HP 9000 Computer Systems

ADB Tutorial

HEWLETT
(AP] PACKARD
HP Part No. 92432-90005

Printed in U.S.A. June 1991

First Edition
E0691

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance, or use
of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright © 1987, 1991 by Hewlett-Packard Company

Printing History

New editions are complete revisions of the manual. Update packages, which are issued
between editions, contain additional and replacement pages to be merged into the manual by
the customer. The dates on the title page change only when a new edition or a new update
is published. No information is incorporated into a reprinting unless it appears as a prior
update; the edition does not change when an update is incorporated.

The software code printed alongside the date indicates the version level of the software
product at the time the manual or update was issued. Many product updates and fixes
do not require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition Date

First Edition June 1991

Preface

This tutorial describes the use of ADB, a program that you can use to debug assembly
language programs on Precision Architecture RISC (PA-RISC) machines. It also presents the
ADB command format, and explains how to debug C programs, set breakpoints, and use
maps. A complete command summary is provided following the tutorial.

This manual assumes that you, the reader, are experienced in assembly language
programming. In addition, you should have a working knowledge of the HP-UX operating
system. Consult the following manuals for additional details on related subjects:

m HP-UX Reference: HP 9000 Computers, 3 volumes (B1864-90000)
m Assembly Language Reference Manual (92432-90001)

m Software Tools
Kernigham and Plauger
Addison-Wesley Publishing Company
1976

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either upper or
lowercase. For example:

COMMAND
can be entered as any of the following:
command Command COMMAND
It cannot, however, be entered as:
comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace FileName with the name of

the file:
COMMAND FileName

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(FileName) : (I'tlleName)

{ 7 In a syntax statement, braces enclose required elements. When several
elements are stacked within braces, you must select one. In the
following example, you must select either ON or OFF:

ON
COMMAND
{ OFF }

L 1 In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND FileName [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or Parameter or neither. The elements cannot be repeated.

OPTION
COMMAND FlileName []

Parameter

Conventions (continued)

...]

)

base prefixes

In a syntax statement, horizontal ellipses enclosed in brackets indicate
that you can repeatedly select the element(s) that appear within the
immediately preceding pair of brackets or braces. In the example
below, you can select Parameter zero or more times. Each instance of
Parameter must be preceded by a comma:

[, Parameter] [...]

In the example below, you only use the comma as a delimiter if
Parameter is repeated; no comma is used before the first occurrence of
Parameter:

[Parameter] [, ...]

In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following example,
you must select A, AB, BA, or B. The elements cannot be repeated.

{g}l...l

In an example, horizontal or vertical ellipses indicate where portions of
an example have been omitted.

In a syntax statement, the space symbol A shows a required blank. In
the following example, Parameter and Parameter must be separated
with a blank:

(Parameter) N\ (Parameter)

The symbol) indicates a key on the keyboard. For example,
RETURN) represents the carriage return key.

The prefixes %, #, and § specify the numerical base of the value that
follows:

%num specifies an octal number.
#num specifies a decimal number.
$num specifies a hexadecimal number.

If no base is specified, decimal is assumed.

Contents

ADB Tutorial

Invoking ADB .

Using ADB Interactively .

Displaying Information

Debugging C Programs
Debugging a Core Image .
Setting Breakpoints .

Advanced Breakpoint Usage

Maps ..

Variables and Reglsters

Formatted Dumps

Patching .

Debugging Already Runmng Processes .

System Dependencies

Command Summary
Breakpoint and Program Control
Calling the Shell
Assignment to Variables
Formatted Printing Commands .
Additional Printing Commands .
Format Summary .
Expression Summary

Monadic Operators

Index

oo Ot W

15
18
19
21
22
25
27
28
28
28
28
29
29
30
31
32

Figures

1. C Program with a Pointer Bug 8
2. ADB Output from the Program in Flgure 1 9
3. C Program to Decode Tabs . . 11
4. ADB Output from C Program Shown in Flgure 3 . 13
5. ADB Output for Map Command 18
6. Simple C Program to lllustrate Patching . 22
7. ADB Output Illustrating Patching 24
Tables
1. Expression-building Operators 3
2. Commonly Used ADB Commands 4
3. Commonly Used Format Commands . 5
4. ADB Variables 19
5. Breakpoint and Program Control 28
6. Calling the Shell 28
7. Assignment to Variables 28
8. Formatted Printing Commands . 29
9. Additional Printing Commands . 29
10. Format Summary . 30
11. Expression Components 31
12. Dyadic Operators . 31
13. Monadic Operators 32

ADB Tutorial

ADB is a debugging program that operates on assembly language programs. It allows you to
look at object files and “core” files that result from aborted programs, to print output files in
a variety of formats, to patch files, and to run programs with embedded breakpoints. This
tutorial provides examples of these and other ADB features.

Invoking ADB

You invoke ADB by executing the adb(1) command. The syntax is:
adb [-w] [-k] [-Idir] [-Ppid] Lobjfile [corefile]l]

where:

-w Permits writing to the object file.

-k Tells ADB that the object and core files are kernel files so ADB can perform
the appropriate memory mapping.

-Idir Specifies a directory (dir) that contains commands for ADB.

-Ppid “Adopt” an already running process for debugging.

objfile Names an executable object file.

corefile Names a core image file.

Normally, you invoke ADB by typing:
adb a.out core

or more simply:
adb

because the default setting for the object file is a.out and the core file is core.

ADB Tutorial

1

Supplying a minus sign (-) for a file’s name means “ignore this argument,” as in:
adb a.out -

To write to the object file while ignoring the core file, you could type:
adb -w a.out -

To debug a currently running process, invoke ADB by typing:
adb -Ppid a.out

The pid or “process identifier” can be obtained using the ps(1) command.

Because ADB intercepts keystrokes, you cannot use a quit signal to exit from ADB. You must
use the explicit ADB request $q or $Q (or (CONTROL) D) to exit from ADB.

For details on invoking the ADB command, see the adb(1) page in the HP-UX Reference
manual.

2 ADB Tutorial

Using ADB Interactively
You work interactively with ADB by entering requests.
The general form for a request is:

Laddress] [,count]l [command] [modifier]

ADB maintains a current address, called “dot”. This address is similar in function to the
current pointer in the HP-UX editor, vi(1). When you supply an address, ADB sets dot to
that location. ADB then executes any command you entered count times.

You can enter the address and count values as expressions. You create these expressions
from symbols within the program you are testing and from decimal, octal, and hexadecimal
integers. Table 1 lists the different operators for forming expressions.

Table 1. Expression-building Operators

Operator Operation

+ Addition

- Subtraction or Negation

* Multiplication
% Integer division
- Unary NOT

& Bitwise AND

| Bitwise Inclusive OR

Round up to next multiple

ADB performs arithmetic operations on all 32 bits.

ADB “remembers” the last radix set. You can change the current radix with the $o, $d, or
$x commands. During startup, the default radix is hexadecimal. If you change the radix to
decimal, all subsequent input and output of integers are interpreted as decimal until another
radix specifier is used.

ADB Tutorial

3

Table 2 lists some commonly used ADB commands and their meaning.

4 ADB Tutorial

Table 2. Commonly Used ADB Commands

Command

Description

Prints contents from objfile.

/ Prints contents from corefile.

= Prints value of “dot” (.).
Breakpoint control.

$ Miscellaneous requests.

Request separator.

Escapes to shell.

(CONTROL) C

Terminates any ADB command.

Displaying Information

You can request ADB to examine locations in either the object file or the core file. The

? request examines the contents of the object file, while the / request examines the core
file. Once you initiate a process (using either the :r or :e command), both ? and / refer to
locations in the address space of the running process.

Following either the ? or / request, you can specify a format that ADB should use to print
this information. Table 3 lists some commonly used format commands.

Table 3. Commonly Used Format Commands

Command Description

c One byte as a character.

b One byte as a hexadecimal value.

X Two bytes in hexadecimal.

X Four bytes in hexadecimal.

d Two bytes in decimal.

f Four bytes in single floating point.
F Eight bytes in double floating point.
i HP Precision Architecture instruction.
S Null-terminated character string.

a Print in symbolic form.

n Print a newline.

r Print a blank space.

- Backup dot.

For example, to print the first hexadecimal element of an array of long integers named ints,
you would type the request:

ints/X

Note The array that is declared must be global. ADB does not recognize local
variables.

This request sets the value of dot to the symbol table value of ints. It also sets the value of
the dot increment to four. The “dot increment” is the number of bytes that ADB prints in the
requested format.

ADB Tutorial 5

In another example, to print the first four bytes as a hexadecimal number then the next four
bytes as a decimal number, you would type the request:

ints/XD
In this case, ADB still sets dot to ints but the dot increment is now eight bytes.

The newline command is a special command that repeats the previous command. The newline
command also uses the value of dot increment, but the command may not always have
meaning. In this context, however, it means to repeat the previous command using a count of
one and an address of dot plus dot increment. So, in this case, the newline command sets

dot to ints+0x8 and prints the two long integers: the first as a hexadecimal number and the
second as a decimal number. You can also repeat the newline command as often as desired.
For example, you could use this technique to scroll through sections of memory.

Using this example to illustrate another point, you can print the first four bytes in long
hexadecimal format and the next four bytes in byte hexadecimal format, by typing the
request:

ints/X4b

As this example shows, you can precede any format command with a decimal repeat
character.

Furthermore, you can use the count parameter of an ADB request to repeat the entire format
command a specific number of times. For example, to print three lines using the above
format, you would type the request:

ints,3/X4bn

(The n at the end of the command prints a carriage return that makes the output easier to

read.)

In this example, ADB sets the value of dot to ints+0x10, rather than ints. This happens
because each time ADB re-executes the format command, it sets dot to dot plus dot
increment. Therefore, the value of dot is the value that dot had at the beginning of the last
execution of the format command. Dot increment is the size of the requested format (in this
case, eight bytes). A newline command at this time would set dot to ints+0x18 and print
only one repetition of the format, because the count value is reset to one.

To verify the current value of dot, you can type the request:
.=a

The = command can print the value of an address in any format.

6 ADB Tutorial

You can also use the = command to convert from one base to another. For example, you can
print the value “0x32” in octal, hexadecimal, and decimal notation by typing:

0x32=o0xd

ADB “remembers” complicated format requests for each of the 7, /, and = commands.
For example, after entering the previous request, you can print the value “0x64” in octal,
hexadecimal, and decimal notation by typing:

0x64=
Then, because the last entered / command was ints/X4b, you can type:
ints/
to print four bytes in long hexadecimal format and four bytes in byte hexadecimal format.

Although the two commands main,107i and main?10i may appear to be identical, two
important differences exist. The first is that the number “10” is represented in different bases.
This happens because a repeat factor (101) represents a decimal constant, while a count value
(,10) can be an expression, and is therefore, by default, a hexadecimal number.

The second difference is that entering a newline command after the first request would print
one line, while a newline command after the second request would print another ten lines.

ADB Tutorial 7

Debugging C Programs

The following examples illustrate various features of ADB. Certain parts of the output such as
machine addresses may depend on the hardware being used, as well as how the program was
linked whether shared, unshared, or demand loaded.

Debugging a Core Image

The C program listed in Figure 1 shows some of the useful information that you can obtain
from a core file. This program attempts to calculate the square of the variable ival by calling
the function sqr with the address of that integer. An error occurs, however, because the
program passes the integer’s value rather than its address. Therefore, executing the program
produces a bus error that generates a core file.

int ints[]= {1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0};

int ival;

main()

{

register int i;
for(i=0;i<10;i++)

{ ival = ints[i];
sqr(ival);
printf('"sqr of %4d is %d\n",ints[i],ival);
}
}
sqr(x)
int *x;
{
*X *= *Xx;
}

Figure 1. C Program with a Pointer Bug

To isolate the problem assuming the object file is a.out, you can invoke ADB by entering the
command:

adb
You can then request a C backtrace of the subroutines that this program calls by typing:
$c

This request allows you to check the validity of the parameters that the program passes. The
stack trace shows that the segmentation violation occurred within the procedure sqr(). (See
Figure 2.)

8 ADB Tutorial

$c

sqr() from main+30
main() from _start+18
_start() from $START$+30

$r
pcogh 0xD2B sqr+7
pcoqt OxD2F sqr+0xB
rp 0xCEB main+33
arg0 1 argl 68023130 arg2 68023138 arg3 O
sp 68023250 ret0 O retl 4E dp
ri 40001800 r3 0 r4 40010954 r5
ré 68023644 r7 499E r8 0 rd 3
r10 0xFFF88000 rii 1880 ri2 4000 ri3 OxA
ri4 O0xFFFFB400 ri5 24000 rié 29C00 ri7 25000
ri8 1BB58 ri9 1 r20 1513EF8 r21
r22 0 r31 1 sar 12 sr0 122
sri 0 sr2 O sr3 O sr4 122
sqr+47
sSqr+4: 0xE601095 = 1dws 0(r19),r21
<r19=X
1
sqr,37ia
sqr:
sqr: or arg0,r0,r19
sSqr+4: ldws 0(r19),r21
SqQr+8: ldws 0(r19) ,argl
sqr+0c:

Figure 2. ADB Output from the Program in Figure 1

In general, ADB does not know the location of arguments passed to subroutines on HP-UX
systems. The first four arguments are usually passed in registers, but compilers may transfer
the argument contents to another register or copy these value to the stack. While these
software conventions assist in program execution performance, they make assembly-level
debugging more adventuresome.

The system maintains registers that point to the head of the program counter queue (pcogh)
and to the tail of this queue (pcoqt). To print these register values and an interpretation of
the instructions at those locations, you can type the request:

$r

Because the rp register often points to a subroutine’s return address, its value is also
referenced and symbolically interpreted. The two lower bits in these registers contain
“instruction privilege level” information that ADB usually ignores. Other registers include
arg0, argl, arg2, and arg3, which are often used to pass arguments to subroutines; dp (data
pointer), which points to the beginning of text; sp, the stack pointer; and ret0O and reti,
which hold function return values. Note that all values are given as hexadecimal numbers (the
default base for integer values).

ADB Tutorial 9

The pcogh register indicates that the program failed at sqr+4 (remember to ignore the lower
two bits). To print the actual instruction that failed, you can list the instruction and its offset
by typing the request:

sqr+47i

or:
<pcogh?i

This request shows that the instruction that failed was:
sSqr+4: ldws 0(r19),r21

This instruction uses general register 19 (r19) as a pointer, and loads the contents of the
memory location to which it points (offset by 0) into general register 21 (r21).

But what was the value of r19 when the program crashed? To print the value of r19 as a
4-byte hexadecimal value, you can type the request:

<r19=X

You find that its value is one. Therefore, the segmentation violation occurs because memory
address 1 is not part of the data space.

Refer to Table 8, “Formatted Printing Commands”, for more information.

How did r19 get this value? You can print three instructions, beginning at sqr, by typing the
request:

sqr,37ia

This shows that the first instruction copied the first argument (arg0) into r19. This means
that the value of the first argument was one; in other words, the program is passing the
value—rather than the address—of the integer ival in main().

You can print the values of all external variables at the time a program crashes, by typing:

$e

10 ADB Tutorial

Setting Breakpoints

The C program shown in Figure 3, which changes tabs into blanks, is adapted from a program
in the book Software Tools.

#include <stdio.h>
#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

FILE *gstream;
int tabs [MAXLINE];
char ibuf [BUFSIZ];

main(argc, argv)

int argc;
char **argv,

int col, *ptab;
char c;

setbuf (stdout,ibuf);

ptab = tabs;
settab(ptab); /* Set initial tab stops */
col = 1;

stream = fopen(argv[1], "r");
while((c = getc(stream)) != EOF) {
switch(c) {
case ’\t’: /* TAB */
while(tabpos(col) != YES) {
putchar(’® ’); /* put BLANK
col++ ;
}
break;
case ’\n’: /*NEWLINE */
putchar(’\n’);
col = 1;
break;
default:
putchar(c);
col++ ;

Figure 3. C Program to Decode Tabs

ADB Tutorial 11

/* Tabpos return YES if col is a tab stop */

tabpos(col)
int col;
{
if(col > MAXLINE)
return(YES);
else
return(tabs[col]);
}
/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{
int 1i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

Figure 3. C Program to Decode Tabs (continued)

After compiling the program into an object file called expand, trying to run the program
produces a segmentation violation. So, to run the program under ADB control, you can enter
the command:

adb expand

In this case, asking for a stack trace yields little information, so you set breakpoints in the two
subroutines and the library routines setbuf and fopen by typing:

setbuf:b
settab:b
fopen:b

tabpos:b

In general, you can set breakpoints in a program by using requests of the form:

address[,count] :b [request]

where:

count Is an optional modifier which specifies the number of times that ADB should
skip this breakpoint before stopping.

request Is an optional command that ADB executes when it encounters this

breakpoint.

12 ADB Tutorial

Figure 4 lists an interactive session with ADB for the program listed in Figure 3.

adb expand

$c

main() from _start+18
_start() from $START$+30

setbuf:b

settab:b

fopen:b

tabpos:b

$b

breakpoints

count bkpt command

1 tabpos

1 fopen

1 settab

1 setbuf

T

expand: running (process 18958)

breakpoint setbuf: stw rp,-14(sp)
:cC

expand: running

breakpoint settab: 1ldo 38(sp),sp
:cC

expand: running

breakpoint fopen: stw rp,-14(sp)
:cC

expand: running
segmentation violation

stopped at main+64: stws r21,0(r19)
setbuf:d
settab:d
T
expand: running (process 18965)
breakpoint fopen: stw rp,-14(sp)
<rp:b <retl0=X
$b
breakpoints
count bkpt command
1 tabpos
1 fopen
1 main+4C <ret0=X
:cC
expand: running
0
breakpoint main+4C: addil 1000,dp

Figure 4. ADB Output from C Program Shown in Figure 3

ADB Tutorial 13

fopen:b <arg0/s; <argl/s

$b

breakpoints

count bkpt command

1 main+4C <ret0=X

1 tabpos

1 fopen <arg0/s; <argl/s
T

expand: running (process 18966)

0:

40000000 r

breakpoint fopen: stw rp,-14(sp)

:r expand.c
expand: running (process 18968)

68023007 : expand.c
40000000 r
breakpoint fopen: stw rp,-14(sp)

:c
expand: running
40000040
breakpoint main+4C: addil 1000,dp
:c
expand: running
#include <stdio.h>
#define MAXLINE 80

breakpoint tabpos: 1ldo 50(r0),r19

1dx

i

tabs/80X

tabs:

tabs: 1 0 0 0
0] 0] 0] 0]
1 0] 0] 0]
0] 0] 0] 0]
1 0] 0] 0]
0] 0] 0] 0]

Figure 4. ADB Output from C Program Shown in Figure 3 (continued)

14 ADB Tutorial

You can print the location of each breakpoint by typing:
$b

Notice that the display lists a count field. ADB bypasses a breakpoint “count - 1” times
before it stops execution. A command field indicates which requests ADB should execute each
time it encounters that breakpoint.

To run the program, type:
T
ADB informs you that it has encountered a breakpoint at setbuf, and it prints the
instruction at that address.
To continue executing the program from that breakpoint, type:
:C

After breaking and continuing two more times, the program encounters the segmentation
violation.

Advanced Breakpoint Usage

At this point, you should ensure that the call to fopen succeeded. First, delete the
breakpoints at setbuf and settab by typing:

setbuf:d
settab:d

Now you can run the program again. When ADB executes the breakpoint at fopen, you set a
breakpoint at the return from fopen by typing:

<rp:b <retl0=X

This sets a breakpoint at the address to which rp points. Remember that, by convention,
this register is a return pointer: it points to the address to which the program returns after
execution of the procedure. Additionally, you tell ADB to print the value of ret0 when it
encounters the breakpoint. This register contains the 32-bit return value from fopen. Note
that 64-bit values are returned in retO and reti1, combined, while larger values are returned
in the address to which retO points.

To verify that the previous breakpoint commands have been registered, you can list all the
breakpoints by typing:

$b

This displays a breakpoint at main+4C as well as the command that you want ADB to execute
when it encounters this breakpoint. Then, when you give the command to continue, ADB
encounters the breakpoint at main+4C. Before issuing the breakpoint message, however, ADB
executes the command associated with that breakpoint.

In this case, the return value is zero, which indicates that the fopen call failed. The HP-UX
Reference manual lists several possible causes for this failure; one of which is incorrect
arguments. Although at this point it is too late to find the file name and type arguments

to fopen as both are passed as pointers to character strings, you can examine them at the
procedure entry point.

ADB Tutorial 15

You can run the program once again, wait for ADB to encounter the breakpoint at fopen, and
then print the argument registers. For illustrative purposes let’s print the arguments with
breakpoint commands by typing:

fopen:b <arg0/s; <argl/s

Note that this request overrides the previous breakpoint at this address. The semicolon is
necessary to separate the two commands.

When you run the program again, ADB suspends the program at the fopen breakpoint and
prints:

0:
40000000 r
breakpoint fopen: stw rp,-14(sp)

The displayed values refer to the contents of arg0 and argl and the strings to which they
point.

At this point, you may realize that the first argument is a null pointer; no arguments are
being passed to the program! Because the program performs no error checking, there is no
way to determine if the call to fopen returned a FILE pointer. A better program design,
therefore, would be to test whether an argument was passed to the program; and, if not, use
standard input as the stream.

Arguments and redirection of standard input and output are passed to a program as follows:

:r argl arg2 ... <infile >outfile

Note ADB does not perform “wild-card” expansion on its arguments.

If you now run the program with a file name as an argument, as in:
:r expand.c

you find that a pointer to the string “expand.c” is being passed as the first argument. Upon
continuing execution, fopen correctly returns a non-null value. Now when you continue again,
the program successfully reaches the next breakpoint at tabpos.

A number of breakpoints at tabpos occurs before the program terminates normally. With
confidence that the program is working correctly, you can remove all breakpoints with:

cd*
and continue with:
:c

Unfortunately, however, you soon realize that the program does not work; multiple tabs seem
to have the same effect as one tab. At this point, it would make sense to check whether the
tabs array is initialized correctly, and if the columns marker, col, is being set correctly. You
can set a breakpoint at any point past settab (fopen suffices) and examine the tabs array by
typing the request:

tabs/80X

16 ADB Tutorial

The array looks correct, so examine the value of col and the operation of the subroutine
tabpos.

To print the value of col (arg0) at every call to tabpos, you can type the request:
tabpos,-1:b <argl=D

The count argument of “-1” is an artifice; the breakpoint is not really executed “count-1”
times before stopping as the manual page states. Rather, it is executed until count is
decremented to 0. Upon continuation, all that prints to the screen is the output from the
program expand, and the value in decimal of col at the time of the call. The bug should
become apparent at this point.

You can regain ADB’s attention prematurely with an interrupt signal. Any HP-UX signals
that act on ADB itself such as quit, interrupt and stop signals are also received by the
program being debugged. The process enters a stopped state before it actually receives the
signal, and ADB is notified. See the ptrace(2) and wait(2) manual pages for more information.
The signal is then passed to the process being debugged when you type the request:

.C

You can override this result by passing another signal number as an argument. In particular,
you can pass no signal to a process by typing the request:

:c 0

ADB Tutorial 17

Maps

HP-UX supports several executable file formats such as shared, unshared, and demand-loaded
that tell the loader how to load a program file. Currently, only shared text files are supported
on PA-RISC systems. In shared files, instructions are separated from data, and the text space
or instructions are shared when several users are running the process concurrently. Note that
once a breakpoint is executed, a private copy of the program’s text is used by ADB.

ADB uses knowledge of file formats to translate addresses both symbolic and numeric to
locations in the executable and core files. A map command is available that prints out the file
format mapping:

$m

ADB uses the b, e, and £ fields (known as a triple) to map addresses into file addresses. The
£1 field in the executable map (the “?” map) is the length of the header at the beginning of
the file. The £2 field is the displacement from the beginning of the file to the data. The b
field is the beginning of the virtual address of a memory segment and the e field is the end of
the virtual address of a memory segment. The 7* request tells ADB to use only the second
part of the map in the a.out file when translating addresses. The user-modifiable map for
the core file also has two triples. The initial map for the core file has as many triples as there
are core segments in the core file (see core(4)). Figure 5 shows ADB output for the map
command.

? map £c0358°

b1 = 1000 el = 3114 f1 = 4000
b2 = 40000000 e2 = 400003E0 £2 = 7000
/ map €c0358.core’

Kernel: b = 68FA89CO e = 68FA89FC f =10
Exec: b = 68FA897C e = 68FA89CO f = 5C
Core: b = 68FA896C e = 68FA8970 f = 0xBO
Data: b = 40000000 e = 40003000 f = 0xC4
Registers: b = 68FA8ABS e = 68FA8C40 f = 30D4
Stack: b = 68FACO00 e = 68FBEOO0O f = 326C

/ map (inactive) ¢c0358.core’ from ¢c0358’°
b1 =0 el = -1 f1 =0

b2 =0 e2 = -1 f2 =0

Figure 5. ADB Output for Map Command

18 ADB Tutorial

Variables and Registers

ADB provides a set of variables for programmers to use. Fach variable name consists of a
single letter or digit. For example, to set the variable “5” to the hexadecimal value 32, you
use the “greater than” sign (>) as follows:

0x32>5

You can then use this variable in other requests. For example, to print the value of the
variable “5” in hexadecimal format, you use the “less than” sign (<) as follows:

<5=X
ADB sets the value of other variables. These variables are listed in Table 4.

Table 4. ADB Variables

Variable Description

0 Last value printed.

9 Count for a $< command.

b Base address of data segment.
d Data segment length.

e Entry point.

m Execution type:

0x107 (non-shared)
0x108 (shared)
0x10b (demand loaded)

s Stack length.

t Text length.

These variables are helpful when you want to know whether the file under examination is an
executable file or core image file. ADB reads the header of a core image file to find the values
for these variables. If the second file specified with the adb command does not appear to be
a core file or if the adb command omits this file, ADB uses the header of the executable file
instead.

ADB Tutorial 19

You can use variables for such purposes as counting the number of times a routine is called.
For example, to count the number of times that the routine tabpos is called in the program
listed in Figure 3, you would type the requests:

0>5

tabpos,-1:b <6+1 >5
T

<5=U

The “0>5” command sets the variable 5 to zero.

The “tabpos,-1:b <5+1 >5” command sets a breakpoint at tabpos. Because the count field
is -1, the process never stops at this breakpoint, but ADB executes the breakpoint requests
every time it reaches this breakpoint. Finally, this command increments the value of the
variable 5 by 1.

The “:r” command causes the process to run to termination, and the “<56=U" command prints
the value of the variable as an unsigned decimal value.

You can print the values of all nonzero variables by typing:

$v
Note ADB uses the a register to determine how many arguments to print with a
stack trace. For more information see the section on “Anomalies” later in this
tutorial.

You can also set the values of individual registers in the same way you set variables. For
example, to set the value of the register r1 to hexadecimal 32, you would type:

0x32>r1

Or, to print the value of the register r1 in hexadecimal format, you would type:
<ri=X

You can print the value for every register by typing the request:
$R

And, you can print the value of the registers of general interest by typing:

$r

20 ADB Tutorial

Formatted Dumps

You can combine ADB formatting commands to provide elaborate displays. The following
examples illustrate this.

To print four octal half-words followed by their ASCII interpretation from the data space of
the core image file, you would type:

<b,-1/404"8Cn
The first part of this request, broken down, has the following meanings:
<b Gives the base address of the data segment.

,=1/ Prints from the base address to the end of file. The negative count field lets ADB
loop until it detects an error condition or the end of the file.

The format request modifier (404°8Cn) has the following meaning:

40 Prints four octal half-words locations.
4" Backs up the current address four locations to the original start of the field.
8C Prints eight consecutive characters using an escape convention that prints each

character in the range 0 to 037 as @ followed by the corresponding character in
the range 0140 to 0177. An @ is printed as @@.

n Prints a newline.

To stop the printing at the end of the data segment, where <d provides the data segment size
in bytes, you would modify the previous request as follows:

<b,<d%8/404~8Cn

Formatting requests can also be read from script files. The script files can be specified as the
standard input for ADB:

adb a.out < script_file
Alternately, a script file can be invoked within a debugging session with the ADB command:

$<script_file

ADB Tutorial 21

Patching

You can patch files with ADB by using the “write” request (w or W). You often use this
request in conjunction with the “locate” request (1 or L). The syntax for both requests is:

[?/] [1L] value
[?/] [wW] value

The 1 request matches on two bytes, and the w request writes two bytes; whereas the L
request matches on four bytes, and the W request writes four bytes. The value field for both
requests is an expression, so decimal and octal numbers, as well as character strings, are
supported.

To modify a file, you must invoke ADB with the -w flag; for example:
adb -w objectfile corefile

When you invoke ADB with this option, ADB creates the objectfile, if necessary, and opens
that file for both reading and writing. ADB only opens corefile for reading, however.

Note Once a subprocess has been initiated with a :r or :e command, write requests
alter the subprocess’ address space, not the objecifile.

For example, consider the C program shown in Figure 6. The write command takes three
arguments: a file descriptor, a character buffer, and a count of the number of bytes to
write. As currently written, the count value for the number of bytes to write was calculated
incorrectly.

main()

{
write(1l, "Hello world\n'", 11);

¥

Figure 6. Simple C Program to lllustrate Patching

You could set a breakpoint at the call to the write procedure and set the argument to the
correct value by typing the command:

0d12>arg?2

However, you would have to do this every time you wanted to run the program.

22 ADB Tutorial

Assuming that you had lost the source file for this “valuable” piece of code, you could patch
the object code using ADB.

You call ADB with the command:
adb -w hello -

Then you can find which instruction to modify by printing the first eight instructions of main.
main,87i

You find the required instruction is at main+18 (hexadecimal).
main+18: ldo 0xB(r0) ,arg2

This instruction loads the contents of rO (which is always zero), plus the immediate value 0xB
(decimal 11) into arg2, the third argument to the write statement.

You can change the instruction with:
main+187W 34180018

Broken down, this request has the following meanings:

main+18 Sets the value of dot.
W Writes four bytes in objectfile.
34180018 The hexadecimal value to write.

ADB Tutorial 23

Note that ADB prints the old and new value when you request a write. When you reprint the
instruction, you see that you patched it correctly. This sort of patching requires a knowledge
of the machine-level format, or a willingness to experiment. Remember that if you had started
the process with :r or :e before you issued the write command, the patch would have been
made in the process’ address space, not in the object file itself. Refer to Figure 7.

main,87ia

main:

main: stw rp,-14(sp)
main+4: 1ldo 30(sp),sp
main+8: ldo 1(r0),argd
main+0xC: addil 0O,dp
main+10: ldo 0(r1),argl
main+14: bl write,rp
main+18: ldo 0xB(r0) ,arg2
main+1C: ldw -44(sp) ,rp
main+20:

main+187W 34180018

main+18: 34180016 = 34180018
main+1871

main+18: ldo 0xC(r0) ,arg2
T

hello: running (process 1576)
Hello world
process terminated

$q

Figure 7. ADB Output lllustrating Patching

24 ADB Tutorial

Debugging Already Running Processes

The -P option allows ADB to “adopt” an errant process as if it had been originally run

under the control of the debugger. The user can then examine it, and detach from it when

debugging is completed. After ADB detaches from the process, the program resumes
execution, no longer under the control of ADB.

Note that the effective user ID of the tracing process must match the effective user 1D of the

traced process; however, this is not necessary if the effective user ID of the tracing process is

the superuser.

Consider the C program below. After the write statement, the program goes into an infinite

loop.

main()

{

write(1l, "Hello world\n", 12);

for(;;)

¥

If this program runs in the background like this:

a.out &
4326
Hello world

You can debug pid 4326 by typing:

adb -P4326 a.out

Single stepping through the program reveals that this program seems to be looping infinitely:

:s
a.out: running
stopped at

:s

a.out: running
stopped at

:s

a.out: running
stopped at

:s

a.out: running
stopped at

:s

a.out: running
stopped at

$q

main+1C:

write:

main+1C:

write:

main+1C:

1dil

1dil

main+1C

-40000000,r1

main+1C

-40000000,r1

main+1C

(nullify)

(nullify)

ADB Tutorial

25

Running ps(1) after exiting ADB shows that the process continues executing after ADB
detaches from it.

ps
PID TTY TIME COMMAND
5428 ttyqb 0:01 ps
4326 ttyq6 11:14 a.out
4126 ttyq6 0:03 csh
Note It is not possible to use the -w and -P options together. It is an error to open

a file for writing when it is already open for execution.

26 ADB Tutorial

System Dependencies
Below is a list of some system dependencies of which you should be aware.

m To increase run-time execution speed, stack-frame context is kept to a minimum. In
particular, the previous stack pointer and the return pointer are not necessarily written
to memory locations on the stack itself. Additional information necessary to perform
stack unwinds resides in the object file. Because of this, if the object and core files being
debugged are not from the same program, the stack unwind for the core file fails.

m Arguments to procedures are not all passed on the user stack. By convention, the first four
arguments are passed in registers. Usually, general registers 23-26 known mnemonically as
arg3, arg2, argl, and argO are used, but the floating point registers 4-7 (fr4, fr5, fr6,
and fr7) may also be used. Arguments five and beyond are passed on the stack, and space
is left on the stack to store the arguments passed in registers, if the compiler (or assembly
language coder) sees fit to do so; but the compiler might decide to save the argument in
another register rather than on the stack.

At procedure entry time, ADB has the information available to discern which argument
registers have valid data. Beyond this point, however, ADB has no way of determining
where the compiler has decided to store the arguments unless the procedure was compiled
with the -g option to produce symbolic debug information. ADB also has no way of
determining the number of arguments passed to a procedure. By default, it prints four
arguments during a stack trace if it knows the location of the arguments.

You can force ADB to print more than four arguments by changing the value of the “a”
variable. See the section on “Variables and Registers” for more details. ADB then prints
the contents of the stack locations where these arguments are stored, although this data is
“garbage” when no argument is passed which corresponds to that location.

m At entry to a procedure, the user stack is in a known state; that is, the location of
arguments and return pointer is known in relation to the current stack pointer value. The
first few instructions after procedure entry are a dialogue to save the return pointer on
the stack, increment the stack pointer, save the old stack pointer on the stack, and save
registers. All of these steps are optional, at the discretion of the compiler or assembly
language coder. If you set a breakpoint beyond the entry to the procedure, but before the
stack has been incremented if that is to be done, stack traces give incorrect information.
Once again, ADB uses Additional information in the instruction space to determine where
the return pointer and previous stack pointer were stored.

ADB Tutorial 27

Command Summary

Breakpoint and Program Control

Table 5. Breakpoint and Program Control

Command Description

b Set breakpoint at dot.

ic Continue running program.

:d Delete breakpoint.

:k Kill the program being debugged.
T Run object file under ADB control.
s Single step through program.

Calling the Shell

Table 6. Calling the Shell

Command Description

! Call shell to read remainder of line.

Assignment to Variables

Table 7. Assignment to Variables

Command Description

>name Assign dot to variable or register name.

28 ADB Tutorial

Formatted Printing Commands

Table 8. Formatted Printing Commands

Command

Description

? format

Print from object file according to
format.

/ format

Print from core file according to format.

= format

Print the value of dot.

TW exPression

Write ezpression to object file.

/w expression

Write ezpression to core file.

?1 expression

Locate expression in object file.

/1 expression

Locate expression in core file.

Additional Printing Commands

Table 9. Additional Printing Commands

Command

Description

$b

Print current breakpoints.

$c

Print stack trace.

$d

Set default radix to address argument.

$e

Print external variables.

$f

Floating-point registers as single precision.

$F

Floating-point registers as double
precision.

$m

Print ADB segment maps.

$r

Print general registers.

$s

Set offset for symbol match.

$v

Print ADB variables.

$w

Set output line width.

ADB Tutorial

29

Format Summary

Table 10. Format Summary

Command Description

a Value of dot in symbolic form.

b One byte in hexadecimal.

B One byte in octal.

c One byte as a character.

d Two bytes in decimal.

D Four bytes in decimal.

f Four bytes in single precision floating point.
F Eight bytes in double precision floating point.
i HP Precision Architecture instruction.
o Two bytes in octal.

0 Four bytes in octal.

n Print a newline.

r Print a blank space.

s Character string terminated by null.
nt Move to next n space tab.

u Two bytes as unsigned integer.

U Four bytes as unsigned integer.

X Hexadecimal number.

X Four bytes as a hexadecimal number.
Y Date.

- Backup dot.

Print string.

30 ADB Tutorial

Expression Summary

An expression consists of an operator and an operand (or operands). An operand can consist

of the following components.

Expression Components

Table 11. Expression Components

Component

Examples

Decimal integer

0d256, 0t256

Octal integer

0277, 00277

Hexadecimal integer |0xff, 0xCO

Symbols flag, main
Variables <b

Registers <arg0, <rp
(expression) Expression grouping

Dyadic Operators

Table 12. Dyadic Operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

% Integer division

& Bitwise AND

| Bitwise OR

Round up to next multiple

ADB Tutorial

31

Monadic Operators

32 ADB Tutorial

Table 13. Monadic Operators

Operator

Operation

NOT

Contents of location

Negate integer value

Index

A
ADB

command format, 1-3
commands, 1-4
command summary, 1-28
debugger, 1-1
features, 1-1
interactive requests; 1-3
invoking, 1-1
location of arguments, 1-9
syntax, 1-1
variables; 1-19
additional printing commands, 1-29
address, 1-3
numeric, 1-18
symbolic, 1-18
advanced breakpoint usage, 1-15
ASCIT interpretation, 1-21
assignment to variables, 1-28

breakpoints, 1-11
program control, 1-28

Cc
calling the shell, 1-28

commands
additional printing, 1-29
assignment to variables, 1-28
breakpoints and program control, 1-28
calling the shell, 1-28
format, 1-5
format summary, 1-30
formatted printing, 1-29
command summary, 1-28
common format commands, 1-5
components
expression, 1-31
core file, 1-2
count, 1-3
C program
debugging, 1-8
patching example, 1-22
to decode tabs, 1-12
with a pointer bug, 1-8

current address

dot, 1-3

D

debugging
core image, 1-8
C programs, 1-8
running processes, 1-25
displaying information, 1-5
dot
value of, 1-5
dyadic operators; 1-31

E

executable file formats

shared, unshared, demand loaded, 1-8, 1-18
expression

components, 1-31

operand, 1-31

operator, 1-31
expression-building operators, 1-3
expression summary

dyadic operators, 1-31

expression components, 1-31

monadic operators, 1-32

E

format
commands; 1-5
summary, 1-30

formatted

dumps, 1-21

printing commands, 1-29
|
interrupt signal, 1-17

L

loader, 1-18
locate request, 1-22

map addresses, 1-18
file addresses, 1-18

map command output, 1-18

Index-1

maps, 1-18
monadic operators, 1-32

N

newline command, 1-6

0]

object file, 1-2

operators
dyadic, 1-31

monadic, 1-32

P
patching, 1-22
corefile, 1-22
C program, 1-22
objectfile, 1-22
printing commands
additional, 1-29
formatted, 1-29
procedure entry time, 1-27
processes running
debugging, 1-25

process identifier, 1-2

R

registers

setting the value, 1-20
requests, 1-3

locate and write, 1-22
running processes

debugging, 1-25

Index-2

S

setting breakpoints, 1-11
request, 1-12

shell
calling, 1-28

stack-frame context, 1-27

stack unwinds, 1-27

summary
ADB commands, 1-28
additional printing commands, 1-29
assignment to variables, 1-28
breakpoints and program control, 1-28
calling the shell, 1-28
dyadic operators, 1-31
expression components, 1-31
format, 1-30
formatted printing commands, 1-29
monadic operators, 1-32

system dependencies, 1-27
arguments to procedures, 1-27

u

user stack, 1-27
known state, 1-27

\

variable name, 1-19
variables and registers, 1-19

w

write request, 1-22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

