programmers.book : FrontCover 1 Wed Apr 3{%5:09:01 1996

(ﬁ/” HEWLETT®

PACKARD

Programmer’s guide

X.25/9000

programmers.book : FrontCover 2 Wed Apr 3{%5:09:01 1996

programmers.book : programmersTOC.doc 1 Wed Apr 3 15:09:01 1996

&

Contents

1 Introduction to X.25 Programmatic Access
Overview 8

X.25 Product Description 9
X.25 Configurations 9

Using BSD IPC 11
Using BSD IPC and X.25 with the Client/Server Model 11

Getting Started with X.25 Programmatic Access 13

Example Programs 14

2 X.25 Addressing
Overview 16
Levels of Addressing 17
Preparing Address Variables 18
Addressing Options for Clients 20

Addressing Options for Servers 21

Call-Matching by X.25 Interface Name 22
Call-Matching by Called X.121 Address Only 22
Call-Matching by Subaddress 23

Call-Matching by Protocol ID 24

Using Wildcard Addressing 25

Wildcard Addresses in the x25ifname[] Field 25
Wildcard Addresses in the x25_host[] Field 25

programmers.book : programmersTOC.doc 2 Wed Apr 3 15:09:01 1996

&

Contents

Setting a Wildcard Protocol ID Local Address Mask 27
Syntax for ioctl (X25_WR_MASK_DATA) 28

Address Space Conflicts 29

3 Establishing and Terminating a Socket Connection
Overview 32

Connection Establishment for the Server Process 33

Creating a Socket 33

Binding an X.121 Address to a Socket 34
Preparing a Listen Socket 35

Accepting a Connection 36

Strategies for Server Design 38

Connection Establishment for the Client Process 40

Creating a Socket 40
Requesting a Connection 40
Example (client specifying the protocol ID) 42

Controlling Call Acceptance 43

Terminating a Connection 47

Closing a Socket Descriptor 47
Shutting Down a Socket 49

4 Sending and Receiving Data

Overview 52

programmers.book : programmersTOC.doc 3 Wed Apr 3 15:09:01 1996

&

Contents

Data transmission requirements 53

Sending Data 54

Receiving Data 55

Controlling the MDTF, D, and Q bits 56
Using the MDTF Bit 58

Using Nonblocking /0 61
Nonblocking Behavior of System Calls 61

Getting Next Message Status 64

Setting Buffer Thresholds and Sizes 66

Setting the Write Buffer Threshold 66
Setting the Read Message Fragment Size 67
Changing the Size of Socket Buffers 68

5 Receiving and Transmitting Out-of-Band Information
Overview 72

Receiving Out-of-Band Events 73
Signal Reception 73

Building a Signal Handler 75

Example of an X.25 Signal Handler 76
The Out-of-Band Events 78
OOB_VC_DBIT_CONF 79

Transmitting Out-of-Band Events 82

Clearing a Switched Virtual Circuit 82
The ioctl(X25_WR_CAUSE_DIAG) Call 83
The ioctl(X25_WR_USER_DATA) Call 84

programmers.book : programmersTOC.doc 4 Wed Apr 3 15:09:01 1996

&

Contents

The ioctl(X25_RD_USER_DATA) Call 85
Resetting a Virtual Circuit 88

The ioctl(X25_RESET_VC) Call 88
Sending Interrupts on a VC 89

6 Extended Features
Overview 92

Using Facilities 93

The ioctl(X25_RD_FACILITIES) Call 93
The ioctl (X25_WR_FACILITIES) Call 95

Using Fast Select 99

Fast Select on the Calling Side 99
Fast Select on the Called Side 100
Fast Select Operation Summary 101
Initial Steps for Fast Select 101

Using Permanent Virtual Circuits 106
Preparing a PVC for Use 106

Reestablishing Terminated Connections 109

Obtaining programmatic diagnostics and status 111

Error codes and log messages 111

The ioctl (X25_RD_CTI) Call 111

The ioctl(X25_RD_LCI) Call 112

The ioctl(X25_RD_HOSTADR) call 113

The ioctl(X25_GET_IFSTATE) call 114

Obtaining Status Information Programmatically 115

programmers.book : programmersTOC.doc 5 Wed Apr 3 15:09:01 1996

&

Contents

A X.25 Packet Formats
Introduction 121
CALL REQUEST/INDICATION Packet 122
CALL ACCEPTED/CONNECTED Packet 125
CLEAR REQUEST/INDICATION Packet 128
DATA Packet 131
INTERRUPT Packet 133
INTERRUPT CONFIRMATION Packet 135
RESET REQUEST/INDICATION Packet 137

RESET CONFIRMATION Packet 139

B Program Examples
Example Programs 142

Reader comments 145

programmers.book : programmersTOC.doc 6 Wed Apr 3 15:09:01 1996

&

Contents

programmers.book : ch_intro.frb 7 Wed Apr 3{%5:09:01 1996

1

Introduction to X.25 Programmatic
Access

programmers.book : ch_intro.frb 8 Wed Apr 3{%5:09:01 1996

Introduction to X.25 Programmatic Access
Overview

Overview

This chapter introduces the X.25 product with emphasis on its X.25
programmatic access (X.25/PA) interface, which this manual describes in
detail. With X.25, application programs can control X.25 packet
transmission (level 3 of the Open Systems Interconnectivity (OSI) model).

This chapter contains 3 parts:

» X.25 Product Description

* Using BSD IPC

» Getting Started with X.25 Programmatic Access

All X.25 programmatic access is through Berkeley Software Distribution
Interprocess Communication (BSD IPC) facilities, which are also known as
Berkeley Sockets

programmers.book : ch_intro.frb 9 Wed Apr 3{%5:09:01 1996

Introduction to X.25 Programmatic Access
X.25 Product Description

X.25 Product Description

The X.25 Link software and hardware enable an HP system to communicate
with other HP and non-HP hosts by way of an X.25 Packet Switching
Network (PSN).

X.25 Configurations

The CCITT X.25 recommendations describe the packet interface between a
DTE (Data Terminating Equipment) and a DCE (Data Communications
Equipment). The DTE is a device (computer or terminal) which connects to
an X.25 PSN. The DCE interface is supplied by the PSN to enable the DTE
to connect to the network. This type of connection is usually made over
telephone lines via a modem.

Figure 1 illustrates a typical X.25 network configuration between an HP
9000 and a remote host using an X.25 PSN.

HP 9000 Remote Host
X-25 DCE DCE DTE
DTE
Figure 1 Typical X.25 Network Connection

A direct connection can be made via a modem eliminator. A modem
eliminator provides the clocking mechanism necessary to synchronize
signals between a DTE and a DCE. Two X.25 interfaces may be connected
in this way, but one of them must be configured as a DCE. This type of
configuration is called a “back-to-back configuration”.

Figure 2 illustrates a typical back-to-back configuration with a remote host.
The remote host can be any type of processor, including another HP 9000 or
any device capable of fulfilling the requirements of a DTE (or DCE in the
back-to-back configuration).

programmers.book : ch_intro.frb 10 Wed Apré}lS:O&Ol 1996

Introduction to X.25 Programmatic Access

X.25 Product Description
HP 9000 Remote Host
Modem

Eliminator %25
X.25 DTE

DTE or
DCE

Figure 2 Back-to -Back Configuration

The term “remote” is used (in the relative sense) to designate a distant DTE
which can be only a few feet, or thousands of miles away from the local
DTE.

X.25 allows for the creation of multiple virtual connections over the same
connection to a PSN. Each connection is called a virtual circuit (VC). X.25
can multiplex up to 4095 VCs (CCITT) over a single physical connection to
a DCE. The X.25 PSN can route each VC to a different remote host. From
the point of view of the application, each VC is directly connected to the
remote host.

NOTE In a back-to-back configuration, all VCs must be connected to the same
remote host.

10

programmers.book : ch_intro.frb 11 Wed Apré}lS:O&Ol 1996

Introduction to X.25 Programmatic Access
Using BSD IPC

Using BSD IPC

BSD IPC is a set of program development tools for interprocess communica-
tion. HP's implementation of BSD IPC is a subset of the networking services
originally developed by the University of California at Berkeley. Before you
attempt to use BSD IPC, you must be familiar with the C programming lan-
guage.

The BSD IPC facility allows you to create distributed applications that pass
data between processes (on the same computer or on different computers
connected by a network) without requiring a complete understanding of the
many layers of networking protocols. This is accomplished by using a set of
system calls. These system calls, when used in the correct sequence, allow
you to create communication endpoints called sockets and transfer data
between them.

You will also find a description here of the steps involved in establishing and

using X.25 programmatic access through BSD IPC connections. This @
manual also describes the protocols you must use and how the BSD IPC

system calls interact.

The library routines and system calls that you need to implement a BSD IPC
application are described throughout this manual.

You need not specify any special libraries when compiling or linking to use
BSD IPC over X.25. The all required library routines are in the common C
library (libc.a). The compiler uselibc.a automatically.

Details of each system call are described in the Section 2 entries of your man
pages.

Using BSD IPC and X.25 with the Client/Server Model

In order to run X.25 applications over BSD IPC, two separate application
processes must be running on both ends of a VC. The following is a sequen-
tial synopsis of BSD/X.25 communications:

1 Theclient process requests a connection by sending a CALL REQUEST
packet.

2 Theserverprocess, receives the CALL INDICATION packet and accepts

11

&

programmers.book : ch_intro.frb 12 Wed Apré}lS:O&Ol 1996

Introduction to X.25 Programmatic Access
Using BSD IPC

it by sending a CALL ACCEPTED packet
The server process:

a creates a socket, binds an address or range of addresses to it
b sets up disten queuefor receiving connection requests,
¢ and then passively waits for connection requests until they arrive

When a request arrives the server process can either accept or reject the
connection based on the information contained in the request.

3 The client process creates a socket and requests a connection to the remote
server process, using as a destination one of the addresses to which the
server has bound its socket.

Once the server process accepts a client process's request and a connection is
established, full-duplex (two-way) communication can occur between the

two sockets; the two processes are thegrsand can exchange data as

equals.

12

programmers.book : ch_intro.frb 13 Wed Apré}lS:O&Ol 1996

Introduction to X.25 Programmatic Access
Getting Started with X.25 Programmatic Access

Getting Started with X.25 Programmatic Access

Before you begin designing your application

1

Finish reading this book so you have a good idea as to how processes establish a
connection, exchange data, handle asynchronous (out-of-band) events, and
terminate connections.

Ensure that your node or system manager has installed and configured the X.25
product on your local host.

Thex25check(1M) command can be used to test that X.25 is running and
connected.

Obtain the X.121 addresses and interface names of the X.25 interfaces you intend
to use.

Thex25stat(1) command returns this information.

Determine which role your application will play in connection establishment:
client or server.

If your application program will play the role of the client in connection
establishment:

« Obtain the addressing information for the remote hosts and servers to which
your application will establish a connection. To a large degree this
information is application dependent and may only be available from an
authority on the remote host.

« Obtain the strategy for information exchange between your process and the
remote. This usually, but not necessarily, is an extension of the client/server
model, with different formats for requests and responses.

If your application program will play the role of the server in connection
establishment:

« Define the range of addresses at which you will receive connection requests
and make them known to the designers of client processes. This is dependent
on the X.25 interfaces which are connected to your local host, the addresses
used by existing servers, and the flexibility and connectivity of the clients
from which your program will be accepting connections.

« Develop a strategy for information exchange. Typically this implies that one
side of the connection requests and the other services. Often the client/server
model is retained during this phase of the connection but is not required.

13

&

programmers.book : ch_intro.frb 14 Wed Apré}lS:OQ:Ol 1996

Introduction to X.25 Programmatic Access
Getting Started with X.25 Programmatic Access

Example Programs

Several pairs of programs are shipped with the X.25 product. These
programs are in thiisr/netdemo/x25 directory. Appendix B gives a
brief description of the example files.

14

programmers.book : ch_addr.frb 15 Wed Apr5}15:09:01 1996

2

X.25 Addressing

15

programmers.book : ch_addr.frb 16 Wed Apr5}15:09:01 1996

X.25 Addressing
Overview

Note

Overview

This chapter discusses the issues associated with addressing over an X.25
interface. Addressing is used to define the particular interface and
application that is used during a Switched Virtual Circuit (SVC) connection.

The information in this chapter applies only SVCs. This information does
not apply to Permanent Virtual Circuits.

The issues discussed in this chapter include:
* Levels of Addressing

* Preparing Addressing Variables

* Addressing Options for Clients

* Addressing Options for Servers

» Call-Matching by X.25 Interface Name

» Call-Matching by Called X.121 Address Only
» Call-Matching by Subaddress

» Call-Matching by Protocol ID

* Using Wildcard Addressing

» Address Space Conflicts

16

programmers.book : ch_addr.frb 17 Wed Apr5}15:09:01 1996

X.25 Addressing
Levels of Addressing

Levels of Addressing

X.25 allows call addressing to use an interface's programmatic access name,
the X.121 address and subaddress, and protocol ID. This information is con-
tained in thex25addrstr structure, described below.

The application can specify which X.25 interface to use when receiving and
connecting calls. This level of addressing is only useful when there is more
than one X.25 interface (as with dual-port cards or systems with multiple
cards) connected to the HP 9000 system.

note For the purposes of this discussion, and throughout this book, you should
understand the distinction between the following ter@ex.d—refers to
physical communications hardware)nterface (or Port)—used
interchangeably to designate the physical point of connection for
communications, andDevice—a logical entity (internal to the
communications software) that is logically associated with a particular

interface. @

The application can specify which X.121 address to use when the

connection is established. Each interface connected to an X.25 PSN is
assigned a unigue X.121 address. When an interface is connected to a PSN,
the subaddress also designates the X.25 interface (although for test purposes
in back-to-back configurations, it is possible to use a different X.121 address
than that specified for the PSN interface at configuration time).

The application can specify the X.121 subaddress to use in connecting the
call. The subaddress may be used to select a particular type of application on
the other end of the call.

The applications may also use the protocol ID to further select the type of
application on the other end of the call. Protocol ID addressing is fully
described in the CCITT X.244 (1984) Recommendations or chapter 6 of the
X.25 (1980) Recommendations.

17

programmers.book : ch_addr.frb 18 Wed Apr5}15:09:01 1996

x25_family

x25hostlen

x25pidlen

x25pid[8]

Xx25_host[16]

X.25 Addressing
Preparing Address Variables

Preparing Address Variables

All addressing information for both the client and server is contained in the
x25addrstr structure. This structure is defined in the includex2g/
x25addrstr.h . Itis used by the client in tlewnnect() system call

and by the server in thend() system call. How the client and server use
these calls is described in chapter 3.

Thex25addrstr structure consists of the following declarations:

struct x25addrstr {
unsigned short x25_family;
unsigned char x25hostlen;
unsigned char x25pidlen;
unsigned char x25pid[8];
unsigned char x25_host[16];
char x25ifname[13];
} I* x25addrstr */
Specifies the address family and must be seEtaCCITT, which is defined

in thesys/socket.h include file.

Specifies the offset for the end of the numeric string in the X.121 address
specified in the25 _host field described below. Range: 0 to 15 (including
subaddress digits).

Specifies the offset for the end of the character string that describes the
protocol ID data. This field is not useddannect() system calls; the
protocol ID must be explicitly set in the user data field by the application.
Range: 0 to 8. Set this field to 0 im@nect() system call or (if protocol
IDs are not used) in your application.

Specifies the protocol ID data irband() system call. The protocol ID
data is located in the call-user data field of the CALL INDICATION packet.
See “Addressing Options for Servers” below.

Specifies a destination X.121 address @manect() system call with a
decimal string (digits 0-9). Inlaind() system call, this field specifies the
range of X.121 addresses that it will receive with a decimal string and
(optionally) with wildcard characters (“?” and “*”). See “Addressing
Options for Servers” below. This field may also include a subaddress.

18

programmers.book : ch_addr.frb 19 Wed Apr5}15:09:01 1996

x25ifname[13]

X.25 Addressing
Preparing Address Variables

Specifies the name of the X.25 interface set during X.25 configuration. The
null string (“\0") specifies the default interfacedonnect() and all

interfaces irbind() . Range: 1 to 12 alphanumeric characters terminated
by the null character (“\0”).

Refer to theAF_CCITT(7F) entry in yourman pages for more
information on thex25addrstr structure.

19

programmers.book : ch_addr.frb 20 Wed Apr5}15:09:01 1996

x25_family

x25hostlen

x25pidlen
x25pid[8]

x25_host[16]

x25ifname[13]

X.25 Addressing
Addressing Options for Clients

Addressing Options for Clients

The client process specifies the address to which it wants to connect an SVC.
The client uses the25addrstr structure in theonnect() system call

to specify most of the addressing information. If protocol IDs are used for
call matching, the client process will also use

ioctl(X25_WR_USER_DATA)

In general clients have no real addressing options. The client must specify
the addressing information that the network and server need to connect and
handle the call properly. This information must be obtained from some
authority for the server's host, such as the application designer or the system
administrator.

The fields employed in the&25addrstr structure when aonnect()
system call is used are given below.

Specifies the address family and must be s&EFtdCCITT, which is defined
in thesys/socket.h include file.

Specifies the number of BCD digits in the X.121 address including the
subaddress specified in tk5_host field . Range: 0 to 15.

Is not used and should be set to 0.

Is not used and should be set to the null string (“\0”). If a protocol ID must
be specified, thmctl(X25 WR_USER_DATA) must be used.

Contains a character string of decimal digits (0-9) representing the remote
host's X.121 address and subaddress if any.

Specifies the name of the local X.25 interface to be used when sending a call
request. The interface name is set during X.25 configuration. Specify the
null string (\0”) to use the default interface. Range: 1 to 12 alphanumeric
characters terminated by the null character (“\0"). If the local host has more
than one interface with equal connectivity the client may choose between
them for reasons of throughput and response time.

20

programmers.book : ch_addr.frb 21 Wed Apr5}15:09:01 1996

X.25 Addressing
Addressing Options for Servers

Addressing Options for Servers

A server uses the X.25 socket address information to identify which calls it
will process. Each server uses bied(2) system call to define the
addressing information for calls it will process. Tied() system call is
described in chapter 3 and in your HP-bhén pages.

The discussion of incoming call-matching methods includes:

» Call-matching by interface name. An X.25 interface name is specified in the
x25ifname[] field of thex25addrstr structure. Only calls arriving over
that interface may be connected to the socket.

e Call-matching by called X.121 address. The called address is stored in the
x25_host field of thex25addrstr structure. Only calls with the specified
called address may be connected to the socket.

e Call-matching by called X.121 address and a subaddress. The subaddress is
stored in thex25_host field of thex25addrstr structure. Only calls with
the specified called address and subaddress may be connected to the socket.

e Call-matching by protocol ID. The protocol ID is set inx2& pid[] field of
thex25addrstr structure. Only calls with the correct protocol ID can be
connected.

* Addressing conflicts iind() calls.

When a CALL REQUEST packet arrives, three tests are performed to
attempt to match the call to a listen socket:

» The name of the interface over which the call arrived is matched against the
x25ifname field specified in théind()

» The called address field is matched againsk#te host field specified in the
bind()

» The first bytes of the user data field in the CALL REQUEST packet are matched
against thex25pid field specified in théind()

If all of these tests succeeds, the call is connected to the socket. If the
incoming call does not match with any of the specified addresses, the call is
cleared.

21

programmers.book : ch_addr.frb 22 Wed Apr5}15:09:01 1996

Note

X.25 Addressing
Addressing Options for Servers

If any of the three tests fail, the call is cleared before reaching the socket
and the server application (above the socket) will never know anything
about this incoming call request.

The matching tests for incoming calls and how a server controls calls are
discussed below.

Call-Matching by X.25 Interface Name

The name of an X.25 interface is assigned during configuration. Refer to the
X.25/9000 User's Guid®r details on the interface name.

Thex25ifname[] field of thex25addrstr structure may contain an
interface name to designate a particular X.25 interface to be used for call
connection. It can also specify that calls be connected from any X.25
interface on the system. If your application will receive calls from a single
interface, the name must be specified ind2gifname field. If your
application shall receive calls arriving over any interface, no interface name
can be specified in th&5ifname[] field (set to the null string, “\0").

This field is of little importance when only one X.25 interface is in use. If
more than one interface are in use, specify which interface connects to the
network in thex25ifname[] field.

To accept calls from more than one X.25 interface (but not all interfaces) a
separate socket must be created for each interfaces from which calls will be
accepted. The resultidigten() sockets must be monitored with the
select() call to determine when a matching incoming call arrives. Refer
to “Using Nonblocking I/O” in chapter 4 of this manual.

Call-Matching by Called X.121 Address Only

The X.121 address for an X.25 interface is assigned during initialization.
When an X.25 interface is connected to a PDN, the X.121 address is
assigned to the interface by the network provider. The X.121 address is a
string of decimal digits (0-9). Refer to tKe25/9000 User's Guidier

details on X.121 address initialization.

22

programmers.book : ch_addr.frb 23 Wed Apr5}15:09:01 1996

X.25 Addressing
Addressing Options for Servers

When an interface is connected to a PDN, only CALL REQUEST packets
with a called address field equal to the X.121 address assigned to the
interface will be delivered to the interface. In this case specifying an X.121
address is synonymous with specifying an interface name.

In back-to-back configurations, a CALL REQUEST packet with any valid
X.121 address can be received by the interface. Any CALL REQUEST
packet, regardless of its X.121 address, is processed by the interface. If a
socket with a matching X.121 address is found, a connection is made.

When issuing &ind() system call, th&25_host field of the

x25addrstr can contain an X.121 address or be empty. If the

x25_host field is not empty, then the specified address must exactly match
the called address field of the CALL REQUEST packet. The called address
field must exactly match (digit-for-digit) and be of equal length to the
x25_host[] field in thex25addrstr structure specified in the

bind() call. See “Using Wildcard Addressing”.

If the x25_host field is empty, then the25hostlen field of the bind
address is zero (no X.121 address is specified), an@%hédnost field will
match the called address field of any incoming CALL REQUEST packet
with no subaddress.

Call-Matching by Subaddress

Call matching by subaddress is actually an extension of call matching by
X.121 address. The subaddress is appended to the called address field in the
CALL REQUEST packet and the5 host[] field in thex25addrstr

structure. The subaddress, like the X.121 addresses, is a string of decimal
digits (0-9). Not all PDNs support subaddresses, and some support a varying
number of subaddress digits. Ask your node or network manager for
configuration information concerning subaddresses.

Call-matching by subaddress is one method by which several servers may
service different calls over the same interface. The programmer of the client
process must know the subaddress as well as the X.121 address before
connection begins. The X.121 addresses and the subaddresses must exactly
match in order for an incoming request to be bound to a socket.

23

programmers.book : ch_addr.frb 24 Wed Apr5}15:09:01 1996

X.25 Addressing
Addressing Options for Servers

The combined length of the X.121 address and the subaddress must be less
than 16 digits. The&25hostlen field must include the length of the X.121
address and the length of the subaddress.

Call-Matching by Protocol 1D

Call-matching by protocol ID is a flexible way to allow multiple servers to
service incoming calls over the same interface. First the X.121 address and
subaddress is tested, and finally the protocol ID is tested for the incoming
call. If thex25pidlen field is O, the protocol ID is not used.

The protocol ID field is at the beginning of the call user data field of the
CALL REQUEST packet. The server specifies the protocol ID in the
x25pid field of thex25addrstr structure. The protocol ID may be from

1 to 9 bytes long. The CCITT X.244 Recommendations describes protocol
ID addressing.

Client and server programmers must agree upon how many bits to specify

for the protocolD, but the length is not defined by the44 (1984) and.25

(1980) Recommendations. HP suggests that you use pratsdol match Q}
incoming calls to sockets, because a single listen socket can be used for any

number ofx.25 interfaces (independent ports), and subaddresses are not

always supported over PDNs.

You can also set a bit mask to specify a range of protbsollhe bit mask
is described in “Using Wildcard Addressing”. Matching by protooatan
identify higher-level protocols, such as those specifierabysupport.

24

programmers.book : ch_addr.frb 25 Wed Apr5}15:09:01 1996

X.25 Addressing
Using Wildcard Addressing

Using Wildcard Addressing

Wildcard addresses are usedind() calls only. They cannot be used in
connect() calls. Wildcard addressing allows a single listen socket to con-
nect to incoming calls using a variety of addresses and protocol IDs.

There are three types of wildcard addressing. The one which is implemented
depends on the field in th@5addrstr structure that is being used. When

an incoming CALL REQUEST packet is received, xB&addrstr

structure fields are checked in the following ora@Bifname , x25_host

and therx25pid .

Wildcard Addresses in the x25ifname][] Field

Thex25ifname]] field has only one form of wildcard addressing. If you
specify the null string (“\0"), the specified address will match the X.121
address of any interface connected to your system. If you specify an inter-
face name, only calls from that one interface will match.

Wildcard Addresses in the x25_host[] Field

A wildcard address in the25_host[] field may be the null string or use
special wildcard characters. As described above, the null string will match
only the X.121 address of the interface on the receiving end, but not the sub-
address.

The valid wildcard characters are the question mark (“?”), and the asterisk
(**"). These characters may be used in combination with the decimal digits
normally specified in this field. When they are specified inx#%e host

field and are matched with an incoming call's called address field they have
the properties described in table below.

25

programmers.book : ch_addr.frb 26 Wed Apr5}15:09:01 1996

X.25 Addressing
Using Wildcard Addressing

Table 1 Wildcard Characters

Character Meaning

? Matches any single digit in the same position; for example, 1?
matches 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

* Matches any decimal digit, including none; for example, 1*
matches any address beginning with 1 including 1 itself. It can
be used alone or as a suffix.

The table below illustrates the various possibilities of matching an non-
matching addresses for a given number using wildcard characters.

Table 2 Wildcard Address Matching for x25_host
Example . :
Address Matching Addresses Non-Matching Addresses
7234 7234 All addresses except 7234.
723? 7230, 7231, 7232, All addresses that do not begin
7233,7234,7235, with 723, and all addresses that
7236,7237,7238, or 7239 are not 4 digits long.
72?4 7204, 7214, 7224, 7234, All addresses that do not begin
7244, 7254, 7264,7274, with 72 and end with 4, and alll
7284, or 7294 addresses that are not 4 digits long
* All addresses are valid. None.
7% All addresses of 2 digits or | Addresses with only 1 digit (O, 1,
more are valid. 2,3,4,5,6,7,8,0r9).
*?7? Invalid syntax - nothing Invalid syntax.
matches.
26

programmers.book : ch_addr.frb 27 Wed Apr5}15:09:01 1996

Table 3

X.25 Addressing
Using Wildcard Addressing

Setting a Wildcard Protocol ID Local Address Mask

The server specifies the protocol ID for its listen socket in2beid field

of thex25addrstr structure. The protocol ID is part of the call user data
field in the CALL REQUEST packet. This field is added (ANDed) with the
mask specified in thiectl(X25_WR_MASK_DATA) . Thex25pid

field and the mask specified in tloetl(X25 WR_MASK_DATA) can be
combined to enable a certain degree of wildcard addressing.

The protocol ID masking match works as follows:

1

The first byte from the CALL INDICATION packet's call user data field is
“masked” (that is, logically ANDed, bit-by-bit) with the first byte of the mask
specified with theoctl(X25 WR_MASK_DATA) .

The resultis compared to the value specified in the first byte x28md field
in thex25addrstr structure specified in tHand() call.

If the result is unequal, the comparison fails. If equal, the comparison continues
with the next byte of each field until a mismatch occurs or the number of bytes in
the bind addressi25 pidlen field has been compared.

Use this wildcard method if the incoming protocol ID you need isn't a whole
number of bytes, or there are bytes within the field that are not part of the
protocol ID. For example, some systems place a length byte at the beginning
of the call user data field, which should be ignored in protocol ID matching.

The bit-by-bit comparison is described in the following table:

x25pid and x25_mask Usage

Call User Data Bit X25—ma.15k x25pid Data Bit
Data Bit

Oor1l 0 0 always matches

Oorl 0 1 always fails

0 1 0 matches

1 1 1 matches

1 1 0 fails

0 1 1 fails

27

5

programmers.book : ch_addr.frb 28 Wed Apr5}15:09:01 1996

sd

X25 WR_MASK_
DATA

mask

X.25 Addressing
Using Wildcard Addressing

Syntax for ioctl (X25_WR_MASK_DATA)

The syntax for theoctl(X25 WR_MASK_DATA) system call and its
parameters are described below.

#include <x25/x25ioctls.h>

#include <x25/x25.h>

int err;

/* DEFINE X25_MAX_PIDLEN 8

* struct x25_mask_data {

* u_char x25_masklen;

* u_char x25_mask[X25 MAX_PIDLEN];

*

*

int sd;

struct x25_mask_data mask;

err = ioctl(sd, X25_WR_MASK_DATA, &mask);

A socket descriptor for a listen socket.

Indicates the type abctl() being performed. If the

X25 WR_MASK_DAT¥alue orx25 _mask_len value is set t@® , the
ioctl() call returns no error and an empty mask is used. This has the
same effect as if the call were not made.

Indicates the mask to be ANDed with the protocol ID specified in the CALL
REQUEST packet. The25 _mask len field indicates the length of the
mask, and the x25_mask indicates the mask to be used.

28

programmers.book : ch_addr.frb 29 Wed Apr5}15:09:01 1996

Table 4

X.25 Addressing

Address Space Conflicts

Address Space Conflicts

The X.25 subsystem’s programming access prevents any two sockets from

binding to the same address structure. Whieima()

subsystem checks the specified address against addresses that are already
associated with the socket. Thied()

call is made, the

call is rejected if there is a conflict

in the space allocation of components in the address structure.

The address structure is made up of three components:

» Interface name—the name of the interface or port
* Address/subaddress—the X.121 addresses

* PID—the Protocol Identification number

Address conflicts occur withind()
structure occupies or overlaps into an address region that has already been
assigned to another socket. In this instance the system returns one of two

errors:

« EADDRNOTAVAIL—is returned when all of the addresses specified in the
bind() call include all of the addresses specified in a previously bound socket.

 EADDRINUSE—is returned when the addresses specified in the bind include

calls when the specified address

some of the addresses specified in a previously bound socket.

Addressing Conflict Errors

Previous Bind

Current Bind

errno value

123* 12* EADDRNOTAVAIL
12* 123* EADDRINUSE
173* 123* EADDRINUSE
123* 1?27 EADDRNOTAVAIL

29

5

programmers.book : ch_addr.frb 30 Wed Apr5}15:09:01 1996

X.25 Addressing
Address Space Conflicts

How to Avoid Address Conflicts

Avoid wildcard addresses with “*” and be cautious of all wildcard
addressing. Avoid wildcards that specify large address spaces when
specifying subaddresses. Specify an address space of exactly one address
when specifying non-wildcard addresses. Each question mark increases the
address space by a factor of 10; an asterisk increases the address space by
several orders of magnitude.

The best way to avoid conflicts is to coordinate the use of address space with
other servers, and write down the addresses that are in use. Check this list
whenever a new server is installed. The first entry in the list should be for the
x25server process which uses protocol MFCAAQAQY.

30

programmers.book : ch_conn.fro 31 Wed Apr{%lS:OQ:Ol 1996

3

Establishing and Terminating a Socket
Connection

31

programmers.book : ch_conn.frb 32 Wed Apr{%lS:OQ:Ol 1996

Establishing and Terminating a Socket Connection
Overview

Overview

This chapter describes the steps involved in establishing and terminating an
X.25 switched virtual circuit (SVC) using a BSD IPC (socket). Topics
include:

* Connection Establishment for the Server Process

» Connection Establishment for the Client Process

Controlling Call Acceptance

» Terminating a Connection

32

programmers.book : ch_conn.frb 33 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Connection Establishment for the Server Process

This section describes the system calls and parameters that are executed by
the server process to establish a connection.

In the simplest case, there are four steps that the server process must
complete before a connection can be made with a client:

1 Create a socket witkocket()

2 Bind an address to the new socket vhitid()
3 Add a listen queue to the socket wligten()
4

Wait for an incoming call witaccept()

Caution Programmers should take care to avoid issuing contradictory system calls
when porting applications for operation with BSD IPC sockets. You
cannot, for example, issuecannect() call on a socket on which you
have previously issuedand() call. Conflicting system calls will return
the EOPNOTSUPP (223) error message.

Creating a Socket

The server process must caticket() to create a BSD IPC socket. This
must be done before any other BSD IPC system call is executed.

Syntax for socket()
Thesocket() system call and its parameters are described below.

#include <sys/types.h>
#include <x25/ccittproto.h>
#include <sys/socket.h>

int sd;
int af, type, protocol;
sd = socket(af, type, protocol);

af Identifies the socket’'s address family. For X.25 programmatic access,
AF_CCITT must be specified.

33

&

programmers.book : ch_conn.fro 34 Wed Apr{%lS:O&Ol 1996

type

protocol

sd

sd

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Identifies the type of socket. For X.25 programmatic access,
SOCK_STREAM must be specified.

Identifies the underlying protocol to be used for the socket. For X.25
programmatic access, X25_PROTO_NUM should be specified. If 0 is
specified the default protocol (X25 PROTO_NUM) is used.

If the connection is successfal] contains the socket descriptor for the
newly-created socket. If the system call encountered an error, —1 is returned
in sd, anderrno contains the error code.

The socket descriptor returned $cket() references the newly-created
socket. This descriptor is used for the subsequent system calls used to
establish an SVb(nd() , listen() andaccept()).

Refer to thesocket(2) entry in yourman pages for more information.

Binding an X.121 Address to a Socket

After your server process has created a socket and bdfsiend) sys-

tem call is executed, the server must baltl() to associate an X.121
address to the socket. Until an address is bound to the server socket, X.25
cannot reach your server.

Syntax for bind()

The bind() system call and its parameters are described below.

#include <sys/types.h>
#include <sys/socket.h>
#include <x25/x25addrstr.h>

int error;

int sd, addrlen;

struct x25addrstr bind_addr;

addrlen = sizeof(struct x25addrstr);
error = bind(sd, &bind_addr, addrlen)

The socket (returned from a previaecket() system call) to which the
address will be bound.

34

programmers.book : ch_conn.fro 35 Wed Apr{%lS:O&Ol 1996

bind_addr

addrlen

error

Caution

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Thex25addrstr structure which contains addressing information. The
addressing information defines the types of CALL REQUEST packets that
the server will handle. For a description of the issues associated with
addressing, see chapter 2.

The length of the&25addrstr structure in bytes.

If the call successfully completessror contains a 0. If the system call
encountered an error, =1 is returned in error,eamd contains the cause
of the error.

Refer to thebind(2 entry in yourman pages for more information.

Preparing a Listen Socket

Thelisten() system call prepares a socket to receive CALL INDICA-
TION packets whose address matches the address previously bound to the
socket with &ind() call. All eligible CALL INDICATION packets are

put into this queue. The server cannot receive a connection request until it
has executedlssten() call.

Once disten() call has been executed on a socket, calls that are
correctly addressed are automatically accepted by the X.25 software. This
prevents any time-outs from taking place while a client's request waits in the
listen queue. A new socket is created along with all of the resources required
to operate it including send and receive buffers.

If the bind_addr parameter specifies a specific interface name (i.e.
Call-Matching by X.25 Interface Name), the corresponding X.25
interface must be initializeefore issuance of aind () call.

Even if thebind_addr parameter does not specify an interface
name (i.e. calls can be received from any interface), at least one
X.25 interface must be initializdueforethe issuance of laind ()

call.

The new socket is:

» created with the same properties adigten() socket (family =
AF_CCITT, type = SOCK_STREAM).

» connected to the client process’s socket.

For more on this, see “Controlling Call Acceptance” on page 43.

35

&

programmers.book : ch_conn.fro 36 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Syntax for listen()
Thelisten() system call and its parameters are described below.

int error;
int sd, backlog;
error = listen(sd, backlog);

sd The socket descriptor for a created and bound socket on which the process
will wait for incoming CALL INDICATION packets.

backlog The maximum length of the listen queue. Range: 1 to 20. Additional
incoming CALL INDICATION packets are put into the queue regardless of
the Range value. This allows the system to handle traffic surges without
unexpected disconnection.

error If the call successfully completessyror contains a 0. If an error is
encountered, —1 is returneddrror , anderrno contains the cause of the
error.

Incoming CALL INDICATION packets that match the socket’s bind address
(and the sockets created for them) are placed in the listen queue in the order
in which they are received. Backlog requests can be waiting in the listen
gueue at the same time. You cannot send or receive data on a listen socket.
Listen sockets only act as meeting points for incoming calls.

Closing the last active socket descriptor of a listen socket clears all pending
requests and empties the listen queue. The socket is unusable after the
close() call.

Refer to thdisten(2) entry in youmrman pages for more information.

Accepting a Connection

Theaccept() system call returns a socket descriptor for a socket associ-
ated with an SVC connection. This call usually establishes a connection
upon return, although this can also be controlled by the application. The
transmission of the CALL ACCEPTED packet and its contents can be con-
trolled withioctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) . Theséoctl() calls are described
below.

36

programmers.book : ch_conn.frb 37 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Theaccept() call blocks the socket until a CALL REQUEST packet
arrives (unless the listen socket is set to nonblocking mode).

Syntax for accept]

The accept() system call and its parameters are described below.

#include <sys/types.h>

#include <sys/socket.h>

#include <x25/x25addrstr.h>

int sd, fromlen;

struct x25addrstr from;

int new_sd;

fromlen = sizeof(struct x25addrstr);
new_sd = accept(sd, &from, &fromlen);

sd The socket descriptor used in a previbsten() call.

from Upon successful completion, thi&5addrstr structure will contain the
name of the local interface that received the call, and the calling address and
subaddress, if any, of the DTE which sent the CALL REQUEST packet.
This information is useful when using wildcard addressing (see chapter 2).

fromlen Upon successful completion, this integer will contain the length of the
x25addrstr structure in bytes. Before callimgcept (0) , this field
must be initialized with the size declared in x2&addrstr structure.

new_sd If the connection is successfuew_sd contains a socket descriptor for a
new socket which is connected to the incoming call. If an error is
encountered, —1 is returnedriaw_sd anderrno contains the error code.

An accept() call usually returns a CALL ACCEPTED packet. However,
the content and transmission of this packet can be controlled by the
application. Theoctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) calls are used to control CALL
ACCEPTED packets (see “Controlling Call Acceptance” on page 43).

If you set-up the listen socket to perform nonblocking I/O, your process will
not block. Your request will return -1 aedno would contain
EWOULDBLOCKhis means that there is no SVC connection request

37

programmers.book : ch_conn.fro 38 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

available at that time, but tleecept() call is ready to process when it
arrives. You can test the socket wibatl(X25 NEXT_MSG_STAT) ,
(described in the next chapter) or wathlect(2) . Theselect() call
allows you to specify when you want this test to take place.

Strategies for Server Design

HP suggests that you build a server process that creates a socket, binds an
address, attaches a listen queue, and waits for the arrival of a CALL INDI-
CATION packet with theaccept() call. When the request packet arrives,
the server process forks a child process to handle the newly established
SVC.

The child process closes the socket descriptor for the listen socket, and the
parent process closes the socket descriptor returnaddept() . The

child process goes on to service the needs of the remote process. When the
job is completed, it closes the connection and exii§2) . Meanwhile,

the parent process caliscept() and waits for the next CALL

INDICATION packet to service.

This technique may not suit all situations. If the server process will act upon
one call request at a time, it can wait for a call, accept a call, execute a
service request, close the call, and go back to wait for another call. In a
database application, for example, it is not unusual for the server to accept
only one incoming call at a time, completing the service request before
accepting another.

In this case you would not fork a child process to accept the call. Instead the
server might follow these steps:

Create a socket, bind an X.25 address to it, exdistda() on the socket.
Useaccept() to obtain a connection.

Determine which service is requested.

Perform the requested service.

Terminate the connectionl¢se()).

oo o1~ W N P

Go to step 2.

38

programmers.book : ch_conn.fro 39 Wed Apr{%lS:OQ:Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Notice that the listen socket is not closed, so incoming CALL REQUESTs
are queued on the listen socket but not acted upon until the service request is
completed.

39

programmers.book : ch_conn.fro 40 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

Connection Establishment for the Client Process

This section discusses the system calls which the client process must make
to establish agvc with a server process. There are two mandatory steps:

1 Create a socket using thecket() call.

2 Make a connection request using teanect() call.

These steps are described below.

Creating a Socket

This is similar to the server process, the client process must also use the
socket() call to create a BSD IPC socket (communications endpoint).
The socket must be created beforedtwenect() call is executed.

For a client, thesocket() call and its parameters are identical to those
used by the server when it creates a socket. See “Syntax for socket()” above. @

The socket descriptor for the newly-created socket should be included in the
connect() system call, and (after the connection is established) in all
subsequent data transmission.

Refer to thesocket(2) entry in youtrman pages for more information.

Requesting a Connection

The client process requests a connection witltdimaect() call. The
server must be prepared to service a CALL INDICATION packet (with an
active listen socket) whezonnect() is executed.

The client process specifies the X.121 address, subaddress, and protocol ID
of the server with which it wants to establish an SVC withctmnect()

call. HP does not provide a programmatic method for obtaining this
addressing information. It must be acquired from an authority associated
with the remote host. Whercannect() system call is issued, X.25 sends

a CALL REQUEST packet with the specified addressing information.

40

programmers.book : ch_conn.fro 41 Wed Apr{%lS:O&Ol 1996

sd

to_addr

to_addrlen

err

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

Syntax for connect()
Theconnect() system call and its parameters are described below.

#include <sys/types.h>
#include <x25/x25addrstr.h>
#include <sys/socket.h>

int err;
int sd;

struct x25addrstr to_addr;
int to_addrlen;
err = connect(sd, &to_addr, to_addrlen);

The socket descriptor returned by a previeosket() system call. It
must use the AF_CCITT address family.

Thex25addrstr structure containing the local interface to be used in the
call, as well as the X.121 address and subaddress of the remote server
process with which the client process will establish an SVC.

Contains the length of the5addrstr struct (in bytes) which is pointed
to byto_addr

If the call successfully completesry contains 0. If the system call
encountered an error, =1 is returneélin anderrno contains the error
number.

Theconnect() call transmits a CALL REQUEST packet and blocks the
process until the connection is ready (unless you specify nonblocking
mode).

If you place a call by issuingpnnect() on a socket which is

nonblocking, your process will not block. Your request will return
EINPROGRESS This means that the process of connecting to the remote
system has been initiated.

If your host system is connected to more than one X.25 interface and those
interfaces do not have equal connectivity, you must specify the

x25ifname field of thex25addstr structure. That field designates

which interface must be used for the connection. If your system has only one
interface, it is not necessary to designatexgt@fname field.

41

programmers.book : ch_conn.frb 42 Wed Apr{%lS:O&Ol 1996

note

note

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

If the x25ifname field is null, theconnect () call sends outbound
packets to théirst initialized interfaceby default.

The first initialized interfaceis the one that is first initialized when the
sub-system is restarted after all cards are stopped.

You can use thg25ifname field to control performance. Each interface
used to connect to a particular network can only support a fixed number of
circuits. When selecting the network interface you should also consider
bandwidth, throughput, and response-time factors.

Facilities such as call user data, or (the circuit's D bit) must be specified
before issuing theconnect() call. Facilities are specified with the
ioctl(X25_WR_FACILITIES) , and call user data is specified with
ioctl(X25_ WR_USER_DATA) . The D bit can be set with the
ioctl(X25_SEND_TYPE) . Theseioctl() calls are described in the
following chapters.

If the client and server are using protocol IDs for address matching, prior to
issuing theconnect() call, the client must specify the server's protocol ID
with theioctl(X25 WR_USER_DATA) call (see “The
ioctl(X25_WR_USER_DATA) Call” on page 84). The example below
describes how to ugectl(X25 WR_USER_DATA) to specify a remote
protocol ID.

Example (client specifying the protocolD)

The example below shows the system calls that a client must execute if the
protocol ID is to be specified in the CALL REQUEST packet.

/* put the protocol ID in the call-user data field */
struct x25_userdata userdata;

aéerdata.x25_cud_len =1, /* one byte for PID */
userdata.x25_cu_data[0] = 0x05; /*PID is 0x05 */

result = ioctl(s, X25_WR_USER_DATA, &userdata);
result = connect (s, &peeraddr, sizeof(struct x25addrstr));

Refer to theconnect(2) entry in yourman pages for more information.

42

programmers.book : ch_conn.fro 43 Wed Apr{%lS:OQ:Ol 1996

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

Controlling Call Acceptance

The server process can control the acceptance of incoming CALL
REQUESTSs. How call acceptance operates is controlled through the use of
ioctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) calls.

The steps required for controlling call acceptance are shown in the following

table.
Table 5 Controlling Call Acceptance when Establishing an SVC
Server Events X.25 Events Client
Events
1. socket() No Event No Event
2. bind() No Event No Event
3.ioctl No Event No Event
(X25_CALL_ACPT_APPROVAL)
4. listen() No Event No Event
5. accept() blocks No Event No Event
6. No Event No Event socket()
7. No Event CALL REQUEST| con-
packet transmitted| nect()
blocks

43

programmers.book : ch_conn.fro 44 Wed Apr{%lS:O&Ol 1996

Table 5

note

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

Controlling Call Acceptance when Establishing an SVC

8. No Event CALL INDICATION No Event
packet received

9. accept() unblocks No Event No Event
10.ioctl(X25_SEND_CALL_ACEPT) CALL ACCEPTED No Event
packet transmitted
11. No Event CALL CONNECTED | con-
packet received nect()
unblocks

Theioctl(X25_CALL_ACPT_APPROVAL) call is used to instruct X.25
not to automatically send the CALL ACCEPTED packet. For a listen socket,
theioctl(X25_ CALL_ACPT_APPROVAL) call should be implemented
before thdisten() call. If theioctl() call is issued after the

listen() call there is a risk that incoming calls might be automatically
accepted during the brief delay that occurs betweelisteea() and

accept() calls. Theaccept() still returns a socket descriptor

connected to the incoming SVC, but no packets are sent.

Any CALL INDICATION packet received afterlesten() and before a
ioctl(X25_CALL_ACPT_APPROVAL) is automatically accepted. Use
the ioctl(X25_NEXT_MSG_STAT) to detect if the call has been
automatically connected.

When theoctl(X25_SEND_CALL_ACEPT) call is issued on an SVC
socket it causes a CALL ACCEPTED packet to be transmitted.

The twoioctl() call acceptance calls are described below.

The ioctl (X25_CALL_ACPT_APPROVAL)

Theioctl(X25_CALL_ACPT_APPROVAL) call allows applications to
screen incoming calls. When the call is issued for a disten() socket,
a newaccept() socket is still created whenever a valid call comes in, but

44

programmers.book : ch_conn.frb 45 Wed Apr{%lS:O&Ol 1996

sd

X25_CALL_ACPT
_APPROVAL

0

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

no data can be sent or received on the new socket until an
ioctl(X25_SEND_CALL_ACPT) call is issued on the new socket. This fea-
ture must be set if:

» the process is going to control use of the D bit,
» facilities are specified,
e oruser data in the CALL ACCEPTED packet.

If the application does not want to accept the call, the circuit can be cleared
with theclose() call. Theioctl(X25_SEND_CALL_ACPT) callis
described below.

Once thaoctl(X25_CALL_ACPT_APPROVAL) is enabled, it cannot be
turned off, unless the listen socket is closed anddbket() ,bind() |,
andlisten() calls are repeated.

Syntax for ioctl (X25_CALL_ACPT_APPROVAL)

Theioctl(X25_CALL_ACPT_APPROVAL) call and its parameters are
described below.

#include <x25/x25ioctls.h>

int err;

int sd;

err = ioctl(sd, X25_CALL_ACPT_APPROVAL, 0);

A socket descriptor for a listen socket that haactept() pending on it.

The definition for the request.

A dummy variable used becausetl(X25 CALL_ACPT_APPROVAL)
does not use any arguments.

The ioctl (X25_SEND_CALL_ACEPT) Call

Theioctl(X25_SEND_CALL_ACEPT) call causes X.25 (level 3) to send a
CALL ACCEPTED packet. The call is executed on a socket descriptor
returned from amccept() call. The listen socket on which thecept()

call was issued must have previously had an

45

programmers.book : ch_conn.frb 46 Wed Apr{%lS:O&Ol 1996

sd

X25_SEND_CALL
_ACEPT

0

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

ioctl(X25_CALL_APPROVAL) issued onit. The
ioctl(X25_SEND_CALL_ACEPT) causes a CALL ACCEPTED packet to
be sent on the SVC.

If the application determines that the call should not be accepted, the call can
be rejected with a CLEAR packet by callicigse() orshutdown() on
the socket descriptor.

The application may specify D bit usage, facilities, and call user data to be
placed in the CALL ACCEPTED packet. The

ioctl(X25_SEND_TYPE) ,ioctl(X25_WR_USER_DATA) , and
ioctl(X25_WR_FACILITIES) calls control these functions. They must
be issued prior to accepting the call with the
ioctl(X25_SEND_CALL_ACEPT)

Theioctl(X25_SEND_TYPE) is described in chapter 4, the
ioctl(X25_WR_USER_DATA) is described in chapter 5, and the
ioctl(X25_WR_FACILITIES) is described in chapter 6.

Syntax for ioctl(X25_SEND_CALL_ACEPT)

Theioctl(X25_SEND_CALL_ACEPT) call and its parameters are
described below.

#include <x25/x25ioctls.h>

int err;

int sd;
err = ioctl(sd, X25_SEND_CALL_ACEPT, 0);

A socket descriptor for an SVC socket. Is returned durirgcaapt()
call.

The definition for the request.

A dummy variable used becaus25 SEND_CALL_ACEPToes not use
any arguments.

46

programmers.book : ch_conn.frb 47 Wed Apr{%lS:O&Ol 1996

Establishing and Terminating a Socket Connection
Terminating a Connection

Terminating a Connection

When data communications activity over