and the
edges of polygon sets.

A linestyle is a recurring pattern of dots, blanks, short line segments and
long line segments. In DGL, a linestyle can be drawn in any of three types:
start-adjusted, continuous, or vector-adjusted. The available types depend
on the device. On some devices, for instance, all linestyles are drawn in a
continuous manner.

Start-adjusted linestyles always begin a vector with the first elements of
the specified pattern. For example, if a pattern starts with two dots, each
vector drawn will start with two dots. Likewise, if the vector starts with
five blank spaces and then a dot, each vector drawn will start with five
blank spaces. In the second example, if the vectors are short, the pattern
may not be displayed at all if the vector is not longer than the section of
blanks. This type of linestyle will usually degrade when attempting to draw
smooth curves with many small line segments.

Continuous linestyles start the pattern with the first wvector, but sub-
sequent vectors will be continuations of the pattern. Thus it may take
several vectors to complete one cycle of the pattern. This type is useful
for drawing smooth curves, but does not necessarily reproduce either
endpoint of the vector. As with start adjusted linestyles, if a vector is
small enough, it might be composed only of the space between points or
dashes in the pattern. 1In this case, the vector may not be displayed at
all.

With vector-adjusted linestyles, each vector is treated individually.
Individual treatment guarantees that a solid component of the pattern will
be generated at both ends of the vector. Thus, the endpoints of each vector
will be clearly identifiable. Linestyle integrity degenerates with very
small vectors. Since some component of the pattern must appear at both ends
of the vector, a short vector will often be drawn as a solid line.

Figure 2-7 illustrates how one pattern would be displayed using each one of
the different linestyle type.

2-18

— | l —= == ‘1
i) ,ﬁ iﬂ IC3)l
'] ‘ p—
> jpe— L_.___.~J
START ADJUSTED CONTINUOUS VECTOR ADJUSTED
LINESTYLE USED
Figure 2-7. Types of Linestyles
Linewidth
ZLWID (LWDTH) Set the.linewidth

A programmer may output lines of different widths by changing the linewidth
attribute. A call to subroutine ZLWID sets the linewidth attribute for sub-
sequent lines, polylines, polygon edges, and graphics text characters.
Markers are not affected by this call because they are defined to always be
output using the thinnest linewidth supported on the graphics display
device.

All devices support at least one linewidth. The number of supported widths
is device dependent. A value of 1 always specifies the thinnest width pos-
sible. When multiple widths are supported, the width of the line increases
as the value of LWDTH does, until the device-supported maximum is reached.
If LWDTH is greater than the number of line widths supported by the graphics
display, or if LWDTH is less than 1, then the linewidth will be set to the
thinnest available width. The default value of LWDTH is 1.

2-19

Character Size

ZCS1Z (WIDTH, HEIGHT) Set character size

The DGL system provides a character size attribute to control the size of
graphics text generated. A subroutine call to ZCSIZ defines the desired
width and height of the character cell in which characters are positioned.
Actual sizes of text which can be generated on the graphics display are
device dependent, as is the placement of text within the character cell.

The desired width and height of the cell are specified in world coordinate
system units. If the requested character size is not available on the
graphics display, then the "smaller best fit" character size will be used.
See Figure 2-8 for the different text widths and heights available. The
definition of the '"smaller best fit" character size is as follows:
1. The largest character whose cell height is less than or equal to the
requested height and whose cell width is less than or equal to the
requested width, or,

2. If the minimum hardware size does not meet criterion 1, the minimum
character size is used.

ZCSIZ (0.035, 0.05)

ZCs Iz (o.o”7, O O5)

ZCsSIz (0O.07, O.1)

/CS17(0.035, 0. 1)

Figure 2-8. Different Text Widths and Heights

2-20

Polygon Style

ZDPST (PINDEX,DENSTY,ORIENT,EDGE) Redefine entry in polygon style table
ZPSTL (PINDEX) Choose polygon style

Polygon style has three components:

o DENSTY is the density of fill lines used to fill the interiors of
polygon sets. Density ranges from no fill to solid fill. A posi-
tive density means fill lines in one direction only (all parallel);
a negative density means perpendicular cross-hatching.

o ORIENT is the angle of interior fill lines to the horizon, ranging
from -90.0 degrees to +90.0. For cross-hatching, the angle refers
to the first set of hatch lines, with the second set perpendicular
to the first.

o EDGE defines whether the segments of the edge of a polygon set which
are defined as "draw" segments (in ZPGDI or ZPGDD) should be dis-
played. Edge segments specified as "move" segments are never dis-
played. Displayed edge segments are drawn using the entries
specified by ZCOLR, ZLSTL and ZLWID.

Every graphics device handler in DGL has a default polygon style table. The
number of entries in the table and their values depend on the graphics
device. Default definitions are designed to suit each graphics device. The
first 16 styles are the same for all devices (see Figure 2-9). For some
devices, entries can be added to or deleted from the table before program
execution.

When ZPSTL is called, specifying an index into the polygon table, the
polygon style defined by this entry overrides any previously chosen polygon
style and is then the polygon style used to output subsequently defined
polygon sets.

The user may redefine an entry in the polygon style table using ZDPST. When
the value of a polygon style entry is redefined through ZDPST, any sub-
sequently output polygon sets which use that entry will reflect the newly
defined value.

2-21

Style 1

Style 2

Style 3

Style 4

Style 5

Style 7

Style 8

~ L~

Style 10

Style 11

Style 12

RO
02020%%%
4 0
£ 5
0 %0%0%%
SRR
D XA
020%%%%%%
1002020 %% %%
RXRRRKY
QP

Style 13

o

O

r
=

Style 14

Style 15

Style 16

2-22

Figure 2-9. Default Polygon Styles

VIEWING TRANSFORMATIONS

General

A viewing transformation is the method by which objects are turned into
viewable images. DGL's viewing transformations modify objects for viewing
by transforming them from the units in which they were defined to device-
dependent units (see Figure 2-10).

OBJECT IMAGE

e TWO-DIMENSIONAL e TWO-DIMENSIONAL

e APPLICATION-DEPENDENT VIEWING e DEVICE-DEPENDENT UNITS
UNITS (INCHES, MILES, ETC.) TRANSFORMATION

e ONE OR MORE OUTPUT
PRIMITIVES

Figure 2-10. The Viewing Transformation

2-23

Graphics primitives are used to create two-dimensional objects in the world
coordinate system. A number of concepts are important in understanding how
DGL turns two-dimensional objects in the world coordinate system into images
on a display device. The DGL viewing transformation is summarized in
Figure 2-11.

—4—— PHYSICAL DISPLAY SURFACE

|—- —_— —_ }—}—LOGICAL DISPLAY SURFACE
I ! VIEW SURFACE
~
~
‘ ~
~
~
N
| R
| ~
~N
L < VIRTUAL
— — — COORDINATE
SYSTEM
VIEWPORT

WINDOW —

WORLD COORDINATE SYSTEM

Figure 2-11. The DGL Viewing Transformation Process

2-24

Three questions must be addressed when defining +the DGL viewing
transformation:

1. What portion of the world coordinate system will be used to define
and display the object (where is the window)?

2. Where will the window be mapped in the virtual coordinate system
(where is the viewport)?

3. Where will the virtual coordinate system be placed on the physical
display surface (what are the logical display limits)?

The window defines the portion of the world coordinate space to be used.
This provides the application program with the flexibility of working in
units that are relevant to the application. If the elements of an object
extend beyond the limits of the window, the resulting image may appear to
run off the edges of the display surface, since software clipping is not
done by DGL. This phenomenon is not well defined because out-of-range world
coordinate data is handled in a device-dependent manner. Refer to the
Device Handlers Manual to see how a particular device handles this problem.

The user also has control over the virtual coordinate system, the two-
dimensional system whose units range from 0.0 to a maximum of 1.0. Since
many display devices do not have the same aspect ratio, the placement of
the virtual coordinate system on the logical display surface requires plan-
ning. If the virtual coordinate system were always a unit square, a non-
square logical display surface would not be entirely available. To make
full use of a non-square logical display surface, DGL allows the aspect
ratio of the virtual coordinate system to be changed as needed.

The size and shape of the logical display surface is also under the user's
control. Logical display limits allow a subset of a display device to be
used for output. The bed of a plotter might be 500 millimeters by 1000 mil-
limeters, while the paper used in it might be only 250 millimeters square.
The logical display limits of the plotter can be set to that size, so that,
from that point on, DGL would treat the plotter as if it were physically 250
millimeters square.

The logical display limits determine the size and placement of the view sur-
face. The view surface's dimensions and placement are determined by:

1. The aspect ratio of the virtual coordinate system, and
2. The logical display limits of the display device.

Once the view surface is determined, a portion of it is designated to be the
viewport. An application might use several viewports to show different
views of the same object. Since the window is mapped directly onto the
viewport, distortion may result if the window does not have the same aspect
ratio as that of the viewport. This type of distortion is illustrated in
Figure 2-12.

2-25

VIEWPORT

7

L

L

WINDOW

Figure 2-12, Distortion in the Window to Viewport Mapping

Logical Display Limits

ZDLIM (XMIN,XMAX,YMIN,YMAX,IERR) Set logical display limits

ZDLIM specifies a subset of a physical display surface to be used for
graphics output. ZDLIM defines the logical display limits. The limits of
this area are expressed in terms of millimeters offset from the physical
origin of the device. The location of the physical origin of a display
device is device dependent (see the Device Handlers Manual).

The virtual coordinate system is mapped onto the largest region within the
logical display limits which has the aspect (height to width) of the virtual

2-26

coordinate system. Therefore, the displayed image will not be distorted; it
will merely be scaled smaller or larger.

Aspect Ratio

ZASPK (WIDTH, HEIGHT) Set aspect ratio of virtual coordinate system

ZASPK sets the aspect ratio of the virtual coordinate system (and hence the
aspect ratio of the view surface) to be HEIGHT divided by WIDTH. A ratio of
1.0 defines a square virtual coordinate system; a ratio greater than 1.0
specifies it to be higher than it is wide; and a ratio less than 1.0
specifies it to be wider than it is high. Since WIDTH and HEIGHT are used
to form a ratio, they may be expressed in any units (as long as they are in
the same units).

DGL calculates the range of the coordinates of the virtual coordinate system
based on the value of the aspect ratio as shown in Table 2-3. The coor-
dinates of the longer axis are always set to range from 0.0 to 1.0, and
those of the shorter axis from 0.0 to a value that achieves the specified
aspect ratio. Thus, ZASPK also defines the limits of the virtual coordinate
system.

Table 2-3. Virtual Coordinate Limits

Aspect Ratio (AR) X Limits Y limits
AR < 1.0 0.0, 1.0 0.0, 1.0*AR
AR = 1.0 0.0, 1.0 0.0, 1.0
AR > 1.0 0.0, 1.0/AR 0.0, 1.0

When a call to ZASPK is made, the DGL system sets the viewport equal to the
limits of the virtual coordinate system. This call can therefore be used to
access the entire logical display surface. A program could display an image
on the entire logical display surface in the following manner:

2-27

INTEGER ILIST, IERR
REAL MAXS(2), WIDTH, HEIGHT
. * Get the dimensions
CALL ZIWS (253, 0, 2, ILIST, MAXS, IERR) * of the display
* surface.

WIDTH = MAXS(1) *Width of the physical display

HEIGHT = MAXS(2) *surface. Height of the physical

CALL ZDLIM(O,WIDTH,0.,HEIGHT,IERR) *display surface. Set logical
*limit to their maximum.

*Set the aspect ratio of the

CALL ZASPK(WIDTH,HEIGHT) *virtual coordinate system to

. *the maximum aspect ratio of
*the display surface.

The initial aspect ratio of the virtual coordinate system is 1.0, meaning
the virtual coordinate system is a unit square. This produces a view sur-
face that is the largest inscribed square within the logical display limits.
By changing the aspect ratio, the view surface defines the largest inscribed
rectangle within the logical display limits. The placement of the view sur-
face is dependent upon the device being used. It is generally centered on
CRT displays and is usually placed in the lower left-hand corner of plot-
ters. Refer to the Device Handlers Manual to determine the placement of the
view surface on the logical display surface of a particular display device.

Viewport

ZVIEW (VEXMIN,VXMAX,VYMIN,6VYMAX) Set the viewport

ZVIEW sets the limits of the viewport in units of the virtual coordinate
system. The viewport must be within the limits of the virtual coordinate
system. The initial viewport is:

(VEMIN=0.0, VXMAX=1.0, VYMIN=0.0, VYMAX=1.0)

This initial viewport is mapped onto the maximum visible square within the
logical display limits. This area is called the view surface.

By changing the limits of the viewport, an application program can display
an image in several different positions on the same display surface. Figure
2-13 illustrates how an image could be displayed sequentially in the four
corners of a display surface.

2-28

REAL AR(2), VMAXX, VMAXY
INTEGER ILIST, IERR

CALL ZIWS (254,0,2,ILIST,AR,IERR)
VMAXX = 1.0

VMAXY = 1.0

IF (AR(2).LT.1.0) VMAXY = AR(2)

IF (AR(2).GT.1.0) VMAXX = 1.0/AR(2)
VMIDX = VMAXX/2.0

VMIDY = VMAXY/2.0

CALL

CALL
CALL
CALL

CALL
CALL
CALL

CALL
CALL
CALL

CALL
CALL
CALL

ZASPK(1.0,AR(2))

ZVIEW(0.0,VMIDX,VMIDY ,VMAXY)
HOUS (XHOUS , YHOUS)
TREE (XTREE , YTREE)

.

ZVIEW(VMIDX, VMAXX ,VMIDY ,VMAXY)
HOUS (XHOUS , YHOUS)
TREE (XTREE , YTREE)

ZVIEW(0.0,VMIDX,0.0,VMIDY)
HOUS (XHOUS , YHOUS)
TREE (XTREE , YTREE)

ZVIEW(VMIDX,VMAXX,0.0,VMIDY)
HOUS (XHOUS , YHOUS)
TREE (XTREE , YTREE)

* %

* £ % % * X %X % X % ¥x 2 x % % Xx ¥ %

z % %%

* % % =%

Get the aspect ratio of the
logical display surface.

Determine the virtual
coordinate bounds given
the maximum

aspect ratio:

middle of X range
middle of Y range

Set the aspect ratio of the
virtual coordinate system to
the aspect ratio of the
display surface.

-- Viewport 1 --

Set viewport to upper left-
hand corner and draw the
house and tree.

-- Viewport 2 --

Set viewport to upper right-
hand corner and draw the
house and tree.

-- Viewport 3 --

Set viewport to lower left-
hand corner and draw the
house and tree.

-- Viewport 4 --

Set viewport to lower right-
hand corner and draw the
house and tree.

2-29

Figure 2-13. Multiple Viewports

2-30

Window

ZWIND (WXMIN,WXMAX,WYMIN,WYMAX) Set the window

ZWIND specifies the portion of the world coordinate system that maps onto
the viewport. Setting the window allows the application program to define
which portion of the world coordinate space is to be viewed. This provides
the application program with the flexibility of working in units that are
relevant to the application. Since the window is in the same coordinate
space in which objects are defined, the bounds of the window can affect the
size of the image displayed. The larger the limits of the window, the
smaller the object's image. If, however, the window is specified as having
smaller limits than the object, unpredictable, device-dependent results oc-
cur, since the DGL system does not perform software clipping.

The window is defined in units of the world coordinate system. The window's
aspect ratio should be the same as the aspect ratio of the viewport if dis-
tortion is not desired. In general, setting the window by calculating its
dimensions as a function of the viewport is a good way to prevent distor-
tion. In this way, no assumption is made about a previously set viewport,
helping to ensure that the visual results will be those desired.

The initial window has the following limits, expressed in world coordinate
units:

(WXMIN=-1.0, WXMAX=1.0, WYMIN=-1.0, WYMAX=1.0)

The default aspect ratio of the window is 1.0, which is the same as the
aspect ratio of the initial viewport.

Conversion of Units

ZDPMM (WX,WY ,MMX,MMY) Convert a world coordinate point to millimeters for
the physical graphics display device.

The DGL system provides the user with the capability to determine where a
coordinate point in the world coordinate system will be displayed on a
graphics display surface. A subroutine call to ZDPMM returns the location
that the world coordinate system point (WX,WY) is mapped to on the graphics
display. The coordinate returned in (MMX,MMY) is expressed as the mil-
limeters offset from the origin of the physical graphics device. The loca-
tion of the origin is device dependent. Refer to the Device Handlers
Manual for the position of the origin on a specific device.

2-31

INPUT PRIMITIVES

General

The DGL system has a class of functions which enable a user to interact with
an application program. These functions, or input primitives, provide a
method for receiving input. Each primitive is implemented by an input
device. A DGL application program can receive input from the following
devices:

1. Button - returns an integer

2. Keyboard - returns alphanumeric text

3. Locator - returns an (X,Y) point

4. Valuator - returns a real value between 0.0 and 1.0

Data can be obtained from these devices in two different ways: requesting
and sampling. A device is said to request data when it waits for an
operator response, such as striking the carriage return, before returning
information. Data can be requested from every input device. Sampling means
that the current value of the device is returned without waiting for any
operator response. Sampling may only be performed on locator and valuator
devices.

One DGL application program can receive input from at most one of each of
the four input devices. Some input devices are not supported directly by a
physical device, but are simulated by the DGL software. As an example, the
valuator device is simulated on the HP 2623 Graphics Terminal by using
either the X or Y coordinate of the graphics cursor.

Another important feature is echoing. Echoing gives an operator instan-
taneous feedback during an input operation. Some echoes reflect the status
of the input operation so as to allow refinement before completion. A
familiar example of echoing is the characters that appear on a terminal
screen when a key is pressed. In most systems, these characters have ac-
tually been echoed by the computer after it has received them from the
keyboard. By seeing what is typed, an operator may correct any typographi-
cal errors before terminating the input operation by pressing return.

The type of echoing depends on the type of input being requested and the
properties of the device being used. The echo itself begins when the input
operation is initiated and lasts only until the operation is terminated.

There are two types of echoes: those on the input device itself and those on
the graphics display device. All input functions may be echoed on the input
device (depending, of course, on the device's echoing capabilities).
Locator input may also be echoed on the graphics display device. These
echoes begin at a user-defined point called the locator echo position. Some
display device echoes also utilize this point throughout the echo. For

2-32

example, when a rubber band line echo is used with locator input, the fixed
end of the rubber band line begins at the locator echo position.

Button

ZBUTN (ECHO, BUTTON) Request button input

The button device returns an integer value associated with the button
pressed. When ZBUTN is called the application program waits until the user
presses a button and an integer is returned in BUTTON. The integer ranges
from 1 to a device-dependent: maximum (it will never be greater than 255).
Zero will be returned if an invalid button is activated.

Typical button devices are the numeric keys of an interactive keyboard or
special function keys. Echoing is specified by the value of ECHO. A value
of 0 indicates that no echo should be performed. Possible echoes include
turning on a light or beeping when a button is activated.

INTEGER BUTTON * Buttons are always integers.

50 CONTINUE
CALL ZBUTN(0,BUTTON)
IF (BUTTON.EQ.1) GOTO 100
IF (BUTTON.EQ.2) GOTO 200
IF (BUTTON.EQ.3) GOTO 300
GOTO 50

*

Branch based on the value of
the button.

*

*

If out of range,
try again.

*

Keyboard

ZKYBD (ECHO, MAX, ACTUAL, STRING) Request keyboard input

The keyboard device returns an alphanumeric text string to the calling
program. A call to ZKYBD waits until a line of text has been entered on the
keyboard device and is terminated (e.g. carriage return) before the text is
returned in the array STRING. The characters are returned in Packed ASCII
format. The termination character is not returned in STRING. A MAX number
of characters may be entered, with the restriction that MAX be less than or
equal to 132. The actual number of characters entered is returned in
ACTUAL.

Echoing, as specified by the ECHO parameter, depends upon the capabilities
of the physical device being used. In all cases, 0 indicates that echoing
should not be performed. Possible echoes include sounding a bell or dis-
playing the input as it is entered. Refer to the Device Handlers Manual
for echoes supported by a particular device.

INTEGER ACTUAL,STRING(20) * 40 characters
CALL ZKYBD(1,40,ACTUAL,STRING) * Request up to 40 characters

CALL ZTEXT(40,STRING) * with echo 1 and output them
. * on the graphics display.

Locator
GENERAL

The locator device returns an (X,Y) point in the world coordinate system.
This position may either be sampled or requested. Typical locator devices
are digitizers and graphics cursors on CRTs. At least one type of echoing
can always be performed. The number and type of echoes available is depen-
dent upon the device being used, as well as the method of inputting data.

2f3h

LOCATOR LIMITS

ZLLIM (XMIN, XMAX, YMIN, YMAX, IERR) Set the locator limits.

ZLPMM (WY, WY, MMX, MMY) Convert a world coordinate point to
a point on the physical locator
device.

Just as a portion of the display surface was selectable for graphics output,
portions of the locator surface may be selected for input. This is done by
setting the limits of the locator surface. The limits of the locator are
initially defined as the addressable area of the locator device. ZLLIM al-
lows the user to set these limits to a different region on the locator sur-
face. The pairs (XMIN,YMIN) and (XMAX,YMAX) define the corner points of
this rectangle in terms of millimeters offset from the origin of the device.
(The exact position of the device origin is device dependent and is docu-
mented in the Device Handlers Manual.)

ZLLIM does not affect the virtual coordinate system. It only affects the
mapping from the virtual coordinate system to the locator surface.

If the locator and the graphics display are both the same physical device
(i.e., HP 2623 display and HP 2623 cursor), then the locator limits and the
display limits must be identical. Specifically, when they refer to the same
surface, the interaction between ZDLIM and ZLLIM is as follows:

1. The locator limits are initialized to the same values as the logical
display limits.

2. A call to ZDLIM implicitly calls ZLLIM with the same values.
3. Explicit calls to ZLLIM are ignored.

The logical locator limits always map directly to the view surface, there-
fore, distortion may result in the mapping between the logical locator and
the display when the logical locator limits and the view surface have dif-
ferent aspect ratios. If this distortion is not desired it can be avoided
by assuring that the logical locator limits maintain the same aspect ratio
as that of the view surface.

ZLPMM converts a world coordinate point to millimeters on the 1locator
device. (WX,WY) can be any world coordinate point. It does not have to be
in the window or map to a point on the true physical limits of the locator.
(MMX,MMY) is expressed in millimeters offset from the origin of the locator
device. The position of this origin is device dependent. Refer to the
Device Handlers Manual for its location on a particular device.

SAMPLING THE LOCATOR

ZSLOC (ECHO,WX,WY) Sample locator and report value

ZSLOC returns the current position of the locator in world coordinates
(WX,WY) without waiting for an operator request.

The number of echoes supported by a device and the relationship between the
value of ECHO and the echo performed is device dependent (refer to the
Device Handlers Manual). A value of 0 always specifies that echo should not
be performed.

REQUESTING LOCATOR INPUT

ZWLOC (ECHO, LBUTN, WX, HX) Request locator input, report value

ZLOCP (WX, WY) Set the locator echo position

A call to ZWLOC causes the application program to wait until a locator but-
ton is pressed. The value of the selected button and a world coordinate
point (WX,WY) are then returned to the calling program. Each locator device
has its own set of buttons which may or may not be the same as those that
comprise the button device. If an invalid button is pressed, LBUTN will be
returned as 0; otherwise, LBUIN will contain the value of the button
activated.

Several different types of echoing can be performed. Some echoes are per-
formed only on the locator device. Possible echoes include blinking a light
or sounding a bell each time a point is entered. The number and relation-
ship between the value of ECHO and the echo performed is dependent upon the
locator device being used (refer to the Device Handlers Manual).

Some locator echoes are performed on a graphics display device. All locator
echoes on the graphics display begin at a world coordinate point called the
locator echo position. Some echoes may also use the locator echo position
as a reference point. For example, many devices support a rubber band line
echo. The fixed end of the rubber band line will be at the locator echo
position. 2LOCP sets the value of this world coordinate point to (WX,WY).
Note that the locator echo position is not relevant to ZSLOC, only to ZWLOC.

The point (WX,WY) specified in the ZLOCP call must be displayable to be able
to use echoing. Therefore, it cannot be specified outside the current world
coordinate limits or an error will result and the call will be ignored. The
default locator echo position is in the center of the window. When a call
is made which changes either the viewing transformation or the mapping be-
tween the display surface and locator surface, the locator echo position is
reset to its default value. The calls which do this are ZASPK, ZDLIM,
ZLLIM, ZDINT, ZLINT, ZWIND and ZVIEW.

2-36

The following program section shows a use of these calls. The 1locator
device is used to let the operator set the locator limits interactively by
selecting the lower left corner first, then the upper right corner.

.

CALL ZWLOC(0,LBUTN,WXMIN,WYMIN) *Request locator input with no
*echo.

CALL ZLOCP(WXMIN,WYMIN) *Set the locator echo position.

CALL ZWLOC(4,LBUTN,WXMAX,WYMAX) *Request locator input using
*rubber band echo.

CALL ZLPMM(WXMIN,WYMIN,MXMIN ,MYMIN) *Convert both points to

CALL ZLPMM(WXMAX,WYMAX K MXMAX ,MYMAX) *millimeters on the locator.

CALL ZLLIM(MXMIN,MXMAX ,MYMIN,MYMAX,IERR) %Set the locator limits to them.

Valuator
GENERAL

A valuator returns a single real value ranging from 0.0 to 1.0. Some
valuator devices are composed of multiple subvaluators. The subvaluator
specifies which valuator will be used. For example, on the HP 2623 Graphics
Terminal, subvaluators can be simulated by using either the X coordinate or
the Y coordinate of the graphics cursor as the valuator. If the subvaluator
equals 1, the X coordinate of the cursor is returned with 0.0 representing
the extreme left side of the display and 1.0 representing the extreme right
side. If the subvaluator equals 2, the Y coordinate of the cursor is
returned, with 0.0 represented as the bottom of the display and 1.0
represented as the top of the display.

Echoing can be performed on the valuator device when either sampling data or
requesting data. The number and type of supported echoes are device depen-
dent, but the majority of valuators support at least one type of echoing.
Possible echoes include beeping and displaying the value each time the
valuator is sampled. A value of 0 for the echo specifies that echoing will
not be performed.

2-37

SAMPLING A VALUATOR

ZSVAL (ECHO,SUBVAL,VALUE) Sample the valuator and report value

ZSVAL returns the current value of the valuator in the variable VALUE
without waiting for operator response. VALUE will always range from 0.0 to
1.0. The program specifies the desired echo in ECHO and the subvaluator in
SUBVAL. Valuators are sampled in applications that require changing some
attribute of the program in real time.

REQUESTING A VALUATOR

ZWVAL (ECHO,SUBVAL,VBUTN,VALUE) Request valuator input and report value

A call to ZWVAL causes the application program to wait until a valuator but-
ton is pressed. The value of the selected button is then returned in VBUIN
and the value of the specified valuator is returned in VALUE. Each valuator
device has its own set of buttons which may or may not be the same as those
that comprise the button device. If an invalid button is pressed, VBUIN
will be returned as 0; otherwise, the integer value of the button that was
pressed will be returned.

VALUE will always range from 0.0 to 1.0, and the desired echo and sub-
valuator are specified in the respective variables ECHO and SUBVAL. Refer

to the Device Handlers Manual for the echoes and subvaluators supported on
a particular device.

CONTROL

General

This section discusses initialization and termination, inquiry, timing and
escape functions.

System Initialization and Termination

ZBEGN Initialize the DGL system
ZEND Terminate the DGL system

The DGL system provides one subroutine to initialize the DGL system (ZBEGN)
and another to terminate it (ZEND). The system must be initialized before

2-38

any other DGL subroutine is called. A subroutine call to ZBEGN must be the
first DGL call made by the application program. When the DGL system is
initialized, all system maintained values are set to their initial values.

ZEND terminates the DGL system. Termination includes making the picture
current as well as disabling and terminating all currently enabled devices.

ZEND should be the last DGL call in an application program.

Device Control

GENERAL

The DGL system is centered around the concepts of logical devices and a work
station. A logical device is a hypothetical device which can perform input
and/or output uniformly to several different physical devices.

Each logical device (e.g., button, graphics display device) from which any
input will be requested or output will be sent must be enabled first.
Likewise, every device must be disabled before the DGL system is terminated.
The DGL system has one subroutine to enable and one to disable each device.

A work station does not have to support every logical device. The devices
available on a particular work station are determined by the logical device
handlers loaded with the application program. The logical devices supported
by a work station can be inquired from the DGL system at any time after the
DGL system is initialized.

One application program can sequentially perform graphics I/0 to several
different devices of the same type. After the logical device has been dis-
abled, it can be reassociated with the same device type merely by making a
call to reinitialize with a different value of the I/0 unit descriptor.

The I/O unit descriptor is a name or a number by which the operating system
identifies the device. See the system supplement for details.

2-39

In the subroutine calls in this chapter, the term I/O unit descriptor
appears in italics to indicate that it is not a literal name; it must be
replaced by the parameter or parameters appropriate to the system.

INTEGER CONTRL,IERR
REAL XHOUS,YHOUS ,XTREE ,YTREE
CONTRL=0

CALL ZDINT(I/O unit descriptor,CONTRL,IERR)
. * Initialize HP 2623 graphics display.

CALL HOUS (XHOUS,YHOUS) * Draw the image on the HP 2623.
CALL TREE (XTREE,YTREE)

CALL ZDEND * Disable the HP 2623.

CALL ZDINT(I/O Unit Descriptor,CONTRL,IERR)
* Initialize graphics display:
. a different HP 2623.

CALL HOUS (XHOUS,YHOUS) * Draw the same image on the same
CALL TREE (XTREE,YTREE) * type of graphics display device.
CALL ZDEND * Disable the HP 2623.

GRAPHIC DISPLAY DEVICE

ZDINT (I/0 unit descriptor,CONTRL,IERR) Enable the graphics display device
ZDEND Disable the graphics display device

ZDINT performs device initialization and enables the graphics display for
output.

The variable CONTRL can be used to specify how output will be sent to the
device. For example, the program can specify whether graphics data can be
outspooled, and whether the display will be cleared when it is initialized.

ZDEND disables the graphics display device. In disabling the device, the
DGL system makes the picture current, releases all resources being used by
the device, and performs any termination sequences required by the device.
It does not clear the display surface.

2-40

OTHER LOGICAL DEVICES

ENABLE DISABLE FUNCTION

ZAINT(I/O UNIT DESCRIPTOR,1IERR) ZAEND Alphanumeric device
ZBINT(I/O UNIT DESCRIPTOR,IERR) ZBEND Button

ZKINT(I/O UNIT DESCRIPTOR,IERR) ZKEND Keyboard

ZLINT(I/O UNIT DESCRIPTOR,IERR) ZLEND Locator

ZVINT(I/O UNIT DESCRIPTOR,IERR) ZVEND Valuator

With the exception of the graphics display the DGL system enables and dis-
ables all devices in a similar manner; each has one call to enable and one
to disable the device.

Every initialization call ensures that the picture is made current before
attempting to initialize a device. Logical devices must be enabled before
they are used for input or output. A logical input device cannot be enabled
on the same physical device as that of an outspooled graphics display
device. If an application program attempts to enable a logical device that
is currently enabled, the enabled device will be terminated and the call
will be continued.

Disabling a logical device causes any required termination sequence to be
performed and all resources allocated to the device to be released. An ap-
plication program should disable every logical device used before terminat-
ing DGL.

Clearing the Display Surface

ZNEWF Clear the graphics display device

A subroutine call to ZNEWF makes the picture current and then performs a
new-frame-action. A new-frame-action clears the graphics display of all
graphics output. A new-frame-action has different connotations for each
graphics display device. The screen will be erased on CRT devices such as
graphics terminals. Plotters with page advance will advance the paper. A
call to ZNEWF may only make the picture current on devices such as drum
plotters or fixed page plotters.

2-l

Controlling the Timing Modes

ZBMOD (OPCODE) Set the timing mode

The immediacy by which output primitives are sent to the graphics display
may be controlled. Whether graphics commands are immediately sent to a
device or whether they are placed in a buffer before being transmitted has
a large effect on the efficiency of the DGL system and the immediacy of
visual changes to the graphics display. The user can specify two timing
modes, immediate visibility and system buffering.

When in immediate visibility mode, graphics commands will be sent to the
display device before returning from the DGL subroutine called. Any
requested change is displayed as it is made. This type of output is ineffi-
cient, and can cause noticable system degradation. It should only be used
in applications which require any picture changes made to the graphics dis-
play device occur as they are generated.

The alternative to immediate visibility mode, which should be used in most
applications, is to use system buffering mode, and explicitly make the pic-
ture current only at times when the picture must be current. When operating
in this mode, requested picture changes will be placed in a buffer by the
DGL system. The buffer is automatically flushed by DGL when the buffer is
full. Graphics throughput will be improved since the number of data trans-
fers is reduced significantly. The same information is sent to the device
regardless of the timing mode used, but the information is sent in larger
blocks when in system buffering mode so that fewer I/O transfers are
required.

On slow devices, such as plotters, the actual time it takes to plot a pic-
ture may not be noticeably reduced when using system buffering mode rather
than immediate visibility mode. However, the amount of CPU time required
will be less when using system buffering mode and will therefore increase
the overall throughput of a computer system used in a multi-user or multi-
tasking environment.

Making the Picture Current

ZMCUR Make the picture current

The graphics display device <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>