
programmers.book : FrontCover 1 Wed Apr 3 15:09:01 1996

®

X.25/9000

Programmer’s guide

programmers.book : FrontCover 2 Wed Apr 3 15:09:01 1996

programmers.book : programmersTOC.doc 1 Wed Apr 3 15:09:01 1996

Contents

1

1 Introduction to X.25 Programmatic Access

Overview 8

X.25 Product Description 9

X.25 Configurations 9

Using BSD IPC 11

Using BSD IPC and X.25 with the Client/Server Model 11

Getting Started with X.25 Programmatic Access 13

Example Programs 14

2 X.25 Addressing

Overview 16

Levels of Addressing 17

Preparing Address Variables 18

Addressing Options for Clients 20

Addressing Options for Servers 21

Call-Matching by X.25 Interface Name 22

Call-Matching by Called X.121 Address Only 22

Call-Matching by Subaddress 23

Call-Matching by Protocol ID 24

Using Wildcard Addressing 25

Wildcard Addresses in the x25ifname[] Field 25

Wildcard Addresses in the x25_host[] Field 25

programmers.book : programmersTOC.doc 2 Wed Apr 3 15:09:01 1996

Contents

2

Setting a Wildcard Protocol ID Local Address Mask 27

Syntax for ioctl (X25_WR_MASK_DATA) 28

Address Space Conflicts 29

3 Establishing and Terminating a Socket Connection

Overview 32

Connection Establishment for the Server Process 33

Creating a Socket 33

Binding an X.121 Address to a Socket 34

Preparing a Listen Socket 35

Accepting a Connection 36

Strategies for Server Design 38

Connection Establishment for the Client Process 40

Creating a Socket 40

Requesting a Connection 40

Example (client specifying the protocol ID) 42

Controlling Call Acceptance 43

Terminating a Connection 47

Closing a Socket Descriptor 47

Shutting Down a Socket 49

4 Sending and Receiving Data

Overview 52

programmers.book : programmersTOC.doc 3 Wed Apr 3 15:09:01 1996

Contents

3

Data transmission requirements 53

Sending Data 54

Receiving Data 55

Controlling the MDTF, D, and Q bits 56

Using the MDTF Bit 58

Using Nonblocking I/O 61

Nonblocking Behavior of System Calls 61

Getting Next Message Status 64

Setting Buffer Thresholds and Sizes 66

Setting the Write Buffer Threshold 66

Setting the Read Message Fragment Size 67

Changing the Size of Socket Buffers 68

5 Receiving and Transmitting Out-of-Band Information

Overview 72

Receiving Out-of-Band Events 73

Signal Reception 73

Building a Signal Handler 75

Example of an X.25 Signal Handler 76

The Out-of-Band Events 78

OOB_VC_DBIT_CONF 79

Transmitting Out-of-Band Events 82

Clearing a Switched Virtual Circuit 82

The ioctl(X25_WR_CAUSE_DIAG) Call 83

The ioctl(X25_WR_USER_DATA) Call 84

programmers.book : programmersTOC.doc 4 Wed Apr 3 15:09:01 1996

Contents

4

The ioctl(X25_RD_USER_DATA) Call 85

Resetting a Virtual Circuit 88

The ioctl(X25_RESET_VC) Call 88

Sending Interrupts on a VC 89

6 Extended Features

Overview 92

Using Facilities 93

The ioctl(X25_RD_FACILITIES) Call 93

The ioctl (X25_WR_FACILITIES) Call 95

Using Fast Select 99

Fast Select on the Calling Side 99

Fast Select on the Called Side 100

Fast Select Operation Summary 101

Initial Steps for Fast Select 101

Using Permanent Virtual Circuits 106

Preparing a PVC for Use 106

Reestablishing Terminated Connections 109

Obtaining programmatic diagnostics and status 111

Error codes and log messages 111

The ioctl (X25_RD_CTI) Call 111

The ioctl(X25_RD_LCI) Call 112

The ioctl(X25_RD_HOSTADR) call 113

The ioctl(X25_GET_IFSTATE) call 114

Obtaining Status Information Programmatically 115

programmers.book : programmersTOC.doc 5 Wed Apr 3 15:09:01 1996

Contents

5

A X.25 Packet Formats

Introduction 121

CALL REQUEST/INDICATION Packet 122

CALL ACCEPTED/CONNECTED Packet 125

CLEAR REQUEST/INDICATION Packet 128

DATA Packet 131

INTERRUPT Packet 133

INTERRUPT CONFIRMATION Packet 135

RESET REQUEST/INDICATION Packet 137

RESET CONFIRMATION Packet 139

B Program Examples

Example Programs 142

Reader comments 145

programmers.book : programmersTOC.doc 6 Wed Apr 3 15:09:01 1996

6

Contents

programmers.book : ch_intro.frb 7 Wed Apr 3 15:09:01 1996

7

1

Introduction to X.25 Programmatic
Access

programmers.book : ch_intro.frb 8 Wed Apr 3 15:09:01 1996

8

Introduction to X.25 Programmatic Access
Overview

Overview

This chapter introduces the X.25 product with emphasis on its X.25
programmatic access (X.25/PA) interface, which this manual describes in
detail. With X.25, application programs can control X.25 packet
transmission (level 3 of the Open Systems Interconnectivity (OSI) model).

This chapter contains 3 parts:

• X.25 Product Description

• Using BSD IPC

• Getting Started with X.25 Programmatic Access

All X.25 programmatic access is through Berkeley Software Distribution
Interprocess Communication (BSD IPC) facilities, which are also known as
Berkeley Sockets.

programmers.book : ch_intro.frb 9 Wed Apr 3 15:09:01 1996

9

Introduction to X.25 Programmatic Access
X.25 Product Description

X.25 Product Description

The X.25 Link software and hardware enable an HP system to communicate
with other HP and non-HP hosts by way of an X.25 Packet Switching
Network (PSN).

X.25 Configurations

The CCITT X.25 recommendations describe the packet interface between a
DTE (Data Terminating Equipment) and a DCE (Data Communications
Equipment). The DTE is a device (computer or terminal) which connects to
an X.25 PSN. The DCE interface is supplied by the PSN to enable the DTE
to connect to the network. This type of connection is usually made over
telephone lines via a modem.

Figure 1 illustrates a typical X.25 network configuration between an HP
9000 and a remote host using an X.25 PSN.

Figure 1 Typical X.25 Network Connection

A direct connection can be made via a modem eliminator. A modem
eliminator provides the clocking mechanism necessary to synchronize
signals between a DTE and a DCE. Two X.25 interfaces may be connected
in this way, but one of them must be configured as a DCE. This type of
configuration is called a “back-to-back configuration”.

Figure 2 illustrates a typical back-to-back configuration with a remote host.
The remote host can be any type of processor, including another HP 9000 or
any device capable of fulfilling the requirements of a DTE (or DCE in the
back-to-back configuration).

DCE

HP 9000 Remote Host

DTE
X.25

DCE DTE
X.25 PSN

programmers.book : ch_intro.frb 10 Wed Apr 3 15:09:01 1996

10

Introduction to X.25 Programmatic Access
X.25 Product Description

Figure 2 Back-to -Back Configuration

The term “remote” is used (in the relative sense) to designate a distant DTE
which can be only a few feet, or thousands of miles away from the local
DTE.

X.25 allows for the creation of multiple virtual connections over the same
connection to a PSN. Each connection is called a virtual circuit (VC). X.25
can multiplex up to 4095 VCs (CCITT) over a single physical connection to
a DCE. The X.25 PSN can route each VC to a different remote host. From
the point of view of the application, each VC is directly connected to the
remote host.

NOTE In a back-to-back configuration, all VCs must be connected to the same
remote host.

HP 9000 Remote Host
Modem

Eliminator

DTE
X.25

DTE
X.25

DCE
or

programmers.book : ch_intro.frb 11 Wed Apr 3 15:09:01 1996

11

Introduction to X.25 Programmatic Access
Using BSD IPC

Using BSD IPC

BSD IPC is a set of program development tools for interprocess communica-
tion. HP's implementation of BSD IPC is a subset of the networking services
originally developed by the University of California at Berkeley. Before you
attempt to use BSD IPC, you must be familiar with the C programming lan-
guage.

The BSD IPC facility allows you to create distributed applications that pass
data between processes (on the same computer or on different computers
connected by a network) without requiring a complete understanding of the
many layers of networking protocols. This is accomplished by using a set of
system calls. These system calls, when used in the correct sequence, allow
you to create communication endpoints called sockets and transfer data
between them.

You will also find a description here of the steps involved in establishing and
using X.25 programmatic access through BSD IPC connections. This
manual also describes the protocols you must use and how the BSD IPC
system calls interact.

The library routines and system calls that you need to implement a BSD IPC
application are described throughout this manual.

You need not specify any special libraries when compiling or linking to use
BSD IPC over X.25. The all required library routines are in the common C
library (libc.a). The compiler useslibc.a automatically.

Details of each system call are described in the Section 2 entries of your man
pages.

Using BSD IPC and X.25 with the Client/Server Model

In order to run X.25 applications over BSD IPC, two separate application
processes must be running on both ends of a VC. The following is a sequen-
tial synopsis of BSD/X.25 communications:

1 Theclient process requests a connection by sending a CALL REQUEST
packet.

2 Theserver process, receives the CALL INDICATION packet and accepts

programmers.book : ch_intro.frb 12 Wed Apr 3 15:09:01 1996

12

Introduction to X.25 Programmatic Access
Using BSD IPC

it by sending a CALL ACCEPTED packet.

The server process:

a creates a socket, binds an address or range of addresses to it,
b sets up alisten queue for receiving connection requests,
c and then passively waits for connection requests until they arrive

When a request arrives the server process can either accept or reject the
connection based on the information contained in the request.

3 The client process creates a socket and requests a connection to the remote
server process, using as a destination one of the addresses to which the
server has bound its socket.

Once the server process accepts a client process's request and a connection is
established, full-duplex (two-way) communication can occur between the
two sockets; the two processes are thenpeers and can exchange data as
equals.

programmers.book : ch_intro.frb 13 Wed Apr 3 15:09:01 1996

13

Introduction to X.25 Programmatic Access
Getting Started with X.25 Programmatic Access

Getting Started with X.25 Programmatic Access

Before you begin designing your application:

1 Finish reading this book so you have a good idea as to how processes establish a
connection, exchange data, handle asynchronous (out-of-band) events, and
terminate connections.

2 Ensure that your node or system manager has installed and configured the X.25
product on your local host.

3 The x25check(1M) command can be used to test that X.25 is running and
connected.

4 Obtain the X.121 addresses and interface names of the X.25 interfaces you intend
to use.

5 Thex25stat(1) command returns this information.

6 Determine which role your application will play in connection establishment:
client or server.

7 If your application program will play the role of the client in connection
establishment:

• Obtain the addressing information for the remote hosts and servers to which
your application will establish a connection. To a large degree this
information is application dependent and may only be available from an
authority on the remote host.

• Obtain the strategy for information exchange between your process and the
remote. This usually, but not necessarily, is an extension of the client/server
model, with different formats for requests and responses.

8 If your application program will play the role of the server in connection
establishment:

• Define the range of addresses at which you will receive connection requests
and make them known to the designers of client processes. This is dependent
on the X.25 interfaces which are connected to your local host, the addresses
used by existing servers, and the flexibility and connectivity of the clients
from which your program will be accepting connections.

• Develop a strategy for information exchange. Typically this implies that one
side of the connection requests and the other services. Often the client/server
model is retained during this phase of the connection but is not required.

programmers.book : ch_intro.frb 14 Wed Apr 3 15:09:01 1996

14

Introduction to X.25 Programmatic Access
Getting Started with X.25 Programmatic Access

Example Programs

Several pairs of programs are shipped with the X.25 product. These
programs are in the /usr/netdemo/x25 directory. Appendix B gives a
brief description of the example files.

programmers.book : ch_addr.frb 15 Wed Apr 3 15:09:01 1996

15

2

X.25 Addressing

programmers.book : ch_addr.frb 16 Wed Apr 3 15:09:01 1996

16

X.25 Addressing
Overview

Overview

This chapter discusses the issues associated with addressing over an X.25
interface. Addressing is used to define the particular interface and
application that is used during a Switched Virtual Circuit (SVC) connection.

Note The information in this chapter applies only SVCs. This information does
not apply to Permanent Virtual Circuits.

The issues discussed in this chapter include:

• Levels of Addressing

• Preparing Addressing Variables

• Addressing Options for Clients

• Addressing Options for Servers

• Call-Matching by X.25 Interface Name

• Call-Matching by Called X.121 Address Only

• Call-Matching by Subaddress

• Call-Matching by Protocol ID

• Using Wildcard Addressing

• Address Space Conflicts

programmers.book : ch_addr.frb 17 Wed Apr 3 15:09:01 1996

17

X.25 Addressing
Levels of Addressing

Levels of Addressing

X.25 allows call addressing to use an interface's programmatic access name,
the X.121 address and subaddress, and protocol ID. This information is con-
tained in thex25addrstr structure, described below.

The application can specify which X.25 interface to use when receiving and
connecting calls. This level of addressing is only useful when there is more
than one X.25 interface (as with dual-port cards or systems with multiple
cards) connected to the HP 9000 system.

note For the purposes of this discussion, and throughout this book, you should
understand the distinction between the following terms:Card—refers to
physical communications hardware,Interface (or Port)—used
interchangeably to designate the physical point of connection for
communications, andDevice—a logical entity (internal to the
communications software) that is logically associated with a particular
interface.

The application can specify which X.121 address to use when the
connection is established. Each interface connected to an X.25 PSN is
assigned a unique X.121 address. When an interface is connected to a PSN,
the subaddress also designates the X.25 interface (although for test purposes
in back-to-back configurations, it is possible to use a different X.121 address
than that specified for the PSN interface at configuration time).

The application can specify the X.121 subaddress to use in connecting the
call. The subaddress may be used to select a particular type of application on
the other end of the call.

The applications may also use the protocol ID to further select the type of
application on the other end of the call. Protocol ID addressing is fully
described in the CCITT X.244 (1984) Recommendations or chapter 6 of the
X.25 (1980) Recommendations.

programmers.book : ch_addr.frb 18 Wed Apr 3 15:09:01 1996

18

X.25 Addressing
Preparing Address Variables

Preparing Address Variables

All addressing information for both the client and server is contained in the
x25addrstr structure. This structure is defined in the include filex25/
x25addrstr.h . It is used by the client in theconnect() system call
and by the server in thebind() system call. How the client and server use
these calls is described in chapter 3.

Thex25addrstr structure consists of the following declarations:

struct x25addrstr {
 unsigned short x25_family;
 unsigned char x25hostlen;
 unsigned char x25pidlen;
 unsigned char x25pid[8];
 unsigned char x25_host[16];
 char x25ifname[13];
 } /* x25addrstr */

x25_family Specifies the address family and must be set toAF_CCITT, which is defined
in thesys/socket.h include file.

x25hostlen Specifies the offset for the end of the numeric string in the X.121 address
specified in thex25_host field described below. Range: 0 to 15 (including
subaddress digits).

x25pidlen Specifies the offset for the end of the character string that describes the
protocol ID data. This field is not used inconnect() system calls; the
protocol ID must be explicitly set in the user data field by the application.
Range: 0 to 8. Set this field to 0 in aconnect() system call or (if protocol
IDs are not used) in your application.

x25pid[8] Specifies the protocol ID data in abind() system call. The protocol ID
data is located in the call-user data field of the CALL INDICATION packet.
See “Addressing Options for Servers” below.

x25_host[16] Specifies a destination X.121 address in aconnect() system call with a
decimal string (digits 0-9). In a bind() system call, this field specifies the
range of X.121 addresses that it will receive with a decimal string and
(optionally) with wildcard characters (“?” and “*”). See “Addressing
Options for Servers” below. This field may also include a subaddress.

programmers.book : ch_addr.frb 19 Wed Apr 3 15:09:01 1996

19

X.25 Addressing
Preparing Address Variables

x25ifname[13] Specifies the name of the X.25 interface set during X.25 configuration. The
null string (“\0”) specifies the default interface inconnect() and all
interfaces inbind() . Range: 1 to 12 alphanumeric characters terminated
by the null character (“\0”).

Refer to theAF_CCITT(7F) entry in yourman pages for more
information on thex25addrstr structure.

programmers.book : ch_addr.frb 20 Wed Apr 3 15:09:01 1996

20

X.25 Addressing
Addressing Options for Clients

Addressing Options for Clients

The client process specifies the address to which it wants to connect an SVC.
The client uses thex25addrstr structure in theconnect() system call
to specify most of the addressing information. If protocol IDs are used for
call matching, the client process will also use
ioctl(X25_WR_USER_DATA) .

In general clients have no real addressing options. The client must specify
the addressing information that the network and server need to connect and
handle the call properly. This information must be obtained from some
authority for the server's host, such as the application designer or the system
administrator.

The fields employed in thex25addrstr structure when aconnect()
system call is used are given below.

x25_family Specifies the address family and must be set toAF_CCITT, which is defined
in thesys/socket.h include file.

x25hostlen Specifies the number of BCD digits in the X.121 address including the
subaddress specified in thex25_host field . Range: 0 to 15.

x25pidlen Is not used and should be set to 0.

x25pid[8] Is not used and should be set to the null string (“\0”). If a protocol ID must
be specified, theioctl(X25_WR_USER_DATA) must be used.

x25_host[16] Contains a character string of decimal digits (0-9) representing the remote
host's X.121 address and subaddress if any.

x25ifname[13] Specifies the name of the local X.25 interface to be used when sending a call
request. The interface name is set during X.25 configuration. Specify the
null string (“\0”) to use the default interface. Range: 1 to 12 alphanumeric
characters terminated by the null character (“\0”). If the local host has more
than one interface with equal connectivity the client may choose between
them for reasons of throughput and response time.

programmers.book : ch_addr.frb 21 Wed Apr 3 15:09:01 1996

21

X.25 Addressing
Addressing Options for Servers

Addressing Options for Servers

A server uses the X.25 socket address information to identify which calls it
will process. Each server uses thebind(2) system call to define the
addressing information for calls it will process. Thebind() system call is
described in chapter 3 and in your HP-UXman pages.

The discussion of incoming call-matching methods includes:

• Call-matching by interface name. An X.25 interface name is specified in the
x25ifname[] field of thex25addrstr structure. Only calls arriving over
that interface may be connected to the socket.

• Call-matching by called X.121 address. The called address is stored in the
x25_host field of thex25addrstr structure. Only calls with the specified
called address may be connected to the socket.

• Call-matching by called X.121 address and a subaddress. The subaddress is
stored in the x25_host field of thex25addrstr structure. Only calls with
the specified called address and subaddress may be connected to the socket.

• Call-matching by protocol ID. The protocol ID is set in thex25_pid[] field of
the x25addrstr structure. Only calls with the correct protocol ID can be
connected.

• Addressing conflicts inbind() calls.

When a CALL REQUEST packet arrives, three tests are performed to
attempt to match the call to a listen socket:

• The name of the interface over which the call arrived is matched against the
x25ifname field specified in thebind() .

• The called address field is matched against thex25_host field specified in the
bind() .

• The first bytes of the user data field in the CALL REQUEST packet are matched
against thex25pid field specified in thebind() .

If all of these tests succeeds, the call is connected to the socket. If the
incoming call does not match with any of the specified addresses, the call is
cleared.

programmers.book : ch_addr.frb 22 Wed Apr 3 15:09:01 1996

22

X.25 Addressing
Addressing Options for Servers

Note If any of the three tests fail, the call is cleared before reaching the socket
and the server application (above the socket) will never know anything
about this incoming call request.

The matching tests for incoming calls and how a server controls calls are
discussed below.

Call-Matching by X.25 Interface Name

The name of an X.25 interface is assigned during configuration. Refer to the
X.25/9000 User's Guide for details on the interface name.

Thex25ifname[] field of thex25addrstr structure may contain an
interface name to designate a particular X.25 interface to be used for call
connection. It can also specify that calls be connected from any X.25
interface on the system. If your application will receive calls from a single
interface, the name must be specified in thex25ifname field. If your
application shall receive calls arriving over any interface, no interface name
can be specified in thex25ifname[] field (set to the null string, “\0”).

This field is of little importance when only one X.25 interface is in use. If
more than one interface are in use, specify which interface connects to the
network in thex25ifname[] field.

To accept calls from more than one X.25 interface (but not all interfaces) a
separate socket must be created for each interfaces from which calls will be
accepted. The resultinglisten() sockets must be monitored with the
select() call to determine when a matching incoming call arrives. Refer
to “Using Nonblocking I/O” in chapter 4 of this manual.

Call-Matching by Called X.121 Address Only

The X.121 address for an X.25 interface is assigned during initialization.
When an X.25 interface is connected to a PDN, the X.121 address is
assigned to the interface by the network provider. The X.121 address is a
string of decimal digits (0-9). Refer to theX.25/9000 User's Guide for
details on X.121 address initialization.

programmers.book : ch_addr.frb 23 Wed Apr 3 15:09:01 1996

23

X.25 Addressing
Addressing Options for Servers

When an interface is connected to a PDN, only CALL REQUEST packets
with a called address field equal to the X.121 address assigned to the
interface will be delivered to the interface. In this case specifying an X.121
address is synonymous with specifying an interface name.

In back-to-back configurations, a CALL REQUEST packet with any valid
X.121 address can be received by the interface. Any CALL REQUEST
packet, regardless of its X.121 address, is processed by the interface. If a
socket with a matching X.121 address is found, a connection is made.

When issuing abind() system call, the x25_host field of the
x25addrstr can contain an X.121 address or be empty. If the
x25_host field is not empty, then the specified address must exactly match
the called address field of the CALL REQUEST packet. The called address
field must exactly match (digit-for-digit) and be of equal length to the
x25_host[] field in thex25addrstr structure specified in the
bind() call. See “Using Wildcard Addressing”.

If the x25_host field is empty, then the x25hostlen field of the bind
address is zero (no X.121 address is specified), and thex25_host field will
match the called address field of any incoming CALL REQUEST packet
with no subaddress.

Call-Matching by Subaddress

Call matching by subaddress is actually an extension of call matching by
X.121 address. The subaddress is appended to the called address field in the
CALL REQUEST packet and thex25_host[] field in the x25addrstr
structure. The subaddress, like the X.121 addresses, is a string of decimal
digits (0-9). Not all PDNs support subaddresses, and some support a varying
number of subaddress digits. Ask your node or network manager for
configuration information concerning subaddresses.

Call-matching by subaddress is one method by which several servers may
service different calls over the same interface. The programmer of the client
process must know the subaddress as well as the X.121 address before
connection begins. The X.121 addresses and the subaddresses must exactly
match in order for an incoming request to be bound to a socket.

programmers.book : ch_addr.frb 24 Wed Apr 3 15:09:01 1996

24

X.25 Addressing
Addressing Options for Servers

The combined length of the X.121 address and the subaddress must be less
than 16 digits. Thex25hostlen field must include the length of the X.121
address and the length of the subaddress.

Call-Matching by Protocol ID

Call-matching by protocol ID is a flexible way to allow multiple servers to
service incoming calls over the same interface. First the X.121 address and
subaddress is tested, and finally the protocol ID is tested for the incoming
call. If thex25pidlen field is 0, the protocol ID is not used.

The protocol ID field is at the beginning of the call user data field of the
CALL REQUEST packet. The server specifies the protocol ID in the
x25pid field of thex25addrstr structure. The protocol ID may be from
1 to 9 bytes long. The CCITT X.244 Recommendations describes protocol
ID addressing.

Client and server programmers must agree upon how many bits to specify
for the protocolID, but the length is not defined by theX.244 (1984) andX.25

(1980) Recommendations. HP suggests that you use protocolIDs to match
incoming calls to sockets, because a single listen socket can be used for any
number ofX.25 interfaces (independent ports), and subaddresses are not
always supported over PDNs.

You can also set a bit mask to specify a range of protocolIDs. The bit mask
is described in “Using Wildcard Addressing”. Matching by protocolID can
identify higher-level protocols, such as those specified byPAD support.

programmers.book : ch_addr.frb 25 Wed Apr 3 15:09:01 1996

25

X.25 Addressing
Using Wildcard Addressing

Using Wildcard Addressing

Wildcard addresses are used inbind() calls only. They cannot be used in
connect() calls. Wildcard addressing allows a single listen socket to con-
nect to incoming calls using a variety of addresses and protocol IDs.

There are three types of wildcard addressing. The one which is implemented
depends on the field in thex25addrstr structure that is being used. When
an incoming CALL REQUEST packet is received, thex25addrstr
structure fields are checked in the following order:x25ifname , x25_host
and thenx25pid .

Wildcard Addresses in the x25ifname[] Field

The x25ifname[] field has only one form of wildcard addressing. If you
specify the null string (“\0”), the specified address will match the X.121
address of any interface connected to your system. If you specify an inter-
face name, only calls from that one interface will match.

Wildcard Addresses in the x25_host[] Field

A wildcard address in the x25_host[] field may be the null string or use
special wildcard characters. As described above, the null string will match
only the X.121 address of the interface on the receiving end, but not the sub-
address.

The valid wildcard characters are the question mark (“?”), and the asterisk
(“*”). These characters may be used in combination with the decimal digits
normally specified in this field. When they are specified in thex25_host
field and are matched with an incoming call's called address field they have
the properties described in table below.

programmers.book : ch_addr.frb 26 Wed Apr 3 15:09:01 1996

26

X.25 Addressing
Using Wildcard Addressing

The table below illustrates the various possibilities of matching an non-
matching addresses for a given number using wildcard characters.

Table 1 Wildcard Characters

Character Meaning

? Matches any single digit in the same position; for example, 1?
matches 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

* Matches any decimal digit, including none; for example, 1*
matches any address beginning with 1 including 1 itself. It can
be used alone or as a suffix.

Table 2 Wildcard Address Matching for x25_host

Example
Address

Matching Addresses Non-Matching Addresses

7234 7234 All addresses except 7234.

723? 7230, 7231, 7232,
7233,7234,7235,
7236,7237,7238, or 7239

All addresses that do not begin
with 723, and all addresses that
are not 4 digits long.

72?4 7204, 7214, 7224, 7234,
7244, 7254, 7264,7274,
7284, or 7294

All addresses that do not begin
with 72 and end with 4, and all
addresses that are not 4 digits long

* All addresses are valid. None.

??* All addresses of 2 digits or
more are valid.

Addresses with only 1 digit (0, 1,
2, 3, 4, 5, 6, 7, 8, or 9).

*?? Invalid syntax - nothing
matches.

Invalid syntax.

programmers.book : ch_addr.frb 27 Wed Apr 3 15:09:01 1996

27

X.25 Addressing
Using Wildcard Addressing

Setting a Wildcard Protocol ID Local Address Mask

The server specifies the protocol ID for its listen socket in thex25pid field
of thex25addrstr structure. The protocol ID is part of the call user data
field in the CALL REQUEST packet. This field is added (ANDed) with the
mask specified in the ioctl(X25_WR_MASK_DATA) . The x25pid
field and the mask specified in theioctl(X25_WR_MASK_DATA) can be
combined to enable a certain degree of wildcard addressing.

The protocol ID masking match works as follows:

1 The first byte from the CALL INDICATION packet's call user data field is
“masked” (that is, logically ANDed, bit-by-bit) with the first byte of the mask
specified with theioctl(X25_WR_MASK_DATA) .

2 The result is compared to the value specified in the first byte of the x25pid field
in thex25addrstr structure specified in thebind() call.

3 If the result is unequal, the comparison fails. If equal, the comparison continues
with the next byte of each field until a mismatch occurs or the number of bytes in
the bind address's x25_pidlen field has been compared.

Use this wildcard method if the incoming protocol ID you need isn't a whole
number of bytes, or there are bytes within the field that are not part of the
protocol ID. For example, some systems place a length byte at the beginning
of the call user data field, which should be ignored in protocol ID matching.

The bit-by-bit comparison is described in the following table:

Table 3 x25pid and x25_mask Usage

Call User Data Bit
x25_mask

Data Bit
x25pid Data Bit

0 or 1 0 0 always matches

0 or 1 0 1 always fails

0 1 0 matches

1 1 1 matches

1 1 0 fails

0 1 1 fails

programmers.book : ch_addr.frb 28 Wed Apr 3 15:09:01 1996

28

X.25 Addressing
Using Wildcard Addressing

Syntax for ioctl (X25_WR_MASK_DATA)

The syntax for theioctl(X25_WR_MASK_DATA) system call and its
parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25.h>
int err;
/* DEFINE X25_MAX_PIDLEN 8
 * struct x25_mask_data {
 * u_char x25_masklen;
 * u_char x25_mask[X25_MAX_PIDLEN];
 * }
 */
int sd;
struct x25_mask_data mask;
err = ioctl(sd, X25_WR_MASK_DATA, &mask);

sd A socket descriptor for a listen socket.

X25_WR_MASK_
DATA

Indicates the type ofioctl() being performed. If the
X25_WR_MASK_DATA value or x25_mask_len value is set to 0 , the
ioctl() call returns no error and an empty mask is used. This has the
same effect as if the call were not made.

mask Indicates the mask to be ANDed with the protocol ID specified in the CALL
REQUEST packet. Thex25_mask_len field indicates the length of the
mask, and the x25_mask indicates the mask to be used.

programmers.book : ch_addr.frb 29 Wed Apr 3 15:09:01 1996

29

X.25 Addressing
Address Space Conflicts

Address Space Conflicts

The X.25 subsystem’s programming access prevents any two sockets from
binding to the same address structure. When abind() call is made, the
subsystem checks the specified address against addresses that are already
associated with the socket. Thebind() call is rejected if there is a conflict
in the space allocation of components in the address structure.

The address structure is made up of three components:

• Interface name—the name of the interface or port

• Address/subaddress—the X.121 addresses

• PID—the Protocol Identification number

Address conflicts occur withbind() calls when the specified address
structure occupies or overlaps into an address region that has already been
assigned to another socket. In this instance the system returns one of two
errors:

• EADDRNOTAVAIL—is returned when all of the addresses specified in the
bind() call include all of the addresses specified in a previously bound socket.

• EADDRINUSE—is returned when the addresses specified in the bind include
some of the addresses specified in a previously bound socket.

Table 4 Addressing Conflict Errors

Previous Bind Current Bind errno value

123* 12* EADDRNOTAVAIL

12* 123* EADDRINUSE

1?3* 123* EADDRINUSE

123* 1?2? EADDRNOTAVAIL

programmers.book : ch_addr.frb 30 Wed Apr 3 15:09:01 1996

30

X.25 Addressing
Address Space Conflicts

How to Avoid Address Conflicts

Avoid wildcard addresses with “*” and be cautious of all wildcard
addressing. Avoid wildcards that specify large address spaces when
specifying subaddresses. Specify an address space of exactly one address
when specifying non-wildcard addresses. Each question mark increases the
address space by a factor of 10; an asterisk increases the address space by
several orders of magnitude.

The best way to avoid conflicts is to coordinate the use of address space with
other servers, and write down the addresses that are in use. Check this list
whenever a new server is installed. The first entry in the list should be for the
x25server process which uses protocol ID0xFCAA0A07.

programmers.book : ch_conn.frb 31 Wed Apr 3 15:09:01 1996

31

3

Establishing and Terminating a Socket
Connection

programmers.book : ch_conn.frb 32 Wed Apr 3 15:09:01 1996

32

Establishing and Terminating a Socket Connection
Overview

Overview

This chapter describes the steps involved in establishing and terminating an
X.25 switched virtual circuit (SVC) using a BSD IPC (socket). Topics
include:

• Connection Establishment for the Server Process

• Connection Establishment for the Client Process

• Controlling Call Acceptance

• Terminating a Connection

programmers.book : ch_conn.frb 33 Wed Apr 3 15:09:01 1996

33

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Connection Establishment for the Server Process

This section describes the system calls and parameters that are executed by
the server process to establish a connection.

In the simplest case, there are four steps that the server process must
complete before a connection can be made with a client:

1 Create a socket withsocket() .

2 Bind an address to the new socket withbind() .

3 Add a listen queue to the socket withlisten() .

4 Wait for an incoming call withaccept() .

Caution Programmers should take care to avoid issuing contradictory system calls
when porting applications for operation with BSD IPC sockets. You
cannot, for example, issue aconnect() call on a socket on which you
have previously issued abind() call. Conflicting system calls will return
theEOPNOTSUPP (223) error message.

Creating a Socket

The server process must callsocket() to create a BSD IPC socket. This
must be done before any other BSD IPC system call is executed.

Syntax for socket()

Thesocket() system call and its parameters are described below.

#include <sys/types.h>
#include <x25/ccittproto.h>
#include <sys/socket.h>

int sd;
int af, type, protocol;
sd = socket(af, type, protocol);

af Identifies the socket’s address family. For X.25 programmatic access,
AF_CCITT must be specified.

programmers.book : ch_conn.frb 34 Wed Apr 3 15:09:01 1996

34

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

type Identifies the type of socket. For X.25 programmatic access,
SOCK_STREAM must be specified.

protocol Identifies the underlying protocol to be used for the socket. For X.25
programmatic access, X25_PROTO_NUM should be specified. If 0 is
specified the default protocol (X25_PROTO_NUM) is used.

sd If the connection is successful,sd contains the socket descriptor for the
newly-created socket. If the system call encountered an error, –1 is returned
in sd , anderrno contains the error code.

The socket descriptor returned bysocket() references the newly-created
socket. This descriptor is used for the subsequent system calls used to
establish an SVC (bind() , listen() andaccept()).

Refer to thesocket(2) entry in yourman pages for more information.

Binding an X.121 Address to a Socket

After your server process has created a socket and before alisten() sys-
tem call is executed, the server must callbind() to associate an X.121
address to the socket. Until an address is bound to the server socket, X.25
cannot reach your server.

Syntax for bind()

The bind() system call and its parameters are described below.

#include <sys/types.h>
#include <sys/socket.h>
#include <x25/x25addrstr.h>

int error;
int sd, addrlen;
struct x25addrstr bind_addr;
addrlen = sizeof(struct x25addrstr);
error = bind(sd, &bind_addr, addrlen)

sd The socket (returned from a previoussocket() system call) to which the
address will be bound.

programmers.book : ch_conn.frb 35 Wed Apr 3 15:09:01 1996

35

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

bind_addr Thex25addrstr structure which contains addressing information. The
addressing information defines the types of CALL REQUEST packets that
the server will handle. For a description of the issues associated with
addressing, see chapter 2.

addrlen The length of thex25addrstr structure in bytes.

error If the call successfully completes,error contains a 0. If the system call
encountered an error, –1 is returned in error, anderrno contains the cause
of the error.

Refer to thebind(2 entry in yourman pages for more information.

Preparing a Listen Socket

The listen() system call prepares a socket to receive CALL INDICA-
TION packets whose address matches the address previously bound to the
socket with abind() call. All eligible CALL INDICATION packets are
put into this queue. The server cannot receive a connection request until it
has executed alisten() call.

Once alisten() call has been executed on a socket, calls that are
correctly addressed are automatically accepted by the X.25 software. This
prevents any time-outs from taking place while a client's request waits in the
listen queue. A new socket is created along with all of the resources required
to operate it including send and receive buffers.

Caution If the bind_addr parameter specifies a specific interface name (i.e.
Call-Matching by X.25 Interface Name), the corresponding X.25
interface must be initializedbefore issuance of abind () call.
Even if thebind_addr parameter does not specify an interface
name (i.e. calls can be received from any interface), at least one
X.25 interface must be initializedbefore the issuance of abind ()
call.

The new socket is:

• created with the same properties as thelisten() socket (family =
AF_CCITT, type = SOCK_STREAM).

• connected to the client process’s socket.

For more on this, see “Controlling Call Acceptance” on page 43.

programmers.book : ch_conn.frb 36 Wed Apr 3 15:09:01 1996

36

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Syntax for listen()

The listen() system call and its parameters are described below.

int error;
int sd, backlog;
error = listen(sd, backlog);

sd The socket descriptor for a created and bound socket on which the process
will wait for incoming CALL INDICATION packets.

backlog The maximum length of the listen queue. Range: 1 to 20. Additional
incoming CALL INDICATION packets are put into the queue regardless of
the Range value. This allows the system to handle traffic surges without
unexpected disconnection.

error If the call successfully completes,error contains a 0. If an error is
encountered, –1 is returned inerror , anderrno contains the cause of the
error.

Incoming CALL INDICATION packets that match the socket’s bind address
(and the sockets created for them) are placed in the listen queue in the order
in which they are received. Backlog requests can be waiting in the listen
queue at the same time. You cannot send or receive data on a listen socket.
Listen sockets only act as meeting points for incoming calls.

Closing the last active socket descriptor of a listen socket clears all pending
requests and empties the listen queue. The socket is unusable after the
close() call.

Refer to thelisten(2) entry in yourman pages for more information.

Accepting a Connection

Theaccept() system call returns a socket descriptor for a socket associ-
ated with an SVC connection. This call usually establishes a connection
upon return, although this can also be controlled by the application. The
transmission of the CALL ACCEPTED packet and its contents can be con-
trolled with ioctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) . Theseioctl() calls are described
below.

programmers.book : ch_conn.frb 37 Wed Apr 3 15:09:01 1996

37

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Theaccept() call blocks the socket until a CALL REQUEST packet
arrives (unless the listen socket is set to nonblocking mode).

Syntax for accept()

The accept() system call and its parameters are described below.

#include <sys/types.h>
#include <sys/socket.h>
#include <x25/x25addrstr.h>
int sd, fromlen;
struct x25addrstr from;
int new_sd;
fromlen = sizeof(struct x25addrstr);
new_sd = accept(sd, &from, &fromlen);

sd The socket descriptor used in a previouslisten() call.

from Upon successful completion, thisx25addrstr structure will contain the
name of the local interface that received the call, and the calling address and
subaddress, if any, of the DTE which sent the CALL REQUEST packet.
This information is useful when using wildcard addressing (see chapter 2).

fromlen Upon successful completion, this integer will contain the length of the
x25addrstr structure in bytes. Before callingaccept (0) , this field
must be initialized with the size declared in thex25addrstr structure.

new_sd If the connection is successful,new_sd contains a socket descriptor for a
new socket which is connected to the incoming call. If an error is
encountered, –1 is returned innew_sd anderrno contains the error code.

An accept() call usually returns a CALL ACCEPTED packet. However,
the content and transmission of this packet can be controlled by the
application. Theioctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) calls are used to control CALL
ACCEPTED packets (see “Controlling Call Acceptance” on page 43).

If you set-up the listen socket to perform nonblocking I/O, your process will
not block. Your request will return -1 anderrno would contain
EWOULDBLOCK. This means that there is no SVC connection request

programmers.book : ch_conn.frb 38 Wed Apr 3 15:09:01 1996

38

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

available at that time, but theaccept() call is ready to process when it
arrives. You can test the socket withioctl(X25_NEXT_MSG_STAT) ,
(described in the next chapter) or withselect(2) . Theselect() call
allows you to specify when you want this test to take place.

Strategies for Server Design

HP suggests that you build a server process that creates a socket, binds an
address, attaches a listen queue, and waits for the arrival of a CALL INDI-
CATION packet with theaccept() call. When the request packet arrives,
the server process forks a child process to handle the newly established
SVC.

The child process closes the socket descriptor for the listen socket, and the
parent process closes the socket descriptor returned by accept() . The
child process goes on to service the needs of the remote process. When the
job is completed, it closes the connection and callsexit(2) . Meanwhile,
the parent process callsaccept() and waits for the next CALL
INDICATION packet to service.

This technique may not suit all situations. If the server process will act upon
one call request at a time, it can wait for a call, accept a call, execute a
service request, close the call, and go back to wait for another call. In a
database application, for example, it is not unusual for the server to accept
only one incoming call at a time, completing the service request before
accepting another.

In this case you would not fork a child process to accept the call. Instead the
server might follow these steps:

1 Create a socket, bind an X.25 address to it, executelisten() on the socket.

2 Useaccept() to obtain a connection.

3 Determine which service is requested.

4 Perform the requested service.

5 Terminate the connection (close()).

6 Go to step 2.

programmers.book : ch_conn.frb 39 Wed Apr 3 15:09:01 1996

39

Establishing and Terminating a Socket Connection
Connection Establishment for the Server Process

Notice that the listen socket is not closed, so incoming CALL REQUESTs
are queued on the listen socket but not acted upon until the service request is
completed.

programmers.book : ch_conn.frb 40 Wed Apr 3 15:09:01 1996

40

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

Connection Establishment for the Client Process

This section discusses the system calls which the client process must make
to establish anSVC with a server process. There are two mandatory steps:

1 Create a socket using thesocket() call.

2 Make a connection request using theconnect() call.

These steps are described below.

Creating a Socket

This is similar to the server process, the client process must also use the
socket() call to create a BSD IPC socket (communications endpoint).
The socket must be created before theconnect() call is executed.

For a client, thesocket() call and its parameters are identical to those
used by the server when it creates a socket. See “Syntax for socket()” above.

The socket descriptor for the newly-created socket should be included in the
connect() system call, and (after the connection is established) in all
subsequent data transmission.

Refer to thesocket(2) entry in yourman pages for more information.

Requesting a Connection

The client process requests a connection with theconnect() call. The
server must be prepared to service a CALL INDICATION packet (with an
active listen socket) whenconnect() is executed.

The client process specifies the X.121 address, subaddress, and protocol ID
of the server with which it wants to establish an SVC with theconnect()
call. HP does not provide a programmatic method for obtaining this
addressing information. It must be acquired from an authority associated
with the remote host. When aconnect() system call is issued, X.25 sends
a CALL REQUEST packet with the specified addressing information.

programmers.book : ch_conn.frb 41 Wed Apr 3 15:09:01 1996

41

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

Syntax for connect()

Theconnect() system call and its parameters are described below.

#include <sys/types.h>
#include <x25/x25addrstr.h>
#include <sys/socket.h>

int err;
int sd;

struct x25addrstr to_addr;
int to_addrlen;
err = connect(sd, &to_addr, to_addrlen);

sd The socket descriptor returned by a previoussocket() system call. It
must use the AF_CCITT address family.

to_addr Thex25addrstr structure containing the local interface to be used in the
call, as well as the X.121 address and subaddress of the remote server
process with which the client process will establish an SVC.

to_addrlen Contains the length of thex25addrstr struct (in bytes) which is pointed
to by to_addr .

err If the call successfully completes,err contains 0. If the system call
encountered an error, –1 is returned inerr, anderrno contains the error
number.

Theconnect() call transmits a CALL REQUEST packet and blocks the
process until the connection is ready (unless you specify nonblocking
mode).

If you place a call by issuingconnect() on a socket which is
nonblocking, your process will not block. Your request will return
EINPROGRESS . This means that the process of connecting to the remote
system has been initiated.

If your host system is connected to more than one X.25 interface and those
interfaces do not have equal connectivity, you must specify the
x25ifname field of thex25addstr structure. That field designates
which interface must be used for the connection. If your system has only one
interface, it is not necessary to designate thex25ifname field.

programmers.book : ch_conn.frb 42 Wed Apr 3 15:09:01 1996

42

Establishing and Terminating a Socket Connection
Connection Establishment for the Client Process

If the x25ifname field is null, theconnect () call sends outbound
packets to thefirst initialized interface by default.

note The first initialized interface is the one that is first initialized when the
sub-system is restarted after all cards are stopped.

You can use thex25ifname field to control performance. Each interface
used to connect to a particular network can only support a fixed number of
circuits. When selecting the network interface you should also consider
bandwidth, throughput, and response-time factors.

note Facilities such as call user data, or (the circuit’s D bit) must be specified
before issuing theconnect() call. Facilities are specified with the
ioctl(X25_WR_FACILITIES) , and call user data is specified with
ioctl(X25_WR_USER_DATA) . The D bit can be set with the
ioctl(X25_SEND_TYPE) . Theseioctl() calls are described in the
following chapters.

If the client and server are using protocol IDs for address matching, prior to
issuing theconnect() call, the client must specify the server's protocol ID
with theioctl(X25_WR_USER_DATA) call (see “The
ioctl(X25_WR_USER_DATA) Call” on page 84). The example below
describes how to useioctl(X25_WR_USER_DATA) to specify a remote
protocol ID.

Example (client specifying the protocolID)

The example below shows the system calls that a client must execute if the
protocol ID is to be specified in the CALL REQUEST packet.

/* put the protocol ID in the call-user data field */
struct x25_userdata userdata;
...
userdata.x25_cud_len = 1; /* one byte for PID */
userdata.x25_cu_data[0] = 0x05; /*PID is 0x05 */
result = ioctl(s, X25_WR_USER_DATA, &userdata);
...
result = connect (s, &peeraddr, sizeof(struct x25addrstr));

Refer to theconnect(2) entry in yourman pages for more information.

programmers.book : ch_conn.frb 43 Wed Apr 3 15:09:01 1996

43

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

Controlling Call Acceptance

The server process can control the acceptance of incoming CALL
REQUESTs. How call acceptance operates is controlled through the use of
ioctl(X25_CALL_ACPT_APPROVAL) and
ioctl(X25_SEND_CALL_ACEPT) calls.

The steps required for controlling call acceptance are shown in the following
table.

Table 5 Controlling Call Acceptance when Establishing an SVC

Server Events X.25 Events
Client
Events

1. socket() No Event No Event

2. bind() No Event No Event

3. ioctl
(X25_CALL_ACPT_APPROVAL)

No Event No Event

4. listen() No Event No Event

5. accept() blocks No Event No Event

6. No Event No Event socket()

7. No Event CALL REQUEST
packet transmitted

con-
nect()
blocks

programmers.book : ch_conn.frb 44 Wed Apr 3 15:09:01 1996

44

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

The ioctl(X25_CALL_ACPT_APPROVAL) call is used to instruct X.25
not to automatically send the CALL ACCEPTED packet. For a listen socket,
the ioctl(X25_CALL_ACPT_APPROVAL) call should be implemented
before thelisten() call. If theioctl() call is issued after the
listen() call there is a risk that incoming calls might be automatically
accepted during the brief delay that occurs between thelisten() and
accept() calls. Theaccept() still returns a socket descriptor
connected to the incoming SVC, but no packets are sent.

note Any CALL INDICATION packet received after alisten() and before a
ioctl(X25_CALL_ACPT_APPROVAL) is automatically accepted. Use
the ioctl(X25_NEXT_MSG_STAT) to detect if the call has been
automatically connected.

When theioctl(X25_SEND_CALL_ACEPT) call is issued on an SVC
socket it causes a CALL ACCEPTED packet to be transmitted.

The twoioctl() call acceptance calls are described below.

The ioctl (X25_CALL_ACPT_APPROVAL)

The ioctl(X25_CALL_ACPT_APPROVAL) call allows applications to
screen incoming calls. When the call is issued for a givenlisten() socket,
a newaccept() socket is still created whenever a valid call comes in, but

8. No Event CALL INDICATION

packet received
No Event

9. accept() unblocks No Event No Event

10. ioctl(X25_SEND_CALL_ACEPT) CALL ACCEPTED

packet transmitted
No Event

11. No Event CALL CONNECTED

packet received
con-
nect()
unblocks

Table 5 Controlling Call Acceptance when Establishing an SVC

programmers.book : ch_conn.frb 45 Wed Apr 3 15:09:01 1996

45

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

no data can be sent or received on the new socket until an
ioctl(X25_SEND_CALL_ACPT) call is issued on the new socket. This fea-
ture must be set if:

• the process is going to control use of the D bit,

• facilities are specified,

• or user data in the CALL ACCEPTED packet.

If the application does not want to accept the call, the circuit can be cleared
with theclose() call. Theioctl(X25_SEND_CALL_ACPT) call is
described below.

Once theioctl(X25_CALL_ACPT_APPROVAL) is enabled, it cannot be
turned off, unless the listen socket is closed and thesocket() , bind() ,
andlisten() calls are repeated.

Syntax for ioctl (X25_CALL_ACPT_APPROVAL)

The ioctl(X25_CALL_ACPT_APPROVAL) call and its parameters are
described below.

#include <x25/x25ioctls.h>
int err;
int sd;
err = ioctl(sd, X25_CALL_ACPT_APPROVAL, 0);

sd A socket descriptor for a listen socket that has noaccept() pending on it.

X25_CALL_ACPT
_APPROVAL

The definition for the request.

0 A dummy variable used becauseioctl(X25_CALL_ACPT_APPROVAL)
does not use any arguments.

The ioctl (X25_SEND_CALL_ACEPT) Call

The ioctl(X25_SEND_CALL_ACEPT) call causes X.25 (level 3) to send a
CALL ACCEPTED packet. The call is executed on a socket descriptor
returned from anaccept() call. The listen socket on which theaccept()
call was issued must have previously had an

programmers.book : ch_conn.frb 46 Wed Apr 3 15:09:01 1996

46

Establishing and Terminating a Socket Connection
Controlling Call Acceptance

ioctl(X25_CALL_APPROVAL) issued on it. The
ioctl(X25_SEND_CALL_ACEPT) causes a CALL ACCEPTED packet to
be sent on the SVC.

If the application determines that the call should not be accepted, the call can
be rejected with a CLEAR packet by callingclose() orshutdown() on
the socket descriptor.

The application may specify D bit usage, facilities, and call user data to be
placed in the CALL ACCEPTED packet. The
ioctl(X25_SEND_TYPE) , ioctl(X25_WR_USER_DATA) , and
ioctl(X25_WR_FACILITIES) calls control these functions. They must
be issued prior to accepting the call with the
ioctl(X25_SEND_CALL_ACEPT) .

The ioctl(X25_SEND_TYPE) is described in chapter 4, the
ioctl(X25_WR_USER_DATA) is described in chapter 5, and the
ioctl(X25_WR_FACILITIES) is described in chapter 6.

Syntax for ioctl(X25_SEND_CALL_ACEPT)

The ioctl(X25_SEND_CALL_ACEPT) call and its parameters are
described below.

#include <x25/x25ioctls.h>
int err;
int sd;
err = ioctl(sd, X25_SEND_CALL_ACEPT, 0);

sd A socket descriptor for an SVC socket. Is returned during anaccept()
call.

X25_SEND_CALL
_ACEPT

The definition for the request.

0 A dummy variable used becauseX25_SEND_CALL_ACEPT does not use
any arguments.

programmers.book : ch_conn.frb 47 Wed Apr 3 15:09:01 1996

47

Establishing and Terminating a Socket Connection
Terminating a Connection

Terminating a Connection

When data communications activity over an SVC is completed, the connec-
tion should be terminated to free network memory and other resources. This
also reduces communications costs because most PDNs charge for transmis-
sion and connection time.

An SVC is terminated when a CLEAR REQUEST packet is transmitted. A
CLEAR packet can be transmitted to both ends of an SVC by the network
provider, or it can be transmitted by one of the processes using the SVC. An
X.25 application can transmit a CLEAR REQUEST packet by issuing a
close() call on the last open socket descriptor for the socket associated
with that SVC, or by issuing ashutdown() call on the socket associated
with that SVC.

When a process terminates, all open socket descriptors are closed
automatically.

Closing a Socket Descriptor

Theclose() system call closes a socket descriptor. If aclose() is
issued on the last open socket descriptor for an SVC socket, a CLEAR
REQUEST packet is transmitted on the SVC.

If a process is no longer using a socket descriptor, it should be closed using
theclose() system call. This technique prevents the SVC from remaining
connected after the last process has completed using it.

One of the design strategies described earlier suggested that a server process
monitor a listen socket and then fork a child process to handle SVCs as they
arrive. The server should close the socket descriptor for the newly-created
socket immediately after spawning the child process. This allows the child
process to close its socket descriptor and transmit a CLEAR REQUEST
packet when needed. If the server did not close its socket descriptor, no
CLEAR packet would be transmitted and the SVC would remain connected.

programmers.book : ch_conn.frb 48 Wed Apr 3 15:09:01 1996

48

Establishing and Terminating a Socket Connection
Terminating a Connection

Syntax for close()

The following is the syntax for theclose() system call and its parameters:

int err;
int sd;
err = close(sd);

sd A socket descriptor for a listen socket or an SVC socket. If there are other
open socket descriptors for the socket, the socket is no longer usable by the
process issuing the call. If there are no other open socket descriptors for the
socket, the socket is destroyed and may not be used again by any process. If
sd is the last open socket descriptor and a descriptor for an SVC socket, a
CLEAR REQUEST packet is transmitted on the SVC.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned, anderrno is set to indicate the error. Even when a nonzero value
is returned,sd will not be usable.

The state of the socket and the state of the circuit are independent of one
another. When a socket is closed, it vanishes and cannot be accessed again.
When a circuit is cleared and the socket is not closed, it can no longer
transmit data. However, you can read any unread out-of-band data that
arrived on the inboundrecv() queues before the clear. Any unread normal
data cannot be read. See chapter 5 for more on receiving out-of-band data.

When the lastclose call is executed on a socket descriptor, any data that
has not yet been sent or received is lost.

The best way to end a session without losing data is summarized below:

1 With thesend() call, the sending side sends an “I am finished” message—the
message content is defined by the application designer.

2 The receiving side reads this “I am finished” message with therecv() call.

3 The receiving side closes the virtual circuit with aclose() call.

4 The sending side receives notification of theclose() with arecv(OOB) call.

5 The sending side frees its socket resources by issuing aclose() call.

You can specify data and facilities information in the CLEAR packet sent by
the finalclose() . See the “RESET and CLEAR Packets” in chapter 5 for
details.

programmers.book : ch_conn.frb 49 Wed Apr 3 15:09:01 1996

49

Establishing and Terminating a Socket Connection
Terminating a Connection

For syntax and details onclose() , refer to theclose(2) entry in your
man pages.

Note Closing a socket immediately after sending data can result in data loss.

Shutting Down a Socket

When your program finishes reading or writing on a particular socket con-
nection, it can callshutdown(2) to bring down a part of the connection.
Unlike close() , shutdown() affects the entire socket and all other
socket descriptors.shutdown() causes all or part of an SVC to be dis-
abled regardless of how many other socket descriptors are open on the
socket.

Syntax for shutdown()

The following section describes the syntax forshutdown() and its parame-
ters:

int err;
int sd, how;
err = shutdown(sd, how);

sd A socket descriptor for a listen socket or an SVC socket. The call affects the
entire socket whether or not other socket descriptors are open on the socket.

how Describes the type of shutdown. Can be set to one of three possible values:

• 0—disables data reception on the socket, but the connection is not cleared.
If data is received on the connection, it is lost. The socket descriptor may
still be used to read any unread data and transmit data.

• 1—clears the connection, any unread data cannot be read using the socket
descriptor.

• 2—disables reception and transmission. A CLEAR REQUEST packet is
sent on the SVC. Any unread data can be read.

On a listen socket allhow values have the same effect—all requests in the
listen queue are cleared and any requests received after theshutdown()
are cleared.

programmers.book : ch_conn.frb 50 Wed Apr 3 15:09:01 1996

50

Establishing and Terminating a Socket Connection
Terminating a Connection

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned, anderrno is set to indicate the error.

Theshutdown() andclose() procedures differ in thatshutdown()
takes effect regardless of the number of open socket descriptors, while
close() takes effect only when the last process with an open socket
descriptor makes the call.

Note Theshutdown() call does not free internal system resources associated
with the socket. To free this buffer space, you must issue aclose() call.

Refer to theshutdown(2) entry in yourman pages for more information.

programmers.book : ch_data.frb 51 Wed Apr 3 15:09:01 1996

51

4

Sending and Receiving Data

programmers.book : ch_data.frb 52 Wed Apr 3 15:09:01 1996

52

Sending and Receiving Data
Overview

Overview

This chapter describes how applications can send and receive data on an
SVC socket. The topics discussed include:

• Sending and Receiving Data

• Controlling the MDTF, D, and Q bits

• Using Nonblocking I/O

• Getting Next Message Status

• Setting the Buffer Thresholds and Sizes

This chapter assumes that the SVC has been established using the techniques
described in chapter 3. Once the connection has been established, the
distinctions between the client and server processes break down. The peer
processes on either side of an SVC can transmit and receive data freely and
equally.

programmers.book : ch_data.frb 53 Wed Apr 3 15:09:01 1996

53

Sending and Receiving Data
Data transmission requirements

Data transmission requirements

When an SVC has been connected, data can be sent and received over the
SVC. The sending and receiving of data is identical for both sides of a con-
nection regardless of whether the role of client or server was played when
the connection was made.

An application process can usesend() andwrite() system calls to
transmit data, and userecv() andread() system calls to receive data, on
an SVC. Usingread() and write() has the advantage of being part of
the UNIX standard I/O package. They are also simple to use. Using
send() andrecv() offers greater flexibility and control of data
transmission. They are the only calls that can be used for data in
INTERRUPT packets.

The M bit versus the MDTF bit

Data is transmitted and received as messages or message fragments. A
message contains one or more DATA packets. All packets are separated by
an M bit (“More” bit), except for the last packet.

If the MDTF bit is not used with theioctl(X25_SEND_TYPE) system
call, all of the packets which have been sent by a singlesend() or
write() system call are sent as a single message. That is, X.25 divides the
send or write buffer into packets and sends them in order with the M bit set
in all but the last packet.

If the MDTF bit is specified with theioctl(X25_SEND_TYPE) system
call, longer messages can be sent with a singlesend() or write()
system call.

Unless theioctl(X25_SET_FRAGMENT_SIZE) system call is used
with the MDTF bit, messages must be received with a singlerecv() or
read() system call. If theioctl(X25_SET_FRAGMENT_SIZE)
system call is used, the message may be read as a series of message
fragments, which allows extremely long messages to be read.

Thesend() , recv() , read() , andwrite() calls can be mixed
within a program.

programmers.book : ch_data.frb 54 Wed Apr 3 15:09:01 1996

54

Sending and Receiving Data
Data transmission requirements

Sending Data

Thesend(2) andwrite() calls can be used anytime after a connection
has been established. The caller is blocked until the specified number of
bytes have been queued to be sent, unless you are using nonblocking I/O.
Nonblocking I/O is described later in this chapter.

If the number of bytes to be transmitted is greater than the packet size
permits, the data will be transmitted in a series of packets with the M bit set
automatically. If you need to send a message which is longer than a single
send(2) or write(2) buffer, you can control the use of the M bit with
ioctl(X25_SEND_TYPE) .

The syntax forwrite() is fully described in your HP-UXman pages.

Syntax for send()

The syntax for thesend() system call and its parameters are described
below.

#include <sys/types.h>
#include <sys/socket.h>
int count;

int sd;
char *msg;
int len, flags;

count = send(sd, msg, len, flags);

sd A socket descriptor for a connected SVC socket.

msg A pointer to the buffer containing the data to be transmitted over the SVC.
Although this is a character buffer, X.25 has no requirement that the data
actually be ASCII characters. This is entirely up to the application.

len The length of themsg buffer in bytes.

flags Indicates the type of data and packet in which to send the data. If 0 is
specified, then X.25 sends a DATA packet containing the data. If the out-of-
band flag is set (OOB_MSG), then X.25 sends an INTERRUPT packet
containing the data. For details on sending interrupt data, refer to chapter 5.

count Is either –1 or the number of bytes actually sent. If count is –1, thenerrno
contains the error code. Iferrno returnedEINTR, a signal was received.

programmers.book : ch_data.frb 55 Wed Apr 3 15:09:01 1996

55

Sending and Receiving Data
Data transmission requirements

If a SIGURG signal is received during asend() call, the state of the VC
may have changed. Design your program to check the state of the VC before
attempting tosend() data again after a SIGURG signal has arrived.

Refer to thesend(2) entry in your HP-UXman pages for more on this.

Receiving Data

Therecv(2) andread(2) calls can be issued any time after a connec-
tion has been established. The caller is blocked until there is a message
available for reception, unless nonblocking I/O is in use. Nonblocking I/O is
described later in this chapter.

If X.25 receives a series of packets with the M bit set, the packets must be
read with a single system call, or as a series of message fragments. If the
application is reading message fragments the
ioctl(X25_SET_FRAGMENT_SIZE) must be set.

The syntax forread() is fully described in your HP-UXman pages.

Syntax for recv()

The syntax for therecv() system call and its parameters are described
below.

#include <sys/types.h>
#include <sys/socket.h>
int count;

int sd;
char *buf;
int len, flags;

count = recv(sd, buf, len, flags);

sd A socket descriptor for a connected SVC socket.

buf A pointer to the buffer which will receive the data message. Although this is
a character buffer, X.25 has no requirement that the data actually be ASCII
characters. This is entirely up to the application.

len The length ofbuf in bytes. If the message or message fragment available to
be read is larger than the value specified inlen , the remainder of the
message or message fragment will be discarded. Once the data has been read

programmers.book : ch_data.frb 56 Wed Apr 3 15:09:01 1996

56

Sending and Receiving Data
Data transmission requirements

it is discarded. TheMSG_PEEK allows a message to be received without any
data being discarded. The number of bytes to be read can be obtained with
ioctl(X25_NEXT_MSG_STAT) , described later in this chapter.

flags Indicates the type of data to be read, and whether or not to discard the
message after reception. If 0 is specified, then X.25 returns data transmitted
in normal DATA packets. If the peek flagMSG_PEEKis set, the data is
copied into the buffer, but not discarded afterwards. If the out-of-band flag is
set(OOB_MSG), then the call never blocks and X.25 returns data from the
out-of-band queue. IfOOB_MSG is set and no out-of-band data is available,
recv() returns 0. For details on receiving interrupt data, refer to chapter 5.

count Either –1 or the number of bytes actually copied intobuf . If count is –1,
thenerrno contains the error code. Iferrno returnedEINTR, a signal
was received. Correct the cause of the error before attempting torecv()
data again. If the out-of-band flag is set (OOB_MSG), then the call never
blocks and X.25 returns data form the out-of-band queue.

Unless nonblocking I/O is being used,recv() blocks until a complete
X.25 message arrives, a signal arrives (for example, SIGURG), or the VC is
terminated. Nonblocking I/O is described later in this chapter.

Controlling the MDTF, D, and Q bits

The MDTF, D, and Q bits are used to indicate special usage of DATA pack-
ets. X.25 allows applications to control the use of these bits with
ioctl(X25_SEND_TYPE) .

When the M bit (more bit) is set in a DATA packet it indicates that the
message requires one or more additional packets before it is completed. The
M bit can be used automatically or under application control: all packets
used to transmit a singlesend() or write() buffer are linked with the
M bit.

When the D bit (Delivery Confirmation bit) is set in a DATA packet it
requires that confirmation be sent upon its arrival at the remote DTE. To use
the D bit in data transmission, the D bit must be set at connection time in the
CALL REQUEST or CALL ACCEPTED packet.

The Q bit (Qualifier bit) is used to indicate a PAD CONTROL packet and is
used when the remote DTE is a Packet Assembler/Disassembler (PAD).
PAD CONTROL packets can control the operation of the PAD. PAD

programmers.book : ch_data.frb 57 Wed Apr 3 15:09:01 1996

57

Sending and Receiving Data
Data transmission requirements

CONTROL packets received indicate success or failure in the control
operations sent. For a complete description of how to control a PAD and the
meaning of the response packets, consult the CCITT X.29 and X.3
Recommendations.

The use of this bit is undefined if the remote DTE is not a PAD or emulating
a PAD. Therefore, the application may use it for its own purposes when PAD
CONTROL packets are not used on the SVC.

Syntax for ioctl(X25_SEND_TYPE)

The syntax for theioctl(X25_SEND_TYPE) system call and its parameters
are described below.

#include <x25/x25ioctls.h>
#include <x25/x25.h>
int err;
int sd, type;
err = ioctl(sd, X25_SEND_TYPE, &type);

sd A socket descriptor for an SVC socket. The socket need not be connected to
an SVC when theioctl() is issued.

X25_SEND_TYPE indicates the type ofioctl() being performed.

type Indicates which bits are being set with thisioctl() . HP supplies three
predefined values which indicate the position of these bits within type:
X25_MDTF_BIT, X25_Q_BIT, and X25_D_BIT . These values
represent the bits’ positions and not their actual placement; that is, they must
be used in a shift operation.

For example, the following expression returns an integer with the D bit set: 1
<< X25_D_BIT. The M, D, and Q bits can be set in the same message, but
the use of the M and D bits in the same packet are subject to CCITT
specifications. Typically, the D bit is not set in the same packet as the M bit.

Once a MDTF, D, or Q bit has been turned on with the
ioctl(X25_SEND_TYPE) , it remains on until it is explicitly turned off
with a subsequent call.

programmers.book : ch_data.frb 58 Wed Apr 3 15:09:01 1996

58

Sending and Receiving Data
Data transmission requirements

Using the MDTF Bit

The MDTF bit can be set automatically or controlled by the program. It is
set automatically when you issue asend() or write() call and when
you specify more data than a single packet can hold. The MDTF bit is auto-
matically set to link all of the packets transmitted with a single system call.

To control the use of the MDTF bit use theioctl(X25_SEND_TYPE)
call with the X25_MDTF_BIT set (set to 1). All subsequentsend() or
write() calls will be treated as fragments of a large message. That is, all
of the packets used to send the data have their MDTF bits set.

To clear the M bit on a long message use theioctl(X25_SEND_TYPE)
with the X25_MDTF_BIT call cleared (set to 0). This must be done before
the program issues the lastsend() or write() call in the message series.
The final packet of a long message does not have the M bit set.

Setting the D Bit in CALL REQUEST Packets

Use theioctl(X25_SEND_TYPE) call to set the D bit in a CALL
REQUEST packet. Once this is done issue theconnect() call to transmit
the CALL REQUEST packet.

The D bit is turned of by issuing theioctl(X25_SEND_TYPE) call after
theconnect() call. If this is not done, the next message will have the D
bit set.

Setting the D Bit in CALL ACCEPTED Packets

To set the D Bit inCALL ACCEPTED packets:

• First set the listen socket so that transmission of the CALL ACCEPTED packet
is controlled by the application. Use the
ioctl(X25_CALL_ACPT_APPROVAL) call.

• When theaccept() call returns, issue
ioctl(X25_SEND_TYPE) on the SVC socket to set the D bit for the
transmission of the CALL ACCEPTED packet.

• Finally, send the CALL ACCEPTED packet with the
ioctl(X25_SEND_CALL_ACEPT) call.

programmers.book : ch_data.frb 59 Wed Apr 3 15:09:01 1996

59

Sending and Receiving Data
Data transmission requirements

Turn off the D bit with theioctl(X25_SEND_TYPE) call after the
ioctl(SEND_CALL_ACEPT) call; otherwise, the next message you send
will have the D bit set.

Setting the D Bit in a Data Message

To use the D bit in a DATA packet, the D bit must have been set at
connection time in either the CALL REQUEST packet (on the calling side)
or the CALL ACCEPTED packet (on the called side).

Issue theioctl(X25_SEND_TYPE) call to set the D bit immediately
prior to issuing asend() or write() call. In blocking mode, the process
is blocked until confirmation is received. If the connection has been
established to use the D bit, the application can set the D bit for any data
message being transmitted. A data message may be a single packet or a set
of packets with the M bit set on all but the last packet.

The D bit is set on every data message transmitted until it is cleared with a
secondioctl(X25_SEND_TYPE) call.

Detecting D Bit Arrival and Confirmation

If you have not set the D bit during connection establishment, you will not
be able to determine if the D bit is set on an incoming message with the
ioctl(X25_NEXT_MSG_STAT) described later in this chapter. When a data
packet arrives with the D bit set, X.25 Level 3 will acknowledge the arrival
of the packet automatically. The X.25/300 subsystem acknowledges the D
bit immediately upon reception of the packet. The X.25/800 subsystem
acknowledges the D bit when the packet is received, withoutMSG_PEEK, by
the application.

If the socket is in blocking mode, the process sending data blocks until D bit
confirmation arrives. If the socket is in nonblocking mode, the X.25/800
subsystem sends an out-of-band event (OOB_VC_DBIT_CONF) to the
process. The arrival of a D bit confirmation can also be detected with the
ioctl(X25_NEXT_MSG_STAT) .

programmers.book : ch_data.frb 60 Wed Apr 3 15:09:01 1996

60

Sending and Receiving Data
Data transmission requirements

If the peer process is not using the X.25/800 subsystem, the D bit does not
imply that the process has read the data. It implies only that the data has
been received by the remote interface. If an end-to-end or disk-to-disk data
confirmation protocol is required, it must be developed between the
application processes.

Refer to thesocket_x25(7) entry in your HP-UX man pages for more
on ioctl(X25_SEND_TYPE) .

programmers.book : ch_data.frb 61 Wed Apr 3 15:09:01 1996

61

Sending and Receiving Data
Using Nonblocking I/O

Using Nonblocking I/O

Sockets are created in blocking I/O mode by default. You can specify that a
socket be put in nonblocking mode with theioctl(FIOSNBIO) call.

Syntax for ioctl(FIOSNBIO)

The syntax for theioctl(FIOSNBIO) system call and its parameters are
described below.

#include <x25/x25ioctls.h>
int err;
int sd, arg;
err = ioctl(sd, FIOSNBIO, &arg);

sd A socket descriptor for an SVC socket.

FIOSNBIO Controls whether the socket is set to blocking or nonblocking I/O mode.
This is specified by the value inarg .

arg Specifies the socket’s operating mode. If the value inarg is 0, the socket is
in blocking mode. If the value inarg is 1, the socket is in nonblocking
mode. Sockets are in blocking mode by default.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned, anderrno is set to indicate the error.

Nonblocking Behavior of System Calls

The behavior of many system calls changes when the socket is in
nonblocking mode. The system calls of primary importance to X.25
programmers are theaccept() andconnect() , send() andrecv() ,
read() andwrite() , andioctl() . These differences are described
below.

• accept() returns immediately. If no connection requests are present in the
listen queue,accept() returns –1 and the EWOULDBLOCK error is
contained inerrno . If a connection request is present in the listen queue,
accept() returns a socket descriptor for the SVC.

• connect() returns –1 immediately and the EINPROGRESS error is contained

programmers.book : ch_data.frb 62 Wed Apr 3 15:09:01 1996

62

Sending and Receiving Data
Using Nonblocking I/O

in errno . The socket may be polled with theselect() call; the socket will
select writable when connection establishment is complete. At that point data can
be retrieved from the CALL ACCEPTED packet with
ioctl(X25_RD_USER_DATA) , and data can be sent and received with
send() andrecv() calls.

• recv() andread() returns immediately. If there is a complete message to be
received in the X.25 buffer space, the data is returned immediately. If no data is
available to be received,recv() andread() return the value –1 and the
EWOULDBLOCK error is contained inerrno.

• send() andwrite() returns immediately. If there is X.25 buffer space
available, for thesend() or write() buffer, the data is transferred into the
X.25 buffer space and sent in the order it was received. If there is no available
buffer space for the data to be transmitted,send() andwrite() return the
value –1 and the EWOULDBLOCK error is placed inerrno . In this case the call
must be reissued at a later time.

• Series 800 only:send() andwrite() with the D Bit Set returns immediately.
When the D bit is set, the data is transmitted as described above. When the D bit
confirmation arrives the X.25 subsystem sends SIGURG signal to the process and
the eventOOB_VC_DBIT_CONF is added to the out-of-band queue. While
waiting for D bit confirmation, the process must not send any more data until
confirmation is received.

• send(MSG_OOB) returns immediately. If there is X.25 out-of-band buffer
space available, the data is transferred into it and sent. If there is no available out-
of-band buffer space for the data to be transmitted,send() returns the value –1
and the EWOULDBLOCK error is placed inerrno. The call must be reissued
at a later time. The use ofsend() to transmit out-of-band data is fully described
in chapter 5.

When the INTERRUPT CONFIRMATION packet arrives, the subsystem
sends a SIGURG signal to the process withOOB_VC_INTERRUPT_CONF
in the out-of-band queue. The process must not send a second INTERRUPT
packet until interrupt confirmation has been received or a reset indication
has been received.

• ioctl() returns immediately. Mostioctl() values used by X.25 are not
directly related to the transmission and reception of packets. The
ioctl(X25_RESET_VC) andioctl(X25_SEND_CALL_ACEPT) cause
the transmission of packets. Both of theseioctl() types cause a packet to be
sent. Theioctl(X25_SEND_CALL_ACEPT) never blocks because all
transmit buffers are empty when it is issued. The socket is ready for transmission
and reception.

programmers.book : ch_data.frb 63 Wed Apr 3 15:09:01 1996

63

Sending and Receiving Data
Using Nonblocking I/O

When issued in nonblocking mode, theioctl(X25_RESET_VC) returns
0 and a RESET REQUEST packet is sent on the VC. When a RESET
CONFIRMATION packet is received, X.25 sends a SIGURG signal and a
OOB_VC_RESET_CONF event is added to the out-of-band queue. No data
of any sort may be sent by the process until the confirmation has been
received.

programmers.book : ch_data.frb 64 Wed Apr 3 15:09:01 1996

64

Sending and Receiving Data
Getting Next Message Status

Getting Next Message Status

You can use theioctl(X25_NEXT_MSG_STAT) system call to obtain
information about the next available message.
ioctl(X25_NEXT_MSG_STAT) is almost always used when the
ioctl(X25_SET_FRAGMENT_SIZE) is used.
ioctl(X25_NEXT_MSG_STAT) returns the following information:

• Size of the next message or next message fragment

• Status of the MDTF, D or Q bits on the next message

• If call user data is available on the next message

• If clear data is available on the next message

• If a connection is established on the VC

Syntax for ioctl(X25_NEXT_MSG_STAT)

The syntax for theioctl(X25_NEXT_MSG_STAT) system call and its
parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* struct x25_msg_stat {
 * int x25_msg_size
 * int x25_msg_flags;
 * } x25_msg_stat;
 */
int err;

int sd;
struct x25_msg_stat status;
err = ioctl(sd, X25_NEXT_MSG_STAT, &status);

sd A socket descriptor for an SVC socket.

X25_NEXT_MSG_
STAT

Indicates that the status of the socket is being obtained.

status Indicates the current status of the next message. If
status.x25_msg_size is 0, there is no message in the queue;
otherwise, it indicates the size of the next message or the next fragment of a

programmers.book : ch_data.frb 65 Wed Apr 3 15:09:01 1996

65

Sending and Receiving Data
Getting Next Message Status

message to be read. This is useful to ensure that there is enough buffer space
for the next read system call. Thestatus.x25_msg_flags field
indicates whether the D or Q bits were set in the next message to be read.
Thestatus.x25_msg_flags field also indicates if the next fragment is
the last fragment in the message.

The M bit was set in the last packet of the last message fragment read (this
means that this is a continuation of the previous message fragment). The
position of these bits in the field are indicated by theX25_MDTF_BIT,
X25_D_BIT , andX25_Q_BIT definitions.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

programmers.book : ch_data.frb 66 Wed Apr 3 15:09:01 1996

66

Sending and Receiving Data
Setting Buffer Thresholds and Sizes

Setting Buffer Thresholds and Sizes

X.25 allows programmers to fine-tune socket behavior by specifying certain
characteristics such as when a socket (is writable) allows information to be
written to its buffers. This is accomplished by setting the threshold values
that control the size of the three socket buffers: outbound message, send, and
receive.

Setting the Write Buffer Threshold

The write buffer threshold is used to determine if there is enough buffer
space available to send another message without blocking the socket. If the
buffer space available is greater than or equal to the write threshold, the
socket will indicate writable when aselect() call is issued. The
ioctl(X25_WR_WTHRESHOLD) call is used to set the write threshold
value.

The value specified withioctl(X25_WR_THRESHOLD) effects
send() , write() , andselect() . Whenever asend() or awrite()
call are issued, the amount of space remaining in the send socket buffer is
checked; the amount of data in the outbound queue is subtracted from the
size of the send socket’s buffer. This check is performed in terms of network
memory units and so is subject to round-off error. If this remaining space is
insufficient to accept another message of the write threshold size, the free
space size for the send socket is forced to zero, and remains that way until
enough data is moved to the X.25 interface. If anothersend() or
write() call is issued during this time, the call is blocked (for
nonblocking I/O, EWOULDBLOCK is returned).

The ioctl(X25_WR_WTHRESHOLD) call and its parameters are
described below.

Syntax for ioctl (X25_WR_WTHRESHOLD)

The syntax for theioctl(X25_WR_WTHRESHOLD) system call and its
parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>

programmers.book : ch_data.frb 67 Wed Apr 3 15:09:01 1996

67

Sending and Receiving Data
Setting Buffer Thresholds and Sizes

int err;
int sd, thresh;
err = ioctl(sd, X25_WR_WTHRESHOLD, &thresh);

sd A socket descriptor for an SVC socket.

X25_WR_WTHRES
HOLD

Indicates that the write threshold is being changed.

thresh Indicates the new value for the write threshold.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

Setting the Read Message Fragment Size

X.25 assumes that all VCs will read whole messages with a singleread()
or recv() system call. This is usually the most efficient use of the VC. A
message is a set of packets that all have their M bits set to 1 (except the last
packet).

Connections over most VCs do not use extremely long messages, and the
maximum size of aread() or recv() buffer is usually sufficiently large.
However, if at any time during the connection the application anticipates
that the VC will receive messages longer than the maximumread() or
recv() buffer size, it must set the read message fragment size to a value
greater than 0.

The read() andrecv() calls return a whole number of packets, even
when a message fragment is being read. This may cause the message
fragment being read to be slightly longer or shorter than the fragment size
specified in theioctl(X25_SET_FRAGMENT_SIZE) system call. The
ioctl(X25_NEXT_MSG_STAT) call is used to indicate the necessary
buffer size in all instances.

When reading a long message requiring severalread() or recv() calls,
you must use theioctl(X25_NEXT_MSG_STAT) call to detect the end
of the message. When this call returns thex25_msg_flags value with the
X25_MDTF_BIT set to 0, the nextread() or recv() system call will
return the end of the message.

programmers.book : ch_data.frb 68 Wed Apr 3 15:09:01 1996

68

Sending and Receiving Data
Setting Buffer Thresholds and Sizes

To avoid data collision problems the
ioctl(X25_SET_FRAGMENT_SIZE) call should be issued before the
connect() call or between theaccept() and the
ioctl(X25_SEND_CALL_ACEPT) calls.

The ioctl(X25_SET_FRAGMENT_SIZE) call and its parameters are
described below.

Syntax for ioctl(X25_SET_FRAGMENT_SIZE)

The syntax for theioctl(X25_SET_FRAGMENT_SIZE) system call and its
parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
int err;
int sd, size;
err = ioctl(sd, X25_SET_FRAGMENT_SIZE, &size);

sd A socket descriptor for a VC socket.

X25_SET_FRAGM
ENT_SIZE

Indicates that the inbound message fragment size is being changed.

size Indicates the new value for the read fragment size of messages. The range is
from 0 to 32,767 where 0 indicates that all messages must be read with a
single system call.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

Changing the Size of Socket Buffers

You can set the message sizes for a socket using thesetsockopt(2)
system call. It is important for the sockets to be able to handle the largest
possible message that will be sent or received over the network. The default
send and receive buffer size is 4096 bytes.

If your interface receives a message larger than the receive socket buffer
size, the data will be discarded, the circuit will be reset, and you will receive
anOOB_VC_MSG_TOO_BIG out-of-band event.

programmers.book : ch_data.frb 69 Wed Apr 3 15:09:01 1996

69

Sending and Receiving Data
Setting Buffer Thresholds and Sizes

You can increase the size of a socket'ssend() or recv() buffer at any
time, but they can only be reduced before a connection is established.

Syntax for setsockopt()

The syntax for thesetsockopt() system call and its parameters are
described below.

#include <sys/types.h>
#include <sys/socket.h>
int err;
int sd, level, optname, optval, optlen;
optlen = sizeof(int);
err = setsockopt(sd, level, optname,(char*) &optval,
optlen);

sd A socket descriptor for an SVC socket.

level Indicates the level at which the socket takes effect. The definition
SOL_SOCKET should be specified.

optname Indicates the type of option to be modified. This can beSO_SNDBUF to
change the size of the send buffer orSO_RCVBUF to change the size of the
receive buffer.

optval Indicates the new send or receive buffer sizes where the maximum size is
58,254.

optlen Indicates the length in bytes of theoptval parameter; that is,
sizeof(int) .

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned and errno is set to indicate the error.

Increasing the send socket buffet size allows a user to send more data before
the user's application blocks, waiting for more buffer space. If more than one
message cannot be sent without the user waiting for a reply, the programmer
may want to increase the send buffer size to allow enough room to send
multiple messages.

NOTE Increasing the buffer size to send larger portions of data before the
application blocksmay increase throughput, but the best method of tuning
performance is to experiment with various buffer sizes.

programmers.book : ch_data.frb 70 Wed Apr 3 15:09:01 1996

70

Sending and Receiving Data
Setting Buffer Thresholds and Sizes

Refer to thesetsockopt(2) entry in your HP-UXman pages for more
information.

programmers.book : ch_recp.frb 71 Wed Apr 3 15:09:01 1996

71

5

Receiving and Transmitting
Out-of-Band Information

programmers.book : ch_recp.frb 72 Wed Apr 3 15:09:01 1996

72

Receiving and Transmitting Out-of-Band Information
Overview

Overview

This chapter describes how to send and receive out-of-band events. Many of
the out-of-band events are associated with the arrival or transmission of a
particular type of packet. However, in some cases, out-of-band events are
independent of a particular packet type. The topics covered in this chapter
include:

• Receiving Out-of-Band Events

• Building a Signal Handler

• Transmitting Out-of-Band Events

programmers.book : ch_recp.frb 73 Wed Apr 3 15:09:01 1996

73

Receiving and Transmitting Out-of-Band Information
Receiving Out-of-Band Events

Receiving Out-of-Band Events

Out-of-band events, such as RESET INDICATION, INTERRUPT, and
CLEAR INDICATION packets, occur during typical X.25 VC operation.

When an out-of-band event occurs, X.25 indicates the event by sending a
SIGURG signal, and places a description of the event in the out-of-band
queue.

WARNING Applications using X.25 programmatic access should be designed to
receive the SIGURG signal and process the information associated
with the event. If the process has not attached a signal handler to
receive this signal, the signal is ignored. Failure to respond to some
out-of-band events (a RESET packet for example) may result in the
VC being cleared by the network provider.

Out-of-band events are placed in the out-of-band queue regardless of
whether a signal handler has been installed. While it is possible to program
applications to periodically examine the out-of-band queue to obtain any
out-of-band events that have occurred, it is not recommended.

Signal Reception

Signal handling under HP-UX is controlled by thesignal(2) ,
sigsetmask(2) , andsigvector(2) system calls. These system calls are
described in yourHP-UX man pages. Thesigvector() system call allows
you to specify a signal handler (signal catcher) to process signals when they
arrive.

The following example shows how a signal handler may be installed to
receive the SIGURG signal:

struct sigvec vec;
int onurg();
int pid, s;

/*
** arrange for the onurg() signal handler to be called
when SIGURG is received:
*/
vec.sv_handler = onurg;

programmers.book : ch_recp.frb 74 Wed Apr 3 15:09:01 1996

74

Receiving and Transmitting Out-of-Band Information
Receiving Out-of-Band Events

vec.sv_mask; = 0
vec.sv_onstack = 0;
if (sigvector(SIGURG, &vec, 0) < 0) {
 perror("sigvector(SIGURG)");
}

In addition to installing the signal handler, you must also call
ioctl(SIOCSPGRP) to ensure that the SIGURG signal is delivered upon
receipt of the out-of-bound data as shown in the code example below. Refer
to thesocket(7) man page for more information about the
ioctl(SIOCSPGRP) call.

setsigskt(s)
int s;
{
int pid;
/* enables the current process to receive SIGURG
 * when the socket has urgent data;
 */
pid = getpid();
/* Note that specifying the process id in the next ioctl()
 * means that only this process shall receive the SIGURG
 * signal. If (-1)*getpid() is used instead, the entire

* process group (including
 * parents and children) will receive the SIGURG signal.
 */
if (ioctl(s, SIOCSPGRP, (char *) &pid) < 0) {
 perror ("ioctl(SIOCSPGRP)");
 }

Once installed, the signal handler is called whenever the specified signal
arrives. While a signal handler is executing, additional signals of the same
type are blocked from arrival. All signals sent by a socket should be handled
by the process which is controlling the VC. This ensures process continuity.

programmers.book : ch_recp.frb 75 Wed Apr 3 15:09:01 1996

75

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

Building a Signal Handler

A signal handler is a routine that is called when a signal arrives. The signal
handler executes in the process address space and all global data items are
available to the signal handler. The process is halted while the signal handler
executes. When the signal handler returns, the process resumes execution at
the point where it was halted.

There are four steps that a signal handler should perform each time it is
executed:

1 Obtain the cause for the signal being sent.

To obtain the out-of-band event that caused the signal handler to be executed in
the first place, use therecv() system call with theMSG_OOB flag set.
recv(MSG_OOB) returns a buffer. The first byte in the buffer contains the
number of bytes in the event (range: 3 to 34 bytes). The second byte contains the
event code (described below) and the rest of the buffer contains the event data, if
any.

Therecv(MSG_OOB) call is nonblocking. If therecv() call returns 0, then
no out-of-band events were queued. If the call returns a negative value, an error
occurred. A value greater than 0 indicates the size of the buffer being returned.

2 Process the event which caused the signal to be sent.

After the cause of the event has been received, the signal handler should process
the event. Usually out-of-band events have an effect on the state of the VC. For
example, the arrival of a CLEAR INDICATION packets makes the VC
unusable. This information should be made known to the main program.
Typically, this is done with globally-defined state variables. The state variables
can be tested by the main program, or examined only after a system call returns
with an error. Many of the state changes of a VC are made known to the process
througherrno when a system call is executed.

The actual strategy used to pass information to the main program is up to the
application designer.

Possible out-of-band events, and the appropriate actions for each, are described
below.

3 Obtain any out-of-band events which may have arrived while the signal handler
was executing.

programmers.book : ch_recp.frb 76 Wed Apr 3 15:09:01 1996

76

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

No more than one signal of the same type can be blocked while a signal handler
is operating. If a second signal arrives, the first is lost. To ensure there is no loss
of data, once the signal handler is executed, it should obtain all of the data in the
out-of-band queue. That is, issuerecv(MSG_OOB) calls until a 0 is returned.

4 Return execution control to the main process.

Normal operation of the program is halted while the signal handler is executing.
When it returns, processing resumes at the point at which it was interrupted.

onurg() is a routine that handles out-of-band events in the client program.

Example of anX.25 Signal Handler

NOTE For the purpose of simplicity, this example assumes only one socket; if you
have more than one socket you can have the handler poll each socket in
turn to see if OOB information has arrived.

#define MAX_EVENT_SIZE 34
/* Define maximum OOB message size: 32 + 1 byte for the
* packet type + 1 byte for the total event size */
/* Definitions for Out-of-Band events (OOB_INTERRUPT,
 * OOB_VC_CLEAR, OOB_VC_RESET and others) are stored in
 * x25.h
 */
onurg(skt)
int skt
{
 int error, s, n, buflen;
 unsigned buf[MAX_EVENT_SIZE];

 while (1)
 {
 buflen = MAX_EVENT_SIZE;
 if ((n = recv(skt, buf, buflen, MSG_OOB)) < 0)
 {
 perror("recv MSG_OOB")
 break;
 }
 else if (n == 0) break;
 else
 switch (buf[1])
 {
 case OOB_INTERRUPT:
 printf("INTERRUPT Packet Received\n");
 for (i = 2; i < n; i++)
 printf("%d “,buf[i]);
 printf(”\n");
 break;

programmers.book : ch_recp.frb 77 Wed Apr 3 15:09:01 1996

77

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

 case OOB_VC_RESET:
 printf("RESET Packet Received\n");
 printf("Cause-code:%d\n",buf[2]);
 if (n >= 4) printf("Diagnostic code:
%d\n",buf[3])
 if (n >= 5) printf("Reason: %d\n",buf[4])
 break;
 case OOB_VC_CLEAR:
 printf("CLEAR Packet Received\n");
 printf("Cause-code:%d\n",buf[2]);
 if (n >= 4) printf("Diagnostic code:
%d\n",buf[3])
 if (n >= 5) printf("Reason: %d\n",buf[4])
 break;
 case OOB_VC_RESET_CONF:
 printf("RESET CONFIRMATION Packet Received\n");
 break;
 case OOB_VC_INTERRUPT_CONF:
 printf("INTERUPT CONFIRMATION Packet
Received\n");
 break;
 case OOB_VC_DBIT_CONF:
 printf("D-Bit Confirmation Packet Received\n");
 break;
 case OOB_VC_MSG_TOO_BIG:
 printf("Message Larger Than Inbound Buffer
Received\n");
 break;
 case OOB_VC_L2_DOWN:
 printf("X.25 Level 2 is Down\n");
 break;
 }
 }
} /* onurg */

WARNING If the out-of-band data is not read quickly, the out-of-band data queue
could overflow. If the queue overflows, subsequent out-of-band events
are discarded.

programmers.book : ch_recp.frb 78 Wed Apr 3 15:09:01 1996

78

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

The Out-of-Band Events

There are eight out-of-band (OOB) events which a signal handler can
receive. The out-of-band values are defined in thex25.h include (program
header) file. The out-of-band values are:

• OOB_INTERRUPT

• OOB_VC_CLEAR

• OOB_VC_DBIT_CONF

• OOB_VC_INTERRUPT_CONF

• OOB_VC_L2DOWN

• OOB_VC_MSG_TOO_BIG

• OOB_VC_RESET

• OOB_VC_RESET_CONF

The out-of-band events are described below.

OOB_INTERRUPT

An INTERRUPT packet was received. The confirmation is sent by the
subsystem when reading this event, if theMSG_PEEK flag was not set.

The buffer received may contain from 3 to 34 bytes of data. The first 2 bytes
of the buffer are its length and the event code respectively. The remainder of
the buffer contains the interrupt data. The use of the interrupt data is
application-dependent.

NOTE The maximum number of bytes of interrupt data depends on the version of
X.25 recommendations being used by the network. The 1980 X.25
recommendations permit 1 byte of interrupt data while the 1984 X.25
recommendations permit up to 32 bytes of interrupt data.

OOB_VC_CLEAR

A CLEAR INDICATION packet was received on the SVC: the SVC can no
longer send or receive data, and is closed. TheOOB_VC_CLEAR is always the
last event in the out-of-band queue.

programmers.book : ch_recp.frb 79 Wed Apr 3 15:09:01 1996

79

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

You can use therecv(MSG_OOB) call to read out-of-band data that arrived
before the CLEAR INDICATION packet. You can also use the
ioctl(X25_RD_USER_DATA) (described below) to read cleared user data,
if any exists. In addition, a CLEAR INDICATION packet may contain a
facilities field, that can be examined with the
ioctl(X25_RD_FACILITIES) call (see “The
ioctl(X25_RD_FACILITIES) Call” on page 93).

You can get information on the state of the interface with the
ioctl(X25_GET_IFSTATE) call.

The first byte contains the length of the buffer, and the second byte contains
the clear indication. The third bytebuf[2] contains the cause code. The
fifth bytebyte[4] always contains 0 (zero).

OOB_VC_DBIT_CONF

The D bit confirmation was received on a socket in nonblocking mode. This
event can only be received on sockets in nonblocking mode, because a
send() or write() with the D bit set blocks until confirmation is received.
For more on D bit usage see “Controlling the MDTF, D, and Q bits” on
page 56. The first byte of the buffer contains the length and the second byte
contains the event code.

OOB_VC_INTERRUPT_CONF

Confirmation to a previously-sent INTERRUPT packet was received on a
socket in nonblocking mode. This event can only be received on sockets in
nonblocking mode, becausesend(OOB_MSG) blocks until interrupt
confirmation is received.

The first 2 bytes ofbuf[] contain the buffer length and the event code
respectively.

Table 6

Value Reason

0 CLEAR INDICATION packet sent by network provider,
subsystem, orX.25 device driver.

programmers.book : ch_recp.frb 80 Wed Apr 3 15:09:01 1996

80

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

OOB_VC_L2DOWN

X.25 Level 2 is down. This event is returned only on a socket accessing a
permanent virtual circuit(PVC) ; on an SVC, a clear indication is sent.
Recover by issuing aclose() on the socket, create another socket with the
socket() system call, and binding the new socket to a PVC with the
ioctl(X25_SET_PVC) call. Level 2 will probably not come up immedi-
ately. Level 2 usually goes down because of high noise on the line for a sus-
tained period of time (see “Using Permanent Virtual Circuits” on page 106
for a description of PVC usage).

The first 2 bytes ofbuf[] contain the buffer length and the event code
respectively.

OOB_VC_MSG_TOO_BIG

This event usually means that a message larger than the inbound buffer size
was received. The data was therefore discarded and the VC was reset. This
event occurs when the receiving side’s inbound buffer size is set to a value
too small to receive the message. In this case you must increase this value
with thesetsockopt() system call to ensure that the buffer size is suffi-
cient to receive any message which may arrive, or use the
ioctl(X25_SET_FRAGMENT_SIZE) to enable the reception of message
fragments.

If a shutdown(0) is issued on the socket and a DATA packet is received, a
OOB_VC_MSG_TOO_BIG event will be delivered to the process and a
CLEAR packet will be sent on the SVC.

The first 2 bytes ofbuf[] contain the buffer length and the event code
respectively.

OOB_VC_RESET

A RESET INDICATION packet was received on the VC. Reading this
event, without theMSG_PEEK flag set, causes a RESET CONFIRMATION
packet to be sent, unblocking the sending process. A RESET can also be sent
by the X.25 network provider, in which case, both ends of the VC will
receive RESET INDICATION packets.

programmers.book : ch_recp.frb 81 Wed Apr 3 15:09:01 1996

81

Receiving and Transmitting Out-of-Band Information
Building a Signal Handler

When a RESET INDICATION packet is received, the out-of-band queue is
destroyed, and the RESET INDICATION data is placed in the out-of-band
queue as its only event. All data that is not sent or received (normal and out-
of-band data) is discarded. You must read the RESET INDICATION data
before you can send further data on that connection.

The first 2 bytes ofbuf[] contain the buffer length and the event code
respectively. The third bytebuf[2] contains the cause code. The fourth
bytebuf[3] contains the diagnostic code. If the diagnostic code was not
present in the packet, 0 is specified. The fifth bytebuf[4] contains the
reason the RESET INDICATION packet was sent. A 0 value indicates that
the RESET INDICATION packet was sent by the network provider. Other
values may be specified in the future.

After you have read the out-of-band data, you can proceed sending normal
data. The connection is then ready to send and receive more data.
Application programmers must provide a recovery mechanism to handle the
loss of data that can occur due to a RESET INDICATION.

OOB_VC_RESET_CONF

Confirmation to a previously-sentioctl(X25_RESET_VC) was received
on a socket in nonblocking mode. This event can only be received on
sockets in nonblocking mode, because in blocking mode the
ioctl(X25_RESET_VC) blocks until confirmation is received.

The first 2 bytes ofbuf[] contain the buffer length and the event code
respectively.

programmers.book : ch_recp.frb 82 Wed Apr 3 15:09:01 1996

82

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

Transmitting Out-of-Band Events

There are three types of out-of-band events that can be sent by the X.25
application: CLEAR packets, RESET packets, and INTERRUPT packets.
These packets can be sent at any time as the needs of the program dictate.
While chapter 3 discussed the use of theclose() system call for the
transmission of CLEAR packets, this chapter covers the use of the cause and
diagnostic codes, as well as the facilities and user data fields.

Clearing a Switched Virtual Circuit

An SVC can be cleared when one of the processes that use it (X.25 or the
network provider) issues a CLEAR REQUEST packet. A CLEAR
REQUEST packet can be sent by the X.25 application (with aclose() call)
otherwise it will be sent if the process terminates without executing a
close() call.

Once a CLEAR REQUEST packet is issued, data cannot be sent or received
over the connection because the connection is destroyed. The X.25
application can control the contents of certain data fields in the CLEAR
REQUEST packet. These fields and theioctl() calls which control them
are:

• cause code—ioctl(X25_WR_CAUSE_DIAG)

• diagnostic code—ioctl(X25_WR_CAUSE_DIAG)

• facilities—ioctl(X25_WR_FACILITIES)

• user data—ioctl(X25_WR_USER_DATA)

All of these calls must be issued prior to theclose() call. The
ioctl(X25_WR_CAUSE_DIAG) andioctl(X25_WR_USER_DATA) calls
are described below. Theioctl(X25_WR_FACILITIES) call is described
in chapter 6.

programmers.book : ch_recp.frb 83 Wed Apr 3 15:09:01 1996

83

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

The ioctl(X25_WR_CAUSE_DIAG) Call

The cause code that is sent depends upon the cause code specified with the
ioctl(X25_WR_CAUSE_DIAG) call and the network type specified during
X.25 interface configuration. The table below summarizes cause code set-
tings.

 Theioctl(X25_WR_CAUSE_DIAG) call must be issued prior to a RESET
or CLEAR packet in order to set cause and diagnostic codes.

NOTE: When using this call over a PDN (Public Data Network) avoid using the same cause
codes as those already employed by the network. This will facilitate eventual
troubleshooting by eliminating ambiguity regarding the originator of RESET
packets.

Syntax for ioctl(X25_WR_CAUSE_DIAG)

The ioctl(X25_WR_CAUSE_DIAG) call and its parameters are described
below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* struct x25_cause_diag {
 * u_char x25_cd_loc_rem;
 * u_char x25_cd_cause;
 * u_char x25_cd_diag;
 * }
 */
int err;
int sd;
struct x25_cause_diag diag;
err = ioctl(sd, X25_WR_CAUSE_DIAG, &diag);

Table 7 Setting Cause Codes

Network Type
Cause

Specified
Cause Sent

DTE 84 any as specified

DCE (1980 or 1984) any as specified

DTE 80 any 0

programmers.book : ch_recp.frb 84 Wed Apr 3 15:09:01 1996

84

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

sd A socket descriptor for an SVC socket.

X25_WR_CAUSE_D
IAG

The definition for the request.

diag Indicates the cause and diagnostic codes to be sent.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned and errno is set to indicate the error.

The ioctl(X25_WR_USER_DATA) Call

Theioctl(X25_WR_USER_DATA) call is used to write data to the user data
fields in CLEAR REQUEST, CALL REQUEST, and CALL ACCEPTED
packets. Call acceptance must be in effect before the call can be used on a
CALL ACCEPTED packet. You can use this call in any of the these three
situations:

• Before issuing a connect() call (to write call user data to the CALL
REQUEST packet).

• Before issuing anioctl(X25_SEND_CALL_ACCEPT) call when call-accept
approval is in effect on thelisten() socket (to write call user data to the
CALL ACCEPTED packet).

• Before issuing aclose() call (to write clear user data to the CLEAR
REQUEST packet, when the fast select facility must be in effect), or
shutdown() with the how parameter set to 1 or 2.

NOTE The call user data field in CALL REQUEST and CALL ACCEPTED
packets can be up to 16 bytes unless the fast select facility is specified. In
which case it may contain up to 128 bytes. When the fast select facility has
been specified, the clear user data field of a CLEAR REQUEST packet
may contain 128 bytes of data.

The ioctl(X25_RD_USER_DATA) call cannot be used to read data
previously written with theioctl(X25_WR_USER_DATA) call.

Syntax for ioctl(X25_WR_USER_DATA)

The ioctl(X25_WR_USER_DATA) call and its parameters are described
below.

#include <x25/x25ioctls.h>

programmers.book : ch_recp.frb 85 Wed Apr 3 15:09:01 1996

85

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

#include <x25/x25str.h>
/* define X25_MAX_CU_LEN 126
 * struct x25_userdata {
 * u_char x25_cud_len;
 * u_char x25_cud_data[X25_MAX_CU_LEN];
 * }
 */
int err;
int sd;
struct x25_userdata udata;
err = ioctl(sd, X25_WR_USER_DATA, &udata);

sd A socket descriptor for an SVC socket.

X25_WR_USER_DA
TA

The definition for the request.

udata Contains the length and the data for the user data field (x25_cud_data).
The maximum length is 126 bytes. If you want to send more than this, the
ioctl() call must be called again. Usually the maximum length of the call
user data field is 16 bytes. If the fast select facility is specified, the maximum
length of the call user data field is 128 bytes.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

WARNING Avoid using 0xCC in the first byte of the call user data field. If this is
not possible, the interface must not be used for X.25/IP. If the first byte
of an incoming call's call user data field contains 0xCC, and it arrives
over an X.25 interface which has been assigned an IP address (see the
x25init command in your X.25/9000 User’s Guide), then the X.25
subsystem will assume the call is meant for the X.25/IP interface, and
not the programmatic access interface.

The ioctl(X25_RD_USER_DATA) Call

The ioctl(X25_RD_USER_DATA) call can read any data in the clear
user data field of a CLEAR INDICATION packet or the call user data field
of an incoming CALL INDICATION or CALL CONNECTED packet. This
call is best used with theioctl(X25_NEXT_MSG_STAT) call. The
ioctl(X25_NEXT_MSG_STAT) call can determine whether call user
data is available in the next message, and whether or not clear user data is
available.

programmers.book : ch_recp.frb 86 Wed Apr 3 15:09:01 1996

86

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

There may not be any user data available or there may only be clear or call
user data available. Also both clear and call user data may be available. Use
ioctl(X25_NEXT_MESG_STAT) to determine if both are available. If both
call user data and clear user data are available, you should issue an
ioctl(X25_RD_USER_DATA) call sequence to read the call user data first,
until ioctl(X25_NEXT_MSG_STAT) says there is no longer call user data
available, then issue an additionalioctl(X25_RD_USER_DATA) call
sequence to read the clear user data.

The ioctl(X25_RD_USER_DATA) call can read a maximum of 126 bytes
of call or clear user data (one byte must contain the length) perioctl()
call. If more than 126 bytes of call or clear user data is received, the
ioctl(X25_RD_USER_DATA) must be called, until returned buffer length
is 0.

Syntax for ioctl(X25_RD_USER_DATA)

The syntax for theioctl(X25_RD_USER_DATA) call and its parameters
are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* struct x25_userdata {
 * u_char x25_cud_len;
 * u_char x25_cud_data[X25_MAX_CU_LEN];
 */ }
int err;
int sd;
struct x25_userdata udata;
err = ioctl(sd, X25_RD_USER_DATA, &udata);

sd A socket descriptor for an SVC socket over which a CLEAR INDICATION
packet, CALL INDICATION packet, or CALL CONNECTED packet has
been received.

X25_RD_USER_DA
TA

The definition for the request.

udata Contains the length of and data for the user data field, where the maximum
length is 126 bytes. If there is more than 126 bytes of call or clear user data,
the ioctl() must be called, untiludata.x25_cud_len is 0.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

programmers.book : ch_recp.frb 87 Wed Apr 3 15:09:01 1996

87

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

The code example below shows how to use the
ioctl(X25_RD_USER_DATA) call to obtain the data from a CALL or
CLEAR packet.

struct x25_userdata userdata;
struct x25_msg_stat msgstat;
unsigned char call_udata[128], clear_udata[128];
int i, call_ndata = 0,clear_ndata = 0, error = 0;
while (!error)
 {
 error = ioctl(s, X25_NEXT_MSG_STAT, &msgstat);
 if (error< 0) {
 perror("ioctl(X25_NEXT_MSG_STAT) failed");
 exit(1);
 }
 if (msgstat.x25_msg_flags & (1 << X25_CA_DATA_AVAIL))
 {
 error = ioctl(s, X25_RD_USER_DATA, &userdata);
 if (error != 0)
 {
 perror("X25_RD_USER_DATA returned error");
 break;
 }
 if (userdata.x25_cud_len == 0) break;
 for (i = 0; i < userdata.x25_cud_len; i++)
 call_udata[call_ndata++] =
userdata.x25_cu_data[i];
 }else break;
 }
/*
 * If error = 0 at this point all of the call data is now
in “call_udata”.
 * “call_ndata” gives the number of bytes of data.
 */
while (!error)
 {
 error = ioctl(s, X25_NEXT_MSG_STAT, &msgstat);
 if (error != 0)
 {
 perror("ioctl(X25_NEXT_MSG_STAT) failed");
 exit(1);
 }
 if (msgstat.x25_msg_flags & (1 << X25_CL_DATA_AVAIL))
 {
 error = ioctl(s, X25_RD_USER_DATA, &userdata);
 if (error != 0)
 {
 perror("X25_RD_USER_DATA returned error");
 break;
 }

programmers.book : ch_recp.frb 88 Wed Apr 3 15:09:01 1996

88

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

 if (userdata.x25_cud_len == 0) break;
 for (i = 0; i < userdata.x25_cud_len; i++)
 clear_udata[clear_ndata++] =
userdata.x25_cu_data[i];
 }else break;
 }
/*
 * If error = 0 at this point all of the clear data is now
in “clear_udata”.
 * “clear_ndata” gives the number of bytes of data.
 */

Resetting a Virtual Circuit

This section describes how to send RESET packets. A RESET packet clears
all data on a connection, including any inbound data queued but not yet read,
while maintaining the virtual circuit. The user application must be prepared
to handle RESET packets; the handling of RESET packets at the application
level is not defined by X.25. RESET packets can be generated by the X.25
subsystem, by the application processes on either side of the VC, or by the
network provider.

If the user application wants to send a RESET packet, the application can set
a cause code and diagnostic code with theioctl(X25_WR_CAUSE_DIAG)
call, then issue a RESET packet with theioctl(X25_RESET_VC) . The
ioctl(X25_WR_CAUSE_DIAG) call is described above under “Clearing a
Switched Virtual Circuit”.

The ioctl(X25_RESET_VC) Call

The ioctl(X25_RESET_VC) call sends a RESET REQUEST packet over
the virtual circuit. A VC cannot be reset before a connection is established or
after a connection has been cleared.

When a user application resets a circuit, and blocking I/O is in effect, the
application is blocked until a RESET CONFIRMATION packet is received.

The X.25 subsystem sends a RESET CONFIRMATION packet when the
application reads the RESET out-of-band event without the MSG_PEEK
flag set.

programmers.book : ch_recp.frb 89 Wed Apr 3 15:09:01 1996

89

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

If nonblocking I/O is in effect, theioctl(X25_RESET_VC) call does not
block the caller. When the RESET CONFIRMATION packet arrives and the
socket is in the nonblocking state, an out-of-band event
(OOB_RESET_CONF) is placed in the socket's out-of-band queue. Also,
SIGURG is sent to the process, which must have a signal handler installed for
theSIGURG signal and enabled the socket to transmitSIGURG signals.

Syntax for ioctl(X25_RESET_VC)

The ioctl(X25_RESET_VC) and its parameters are described below.

int err;
int sd;
err = ioctl(sd, X25_RESET_VC, 0);

sd A socket descriptor for an SVC socket.

X25_RESET_VC The definition for the request which cause a RESET packet to be sent on the
VC.

0 A dummy parameter for the system call.

err Upon successful completion,err is set to 0. Otherwise, a value of –1 is
returned anderrno is set to indicate the error.

WARNING All X.25 applications should be designed to handle out-of-band
information. Failure to do so can cause SVCs to be cleared and PVCs
to become unusable until your application process is killed.

Sending Interrupts on a VC

An INTERRUPT packet can be sent at any time by either side of a VC after
call connection has been established.

X.25 supports sending up to 32 bytes of interrupt data in an INTERRUPT
packet.

To send an INTERRUPT packet, issue thesend() system call with the
MSG_OOB flag set. If blocking I/O is being used, the application process
remains blocked until the INTERRUPT CONFIRMATION packet is

programmers.book : ch_recp.frb 90 Wed Apr 3 15:09:01 1996

90

Receiving and Transmitting Out-of-Band Information
Transmitting Out-of-Band Events

received. If nonblocking I/O is being used, the confirmation is received as an
out-of-band event (00B_VC_INTERRUPT_CONF). See chapter 4 for a
description of how to send interrupt data.

NOTE CCITT 1980 X.25 networks and equipment only support one byte of
interrupt data. If your X.25 interface is configured in thex25init(1M)
network type file as 1980 version, and you attempt to send more than 1
byte of interrupt data, an EMSGSIZE error will be returned. If the network
provider will not support more than 1 byte of interrupt data, and you try to
send more, the circuit will be reset. The network type file is described in
yourX.25/9000 User’s Guide.

programmers.book : ch_extd.frb 91 Wed Apr 3 15:09:01 1996

91

6

Extended Features

programmers.book : ch_extd.frb 92 Wed Apr 3 15:09:01 1996

92

Extended Features
Overview

Overview

This section discusses the extended features available through X.25. The
topics include:

• Using Facilities

• Using Fast Select

• Using Permanent Virtual Circuits

• Reestablishing Terminated Connections

• Obtaining Programmatic Diagnostics and Status

programmers.book : ch_extd.frb 93 Wed Apr 3 15:09:01 1996

93

Extended Features
Using Facilities

Using Facilities

X.25 permits the negotiation of Facilities that can be implemented when
calls are connected or cleared.

Facilities are specified in the following packet types:

• CALL REQUEST/CALL INDICATION,
• CALL ACCEPTED/CALL CONNECTED,
• CLEAR REQUEST/CLEAR INDICATION,
• CLEAR CONFIRMATION.

X.25 includes the default Facility settings specified at configuration time for
CALL REQUEST packets. The packet’s Facility field is read and written
with theioctl: X25_RD_FACILITIES and the
X25_WR_FACILITIES calls, respectively.

Consult your system administrator for the X.25 configuration constraints,
and the documentation supplied by your network provider for more
information about the Facilities permitted on the network.

The ioctl(X25_RD_FACILITIES) Call

The ioctl(X25_RD_FACILITIE S) call returns the contents of the
Facilities field contained in the last inbound packet containing a Facilities
field. New inbound Facilities data overwrites preceding data. Inbound Facil-
ities data can only be read once and storage resources are freed after the data
is read. If the process tries to read inbound Facilities data that has already
been read, or if no Facilities data is available, theioctl() call returns a
data length of 0.

The ioctl(X25_RD_FACILITIES) call:

• only reads Facilities data from inbound packets
• can read Facilities data from a CLEAR INDICATION packet (useful with

Fast Select described below)

A process cannot use theioctl(X25_RD_FACILITIES) call to read
Facilities data that it has just written with the
ioctl(X25_WR_FACILITIES) call.

programmers.book : ch_extd.frb 94 Wed Apr 3 15:09:01 1996

94

Extended Features
Using Facilities

Facilities may be added, deleted, rearranged or modified by the X.25
subsystem, the packet switching equipment, or the network provider.

Flow control negotiation, throughput class negotiation, and fast
select/reverse charging are subject to X.25 configuration constraints. Some
network providers also place further constraints on the Facilities that may be
used.

The Facilities supported forioctl(X25_RD_FACILITIES) are those
described in the CCITT X.25 Recommendation (1988). These include:

• Flow Control Parameter Negotiation—(Packet size and Window size).
When a flow control parameter negotiation facility is received and after the
Packet Layer finishes the negotiation, the values are such that no further
negotiation can take place. The facilities are not available with the
ioctl(X25_RD_FACILITIES), for example 0x430302 with a configured window
size of 2 2 is not reported by the ioctl, since the final values are 2 and 2 which is
the Standard default.

• Closed User Group Selection—When either a closed user group selection
basic or extended format, or a closed user group with outgoing access basic or
extended format facility is received, it is always reported as a Closed user group
selection extended format.

• Transit Delay Selection—There is no way to know if the Transit delay
selection is received.

• End-to-end Transit Delay Selection—The cumulative end-to-end transit
delay as well as the maximum acceptable end-to-end transit delay is forwarded.
The requested end-to-end transit delay is not available and replaced with the
unknown transit delay (0xffff).

Syntax for ioctl(X25_RD_FACILITIES)

The ioctl(X25_RD_FACILITIE S) and its parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* define X25_MAX_FACILITIES_LEN 109
 * struct x25_facilities {
 * u_char x25_fac_len; /* length of facilities field */
 * u_char x25_fac[X25_MAX_FACILITIES_LEN]
 * /* facilities field, exactly as in packet */
 * }
*/
int err;

programmers.book : ch_extd.frb 95 Wed Apr 3 15:09:01 1996

95

Extended Features
Using Facilities

int sd;
struct x25_facilities fac_data;
err = ioctl(sd, X25_RD_FACILITIES, &fac_data);

sd A socket descriptor for an SVC socket that has just received a CALL
INDICATION, CALL CONNECTED, or CLEAR INDICATION packet.

X25_RD_FACILI
TIES

The definition for the request.

fac_data Indicates the Facilities from the packet received. Thex25_fac[] field
contains the Facilities in the format that is required by the X.25
recommendations.

NOTE If the ioctl(X25_RD_FACILITIES) call is issued before the
connection is initiated, theioctl() system call willfail, –1 is returned
and errno contains an indication of the cause of the error.

The ioctl (X25_WR_FACILITIES) Call

When theioctl(X25_WR_FACILITIES) call is issued it writes the
contents of the Facilities field for the next transmitted CALL REQUEST and
CALL ACCEPTED packets. For a call to be accepted on the server side of a
connection with theioctl() call, call acceptance approval must be in
effect. On the client side of the connection, you must issue the
ioctl(X25_WR_FACILITIES) call prior to theconnect() call.

When you use theioctl(X25_WR_FACILITIES) call, you:

• can only write Facilities data for the next outbound CALL REQUEST, CALL
ACCEPTED or CLEAR REQUEST packet,

• override any inbound Facilities data that has not already been read,
• must specify all of the default settings in order to modify any of the default

Facilities.

If no Facilities are specified with theioctl(X25_WR_FACILITIES)
call, the default configuration is set.

The ioctl(X25_WR_FACILITIES) call will overwrite any inbound
Facilities data that have not already been read.

programmers.book : ch_extd.frb 96 Wed Apr 3 15:09:01 1996

96

Extended Features
Using Facilities

It is possible to modify Facilities such as negotiated parameters. Facilities
may be added, deleted, or rearranged by the network provider or packet
switching equipment.

The Facilities supported forioctl(X25_WR_FACILITIES) , are those
specified in the CCITT and X.25 (1988) recommendation. These include:

• Flow Control Parameter Negotiation—If your configuration specifies that
flow control negotiation is ON and Flow Control Facilities are not requested
with theioctl(X25_WR_FACILITIES) call, your default values for
Packet Size and Window Size Facilities are inserted in the packet.

• Throughput class negotiation—not inserted in the packet unless it is
requested, and there is no default configured.

• Fast Select / Reverse Charging—not inserted in the call or call accepted
packet if 0x0100 is requested (neither fast select or reverse charging is
requested).

• Charging information requesting service—if 0x0400 is requested,
no charging information is inserted in the call or call accepted packet.

• RPOA Selection extended format—If only one DNIC is specified,
the ioctl(X25_WR_FACILITIES) returns an error (errno
EINVAL=22). Use the basic format instead. The extended format is
only available if more than one DNIC is specified.

• Transit Delay Selection—this Facility is used to request a specific
end-to-end transit delay (a Packet Layer Protocol function). If present,
the value is based on the actual end-to-end transit time (minus the
system processing time).

• End-to-End Transit Delay Selection—this Facility overrides the Transit
Delay Selection parameter (above) with a constant corresponding to the
system’s data processing time. The requested end-to-end transit delay and
maximum acceptable end-to-end transit delay values are sent without
modification to packets. If this is the only parameter provided and the Transit
Delay Selection parameter is not requested, no information is inserted in the
packet.

• Expedited Data Negotiation—not inserted in the packet if requested after a
0x0b00 marker.

• Network Facilities—these facilities must have a Facility marker just before
them.

programmers.book : ch_extd.frb 97 Wed Apr 3 15:09:01 1996

97

Extended Features
Using Facilities

Network Facilities

Network Facilities are the facilities that need a Facility marker just before
them. The only legal Facility markers are those described in the 1988
CCITT X.25 Recommendations and in the 1987 ISO 8208 Standard.

Legal Facilities markers are:

• 0x000f —for CCITT specified DTE Facilities used to support the OSI
Network service.

• 0x0000 —for non-X.25 Facilities supported by the local network for an
internal network call, or for non-X.25 Facilities supported by the network of
the calling DTE for an internetwork call.

• 0x00ff— for non-X.25 Facilities supported by the network of the called DTE
for an internetwork call.

NOTE Network Facilities entries must be provided in the above order with the
X.25 Facilities first. The length of the Network Facility entry is limited to
32 Bytes. Illegal Facility codes return theEINVAL(22) error condition.

Syntax for ioctl(X25_WR_FACILITIES)

The ioctl(X25_WR_FACILITIES) call and its parameters are described
below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* define X25_MAX_FACILITIES_LEN 109
 * struct x25_facilities {
 * u_char x25_fac_len;
 * u_char x25_fac[X25_MAX_FACILITIES_LEN];
 * }
 */
int err;
int sd;
struct x25_facilities fac_data;
err = ioctl(sd, X25_WR_FACILITIES, &fac_data);

sd A socket descriptor for an SVC socket that has not yet been connected.

X25_WR_
FACILITIES

The definition for the request.

programmers.book : ch_extd.frb 98 Wed Apr 3 15:09:01 1996

98

Extended Features
Using Facilities

fac_data Indicates the Facilities to be included in the CALL REQUEST, CALL
ACCEPTED, or CLEAR REQUEST packet. Thex25_fac[] field
contains the Facilities in the exact format that is required by the X.25
recommendations.

programmers.book : ch_extd.frb 99 Wed Apr 3 15:09:01 1996

99

Extended Features
Using Fast Select

Using Fast Select

The use of fast select in X.25 is described inX.25: The PSN Connection.
This section describes how to access this Facility through X.25.

The fast select Facility allows processes to specify up to 128 bytes of call
user data in the CALL REQUEST, CALL ACCEPTED, and CLEAR
REQUEST packets. Usually, only 16 bytes are permitted in the CALL
REQUEST packet and no user data in the CALL ACCEPTED and CLEAR
REQUEST packets. This Facility is called “fast” because it allows
programmers to specify user data in the same packet which is requesting or
acknowledging a connection request. Usually, the CALL REQUEST packet
contains all of the information the server side needs to service the request,
and it terminates the connection and places all the information that the client
needs regarding the results of its request in the CLEAR REQUEST packet.
The circuit is never fully set up, but is then quickly torn down, hence the
term “fast select”.

The ioctl() calls used for fast select are listed below:

• X25_WR_USER_DATA (for writing extended call user data).
• X25_RD_USER_DATA (for reading extended call user data).
• X25_WR_FACILITIES (for writing Facilities).
• X25_RD_FACILITIES (for reading Facilities).

A summary of the steps needed to enable fast select on the calling and
receiving side of a connection appears in the next two subsections.

Fast Select on the Calling Side

To implement fast select on the calling side, issue the
ioctl(X25_WR_FACILITIES) call with the fast select Facilities code
defined in CCITT X.25 recommendations. Specify the call user data for the
packet with theioctl(X25_WR_USER_DATA) . These calls must be exe-
cuted before issuing theconnect() call.

If the calling side is using protocol IDs for address matching, the protocol ID
must be specified in the call user data field before any other call user data is
added with theioctl(X25_WR_USER_DATA) call. These data may be
specified in separateioctl() calls, or combined into one, but the protocol

programmers.book : ch_extd.frb 100 Wed Apr 3 15:09:01 1996

100

Extended Features
Using Fast Select

ID must come first. Remember that the protocol ID length is not defined by
the CCITT. Programmers of the two processes must agree on the number of
bits of the call user data field to use for the protocol ID before connection
establishment begins.

When the Facilities and call user data fields have been specified for the fast
select call, the calling side issues a connection request withconnect()
and waits for the response from the remote server.

Fast Select on the Called Side

The called side may respond in three ways:

• If not accepting fast select calls, the called side will return a CLEAR REQUEST
packet with no data.

• If accepting fast select calls, the called side may execute an
ioctl(X25_WR_USER_DATA) call to send data back to the calling side, then
return a CLEAR REQUEST packet with data by executing aclose() call. The
called side can also return a call accept (with data) by executing
ioctl(x25_SEND_CALL ACCEPT) . The called side may return clear-user
data or call user data to the calling side only if the called side is controlling call
acceptance with ioctl(X25_CALL_ACPT_APPROVAL) .

• If fast select was indicated in the Facilities field with no restrictions on response,
the called side may simply accept the call, and read the call user data with the
ioctl(X25_RD_USER_DATA). The connection is then considered an
ordinary virtual circuit; that is, fast select is no longer in effect.

The maximum length for the user data field in the CLEAR REQUEST
packet is 128 bytes. The server may execute the
ioctl(X25_WR_USER_DATA) more than once to write the entire user
data field. If more than 128 bytes must be transmitted, the called side
(server) of the connection should respond with a CALL ACCEPTED packet
and transmit the entire response with normal DATA packets, or the called
side must simply clear the connection completely by callingclose() .

Details regarding fast select are defined in the CCITT X.25
Recommendations, and X.25 configuration information is presented in your
X.25/9000 User’s Guide.

programmers.book : ch_extd.frb 101 Wed Apr 3 15:09:01 1996

101

Extended Features
Using Fast Select

Fast Select Operation Summary

A server can respond to a fast select call in any of three ways:

• The call can be cleared immediately with no data

• The call can be cleared with user data specified

• A normal SVC can be established with or without user data specified in the call
accept packet

Which of these alternatives are available depends on the design of the client
and server processes.

This section is written with the assumption that interfaces for both the client
and the server are configured to permit fast select, and the network provider
allows fast select.

The actions to be taken are shown in the three scenarios below. The initial
steps for sending and receiving fast select is the same for all scenarios.
These initial steps are shown in Table 8. Depending on the design of the
application, the server may take any of three actions that are described later.

Initial Steps for Fast Select

The initial steps performed by the client and server when configured to per-
mit fast select are described below and shown in Table 8 on the following
page.

1 The server creates an AF_CCITT listen socket.

2 The server binds anx25addrstr structure containing the addressing
information.

3 The server establishes a listen queue.

4 The server prepares the call to control call acceptance.

5 The server listens for a CALL REQUEST packet.

6 The client creates an AF_CCITT socket.

7 The client specifies the fast select Facility for the CALL REQUEST packet.

8 The client specifies the call user data for the CALL REQUEST packet.

9 The client sends the CALL REQUEST packet.

10 The server'saccept() call unblocks when it receives the CALL INDICATION

programmers.book : ch_extd.frb 102 Wed Apr 3 15:09:01 1996

102

Extended Features
Using Fast Select

packet.

11 The server reads and parses the Facilities field.

12 The server reads and interprets the user data field.

After the above steps have been done, the server has the information it needs
to process the fast select. Three actions are possible. They are discussed
individually in the next three subsections.

Table 8 Steps for Fast Select

Server Events X.25 Events Client Events

1. socket() No Event No Event

2. bind() No Event No Event

3. ioctl(X25_CALL_ACPT_APPROVAL) No Event No Event

4. listen() No Event No Event

5. accept() blocks No Event No Event

6. No Event No Event socket()

7. No Event No Event ioctl(X25_WR_FAC
ILITIES)

8. No Event No Event ioctl(X25_WR_USE
R_DATA)

9. No Event CALL REQUEST

packet transmit-
ted

connect() blocks

10. accept() unblocks CALL INDICATION

packet received
No Event

11. ioctl(X25_RD_FACILITIES) No Event No Event

12. ioctl(X25_RD_USER_DATA) No Event No Event

programmers.book : ch_extd.frb 103 Wed Apr 3 15:09:01 1996

103

Extended Features
Using Fast Select

Clearing a Fast Select Call Immediately

If the server detects that it cannot handle the fast select call for any reason, it
can clear the circuit immediately. Steps for this are described below and in
Table 9. Steps shown in Table 8 are assumed to have already occurred.

1 The server transmits the CLEAR REQUEST packet.

2 The client receives the CLEAR INDICATION packet and takes appropriate
actions.

Transmitting a CLEAR Packet with User Data

The server can respond to a fast select call by sending a CLEAR REQUEST
packet that contains a user data field. Steps for this are described below and
shown in Table 10. Steps shown in Table 8 are assumed to have already
occurred.

1 The server writes the user data field with information appropriate to respond to
the fast select call.

2 The server transmits the CLEAR REQUEST packet.

3 The client receives the CLEAR INDICATION packet and takes appropriate
actions.

Table 9 Clearing a Fast Select Call Immediately

Server Events X.25 Events Client Events

1. close() CLEAR REQUEST

packet transmit-
ted

No Event

2. No Event CLEAR INDICATION

packed received
connect() returns -1
(ECONNREFUSED)

programmers.book : ch_extd.frb 104 Wed Apr 3 15:09:01 1996

104

Extended Features
Using Fast Select

Establishing an SVC in Response to a Fast Select Call

The server can establish an SVC in response to a fast select call. Steps for
this are described below and in Table 11. Steps shown in Table 8 are
assumed to have already occurred. The fast select Facility must be set for no
restrictions on response for this option to be used.

1 The server optionally writes the user data field with information appropriate to
indicate the reason for its response to the fast select call.

2 The server transmits the CALL ACCEPTED packet.

3 The client receives the CALL CONNECTED packet.

4 Both the server and client have the option to write user data and carry on normal
SVC data transmission with DATA packets.

5 The connection is closed by the client or server (see “Terminating a Connection”
on page 47).

Table 10 Sending Clear User Data for a Fast Select

Server Events X.25 Events Client Events

1. ioctl(X25_WR_USER_DATA) No Event No Event

2. close() CLEAR REQUEST

packet transmit-
ted

No Event

3. No Event CLEAR INDICATION

packed received
connect() returns -1
(ECONNREFUSED)

Table 11 Fast Select Connection Establishment

Server Events X.25 Events Client Events

1. ioctl(X25_WR_USER_DATA) No Event No Event

2. ioctl(X25_SEND_CALL_ACPT) CALL ACCEPTED

packet transmit-
ted

No Event

programmers.book : ch_extd.frb 105 Wed Apr 3 15:09:01 1996

105

Extended Features
Using Fast Select

3. No Event CALL INDICATION

packet received
connect()

unblocks
(returns 0)

4. read() andwrite() DATA packets
transmitted and
received

read() and
write()

5. close() CLEAR REQUEST/
INDICATION

packet transmit-
ted and received

close()

Table 11 Fast Select Connection Establishment

programmers.book : ch_extd.frb 106 Wed Apr 3 15:09:01 1996

106

Extended Features
Using Permanent Virtual Circuits

Using Permanent Virtual Circuits

Permanent virtual circuits (PVCs) must be acquired from the network
provider. They are set-up during X.25 configuration. Refer to your
X.25/9000 User’s Guidefor details on configuring PVCs.

A PVC is similar to a “leased line” in that it is always connected and
terminates at a single destination. By contrast, an SVC can terminate at
different destinations, depending upon the call. A PVC may be used by only
one socket at a time.

Although a PVC can be RESET, so all data on the connection is discarded, it
cannot be cleared like an SVC. A PVC is connected as long as X.25 Level 3
is active.

A socket is bound to a PVC with theioctl(X25_SETUP_PVC) call.
Unlike the case of an SVC set-up, thelisten() , connect() , and
accept() system calls are not used to establish a connection over a PVC.
Theclose() call removes the binding between a socket and the circuit of
a PVC and also sends a RESET REQUEST packet out on the circuit. Data is
cleared from the circuit, but the circuit is not destroyed.

The ioctl() calls that are associated with sending and receiving CALL
REQUEST and CALL ACCEPTED packets, and the fields within them,
such as ioctl(X25_RD_USER_DATA) , ioctl(X25_WR_USER_DATA) ,
ioctl(X25_WR_FACILITIES) , and
ioctl(X25_RD_FACILITIES) have no effect on a PVC.

Preparing a PVC for Use

A PVC is connected from the moment the programmatic access interface is
active. However, until a socket is bound to the PVC, X.25 discards all
packets received over the PVC and a RESET REQUEST packet is sent.
There is no implicit client/server relationship in establishing a PVC
connection. Actions taken on either end of a PVC are essentially the same.

programmers.book : ch_extd.frb 107 Wed Apr 3 15:09:01 1996

107

Extended Features
Using Permanent Virtual Circuits

The ioctl(X25_SETUP_PVC) call binds a socket to a PVC. The
application first creates the socket, then calls the
ioctl(X25_SETUP_PVC) . The logical channel identifier (lci) of the
PVC must be known before theioctl(X25_SETUP_PVC) is issued.
This can be obtained from the system administrator.

If the ioctl(X25_SETUP_PVC) call is successful, the socket is bound to
the PVC as a dedicated socket. However, there is no assurance that there is
any process running at the other end of the PVC. Programs should send a
message to say that they are alive and then wait for a reply from the remote
end of the PVC. Once a process is operational at the remote end of the PVC,
it can be used, like a SVC, to send and receive data and out-of-band
information.

The primary difference between PVCs and SVCs is that a CLEAR
REQUEST packet cannot be sent or received on a PVC. A remote peer
process may abort or die without notice. X.25 sends a RESET REQUEST
packet on the PVC if the socket is closed for any reason, for example, the
local process dies. However, RESET REQUEST packets can be received on
a PVC for other reasons. Refer to the discussion ofOOB_VC_L2DOWN in
chapter 5 for how a PVC recovers when Level 2 fails.

Syntax for ioctl(X25_SETUP_PVC)

The ioctl(X25_SETUP_PVC) and its parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* define X25_MAX_IFNAMELEN 12
 * struct x25_setup_pvc_str {
 * char ifname[X25_MAX_IFNAMELEN+1];
 * int lci;

* }
 */
int err;
int sd;
struct x25_setup_pvc_str pvc_str;
err = ioctl(sd, X25_SETUP_PVC, &pvc_str);

sd Is a socket descriptor for an AF_CCITT socket that has not yet been bound
to an address.

programmers.book : ch_extd.frb 108 Wed Apr 3 15:09:01 1996

108

Extended Features
Using Permanent Virtual Circuits

X25_SETUP_PVC Is the definition for the request.

pvc_str Indicates the interface and logical channel indicator for the PVC to which
the socket shall be connected.

err If the call succeeds, 0 is returned. If the call fails, –1 is returned and errno
contains an indication of the cause of the error.ENETUNREACH indicates
Level 2 is down.ENODEV indicates the named interface does not exist.
ENETDOWNindicates the interface is down because it has been shutdown,
suffered either a power fail without being reinitialized or incurred a hard
error. EINVAL indicates the virtual circuit is illegal or not a PVC.EBUSY
indicates that the lci is in use.

programmers.book : ch_extd.frb 109 Wed Apr 3 15:09:01 1996

109

Extended Features
Reestablishing Terminated Connections

Reestablishing Terminated Connections

Maintaining a connection over an X.25 network may not suit all
applications. For example, a client may send a request to a server that may
require processing for an extended period of time before a reply can be sent.
It would not be economical to maintain the connection until data processing
has been completed. A more cost-effective method is to clear the
connection, then reestablish it from the server side when the server finishes
processing the data.

Usually, in a CALL REQUEST packet, only the X.121 address of the
interface being used is written into the calling address field. The
ioctl(X25_WR_CALLING_SUBADDR) writes a subaddress as a suffix
to the calling address field in the CALL REQUEST packet. The server can
read this data and save it until the connection is reestablished.

If the server is using the X.25 interface, thegetpeername() system call
will return the subaddress information formatted in an x25addrstr
structure. The server then stores the information (x25addrstr structure)
until the server reestablishes the connection.

When protocol IDs are used, the reestablishment proceeds as discussed
above. However, the server must know the protocol ID to which it will
connect. The protocol ID can be stored in the user data field of the CALL
REQUEST packet. This must be designed into the application on both side
of the connection. There is no standard specifying the way to transfer the
protocol ID of the caller through X.25.

Syntax for ioctl(X25_WR_CALLING_SUBADDR)

The ioctl(X25_WR_CALLING_SUBADDR) and its parameters are
described below.

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
/* define X25_MAX_HOSTADDR 15
 * define X25_MAXHP1 X25_MAX_HOSTADDR+1
 * define X25_MAX_PIDLEN 8
 * struct x25addrstr {
 * u_char x25hostlen;
 * u_char x25pidlen;

programmers.book : ch_extd.frb 110 Wed Apr 3 15:09:01 1996

110

Extended Features
Reestablishing Terminated Connections

 * u_char x25pid[X25_MAX_PID_LEN];
 * u_char x25_host[X25_MAXHP1]p
 * }
 */
int err;
int sd;
struct x25addrstr subaddr;
err = ioctl(sd, X25_WR_CALLING_SUBADDR, &subaddr);

sd Is a socket descriptor for an SVC socket which has not yet been connected.

X25_WR_CALLIN
G_SUBADDR

Is the definition for the request.

subaddr Indicates the subaddress to be added to the calling address field in the CALL
REQUEST packet. Only the x25hostlen andx25_host from the
x25addrstr structure are used. Thex25hostlen field contains only the
subaddress to be added to the calling address field. The rest of the address is
supplied by X.25.

programmers.book : ch_extd.frb 111 Wed Apr 3 15:09:01 1996

111

Extended Features
Obtaining programmatic diagnostics and status

Obtaining programmatic diagnostics and status

Diagnostics and status information on applications that use X.25
programmatic access can be obtained via the following features:

• Error codes and log messages.

• Theioctl(X25_RD_CTI) call (to get the circuit table index entry associated
with a particular socket).

• Theioctl(X25_RD_LCI) call (to get the logical channel identifier associated
with a particular virtual circuit).

• The ioctl(X25_RD_HOSTADR) call (to get the X.121 address of the
interface).

• The ioctl(X25_GET_IFSTATE) call (to get the condition/state of the
interface).

• Remote and local address information (getpeername(2) and
getsockname(2))

Each feature is described below.

Error codes and log messages

The most commonly-used programmatic diagnostic is the value returned by
errno. Possible errno values returned for each call are listed in theman pages
for this command.

In addition to the error codes returned, X.25 maintains a log which describes
the activities of the interface and all active virtual circuits. For details on
logging, refer to your X.25/9000 User’s Guide.

The ioctl (X25_RD_CTI) Call

The ioctl(X25_RD_CTI) call returns the circuit table index (cti) entry
associated with a particular socket. This identifies one connection regardless
of the interface that is used. The circuit table index entry is a sub-identifica-
tion number (sid) which is also logged instrace output (see yourman
pages forstrace). Once you know the cti entry for a socket, you can use
that information when examining the X.25 log file for information concern-

programmers.book : ch_extd.frb 112 Wed Apr 3 15:09:01 1996

112

Extended Features
Obtaining programmatic diagnostics and status

ing the VC. The cti is also useful for network logging.EINVAL is returned if
the circuit is not connected or if the socket is no longer bound to a circuit.
For details on logging, see yourX.25/9000 User’s Guide.

Syntax for ioctl(X25_RD_CTI)

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
int err;
int sd, cti;
err = ioctl(sd, X25_RD_CTI, &cti);

sd Is a socket descriptor for a connected SVC socket.

X25_RD_CTI Is the definition for the request.

cti Contains the circuit table index for the socket.

A programming example is shown below.

int error, s, cti;
/*
 * Assume at this point that s is a socket
 */
error = ioctl (s, X25_RD_CTI, &cti);
if (error 0) {
 perror("X25_RD_CTI");
 exit(1);
 }

The ioctl(X25_RD_LCI) Call

The ioctl(X25_RD_LCI) call returns the logical channel identifier (lci)
associated with a particular virtual circuit. Once you know the lci entry for a
circuit, you can use that information when examining statistics for a virtual
circuit, with network logging and the corresponding data from a proto-
col-analyzer trace. The lci is the value written into the header of most
CCITT X.25 packets.

Syntax for ioctl(X25_RD_LCI)

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
int err;
int sd, lci;
err = ioctl(sd, X25_RD_LCI, &lci);

programmers.book : ch_extd.frb 113 Wed Apr 3 15:09:01 1996

113

Extended Features
Obtaining programmatic diagnostics and status

sd

Is a socket descriptor for a connected SVC socket.

X25_RD_LCI Is the definition for the request.

lci Contains the logical channel indicator for the socket.

err Is set to 0 if the call was successful; otherwise, contains –1 and errno
contains the cause of the error. IfEINVAL is returned, the circuit is not
connected or the socket is no longer bound to a circuit.

A programming example is shown below.

int error, s, lci;
/*
 * Assume at this point that s is a socket
 */
error = ioctl (s, X25_RD_LCI, &lci);
if (error < 0) {
perror("X25_RD_LCI");
exit(1);
}
/* Use the lci as the logical circuit indicator. */

The ioctl(X25_RD_HOSTADR) call

The ioctl(X25_RD_HOSTADR) call returns the X.121 address of the
interface. This is the X.121 address of the interface (NOT the address
inserted in the call packet)

Syntax for ioctl(X25_RD_HOSTADR)

The ioctl(X25_RD_HOSTADR) and its parameters are described below.

#include <x25/x25ioctls.h>
#include <x25/x25addrstr.h>
int error;
int sd;
struct x25addrstr addr;
error = ioctl(sd, X25_RD_HOSTADR, &addr);

programmers.book : ch_extd.frb 114 Wed Apr 3 15:09:01 1996

114

Extended Features
Obtaining programmatic diagnostics and status

sd Is a socket descriptor for an X.25 socket. Note that this can be a completely
new socket, a connected socket or a connected socket that has been
shutdown

X25_RD_HOSTADR Is the definition for the request.

addr Indicates the X.25 interface name.x25_family must be set to
AF_CCITT.x25ifname must be set to a name string (with “\0” at the
end). The address is returned inx25hostl() andx25hostlen .

x25ifname can be an empty string, but this is only advised when there is
only one interface on the system; the interface address returned is
unpredictable when there are several interfaces.

error Is set to 0 if the call was successful; otherwise, contains –1 and errno
contains the cause of the error.

A programming example is shown below.

/* Get X.25 parameters used for binding an address */
result = ioctl(call_soc, X25_RD_HOSTADR, &locl_addr);
if (result == -1) {
perror("ioctl(X25_RD_HOSTADR) call");
exit(1);
}

The ioctl(X25_GET_IFSTATE) call

The ioctl(X25_GET_IFSTAT E) call returns the interface state.

Syntax for ioctl(X25_GET_IFSTATE)

#include <x25/x25ioctls.h>
#include <x25/x25str.h>
#include <x25/x25.h>
/*
 * Define data structure for X25_GET_IFSTATE
 */
/* struct x25_state_str {
 * char ifname[X25_MAX_IFNAMELEN+1];/* Name of X.25
interface to use */
 * int ifstate; /* Status of the X.25 interface */
 * };
 */
int error;
int sd;
struct x25_state_str state_str;

programmers.book : ch_extd.frb 115 Wed Apr 3 15:09:01 1996

115

Extended Features
Obtaining programmatic diagnostics and status

error = ioctl(sd, X25_GET_IFSTATE, &state_str);

sd Is a socket descriptor for an X.25 socket. Note that this can be a completely
new socket, a connected socket or a connected socket that has been
shutdown.

X25_GET_IFSTATE Is the definition for the request.

state_str Contains the state of the interface.

The state of the interface is returned inifstate and can take the following
values:

IFSTATE_UNINIT The interface has been stopped
IFSTATE_INIT Level 3 is up (R1)
IFSTATE_L2DOWN Level 3 is down (not R1)

error Is set to 0 if the call was successful; otherwise, contains –1 and errno
contains the cause of the error.

A programming example is shown below.

/* Get if state */
result = ioctl(call_soc, X25_GET_IFSTATE, &if_state);
if (result == -1) {
perror("ioctl(X25_GET_IFSTATE) call");
exit(1);
}

Obtaining Status Information Programmatically

X.25 uses two system calls that return information regarding the status of a
circuit. They aregetpeername() to obtain the address of the remote
DTE, andgetsockname() to obtain the address of the local DTE.

Using getpeername() after a call has been established, a process can
obtain the caller's address from the calling address field of the CALL
ACCEPTED/INDICATION packet.

Usinggetsockname() after a call has been established, a process can
obtain the called address from the CALL ACCEPTED/INDICATION
packet. getsockname() can be used to obtain the actual called address
when wildcard addressing is being used.

programmers.book : ch_extd.frb 116 Wed Apr 3 15:09:01 1996

116

Extended Features
Obtaining programmatic diagnostics and status

Syntax for getpeername()

Thegetpeername() and its parameters are described below.

#include <sys/types.h>
#include <sys/socket.h>
#include <x25/x25addrstr.h>

int error;
int sd, addrlen;
struct x25addrstr addr;
addrlen = sizeof(struct x25addrstr);
error = getpeername(sd, &addr, addrlen);

sd Is the socket descriptor for the socket whose peer address will be obtained.

addr Upon successful completion, thisx25addrstr structure will contain the
X.121 address of the remote DTE. This information is useful when using
wildcard addressing and when reestablishing a terminated connection.

addrlen Upon successful completion, this integer will contain the length in bytes of
thex25addrstr structure pointed to byaddr . Before calling
getpeername() , this field must be initialized with the size of the
x25addrstr structure.

error If the call successfully completes,error contains a 0; otherwise, –1 is
returned, and errno contains the cause of the error.

Refer to thegetpeername(2) entry inman pages for more information
on this command.

Syntax for getsockname()

Thegetsockname() and its parameters are described below.

#include <sys/types.h>
#include <sys/socket.h>
#include <x25/x25addrstr.h>

int error;
int sd, addrlen;
struct x25addrstr addr;
addrlen = sizeof(struct x25addrstr);
error = getsockname(sd, &addr, &addrlen);

programmers.book : ch_extd.frb 117 Wed Apr 3 15:09:01 1996

117

Extended Features
Obtaining programmatic diagnostics and status

sd Is the socket descriptor for the socket whose addressing information is being
obtained.

addr Upon successful completion, thisx25addrstr structure will contain the
X.121 address specified by the remote process to make the connection. This
information is useful when using wildcard addressing.

addrlen Upon successful completion, this integer will contain the length in bytes of
thex25addrstr structure pointed to byaddr . Before calling
getpeername() , this field must be initialized with the size of the
x25addrstr structure.

error If the call successfully completes, error contains a 0; otherwise, –1 is
returned, and errno contains the cause of the error.

Refer to thegetsockname(2) entry in yourman pages for more
information.

programmers.book : ch_extd.frb 118 Wed Apr 3 15:09:01 1996

118

Extended Features
Obtaining programmatic diagnostics and status

programmers.book : append_a.frb 119 Wed Apr 3 15:09:01 1996

119

A

X.25 Packet Formats

programmers.book : append_a.frb 120 Wed Apr 3 15:09:01 1996

120

X.25 Packet Formats

X25 Packet Formats

This appendix shows some of the packet formats specified in the CCITT
X.25 Recommendations. It also describes the X.25 actions required to trans-
mit the packet, and the X.25 events that occur when the packet is received.
The fields of each packet are identified and the X.25 actions required to read
and modify these fields are described.

programmers.book : append_a.frb 121 Wed Apr 3 15:09:01 1996

121

X.25 Packet Formats
Introduction

Introduction

The packets described here are listed below:

• CALL REQUEST/INDICATION packet

• CALL ACCEPTED/CONNECTED packet

• CLEAR REQUEST/INDICATION packet

• DATA packet

• INTERRUPT packet

• INTERRUPT CONFIRMATION packet

• RESET REQUEST/INDICATION packet

• RESET CONFIRMATION packet

This appendix does not describe the use and range of possible values for the
packets and their fields. It is here to describe how theX.25 applications can
access the features defined in theX.25 recommendations.

Several packets are not accessible toX.25 applications. These packets are
listed below:

• DIAGNOSTIC packet

• REJ (retransmission) packet

• REGISTRATION packet

• REGISTRATION CONFIRMATION packet

• CLEAR CONFIRMATION packet

• RECEIVE READY packet

• RECEIVE NOT READY packet

X.25 Level 3 handles these packets according to theX.25 recommendations
without the need for any intervention by the user application.X.25 does not
supportREGISTRATION packets.

programmers.book : append_a.frb 122 Wed Apr 3 15:09:01 1996

122

X.25 Packet Formats
CALL REQUEST/INDICATION Packet

CALL REQUEST/INDICATION Packet

A client process sends aCALL REQUEST packet to establish anSVC with a
remote host. This packet is transmitted when aconnect() system call is
issued. When theX.25 subsystem receives aCALL INDICATION packet and
locates a socket whose bind address matches the specified called address, it
allows the associated listen socket to unblock an accept() system call or
select readable.

Figure 1 CALL REQUEST Packet

The access to the fields in theCALL REQUEST/INDICATION packet is
described below:

General Format
Identifier

Indicates D bit and packet sequence count. This field cannot be read by an
X.25 application. The D bit cannot be read or written by anX.25/300 applica-
tion. The packet sequence count (X.25 supports only modulo 8) is set at con-
figuration time and cannot be read or written by the application. However,
the configuration file can be read by the application.

Logical Channel Identifier

Called DTE Address Length

DTE Addresses

Facilities

8 7 6 5 4 3 2 1

1

2

3

4

Bits

Called DTE Address Length

Facility Length

Packet Type Identifier

General Format Identifier

Octets

Call User Data

programmers.book : append_a.frb 123 Wed Apr 3 15:09:01 1996

123

X.25 Packet Formats
CALL REQUEST/INDICATION Packet

To read this field on an incoming packet:

This field cannot be read by the application.

To write this field on an outgoing packet:

X.25 700/800 applications use theioctl(X25_SEND_TYPE) to set the D bit.

Logical Channel
Identifier

Associates a logical channel number with theSVC. This field is controlled by
theX.25 subsystem. It can be read with the ioctl(X25_RD_LCI) after the
call has been established.

Packet Type IdentifierIndicates the kind of packet. It cannot be read or written directly, but through
system calls, the transmission and arrival of packets can be effected or
detected.

To read this field on an incoming packet:
Use the listen() andaccept() system calls to detect the arrival of a
CALL REQUEST packet.

To write this field on an outgoing packet:
Use theconnect() system call to transmit aCALL REQUEST packet.

Calling DTE Address
(Length)

Indicates the source of the packet.

To read this field on an incoming packet:
These fields can be obtained through the accept() system call, which
returns an x25addrstr structure containing the callingDTE address of the
incomingCALL REQUEST packet.

To write this field on an outgoing packet:
The subsystem computes this field. If the local machine has multipleX.25

interfaces connected to it, the client can select which interface (each with a
uniqueX.121 address) to use by specifying thex25ifname field in the
x25addrstr structure. The address is the X.121 configuration packet
address, plus the subaddress specified with
ioctl(X25_WR_CALLING_SUBADDR) call.

CalledDTE Address
(Length)

Indicates the destination of the packet. This field is accessed through the
x25addrstr structure.

To read this field on an incoming packet:
These fields can be read using thegetsockname() system call after the
connection has been established.

programmers.book : append_a.frb 124 Wed Apr 3 15:09:01 1996

124

X.25 Packet Formats
CALL REQUEST/INDICATION Packet

To write this field on an outgoing packet:
The subsystem computes this field from thex25addrstr supplied in the
connect() system call.

Facilities (Length) Optional. Indicates the facilities used for thisSVC.

To read this fields on an incoming packet:
These fields can be read with theioctl(X25_RD_FACILITIES) .

To write this field on an outgoing packet:
These fields can be written with theioctl(X25_WR_FACILITIES) .

Call User Data Optional. Contains a protocolID and/or user defined data.

To read this field on an incoming packet:
The entire user data field including the protocolID can be read with the
ioctl(X25_RD_USER_DATA) .

To write this field on an outgoing packet:
The entire user data field including the protocolID can be written with the
ioctl(X25_WR_USER_DATA) .

programmers.book : append_a.frb 125 Wed Apr 3 15:09:01 1996

125

X.25 Packet Formats
CALL ACCEPTED/CONNECTED Packet

CALL ACCEPTED/CONNECTED Packet

A CALL ACCEPTED/CONNECTED packet establishes anSVC with a remote
host. ACALL ACCEPTED packet is sent in response to aCALL INDICATION

packet. Typically, theX.25 subsystem sends aCALL ACCEPTED packet imme-
diately in response to aCALL INDICATION packet when an accept system call
is issued on a listen socket. However, if the
ioctl(X25_CALL_ACPT_APPROVAL) has been issued on the listen socket,
X.25 waits for theioctl(X25_SEND_CALL_ACEPT) to be issued on the
socket descriptor returned in theaccept() system call.

The access to the fields in theCALL ACCEPTED/CONNECTED packet is
described below:

Figure 2 CALL ACCEPTED Packet

Logical Channel Identifier

Called DTE Address Length

DTE Addresses

Facilities

8 7 6 5 4 3 2 1

1

2

3

4

Bits

Called DTE Address Length

Facility Length

Packet Type Identifier

General Format Identifier

Octets

Call User Data

programmers.book : append_a.frb 126 Wed Apr 3 15:09:01 1996

126

X.25 Packet Formats
CALL ACCEPTED/CONNECTED Packet

General Format
Identifier

Indicates D bit usage and packet sequence count. This field cannot be read
by anX.25 application. The D bit cannot be read or written by anX.25/300

application. The packet sequence count (modulo 8) is set at configuration
time and cannot be read or written by the application. However, the configu-
ration file can be read by the application.

To read this field on an incoming packet:
This field cannot be read by the application.

To write this field on an outgoing packet:
X.25/800 applications use theioctl(X25_SEND_TYPE) to set the D bit.

Logical Channel
Identifier

Associates a logical channel number with theSVC. This field is controlled by
theX.25 subsystem. It can be read with theioctl(X25_RD_LCI) after the
call has been established.

Packet Type IdentifierIndicates the kind of packet. It cannot be read or written directly, but through
system calls, the transmission and arrival can be effected or detected.

To read this field on an incoming packet:
The application can detect the arrival of this packet when theconnect()
system call unblocks or selects writable.

To write this field on an outgoing packet:
The subsystem automatically sends this packet when anaccept() system
call has been issued, unless the application is controlling call acceptance. In
that case this packet is sent only after an
ioctl(X25_SEND_CALL_ACCEPT) is issued on a socket that had
ioctl(X25_ACPT_APPROVAL) issued on the listen socket.

Calling DTE Address
(Length)

Indicates the source of the packet.

To read this field on an incoming packet:
These fields cannot be read by the application.

To write this field on an outgoing packet:
TheX.25 subsystem computes this field.

CalledDTE Address
(Length)

Indicates the destination of the packet. They are accessed through the
x25addrstr structure.

To read this field on an incoming packet:
These fields cannot be read by the application.

programmers.book : append_a.frb 127 Wed Apr 3 15:09:01 1996

127

X.25 Packet Formats
CALL ACCEPTED/CONNECTED Packet

To write this field on an outgoing packet:
The X.25 subsystem computes this field from the information supplied in the
CALL REQUEST packet.

Facilities (Length) Optional. Indicates the facilities used for thisSVC.

To read this field on an incoming packet:
These fields can be read with theioctl(X25_RD_FACILITIES) .

To write this field on an outgoing packet:
Use theioctl(X25_WR_FACILITIES) prior to issuing the
ioctl(X25_SEND_CALL_ACEPT) . Theioctl(X25_ACPT_APPROVAL)
must first be issued on the listen socket. Applications cannot control the
access to the facilities field, if the call accept packet is generated using the
accept() system call.

Call User Data Optional. Contains application defined data.

To read this field on an incoming packet:
These fields can be read with the ioctl(X25_RD_USER_DATA) .

To write this field on an outgoing packet:
The application must be controlling call acceptance. Use the
ioctl(X25_WR_USER_DATA) prior to issuing the
ioctl(X25_SEND_CALL_ACEPT) theioctl(X25_ACPT_APPROVAL)
must first be issued on the listen socket. Applications cannot control the
access to the call user data field, if the call accept packet is generated using
theaccept() system call.

programmers.book : append_a.frb 128 Wed Apr 3 15:09:01 1996

128

X.25 Packet Formats
CLEAR REQUEST/INDICATION Packet

CLEAR REQUEST/INDICATION Packet

A client process sends aCLEAR REQUEST/INDICATION packet to terminate an
SVC with a remote host.Thesubsystem sends aCLEAR REQUEST/INDICATION

packet when a close orshutdown() system call is issued.

Figure 3 CLEAR REQUEST Packet

The access to the fields in theCLEAR REQUEST/INDICATION packet is
described below:

General Format
Identifier

Indicates the packet sequence count (modulo 8 or modulo 128). This field
cannot be read or written by anX.25 application.

Logical Channel
Identifier

Controlled by the subsystem. It can be read with the
ioctl(X25_RD_LCI) after the call has been established.

Logical Channel Identifier

Called DTE Address Length

DTE Addresses

Facilities

8 7 6 5 4 3 2 1

1

2

3

4

Bits

Called DTE Address Length

Facility Length

Packet Type Identifier

General Format Identifier

Octets

Clear User Data

Clearing Cause

Diagnostic Code5

6

programmers.book : append_a.frb 129 Wed Apr 3 15:09:01 1996

129

X.25 Packet Formats
CLEAR REQUEST/INDICATION Packet

Packet Type IdentifierIndicates the kind of packet. It cannot be read or written directly, but through
system calls, the transmission and arrival can be effected.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the second byte of which (buf[1]) will
containOOB_VC_CLEAR if a CLEAR INDICATION packet was received.

To write this field on an outgoing packet:
Use the close orshutdown() system call to transmit aCLEAR REQUEST

packet.

Clearing Cause Indicates the cause code for the clear request packet.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the third byte of which (buf[2]) will
contain the clearing cause field.

To write this field on an outgoing packet:
Use theioctl(X25_WR_CAUSE_DIAG) .

Diagnostic Code Contains the diagnostic code for theCLEAR REQUEST packet.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the fourth byte of which (buf[4]) will
contain the clearing diagnostic field.

To write this field on an outgoing packet:
Use theioctl(X25_WR_CAUSE_DIAG) .

Calling DTE Address
(Length)

Indicates the source of the packet.

To read this field on an incoming packet:
These fields cannot be read by the application.

To write this field on an outgoing packet:
TheX.25 subsystem computes this field. It cannot be directly written.

CalledDTE Address
(Length)

Indicates the destination of the packet.

To read this field on an incoming packet:
These fields cannot be read by the application.

To write this field on an outgoing packet:
TheX.25 subsystem computes this field.

Facilities (Length) Optional. Indicates the facilities used for thisSVC.

programmers.book : append_a.frb 130 Wed Apr 3 15:09:01 1996

130

X.25 Packet Formats
CLEAR REQUEST/INDICATION Packet

To read this field on an incoming packet:
These fields can be read with theioctl(X25_RD_FACILITIES) .

To write this field on an outgoing packet:
These fields can be written with theioctl(X25_WR_FACILITIES) .

Call User Data Optional. Contains application-defined data.

To read this field on an incoming packet:
Use theioctl(X25_RD_USER_DATA) to read the data.

To write this field on an outgoing packet:
Use theioctl(X25_WR_USER_DATA) to write this field.

programmers.book : append_a.frb 131 Wed Apr 3 15:09:01 1996

131

X.25 Packet Formats
DATA Packet

DATA Packet

A client process sends aDATA packet to terminate anSVC with a remote
server.Thesubsystem sends aDATA packet when asend() or write() sys-
tem call is issued.

Figure 4

Figure 5 DATA Packet (Modulo 8)

The access to the fields in theDATA packet is described below:

General Format
Identifier

Contains the D bit and the packet sequence count (modulo 8). The packet
sequence window size cannot be read or written by anX.25 application.

To read this field on an incoming packet:
This field cannot be directly read by the application. The arrival of aDATA

packet with the D bit set can be detected with the
ioctl(X25_NEXT_MSG_STAT) system call. TheX.25 subsystem automati-
cally responds to an incomingDATA packet with the D bit set when data is
read by the application (D bit confirmation indicates that the data has been
read by the remoteX.25 application.)

To write this field on an outgoing packet:
Use theioctl(X25_SEND_TYPE) before issuing asend() or write()
system call.

Logical Channel
Identifier

Contains the logical channel identifier. It is controlled by theX.25 subsystem.
It can be read with theioctl(X25_RD_LCI) after the call has been estab-
lished.

Logical Channel Identifier

8 7 6 5 4 3 2 1

1

2

3

Bits

Receive

General Format Identifier

Octets

User Data

0M Bit Sequence Number
Receive

Sequence Number

programmers.book : append_a.frb 132 Wed Apr 3 15:09:01 1996

132

X.25 Packet Formats
DATA Packet

Receive Sequence
Number

Indicates the sequence number of the last packet received. It is controlled by
the subsystem and cannot be read nor written by the application.

M Bit Indicates that the packet is part of a group of packets (a message). It is set
whenever the buffer specified in a send() or write() system call is larger
than the maximum packet size, or when theX25_MDTF_BIT is set in the
ioctl(X25_SEND_TYPE) system call. Packets with the M bit set are part
of a larger message. The entire message must be read by at a singlerecv()
or read() system call, or as a series of fragments when the
ioctl(X25_SET_FRAGMENT_SIZE) system call is used. This field cannot
be directly read or written by an application.

Send Sequence
Number

Indicates the sequence number of this packet. It is controlled by the sub-
system and cannot be read nor written by the application.

User Data Contains the data being transmitted in this packet.

To read this field on an incoming packet:
Use therecv() or read() system calls to read this field.

To write this field on an outgoing packet:
Use thesend() or write() system calls to write this field.

programmers.book : append_a.frb 133 Wed Apr 3 15:09:01 1996

133

X.25 Packet Formats
INTERRUPT Packet

INTERRUPT Packet

A application process sends anINTERRUPT packet to transmit out-of-band
data to the remote process.

Figure 6 INTERRUPT Packet

The access to the fields in theINTERRUPT packet is described below:

General Format
Identifier

Indicates the packet sequence count (modulo 8). This field cannot be read or
written by anX.25 application.

Logical Channel
Identifier

Associates a logical channel number with theSVC. This field is controlled by
thesubsystem. It can be read with theioctl(X25_RD_LCI) .

Packet Type IdentifierIndicates the kind of packet. It cannot be read or written directly, but through
system calls, the transmission and arrival can be effected.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the second byte of which (buf[1]) con-
tains an indication that anINTERRUPT packet has arrived (OOB_INTERRUPT).

To write this field on an outgoing packet:
Use thesend(MSG_OOB) system call to transmit anINTERRUPT packet.

Interrupt User Data Contains data associated with theINTERRUPT packet.

To read this field on an incoming packet:
When theSIGURG signal handler is called, issue arecv() system call with
theMSG_OOB flag set.

Logical Channel Identifier

8 7 6 5 4 3 2 1

1

2

3

Bits

Packet Type Identifier

General Format Identifier

Octets

Interrupt User Data

programmers.book : append_a.frb 134 Wed Apr 3 15:09:01 1996

134

X.25 Packet Formats
INTERRUPT Packet

To write this field on an outgoing packet:
Use thesend() system call with theMSG_OOB flag set to transmit anINTER-

RUPT packet and specify the interrupt user data field.

programmers.book : append_a.frb 135 Wed Apr 3 15:09:01 1996

135

X.25 Packet Formats
INTERRUPT CONFIRMATION Packet

INTERRUPT CONFIRMATION Packet

This packet is transmitted automatically by theX.25/300subsystem when an
INTERRUPT packet is received. TheX.25/800 subsystem transmits this packet
when the application process reads the interrupt data (issues a
recv(MSG_OOB) system call).

Figure 7 INTERRUPT CONFIRMATION Packet

The access to the fields in theINTERRUPT CONFIRMATION packet is described
below:

General Format
Identifier

Indicates the packet sequence count (modulo 8 or modulo 128). This field
cannot be read or written by anX.25 application.

Logical Channel
Identifier

Contains the logical channel identifier. It is controlled bythesubsystem. It
can be read with theioctl(X25_RD_LCI) after the call has been estab-
lished.

Packet Type IdentifierIndicates the kind of packet.X.25/300 automatically transmits this packet in
response to anINTERRUPT packet, and transmission cannot be controlled by
the application.

To read this field on an incoming packet:
In blocking mode, the send(MSG_OOB) system call blocks until confirma-
tion is received. In nonblocking mode,recv(MSG_OOB) returns a buffer the
second byte of which (buf[1]) indicates that anINTERRUPT CONFIRMATION

packet has arrived (OOB_VC_INTERRUPT_CONF).

Logical Channel Identifier

8 7 6 5 4 3 2 1

1

2

3

Bits

Packet Type Identifier

General Format Identifier

Octets

programmers.book : append_a.frb 136 Wed Apr 3 15:09:01 1996

136

X.25 Packet Formats
INTERRUPT CONFIRMATION Packet

To write this field on an outgoing packet:
TheX.25/800 subsystem transmits anINTERRUPT CONFIRMATION packet
when the correspondingINTERRUPT packet's interrupt user data field is read
with a recv(MSG_OOB) system call.

programmers.book : append_a.frb 137 Wed Apr 3 15:09:01 1996

137

X.25 Packet Formats
RESET REQUEST/INDICATION Packet

RESET REQUEST/INDICATION Packet

A process sends aRESET REQUEST packet to reset aVC. Thesubsystem sends
a RESET REQUEST when aclose() or shutdown() system call is issued
on aPVC.

Figure 8 RESET REQUEST Packet

The access to the fields in theRESET REQUEST/INDICATION packet is
described below:

General Format
Identifier

Indicates the packet sequence count (modulo 8 or modulo 128). This field
cannot be read or written by anX.25 application.

Logical Channel
Identifier

Contains the logical channel identifier. It is controlled by theX.25 subsystem.
It can be read with the ioctl(X25_RD_LCI) after the call has been estab-
lished.

Packet Type IdentifierIndicates the kind of packet. It cannot be read or written directly, but through
system calls, the transmission and arrival can be effected.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the second byte of which (buf[1]) con-
tains an indication that aRESET INDICATION packet has arrived
(OOB_VC_RESET).

To write this field on an outgoing packet:
Use theioctl(X25_RESET_VC) to transmit a reset packet.

Logical Channel Identifier

8 7 6 5 4 3 2 1

1

2

3

4

Bits

Packet Type Identifier

General Format Identifier

Octets

Resetting Cause Code

Diagnostic Code5

programmers.book : append_a.frb 138 Wed Apr 3 15:09:01 1996

138

X.25 Packet Formats
RESET REQUEST/INDICATION Packet

Resetting Cause CodeIndicates the cause code for theRESET REQUEST/INDICATION packet.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the second byte of which (buf[2]) con-
tains the resetting cause field.

To write this field on an outgoing packet:
Use theioctl(X25_WR_CAUSE_DIAG) before the
ioctl(X25_RESET_VC) is issued.

Diagnostic Code Contains the diagnostic code for theRESET REQUEST/INDICATION packet.

To read this field on an incoming packet:
recv(MSG_OOB) returns a buffer the second byte of which (buf[3]) con-
tains the resetting diagnostic code field.

To write this field on an outgoing packet:
Use theioctl(X25_WR_CAUSE_DIAG) before issuing the
ioctl(X25_RESET_VC) .

programmers.book : append_a.frb 139 Wed Apr 3 15:09:01 1996

139

X.25 Packet Formats
RESET CONFIRMATION Packet

RESET CONFIRMATION Packet

A RESET CONFIRMATION packet is automatically generated by the subsystem
when the application process reads the reset data (issues arecv(MSG_OOB)
system call).

Figure 9 RESET CONFIRMATION Packet

The access to the fields in theRESET CONFIRMATION packet is described
below:

General Format
Identifier

Indicates the packet sequence count (modulo 8 or modulo 128). This field
cannot be read or written by anX.25 application.

Logical Channel
Identifier

Contains the logical channel identifier. It is controlled bythesubsystem. It
can be read with theioctl(X25_RD_LCI) after the call has been estab-
lished.

Packet Type IdentifierIndicates the kind of packet.X.25/300 automatically transmits this packet in
response to anRESETpacket, and transmission cannot be controlled by the
application.

To read this field on an incoming packet:
In blocking mode, theioctl(X25_RESET_VC) system call blocks until
confirmation is received. In nonblocking mode,recv(MSG_OOB) returns a
buffer the second byte of which (buf[1]) indicates that anRESET CONFIR-

MATION packet has arrived (OOB_VC_RESET_CONF).

Logical Channel Identifier

8 7 6 5 4 3 2 1

1

2

3

Bits

Packet Type Identifier

General Format Identifier

Octets

programmers.book : append_a.frb 140 Wed Apr 3 15:09:01 1996

140

X.25 Packet Formats
RESET CONFIRMATION Packet

To write this field on an outgoing packet:
TheX.25/800 subsystem transmits anRESET CONFIRMATION packet when the
correspondingRESETpacket's reset user data field is read with a
recv(MSG_OOB) system call.

programmers.book : append_b.frb 141 Wed Apr 3 15:09:01 1996

141

B

 Program Examples

programmers.book : append_b.frb 142 Wed Apr 3 15:09:01 1996

142

Program Examples
Example Programs

Example Programs

Several pairs of example programs are shipped with theX.25 product. These
programs are in the/usr/netdemo/x25 directory , and are as fol-
lows:

Program name Purpose

client.c/server.c Send/receive one message of data, no Out-of-Band signal handling. For
Switched Virtual Circuits only.

client2.c/server2.c Send/receive one message of data, then send/receive one Interrupt packet,
with Out-of-Band signal handling. For Switched Virtual Circuits only.

clientpvc.c/serverpvc.c Send/receive 1 message of data, then send/receive 1 Interrupt packet, then
send a Reset packet with Out-of-Band signal handling. For Permanent Vir-
tual Circuits only.

client2pvc.c/
server2pvc.c

Identical to clientpvc.c/serverpvc.c, except that there is a long loop on
sending/receiving data messages. This difference allows the testing of the
Out-of-Band Level 2 Down event. For Permanent Virtual Circuits only.

infoserv_client.c/
infoserv.c

Similar to the programs above, but the main difference is that the server
“forks” the listener’s process before receiving the incoming calls; this
allows faster processing at connection time. The other main difference is
that several parameters can be configured, such as number of messages,
message size, number of processes to fork etc.

programmers.book : aboutbook.frb 143 Wed Apr 3 15:09:01 1996

143

About this book

programmers.book : aboutbook.frb 144 Wed Apr 3 15:09:01 1996

144

Copyright information
This document contains proprietary information which is protected by copy-
right. All rights reserved. No part of this document may be photocopied,
reproduced or translated into another language without the prior written con-
sent of Hewlett-Packard company.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

© Hewlett-Packard Company, 1996. All rights reserved.

Warranty
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties or merchanability and
fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for inci-
dental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material.

programmers.book : aboutbook.frb 145 Wed Apr 3 15:09:01 1996

145

Reader comments

Reader comments

Comments on this book can be sent to the following address

The Manager
Network Usability Group
Enterprise Networking and Security Division
Hewlett-Packard France
5, Avenue Raymond Chanas - Eybens
38053 GRENOBLE Cedex 09
France

You can also send comments to the following e-mail address

doc_comments@grenoble.hp.com

Please quote the Customer order number, the HP Manufacturing part num-
ber and the edition number in all correspondence.

Printing history
The printing date changes when a new edition is printed. The book’s part
number changes when major changes are made.

Edition
Edition
number

Print date
Customer

order
number

HP manufacturing
part number

Comments

Edition 2 E1095 Oct. 1995 36960-90050 36960-90056 Also available on
CD-ROM

Edition 3 E0596 May 1996 36960-90050 36960-90058 Also available on
CD-ROM

programmers.book : aboutbook.frb 146 Wed Apr 3 15:09:01 1996

146

Reader comments

programmers.book : programmersIX.doc 147 Wed Apr 3 15:09:01 1996

147

A
accept(), 36

and nonblocking I/O, 61
parameters, 37
syntax, 37

accepting a connection, 36
address

binding, 34
address family, 33, 41
address matching

binding, 34
addresses

X.121, 13
addressing, 16

avoiding conflicts, 30
levels, 17
protocol ID, 17
servers, 21
space conflicts, 29
wildcard, 25

addressing information, 18
x25addrstr, 18

addressing options, 20
AF_CCITT, 18, 20, 33

B
back-to-back

configuration, 9, 23
bind, 21, 29
bind address structure, 22
bind(), 34

syntax, 34
bind_addr, 35
binding a socket address, 34
BSD IPC, 11

system calls, 11
buffer size

changing, 66, 68
default, 68
increasing, 69
reducing, 69

C
call acceptance

controlling, 43
CALL ACCEPTED, 11

packet format, 125
CALL ACCEPTED packet

and D bit, 58
CALL CONNECTED

packet format, 125
CALL INDICATION

packet format, 122
CALL REQUEST, 11, 21, 25, 27

packet format, 122
CALL REQUEST packet, 84

and D bit, 58
call user data available, 64
call-matching, 21

interface name, 22
protocol ID, 24
subaddress, 23
X.121 address, 22

call-user data, 18, 84
changing send and receive buffer sizes, 68
child process, 38
circuit state

and socket state, 48
circuit status, 115
circuit table index, 112
CLEAR, 47, 78

out-of-band event, 73
CLEAR INDICATION

packet format, 128
CLEAR packet

and clear-user data, 48
and facilities data, 48

CLEAR REQUEST
packet format, 128

clearing a switched virtual circuit, 82
clear-user data

reading, 85
clear-user data available, 64
client, 11, 13, 20

addressing, 20
establishing connection, 40

client specifying protocol ID
example, 42

Client-Server
model, 11
summary, 11

close(), 47, 82
and clear-user data, 48
and facilities data, 48
parameters, 48
syntax, 48

vs. shutdown(), 50
closing

socket descriptor, 47
closing a connection without losing data,

48
Confirmation

RESET, 81
confirmation

INTERRUPT, 79
connect(), 40

and nonblocking I/O, 62
example, 42
parameters, 41
syntax, 41

connection
accepting, 36
establishing for client, 40
establishing for server, 33
requesting, 40
terminating, 47

connections
reestablishing, 109

controlling
D and Q bits, 56

controlling call acceptance, 43
creating a socket, 33, 40

D
D and Q bits

controlling, 56
D bit, 56

and connect(), 42
CALL ACCEPTED packet, 58
CALL REQUEST packet, 58
data message, 59

D bit acknowledgement, 59
D bit and connection establishment, 59
D bit confirmation, 79
D bit status, 64

X25_NEXT_MSG_STAT ioctl(), 59, 64
DATA

packet format, 131
data

sending, 54
sending and receiving, 53

data loss
and closing a connection, 48

data message

Index

programmers.book : programmersIX.doc 148 Wed Apr 3 15:09:01 1996

Index

148

and D bit, 59
DCE, 9
declaring socket address variables, 18
destination address

specifying, 18, 20
DTE, 9

obtaining address of remote, 115

E
EADDRINUSE, 29
EADDRNOTAVAIL, 29
errno, 111
error messages, 111
establishing a connection

for client, 40
for server, 33

EWOULDBLOCK, 38
extended features, 92

F
facilities, 93

retrieving, 93
writing, 95

facilities data
and close(), 48

fast select, 99
clearing, 103
from called side, 100
from calling side, 99
initial steps, 101

FIOSNBIO, 61
FIOSNBIO ioctl(), 61
flow control

negotiation, 94

G
getpeername(), 116

parameters, 116
syntax, 116

getsockname(), 116
parameters, 116
syntax, 116

I
interface name, 22

specifying, 19, 21
Interprocess Communication

address family, 18

AF_CCITT, 18
BSD IPC connections, 11
client, 11
client-server model, 11
creating a socket, 40
library routines, 11
nonblocking I/0, 41
receiving data, 55
requesting a connection, 40
sending and receiving data, 53
sending data, 54
server, 11
setting up the server to wait for connec-

tion, 35
using shutdown, 49
writing the client process, 40
writing the server process, 33

INTERRUPT, 78, 89
out-of-band event, 73
packet format, 133

INTERRUPT CONFIRMATION
packet format, 135

INTERRUPT confirmation, 78, 79
interrupt data

sending, 89
sending and receiving, 73

interrupt data, receiving
example, 76

ioctl()
FIOSNBIO, 61
X25_CALL_ACPT_APPROVAL, 44
X25_GET_IFSTATE, 114
X25_NEXT_MSG_STAT, 64, 85
X25_RD_CTI, 111
X25_RD_FACILITIES, 93
X25_RD_HOSTADR, 113
X25_RD_LCI, 112
X25_RD_USER_DATA, 85
X25_RESET_VC, 88
X25_SEND_CALL_ACEPT, 45
X25_SET_FRAGMENT_SIZE, 67, 68,

80
X25_SETUP_PVC, 107
X25_WR_CALLING_SUBADDR, 109
X25_WR_CAUSE_DIAG, 82, 83, 88
X25_WR_FACILITIES, 82, 95
X25_WR_MASK_DATA, 27, 28
X25_WR_THRESHOLD, 66

X25_WR_USER_DATA, 82, 84
X25_WR_WTHRESHOLD, 66

IPC connections, 11

L
Level 2

failure recovery, 80
libraries, 11
listen socket, 35
listen(), 35, 36

syntax, 36
listening sockets, 28
log messages, 111
logical channel identifier, 112

M
M bit, 56

reception, 65
transmission, 53, 56, 57, 58

M bit status, 64
mask, 29
MDTF bit, 58
message size

setting, 68
modem eliminator, 9
MSG_OOB, recv()

example, 76
MSG_PEEK, 56

N
next message size, 64
next message status, 64
nonblocking I/O, 41, 61

and accept(), 61
and connect(), 41, 62
and receiving interrupt data, 62, 75
and recv(), 62
and send(), 62

O
OOB_INTERRUPT, 78
OOB_VC_CLEAR, 78
OOB_VC_DBIT_CONF, 78, 79
OOB_VC_INTERRUPT_CONF, 78, 79
OOB_VC_L2DOWN, 78, 80
OOB_VC_MSG_TOO_BIG, 68, 78, 80
OOB_VC_RESET, 78, 80
OOB_VC_RESET_CONF, 78, 81

programmers.book : programmersIX.doc 149 Wed Apr 3 15:09:01 1996

Index

149

out-of-band events, 72
receiving, 73
sending, 82
types of, 78, 82

out-of-band queue, 73

P
packet format

CALL ACCEPTED, 125
CALL CONNECTED, 125
CALL INDICATION, 122
CALL REQUEST, 122
CLEAR INDICATION, 128
CLEAR REQUEST, 128
DATA, 131
INTERRUPT, 133
INTERRUPT CONFIRMATION, 135
RESET CONFIRMATION, 139
RESET INDICATION, 137
RESET REQUEST, 137

packet formats, 120
permanent virtual circuit, 80, 106

set-up, 106
process

client, 12
server, 12

programmatic diagnostics, 111
protocol ID

addressing, 17
offset, 20
specified in call-user data by client, 42
specifying, 18, 20

protocol ID address matching
mask example, 27

PVCs, 106

Q
Q bit, 57
Q bit status, 64
queue

out-of-band, 73

R
read(), 53

and nonblocking I/O, 62
Reading incomplete messages, 53, 67, 68,

80
receive buffer size

default, 68
receiving data, 55
receiving interrupt data

and nonblocking I/O, 62, 75
example, 76

receiving interrupt data quickly, 77
receiving out-of-band data, 73

example, 73, 76
Reception

M bit, 65
recv(), 53, 55

and nonblocking I/O, 62
parameters, 55
syntax, 55

recv(MSG_OOB)
example, 76

reestablishing connections, 109
requesting a connection, 40
RESET, 80, 81

out-of-band event, 73
sending, 88

RESET CONFIRMATION
packet format, 139

RESET confirmation, 81
RESET INDICATION

packet format, 137
RESET out-of-band event, 88
RESET packet, 88
RESET REQUEST

packet format, 137
resetting a virtual circuit, 88
reverse charging, 94

S
select(), 22

write threshold, 66
send buffer size, 66

default, 68
send(), 53

and nonblocking I/O, 62
parameters, 54
syntax, 54

sending and receiving data, 53
sending and receiving interrupt data, 73
sending data, 54
sending interrupt data, 89

on CCITT 1980 interfaces, 90
sending multiple messages, 69

sending out-of-band events, 82
server, 11, 13, 21

design, 38
establishing connection, 33

setsockopt(), 68, 80
parameters, 69
syntax, 69

shutdown(), 49
parameters, 49
syntax, 49
vs. close(), 50

shutting down a socket, 49
signal handler

building, 75
example, 76

signal handling, 73
SIGURG, 55, 73
socket, 33

creating for client, 40
creating for server, 33
preparing, 35
setting buffers, 68
shutting down, 49

socket address
binding, 34

socket address variables
declaring, 18

socket descriptor, 28, 34
socket state

and circuit state, 48
and VC state, 48

socket write threshold, 66
socket()

parameters, 33
syntax, 33

sockets, 11
status

circuit, 115
structures

x25addrstr, 17
subaddress, 18
subaddress storage, 109
SVC, 16
Switched Virtual Circuit, 16
switched virtual circuit

clearing, 82
establishing and fast select, 104

system calls

programmers.book : programmersIX.doc 150 Wed Apr 3 15:09:01 1996

Index

150

BSD IPC, 11
introduction, 11

T
throughput class

negotiation, 94
Transmission

M bit, 53, 56, 57, 58
troubleshooting applications, 111

U
using BSD IPC, 11

V
VC state

and socket state, 48
virtual circuit

resetting, 88

W
why you should use close() to close a con-

nection, 50
wildcard

addressing, 25
x25_host[16], 25
x25ifname[13], 25

write threshold, 66
write(), 53

and nonblocking I/O, 62
writing the server process, 33

X
X.121

address, 17
sub-address, 17

X.121 addresses, 13
X.25 interface name, 19, 22
X.25/9000

extended features, 92
X25_CALL_ACPT_APPROVAL, 43, 44

parameters, 45
syntax, 45

x25_family, 18, 20
X25_GET_IFSTATE, 114

example, 115
parameters, 115
syntax, 115

x25_host, 21, 25

x25_host[16], 18, 20
X25_MDTF_BIT, 57, 58, 65, 67, 132
X25_MR_CAUSE_DIAG, 83

parameters, 84
syntax, 83

X25_NEXT_MSG_STAT, 38, 85
and D bit status, 59

X25_RD_CTI, 111
parameters, 112
syntax, 112

X25_RD_FACILITIES, 79, 93, 99
parameters, 95
syntax, 94
when to issue, 93

X25_RD_HOSTADR, 113
example, 114
parameters, 114
syntax, 113

X25_RD_LCI, 112
example, 113
parameters, 113
syntax, 113

X25_RD_USER_DATA, 85, 99
example, 87
parameters, 86
syntax, 86
when to issue, 85

X25_RESET_VC, 88
parameters, 89
syntax, 89
when to issue, 88

X25_SEND_CALL_ACEPT, 43, 44, 45,
58

parameters, 46
syntax, 46

X25_SEND_TYPE, 46, 56, 57
parameters, 57
syntax, 57

X25_SET_FRAGMENT_SIZE, 67, 68, 80
X25_SETUP_PVC

parameters, 107
syntax, 107
when to issue, 107

X25_WR_CALLING_SUBADDR, 109
parameters, 110
syntax, 109
when to issue, 109

X25_WR_CAUSE_DIAG, 88

X25_WR_FACILITIES, 46, 95, 99
parameters, 97
syntax, 97
when to issue, 95

X25_WR_USER_DATA, 20, 42, 46, 84,
99

parameters, 85
syntax, 84
when to issue, 84

X25_WR_WTHRESHOLD, 66
x25addrstr, 17
x25hostlen, 18, 20
x25ifname, 21, 22, 25
x25ifname[13], 19, 21
x25pid[8], 18, 20
x25pidlen, 18, 20

programmers.book : BackCover 151 Wed Apr 3 15:09:01 1996

programmers.book : BackCover 152 Wed Apr 3 15:09:01 1996

Order Number Manufacturing Part Number

Printed in

36960-90050 36960-90058

- E05/96

