[ﬁﬁ HEWLETT

PACKARD

HP-UX Concepts and Tutorials
Vol. 6: Graphics

HP-UX Concepts and Tutorials
Vol. 6: Graphics

Manual Reorder No. 97089-90070

@ Copyright 1985 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part
of this document may be photocopied, reproduced or translated to another language without the prior written
consent of Hewlett-Packard Company. The information contained in this document is subject to change without
notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of
the Rights in Technical Data and Software clause in DAR 7-104.9(a)

@ Copyright 1980, Bell Telephone Laboratories, Inc

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previou
edition. Update packages may be issued between editions and contain replacement an
additional pages to be merged into the manual by the user. Each updated page will b
indicated by a revision date at the bottom of the page. A vertical bar in the margi
indicates the changes on each page. Note that pages which are rearranged due to change

on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printin
date changes when a new edition is printed. (Minor corrections and updates which ar
incorporated at reprint do not cause the date to change.) The manual part numbe
changes when extensive technical changes are incorporated.

July 1984...First Edition - Part numbered 97089-90004 was 4 volumes and was shippe:
with HP-UX 4.0 on Series 500 Computers and with HP-UX 2.1, 2.2, 2.3, and 2.4 o
Series 200 Computers. Each volume did not have an individual part number. Thi
was obsoleted in April, 1985 and replaced with Manual Kit #97070-87903 whic

includes:

Title
Vol. 1: Text Processing and Formatting
Vol. 2: Programming Environment
Vol. 3: Software Development Tools
Vol. 4: Shells and Miscellaneous Tools
Vol. 5: Data Communications
Vol. 6: Graphics

April 1985...Edition 1 — Volume 6: Graphics

Manual P/N
97089-90020
97089-90030
97089-90040
97089-90050
97089-90060
97089-90070

Binder P/N
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023

Contents

The articles contained in HP-UX Concepts and Tutorials are provided to help you use the
commands and utilities provided with HP-UX. The articles have several sources. Some
were written at Hewlett-Packard specifically for HP computers. Others were written at
Bell Laboratories or University of California at Berkeley and have been tailored for HP
computers.
HP-UX Concepts and Tutorials has six volumes:

e Volume 1: Text Processing and Formatting

e Volume 2: Programming Environment

e Volume 3: Software Development Tools

e Volume 4: Shells and Miscellancous Tools

Volume 5: Data Communications

e Volume 6: Graphics

This is “Vol. 6: Graphics” and the article it includes is:

1. Starbase

jii

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer system products sold
in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-Packard will, at its option, repair or
replace equipment which proves to be defective during the warranty period. This warranty includes labor, parts, and surface travel costs, if
any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs neccessitated by misuse of the equipment,
or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions when properly
installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARED SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

HP 9000 Series 200
For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day, Return-to-HP
warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair any defects.
The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic programs: 1) .5 Mbyte RAM; 2) HP-
compatible 3.5"or 5.25 ”disc drive for loading system functional tests, or a system install device for HP-UX installations; 3) system console
consisting of a keyboard and video display to allow interaction with the CPU and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Telemarketing Center
at (800) 835-4747 or your local HP Sales and Support office.

*For other countries, contact your local Sales and Support Office to determine warranty terms.

Table of Contents

Section 1: An Introduction to Starbase Graphics

Graphics with C ... 1
Welcome e 1
Preparation 2
Device Drivers i P 3
A Shell Seript ..o 3
The Data to be Plotted i 5
The Data in Clist Format i, 6
The Results Desired 7
A Template C Program e 8
The Include File 8
The Gopen Function i 9
The Gelose Function 10
A ReVIeW L 11
Virtual Device Coordinates i, 12
Device Coordinatesoiiinii 12
World Coordinates 13
Setting the VDC Extentt 14
ClPDINE o« vttt 15
Isotropic (undistoried) Mappiago 18
Anisotropic (distorted) Mappingttt 18
VIeWPOTtS oottt 19
Rectangles 20
Plotting the Data 22
Labels ..o 24
Tic Marks ..o 26
The Final Picture e 27
The whole program i 28

Graphics with Fortran77 31
Welcome 31
Preparation 32
Device Drivers R 33
A Shell Seript ..o 33
The Data to be Plotted i .. 35
The Data as a Clisto e 36
A Template Fortran77 Program o ... 37
The Include File 38
The Gopen Function 38
The Gelose Function i 39

ii

A ReVIEW ot 40

Virtual Device Coordinatesc.couuiiiininininnenennnn. 40
Device Coordinatesouiiniininiiiii i 41
World Coordinatesiiiiiiiiii i, 41
Setting the VDC ExXtentcooiuiiieiiiiiiiiineinennnn.. 42
I DDIN g ottt 43
Isotropic (undistorted) Mappingcceiieieiiiiiiia, 44
Anisotropic (distorted) Mappingiiiiii i 46
VW POIES .« .ottt 47
Rectangles 48
Plotting the Data o e 50
Labels .. e e 52
TiC MarKs ..ot e 54
The Final Picture e 55
The Whole Program oo, 56
Graphics with Pascal e 59
WElCOme .o e e 59
Preparation 60
Device Drivers e e 60
A Shell SCript ..o oot e 61
The Data to be Plotted i, 62
The Data as a CLiStovir i e e et et e 63
The Results Desired it 64
A Template Pascal Program iiiiniiiinenennnn... 65
The Include Fileso e e e 65
The Gopen Function it 66
The Gelose Function i i e 67
A ReVIOW .o e e e 68
Virtual Device Coordinatesc..oveinieinineineneenenennnn. 68
Device Coordinatesuuiiiinin et 69
World Coordinatesccuiniiiiin ittt 69
Setting the VDC Extentoiiuiiiiniiiii e, 70
L0711 03 0311 PN 71
Isotropic (undistorted) Mappingoouiiiiiiiiiii.. 72
Anisotropic (distorted) Mapping i i 74
VI eWDOI S .ot e 75
Rectangles, B 76
Plotting the Data i i e 78
Labels ..o e 80
e MarKs ..ot e 82
The whole programt 84

Section 2: Working with Text
Introduction
The Four Methods of Drawing Text i
Text Attributes and Defaults i
Template Programs o
A Template for C Programs
A Template for Fortran77 Programs
A Template for Pascal Programs
Default Texto
O SyIEAX ottt
Fortran77 Syntax
Pascal Syntaxt e
Larger Text ..o
O S MtaX .ottt e
Fortran77 Syntax e
Pascal Syntax i
Larger Text Continued it
O Syntax .o
Fortran77 Syntax
Pascal Syntax
Text Precisiont

Pascal Syntaxo
Character Expansion Factor
O SYIbaAX ottt
Fortran77 Syntax i
Pascal Syntax
Intra Character Spacec.iii i
O SymbaX ottt e
Fortran77 Syntax
Pascal Syntaxo.iiui
Character Slant i
C SYmtaX ottt
Fortran77 Syntax A
Pascal Syntax ...
Text Path ..o
O S mtaX .ottt e e
Fortran77 Syntaxo. ittt et e
Pascal Syntax
Text Line Path

PRV

iv

CSyntax e e 113

Fortran77 Syntaxt e 113
Pascal Syntaxuiiiini 114
Text Orientationttt 115
L 74 117 G 115
Fortran77 Syntaxooouueie 116
Pascal Syntax s e et eaes e 116
Text Line Spacettt e 118
Fortran77 Syntaxo 118
Pascal Syntaxooi 119
Text Alignmentt 120
Text alignment - TA_LEFT e 122
O SynbaX vttt 122
Fortran77 Syntax ... e 122
Pascal Syntax ... 123
Text alignment - TA_CENTER. 124
O SyMbaX vttt ettt 124
Fortran77 Syntaxo e 124
Pascal Syntax 125
Text alignment - TA_RIGHT 126
L 4 1 A 126
Fortran77 Syntaxouiii i e 126
Pascal Syntax 127
Text alignment - TA_CONTINUOUS_HORIZONTAL #1 128
L 0L PP 128
Fortran77 Syntax 128
Pascal Syntaxo 129
Text alignment - TA_CONTINUOUS_HORIZONTAL #2 130
C Sy ntax ..ot e 130
Fortran77 Symtaxt e e 130
Pascal Syntax ... e 131
Text alignment - TA_NORMAL_HORIZONTAL 132
O SYMtaX ottt e 132
Fortran77 Syntaxouiii e 132
Pascal Syntax e 133
Text alignment - TA_TOP e 134
(O 72 1 - 134
Fortran77 Syntaxt e 134
Pascal Syntax 135
Text alignment - TA_CAP e 136
(O T 017 136
Fortran77 Syntax ... e e 136

Pascal Syntax ... 137

Text alignment - TA_HALF 138
O SYNLAX . ottt 138
Fortran77 Syntax iii 138
Pascal Syntax i 139

Text alignment - TA_BASE 140
LT 0L 140
Fortran77 Syntaxo i 140
Pascal Syntax 141

Text alignment - TA_BOTTOM 142
O SYmtaX ottt 142
Fortran77 Syntax i 142
Pascal Syntax o 143

Text alignment - TA_CONTINUOUS_VERTICAL Example #1 144
O SYmtaX ot 144
Fortran77 Syntax 144
Pascal Syntax 145

Text alignment - TA_CONTINUOUS_VERTICAL Example #2 146
O SYNLAX .« oottt et e e 146
Fortran77 Syntax 146
Pascal Syntaxo 147

Text alignment - TA_NORMAL_VERTICAL 148
O DY IEAX vttt 148
Fortran77 Syntaxt 148
Pascal Syntaxoo i 149

Designate Character Set oot 150

Text Font Index 153
O S NtaX ottt 153
Fortran77 Syntaxo 153
Pascal Syntax 154

Text Color oot 155

Section 3: Starbase Color Graphics

Introduction 157
Color Generationiuiiniin e 160
AN OVeIVIEW .o e 160
The Frame Buffer 162
Color Categoriesiiii e 162
The Color Map ...t e e 163
Color Planes 163
Color Map Entries 163
Color Generation Hardware 163

Selecting a Color 164

Shell SerIpts .o e 164
A Script for C Programs i 165
A Script for Fortran77 Programs, 165
A Script for Pascal Programs i 166
Skeleton Programs 167
A Template Program for C i 167
A Template Program for Fortran77 167
A Template Program for Pascal 168
Example Color Programs i 168
A Color Map oo 168
Background Color e 170
Polyline and Polymarker Color 171
The Color Cube e et 174
Section 4: Input
Introduction e 177
Locator Devices i 177
Choice Devicest e 177
g gering . . oottt 178
Input Methods 178
SampPlNg ... 178
Requests ... 178
Events ..o 179
Tracking . ..ot 179
SamMPIING . .ot 180
Example 1 ... 181
Example 2 ... 182
Modeling and Viewing
Introduction 185
Two-Dimensional Viewing i 186
Example L. ..o 187
Example 2:. ... 187
Using The Transformation Matrix Stack 188
Example 3:. .. 189
Three-Dimensional Viewing i 190
Multiple Active Devices 191

An Introduction
to Starbase Graphics

Graphics with C

Welcome

This manual is designed to teach you how to use some fundamental procedures that are
included in the Starbase Graphics Library on your HP-UX system. These procedures
can be accessed from the C, Fortran77 and Pascal programming languages available for
your system. This subsection will present a progressive example using the C Program-
ming Language. The following subsections cover the same material using the Fortran77
Programming Language and the the Pascal programming language.

This manual was written with the assumption that you are familiar with your HP-UX
Operating System, including the appropriate programming languages, compilers, linkers,
editors, etc. If this is not the case, the information you need is available in the extensive
documentation provided with your system.

This manual also assumes that you arc familiar with basic computer graphics concepts.
If this is not the case, there are many excellent books and courses available to provide

i B P AR
VLIS 1111uL tiauiudl.

The example programs used in this tutorial are included with your system in the
/usr/lib/starbase/demos directory. You are encouraged to compile and run these pro-
grams as you read the manual. When you see how the programs work, modify them as
you desire to see how each part contributes to the whole. Be aware that the example
programs assume a system configuration which may differ from yours, and that the gopen
procedure parameters and the device drivers linked to the program may need changing
to match your system.

An Introduction to Starbase Graphics 1

NOTE

Demonstration programs and routines in /usr/1ib/starbase/demos
are for the purpose of instruction only. They are not part of the
HP-UX package, and as such, they are not covered by any war-
ranty, expressed or implied. Hewlett Packard shall not be liable
for incidental or consequential damages in connection with, or aris-
ing out of, the furnished, performance, or use of these routines.

Preparation

The directions concerning the execution of the example programs presented in this man-
ual assumes your current directory is /usr/lib/starbase/demos. To make this directory
your current working directory, use the change directory (cd) command as follows:

cd /usr/lib/starbase/demos

A discussion of the hierarchial directory structure used by the HP-UX Operating System
is found in the Systems Admainistrator manual supplied with your system.

For further details on the cd command, use the man command. For example,

man cd
The man command prints the reference page for the specified command on the display.
The example programs presented in this manual are included with your operating system.
They are located in the /usr/lib/starbase/demos directory. The examples are provided
as source code. To read the code, use the HP-UX more or cat commands. To modify the

code, use an appropriate editor, such as the vi editor.

To execute the example programs on other devices, they must be compiled and linked to
the correct drivers. The shell script below will accomplish this for you.

2 An Introduction to Starbase Graphics -

Device Drivers

The Starbase device drivers are located in the directory /usr/1ib and have file names
appropriate to access by the “1" option of the ¢ compiler (¢c) command.

Take a moment and list the device driver files in /usr/1ib to see which device drivers are
available with your system. All device driver file names begin with 1ibdd prefix, followed
by the device type. To list these files, type in:

1ls /usr/lib/libdd*
As you can see, there are several drivers to choose from.

The HP-GL device driver is (/usr/1ib/libddhpgl.a) and the HP 262x device driver is
(/usr/1ib/1ibdd262x.a). These are the device drivers included in the example programs.

For further details concerning the Starbase Device Drivers, read the appropriate scctions
in the Starbase Device Drivers Library manual.

A Shell Script

The following shell script was used to compile and execute the example programs dis-
cussed in this manual. The script works with both the Bourne Shell and the C Shell (the
C shell calls the Bourne shell automatically).

The “-1” option was used to reduce typing. This compiler option prepends /usr/1ib/1ib
to the filename and appends .a to the file name. Thus,

. -1lddhpgl

is processed as if it were
... /usr/lib/libddhpgl.a
The HP-GL and HP 262x device drivers were linked in by the script. The sbi and sb2
files are included to resolve all unresolved references generated by the Starbase programs.
PROG=$1
shift

cc -o $PROG $PROG.c $* -lddhpgl -1dd262x -1sbl -1lsb2
$PROG

This seript is stored as an executable file under the file name ccC in:

/usr/lib/starbase/demos.

An Introduction to Starbase Graphics 3

To compile and execute the example program exampleic.c, enter the following:

CC examplelc

To execute the compiled program examplelc again, type in:

examplelc

If you want the same program executed on an HP-GL plotter, type in:

examplelc /dev/hpgl hpgl

To execute the example with other devices, you must link the correct devices to the
program.

To link the HP 98700 driver using this script, just type in:

CC examplelc -1dd98700

To execute the example after being linked with the HP 98700 device driver, just type in:

examplelc /dev/hp98700 hp98700

4 An Introduction to Starbase Graphics

The Data to be Plotted

The following data is to be presented in graphical form. The example program to do this
follows.

Table 1-1. Test Data

Test Value Test Value Test Value Test Value
0 0.1610 1 0.1625 2 0.1625 3 0.1628
4 0.1636 5 0.1631 6 0.1627 7 0.1608
8 0.1610 9 0.1606 10 0.1607 11 0.1617

12 0.1614 13 0.1626 14 0.1634 15 0.1640
16 0.1656 17 0.1660 18 0.1644 19 0.1651
20 0.1635 21 0.1641 22 0.1628 23 0.1619
24 0.1630 25 0.1624 26 0.1627 27 0.1644
28 0.1644 29 0.1657 30 0.1660 31 0.1670
32 0.1672 33 0.1666 34 0.1658 35 0.1662
36 0.1646 37 0.1633 38 0.1634 39 0.1636
40 0.1645 41 0.1652 42 0.1656 43 0.1677
44 0.1689 45 0.1680 46 0.1696 47 0.1680
48 0.1674 49 0.1677 50 0.1669 51 0.1655
52 0.1665 53 0.1662 54 0.1667 55 0.1668
56 0.1681 57 0.1688 58 0.1687 59 0.1707
60 0.1716 61 0.1716 62 0.1694 63 0.1698
64 0.1683 65 0.1683 66 0.1671 67 0.1681
68 0.1683 69 0.1684 70 0.1681 71 0.1698
72 0.1705 73 0.1723 74 0.1730 75 0.1734
76 0.1714 77 0.1722 78 0.1716 79 0.1696
80 0.1702 81 0.1699 82 0.1684 83 0.1706
84 0.1696 85 0.1715 86 0.1730 87 0.1737
88 0.1739 89 0.1751 90 0.1732 91 0.1747
92 0.1729 93 0.1717 94 0.1710 95 0.1707
96 0.1706 97 0.1709 98 0.1713 99 0.1720

An Introduction to Starbase Graphics 5

The Data in Clist Format

The first column shows the first few file entries as a clist without move/draw indicators.
The second column shows the first few data entries as a clist with move(1)/draw(0)
indicators.

Table 1-2. Data in Clist Format

Clist without Clist with
Move/Draw Indicators Move/Draw Indicators

0
0.1610 0.1610
1 0 (a move indicator)
0.1625 1
2 0.1625
0.1625 1 (a draw indicator)
3 2
0.1628 0.1625
4 1 (another draw indicator)
0.1636 3
5 0.1628
0.1631 1
6 4
0.1627 0.1636
7 1
0.1608 5
8 0.1631
0.1610 1
9 6
0.1606 0.1627
10 1
0.1607 7
11 0.1608
0.1617 1
12 8
0.1614 0.1610
13 1
0.1626 9
14 0.1606
0.1634 1
15 10
0.1640 0.1607
16 1
0.1656 11
17 0.1617
0.1660 1
18 12
0.1644 0.1614
19 1
0.1651 13

6 An Introduction to Starbase Graphics

The Results Desired
The following picture shows the plot to be created by the example programs described

in the subsection.

=

0Q w + —0 <

0.1890

1775

2.1750

81725

.1708

81675

0.1650

0.1625

0.1680

VOLTAGE VARIANCE \

: A\A

i W

Coova by bev v by byvv v by by vn v bov g bypvnn by
%] 12 20 38 40 50 60 79 80 S8 100

-

Time (seconds) /

Figure 1-1. The Results Desired

An Introduction to Starbase Graphics T

A Template C Program

The following is a template program that will be filled with Starbase procedure and
function calls to draw the example voltage plot. As listed, this program opens the
specified device, clears the clipping area and then closes the device. The capability of
executing the program on an HP262x Graphics Terminal or a specified device is included.

For more information on C programming, read The C Programming Language by Brian
W. Kernighan and Dennis M. Ritchie. This book is included with your HP-UX Manual
Set.

This program is stored as examplelc.c.

#include <starbase.c.h>

main(argc,argv)
int argc; char *argv([];

{
int fildes;
if (argc > 2) fildes=gopen(argv[1],60UTDEV,argv[2],INIT);
else fildes=gopen("/dev/tty",0UTDEV, "hp262x",INIT) ;
if (fildes == -1) exit(-1);
gclose(fildes) ;
}

The Include File

The file starbase.c.h contains the definitions and terms needed for any Starbase program
written in C. This file is located in the /usr/include directory.

To see what definitions and terms are needed, use the more command. The syntax is:

more /usr/include/starbase.c.h

8 An Introduction to Starbase Graphics

The Gopen Function

The function gopen opens the specified graphic device. This function requires four pa-
rameters:

1.

Device File Name - Device files are created by the System Administrator. Device
files are located in the /dev directory. In the following examples, the device file tty
is used.

. Performance Mode - This parameter may be one of the following:

OUTDEYV - device driver is to output information to the device.
INDEV - device driver is to read information from the device.

OUTINDEV - device driver can send and receive information to and from the
device.

The following examples use OUTDEV since the example program is to be drawn on the
output device’s display.

3. Character Representation of the Driver Type - For the following example, this

will be np262x. This parameter identifies the driver to be used. The hp262x driver
interrogates the device specified by the device file name and tests to see if the device
is an HF 2623 Graphics Tertinal or an AF 2627 Color Graphics Teiiiiiial, aind acts
accordingly.

A possible character representation for an HP-GL plotter is hpgl.

. Operation Mode - This parameter may be one of the following:

0 - open the device, but do nothing else.

INIT - open and initialize the device in a device dependent way.

RESET - open and completely initialize the device.

SPOOLED - open the device for spooled operation. Spooled output may be saved
in a file for later display.

THREE_D - open the device and set Starbase to 3-dimensional mode.

These modes may be combined with the proper OR syntax. For C this is the
vertical bar (|) as in (INIT|SPOOLED).

By doing an OR operation on INIT and SPOOLED, the graphic device can be opened,
initialized and spooled to a file.

An Introduction to Starbase Graphics 9

For example:
fildes = gopen("spoolfile",OUTDEV, "hpgl", INIT|SPOOLED) ;
If the opening is not successful, gopen returns a value of -1. If the opening is successful,

a positive integer (file descriptor) is returned and the HP-GL device is initialized and
ready for spooled output.

Further information can be obtained about this procedure by using the man command.
Just type in:

man 3 gopen

The Gclose Function

To properly close a graphics device, use the gclose function. The fildes file descriptor
identified by the gopen function is used to identify a particular device for all following
Starbase procedures and functions, including gclose.

Further information can be obtained about this procedure by using the man command.
Just type in:

man 3 gclose

10 An Introduction to Starbase Graphics

A Review

As areview, the following table lists information about the files, functions and commands
just discussed.

Table 1-3. A Review

Required Items Learn More

The cd Command /usr/man/manl/cd.1
(man cd)

The cc Compiler Command /usr/man/manl/cc.1
(man cc)

Shell Scripts HP-UX Concepts and Tutorials,
volume 3.

Device Drivers Starbase Device Drivers Library.
/usr/lib/libdd*

(Is /usr/lib/libdd...)

C Programming The C Programming Language
by Kernighan and Ritchie

Definitions and Terms needed /usr/include/starbase.c.h
for any Starbase program in C. (more /usr/include/starbase.c.h)
gopen /usr/man/man3/gopen.3g

(man 3 gopen)

gclose /usr/man/man3/gclose.3g
(man 3 gclose)

An Introduction to Starbase Graphics 11

Virtual Device Coordinates

The default Cartesian coordinate system used by the Starbase procedures is called the
Virtual Device Coordinate (VDC) system. This system can be considered a 2-dimensional
subset of the Cartesian plane with default x- and y-axis values ranging from 0.0 to 1.0. In
3-dimensional graphics, this system can also be considered a subset of Cartesian 3-space
with default x-, y- and z-axis values ranging from 0.0 to 1.0. Locations in VDC space
are specified in VDC values as specified by the vdc_extent procedure.

The procedure gopen automatically creates a Virtual Device Coordinate to Device Co-
ordinate (DC) transformation matrix for each opened graphic device. All VDC data is
processed through this matrix before being set to the target device. Since each device has
a unique transformation matrix, the same data will appear as expected on each device.

The range of values used for this system can be altered with the vdc_extent procedure.

Use the push_vdc_matrix procedure to force the current working matrix to be the VDC
to DC transformation matrix.

Device Coordinates

Device coordinate Space is the Cartesian 2-dimensional space that is the device’s output
surface. The range and magnitude of x- and y-axis values is defined by each device.

Device Coordinate procedures bypass the VDC to DC transformation matrix. Such pro-
cedures begin with the characters dc, for “device coordinate”. For example, dcdraw will
draw a line on the specified device using the untransformed coordinate values specified.

To transform VDC values to DC values, use the vdc_to_dc procedure.

12 An Introduction to Starbase Graphics

World Coordinates

World coordinates can have any value the user desires. This is handy when the data is
to be used for purposes other than making a drawing.

Since world coordinates can be of any value, they must be transformed to device co-
ordinates before being drawn on a graphic device. This transformation can be done in
several ways. For example:

e A transformation matrix with the appropriate values to transform the World Co-
ordinate data into Device Coordinate data may be supplied by the user.

e A transformation matrix with the appropriate values to transform the World Coor-
dinate data into Virtual Device Coordinate data may be supplied by the user. This
matrix could then be concatenated (matrix multiplied) with the Virtual Device Co-
ordinate to Device Coordinate transformation matrix to make a World Coordinate
to Device Coordinate Matrix.

For instance, in 2-dimensional mode, a matrix containing:

cos) sinf
-sin@ cos
0 0

will rotate world coordinates counter-clockwise by an angle of 6.

e The Easiest Way is to use the vdc_extent procedure to change the ranges of values
used to define the Virtual Device Coordinate Space so that the world coordinate
values are now contained in VDC space. Any time the vdc_extent procedure is
used, a new Virtual Device Coordinate to Device Coordinate matrix is calculated
that maps Virtual Device Coordinate Space into Device Coordinate Space.

An Introduction to Starbase Graphics 13

Setting the VDC Extent

In the example problem, we want to plot voltage values against the associated measure-
ment number. Our voltage data ranges from just over 0.1600 through just under 0.1800,
while we have 100 measurements (from 1 to 100).

Logical values for the vdc extent would be -20 to 105 on the x-axis and 0.1575 to 0.1825
in the y-axis. This will allow us to plot the data in a rectangle of size 0-100 on the x-axis
and 0.1600-0.1800 on the y-axis and still leave room for labels within the vdc extent and
outside the plotting area. Since we are doing 2-dimensional graphics, the z-coordinates
are both 0.0. The syntax to do this is:

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0) ;
Detailed information on this procedure can be found using the HP-UX man command as
follows:

man 3 vdc_extent

NOTE

The decision was made to follow ANSI parameter patterns in the
Starbase procedures. These parameter patterns are NOT CON-
SISTENT. One procedure may call for x1,y1,z1,x2,y2,2z2 while the
next may require x1,x2,y1,y2,z1,2z2. Hopefully this inconstancy will
be removed from the ANSI standard and thus from the Starbase
procedures.

14 An Introduction to Starbase Graphics

Clipping
Clipping is the process of not allowing selected graphic data to be displayed. There are
two clipping processes:

e Hard Clip - This is clipping done by the graphic output device that physically
stops plotting outside the physical limits of the device’s display area. For example,
a plotter’s pen can not draw past the physical edge of the plotter’s platen.

e Soft Clip - This is clipping done by the graphics software to limit the visible portion
of the plot. Soft clipping can be done to both 2-dimensional and 3-dimensional data.
Starbase provides two clipping boundaries:

e The Clip Rectangle - A rectangle can be specified with the clip_rectangle proce-
dure that defines subsequent clipping boundaries.

e The VDC Extent - The rectangle defined by the vdc_extent procedure can also be
used to define subsequent clipping boundaries.

The clip_indicator procedure identifies which of the two boundaries to clip to.
The clip_depth procedure is used to define the front and back clipping planes for

3-dimensional graphics. Front and back clipping is enabled or disabled with the
depth_indicator procedure.

An Introduction to Starbase Graphics 15

Isotropic (undistorted) Mapping

Isotropic mapping is when one unit in the x-axis exactly equals one unit in the y-axis.
This is sometimes referred to as undistorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The default is isotropic.

The following example program draws an isotropic square around the default Virtual
Device Coordinate space. This program is in file ezampleZ2c.c.

#include <starbase.c.h>

main(argc,argv)
int argc; char *argv[];

{
int fildes;
if (argc > 2) fildes=gopen(argv([1],0UTDEV,argv[2],INIT);
else fildes=gopen("/dev/tty",0UTDEV, "hp262x", INIT) ;
if (fildes == -1) exit(-1);
interior_style(fildes, INT_HOLLOW, TRUE) ;
rectangle(fildes,0.0,0.0,1.0,1.0);
gclose(fildes);
}

16 An Introduction to Starbase Graphics

Figure 1-2. An Isotropic Frame of VDC Space

An Introduction to Starbase Graphics 17

Anisotropic (distorted) Mapping
Anisotropic mapping where one unit in the X direction does not have to equal one unit
in the Y direction. This is sometimes called distorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The following single line was added to the preceeding isotropic program
and the anisotropic results are shown in Figure 1-3. The rectangle still frames the VDC
default space, but now the space fills the usable portion of the display. This program is
in exampleSc.c.

mapping_mode(fildes,TRUE) ;

(—)

\C —

Figure 1-3. An Anisotropic Frame of VDC Space

Since the scale for the voltage measurements is not the same as the scale for the number
of measurements, anisotropic plotting is appropriate.

18 An Introduction to Starbase Graphics

Viewports

The viewport is the portion of the output display that is used to draw the picture. This
can be all or only a part of the display.

The viewport boundaries is defined by several procedures.
e set_p1_p2 - This procedure defines the physical region that contains the viewport.

e mapping_mode - This procedure defines the viewport as isotropic (distorted) or
anisotropic (undistorted). If anisotropic, the viewport is the same as the rect-
angle defined by the set_p1_p2 procedure. If the viewport is isotropic, the viewport
is the largest rectangle with the same aspect ratio as the VDC extent that will
fit in the rectangle defined by the set_p1_p2 procedure and is positioned in that
rectangle by the viewport_justification procedure.

e viewport_justification - This procedure defines the fraction of “white space” (the
area of the set_p1_p2 rectangle not within the viewport) to the left or bottom of
the viewport. The default is .5 (50%), so the viewport is centered in the rectangle
defined by set_p1_p2. This procedure only applies to isotropic viewports.

An Introduction to Starbase Graphics 19

Rectangles

The rectangle procedure provides an easy way to draw rectangles. All you need to
specify is the device needing a rectangle and the coordinates of two opposite corners of
the rectangle. A default rectangle has a filled interior and no perimeter.

To see the extent of the Virtual Device Coordinate Space and to draw a frame around
the location on the display. two rectangles are drawn. The syntax for these rectangles is:

rectangle(fildes,-20,0.1575,105.0,0.1825) ;
rectangle(fildes,0,0.1600,100.0,0.1800) ;

To make rectangles hollow, and add the perimeter. use the interior_style procedure.
The following syntax will do the job.

interior_style(fildes, INT_HOLLOW, TRUE) ;
The following program segment is added to the program in order to draw the rectangles.
The program is stored as eramplejc.c.

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0);
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825) ;
mapping_mode(fildes, TRUE) ;

interior_style(fildes, INT_HOLLOW, TRUE) ;

rectangle(fildes,-20.0,0.1575,105.0,0.1825);
rectangle(fildes,0.0,0.1600,100.0,0.1800) ;

20 An Introduction to Starbase Graphics

Figure 1-4. Two Rectangles

An Introduction to Starbase Graphics 21

Plotting the Data

The following program will read the plot data from the file data and draw the results
in Virtual Device Coordinate space. The main procedure is polyline which will move
the graphics pen to the first (X,Y) data location and then draw to the remaining data
locations. The data is read into a single-dimension array usable by polyline. The number
of points to be drawn to is ¢/2 and the FALSE flag indicates that there are no move-draw
(0 for move, 1 for draw) indicators in the data.

You need to include <stdio.h> to access the file data. The syntax is:

#include <stdio.h>

fp = fopen("data","r");

while (i<200 && fscanf(fp,"%f%f", &coords[i],&coords{i+1]) != EOF)
i+=2;

fclose(fp);

polyline2d(fildes,coords,i/2,FALSE) ;

The results of this modification to the example program are shown in Figure 1-5. This
drawing was made with ezample5c.c.

22 An Introduction to Starbase Graphics

Figure 1-5. Plotted Data Only

An Introduction to Starbase Graphics 23

Labels

Let us now label the drawing. We will use two fonts, different character paths, and
different text alignments to show some of the capabilities of the system.

The syntax to do this is:

text_alignment (fildes,TA_CENTER,TA_TOP,0.0,0.0);
character_height (fildes,0.001);
text2d(fildes,50.0,0.1588,"Time (seconds)",VDC_TEXT,FALSE);

text_path(fildes,PATH_DOWN) ;
text_alignment(fildes,TA_CENTER,TA_HALF,0.0,0.0);
text2d(fildes,-14.0,0.1700, "Voltage",VDC_TEXT,FALSE) ;

text_font_index(fildes,2);
character_path(fildes,PATH_RIGHT) ;

text_alignment(fildes, TA_CENTER,TA_BOTTOM,0.0,0.0);
text2d(fildes,50.0,0.1810,"VOLTAGE VARIANCE",VDC_TEXT,FALSE);

Our example is now shown in Figure 1-6. This program is stored in example6ec.c.

24 An Introduction to Starbase Graphics

0Q @ + —0 <

VOLTAGE VARIANCE \

Time (seconds) J

Figure 1-6. A Labeled Plot

An Introduction to Starbase Graphics 25

Tic Marks

We now need to add the numerated tic marks. This is done with two loops. We use
sprintf to change the tic mark numbers into strings to be drawn as text.

text_alignment (fildes,TA_CENTER, TA_CONTINUQOUS_VERTICAL,0.0,1.2);
character_height (fildes,0.0006) ;

x = 0.0;
sprintf (number, "%d", (int)x) ;
text2d (fildes,x,0.1598,number,VDC_TEXT, FALSE) ;
for (i=10; i--;) {
for (j=5; j--;) {
move2d(fildes,x,0.1600) ;
draw2d(fildes,x,0.1603) ;
x += 2.0;
}
move2d(fildes,x,0.1600) ;
draw2d (fildes,x,0.1605) ;
sprintf (number, "%d", (int)x) ;
text2d(fildes,x,0.1600,number,VDC_TEXT,FALSE) ;

}
text_alignment(fildes,TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0);
y = 0.1600;

sprintf (number,"%5.4£f",y);
text2d(fildes,0.0,y,number, VDC_TEXT,FALSE) ;
for (i=8; i--;) {
for (j=5; j--;) {
move2d(fildes,0.0,y);
draw2d(fildes,1.0,y);
y += 0.0005;
}
move2d(fildes,0.0,y);
draw2d(fildes,2.0,y);
sprintf (number,"%5.4£",y) ;
text2d(fildes,0.0,y,number,VDC_TEXT,FALSE) ;

With the tic marks, we have the final picture.

26 An Introduction to Starbase Graphics

The Final Picture

b

VOLTAGE VARIANCE

0.1800

8.1?775

0.1750

0.1725

0.1708

0DQ o + —0 <

}ITIIlllll]ll!I|I|II|III||IIII|IIII

2.1675

0.1650

0.1625

12

pigop Lttt Lo by Ly b v bev ey b Lo b baa
) 20 39 40 50 60 70 89 99 180

Time (seconds)

o

)

Figure 1-7. The Final Picture

An Introduction to Starbase Graphics 27

The whole program

#include <stdio.h>
#include <starbase.c.h>

main(argc,argv)
int argc; char *argv[];

{

int fildes;

int i=0, j=0;
float x, y;

float coords[200];
FILE *fp;

char number [80] ;

if (argc > 2) fildes=gopen(argv[1],0UTDEV,argv[2],INIT);
else fildes=gopen("/dev/tty",0UTDEV, "hp262x",INIT) ;
if (fildes == -1) exit(-1);

vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0) ;
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825);
mapping_mode (fildes, TRUE) ;

interior_style(fildes,INT_HOLLOW, TRUE) ;
rectangle(fildes,-20.0,0.1575,105.0,0.1825) ;
rectangle(fildes,0.0,0.1600,100.0,0.1800) ;

text_alignment (fildes,TA_CENTER,TA_TOP,0.0,0.0);
character_height (fildes,0.001);
text2d(fildes,50.0,0.1588, "Time (seconds)",VDC_TEXT,FALSE);

character_path(fildes,PATH_DOWN) ;
text_alignment (fildes, TA_CENTER,TA_HALF,0.0,0.0);
text2d(fildes,-14.0,0.1700, "Voltage" ,VDC_TEXT,FALSE) ;

text_font_index(fildes,2);

character_path(fildes,PATH_RIGHT) ;

text_alignment (fildes,TA_CENTER,TA_BOTTOM,0.0,0.0);
text2d(fildes,50.0,0.1810,"VOLTAGE VARIANCE",VDC_TEXT,FALSE) ;

fp = fopen("data","r");

while(i<200 && fscanf (fp,"%f%f",&coords[i],&coords[i+1]) != EOF)
i+=2;

fclose(fp);

polyline2d(fildes,coords,i/2,FALSE) ;

text_alignment (fildes,TA_CENTER, TA_CONTINUOUS_VERTICAL,0.0,1.2);
character_height(fildes,0.0006) ;

x = 0.0;

28 An Introduction to Starbase Graphics

sprintf (number,"%d", (int)x) ;
text2d(fildes,x,0.1598,number, VDC_TEXT,FALSE) ;
for (i=10; i--;) {
for (j=5; j--;) {
move2d(fildes,x,0.1600) ;
draw2d(fildes,x,0.1603) ;
X += 2.0;
}
move2d(fildes,x,0.1600) ;
draw2d(fildes,x,0.1605) ;
sprintf (number, "%d", (int)x) ;
text2d(fildes,x,0.1600,number,VDC_TEXT,FALSE) ;
}

text_alignment (fildes, TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0);

y = 0.1600;
sprintf (number, "%5.4£",y);
text2d(fildes,0.0,y,number, VDC_TEXT,FALSE) ;
for (i=8; i--;) {
for (j=5; j--;) {
move2d(fildes,0.0,y);
draw2d(fildes,1.0,y);
y += 0.0005;
}
move2d(fildes,0.0,y);
draw2d(fildes,2.0,y);
sprintci (number, “%5.41%,yJ;
text2d(fildes,0.0,y,number,VDC_TEXT,FALSE) ;
}

gclose(fildes);

An Introduction to Starbase Graphics 29

Notes

30 An Introduction to Starbase Graphics

Graphics with Fortran77

Welcome

This manual is designed to teach you how to use some fundamental procedures that are
included in the Starbase Graphics Library on your HP-UX system. These procedures
can be accessed from the C, Fortran77 and Pascal programming languages available for
your system. This subsection will present a progressive example using the Fortran77
Programming Language. The previous subsection covered the same material using the
C Programming Language and the next subsection covers the same material using the
Pascal programming language.

Starbase Graphics programs written in Fortran77 require two conventions for procedure
passing.

1. All matrices passed to Starbase from Fortran77 must have the row and column
indices reversed. Starbase assumes the order used by both Pascal and C for all
matrices processed.

2. Whenever passing strings as character* variables, or constants, the end of the string
must be marked with a char(0) {NULL}.

This manual was written with the assumption that you are familiar with your HP-UX
Operating System, including the appropriate programming languages, compilers, linkers,
editors, etc. If this is not the case, the information you need is available in the extensive
documentation provided with your system. There are also many excellent books and
courses avaliable to provide information concerning C, Fortran77 and Pascal.

This manual also assumes that you are familiar with basic computer graphics concepts.
If this is not the case, there are many excellent books and courses available to provide
this information.

The example programs used in this tutorial are included with your system in the
/usr/1lib/starbase/demos directory. You are encouraged to run these programs as you
read the manual. When you see how the programs work, modify them as you desire to
see how each part contributes to the whole. Be aware that the example programs as-
sume a system configuration which may differ from yours, and that the gopen procedure
parameters and the device drivers linked to your program may need changing to match
your system.

An Introduction to Starbase Graphics 31

NOTE

Demonstration programs and routines in /usr/1lib/starbase/demos
are for the purpose of instruction only. They are not part of the
HP-UX package, and as such, they are not covered by any war-
ranty, expressed or implied. Hewlett Packard shall not be liable
for incidental or consequential damages in connection with, or aris-
ing out of, the furnished, performance, or use of these routines.

Preparation

The directions concerning the execution of the example programs presented in this man-
ual assumes your current directory is /usr/lib/starbase/demos. To make this directory
your current working directory, use the change directory (cd) command as follows:

cd /usr/lib/starbase/demos

A discussion of the hierarchial directory structure used by the HP-UX Operating System
is found in the Systems Administrator manual supplied with your system.

For further details on the cd command, use the man command. For example.

man cd
The man command prints the reference page for the specified command on the display.

The example programs presented in this manual are included with your operating system.
They are located in the /usr/lib/starbase/demos directory.

The examples are provided as source code. To read the code. use the HP-UX more or
cat commands. To modify the code, use an appropriate editor, such as the vz editor.

To execute the example programs on other devices, they must be compiled and linked to
the correct drivers. The shell script shown below will accomplish this for you.

32 An Introduction to Starbase Graphics

Device Drivers

The Starbase device drivers are located in the directory /usr/1ib and have file names
appropriate to access by the “-1” option of the Fortran77 compiler (fc) command.

Take a moment and list the device driver files in /usr/1ib to see which device drivers are
available with your system. All device driver file names begin with 1ibdd prefix, followed
by the device type. To list these files, type in:

1s /usr/lib/libdd*
As you can see, there are several drivers to choose from.

The HP-GL device driver is /usr/1ib/libddhpgl.a (accessed with -1ddhpgl) and the
HP 262x device driver is /usr/1ib/1ibdd262x.a (accessed with -1dd262x).

For further details concerning the Starbase Device Drivers, read the appropriate sections
in the Starbase Device Drivers Library manual.

A Shell Script

The following shell script was used to compile and execute the example programs dis-
cussed in this manual. The script works with both the Bourne Shell and the C Shell (the
C shell calls the Bourne shell automatically).

The “-1” option was used to reduce typing. This compiler option prepends /usr/1ib/1ib
to the filename and appends .a to the file name. Thus,

. -lddhpgl

is processed as if it were

... /usr/lib/libddhpgl.a
The hp262x driver is included with the script. The sbi and sb2 files are included to
resolve all unresolved variables generated by the Starbase programs.

PROG=$1

shift

fc -o $PROG $PROG.f $* -1dd262x -1sbi -1sb2
$PROG

This script is stored as an executable file under the file name FC in the
/usr/lib/starbase/demos directory.

An Introduction to Starbase Graphics 33

To compile and execute the example program examplelf.f, enter the following:

FC examplelf

To execute the compiled program ezamplelf again, type in:

examplelf

If you want the same program executed on an HP-GL plotter, you must edit the program
and modify the gopen procedure call.

To execute the example with other devices, you must link the correct devices to the
program.

For example, to link HP 98700 device driver to the example program, just type in:

FC examplelf -1d4d98700

34 An Introduction to Starbase Graphics

The Data to be Plotted

The following data is to be presented in graphical form. The example program to do this
follows.

Table 1-4. Test Data

Test Value Test Value Test Value Test Value
0 0.1610 1 0.1625 2 0.1625 3 0.1628
4 0.1636 5 0.1631 6 0.1627 7 0.1608
8 0.1610 9 0.1606 10 0.1607 11 0.1617

12 0.1614 13 0.1626 14 0.1634 15 0.1640
16 0.1656 17 0.1660 18 0.1644 19 0.1651
20 0.1635 21 0.1641 22 0.1628 23 0.1619
24 0.1630 25 0.1624 26 0.1627 27 0.1644
28 0.1644 29 0.1657 30 0.1660 31 0.1670
32 0.1672 33 0.1666 34 0.1658 35 0.1662
36 0.1646 37 0.1633 38 0.1634 39 0.1636
40 0.1645 41 0.1652 42 0.1656 43 0.1677
44 0.1689 45 0.1680 46 0.1696 47 0.1680
48 0.1674 49 0.1677 50 0.1669 51 0.1655
52 0.1665 53 0.1662 54 0.1667 55 0.1668
56 0.1681 57 0.1688 58 0.1687 59 0.1707
60 0.1716 61 0.1716 62 0.1694 63 0.1698
64 0.1683 65 0.1683 66 0.1671 67 0.1681
a8 0.1682 /0 0.1AR4 70 0.1681 71 0.1698
72 0.1705 73 0.1723 74 0.1730 75 0.1734
76 0.1714 77 0.1722 78 0.1716 79 0.1696
80 0.1702 81 0.1699 82 0.1684 83 0.1706
84 0.1696 85 0.1715 86 0.1730 87 0.1737
88 0.1739 89 0.1751 90 0.1732 91 0.1747
92 0.1729 93 0.1717 94 0.1710 95 0.1707
96 0.1706 97 0.1709 98 0.1713 99 0.1720

An Introduction to Starbase Graphics 35

The Data as a Clist

The first column shows the first few file entries as a clist without move/draw indicators.
The second column shows the first few data entries as a clist with move(1)/draw(0)
indicators.—~

Table 1-5. Test Data

Clist without Clist with
Move/Draw Indicators Move/Draw Indicators

0 0

0.1610 0.1610

1 0 (a move indicator)
0.1625 1

2 0.1625

0.1625 1 (a draw indicator)
3 2
0.1628 0.1625
4 (another draw indicator)

0.1636
5
0.1631
6
0.1627
7
0.1608
8
0.1610
9
0.1606
10

0.1607
11

1
3
0.1628
1
4
0
1
5
0
1
6
0
1
7
0
0.1617 1
8
0
1
9
0
1
1
0
1
1
0
1
1
0
1
1

1636

1631

1608

12

0.1614 1610

1606

0

1627
.1607

—

1617

2
.1614

3

36 An Introduction to Starbase Graphics

(VOLTAGE VARIANCE \
0.1800
017?75 :~
01750 -—
V -
01725 —
o L
] -
t @.1708 [-
a C
g 0.1675 '-—~
e L
81650 —
L
F
8.1625 C
oo Lt v Lo Loy b v b b v be v b v e v v baag
%) 12 20 30 40 S0 608 70 82 %) 120
K\\‘ Time (seconds) A//)
Figure 1-8. The Results Degired

A Template Fortran77 Program

The following is a template program that will be filled with Starbase procedure and
function calls to draw the example voltage plot. As listed, this program opens the
specified device, clears the clipping area and then closes the device.

This program is stored as examplelf.f.

include ’/usr/include/starbase.f1.h’
program chart

character NULL

parameter (NULL = char(0))

include °’/usr/include/starbase.f2.h’

integer*4 fildes

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

fildes = gclose(fildes)
end

An Introduction to Starbase Graphics 37

The Include File

The files starbase.f1.h and starbase.f2.h contain the definitions and terms needed for
any Starbase program written in Fortran77. These files are located in the /usr/include
directory.

To see what definitions and terms are needed, use the more command. The syntax is:

more /usr/include/starbase.f1.h

and

more /usr/include/starbase.f2.h

The Gopen Function

The function gopen opens the specified graphic device. This function requires four pa-
rameters:

1.

Device File Name - Device files are created by the System Administrator. Device
files are located in the /dev directory. In the following examples, the device file tty
is used.

. Performance Mode - This parameter may be one of the following:

OUTDEYV - device driver is to output information to the device.
INDEYV - device driver is to read information from the device.

OUTINDEYV - device driver can send and receive information to and from the
device.

The following examples use OUTDEYV since the example program is to be drawn on the
output device’s display.

3.

Character Representation of the Driver Type - For the following example, this
will be hp262x. This parameter identifies the driver to be used. The hp262x driver
interrogates the device specified by the device file name and tests to see if the device
is an HP 2623 Graphics Terminal or an HP 2627 Color Graphics Terminal, and acts
accordingly.

A possible character representation for an HP-GL plotter is hpgl.

38 An Introduction to Starbase Graphics

4. Operation Mode - This parameter may be one of the following:

0 - open the device, but do nothing else.

INIT - open and initialize the device in a device dependent way.

RESET - open and completely initialize the device.

SPOOLED - open the device for spooled operation. Spooled output may be saved
in a file for later display.

THREE_D - open the device and set Starbase to 3-dimensional mode.

These modes may be combined with the proper ADD syntax. In Fortran77 this is
the plus sign (+) as in (INIT+SPOOLED).

By doing an ADD operation on INIT and SPOOLED, the graphic device can be opened,
initialized and spooled to a file.
For example:
fildes = gopen("spoolfile",OUTDEV, "hpgl", INIT+SPOOLED) ;
If the opening is not successful, gopen returns a value of -1. If the opening is successful,

a positive integer (file descriptor) is returned and the HP-GL device is initialized and
ready for spooled output.

Further information can be obtained about this procedure by using the man command.
Just type in:
man 3 gopen

The Gclose Function

To properly close a graphics device, use the gclose function. The fildes file descriptor
identified by the gopen function is used to identify a particular device for all following
Starbase procedures and functions, including gclose.

Further information can be obtained about this procedure by using the man command.
Just type in:

man 3 gclose

An Introduction to Starbase Graphics 39

A Review
As areview, the following table lists information about the files, functions and commands
just discussed.

Table 1-6. A Review

Required Items Learn More

The cd Command /usr/man/manl/cd.1
(man cd)

The fc Compiler Command Jusr/man/manl/fc.1
(man fc)

Shell Scripts HP-UX Concepts and Tutorials,
volume 3.

Device Drivers Starbase Device Drivers Library.

Jusr/lib/libdd*
(Is /usr/lib/libdd...)

C Programming The C Programming Language
by Kernighan and Ritchie

Definitions and Terms needed /usr/include/starbase.f1.h
for any Starbase program Jusr/include/starbase.f2.h
written in Fortran77 (more /usr/include/starbase.f1.h)

(more /usr/include/starbase.f2.h)

gopen /usr/man/man3/gopen.3g
(man 3 gopen)

gclose /usr/man/man3/gclose.3g
(man 3 gclose)

Virtual Device Coordinates

The default Cartesian coordinate system used by the Starbase procedures is called the
Virtual Device Coordinate (VDC) system. This system can be considered a 2-dimensional
subset of the Cartesian plane with default x- and y-axis values ranging from 0.0 to 1.0. In
3-dimensional graphics, this system can also be considered a subset of Cartesian 3-space
with default x-, y- and z-axis values ranging from 0.0 to 1.0. Locations in VDC space
are specified in VDC values as specified by the vdc_extent procedure.

40 An Introduction to Starbase Graphics

The procedure gopen automatically creates a Virtual Device Coordinate to Deviee Co-
ordinate (DC) transformation matrix for each opened graphic device. All VDC data is
processed through this matrix before being set to the target device. Since cach deviee has
a unique transformation matrix, the same data will appear as expected on each device.

The range of values used for this system can be altered with the vde_extent procedure.

Use the push_vdc_matrix procedure to force the current working matrix to be the VDC
to DC transformation matrix.

Device Coordinates

Device coordinate Space is the Cartesian 2-dimensional space that is the device’s output
surface. The range and magnitude of x- and y-axis values is defined by cach device.

Device Coordinate procedures bypass the VDC to DC transformation matrix. Such pro-
cedures begin with the characters de, for “device coordinate”. For example, dedraw will
draw a line on the specified device using the untransformed coordinate values specified.

To transform VDC values to DC values, use the vdc_to_dc procedure.

World Coordinates

World coordinates can have any value the user desires. This is handy when the data is
to be used for purposes other than making a drawing.

Since world coordinates can be of any value, they must be transformed to device co-
ordinates before being drawn on a graphic device. This transformation can be done in
several ways. For example:

e A transformation matrix with the appropriate values to transform the World Co-
ordinate data into Device Coordinate data may be supplied by the user.

e A transformation matrix with the appropriate values to transform the World Coor-
dinate data into Virtual Device Coordinate data may be supplied by the user. This
matrix could then be concatenated (matrix multiplied) with the Virtual Device Co-
ordinate to Device Coordinate transformation matrix to make a World Coordinate
to Device Coordinate Matrix.

For instance, in 2-dimensional mode, a matrix containing:

cos sinf
-ginf cosf
0 0

will rotate world coordinates counter-clockwise by an angle of .

An Introduction to Starbase Graphics 41

e The Easiest Way is to use the vdc_extent procedure to change the ranges of values
used to define the Virtual Device Coordinate Space so that the world coordinate
values are now contained in VDC space. Any time the vdc_extent procedure is
used, a new Virtual Device Coordinate to Device Coordinate matrix is calculated
that maps Virtual Device Coordinate Space into Device Coordinate Space.

Setting the VDC Extent

In the example problem, we want to plot voltage values against the associated measure-
ment number. Our voltage data ranges from just over 0.1600 through just under 0.1800,
while we have 100 measurements (from 1 to 100).

Logical values for the vde extent would be -20 to 105 on the x-axis and 0.1575 to 0.1825
in the y-axis. This will allow us to plot the data in a rectangle of size 0-100 on the x-axis
and 0.1600-0.1800 on the y-axis and still leave room for labels within the vdc extent and
outside the plotting area. Since we are doing 2-dimensional graphics, the z-coordinates
are both 0.0. The syntax to do this is:

call vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0);
Detailed information on this procedure can be found using the HP-UX man command as
follows:

man 3 vdc_extent

NOTE

The decision was made to follow ANSI parameter patterns in the
Starbase procedures. These parameter patterns are NOT CON-
SISTENT. One procedure may call for x1,y1,z1,x2,y2,z2 while the
next may require x1,x2,y1,y2,z1,2z2. Hopefully this inconstancy will
be removed from the ANSI standard and thus from the Starbase
procedures.

42 An Introduction to Starbase Graphics

Clipping
Clipping is the process of not allowing selected graphic data to be displayed. There are
two clipping processes:

e Hard Clip - This is clipping done by the graphic output device that physically
stops plotting outside the physical limits of the device’s display area. For example,
a plotter’s pen can not draw past the physical edge of the plotter’s platen.

e Soft Clip - This is clipping done by the graphics software to limit the visible portion
of the plot. Soft clipping can be done to both 2-dimensional and 3-dimensional data.
Starbase provides two clipping boundaries:

e The Clip Rectangle - A rectangle can be specified with the clip_rectangle proce-
dure that defines subsequent clipping boundaries.

e The VDC Extent - The rectangle defined by the vdc_extent procedure can also be
used to define subsequent clipping boundaries.

The clip_indicator procedure identifies which of the two boundaries to clip to.
The clip_depth procedure is used to define the front and back clipping planes for

3-dimensional graphics. Front and back clipping is enabled or disabled with the
depth_indicator procedure.

An Introduction to Starbase Graphics 43

Isotropic (undistorted) Mapping

Isotropic mapping is when one unit in the x-axis exactly equals one unit in the y-axis.
This is sometimes referred to as undistorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The default is isotropic.

The following example program draws an isotropic square around the default Virtual
Device Coordinate space. This program is in file example2f.f.

include ’/usr/include/starbase.fi.h’
program chart

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

call interior_style(fildes, INT_HOLLOW,TRUE)
call rectangle(fildes,0.0,0.0,1.0,1.0)

fildes = gclose(fildes)
end

44 An Introduction to Starbase Graphics

Figure 1-9. An Isotropic Frame of VDC Space

An Introduction to Starbase Graphics 45

Anisotropic (distorted) Mapping

Anisotropic mapping where one unit in the X direction does not have to equal one unit
in the Y direction. This is sometimes called distorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The following single line was added to the preceeding isotropic program
and the anisotropic results are shown Figure 1-10. The rectangle still frames the VDC
default space, but now the space fills the usable portion of the display. This program is
in examplesf.f.

call mapping_mode(fildes,TRUE) ;

0)

N %

Figure 1-10. An Anisotropic Frame of VDC Space

Since the scale for the voltage measurements is not the same as the scale for the number
of measurements, anisotropic plotting is appropriate.

46 An Introduction to Starbase Graphics

Viewports

The viewport is the portion of the output display that is used to draw the picture. This
can be all or only a part of the display.

The viewport boundaries is defined by several procedures.
e set_p1_p2 - This procedure defines the physical region that contains the viewport.

e mapping_mode - This procedure defines the viewport as isotropic (distorted) or
anisotropic (undistorted). If anisotropic, the viewport is the same as the rect-
angle defined by the set_p1_p2 procedure. If the viewport is isotropic, the viewport
is the largest rectangle with the same aspect ratio as the VDC extent that will
fit in the rectangle defined by the set_p1_p2 procedure and is positioned in that
rectangle by the viewport_justification procedure.

e viewport_justification - This procedure defines the fraction of “white space” (the
area of the set_p1_p2 rectangle not within the viewport) to the left or bottom of
the viewport. The default is .5 (50%), so the viewport is centered in the rectangle
defined by set_p1_p2. This procedure only applies to isotropic viewports.

An Introduction to Starbase Graphics 47

Rectangles

The rectangle procedure provides an easy way to draw rectangles. All you need to
specify is the device needing a rectangle and the coordinates of two opposite corners of
the rectangle. A default rectangle has a filled interior and no perimeter.

To see the extent of the Virtual Device Coordinate Space and to draw a frame around
the location on the display, two rectangles are drawn. The syntax for these rectangles is:

call rectangle(fildes,-20,0.1575,105.0,0.1825);
call rectangle(fildes,0,0.1600,100.0,0.1800);

To make rectangles hollow, and add the perimeter, use the interior_style procedure.
The following syntax will do the job.

call interior_style(fildes, INT_HOLLOW,TRUE);

The following program segment is added to the program in order to draw the rectangles.
The program is stored as example4f.f.

include ’/usr/include/starbase.f1.h’
program chart

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes, status

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

call vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0)
call clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825)
call mapping_mode(fildes, TRUE)

call interior_style(fildes, INT_HOLLOW,TRUE)
call rectangle(fildes,-20.0,0.1575,105.0,0.1825)
call rectangle(fildes,0.0,0.1600,100.0,0.1800)

status = gclose(fildes)
end

48 An Introduction to Starbase Graphics

Figure 1-11. Two Rectangles

An Introduction to Starbase Graphics 49

Plotting the Data

The following program will read the plot data from the file data and draw the results
in Virtual Device Coordinate space. The main procedure is polyline which will move
the graphics pen to the first (X,Y) data location and then draw to the remaining data
locations. The data is read into a single-dimension array usable by polyline. The number
of points to be drawn to is ¢/2 and the FALSE flag indicates that there are no move-draw
(0 for move, 1 for draw) indicators in the data.

The syntax is:

include ’/usr/include/starbase.f1.h’
program chart

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes
integer*4 i, j
real x, y

real coords(200)

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

call vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0)
call clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825)
call mapping_mode(fildes, TRUE)

call interior_style(fildes, INT_HOLLOW,TRUE)
call rectangle(fildes,0.0,0.1575,105.0,0.1825)
call rectangle(fildes,0.0,0.1600,100.0,0.1800)

open (unit=9,file=’data’)
do i=1,199,2
read(9,*,end=20) coords(i),coords(i+1)
end do
20 close(9)

call polyline2d(fildes,coords,i/2,FALSE)

fildes = gclose(fildes)
end)

50 An Introduction to Starbase Graphics

The results of this modification to the example program are shown in Figure 1-12. This
drawing was made with ezample5f.f.

0 T

Figure 1-12. Plotted Data

An Introduction to Starbase Graphics 51

Labels

Let us now label the drawing. We will use two fonts, different character paths, and
different text alignments to show some of the capabilities of the system.

The syntax to do this is:

include ’/usr/include/starbase.fl.h’
program chart

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes
integer*4 i, j

real x, y

real coords(200)
character*80 number

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

call vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0)
call clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825)
call mapping_mode(fildes, TRUE)

call interior_style(fildes,INT_HOLLOW,TRUE)
call rectangle(fildes,-20.0,0.1575,105.0,0.1825)
call rectangle(fildes,0.0,0.1600,100.0,0.1800)

call text_alignment(fildes,TA_CENTER,TA_TOP,0.0,0.0)

call character_height(fildes,0.001)

call text2d(fildes,50.0,0.1588, ’Time (seconds)’//NULL,VDC_TEXT,
+ FALSE)

call character_path(fildes,PATH_DOWN)
call text_alignment(fildes,TA_CENTER,TA_HALF,0.0,0.0)
call text2d(fildes,-14.0,0.1700, 'Voltage’//NULL,VDC_TEXT,FALSE)

call text_font_index(fildes,2)

call character_path(fildes,PATH_RIGHT)

call text_alignment(fildes,TA_CENTER,TA_BOTTOM,0.0,0.0)

call text2d(fildes,50.0,0.1810, 'VOLTAGE VARIANCE’//NULL,VDC_TEXT,
+ FALSE)

open (unit=9,file=’data’)
do i=1,199,2
read (9, *,end=20) coords(i),coords(i+1)
end do
20 close(9)

52 An Introduction to Starbase Graphics

call polyline2d(fildes,coords,i/2,FALSE)

fildes = gclose(fildes)
end

Our example is now shown Figure 1-13. This program is stored in exzample6f.f.

K VOLTAGE VARIANCE \

0DQ @w + —0 <

.
\

K Time (seconds) j

Figure 1-13. A Labeled Plot

An Introduction to Starbase Graphics 53

Tic Marks

We now need to add the numerated tic marks. This is done with two loops. We use
write to change the tic mark numbers into strings to be drawn as text.

call text_alignment(fildes,TA_CENTER,
+ TA_CONTINUOUS_VERTICAL,0.0,1.2)
call character_height(fildes,0.0006)

x =0.0
write(unit=number,fmt=’(I3)’) int(x)
call text2d(fildes,x,0.1598,number (1:3)//NULL,VDC_TEXT,FALSE)

do i=1,10
do j=1,5
call move2d(fildes,x,0.1600)
call draw2d(fildes,x,0.1603)
x=x+ 2.0
end do

call move2d(fildes,x,0.1600)
call draw2d(fildes,x,0.1605)
write(unit=number,fmt=’(I3)’) int(x)
call text2d(fildes,x,0.1600,number(1:3)//NULL,VDC_TEXT,FALSE)
end do

call text_alignment(fildes,
+ TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0)

y = 0.1600
write (unit=number,fmt="(£5.4)’) y
call text2d(fildes,0.0,y,number(1:5)//NULL,VDC_TEXT,FALSE)

do i=1,8
do j=1,5
call move2d(fildes,0.0,y)
call draw2d(fildes,1.0,y)
y =y + 0.0005
end do

call move2d(fildes,0.0,y)
call draw2d(fildes,2.0,y)
write(unit=number,fmt="(£5.4)") y
call text2d(fildes,0.0,y,number(1:5)//NULL,VDC_TEXT,FALSE)
end do

54 An Introduction to Starbase Graphics

The Final Picture

f VOLTAGE VARIANCE \

0.1800

0.1775

0.1750

@.a72s

0.1700

@.1675

DQ p + —0 <

0.1650

0.1625

$|IT!IW_1]|171|I|‘I|I|I|!|I!l\l!|!|
>

v
L7 A T U O S N T S A T 0 VA U A A O A A
g 12 20 30 40 50 60 70 82 sa 1890

\ Time (seconds) j

Figure 1-14. The Final Plot

An Introduction to Starbase Graphies 88

The Whole Program

include ’/usr/include/starbase.fi.h’
program chart

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes
integer*4 i, j

real x, y

real coords(200)
character*80 number

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

call vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0)
call clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825)
call mapping_mode(fildes, TRUE)

call interior_style(fildes, INT_HOLLOW,TRUE)
call rectangle(fildes,-20.0,0.1575,105.0,0.1825)
call rectangle(fildes,0.0,0.1600,100.0,0.1800)

call text_alignment(fildes,TA_CENTER,TA_TOP,0.0,0.0)

call character_height(fildes,0.001)

call text2d(fildes,50.0,0.1588, ’Time (seconds)’//NULL,VDC_TEXT,
+ FALSE)

call character_path(fildes,PATH_DOWN)
call text_alignment(fildes,TA_CENTER,TA_HALF,0.0,0.0)
call text2d(fildes,-14.0,0.1700, 'Voltage’//NULL,VDC_TEXT,FALSE)

call text_font_index(fildes,2)

call character_path(fildes,PATH_RIGHT)

call text_alignment(fildes,TA_CENTER,TA_BOTTOM,0.0,0.0)

call text2d(fildes,50.0,0.1810, VOLTAGE VARIANCE’//NULL,VDC_TEXT,
+ FALSE)

open (unit=9,file=’data’)
do i=1,199,2
read(9,*,end=20) coords(i),coords(i+1)
end do
20 close(9)

call polyline2d(fildes,coords,i/2,FALSE)
call text_alignment(fildes,TA_CENTER,

+ TA_CONTINUOUS_VERTICAL,0.0,1.2)
call character_height(fildes,0.0006)

56 An Introduction to Starbase Graphics

x =0.0
write (unit=number,fmt=’(I3)’) int(x)
call text2d(fildes,x,0.1598,number(1:3)//NULL,VDC_TEXT,6FALSE)

do i=1,10
do j=1,5
call move2d(fildes,x,0.1600)
call draw2d(fildes,x,0.1603)
x=x+ 2.0
end do

call move2d(fildes,x,0.1600)
call draw2d(fildes,x,0.1605)
write(unit=number,fmt=’(I3)’) int(x)
call text2d(fildes,x,0.1600,number (1:3)//NULL,VDC_TEXT,FALSE)
end do

call text_alignment(fildes,
+ TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0)

y = 0.1600
write (unit=number,fmt="(£5.4)’) y
call text2d(fildes,0.0,y,number(1:5)//NULL,VDC_TEXT,FALSE)

do i=1,8
do j=1,5
call move2d(fildes,0.0,y)
call draw2d(fildes,1.0,y)
y =y + 0.0005
end do

call move2d(fildes,0.0,y)
call draw2d(fildes,2.0,y)
write(unit=number,fmt="(£5.4)°) y
call text2d(fildes,0.0,y,number(1:5)//NULL,VDC_TEXT,FALSE)
end do
fildes = gclose(fildes)
end

An Introduction to Starbase Graphics 57

Notes

58 An Introduction to Starbase Graphics

Graphics with Pascal

Welcome

This manual is designed to teach you how to use some fundamental procedures that are
included in the Starbase Graphics Library on your HP-UX system. These procedures can
be accessed from the C, Fortran77 and Pascal programming languages available for your
system. This subsection will present a progressive example using the C Programming
Language. The previous subsections covered the same material using the C and Fortran77
Programming Languages.

This manual was written with the assumption that you are familiar with your HP-UX
Operating System, including the appropriate programming languages, compilers, linkers,
editors, etc. If this is not the case, the information you need is available in the extensive
documentation provided with your system. There are also many excellent books and
courses avaliable to provide information concerning C, Fortran77 and Pascal.

This manual also assumes that you are familiar with basic computer graphics concepts.
If this is not the case, there are many excellent books and courses available to provide
this information.

The example programs used in this tutorial are included with your system in the
/usr/lib/starbase/demos directory. You are encouraged to run these programs as you
read the manual. When you see how the programs work, modify them as you desire to
see how each part contributes to the whole. Be aware that the example programs as-
sume a system configuration which may differ from yours, and that the gopen procedure
parameters and device drivers linked to your program may need changing to match your
system.

NOTE

Demonstration programs and routines in /usr/1lib/starbase/demos
are for the purpose of instruction only. They are not part of the
HP-UX package, and as such, they are not covered by any war-
ranty, expressed or implied. Hewlett Packard shall not be liable
for incidental or consequential damages in connection with, or aris-
ing out of, the furnished, performance, or use of these routines.

An Introduction to Starbase Graphics 59

Preparation

The directions concerning the execution of the example programs presented in this man-
ual assumes your current directory is /usr/lib/starbase/demos. To make this directory
your current working directory, use the change directory (cd) command as follows:

cd /usr/lib/starbase/demos
A discussion of the hierarchial directory structure used by the HP-UX Operating System
is found in the Systems Administrator manual supplied with your system.

For further details on the cd command, use the man command. For example,

man cd
The man command prints the reference page for the specified command on the display.

The example programs presented in this manual are included with your operating system.
They are located in the /usr/lib/starbase/demos directory.

The examples are provided as source code. To read the code, use the HP-UX more or
cat commands. To modify the code, use an appropriate editor, such as the vz editor.

To execute the example programs on other devices, they must be compiled and linked to
the correct drivers. The shell script shown below will accomplish this for you.
Device Drivers

The Starbase device drivers are located in the directory /usr/lib and have file names

appropriate to access by the “-1I” option of the Pascal compiler (pc) command.

Take a moment and list the device driver files in /usr/1ib to see which device drivers are
available with your system. All device driver file names begin with 1ibdd prefix, followed
by the device type. To list these files, type in:

1ls /usr/lib/libddx
As you can see, there are several drivers to choose from.

The HP-GL device driver is /usr/1ib/libddhpgl.a (accessed with -lddhpgl) and the
HP 262x device driver is /usr/1ib/1ibdd262x.a (accessed with -1dd262x). These are the
device drivers included in the example programs.

For further details concerning the Starbase Device Drivers, read the appropriate sections
in the Starbase Device Drivers Library manual.

60 An Introduction to Starbase Graphics

A Shell Script

The following shell script was used to compile and execute the example programs dis-
cussed in this manual. The script works with both the Bourne Shell and the C Shell (the
C shell calls the Bourne shell automatically).

The “-1” option was used to reduce typing. This compiler option prepends /usr/1ib/1ib
to the filename and appends .a to the file name. Thus,

. -lddhpgl

is processed as if it were

... /usr/lib/libddhpgl.a
The HP262x device driver is linked by the script. The sb1 and sb2 files are included to
resolve all unresolved variables generated by the Starbase programs.

PROG=$1

shift

pc -o $PROG $PROG.p $* -1dd262x -1lsbl -1sb2
$PROG

This script is stored as an executable file under the file name PC in the
/usr/lib/starbase/demos directory.

To compile and execute the example program exampleip.p, enter the following:

PC examplelp

To execute the compiled program examplelp again, type in:

examplelp

If you want the same program executed on an HP-GL plotter, the gopen procedure
parameters must be modified.

To execute the example with other devices, you must link the correct devices to the
program.

For example, to execute to link the HP 98700 device driver, just type in:
PC exampleip -1d4d98700

An Introduction to Starbase Graphics 61

The Data to be Plotted

The following data is to be presented in graphical form. The example program to do this
follows.

Table 1-7. Test Data

Test Value Test Value Test Value Test Value
0 0.1610 1 0.1625 2 0.1625 3 0.1628
4 0.1636 5 0.1631 6 0.1627 7 0.1608
8 0.1610 9 0.1606 10 0.1607 11 0.1617

12 0.1614 13 0.1626 14 0.1634 15 0.1640
16 0.1656 17 0.1660 18 0.1644 19 0.1651
20 0.1635 21 0.1641 22 0.1628 23 0.1619
24 0.1630 25 0.1624 26 0.1627 27 0.1644
28 0.1644 29 0.1657 30 0.1660 31 0.1670
32 0.1672 33 0.1666 34 0.1658 35 0.1662
36 0.1646 37 0.1633 38 0.1634 39 0.1636
40 0.1645 41 0.1652 42 0.1656 43 0.1677
44 0.1689 45 0.1680 46 0.1696 47 0.1680
48 0.1674 49 0.1677 50 0.1669 51 0.1655
52 0.1665 53 0.1662 54 0.1667 55 0.1668
56 0.1681 57 0.1688 58 0.1687 59 0.1707
60 0.1716 61 0.1716 62 0.1694 63 0.1698
64 0.1683 65 0.1683 66 0.1671 67 0.1681
68 0.1683 69 0.1684 70 0.1681 71 0.1698
72 0.1705 73 0.1723 74 0.1730 75 0.1734
76 0.1714 77 0.1722 78 0.1716 79 0.1696
80 0.1702 81 0.1699 82 0.1684 83 0.1706
84 0.1696 85 0.1715 86 0.1730 87 0.1737
88 0.1739 89 0.1751 90 0.1732 91 0.1747
92 0.1729 93 0.1717 94 0.1710 95 0.1707
96 0.1706 97 0.1709 98 0.1713 99 0.1720

62 An Introduction to Starbase Graphics

The Data as a Clist

The first column shows the first few file entries as a clist without move/draw indicators.
The second column shows the first few data entries as a clist with move(1)/draw(0)

indicators.

Table 1-8. Data in Clist Format

Clist without Clist with
Move/Draw Indicators Move/Draw Indicators

0 0
0.1610 0.1610
1 0 (a move indicator)
0.1625 1
2 0.1625
0.1625 1 (a draw indicator)
3 2
0.1628 0.1625
4 1 (another draw indicator)
0.1636 3
5 0.1628
0.1631 1
6 4
0.1627 0.1636
7 1
0.1608 5
8 0.1631
0.1610 i
9 6
0.1606 0.1627
10 1
0.1607 7
11 0.1608
0.1617 1
12 8
0.1614 0.1610
13 1
0.1626 9
14 0.1606
0.1634 1
15 10
0.1640 0.1607
16 1
0.1656 11
17 0.1617
0.1660 1
18 12
0.1644 0.1614
19 1
0.1651 13

An Introduction to Starbase Graphics 63

The Results Desired

The following picture shows the plot to be created by the example programs described
in the subsection.

/ VOLTARGE VARIANCE \

0.1800

01775

81750

84725

21700

01675

Q@ &+ —0 <

2.1658

LN B LB L N LN IR

2.625

19 20 30 40 S0 69 70 80 99 100

\ Time (seconds) J

Figure 1-15. The Results Desired

PR S T T T W Y T 0 0 0 A B O A A B O A B A A I A
2

64 An Introduction to Starbase Graphics

A Template Pascal Program
The following is a template program that will be filled with Starbase procedure and

function calls to draw the example voltage plot. As listed, this program opens the
specified device, clears the clipping area and then closes the device. The capability of
executing the program on an HP262x Graphics Terminal or a specified device is included.
This program is stored as examplelp.p.

program main(input,output);

$include ’/usr/include/starbase.pl.h’$

var
fildes, status : integer;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer); external;

begin {main}
fildes:=gopen(’/dev/tty’,0UTDEV, *hp262x’,INIT) ;
if fildes = -1 then exit(-1);

status := gclose(fildes);
end.

The files starbase.p1.h and starbase.p2.h contain the definitions and terms needed for
any Starbase program written in Pascal. These files are located in the /usr/include
directory.

To see what definitions and terms are needed, use the more command. The syntax is:

more /usr/include/starbase.pl.h

and

more /usr/include/starbase.p2.h

An Introduction to Starbase Graphics 65

The Gopen Function

The function gopen opens the specified graphic device. This function requires four pa-
rameters:

1.

Device File Name - Device files are created by the System Administrator. Device
files are located in the /dev directory. In the following examples, the device file tty
is used.

. Performance Mode - This parameter may be one of the following:

OUTDEYV - device driver is to output information to the device.
INDEV - device driver is to read information from the device.

OUTINDEYV - device driver can send and receive information to and from the
device.

The following examples use OUTDEYV since the example program is to be drawn on the
output device’s display.

3.

Character Representation of the Driver Type - For the following example, this
will be hp262x. This parameter identifies the driver to be used. The hp262x driver
interrogates the device specified by the device file name and tests to see if the device
is an HP 2623 Graphics Terminal or an HP 2627 Color Graphics Terminal, and acts
accordingly.

A possible character representation for an HP-GL plotter is hpgl.

. Operation Mode - This parameter may be one of the following:

0 - open the device, but do nothing else.

INIT - open and initialize the device in a device dependent way.

RESET - open and completely initialize the device.

SPOOLED - open the device for spooled operation. Spooled output may be saved
in a file for later display.

THREE_D - open the device and set Starbase to 3-dimensional mode.

These modes may be combined with the proper ADD syntax. In Pascal this is the
plus sign (4) as in (INIT+SPOOLED).

By doing an ADD operation on INIT and SPOOLED, the graphic device can be opened,
initialized and spooled to a file.

66 An Introduction to Starbase Graphics

For example:
fildes = gopen(’spoolfile’,0UTDEV, *hpgl’, INIT+SPOOLED) ;
If the opening is not successful, gopen returns a value of -1. If the opening is successful,

a positive integer (file descriptor) is returned and the HP-GL device is initialized and
ready for spooled output.

Further information can be obtained about this procedure by using the man command.
Just type in:

man 3 gopen

The Gclose Function

To properly close a graphics device, use the gclose function. The fildes file descriptor
identified by the gopen function is used to identify a particular device for all following
Starbase procedures and functions, including gclose.

Further information can be obtained about this procedure by using the man command.
Just type in:

man 3 gclose

An Introduction to Starbase Graphics 67

A Review

As a review, the following table lists information about the files, functions and commands
just discussed.

Table 1-9. A Review

Required Items Learn More

The cd Command /usr/man/manl/cd.1
(man cd)

The pc Compiler Command /usr/man/manl/pc.1
(man pc)

Shell Scripts HP-UX Concepts and Tutorials,
volume 3.

Device Drivers Starbase Device Drivers Library.
/usr/lib/libdd*
(Is /usr/lib/libdd...)

Definitions and Terms needed /usr/include/starbase.p1l.h

for any Starbase program /usr/include/starbase.p2.h

written in Pascal. (more /usr/include/starbase.pl.h)

(more /usr/include/starbase.p2.h)

gopen /usr/man/man3/gopen.3g
(man 3 gopen)

gclose /usr/man/man3/gclose.3g
(man 3 gclose)

Virtual Device Coordinates

The default Cartesian coordinate system used by the Starbase procedures is called the
Virtual Device Coordinate (VDC) system. This system can be considered a 2-dimensional
subset of the Cartesian plane with default x- and y-axis values ranging from 0.0 to 1.0. In
3-dimensional graphics, this system can also be considered a subset of Cartesian 3-space
with default x-, y- and z-axis values ranging from 0.0 to 1.0. Locations in VDC space
are specified in VDC values as specified by the vdc_extent procedure.

68 An Introduction to Starbase Graphics

The procedure gopen automatically creates a Virtual Device Coordinate to Device Co-
ordinate (DC) transformation matrix for each opened graphic device. All VDC data is
processed through this matrix before being set to the target device. Since each device has
a unique transformation matrix, the same data will appear as expected on each device.

The range of values used for this system can be altered with the vdc_extent procedure.

Use the push_vdc_matrix procedure to force the current working matrix to be the VDC
to DC transformation matrix.

Device Coordinates

Device coordinate Space is the Cartesian 2-dimensional space that is the device’s output
surface. The range and magnitude of x- and y-axis values is defined by each device.

Device Coordinate procedures bypass the VDC to DC transformation matrix. Such pro-
cedures begin with the characters de, for “device coordinate”. For example, dcdraw will
draw a line on the specified device using the untransformed coordinate values specified.

To transform VDC values to DC values, use the vdc_to_dc procedure.

World Coordinates

World coordinates can have any value the user desires. This is handy when the data is
to be nsed for purposes other than making a drawing.

Since world coordinates can be of any value, they must be transformed to device co-
ordinates before being drawn on a graphic device. This transformation can be done in
several ways. For example:

e A transformation matrix with the appropriate values to transform the World Co-
ordinate data into Device Coordinate data may be supplied by the user.

e A transformation matrix with the appropriate values to transform the World Coor-
dinate data into Virtual Device Coordinate data may be supplied by the user. This
matrix could then be concatenated (matrix multiplied) with the Virtual Device Co-
ordinate to Device Coordinate transformation matrix to make a World Coordinate
to Device Coordinate Matrix.

For instance, in 2-dimensional mode, a matrix containing:

cos 0 sin @
-sinf cos 0
0 0

will rotate world coordinates counter-clockwise by an angle of 6.

An Introduction to Starbase Graphics 69

e The Easiest Way is to use the vdc_extent procedure to change the ranges of values
used to define the Virtual Device Coordinate Space so that the world coordinate
values are now contained in VDC space. Any time the vdc_extent procedure is
used, a new Virtual Device Coordinate to Device Coordinate matrix is calculated
that maps Virtual Device Coordinate Space into Device Coordinate Space.

Setting the VDC Extent

In the example problem, we want to plot voltage values against the associated measure-
ment number. Our voltage data ranges from just over 0.1600 through just under 0.1800,
while we have 100 measurements (from 1 to 100). '

Logical values for the vdc extent would be -20 to 105 on the x-axis and 0.1575 to 0.1825
in the y-axis. This will allow us to plot the data in a rectangle of size 0-100 on the x-axis
and 0.1600-0.1800 on the y-axis and still leave room for labels within the vdc extent and
outside the plotting area. Since we are doing 2-dimensional graphics, the z-coordinates
are both 0.0. The syntax to do this is:

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0) ;
Detailed information on this procedure can be found using the HP-UX man command as
follows:

man 3 vdc_extent

NOTE

The decision was made to follow ANSI parameter patterns in the
Starbase procedures. These parameter patterns are NOT CON-
SISTENT. One procedure may call for x1,y1,z1,x2,y2,22 while the
next may require x1,x2,y1,y2,z1,z2. Hopefully this inconstancy will
be removed from the ANSI standard and thus from the Starbase
procedures.

70 An Introduction to Starbase Graphics

Clipping
Clipping is the process of not allowing selected graphic data to be displayed. There are
two clipping processes:

e Hard Clip - This is clipping done by the graphic output device that physically
stops plotting outside the physical limits of the device’s display area. For example,
a plotter’s pen can not draw past the physical edge of the plotter’s platen.

e Soft Clip - This is clipping done by the graphics software to limit the visible portion
of the plot. Soft clipping can be done to both 2-dimensional and 3-dimensional data.
Starbase provides two clipping boundaries:

e The Clip Rectangle - A rectangle can be specified with the clip_rectangle proce-
dure that defines subsequent clipping boundaries.

e The VDC Extent - The rectangle defined by the vdc_extent procedure can also be
used to define subsequent clipping boundaries.

The clip_indicator procedure identifies which of the two boundaries to clip to.
The clip_depth procedure is used to define the front and back clipping planes for

3-dimensional graphics. Front and back clipping is enabled or disabled with the
depth_indicator procedure.

An Introduction to Starbase Graphics 71

Isotropic (undistorted) Mapping

Isotropic mapping is when one unit in the x-axis exactly equals one unit in the y-axis.
This is sometimes referred to as undistorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The default is isotropic.

The following example program draws an isotropic square around the default Virtual
Device Coordinate space. This program is in file ezampleZp.p.

program main(input,output) ;
$include ’/usr/include/starbase.pl.h’$

var
fildes: integer;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer); external;

begin {main}
fildes:=gopen(’/dev/tty’ ,0UTDEV, *hp262x’,INIT) ;
if fildes = -1 then exit(-1);

interior_style(fildes,INT_HOLLOW,1);
rectangle(fildes,0.0,0.0,1.0,1.0);

fildes := gclose(fildes);
end.

72 An Introduction to Starbase Graphics

Figure 1-16. An Isotropic Frame of VDC Space

An Introduction to Starbase Graphics 73

Anisotropic (distorted) Mapping

Anisotropic mapping where one unit in the X direction does not have to equal one unit
in the Y direction. This is sometimes called distorted plotting.

The mapping_mode procedure sets the mapping mode to either anisotropic or isotropic
plotting mode. The following single line was added to the preceeding isotropic program
and the anisotropic results are shown in Figure 1-17. The rectangle still frames the VDC
default space, but now the space fills the usable portion of the display. This program is
in exzample3p.p.

mapping_mode (fildes,1);

(N

L J

Figure 1-17. An Anisotropic Frame of VDC Space

Since the scale for the voltage measurements is not the same as the scale for the number
of measurements, anisotropic plotting is appropriate.

74 An Introduction to Starbase Graphics

Viewports

The viewport is the portion of the output display that is used to draw the picture. This
can be all or only a part of the display.

The viewport boundaries is defined by several procedures.
e set_pi_p2 - This procedure defines the physical region that contains the viewport.

e mapping_mode - This procedure defines the viewport as isotropic (distorted) or
anisotropic (undistorted). If anisotropic, the viewport is the same as the rect-
angle defined by the set_pi_p2 procedure. If the viewport is isotropic, the viewport
is the largest rectangle with the same aspect ratio as the VDC extent that will
fit in the rectangle defined by the set_pi_p2 procedure and is positioned in that
rectangle by the viewport_justification procedure.

® viewport_justification - This procedure defines the fraction of “white space” (the
area of the set_p1_p2 rectangle not within the viewport) to the left or bottom of
the viewport. The default is .5 (50%), so the viewport is centered in the rectangle
defined by set_p1_p2. This procedure only applies to isotropic viewports.

An Introduction to Starbase Graphics 79

Rectangles

The rectangle procedure provides an easy way to draw rectangles. All you need to
specify is the device needing a rectangle and the coordinates of two opposite corners of
the rectangle. A default rectangle has a filled interior and no perimeter.

The syntax for drawing two rectangles, one to enclose the vdc extent and the other to
enclose our plotting area is shown below.

rectangle(fildes,-20,0.1575,105.0,0.1825) ;
rectangle(fildes,0,0.1600,100.0,0.1800);

To make rectangles hollow, and add the perimeter, use the interior_style procedure.
The following syntax will do the job.

interior_style(fildes, INT_HOLLOW,1);
The following program segment is added to the program in order to draw the rectangles.
The program is stored as example4p.p.

program main(input,output) ;

$include ’/usr/include/starbase.pl.h’$

const

var
fildes : integer;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer),; external;

begin {main}
fildes:=gopen(’/dev/tty’,0UTDEV, hp262x’,INIT) ;
if fildes = -1 then exit(-1);

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0) ;
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825);
mapping_mode(fildes,1) ;

interior_style(fildes, INT_HOLLOW,1);
rectangle(fildes,-20.0,0.1575,105.0,0.1825) ;
rectangle(fildes,0.0,0.1600,100.0,0.1800) ;

fildes := gclose(fildes);
end.

76 An Introduction to Starbase Graphics

To see the extent of the Virtual Device Coordinate Space. and to draw a frame around
the location on the display, two rectangles are drawn.

g =)

Figure 1-18. Two Rectangles

An Introduction to Starbase Graphics 77

Plotting the Data

The following program will read the plot data from the file data and draw the results
in Virtual Device Coordinate space. The main procedure is polyline which will move
the graphics pen to the first (X,Y) data location and then draw to the remaining data
locations. The data is read into a single-dimension array usable by polyline. The number
of points to be drawn to is i/2 and the 0 flag indicates that there are no move-draw (0
for move, 1 for draw) indicators in the data.

The syntax is:

program main(input,output) ;
$include ’/usr/include/starbase.pl.h’$

const
array_size = 200;

type
array_type = array[0..array_size] of real;

var
fildes, i : integer;
coords: array_type;
data: text;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer); external;

begin {main}
fildes:=gopen(’/dev/tty’,0UTDEV, *hp262x’,INIT) ;
if fildes = -1 then exit(-1);

vdc_extent(fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0) ;
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825) ;
mapping_mode (fildes,1);

interior_style(fildes, INT_HOLLOW,1);
rectangle(fildes,-20.0,0.1575,105.0,0.1825) ;
rectangle(fildes,0.0,0.1600,100.0,0.1800) ;

reset (data, data’);
while(not eof(data)) do

begin
readln(data,coords[i],coords[i+1]);
i = i+2;

end;

polyline2d(fildes,coords,i div 2,0);

78 An Introduction to Starbase Graphics

fildes := gclose(fildes);
end.

The results of this modification to the example program are shown in Figure 1-19. This
drawing was made with ezample5p.p.

(- N

A
AV

Figure 1-19. Plotted Data

An Introduction to Starbase Graphics 79

Labels

Let us now label the drawing. We will use two fonts, different character paths, and
different text alignments to show some of the capabilities of the system.

The syntax to do this is:
program main(input,output);
$include ’/usr/include/starbase.pl.h’$

const
array_size

]

200;

type
array_type = array[0..array_size] of real;

var
fildes, i, j, length: integer;
X, y: real;
coords: array_type;
data: text;
number: string[80];

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer); external;

begin {main}
fildes:=gopen(’/dev/tty’,0UTDEV, *hp262x’ , INIT) ;
if fildes = -1 then exit(-1);

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0);
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825) ;
mapping_mode(fildes,1);

interior_style(fildes, INT_HOLLOW,1);
rectangle(fildes,-20.0,0.1575,105.0,0.1825) ;
rectangle(fildes,0.0,0.1600,100.0,0.1800) ;

text_alignment (fildes,TA_CENTER,TA_TOP,0.0,0.0);
character_height(fildes,0.001);
text2d(fildes,50.0,0.1588, 'Time (seconds)’,VDC_TEXT,O0);

character_path(fildes,PATH_DOWN) ;
text_alignment (fildes,TA_CENTER,TA_HALF,0.0,0.0);
text2d(fildes,-14.0,0.1700, *Voltage’ ,VDC_TEXT,0) ;

text_font_index(fildes,2);

character_path(fildes,PATH_RIGHT) ;
text_alignment (fildes,TA_CENTER,TA_BOTTOM,0.0,0.0);

80 An Introduction to Starbase Graphics

text2d (fildes,50.0,0.1810, ’VOLTAGE VARIANCE’,VDC_TEXT,0);

reset(data, ’data’);

while(not eof(data)) do

begin
readln(data, coords[i],coords[i+1]);
i = i+2;

end;

polyline2d(fildes,coords,i div 2,0);

fildes := gclose(fildes);
end.

Our example is now shown Figure 1-20. This program is stored in ezample6p.p.

K VOLTAGE VARIANCE \

DQ @ + —0 <

\ Time (seconds) j

Figure 1-20. A Labeled Plot

An Introduction to Starbase Graphics 81

Tic Marks

We now need to add the numerated tic marks. This is done with two loops. We use
strwrite to change the tic mark numbers into strings to be drawn as text.

program main(input,output) ;
$include ’/usr/include/starbase.pl.h’$

const
array_size = 200;

type
array_type = array[0..array_size] of real;

var
fildes, i, j, length: integer;
X, y: real;
coords: array_type;
data: text;
number: string[80];

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer),; external;

begin {main}

text_alignment (fildes,TA_CENTER, TA_CONTINUOUS_VERTICAL,0.0,1.2);
character_height (fildes,0.0006) ;

x = 0.0;
strwrite (number,1,length,trunc(x):1);
text2d(fildes,x,0.1598,number,VDC_TEXT,0) ;
for i:=1 to 10 do
begin
for j:=1 to 5 do
begin
move2d (fildes,x,0.1600) ;
draw2d(fildes,x,0.1603) ;
x :=x + 2.0;
end;
move2d(fildes,x,0.1600) ;
draw2d(fildes,x,0.1605) ;
strwrite (number,1,length,trunc(x):1);
text2d(fildes,x,0.1600,number,VDC_TEXT,O0) ;
end;

text_alignment (fildes,TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0);

82 An Introduction to Starbase Graphics

y = 0.1600;
strwrite(number,1,length,y:0:4);
text2d(fildes,0.0,y,number, VDC_TEXT,0) ;
for i:=1 to 8 do

begin
for j:=1 to 5 do
begin
move2d(fildes,0.0,y);
draw2d(fildes,1.0,y);
y =y + 0.0005;
end;
move2d(fildes,0.0,y);
draw2d(fildes,2.0,y);
strwrite(number,1,length,y:0:4);
ext2(fildes,0.0,y,number,VDC_TEXT,0) ;
end;
VOLTAGE VARIANCE \
21800
21775 |
8.1758_—
vV C
a172s [
o C
] -
t 1700 |
a C
9 21675 [
e C
mwe}
aue2s [
P 0 T T T T T U Y S N S A BV A RO B B O BN
%) 12 20 39 40 %) 608 70 89 99 120

Time (seconds) AA///

Figure 1-21. The Final Plot

An Introduction to Starbase Graphics 83

The whole program

prog
$inc

cons

type

var

$inc
proc

begi

ram main(input,output);
lude ’/usr/include/starbase.pl.h’$

t
array_size

200;

array_type = array[0..array_size] of real;

fildes, i, j, length: integer;
X, y: real;

coords: array_type;

data: text;

number: string[80];

lude ’/usr/include/starbase.p2.h’$
edure exit(result: integer); external;

n {main}
fildes:=gopen(’/dev/tty’,0UTDEV, *hp262x’,INIT);
if fildes = -1 then exit(-1);

vdc_extent (fildes,-20.0,0.1575,0.0,105.0,0.1825,0.0);
clip_rectangle(fildes,-20.0,105.0,0.1575,0.1825);
mapping_mode(fildes,1);

interior_style(fildes, INT_HOLLOW,1);
rectangle(fildes,-20.0,0.1575,105.0,0.1825) ;
rectangle(fildes,0.0,0.1600,100.0,0.1800);

text_alignment (fildes, TA_CENTER,TA_TOP,0.0,0.0);
character_height(fildes,0.001);
text2d(fildes,50.0,0.1588, Time (seconds)’,VDC_TEXT,O);

character_path(fildes,PATH_DOWN) ;
text_alignment (fildes,TA_CENTER,TA_HALF,0.0,0.0);
text2d(fildes,-14.0,0.1700, *Voltage’ ,VDC_TEXT,0) ;

text_font_index(fildes,2);
character_path(fildes,PATH_RIGHT) ;
text_alignment(fildes,TA_CENTER,TA_BOTTOM,0.0,0.0);
text2d (fildes,50.0,0.1810, *VOLTAGE VARIANCE’,VDC_TEXT,0);

reset(data, ’data’) ;

while(not eof(data)) do

begin
readln(data,coords[i],coords[i+1]);

84 An Introduction to Starbase Graphics

i = 1i+2;
end;

polyline2d(fildes,coords,i div 2,0);

text_alignment (fildes, TA_CENTER, TA_CONTINUOUS_VERTICAL,0.0,1.2);
character_height (fildes,0.0006) ;

x := 0.0;
strwrite(number,1,length,trunc(x):1);
text2d (fildes,x,0.1598,number,VDC_TEXT,O0) ;
for i:=1 to 10 do
begin
for j:=1 to 5 do
begin
move2d(fildes,x,0.1600) ;
draw2d (fildes,x,0.1603) ;
x :=x + 2.0;
end;
move2d (fildes,x,0.1600) ;
draw2d(fildes,x,0.1605) ;
strwrite(number,1,length,trunc(x):1);
text2d (fildes,x,0.1600,number,VDC_TEXT,O) ;
end;

text_alignment (fildes, TA_CONTINUOUS_HORIZONTAL,TA_HALF,1.2,0.0);

y := 0.1800;
strwrite(number,1,length,y:0:4);
text2d(fildes,0.0,y,number,VDC_TEXT,O0) ;
for i:=1 to 8 do
begin
for j:=1 to 5 do
begin
move2d(fildes,0.0,y);
draw2d(fildes,1.0,y);
y :=y + 0.0005;
end;
move2d(fildes,0.0,y);
draw2d(fildes,2.0,y);
strwrite(number,1,length,y:0:4);
text2d(fildes,0.0,y,number,VDC_TEXT,O0) ;
end;

fildes := gclose(fildes);
end.

An Introduction to Starbase Graphics 85

Notes

86 An Introduction to Starbase Graphics

Working with Text

Introduction

This section provides several examples of how text can be manipulated with Starbase.
To be complete, the Text Alignment subsection gives numerous examples of how text
can be aligned with respect to the coordinate position specified in the text2d or text3d
procedures.

The Starbase Library Procedures discussed in this section include:
e Procedures to draw text:
o text2d
o textdd
e append_text
o dctext
e Procedures to specify character sizes:
e character_cxpansion_factor
e character height
e character_width
e Procedures to select different fonts and character sets:
o designate_character_set
o text_font_index
e Procedures to specify character locations relative to other characters:
e character_slant
e text_line_space

e text_path

intra_character_space

text_line_path

Working with Text 87

e text_orientation
o text_alignment
e text_precision

e A Procedure to specify the method by which charcters and escape code sequences
are interpreted:

e character_switching_mode

The Four Methods of Drawing Text

e append_text - is used to add text to previously executed text2d or text3d procedures
when the parameter more is specified as TRUE or not equal to 0. This procedure also
draws text at the current pen position.

C Syntax:
void .append_text(fildes,string,xform,more) ;

int fildes,xform,more;
char *string;

Fortran77 Syntax:
subroutine append_text(fildes,string,xform,more)

integer*4 fildes,xform,more
character*(*) string

Pascal Syntax:

procedure append_text(fildes:integer;string:string255;xform,more:
integer) ;

o text2d - draws text at the specified 2-dimensional Virtual Device Coordinate (x,y)
position.

The syntax for is procedure is:
C Syntax:

void text2d(fildes,x,y,string,xform,more) ;
int fildes,xform,more;

float x,y;

char *string;

88 Working with Text

Fortran77 Syntax:

subroutine text2d(fildes,x,y,string,xform,more)
integer*4 fildes,xform,more

real x,y

character#*(*) string

Pascal Syntax:

procedure text2d(fildes,x,y:integer;string:string255;xform,more:integer);
text3d - draws text at the specified 3-dimensional Vitrual Device Coordinate (x,y.2)
position.
The syntax for is procedure is:
C Syntax:

void text3d(fildes,x,y,z,string,xform,more);
int fildes,xform,more;
float x.,y,z;
char *string;
Fortran77 Syntax:

subroutine text3d(fildes,x,y,z,string,xform,more)
integer*4 fildes,xform,more

real x,y,z

character*(*) string

Pascal Syntax:

procedure text3d(fildes,x,y,z:integer;string:string2565;xform,more:integer);
dctext - draws text at the specified device coordinate (dcx,dcy) position.

C Syntax:

void dctext(fildes,dcx,dcy,string);
int fildes,dcx,dcy;
char *string;

Fortran77 Syntax:

subroutine dctext(fildes,dcx,dcy,string)
integer*4 fildes,dcx,dcy
character*(*) string

Pascal Syntax:

procedure dctext(fildes,dcx,dcy:integer;string:string255);

Working with Text 89

Text Attributes and Defaults

The following attributes are set using the values in /usr/lib/starbase/defaults.
e 15O 8-bit Character Mode.

e GO and G2 point to the USASCII character set, font 1. This is the default active
character set.

e G1 and G3 point to the HPROMAN character set, font 1.
When a graphics output device is opened with the gopen procedure, the following text
defaults are in effect.

e Character_Path is PATH_RIGHT.

e Character_Slant is 0.

e Text_alignment is TA_NORMAL_HORIZONTAL and
TA_NORMAL_VERTICAL.

e Text_color_index is 1.
e Text_line_path is PATH_DOWN.
e Text_precision is STROKE_TEXT.
e All other default values are machine-dependent.
Except for dctext which is not transformed, all text is transformed with one of three ma-

trices described below. The transformation to be done is specified by the xform parameter
of the text procedures.

o If xform = 0, then the Font Transformation Matrix is pre-concatenated with the Vir-
tual Device Coordinate (VDC) to Device Coordinate (DC) Transformation Matrix
and used as the font to device coordinate transformation matrix.

o If xform = 1, the Font Transformation Matrix is pre-concatenated to the transfor-
mation matrix on the top of the matrix stack and the resulting matrix is used as
the font to device coordinate transformation matrix.

o If xform = 2, the transformation matrix on top of the matrix stack is used as the

font to device coordinate transformation matrix.

The text2d and text3d procedures use the flag more to indicate when the text specified
in the procedure is to be buffered. The append_text procedure is then used to append
text to the buffer.

90 Working with Text

e If more = FALSE or 0, no more text is expected, and the text is sent to the specified
device.

e if more = TRUE or not equal to 0, more text is to follow and the text is buffered. The
append_text procedure is used to append more text to a text2d or text3d buffer.
This flag is cancelled and any buffered text is sent to the specified device if a text2d
or text3d procedure is executed.

Character sets are directories stored in /usr/lib/starbase/stroke. Fonts are stored in
the character set directories. For example, the fixed-width, stroked USASCII font is the
file named 1 and is located in:

/usr/lib/starbase/stroke/usascii/1

Template Programs

The following programs may be used as templates for the example programs to follow.
To emphasize the text procedures being discussed, only those procedures will be listed.
These procedures, when added to the templates, will create the complete programs used
to draw the examples shown.

The gopen function opens an I/0O path the the specified graphic device and returns and
integer file descriptor used to identify that device until the path is closed with the gclose

function.

Mapping mode defines whether the mapping of the vdec extent to the viewport is isotropic
(NONDISTORTED) or anisotropic (DISTORTED).

Working with Text 91

A Template for C Programs
This program is /user/lib/starbase/demos/textOc.c. The default file descriptor is as-
signed to an HP 2623 or HP 2627 Graphics Terminal. In either case, the device is specified
and and output device and is initialized.

This program is stored as exampleOc.c in the /usr/lib/starbase/demos directory.

#include <starbase.c.h>

main(argc,argv)
int argc; char *argv([];

{
int fildes;
if (argc > 2) fildes=gopen(argv[1],0UTDEV,argv[2],INIT);
else fildes=gopen(“/dev/tty“,OUTDEV,"hpQGZx",INIT);
if (fildes == -1) exit(-1);
/* Starbase Procedures Go Here */
gclose(fildes);
}

A Template for Fortran77 Programs

This template is /user/1lib/starbase/demos/ftemplate.f. This template will only work
with an HP 2623 or HP 2627 Graphics Terminal. To use this template on another device,
you must use the appropriate parameters shown bolded in the fildes line shown below.

This program is stored as exampleOf.f in the /usr/lib/starbase/demos directory.

include ’/usr/include/starbase.f1.h’
program template

character NULL

parameter (NULL = char(0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes,status

fildes = geopen(’/dev/tty’//NULL,OUTDEV, hp262x’//NULL, INIT)
if (fildes .eq. -1) stop

C Starbase Procedures Go Here

status = gclose(fildes)
end

92 Working with Text

For example, to use the above template with an HP 98700 Device, the fildes line would
look like this:

fildes = geopen(’/dev/98700°//NULL,OUTDEV, *hp98700°’//NULL, INIT)

A Template for Pascal Programs

This template is stored in the file /user/1ib/starbase/demos/ptemplate.p. This template
will only work with an HP 2623 or HP 2627 Graphics Terminal. To use this template
on another device, you must use the appropriate parameters for the ones bolded in the
fildes line shown below.

This program is stored as exampleOp.p in the /usr/lib/starbase/demos directory.
program main(input,output) ;
$include ’/usr/include/starbase.pl.h’$

var
fildes, status : integer;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result : integer);external;
begin {main}

fildes := gopen(’/dev/tty’,0UTDEV, *hp262x’,INIT);
if fildes = -1 then exit(-1);

{ Starbase Procedures Go Here }

status := gclose(fildes);
end.

For example, to use the above template with an HP 98700 Device, the fildes line would
look like this:

fildes := gopen(’/dev/98700’ ,0UTDEV, *hp98700°,INIT);

Working with Text 93

Default Text

The data values which define the characters that make up the text are all transformed by
an internally calculated matrix into Virtual Device Coordinate values. For a discussion
of the coordinate systems used by Starbase, see section 1 of this manual.

The following example shows what default text looks like. Both the append_text and
text2d procedures are used.

This example was created by the program textic.c found in /usr/1ib/starbase/demos.

C Syntax
mapping_mode(fildes,TRUE) ;
move2d(fildes,0.10,0.10);

append_text(fildes, "Append_text defaults to Current Pen Position.",
VDC_TEXT,FALSE) ;

text2d(fildes,0.10,0.90," Default Text with ", VDC_TEXT,TRUE);
append_text(fildes," Appended Text ",VDC_TEXT,FALSE);

Fortran77 Syntax

call mapping_mode(fildes,1)

call move2d(fildes,0.10,0.10)

call append_text(fildes, ’Append_text defaults to Current Pen Position.’
¢ //NULL, VDC_TEXT,FALSE)

call text2d(fildes,0.01,0.95,’ Default Text with ’//NULL,VDC_TEXT, TRUE)
call append_text(fildes,’ Appended Text ’//NULL,VDC_TEXT,FALSE)

94 Working with Text

Pascal Syntax
mapping_mode(fildes,1);
move2d (fildes,0.10,0.10);
append_text(fildes, ’Append_text defaults to Current Pen Position.’,
VDC_TEXT,FALSE) ;

text2d(fildes,0.01,0.95,’ Default Text with ’,VDC_TEXT,TRUE);
append_text(fildes,’ Appended Text ’,VDC_TEXT,FALSE);

S N

Default Text with Fppended Text

Fppend_text defaults to Current Pen Position.

-)

Figure 2-1. Default Text (textlc.c)

Working with Text 95

Larger Text

The previous example shows how default text can be quite small. For larger and more
readable text, use the character_height procedure.

The fildes parameter identifies the output graphic device. The height parameter is a
fraction of the Y-axis length for the Virtual Device Coordinate extent and specifies the
character’s height.

Changing character height may also change character width. The default ratio of char-
acter height to character width is maintained at 1.0 unless changed with the charac-
ter_expansion_factor procedure. Character width may also be changed with the char-
acter_width procedure.

Changing a character’s width does not change the character’s height.

Our example will specify a character height of 0.05. This example was created by the
program text2c.c found in /usr/lib/starbase/c2mos.

C Syntax

character_height(fildes,0.05) ;

Fortran77 Syntax
call character_height(fildes,0.05)

Pascal Syntax
character_height (fildes,0.05) ;

96 Working with Text

4)

BDefault Text with Appended Text

Append text defaults to Current Pen Position.

N Y,

Figure 2-2. Larger Text (text2c.c)

Working with Text 97

Larger Text Continued

A Dbetter look at how character_height changes the size of text can be seen with
the following example. The character width is automatically changed by charac-
ter_expansion_factor as the height changes. This factor is the ratio of character height
to character width. The default ratio is 1.00, so the higher the character, the wider it
becomes to keep the factor at 1.00. An example of how the character_expansion_factor
procedure works is presented later in the section.

This example was created by the program text3c.c found in /usr/lib/starbase/demos.

C Syntax
text2d(fildes,0.0,0.8," Default Character Height (0.02)",VDC_TEXT,FALSE) ;

character_height(fildes,0.04);
text2d(fildes,0.0,0.7," Character Height of 0.04",VDC_TEXT,FALSE);

character_height(fildes,0.086) ;
text2d(fildes,0.0,0.6," Character Height of 0.06",VDC_TEXT,FALSE);

Fortran77 Syntax

call text2d(fildes,0.0,0.8,’ Default Character Height (0.02)’//NULL,
¢ VDC_TEXT,FALSE)

call character_height(fildes,0.07)
call text2d(fildes,0.0,0.4,’ Character Height of 0.04’//NULL,VDC_TEXT,
¢ FALSE)

call character_height(fildes,0.06)

call text2d(fildes,0.0,0.6,’ Character Height of 0.06°’//NULL,VDC_TEXT,
c FALSE)

98 Working with Text

Pascal Syntax

text2d(fildes,0.0,0.8,’ Default Character Height (0.02)’,VDC_TEXT,FALSE);

character_height(fildes,0.04) ;
text2d(fildes,0.0,0.7,’ Character Height of 0.04’,VDC_TEXT,FALSE);

character_height(fildes,0.06) ;
text2d(fildes,0.0,0.6,’ Character Height of 0.06’,VDC_TEXT,FALSE);

4 N

Default Character Height (8.82)

Character Height of 0.04

Character Height of 0.06

Figure 2-3. Larger Text Continued (text3c.c)

Working with Text 99

Text Precision

Text precision is selected with the text_precision procedure. This procedure has two
parameters, fildes and precision. The first parameter identifies the graphics output device
that will have the precision specified in the second parameter.

The second parameter can be one of the three following precisions:

e STRING_TEXT - the device’s text capabilities are used. Hardware text generation,
in general, provides only limited approximations to the specified text attributes.

o CHARACTER_TEXT - currently the same as STROKE_TEXT.

e STROKE_TEXT - causes the characters to be drawn at a higher precision that
hardware text, but may be slow on some devices. This is the default text precision.

Depending upon the device, the visual differences between the various text precisions
may or may not be noticable. With STRING_TEXT, changes in an attribute may seem
erratic. For example, if you are changing the slant of some test characters. As you
change the angle of the slant, the text on your screen my not seem to change until some
angle is reached, then the text on you screen will change markedly. This change is device
dependent.

100 Working with Text

Wide and Narrow Characters

Characters can be made wider without changing their height. This is done with the
character_width procedure.

This example was created by the program text4c.c found in /usr/lib/starbase/demos.

C Syntax

character_height(fildes,0.04) ;
text2d(fildes,0.0,0.50," Default Width of 0.50",VDC_TEXT,FALSE) ;

character_width(fildes,0.010) ;
text2d(fildes,0.0,0.10," Character Width of 0.010",VDC_TEXT,FALSE);

character_width(fildes,0.020) ;
text2d(fildes,0.0,0.20," Character Width of 0.020",VDC_TEXT,FALSE);

character_width(fildes,0.030) ;
text2d(fildes,0.0,0.30," Character Width of 0.030",VDC_TEXT,FALSE);

character_width(fildes,0.040) ;
text2d(fildes,0.0,0.40," Character Width of 0.040",VDC_TEXT,FALSE);

Fortran77 Syntax

call character_height(fildes,0.04)

call text2d(fildes,0.0,0.50,’ Default Width of 0.50’//NULL,VDC_TEXT,
¢ FALSE)

call character_width(fildes,0.010)
call text2d(fildes,0.0,0.10,’ Character Width of 0.010’//NULL,VDC_TEXT,
¢ FALSE)

call character_width(fildes,0.020)
call text2d(fildes,0.0,0.20,’ Character Width of 0.020°’//NULL,VDC_TEXT,
¢ FALSE)

call character_width(fildes,0.030)
call text2d(fildes,0.0,0.30,’ Character Width of 0.030’//NULL,VDC_TEXT,
¢ FALSE)

call character_width(fildes,0.040)

call text2d(fildes,0.0,0.40,’ Character Width of 0.040’//NULL,VDC_TEXT,
¢ FALSE)

Working with Text 101

Pascal Syntax
character_height(fildes,0.04) ;

text2d(fildes,0.0,0.50,’ Default Width of 0.50°’,VDC_TEXT,FALSE);

character_width(fildes,0.010);
text2d(fildes,0.0,0.10,’ Character Width of 0.010’,VDC_TEXT,FALSE);

character_width(fildes,0.020);
text2d (fildes,0.0,0.20,’ Character Width of 0.020°’,VDC_TEXT,FALSE);

character_width(fildes,0.030);
text2d (fildes,0.0,0.30,’ Character Width of 0.030’,VDC_TEXT,FALSE);

character_width(fildes,0.040);
text2d(fildes,0.0,0.40,’ Character Width of 0.040’,VDC_TEXT,FALSE);

-)

Default Character Width
Characte — NG At o F =2 .23
Character Width of 3.0833

Character Width of B8.0820

Character Width of 0.818

- J

Figure 2-4. Wide and Narrow Characters (text4c.c)

102 Working with Text

Character Expansion Factor

The character_expansion_factor and character_width procedures are interactive with
one another. The procedure to be executed last supersedes the former. If the last
procedure was character_expansion_factor, then the width is adjusted with respect to
the height of the characters. If the last procedure was character_width, then the width
is adjusted without respect to the character’s height.

This example was created by the program text5c.c found in /usr/lib/starbase/demos.

C Syntax
character_height(fildes,0.04);

character_expansion_factor(fildes,0.75);
text2d(fildes,0.05,0.80, "Character expansion factor 0.75",VDC_TEXT,FALSE);

character_width(fildes,0.03);
text2d(fildes,0.05,0.70,"Character Width of 0.03",VDC_TEXT,FALSE) ;

character_width(fildes,0.040) ;

character_expansion_factor(fildes,0.75);

text2d(fildes,0.05,0.60, "Character expansion factor 0.75",VDC_TEXT,FALSE) ;
text2d(fildes,0.05,0.55, "superseding width change",VDC_TEXT,FALSE) ;

character_expansion_factor(tildes,1.5);

character_width(fildes,0.030);

text2d(fildes,0.05,0.40,"Character Width of 0.030",VDC_TEXT,FALSE);
text2d(fildes,0.05,0.35,“superseding expansion change",VDC_TEXT,FALSE) ;

Fortran77 Syntax
call character_height(fildes,0.04)

call character_expansion_factor(fildes,0.75)
call text2d(fildes,0.05,0.80, 'Character expansion factor 0.75’//NULL,
¢ VDC_TEXT,FALSE)

call character_width(fildes,0.03)
call text2d(fildes,0.05,0.70, ’Character Width of 0.03’//NULL,VDC_TEXT,
¢ FALSE)

call character_width(fildes,0.040)

call character_expansion_factor(fildes,0.75)

call text2d(fildes,0.05,0.60, Character expansion factor 0.75’//NULL,
¢ VDC_TEXT,FALSE)

call text2d(fildes,0.05,0.55, 'superseding width change’//NULL,VDC_TEXT,
¢ FALSE)

Working with Text 103

call character_expansion_factor(fildes,1.5)

call character_width(fildes,0.030)

call text2d(fildes,0.05,0.40, Character Width of 0.030°’//NULL,VDC_TEXT,
¢ FALSE)

call text2d(fildes,0.05,0.35, superseding expansion change’//NULL,
¢ VDC_TEXT,FALSE)

Pascal Syntax
character_height (fildes,0.04);

character_expansion_factor(fildes,0.75) ;
text2d(fildes,0.05,0.80, ’Character expansion factor 0.75’,VDC_TEXT,FALSE) ;

character_width(fildes,0.03);
text2d(fildes,0.05,0.70, *Character Width of 0.03’,VDC_TEXT,FALSE) ;

character_width(fildes,0.040) ;

character_expansion_factor (fildes,0.75) ;

text2d(fildes,0.05,0.60, 'Character expansion factor 0.75’,VDC_TEXT,FALSE);
text2d(fildes,0.05,0.55, *superseding width change’,VDC_TEXT,FALSE) ;

character_expansion_factor(fildes,1.5);

character_width(fildes,0.030);

text2d (fildes,0.05,0.40, 'Character Width of 0.030’,VDC_TEXT,FALSE);
text2d(fildes,0.05,0.35, 'superseding expansion change’,VDC_TEXT,FALSE);

104 Working with Text

4)

Character expansion factor 8.75
Character Width of .03
Character expansion factor 8.75

superseding width change

Character Width of 2.033

superseding expansion change

- /

Figure 2-5. Character Width and Expansion Factor (text5c.c)

Working with Text 105

Intra Character Space

This procedure defines the space (distance) between character cells. This distance is a
fraction of character height.

This example was created by the program textéc.c found in /usr/1ib/starbase/demos.
C Syntax

character_height(fildes,0.04) ;

text2d(fildes,0.0,0.0, "Default space of 0.0",VDC_TEXT,FALSE);

intra_character_space(fildes,0.2);
text2d(fildes,0.0,0.2,"Character space of .2",VDC_TEXT,FALSE);

intra_character_space(fildes,0.4);
text2d(fildes,0.0,0.4,"Character space of .4",VDC_TEXT,FALSE);

intra_character_space(fildes,0.6) ;
text2d(fildes,0.0,0.6,"Character space of .6",VDC_TEXT,FALSE);

Fortran77 Syntax
call character_height(fildes,0.04)

call text2d(fildes,0.0,0.0, ’Default space of 0.0’//NULL,VDC_TEXT,
¢ FALSE)

call intra_character_space(fildes,0.2)
call text2d(fildes,0.0,0.2, ’Character space of .2’//NULL,VDC_TEXT,FALSE)

call intra_character_space(fildes,0.4)
call text2d(fildes,0.0,0.4,’Character space of .4’//NULL,VDC_TEXT,FALSE)

call intra_character_space(fildes,0.6)
call text2d(fildes,0.0,0.6, Character space of .6’//NULL,VDC_TEXT,FALSE)

106 Working with Text

Pascal Syntax
character_height(fildes,0.04);

text2d(fildes,0.0,0.0, ’Default space of 0.0’ ,VDC_TEXT,FALSE);

intra_character_space(fildes,0.2);
text2d(fildes,0.0,0.2, ’Character space of .2’,VDC_TEXT,FALSE);

intra_character_space(fildes,0.4);
text2d(fildes,0.0,0.4, ’Character space of .4’,VDC_TEXT,FALSE);

intra_character_space(fildes,0.6);
text2d(fildes,0.0,0.6, ’Character space of .6’,VDC_TEXT,FALSE);

s
€]
0O
4]
o]

+
n

Character space of .4

Character space of .2

Default space of 0.0.

/

Figure 2-6. Character Space (text6c.c)

Working with Text 107

Character Slant

You can alter the appearance of your text by changing the slant of its characters. Larger
characters are shown for better visual clarity.

This example was created by the program text7c.c found in /usr/lib/starbase/demos.

C Syntax
character_height(fildes,0.04);

character_slant(fildes,0.0);
text2d (fildes,0.0,0.15," Slant of O, default",VDC_TEXT,FALSE);

character_slant(fildes, .268) ;
text2d(fildes,0.0,0.25," Slant of 0.268 or 15 degrees",VDC_TEXT,FALSE) ;

character_slant(fildes,0.577);
text2d (fildes,0.0,0.35," Slant of 0.577 or 30 degrees",VDC,TEXT,FALSE);

character_slant(fildes,1.0);
text2d(fildes,0.0,0.45," Slant of 1.00 or 45 degrees",VDC_TEXT,FALSE);

character_slant(fildes,1.73);
text2d (fildes,0.0,0.55," Slant of 1.73 or 60 degrees " VDC_TEXT,FALSE) ;

character_slant(fildes,3.73);
text2(fildes,0.0,0.65," Slant of 3.73 or 75 degrees ", VDC_TEXT,FALSE);

Fortran77 Syntax
call character_height(fildes,0.04)

call character_slant(fildes,0.0)
call text2d(fildes,0.0,0.15,’ Slant of O, default’//NULL,VDC_TEXT,FALSE)

call character_slant(fildes, .268)
call text2d(fildes,0.0,0.25,’ Slant of 0.268 or 15 degrees’//NULL,
¢ VDC_TEXT,FALSE)

call character_slant(fildes,0.577)
call text2d(fildes,0.0,0.35,’ Slant of 0.577 or 30 degrees’//NULL,
¢ VDC_TEXT,FALSE)

call character_slant(fildes,1.0)

call text2d(fildes,0.0,0.45,’ Slant of 1.00 or 45 degrees’//NULL,
¢ VDC_TEXT,FALSE)

108 Working with Text

call character_slant(fildes,1.73)
call text2d(fildes,0.0,0.55,’ Slant of 1.73 or 60 degrees ’//NULL,
¢ VDC_TEXT,FALSE)

call character_slant(fildes,3.73)

call text2d(fildes,0.0,0.65,’ Slant of 3.73 or 75 degrees ’//NULL,
¢ VDC_TEXT,FALSE)

Pascal Syntax
character_height (fildes,0.04) ;

character_slant(fildes,0.0);
text2d(fildes,0.0,0.15,’ Slant of O, default’,VDC_TEXT,FALSE) ;

character_slant(fildes, .268);
text2d(fildes,0.0,0.25,’ Slant of 0.268 or 15 degrees’,VDC_TEXT,FALSE);

character_slant(fildes,0.577);
text2d(fildes,0.0,0.35,’ Slant of 0.577 or 30 degrees’,VDC_TEXT,FALSE);

character_slant(fildes,1.0);
text2d(fildes,0.0,0.45,’ Slant of 1.00 or 45 degrees’,VDC_TEXT,FALSE);

character_slant(fildes,1.73);
text2d(fildes,0.0,0.55,’ Slant of 1.73 or 60 degrees ’,VDC_TEXT,FALSE);

character_slant(fildes,3.73);
text2d(fildes,0.0,0.65,’ Slant of 3.73 or 75 degrees ’,VDC_TEXT,FALSE);

Working with Text 109

-~

BV —————
W e aW —
oo o A o 7 2fprems
Slant oFf G 577 or 9 atgrees
Slant of 8.268 or 15 degrees

Slant of @, default

N

Figure 2-7. Character Slant (text7c.c)

110 Working with Text

Text Path

This procedure defines where the next character of a string is to be placed with respect
to the currently drawn character. The second and following characters can be drawn in
the following directions:

e PATH_RIGHT
o PATH_LEFT
e PATH_UP

e PATH_DOWN

The resulting text is aligned according to the assignment made by the text_alignment pro-
cedure. The default is TA_LNORMAL_HORIZONTAL and TA_NORMAL_VERTICAL.

This example was created by the program text8c.c found in /usr/lib/starbase/demos.

C Syntax

character_height(fildes,0.04);
text2d(fildes,0.55,0.55,"Path right");

text_path(fildes,PATH_LEFT) ;
text2d(fildes,0.45,0.55,"Path left",VDC_TEXT,FALSE);

text_path(fildes,PATH_UP) ;
text2d(fildes,0.50,0.65,"Path up",VDC_TEXT,FALSE) ;

text_path(fildes,PATH_DOWN) ;
text2d(fildes,0.50,0.45,"Path down",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.55, Path right’//NULL,VDC_TEXT,FALSE)

call text_path(fildes,PATH_LEFT)
call text2d(fildes,0.45,0.55, Path left’//NULL,VDC_TEXT,FALSE)

call text_path(fildes,PATH_UP)
call text2d(fildes,0.50,0.65, 'Path up’//NULL,VDC_TEXT,FALSE)

call text_path(fildes,PATH_DOWN)
call text2d(fildes,0.50,0.45, Path down’//NULL,VDC_TEXT,FALSE)

Working with Text 111

Pascal Syntax
character_height(fildes,0.04);

text2d(fildes,0.55,0.55, 'Path right’);

text_path(fildes,PATH_LEFT) ;
text2d(fildes,0.45,0.55, 'Path left’,VDC_TEXT,FALSE);

text_path(fildes,PATH_UP) ;
text2d(fildes,0.50,0.65, 'Path up’,VDC_TEXT,FALSE) ;

text_path(fildes,PATH_DOWN) ;
text2d(fildes,0.50,0.45, ’Path down’,VDC_TEXT,FALSE) ;

-

CT©

Ty &3

tfel htaP Path Right

5+ o T

Z=Z00O

Figure 2-8. Text Path (text8c.c)

112 Working with Text

Text Line Path

The following program shows how the text_line_path procedurc works. This procedure
defines the position of text following a line feed. Possible positions are:

o PATH_RIGHT - Moves text one character width right.
o PATH_LEFT - Moves text one character width left.

e PATH_UP - Moves text one character height up.

e PATH_DOWN - Moves text one character height down.

This example was created by the program text9c.c found in /usr/lib/starbase/demos.

C Syntax

character_height(fildes,0.04) ;

text_line_path(fildes,PATH_RIGHT) ;
text2d(fildes,0.3,0.4,"Text with\n PATH_RIGHT",VDC_TEXT,FALSE);

text_line_path(fildes,PATH_LEFT) ;
text2d (fildes,0.3,0.5,"Text with\n PATH_LEFT",VDC_TEXT,FALSE) ;

text_line_path(fildes,PATH_UP);
text2d(fildes,0.3,0.6,"Text with\n PATH_UP",K VDC_TEXT,FALSE);

text_line_path(fildes,PATH_DOWN) ;
text2d(fildes,0.3,0.7,"Text with\n PATH_DOWN",VDC_TEXT,FALSE);

Fortran77 Syntax
Not Supported on Series 500

call character_height(fildes,0.04);

call text_line_path(fildes,PATH_RIGHT) ;
call text2d(fildes,0.3,0.4,’Text with\n PATH_RIGHT’//NULL,VDC_TEXT,FALSE);

call text_line_path(fildes,PATH_LEFT);
call text2d(fildes,0.3,0.5, Text with\n PATH_LEFT’//NULL,VDC_TEXT,FALSE) ;

call text_line_path(fildes,PATH_UP);
call text2d(fildes,0.3,0.6, Text with\n PATH_UP’//NULL,VDC_TEXT,FALSE) ;

call text_line_path(fildes,PATH_DOWN);
call text2d(fildes,0.3,0.7, ’Text with\n PATH_DOWN’//NULL,VDC_TEXT,FALSE) ;

Working with Text 113

Pascal Syntax
character_height(fildes,0.04);

text_line_path(fildes,PATH_RIGHT) ;
text2d(fildes,0.3,0.4, Text with’#10° PATH_RIGHT’,VDC_TEXT,FALSE);

text_line_path(fildes,PATH_LEFT) ;
text2d(fildes,0.3,0.5, Text with’#10’ PATH_LEFT’,VDC_TEXT,FALSE) ;

text_line_path(fildes,PATH_UP);
text2d(fildes,0.3,0.6, Text with’#10° PATH_UP’,VDC_TEXT,FALSE);

text_line_path(fildes,PATH_DOWN) ;
text2d(fildes,0.3,0.7,’Text with’#10’ PATH_DOWN’,VDC_TEXT,FALSE) ;

/

Text with
PATH_DOWN

PATH_UP
Text with

Text withPATH LEFT

Text with PATH_RIGHT

e

Figure 2-9. Text Line Path (text9c.c)

114 Working with Text

Text Orientation

Text orientation is specified by two vectors. The up vector provides the up component
of all vertical strokes that draw the text. The base vector provides the the horizontal
component of all horizontal strokes that are used to draw the text.

The procedure parameters are:
o fildes - identifies the device the procedure is accessing.
® up_x, up_y - the x and y components of the up vector.

e base_x, base_y - the x and y components of the base vector.
This example was created by the program text10c.c found in /usr/lib/starbase/demos.

C Syntax

character_height(fildes,0.04) ;
text2d(fildes,0.0,0.0, "Default text",VDC_TEXT,FALSE);

text_orientation(fildes,0.25,1.00,1.0,0.0);
text2d(fildes,0.0,0.1,"Up vector now 0.25,1.0.",VDC_TEXT,FALSE) ;

text orientation(fildes,0.50,1.00,1.0,0.0);
text2d(fildes,0.0,0.2,"Up vector now 0.50,1.0.",VDC_TEXT,FALSE) ;

text_orientation(fildes,0.75,1.00,1.0,0.0);
teth(fildes,0.0,0.S."Up vector now 0.75,1.0.",VDC_TEXT,FALSE) ;

text_orientation(fildes,0.00,1.00,1.00,0.25);
text2d(fildes,0.0,0.4,"Base vector now 1.00,0.25.",VDC_TEXT,FALSE) ;

text_orientation(fildes,0.00,1.00,1.00,0.5);
text2d(fildes,0.0,0.5,"Base vector now 1.00,0.50.",VDC_TEXT,FALSE) ;

text_orientation(fildes,0.00,1.00,1.00,0.75);
text2d(fildes,0.0,0.6,"Base vector now 1.00,0.75.",VDC_TEXT,FALSE) ;

Working with Text 115

Fortran77 Syntax
call character_height(fildes,0.04)

call text2d(fildes,0.0,0.0, ’Default text is shown here.’//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.25,1.00,1.0,0.0)
call text2d(fildes,0.0,0.1,’Up vector now 0.25,1.0.’//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.50,1.00,1.0,0.0)
call text2d(fildes,0.0,0.2,'Up vector now 0.50,1.0.°’//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.75,1.00,1.0,0.0)
call text2d(fildes,0.0,0.3,’Up vector now 0.75,1.0.°//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.00,1.00,1.00,0.25)
call text2d(fildes,0.0,0.4,’Base vector now 1.00,0.25.’//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.00,1.00,1.00,0.5)

call text2d(fildes,0.0,0.5,’Base vector now 1.00,0.50.°//NULL,VDC_TEXT,
¢ FALSE)

call text_orientation(fildes,0.00,1.00,1.00,0.75)

call text2d(fildes,0.0,0.6,’Base vector now 1.00,0.75.’//NULL,VDC_TEXT,
¢ FALSE)

Pascal Syntax
character_height(fildes,0.04) ;
text2d(fildes,0.0,0.0, ’Default text is shown here.’,VDC_TEXT,FALSE);

text_orientation(fildes,0.25,1.00,1.0,0.0);
text2d(fildes,0.0,0.1,’Up vector now 0.25,1.0.’ ,VDC_TEXT,FALSE) ;

text_orientation(fildes,0.50,1.00,1.0,0.0);
text2d (fildes,0.0,0.2,’Up vector now 0.50,1.0.’,VDC_TEXT,FALSE);

text_orientation(fildes,0.75,1.00,1.0,0.0);
text2d(fildes,0.0,0.3,’Up vector now 0.75,1.0.’ ,VDC_TEXT,FALSE) ;

116 Working with Text

text_orientation(fildes,0.00,1.00,1.00,0.
text2d(fildes,0.0,0.4,’Base vector now 1.

text_orientation(fildes,0.00,1.00,1.00,0.
text2d(fildes,0.0,0.5, ’Base vector now 1.

text_orientation(fildes,0.00,1.00,1.00,0.
text2d(fildes,0.0,0.6, ’Base vector now 1.

25) ;
00,0.25.° ,VDC_TEXT,FALSE) ;

5);
00,0.50.° ,VDC_TEXT,FALSE) ;

75) ;
00,0.75.° ,VDC_TEXT,FALSE) ;

-

o vector row .
Yo vector now 9.

Default text is

75
1-@@’@‘
of o’ -
\/Bct @@’@_5
as? nov -
ast VeCtor 25
B vector now 1-@@’@'
Bac*®

G recior sow Z 25 S Z

29, /. 4.

25,1.4.

shown here.

Figure 2-10. Text Orientation (text10c.c)

Working with Text 117

Text Line Space

This procedure defines the distance between lines when a line feed is executed in a string
of text. The following example shows several lines with different line space distances.
This work was drawn using textiic.c found in /dev/starbase/demos.
character_height(fildes,0.04);
text2d(fildes,0.0,0.9,"Text with normal\ntext line space",VDC_TEXT,FALSE);

text_line_space(fildes,0.50);
text2d(fildes,0.0,0.7,"Text with 0.50\ntext line space",VDC_TEXT,FALSE);

text_line_space(fildes,1.50);
text2d(fildes,0.0,0.5,"Text with 1.50\ntext line space",VDC_TEXT,FALSE);

text_line_space(fildes,2.00);
text2d(fildes,0.0,0.3,"Text with 2.00\ntext line space",VDC_TEXT,FALSE);

Fortran77 Syntax
Not Supported on Series 500

call character_height(fildes,0.04)

call text2d(fildes,0.0,0.9, ’Text with normal text line space’,VDC_TEXT,
¢ FALSE)

call text_line_space(fildes,0.50)
call text2d(fildes,0.0,0.7, ’Text with 0.50\ntext line space’,VDC_TEXT,
¢ FALSE)

call text_line_space(fildes,1.50)
call text2d(fildes,0.0,0.5, Text with 1.50\ntext line space’,VDC_TEXT,
¢ FALSE)

call text_line_space(fildes,2.00)

call text2d(fildes,0.0,0.3,’Text with 2.00\ntext line space’,VDC_TEXT,
¢ FALSE)

118 Working with Text

Pascal Syntax
character_height (fildes,0.04);

text2d(fildes,0.0,0.9, Text with normal’#10’text line space’,VDC_TEXT,FALSE);

text_line_space(fildes,0.50);

text2d(fildes,0.0,0.7, ’Text with 0.50°#10’text line space’,VDC_TEXT,FALSE);

text_line_space(fildes,1.50);

text2d(fildes,0.0,0.5, Text with 1.50°#10’text line space’,VDC_TEXT,FALSE);

text_line_space(fildes,2.00) ;

text2d(fildes,0.0,0.3, Text with 2.00’#10’text line space’,VDC_TEXT,FALSE);

/;;;t with normal

Text with B.50

text line space

text line space

Text with 1.50

text line space
Text with 2.00

text line space

~

Figure 2-11. Text Line Space (textllc.c)

Working with Text 119

Text Alignment

This procedure controls text alighment and has the following parameters:
o fildes - as usual, this identifies the target device.

e h_select - this is the horizontal centering and can be one of the following:

1. TA_LLEFT
2. TA_CENTER

3. TA_RIGHT

4. TA_CONTINUOUS_HORIZONTAL
5. TA_.NORMAL_HORIZONTAL

e v_select - this is the vertical centering and can be one of the following:

TA_TOP

TA_CAP

TA_HALF

TA_BASE

TA_BOTTOM
TA_CONTINUOUS_VERTICAL
TA_NORMAL_VERTICAL

NS ok W=

o horizontal - the fraction of the face of the text extent box which appears to the neg-
ative side of the up vector. (only used with TA_CONTINUOUS_HORIZONTAL)

e vertical - the fraction of the face of the text extent box which appears on the positive
side of the base vector. (only used with TA_CONTINUOUS_VERTICAL)

120 Working with Text

TOP
—CAP

—HALF

—BASE
BOTTOM

— M
DM—AZ MO —
— T O—AD

Figure 2-12. A Character

In the examples that follow, lines will be drawn to intersect the location specified for the
text to be drawn. The text will consist of the string ABC using large characters.

Working with Text 121

Text alignment - TA_LEFT

With this text alignment, the lower left point of the first character in the text extent box

is on the point specified in the text2d or text3d statement.

This example was created by the program textiic.¢ found in /usr/lib/starbase/demos.

C Syntax
move2d{(fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04);
text2d(fildes,0.55,0.90,"TA_LEFT" ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With TA_NORMAL_VERTICAL",KVDC_TEXT,FALSE);

character_height(fildes,0.18);

text_alignment (fildes,TA_LEFT,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC" ,VDC_TEXT ,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, TA_LEFT’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, With TA_NOMAL_VERTICAL’//NULL,VDC_TEXT,FALSE)

call character_height(fildes,0.18)

call text_alignment(fildes,TA_LEFT,TA_NORMAL_VERTICAL,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

122 Working with Text

Pascal Syntax

move2d(fildes,0.0,0
draw2d(fildes,1.0,0.
move2d(fildes,0.5,0
draw2d (fildes,0.5,1

character_height(fildes,0.04) ;
tethd(fildes,O.SS,O.QO,’TA_LEFT’,VDC_TEXT,FALSE)&
text2d(fildes,0.55,0.85, ’With TA_NORMAL_VERTICAL’,VDC_TEXT,FALSE) ;

character_height (fildes,0.2);
text_alignment (fildes,TA_LEFT,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5, ’ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_LEFT
With TA_NORMAL VERTICAL

HHC

. J

Figure 2-13. Text Alignment - TA_LEFT (text12c.c)

Working with Text 123

Text alignment - TA_CENTER

The text extent box is centered at the point specified in the text2d or text3d procedure
call.

This example was created by the program text13c.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d (fildes,1.
move2d(fildes,O.
draw2d(fildes,O.

character_height(fildes,0.04);
text2d(fildes,0.55,0.90,"TA_CENTER",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With TA_NORMAL_VERTICAL",VDC_TEXT,FALSE) ;

character_height(fildes,0.18);
text_alignment(fildes,TA_CENTER,TA_NDRMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC" ,VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1.

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, TA_CENTER’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, With TA_NOMAL_VERTICAL’//NULL,VDC_TEXT,FALSE)

call character_height(fildes,0.18)

call text_alignment(fildes,TA_CENTER,TA_NORMAL_VERTICAL,0.0,0.0)
call text2d(fildes,0.5,0.5, ABC’//NULL,VDC_TEXT,FALSE)

124 Working with Text

Pascal Syntax

move2d (fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04) ;
text2d (fildes,0.55,0.90, TA_CENTER’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, 'With TA_NORMAL_VERTICAL’,VDC_TEXT,FALSE) ;

character_height(fildes,0.2);
text_alignment (fildes,TA_CENTER, TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5, ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_CENTER
With TA_NORMAL VERTICAL

HHC

o J

Figure 2-14. Text Alignment - TA_CENTER (text13c.c)

Working with Text 125

Text alignment - TA_RIGHT

The intersection of the character base vector and the right edge of the most right character
is places at the the point specified in the text2d or text3d procedure call.

This example was created by the program textidc.c found in /usr/1ib/starbase/demos.

C Syntax
move2d(fildes,0.0,0.5);
draw2d (fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height (fildes,0.04);
text2d(fildes,0.55,0.90,"TA_RIGHT",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With TA_NORMAL_VERTICAL",VDC_TEXT,FALSE);

character_height (fildes,0.18);

text_alignment(fildes,TA_RIGHT, TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, ’TA_RIGHT’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, ’With TA_NOMAL_VERTICAL’//NULL,VDC_TEXT,FALSE)

call character_height(fildes,0.18)

call text_alignment(fildes,TA_RIGHT,TA_NORMAL_VERTICAL,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

126 Working with Text

Pascal Syntax

move2d (fildes,0.0,0.
draw2d(fildes,1.0,0.
move2d(fildes,0.5,0.
draw2d(fildes,0.5,1.

character_height(fildes,0.04);
text2d(fildes,0.55,0.90, *TA_RIGHT’ ,VDC_TEXT, FALSE) ;
text2d(fildes,0.55,0.85, ’With TA_NORMAL_VERTICAL’,VDC_TEXT,FALSE);

character_height(fildes,0.2);

text_alignment (fildes,TA_RIGHT,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5, *ABC’ ,VDC_TEXT,FALSE) ;

-

TA_RIGHT
With TA_NORMAL VERTICAL

-

)

Figure 2-15. Text Alignment - TA_RIGHT (textl4c.c)

Working with Text 127

Text alignment -
TA_CONTINUOUS_HORIZONTAL #1

With this procedure, the parameter horizontal is used to allow the specification of what
percentage (as a fraction) of the the text extent box is to the positive side of the point
specified in the text2d or text3d procedure. This percentage can be a real number greater
than 1.00. For the first example, a percentage fraction of 0.20 is used.

This example was created by the program texti15c.c found in /usr/1ib/starbase/demos.

C Syntax
move2d(fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04) ;
text2d(fildes,0.55,0.90,"TA_CONTINUOUS_HORIZONTAL",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With horizontal = 0.20",VDC_TEXT,FALSE);
text2d(fildes,0.55,0.80,"and TA_NORMAL_VERTICAL",VDC_TEXT,FALSE);

character_height(fildes,0.18);
text_alignment(fildes,TA_CONTINUOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.2,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 ‘Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)

call text2d(fildes,0.55,0.90, TA_CONTINUOUS_HORIZONTAL’//NULL,0,0)
call text2d(fildes,0.55,0.85, ’With horizontal = 0.20°//NULL,0,0)
call text2d(fildes,0.55,0.80, ’and TA_NOMAL_VERTICAL’//NULL,0,0)

call character_height(fildes,0.18)

call text_alignment(fildes,TA_CONTINUOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.2,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

128 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
move2d(fildes,0.5,0.
draw2d(fildes,0.5,1.

character_height(fildes,0.04);

text2d(fildes,0.55,0.90, ’TA_CONTINUQUS_HORIZONTAL’,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, *With horizontal = 0.20’,VDC_TEXT,FALSE);
text2d(fildes,0.55,0.80, *and TA_NORMAL_VERTICAL’,VDC_TEXT,FALSE);

character_height(fildes,0.2);
text_alignment (fildes, TA_CONTINUOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.2,0.0);
text2d(fildes,0.5,0.5,’ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_CONTINUOUS HORIZONTAL
With horizontal = 0.20
and TA_NORMAL VERTICAL

HABC

N J

Figure 2-16. Text Alignment - TA_CONTINUOUT_HORIZONTAL Example #1

Working with Text 129

Text alignment -
TA_CONTINUOUS_HORIZONTAL #2

For this example, a horizontal value of 0.7 was used.

This example was created by the program texti6c.c found in /usr/1ib/starbase/demos.

C Syntax

move2d(fildes,O.
draw2d(fildes,1.
move2d (fildes,O.
draw2d (fildes,O.

B)

0,0.
0,0.5);
5,0.0);
5,1.

5)

5)

0)
,1.0)
character_height(fildes,0.04);
text2d(fildes,0.55,0.90,"TA_CONTINUOUS_HORIZONTAL",VDC_TEXT,FALSE) ;

text2d(fildes,0.55,0.85,"With horizontal = 0.7",VDC_TEXT,FALSE);
text2d(fildes,0.55,0.80,"and TA_NORMAL_VERTICAL",VDC_TEXT,FALSE);

character_height(fildes,0.2);

text_alignment (fildes,TA_CONTINUOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.7,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)

call text2d(fildes,0.55,0.90,’TA_CONTINUQUS_HORIZONTAL’//NULL,0,0)
call text2d(fildes,0.55,0.85,’With horizontal = 0.7//NULL,0,0)
call text2d(fildes,0.55,0.80,’and TA_NORMAL_VERTICAL//NULL,0,0)

call character_height(fildes,0.2)

call text_alignment(fildes,TA_CONTINUQOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.7,0.0);
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

130 Working with Text

Pascal Syntax

move2d(fildes,0.0
draw2d(fildes,1.0,
move2d(fildes,0.5
draw2d(fildes,0.5

character_height(fildes,0.04);

text2d(fildes,0.55,0.90, ' TA_CONTINUOUS_HORIZONTAL’,VDC_TEXT,FALSE) ;

text2d(fildes,0.55,0.85, 'with horizontal

= 0.7’ ,VDC_TEXT,FALSE) ;

text2d(fildes,0.55,0.80, and TA_NORMAL_VERTICAL’ ,VDC_TEXT,FALSE);

character_height(fildes,0.2);

text_alignment (fildes, TA_CONTINUOUS_HORIZONTAL,TA_NORMAL_VERTICAL,0.7,0.0);
text2d(fildes,0.5,0.5, ABC’ ,VDC_TEXT,FALSE) ;

/

TA_CONTINUOUS HORIZONTAL
With horizontal = 8.708
and TA_NORMAL VERTICAL

S

~

N

_/

Figure 2-17. Text Alignment - TA_CONTINUOUS_HORIZONTAL Example #2

Working with Text 131

Text alignment - TA_NORMAL_HORIZONTAL

This example was created by the program text17c.c found in /usr/lib/starbase/demos.

C Syntax
move2d (fildes,0.0,0.5);
draw2d (fildes,1.0,0.5);
move2d (fildes,0.5,0.0);
draw2d (fildes,0.5,1.0);

character_height(fildes,0.04) ;
text2d(fildes,0.55,0.90,"TA_NORMAL_HORIZONTAL",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With TA_NORMAL_VERTICAL",KVDC_TEXT,FALSE);

character_height(fildes,0.2);
text_alignment (fildes,TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC" ,VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1.

5)
5)
0)
,1.0)
call character_height(fildes,0.04)

call text2d(fildes,0.55,0.90, TA_NORMAL_HORIZONTAL’//NULL,VDC_TEXT,
¢ FALSE)

call text2d(fildes,0.55,0.85, ’With TA_NORMAL_VERTICAL,VDC_TEXT,FALSE)
call character_height(fildes,0.2)

call text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT, FALSE)

132 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.5);

draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04);
text2d(fildes,0.55,0.90, *TA_NORMAL_HORIZONTAL’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, 'with TA_NORMAL_VERTICAL’,VDC_TEXT,FALSE);

character_height(fildes,0.2);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,’ABC’ ,VDC_TEXT,FALSE) ;

a N

TA_NORMAL HORIZONTAL
and TA_NORMAL_VERTICAL

HHC

- J

Figure 2-18. Text Alignment - TA_NORMAL_HORIZONTAL (text17c.c)

Working with Text 133

Text alignment - TA_TOP

Depending upon how the character is defined in its cell, there is usually space between the
top of the character (cap) and the top of the character cell (top). With this procedure,
the intersection of the top of the text extent box and the right edge of the first character
in the string is is aligned with the point specified in the text2d or text3d procedure call.

This example was created by the program text18c.c found in /usr/1ib/starbase/demos.

C Syntax
move2d(fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04);
text2d(fildes,0.55,0.90,"TA_TOP" ,VDC_TEXT,FALSE) ;
text2d (fildes,0.55,0.85,"with TA_NORMAL_HORIZONTAL",VDC_TEXT,FALSE) ;

character_height(fildes,0.2);
text_alignment (fildes,TA_NORMAL_HORIZONTAL,TA_TOP,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0
call draw2d(fildes,0.5,1

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90,’TA_TOP’//NULL,0,0)
call text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’//NULL,O,0)

call character_height(fildes,0.18)

call text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_TOP,0.0,0.0)
call text2d(fildes,0.5,0.5, ABC’//NULL,0,0)

134 Working with Text

Pascal Syntax

move2d (fildes,0.0,
draw2d (fildes,1.0,
5
5,

move2d (fildes,O.
draw2d(fildes,O.

character_height(fildes,0.04);

text2d (fildes,0.55,0.90, ’TA_TOP’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, *with TA_NORMAL_HORIZONTAL’,6VDC_TEXT,FALSE) ;

character_height (fildes,0.2);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_TOP,0.0,0.0);
text2d(fildes,0.5,0.5, ABC’ ,VDC_TEXT,FALSE) ;

-

TA_TOP
with TA_NORMAL_HORIZONTAL

~

N\

50

/

Figure 2-19. Text Alignment - TA_TOP (text18c.c)

Working with Text 135

Text alignment - TA_CAP

This alignment is the same at TA_TOP except that the CAP (top of the character) is used
instead of the top of the character cell.

This example was created by the program text19c.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d (fildes,1.
move2d (fildes,O.
draw2d (fildes,O.

’)

0,0.5
0,0.5
5,0.0
5,1.0

)

),
)
).

character_height(fildes,0.04) ;
text2d (fildes,0.55,0.90,"TA_CAP" ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"with TA_NORMAL_HORIZONTAL",bVDC_TEXT,FALSE) ;

character_height (fildes,0.18);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_CAP,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, ’TA_CAP’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE)

call character_height(fildes,0.2)

call text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_CAP,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

136 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
move2d (fildes,0.5,0.
draw2d (fildes,0.5,1.

character_height(fildes,0.04) ;

text2d(fildes,0.55,0.90, ’TA_CAP’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE) ;

character_height(fildes,0.2);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_CAP,0.0,0.0);
text2d(fildes,0.5,0.5, *ABC’ ,VDC_TEXT, FALSE) ;

-

TA_CAP
with TA_NORMAL HORIZONTAL

~

NS

nis(@

_/

Figure 2-20. Text Alignment - TA_CAP (text19c.c)

Working with Text 137

Text alignment - TA_HALF

The position TA_HALF is located half way between the character cell cap and base. This
location may or may not be the center of the drawing character. In this example, the
two locations are not the same.

This example was created by the program text20c.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d(fildes,1.
move2d (fildes,O.
draw2d (fildes,O.

character_height(fildes,0.04) ;
text2d(fildes,0.55,0.90,"TA_HALF" ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"with TA_NORMAL_HORIZONTAL",6VDC_TEXT,FALSE) ;

character_height(fildes,0.18);
text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_HALF,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1.

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, TA_HALF’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE);

call character_height(fildes,0.18)

call text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_HALF,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT, FALSE)

138 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
move2d (fildes,0.5,0.
draw2d(fildes,0.5,1.

character_height(fildes,0.04) ;
text2d(fildes,0.55,0.90, TA_HALF’ ,VDC_TEXT,FALSE);
text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’,bVDC_TEXT,FALSE);

character_height(fildes,0.18);
text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_HALF,0.0,0.0);
text2d(fildes,0.5,0.5,ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_HALF
with TA_NORMAL HORTIZONTAL

DI
AN

N J

Figure 2-21. Text Alignment - TA_CAP

Working with Text 139

Text alignment - TA_BASE

This example was created by the program text2ic.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d (fildes,1.
move2d (fildes,O.
draw2d (fildes,0.

» »

0,0.5)
0,0.5);
5,0.0);
5,1.0)

’ »

5
5
0
O .

’ »

character_height(fildes,0.04) ;
text2d (fildes,0.55,0.90,"TA_BASE" ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"with TA_NORMAL_HORIZONTAL",VDC_TEXT,FALSE) ;

character_height(fildes,0.18);
text_alignment (fildes,TA_NORMAL_HORIZONTAL,TA_BASE,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1

5)
5)
,0.0)
0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, TA_BASE’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE);

call character_height(fildes,0.18)

call text_alignment(fildes,TA_NORMAL_HORIZONTAL,TA_BASE,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

140 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
5,0.
5,1.

move2d(fildes,O.
draw2d (fildes,O.

5)

5);

0)
,1.0);

character_height(fildes,0.04) ;

text2d(fildes,0.55,0.90, TA_BASE’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, 'with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE);

character_height(fildes,0.18);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_BASE,0.0,0.0);
text2d(fildes,0.5,0.5, ABC’ ,VDC_TEXT,FALSE) ;

~

TA_BASE
with TA_NORMAL HORTZONTAL

B

~

-

J

Figure 2-22. Text Alignment - TA_BASE (text21c.c)

Working with Text 141

Text alignment - TA_BOTTOM

Depending upon how the character is defined in its cell, there is usually space between
the bottom of the character (base) and the bottom of the character cell (bottom). With
this procedure, the intersection of the bottom of the text extent box and the right edge
of the first character in the string is is aligned with the point specified in the text2d or
text3d procedure call.

This example was created by the program text22c.c found in /usr/lib/starbase/demos.

C Syntax
move2d (fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d (fildes,0.5,1.0);

character_height(fildes,0.04);
text2d (fildes,0.55,0.90, "TA_BOTTOM", VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"with TA_NORMAL_HORIZONTAL",VDC_TEXT,FALSE);

character_height(fildes,0.2);
text_alignment(fildes,TA_LEFT,TA_BOTTOM,0.0,0.0);
text2d (fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90,’TA_BOTTOM’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.85, ’with TA_NORMAL_HORIZONTAL’//NULL,VDC_TEXT,FALSE);

call character_height(fildes,0.2)

call text_alignment(fildes,TA_LEFT,TA_BOTTOM,0.0,0.0)
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE)

142 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
5,0.
5,1.

).
)
)‘
)

move2d(fildes,O.
draw2d(fildes,O.

character_height(fildes,0.04) ;
text2d(fildes,0.55,0.90,’TA_BOTTOM’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, ’with TA_NORMAL_HORIZONTAL’,VDC_TEXT,FALSE) ;

character_height(fildes,0.2);
text_alignment(fildes,TA_LEFT,TA_BOTTOM,0.0,0.0);
text2d(fildes,0.5,0.5,’ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_BOTTOM
with TA_NORMAL HORIZONTAL

—BC

N J

Figure 2-23. Text Alignment - TA_BOTTOM (text22c.c)

Working with Text 143

Text alignment -
TA_CONTINUOUS_VERTICAL Example #1

With this procedure, the parameter vertical is used to allow the specification of what
percentage (as a fraction) of the the text extent box is to below the point specified in
the text2d or text3d procedure. This percentage can be a real number greater than 1.00.
For the first example, a percentage fraction of 0.35 is used.

This example was created by the program text23c.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d(fildes,1.
move2d (fildes,O.
draw2d (fildes,O.

character_height (fildes,0.04) ;
text2d(fildes,0.55,0.90,"TA_CONTINUQUS_VERTICAL",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With vertical = 0.35",VDC_TEXT,FALSE) ;

text2d (fildes,0.55,0.80,"and TA_CONTINUQOUS_HORINTOZAL",VDC_TEXT,FALSE);

character_height(fildes,0.2);
text_alignment (fildes,TA_LEFT,TA_CONTINUOUS_VERTICAL,0.0,0.35);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1.

call character_height(fildes,0.04)

call text2d(fildes,0.55,0.90, ' TA_CONTINUOUS_VERTICAL’//NULL,VDC_TEXT,
¢ FALSE)

call text2d(fildes,0.55,0.85, 'With vertical = 0.35//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.55,0.80,’and TA_CONTINUOUS_HORINTOZAL’//NULL,0,0);

call character_height(fildes,0.18)

call text_alignment(fildes,TA_LEFT,TA_CONTINUOUS_VERTICAL,0.0,0.35);
call text2d(fildes,0.5,0.5, ABC’//NULL,VDC_TEXT,FALSE)

144 Working with Text

Pascal Syntax

move2d(fildes,0.0
draw2d(fildes,1.0,
move2d(fildes,0.5,
draw2d(fildes,0.5

character_height(fildes,0.04);

text2d(fildes,0.55,0.90, ’TA_CONTINUOUS_VERTICAL’,VDC_TEXT,FALSE);
text2d(fildes,0.55,0.85, with vertical = 0.35’,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.80,’and TA_CONTINUOUS_HORINTOZAL’,0,0);

character_height(fildes,0.18);
text_alignment(fildes,TA_LEFT,TA_CONTINUQUS_VERTICAL,0.0,0.35);
text2d(fildes,0.5,0.5, ’ABC’ ,VDC_TEXT,FALSE) ;

4)

TA_CONTINUOUS VERTICAL
With vertical = = 8.35
and TA_NORMAL HORIZONTAL

==l

- _/

Figure 2-24. Text Alignment - TA_CONTINUOUS_VERTICAL, Example #1

Working with Text 145

Text alignment -
TA_CONTINUOUS_VERTICAL Example #2

As a second example, a vertical value of 0.75 is used.

This example was created by the program text24c.c found in /usr/lib/starbase/demos.

C Syntax
move2d(fildes,0.0,0.5);
draw2d(fildes,1.0,0.5);
move2d(fildes,0.5,0.0);
draw2d(fildes,0.5,1.0);

character_height(fildes,0.04);
text2d(fildes,0.55,0.90,"TA_CONTINUOUS_VERTICAL",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"With vertical = 0.75",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.80,"and TA_NORMAL_HORIZONTAL",VDC_TEXT,FALSE);

character_height(fildes,0.18);
text_alignment (fildes,TA_LEFT,TA_CONTINUOUS_VERTICAL,0.0,0.75);
text2d(fildes,0.5,0.5,"ABC" ,VDC_TEXT, FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.
call draw2d(fildes,1.0,0.
call move2d(fildes,0.5,0.
call draw2d(fildes,0.5,1.

call character_height(fildes,0.04)

call text2d(fildes,0.55,0.90,’TA_CONTINUOUS_VERTICAL’//NULL,VDC_TEXT,
¢ FALSE)

call text2d(fildes,0.55,0.85,’With vertical = 0.75//NULL,0,0)
call text2d(fildes,0.55,0.80,’and TA_NORMAL_HORIZONTAL’//NULL,0,0);

call character_height(fildes,0.18)

call text_alignment(fildes,TA_LEFT,TA_CONTINUOUS_VERTICAL,0.0,0.75);
call text2d(fildes,0.5,0.5,’ABC’//NULL,0,0)

146 Working with Text

Pascal Syntax

move2d(fildes,0.0,0.
draw2d(fildes,1.0,0.
move2d(fildes,0.5,0.
draw2d(fildes,0.5,1.

>

character_height(fildes,0.04);

text2d(fildes,0.55,0.90, TA_CONTINUOUS_VERTICAL’ ,VDC_TEXT,O0);

text2d(fildes,0.55,0.85, ’with vertical =

0.75’ ,VDC_TEXT,0);

text2d(fildes,0.55,0.80, ’and TA_NORMAL_HORIZONTAL’,VDC_TEXT,O0);

character_height(fildes,0.18);

text_alignment (fildes,TA_LEFT,TA_CONTINUOUS_VERTICAL,0.0,0.75);

text2d(fildes,0.5,0.5, ABC’ ,VDC_TEXT,O0) ;

-

TA_CONTINUOUS_VERTICAL
With vertical
and TA_NORMAL _HORIZONTAL

== 0.70

N

/

Figure 2-25. Text Alignment - TA_CONTINUOUS_VERTICAL, Example #2

Working with Text 147

Text alignment - TA_NORMAL_VERTICAL

This example was created by the program text25c.c found in /usr/lib/starbase/demos.

C Syntax

move2d (fildes,O.
draw2d (fildes,1.
move2d (fildes,O.
draw2d(fildes,O.

0,0.5);
0,0.5);
5,0.0);
5,1.0)

» ’

5
5
0
0 .

» »

character_height(fildes,0.04);
text2d (fildes,0.55,0.90, "TA_NORMAL_VERTICAL",VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85,"TA_NORMAL_HORIZONTAL" ,VDC_TEXT,FALSE) ;

character_height(fildes,0.18);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);
text2d(fildes,0.5,0.5,"ABC",VDC_TEXT,FALSE) ;

Fortran77 Syntax

call move2d(fildes,0.0,0.5)
call draw2d(fildes,1.0,0.5)
call move2d(fildes,0.5,0.0)
call draw2d(fildes,0.5,1.0)

call character_height(fildes,0.04)
call text2d(fildes,0.55,0.90, TA_NORMAL_VERTICAL’//NULL,VDC_TEXT,
¢ FALSE)

call text2d(fildes,0.55,0.85, TA_NORMAL_HORIZONTAL’//NULL,VDC_TEXT, FALSE)
call character_height(fildes,0.18)

call text_alignment(fildes, TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);
call text2d(fildes,0.5,0.5,’ABC’//NULL,VDC_TEXT,FALSE) .

148 Working with Text

Pascal Syntax

move2d (fildes,0.0,0.
draw2d (fildes,1.0,0.
move2d (fildes,0.5,0.
draw2d (fildes,0.5,1.

character_height(fildes,0.04);

text2d(fildes,0.55,0.90, *'TA_NORMAL_VERTICAL’ ,VDC_TEXT,FALSE) ;
text2d(fildes,0.55,0.85, 'TA_NORMAL_HORIZONTAL’ ,VDC_TEXT,FALSE);

character_height(fildes,0.2);

text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_NORMAL_VERTICAL,0.0,0.0);

text2d (fildes,0.5,0.5

, ’ABC’ ,VDC_TEXT,0) ;

-

TA_NORMAL VERTICAL
and TA_NORMAL HORIZONTAL

~

N

J

Figure 2-32. Text Alignment - TA_NORMAL_VERTICAL (text25c.c)

Working with Text 149

Designate Character Set

The following program shows how to select the various character sets.

This example was created by the program text26c.c found in /usr/lib/starbase/demos.

#include <starbase.c.h>
main(argc,argv)

int argc;

char x*argv[];

{

int fildes,chset,gset;
float x,y:

char *c;

static char *chsets[] = {
"ysascii",

"hproman",

"jisascii",

"katakana"

}
fildes = gopen("/dev/tty",0UTDEV, "hp262x",INIT);
vdc_extent (fildes,0.0,0.0,0.0,13.0,9.0,0.0);
clip_rectangle(fildes,0.0,13.0,0.0,9.0);
character_height(fildes,1.0);

for (chset=0; chset<=3; chset++) {

for (gset=0; gset<=3; gset++) {

designate_character_set(fildes,"",0);
designate_character_set(fildes,"",1);
designate_character_set(fildes,"",2);
designate_character_set(fildes,"",3);

designate_character_set(fildes,chsets[chset],gset);
set_pl_p2(fildes,FRACTIONAL,chset/4.0,gset/4.0,

0.0, (chset+1.0)/4.0, (gset+1.0)/4.0,0.0);
switch (gset) {
case O:
C="\017";
break;
case 1:
C="\016"‘,
break;
case 2:
¢="\033n";
break;
case 3:
c="\0330";
break;

}
text2d(fildes,O.

,0.0,¢,0,0);
text2d(fildes,1.0,1

0,0.0
0,1.0," '\"#8§%&’ ()*+",0,0);

150 Working with Text

text2d (fildes,
text2d(fildes,
text2d (fildes,

text2d(fildes,
text2d (fildes,
text2d(fildes,
b
}
gclose(fildes);
}

1.0
1.0
1.0
text2d(fildes,1.0
1.0
1.0
1.0

.0,"89:

.0,",-./01234567",0,0) ;
;<=>7Q@ABC",0,0) ;
.0, "DEFGHIJKLMNQ",0,0) ;

0, "PQRSTUVWXYZ[",0,0);

0,"\]"_

‘abcdefg",0,0);

0, "hijklmnopqrs",0,0);

.0,"tuvwxyz{|}"| height6pt width4pt depthOpt",0,0);

tuvwxyz ([I~8
hiJklmnopqrs
N1~ ‘abcdefg
PQRSTUVIWXYZ {
DEFGHIJKLMNO
89:; <=>?@ABC
,—./B1234567

[£ A NEOL 24

tuvwxyz ([I~8
hijklmnopqrs
N1~ “abcdefg
PQRSTUVIWXYZ [
DEFGHIJKLMNO
89:;<=>7@ABC
,—.7/01234567

PUESAR S ()xt

tuvwxyz (|) ~8
h|jklmnopqrs
N\J~_ “abcdefg
PQRSTUVWXYZ
DEFGHIJKLMNO
89:;<=>?@ABC
,—./01234567

1" H#SX8 () %+

tuvuxyz (| I~8
hijklmnopqrs
N\]~_ “abcdefg
PQRSTUVWXYZL
DEF GHIJKLMNO
89:; <=>?@ABC
,—./B1234567

[3 2 NEOL 24

—Tv 22«
005 S3UYyBb
£1+0ARIDA110
ATORS{ oR OU
aeouaeouaeou
i§5£58f¢aeou

£ \3}
mtem%

06 55UYypb

7 +8AREDAT16
TOfA{ oA OU
é6Uaedlassu
i CHL¥SFEEEBG
TU0eT °GgRA
RAEEETT *~

o
2
A
a

ATORAe=Ri OU
466GAE0UREBU
i CHL¥SFEAE6G
uoe °ch
RAEEETT

tuvwxyz (| I~8
hijklmnopqrs
¥]~ ‘abcdefg
PQRSTUVWXYZ
DEFGHIJKLMNO
89:; <=>?@RABC
,—./81234567

I #8287 () %+

tuvwxyz (| I~8
hijklmnopqrs
¥)~ ‘abcdefg
PORSTUVWXYZ [
DEFGHIJKLMNO
89:;<=>?7@ABC
—-./81234567

ISR GRS

tuvwxyz (|I~8
hijklmnopqrs
¥)~ ‘abcdefg
PARSTUVIWXYZ L
DEFGHIJKLMNO
89:; <=>7@RBC
,—./01234567

P #S78 7 () %+

tuvwxyz ([I~%
hijklmncpqrs
¥~ "abcdefg
PQRSTUVWXYZC
DEFGHIJKLMNO
83:; <=>?7@ABC
,—./B1234567

I #8787 () %+

¥

2LXEPIISULLO
MIRZINEIAKRR
2IIYLREV9F T
razy—PAI1Aht
o fu F74912

¥

SLXEPAISYLLO
MIRZINEINER
PTINLZEVOF YT
ra3y—PAIIAh+

" -
o uv " TVivaa

/0¥

2LXEPAISYLLO
MIRZINEDNKRR
27IBLREVOFYF
ra3v—PAOIAh$
o Tu I74912

0¥

FLXEPA3SULLO
MIRZINEINKRR
2TIVLREVOFIF
raan—PAIIAh
oy I74912

Figure 2-27. Character Sets

Working with Text 151

The following table shows the escape sequences needed to select a specific character set.

shift function ISO 7 bit | ISO 8 bit HP 8 bit
Shift out SO 0/14 - 0/14
Shift in SI 0/15 - 0/15
Locking shift zero LSo - 00/15 -
Locking shift one LS1 - 00/14 -
Locking shift one right LS1R - esc 7/14 -
Locking shift two LS2 esc 6/14 esc 6/14 -
Locking shift two right LS2R - esc 7/13 -
Locking shift three LS3 esc 6/15 esc 6/15 -
Locking shift three right LS3 - esc 7/12 -
Single shift two SS2 esc 4/14* 08/14 -
Single shift three SS3 esc 4/15 08/15 -

152 Working with Text

* If a single byte representation of SS2 is required in 7 bits, it should be coded as 1/9.

Text Font Index

The text_font_index procedure allows you to select fonts from the current character set.
The default character set has two fonts:

o font index = 1 - A fixed-width character font.

e font index = 2 - A variable-width character font.
This example was created by the program text27c.c found in /usr/1ib/starbase/demos.

C Syntax

character_height(fildes,0.04);
text2d(fildes,0.0,0.6,"Fixed Width Text Font.",VDC_TEXT,FALSE);
text2d(fildes,0.0,0.2,"Variable Width Text Font.",K VDC_TEXT,FALSE);

character_height(fildes,0.1);
text2d(fildes,0.0,0.5,"i like to bike",VDC_TEXT,FALSE);

text_font_index(fildes,2) ;
text2d(fildes,0.0,0.1,"i like to bike",VDC_TEXT,FALSE);

Fortran77 Syntax

call character_height(fildes,0.04)
call text2d(fildes.0.0.0.6. Fixed Width Text Font.’//NULL,VDC_TEXT,FALSE)
call text2d(fildes,0.0,0.2,’Variable Width Text Font.’//NULL,VDC_TEXT,

¢ FALSE)

call character_height(fildes,0.1)
call text2d(fildes,0.0,0.5,’i like to bike’//NULL,VDC_TEXT,FALSE)

call text_font_index(fildes,2)
call text2d(fildes,0.0,0.1,’i like to bike’//NULL,VDC_TEXT,FALSE)

Working with Text 153

Pascal Syntax

character_height(fildes,0.04) ;
text2d(fildes,0.0,0.6, ’Fixed Width Text Font.’,VDC_TEXT,FALSE);
text2d(fildes,0.0,0.2,’Variable Width Text Font.’,VDC_TEXT,FALSE);

character_height(fildes,0.1);
text2d(fildes,0.0,0.5,’i like to bike’,VDC_TEXT,FALSE);

text_font_index(fildes,2);
text2d(fildes,0.0,0.1,’i like to bike’,VDC_TEXT,FALSE);

Fixed Width Text Font.

1 like to bike

Variable Width Text Font.

1 ke to bike

Figure 2-28. Character Fonts (text26c.c_)

154 Working with Text

Text Color

Text color is selected in the same manner as the fill color, perimeter color and marker
colors are selected.

See the section Color in this manual for further information on Starbase color.

Working with Text 155

Notes

156 Working with Text

Starbase Color Graphics 3

Introduction

The following discussion of color graphics applies to those color graphic devices supported
by the Starbase system. Not all devices support all color capabilities described in this
chapter. See the Starbase Device Drivers Library for detailed information concerning
color support for a specific device.

The following procedures are involved with color:
e Background Color

e background_color - sets the background color by specifying the red, green
and blue components of the desired color. The clear_view_surface procedure
paints the background.

e background_color_index - sets the background color by specifying the color
map index of the desired color. The clear_view_surface procedure paints the
background.

o clear_view_surface - removes all graphic elements and paints the area specified
by the clear_control procedure in the color specified by the background_color
procedure.

e clear_control - specifies the area of the view surface to be cleared by the
clear_view_surface procedure. The view surface may be one of the following:

e CLEAR_VDC_EXTENT - clear the rectangle defined by the vdc_extent
procedure.

e CLEAR_CLIP_RECTANGLE - clear the rectangle defined by the
clip_rectangle procedure.

e CLEAR_DISPLAY_SURFACE - clear the rectangle defined by the
set_pi_p2 procedure. This is the default.

e clip_rectangle - defines the current clip rectangle. Graphic elements that ex-
tend beyond this rectangle are automatically clipped when clipping is enabled
(see clip_indicator).

e set_pl_p2 - specifies the bounds (p1 and p2) of the device.

Starbase Color Graphics 157

e The Color Table

define_color_table - defines the red, green and blue components of the color
table entries.

inquire_sizes - returns the devices physical limits, resolution, (pl, p2), and
color map size.

e Line Color

draw2d, draw3d and dcdraw - draws lines between coordinate points. Line
color is defined by the 1ine_color procedures.

line_color - selects the color of lines drawn by Starbase by specifying the lines
red, green and blue components.

line_color_index - selects the color of lines drawn by Starbase by specifying
the the index into the color map.

perimeter_color - selects the color of perimeters drawn by Starbase by speci-
fying the lines red, green and blue components.

perimeter_color_index - selects the color of perimeters drawn by Starbase by
specifying the the index into the color map.

polyline - draws line segments defined by a list of points. The color of the
lines is defined by the line_color procedures.

e Fill Color

fill_color - selects the red, green and blue components of the fill color. The
fill color is used to fill polygons and rectangles.

fill_color_index - selects the fill color by an index into the color map. The fill
color is used to fill polygons and rectangles.

fill_dither - selects the number of colors to be searched for and placed in the
dither cell. Only 1, 2, 4, 8 and 16 colors are allowed. Devices may limit
the number of options implemented for this parameter depending on device
capabilities.

rectangle - draws rectangles. Default rectangles are filled and without perime-
ters.

polygon - draws polygons. Default polygons are filled and without perimeters.

158 Starbase Color Graphics

e Marker Color

o marker_color - selects the color of markers drawn by Starbase by specifying
the lines red, green and blue components.

e marker_color_index - selects the color of markers drawn by Starbase by spec-
ifying the the index into the color map.

e polymarker - draws markers at designated locations. The color of the markers
if defined by the marker_color procedures.

o Text Color

o text2d, text3d, detext and append_text - draw textual characters. The color
of the characters is defined by the text_color procedures.

e text_color - selects the color of text drawn by Starbase by specifying the lines
red, green and blue components.

e text_color_index - selects the color of text drawn by Starbase by specifying
the the index into the color map.

Starbase Color Graphics 159

Color Generation

An Overview
All color is device dependent. Each device has its own color capabilities and color map.

Each display pixel is mapped into an address in a section of the computer’s internal
memory called the frame buffer. Each frame buffer address contains a number that is an
index into the device’s color map. In the following example, the example frame buffer
entry contains the color map index value 3.

The address of the color map is stored as a binary number. For example, the addresses
of the HP 2627 Color Map contains 8 bits. Each bit position can be referred to as a
color plane for that device. All of the least significant bits are plane 0, all of the most
significant bits (for this device) are plane 7. Starbase allows you to disable color planes,
i.e. ignoring any 1’s in that column of bits. This limits the possible colors that can be
displayed.

The color map can be thought of as a § by n array. The three row entries define a binary
value that produce a color intensity from the color generation hardware.

The color hardware generation hardware controls the beam of light sent to the display.

The dot on the display is the pixel identified by the frame buffer.

160 Starbase Color Graphics

=z
o
T
o RR © [©
- = 1 o x o
5z 3k 33k 3k
G a 8%¢ gzh 3268
& "3z 832 =32
e 1N 53
bt a ///m a
o
O

COLOR MAP
GREEN

RED

1111111 1§14111111150000000 0

11 1111110000000 O00O0O0O0O0O0O0 0
1111111 181111111 111111111

0000000O00O0O0O0O0O0OO0]0O0O0O0O0O0OO]

0O INVId ¥07100 o-~o0 0o
Il 3NVId 30700 o+~ -0 o

M o0 o0O0 j J

ocooo0o0

‘" oeoeoo0

ocooo0oo0o0

ococoo0o

L 3NVId ¥0100 v\ooo

DISPLAY
[k

FRAME
BUFFER
3

Starbase Color Graphics 161

Figure 3-1. The Color Generation Process

The Frame Buffer

Starbase supports bit-mapped color graphics. An area in memory called a frame buffer
provides a memory location for each pixel on the device’s display. Each location contains
an integer which is an index into the device’s color map and thus defines the color for
that pixel. The color description used in the frame buffer is indirect. Thus, the value in
the frame buffer does not say “use color 12”, but rather “use the color described by the
color map at index number 12”.

Initially, all locations in the buffer contain the value of the currently defined background
color. When you draw a line on the screen, what really happens is the values for the
correct frame buffer locations are changed to the currently defined line color.

Color Categories

At any given time, the values written to the frame buffer fall into six categories:

e Background Color - Whenever clear_view_surface is executed, all pixel locations
in the frame buffer area to be cleared are set to the background color defined by
the background_color procedure. The default background color is color table index
0 (zero).

e Line Color - Line color is selected with either line_color or line_color_index. Lines
are created with the polyline, draw2d, draw3d and dcdraw procedures. The default
line color is color table index 1 (one).

e Perimeter Color - Perimeter color is selected with either perimeter_color or perime-
ter_color_index. Polygons may be created with or without perimeters, depending
on the interior_style procedure. Perimeters may be drawn with the polygon,
rectangle, and partial_polygon procedures. The default perimeter color is color
table index 1 (one).

o Text Color - Text color is selected with either text_color or text_color_index. Text
is drawn using the append_text, text2d and text3d procedures. The default text
color is color table index 1 (one).

e Fill Color - Fill color is selected with either £i11_color or £ill_color_index. Poly-
gons may be filled or not filled depending upon the interior_style procedure.
Polygons are created using the polygon, rectangle, and partial_polygon proce-
dures. The default fill color is color table index 1 (one).

e Marker Color - Marker color is selected with marker_color or marker_color_index.
Markers are drawn using the polymarker procedure. The default marker color is
color table index 1 (one).

162 Starbase Color Graphics

All of the color control statements listed above are referred to as modal attributes. This
means that the value established by one of the statements stays in effect for that class
of objects until altered by another statement.

The Color Map

Color Planes

The index into the color map is stored as binary values. Each device uses a specific num-
ber of binary bits to identify the colors available. For example, the HP 98700 supports
256 entries in the color map, thus needing 8 bits to identify each entry in the map. The
HP 2627 supports 8 and requires 3 bits while the HP 2623 supports 2 colors and only one
bit. The bit locations for the index values in the color map are called the color planes of
the device. The colors available can be limited by enabling and disabling these planes.

Color Map Entries

The color map contains a complete description of the colors available for the device. Each
color map index identifies three entries, one for each of the primary colors - Red, Green
and Blue. The number of colors possible in a device is found by raising the number 2 to
the power found by adding up the total number of bits used to specify the three colors.
For the HP 98700, this value is over 16 million possibie coiors, of which, 256 can be active
at a time.

Color Generation Hardware

The binary bits stored in the three segments of a color map entry form a pattern that,
when applied to the Analog-to-Digital Converters in the raster device, produces a specific
voltage level which causes that color to be of a specific intensity. The sum of the three
intensities is the color seen on the display.

Starbase Color Graphics 163

Selecting a Color

There are two ways to select a color:

e Specify the index into the color map. This is the fastest way to access a color. For
example:

background_color_index(fildes,2);

e Specify the red, blue and green components of the color. Starbase will take your
specification and will search the color table for the closest match. The index for
that color is then used. This method is slower than the first due to the search
time, however, when a specific color is wanted, this gives you the closest match.
For example:

background_color(fildes,0.20,1.00,0.50) ;

Shell Scripts

The following shell scripts can be used to compile and execute the example programs
described in this section. The scripts work with both the Bourne Shell and the C Shell
(the C Shell calls the Bourne shell automatically).

The “-1” option is used to reduce typing. This compiler option prepends /usr/1ib/1ib
to the file name and appends .a to the file name. This completes the path name to the
correct file. For example:

. -1ddhpgl

is processed as if it were

... /usr/lib/libddhpgl.a

164 Starbase Color Graphics

A Script for C Programs

To following script will compile and run a C program, linking in the drivers for the HP-
GL and HP 2627 devices and the required starbase libraries sb1 and sb2. This script also
allows you to easily link in other device drivers.

PROG=$1

shift

cc -o $PROG $PROG.c $* -1ddhpgl -1dd2627 -1lsbl -1sb2
$PROG

This script is available in /usr/lib/starbase/demos as the executable file cC.

To compile and execute the example program progi.c just type in:

CC progil

To execute the same program again, just type in:

progl

To link in the device driver for the HP 98700, just recompile with:
CC progl -1d4d98700

A Script for Fortran77 Programs

To following seript will compile a Fortran77 program, linking in the drivers for the HP-
GL and HP 2627 devices and the required starbase libraries sb1 and sb2. This script also
allows you to easily link in other device drivers.

PROG=$1

shift

fc -o $PROG $PROG.f $* -1lddhpgl -1dd2627 -1lsbl -1sb2
$PROG

This script is available in /usr/1ib/starbase/demos as the executable file FC.

To compile and execute the example program progi.f just type in:
FC progil

To execute the same program again, just type in:
progl

To link in the device driver for the HP 98700, just recompile with:
FC progl -1dd98700

Starbase Color Graphics 165

A Script for Pascal Programs

To following script will compile a Pascal program, linking in the drivers for the HP-GL
and HP 2627 devices and the required starbase libraries sb1 and sb2. This script also
allows you to easily link in other device drivers.

PROG=$1

shift

pc -o $PROG $PROG.p $* -lddhpgl -1dd2627 -1sbl -1sb2
$PROG

This script is available in /usr/lib/starbase/demos as the executable file PC.

To compile and execute the example program progl.p just type in:

PC progil
To execute the same program again, just type in:
progl

To link in the device driver for the HP 98700, just recompile with:
PC progl -1dd98700

166 Starbase Color Graphics

Skeleton Programs

The following programs provide the various include files, the procedures that open and
close the graphics devices and the other components needed to make working Starbase
programs. The appropriate procedures are added and the result will compile and execute.

A Template Program for C

#include <starbase.c.h>

main(argc,argv)
int argc; char *argv([];
{

int fildes;

if (argc > 2) fildes=gopen(argv([1],0UTDEV,argv[2],NO_INIT)
else fildes=gopen("/dev/tty", OUTDEV, "hp262x", INIT) ;
if (fildes == -1) exit(-1);

make_picture_current(fildes);
gclose(fildes);
}

A Template Program for Fortran77

include ’/ugr/include/starbase f1 . h’
program chart

character NULL

parameter (NULL = char (0))

include ’/usr/include/starbase.f2.h’

integer*4 fildes
integerx4 status

fildes = gopen(’/dev/tty’//NULL, OUTDEV, ’hp262x°’//NULL, INIT)
if (fildes .eq. -1) stop

status = gclose(fildes)
end

Starbase Color Graphics 167

A Template Program for Pascal

program main(input,output);
$include ’/usr/include/starbase.pl.h’$

var
fildes, status : integer;

$include ’/usr/include/starbase.p2.h’$
procedure exit(result: integer); external;

begin {main}
fildes:=gopen(’/dev/tty’,0UTDEV, *hp262x’, INIT) ;
if fildes = -1 then exit(-1);

status := gclose(fildes);
end.

Example Color Programs

The example programs that follow will present different colors depending upon the cur-
rent definition of the device’s color map. The examples were created using the color map
for the HP 2627 Color Graphics Terminal.

A Color Map

The following example was used to generate the color map used by the HP 2627 Color
Graphics Terminal. This example shows the colors of the map, and also demonstrates
how the line, fill and text colors can be selected.

int fildes, color=0;
float y, r[1]1[3];
char c[80];
char x[80];
static char *name[] = {
"Black",
"White",
llRedll s
"Yellow",
"Green",
IICyan" s
"Blue",
"Magenta"};

mapping_mode(fildes, TRUE) ;
character_height(fildes,0.086) ;

168 Starbase Color Graphics

character_width(fildes,0.015) ;
interior_style(fildes, INT_SOLID,TRUE) ;
text_alignment (fildes, TA_NORMAL_HORIZONTAL,TA_HALF,0.0,0.0);

for (y=0.0; y<=0.8; y+=0.1) {

£ill_color_index(fildes,color);

rectangle(fildes,0.60,y,0.73,y+0.08) ;

inquire_color_table(fildes,color,1,r);

text2d(fildes,0.75,y+0.02,name[color] ,VDC_TEXT,FALSE) ;

sprintf(x,"Red = %3.2f Green = %3.2f Blue = %3.2f",
r[o0] [0],r[0][1],r[0][2]);

sprintf (c,"Pen %d",color++);

text2d(fildes,0.0,y+0.02,x,VDC_TEXT,FALSE) ;

text2d(fildes,0.63,y+0.02,c,VDC_TEXT,FALSE) ;

>

4)

Red = 1.080 Green = 0.00 Blue = 1.0 Magenta
Red = 0.08 Green = 0.00 Blue = 1.008 - Blue
Red = 0.00 Green = 1.00 Blue = 1.00 Cyan
Red = 0.00 Green = 1.00 Blue = 0.00 Index 4 MOgICT]
Red = 1.00 Green = 1.00 Blue = 0.00 Yellow
Red = 1.08 Green = B.00 Blue = 0.00 Red
Red = 1.00 Green = 1.00 Blue = 1.00 White
=0

.00 Green = 0.00 Blue = 0.00 [RGEIEE B ack J

Figure 3-2. A Color Map (colorlc.c)

Starbase Color Graphics 169

Background Color

These procedures are device dependent and only work with those devices that have
backgrounds. An exception is a plotter with automatic paper feed. The plotter will
advance the paper whenever a background_color procedure is executed.

The background area defined by the clear_control procedure is painted the color speci-
fied by either the background_color or background_color_index procedure with each ex-
ecution of the clear_view_surface procedure. This painting causes the entire area to be
the color specified.

The clear_control procedure uses the following enumerated types to define the areas to
be painted:

o CLEAR_VDC_EXTENT - the rectangle defined by the vdc_extent procedure.

o CLEAR_CLIP_RECTANGLE - the rectangle defined by the clip_rectangle pro-
cedure.

e CLEAR_DISPLAY_SURFACE - clear the rectangle defined by the set_p1_p2 pro-
cedure.

The following program segment, when placed in the template for C programs produces
three background fills. First, the default fill area, the area defined by P1 and P2, is
painted the color found at color map index 4. Next, the values of P1 and P2 are changed
with respect to the original values. Since the Virtual Device Coordinate Extent is also
defined by P1 and P2,

background_color_index(fildes,4) ;
clear_view_surface(fildes);

set_pl_p2(fildes,FRACTIONAL,0.1,0.1,0.0,0.9,0.9,0.0);
background_color_index(fildes,5) ;
clear_control(fildes,CLEAR_VDC_EXTENT) ;
clear_view_surface(fildes);

clip_rectangle(fildes,0.3,0.7,0.3,0.7);

background_color_index(fildes,6) ;
clear_control (fildes,CLEAR_CLIP_RECTANGLE) ;

170 Starbase Color Graphics

R A

Figure 3-3. Background Color (color2c.c)

Polyline and Polymarker Color

The following example is used to show how polylines and markers can be drawn in
different colors

int fildes,y,num_pts;

float clist[8];

float ph_lim[2] [3], res([3], p1[3], p2[3];
int num_pens;

char c[80];

char m[80];

inquire_sizes(fildes,ph_lim,res,pl,p2,&num_pens) ;
vdc_extent (fildes,0.0,0.0,0.0,25.0,10.0,0.0);
clip_rectangle(fildes,0.0,256.0,0.0,10.0);
mapping_mode(fildes, TRUE) ;

marker_orientation(fildes,0.0,1.0);

Starbase Color Graphics 171

marker_size(fildes,0.2,1);
character_height(fildes,0.35);

for (y=0; y<=8; y++){
line_color_index(fildes, y/%num_pens) ;
marker_color_index(fildes, (y+1)%num_pens) ;

clist[0]=9.0; clist[1]=y+0.50;
clist[2]=14.0; clist[3]=y+1.50;
clist[4]=19.0; clist[6]=y+1.50;
clist[6]=24.0; clist[7]=y+0.50;

marker_type(fildes,y);
polyline2d(fildes,clist,4,0);
polymarker2d(fildes,clist,4,0);

sprintf(c,"Line Color Index %d",y’%num_pens);
sprintf (m, "Marker Color Index %d", (y+1)%num_pens);
text2d(fildes,0.30,y+0.35,c,VDC_TEXT,FALSE) ;
text2d(fildes,0.30,y+0.65,m,VDC_TEXT,FALSE) ;

}

172 Starbase Color Graphics

=

Marker Color Index
Line Color Index @

Marker Color Index
Line Color Index 7

Marker Color Index
Line Color Index 6

Marker Color Index
Line Color Index S

Marker Color Index
Line Color Index 4

Marker Color Index
Line Color Index 3

Marker Color Index
Line Color Index 2

Marker Color Index
Line Color Index 1

Marker Color Index
Line Color Index @

N

\

/

\

>(/"

iy

P

0
/+

o

Che

~f—

/

R

\
oy

Figure 3-4. Polyline and Polymarker Color (color3c.c)

Starbase Color Graphics 173

The Color Cube

The RGB color cube describes an additive color system. In an additive color system,
color is generated by mixing various colored light sources to produce different colors.

The origin (0,0,0) of the RBG color cube is black. Increasing values of each of the additive
primary colors (Red, Green and Blue) move towards white (the opposite corner of the
cube.) The maximum value for all three colors is white.

A diagonal of the cube connecting point (0,0,0) and point (1,1,1) represents gray shades,
which are generated by incrementing all three colors axes equally.

#include <starbase.c.h>
#include <stdio.h>

extern double sin(), cos();

#define scale_screen 1.125
#define sin_30_degrees 0.5
#define cos_30_degrees 0.866025

main(argc,argv)

int argc; char *argv[];

{
int fildes;
float size, ph_1im[2][3], res[3], p1[3], p2[3];
float extent, s, c;
int cmap_size, dither_size, step, r, g, b, valid;
char ch;

if (argc>2) fildes=gopen(argv[1],0UTDEV,argv[2],INIT);
else fildes=gopen("/dev/tty",O0UTDEV, "hp2627",INIT) ;
if (fildes == -1) exit(1);

inquire_sizes(fildes,ph_lim,res,pl,p2,&cmap_size);

valid = FALSE;
while (!'valid) {
printf ("Enter dither size (1,2,4,8 or 16): ");
scanf ("%d",&dither_size) ;
if ((dither_size == 1) || (dither_size == 2) ||
(dither_size == 4) || (dither_size == 8) ||
(dither_size == 16)) valid = TRUE;
}
fill_dither(fildes,dither_size);

fflush(stdin) ;

174 Starbase Color Graphics

S
C

sin_30_degrees;
cos_30_degrees;

extent = cmap_size * scale_screen;
step = cmap_size/8;

vdc_extent (fildes, -extent,-extent,0.0,extent,extent,0.0);
clip_rectangle(fildes, -extent,extent, -extent, extent) ;

for (g=0; g<=cmap_size; g=g+step) {
for (r=0; r<=cmap_size; r=r+step) {
for (b=0; b<=cmap_size; b=b+step) {
fill_color(fildes, (float)r/cmap_size, (float)g/cmap_size,
(float) b/cmap_size);
polygon(fildes,step, cxr-cxb,g-s*r-s*b);

}
}
make_picture_current(fildes);
gclose(fildes);

polygon(fildes,scale,x,y)
int fildes,scale;

float x, y;

{
float clist[14];
int 1i;
clist[0] = x;
clist[1] = y + scale;
clist[2] = x + cos_30_degrees * scale;
clist[3] = y + sin_30_degrees * scale;
clist[4] = x + cos_30_degrees * scale;
clist[5] = y - sin_30_degrees * scale;
clist[6] = x;
clist[7] = y - scale;
clist[8] = x - cos_30_degrees * scale;
clist[9] = y - sin_30_degrees * scale;

clist[10] = x - cos_30_degrees * scale;
clist[11] = y + sin_30_degrees * scale;
clist[12] = x;

clist[13] = y + scale;

polygon2d(fildes,clist,7,0);
make_picture_current(fildes);

Starbase Color Graphics 175

Figure 3-5. Color Cube (color4c.c)

176 Starbase Color Graphics

Input 4

introduction

The Starbase input model involves two classes of input:

e Locator Devices - return x, y, and z coordinates.

e Choice Devices - return a single integer value.

A file descriptor may be associated with any number of locators and choice devices,
depending on the nature of the physical device which it represents. The number of
locators and number of choice devices associated with a file descriptor may be determined
by calling inquire_input_capabilities. This call also lists the number of valuators and
string devices, but these fields are only present for future extensions; no valuators or
string devices are currently implemented.

Locator Devices

Locators return floating point numbers in Virtual Device Coordinate (VDC) values. The
range of VDC values is determined separately for each file descriptor and may be different
for input and output devices. The range of values may be set to convenient units by using
the vdc_extent procedure. Usually a locator should be set to use the same units as a
related display device. Note that the value returned from a locator is not in World
Coordinates and therefore is not affected by the World Coordinate transform stack.

Choice Devices

Choice devices return an integer value, usually describing a set of buttons or keys. One
choice device can describe an entire keyboard or set of buttons. Most button devices
return button numbers ranging from 1 to N, (N being the number of buttons.) Keyboard
devices return ASCII character codes for those keys with ASCII codes. A value might
also represent the release of a button, (usually as a negative value.) Some drivers also
provide an alternate representation of the same set of buttons. For instance, devices
on the HP-HIL interface loop return button numbers on choice device 1, and a bit-wise
encoding of the same buttons on choice device 2. The buttons 1 through 32 on an HP-
HIL device are represented by the bits 2°0 through 2°31 in the choice value. For each
button pressed, a bit is set to 1.

Input 177

Triggering

Most input devices feature a way to indicate that data is ready. This trigger mechanism
is used to proceed when the computer is waiting for a response. For choice devices this
is a often a button or key press, (or possibly the release of a button.) For locators, the
trigger is usually a button or a switch on the pointing device. One trigger can cause
multiple locators and choice devices on a file descriptor to indicate that data is ready.
This trigger mechanism is used by the request and event input techniques discussed later
in this section. A few devices have no trigger mechanism. These devices are never waited
for. They are always read from in a non-blocking manner.

Input Methods

Sampling
Sampling reads the current value of a device without waiting for any trigger action by a
user. Repeated samples may be used to monitor a continuously changing value.

Requests

A request reads the value of a device the next time that a trigger indicates data is ready.
It may be used to read one value after prompting the user to enter data.

Requests wait for a trigger on an input device, then return the value of the device at the
trigger time. A program may either begin a request and proceed to other activities, or
begin a request and wait for it to complete. Since requests take only one data value they
are well suited to reading a single input after prompting for data. They are not suitable
for capturing many closely spaced triggers, because triggers may be missed between the
completion of one request and the start of another. Requests can be started on multiple
devices, but each device must be tested separately to determine when a request has
completed.

178 Input

Events

The event mechanism reads a device whenever a trigger occurs. The data from a device,
(or several devices,) is placed into a first-in-first-out queue for later retrieval. LEvents
can be used in order to be certain that all trigger actions are remembered even if an
application program is busy when the triggers occur.

Events use a single queue to save away the values from input devices whenever they are
triggered. This allows an application to monitor several input devices at the same time.
It also guarantees that triggers will not be missed. Each input device has a daemon
process that is started whenever:

e Events arc enabled for that device.

e Tracking is enabled for that device.

While requests need to be restarted after completing, events remain enabled until they
are explicitly turned off, or the device is closed. This makes event queuing well suited
to tasks where no data should be missed, such as reading text from a keyboard. On the
other hand, events are not convenient if data is only required as a response to a prompt.
The program below uses events to read all locator and choice triggers from one device.
It also uses tracking to follow the locator on a display.

Tracking

Tracking is ohe fcedback from o lecater device to a dienlay device. An echo position
will follow the value of locator device without any need for continuous monitoring by an
application program.

Tracking causes a separate process to constantly follow the value of a locator. This value
is used to update the position of an echo on a display device. Each input device may
track one of it’s locators to the first echo of one display. If an input device features more
than one locator, then only one of the locators on the device can be tracked at one time.
If an output device displays multiple simultaneous cursors, then the tracking activity will
affect the first of these cursors.

There is substantial overhead involved with the start of tracking, so it is best to avoid
frequently turning tracking on and off. Since tracking always uses the current echo type,
setting the echo type to no echo, (0), will stop visual feedback without stopping the
tracking activity.

Input 179

Sampling

The procedures sample_choice and sample_locator return the current value of a choice or
locator device. The device is specified by a file descriptor and ordinal. The call returns
a flag, valid, which indicates when the device was unable to return a value.

Valid may be FALSE because:

e the device does not exist

e there was a hardware failure

e the device was in a bad state for sampling.
Some devices cannot be sampled while waiting for a trigger. Such a limitation is indicated
by the sample_while_request flag from the inquire_input_capabilities routine. Sample
for a choice device may have different meanings for different devices. For some devices,
sample will only return the number of the last button pressed. For other devices sample
can return the up/down state of all buttons at the current time. Because of these

differences in device capabilities, sample_choice is not as device independent as other
input calls.

180 Input

Example 1

The program below uses a request and repcated sample calls to enter a data point.

#include <starbase.c.h>

main()
{
int locator, display, valid, ready;
float x, y, z;

locator = gopen("/dev/locator", INDEV, "hp-hil", INIT);

if (locator == -1) exit(1);

display = gopen("/dev/crt", OUTDEV, "hp98700", INIT);
if (display == -1) {

locator = gclose(locator) ;

exit(1);

}

sample_locator(locator, 1, &valid, &x, &y, &z);
echo_type(display, 1, 1, &x, &y, &z);
initiate_request(locator, LOCATOR, 1, &valid);
do {
sample_locator(locator, 1, &valid, &x, &y, &z);
echo_update(display, 1, x, y, z);
inquire_request_status(locator, LOCATOR, 1, &ready);
} while (!ready);

request_locator(locator. 1. 1.0. &x. &y, &z);

echo_type(display, 1, 0, x, y, 2);

printf ("%, %f, %f\n", x, y, z);

locator = gclose(locator);

display = gclose(display);

Input 181

Example 2

The next program uses events and tracking to read 20 values from both a locator and a
choice device.

#include <starbase.c.h>
main()
{
int locator, display;
int valid, class;

printf ("Demonstration of events.\n");

locator=gopen("/dev/locator",INDEV, "hp-hil", INIT);

if (locator == -1) exit(1);
display = gopen("/dev/crt",QUTDEV, "hp98700", INIT) ;
if (display == -1) {
locator = gclose(locator);
exit(1);
}

clear_view_surface(display);
enable_events(locator,LOCATOR,1) ;
enable_events (locator,CHOICE, 1) ;

track(locator, display, 1);

count = O;
do {
await_event(-1,2.0,&valid,&class);
if (valid) {
count = count + 1;
printf ("await_event- (valid) class: %d\n", class);
switch (class) {
case LOCATOR:
check_locator (display) ;
break;
case CHOICE:
check_choice();
break;
}
}
else
printf ("await_event- (not valid)\n");
} while (count < 20);

disable_events(locator,ALL,1);
track_off (locator) ;
gclose(display) ;
gclose(locator) ;

182 Input

exit (0) ;
}

check_locator(display)

int display;

{

int valid, fildes, ordinal, status, message_link;
floatx=0.5, y=0.5, z=0.0;

valid = !read_locator_event(-1,&fildes,&ordinal,&x,&y,&z,&status,
&message_link) ;
printf ("Locator:\n");
printf("valid:%d,fildes:%d,ordinal:%d,x:%f,y:%f,z:%f\n",valid,
fildes,ordinal,x,y,z);
printf("status: ");
switch (status) {
case EMPTY_NO_OVERFLOW: printf("empty, no overflow\n"); break;
case NOT_EMPTY_NO_OVERFLOW:printf("not empty, nooverflow\n");
break;
case EMPTY_OVERFLOW: printf("empty, overflow\n"); break;
case NOT_EMPTY_OVERFLOW:printf("not empty, overflow\n") ;break;
}
printf("message_link: ");
switch (message_link) {
case SINGLE_EVENT: printf("single event\n"); break;
case SIMULTANEOUS_EVENT_FOLLOWS:printf("simultaneous event

oo ETAN
Iroriows\uy,

}
if (valid) {
move2d(display, x - 0.01, y - 0.01);
draw2d(display, x + 0.01, y - 0.01);
draw2d(display, x + 0.01, y + 0.01);
draw2d(display, x - 0.01, y + 0.01);

draw2d(display, x - 0.01, y - 0.01);
make_picture_current(display) ;
if (x < 0.1 & y <0.1)
}
}

check_choice()
{

int valid, fildes, ordinal, value, status, message_link;

valid=!read_choice_event(-1,&fildes,&ordinal, &value,&status,
&message_link) ;
printf ("Choice:\n");
printf("Choice:\nvalid:jd,fildes:%d,ordinal:%d, value:%d\n",
valid,fildes,ordinal,value);
printf("status: ");
switch (status) {

Input 183

case EMPTY_NO_OVERFLOW: printf("empty, no overflow\n"); break;
case NOT_EMPTY_NO_OVERFLOW:printf ("not empty, no overflow\n");
break;
case EMPTY_OVERFLOW: printf("empty, overflow\n"); break;
case NOT_EMPTY_OVERFLOW: printf("not empty, overflow\n");
break;
}
printf ("message_link: ");
switch (message_link) {
case SINGLE_EVENT: printf("single event\n"); break;
case SIMULTANEOUS_EVENT_FOLLOWS: printf("simultaneous event
follows\n");
}

184 Input

Modeling and Viewing

Introduction

The viewing transformations that occur in the starbase graphics library are outlined in
the diagram below.

DEVICE COORDINATE VALUES

STARBASE APPLICATION

o
PROGRAM WORLD COORDINATE VALUES
r—=—-- - — =
CURRENT ' |
TRANSFORMATION | OPTIONAL USER I
VDC VALUES MATRIX I| Derneo mopeune | |
I AND VIEWING |
|| TRansFormamon |,
r N | ; |
DEVICE COORDINATE CONTROLLED BY ! VIRTUAL DEVICE !
® MAPPING_MODE 1 |
TO VIRTUAL ostr P12 Ll cooromate 10 |
DEVICE COORDINATE 3 ® VDo EXTENT | DEVICE COORDINATE |
TRANSFORMATION — TRANSFORMATION
® VIEWPORT_JUSTIFICATION | | |
. L T I |
Y
DEVICE COORDINATES DEVICE COORDINATE VALUES
FROM INPUT DEVICE TO OUTPUT DEVICE

Figure 4-1. Transformation Diagram

Graphics transformations are commonly explained in terms of a modeling transformation
which moves objects/subobjects in the user’s coordinate system followed by a viewing
transformation which determines what subset of the users coordinate system is visible,
and a normalized device coordinate transformation which scales to the device’s native
coordinate system. Starbase combines these three logical steps into one actual transfor-
mation, so that there is only one current transformation.

Modeling and Viewing 185

There are three coordinate systems that are of primary interest:
e Device Coordinates (DC)
e Virtual Device Coordinates (VDC)
e World Coordinates (WC)

Utilities that convert between these coordinate systems make it possible for the user to
work easily in any system needed.

Two-Dimensional Viewing

Two-dimensional viewing is best explained with a simple windowing transformation.
A window can be specified in an arbitrary coordinate system (the World ‘Coordinate
System) defined by the application program. These units can be any units that are
convenient for the user’s program; i.e., inches, feet, millimetres, years, dollars, etc.

The portion of the graphical data which is within this window will be visible on the screen
(physical display surface) within the current viewport (subset of screen). The manner in
which this happens is that the full extent of the window maps to the full extent of the
viewport.

Any portions of the graphical data which lie outside of the window are clipped (discarded
from the picture).

Using starbase, there is more than one way to do windowing. The simplest is to use
the vdc_extent procedure to scale the range of virtual device coordinates to be that
of the window. The viewport position and size can be changed with the set_pi_p2,
viewport_justification, and mapping_mode procedures.

186 Modeling and Viewing

Example 1:
In the following example, a viewport which fills the entire HP 98710 display is set to
receive data with the X-axis defined in years from 1980 thru 1985 and the Y-axis defined
in dollars from $0.00 thru $100.00.

gopen(fildes,"/dev/crt",0UTDEV, "hp98710" ,INIT) ;

vdc_extent(fildes,1980.0,0.0,0.0,1985.0,100.0,0.0);
clip_rectangle(fildes,1980.0,1985.0,0.0,100.0);
mapping_mode(fildes, ISOTROPIC) ;

set_pl_p2(fildes,FRACTIONAL,0.0,0.0,0.0,1.0,1.0,1.0);

Example 2:

In this second example, a window is created in the upper-right quarter of the display.
gopen(fildes,"/dev/crt",0UTDEV, "hp98710", INIT) ;

/* Set up window. X and Y axes are both inches. */

vdc_extent (fildes,500.0,900.0,0.0,20
0,20

.0,400.0);
clip_rectangle(fildes,500.0,900.0, .0

,400.0) ;

o O

/* Viewport is restricted to upper right quarter of screen. */

mapping_mode(fildes, ISOTROPIC) ;
set_p1l p2(fildes.FRACTIONAL,0.5,0.5,0.0,1.0,1.0,0.0);

/* Viewport is centered in x and y within pl_p2 area to */
/* maintain isotropic units. */

viewport_justification(fildes,0.5,0.5);

A more elaborate way of doing windowing is to set up vdc_extent to a fixed normalized
device coordinate range and window changes can be implemented using a 2-dimensional
transformation matrix. The mapping and positioning defined by the above equations
are simply the scaling and translations terms of a 2-dimensional matrix. This second
method has the advantage that the window can also be made to rotate within the user’s
arbitrary coordinate system by using the rotation components of the matrix. The view-
port can then be changed by just changing the clip_rectangle and appropriate scaling
and translation terms of the matrix.

Modeling and Viewing 187

Using The Transformation Matrix Stack

Starbase has a transformation stack that can be used to concatenate and/or stack graph-
ics viewing/modeling matrix operations. This feature is useful for composing a viewing
matrix, instancing objects/subobjects, and temporarily changing the current transfor-
mation and returning to the previous state. It can also be used as general-purpose 4x4
transformation engine for such things as bspline curve generation.

The top of the matrix stack is the current transformation matrix, through which all
output primitives are transformed. Conceptually, and in the actual implementation,
the vdc-to-device coordinate transformation is a transformation matrix also. It can be
thought of as the matrix at the bottom of the matrix stack which can never be popped or
replaced using the matrix operations. It can be changed by using the vdc operations spec-
ified in the manual(vdc_extent, set_pl_p2, mapping_mode, and viewport_justification).
The vdc-to-device matrix is the current transformation matrix immediately after a gopen
since the matrix stack is empty.

The push and replace matrix operations are always concatenated with the current vde-
to-device matrix. This provides device independence when using the matrix stack. The
matrix concatenation operations will concatenate with the current transformation ma-
trix. If the matrix stack is empty, this concatenation is performed with the vde-to-device
matrix.

The post-concatenation option on matrix concatenation operations is NOT recommended
for the novice user. The results are device dependent because the matrix is post-
concatenated after the vdc-to-device transformation.

The push_vdc_matrix is a convenient and efficient means of getting the vdc-to-device
matrix onto the top of the matrix stack. Changes to the vdc-to-device matrix DO NOT
affect any matrices on the stack that were concatenated with the vde-to-device matrix
OR any matrices on the stack that were put there using push_vdc_matrix. It is highly
recommended to flush the matrix stack before changing the vdc-to-device matrix.

Now that the matrix stack usage has been reviewed, the second method of doing a
2-dimensional windowing transformation can be demonstrated.

188 Modeling and Viewing

Example 3:

/* Initialize the range of virtual device. */

gopen(fildes,"/dev/crt",0UTDEV, "hp98710",INIT) ;
vdc_extent (fildes,0.0,0.0,0.0,1.0,1.0,1.0);
mapping_mode (fildes,ISOTROPIC) ;
push_vdc_matrix(fildes);

/* Each time the window is changed, the following must be done. */

clip_rectangle(fildes,Vxl,Vxr,Vyb,Vyt);
Sx = (Vxr - Vx1)/(Wxr - Wxl);
Sy = (Vyt - Vyb)/(Wyt - Wyb);

winxform([2] [0] = Sx*Wx1l + Vx1;
winxform[2] [1] = Sy*Wyb + Vyb;
replace_matrix2d(fildes,winxform) ;

winxform[0] [0] = Sx;
winxform[0] [1] = O;
winxform[1][0] = O;
winxform[1][1] = Sy;

In the above example, if Wx1=400, Wxr=900, Wyb=300, Wyt=700, and Vx1=0.5,
Vxr=1.0, Vyb=0.5, Vyt=1.0, then the range of window coordinates 400 to 900 in x
and 300 to 700 will map to the upper left quarter of the screen.

The other operation besides windowing that the transformation stack is useful [or is mod-
eling transformations. By setting up the viewing operation first and then concatenating
modeling matrices onto the top of the matrix stack, objects can be moved or “instanced”
in different positions in the user’s coordinate system. Also, subobjects can be made a
part of other objects by making the subobject’s position and orientation relative to the
object’s position and orientation. This is done by concatenating the subobject’s trans-
formation onto that of the object before drawing the subobject. Then the subobject’s
transformation is popped off the stack at completion of subobject.

Devices that implement matrix stacks in hardware have a limit to the number of matrices
that can be on the matrix stack at any one time.

Modeling and Viewing 189

Three-Dimensional Viewing

Before doing any three-dimensional primitives, the device must be “gopened” with the
THREE_D mode.

Three-dimensional viewing is best explained with a simple camera model. This cam-
era can be positioned in an arbitrary 3D coordinate system defined by the application
program. These units can be any units that are convenient for the user’s program; i.e.,
inches, feet, millimetres, years, dollars, etc. The portion of the graphical data which is
within the camera view will be visible on the screen within the current viewport. The
camera model discussed here is implemented in the file /usr/lib/starbase/demos/sb.3d.c
and used in several of the demos in the directory /usr/lib/starbase/demos. The param-
eters which will be used on the camera routine will be position of the camera (cx,cy,cz)
and position that the camera is pointed at, or the reference point (rx,ry,rz). The trans-
formation matrix that accomplishes this camera operation is the concatenation of several
matrices. First a translation to the camera position, then a rotation to rotate XYZ into
the eye coordinate system, and finally a perspective transformation. The actual me-
chanics of the individual matrix operations can be investigated in depth by reviewing a
graphics text book. The camera transformation is accomplished using starbase by first
pushing the perspective matrix onto the stack(matrix operations occur in reverse order.)
Since the intermediate results of the three matrix steps outlined above are of no interest,
the rotation is pre-concatenated with the perspective and then replaces the perspective
matrix on the top of stack. Similarly, the translation matrix is pre-concatenated with
the top of the stack and the result replaces the ‘top of the matrix stack.

Once the camera is positioned, the matrix stack only has one matrix in it, then the
remainder of the matrix stack can be used for the modeling transformations needed to
move objects around in the world coordinate system. For example, suppose we have a
data base that describes a jet, as in the fighter demo (fighter.c). The camera can be
positioned only once and the jet itself can be rotated with modeling transformations. In
the fighter demo, it is not obvious whether the camera or the fighter is being rotated.
If a background of trees or something similar was drawn in a fixed position in the users
coordinate system, it would be more obvious that the jet was moving, not the camera.

The tractor demo (trac.c) is an even better example of the use of both viewing and
modeling transformations. The camera position can be changed using the input device
while the tractor itself moves down the bumpy road with modeling transformations. The
tractor body moves down the road while each of the wheels is just another instance of the
“wheel” database with different positions and rotations. The road remains in place the
entire time. The camera is always pointed at the middle of the tractor for convenience.

190 Modeling and Viewing

Multiple Active Devices

When using more than one starbase device at a time, it is possible to establish a different
viewing operation on each device since all state is maintained per device. Although this
may prove useful in some cases, it is not the general usage. In general, it is advisable to
set up the vdc to be equal on the two devices. That way input values can be read from
the input device in vdes and converted to world coordinates using the output device’s
matrix stack, using vdc_to_wc. Thus only the output device will need to maintain a
matrix stack.

Since distortion on an input device is not a problem unless digitizing an object, it is
probably best to always set the mapping mode to isotropic with

mapping_mode (fildes, ISOTROPIC) ;

for input devices. This will allow use of the entire device range.

Modeling and Viewing 191

Notes

192 Modeling and Viewing

Manual Comment Sheet Instruction

If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

Manual Comment Card

If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

HP-UX Concepts and Tutorials
Vol. 6: Graphics

97089-90070 April 1985
Last Date:
(See the Printing History in the front of the manual)
Name:
Company:
Address:

Phone No:

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Reorder Number
97089-90070
Printed in U.S.A. 4/85

[

HEWLETT
PACKARD

i

97089-90605
Mfg. No. Only

il

