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HP-UX Programming

Introduction

This tutorial describes how to write programs that interface with the HP-UX operating system in a
non-trivial way. This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of the HP-UX
Reference manual. There is no attempt to be complete; only generally useful material is dealt with.
It is assumed that you will be programming in C, so you must be able to read the language roughly
up to the level of The C Programming Language. Some of the material in this tutorial is based on
topics covered more carefully there. You should also be familiar with HP-UX itself.



Basics

Program Arguments

When a C program is run as a command, the arguments on the command line are made available
to the function main as an argument count argc and an array argv of pointers to character strings
that contain the arguments. By convention, argv/0] is the command name itself, so argc is always
greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal. (This is essentially the echo command.)

mainfardc, argu) /% echo arduments #/
int ardci
char #arguvll}
{
int i3
for (i = 13 1 ¢ argci i++)

printf("%s%c" s argulily (i<arde-1) 7 7 7 1+ ‘\n’)}
+

argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is
terminated by \0, so they can be treated as strings. The program starts by printing argv/1] and loops
until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them around
so other routines can get at them, you must copy them to external variables.

The “Standard Input” and “Standard Output”

The simplest input mechanism is to read the ‘“‘standard input”, which is generally the user’s
terminal. The function getchar returns the next input character each time it is called. A file can be
substituted for the terminal by using the < convention: if prog uses getchar, then the command line

prog <file
causes prog to read file instead of the terminal. Prog itself need know nothing about where its input

is coming from. This is also true if the input comes from another program via the HP-UX pipe
mechanism:

otherprod | Prodg
provides the standard input for prog from the standard output of otherprog.
Getchar returns the value EOF when it encounters the end-of-file (or an error) on whatever you are
reading. The value of EQF is normally defined to be -1, but it is unwise to take any advantage of

that knowledge. As will become clear shortly, this value is automatically defined for you when you
compile a program, and need not be of any concern.
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Similarly, putchar(c) puts the character ¢ on the “standard output”, which is also by default the
terminal. The output can be captured on a file by using >: if prog uses putchar,

prod routfile

writes the standard output on outfile instead of the terminal. outfile is created if it doesn’t exist; if it
already exists, its previous contents are overwritten. And a pipe can be used:

Prod | otherprrogd
puts the standard output of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism as putchar
does, so calls to printf and putchar may be intermixed in any order; the output will appear in the
order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard input
and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as getchar,
so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs /O with getchar,
putchar, scanf, and printf may be entirely adequate, and it is almost always enough to get started.
This is particularly true if the HP-UX pipe facility is used to connect the output of one program to
the input of the next. For example, the following program strips out all ASCII control characters
from its input (except for new-line and tab).

#include <stdio.h>

main() /% ccstrip: strip non-drarhic characters */
{
int ¢}
while ({(c = getchar(\i)) != EOF)
if ((¢ »= * 7 && ¢ < 0177) 11 ¢ == At/ 11 ¢ == ‘\n’)
putchar(c)i
exit(0)}
}
The line

#include <stdiosh>

should appear at the beginning of each source file. It causes the C compiler to read a file (/ust/
include/stdio. h) of standard routines and symbols that includes the definition of EOF.
If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat filel file2 + + + | ccstrip Joutput
and thus avoid learning how to access files from a program. By the way, the call to exit at the end is
not necessary to make the program work properly, but it assures that any caller of the program will

see a normal termination status (conventionally 0) from the program when it completes. Section 6
discusses status returns in more detail.
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The Standard /O Library

The standard /O library is a collection of routines intended to provide efficient and portable /O
services for most C programs. The standard I/O library is available on each system that supports C,
so programs that confine their system interactions to its facilities can be transported from one
system to another essentially without change.

In this section, we will discuss the basics of the standard /O library. The appendix contains a more
complete description of its capabilities.

File Access

The programs written so far have all read the standard input and written the standard output, which
we have assumed are magically pre-defined. The next step is to write a program that accesses a file
that is not already connected to the program. One simple example is wc, which counts the lines,
words and characters in a set of files. For instance, the command

WC X+C Y4C
prints the number of lines, words and characters in x.c and y.c and the totals.

The question is how to arrange for the named files to be read\ -that is, how to connect the file
system names to the /O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard library
function fopen. Fopen takes an external name (like x.c or y.c), does some housekeeping and
negotiation with the operating system, and returns an internal name which must be used in
subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains informa-
tion about the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and the like. Users don’t need to know the details, because
part of the standard /O definitions obtained by including stdio. h is a structure definition called FILE.
The only declaration needed for a file pointer is exemplified by

FILE *fp, *foren()i

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE
(FILE is a tvee name, like int, not a structure tag).

The actual call to fopen in a program is
fr = foren(<name>, <mode>) 3
The first argument of fopen is the <name> of the file, as a character string. The second argument is

the <mode>, also as a character string, which indicates how you intend to use the file. The only
allowable modes are read (rA) write (w) or append (a)
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If a file that you open for writing or appending does not exist, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does not
exist is an error, and there may be other causes of error as well (like trying to read a file when you
don’t have permission). If there is any error, fopen will return the null pointer value NULL (which is
defined as zero in stdio. h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. getc returns the next character from a file; it
needs the file pointer to tell it what file. Thus

c = detc(fp)

places in ¢ the next character from the file referred to by fp; it returns EOF when it reaches end of
file. putc is the inverse of getc:

putcl(cy fe)
puts the character ¢ on the file fp and returns c. Getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stderr. Normally these are all connected to
the terminal, but may be redirected to files or pipes as described in Section 2.2. Stdin, stdout and
stderr are pre-defined in the /O library as the standard input, output and error files; they may be
used anywhere an object of type FILE * can be. They are constants, however, not variables, so
don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is one that
has been found convenient for many programs: if there are command-line arguments, they are
processed in order. If there are no arguments, the standard input is processed. This way the
program can be used stand-alone or as part of a larger process.

#include <stdiosh

main(ardc, argv) /% we: count liness wordss chars */
int ardcsi

char *argullj

{

int ¢+ iy inwordj
FILE *fpy *foren()}
long linects wordcts charctsi

lond tlinect = 0Oy twordct = O, tcharct = 03
i =13
frp = stdini
do {
if (ardec » 1 && (fe=foren(ardgulil, "r")) == NULL) {
frrintf(stderr, "wc: can’t open 7%s\n"y ardulil)i

continues
¥
linect = wordect = charct = inword = 0}
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while ((c = detc(fp)) != EOF) {

charct++i
if (¢ == ‘\n")
linect++3
if (c == " " 11 ¢ == '\t" il ¢c == "'\n")
inword = 03}
else if (inword == 0) {
inword = 13
wordct++1
}

}
printf("%471d %714 %71d4"s linects wordcts charct)i
printflardge > 1 7 " Zs\n" : "\n"y argulil)i
fclose(fp)i
tlinect += linectsi
twordet += wordctsi
tcharct += charcts
} while (++i < argc)i
if (ardec » 2)
printf ("%271d %714 %714 total\n"y tlinects twordct, tcharct)i
exit(0)3
¥

The function fprintf is identical to printf except that the first argument is a file pointer that specifies
the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the file pointer and the
external name that was established by fopen, freeing the file pointer for another file. Since there is a
limit on the number of files that a program can have open simultaneously, it's a good idea to release
resources when they are no longer needed. There is also another reason to call fclose on an output
file — it flushes the buffer in which putc is collecting output (fclose is called automatically for each
open file when a program terminates normally).

Error Handling — Stderr and Exit

Stderr is assigned to a program in the same way that stdin and stdout are. Output written on stderr
appears on the user’s terminal even if the standard output is redirected. Wc writes its diagnostics on
stderr instead of stdout so that if one of the files can’t be accessed for some reason, the message
finds its way to the user’s terminal instead of disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate program
execution. The argument of exit is available to whatever process called it (see Section 6), so the
success or failure of the program can be tested by another program that uses this one as a
sub-process. By convention, a return value of O signals that all is well; non-zero values signal
abnormal situations.

Exit itself calls fclose for each open output file, to flush out any buffered output, then calls a routine

named _exit. The function _exit causes immediate termination without any buffer flushing; it may
be called directly if desired.
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Miscellaneous I/O Functions
The standard /O library provides several other /O functions besides those previously illustrated.

Normally output with putc, etc., is buffered (except to stderr); to force it out immediately, use
flush(fp).

Fscanfis identical to scanf, except that its first argument is a file pointer (as with fprintf) that specifies
the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the first argument
names a character string instead of a file pointer. The conversion is done from the string for sscanf
and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a new-line, into buf, at most
size-1 characters are copied,; it returns NULL at end of file. fputs(buf, fp) writes the string in bufonto

file fp.

The function ungetc(c, fp) ‘‘pushes back” the character onto the input stream fp; a subsequent call
to getc, fscanf, etc., will encounter c. Only one character of push-back per file is permitted.
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Low-level I/O

This section describes the bottom level of /O on the HP-UX system. The lowest level of 1/O in
HP-UX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn’t as bad as it sounds.

File Descriptors

In the HP-UX operating system, all input and output is done by reading or writing files, because all
peripheral devices, even the user’s terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of your
intent to do so, a process called ‘“‘opening’” the file. If you are going to write on a file, it may also be
necessary to create it. The system checks your right to do so (Does the file exist? Do you have
permission to access it?), and if all is well, returns a small positive integer called a file descriptor.
Whenever 1/O is to be done on the file, the file descriptor is used instead of the name to identify the
file. (This is roughly analogous to the use of READ(5, ... ) and WRITE(E:...) in FORTRAN) All
information about an open file is maintained by the system; the user program refers to the file only
by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things, the
file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to
make this convenient. When the command interpreter (the “‘shell”’) runs a program, it opens three
files, with file descriptors O, 1, and 2, called the standard input, the standard output, and the
standard error output. All of these are normally connected to the terminal, so if a program reads file
descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O without worrying about
opening the files.

If I/O is redirected to and from files with < and >, as in

prod <infile outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named
files. Similar observations hold if the input or output is associated with a pipe. Normally file
descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the file
assignments are changed by the shell, not by the program. The program does not need to know
where its input comes from nor where its output goes, so long as it uses file O for input and 1 and 2
for output.
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Read and Write

All input and output is done by two functions called read and write. For both, the first argument is a
file descriptor. The second argument is a buffer in your program where the data is to come from or
go to. The third argument is the number of bytes to be transferred. The calls are

n-read = read(fd, bufy n)ij

n_written = write(fd, bufs n)i

Each call returns a byte count which is the number of bytes actually transferred. On reading, the
number of bytes returned may be less than the number asked for, because fewer than n bytes
remained to be read. (When the file is a terminal, read normally reads only up to the next new-line,
which is generally less than what was requested.) A return value of zero bytes implies end of file,
and -1 indicates an error of some sort. For writing, the returned value is the number of bytes
actually written; it is generally an error if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1,
which means one character at a time (“‘unbuffered”’), and 512, which corresponds to a physical
block size on many peripheral devices. This latter size will be most efficient, but even character at a
time 1/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and cutput can be redirected to any file or
device.

#define BUFSIZE 512 /% hest size for HP-UX */

main() /% copy inPut to outPut */
{
char buf[BUFSIZE];

int ni

while ((n = read(0, bufs BUFSIZE)) » 0)
write(ly bufs nd)i

exit(0)}

}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to be
written by write; the next call to read after that will return zero.

[t is instructive to see how read and write can be used to construct higher level routines like getchar,
putchar, etc. For example, here is a version of getchar which does unbuffered input.

#define CMASK 0377 /% for makingd char’s > 0 %/
detchar() /% unbuffered single character input */
{

char ci

return({read(0, &c» 1) > 0) ? c & CMASK : EOF)3
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¢ must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it
negative. (The constant 0377 is appropriate for Series 200/500 computers, but not necessarily for
other computers and systems.)

The second version of getchar does input in big chunks, and hands out the characters, one at a
time.

#define CMASK 0377 /% for maKind char’s » O %/
#define BUFSIZE 512
getchar() /% buffered version */
{
static char buf[BUFSIZETS
static char *bufp = bufi
static int no= 0
if (n == 0) A /% buffer is empty #/
n = read(0y buf, BUFSIZE)]
bufep = bufi
¥

return{(--n »= 0) 7 *bufp++ & CMASK : EOF)}
}

Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files in order
to read or write them. There are two system entry points for this, open and creat [sic].

Openis rather like the fopen discussed in the previous section, except that instead of returning a file
pointer, it returns a file descriptor, which is just an int.

int fdi

fd = open(names rwmode)i
As with fopen, the name argument is a character string corresponding to the external file name. The

access mode argument is different, however: rwmode is 0 for read, 1 for write, and 2 for read and
write access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided to create new
files, or to re-write old ones.

fd = creat(names pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file already
exists, creat will truncate it to zero length; it is not an error to creat a file that already exists.
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If the file is brand new, creat creates it with the protection mode specified by the pmode argu-
ment. In the HP-UX file system, there are nine bits of protection information associated with a file,
controlling read, write and execute permission for the owner of the file, for the owner’s group, and
for all others. Thus a three-digit octal number is most convenient for specifying the permissions. For
example, 0755 specifies read, write and execute permission for the owner, and read and execute
permission for the group and everyone else.

To illustrate, here is a simplified version of the HP-UX utility cp, a program which copies one file to
another. (The main simplification is that our version copies only one file, and does not permit the
second argument to be a directory.)

#define NULL O
#define BUFSIZE 512

#define PMODE 0G44 /% RW for owners» R for groups others %/
mainlardcs ardy) /% cp: copy fl to f2 */

int ardci

char *ardull3

{

int fly £f24 ni
char buf[BUFSIZETS

if (arde != 3)
error("Usage: cp from to"s» NULL)S

if ((fl = open(ardgulll,y 0)) == -1)
error("cpP: can’t oren %4s"s ardulll)}

if ((f2 = creat(argvl21, PMODE)) == -1)
error("cp: can’t create %s"y ardul21)3

while ((n = read(f1l, buf, BUFSIZE)) * 0)
if (write(f2y bufy m) 1= )
error{"cp: write error"y NULL)S

exit(0)3
¥
error{sly s2) /% Print error messade and die ¥/
char *sl, %s2j
{
printf(sl, s2)3j
printf("\n")3
exit(1)}
}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptors. The routine close breaks the connection between a file descrip-
tor and an open file, and frees the file descriptor for use with some other file. Termination of a
program via exit or return from the main program closes all open files.

The function unlink(<filename>) removes the file <filename> from the file system.
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Random Access — Lseek

File I/O is normally sequential: each read or write takes place at a position in the file right after the
previous one. When necessary, however, a file can be read or written in any arbitrary order. The
system call Iseek provides a way to move around in a file without actually reading or writing:

lseek(fdy offsets oridin)i

forces the current position in the file whose descriptor is fd to move to position offset, which is taken
relative to the location specified by origin. Subsequent reading or writing will begin at that position.
offsetis a long; fd and origin are ints. origin can be 0, 1, or 2 to specify that offset is to be measured
from the beginning, from the current position, or from the end of the file respectively. For example,
to append to a file, seek to the end before writing:

lseek(fdy OLy 2)3

To get back to the beginning (‘‘rewind”’),

lseek(fds OLy 0)3
Notice the OL argument; it could also be written as (long) O.

With Iseek, it is possible to treat files more or less like large arrays, at the price of slower access. For
example, the following simple function reads any number of bytes from any arbitrary place in a file.

dget(fds Poss bufs n) /% read n bytes from Position Pos */
int fdy ni
lond Posi

char *buf}

{
lseek(fds Posy O)§ /% det to pPos */
return{read(fd, bufy, n))i

Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into the
system can incur errors. Usually they indicate an error by returning a value of — 1. Sometimes it is
nice to know what sort of error occurred; for this purpose all these routines, when appropriate,
leave an error number in the external cell errno. The meanings of the various error numbers are
listed in the entry for errno(2) in the HP-UX Reference. Your program can, for example, determine
if an attempt to open a file failed because it did not exist or because the user lacked permission to
read it. Perhaps more commonly, you may want to print out the reason for failure. The routine
perror will print a message associated with the value of errno; more generally, sys_errnois an array
of character strings which can be indexed by errno and printed by your program.
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Processes

It is often easier to use a program written by someone else than to invent one’s own. This section
describes how to execute a program from within another.

The ““System” Function

The easiest way to execute a program from another is to use the standard library routine system.
System takes one argument, a command string exactly as typed at the terminal (except for the
new-line at the end) and executes it. For instance, to time-stamp the output of a program,

main()
{

system("date") 3

/% rest of processing */
¥

If the command string has to be built from pieces, the in-memory formatting capabilities of sprintf
may be useful.

Remember that getc and putc normally buffer their input; terminal I/O will not be properly synchro-
nized unless this buffering is defeated. For output, use fflush; for input, see setbuf in the appendix.

Low-level Process Creation — Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library’s system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
execl. To print the date as the last action of a running program, use

execl("/bin/date", “"date"» NULL)S

The first argument to execl is the file name of the command; you have to know where it is found in
the file system. The second argument is conventionally the program name (that is, the last compo-
nent of the file name), but this is seldom used except as a place-holder. If the command takes
arguments, they are strung out after this; the end of the list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits. There is no
return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an exec! call from the first.

The one exception to the rule that the original program never gets control back occurs when there is
an error, for example if the file can’t be found or is not executable. If you don’t know where date is
located, say

execl("/bin/date"s "date", NULL)I
execl("/usr/bin/date”, "date"s NULL)I
frrintf(stderrs "Someone stole ‘date’\n")}
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A variant of execl called execv is useful when you don’t know in advance how many arguments
there are going to be. The call is

execv(filenames ardp)i

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL so
execv can tell where the list ends. As with execl, filename is the file in which the program is found,
and argp[0] is the name of the program. (This arrangement is identical to the argv array for program
arguments. )

Neither of these routines provides the niceties of normal command execution. There is no automa-
tic search of multiple directories — you have to know precisely where the command is located. Nor
do you get the expansion of metacharacters like <, >, * ? and []in the argument list. If you want
these, use execl to invoke the shell sh, which then does all the work. Construct a string comman-
dline that contains the complete command as it would have been typed at the terminal, then say

execl("/bin/sh"y "sh"y "-c"y commandlines NULL)?

The shell is assumed to be at a fixed place, /bin/sh. Its argument — c says to treat the next argument
as a whole command line, so it does just what you want. The only problem is in constructing the
right information in commandline.

Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to regain
control after running a grogram with execl or execv. Since these routines simply overlay the new
program on the old one, to save the old one requires that it first be split into two copies; one of these
can be overlaid, while the other waits for the new, overlaying program to finish. The splitting is done
by a routine called fork:

proc-id = fork()3j

splits the program into two copies, both of which continue to run. The only difference between the
two is the value of proc_id, the “process id.”” In one of these processes (the “child’’), proc_id is
zero. In the other (the “parent’’), proc_idis non-zero; it is the process number of the child. Thus the
basic way to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh"y "sh"y "-¢"y cmdy NULL)S /% in child %/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the program.
In the child, the value returned by fork is zero, so it calls execl which does the command and then
dies. In the parent, fork returns non-zero so it skips the execl. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be
done with the function wait:

int statusi
if (fork() == 0)
execl(. . )3}

wait(&status)i
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This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns the
process id of the terminated child, if you want to check it against the value returned by fork.) Finally,
this fragment doesn’t deal with any funny behavior on the part of the child (which is reported in
status). Still, these three lines are the heart of the standard library’s system routine, which we’ll
show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of the child’s
termination status; it is O for normal termination and non-zero to indicate various kinds of problems.
The next higher eight bits are taken from the argument of the call to exit which caused a normal
termination of the child process. It is good coding practice for all programs to return meaningful
status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at the
right files, and all other possible file descriptors are available for use. When this program calls
another one, correct etiquette suggests making sure the same conditions hold. Neither fork nor the
exec calls affects open files in any way. If the parent is buffering output that must come out before
output from the child, the parent must flush its buffers before the execl Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the
caller.

Pipes
A pipe is an /O channel intended for use between two cooperating processes: one process writes

into the pipe, while the other reads. The system looks after buffering the data and synchronizing the
two processes. Most pipes are created by the shell, as in

s i Pr

which connects the standard output of Is to the standard input of pr. Sometimes, however, it is most
convenient for a process to set up its own plumbing; in this section, we will illustrate how the pipe
connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[213
stat = pire(fd)i

if (stat == -1)
/% there was an error .« o+ o+ */

Fdis an array of two file descriptors, where fd[0] is the read side of the pipe and fd[1]is for writing.
These may be used in read, write and close calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a pipe

which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is closed, a
subsequent read will encounter end of file.
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To illustrate the use of pipes in a realistic setting, let us write a function called popen(cmd, mode),
which creates a process cmd (just as system does), and returns a file descriptor that will either read
or write that process, according to mode. That is, the call

fout = poren("pr"y WRITE)S

creates a process that executes the pr command; subsequent write calls using the file descriptor fout
will send their data to that process through the pipe.

Popen first creates the the pipe with a pipe system call; it then forks to create two copies of itself.
The child decides whether it is supposed to read or write, closes the other side of the pipe, then calls
the shell (via execl) to run the desired process. The parent likewise closes the end of the pipe it does
not use. These closes are necessary to make end-of-file tests work properly. For example, if a child
that intends to read fails to close the write end of the pipe, it will never see the end of the pipe file,
just because there is one writer potentially active.

#include <stdio.h?

#define READ O

#define WRITE 1

#define tstfas b) (mode == READ ? (b) : (a))
static int PorPen_pidj

roren(cmds mode)
char *cmdj
int modes
{
int PLZ213

if (pire(p) < 0)
return(NULL) 3

if ((popen.pid = fork()) == 0) {
close(tst(p[WRITE], PIREADI))}
close(tst(0y 1))}
dup(tst(P[READ]s PLWRITEI) )}
close(tst(PLREAD], PLWRITEI))
execl("/bin/sh™y "sh"y "-c"y cmdy 0)3

_exit(1)j /% disaster has occurred if we det here */
¥
if (porPen-pid == -1)
return(NULL) S
close(tst(PIREADI s PLWRITE])) S
return{tst (PCWRITEIs PLREADI)) ]
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The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child process
that will read data from the parent. Then the first close closes the write side of the pipe, leaving the
read side open. The lines

close(tst(0y 1))4
durp(tst (PIREAD] sy PLWRITEI))

are the conventional way to associate the pipe descriptor with the standard input of the child. The
close closes file descriptor 0, that is, the standard input. dup is a system call that returns a duplicate
of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor for the pipe (read side)
to file descriptor O; thus the read side of the pipe becomes the standard input. (Yes, this is a bit
tricky, but it's a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the
parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by popen. The
main reason for using a separate function rather than close is that it is desirable to wait for the
termination of the child process. First, the return value from pclose indicates whether the process
succeeded. Equally important when a process creates several children is that only a bounded
number of unwaited-for children can exist, even if some of them have terminated; performing the
wait lays the child to rest. Thus:

#include <sidgnalih’

pclose(fd) /% close pire fd */

int fdi

{
redister ry (*¥hstat) (), (*istat) () (*astat) ()}
int statusi
extern int poren-Pid}

close(fd)i
istat = sidnal (SIGINT, SIG_IGN)]

9stat = sidnal (SIGQUIT, SIG_IGN)}
hstat = sidgnal (SIGHUP, SIG_IGN)}
while ((r = wait(&estatus)) != poren_pid && r 1= -1)3
if (r == -1)
status = -13§

signal (SIGINTy istat)i
signal (SIGQUIT, astat)s
signal (SIGHUP, hstat)y
return(status)i

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the
single shared variable popen_pid. it really should be an array indexed by file descriptor. A popen
function, with slightly different arguments and return value is available as part of the standard I/O
library discussed below. As currently written, it shares the same limitation.
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Signals — Interrupts and All That

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there’s nothing very useful that can be done from within
C about program faults, which arise mainly from illegal memory references or from execution of
peculiar instructions, we’ll discuss only the outside-world signals:

Interrupt Sent when the DEL character is typed;
Quit Generated by the FS character;
Hangup Caused by hanging up the phone; and

Terminate ~ Generated by the kill command.

When one of these events occurs, the signal is sent to all processes which were started from the
corresponding terminal; unless other arrangements have been made, the signal terminates the
process. In the quit case, a core image file is written for debugging purposes.

The routine that alters the default action is called signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first argument is just a number code, but the
second is the address, and is either a function, or a somewhat strange code that requests that the
signal either be ignored or that it be given the default action. The include file signal. h gives names
for the various arguments, and should always be included when signals are used. Thus

#include <sidgnal.h’

signal (BIGINTs SIG_IGN)3

causes interrupts to be ignored, while
sidnal (SIGINT,» SIG_DFL)}

restores the default action of process termination. In all cases, signal returns the previous value of
the signal. The second argument to signal may instead be the name of a function (which has to be
declared explicitly if the compiler hasn’t seen it already). In this case, the named routine will be
called when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

#include <sidgnal.h’

main()
{
int onintr()3j

if (signal(SIGINT, SIG.IGN) != SIG_IGN)
signal (SIGINT, onintrl)i

/% Process o+ o+ %/

exit(0)3
}

onintr( )

{
unlink(tempfile)s
exit(1)j

}
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Why the test and the double call to signal? Recall that signals like interrupt are sent to all processes
started from a particular terminal. Accordingly, when a program is to be run non-interactively
(started by &), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for
foreground processes. If this program began by announcing that all interrupts were to be sent to the
onintr routine regardless, that would undo the shell’s effort to protect it when run in the back-
ground.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signal
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop
what it is doing and return to its own command-processing loop. Think of a text editor: interrupting
a long printout should not cause it to terminate and lose the work already done. The outline of the
code for this case is probably best written like this:

#include <sidnalshz
#include <setdmpih>

Jmp_buf

sdibufi

main( )

{
int (*istat)( )y onintr( )i
istat = sidnal(SIGINT, SIG_IGN) ] /% save oridinal status */
setdmp(sdbuf)i /% save current stack position */

if (istat != SIG_IGN)
sidgnal (SIGINT onintr)i

/% main processing loop */
}

onintr( )
{

printf("\nlnterruptin")j

longdmp(sdbuf)i /% return to saved state ¥/
}

The include file setimp. h declares the type jmp_bufan object in which the state can be saved. sjbuf
is such an object; it is an array of some sort. The setimp routine then saves the state of things. When
an interrupt occurs, a call is forced to the onintr routine, which can print a message, set flags, or
whatever. longimp takes as argument an object stored into by setimp, and restores control to the
location after the call to setimp, so control (and the stack level) will pop back to the place in the
main routine where the signal is set up and the main loop entered. Notice, by the way, that the
signal gets set again after an interrupt occurs. This is necessary; most signals are automatically reset
to their default action when they occur.
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Some programs that want to detect signals simply can’t be stopped-at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets a
flag and then returns instead of calling exit or longimp, execution will continue at the exact point it
was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the terminal
when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were
really true, as we said above, that ‘“‘execution resumes at the exact point it was interrupted”’, the
program would continue reading the terminal until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he presumably would
prefer to have the signal take effect instantly. The method chosen to resolve this difficulty is to
terminate the terminal read when execution resumes after the signal, returning an error code which
indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for “errors”
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wait, and pause.) A program whose onintr program just sets intflag, resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard input:

if (detchar( ) == EOF)
if (intflag)
/% EOF caused by interrupt */
else
/% true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with execu-
tion of other programs. Suppose a program catches interrupts, and also includes a method (like ““!”’
in the editor) whereby other programs can be executed. Then the code should look something like
this:

if (fork( ) == 0)

execl(, + 4 )3
signal (SIGINTs SIG_IGN)3 /% idnore interrurts */
wait(hstatus); /% until the child is done */
sidgnal (SIGINTs onintr)i /% restore interrupts ¥/

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call catches its
own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and
probably read your terminal. But the calling program will also pop out of its wait for the subprogram
and read your terminal. Having two processes reading your terminal is very unfortunate, since the
system figuratively flips a coin to decide who should get each line of input. A simple way out is to
have the parent program ignore interrupts until the child is done. This reasoning is reflected in the
standard I/O library function system:

20 HP-UX Programming



]

#include <signal.h

system(s) /% run command string s */
char #si
{

int status,y Pidy wi

redister int (#istat)( )y (¥astat)( )i

if ((pid = fork( )) == 0) {
execl("/bin/sh™y "sh"y "-c"y 54 0)3
—exit(127)3

}

istat = signal(SIGINTs» SIG_IGN)}

astat signal (SIGQUIT, SIG_IGN) ]

while ((w = wait(kstatus)) != pid && w != -1)
H

if (w == -1)
status = -13

signal (SIGINT, istat)}
signal (SIGQUIT astat)i
return(status)i

As an aside on declarations, the function signal obviously has a rather strange second argument. It
is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine
itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so they coincide
with no possible actual functions. For the enthusiast, here is how they are defined for Series
200/500 computers; the definitions should be sufficiently ugly and nonportable to encourage use of
the include file.

#define SIG_DFL tint () )0
#define SIG.IGN (int () ( )1
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Appendix — The Standard I/O Library

The standard I/O library was designed with the following goals in mind.
o [t must be as efficient as possible, both in time and in space, so that there will be no hesitation
in using it no matter how critical the application.

o [t must be simple to use, and also free of the magic numbers and mysterious calls whose use
mars the understandability and portability of many programs using older packages.

® The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the one
upon which the program was written.

General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the include file intended only for internal use
begin with an underscore (_) to reduce the possibility of collision with a user name. The names
intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually —1, and is the value returned by the read routines on end-of-file or
error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indi-
cate an error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See setbuf, below.

getc, getchar, are defined as macros. Their actions are described below; they are mentioned

putc, putchar, here to point out that it is not possible to redeclare them and that they are not

feof, ferror, actually functions; thus, for example, they cannot have breakpoints set on

fileno them.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are, in effect, constants and cannot
be assigned to.
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Calls

FILE *foren(<filename>, <type>) char *<filename>, *<type>i

opens the file and, if needed, allocates a buffer for it. <filename> is a character string specifying
the name. <type> is a character string (not a single character). It may be “a”

[T
Y

w’, or “a@”’ to
indicate intent to read, write, or append. The value returned is a file pointer. If it is NULL, the
attempt to open failed.

FILE *freopen(filenames tvrpe,» ioptr) char *filename,» *typei FILE *iopPtrj

closes the stream named by ioptr, if necessary, then reopens it as if by fopen. If the attempt to
open fails, NULL is returned. Otherwise ioptr, now refers to the new file. Often the reopened
stream is stdin or stdout.

int detc(iorptr) FILE *ioPtr}
returns the next character from the stream named by <ioptr>, which is a pointer to a file such
as returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when an
error occurs. The null character is a legal character.

int fdetc(ioprtr) FILE *ioPtrj
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(cs ioptr) FILE #iortri

writes the character ¢ on the output stream named by ioptr, which is a value returned from
fopen or perhaps stdout or stderr. The character is returned as value, but EOF is returned on
error.

frutc(cy ioptr) FILE *ioptrj

acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptrj
closes the file corresponding to ioptr after any buffers are emptied. Any buffering allocated by
the I/O system is freed. fclose is automatic on normal termination of the program.
fflush(ioptr) FILE *ioptrj

writes out any buffered information on the (output) stream named by ioptr. Output files are
normally buffered if and only if they are not directed to the terminal;, however, stderr always
starts off unbuffered and remains so unless setbufis used, or unless it is reopened.

exit(errcode)}

terminates the process and returns its argument as status to the parent. This is a special version
of the routine which calls fflush for each output file. To terminate without flushing, use _exit
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feof(iortr) FILE *iopPtri

returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioPtr
returns non-zero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

detchar( )i

is identical to detc(stdin).

putchar(c)i

is identical to putc(cs stdout).

char #fdets(s» ny iorptr) char *si FILE *ioPtri

reads up to n—1 characters from the stream ioptr into the character pointer s. The read
terminates with a new-line character. The new-line character is placed in the buffer followed by
a null character. Fgets returns the first argument, or NULL if error or end-of-file occurred.

frPuts(ss iortr) char %si FILE *ioPtri

writes the null-terminated string (character array) s on the stream ioptr. No new-line is
appended. No value is returned.

undetc(cs ioprtr) FILE *iortri

pushes the argument character ¢ back on the input stream named by joptr. Only one character
can be pushed back.

printf(formats alsy + + + ) char *formati
ferintf(ioptrs formats aly + + + ) FILE #ioPptri char *formati
sprintf(sy formaty als + + 4+ )char *s, *formati

printf writes on the standard output. fprintf writes on the named output stream. sprintf puts
characters in the character array (string) named by s. The specifications are as described in
section printf (3) of the HP-UX Reference.

scanf(formats als + 4+ + ) char *formats
fscanf(ioptrs\ formats\ als + + + ) FILE *ioptri char *formati
sscanf(ss format, aly + + + ) char %*s, *formati

scanf reads from the standard input. fscanf reads from the named input stream. sscanf reads
from the character string supplied as s. Scanf reads characters, interprets them according to a
format, and stores the results in its arguments. Each routine expects as arguments a control
string format, and a set of arguments, each of which must be a pointer, indicating where the
converted input should be stored.

Scanf returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what was
called for in the control string.
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fread(ptry sizeof(*ptr)y nitems, iortr) FILE #*ioptrj

reads nitems of data beginning at ptr from file ioptr. No advance notification that binary I/O is
being done is required; when, for portability reasons, it becomes required, it will be done by
adding an additional character to the mode-string on the fopen call.

fwrite(ptry sizeof (*Ptr)s nitemss ioptr) FILE *iortrj

like fread, but in the other direction.

rewind(iortr) FILE #ioPtri
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system(strind) char *stringds

string is' executed by the shell as if typed at the terminal.

detw(iorptr) FILE *ioptri
returns the next 32-bit word from the input stream named by ioptr. EOF is returned on
end-of-file or error, but since this a perfectly good integer feof and ferror should be used.
Putwlw,s iortr) FILE *ioPtri

writes the integer w on the named output stream.

setbuf(ioptry buf) FILE *ioptri char *bufji

setbuf can be used after a stream has been opened but before 1/O has started. If bufis NULL,
the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character
array of sufficient size: char buf[BUFSIZI;

fileno(iortr) FILE *iortrj

returns the integer file descriptor associated with the file.

fseek(iortry offsety Ptrname) FILE #ioptri long offsets

adjusts the location of the next byte in the stream named by ioptr. offset is a long integer. If
ptrname is 0, the offset is measured from the beginning of the file; if ptrname is 1, the offset is
measured from the current read or write pointer; if ptrname is 2, the offset is measured from the
end of the file. The routine accounts properly for any buffering. (When this routine is used on
HP-UX systems, the offset must be a value returned from ftell and the ptrname must be 0).

long ftell(ioptr) FILE *iopPtri

returns the byte offset (measured from the beginning of the file) associated with the named
stream. Any buffering is properly accounted for. (On HP-UX systems the value of this call is
useful only for handing to fseek, so as to position the file to the same place it was when ftell was
called.)
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getpwluid, buf) char *bufj

searches the password file for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0O is returned. If no line is found corresponding to the
user ID then 1 is returned.

char #malloc(num)i
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any
purpose. NULL is returned if no space is available.

char *#calloc(nums size)$

allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available .

cfree(Ptr) char *ptri
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not -
obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype. h>.

isalrha(c) returns non-zero if the argument is alphabetic.

isupper(c) returns non-zero if the argument is upper-case alphabetic.

islower(c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab,

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable-a letter, digit, or punctuation char-
acter.

isecntrl(c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ASCII character, i.e., less than octal 0200.

toupper(c) returns the uppercase character corresponding to the lowercase letter c.

tolower(c) returns the lowercase character corresponding to the uppercase letter.
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Using C on HP 9000
Series 500 Computers

Introduction

The purpose of this article is to describe the machine dependent features of the C programming
language as it is implemented on the HP 9000 Series 500 computers. No attempt is made here to
fully describe C. When applicable, page numbers are given that reference pages in the Kernighan
and Ritchie text, The C Programming Language, which are related to the discussion.

Data Types and Manipulations

Data Type Sizes

The following table gives the sizes and alignment requirements of the six data types implemented in
C (page 34):

Type Size Alignment Requirements
char 8 bits byte boundary
short 16 bits half word
int 32 bits full word
long 32 bits full word
float 32 bits full word
double 64 bits full word

Char Data Type

The char data type is treated as signed by default. This implies that, if a char is assigned to an int,
sign extension will take place (page 40).

Register Data Type

Because the Series 500 computers are stack machines, declaring a variable to be register is
ignored, and is treated as a no-op (page 81).

Integer Overflow

Integer overflow does not generate an error by default (page 185).



Division by Zero

Whenever division by zero occurs, you get the (somewhat misleading) error message " Floating
exception" at run-time.

Identifiers

Internal identifiers have 16 significant characters. External identifiers have 15 significant characters
(page 179).

Shift Operators

An arithmetic shift is performed if the left operand is signed. If the left operand is unsigned, a logical
shift is performed (page 45). (Remember that integer constants are treated as signed unless cast to
unsigned. )

Bit Fields
Bit fields are assigned left to right, and are treated as unsigned (page 138).

Code/Data Limitations

The following limitations exist on the Series 500 computers:

a maximum of 2°19 bytes of local variables in any procedure;

a maximum of 2°19 bytes of parameters in any function call;

any branch instruction generated by a procedure must be within 2718 bytes of its target;
structure functions cannot return a structure bigger than 2°24 bytes.

If you violate any of the above limits, you get the message "impossible reach" from the assembly
step of cc. Other limitations are:

a maximum of 255 procedures in any single compilation (i.e. any single ".c" file and
everything it #includes). If you exceed this, you get " proctable overflow" from the assembler;

a maximum of 32 767 lines of assembly code generated by cc. If you exceed this, you get " too
many lines" from the assembler. To work around this, break your program up into smaller
pieces;

a maximum of 2719 bytes of global scalar data (includes all global scalar variables, all static
scalar variables, all global and static structures, and 4 bytes for each global or static array). If
you exceed this, you get "byte offset too large" from the linker, /d.

When compiling with ¢c, you can recognize assembler errors by the fact that they make reference to

a file called /tmp/ctm3x, where x is a single letter. Also, you can use the —v option to watch the
compilation process, and note where the error occurs.
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Portability Considerations

The following list should be kept in mind when transporting C code to the Series 500 computers
from other machines:

the Series 500 computers do not swap bytes;

dereferencing a null pointer for a read or write operation generates a run-time error. On some
ather machines, dereferencing a null pointer for a read operation returns zero;

beware of attempts to use absolute addressing. The use of hard-coded addresses is not likely
to work on any machine to which you want to port code;

even though the stack grows toward higher memory addresses, parameters are stacked toward

decreasing addresses. Thus, if you want to use a pointer to step through a variable length
parameter list, you must decrement the pointer.
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Using the C Library Routines

The purpose of this tutorial is to illustrate the use of the library routines described in Section 3 of the
HP-UX Reference manual that are most commonly used. Examples are included to demonstrate
programming techniques.

This article assumes that you have a working knowledge of the C programming language. No
attempt is made here to explain or teach C programming techniques, other than those that are
relevant to a particular library routine.

Material is presented in three sections, each dealing with the following topics in the order listed:

o Standard Input/Output Routines,
® Math Routines, including trigonometric and other functions, and
e String Manipulation Routines.



2 C Library Routines



Part

Standard Input/Output Routines

There are more library routines in this category than in any other. Described under this heading are
routines that perform all kinds of input and output, from single characters to entire strings. Also
described are routines that adjust /O buffering, routines that enable input from or output to files,
and routines that enable random access to data. These routines require that the include file stdio.h
be #included in C programs containing calls to them.

The standard /O routines are inseparably linked with files. A file must be opened before its contents
can be used. Three “files” are automatically opened for you by the system. Including stdio.h in
your program assigns buffering to them. These three ‘“‘files” are the standard input, standard
output, and standard error files. Their names are stdin, stdout, and stderr, respectively.

Actually, it is more accurate to think of these “files” as pipes connecting two points. Each pipe
accepts data at one end, and transfers the data to its destination at the other end. These pipes have
only limited ability to store data. Once a certain number of bytes have been written into the pipe,
data must be read from the other end before the pipe can accept more data. Writing data into a
pipe is analogous to pumping water into a pipeline. The pipeline is able to hold some water, but if
the valve at the receiving end of the pipe is shut, the pipeline is soon unable to hold any more
water. Opening the valve is analogous to reading data from the pipe. Once water has been
removed from the pipeline, more water can be pumped in at the source.

Once a certain volume of water has been allowed to flow out of a pipeline, that same water no
longer exists in the pipeline. This is also true for data that has been received from stdin, stdout, and
stderr. Reading data from stdin, for instance, removes that data from stdin. You can see that stdin,
stdout, and stderr are very different from ordinary files. Not only can they store small amounts of
data, but that data exists only until it is read (unless it is “pushed back” — — see Character
Push-Back later in this article).

Stdin is opened for reading. This means that your program can only receive data from stdin,; it
cannot write data into it. By default, stdin’s source of data is your terminal's keyboard. Thus,
whatever you type at your keyboard provides the data that flows through stdin and becomes
available to your program at the other end. By default, stdin is buffered via a buffer containing
exactly BUFSIZ bytes, where BUFSIZ is a constant defined in stdio.h. For Series 200 and Series
500 computers, BUFSIZ is 1024. Due to terminal driver characteristics, data you type in at your
keyboard is not available to a program until you press RETURN (or its equivalent).

Stdout is opened for writing, which means that your program is the source of data for stdout. Your
program cannot, however, read data from stdout. By default, the destination of stdout is your
terminal’s screen. Thus, data fed into stdout appears on your screen. Stdout is typically used for all
output that arises from successful execution of a program (status reports, lists of tasks being
performed, etc.). Like stdin, stdout is buffered via a buffer containing BUFSIZ bytes.



Stderr is also opened for writing, allowing your program to feed data into it, but disallowing
reading. Just like stdout, stderr’s destination is your terminal’s screen by default. Stderr is typically
used to output data which arises from an erroneous condition in a program, such as error messages,
warnings, etc. Stderr is unbuffered by default, which means that data written to stderr is transferred
to its destination one byte at a time.

The buffering for these pipes, as well as for any open file, can be modified — see the Stream Status
and Control Routines section later in this tutorial.

Of course, your program would be severely limited in its [/O capabilities if it had only these three
pipes to work with. Therefore, ordinary text files can be opened for reading, or created/opened for
writing, appending, or both reading and writing. Directories can also be opened, but only for
reading. These features are discussed later in this article. For now, the use of stdin and stdout is
described (stderr is also left for later discussion).

Input/Output Using Stdin and Stdout

This section describes those routines which are capable of I/O using stdin and stdout only. The
routines discussed are getchar and putchar (single character 1/0), gets and puts (string [/O), and
scanf and printf (formatted 1/O of all types).

Single-character Input/Output

This section describes the two basic input and output routines, getchar and putchar. Getchar is a
macro defined in stdio.h which reads one character from stdin. Similarly, putchar is also a macro
defined in stdio.h. Putchar writes one character on stdout.

As an example, consider the following program, which simply reads stdin and echos whatever it
finds to stdout. The program terminates when it receives an at-sign (@) from stdin.

#include <{stdiosh>
main()
{

int ¢}

while((c = detchar()) != ‘87)
Putchar(c)i
putchar(’\n');
}

Why is ¢ declared an int instead of a char? For most applications, char works fine. In certain cases,
however, sign extension, bit shifting, and similar operations cause strange results with chars.
Therefore, int is used here, and in all following examples, to be safe.

The final putchar statement in the program is used to output a new-line so that your shell prompt

appears at the beginning of a new line, instead of at the end of the last line of output. Type it in and
give it a try! Remember that your input is not available to the program until you press RETURN.
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Getchar and putchar are most useful in filters — —programs which accept data and modify it in
some way before passing it on. Suppose you want to write a program which puts parentheses
around each vowel encountered in the input. It's easy to do with these routines:

#include <stdio.h?
main()
{

int ci

while((c = getchar()) != ‘\n’) {
if(vowel(c)) {
putchar(’(’)3
putchar(c)i
putchar(’)’)j

telse
putchar(c)i
}
vowel(c)
char ¢}
{

It

if(c=="a’ |
iioe=='0" |
return(l
else

return(0)j

"on

A
0

c
c i

)i

The vowel test is placed in the function vowel, since it tends to clutter up the main program. This
program terminates when it encounters a new-line.

String Input/Output

The gets function reads a string from stdin and stores it in a character array. The string is terminated
by a new-line in the input, which gets replaces with a NULL character in the array. Its companion
function, puts, copies a string from a character array to stdout. The string is terminated by a NULL
character in the array, which puts replaces with a new-line in the output.

The simple “‘echo” program from the last section can be rewritten using gets and puts.

#include <stdiosh?
main()
{
char linelB0OI, *dets()}

while((dets(line)) != NULL)
puts{line)i

This program, as written, runs forever. To terminate it, press BREAK (or its equivalent). Later, when
string comparison and string length routines are introduced, an intelligent termination condition can
be written for this program.
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Formatted Input/Output

The scanf and printf routines are powerful tools enabling you to read and write data in formatted
form, respectively.

Scanf
Scanfis the formatted-input library routine. Its syntax is:

scanf (format, [item[, item ...]1])

where format is a character pointer to a character string (or the character string itself enclosed in
double quotes), and item is the address of a variable.

The purpose of the format is to specify how the data to be read is presented on stdin, and what
types of data are found there. The format consists of two things: conversion specifications, and
literal characters.

Conversion Specifications

A conversion specification is a character sequence which tells scanf how to interpret the data
received at that point in the input. For example, if a conversion specification says ‘“‘treat the next
piece of data as a decimal integer”, then that data is interpreted and stored as a decimal integer.

In the format, a conversion specification is introduced by a percent sign (%), optionally followed by
an asterisk (*) (called the assignment suppression character), optionally followed by an integer
value (called the field width). The conversion specification is terminated by a character specifying
the type of data to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched up with the correspond-
ing item in the item list. The data formatted by that specification is then stored in the location
pointed to by that item. For example, if there are four conversion specifications in a format, the first
specification is matched up with the first item, the second specification with the second item, and so
on.

The number of conversion specifications in the format is directly related to the number of items
specified in the item list. With one exception, there must be at least as many items as there are
conversion specifications in the format. If there are too few items in the item list, an error occurs; if
there are too many, the excess items are simply ignored. The one exception occurs when the
assignment suppression character (*) is used. If an asterisk occurs immediately after the percent sign
(before the field width, if any), then the data formatted by that conversion specification is discarded.
No corresponding item is expected in the item list. This is useful for skipping over unwanted data in
the input.
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Conversion Characters
There are eight conversion characters available. Three of them are used to format integer data,
three are used to format character data, and two are used for floating-point data.

The integer conversion characters are:

d a decimal integer is expected,;
o an octal integer is expected,
X a hexadecimal integer is expected;

The character conversion characters are:

c a single character is expected;
s a character string is expected;
[ a character string is expected;

The floating-point conversion characters are:
e f a floating-point number is expected;

Integer Conversion Characters

The d, o, and x conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

For d, an inappropriate character is any character except +, —, and 0 thru 9. For o, an inappropri-
ate character is any character except +, —, and 0 thru 9. That’s right — 8 and 9 are allowed in
octal numbers! If you enter, say, 1294 to be interpreted by the o conversion character, it still
interprets the entire number as octal, and converts the digits to the octal digit range. Thus, 1294
actually gets stored as 1314 (octal). For x, an inappropriate character is any character except +, —,
0 thru 9, and the characters a — f and A thru F. Note that negative octal and hexadecimal values
are stored in their 2’s complement form with sign extension. Thus, they may look unfamiliar if you
print them out later (using printf —see below).

These integer conversion characters can be capitalized or preceded by a lower-case L (1) to indicate
that a long int should be expected rather than an int. They can also be preceded by h to indicate a
short int. The corresponding items in the item list for these conversion characters must be pointers
to integer variables of the appropriate length.

Character Conversion Characters

The ¢ conversion character reads the next character from stdin, no matter what that character is.
The corresponding item in the item list must be a pointer to a character variable. If a field width is
specified, then the number of characters indicated by the field width are read. In this case, the
corresponding item must refer to a character array large enough to hold the characters read.
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Note that strings read using the ¢ conversion character are not automatically terminated with a
NULL character in the array. Since all C library routines which utilize strings assume the existence
of a NULL terminator, be sure you add the NULL character yourself. Otherwise, library routines
are not able to tell where the string ends, and you’ll get puzzling results.

The s conversion character reads a character string from stdin which is delimited by one or more
space characters (blanks, tabs, or new-lines). If no field width is given, the input string consists of all
characters from the first non-space character up to (but not including) the first space character. Any
initial space characters are skipped over. If a field width is given, then characters are read, beginning
with the first non-space character, up to the first space character, or until the number of characters
specified by the field width is reached (whichever comes first). The corresponding item in the item
list must refer to a character array large enough to hold the characters read, plus a terminating
NULL character which is added automatically.

An important point to remember about the s conversion character is that it cannot be made to read
a space character as part of a string. Space characters are always skipped over at the beginning of a
string, and they terminate reading whenever they occur in the string. For example, suppose you
want to read the first character from the following input line:

”

Hellos there!”

(10 spaces followed by “Hello, there!”’, the double quotes being added for clarity). If you use %c,
you get a space character. However, if you use %1s, you get “H” (the first non-space character in
the input).

The [ conversion character also reads a character string from stdin. However, this character should
be used when a string is not to be delimited by space characters. The left bracket is followed by a list
of characters, and is terminated by a right bracket. If the first character after the left bracket is a
circumflex ("), then characters are read from stdin until a character is read which matches one of
the characters between the brackets. If the first character is not a circumflex, then characters are
read from stdin until a character not occurring between the brackets is found. The corresponding
item in the item list must refer to a character array large enough to hold the characters read, plus a
terminating NULL character which is added automatically.

The three string conversion characters provide you with a complete set of string-reading capabili-

ties. The ¢ conversion character can be used to read any single character, or to read a character

string when'the exact number of characters in the string is known beforehand. The s conversion

character enables you to read any character string which is delimited by space characters, and is of
unknown length. Finally, the [ conversion character enables you to read character strings that are -
delimited by characters other than space characters, and which are of unknown length.

Floating-point Conversion Characters

The e and f conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).
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Both e and f expect data in the following form: an optionally signed string of digits (possibly
containing a decimal point), followed by an optional exponent field consisting of an E or e followed
by an optionally signed integer. Thus, an inappropriate character is any character except +, —, ., 0
thru9, E, ore.

These floating-point conversion characters may be capitalized, or preceded by a lower-case L (1), to
indicate that a double value is expected rather than a float. The corresponding items in the item list
for these conversion characters must be pointers to floating-point variables of the appropriate
length.

Literal Characters

Any characters included in the format which are not part of a conversion specification are literal
characters. A literal character is expected to occur in the input at exactly that point. Note that since
the percent sign is used to introduce a conversion specification, you must type two percent signs
(% %) to get a literal percent sign.

Examples
Suppose that you have to read the following line of data:

NAME: Joe Kooli AGE: 273 PROF: Elec Endri SAL: 38550

To get the vital data, you must read two strings (containing spaces), and two integers. You also
have data that should be ignored, such as the semicolons and the identifying strings (“NAME.:”).
How do you go about reading this?

First, note that the identifying strings are always delimited by space characters. This suggests use of
the s conversion character to read them. Second, you can never know the exact sizes of the NAME
and PROF fields, but note that they are both terminated by a semicolon. Thus, you can use [ to
read them. Finally, the d conversion character can be used to read both integers. (Note: on 16-bit
processors, you probably need to use a long int to read the salaries. Thus, D or Id should be used
instead of d.)

The following code fragment successfully reads this data:

char nameld0]1y Prof[4013
int ades salarvi

scanf ("%*s%*[ 140" 31%%ch*s/dl*cl*s’* 10" i1/ *ci*s/d" yname Bade s\
profsksalary)i
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For easier understanding, break the format into pieces:

% s

Tox( ]

%]

% *c
Pos
%d

o*c
To*s
Yox[ ]
P[]

%%
VA
%d

This reads the string “NAME:”. Since an asterisk is given, the string is simply read and
discarded.

This gets rid of all blanks occurring between ‘“NAME:” and the employee’s name. Note
that this gets rid of one or more blanks, giving the format some flexibility.

This reads all characters from the current character up to a semicolon, and assigns the
characters to the array name.

This gets rid of the semicolon left over after reading the name.
This reads the next identifying string, “AGE:”, and discards it.

This reads the integer age given, and assigns it to age. The semicolon after the age
terminates %d, because that character is not appropriate for an integer value. Note that
the address of age is given in the item list (&age) instead of the variable name itself. If this
is not done, a memory fault occurs at run-time.

This gets rid of the semicolon following the age.
This reads the next identifying string, “‘PROF:”, and discards it.
This removes all blanks between “PROF:” and the next string.

This reads all characters up to the next semicolon, and assigns them to the character array
prof.

This gets rid of the semicolon following the profession string.
This reads the final identifying string, “SAL:”, and discards it.

This reads the final integer and assigns it to the integer variable salary. Again, note that
the address of salary is given, not the variable name itself.

Although somewhat confusing to read, this format is quite flexible, since it allows for multiple spaces
between items and varying identifying strings (i.e. “PROFESSION:” could be specified instead of
“PROF:”). The following scanf call reads the same data, but is much less flexible:

scanf("NAME: %["313 AGE:%d3 PROF: %["31i SAL: %Zd"snamesBadesrrofbsalary)i

Here, literal characters are used to exactly match the characters in the input line. This works fine if
you can be sure that the data always appears in this form. If one typing variation is made, however,
such as typing “SALARY:” instead of “SAL.”, the scanf fails.

Scanf waits for more data as long as there are unsatisfied conversion specifications in the format.
Thus, a scanf call like

scanf ("Zf4f%F"y &floatls Bfloat2y &floatd)i
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where floatl, floatZ, and float3 are all variables of type float, allows you to enter data in several
ways. For example,

14,77 29.8 13,0

is read correctly by scanf, as is
14,77 RETURN 29,8 RETURN  13.0 RETURN

Note: using decimal points in floating-point data is recommended whenever floating-point variables
are being read. However, scanfconverts integer data to floating-point if the conversion specification
so demands. Thus, “13.0” in the previous example could have been entered as ‘13’ with no side
effects.

As a final example, consider the input string

abcdef137 d14,77dhidKlmnorp

Suppose that the following code fragment is used to read this string:

char arrll101y arr20101y arr30101, arrdl1013
float floatls
scanf ("Ad4ch["31%6c%f4lghidkl1" sarrlsarr2arr3s&floatlsarrd)i

What values are stored in the variables listed? (Give this some thought before reading on.) As
before, break up the format into separate conversion specifications, and see what data is demanded
by each.

Y%olc reads four characters, and assigns them to arrl. Thus, the string “abcd” is assigned to
arrl. Note that an extra character, NULL, is appended to the end of the string.

%[~3] reads all characters from the current character up to the character “3”. This assigns
“efl”, along with an added NULL character, to the array arrZ.

%6c reads the next six characters and stores them in the array arr3. Thus, “37 d14” is
assigned to arr3, terminated by a NULL character.

%ot reads a floating-point value which, due to the lack of a field width, is terminated by the
first “‘inappropriate’” character. Thus, the value ““.77" is assigned to floatl.

%|ghijkl] reads all characters up to the first character not occurring between the brackets. This
stores the string ‘‘ghijkl”’, along with an appended NULL character, in the array arr4.

Note that there are some characters left in stdin that were not read. What happens to these
characters? Do they just go away? No! Any characters left unread in the input remain there! This
can cause unexpected errors. Suppose that, later in the above program fragment, you want to read
a string from stdin using %s. No matter what string you type in as input, it will never be read,
because the %s conversion specification is satisfied by reading “mnop” — the characters left over
from the previous read operation! To solve this, always be sure you have read the entire current line
of input before attempting to read the next. To fix this in the previous scanf example, just add a %*s
conversion specification at the end of the format. This reads and discards the left-over characters.
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Printf
Printfis the other half of the formatted I/O team. It enables you to output data in formatted form. Its
syntax is identical to that of scanf.

printf(format, Citem[s item ++,I\11)3

where the format is a pointer to a character string (or the character string itself enclosed in double
quotes) which specifies the format and content of the data to be printed. Each item is a variable or
expression specifying the data to print.

Printf s format is similar in many respects to that of scanf. It is made up of conversion specifications
and literal characters. As in scanf, literal characters are all characters that are not part of a conver-
sion specification. Literal characters are printed on stdout exactly as they appear in the format.

Literal Characters

Included in the list of literal characters are escape sequences, which are sequences beginning with a
backslash (\\e) which stand for other characters. The following list shows the escape sequences
defined for printf (and scanf, though less frequently used):

\.b backspace;

\\n new-line (carriage-return/line-feed sequence); output begins at the beginning of a new
line;

\r carriage-return without a line-feed; output begins at the beginning of the current line
(data already printed on that line is over-printed);

AN tab;

N\ literal backslash;

\nnn the character represented by the octal number nnn in the ASCII character set. Nnn must
begin with a zero. For example, \\007 is an ASCII bell, which beeps the bell on your
terminal.

Conversion Specifications

A conversion specification for printf is very similar to that of scanf, but is a bit more complicated.
The following list shows the different components of a conversion specification in their correct
sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output a
literal percent sign, you must type two percent signs (% %);

Zero or more flags, which affect the way a value is printed (see below);

an optional decimal digit string which specifies a minimum field width;

an optional precision consisting of a dot (.) followed by a decimal digit string;

an optional I (lower-case L) or h, indicating a long or short integer argument;

o v A WN

a conversion character, which indicates the type of data to be converted and printed.

As in scanf, a one-to-one correlation must exist between each specification encountered and each
item in the item list.
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The available flags are:

- causes the data to be left-justified within its output field. Normally, the data is right-

justified.

+ causes all signed data to begin with a sign (+ or —). Normally, only negative values have
signs.

blank  causes a blank to be inserted before a positive signed value. This is used to line up

positive and negative values in columnar data. Otherwise, the first digit of a positive value
is lined up with the negative sign of a negative value. If the “‘blank’ and ““+"’ flags both
appear, the “blank’ flag is ignored.

# causes the data to be printed in an ‘‘alternate form’”. Refer to the descriptions of the
conversion characters below for details concerning the effects of this flag.

A field width, if specified, determines the minimum number of spaces allocated to the output field
for the particular piece of data being printed. If the data happens to be smaller than the field width,
the data is blank-padded on the left (or on the right, if the — flag is specified) to fill the field. If the
data is larger than the field width, the field width is simply expanded to accommodate the data. An
insufficient field width never causes data to be truncated. If no field width is specified, the resulting
field is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion character
specified. Refer to the descriptions of the conversion characters below for more details.

Note: a field width or precision may be replaced by an asterisk (*). If so, the next item in the item list
is fetched, and its value is used as the field width or precision. The item fetched must be an integer.

Conversion Characters
conversion character specifies the type of data to expect in the item list, and causes the data to be
formatted and printed appropriately. The integer conversion characters are:

d an integer item is converted to signed decimal. The precision, if given, specifies the
minimum number of digits to appear. If the value has fewer digits than that specified by
the precision, the value is expanded with leading zeros. The default precision is one (1). A
null string results if a zero value is printed with a zero precision. The # flag has no effect.

u an integer item is converted to unsigned decimal. The effects of the precision and the #
flag are the same as for d.

o an integer item is converted to unsigned octal. The # flag, if specified, causes the
precision to be expanded, and the octal value is printed with a leading zero (a C conven-
tion). The precision behaves the same as in d above, except that printing a zero value
with a zero precision results in only the leading zero being printed, if the # flag is
specified.

X an integer item is converted to hexadecimal. The letters abcdef are used in printing
hexadecimal values. The # flag, if specified, causes the precision to be expanded, and the
hexadecimal value is printed with a leading “Ox’’ (a C convention). The precision be-
haves as in d above, except that printing a zero value with a zero precision results in only
the leading ““Ox” being printed, if the # flag is specified.
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same as x above, except that the letters ABCDEF are used to print the hexadecimal
value, and the # flag causes the value to be printed with a leading ““0X"".

The character conversion characters are as follows:

C

the character specified by the char item is printed. The precision is meaningless, and the
# flag has no effect.

the string pointed to by the character pointer item is printed. If a precision is specified,
characters from the string are printed until the number of characters indicated by the
precision has been reached, or until a NULL character is encountered, whichever comes
first. If the precision is omitted, all characters up to the first NULL character are printed.
The # flag has no effect.

The floating-point conversion characters are:

f

G

the float or double item is converted to decimal notation in style £, that is, in the form
[-1ddd.ddd

where the number of digits after the decimal point is equal to the precision. If no precision
is specified, six (6) digits are printed after the decimal point. If the precision is explicitly
zero, the decimal point is eliminated entirely. If the # flag is specified, a decimal point
always appears, even if no digits follow the decimal point.

the float or double jtem is converted to scientific notation in style e; that is, in the form
[—1d.dddAe +ddd

where there is always one digit before the decimal point. The number of digits after the
decimal point is equal to the precision. If no precision is given, six (6) digits are printed
after the decimal point. If the precision is explicitly zero, the decimal point is eliminated
entirely. The exponent always contains exactly three digits. If the # flag is specified, the
result always contains a decimal point, even if no digits follow the decimal point.

same as e above, except that E is used to introduce the exponent instead of e (style E).

the float or double item is converted to either style f or style e, depending on the size of
the exponent. If the exponent resulting from the conversion is less than —4 or greater
than the precision, style e is used. Otherwise, style fis used. The precision specifies the
number of significant digits. Trailing zeros are removed from the result, and a decimal
point appears only if it is followed by a digit. If the # flag is specified, the result always has
a decimal point, even if no digits follow the decimal point, and trailing zeros are not
removed.

same as the g conversion above, except that style E is used instead of style e.

The jtems in the item list may be variable names or expressions. Note that, with the exception of the
s conversion, pointers are not required in the item list (contrast this with scanfs item list). If the s
conversion is used, a pointer to a character string must be specified.
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Examples
Here are some examples of printf conversion specifications and a brief description of what they do:

%d output a signed decimal integer. The field width is just large enough to hold the value.

% —*d  output a signed decimal integer. The left-justify flag ( —) and the blank flag are specified.
The asterisk causes a field width value to be extracted from the item list. Thus, the item
specifying the desired field width must occur before the item containing the value to be
converted by the d conversion character.

% +7.2f output a floating-point value. The + flag causes the value to have an initial sign (+ or
—). The value is right-justified in a 7-column field, and has exactly two digits after the
decimal point. This conversion specification is ideal for a debit/credit column on a finance
worksheet. (If the + sign is not necessary, use the blank flag instead.)

Consider the following program, which reads a number from stdin, and prints that number,
followed by its square and its cube:

#include <stdioshx
main()
{

double x3

printf("Enter vour number: ")}

scanf ("AF"y &x)i

printf("Your number is %d9\n"y x)3j

printf("Its square is %9\nIts cube is Zd\n"y Xx¥xs x*x*x)j
}

The g conversion character is used so that the decision about whether or not to use an exponent is
automated. Note that the item list contains expressions to calculate x squared and x cubed. Also
note that the address of the variable is required in order to read a value for it, but printing requires
the variable name itself.
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How about a program that accepts a decimal integer, and then prints the integer itself, its square,
and its cube in decimal, octal, and hexadecimal? Easy enough:

#include <stdio+h>
main()

{

lond nsy n2sy n3i

/% det value */

printf("Enter vour number: ")}
scanf ("4D"y &n)i

/% print headinds */

printf("\n\n Decimal Octal Hexadecimal\n")3j

/% do the computation */

nZ = n % nj

n3 = n %0 *oni

printf("n itself: w714 %910 ABIx\n"y M ma )3
printf("n squared: w714 %910 ABIxAn" sy M2y nZy n2)3
printf("n cubed: %714d %910 %B1x\n"s n3s n3s n3)i

This program prints the headings ‘‘Decimal’”’, “‘Octal”’, and ‘‘Hexadecimal’, and then prints out the
data in tabular form. Programs which print tabular data always require some tinkering with the
formats to make things come out right. Type this in and try it yourself.

Strings are especially easy to manipulate using printf. The following simple program illustrates this:

#include <stdiosh’
main()

{

char first[15]y last[2513

printf("Enter vour first and last names: ")}

scanf("%s%s"y firsty last)i

printf("\nWelly hello %ss it’s dood to meet vou!\n", first)j
printf("%ss huh? Are vou any relation to that famous\n", last)}
printf("computer Pprodrammers Mortimer Zidfelder Zs?\n", last)i
printf("Nos sorrys that was my mistake, I was thinKing of\n")j
printf("0’%ss not %s.\n"s last, last)i

This program shows how easily strings can be inserted in text. Try variations of your own.
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Input/Output from/to Strings

Two library routines, sscanfand sprintf, enable you to read data from a string, and write data into a
string. These routines behave identically to scanf and printf, respectively, except that sscanf reads
data from a character string instead of from stdin, and sprintf writes data into a string instead of on
stdout.

Reading Data from a String
Sscanf enables you to read data directly from a string. The syntax for an sscanf call is

sscanf(strindy, format, [iteml, item +..11)3

where string is the name of a character array containing the data to be read, and format and item
are familiar terms from the previous section. Thus, the only difference between sscanf and scanf,
syntactically speaking, is sscanf's inclusion of a new parameter, string.

The following program simply reads a string of your choosing from stdin, stores it in the character
array string, and prints out the first word of that string:

#include <stdiosh’
main()
{
char strindl[B801, word[251 *dets()]

/% det the string */

printf("Enter vour string: ")i
dets{string)s

/% det the first word */

sscanf(stringdy "%s"y word)j
printf("The first word is Zs+\n"s word)j

Of course, sscanf is rarely used in this way. Sscanf is more often used as a means of converting
ASCII characters into other forms, such as integer or floating-point values. For example, the
following program uses sscanf to implement a five-function calculator:

#include <stdiosh¥

main()

{
char 1inelB0OI1, *dets()s or[d41}
londg nly n2i
double ardls ardZi

/% print prompt (») and det inPut */

printf("\nx ")}
dets(line)s
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/% bedin loor */

while(linel01 = ‘q7) {
sscanf(lines "ZA¥*s%s"y or)i
if(opL0] == "+) {
sscanf(lines "%AFZ*s%F", Bardl, Barg2)j
printf("Answer: 7%d\n\n",y argl+ard2)i
} oelse if(or[0] == “1-7) {
sscanf(lines "%F%*s%F", &argl, Rarg2)j
printf("Answer: %d\n\n", ardli-arg2)j
} else if(opl[0] == “#7) {
sscanf{lines "AFZ%*siF", Kardl, Bard2)i
printf("Answer: %d\n\n", ardl¥*ard2)s
} else if(or[0] == /') {
sscanf(lines "AFZ*s¥F"y &ardl, Kard2)j
printf("Answer: Zd\n\n", ardl/ard2)i
} else if(or[0] == ‘%") {
sscanf(lines "AD%*s%D"» &nl, &n2)3
while(nl = n2)
nl i-= n2i
printf("Answer: %ld\n\n", nl)j
} else
printf("Can’t recodnize operator: Zs\n\n", orP)i
printf("> ")j
dets(line)i

The calculator program accepts input lines having the form

value <operator> value

where value is any number, and <operator> is the symbol +, —, * /, or %, standing for addition,
subtraction, multiplication, division, or remainder, respectively. All functions except remainder are
handled internally in floating-point, but values for these functions can be typed with or without a
decimal point. Values for the remainder function must not have a decimal point. There must be at
least one space between each value and the operator.

Note the use of sscanfin this program. The entire input line is read using gets. Then, the different
parts of the input line are read from line using sscanf. Notice that the input line is stored as an ASCII
string in line, but portions of it are converted to floating-point or integer values, depending on the
operator.

Examples of valid entries are

15,778 % 3.89
27 % 8

17 + 39,72
efc.

The program terminates when it reads a line beginning with “‘q”’, such as “quit”.
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There are two things that differ between reading data from stdin, and reading data from a string.
First, you remember that reading data from stdin causes that data to ‘‘go away’’ — — it is no longer
contained in stdin. This is not true for a string. Since the data is stored in a string, it is always there,
even if that data has been read several times. Second, since the data read from stdin disappears as
you read it, the next read operation from stdin always begins where the previous read operation
terminated. This is not true when you read from a string using sscanf. Each successive read
operation begins at the beginning of the string. Thus, if you want to read five words from a string
stored in a character array, you must read them in a single sscanf call. If you try to read one word in
five separate sscanf calls, each call starts reading at the beginning of the string, and you end up
reading the same word five times!

Writing Data Into a String
The sprintf routine enables you to write data into a character string. Its syntax is

serintf (string, format, [item[, item ...]]) 3

which is identical to that of sscanf. String is the name of the character string into which the data is
written. Format and item are familiar terms from the previous discussion of printf. In fact, the only
difference between sprintf and printf is that sprintf writes data into a character array, while printf
writes data on stdout.

The following program acts as a ‘‘formatter’’ for personal data. Suppose that this program is used to
provide a “‘friendly”’ user interface to gather personal data. The data received is then reformatted
into a string which is passed along to another program, such as a data base maintainer. The string
contains the data entered by the user, but in a form using strict field widths for the various pieces of
data. The data base program requires these field widths in order for the data to be processed
correctly, but there is no reason to burden the user with this requirement. This ‘‘formatter’” program
lets the user enter data in a convenient form (without the fixed field restrictions imposed by the data
base).

#include <stdiovhy
main()
{
char namel311y prof[31]1y hdatel71y curvel31s stringlB113
char #format = "%305%24%30s761d%Bs%2d%25" 3
int ades rankj
lond salarvi

/% start asKing auestions #*/

printf{("\nName (30 chars max): ")j

dets(name) i

while(namel0] 1= 717) {
printf("Age: ")3j
scanf ("%d%*c"y Rade)i
printf("Job title (30 chars max): ")}
dets(prof)i
printf("Salary (B digits maxs no commal: ")3j
scanf ("%D%*c"y &salarv)i
printf("Hire date (numerical MMDDYY): ")
dets(hdate) s
printf("Percentile ranKing (omit \"Z%\"): ")}
scanf ("7d%*c"y &rank)i
printf("Pay curve: ")i
dets{curve)s
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/% format string */

sprintf(stringsformat snameradesprofssalaryshdatesrankscurve)s
printf("\nZ%s\n"s string)j

/% start next round */

printf("\nName (30 chars max): ")}
dets{name)’

}

This program asks you questions to obtain typical company information such as name, age, job
title, salary, hire date, ranking, and pay curve. This data is then packed into a 78-character string
using sprintf. The string is printed on your screen in this program, but in an actual working
environment, this string would probably be passed directly to the data base program. Note that
sprintf's format is specified as an explicit character pointer. When lengthy, unchanging formats are
used, this is often more convenient than typing the entire format string, especially if the itemn list is
long.

As an exercise, consider the scanf calls in the previous program. Notice that a %*c conversion
specification is included in the formats of the scanfs which are reading integer values (age, salary,
rank). Why is this necessary? If you aren’t sure, take the %*c’s out of those formats, re-compile the
program, run it, and note its behavior. (Hint: remember that a new-line character terminates the
read operation for %d and %D conversions, and leaves the new-line unread in stdin.)
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Input/Output Using Ordinary Files

So far, you have been using library routines which can perform I/O only by using stdin and stdout.
This section introduces routines that enable you to open existing ordinary files for reading, writing,
or both, and to create ordinary files. Routines that enable you to perform I/O to and from ordinary
files are also described.

Opening Ordinary Files

Before a file can be read from or written to, it must be opened. A file is opened using the fopen
library routine. The syntax of an fopen call is

foren(<filenamers <tvpe)}

where <filename> is a character pointer to a character string specifying the name of the file to be
opened, and <type> is a character pointer to a one- or two-character string specifying the /O
operation for which the file is opened. The available <type>s are:

x opens the file for reading at the beginning of the file. The file must already exist, or an
error occurs.

w opens the file for writing at the beginning of the file. If the file exists, its previous contents
are destroyed. If the file does not exist, it is created.

a opens the file for writing at the end of the file (appends data to the end of the file). If the
file does not exist, it is created for writing.

r+ opens the file for both reading and writing, starting at the beginning of the file. The file
must already exist, or an error occurs.

w+ opens the file for both reading and writing, starting at the beginning of the file. If the file
already exists, its previous contents are destroyed. If the file does not exist, it is created.

a+ opens the file for both reading and writing, starting at the end of the file. If the file does not
exist, it is created.

When a file is opened for an append operation (<type> is “a”” or “a+"), it is impossible to

overwrite the existing file contents. Fseek can be used to reposition the file pointer to any position in

the file, but when output is written to the file, the pointer is disregarded. When the append

operation (which begins at the end of the existing file) is completed, the file pointer is repositioned

to the end of the appended output.

In exchange for a filename and a type, fopen opens a ‘‘pathway”’ between your program and the
file. This “‘pathway’ is called a stream. If you open the file for reading, then the stream provides
one-way data transfer from the file to your program. If you open the file for writing, then data
transfer flows from your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

Fopen also associates a buffer with the stream. This gives the stream the ability to store a small
amount of data. By default, the capacity of the buffer is equal to BUFSIZ bytes, where BUFSIZ is a
constant defined in stdio.h. For the Series 200 and Series 500 computers, BUFSIZ is defined to be
1024.
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The buffer size can be increased, decreased, or set to zero by using setbuf or setvbuf. If the buffer
size is allowed to remain at default size, a maximum of BUFSIZ bytes of data can be present on the
stream at any given time. If the buffer size is reduced to zero, then the stream can transfer only one
byte at a time.

Since fopen takes care of all the intricacies of building a stream and allocating a buffer, all you need
to know is how to find your end of the stream. Fopen provides you with this information by
returning to you a value called a file pointer (often called a stream pointer). A file pointer ‘‘points’
to the newly-created stream, and keeps track of where the next I/O operation takes place (in the
form of a byte offset relative to the beginning of the associated buffer).

Is all this talk about streams and data transfer from a source to a destination beginning to sound
familiar? Do you remember the “‘pipeline and water’” analogy given at the beginning of this section?
These two discussions should sound almost identical, because stdin, stdout, and stderr are actually
file pointers to pre-opened streams! Stdin is a file pointer to a stream which transfers data from your
tty (terminal) file to your program. Stdout and stderr are file pointers to two different streams which
both transfer data from your program to your tty file. Be sure to note that stdout and stderr are
different streams flowing in the same direction between the same two points!

Once you have a file pointer in your possession, you need never refer to the open file by its name
again. A file pointer provides access to all the information needed by other standard I/O routines to
read from or write to the file.

The following program fragment shows how the fopen routine is used:

#include <stdiosh
main()
{

FILE *fpi

fp = foren("/users/tom/bin/datafile", "r")j
if(fp == NULL) {
printf("Can’t open datafile.\n")}
exit(1)}

b

This fopen call, if successful, opens /users/tom/bin/datafile for reading. The file pointer returned by
fopen is stored in fp. Note that fp's value is checked to see if it is NULL. This is because fopen
returns a NULL pointer if the indicated file cannot be opened. It is good practice to check the value
of a file pointer — — this is the only error indication facility that fopen provides.

The previous example also introduces a new type declaration, FILE. The FILE declaration is
defined in stdio.h. In the example above, it defines fp as a variable containing a file pointer. Note
that explicit declarations of functions returning file pointers is unneccessary — — stdio.h declares all
such functions for you.
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Before moving on, keep in mind that several things can stop you from successfully opening a file.
First, HP-UX limits the number of files simultaneously open in a process (refer to the System
Administrator Manual supplied with your system to find your system’s limit). Remember that stdin,
stdout, and stderr are automatically opened for you, so the maximum you can explicitly open is
three fewer than the system limit. Second, you must have permission to open the file for the
particular type you have specified (this permission is granted or denied by the file’s mode). Third,
trying to open a non-existent file using type r or r + always fails. Fourth, if the filename is specified
incorrectly, contains a non-existent directory name, or contains an intermediate component which
is not a directory, the open fails. This is not a complete list, but it contains some of the common
reasons why an attempt to open a file might fail.

Single-character Input/Output

Now that you know how to open files and obtain file pointers, you have a whole new set of /O
routines at your disposal, enabling you to perform all kinds of [/O operations. In fact, there are
about three times as many available routines that utilize file pointers as there are routines that are
limited to stdin and stdout only!

In this section, only those routines that read or write one character at a time are discussed. These
routines are getc, putc, fgetc, and fputc. Getc and putc are macros defined in stdio.h which read
one character from the specified stream, and write one character on the specified stream, respec-
tively. They have the following syntax:

detc (stream) j
putc(c, stream);

where stream is a file pointer obtained from fopen, and cis a variable of type char (or int) indicating
the character to write on the indicated stream. A simple version of the HP-UX cat command can be
written using these routines:

#include <stdiosh’
main(ardcs ardv)

int ardci
char *argull3
{
int ci
FILE *fpj
if(arde = 2) {
printf("Usade: cat file\n")j
exit(1)}
¥

frp = foren(argulll, "r")i

if(fe == NULL) {
printf("Can’t oren %s.\n"s argulll)j
exit(1)1

}

while((c = detc(fp)) != EOF)
putc(c, stdout)si
Putc(’\n’y stdout)si

exit(0)}
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This program accepts a single argument which is assumed to be the name of a file whose contents
are to be printed on the user’s terminal. The specified file is opened for reading, and the resulting
file pointer fp is used in gefc to read a character from the file. Each character read is written on
stdout using putc (note that stdout, as well as stdin and stderr, are perfectly legal file pointers). The
reading and writing loop is terminated when the constant EOF is returned from getc, indicating that
the end of the file has been reached. This constant is defined in stdio.h.

Note that getc and putc can be made to behave exactly like the getchar and putchar routines
discussed earlier by specifying the appropriate file pointer. In other words,

getc(stdin)i
is identical to
detchar()i
and
putc(c, stdout) i
is identical to

putchar(c)i

Thus, the putc call in the previous program could just as easily have been

putchar(c)i

without altering the behavior of the program. However, if the destination of the data is somewhere
other than the user’s terminal, the flexibility of putc is required. Take, for example, the following
program, which is a simple version of the HP-UX ¢p command:

#include <stdiovh
mainfardcs argduv)
int ardel
char *argull}
{

int ci

FILE *froms %to}j

iftarde != 3) {
printf("Usade: cp fromfile tofile\n")3
exit(1)3

¥

from = foren(ardullly "r")3j

if(from == NULL) {
printf("Can’t open %s.\n"s ardulil)}
exit(1)i

}

to = foren(argul21,y "w")}

if(to == NULL) {
printf("Can’t create %Zs.\n"y ardul21)j
exit(1)3

¥

while((c = detc(from)) != EOF)
putc(cs to)i

exit(Q)3
¥
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This program accepts two arguments. The first is the name of the file to be copied, and the second is
the name of the file to be created. The first file is opened for reading, and the second file is created
for writing. The data from the first file is then copied directly to the newly-created file.

The fgetc and fputc routines are actual functions, not macros. Their syntax and usage is identical to
that of getc and putc, so no examples are given here illustrating their use. However, here are some
distinctions between the macro and function versions of these routines to help you decide which to
use:

o A function call takes time, since the function call still exists at run-time. A macro call, however,
takes no time at all, because the macro call is replaced with the actual code making up the
macro during compilation, before run-time. Thus, generally speaking, programs containing
macros run faster than programs containing the equivalent function calls.

e A function’s code is localized in one section of the program. Each function call causes a jump to
that section to execute the function. A macro call, however, is replaced with its code every-
where that macro call appears. Thus, programs containing macro calls generally require more
space than programs containing the equivalent function calls.

® You may take the address of a function, and pass it as an argument. You cannot do this with a
macro.

Given these guidelines, decide which routines to use based on your own constraints.

Character Push-Back

The ungetc routine enables you to push back a single character onto an input stream. This
character is then returned by the next getc call (or equivalent).

Ungetc’s syntax is as follows:

undetc(c Stream);

where ¢ is the character to be pushed back, and stream is the input stream where the push-back is
to occur. Note that ¢ must be a character that has been previously read from stream.

The following program simply reads one character from stdin, pushes it back onto stdin, re-reads
the character, and checks to make sure that this character and the character originally pushed back
are the same. A message is printed on stdout stating the outcome of the comparison.

#include <stdiosh>
main()
{

int cly c2i

cl = detchar()3
ungetc(cly stdin)i
c2 = detchar()}
if(ecl == ¢2)
printf("They're the same!\n")}
else

printf("Oops! They're different!\n")j
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One character’s worth of push-back is guaranteed as long as something has been read from the
stream prior to the push-back attempt, and provided that the stream is buffered. More characters
could possibly be pushed back, but determining exactly how many characters of push-back you
can safely perform is quite possibly not worth the effort. However, for completeness, the following
statement is included as a method for determining the number of characters of push-back available
at any given time:

numpb = ftell(stream) % BUFSIZ + 13}

where ftellis a function discussed in a later section, stream is a file pointer, and BUFSIZ is a constant
defined in stdio.h containing the size of the buffer in bytes. After execution, numpb contains the
number of characters of push-back available at that time.

String Input/Output

The fgets and fputs routines enable you to read or write strings from or to specified streams. Their
syntax is as follows:

feets(string» n, stream);
fruts (strings stream) i

where string is a pointer to a character string, and stream is a file pointer to the input or output
stream.

Fgets reads a character string from the specified stream, and stores it in the character array pointed
to by string. Fgets reads n— 1 characters, or up to a new-line character, whichever comes first. If a
new-line character is encountered, it is retained as part of the string (contrast this with gets, which
replaces the new-line with a NULL character). Fgets appends a NULL character to the string.

Fputs writes the character string pointed to by string on the specified stream, stopping when a
NULL character is encountered. Fputs does not append a new-line character to the string when it is
written. This is because fputsis intended for use with fgets, which incorporates a new-line character
into the string if a new-line is encountered in the input.

The cp program written earlier can be re-written using fgets and fputs:

#include <stdiosh?

mainfardcs ardu)

int ardci

char *argull}

{
char c¢» linel[2561, *fdets()i
FILE #from: %to}j

if(arde 1= 3) {
printf("Usade: cp fromfile tofile\n")3}
exit(1)i

}

from = fopen(argul1ly "r")i

if(from == NULL) {
printf("Can’t oren Zs,\n"s argulil)}
exit(1)}

}
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to = forpen(argul21y "w")}

if(to == NULL) {
printf("Can’t create %s.\n"y ardvl21)}
exit(1)3

}

while(fdgets(lines» 256y from) != NULL)
fruts(liney to)i

exit(0)3

This program functions exactly like the previous version of cp above. Note that fgets’s return value
is compared to NULL in the while loop, since fgets returns the NULL pointer when it reaches the
end of its input.

This program can easily be converted to a simple cat command. It only requires four changes. Can
you see what they are? First, change the argc comparison such that it reads

if(arde 1= 2) ...
(You might also want to change the associated usage message!) Second, remove the to file pointer,

since you don’t need it anymore. Third, remove the block of code which uses fopen to open the
new file, and assigns a value to to. Fourth, change the fputs call such that it reads

fruts(lines stdout) ;i

Here's the new cat command:

#include <stdiovhi
main(ardcs arduv)

int argdcsd
char *argull}
{

char ¢y line[2561 *fgets()j
FILE #fromi

iflardge < 2) {
printf("Usade: cat file\n")3}
exit(1)3

}

from = forpen(argullly "r")j
if(from == NULL) {
printf("Can’t open %s.\n"y ardul11)}
exit(1)i
} .

while(fdets(lines 256+ from) != NULL)
fruts(line, stdout)i

exit(0)i
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Formatted Input/Output

dJust as there are versions of scanf and printf which perform string I/O, so there are versions which
enable [/O using files. Fscanf enables you to read data of all types from a specified stream, and
fprintf provides the capability of writing data on a stream. Their syntax is as follows:

fscanf (stream, format. [item[: item ...]])}
ferintf(stream format; [item[: item ...]]) 3

Stream is a file pointer to an open stream. Format and item should be familiar terms from previous
discussions.
The following program illustrates the use of the fscanfand fprintf routines:

#include <stdiosh?
main{ardcy ardv)

int ardcl
char *ardgulli
{

int count = 0§
FILE *files

if(arge 1= 2) {
frrintf(stderrs "Usade: wdent filemame\n")3
exit(1)}

}

file = foren(argul1ly "r")}

if(file == NULL) {
feprintf(stderry, "Can’t open 7%s.\n"s argulll)j
exit(1)1

}

while(fscanf(file, "7%%s") != EOF)
count++i

printf{"Number of words found: %d\n", count)j

exit(0)}
¥

This program, named wdcnt (for “‘word count’’), counts the number of “words” in the file specified
as its only argument. A word is defined as a string of non-space characters.

Note how fprintf is used in this program. You learned in a prior discussion that stderr is typically
used to output error messages or warning statements. In this program, fprintfis used to direct error
messages to stderr. You don’t lose anything by doing this, since data written on stderr appears on
your terminal by default. However, you gain some important flexibility. Now that error output is
written on a different stream than normal output, the error output (or the normal output) can be
redirected to another destination. For example, invoking the previous program as

$ wicnt <filel> 2rerrmsys
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causes all output arising from erroneous conditions to be collected in the file errmsgs. For the
wdcnt program, this is somewhat trivial, since the program terminates upon any error. However, for
programs which output any number of warnings without terminating, this is a very useful capability.
Not only does it keep normal, desired output from getting cluttered up with error messages, but it
enables you to save output for later examination at your leisure. Thus, it is good programming
practice to write error messages and warnings on stderr, and use stdout (or whatever your
destination file is) to output normal data.

Binary Input/Output

The routines described in this section deal with data in its binary form — that is, the data is never
converted to ASCII for user viewing. These routines are used to transfer raw data between two
points, such as from a variable to a data file, or vice versa.

Two routines, getw and putw, are used to read or write an integer word (an int) to or from a stream,
respectively. Their syntax is as follows:

detw (Stream) ;
Putw(w, stream) i

where stream is a file pointer to the input or output stream, and w is the integer word to be output
by putw.

The following program “‘sorts’’ a data file which has presumably been created earlier, and contains
raw integer data. The program divides this data file into two new data files, one containing integer
data whose absolute value is less than or equal to 32767, the other containing data whose absolute
value is larger than 32767.

#include <stdio+h>
main(ardcs ardy)
int ardci
char *argul]3
{
int wordj
FILE *dfile, *datale, *datadti

if(arge != 2) {
frrintf(stderrs "usade: intsort filenameln")j
exit(1)3

}

dfile = fopen(argullly "r")3j

if(dfile == NULL) {
frrintf("Can’t orpen Zs,\n"y argulll)}
exit(1)3

}

datale = foren("dfle", "w")j

if(datale == NULL) {
ferintf("Can’t create dfle file.\n")i
exit(1)3

}

datagt = fopen("dfdt"y "w")j
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if(datagt == NULL) {
frrintf("Can’t create dfdt file.\n")3
exit(1)j

}

while((word = detw(dfile)) != EOF) {
if{word <= 327687 && word »= -32767)
Putw(words datale)i
else
Putw(word, datadt)i
¥

exit(0)3
}

This program reads a word from the specified data file. If its absolute value is less than or equal to
32767, the word is written on a file called dfle in the user’s current directory. Otherwise, the word is
written on a file called dfgt in the current directory.

Note that this program works only on machines that use four-byte integers. Also, the comparison
between word and the constant EOF is faulty, since EOF is defined to be —1, a valid integer. The
section entitled Stream Status Inquiry Routines describes standard I/O routines which fix this
problem.

Both of these routines transfer four bytes at a time. Again, there is no ASCII conversion associated
with these routines, so if you attempt to print the contents of a file containing integer data output by
putw, you will get garbage. Note that it makes little sense to input binary data from stdin, as in

detw(stdin) i

unless stdin is redirected from a file containing binary data. Using getw to read data from your
keyboard is futile. If you type in a valid-looking integer, like “1728”, getw reads the ASCII values of
those characters and stores them as an integer. This results in data being read which is very different
from what you probably intended.

Two other routines, called fread and fwrite, provide much more flexible binary data input and
output. Their syntax is as follows:

fread((char *)rtrs sizeof(*Ptr)s nitems: stream)i
furite((char *)Ptry sizeof (¥Ptr)y nitemss stream)}

where ptris a pointer to the beginning of a block (array) of data. This argument is cast as a character
pointer because these routines expect a pointer of this type. The second argument specifies the
number of bytes per unit of data (four bytes per int, one byte per char, x bytes per struct, etc.).
The C operator sizeof is usually used to obtain this value. The third argument, nitems, is an integer
specifying the number of units of data to read or write. For example, if ptr points to the beginning of
a structure, sizeof(ptr) tells how many bytes make up that structure, and nitems tells how many
structures to read. Actually, the second and third arguments above may be reversed in the argu-
ment list with no ill effects, because internally these routines simply multiply the two integers
together to obtain the total number of bytes to read. Finally, stream is a file pointer to the input or
output stream.
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As an example, suppose you have a program which keeps track of certain employee data. Each
employee is to be described in a single structure. Here is a simple program to do that:

#include <stdiovh>
struct emp {

char nameld4015 /% name */

char Job[4013F /% Jjob title %/

long salarvi /% salary */

char nirelB] /% hire date %/

char curvel2] /% Pay curue */

int ranki /% percentile ranking */
}
#define EMPS 400 /% noy of emplovees */
main()
{

int items?
struct emp staff[EMPS1]
FILE *dataj

data = foren("/usr/lib/emplovees/empdata™y "r")}
if(data == NULL) {
fprintf(stderr, "Can’t opren emplovee data file.\n")j
exit(1)3
}

items = fread((char *)staff, sizeof(staffl01), EMPS, data)i
if(items != EMPS) {

frrintf(stderry "Insufficient data found.\n")j

exit(1)3
¥

felose(data)si
archive("/usr/lib/emplovees/empdata”) i

/% Emplovee information processind does here, */

/% Processind is done, MWrite out new emplovee records, */

data = foren("/usr/lib/emplovees/empdata™y "w")}

if(data == NULL) {
feprintfi(stderr, "Can’t create new emplovee file.\n")3
exit(1)i

}

items = fwrite((char #)staff, sizeof(staffC0]), EMPS, data)i
if(items != EMPS) {

ferintf(stderry "Write error!\n")i

exit(1)3
+

exit(0)1
}
archive(filename)
char #filenames
{

¥
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This program reads the employee information contained in the binary file /usr/lib/employees/
empdata. The data in this file consists of concatenated streams of bytes describing each employee
of a certain 400-employee company. The bytes are written such that, when read correctly, the
bytes correspond exactly with the emp structure defined in the program. The staff array is an array
of structures containing one structure for each employee.

In the fread call, the sizeof(staff{0]) expression returns the number of bytes in the emp structure.
Since the same number of bytes are in each employee structure, any element of the staff array
could have been specified as the sizeof argument; staf{0] is used in this example. (By counting the
number of bytes in each structure member, you can get an approximation of the number of bytes
returned by the sizeof operator: 40 + 40 + 8 + 6 + 2 + 4 = 100 bytes. This may vary due to
padding performed by a programming language, or by machine architecture.) Specifying EMPS as
the nitems argument tells fread to read 400 such structures. Thus, 100 x 400 = 40000 bytes are
read, filling in the information for the members of each structure contained in the staff array.

The archive function is not shown here, but simply saves the old employee information in empdata
in an employee information archive of some kind. After the information is archived, the empdata
file is overwritten with the new, updated employee information.

A new routine, called fclose, is introduced here. Fclose simply closes the stream associated with the
file pointer specified. This is necessary in order to re-open the file for writing. Once it is open for
writing, fwrite is used to overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of data which have been
read or written. Thus, you can compare this number with whatever you specified for nitems to see if
everything you wanted read or written actually was. This return value is used twice in the above
program to flag probable read and write errors.

The fread and fwrite routines can be made to read any type of data. The following examples show
some fread calls which read several different types of data:
To read a long integer:

lond ninti

fread((char #)&nints sizeof(nint)s 1y stream)i
To read an array of 100 long integers:

lond nintl10013

fread((char #)nints sizeof(nintl0I)s 100, stream)i
To read a double precision floating-point value:

double frointi

fread((char #)&frointy sizeof(froint)s 1+ stream)s
To read an array of 50 floating-point values:

float froint[5013
fread((char #)frPoints sizeof(frointl01)s 50, stream)i
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To get the equivalent fwrite calls, just substitute “fwrite’” in place of ‘“‘fread” in the previous
examples. You can see how much more flexible fread and fwrite are than getw and putw. Whereas -
getw and putw are limited to reading or writing a single four-byte integer per call, fread and fwrite
can be made to read or write any number of variables of any type.

Stream Status and Control Routines

This section discusses standard 1/O routines which enable you to:

® Determine whether or not an error has occurred on an open stream (feof, ferror, clearerr);
® Re-position the location of the next /O operation on an open stream (rewind, ftell, fseek);

o Control various attributes of an open stream, such as buffering, flushing, etc. (fclose, setbuf,
fflush, freopen);

o Convert a file pointer to a file descriptor, and vice versa (fileno, fdopen).

Stream Status Inquiry Routines

This section describes three routines, feof, ferror, and clearerr, which enable you to determine the
status of an open stream at any given time.

Feof is a macro defined in stdio.h which returns a non-zero value if the end-of-file has been
reached on an input stream. Its syntax is as follows:

feof (stream) ;

Do you remember the example program which illustrated the use of getw and putw? It was noted
that comparing getw’s return value to the constant EOF was faulty, because getw returns an integer,
and EOF is defined to be a valid integer ( — 1). How then do you determine if end-of-file has been
reached when routines like getw are being used? You use feof.

The example program for getw/putw can be changed to use feof

#include <stdiosh>
main{ardcs argv)
int ardcl
char *argull}
{
int wordj
FILE #dfiles *datale, *datadti

if(arde 1= 2) {
ferintf(stderrs "usade: intsort filenmame\n")ji
exit(1)3

}

dfile = foeen(argulil, "r")}

if(dfile == NULL) {
frrintf("Can’t oren %s+\n"» argulil)j
exit(1)i

}

datale = foren("dfle", "w")i
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if(datale == NULL) {
frrintf("Can’t create dfle file.\n")}
exit(1)}

¥

datadt = foren{("dfdt",y "w")i
if(datagt == NULL) {
frrintf("Can’t create dfgt file.\n")i

exit(1)i
}
for(ii) {
if((word = getw(dfile)) != EOF) {
if(word <= 32767 &B& word »= [-32767)
Putwi{word, datale)si
else
putw(word, datagt)i
} else {
if(feof(dfile))
breaks
else
putw(word, datale)}
}
¥
exit(0)3

An infinite loop is set up around the getw/putw process. Whenever getw returns an integer equal to
EOF, feofis used to find out if end-of-file has been reached. If it has, the loop (and the program)
terminates; if not, the integer is written on dfle, and the loop continues.

Ferroris a routine which examines the specified stream to determine whether or not a read or write
error has occurred. Its syntax is

ferror(stream) i

Ferror, like feof, is intended to clarify ambiguous return values from standard I/O routines. Actually,
only getw and putw require the use of ferror to determine if an error has occurred. Both of these
routines return EOF on end-of-file or error. Since these routines deal with integer data, however,
you need feof and ferror to determine if the EOF returned actually indicated an error or an
end-of-file, or if it's justa — 1.

If an error has occurred on a stream, ferror returns a non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the error. It is this flag that
ferror checks to determine whether or not an error has occurred. This flag is not reset when it is
checked. Thus, if an error has occurred, the error flag for that stream remains set. This could lead to
misleading information if an ferror call indicates that an error has occurred, when in reality the error
occurred long ago. The clearerr routine clears (or resets) the error indication flag for the specified
stream. This routine should be used whenever an error has been indicated, so that the same error is
not indicated at a later time. Clearerr's syntax is

clearerr(stream):
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Because ferror and clearerr are used infrequently in typical programs, no examples are given
specific to their use. The feof example above illustrates the general scenario in which all three of
these routines are used.

Re-positioning Stream 1/O Operations

There are three routines, rewind, ftell, and fseek, which enable you to move the location of the next
/O operation on an open stream.

Rewind simply positions the next I/O operation at the beginning of the file. Its syntax is

rewind(stream) i

For example, suppose a particular application program can put a password on a data file it uses.
This password is stored in encrypted form on the first line of the file. The line is recognized as a
password line if the first two characters are “*P”". If the file has no password line, then access to the
file is unrestricted. If a password line is found, the user is prompted for the password before access is
permitted. The following code can be used to look for a password line:

#include <stdiovhy
main{ardcs ardu)

int ardcs
char *argull3
{

FILE #*pswdj
char 1inel25613

iffarde 1= 2) {
ferintf(stderry "Usade: detpswd file\n")3j
exit(1)3

}

pswd = foren(argullly "r")j

if(pswd == NULL) {
ferintf(stderry "Can’t opren Zs.\n"y ardull1l)i
exit(1)i

¥

fdets(lines 256 pPswd)i
if(linel0] == ‘% && linell] == ‘P’) {

/% ask for and check Password #*/

} else
rewind(pswd) i

/% application Pprodram does here */
exit(0)}

}

If the first two characters of the first line are ‘“*P”’, then code is executed which asks for and checks a
password. However, if the first line is not a password line, the file is assumed to be unprotected, and
the line just read is probably part of the data. Thus, the file must be rewound so the data contained
in the first line is available to the application program.
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The ftell routine returns a long integer specifying the current position of the next I/O operation on
an open stream. This position is expressed as a byte offset relative to the beginning of the open file.
Its syntax is as follows:

ftell (stream) j
The fseek routine enables you to re-position the next I[/O operation on an open stream to any
location you wish. Its syntax is
fseek (stream. offset, ptrname) ;
where stream is a file pointer to the open stream, offset is a long integer specifying the number of
bytes to skip over, and ptrname is an integer indicating the reference point in the file from which
offset bytes are measured. The possible values for ptrname are:
0 move offset bytes from the beginning of the file;
1 move offset bytes from the current position in the file;
2 move offset bytes from the end of the file.

Offset can be either negative or positive, indicating backward or forward movement in the file,
respectively.

The following program illustrates the use of the ftell and fseek library routines. The program prints
each line of an n-line file in this order: line 1, line n, line 2, line n—1, line 3, ..

#include <stdiovh
mainf{ardcs argv)

int ardci
char *argull}
{

char 1inel25B613
int newlinesi
lond fronts rears ftell()}

FILE #fpj
front = 0f
rear = 0f

if(arde ¢ 2) {
frrintf(stderrs "Usade: Print filename\n")j
exit(1)}

}

frp = foren(ardgullly "r")}

if(frp == NULL) {
ferintf(stderrs "Can’t opPen %s.\n"y argulll)}
exit(1)3

}

newlines = countnl(fp) % 23

fseek(fpy Oy 203
rear = ftell(fer)i
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while(front < rear) {
fseek(frpy fronty 0)3
fagets(lines 256y fpr)i
frPuts(lines stdout)i
front = ftell(fep)}
findnl(fpy rear)s
rear = ftell(fp)3i

if(newlines == 1) {
if(rear <= front)
breaki
}

fdets(liney 256 fpr)i
fPuts(lines stdout)i

}
exit(0)1
}
countnl(fp)
FILE #fp}
{
char ¢i
int count = 03

while((c = detc(fp)) != EOF) {
if(c == ‘\n’)

count++i

}

rewind(fp)3i

return(count) i
}

findnl(fry offset)
FILE *fpi
long offsets
{
char ¢}

fseek(frpy (offset-2)y Q)1
while((c = detc(fp)) != "\n’) {

fseek(fpy -2y 1)3
}
}

This program uses ftell and fseek to print lines from a file starting at the beginning and the end of the
file, and converging toward the center. The countnl (count new-lines) function counts the number
of lines in the file so the program can decide whether or not to print a line in the final loop (this
prevents the middle line being printed twice in files with an odd number of lines). The findnl (find
new-line) function seeks backwards in the file for the next new-line. When found, this positions the
next 1/O operation such that fgets gets the next line back from the end of the file.

Note the use of fseek in this program. All three types of seeks are represented here. The first fseek of
the program is done relative to the end of the file. All other fseeks in the main program are done
relative to the beginning of the file. Finally, findnl contains an fseek which is relative to the current

position.
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Recall the employee data routine, where each employee is described by the structure

struct emp {

char nameld0]5 /% name */

char Job[d013 /% Job title %/

long salarysi /% salary */

char hirelB13 /% hire date */

char curvel213 /% Pay curve */

int ranks /% percentile ranKing */

That routine simply read in the data for 400 employees all at once. Suppose you want the program
to be selective, so that you can specify (by employee number, 1 — 400) which employee’s
information you want. This is easily done using fseek. The following program fragment shows how:

int empnos bvtessi
long totali

FILE *dataj

struct emp empinfol

/% check for usade error and open data file */

sscanf(argvl1l,y "%d"s &empno)j

bvtes = sizeof(empinfo)i

total = (empno - 1) % bvtesi

fseek(data, totals 0)3

fread((char *)8empinfo,» sizeof(empinfo), 1, datali

/% print out desired information */

exit(0)3

In this program, argv[1] contains, via a command-line argument, the employee number about
whom information is desired. This employee number is converted to integer form using sscanf. The
number of bytes per employee structure is obtained using sizeof, and is stored in bytes. The total
number of bytes to skip in the data file is found by multiplying the employee number (minus one)
times the number of bytes per employee structure. This is stored in total. Then, fseek is used to seek
past the specified number of bytes, relative to the beginning of the data file. This leaves the next /O
operation positioned at the start of the specified employee’s information. The information is read
using fread.

Note
If you have a stream which is open for both reading and writing, a read
operation cannot be followed by a write operation without one of the
following occurring first: a rewind, an fseek, or a read operation which
encounters end-of-file. Similarly, a write operation cannot be followed
by a read operation unless a rewind or fseek is performed.
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Stream Control Routines

The routines described here help you control certain attributes of file pointers. The routines de-
scribed are fclose, setbuf, setvbuf, fflush, and freopen.

fclose

You have already seen fclose in action in the previous example program which read an employee
data file. Fclose flushes the buffer associated with the specified stream, and, if the buffer was
allocated automatically by the standard I/O system, frees the space allocated to that buffer. The
stream is then closed, breaking the connection between your file pointer and the stream.

You may be wondering why so many example programs have been written that open files but
never explicitly close them. There are two reasons why this is permissible. First, you’ll notice that all
programs in this tutorial that open files end with a call to exit. The exit system call automatically
performs an fclose for every open file in that process. Second, when a program is compiled with cc
(or fc, or pc), an exit call is automatically compiled in with your code. Keep in mind, however, that it
is generally bad programming practice to rely on the system to clean up after you! If you explicitly
open any files, you should explicitly close them when you are done. If this is too much trouble, at
least include an exit call at each termination point in the program. (All future example programs in
this article will contain fclose calls.)

setbuf
Setbuf and setvbuf routines enable you to assign your own buffering to an open stream. Setbuf
syntax is

setbuf (stream, buffer) i

where stream is a file pointer to an already-open stream, and buffer is a pointer to a character array
or is NULL.

Normally (i.e. without user intervention), a standard 1/O buffer is obtained through a call to
malloc(3C) (memallc(2) on the Series 500) upon the first call to getc or putc (which all I/O routines
eventually call). The standard I/O system normally buffers /O in a buffer which is BUFSIZ bytes
long. Exceptions are Stdout, which, when directed to a terminal, is line-buffered, and stderr, which
is normally unbuffered.

Setbuf enables you to change the buffer used for all standard /O routines. For example, the
following code fragment causes the array buffer to be used for buffering:

FILE *fpi
char buffer[BUFSIZ];

fp = foren(argullly "r")3

setbuf(fps buffer)i
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This fragment shows the correct order of events. First, the file is opened (it need not be opened for
reading), then the buffering is assigned using setbuf. From that point on, any input taken from fp is
buffered through the array buffer.

Buffering can be eliminated altogether by specifying the NULL pointer in place of the buffer name,
asin

setbuf (fp, NULL);
This causes input or output using fp to be completely unbuffered.

Setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. Setbuf assumes that the character
array pointed to by ‘“‘buffer’is BUFSIZ bytes. Passing setbuf a (non-NULL) pointer to a smaller
array can cause severe problems during operation because the standard I/O routines may overwrite
memory following the end of the too-small buffer.

Note: Using an automatic array as a standard 1/O buffer can be dangerous. Automatic variables are
only defined in the code block in which they are declared. Thus, buffering which relies on an
automatic array is only in effect during the current code block (main program or function). If you
pass a file pointer to another function, and the stream pointed to by that file pointer is buffered
using an automatic array, then memory faults or other errors can occur. Here’s the rule: if you use
an automatic array for stream buffering, the stream should be used and closed only in the code
block containing the array declaration. To avoid this restriction, use external arrays for buffering:

external char buffer[BUFSIZI}

sethuf (fpy buffer)s

setvbuf
Setvbuf, like setbuf, enables you to assign a character array for vuffering, but also provides the
means to specify the size of the buffer to be used and the type of buffering to be done. Setvbuf
syntax is

setubuf (stream, buffer: type: size)
where stream is a file pointer to an already-open stream, buffer is a pointer to a character array or is
NULL, type tells how stream is to be buffered, and size defines how large the buffer is. Acceptable
values for type (defined in stdio.h) include:
—IOFBF Input/output is fully buffered.

—IOLBF Output is line buffered. The buffer is flushed each time a new line is written, the
buffer is full, or input is requested.

—IONBF Input/output is completely unbuffered.
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If type —IONBEF is specified, stream is totally unbuffered. Since no buffer is needed, values for
buffer and size are ignored. For example, the following two calls, though different, are functionally
identical:

setvbuf(fry NULLy» -IONBF, 0O)
setbuf(fes NULL)

When type is —IOFBF or —IOLBF, buffering for stream is determined by buffer and size. If buffer
is not the NULL pointer, it must point to a character array of size bytes. All buffering of stream is
then handled through this array.

FILE #*fpj

char buffer [2561]

char *filenames

int v+ retcodes

fep=foren(filename, "w")j
retcode=setvbuf(fery buffer, =I0FBF, 256)1

if (retcode !=0) error c)i

This fragment causes stream fp to be buffered through the 256-byte array buffer. Serious run-time
errors can occur if the buffer array is not the size specified in the call to setvbuf (here 256 bytes). As
with setbuf, it is dangerous to use an automatic array for the buffer. Note that the return value of
setvbuf can be used to verify that the request was completed successfully.

If buffer is the NULL pointer and type is specified as —IOFBF or —IOLBF, setvbuf automatically
allocates a buffer of size bytes through a call to malloc (3c) on Series 200 computers or memallc (2)
on Series 500 computers. If size is zero, a buffer of size BUFSIZ will be used. This behavior can be
used to change the buffer size for a stream even if you still want the standard /O system to

automatically allocate the buffer. This is particularly useful when a buffer larger than the specified
BUFSIZ is desired.

FILE * fpj
char # filenamel
int retcodes

fp = foren(filenames "rt")

retcode=setvbuf(fer,y NULL, -IOFBF, 2048)3
if(retcode !=0) error( )i}

This fragment buffers stream fp through a 2048-byte buffer that is allocated by the system.

fflush

The fflush routine forces all buffered data for an output stream to be written out to that file. Its
syntax is

fflush(stream) i

where streanmis a file pointer to an output stream.
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Fflush is performed automatically by fclose (and, therefore, by exit). Therefore, there is often no
reason to call fflush explicitly. Situations do arise, however, where it is necessary to manually fflush
a stream. For example, data written to a terminal is line-buffered by default, which means that the
system waits for a new-line before writing the buffer onto the terminal screen. This is often satisfac-
tory, but there are times when you want whatever has been written so far to be written to the screen
without waiting for the new-line. In such situations, fflush must be used.

Another situation when explicit fflushing is necessary arises whenever you have written less than a
buffer-full of data to a file, and you want the contents of that file processed by another function, or
by an HP-UX command. Since less than a buffer-full of data was written, the data is still in the
bulffer; the file is still empty. Performing an fflush causes the buffered data to be written out to the
file, enabling other functions or commands to utilize the file’s contents.

freopen
The final routine in this section is freopen. As its name implies, freopen enables you to, in a single
step, close a stream and then re-open it with a different type and/or file name. Its syntax is

freoren(filename, type, stream);

where filename is a pointer to a character string specifying the name of the source or destination file
for the newly-created stream. Type is identical to that of fopen discussed earlier. Stream is a file
pointer to the old stream, which is closed and then re-opened. The name of the file pointer remains
the same.

For example, the following program accepts lines of data from your terminal and writes them into a
file. When only a new-line is typed from the terminal, the program quits reading data, and echos the
contents of the file to the terminal.

#include <stdio.h>
main()
{
FILE #fpy *¥0ldfpi
char 1inelB01, *fgets( )3j

frp = foren("datafile", "w");j

if(fp == NULL) {
feprintf(stderrs "Can’t create datafile.,\n")3j
exit(1)}

}

fgets(liner BOy stdin)i
while(linel0] = "\n" {
fruts(liney fpr)i
fdets(liney BOs stdin)i
}

oldfp = freopen("datafile"sy "r"y fp)i

if(oldfe == NULL) {
ferrintf(stderrs "Can’t re-open datafile.\n")3}
exit(1)3
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while(fdets(liney 80,y fp) != NULL)
fruts(liney stdout)s

felose(fp)s
exit(0)3
}

Just like fopen, freopen returns a NULL pointer if an error occurs. If successful, freopen returns the
value of the old file pointer.

Freopen is commonly used to attach the names stdin, stdout, and stderr to other files, so that the
source or destination of these file pointers can be redirected. For example,

freopren("/usr/lib/data/datafile"s "r"» stdin)i

attaches stdin to the data file /usr/ib/data/datafile. Other functions can now be called which read
from stdin, and the result is that their source of input has been redirected. Similarly,

freopen("/users/bill/archives/calva"y "a"y stdout)s
attaches stdout to the indicated file, thus redirecting any future stdout data to that file.

Converting Between File Pointers and File Descriptors

A file pointer is actually a pointer to a structure containing information about a stream. This
information includes a pointer to the beginning of the buffer, a pointer to the current location in the
buffer, a flag specifying whether the stream is open for reading, writing, or both, a count of the
characters in the buffer, and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is opened. System calls use
file descriptors to refer to open files in much the same way that library routines use file pointers.
(The main difference between using a file descriptor and using a file pointer is that a file descriptor
has no associated buffering.) Since a program often contains both system calls and library routines,
a way of converting between file pointers and file descriptors is provided.

Note
Extreme care should be exercised when converting between file poin-
ters and file descriptors. Whenever you convert a file pointer to a file
descriptor, you should perform an fflush first.

In general, you should never convert file pointers to file descriptors
unless you need a file descriptor for a system call that provides a utility
not available in the C library package (such as dup(2) or fentl(2)).
Similarly, file descriptors should never be converted to file pointers
unless a file descriptor has been created by a system call which provides
a utility not provided in the C library package, and you want to assign
system buffering to it.

Two routines, fileno and fdopen, provide a way to convert between the two types of parameters.
Fileno is a macro which, given a file pointer, returns the associated file descriptor. Its syntax is

fileno(stream) i
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where stream is a file pointer to an open stream whose associated file descriptor is desired. Thus,

FILE *fp}
int fdi

fp = foren("filel"y "r")j
fd = fileno(fp)j

returns the integer file descriptor in fd, associated with the file pointer fp.

The fdopen routine enables you to convert a file descriptor into a file pointer. Its syntax is
fdoren (fildes: type)

where fildes is an integer file descriptor obtained from the open, dup, creat, or pipe system calls.
Type is the same as that for fopen discussed earlier. Thus,

int fdi
FILE *fp}

/% obtain fd via appropriate svstem call */

fp = fdoren(fds "r")j

if(fp == NULL) {
feprintf(stderry "Can’t convert file descriptor.s\n")3i
exit(1)j

}

converts the file descriptor fd into a file pointer, fp. Fdopen returns a NULL pointer if the operation
fails.

Fdopen can be useful for opening a file in a way unlike any of the standard types of fopen.

# include <fcntlih’

int fds
FILE *fp
char #filenames}

fd= open(filenames O_WRONLY!O_CREAT: 0BBB) ]
frp= fdoren(fd,"w")j
fseek(fd,0Ls2)

This code fragment uses the open system call to open a file for general write access, then uses
fdopen to assign buffering to the file. The constants O_WRONLY and O_CREAT are defined in the
include file /usr/include/fcntl.n, and are described in open (2). (D_WRONLY causes open to open the
file for writing only; 0-CREAT creates the file if it does not already exist.) This technique opens the file
in a way that does not correspond exactly to any of the available types in fopen: “w”’ would
truncate the current file contents, “‘r+’’ would fail if the file does not already exist (and would allow
reading of the file), and “a” does not permit seeking backwards and rewriting the current file
contents.
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Interprocess Communication

So far, you’ve been communicating between an active process (your program) and a passive object
(a file). What if you want to communicate between two active processes? Suppose you want to
create a stream between two programs, with one program (process) pumping data onto the stream,
and the other reading data from the other end. How is this done?

The popen routine exists for this purpose. Its syntax is
roren(command . type);

where command is a pointer to a character string specifying a command line. Type is a pointer to a
single-character string which is either r (for reading) or w (for writing).

For example, suppose you are writing a program which processes text in some way. Your program

handles normal text perfectly, but unfortunately your source files are all coded in troff constructs. If

you could only filter out all those pesky troff constructs, your program would work fine. Cheer up!

It's easily done. There is an HP-UX command called deroff which filters out troff constructs. All you

have to do is make sure that all input to your program passes through deroff first. Here’s how:
#include <stdio.hi

main()
{
FILE #*poren()s *fpj
frp = poren("deroff /users/bin/text/*.tx"y "r")j

if(fp == NULL) {
ferrintf(stderrs "Can’t create stream,\n")j
exit(1)}

¥

/% bedin Processing texti read text from fp! %/

pclose(fr)i

Popen returns a file pointer to the newly-opened stream. If an error occurs, a NULL pointer is
returned. When successfully executed, popen enables your program to read from the file pointer fp,
the data from which is the standard output from the deroff command. In this example, deroff is
invoked such that it processes all files in /users/bin/text which end with ““.tx”. Note that popen’s
return value must be declared explicitly because it is not declared in stdio.h.

Because deroff processes stdin if no arguments are given, the following popen call

fp = popen("deroff"y "r")}

enables your program to receive filtered text from stdin instead of from ordinary files. The result of
executing the previous example is exactly the same as if you had typed

deroff /users/bin/text/*.tx | your program

at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pclose. Thus,

rclose(fp)i

closes the stream created in the previous example.
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If a type of w is specified instead of r, then the data flow is reversed, with the result that your
program supplies the data for the specified command.

Note that, though popen’s return value is called a file pointer, it is actually somewhat different than
the file pointers you are already familiar with. In general, a file pointer returned by popen should
not be used in those previously-discussed library routines which modify file pointers returned by
fopen. Also, file pointers opened by popen must be closed with pclose; fclose is not sufficient.

So far, popen has been characterized as a ‘‘filter-maker’”’, in that streams to or from a command
have been created so that data can be modified in some way before being passed on. Sometimes,
however, popen is used to execute a command which supplies information valuable to the prog-
ram. For example, the find command accepts dot (.) as a valid directory name. Upon receipt of a
dot, find discovers the actual path name of dot by creating a stream from the pwd command, as
follows:

char dir[10013%

FILE *poren(), *fpj

fp = porpen("pwd"y "r")i

if(fp == NULL) {
feprintf(stderrsy "Can’t execute Pwd.\n")j
exit(1)3

}

faets(diry 100, fp)3j

rclose(fp) i

The preceding example reads the output of the pwd command into the character array dir, thus
supplying the current value of dot. The following program creates a list of the login names of users
currently logged in:

#include <stdio.sh¥
main()
{
char namel[101y linelBO1, *fdets()}
FILE #*pPoren() *fpi
fp = porpen("who"y "r")j
if(fe == NULL) {
frrintf(stderrs "Can’t execute whos\n")i
exit(1)i
}

printf("Users currently lodded in:\n")j

while(fdets(liney BOy fp) != NULL) {
sscanf(lines "%s" s mame)s
printf("\tZ%s\n"y name)i

}

rclose(fp)i
exit(0)}

A stream is created for reading from the who command. Each line from who is read, and the first
field from each line is read and printed.

You may have only one popen-ed stream in a process at any given time.
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Part

2

Math Routines

Described in this section are absolute value, power, square root, logarithmic, trigonometric, and
other functions performing many different kinds of mathmatical calculations.

An include file named math.h exists for use with these routines. Math.h contains type declarations
of all the math routines which do not return an int, and a definition of the constant HUGE. Many
math routines return a ‘“‘huge’” value when an error occurs, so HUGE is set equal to this ‘huge”
value, enabling you to check for errors easily. You need not include math.h in your program if you
remember to explicitly declare each math routine’s return type, and if you don’t need HUGE.

Some of the math routines reside in the standard C library, /ib/libc.a. This library also contains all
the standard I/O routines and the system calls described in section 2 of the HP-UX Reference
manual. This library is loaded automatically by the C compiler, cc, so you need not worry about
explicitly telling the linker (Id) to search this library to find the functions contained in it. However,
many math routines reside in the library /ib/ibm.a, which is not automatically loaded. Thus, if you
try to compile a program containing a math routine from libm.a, you get a complaint from Id.

This is fixed in the following way. Suppose you have a program named yourprog.c, and this
program contains a math function from libm.a. To compile the program, type

$ cc vourprod.c -lm

The —1 option causes Id to look for and search a library named /lib/libx.a, where x is the letter
specified after the —1 option. Thus, this command line tells Id to search /lib/libm.a.

How do you know which functions reside in which library? The HP-UX Reference manual provides
guidance here. /lib/libc.a contains all of section 2, plus all routines in section 3 having the suffixes
(3C) and (3S). /lib/libm.a contains all the routines in section 3 having the suffix (3M). To aid you in
deciding how to compile your programs, the routines discussed below include references to the
HP-UX Reference manual.

47



Absolute Value Functions

The abs (abs(3C)) and fabs (found under floor(3M)) functions return the absolute value of their
integer or floating-point argument, respectively. For example, the following program calculates
integer absolute values until a zero is entered from the keyboard:

main()
{
int values

printf("Enter value: ")3

scanf ("%d"y &value)i

whilefvalue != 0) {
printf("Absolute value of %d is %Zd.\n"s value, abs(value))}
printf("Enter value: ")3i
scanf("4d"» &value)i

}

exit(0)i

The floating-point equivalent of the previous program is shown below:

main()

{
double values fabs()i
printf("Enter value: ")3
scanf ("Z21f"y Bvalue)i
while(value != 0,0) {

printf("Absolute value of %,129 is %,129.\n"y values fabs(value))i
printf("Enter value: ")}
scanf ("Z1f", Rvalue)i

}

exit(0)i

The first program above can be compiled without the —1 option, but the second must be compiled
using the —Im option.
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Power, Square Root, and Logarithmic Functions

This section describes the following five functions, all of which are found under exp(3M) in the
HP-UX Reference manual:

exp(x) returns e to the x power.

log(x) returns the natural logarithm of x (In(x)).
log10(x) returns the common logarithm of x (log(x)).
pow(X, v) returns x to the y power.

sqrt(x) returns the square root of x.

All functions return double values, and expect double arguments. Since their syntaxes are similar,
the following logarithm calculator example suffices for all five of these functions:

#include <math.h’
main(ardcy argu)

int ardci
char *argullj
{

double valuesj
sscanf(argul1ly "Z1f"y Bualue)i
printf("Natural lodarithm of %.129 = %,129\n"y valuey lod(value))s

printf("Common lodarithm of %Z.129 = %,129\n"» valuey lodiO(value))s
}

This program accepts its single argument, and returns the natural and common logarithms of that
argument.

All five of these functions must be compiled using the —Im option to cc.
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Trigonometric Functions

A full set of trigonometric functions are provided in the math library. They are as follows:

sin(x) returns the sine of the radian argument x.

cos(x) returns the cosine of the radian argument x.

tan(x) returns the tangent of the radian argument x.

asin(x) returns the arc sine of x in the range -pi/2 to pi/2, where —1 <= x <= 1.
acos(x) returns the arc cosine of x in the range 0 to pi, where —1 <= x <= 1.
atan(x) returns the arc tangent of x in the range -pi/2 to pi/2.

atan2(y, x)  returns the arc tangent of y/x in the range -pi to pi.

sinh(x) returns the hyperbolic sine of the radian argument x.
cosh(x) returns the hyperbolic cosine of the radian argument x.
tanh(x) returns the hyperbolic tangent of x.

The following program uses some of these routines, as well as two routines from the previous
section, to obtain the dimensions and angles of a right triangle:

#include <stdio.hx
#include <math.h
main()
{
double sideAy sideBs» sideCs» andas andb, tempCi
double Pi = fabs(acos(-1+))3
double torads = Pi/1BO,j
double todeds = 1BO./pi}
double andc = 90,3

printf("Usind the following conventions for sides and andles:\n")3j

triangdle()s

printf("\nEnter all Known information:\n")i

printf("\tA = ")}

scanf ("41f"y BsideA)’

printf("\tB = ")}

scanf ("41f"y B&sideB)j

printf("\tC = ")}

scanf("Z1f"y BsideC)}

printf("\tAngdle a = ")i

scanf ("4A1f"y &anda)}

printf("\tAndle b = ")}

scanf ("41f"y Bangh)i

if(sideA &8& sideB && sideC) {
tempC = sart(pow(sideAs 2,) + pPow(sideB, 2.))3
if(fabs(sideC - tempC) » 0.,001) {

printf("Sides invalid.\n")3j

exit (1)}
¥
anda = acos(sideB/sideC) #* todedsi
andb = 90, - andaj
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} else if(sideA && sideB) {
sideC = sart(pow(sideAs» 2+) + pPow(sideBs 2.,))3
anda = acos(sideB/sideC) % todedss
andgb = 90, - andaj
} else if(sideB && sideC) {
sideA = sart(pow(sideCy» 2,) - pow(sideBs 2.))1
anda = acos(sideB/sideC) * todedsi
andgb = 90, - andaj
} else if(sideA && sideC) {
sideB = sart(pow(sideCy 2.) - Pow(sideAs 2.))1
anda = acos(sideB/sideC) * todedss
andgb = 90, - andai
} else if(sideA) {
if(anga && angb) {
sideC = sideA/cos(andb*torads)}
sideB = sart(pow(sideCs» 2,) - rPow(sideAy 24))3
} else if(anga) {
sideC = sideA/sin(anda*torads)i
sideB = sart(pow(sideC, 2,) - Pow(sideAy 2
andb = 90, - andaj
} else if(andgb) {
sideC = sideA/cos(andb*torads);
sideB = sart(pow(sideCsy 2,) - rPow(sideAsy 2:))3
anda = 90, - andbj

1)

} else {
printf("Insufficient information«\n")j
exit(1)}

}

} else if(sideB) {
if(anda && angh) {
sideC = sideB/sin(andb*torads)i
sideA = sart(pow(sideCs» 2,) - pPow(sideBy 2.))3
} else if(anga) {
sideC = sideB/cos(angda*torads)i
sideA = sart(pow(sideCy 2,) - pow(sideB, 2.,))3
andgb = 90, - andaj
} else if(angb) {
sideC = sideB/sin(andb*torads)}
sideA = sart(pow(sideC» 2,) - Pow(sideBy 2.))3%
anda = 90, - andhb}

} else {
printf("Insufficient information.\n")i
exit(1)}

}

} else if(sideC) {

if(anda && angb) {
sideA = sideC * cos(andb¥*torads)i
sideB = sideC # sin(andb*torads)i

} else if(anda) {
sideA = sideC * sin(anda*torads)j
sideB = sideC * cos(anda*torads)j
andb = 90, - andaj

} else if(andb) {
sideA = sideC # cos(andb*torads)i
sideB = sideC * sin(angb¥*torads)j
anda = 90, - andbi
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} else {
printf("Insufficient information.\n")3j
exit(1)}
}
} else {
printf("Insufficient information,\n")3}
exit(1)}
}

printf("\n\tSide
printf("\tSide B
printf("\tSide C

4,2f dedrees\n"y sideAs anda)i

= %e2f\t\tAndle a =
= %.2f dedrees\n"y sideBs angb)i

“i2f\t\tAndle b
Ze2f\n"y sideC)s

non

>

triandle()

{
FILE *foren() s *tri}
char 1inel501, *fdets()}

tri = fopen("triangle"s "r")i

if(tri == NULL) {
printf("Cannot open triandle file,s\n")}
exit(1)3

}

while(fdets(lines 50y tri) != NULL)
frputs(lines stdout)i
feclose(tri)i

The triangle function prints out the contents of a file in the current directory called triangle. The
contents of this file should contain an ASCII approximation of a right triangle:

/1
/i
/o
/ a i
/ H
() i B
/ i
/ i
/ H
/ b c -1
/S, I
A

This triangle, made up of slashes, vertical bars, and underscores, shows the naming convention for
the sides and angles. The program then asks for the known data; enter a value of zero for those
parameters that are unknown. The dimensions and angles are then calculated based on the data
you have supplied. If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP-UX Reference manual. All others are

found under trig{3M). Thus, the —Im argument must be used when compiling code containing
these functions.
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Miscellaneous Functions

Calculating Upper and Lower Bounds

Two functions, floor and ceil (see floor{3M)), enable you to obtain integers (returned as doubles)
defining an upper and a lower bound for a number or a series of numbers. Floor returns a double
precision representation of the the largest integer which is still not greater than floor's argument.
Similarly, ceil returns a double precision representation of the smallest integer which is still greater
than ceil s argument.

The following program returns the floor and ceiling values for the number specified as its argument:

#include <math.h>
main(ardcy argv)
int ardci
char *argullj
{

double valuesl

sscanf(argulil, "%1f", Rvalue)s
printf("Floor = %g3 Ceiling = %d\n"y floor(value) ceil(value))si
}

If you type this in and run it, you see that floor and ceil provide two double values representing the
smallest range in which the numbers used to obtain that range will fit. For example, if you have a
program which reads three values from a source file, and these values are 4.79, 19.6, and 21.1,
you can get the smallest possible range in which these numbers fit by running floor on each number
(and keeping the smallest floor value), and then running ceil on each number (and keeping the

largest ceiling value). For the above three numbers, this yields a floor value of 4, and a ceiling value
of 22.

Code containing these functions must be compiled using the —Im cc option. Math.h need not be
included if you remember to explicitly declare that these functions return double values.

Calculating Remainders

This section covers two functions, fmod and modf. The fmod function (see floor{3M)) returns the
remainder (in double precision form) resulting from dividing fmod's first argument by its second.
For example,

fmod (10,4 44)
divides 10 by 4, and returns the remainder (2, in this case). The following program accepts two

numbers, divides the first by the second, and displays the results in a form showing the number of
times the divisor goes evenly into the dividend, and the remainder, if any.
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#include <math.h>
main{ardcs ardv)

int ardci
char *ardull}
{

int resultsi
double numbers divs remi

sscanf(ardulll, "41f"s Bnumber)si
sscanf(argul31, "ALf"y &div)i

result = number/divi
printf("%g = (Zd)(%d)"s numbers resulty div)i
if((rem = fmod(number, div)) != 0,0)

printf(" + %d\n"y rem)i
}

This program is set up so that it can be invoked in sentence style. If you name the compiled version
of this program “‘divide”’, then you can say

$ divide 33,27 by 11
Since argv[2] is ignored in the code, “‘by’ is harmless, and the two numbers are parsed correctly.

Code containing a call to fmod must be compiled with the —Im cc option. However, you need not
include math.h in your program, as long as you declare fmod's return type appropriately.

The other function, modf (see frexp(3C)), is not really a remainder function in the same sense that
fmod is a remainder function. In fmod, a division actually takes place. In modf, however, no
division takes place. Modf simply accepts a double value, and splits it into its integer and fractional
parts. Its syntax is

modf (value, iptr);

where value is the number to be split into two parts, and iptris a pointer to a double variable where
the integer part of value is to be stored. Mod!'s return value is the signed fractional part of value.

The following program shows modfin action:

main(ardc, argv)

int ardei
char *arduvll}
{

double values irtrs fracs modf()3

sscanf(argul11, "%1f", &value)si
frac = modf(values &irtr)i
printf("Inteder pPart: %93 Fractional part: %d9\n",s irtrs frac)i

The program accepts one argument, the value, and then prints the integer and fractional parts of
that value. Note that the address of iptr is passed to modf, because modf expects the address of a
double variable where the integer part can be stored.
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Code containing calls to modf does not require the —Im option during compilation. Also, the
math.h include file is of no use to modf, so it can be omitted.

Calculating A Hypotenuse

The hypot function (see hypot(3M)) returns the square root of the sum of the squares of its two
arguments, yielding the length of the hypotenuse of a right triangle, or the Euclidian Distance.

Thus, in the previous program which calculated the sides and angles of a right triangle, the line of
code which read

sideC = sart(pow(sideAy 2,) + Pow(sideB, 2,))3

could be replaced with

sideC = hvrot(sideAs sideB)}
thus eliminating one function call (hypot contains a call to sqrt).
Code containing calls to hypot must be compiled using the —Im option to cc.

Generating Random Numbers

The rand and srand routines (see rand(3C)) exist for the generation of random numbers. Rand is
the random number generator itself, and srand enables you to specify a starting point (or seed) for
rand.

The following program simply sets up an infinite loop and lets rand run for awhile (to terminate it,
just press BREAK, or its equivalent):

main()
{
unsidgned values

srand(1)3

for(ii) {
value = rand()}
printf("Random number is Zul\n"y value)j
sleerp(1)}

}

Note that rand and srand deal only with unsigned integers. If you let this program run for awhile,
you’ll notice that the random values returned are quite large, and don’t often venture below 1000.
If your application requires smaller random numbers, divide the value returned by rand by some
appropriate divisor until a number in the desired range is obtained.

Srand initializes the random number generator to a particular starting point. In the above program,
1 is used, but you can specify any positive integer you like.

The sleep library routine causes the program to “pause’ for the number of seconds specified (1, in
this case).

Math Routines 55



Floating-Point Exponentiation Routines

Two routines, frexp and Idexp (see frexp(3C)), are covered in this section. Frexp accepts a double
value, and returns two values, x and n, such that

N

value = x % 2%n
where x is a double quantity of magnitude less than 1, and nis an integer exponent. Frexp's syntax
is

frexe(value eptr);

where value is the value to be processed, and eptr is a pointer to an integer variable where the
exponent n is to be stored. The quantity x is returned as frexp’s return value.

The following program accepts a number argument and uses frexp to output that number’s repre-
sentation in the form shown above:

main(ardcs argv)

int ardci
char *ardullj
{

double values x» frexp()]
int ertri

sscanf(argul11,y "%1f"y Bvalue)si

x = frexp(values ertr)i
printf("%dg = %9 % 2°%d\n"y values x4 eptr)i

Ldexp accepts a double value and an integer exponent exp, and returns a double quantity equal to

<value> * 2° <exponent>

The following program accepts two number arguments, value and exp, and outputs the result:

main(ardcs argv)

int ardcs
char *ardull}
{

double value, result, ldexp()}
int expi

sscanf(argul1ly "%1f", Rvalue)i
sscanf(argul21, "%d"s Bexr)i

result = ldexp(value, expr)i
printf("%d * 2°%d = Zd\n"y values exps result)]

Neither of these routines require math.h or the use of the —Im cc option.
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Character Conversion Part
and Classification 3

This section discusses those routines found under con(3C) and ctype(3C) which enable you to
convert between upper- and lower-case, and classify characters as digits, non-printing, upper-case,
etc.

Converting Between Uppercase and Lowercase

Four routines are documented under conv(3C) which enable you to convert between upper- and
lowercase. They are toupper, tolower, _toupper, and _tolower.

Toupper and tolower are functions which accept a single integer argument in the range — 1 through
255. If the integer taken as a character represents a lower-case character, toupper returns the
corresponding upper-case character. Similarly, tolower returns the corresponding lower-case char-
acter. Both routines return the argument unchanged if it does not represent a lower-case character
(toupper) or an upper-case character (tolower).

_toupper and _tolower are macros defined in ctype.h. _toupper accepts a single integer argument
which must represent a lower-case character; the corresponding upper-case character is returned.
Similarly, _tolower must be given an upper-case character, and returns the corresponding lower-
case character. If an argument is specified which is not a lower-case character (_toupper) or an
upper-case character (_tolower), garbage is returned.

The macro versions of these routines are faster than the functions, so if you can guarantee that only
lower-case or upper-case characters are passed to the macros, you should probably use them.
However, the function versions are handy for tasks like

for(i=03 arrav[il != NULLF i++)
array[il = toupper(arrav[il)}

which converts every lowercase character found in array to uppercase. The functions enable you to
be more lenient about the arguments passed to them. In the above program fragment, no argument
checking is needed; if the argument isn’t a lowercase character, it is returned unchanged.

Character Classification

The ctype(3C) entry in the HP-UX Reference lists routines which test their single argument and
return a non-zero value if the test is positive, and O otherwise.

All of these routines are macros defined in ctype.h. Because their syntaxes are identical, the
following example suffices for all ctype macros:

for(i=03% array[il != NULL3 i++) {
if(islower(arravy[il))
array[il = _toupper(arrav[il)}i
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This program fragment shows one way to change all occurrences of a lower-case character in array
to upper-case using the macro _toupper. The macro islower is used to make sure that only
lower-case characters are passed to _toupper.

String Manipulation

String(3C) in the HP-UX Reference manual documents an extensive list of string manipulation
routines enabling you to perform several operations on character strings. This section describes the
string(3C) package in detail.

Concatenating Strings

Streat and strncat enable you to append a copy of one string onto the end of another. Their
syntaxes are:

strcat(sl, s2);
strncat(sly s2+ n)j

where sI and s2 are character pointers to NULL-terminated character strings. Strcat appends the
entire string pointed to by s2 (up to the first NULL character encountered) onto the end of string s1.
Strncat does the same thing, except that at most n characters are appended to s1 (or up to a NULL
character, whichever comes first). (Note that string s2 need not be NULL-terminated when using
strncat if n is less than or equal to the length of s2.) Both routines return a character pointer to the
NULL-terminated result.

Neither of these routines checks to make sure that there is room in s1 for the additional characters
of s2. Thus, to be safe, sI should always be a declared array having plenty of space for the
additional characters of s2, plus a terminating NULL character.

Copying Strings
Strepy and strncpy copy one string of characters into another. Their syntaxes are:

strcpy(sly s2)3
strnepy(sly s2y n)i

where s2 is a character pointer to the string to be copied, and sI is a character pointer to the
beginning of the string into which the contents of string sI are copied. Strcpy copies the entire
string, up to (and including) the first NULL encountered. Strncpy copies up to n characters, or up to
(and including) the first encountered NULL, whichever occurs first. (String s2 need not be NULL-
terminated when using strncpy if n s less than or equal to the length of s2.) Both routines return the
value of s1.

The following program uses the strcat routine discussed earlier and strcpy to build a character string
representing the lower-case alphabet, one character at a time.
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#include <{stdiosh>

main()

{
int b= ‘b’y z = "2y i}
char alphal301, chrld41;

chr[11 = NULL3
strcpy(alrhay "a")i
printf("%s\n"y alprha)li

for(i = bi i <= zi§ i++) {
chrf0] = ij
strcat(alphas chr)i
printf("%s\n"y alrha)i

}

The array chr is always going to be a two-character array consisting of the next character in the
alphabet followed by NULL. Thus, the second element of chris set to NULL early in the program.
The first chr element is then successively set to the next lower-case character in the for loop, and the
resulting two-character string is concatenated onto the end of the alphabet assembled so far in
alpha. Note the use of strcpy to initialize alpha. Remember that C transforms one or more charac-
ters enclosed in double quotes into a character pointer to those characters followed by a NULL.
Thus, the strcpy statement above copies the character “a” followed by a NULL character into
alpha.

There are some things to be aware of when using strcat, strncat, strcpy, and strncpy. These routines
all modify string sI in some way, but none of them check for overflow in that string. Therefore, be
sure there is enough room in sI to hold the added or copied characters plus a terminating NULL.
Also, be sure you use a character array for s1 (not just a character pointer), especially when using
strcat or strncat. This is because an explicitly-declared array has sufficient memory allocated to it to
contain all of its elements, but a character pointer simply points to a single location in memory.
Concatenating a string to the end of a string contained in an array is guaranteed to work, provided
the array is large enough. However, concatenating a string to a string of characters referenced by a
simple character pointer is dangerous, since the concatenated characters could overwrite data in
memory. For example,

char arrav[1001, ¥ptr = "abcdef";

strcat(arravs Ptr)i

works fine, since you are guaranteed that 100 storage elements have been set aside for the array.
However,

char *ptrl = "abcdef", *pPtr2 = "dhidjKl"j

strcat(ptrly Ptr2)}

is asking for trouble. Although C makes sure that there is enough room for the initializing strings
(“abcdef” and “ghijkl” in this example), there are no guarantees that there is enough room to add
characters to the end of one of these strings. Therefore, the last fragment could easily overwrite
valid data occurring after the string pointed to by ptrl.

Since string s2 is not modified, you can use arrays or character pointers with no ill effects.
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Comparing Strings

Stremp and strnecmp compare two strings and return an integer indicating the result of the compari-
son. Their syntaxes are:

stremp(sly s2)3
strnemp(sly s24 n)i

where s1 and s2 are character pointers to the NULL-terminated character strings to be compared.
Stremp compares the entire strings, stopping as soon as the result is determined. Strncmp compares
at most n characters of both strings (neither string need be NULL-terminated if n is less than or
equal to the length of the shorter string). The integer returned uses the following convention:

<0 s1 is lexicographically less than s2;
=0 s1 and s2 are equal;
>0 s1 is lexicographically greater than s2.

The following program fragment uses strncmp to analyze the contents of a file coded with the man
macros (see man(7)). It reads each line of the file and keeps a count of the number of times selected
macros are used, and prints a summary of its findings at the end.

#include <{stdio.h>
main(ardcs argdv)

int ardcs
char *ardgull}
{

char *fdets()y linel100135
FILE *fpi
int nshs nPPsy ntepy nrsy nresr nPds niPs nmiscs nliness

nsh = nPP = ntp = nrs = nre = nepd = niP = nmisc = nlines = 0

if(argec != 2) {
feprintf(stderry "Usage: count file\n")i
exit(2)}

}

fp = foren(argulll, "r")3

if(fep == NULL) {
ferintf(stderry, "Can’t opPen %Zs.\n"y ardul1l)}i
exit(1)}

}

while(fdets(line,» 100, fp) 1= NULL) {

if(strncmp(lines "JSH"y 3) == 0)
nsh++3

else if(strncmp(lines " PP"y 3) == 0)
nPpt++i

else if(strncmp(liney ",TP"y 3) == 0)
ntp++i

else if(strncmp(liney "WRS"y 3) == 0)
nrs++i

else if(strncmp(lines ",RE"y 3) == 0)
nre++3
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else if(strncmp(lines "W PD"y» 3) == 0)

nepd++i

else if(strncmp(liney "VIP"y 3) == 0)
nip++s

else if(linel0] == ',")
nmisc++s

nlines++i
}
printf("No, of lines: Zd\n\n"s nlines)s
printf("No. of +SH’s: Zd\n"» nsh)j
printf("No, of +PP’s: Zd\n"» nrer)}
printf("No, of +TP’s: %d\n"ys ntp)i
printf("No, of +RS’s: %d\n"» nrs)i
printf("No, of +RE’s: %d\n"s nre)i
printf("No, of +PD’s: %d\n"y nrpd)j
printf("No, of +IP’s: %d\n"y nir)j
printf("No, of misc, macros: Zd\n"» nmisc)i

fclose(fp)s
exit(0)3

In the above program, strncmp is used to compare the first three characters of each line read. If the
first three characters match a particular macro, the appropriate counter is incremented. If the line
begins with ““.”, but is not one of the macros being searched for, the ‘“‘miscellaneous’” counter is
incremented. The total number of lines in the file is also given.

Finding the Length of a String

The strlen routine returns an integer specifying the number of non-NULL characters in a string. Its
syntax is:

strlen(s)i
where s is a character pointer to the NULL-terminated string whose length is to be taken. For
example, if you execute

len = strlen(string) i
then the integer len contains the total number of non-\s-1NULL\s+ 1 characters in the string
pointed to by string. Thus,

stringllen]
points to the terminating NULL in string

Finding Characters in Strings

The strchr, strrchr, and strpbrk routines enable you to locate a particular character within a string.

Strchr and strrchr return a character pointer to an occurrence of a specified character in a string.
Their syntaxes are:

strchr(ss C)i
strrchr(sy C)i
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where sis a character pointer to the string of interest, and c is a variable of type char specifying the
character to search for.

Strchr returns a character pointer to the first occurrence of character c in string s. Similarly, strrchr
returns a character pointer to the last occurrence in string s. Both routines return a NULL if the
character does not occur in the string pointed to by s. For example,

char *¥ptry *strchr()y string[10013
while((ptr = strchr(string, ‘@) != NULL)
*ptr = ‘#'3

replaces all occurrences of “@” in the array string with “#”, starting from the beginning of the
array and working toward the end. The same operation can be done using

while((ptr = strrchr(string, ‘7)) 1= NULL)
*ptr = ‘#'3

which replaces all @’s with #'s, starting from the end of the array, working backward toward the
beginning.

The strpbrk routine returns a character pointer to the first occurrence in string s1 of any character
contained in string s2, or NULL if none of the characters in s2 occur in s1. Its syntax is:

strebrk(sly s2)3

For example, suppose you have to read lines of input in which are embedded numerical data which
must be read. For simplicity, assume that the following conventions are used:

® Positive numbers do not begin with ““+’;
® Fractional numbers always begin with zero, as in 0.25;
® The first occurrence of a digit in the string signals the beginning of the number to be read.

Given these rules, the following code fragment does the job:

char linel100], *chrs = "-0123456789", #*pPtri
float valuei

ptr = strebrk(lines chrs)i
sscanf(ptry "Af"y Buvalue)i

The character pointer chrs is initialized to point to a string of characters which might introduce the
embedded number. Strpbrk then finds the first occurrence of one of these characters in line, and
returns a pointer to that location in ptr. Finally, ptr is passed to sscanf, which interprets ptr as if it
were a pointer to the beginning of a string from which input is to be taken. The number is read
correctly because ptr points to the beginning of a number, and because the %f conversion termin-
ates at the first inappropriate character.
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Miscellaneous String Routines

Finding Characters Common to Two Strings

The strspn and strespn routines return an integer giving the length of the initial segment of string s1
which consists entirely of characters found in string s2. Strcspn is similar, but returns an integer
giving the length of the initial segment of sI which consists entirely of characters not found in string
s2. Their syntaxes are:

strspn(sly s2);
strespn(sly s2);
For example, suppose you have the following two strings:

"A tattle-tale never wins,"

for string s1, and

" -Aatle"

for s2 Executing

strspni(sly s2)i

with the strings shown returns a value of 14, since the first 14 characters in sI all occur in s2 — “A
tattle-tale ““. If you execute

strespen(sly s2)1

using the same strings, you get 0, because there is no initial segment of s1 which contains characters
not found in s2.

Breaking a String into Tokens

A token is a string of characters delimited by one or more token delimiters. The strtok routine
divides string s1 into one or more tokens. The token separators consist of any characters contained
in string s2. Its syntax is:

strtok(sly s2)3

where s1 is a character pointer to the string which is to be broken up into tokens, and s2 is a
character pointer to a string consisting of those characters which are to be treated as token separ-
ators.

Strtok returns the next token from s1 each time it is called. The first time strtok is called, both s1 and
s2 must be specified. On subsequent calls, however, sI need not be specified (a NULL is specified
in its place). Strtok remembers the string from call to call. String s2 must be specified each call, but
need not contain the same characters (token separators) each time.

Strtok returns a pointer to the beginning of the next token, and writes a NULL character into s1

immediately following the end of the returned token. Strtok returns a NULL when no tokens
remain.
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For example, suppose you are reading lines from /etc/gettydefs, which is the speed table for getty(8)
—see gettydefs(5). The lines in this file contain several fields delimited by pound signs (#). Thus,
the following code could be used to read the fields of each line:

int count = 0}
char *delims = "#", %toKen, *ardly *strtok()s linel[2561}
ardl = linei

while((toKken = strtok(ardl, delims) != NULL) {

count++i
printf("field %d: %Zs\n"s counts toKen)i
if{count == 1)

ardl = NULLS
}

This code sees to it that strtok’s first argument is NULL after the first call. Also, note that delims did
not change from call to call, but it could have. This greatly increases the power of strtok, since it
enables you to change the token delimiters between calls.

64 Character Conversion and Classification



Part

4

Date and Time Manipulation

Ctime(3C) describes a set of routines which enable you to access the date and time as maintained
by the system clock. This package knows about daylight saving time, and automatically converts
between standard time and daylight saving time when appropriate.

Most of the ctime routines require the quantity returned by time(2), which is the number of seconds
that have elapsed since 00:00:00 GMT (Greenwich Mean Time), January 1, 1970.

The ctime routine converts the time(2) value into a 26-character ASCII string of the form

Fri May 11 09:53:03 1984\n\0

where “\\n” is a new-line character, and “\\0” is a terminating NULL character. Ctime’s syntax is:

ctime (value);

where value is a pointer to a long integer value representing the number of elapsed seconds since
00:00:00 GMT, dJanuary 1, 1970 (as returned by time(2)). Note that value is a pointer to the
quantity returned by time(2), not just the quantity itself. Using time(2) and ctime, you can write
your own simplified version of the date(1) command:

#include <stdiosh

main()

{
char *stry ¥ctime()i
long time()s nsecondsi

nseconds = time((long *)0)}
str = ctime(Bnseconds)
printf("%s"y str)i

}

The rest of the routines in ctime(3C) require the include file time. h, which contains the definition of
a structure called tm. This structure is made up of several variables which contain the various
components of the date and time. It looks as follows:

struct tm {
int tm-seci
int  tm_mini
int  tm-houri
int  tm-_mday}
int  tm_moni
int tm-vearj
int tm_wdayi
int tm-vdayi
int tm_isdsti

+i
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The meaning associated with each structure member is:

tm_sec the “‘seconds’ portion of the system’s 24-hour clock time;

tm_min the “minutes’” portion of the system’s 24-hour clock time;

tm_hour the “hours” portion of the system’s 24-hour clock time;

tm_mdaythe day of the month, in the range 1 thru 31;

tm_mon the month of the year, in the range 0 thru 11 (0 = January);

tm_year the current year — 1900;

tm_wday the day of the week, in the range O thru 6 (0 = Sunday);

tm_yday the day of the year, in the range O thru 365;

tm_isdst a flag which is non-zero if daylight saving time is in effect.

The localtime and gmtime routines accept a pointer to a quantity such as returned by time(2), and
fill in the various components of the tm structure. Localtime corrects the time for the local time zone
and possible daylight saving time, while gmtime converts directly to GMT time (this is the time used

by HP-UX). Both routines return a pointer to a structure of type tm which can be used to access the
various components of the tm structure.

For example, the following code fragment assigns values to the tm structure members for the local
time zone:

#include <time.h>

struct tm *ptr, *localtime()3
long time()s nsecondsi

nseconds = time((long *)0)3
ptr = localtime(&nseconds)i

Once this code is executed, you can use ptrto access the different components of the local time. For
example, ptr— >tm_mon references the month of the year, and ptr — >tm_wday references the
day of the week. (Gmtime is used in exactly the same way, so this example suffices for it also).

The asctime routine converts the time contained in a tm structure into \s-1ASCII\(s+ 1 repre-
sentation such as that returned by date(1) and ctime. Its syntax is:

asctime(ptr) i
where ptr is a pointer to a structure of type tm whose members have previously been assigned

values with localtime or gmtime, or explicitly by you. Asctime returns a character pointer to the
same NULL-terminated 26-character string as returned by ctime.
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Asctime provides a way for you to obtain the current time, modify it explicitly in some way, and
then print the result in ASCII form. The date command shown earlier can be re-written using
localtime and asctime:

#include <stdiosh>

#include <time h>

main()

{
long time()s nsecondsi
struct tm ¥ptry *localtime()3
char *strindg, *asctime()3

nseconds = time((long *)0)3
Ptr = localtime(&nseconds)i

/% the user may modify the current time in tm here */

string = asctime(pPtr)]
printf("%s"y string)j

This program illustrates a rather indirect way to obtain the date, but it does enable you to modify
the date stored in tm before you print it out. If all you want to do is print the date, the quickest way is
to use the time/ctime combination.

Of all the ctime routines, perhaps the most useful is localtime. It enables you to break the current
time up into referencable chunks which can then be examined for such applications as personal
calendar programs, program schedulers, etc. Many of the tm values can be used as indices into
arrays containing strings identifying months and days. For example, declaring an external array like

char *monthCl = { "Januarvy"s "Februarv"y "March",» "April",
"Mav"y "June"y "July"s "Audust"y "Sertember",
"October"s "November", "December"
}i

enables you to use tm_mon as an index into this array to obtain the actual month name. The same
thing can be done with tm_wday if you initialize an array containing the names of the days of the
week. The ctime(3C) package makes it easy to design programs which depend upon the time or
date. Try creating your own versions of calendar(1), at{1), or even cron(8)!
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Lint
C Program Checker

Introduction

Lint is a program checker and verifier for C source code. Its main purpose is to supply the program-
mer with warning messages about problems with the source code’s style, efficiency, portability, and
consistency. Once the C code passes through the compiler with no errors, lint can be used to locate
areas, undetected by the compiler, that may require corrections.

Error messages and lint warnings are sent to the standard error file (the terminal by default). Once

the code errors are corrected, the C source file(s) should be run through the C compiler to produce
the necessary object code.

Error Detection

Lint can detect all of the code errors that the C compiler detects. An example of an error message
would be:

illegal initialization
These errors must be corrected before the compiler can be used to produce object code.

Although lint can be used for error detection, it cannot recover from all of the code errors it finds. If
lint encounters an error that it can not recover from, it sends the message:

cannot recover from earlier errors — goodbye!
and then terminates.

Lint limits the number of code errors that it detects to 30. Once 30 errors have been found in the
source file(s), any additional error causes the message:

too many errors

to be sent to the standard error file, and lint terminates. Because of this limitation and Zint’s inability
to recover from some errors, the compiler should be used for error detection. Once the error-
causing code has been corrected, lint can be used on the source code for finding some of its ineffi-
ciencies and bugs.



Problem Detection

The main purpose of lint is to find problem areas in C source code. The detected code may not be
considered an error by the C compiler; it can be converted into object code. However, lint con-
siders the code to be inefficient, nonportable, bad style, or a possible bug.

Comments about problems that are local to a function are produced when they are detected. They
have the form:

warning: <message text>

Information about external functions and variables is collected and analyzed after lint has processed
the files handed to it. At that time, if a problem has been detected, it sends a warning message with
the form:

<message text>
followed by a list of external names causing the message and the files where the problem occurred.

Code causing lint to issue a warning message should be analyzed to determine the source of the
problem. Sometimes the programmer has a valid reason for writing the problem code. Usually,
though, this is not the case. Lint can be very helpful in uncovering subtle programming errors.

Lint checks the source code for certain conditions, about which it issues warning messages. These
can be grouped into the following categories:

variable or function is declared but not used;
variable is used before it is set;

portion of code is unreachable;

function values are used incorrectly;

type matching does not adhere strictly to C rules;
code has portability problems;

code construction is strange;

code construction is obsolete.

PN AW

The code that you write may have constructions in it that /int objects to but that are necessary to its
application. Warning messages about problem areas that you know about and do not plan to
correct provide useless information and make helpful messages harder to find. There are two
methods for suppressing warning messages from lint that you do not need to see. The use of lint op-
tions is one. The lint command can be called with any combination of its defined option set. Each
option has lint ignore a different problem area. The other method is to insert lint directives into the
source code. Lint directives are discussed later.

Problem Code: Unused Variables and Functions

Lint objects if source code declares a variable that is never used or defines a function that is never
called. Unused variables and functions are considered bad style because their declarations clutter
the code. They can also be the cause of a program bug if their use is essential.

2 Lint



An unused local variable can result in one of two lint warning messages. If a variable is defined to
be static and is not used lint responds with:

warning: static variable <name> unused

Unused automatic variables cause the message:
warning: <name> unused in function <name>

A function or external variable that is unused causes the message:
name defined but never used

followed by the function or variable name and the file in which it was defined. Lint also looks at the
special case where one of the parameters of a function is not used. The warning message is:

warning: argument unused in function: <arg_name> in <func_name>
If functions or external variables are declared but never used or defined lint responds with
name declared but never used or defined

followed by a list of variable and function names and the names of files where they were declared.

Suppressing Lint

Sometimes it is necessary to have unused function parameters to support consistent interfaces
between functions. The —v option can be used with lint to have warnings about unused parameters
suppressed. However, the —v option does not suppress comments when parameters are defined as
register variables. Unused register variables result in an inefficient use of the computer’s resources,
since quick-access hardware is often allocated for their storage.

If Iint is run on a file which is linked with other files at compile time, many external variables and
functions can be defined but not used, as well used but not defined. If there is no guarantee that the
definition of an external object is always seen before the object is used, it is declared extern. The —u
option can be used to stop complaints about all external objects, whether or not they are declared
extern. If you want to inhibit complaints about only the extern declared functions and variables, use
the —x option.

Problem Code: Set/Used Information

A probable bug exists in a program if a variable’s value is used before it is assigned. Although lint at-
tempts to detect occurrences of this, it takes into account only the physical location of the code. If
code using a static or external variable is located before the variable is given a value the message
sent is:

warning: <name> may be used before set
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Since static and external variables are always initialized to zero this may not point out a program
bug. Lint also objects if automatic variables are set in a function but not used. The message given is:

warning: <name>> set but not used in function

Problem Code: Unreachable Code

Lint checks for three types of unreachable code. Any statement following a goto, break, continue,
or return statement must either be labeled or reside in an outer block for lint to consider it
reachable. If neither is the case, lint responds with:

warning: statement not reached
The same message is given if lint finds an infinite loop. It only checks for the infinite loop cases of
while(1) and for(;;). The third item that /int looks for is a loop that cannot be entered from the top.
If one is found then the message sent is:

warning: loop not entered from top
Lint's detection of unreachable code is by no means perfect. Warning messages can be sent about
valid code. It can also overlook commenting on code that cannot be reached. An example of this is

the fact that lint does not know if a called function ever returns to the calling function (e.g. exit). Linz
does not identify code following such a function call as being unreachable.

Suppressing Lint

Programs that are generated by yacc or lex can have many unreachable break statements. Normal-
ly, each one causes a complaint from /intz. The —b option can be used to force lint to ignore un-
reachable break statements.

Problem Code: Function Value

The C compiler allows a function containing both the statement
return();

and the statement
return(expression);

to pass through without complaint. Linz, however, detects this inconsistency and responds with the
message:

warning: function <name> has return(e); and return;
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Problem Code: Type Matching

The C compiler does not strictly enforce the C language’s type matching rules. At the loss of some
type checking, the C compiler gains speed. An important role of lint is to enforce the type checking
that the compiler neglects. It does this in four areas:

pointer types;

long and int type matching;
enumerations;

operations on structures and unions.

W

The types of pointers used in assignment, conditional, relational, and initialization statements must
agree exactly. For example, the code:

int ¥p;
char *q;

pP=q;
would cause linz to respond with the message:
warning: illegal pointer combination

Adding and subtracting integers and pointers are legal. Any other binary operation on them results
in the message:

warning: illegal combination of pointer and integer: op <operator>
An example of code causing this message would be:

ints, *#t;°

t=s;

Assignments of long integer variables to integer variables are possible in the C language. However,
on some machines the amount of storage supplied for the two types differs, and so the accuracy of a
value could be lost in the conversion. Lint detects these assignments as possible program bugs. If a
long integer is assigned to an integer, lint responds with:

warning: conversion from long may lose accuracy

Lint checks enumerations to see that variables or members are all of one type. Also, the only
enumeration operations it allows are assignment, initialization, equality, and inequality. If lint finds
code breaking any of these guidelines, it sends the message:
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warning: enumeration type clash, operator <operator>

Structure and union references are subject to more type checking by lint than by the C compiler.
Lint requires that the left operand of —> be a pointer to a structure or a union. If it isn’t a pointer,
lint’s response is:

warning: struct/union or struct/union pointer required

The left operand of . must be a structure or a union, which lint also indicates with the message
above. The right operand of —> and . must be a member of the structure or union implied by the
left operand. If itisn’t then lint's message is: :

warning: illegal member use <name>

where <name>> is the right operand.

Suppressing Lint

You may have a legitimate reason for converting a long integer to an integer. Lint's —a option inhi-
bits comments about these conversions.

Problem Code: Portability

Lint aids the programmer in writing portable code in five areas:

character comparisons;
pointer alignments;
uninitialized external variables;
length of external variables;
type casting.

gk L=

Character representation varies on different machines. Characters may be implemented as signed
values or as unsigned values. As a result, certain comparisons with characters give different results
on different machines. The expression

c<0
where c¢ is defined as type character, is always true if characters are unsigned values. If, however,
characters are signed values the expression could be either true or false. Where character compar-

isons could result in different values depending on the machine used, lint outputs the message:

warning: nonportable character comparison
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Legal pointer assignments are determined by the alignment restrictions of the particular machine
used. For example, one machine may allow double precision values to begin on any integer boun-
dary, but another may restrict them to word boundaries. If integer and word boundaries are dif-
ferent, code containing an assignment of a double pointer to an integer pointer could cause prob-
lems. Lint attempts to detect where the effect of pointer assignments is machine dependent. The
warning that it sends is:

warning: possible pointer alignment problem

Another machine dependent area is the treatment of uninitialized external variables. If two files
both contain the declaration

int a;
either one word of storage is allocated or each occurrence receives its own word of storage, depen-
ding on the machine. If the files that linz is processing contain multiple definitions of the same unini-
tialized external variable, lint responds with:

warning: <name> redefinition hides earlier one
The amount of information about external symbols that is loaded depends on the machine being
used: the number of characters saved and whether or not upper/lower case distinction is kept. Lint
truncates all external symbols to six characters and allows only one case distinction. (It changes up-
per case characters to lower case.) This provides a worst-case analysis so that the uniqueness of an
external symbol is not machine dependent.
The effectiveness of type casting in C programs can depend on the machine that is used. For this

reason, lint ignores type casting code. All assignments that use it are subject to lin’s type checking
(see Problem Code: Type Matching).

Suppressing Lint
The —p option stops comments about two types of portability problems:

1. pointer alignment problems,
2. multiple definitions of external variables.

Lint's objections to legal casts can also be suppressed. To do so, use its —c option.

Problem Code: Strange Constructions
A strange construction is code that lint considers to be bad style or a possible bug.

Lintlooks for code that has no effect. An example is:

*p+ +;
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where the # has no effect. The statement is equivalent to "p+ +;". In cases like this the message:
warning: null effect

is sent.

The treatment of unsigned numbers as signed numbers in comparisons causes lint to report:
warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;

f(x<0) ..

Lint also objects if constants are treated as variables. If the boolean expression in a conditional has
a set value due to constants, such as

if(1!=10) ...

lint’s response is:
warning: constant in conditional context

If the NOT operator is used on a constant value, the response is:
warning: constant argument to NOT

To avoid operator precedence confusion, lint encourages using parentheses in expressions by sen-
ding the message:

warning: precedence confusion possible; parenthesize!

Lint judges it bad style to redefine an outer block variable in an inner block. Variables with different
functions should normally have different names. If variables are redefined, the message sent is:

warning: <name>> redefinition hides earlier one

Suppressing Lint
To stop lin's comments about strange constructions, use its —h option.
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Problem Code: Obsolete Constructions
C contains two forms of old syntax which, through the evolution of the language, are now officially

discouraged. One is a group of assignment operators. Previously acceptable = +, =— =%, =/,
=%, =<<, =>> =&, =", and =| have been changed to + =, —=, *= /=, %=, <<=,
>>= &=, "=, and | =. lf lint sees the older form, it responds with:

warning: old-fashioned assignment operator
The second syntax change deals with initialization. An older version of C allowed:
intaO;

to initialize a to zero. Initialization now requires that an equals sign appear between the variable and
the value it is to receive:

inta = 0;
Lint’s response to the earlier version is:

warning: old-fashioned initialization: use =
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Howto UseLint

To use lint, you must be logged into the HP-UX system and have a shell prompt on your screen.
From here you can run lint on a single C source file:

$ lint filename.c
or on several source files which are to be linked together:
$ lint file1.c file2.c file3.c
The reappearance of your shell prompt after invoking lint tells you that lint has finished processing

your files. If no messages were sent to your standard error file, /int found nothing wrong with your
code.
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Directives

The alternative to using options to suppress lint’s comments about problem areas is to use direc-
tives. Directives appear in the source code in the form of code comments. Lint recognizes five direc-

tives.

/#NOTREACHED %/

/#NOSTRICT */

/#*ARGSUSED#*/

/#VARARGSn*/

/#LINTLIBRARY #/

stops an unreachable code comment about the next line of code.
stops lint from strictly type checking the next expression.
stops a comment about any unused parameters for the following function.

stops lint from reporting variable numbers of parameters in calls to a func-
tion. The function’s declaration follows this comment. The first n
parameters must be present in each call to the function; lint comments if
they aren’t. If "/#*VARARGS#*/" appears without the n, none of the
parameters need be present.

must be placed at the beginning of a file. This directive tells linz that the file is

a library file and to suppress comments about unused functions. Lint objects
if other files redefine routines that are found there.
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Option List

The following is a list of the options available when using lint:

-a suppress complaints about assignments of integers to longs and of longs to integers.

-b suppress complaints about unreachable break statements.

—C suppress complaints about legal casts. Without this option typecasting is ignored.

-h suppress complaints about legal but strange constructions (see Problem Code: Strange Con-
structions).

-n do not check the compatibility of code against any libraries (standard and portable lint li-
braries, directive-defined libraries).

-p suppress some portability checks (see Problem Code: Portability).

-u suppress complaints about externals (functions and variables) that are used but not defined,
or that are defined but not used (see Problem Code: Unused Variables and Functions, Prob-
lem Code: Set/Used Information).

-v suppress complaints about unused function parameters. If a parameter is unused and is also
declared as a register variable, the warning is not suppressed.

—X suppress complaints about unused variables with external declarations (see Problem Code:
Set/Used Information).

—Dname[ = def]
define the string name to linz, as if a #define control line were used. If no definition is given,
then name is given the value 1. This option is also used by the C compiler.

—Uname
remove any initial definition of name, as if a #undef control line were used. This option is
also used by the C compiler.

~Idir  change the algorithm for searching for #include files whose names do not begin with "/*.

The dir directory is searched before the directories on the standard list. Thus, #include files
whose names are enclosed in double quotes (" ") are searched for first in the directory of
the source file, then in the directory specified by each —I option, and finally in the directories
on the standard list. If a #include file’s name is enclosed in angle brackets (<>), the source
file’s directory is not searched. This option is also used by the C compiler.
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MC68000 Assembler on HP-UX

Instruction Format

In General

Assembly instructions are written one per line. Mnemonic operation codes (opcodes) and
register symbols must be written in lower case. Upper and lower case characters may not be
used interchangeably, that is, it is a case sensitive assembler. Instructions are free format with
respect to spaces.

If a label is present, it must start in column one of the line. The opcode must start in column two
or later. Blanks are not permitted within the operand field. The first blank encountered after the
start of the operand field begins the comment field.

Label move alsaZl comment field

A ““*” in column one indicates a comment.

*

* These are comments.
*

Symbols

Symbols must begin with an alphabetic character, but may contain letters, numbers, €, $ and _.
Symbols may contain any number of characters. The restriction is that each instruction must be
contained on one line.

* is a symbol having the value of the program counter.

Register symbols are those used to refer to the predefined registers. They are a0...a7, 40...47,
sp, pc, cor, and sr.

Local Labels

Alocal label has the form <digit>%. A local label may be used to label any machine instruction.
Any number of occurrences of the same local label may occur within an assembly source file.
When a local label is referenced, the reference will refer to the nearest declaration of the local
label.



Opcodes

Most opcodes and their syntaxes are defined in the MC68000 User’s Manual. Size suffixes are only
allowed for those operations which include a size field in the instruction and for the conditional
branch tcc. In addition to the opcodes listed in the manual, the Series 200 will recognize some
variants. For the tc ¢ instruction the form Jce may be used. Also, .t s r may be used in place of
bsr. In these cases, the assembler will decide the appropriate size for the instruction. No size
suffix can be used.

Size Suffixes

Size suffixes are used in the language to specify the size of the operand in the instruction,
including addressable locations and registers. All instructions which can operate on more than
one data size will assume the default size of word (16 bits) unless a size suffix is used. Size
suffixes can also be appended to address register specifications when used in indexed addres-
sing. Operand sizes are defined as follows:

Suffix | Data Unit | Bits
b byte 8
W word 16
1 long 32

Expressions

Expressions are evaluated in left to right order, and parentheses are permitted. Symbols which
refer to defined labels are permitted in expressions. The value of these symbols is their relative
value within the assembled code. The only operations which can be done on these symbols are
addition and subtraction. One label can be subtracted from another; the result is an absolute
value. A label can be added to an absolute value but not to another symbol. The allowed
operators are:

Operator Operation

+ Addition
Subtraction
Multiplication
Division

Modulus

Bitwise or

Bitwise and
Bitwise exclusive or
Shift left

Shift right

PR - NN K
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Pseudo-Op Syntax And Semantics

The following is a list of the commands which direct the assembler to take the described actions. For
a list of the machine commands, see the MC68000 User’s Manual.

align <name>,<modulus>

Create a global symbol of type align. When the loader sees this symbol it will create a hole
beginning at symbol <name> whose size will be such that the next symbol will be aligned on a
<modulus> boundary.

asciz ’<string>’
Put a null terminated <string> into the code at this point.

bss
Put the following assembly into the uninitialized data segment.

comm <name>,<size>
Create a global symbol <name>, put it in the bss segment with size <size>.

data
Place the following assembly in the initialized data segment.

dc[.b|.w|.1] <expr>|<string>’[,<expr>|"<string>’]

Place the list of expressions <expr> or strings <string> into the code at this point. Size suffixes
may be used to specify the units of storage into which the values will be placed. Default is word.
In the case of string literals, the amount of storage needed will be determined by the assembler
and each character will be assigned into a unit.

ds[.bl.w|.1] <expr>
The units of space are specified by the size suffix. The number of units is determined by the
expression.

equ <expr>
Assigns the value and attributes of the expression to the label.

even
Forces even word alignment.

globl <name>[,<name>]...
Declares the list of names to be global symbols.

include “<name>""|<<name>>
Specifies a file to be merged into the assembly at the point where the instruction is located. The

file will be searched for according to the conventions of C (see manual page for cc).

text
Place the following assembly in the code segment.
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Interfacing Assembly Routines

In order to know how to use the assembler effectively, it will be necessary to know how to
interface to the various higher level languages that the HP-UX Series 200 supports.

Linking

In order for a symbol to be known externally it must be declared in a g1 ot 1 statement. It is not
necessary for a symbol defined externally to be declared in a module. If a symbol is not defined,
it is assumed to be externally defined. It is, however, recommended that all external symbols be

declared in a 910b1 statement, since this will avoid possible name confusion with local sym-
bols.

Calling Conventions

All languages currently supported on the Series 200 follow certain conventions regarding the
calling of subroutines. These conventions must be followed in order to call or be called by a
higher level language.

The calling conventions can be summarized as follows:
® Parameters are pushed in reverse order and taken off in the same order as the procedure
call;
® The calling routine pops the parameters from the stack upon return;
® The called routine saves and restores the registers it uses (except d0, d1, a0, al);
® Function results are generally returned in d0, d1;

® st ., b required for all stack space used plus that required for the link of any routine called,
and

® 1ink/unlk instructions are used to allocate local data space and to reference parameters.

These conventions can be more easily understood by means of an example. The best would be
to examine the code output by the compiler to do this. This can be easily done using C since it
outputs assembly language instructions. Consider the following C program.

main()
{
test(1,2)3
¥
test (isd)
redister int i J3

{
int Kj
K = i + Jj
return Ki
¥
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It will produce the following assembly language instructions.

1 data

2 text

3 dlobl —main

4 _main

5 link aB#-__F1

6 tst.b -._-M1-8(a?7)
7 movem,1l #__81,-__F1(aB)
8 mouve.l #24-(s5P)

9 movesl #1,-(sp)

10 dbsr ~test

11 adda #Bysp

12 Jra Liz

13 Liz un 1k aB

14 rts

15 __F1 esau 0

16 _-51 eau 0

17 M1  esu 0

18 data

19 text
20 globl ~test

21 _test

22 link abi#-__F2
23 tst.h -__M2-8B(a7)
24 mouem.l #__8Zs-__FZ(aB)
25 move,l 8(aB) d7
26 move.l 12(aB)dB
27 move,l d7+d0
28 add., 1 d6 »d0

29 move.l d0,-4(aB)
30 move.,l -d(aB) ,d0
31 Jra Li4

32 dra Li4

33 Li4 movem.,1l -__FZ(aB), %192
34 unlk ab

35 rts

36 __F2 eaqy 12
37 --82 eau 19z

38 __MZ  esu 0

39 data

Things to note are that when the parameters are pushed by the calling routine (_main), the
second parameter is pushed first and the first parameter is pushed second (lines 8 and 9). When
the called routine (_test) goes to access the parameters (lines 25 and 26), it finds the first
parameter first on the stack and the second parameter second. Line 25 accesses the first
parameter and line 26 accesses the second parameter.
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Also note that the stack is popped upon return from the subroutine (line 11) and not by the
subroutine itself. Since the called routine makes use of 45 and 47, it pushes those registers on
the stack (line 24) and then pops them (line 33) before it returns.

The function result is placed in 40 before returning (line 30). If the function returned a double
precision floating point number, that number would have been placed in 40 and d1.

A tst. b instruction (line 23) is needed before any use is made of stack space in any assembly
language routine. The t st . b makes sure that there is enough stack space for this routine. If the
test fails, the operating system can detect this and get more stack space for the process. If the
test is not done, the program may die unnecessarily with a segmentation violation. The amount
of space that must be tested for is the sum of:

® The amount of space taken by the link instruction;
® The greatest amount of space used for any parameters that may be pushed,;
® The constant 8 to account for subroutine jumps and the link which that routine may do.

C and other higher level languages use the link and unlk instructions (lines 22, 34) in all
routines. The link instruction is used to allocate local data space and to allow a constant
reference point for accessing parameters. The following illustration shows what happens when
the link instruction on line 22 is executed.

Before the link:

8(sp) value of j

4(sp) value of i

(sp)| return address

After the link:

12(ab) value of j

8(ab) value of i

4(ab) | return address

(ab) old (ab)

—4(ab) value of k (sp)

Note how the parameter i is accessed on line 25. On line 29 the local variable k is set. The link
instruction is not necessary in assembly language code. If it is not there, however, the routine
will not show up in a stack backtrace from adb. If a 1ink instruction is done, an ur 1k must be
done before returning.
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Language Dependencies

C

In C, all variables and functions declared by the user are prefixed with an underbar. Thus, a
variable named test in C would be known as _t e st at the assembly language level. All global
variables can be accessed through this name using a long absolute mode of addressing. C will
always push a four-byte quantity on the stack for pointers and any form of integer (char, short,

long). C will always push eight bytes for a floating point number (floats are converted to
double).

Fortran
Fortran uses the same naming convention as C, and externals can be accessed in the same
fashion. Fortran will always push the address of its parameter for user-defined functions.

Pascal

In Pascal, any exported user-defined function is prefixed by the module name surrounded by
underbars. For Pascal, then, a function named funk in module test would be known as
~test_funk to an assembly language programmer. If a procedure is declared external as in:

procedure proci externals
all calls to rroc will emit a reference to _rproc.
Global variables are accessed as a 32-bit absolute relative to the global base. In the example
below, the global variable i1 would be accessed as:

moue,l test+Oxd,doO

Following is the example:

Pascal [Reuv Z.1Ma 4/19/83] test.p Pagde 1
1:D O $list ‘test.l’stables$
2:D O Prodram tests
3:D 1 var
4:D 8 1 il14+i2: inteders
5:D 1 procedure pj
6:D 2 var
7:D -4 2 Ji inteder;
8:C 2 bedin
Dump of P
J var lev= 042 addr=-00000004 local
P dump compPplete
9:C 2 end s
10:C 1 bedin
Dump of TEST
il var leuv= 0d1l addr=00000004 londabs dlobalbase = test
iz var leu= 0d1 addr=00000000 londabks dlobalbase = test
P proc lev= 0dl entry: 00000000
test proc leu= 0d0 entry: 00000012
TEST dump complete
11:C 1 end.
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Pascal will always push a four-byte quantity on the stack for pointers and integers. For a
user-defined function, any parameter greater than four bytes will be passed as an address.

The manual pages for these compilers should be consulted for further information. Assembly
listings can be generated by C and Fortran. These can be consulted to get valuable information.
The only current means for looking at the code generated by Pascal is through the debugger
adb.
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Conversion from the
Pascal Language System (PLS)

A translator (atrans) is provided to assist in converting from PLS assembly language to HP-UX
assembly language syntax. All code to be ported should be run through the translator first.
Lines that will require human intervention will be noted by the translator. To see exactly what
the tasks are that it performs, check the manual page.

atrans will not detect or alter parameter passing conventions which are pushed in the opposite
order on PLS.

as assumes rorg O for all assemblies. as does not generate relative references to external
symbols; all external references are absolute. As such, code size can increase when being
ported from the PLS to HP-UX.

as does not have support for Pascal modules.

as will accept the same syntax as the PLS assembler for all machine instructions with these
exceptions:

Additions:
® as will accept Jcc where cc is a condition code accepted by tcc. In this case, as will
decide the length of the instruction required.

® as will accept a greater number of operators for expressions. Parentheses are permitted
within expressions.

® as will accept an immediate operand for the register list in a mo v em instruction. Needed for
compiler.

® as will allow numeric value for displacement as in 1Z(rc yd6). Needed for compiler.
® as will accept <digit>$ to specify a local label.

Differences:
® as is a case-sensitive assembler. All opcodes and register names must be listed in lower
case.

® as accepts (rc) to specify pc-relative references. This is the only way to specify pc-
relative.

® The PLS assembler will assume pc with index in some cases for a parameter of the form
8(a0). as will not.

The greatest differences occur in the pseudo-ops that are supported. The only PLS pseudo-ops

that are supported are dc, ds, eau, and include. The translator will handle some of the other
pseudo-ops, but others will have to be handled by hand.
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Ratfor: A Preprocessor
for a Rational FORTRAN

Although FORTRAN is not a pleasant language to use, its universality and relative efficiency
maintain its position in the computer market. The Ratfor language, by providing control flow
statements, attempts to conceal the main deficiencies of FORTRAN while retaining its desirable
qualities. The Ratfor preprocessor converts input code into FORTRAN output code. The facilities
provided include:

o Statement grouping

® If-else and switch for decision-making

® While, for, do, and rereat-until for looping

® Break and next for controlling loop exits

® Free-form input such as multiple statements/lines, and automatic continuation
® Simple comment convention

® Translation of >, > =, etc., into .gt., .ge., etc.

® Return function for functions

® Define statement for symbolic parameters

® Include statement for including source files.



Introduction

Most programmers agree that FORTRAN is an unpleasant language to program in, yet there are
many occasions when they are forced to use it, especially when FORTRAN is the only language
thoroughly supported on the local computer, or the application requires intensive computation.

FORTRAN’s worst deficiency is probably in control flow statements, conditional branches and
loops, that express the logic of program flow. For example, FORTRAN’s primitive conditional
statements force the user into at least two statement numbers and two implied GoT0s to handle a
single arithmetic IF. This leads to unintelligible code that is eschewed by good programmers.

The Logical IF is better, in that the test part can be stated clearly, but hopelessly restrictive because
the statement that follows the IF can only be one FORTRAN statement (with some further restric-
tions!). And of course there can be no ELSE part to a FORTRAN IF: there is no way to specify an
alternative action if the IF is not satisfied.

The FORTRAN b0 restricts the user to going forward in an arithmetic progression. lt is fine for ““1 to
N in steps of 1 (or 2 or ...)”, but there is no direct way to go backwards, or even (in ANSI
FORTRAN) to go from 1 to N-1. And of course the D0 is useless if one’s problem doesn’t map into
an arithmetic progression.

The result of these failings is that FORTRAN programs must be written with numerous labels and
branches. The resulting code is particularly difficult to read and understand, and thus hard to debug
and modify.

When one is faced with an unpleasant language, a useful technique is to define a new language that
overcomes the deficiencies, and to translate it into the unpleasant one with a preprocessor. This is
the approach taken with Ratfor (The preprocessor idea is not new, and FORTRAN preprocessors
are widely used).
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Language Description

Design

Ratfor attempts to retain the merits of FORTRAN (universality, portability, efficiency) while hiding
the worst FORTRAN inadequacies. The language is FORTRAN except for two aspects. First, since
control flow is central to any program, regardless of the specific application, the primary task of
Ratfor is to conceal this part of FORTRAN from the user, by providing decent control flow struc-
tures. These structures are sufficient and comfortable for structured programming in the narrow
sense of programming without GOTO's. Second, since the preprocessor must examine an entire
program to translate the control structure, it is possible at the same time to clean up many of the
“cosmetic” deficiencies of FORTRAN, and thus provide a language which is easier and more
pleasant to read and write.

Beyond these two aspects — control flow and cosmetics — Ratfor does nothing about the host of
other weaknesses of FORTRAN. Although it would be straightforward to extend it to provide
character strings, for example, they are not needed by everyone, and of course the preprocessor
would be harder to implement. Throughout, the design principle which has determined what
should be in Ratfor and what should not has been Ratfor doesn’t know any FORTRAN. Any
language feature which would require that Ratfor really understand FORTRAN has been omitted.
We will return to this point in the section on implementation.

Even within the confines of control flow and cosmetics, we have attempted to be selective in what
features to provide. The intent has been to provide a small set of the most useful constructs, rather
than to throw in everything that has ever been thought useful by someone.

The rest of this section contains an informal description of the Ratfor language. The control flow
aspects will be quite familiar to readers used to languages like Algol, PL/I, Pascal, etc., and the
cosmetic changes are equally straightforward. We shall concentrate on showing what the language
looks like.

Statement Grouping
FORTRAN provides no way to group statements together, short of making them into a subroutine.
The standard construction ““if a condition is true, do this group of things,” for example,
if (x » 100)
{ call error("x>100")3 err = 1§ return %

cannot be written directly in FORTRAN. Instead a programmer is forced to translate this relatively
clear thought into murky FORTRAN, by stating the negative condition and branching around the
group of statements:

if (x +le. 100) doto 10
call error(Shx>100)
err = 1
return
10

When the program doesn’t work, or when it must be modified, this must be translated back into a
clearer form before one can be sure what it does.
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Ratfor eliminates this error-prone and confusing back-and-forth translation; the first form is the way
the computation is written in Ratfor. A group of statements can be treated as a unit by enclosing
them in the braces { and }. This is true throughout the language: wherever a single Ratfor statement
can be used, there can be several enclosed in braces. (Braces seem clearer and less obtrusive than
begin and end or do and end, and of course do and end already have FORTRAN meanings.)

Cosmetics contribute to the readability of code, and thus to its understandability. The character
“>" is clearer than ‘““GT.”, so Ratfor translates it appropriately, along with several other similar
shorthands. Although many FORTRAN compilers permit character strings in quotes (like
nuny»100" "), quotes are not allowed in ANSI FORTRAN, so Ratfor converts it into the right
number of H's because computers count better than people do.

Ratfor is a free-form language: statements may appear anywhere on a line, and several may appear
on one line if they are separated by semicolons. The example above could also be written as
if (x » 100) {
call error("x>100")
err = 1
return
¥

In this case, no semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or otherwise), no braces
are needed:

if (v <= 0,0 & z <= 0.,0)
write(By 20) vy z

No continuation need be indicated because the statement is clearly not finished on the first line. In
general Ratfor continues lines when it seems obvious that they are not yet done. (The continuation
convention is discussed in detail later.)

Although a free-form language permits wide latitude in formatting styles, it is wise to pick one that is
readable, then stick to it. In particular, proper indentation is vital, to make the logical structure of the
program obvious to the reader.

The “else” Clause

Ratfor provides an “‘else”’ statement to handle the construction “if a condition is true, do this thing,
otherwise do that thing.”

if (a <= b)

{ sw = 0§ write(By 1) as b 3
else

{ sw =17 write(B6y 1) by a }

This writes out the smaller of a and b, then the larger, and sets sw appropriately.
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The FORTRAN equivalent of this code is circuitous indeed:

if (a +d4t. b) doto 10
sw = 0
write(By 1) ar» b
doto 20
10 sw =1
write(By 1) by a
20

This is a mechanical translation; shorter forms exist, as they do for many similar situations. But all
translations suffer from the same problem: since they are translations, they are less clear and
understandable than code that is not a translation. To understand the FORTRAN version, one must
scan the entire program to make sure that no other statement branches to statements 10 or 20
before one knows that indeed this is an if-else construction. With the Ratfor version, there is no
question about how one gets to the parts of the statement. The if-else is a single unit, which can be
read, understood, and ignored if not relevant. The program says what it means.

As before, if the statement following an if or an else is a single statement, no braces are needed:
if (a <= b)
sw o= 0
else
sw o= 1

Thie syntax of the if statement is

it (<legal FORTRAN condition>)
Ratfor statement

else
Ratfor statement

where the else part is optional. The <legal FORTRAN condition> is anything that can legally go
into a FORTRAN Logical 1F. Ratfor does not check this clause, since it does not know enough
FORTRAN to know what is permitted. The Ratfor statement is any Ratfor or FORTRAN statement,
or any collection of them in braces.

Nested ifs

Since the statement that follows an if or an else can be any Ratfor statement, this leads immediately
to the possibility of another if or else. As a useful example, consider this problem:

The variable fis to be set to —1 if x is less than zero, to +1 if x is greater than 100, and to O
otherwise. In Ratfor, we write

if (x < 0)
f= -1
else if (x » 100)
f o= +1
else
f =0

Here the statement after the first else is another if-else. Logically it is just a single statement,
although it is rather complicated.
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This code says what it means. Any version written in straight Fortran will necessarily be indirect
because Fortran does not let you say what you mean. And as always, clever shortcuts may turn out
to be too clever to understand a year from now.

Following an else with an ifis one way to write a multi-way branch in Ratfor. In general the structure

if (i)

else if (444)

else if (444)

else

provides a way to specify the choice of exactly one of several alternatives. (Ratfor also provides a
switch statement which does the same job in certain special cases; in more general situations, we
have to make do with spare parts.) The tests are laid out in sequence, and each one is followed by
the code associated with it. Read down the list of decisions until one is found that is satisfied. The
code associated with this condition is executed, and then the entire structure is finished. The trailing
else part handles the ““‘default” case, where none of the other conditions apply. If there is no default
action, this final else part is omitted:
if (x £ 0)
x = 0
else if (x » 100)
x = 100

If-else Ambiguity
There is one thing to notice about complicated structures involving nested i and elses. Consider
it (x> 0)
it (v >0
write(Bs 1) x» ¥
else

write(Bs 2) v
There are two ifs and only one else. Which if does the else go with?
This is a genuine ambiguity in Ratfor, as it is in many other programming languages. The ambiguity
is resolved in Ratfor (as elsewhere) by saying that in such cases the else goes with the closest

previous elseed un-if. Thus in this case, the else goes with the inner if, as we have indicated by the
indentation.
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It is a wise practice to resolve such cases by explicit braces, just to make your intent clear. In the case
above, we would write

if (x » 0) {
if (v > 0)
write(By 1) x» v
else

write(Gy 2) v
}

which does not change the meaning, but leaves no doubt in the reader’s mind. If we want the other
association, we must write

if (x » 0) {
if (v 2 0)
write(By 1) xs v

else
write(Gs 2) v

The “switch” Statement

The switch statement provides a clean way to express multi-way branches which branch on the
value of some integer-valued expression. The syntax is

switch (<expression>) {
case <exprl>:
statements
case <expr2>, <expr> :
statements

default:
statements
}

Each case is followed by a list of comma-separated integer expressions. The <expression> inside
switch is compared against the case expressions <exprl>, <expr2>, and so on in turn until one
matches, at which time the statements following that case are executed. If no cases match
<expression>, and there is a default section, the statements with it are done; if there is no default,
nothing is done. In all situations, as soon as some block of statements is executed, the entire switch
is exited immediately. (Readers familiar with C should beware that this behavior is not the same as
the C switch.)
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The “do’’ Statement

The do statement in Ratfor is quite similar to the 00 statement in FORTRAN, except that it uses no
statement number. The statement number, after all, serves only to mark the end of the D0, and this
can be done just as easily with braces. Thus

do i =1y mn {

x(i) = 0.0

y(i) = 0,0

(i) = 0,0

¥
is the same as

do 101 = 1y n
x(i) = 0,0
y(i) = 0,0

2 (1) 0.0

10 continue

The syntax is:

do <legal FORTRAN text>
Ratfor statement

The part that follows the keyword do has to be something that can legally go into a FORTRAN po
statement. Thus if a local version of FORTRAN allows DO limits to be expressions (which is not
currently permitted in ANSI FORTRAN), they can be used in a Ratfor do.

The Ratfor statement part will often be enclosed in braces, but as with the if, a single statement need
not have braces around it. This code sets an array to zero:

do i = 1sm
x{i) = 0,0

Slightly more complicated,

do i =1ym
do J = 1s»m
m{iy J) = 0

sets the entire array m to zero, and

do i =1y
do J = 1y m
if (i ¢ J)
m{is J)
else if (i =
m(iy J)
else
m(iy J) = +1

-1
J)
0

wonoun

sets the upper triangle of m to —1, the diagonal to zero, and the lower triangle to +1. (The
operator = = is “‘equals”’; that is, “.EQ.”.) In each case, the statement that follows the do is
logically a single statement, even though complicated, and thus needs no braces.
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“Break’ and “next”

Ratfor provides a statement for leaving a loop early, and one for beginning the next iteration. Break
causes an immediate exit from the do; in effect it is a branch to the statement after the d4o. Next is a
branch to the bottom of the loop, so it causes the next iteration to be done. For example, this code
skips over negative values in an array:

do i =1y n {
if (x(i) < 0.,0)
next
<process positive element>
}

Break and next also work in the other Ratfor looping constructions discussed in the next few
sections.

Break and next can be followed by an integer to indicate breaking or iterating that level of enclosing
loop; thus

break 2

exits from two levels of enclosing loops, and Break 1 is equivalent to break. next 2 iterates the
second enclosing loop. (Realistically, multi-level t reaks and nexts are not likely to be much used
because they lead to code that is hard to understand and somewhat risky to change.)

The “while’” Statement

One of the problems with the FORTRAN D0 statement is that it generally insists upon being done
once, regardless of its limits. If a loop begins

DOI =21

this will typically be done once with [ set to 2, even though common sense would suggest that
perhaps it shouldn’t be. Of course a Ratfor do can easily be preceded by a test
if (J <= K
do i = Jy» kK A

}
but this has to be a conscious act, and is often overlooked by programmers.
A more serious problem with the D0 statement is that it encourages that a program be written in
terms of an arithmetic progression with small positive steps, even though that may not be the best

way to write it. If code has to be contorted to fit the requirements imposed by the FORTRAN Do, it is
that much harder to write and understand.
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To overcome these difficulties, Ratfor provides a while statement, which is simply a loop: “‘while
some condition is true, repeat this group of statements’. It has no preconceptions about why one is
looping. For example, this routine to compute sin(x) by the Maclaurin series combines two termina-
tion criteria.
real function sin(xs e)
# returns sin{x) to accuracvy es by

# sin(x) = x - x*%¥3/3! + x*¥*5/5! - ..,
sin = x
term = X
i =3
while (abs(term)>e & i4100) {
term = -term % x¥%¥2 / float(i*(i-1))
sin = sin + term
i=1+ 2
+
return
end

Notice that if the routine is entered with term already smaller than e, the loop will be done zero
times, that is, no attempt will be made to compute x#*#3 and thus a potential underflow is avoided.
Since the test is made at the top of a while loop instead of the bottom, a special case disappears:
the code works at one of its boundaries. (The test i<100 is the other boundary, making sure the
routine stops after some maximum number of iterations.)

As an aside, a sharp character “#’’ in a line marks the beginning of a comment; the rest of the line is
comment. Comments and code can co-exist on the same line — one can make marginal remarks,
which is not possible with FORTRAN’s “C in column 1”’ convention. Blank lines are also permitted
anywhere (they are not in FORTRAN); they should be used to emphasize the natural divisions of a
program.

The syntax of the while statement is

while (legal FORTRAN condition)
Ratfor statement

As with the if, legal FORTRAN condition is something that can go into a FORTRAN Logical IF, and
Ratfor statement is a single statement, which may be multiple statements in braces.

The while encourages a style of coding not normally practiced by FORTRAN programmers. For
example, suppose nextch is a function which returns the next input character both as a function
value and in its argument. Then a loop to find the first non-blank character is just

while (nextch(ich) == iblank)

.
K

A semicolon by itself is a null statement, which is necessary here to mark the end of the while; if it
were not present, the while would control the next statement. When the loop is broken, ich
contains the first non-blank. Of course the same code can be written in FORTRAN as

100 if (nextch(ich) .ea, iblank) doto 100

but many FORTRAN programmers (and a few compilers) believe this line is illegal. The language at
one’s disposal strongly influences how one thinks about a problem.
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The “for”’ Statement

The for statement is another Ratfor loop, which attempts to carry the separation of loop-body from
reason-for-looping a step further than the while. A for statement allows explicit initialization and
increment steps as part of the statement. For example, a D0 loop is just

for (i =15 i <= nj i =1 + 1)..

This is equivalent to

i=1
while (i <= n) {

The initialization and increment of i have been moved into the for statement, making it easier to see
at a glance what controls the loop.

The for and while versions have the advantage that they will be done zero times if n is less than 1;
this is not true of the do.

The loop of the sine routine in the previous section can be rewritten with a for as

for (i=3% abs(term) » e & 1 < 100§ i=i+2) {
term = -term % x*¥%2 / float(i*(i-1))
sin = sin + term

}

The syntax of the for statement is
for (<init>3 <condition> i <increment>)
Ratfor statement

<init> is any single FORTRAN statement that is executed once before the loop begins.

<increment> is any single FORTRAN statement, that gets done at the end of each pass through
the loop, before the test.

<condition> is, again, anything that is legal in a logical IF.

Any of <init>, <condition>, and <increment> can be omitted, although the semicolons must
always be present. A non-existent <condition> is treated as always true, so for(;;) is an indefinite
repeat (but see the repeat-until in the next section).

The for statement is particularly useful for backward loops, chaining along lists, loops that might be
done zero times, and similar things which are hard to express with a D0 statement, and obscure to
write out with 1Fs and coT0s. For example, here is a backwards D0 loop to find the last non-blank
character on a card:

for (i = BOY 1 » 03 i = 1 - 1)
if (card(i) != blank)
break
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(1= is the same as .NE. ). The code scans the columns from 80 through to 1. If a non-blank is found,
the loop is immediately broken break and next work in fors and whiles just as in dos). If i reaches
zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN 0, since the loop must go forward, and
we must explicitly set up proper conditions when we fall out of the loop. (Forgetting this is a
common error.) Thus:

DO 10 J =1, 80O
I =81 -J
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE

I =0

11

The version that uses the for handles the termination condition properly for free; i is zero when we
fall out of the for loop.

The increment in a for need not be an arithmetic progression; the following program walks along a
list (stored in an integer array ptr) until a zero pointer is found, adding up elements from a parallel
array of values:

sum = 0,0
for (i = firsti i » O3 i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the list is empty. Again, placing the test at the top of a loop
instead of the bottom eliminates a potential boundary error.

The “repeat-until” Statement

In spite of the dire warnings, there are times when one really needs a loop that tests at the bottom
after one pass through. This service is provided by the repeat-until:

repeat
Ratfor statement
until (legal FORTRAN condition)
The Ratfor statement part is done once, then the condition is evaluated.
If it is true, the loop is exited.
— If it is false, another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify an infinite loop.

Of course such a loop must ultimately be broken by some transfer of control such as stop, return, or
break, or an implicit stop such as running out of input with a READ statement.

It is a matter of observed fact that the repeat-until statement is much less used than the other

looping constructions; in particular, it is typically outnumbered ten to one by for and while. Be
cautious about using it, for loops that test only at the bottom often don’t handle null cases well.
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More on break and next

Break exits immediately from do, while, for, and repeat-until. Next goes to the test part of do, while
and repeat-until, and to the increment step of a for.

The “‘return” Statement

The standard FORTRAN mechanism for returning a value from a function uses the name of the
function as a variable. The variable is assigned by the program, and the last value stored in it is the
function value upon return. For example, here is a routine equal which returns 1 if two arrays are
identical, and zero if they differ. The array ends are marked by the special value —1.

# equal - compare strl to str2i
#
return 1 if equal, 0 if not
inteder function equal(strl, str2)
inteder str1(100)y str2(100)
inteder i
for (i = 1§ stri(i) == str2(i)j i = 1 + 1)
if (stri(i) == -1) {
equal = 1
return
}
equal = 0
return
end

In many languages (e.g., PL/I) one instead says

return ( <expression> )

to return a value from a function. Since this is often clearer, Ratfor provides such a return statement.
In a function £, return (expression) is equivalent to

{ F = <expression>; <return> }

For example, here is equal again:

# equal _ compare strl to strij
#
return 1 if eaquals O if not
inteder function equal(strl, str2)
inteder stri(100)y str2(100)
inteder i
for (i = 1§ strl(i) == str2(i)i 1 =1 + 1)
if (stri(i) == -1)
return(i)
return(0)
end

If there is no parenthesized expression after return, a normal RETURN is made. (Another version of
equal is presented shortly.)

Ratfor 13



Cosmetics

As previously stated, the visual appearance of a language has a substantial effect on how easy it is to
read and understand programs. Accordingly, Ratfor provides a number of cosmetic facilities which
may be used to make programs more readable.

Free-form Input

Statements can be placed anywhere on a line. Long statements are continued automatically, as are
long conditions in if, while, for, and until. Blank lines are ignored. Multiple statements may appear
on one line if they are separated by semicolons. No semicolon is needed at the end of a line if Ratfor
can make some reasonable guess about whether the statement ends there. Lines ending with any
of the characters

= + - * ? H 8 (

are assumed to be continued on the next line. Underscores are discarded wherever they occur; all
others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN label, and placed
in columns 1-5 upon output. Thus

write(By 100)§ 100 format("hello")

is converted into

write(By 100)
100 format(Shhello)

Translation Services

Text enclosed in matching single or double quotes is converted to rH. . . but is otherwise unaltered
(except for formatting — it may get split across card boundaries during the reformatting process).
Within quoted strings, the backslash (\) serves as an escape character: the next character is taken
literally. This provides a way to get quotes (and of course the backslash itself) into quoted strings:

A\

is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character (%) is left absolutely unaltered except for stripping off the
(%) and moving the line one position to the left. This is useful for inserting control cards, and other
things that should not be transmogrified (like an existing FORTRAN program). Use (%) only for
ordinary statements; not for the condition parts of if, while, etc.; or the output may be positioned
incorrectly.
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The following character translations are made, except within single or double quotes or on a line
beginning with a percent sign (%).

Input Translated output

== .eq.

I= .ne.

> at.

b= .ge.
It

(= le.

& .and.

! .or.

! .not.
.not.

In addition, the following translations are provided for input devices with restricted
character sets.

[ {
] }
$( {
$) }

The “define” Statement

Any string of alphanumeric characters can be defined as a name; thereafter, whenever that name
occurs in the input (delimited by non-alphanumerics) it is replaced by the rest of the definition line.
(Comments and trailing white spaces are stripped off). A defined name can be arbitrarily long, and
must begin with a letter.

Define is typically used to create symbolic parameters:

define ROWS 100
define COLS 50
dimension a(ROWS)s b(ROWS, COLS)
if (i » ROWS | J » COLS) ...
Alternately, definitions can be written as

define (ROWE, 100)

In this case, the defining text is everything after the comma up to the balancing right parenthesis;
this allows multi-line definitions.
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It is generally a wise practice to use symbolic parameters for most constants, to help make clear the
function of what would otherwise be mysterious numbers. As an example, here is the routine equal
again, this time with symbolic constants.

define YES 1

define NO O

define EOS -1

define ARB 100

# equal - compare strl to str2i

#

return YES if equals NO if not
inteder function eaual(strly str2)
inteder stri(ARB) s strZ(ARB)

inteder i
for (i = 13§ stri(i) == str2(i)i 1 = 1 + 1)
if (stri(i) == EOS)

return{YES)
return{(NO)
end

The “include” Statement
The statement
include file
inserts the file found on input stream file into the Ratfor input in place of the include statement.

The standard usage is to place coMMON blocks on a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end
subroutine v
include commonblockKs
end
This ensures that all copies of the caoMmon blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such as missing braces, else clauses without an if, and most
errors involving missing parentheses in statements. Beyond that, since Ratfor knows no FORTRAN,
any errors you make will be reported by the FORTRAN compiler, so you will from time to time
have to relate a FORTRAN diagnostic back to the Ratfor source.

Keywords are reserved. Using if, else, etc., as variable names will typically wreak havoc.

Don’t leave spaces in keywords. Don’t use the Arithmetic IF.

The FORTRAN rH convention is not recognized anywhere by Ratfor; use quotes instead.
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Experience
Good Things

“It's so much better than FORTRAN" is the most common response of users when asked how well
Ratfor meets their needs. Although cynics might consider this to be vacuous, it does seem to be true
that decent control flow and cosmetics converts FORTRAN from a bad language into quite a
reasonable one, assuming that FORTRAN data structures are adequate for the task at hand.

Although there are no quantitative results, users feel that coding in Ratfor is at least twice as fast as
in FORTRAN. More important, debugging and subsequent revision are much faster than in FOR-
TRAN. Partly this is simply because the code can be read. The looping statements which test at the
top instead of the bottom seem to eliminate or at least reduce the occurrence of a wide class of
boundary errors. And of course it is easy to do structured programming in Ratfor; this self-discipline
also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend to be as readable as
programs written in more modern languages like Pascal. Once one is freed from the shackles of
FORTRAN'’s clerical detail and rigid input format, it is easy to write code that is readable, even
esthetically pleasing. For example, here is a Ratfor implementation of a linear table search:

Alm+l) = x

for (i = 15 A(L) 1= x3 i = i + 1)
H

if (iorom) Ao
m = i
B(i) =1

}

else
B(i) = B(i) + 1

Bad Things

The biggest single problem is that many FORTRAN syntax errors are not detected by Ratfor but by
the local FORTRAN compiler. The compiler then prints a message in terms of the generated
FORTRAN, and in a few cases this may be difficult to relate back to the offending Ratfor line,
especially if the implementation conceals the generated FORTRAN. This problem could be dealt
with by tagging each generated line with some indication of the source line that created it, but this is
inherently implementation-dependent, so no action has yet been taken. Error message interpreta-
tion is actually not so arduous as might be thought. Since Ratfor generates no variables, only a
simple pattern of 1Fs and G0T0s, data-related errors like missing DIMENSION statements are easy to
find in the FORTRAN. Furthermore, there has been a steady improvement in Ratfor’s ability to
catch trivial syntactic errors like unbalanced parentheses and quotes.

There are a number of implementation weaknesses that are a nuisance, especially to new users. For
example, keywords are reserved. This rarely makes any difference, except for those hardy souls
who want to use an Arithmetic IF. A few standard FORTRAN constructions are not accepted by
Ratfor, and this is perceived as a problem by users with a large corpus of existing FORTRAN
programs. Protecting every line with a (%) is not really a complete solution, although it serves as a
stop-gap. The best long-term solution is provided by the program struct, which converts arbitrary
FORTRAN programs into Ratfor.
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Users who export programs often complain that the generated FORTRAN is ‘““‘unreadable’” because
it is not tastefully formatted and contains extraneous CONTINUE statements. To some extent this can
be ameliorated (Ratfor now has an option to copy Ratfor comments into the generated FOR-
TRAN), but it has always seemed that effort is better spent on the input language than on the output
esthetics.

One final problem is partly attributable to success; since Ratfor is relatively easy to modify, there are
now several dialects of Ratfor. Fortunately, so far most of the differences are in character set, or in
invisible aspects like code generation.

Conclusions

Ratfor demonstrates that with modest effort it is possible to convert FORTRAN from a bad language
into quite a good one. A preprocessor is clearly a useful way to extend or ameliorate the facilities of
a base language.

When designing a language, it is important to concentrate on the essential requirement of providing
the user with the best language possible for a given effort. One must avoid throwing in ‘‘features”;
things which the user may trivially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems pointless for Ratfor
to prepare a neatly formatted listing of either its input or its output. The user is presumably capable
of the self-discipline required to prepare neat input that reflects his thoughts. It is much more
important that the language provide free-form input so he can format it neatly. No one should read
the output anyway except in the most dire circumstances.

Appendix: Usage on HP-UX

Beware. Local customs vary. Check with a native before going into the jungle.

The program ratfor is the basic translator; it takes either a list of file names or the standard input and
writes FORTRAN on the standard output. Options include -5x, which uses x as a continuation
" character in column 6 (HP-UX uses & in column 1), and — C, which causes Ratfor comments to be
copied into the generated FORTRAN.

The program rc provides an interface to the ratfor command which is much the same as cc. Thus

re [<options>] <files>

compiles the files specified by <files>. Files with names ending in .r are Ratfor source; other files
are assumed to be for the loader. The flags -C and -Gx described above are recognized, as are

-c compile only; don’t load.

-f save intermediate FORTRAN .f files

-r Ratfor only; implies -c and -f.

-2 use big FORTRAN compiler  (for large programs)
-u flag undeclared variables (not universally available)

Other flags are passed on to the loader.
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Overview
Getting Started

If you’re like most people, reading computer manuals is not your favorite pastime. We strongly
urge you to read the remainder of this chapter. This manual assumes that you have read these
first few pages; if you choose not to do so, you are on your own.

One other note: the best way for us to improve the quality of documentation is through your
feedback. Please use one of the reply cards at the back of this manual to tell us what was helpful,
what was not, and why. Feel free to comment on depth, technical accuracy, organization, and
style. Your comments are appreciated.

Who Will Use Native Language Support?

OEMs (Original Equipment Manufacturers), ISVs (Independent Software Vendors), applications
programmers, and Hewlett-Packard Country Software Centers will be the primary users of
Native Language Support (NLS). These are the people writing or translating programs for
multi-national use.

This manual has been written with these users in mind.

Manual Organization

Overview
Defines the NLS user audience, explains the conventions used in the manual, and identifies other
manuals referenced within this one.

Chapter 1: Introduction to Native Language Support

Presents the basic description and scope of Native Language Support. This includes the as-
pects of NLS (Character Set Support, Local Customs, and Messages), pre-localization, and the
character sets as well as native languages supported.

Chapter 2: Native Language Support on HP-UX

Identifies the HP-UX directories and files in which the NLS tools reside, provides an installa-
tion guide for the optional languages, and identifies the library calls (and commands) that an
applications programmer needs in order to access NLS features.

Chapter 3: Programming With Native Language Support
Presents the header files specific to NLS, a detailed description of the C library routines (with
their syntax), and example C programs (with their command lines and output).

Chapter 4: Message Catalog System

Explains how local language message files are created and updated, where they are kept, and by
what conventions they are named. This includes a diagram and description of the general flow
of the message catalog system, ways to access catalogs by use of library routines, file naming
conventions and an example of program output in a local language other than American English.
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Appendix A: Pre-localized Commands
Describes the HP-UX commands that currently incorporate Native Language Support.

Appendix B: Native Language Support Library
Overview of NLS library routines and routines affected by NLS.

Appendix C: Peripheral Configuration
Table summary of Series 200/500 peripherals that support alternate character sets.

Appendix D: Character Sets
ASCIIL, Roman and Katakana character sets with their decimal and binary representations.

Conventions Used In This Manual

The following naming conventions are used throughout this manual.

e Italics indicate files and HP-UX commands, system calls, and subroutines found in the
HP-UX Reference manual as well as titles of manuals. Italics are also used for symbolic
items either typed by the user or displayed by the system as discussed below. Examples
include /usr/lib/nls/american/prog.cat, date(1), and pty(4). The parenthetic number
shown for commands, system calls, and other items found in the HP-UX Reference is a
convention used in that manual.

e Boldface is used when a word is first defined and for general emphasis.

e Computer font indicates a literal typed by the user or displayed by the system. A typical
example is:

findstr prog.c > prog.str
Note that when a command or file name is part of a literal, it is shown in computer font
and not italics. However, if the command or file name is symbolic (but not literal), it is
shown in italics as the following example illustrates.
findstr progname > output-file-name

In this case you would type in your own progname and output-file-name.
e Environment variables such as LANG or PATH are represented in uppercase characters.

e Unless otherwise stated, all references such as “see the ni_toupper(8C) entry for more
details” refer to entries in the HP-UX Reference manual. Some of these entries will
be under an associated heading. For example, the nl_toupper(3C) entry is under the
nl_conv(8C) heading. If you cannot find an entry where you expect it to be, use the
HP-UX Reference Manual’s Permuted Index.
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Using Other HP-UX Manuals

This manual may be used in conjunction with other HP-UX documentation. References to these
manuals are included, where appropriate, in the text.

e The HP-UX Reference manual contains the syntactic and semantic details of all com-
mands and application programs, system calls, subroutines, special files, file formats,
miscellaneous facilities, and maintenance procedures available on the Series 200/500 HP-
UX Operating System.

e The HP-UX Portability Guide documents the guidelines and techniques for maximizing
the portability of programs written on and for HP9000 computers running the HP-UX
Operating System. It covers the portability of high level source code (C, Pascal, FOR-
TRAN) and transportability of data and source files between commonly used formats.

e The HP-UX System Admanistrator Manual provides step-by-step instructions for installing
the HP-UX Operating System software, explains certain concepts used and implemented
in HP-UX, describes system boot and login, and contains the guide for implementing
administrative tasks.
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Introduction to
Native Language Support

The features of Hewlett-Packard Native Language Support (NLS) enable the applications de-
signer or programmer to adapt applications to an end user’s local language needs.

What Is NLS?

A well-written application program manipulates data and presents it appropriately for the users
and its own use. Users who are less technically sophisticated benefit from application programs
that interact with them in their native language and conform to their local customs. Native
language refers to the user’s first language (learned as a child), such as Finnish, Portuguese, or
Japanese. Local customs refer to local conventions such as date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assump-
tions about the user’s local customs and language. Program interface and processing require-
ments vary from country to country; sometimes even within a country. Much existing software
does not take this into account, making it appropriate for use only in the country or locality for
which it was originally written.

The solution to this problem is to design application programs that can be easily localized. Lo-
calization is the process of adapting a software application or system for use in different countries
or local environments. In many cases, a user’s native language or data processing requirements
may differ dramatically from those in the environment of the software developer. Traditionally,
localization has been achieved by modifying a program for each specific country. Applications
that have been designed with localization in mind provide a better solution. Localization can
then be accomplished with little or no modification of tables and language-dependent features
which are totally independent of the compiled code.

An applications designer must write the application program with built-in provisions for local-
ization. Functions that vary with local language or custom cannot be hard-coded. For example,
all messages and prompts must be stored in an external file or catalog. Character comparisons
and upshifting (using the key, on most keyboards, to get uppercase characters) must be
accomplished by external system-level routines or instructions. External files and catalogs can
then be translated, and the program localized without rewriting or recompiling the application
program.

Native Language Support (NLS) provides the tools for an applications designer or programmer
to produce localizable applications. These tools may include architecture and peripheral sup-
port, as well as software facilities within the operating systems and subsystems. NLS addresses
the internal functions of a program (such as sorting) as well as its user interface (which includes
displayed messages, user inputs, and currency formats.)
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Scope of Native Language Support

NLS facilities allow application programs to be designed and written with a local language
interface for the end user and for locally correct internal processing. The end user then interacts
with localized programs produced by applications programmers who have used NLS tools to
write the applications.

For the programmer, the interface has not changed. Most HP-UX interfacing, subsystems, pro-
grammer productivity tools, and compilers have not been localized. Applications programmers
may still use American English to interact with HP-UX and its subsystems. For example, it is
possible to write a complete local language application program using C, but the C compiler
retains the English-like characteristics. For example, C key words such as mazin, if, while, and
printf are still in English.

Aspects of NLS Support

The following aspects of native language support are included in HP-UX software. These three
aspects, Character Set Support, Local Customs, and Messages, describe the extent of local-
ization of an application. The applications programmer should consider each aspect carefully
when creating software that is language independent.

Character Set Support

A major NLS objective is to provide the capabilities for adapting character sets and sequences to
local language needs. This takes into account that character code size determines the maximum
number of distinct characters contained in a set. The default set is 7-bit ASCII character set;
all programs not localized use this character set. 7-bit ASCII is sufficient to span the Latin
alphabet used in many European Languages including upper- and lowercase, punctuation, and
special symbols.

The 8th bit of a character byte is normally never stripped or modified. So Hewlett-Packard
has defined character sets with bytes in the range 0 to 255 for foreign languages instead of
ASCII’s 0 to 127. Using the extra bit allows expansion to support European languages that
have additional characters, accented vowels, consonants with special forms and special symbols.
(See roman8(7).) This 8-bit character code handles the phonetic Japanese Katakana character
set and others. (See kana&(7) and the section on Supported Native Languages and Character
Sets.)

For languages with larger character sets, such as Kanji (the Japanese ideographic character set
based on Chinese), 16-bit character codes are required. NLS does not presently offer 16-bit
character sets.

All sorting, shifting and type analysis of characters is done according to the local conventions
for the native language selected. While the ROMANS character set has uppercase and lowercase
for most alphabetic characters, some languages discard accents when characters are shifted to
uppercase. European French discards accents while Canadian French does not. If there is no
notion of case in the underlying language (such as Katakana) alphabetic characters are not
shifted at all.
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Each language uses its own distinct collating sequences (the sequence in which characters ac-
ceptable to the computer are ordered). The ASCII collation order is actually not even adequate
for American dictionary usage. Different languages sort characters from the ROMANS set in
different orders. For example, Spanish requires character pairs such as “ch” and “lI” to be
sorted as single characters. Therefore, “ch” falls at the end of the sorted pairs “cg”, “ci”, and
“cz”; and “11” similarly falls after “k”, “lm”, and “lz”. Certain ideographic character sets,
which represent ideas by graphic symbols, can have multiple orderings. An instance of this is
Japanese ideograms (use of graphic symbols to represent Kanji) which can be sorted in phonetic
order; based on the number of strokes in the ideogram; or according, first, to the radical (root)
of the character and, second, to the number of strokes added to the radical.

On the subject of directionality, the assumption that displayed text goes from left to right does
not hold for all languages. Some Middle Eastern languages such as Hebrew go from right to
left; while some Far Eastern languages use vertical columns, starting from the right.

Local Customs

Some aspects of NLS relate more to the local customs of a particular geographic area. These
aspects, even when supported by a common character set, change from region to region. Con-
sequently, date and time, number, currency information, and so on are presented in a way
appropriate to the user’s language. For instance, although Great Britain, the United States,
Canada, Australia, and New Zealand share the English language, other aspects of data repre-
sentation differ according to local custom.

The representation of numbers, variations in the symbol indicating the radix character (period
in the U.S.), modification of the digit grouping symbol (comma in the U.S.), and the number of
digits in a group (three in the U.S.), are all based on the user’s native customs. For example, the
United States and France both represent currency using decimals and commas, but the symbols
are transposed (2,345.77 vs. 2.345,77).

Currency units and how they are subdivided vary with region and country. The symbol for a
currency unit can change as well as the symbols placement. It can precede, follow, or appear
within the numeric value. Similarly, some currencies allow decimal fractions while others use
alternate methods for representing smaller monetary values.

Computation and proper display of time, 24 versus 12-hour clocks, and date information must
be considered. The HP-UX system clock runs on Greenwich Mean Time (GMT). Corrections
to local time zones consist of adding or subtracting whole or fractional hours from GMT. Some
regions, instead of using the common Gregorian calender system, number (or name) the years
based upon seasonal, astronomical, or historical events. For example, in Arabic, time of day is
measured from the previous sunset; in India, the calendar is strictly lunar (with a leap month
every few years); in Japan years are based upon the reign of the emperor.

Names for days of the week and months of the year also varies with language. Abbreviations
can be other than three characters or disallowed. Ordering of the year, month, and day, as well
as the separating delimiters, is not universally defined. For example, October 7, 1986 would be
represented as 10/7/1986 in the U.S., 7.10.1986 in Germany, and 1986/10/7 in Japan.

Chapter 8: Programming With NLS describes the library routines used to access these features.
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Messages

The need to make messages readable by users is perhaps the most significant justification for
implementing Native Language Support. The user can choose the language for prompts, re-
sponse to prompts, error messages, and mnemonic command names at run time. Thus it is not
necessary to recompile source code when a user in yet another country decides he or she wants
translated messages. Keep in mind the syntax of another language may force a change in the
structure of the sentence if messages are built in segments (using printf(3S)). For example, in
German, “output from standard out and file” becomes “Aus und sammlung aus dem standarden
ausgabe”, which translates literally to “out and file from standard output.”

To do this, user messages must be put in a message catalog from which they are retrieved by
special library calls. Chapter 4: Message Catalog System explains how to create and access
message catalogs.

Example: a fully localized version of pr would
e never strip the 8th bit of a character code

e properly format the date in each page header

e use the message catalog system to select user error messages

Pre-localized Commands

Pre-localization is program modification that makes use of language-dependent library routines
not limited to 7-bit character processing. These routines are enhanced to ensure the proper
handeling of 8-bit data.

Localization consists of taking the pre-localized command and adding the necessary message
catalogs and tables to make it run in a particular language (such as French).

Pre-localization allows the message catalogs and tables to be specified at run time, rather than
having the information hard-coded and compiled into the commands.

A localized message file contains messages in the desired native language. Some HP-UX com-
mands have been enhanced to check for localized message files.

To pre-localize source code, original commands are replaced by commands that incorporate NLS

prior to compilation of the program source code. These pre-localized commands are listed in
Appendiz A: Pre-localized Commands.
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Supported Native Languages
and Character Sets

The NLS system is based on 15 native languages and 3 character sets. These character sets are
built into the operating system. Tables and files associated with supported languages will be
available through Hewlett-Packard sales offices.

Within NLS, each supported language is associated with a 7-bit or 8-bit character set (one
character set may support several languages). Before the introduction of NLS, the only widely-
supported character set was ASCII, a 128-character set designed to support American English
text. ASCII uses only seven bits of an 8-bit byte to encode each character. The eighth or high
order bit is usually zero, except in some applications where it is used for other purposes. For
this reason, ASCII is referred to as a “7-bit” code.

8-Bit Character Sets

An 8-bit byte can contain any of 256 unique values, making it is possible to build supersets of
ASCII which permit encoding and manipulation of characters required by languages other than
American English. These supersets are referred to as 8-bit compatible or extended character
sets. These sets have five distinct ranges: 0 to 31 and 127 are control codes; 32 is space; 33 to
126 are printable characters; 128 to 160 and 255 are extended control characters; and 161 to
254 are extended printable characters (see Table 1.1.) New printable characters are added by
defining code values in the range 161 to 254.

Table 1.1 8-bit Character Set Structure

coLBIT 80 |0 [0 jO JjO j0 |0 {0 [t |0 [t (v [ [0 P 1
710 j0o|0ojOo 1 1 |1 |1 [ofofOofO (1 1 |1 |1
6| o Oft1{t1]OjOj1|1[{OfOf1[1[OfOf1]1

ROW BIT 5] 0/ 1 of 1] of 1] o] 1] of 1] of 1] of 1] 0] 1
4 3 2 1 0|1}2|3|4|5|6|7]|8]|9]|10]|11]12]|13]14]15
0 0 0 0}0 C SP E

o [ X
0 0 0 1}1 N T
001 0l2| T E
001 1l3] R USASCII N

0} GRAPHIC D EXTENDED
0 1 004 L (printable) E PRINTABLE
010 1(5 CHARACTERS D CHARACTERS
" oTs] (33-126) (161-254)

O C
o1 1 1|7 D H
10008 E A

S R
10 0 1|9 (0_31) A
1.0 1 0[10 C

T
10 1 1|11 E
11 0 0f12 R
S

11 0 1{13 (128-
11 1 0f 160)
11 1 115 127 255
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NLS supports two 8-bit character sets: ROMANS (see Table 1.2) and KANAS (see Table 1.3)
Table 1.2 ROMANS Character Set

COLB'Tgoo % 0o 0o % CRERK ' [ 1o o 11 K 11
glofol 1| 1]lojo|1]1lo|o| 1| 1|00} 1]1
rRowBiT 5.0 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1
4 3 2 1 012 4156|789 l10]11]12]13]14]15
000O0fO|%W|B || @ P | |p “lalalAlD
000 1[1|[%|%| 1t 1|A|@|a]gqg A e i A|p
001 0J2/%|%|"|2|B|R r A 6|8 a
001 1|3/ |% % |3 /C|S|c|s E|l°|G | & D
01 00|4[& % |$/4|D|T|d ¢t E 4lald
010 1|5/ % %[5 E|U|le|u Elgleée il
01 10/6|/% |5 & | 6|F|v|f| v I #j6|e1|-
01 1 1|7|@|%|” | 7|6 | W|lg|w [ |%|6|=]|0 7
1 00 0|8{8%|S%|C|8|H|X|h|x “lilalalo|+
100 1|9l%[& |y |9 I |Y|i|vV clele i |0
101 0010/4% % | *|:|J 2§z . I
10 1 1|1 % (& |+ |3 |K|[]|k]|{ Ul0|S]| «
11 0 O[12|Fe|F |, (< | LN 1] ~ 4| E|5 | m
110 118%|S|-|=({M|1|m|} Ul §le i|U|»
111 0014]/%|% |« >[N ~n|~ 0 6 B|Y |+
111 115l |%|-|?2|0|_|o £ G y
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Table 1.3 KANAS8 Character Set

COL BIT ;300 o0 o0 oO o1 o1 01 o1 10 10 10 10 11 11 11 11
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NLS 8-bit character sets support all ASCII characters (with the exception that the graphic
for back slash ( “\” ) in KANAS8 is yen (“¥” )) in addition to the characters needed to sup-
port several Western European-based languages and Katakana. More character sets will be
implemented in the future.

The use of 8-bit character sets for NLS implies that in character data, all bits of every byte have
significance. Application software must take care to preserve the eighth (high order) bit and
not allow it to be modified or reused for any special purpose. Also, no differentiation should be
made between characters having the eighth bit turned off and those with it turned on, because
all characters have equal status in any extended character set.
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Peripherals play a key role in a system’s ability to represesent a particular language. Sometimes,
even within a single document, several character sets are needed. For example, this document’s
tables needed line drawing characters; another section contains French and Arabic examples;
while the technical section uses mathmatical symbols. Hewlett-Packard peripherals (generally)
use the above model to handle multiple character sets (see Figure 1.1).

Active Set
/ A
Si / \ SO
VA AN
Base Set Alternate Set
ESC ( ID/’ ‘ESC ) ID
D =T ID =M
D = U D =1L
D =H

Figure 1.1 8-bit Character Set Support Model

The Active Set is the one printed, plotted, or displayed on the terminal. S (shift in) and S
(shift out) characters are used to invoke or activate the Base or Alternate character set. The
Base Set is the language-oriented set while the Alternate Set is for special symbols. The escape
sequences % ( ID and &) ID are used to designate, from the collection of available character sets,
the Base and Alternate Set. ID designates ID Field in this context; see Table 1.4 for a table of
example character sets with their ID Field number. All sets in this model are 8-bit character
sets.

Table 1.4 Character Set ID Numbers

8-bit

Character Set Name ID Field
Start up Base/Default Set Q
Greek8 Character Set 8 B
Hebrew8 Character Set 8D
Kana8 Character Set 8 H
Line Draw8 Character Set 8 L
Math/Special Symbol8 Set 8 M
Turkish8 Character Set 8 T
Roman8 Character Set 8U
Arabic8 Character Set 8V
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Native Languages

Each supported native language is based on one of the three character sets. They consist of
several language-dependent characteristics defined in various tables and accessed by C library
routines and HP-UX commands. These characteristics include rules on upshifting, downshifting,
date and time format, currency, and collating sequence.

Hewlett-Packard has assigned a unique language name and language number to each language
included in NLS (see Table 1.5). In some cases, Hewlett-Packard has introduced more than one
supported language corresponding to a single natural language. For example, NLS supports both
French (language number 7) and Canadian-French (language number 2) because upshifting is
handled differently in French and Canadian-French.

Each of the supported languages can also be considered a language family which is applicable in
several countries. German (language number 8), for example, can be used in Germany, Austria,
Switzerland, and any other place it is requested.

In addition to the native languages supported, an artifical language, native-computer (language
number 0), represents the way the computer dealt with language before the introduction of
NLS. Whenever language number 0 is used in a native language function, the result is identical
to that of the same function performed before the introduction of NLS. NLS library calls with
the language parameter equal to 0 will always work correctly, even when no native languages
have been configured on the system.

Table 1.5 Supported Native Languages and Character Sets

Language Language
Num Abbreviation Name
00 n-computer native computer
01 american american
02 c-french canadian french
03 danish danish
04 dutch dutch
05 english english
06 finnish finnish
07 french french
08 german german
09 italian italian
10 norwegian norwegian
11 portuguese portuguese
12 spanish spanish
13 swedish swedish
14-40 reserved
41 katakana katakana
42-80 reserved
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Native Language Support

File Hierarchy

A set of directories and files has been added to HP-UX in which the NLS tools and language-
dependent entities, such as message 