
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP VISUALIZE-IVL Documentation

HP 9000 Series 700 Computers

ABCDE

HP Part No. B5182-96001

Printed in USA E0496

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard provides the following material \as is" and makes no warranty
of any kind with regard to this manual, including, but not limited to, the implied
warranties of merchantability and �tness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages (including lost pro�ts) in connection with
the furnishing, performance, or use of this material whether based on warranty,
contract, or other legal theory.

Some states do not allow the exclusion of implied warranties or the limitation
or exclusion of liability for incidental or consequential damages, so the above
limitation and exclusions may not apply to you. This warranty gives you speci�c
legal rights, and you may also have other rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

\OpenGL" is a trademark of Silicon Graphics, Inc.

Copyright c
 1996 Hewlett-Packard Company This document contains informa-
tion which is protected by copyright. All rights are reserved. Reproduction,
adaptation, or translation without prior written permission is prohibited, except
as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DoD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

FINAL TRIM SIZE : 7.5 in x 9.0 in

Use of this manual and
exible disc(s), or tape cartridge(s), or CD-ROM supplied
for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

PEX and PEXlib are trademarks of Massachusetts Institute of Technology.

Hewlett-Packard Company owns and retains all ownership of the intellectual
property rights in this document and the information contained herein. The user
of this document may make hardcopy printouts from the electronic version of the
document supplied with the product, only for his/her own use. Reproduction of
this document for sale or pro�t is expressly forbidden.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

May 1996 . . . Edition 1. This manual is valid for all HP 9000 Series 700 computers
running the IVL software under HP-UX release 10.20.

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

0

Preface: About this Documentation

Manual Contents

For your convenience, the document you are reading, the Image Visualization
Library Implementation Guide, exists in two forms: a web-browsable version and
a paper version. The web-browsable version exists on the World-Wide Web at
Access HP (URL=http://www.hp.com), as well as on your local �le system in
the directory /opt/graphics/IVL/doc/Web, which can be accessed from your
web browser even without an Internet connection. The paper version contains
the same information as the web version.

This document contains the following information:

Chapter 0|Preface: About this Documentation
Contains information about the audience, formatting conventions, and contents
of the IVL documentation. It also contains pointers to other sources for imaging
information, directions for printing the IVL documentation, and information
about recommended Web browsers.

Chapter 1|For System Administrators
Contains system administration tasks and information for the IVL product.
This includes installation and con�guration information, as well as information
on compatible software revisions of IVL, HP-UX, and X11.

Chapter 2|Overview of the Image Visualization Library (IVL)
Contains a high-level overview and de�nition of the IVL API, with diagrams
to describe hardware and software architecture.

Chapter 3|For Application Developers
Contains information you will need to develop IVL applications. This includes
naming conventions, linking and compiling, supported data formats, tuning
tips, and troubleshooting information.

Chapter 4|Interaction with the X Window System
Contains X-speci�c information you will need to develop an IVL application.

Preface: About this Documentation 0-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

Chapter 5|IVL Implementation and Device-Speci�c Information
Contains device-speci�c information for the graphics devices supported by IVL.

Appendix A|IVL Quick Reference
Contains names and parameter lists of the IVL routines.

Appendix B|IVL Reference
Contains complete reference pages for each the IVL routine.

Glossary
Contains a list of IVL-related terms and their de�nitions.

Audience and Scope

This manual is designed to teach imaging application developers about the
Image Visualization Library (IVL). This manual is not designed to teach you
to become an application developer, or to teach you about imaging terminology
and concepts. To use IVL, you will need knowledge of the following:

Using HP-UX.
C programming, linking, and compiling.
X11 and Motif programming.
Digital image processing terms and concepts.

Formatting Conventions

The IVL documentation uses the following formatting conventions:

Typewriter text represents computer literals. This text should be typed in
exactly as it appears.

Italic text represents variable names. You should substitute your own text in
place of the italics.

Bold text represents glossary terms. See the Glossary for de�nitions.

hAngle-bracketed italicsi represents conceptual variables. These are not literals,
but should be replaced by whatever value is appropriate for the context. For
example, the following line:

cc h�lename i .c -lIVL -lm -o h�lenamei

means you should type the above line exactly, replacing the two occurrences of
h�lenamei with the name of an IVL program.

0-2 Preface: About this Documentation

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

For More Information

Hewlett-Packard does not attempt to discuss in detail the concepts and theory
of digital image processing in this manual. For further information on digital
image processing, the following references may be helpful. Note that these are
suggestions, a starting point for further reading, not a speci�c endorsement of
these books over others not listed here.

Image Visualization Library Reference|a reference section in this document
that provides descriptions of IVL API routines, their use, and parameters.

Graphics Administration Guide|an HP document that provides device sup-
port, pathname, and other information that is applicable to all of Hewlett-
Packard's graphics APIs.

Digital Image Processing (3rd Edition) by Rafael C. Gonzalez and Richard E.
Woods (Reading, MA: Addison-Wesley; 1992). ISBN: 0-201-50803-6.

Digital Image Processing (2nd Edition) by William K. Pratt (New York: John
Wiley and Sons; 1991). ISBN: 0-471-85766-1.

Digital Image Warping by George Wolberg (Los Alamitos, CA: IEEE Com-
puter Society Press; 1990). ISBN: 0-8186-8944-7.

Preface: About this Documentation 0-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

Viewing IVL Documentation with Web Browsers

At the time of publication for this document, Hewlett-Packard does not distribute
a World-Wide Web browser with HP-UX. Nor does HP endorse or recommend
any speci�c browser from other sources.

Informal testing has found some problems with early versions of various browsers.
Because of this, the following versions of Web browsers are recommended for
viewing the IVL documentation:

Netscape NavigatorTM, version 1.1N or later. (At the time of publication,
version 2.0 was the most recent supported version of Navigator.) This is
available via anonymous FTP from ftp2.netscape.com (or ftp3 or ftp4

or ftp5 . . .) in the directory 2.0/unix; the �le name is netscape-v20-

export.hppa1.1-hp-hpux.tar.Z.

NCSA Mosaic TM , version 2.5 or later. (At the time of publication,
version 2.6 was the most recent supported version of Mosaic.) This browser
is available via anonymous FTP from ftp.ncsa.uiuc.edu in the directory
/Mosaic/Unix/binaries/2.6; the �le name of the most recent version (as of
this writing) is Mosaic-hp-2.6.Z.

Printing the IVL Documentation

The IVL product also includes a PCL �le that you can use to print a paper
copy of the IVL documentation. Printing these �les requires a printer with PCL
capabilities, referred to as hprinter namei below.

To print the Image Visualization Library Implementation Guide:

cd /opt/graphics/IVL/doc/printfiles

lp -dhprinter namei -oraw ImplementationGuide.pcl

Please note that there are limitations in HTML capabilities and di�erent
capabilities among Web browsers. This means that there are likely to be
di�erences between the appearance of IVL documentation when viewed with a
browser and the printed version of the same documentation.

0-4 Preface: About this Documentation

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

0. Preface: About this Documentation
Manual Contents . 0-1
Audience and Scope 0-2
Formatting Conventions 0-2
For More Information 0-3

Viewing IVL Documentation with Web Browsers 0-4
Printing the IVL Documentation 0-4

1. Chapter 1: For System Administrators
Installation . 1-1
IVL Filesets . 1-1
Using SD-UX . 1-1

X Con�guration . 1-2
X11 . 1-2
Double-Bu�ering 1-2
Single Logical Screen 1-2

VUE and CDE . 1-3
Motif . 1-3

Revision Information 1-4
Using the what Command 1-4
Using the uname Command 1-4
If You Have Incompatible Software 1-4

Using the graphinfo Command 1-6

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2. Chapter 2: Overview of the Image Visualization Library (IVL)
What is IVL? . 2-1
IVL Description . 2-1
Relationship to OpenGL 2-2
Using IVL with Other Graphics APIs 2-2
Xlib and Motif . 2-2
HP Image Library 2-3
Starbase, HP-PHIGS, and HP PEX 2-3
Other OpenGL Implementations 2-3

Color Model . 2-4
Frame Bu�er Organization 2-5
High-Level IVL Overview 2-7
Window Coordinate System 2-7
Rendering Contexts 2-8
Hardware and Software Architecture 2-9
The IVL Machine . 2-10
Abstract Machine 2-10
Pipeline Stages . 2-12
Unpack Pixels 2-12
Pixel Transfer 2-16
Pixel Rasterization 2-16
Fragment Operations 2-16
Frame Bu�er . 2-17

More on Pixel Transfer 2-17
Convolution . 2-18
Post-Convolution Scale and Bias 2-21
Image Transform 2-21
Post-Image Transform Color Table 2-22
Conversion to Frame Bu�er Resolution 2-22

Pixel Rasterization 2-23
Fragment Operations 2-23
Pixel Ownership Test 2-23
Scissor Test . 2-24

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

3. Chapter 3: For Application Developers
Naming Conventions 3-1
IVL Routines . 3-1
Standard IVL Routines and Constants 3-1
Window System Routines and Constants 3-2
Extensions to IVL 3-2
Extensions Supported by Multiple Vendors 3-2
Extensions Supported by HP Only 3-2

Function Variants Based on Data Type 3-3
Naming Conventions Summary 3-4
IVL Routines . 3-4
IVL Data Type Names 3-4
IVL Constants . 3-5

Types of IVL API Routines 3-6
Setting and Querying Attributes 3-6
Imaging Operations 3-6
Window System Interaction 3-7

Compiling and Linking 3-8
IVL Data . 3-8
Supported Data Formats 3-8
Pixel Unpacking . 3-9

Implementation Restrictions 3-10
Underlays . 3-10
Distributed Environments 3-10
Multi-Threaded Applications 3-10

Programming Advice 3-11
Query Data Values 3-11
Image Data Formatting 3-12
RGBA Data Format 3-12

Performance Tuning Tips 3-13
General Performance Hints 3-13
Performance Hints for Workstations with IVX Hardware . . . 3-13
Performance Hints for Workstations without IVX Hardware . 3-14

Error Handling . 3-15
Sample Code . 3-19

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4. Chapter 4: Interaction with the X Window System
X Interaction . 4-1
X Windows Capabilities 4-4
Setting Up an X/IVL Program 4-4
Selecting Visuals . 4-5
IVL and Color Recovery 4-6

Managing Rendering Contexts 4-6
Double-Bu�ering Support 4-7
IVL and Backing Store 4-8
Using Pixmaps . 4-8
Synchronization . 4-8
Using the glFinish Routine 4-8
Using the glFlush Routine 4-9

5. Chapter 5: IVL Implementation and Device-Speci�c Information
List of Devices . 5-1
IVL Implementations 5-1
Renderer Names . 5-2

Entry-Level Color Graphics Devices 5-3
Device Description 5-3
Supported Visuals 5-3
Color Map Management 5-4
Overlay Transparency 5-4

HCRX Family Device Descriptions 5-5
Device Descriptions 5-6
HCRX-8 Description 5-6
HCRX-24 Description 5-6
Supported Visuals 5-7
HCRX-8 . 5-7
HCRX-24 . 5-7

Color Map Management 5-7
Changing the Default Visual 5-8

Overlay Transparency 5-8
Overlay Transparency with HCRX-8 Devices 5-8
Overlay Transparency with HCRX-24 Devices 5-9

Image Visualization Accelerator Device Description 5-10
Device Description 5-10
Angle of Rotation 5-10

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Rasterization . 5-10
Performance Hints 5-11
Clip Rectangles . 5-11
Software versus Hardware-Accelerated Paths 5-11

A. Appendix A: Quick Syntax Summary for IVL
IVL Rendering Routines A-1
GLX Utility Routines A-3

B. Appendix B: HP-IVL Reference
glClear . B-2
glClearColor . B-4
glColorTableEXT . B-5
glColorTableParameter*vEXT B-8
glConvolutionFilter2DEXT B-10
glConvolutionParameter*EXT B-13
glCopyPixels . B-18
glDrawBuffer . B-21
glDrawPixels . B-23
glEnable, glDisable B-27
glFinish . B-29
glFlush . B-30
glGet*v . B-31
glGetColorTableEXT B-36
glGetColorTableParameter*vEXT B-38
glGetConvolutionFilterEXT B-41
glGetConvolutionParameter*vEXT B-43
glGetError . B-46
glGetImageTransformParameter*vHP B-48
glGetString . B-50
glImageTransformParameter*HP B-52
glIsEnabled . B-57
glPixelStore* . B-59
glPixelTransfer* . B-63
glRasterPos* . B-66
glReadBuffer . B-68
glReadPixels . B-70
glScissor . B-73

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

glX.Intro . B-75
glXChooseVisual . B-79
glXCreateContext . B-82
glXCreateGLXPixmap B-84
glXDestroyContext . B-86
glXDestroyGLXPixmap B-87
glXGetConfig . B-88
glXMakeCurrent . B-91
glXQueryExtension . B-93
glXSwapBuffers . B-94

Glossary

Index

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

2-1. Frame Bu�er Organization 2-5
2-2. Window Coordinate System 2-7
2-3. Rendering Contexts 2-9
2-4. Hardware and Software Architecture 2-10
2-5. Abstract Machine . 2-11
2-6. Pipeline Stages . 2-12
2-7. Skipping Rows and Pixels 2-13
2-8. Unpacking Pixels . 2-15
2-9. More on Pixel Transfer 2-18
3-1. Supported Data Formats 3-9
4-1. X Interaction . 4-2

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Chapter 1: For System Administrators

Installation

IVL Filesets

You must use SD-UX to install the following �lesets in order to successfully
develop or execute IVL applications:

DDA-SHLIBS

IVL-SHLIBS

You must use SD-UX to install the following �lesets in order to successfully
develop IVL applications:

DDA-SHLIBS

IVL-PRG

IVL-SHLIBS

IVL-WEBDOC (optional)
IVL-HARDCOPY (optional)
IVL-DEMO (optional)

Using SD-UX

See your HP-UX system administration documentation for information on using
the Software Distributor on HP-UX.

Chapter 1: For System Administrators 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

X Configuration

X11

Double-Buffering

IVL draws images from the bottom to the top of a window. This is known
as the rasterization order. (The OpenGL standard does not dictate a speci�c
rasterization order, but does dictate that the image data coordinate system has
it's origin at the lower left corner of an image. This coordinate system lends itself
naturally to a bottom to top rasterization.) This di�ers from the frame bu�er,
which refreshes from the top to the bottom of the screen. Because of this, you
may see a tearing e�ect as your image is being drawn. To hide this artifact of
the rasterization order, you can use hardware double-bu�ering on those devices
that support it (see glXSwapBuffers).

When you do this, you may still see some minor tearing due to bu�er swapping.
This is a less severe artifact than the one described above. You can eliminate
this secondary tearing by forcing the X Server to swap hardware bu�ers during
the vertical retrace interval. To do this, add the following to your X*screens �le:

Screen /dev/crt

ScreenOptions

SwapBuffersOnVBlank

Note: since this a�ects hardware bu�ers only, it will have no e�ect on graphics
systems that do not support hardware double-bu�ering. Also, synchronizing with
vertical retrace may cause a slight decrease in performance.

Single Logical Screen

With Single Logical Screen (SLS), the X11 server manages multiple physical
display devices as if they were a single frame bu�er. Thus the use of the term
\logical".

The initial release of IVL does not support the Single Logical Screen environment.
This includes the case where IVL renders to a drawable that resides on a single
physical display (frame bu�er). To reiterate, SLS is not supported.

1-2 Chapter 1: For System Administrators

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
However, IVL is supported on multi-display con�gurations that are not con�g-
ured as a Single Logical Screen.

VUE and CDE

IVL does not require any special con�guration for VUE or CDE.

Motif

By default, Motif creates child widgets using the same visual class as their parent
widget. This can cause your application windows to inherit an unexpected
visual type. In order to support the rich set of visual classes available on HP
workstations used in Motif applications, an alternative widget creation procedure
is required.

A sample widget is provided for you to use. The directory
/opt/graphics/IVL/demo/DrawingA contains the source �les, header �les, and
a make�le. Incorporate the object �le drawinga.o created by this set of �les into
your application.

Instead of making a procedure call to XmCreateDrawingArea to create a drawing
area widget, applications should call HPCreateVisualDrawingArea using the
same parameter list. It accepts an argument to specify a visual class di�erent
from a parent widget.

Applications can subsequently create OpenGL contexts using the same visual
class used to create the drawing area widget. Call glXMakeCurrent to bind the
context to the realized drawable.

See the example source �le for details about Motif drawing area creation.

Chapter 1: For System Administrators 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Revision Information

The following sections will help you determine what revisions of IVL, X11, and
HP-UX you have on your system. Your operating system must be Release 10.10
HP-UX or a subsequent version, in order to use IVL. Refer to the Graphics
Administration Guide to determine whether or not these revisions are compatible.

The output of the what command will show the name of the product, the version
number, compile date, and the base operating system name (HP-UX) and it's
release level.

Using the what Command

You can use the what command to make sure you have compatible revisions of
IVL and X11 installed on your system.

To �nd the revision of IVL installed on your system, type:

what /opt/graphics/IVL/lib/libIVL.sl

To �nd the revision of X11 installed on your system, type:

what /usr/bin/X11/X

Using the uname Command

You can use the uname command to determine the revision of HP-UX installed
on your system. To do this, type:

uname -r

For HP-UX revision 10.10 on Series 700 workstations, the output of the above
command is B.10.10.

If You Have Incompatible Software

Once you have determined the IVL, HP-UX, and X revisions on your system,
refer to the Graphics Administration Guide to determine whether or not these
revisions are compatible.

If you have incompatible revisions of HP-UX, X11, and/or IVL installed on your
system, you will need to update to the most recent and compatible revisions

1-4 Chapter 1: For System Administrators

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
of these software products. If you do not already have the necessary software,
contact your local Hewlett-Packard sales o�ce or your HP Response Center.

Chapter 1: For System Administrators 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Using the graphinfo Command

The graphinfo command can be used to determine if you have image acceleration
hardware installed on your system. To do this, type:

graphinfo | more

If you have Imaging Visualization Accelerator (IVX) hardware installed on your
system, the following line will appear in the \CONFIGURATION INFORMATION"
section:

image accelerator: yes

If you do not have IVX hardware installed on your system, the \CONFIGURATION
INFORMATION" section will not include an \image accelerator" line.

On systems with IVX hardware, the entire section will look similar to the
following output. (Note that this is a partial listing of what the graphinfo

command reports for the HCRX-8 plus IVX.)

CONFIGURATION INFORMATION

image planes: 8

overlay planes: 8

resolution: 1280 X 1024

color or grayscale: color

PHIGS supported: yes

hardware accelerator: no

geometry accelerator: no

image accelerator: yes

texture accelerator: no

hardware zbuffer: no
software zbuffer: yes

video out: no

1-6 Chapter 1: For System Administrators

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2
Chapter 2: Overview of the Image
Visualization Library (IVL)

What is IVL?

IVL Description

The Image Visualization Library (IVL) is an Application Programming Interface
(API) from Hewlett-Packard that provides access to high-performance capabili-
ties for the display and manipulation of two-dimensional images. IVL is a device-
independent API; application developers do not need to provide special code to
change between di�erent devices. IVL will automatically take advantage of in-
creased performance from the Image Visualization Accelerator (IVX) hardware
if it is available. If the IVX hardware is not available, IVL provides the same
capabilities through its software implementation.

IVL provides access to the frame bu�er with the highest possible performance and
the lowest possible overhead. IVL does not include elaborate image processing
algorithms, nor does it support high-level abstractions for image formats. The
API provides an e�cient path for transferring pixels to the frame bu�er. Because
of its low-level focus, it is entirely appropriate to build toolkits and middleware
products layered on IVL to provide optional utilities and functions that simplify
application development.

IVL can be thought of as the server in a client/server model. An application
(the client) issues commands, and these commands are interpreted and processed
by IVL (the server). The client and server may or may not be running on
the same processor. Because of this client/server model, IVL applications can
operate successfully across a network or in a standalone environment. (Note: the
initial release of IVL does not support the ability to operate across a network.
Applications must run on the system where IVL is installed.)

The target customers for IVL are application developers working on image
processing and display software. For example, an application developer creating

Chapter 2: Overview of the Image Visualization Library (IVL) 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

a diagnostic imaging application for the medical market would bene�t from the
high-performance image processing capabilities provided by IVL.

IVL currently supports luminance format (GL_LUMINANCE) and RGBA format
(GL_RGBA) data, which are described in detail in the \IVL Data" section of
the \For Application Developers" chapter. Future releases of IVL may support
additional data formats.

Relationship to OpenGL

IVL is a library for image processing with a programming interface very similar to
the imaging portions of the OpenGL R
 API and the de�ned imaging extensions to
OpenGL. While the OpenGL API is not often thought of as an API for imaging,
it was designed to expose the capabilities of modern frame bu�er hardware. The
emphasis in the OpenGL API is on 3D graphics, but it also includes a fairly rich
set of capabilities for 2D image processing. The core capabilities of the OpenGL
API can be extended using imaging proposals from Silicon Graphics, Inc. and
others.

To the extent that IVL utilizes the OpenGL command syntax and state machine,
it is used with permission from Silicon Graphics, Inc. However, HP makes no
claims that IVL is in any way a compatible replacement for the OpenGL interface
or associated with Silicon Graphics, Inc.

IVL is a stand-alone library that implements the imaging portions of the OpenGL
API and some of the OpenGL imaging extensions. Because of its similarity
to the OpenGL API, software written using IVL can be easily ported to an
OpenGL environment. IVL provides a small, well-de�ned set of capabilities for
pixel processing. The IVL entry points are identical in syntax and semantics to
their counterparts in OpenGL. The only di�erence is that IVL is not a complete
OpenGL programming environment.

Using IVL with Other Graphics APIs

Xlib and Motif

Application developers can mix calls to IVL, Xlib, and Motif in the same program.
It is the application developer's responsibility to call various API synchronization
routines to ensure that rendering occurs in the desired order.

2-2 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

HP Image Library

Using IVL in the same application with the HP Imaging Library is not supported.
You can use both IVL and the HP Image API within the same application. (The
Image API manipulates image data, but does not display it. You must use Xlib
to display images after processing by the Image API.)

Starbase, HP-PHIGS, and HP PEX

Using IVL in the same application with a 3D API such as Starbase, HP-PHIGS,
or HP PEX is not supported. There is no method to ensure synchronization of
display output between IVL and any of these other APIs.

Other OpenGL Implementations

Using IVL in the same application with other implementations of OpenGL is not
supported. There would be name space con
icts at link time that could easily
result in altering the behavior of IVL entry points.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Color Model

The set of rules for manipulating color values in a processing system is sometimes
called a color model. IVL supports a color model that is based on processing pixel
values with red, green, blue, and alpha values, hence it is called RGBA mode.
The color model is determined by characteristics of the window in which drawing
is to occur. For this release of IVL, all windows that support IVL rendering
support RGBA mode.

RGBA mode is based on the premise that the system supports the processing of
up to four channels of color information simultaneously. The red, green, and blue
components are always treated identically.

During processing, red, green, blue, and alpha values are conceptually treated
as
oating-point numbers in the range [0.0, 1.0]. As pixels are processed and
converted into values that can be written into the frame bu�er, a component
value of 0.0 will be mapped into the smallest displayable frame bu�er value, and
a value of 1.0 will be mapped into the largest displayable frame bu�er value.

In most cases, alpha values are treated the same as the other three components,
but there are some di�erences in how alpha values are processed. However, the
IVL speci�cation permits implementations to streamline internal processing so
long as doing so does not alter the resultant image. If the underlying frame bu�er
does not support the storage of an alpha channel, then the implementation may
choose not to apply some image processing operations to the alpha data.

Many imaging applications manipulate and display images that contain only a
single channel of color information. In IVL terminology, these images are referred
to as luminance-only images, or simply luminance images. These luminance
images can be thought of as RGBA images where the input luminance value is
used as the red, green, and blue component value for each pixel. The alpha value
defaults to 1.0 for every pixel.

2-4 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Frame Buffer Organization

In IVL, the frame bu�er is a two-dimensional memory array that holds pixel
values. A portion of the frame bu�er is typically visible on the display screen.
Some portions of the frame bu�er may never be visible.

Corresponding bits from each pixel in the frame bu�er are considered to be
a bitplane; each bitplane consists of a single bit from each pixel in the frame
bu�er. Bitplanes are grouped into logical bu�ers. The only logical bu�er that is
supported in this release of IVL is the color bu�er.

Figure 2-1. Frame Buffer Organization

The color bu�er may consist of a number of bu�ers depending on whether
it is single-bu�ered, double-bu�ered, stereo, or stereo double-bu�ered. The
components of a color bu�er are therefore referred to as the front bu�er and
the back bu�er. For stereo frame bu�ers, the terminology is front left bu�er,
front right bu�er, back left bu�er, and back right bu�er. Monoscopic frame
bu�ers, by de�nition, contain only the left-side bu�ers.

The current draw bu�er is the bu�er that is the target of all subsequent rendering
operations. You can set the current draw bu�er using glDrawBuffer.

There is slightly di�erent default behavior depending on whether the window is
single-bu�ered or double-bu�ered. In order to make your application work in
either type of window, you should be aware of this di�erence. If the window is
single-bu�ered, the default draw bu�er is GL_FRONT. If the window is double-
bu�ered, the default draw bu�er is GL_BACK.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If your application is inherently monoscopic, you should use the tokens GL_FRONT
and GL_BACK when setting the current draw bu�er. On non-stereo double-bu�ered
windows, there are just two bu�ers, so these two tokens can be used to refer to
each one explicitly. On a stereo double-bu�ered window, the token GL_FRONT

will cause drawing to occur in both the front left and the front right bu�ers of
the stereo window. Similarly, GL_BACK will cause drawing to occur in both the
back left and back right bu�ers of the stereo window. Using the tokens GL_FRONT
and GL_BACK will allow your monoscopic application to run properly on either
monoscopic windows or stereoscopic windows.

This release of IVL does not support stereo windows, but the interface provides
a migration path for applications to eventually include stereo display output. If
you plan to eventually make your application stereo-capable, you should use the
more explicit tokens GL_FRONT_LEFT and GL_BACK_LEFT. On non-stereo double-
bu�ered windows, these tokens refer explicitly to the front and back bu�ers. On
stereo double-bu�ered windows, these tokens refer speci�cally to the left-side
bu�ers; the right-side bu�ers are not a�ected by subsequent drawing operations.
In order to support stereo viewing, you will have to add code later to render
the right side of the stereo image into the right-side bu�ers, and you will
need branches in your program to skip right-side rendering when drawing in
a monoscopic window.

The bu�er from which pixels will be obtained during pixel read operations is
known as the current read bu�er. You can set the current read bu�er using
glReadBuffer.

The tokens GL_FRONT and GL_BACK have slightly di�erent meanings with
glReadBuffer than they do with glDrawBuffer.

In the context of the glReadBuffer routine, the token GL_FRONT refers speci�cally
to the front left bu�er and GL_BACK refers speci�cally to the back left bu�er. (For
pixel reading operations, it would make little sense to have GL_FRONT refer to both
the front left and front right bu�ers. You only want to read pixels from one bu�er
at a time.) So for this routine, GL_FRONT and GL_FRONT_LEFT are synonymous, as
are GL_BACK and GL_BACK_LEFT. If you are dealing with stereo windows and you
need to di�erentiate the left and right bu�er, you should use the more explicit
terms GL_BACK_LEFT and GL_FRONT_LEFT.

2-6 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

High-Level IVL Overview

Window Coordinate System

Some IVL routines require you to provide locations in window coordinates. The
window coordinate system in IVL has its origin (0,0) in the lower left corner of
the window. Both x and y coordinates may be negative, and they may be larger
than the window's width and height, respectively. But the visible pixels have
coordinates from 0 to width�1 in the horizontal direction and 0 to height�1 in
the vertical direction.

Another thing to keep in mind is that the IVL coordinate system has pixels that
are centered on half-integer coordinates. In other words, if you draw a pixel at
(0, 0), the pixel center will actually be at (0.5, 0.5). This is important when
discussing clipping boundaries and precise positioning of images. The following
�gure shows a 3�5 rectangle whose lower left corner is at the window coordinate
location (0, 0).

Figure 2-2. Window Coordinate System

Chapter 2: Overview of the Image Visualization Library (IVL) 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Rendering Contexts

IVL is an API for a state machine. This state machine operates according to a
very speci�c set of rules. Its behavior is deterministic: given the current values
of all state attributes and a speci�c input, you can very accurately predict the
output. By manipulating the state, the behavior of the underlying system can
be modi�ed.

There are two types of state in IVL. The �rst type of state is server state. Server
state resides in the server and controls the rendering process. The mechanism
for encapsulating server state information is called the rendering context. The
majority of IVL state is stored in the rendering context.

The second type of state resides in the client and is called client state. The main
purpose for this state info is to support remote rendering. The client state is
maintained within the application data space.

Each instance of a rendering context implies one complete set of server state.
Each connection from a client to a server implies one complete set of client state
and one complete set of server state.

This is not required, but is good programming practice. (Each instance of the
server state data structure is fairly large, on the order of several kilobytes of
data.)

2-8 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

In many ways, the IVL rendering context is very similar to the concept of a
Graphics Context (GC) in the X environment. The following �gure shows the
IVL rendering model in the X environment. The drawable can be considered the
\canvas" on which drawing occurs. X is capable of rendering simple 2D graphics
and text, and the state values that are stored in the GC determine the behavior of
the X rendering \crayon." Similarly, you can think of IVL as a separate renderer
with di�erent capabilities that can render into the same drawables as X. The IVL
rendering context is what determines the behavior of the IVL rendering \crayon".

Figure 2-3. Rendering Contexts

To develop an IVL application in the X environment, you must �rst create a
rendering context for a speci�c type of X visual. The glXCreateContext routine
does this.

When a rendering context is no longer needed, deallocate it by calling glXDe-

stroyContext.

Hardware and Software Architecture

The following diagram shows the relationship between IVL-related software and
hardware. The diagram shows X-speci�c software on the left, IVL-speci�c
software on the right, and display hardware in the shaded boxes.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

When IVX hardware is available, IVL automatically uses its hardware imple-
mentation to write to the graphics frame bu�er. When using a system without
IVX hardware, IVL uses its software implementation to render an image. In ei-
ther case, IVL uses the Direct Drawable Access Library (DDAlib) to access the
hardware (frame bu�er or accelerator).

Figure 2-4. Hardware and Software Architecture

The IVL Machine

Abstract Machine

IVL is di�erent from other low-level APIs in that it provides more than just a
mechanism for moving pixels from one location to another; it actually de�nes
a pixel-processing pipeline that operates on pixels as they are transferred. The
following �gure contains a diagram of the IVL state machine. This diagram shows
how pixel data moves around the system and operations that a�ect pixels during
transfer.

2-10 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

In this diagram, the arrows represent the
ow of data within the system. Words
that begin with \gl" indicate IVL subroutines that provide state or input values
for that particular operation. Boxes that are outlined with thin lines and have
square corners are operations that are applied to pixel values. Boxes with bold
outlines and rounded corners represent storage locations for pixel values.

Figure 2-5. Abstract Machine

On the left side of the above diagram you'll see the three IVL routines that provide
pixel information to IVL: glConvolutionFilter2DEXT, glColorTableEXT, and
glDrawPixels. All three of these routines pass in a pointer to pixel values stored
in host memory.

Pixel values in host memory can be stored in a variety of formats. The
glPixelStore routines provide IVL with the parameters necessary to extract
the desired pixel values. Using these pixel unpacking values, each of the three
routines obtains the indicated pixels from host memory and sends them to their
destination.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

In the case of glConvolutionFilter2DEXT, the pixel values are modi�ed by the
scale and bias values set by glConvolutionParameterEXT and then stored in
convolution �lter memory for later use. Similarly, glColorTableEXT causes pixel
values to be extracted from host memory, modi�ed by the scale and bias values
set by glColorTableParameterEXT, and stored in color table memory for later
use.

Pipeline Stages

The ultimate destination for pixels speci�ed by glDrawPixels is frame bu�er
memory. The pixel values follow a somewhat winding path to get to the frame
bu�er. The following �gure is a more succinct diagram showing the steps that
occur as part of the glDrawPixels routine. You should be able to trace a
path through the state diagram in the previous section and see the same set
of operations.

Figure 2-6. Pipeline Stages

The steps de�ned in the previous �gure are described in the subsequent sections.

Unpack Pixels. For simple image transfers, the parameters for the glDrawPixels
routine provides all the
exibility that is needed. The image is stored as a
rectangle in host memory and you de�ne the width, height, type, and format,
along with a pointer to the start of the image data.

There are often times when additional
exibility is required. It is not uncommon
for applications to maintain a large image (like 2K�2K) and transfer smaller
portions of that image to the screen for display. The glPixelStore routine lets
you transfer a subimage, and allows you to skip over padding at the end of each
row of pixels.

A pixel rectangle is a two-dimensional array of pixels. Each pixel may contain
one or four components depending on the format argument to glDrawPixels.
Each pixel component has the machine data type speci�ed by the type argument

2-12 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

to glDrawPixels. The pixels in memory can be thought of as a rectangle that
is arranged in a series of rows. If no scaling or rotation factors are in e�ect, the
�rst pixel group in the �rst row will be displayed at the current raster position
as the lower left corner of the image.

The GL_UNPACK_ROW_LENGTH attribute can override the number of pixels in each
row. If GL_UNPACK_ROW_LENGTH is 0, the number of pixels in each row is assumed
to equal the width parameter passed to glDrawPixels, otherwise the number of
pixels in each row is GL_UNPACK_ROW_LENGTH.

This attribute is typically used to extract a subimage with rows that are shorter
than the real image stored in memory. If GL_UNPACK_ROW_LENGTH is less than the
width you specify to glDrawPixels, you may see some \striping" e�ects. Keep
in mind that this attribute indicates the number of pixels in each row, not the
number of bytes. Note that IVL does not restrict the input arguments for pixel
store operations to prevent these e�ects.

You can also skip a number of rows before reading the �rst row, and skip a number
of pixels in that row (and each subsequent row) prior to the �rst pixel that is
to be transferred to the display. GL_UNPACK_SKIP_ROWS de�nes the number of
rows to skip, and GL_UNPACK_SKIP_PIXELS de�nes the number of pixels to skip
in each row.

Figure 2-7. Skipping Rows and Pixels

Chapter 2: Overview of the Image Visualization Library (IVL) 2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The previous �gure shows how these three pixel store values are used to extract
a subimage from a larger image in host memory. The values indicated by width,
height, and pixels are the values passed to the glDrawPixels routine.

To get to the �rst pixel that is to be transferred, the number of rows
speci�ed by GL_UNPACK_SKIP_ROWS is skipped. Each of these rows contains
GL_UNPACK_ROW_LENGTH pixels. This positions the pointer at the beginning of
the �rst row containing pixels to be transferred to the display.

Next, the number of pixels speci�ed by GL_UNPACK_SKIP_PIXELS is skipped,
positioning the pointer at the �rst pixel to be transferred. The next width pixels
are transferred to the display. The pointer is then positioned at the start of the
next row, and the process is repeated for each of the height rows that contain
pixels to be transferred.

IVL also allows you to specify the data alignment per row via the
GL_UNPACK_ALIGNMENT attribute. This attribute speci�es whether each row
begins at a memory address that is a multiple of 1, 2, 4, or 8 bytes. Set the
alignment to 8 if each row begins at an address that is a multiple of 8, set it to
4 if each row begins at an address that is a multiple of 4, and so on.

2-14 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The default value is 0 for the pixel store parameters that indicate row length,
number of rows to skip, and number of pixels to skip in each row. The default
value for alignment is 4.

Figure 2-8. Unpacking Pixels

There are three main steps that go into unpacking pixels, as shown in the above
�gure. First, the arguments to glDrawPixels together with the pixel store
parameters are used to extract pixels from host memory as described above. The
pixels that are extracted will have components that are either unsigned bytes
or unsigned shorts, and each pixel will consist of either one or four components,
depending on whether the format argument is GL_LUMINANCE or GL_RGBA.

In order to simplify subsequent operations on these pixel values, the next
conceptual step is to convert all pixel components to
oating-point values in the
range [0,1]. This conversion is shown as the second box in the above �gure. (Note
that this is a conceptual step in order to make it easier to specify the semantics of
subsequent imaging operations. Real implementations will be optimized to avoid
this conversion step if it is unnecessary). After completing this step, all pixel
components are the same type and can be processed similarly.

The �nal conceptual step in unpacking pixels is to convert luminance values to
RGBA values by assigning the luminance value to each of the red, green, and

Chapter 2: Overview of the Image Visualization Library (IVL) 2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

blue pixel components and assigning a value of 1.0 to alpha. As the previous
�gure shows, the result of pixel unpacking is a stream of pixels that are uniform
in type and format. This makes it easier to describe the operations that follow.

Pixel Transfer. After pixel values are extracted from host memory and unpacked,
they undergo a set of operations collectively referred to as pixel transfer. Pixel
transfer designates a set of operations that are applied whenever pixels are
transferred from one place to another in the IVL environment (i.e., all draw,
read, and copy pixel operations). This set of operations includes convolution,
image transformation (scale, rotate, translate), and a look-up table operation.

As you can see from the state-machine diagram in the previous section, the pixel
transfer operations are also applied when reading pixels from the frame bu�er.
It is important to realize that when you call glReadPixels, you must disable
any pixel transfer operations that you do not want applied. (The pixel transfer
operations also a�ect glCopyPixels, but the pixel copy path is not explicitly
shown in the previous �gure).

Pixel Rasterization. The next step in the image pipeline is pixel rasterization.
This step primarily involves determining which frame bu�er locations are to be
modi�ed as a result of the rendering operation. The routine glRasterPos is used
to specify the window coordinate at which to place the resulting image. If the
image is neither scaled nor rotated, the resulting image will be placed with its
lower left corner at the speci�ed position.

See the \Image Transform" section of this chapter for information on what
happens if the image is scaled or rotated.

Rasterization produces a collection of fragments. A fragment consists of a color
value and the coordinate of the frame bu�er location at which that color value
is to be written. Rasterization causes fragments to be generated for each frame
bu�er location that is a�ected by a call to glDrawPixels.

Fragment Operations. The IVL server applies various tests, collectively referred
to as fragment operations, to fragments before they are written into the frame
bu�er. IVL currently de�nes two fragment operations: the pixel ownership test
and the scissor test. The pixel ownership test determines whether each location
that is to be written actually belongs to the current drawable. The scissor test
discards pixels that fall outside of the rectangle de�ned by glScissor.

2-16 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Frame Buffer. The pixel values that make it this far are written into the frame
bu�er. If the current drawable is double-bu�ered, the values may be written into
the front or the back bu�er, whichever is currently selected for drawing.

More on Pixel Transfer

The following �gure is an expanded version of the \Pixel Transfer" box from the
�gure in the \Abstract Machine" section. Although the term \pixel transfer" is
somewhat ambiguous, it refers to the set of operations illustrated in the following
�gure. These operations apply whenever pixels are drawn (glDrawPixels), read
(glReadPixels), or copied (glCopyPixels). Most applications will use these
operations only when drawing pixels (transferring pixels from host memory to
the display). It is important to disable any of the capabilities that are not needed
for pixel read and copy operations.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Clipping occurs during a later stage of processing. For the purposes of this
discussion, it will be assumed that the resulting image lies completely within in
the window or GLX pixmap. GLX pixmaps are de�ned in the \Using Pixmaps"
section of the \Interaction with the X Window System" chapter.

Figure 2-9. More on Pixel Transfer

The following sections expand on the concepts introduced in the previous �gure.

Convolution

Convolution is a common image-processing operation used to �lter an image. The
�ltering is accomplished by computing the sum of products between the source
image and a smaller image called the convolution �lter or convolution kernel.
The convolution �lter can be loaded with di�erent values to achieve e�ects like
sharpening, blurring, and edge detection.

2-18 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If you want to perform a convolution operation as part of the pixel-processing
path, the �rst thing you need to do is de�ne the convolution �lter. This can be
done using the glConvolutionFilter2DEXT routine.

The pixels that make up the convolution �lter pass through the \Unpack Pixels"
stage of the pixel-processing path just as if glDrawPixels was called. However,
instead of continuing on to the \Pixel Transfer" stage, the �lter values are routed
to the convolution �lter memory for later use.

As the �lter values are stored, they are modi�ed by the current convolution �lter
scale and bias values. These attributes are set by glConvolutionParameterEXT.

These scale and bias values are provided in groups of four, one value for each
of the red, green, blue, and alpha components. As each �lter value is saved, its
red component is multiplied by the red scale value and added to the red bias
value, the green component is multiplied by the green scale value and added to
the green bias value, etc. The resulting values are not clamped to the range [0,1]
during this process. If internalFormat is set to GL_RGBA, each of the four resulting
components is stored away in the convolution �lter memory. If internalFormat
is set to GL_LUMINANCE, only the resulting red values are stored away.

The convolution �lter is a two-dimensional image indexed with coordinate (i , j)
such that i increases from left to right, starting at zero, and j increases from
bottom to top, also starting at zero. The convolution �lter value at location (i ,
j) will be the N th pixel, counting from zero, where N=i+j��lter width.

Unless you really need to specify di�erent convolution �lter values for each of
the red, green, blue, and alpha components, you should just specify an internal
format of GL_LUMINANCE. This will result in a single component convolution �lter
that may provide slightly better performance than when using a four-component
convolution �lter.

The initial implementation of IVL currently supports convolution �lters of size
3�3 only. The maximum supported values for the convolution �lter width and
height may be queried by calling glGetConvolutionParameterivEXT with the
pname argument set to GL_MAX_CONVOLUTION_WIDTH_EXT or
GL_MAX_CONVOLUTION_HEIGHT_EXT. It is a good idea to perform this query as
part of your initialization routine so that you don't try to provide IVL with a
convolution �lter that is larger than it can handle.

The convolution operation is disabled by default and the default convolution �lter
is an empty �lter. If you enable convolution without specifying a convolution

Chapter 2: Overview of the Image Visualization Library (IVL) 2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

�lter, the input image will pass through the convolution stage unmodi�ed. You
can query the current convolution �lter using glGetConvolutionFilterEXT.

When it is enabled, the convolution operation occurs as part of the pixel-
transfer operation and a�ects pixel rectangles that are transferred with calls to
glDrawPixels, glReadPixels, and glCopyPixels. To enable the convolution
operation, call glEnable with the value GL_CONVOLUTION_2D_EXT. You can
disable convolution by passing the same value to glDisable, and you can see
whether convolution is currently enabled by calling glIsEnabled with this value.
In the default state, the convolution operation is disabled.

The convolution operation is a sum of products of pixels in the source image
and pixels in the convolution �lter. At this stage in the pixel-processing pipeline,
source image pixels are always RGBA (four-component) pixels. If the convolution
�lter has an internalFormat of GL_LUMINANCE, it will be applied equally to
red, green, and blue components of the source image, and alpha values will
pass through unmodi�ed. If the convolution �lter has an internalFormat of
GL_RGBA, the red components of the convolution �lter will be convolved with the
red components in the source image, the green components of the convolution
�lter will be convolved with the green components of the source image, the blue
components of the convolution �lter will be convolved with the blue components
of the source image, and the alpha components of the convolution �lter will be
convolved with the alpha components of the source image.

When the GL_CONVOLUTION_BORDER_MODE_EXT attribute is set to GL_REDUCE_EXT,
the sum of products is computed in the following fashion:

C(i; j) =

Wf�1X
n=0

Hf�1X
m=0

Csource(i+ n; j +m) � Cfilter(n;m)

In this equation:

C (i , j) is the result of the convolution operation for the output pixel with
coordinates (i , j).
Csource(i , j) is the source pixel value with coordinates (i , j).
C�lter(n, m) is the convolution �lter pixel value with coordinates (n, m).
Wf is the width of the convolution �lter and Hf is the height of the convolution
�lter.

When the convolution border mode is set to GL_REDUCE_EXT, the output image
will have coordinates that range in i from 0 to the width of the source image

2-20 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

minus the width of the convolution �lter, and that range in j from 0 to the
height of the source image minus the height of the convolution �lter.

See the glConvolutionParameterEXT reference page for information on other
supported border modes.

Post-Convolution Scale and Bias

The next box shown in the Pixel Transfer �gure is \Post-Convolution Scale and
Bias." The �lter values are not clamped when they are loaded. This means
that you may specify values outside of the normal legal range (such as negative
numbers). But this also means that you may cause an under
ow or an over
ow
condition to occur. To alleviate this, IVL provides a way to specify scale and
bias factors for each component that are applied once the convolution operation
has been performed.

The post-convolution scale and bias factors can each be speci�ed as a quadruple,
with one value for each of the red, green, blue, and alpha components. These scale
and bias values are only applied if convolution is enabled. After the convolution
operation has been applied, all resulting red values are multiplied by the red
post-convolution scale factor and added to the red post-convolution bias factor.
Green, blue, and alpha components are treated similarly.

Once the scale and bias factors have been applied, resulting component values
are clamped to the range [0, 1]. (Remember, at this stage of processing, all
component values are treated as
oating-point values with values normally in the
range [0, 1].) The post-convolution scale and bias values are speci�ed by calling
the glPixelTransfer routine.

Image Transform

Another common imaging operation follows convolution in the pixel-processing
pipeline. The image-transformation operation provides support for image scaling,
rotation, and translation.

Like other operations in the imaging pipeline, the image transformation can be
enabled by calling glEnable and disabled by calling glDisable using the value
GL_IMAGE_TRANSFORM_2D_HP. By default, the image-transformation operation is
disabled.

When enabled, the image-transformation operation uses the current set of image-
transformation parameters to compute a new window coordinate for each incom-

Chapter 2: Overview of the Image Visualization Library (IVL) 2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

ing pixel. All of these parameters can be set with glImageTransformParame-

terHP. You can query any of the current image-transform parameters using the
glGetImageTransformParameterHP routine.

Post-Image Transform Color Table

Following the image-transformation stage of the pixel-processing path, it is
possible to re-map all component values through the use of a look-up table.
A color table uses each incoming pixel component value as an index into a table
(that corresponds to that component). Thus, there are actually four look-up
tables, one for each of the red, green, blue, and alpha channels. The value stored
in the table at the indexed location is extracted and becomes the pixel component
for subsequent processing.

The look-up table that immediately follows the image transformation stage of
the pixel-processing pipeline is called the post-image transform color table. You
can specify the contents of this table with glColorTableEXT.

Conversion to Frame Buffer Resolution

The �nal step of the pixel transfer stage involves converting pixel values from their
internal
oating-point representation into values that map to the entire range
supported by the destination color bu�er. First, pixel components are clamped
to the range [0, 1]. Next, if the destination bu�er has m bits, each component,
c, is converted to the �xed point value k where k=f0, 1, . . . , 2m�1g and the
fraction k/(2m�1) is closer to c than any other value.

Another way of looking at this is with a concrete example. If your destination
color bu�er is 8 bits, then you have 28 = 256 di�erent values that are possible.
The
oating-point values in the range [0, 1] are mapped onto the 256 frame bu�er
values with 0.0 being mapped to frame bu�er value 0 and 1.0 mapped to frame
bu�er value 255. The range [0, 1] is e�ectively divided into 255 bands, and any

oating-point value in band k will get mapped to a frame bu�er value of k .

2-22 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Pixel Rasterization

Rasterization is the process of converting a rendering primitive into a collection
of window-coordinate values and pixel values to be written at those locations.
You can think of rasterization as consisting of two steps: �rst, determine all of
the pixel locations in a window that will be a�ected by rendering the primitive,
and then determine what value is to be written at each of the a�ected locations.

Rasterizing a pixel rectangle without any scaling or rotation is pretty straight-
forward: the pixel values in the input image have a one-to-one correspondence
with pixels in the frame bu�er. In the simplest case, rasterizing a pixel rectan-
gle is simply a matter of copying it from host memory to frame bu�er memory.
More elaborate processing is required when the input image is scaled or rotated,
or when the frame bu�er organization is quite di�erent from the format of the
image in host memory.

The glDrawPixels routine does not have any arguments that specify where the
resulting image is to be drawn. The location at which to draw a pixel rectangle is
called the raster position. The raster position is stored as the current state
and is speci�ed with one of the glRasterPos routines. You can query the
current raster position by calling glGetIntegerv with the pname argument set
to GL_CURRENT_RASTER_POSITION. The default raster position is (0, 0).

Fragment Operations

All fragments that are generated by the rasterization process are subjected to
additional pixel-by-pixel operations. Any fragments that make it through all of
these operations without being discarded will be written into the current draw
bu�er. The two fragment operations de�ned in this release of IVL are the pixel
ownership test and the scissor test.

Pixel Ownership Test

The �rst fragment operation that is applied is called the pixel ownership test.
The pixel location at which the fragment is to be written is checked to see whether
it is part of the current drawable. It may be that the pixel location to be written
is obscured by another window, or the pixel location might be ineligible since it
would be clipped by a window clip list.

Chapter 2: Overview of the Image Visualization Library (IVL) 2-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If the pixel location that is to be written is not owned by the current drawable,
the window system determines what to do with the incoming fragment. Most
of the time, the fragment will be discarded. However, this test is de�ned in
such a way as to allow window-system-speci�c behavior for conditions such as
overlapping windows.

Scissor Test

IVL provides for a rectangular clipping region known as the scissor box. When
the scissor test is enabled, the glDrawPixels routine can a�ect only the pixel
values inside this rectangular region. When the scissor test is disabled, any of
the pixels in the drawable can be modi�ed. Scissor testing can be enabled or
disabled by passing the value GL_SCISSOR_TEST to glEnable or glDisable. The
glScissor routine may be used to set the current scissor box.

The scissor test is disabled by default. You can obtain the values for the
current scissor box by calling glGetIntegerv with the pname parameter set
to GL_SCISSOR_BOX. You can see whether the scissor test is enabled by calling
glIsEnabled with the cap argument set to GL_SCISSOR_TEST.

2-24 Chapter 2: Overview of the Image Visualization Library (IVL)

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

Chapter 3: For Application Developers

Naming Conventions

Using IVL is easier if you remember some rules about the names used for
functions, data types, and constants. For the purposes of writing portable code,
it is also important to understand the naming conventions that are applied to
extensions.

IVL Routines

Standard IVL Routines and Constants

In IVL, most procedure names begin with the pre�x gl. (This is the naming
convention for OpenGL, the \parent" of IVL.) Individual words within a
procedure name begin with an uppercase letter (e.g., glDrawPixels).

Similarly, most data types that are de�ned as part of IVL begin with the pre�x
GL, with subsequent letters in lower case (e.g., GLenum). Underscores are not used
in procedure names nor in data type names.

IVL includes pre-de�ned constants whose names begin with the pre�x GL_

and appear as all uppercase letters, with words separated by underscores (e.g.,
GL_RED_BITS).

Chapter 3: For Application Developers 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Window System Routines and Constants

Some IVL routine names begin with the pre�x glX (e.g., glXMakeCurrent). This
pre�x indicates that the routine is speci�c to the X Window System environment.
Applications that require portability to windowing environments other than X
should isolate calls to these routines in the window system dependent portions of
their code.

Data types that are similarly speci�c to the X environment have a pre�x of GLX,
but follow the X convention of capitalizing the �rst letter of each subsequent word
(e.g., GLXContext).

Extensions to IVL

There are a few exceptions to the rules mentioned above. Some capabilities in
IVL derive from OpenGL extensions rather than the OpenGL API itself. These
extensions are not currently part of the OpenGL standard.

In order to encourage cooperation and similarity among vendors developing and
shipping OpenGL extensions, companies have agreed to identify their proprietary
extensions with a company identi�er (such as HP). All new procedure names, data
types, constants, and extension names will be identi�ed with this su�x.

Extensions Supported by Multiple Vendors. If two or more vendors agree to
implement and ship the same extension, the company identi�er can be replaced
with the identi�er EXT. These conventions allow application developers to easily
determine:

Which procedures, data types, and constants are standard.
Which are \common" extensions.
Which are proprietary to a single company.

IVL includes some procedures that derive from such \common" OpenGL
extensions. Several of these extensions are speci�c to imaging. If these extensions
are added to a future revision of the OpenGL standard, the EXT su�xes will be
removed.

Extensions Supported by HP Only. IVL also contains a few procedures and
constants that are speci�c to HP. The procedure names in this category contain
the su�x HP and the constant names contain the su�x _HP.

3-2 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Hewlett-Packard has kept the number of proprietary procedures and constants to
a minimum, but there are requirements to provide certain critical features that
aren't de�ned by the OpenGL standard or any existing OpenGL extension.

HP has o�ered these extensions to the OpenGL community and is encouraging
other vendors to implement them. If any other vendor agrees to support them,
the su�xes may change from HP to EXT. Furthermore, if the OpenGL Architecture
Review Board integrates the HP extensions into a future version of the OpenGL
standard, then the su�xes will be eliminated.

Function Variants Based on Data Type

Some procedures in IVL come in several variations, di�ering only in the data
type of the arguments they accept. The key to understanding the di�erence in
the routines is to look at the last few letters of the name (prior to any extension
su�x like EXT or HP). The table below summarizes the combinations of letters
that may appear at the end of procedure names:

Characters C Data Type Description of Data Type

i int Integer, passed by value

iv *int Pointer to array of ints

f float Float, passed by value

fv *float Pointer to array of floats

Chapter 3: For Application Developers 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Naming Conventions Summary

IVL Routines

The following table summarizes the naming convention used with IVL routines:

Naming

Convention

Example Meaning

gl* glEnable Standard OpenGL routine

glX* glXGetConfig X Window System-speci�c
routine

*EXT glColorTableEXT \Common" OpenGL Extension

*HP glImageTransformParameterHP HP-speci�c Extension

IVL Data Type Names

The following table summarizes the naming convention used with IVL data types:

Naming

Convention

Example Meaning

GL* GLint Standard OpenGL data type

GLX* GLXContext X Window System-speci�c data type

Note: IVL does not include any data-type extensions.

3-4 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

IVL Constants

The following table summarizes the naming convention used with IVL constants:

Naming

Convention

Example Meaning

GL_* GL_BLUE_SCALE Standard OpenGL constant

GLX_* GLX_RGBA X Window System-speci�c constant

*_EXT GL_REDUCE_EXT \Common" OpenGL extension constant

*_HP GL_WRAP_BORDER_HP HP-speci�c extension constant

Chapter 3: For Application Developers 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Types of IVL API Routines

There are three basic types of routines in IVL:

Routines that modify state (attributes).
Routines that cause some action (operations).
Routines that control window system operations.

Setting and Querying Attributes

The IVL API re
ects an underlying state machine with attributes that can
be modi�ed to make it behave in di�erent ways. State attributes in IVL are
orthogonal to one another, meaning that setting one state attribute doesn't a�ect
the setting or behavior of any other state attribute. For example, if you set certain
parameters for the convolution operation, they have no e�ect on the parameters
for the image transformation operation, nor do they modify the behavior of the
image transformation operation.

In order to get IVL to behave in a particular way, you may have to set many
state attributes. IVL provides facilities for querying any of the state values that
you can set, so you are not required to keep track of the current attribute values.
See the glGet and glIsEnabled reference pages for a list of the state values that
can be queried.

There are default values for every state attribute in IVL. The default value usually
re
ects the most commonly used value for that attribute. For instance, there are
a number of modes that can be enabled or disabled. Since the typical case for
each mode is that it is disabled, most of these state attributes have a default
value of \disabled".

Imaging Operations

Routines that perform tasks above and beyond the setting or querying of a state
attribute are called operations. An example of a routine in this category is
glDrawPixels, which causes a rectangular block of pixel values to be transferred
from host memory to the frame bu�er. The behavior of this transfer depends
on the current settings of all of the state values that a�ect the pixel processing
pipeline. The net result of this routine is (usually) that an image is displayed in
a viewable window.

3-6 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Operations (such as those that occur as a result of a call to glDrawPixels) have
a well-de�ned set of semantics. By understanding the semantics of an operation,
you can choose settings for attributes necessary to achieve the behavior you want.
The pixel transfer operations in IVL occur in a sequence that is best explained
using a pipeline model. The order of operations is very speci�c, as are the data
formats for input to and output from each pipeline stage. See \The IVL Machine"
section of the \Overview of the Image Visualization Library (IVL)" chapter for
greater detail on the pixel transfer pipeline.

Window System Interaction

There are a number of routines in IVL that deal with coordination between the
native window system and IVL rendering operations. In the HP workstation
environment, the native window system is X. Therefore IVL contains routines
for:

Querying the capabilities of X visuals.
Selecting a visual for rendering.
Creating and manipulating data structures to store IVL state attributes.
Performing double-bu�ering.
Synchronizing between rendering with X and IVL.

It is important to realize that IVL can be implemented as a separate process from
the X server. If it is implemented this way, it is possible to have IVL rendering
and X window system rendering occurring simultaneously in the same window.
In order to achieve the correct results when the order of rendering is important,
applications must use the synchronization primitives that are provided in X and
in IVL. For more information on these primitives, see the \Synchronization"
section in the \Interaction with the X Window System" chapter.

Chapter 3: For Application Developers 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling and Linking

IVL supports only the C programming language. The following example shows
the command line used to compile the IVL program h�lenamei:

cc -I /opt/graphics/IVL/include h�lenamei.c \

-L/opt/graphics/IVL/lib -lIVL -lX11 -lm -o h�lenamei

IVL Data

Supported Data Formats

A component is the fundamental building block for a pixel value. For instance,
the red, green, blue, and alpha components make up an RGBA pixel value. A
pixel value may consist of either one or four components. The format argument
to glDrawPixels and other routines speci�es the number of pixel components.

Each component may be speci�ed as one of several image types. IVL currently
supports the following image types as arguments to glDrawPixels:

GL_UNSIGNED_SHORT

GL_UNSIGNED_BYTE

This means that you can provide luminance (single-component) pixel values as
either 8-bit or 16-bit quantities and RGBA (four-component) pixel values as 8-
bit quantities. (Note: IVL does not currently support the combination of type
GL_UNSIGNED_SHORT and format GL_RGBA.)

3-8 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

IVL currently supports the following image data formats:

GL_LUMINANCE: This is a one-component data format that stores luminance
values. The data can be in an 8-bit or 16-bit format.
GL_RGBA: This is a four-component data format that stores red, green, blue,
and alpha values. In C language programs, declare this as a (one-dimensional)
array of bytes so as to avoid byte-swapping problems with certain computer
architectures.

Figure 3-1. Supported Data Formats

Pixel Unpacking

Information on how IVL unpacks pixels is available in the \Unpack Pixels" section
of the \Overview of the Image Visualization Library (IVL)" chapter.

Chapter 3: For Application Developers 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Implementation Restrictions

Underlays

Hewlett-Packard graphics hardware does not support underlays, nor does IVL
emulate this functionality in software.

Distributed Environments

HP does not currently support using IVL in a distributed (i.e., client/server)
environment. Applications must run on the system where IVL is installed.

Multi-Threaded Applications

Use of IVL in a multi-threaded application is not currently supported.

3-10 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Programming Advice

Query Data Values

Attributes are stored within IVL in the machine type that is used during process-
ing. Some state attributes are stored as
oats, some as integers, some as boolean
values, etc. With some IVL routines, applications can specify a state attribute as
either a
oat or an integer (for example, glColorTableParameterfvEXT and gl-

ColorTableParameterivEXT). In such cases, IVL converts and stores the passed
value in the machine type that is used during processing.

It is considered good programming practice to query data values using the routine
that corresponds to the data type of the value being queried. For instance, if you
know you are querying an integer value, use the glGetIntegerv routine. Where
necessary, the glGet routines will convert the requested value to the machine
type speci�ed by the routine. If the requested state attribute has a di�erent type
than is requested, it will be converted as follows:

If a boolean value is to be returned,
oating point and integer values are
converted to GL_FALSE if and only if they have a value of zero. Otherwise,
they are converted to GL_TRUE.
If an integer is to be returned and the requested state attribute is a boolean,
the returned value will be either GL_TRUE or GL_FALSE.
If an integer is to be returned and the attribute is a
oating point value, it will
be rounded to the nearest integer unless it is a color (RGBA) value. In this
case, the individual components will be mapped from their permissible
oating
point range of [�1.0, 1.0] to the full range of allowable integer values (�1.0
maps to the largest representable negative integer, 0.0 maps to 0, 1.0 maps to
the largest representable positive integer).
If a
oat or a double is to be returned, boolean state attributes are returned as
GL_TRUE or GL_FALSE and integer values are coerced to
oating point values.

See the glGet reference page for a list of values that can be queried.

Chapter 3: For Application Developers 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Image Data Formatting

If you are calling glDrawPixels with 12-bit image data stored as 16-bit values,
you might be tempted to think that you only need to load a look-up table that
contains 4096 entries. However, IVL has no way of knowing that only 12 bits out
of the 16 are signi�cant. If you create a look-up table with 4096 entries, IVL will
(conceptually, at least) map each incoming 16-bit value to a
oat in the range
[0,1]. The resulting value will then be multiplied by 4095 in order to compute the
look-up table index. Thus, your incoming 12-bit input values will all be mapped
into the �rst 256 entries of your color table.

One way to compensate for this e�ect would be to shift all your 12-bit values
up by four bits. Then your 4096-entry color table would provide the expected
results. Alternatively, you can load a full 64K-entry look-up table. If you go this
route, you need to provide all 64K values, but you may only need to recompute
the �rst 4096 entries, since the others might never be used. In practice you would
be well-advised to load additional entries in the table since bicubic resampling in
the image transformation stage might generate values that over
ow 12 bits.

RGBA Data Format

Remember that GL_RGBA formatted data is stored in the following order: red,
green, blue, then alpha. A common mistake is to format the data as alpha, red,
green, then blue, which is incorrect.

3-12 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Performance Tuning Tips

IVL is designed to take advantage of the acceleration provided by workstations
equipped with IVX hardware. IVL contains support for rendering with IVX and
support for rendering with a software implementation of the pixel-processing
pipeline. The software implementation is used when no IVX accelerator is
present, or when the limits of the IVX hardware are exceeded. Software rendering
performance varies with the size of input data sets and the complexity of the
display pipeline characteristics.

General Performance Hints

The following lists general hints for IVL performance improvements:

IVL considers the lower-left corner of an image to be the origin. Images are
rendered from the bottom row, up. To avoid the need for data conversion by
the application program, store images in memory so the pixel at the lower-left
corner is the �rst pixel in memory, followed by the remainder of the bottom
row, then subsequent rows from the bottom to the top of the image.
Angles of rotation will round to the nearest 1/10th degree. This is true for
both the IVX and the software rendering paths.
Do not arbitrarily intermix IVL and X procedure calls.
For
icker-free, near-real-time, display of annotation, use the overlay visual and
only change text that requires changing.
Do not use glXMakeCurrent needlessly for every image frame. In other words,
don't call glXMakeCurrent unless you are changing contexts.

Performance Hints for Workstations with IVX Hardware

Applications and end users should stay within the following limits to optimize
performance on workstations using IVX hardware. Values that fall outside of
these limits will operate correctly, but will use the slower software implementa-
tion.

IVX supports X and Y scale values with absolute values between 0.75 and 32.0.
IVX supports image translation values within the following limits:
�8191.9�x o�set�6911.9
�8191.9�y o�set�7167.9

Chapter 3: For Application Developers 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Image sizes should be at least 8�4 pixels (width�height), and at most
32768�32768 pixels.
Only three clipping rectangles (including any enabled scissor speci�cation) are
supported in hardware. Additional clipping rectangles will cause rendering
to be accomplished with multiple rendering passes through the hardware, so
rendering performance may decease by more than half.

See the \IVL Implementation and Device-Speci�c Information" chapter for
information about di�erences between using IVL's software implementation and
using IVX.

Performance Hints for Workstations without IVX Hardware

Follow these hints to optimize performance on workstations that do not use IVX
hardware:

Nearest neighbor interpolation operates faster than bilinear interpolation,
which in turn operates faster than bicubic interpolation. So, a progressive
re�nement scheme will provide the best results where interactivity is needed.
Rotations that alter the x-axis direction will have slower performance than
orientations that maintain a positive sense for x (such as no rotation, or a

ip about the x axis using a negative y scalar). If your data is typically
oriented to require rotating, consider reorienting the data instead of using image
transformation to perform this operation.
A scaling factor of 2.0 for both x and y (that is, 2� zoom) with bilinear resam-
pling for luminance data performs better than any other image transformation.
Avoid clearing a single bu�er, and clearing and swapping double-bu�ers if not
necessary.

3-14 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Error Handling

IVL was designed to allow applications to achieve maximum performance. One
such area is in the handling of error conditions. The error checking philosophy
of IVL is fairly simple. IVL assumes that correctly working programs will pass
valid parameter values. Exhaustive checking of all parameter values is usually
only helpful when developing and debugging code.

Such error checking would adversely impact the performance of an application
that was fully debugged and working properly. Therefore, primarily for
performance reasons, IVL error checking is kept to a minimum. More exhaustive
error checking can be performed by the application prior to calling IVL routines.

The goal of the IVL error semantics is to perform the minimum amount of
error checking necessary to ensure that programs can continue to operate in a
reasonable fashion (e.g., the program will not hang or crash the operating system).
When an error is detected by IVL, the error value is recorded. The current error
value is part of the current state and can be queried with the glGetError routine.

When an error occurs (indicated by setting the error value to something other
than GL_NO_ERROR), no further errors are recorded until glGetError is called.
The act of querying the current error value has the side e�ect of resetting the
error value to GL_NO_ERROR in preparation for recording the next error.

If glGetError returns GL_NO_ERROR, then there have been no detectable errors
since the last call to glGetError. The reference pages for each individual IVL
routine describe errors that can be generated by that particular routine.

The following table describes the de�ned error values. The results of a routine
are unde�ned only if the GL_OUT_OF_MEMORY error occurs. For all other errors,
the o�ending routine is ignored and has no e�ect on the current state or the
contents of the frame bu�er.

Chapter 3: For Application Developers 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

If the routine that generates the error returns a value, it will return zero. If the
routine that generates the error modi�es values through a pointer argument, no
change is made to these values. The fact that the o�ending routine is ignored can
sometimes lead to mysterious program behavior. If your program seems to ignore
some routines, insert calls to glGetError to ensure that no errors are occurring:

O�ending

Error Value

Description Command

Ignored?

GL_INVALID_ENUM Enumerated value out of range Yes

GL_INVALID_VALUE Numeric value out of range Yes

GL_INVALID_OPERATION Operation illegal in current state Yes

GL_OUT_OF_MEMORY Not enough memory to execute
command

Unknown

GL_TABLE_TOO_LARGE_EXT Speci�ed color table is too large to be
stored

Yes

If IVL is implemented in a distributed (i.e., client/server) fashion, there may be
more than one error value. To query and reset all the error values, you should
call glGetError within a loop until a value of GL_NO_ERROR is returned. For each
call to glGetError, one error value that is something other than GL_NO_ERROR

will be returned and its value will be reset to GL_NO_ERROR.

3-16 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

It is a good idea to check the status of the current error value frequently in order
to determine whether any errors have occurred. A good way to do this is to
de�ne a routine that checks for errors and then call this routine at the end of
each rendering loop. For example:

{

/* start of main rendering loop */

/* ... */

/* ... */

/* end of main rendering loop */

CheckForErrors ();

}

/**/

static void CheckForErrors(void)

{

int i;

int gotError;

gotError = FALSE;

while (i = glGetError())

{

gotError = TRUE;

fprintf(stderr, "Error: 0x%xn", i);

process_error (i);

}

if (gotError)

exit (1);

}

The disadvantage to this approach is that a number of pixel processing operations
may occur before you check for errors. If this happens, it may be necessary to
repeat the rendering operations after detecting and correcting the error.

Although the goal of IVL is to detect errors that would cause a fatal exception,
there are some conditions under which a fatal exception might happen. If
a sequence of
oating point computations occurs (such as in the image
transformation computation) with very large values (e.g., MAX_FLOAT), it is
possible for an application to produce a
oating point over
ow exception.

Since such large data values are not likely to be produced by a properly working
application, and since preventing this type of condition would be di�cult and
would penalize the performance of properly working applications, this condition
may result in a
oating point exception. It is the responsibility of the application

Chapter 3: For Application Developers 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

to provide values that are well within the range of
oating point computation
limits.

3-18 Chapter 3: For Application Developers

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Sample Code

The IVL product includes some sample code to use as a learning tool. The
/opt/graphics/IVL/demo directory contains �les and data that demonstrate
many of the features of IVL. There are smaller example programs in the
/opt/graphics/IVL/examples directory.

README �les in these directories describe how to make and run the programs.
(Remember that the example code that ships with IVL is in a read-only part of
the �le system. You should copy those �les elsewhere before modifying and/or
compiling them.)

Chapter 3: For Application Developers 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4
Chapter 4: Interaction with the X Window
System

X Interaction

IVL is designed to be \window system neutral." That is, it attempts to avoid
duplicating capabilities that are typically supported by the native window system
(e.g., window operations, interactive input, color maps, and overlays). The focus
of IVL is to provide 2D imaging capabilities. By not including these operations
in the API, IVL can coexist with a variety of window systems.

However, the initial release of IVL is only available in the X Window System
environment. In order for IVL to coexist peacefully with the native window
system, a small number of window-system-dependent routines must be de�ned.
These routines provide implementation information, con�guration management,
resource allocation/deallocation, synchronization, and other window system
dependent functions.

In the XWindow System environment, IVL is supported by an X server extension
called GLX. This extension allows IVL to coordinate its rendering operations with
those of X and other extensions. The names of routines in IVL that are speci�c
to the X Window System environment are pre�xed with \glX."

Chapter 4: Interaction with the X Window System 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The following �gure shows a block diagram of the X/IVL environment:

Figure 4-1. X Interaction

The top of the above �gure shows the application making calls to both Xlib
and IVL. These two libraries cooperate in sending commands to the X server
via a network connection. The boxes labeled \transport" indicate the network
transport mechanism that actually transfers X protocol requests between the X
client (the application) and the X server.

A dispatcher inside of the X server decides whether the request should be handled
by X itself or one of the available X extensions like GLX, which supports IVL
rendering and other operations. If the incoming command is an X request, it is
handled directly by the X server. Some of the X routines are used to perform
simple graphics operations and will cause the X renderer to modify the contents
of the frame bu�er.

The biggest advantage of the X protocol is that it is network transparent.
This makes it easy to develop an application running on one machine that
communicates with an X server on another machine. However, the need to
transfer commands via some network transport mechanism can be a performance

4-2 Chapter 4: Interaction with the X Window System

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

restriction if the application and the X server run on the same machine (as is
often the case).

There are several ways that data can be transferred more rapidly between
processes if the processes are known to be running on the same system. IVL
provides a method for the application to directly access the frame bu�er hardware,
provided that the application and the X server are running on the same processor.
Rather than going through the X protocol transport and the X dispatcher, calls
to IVL are converted immediately into commands that directly access the frame
bu�er hardware. The improved performance that results from direct hardware
access is shown symbolically by the width of the arrow (labeled \direct hardware
access") connecting the IVL library and the IVL renderer on the right side of the
previous �gure.

Application developers should note that this release of IVL only supports
local rendering. The ability for remote rendering with IVL across a network
connection is under investigation by HP, and may be supported in a future IVL
release. Direct (local) rendering (which is the highest-performance path for IVL
rendering) is available and optimized in the initial release.

Chapter 4: Interaction with the X Window System 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

X Windows Capabilities

This section describes the steps involved in setting up an IVL program in the
X environment. It then describes some of the IVL-speci�c steps in more detail.
Finally, it describes other, optional capabilities of IVL in an X environment.

Setting Up an X/IVL Program

There are nine main steps for setting up an IVL application. They are listed
below. (Note that it is good programming practice to check the return value
from these functions and respond to any errors.)

1. Open a connection
The �rst step is to call XOpenDisplay to establish a connection to the X server.
This sets up the communication link to the X server.

2. Check for the GLX extension
You can then call glXQueryExtension to ensure that the GLX extension is
present.

3. Select a visual type
Now select an appropriate X visual. The easiest method is to call glXChoo-
seVisual, but you could also implement your own algorithm with calls to
XGetVisualInfo and glXGetConfig.

4. Create a window
Once you have decided which visual type to use, you need to create a window.
One straightforward way of doing this is to set the necessary window attributes
and call XCreateWindow. You may also want to set the standard properties
for the window, such as the window name, the icon name, and so on.

If you select a visual type that is di�erent from the parent window's visual
type and has a read/write color map, you should create the color map prior
to creating the window and make sure that it is properly initialized.

5. Create a rendering context
The next step is to call glXCreateContext to create a rendering context that
matches the visual type of your window. The resulting rendering context will
hold the state values necessary for rendering.

6. Make the window and rendering context current
By calling glXMakeCurrent, you can establish both the current drawable and
the current rendering context. This routine will generate an error if the visual
type of the drawable does not match the visual type for which the rendering

4-4 Chapter 4: Interaction with the X Window System

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

context was created. Note: using glXMakeCurrent for each image frame will
reduce application performance.

7. Initialize rendering state
If you need to set any IVL state values to something other than their default
values, you would probably want to call an initialization routine prior to falling
into your main event processing loop. IVL state attributes are designed to
have reasonable defaults, so you probably will not need to initialize too many
values.

8. Map the window
This step �nally makes the window visible. Because of the previous steps, the
window is ready for IVL rendering as soon as you call XMapWindow. There
is a �nite delay between the time you issue the map window command and
the time the window appears on the screen. If you issue rendering commands
during this period, they will not show up on the window when it becomes
visible. Consequently, it is usually wise to wait until after the �rst Expose

event, indicating that the window is actually visible on the screen.
9. Main event loop

At this point, your X program will typically enter an event loop that waits for
events (for example: expose, input, resize) to occur and then processes them.
The XNextEvent call is the \wait for event" operation.

See the sample code provided with IVL for source code that demonstrates these
steps (though not necessarily in the exact order shown above).

Selecting Visuals

Over the years, a number of frame-bu�er architectures with di�erent capabilities
have been developed:

Some store three channels of data (red, green, and blue), others store only one.
Some allow pixel values to be routed through hardware lookup tables (color
maps) in order to provide a level of indirection.
Some are inherently monochrome, others are polychrome.
Some are single layer, others are multi-layer (with overlay or underlay planes).

To expose these di�erent capabilities in a portable way, the X Window
System introduced the concept of a visual type. There are six visual types
in X: TrueColor, DirectColor, PseudoColor, StaticColor, GrayScale, and
StaticGray.

Chapter 4: Interaction with the X Window System 4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

In the X environment, applications create windows (regions of the frame bu�er
that they can draw into) of a particular visual type. The visual type of a window
de�nes its behavior in some important ways, and it is through this mechanism
that frame bu�er features are exposed and software portability is de�ned. To be
speci�c, an XVisualInfo structure in X de�nes the visual type, screen, and depth
of the window, as well as the number of bits of red, green, and blue information
in a pixel. To achieve true portability, applications should work on systems that
support any visual types that meet their minimum requirements.

In the X Window System environment, IVL adds attributes to the X visual type.
These attributes can be queried using routines de�ned by the GLX extension
which provides support for IVL in the X environment. All visual types that are
supported are de�ned within the X server and are reported back to the client
at connection time. Since X does not return information about the extended
attributes de�ned by IVL, it is quite possible that an X server will report two or
more visuals that look identical to the client. However, these visual types will
di�er in the IVL attributes they support, and the di�erences may be ascertained
using the IVL routines provided for this purpose.

The easiest method to �nd a visual that meets your application's requirements
is to use glXChooseVisual. This routine has its own prioritization algorithm
to select the \best" visual from the list of attributes that you specify. If you
wish to implement your own prioritization algorithm, use XGetVisualInfo and
glXGetConfig.

IVL and Color Recovery

IVL does not support Color Recovery.

Managing Rendering Contexts

In order to render anything with IVL, you need to specify both a current rendering
context and a current drawable (either a window or a GLX pixmap). The
glXMakeCurrent routine accomplishes this. This routine seems a bit di�erent
from most other IVL routines in that it requires you to specify two separate
pieces of state simultaneously.

The reason this routine requires you to set the drawable and the rendering
context simultaneously is that the two are related. When you create a rendering
context, you must specify a visual type. This tells IVL that the rendering context

4-6 Chapter 4: Interaction with the X Window System

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

will be used in conjunction with drawables of that type. The glXMakeCurrent

routine checks to ensure that the rendering context you specify will work with
the drawable you specify. If the drawable is not a visual type that will work with
the rendering context you provide, IVL generates an error.

With glXMakeCurrent, it is easy to change both the drawable and the rendering
context at the same time. This is something that applications drawing into
multiple windows may need to do quite often. If IVL required you to change the
current rendering context and the current drawable with independent commands,
there would be no way to change the current rendering context and the current
drawable for use on a di�erent visual type without generating an error.

Double-Buffering Support

In order to eliminate the
icker e�ect caused by clearing and redrawing an
image in a visible window, IVL supports the notion of double-bu�ering. Visuals
that support double-bu�ering have two drawing bu�ers: a front bu�er and a
back bu�er. The front bu�er is displayed while rendering is occurring in the
back bu�er. When rendering is completed, use glXSwapBuffers to display
the rendered image. Also, remember to set the current draw bu�er using
glDrawBuffer.

There are three supported ways for IVL applications to perform double-bu�ering:

Using the double-bu�ering capabilities provided with IVL. See the glXSwap-

Buffers reference page for more information.
Using the Double-Bu�ering Extension to X (DBE). See the documentation in
the �le /usr/lib/X11/Xserver/info/screens/hp for more information.
Using the Multi-Bu�ering Extension to X (MBX). See the documentation in
the �le /usr/lib/X11/Xserver/info/screens/hp for more information. Also,
please see the note below regarding use of MBX.

Please note that although MBX is supported with this release of IVL, it is not
recommended. MBX has not been adopted as an industry standard, and it may
become obsolete in the future. If you are currently using MBX, you should plan
to migrate to one of the other double-bu�ering methods.

Furthermore, note that the combination of glXSwapBuffers and DBE in the
same application is not supported; you must choose one or the other.

Chapter 4: Interaction with the X Window System 4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

IVL and Backing Store

IVL does not support rendering into backing store.

Using Pixmaps

It is also possible to use IVL to render into o�-screen memory. X pixmaps are the
basis for supporting o�-screen rendering. X is limited in that it does not de�ne
visual types for pixmaps. In X, pixmaps are not necessarily associated with a
screen; they have a depth, but no visual type.

Since IVL extends the notion of visual types by de�ning additional visual
attributes, the de�nition of a pixmap is also extended. IVL does this by de�ning
a superset of an X pixmap, called a GLX pixmap. Unlike an X pixmap, a GLX
pixmap has a visual type, so it may contain the extended visual attributes de�ned
by IVL. In order to use a pixmap as a rendering destination, it is necessary to
enable it for rendering with IVL by calling glXCreateGLXPixmap.

Once a GLX pixmap is no longer needed, deallocate it using glXDestroyGLX-

Pixmap.

Synchronization

Using the glFinish Routine

For e�ciency reasons, IVL contains the notion of a processing pipeline. For
the most part, applications are shielded from the implementation details of this
processing pipeline. However, since each stage of the pipeline takes �nite time
and could potentially involve some bu�ering, applications need a method to check
that all the commands they have issued have completed.

One way to achieve this is with the glFinish routine. This routine can be
quite ine�cient, so use it sparingly. It requires noti�cation from the lowest levels
of the rendering system that all the commands have been processed, all state
changes have been fully realized, and that everything that should be displayed
is displayed. It may be necessary to use glFinish in order to synchronize IVL
rendering with rendering commands from Xlib or Motif.

4-8 Chapter 4: Interaction with the X Window System

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Using the glFlush Routine

Sometimes it is only necessary to tell IVL to
ush any/all internal command
bu�ers so that all commands will be sent to the display hardware for processing.
Use the glFlush routine to achieve this.

This routine can be more e�cient than glFinish. It does not wait until the
results of all the commands are completed, but just issues commands to
ush
any and all bu�ers in the system so that all pending commands are at least
queued up for processing. The results of subsequent rendering commands are
guaranteed to complete in a �nite amount of time after the issuing of a glFlush

call.

In a system with rendering hardware that is independent of the CPU, it may
be possible for the CPU to continue processing while the rendering hardware
completes processing the rendering commands. Therefore, applications should
call glFlush rather than glFinish whenever possible.

Note: the glFlush routine can be more e�cient than glFinish, but should still
be used sparingly for highest application performance.

The following routines implicitly invoke glFlush:

glXSwapBuffers causes glFlush to be called before it returns.
Query routines such as glGet and glIsEnabled are only required to
ush as
much of the stream as is necessary in order to return valid results. These query
routines do not guarantee that all pending rendering commands will be
ushed.

Chapter 4: Interaction with the X Window System 4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5
Chapter 5: IVL Implementation and
Device-Specific Information

List of Devices

The following device descriptions are included in this chapter:

Entry-Level Color Graphics Devices:
Internal color graphics
HP VISUALIZE-EG (enhanced color) graphics

The HCRX family of devices:
HCRX-8
HCRX-8Z
HP VISUALIZE-8
HCRX-24
HCRX-24Z
HP VISUALIZE-24

The HCRX family of devices with IVX hardware:
HCRX-8 with IVX
HCRX-24 with IVX

See the Graphics Administration Guide for information about which workstation
models support which graphics devices.

IVL Implementations

IVL functionality using the software implementation is identical to that of the
hardware implementation.

The following graphics devices use the software implementation of IVL:

Entry-Level Color Graphics Devices.
The HCRX family of devices without IVX hardware.

Chapter 5: IVL Implementation and Device-Specific Information 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The following graphics device uses the hardware implementation of IVL whenever
possible:

HCRX-8 devices with IVX hardware.
HCRX-24 devices with IVX hardware.

Renderer Names

If you set the name argument of glGetString to GL_RENDERER, IVL returns the
name of the renderer used on the current workstation. The currently supported
return values are:

Internal Color Graphics

Internal Color Graphics devices.
Enhanced Color Graphics

HP VISUALIZE-EG devices.
HCRXB8

HCRX-8 workstations.
HCRXB8-Z

HCRX-8Z workstations.
VISUALIZE-8

HP VISUALIZE-8 workstations.
HCRXB24

HCRX-24 workstations.
HCRXB24-Z

HCRX-24Z workstations.
VISUALIZE-24

HP VISUALIZE-24 workstations.
HCRXB8-IVX

HCRX-8 workstations with IVX hardware.
HCRXB24-IVX

HCRX-24 workstations with IVX hardware.
VISUALIZE-48
HP VISUALIZE-48 and HP VISUALIZE 48 XP workstations.

Memory Driver

CRX-48Z; remote X drawable; or any unrecognized device.

5-2 Chapter 5: IVL Implementation and Device-Specific Information

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Entry-Level Color Graphics Devices

The Internal Color Graphics device is identical in functionality to the HP
VISUALIZE-EG device. The only di�erence you should see is faster performance
on the HP VISUALIZE-EG device.

For the remainder of this chapter, information that describes Entry-Level Color
Graphics devices applies to both the HP VISUALIZE-EG device and the Internal
Color Graphics device.

Device Description

Entry-Level Color Graphics devices are found on Series 700 workstations that
have graphics hardware capabilities on their SPU motherboard. In some cases,
they are also available on plug-in cards.

The Entry-Level Color Graphics devices display color from a single bank of eight
planes, supporting up to 256 colors at a time. They have two hardware color
maps to reduce the likelihood of \technicolor" e�ects (which occur when two or
more applications compete for entries in a single hardware color map).

See the Graphics Administration Guide for information on pixel resolution and
refresh rates for these and other devices.

Supported Visuals

The following visuals are supported by IVL on the Entry-Level Color Graphics
devices:

PseudoColor (depth 8)
GrayScale (depth 8)

Note that only one of the above visuals is supported at a time. The PseudoColor
visual is used by default. If you boot your workstation with a grayscale monitor
type, X11 will initialize itself to a grayscale mode. (This mode will exclude all
access to color visuals. When initialized in a color mode, the X11 server will
support only color visuals.)

Chapter 5: IVL Implementation and Device-Specific Information 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Color Map Management

Many applications use the default X11 color map. A \technicolor" e�ect in
the windows using the default color map may occur if a non-default color map
is downloaded into the hardware color map that had previously contained the
default color map.

Because many applications are likely to use the default X11 color map, and
because the Entry-Level Color Graphics devices have two hardware color maps,
the default behavior on these devices is to dedicate one hardware color map
to always hold the default X11 color map. The second hardware color map is
available to applications that use color maps other than the default.

This behavior can still cause the \technicolor" e�ect if two or more applications
use di�erent, non-default color maps. For example, application A uses the default
X11 color map, application B uses a di�erent color map, and application C uses
a third color map. If applications A, B, and C all execute simultaneously on
an Entry-Level Color Graphics device, application A would look correct. Either
application B or C would show the technicolor e�ect; the application whose color
map was last downloaded into the second hardware color map would look correct.

Overlay Transparency

Since there are no overlay planes, overlay transparency is not supported on the
Entry-Level Color Graphics devices.

5-4 Chapter 5: IVL Implementation and Device-Specific Information

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

HCRX Family Device Descriptions

This section describes the HCRX family of devices, including the HP Visualize

devices. This information applies to HCRX devices with or without IVX
hardware. The following devices are included in the HCRX family:

HCRX-8
HCRX-8Z
HP VISUALIZE-8
HCRX-24
HCRX-24Z
HP VISUALIZE-24

Note that only the HCRX-8 and HCRX-24 can support IVX hardware.

The graphics accelerators on these devices do not a�ect IVL performance or
functionality. So, for the rest of this chapter, all references to HCRX-8 will
apply to HCRX-8, HCRX-8Z, and HP VISUALIZE-8 devices, and all references
to HCRX-24 apply to HCRX-24, HCRX-24Z, and HP VISUALIZE-24 devices.

These devices are all similar, and include hardware support for the following
operations:

Writing pixels to the frame bu�er.
Moving a block of pixels from one place in the frame bu�er to another.
Overlay plane transparency.
Clipping.

Chapter 5: IVL Implementation and Device-Specific Information 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Device Descriptions

HCRX-8 Description

The HCRX-8 device is a color display with two image-plane banks of 8 planes
each. It supports 8 planes single-bu�ered or 8/8 planes double-bu�ered in the
image planes. The image planes include two hardware color maps.

The HCRX-8 also has 8 overlay planes. It includes two hardware color maps
in the overlay planes. The overlay color maps do not support transparency by
default.

The default overlay visual has 256 entries per color map and no overlay
transparency. When overlay transparency is enabled, the default overlay visual
has 252 entries per color map. See the information below about color map
limitations when using overlay transparency on the HCRX-8 devices.

See the Graphics Administration Guide for information on pixel resolution and
refresh rates for these and other devices.

HCRX-24 Description

The HCRX-24 device is a color display with one image-plane bank of 24 planes.
The image planes include two hardware color maps.

The HCRX-24 supports the following image-plane bu�er modes:

8 planes single-bu�ered
8/8 double-bu�ered
12 planes single-bu�ered
12/12 double-bu�ered
24 planes single-bu�ered

The HCRX-24 also has 8 overlay planes. It includes two hardware color maps
in the overlay planes. One of the overlay color maps supports transparency by
default.

The default overlay visual has 256 entries per color map and no overlay
transparency. The second overlay visual has 255 entries per color map and
supports overlay transparency. See the information below about using overlay
transparency on the HCRX-24 devices.

5-6 Chapter 5: IVL Implementation and Device-Specific Information

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

See the Graphics Administration Guide for information on pixel resolution and
refresh rates for these and other devices.

Supported Visuals

HCRX-8. The following visuals are supported by IVL on the HCRX-8 in the
overlay planes:

PseudoColor (depth 8)

The following visuals are supported by IVL on the HCRX-8 in the image planes:

PseudoColor (depth 8)

HCRX-24. The following visuals are supported by IVL on the HCRX-24 in the
overlay planes:

PseudoColor (depth 8)

The following visuals are supported by IVL on the HCRX-24 in the image planes:

PseudoColor (depth 8)
DirectColor (depth 12 or 24)
TrueColor (depth 12 or 24)

Color Map Management

The information in this section applies to both the HCRX-8 and HCRX-24
devices.

Because so many applications use the default X11 color map, and because the
HCRX devices have two hardware color maps in the overlay planes, the behavior
on these devices is to dedicate (that is, lock) one overlay hardware color map to
always hold the default X11 color map. This means that the assigned default
overlay hardware color map cannot have another color map downloaded to it.
The other overlay hardware color map is available to applications that use color
maps other than the default.

Chapter 5: IVL Implementation and Device-Specific Information 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Changing the Default Visual. By default, the default visual (where the root window
and default color map reside) is in the overlay planes. Also by default, the overlay
planes have the default X11 color map permanently locked into one hardware
color map, and the second hardware color map is available for applications to
use.

You can change this default mode by moving the default visual into the image
planes. Doing this will limit the number of hardware color maps available to you.
In this mode, HCRX devices provide a single hardware color map in the overlay
planes.

To move the default visual into the image planes, edit your X*screens �le,
and add \depth 8 doublebuffer" to the line for your special device �le. For
example, if your X0screens �le has the following line for its special device �le:

/dev/crt

then you should change the line to read:

/dev/crt depth 8 doublebuffer

Overlay Transparency

Overlay Transparency with HCRX-8 Devices. Overlay transparency mode is not
available on HCRX-8 devices by default. Enabling overlay transparency mode
on an HCRX-8 will limit your system to one hardware color map in the overlay
planes and one hardware color map in the image planes. This will increase the
likelihood of seeing a \technicolor" e�ect.

To enable transparency, set the Screen Option EnableOverlayTransparency,
then restart the X server.

With this mode enabled, color maps created in the default visual have 256 entries,
with entry 255 reserved for transparency. Remember that if transparency is not
enabled, only 252 entries are available in the color map.

5-8 Chapter 5: IVL Implementation and Device-Specific Information

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Overlay Transparency with HCRX-24 Devices. Unlike the HCRX-8 devices,
overlay transparency is available by default on the HCRX-24 devices, and using
overlay transparency on the HCRX-24 devices does not change the number of
available hardware color maps.

To create an overlay color map that supports transparency, create the color map
using the visual that has transparency in its SERVER_OVERLAY_VISUALS property.
The default overlay visual has a transparent type of 0 (None), and the transparent
overlay visual has a transparent type of 1 (TransparentPixel). See the �le
/usr/lib/X11/Xserver/info/screens/hp for more information.

In overlay color maps that support transparency, the number of color map entries
will change from 256 to 255 because the last entry becomes the transparent
color map value. If your application requires that you have 256 entries in your
color map, you need to set the HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

environment variable to any value (for example, TRUE) before starting the X11
server. The X11 server will ignore any attempt to modify entry 255 of the color
map.

Chapter 5: IVL Implementation and Device-Specific Information 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Image Visualization Accelerator Device Description

This section describes behavior that is speci�c to HCRX devices with Image
Visualization Accelerator (IVX) hardware. See the \HCRX Family Device
Descriptions" section for general information on these devices. Note that IVX is
supported on the HCRX-8 and HCRX-24 devices. IVX is not supported on the
HCRX-8Z, VISUALIZE-8, HCRX-24Z, and VISUALIZE-24 devices.

Device Description

IVX accelerates many image processing operations in IVL. IVX is an accelerator
that provides hardware support for the following:

Input data formatting
Convolution (with 3�3 kernel)
Pan and zoom
Rotations
Bicubic interpolation
Bilinear interpolation
Nearest-neighbor interpolation
Window-level mapping
Rasterization
Window clipping
Scissor operations

Angle of Rotation

The angle of rotation is limited to increments of 0.1 degrees. You can supply
any value, but it may be modi�ed for rendering. For example, an angle of 23.89
degrees will be modi�ed to 23.9 degrees for rendering. The angle of 23.89 degrees
will be maintained by the API state, even though it renders at 23.9 degrees.

Rasterization

IVX rasterizes image data into the frame bu�er from the bottom to the top of
a window, and left to right across a scan line. This di�ers from other HP raster
graphics devices, which rasterize from the top to the bottom of a window. The
bottom-to-top order matches the semantics of the OpenGL API.

5-10 Chapter 5: IVL Implementation and Device-Specific Information

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Performance Hints

Clip Rectangles

The performance of IVX will degrade as four or more clip rectangles obscure your
image. This can be caused by software-speci�ed clip boundaries or overlapping
windows. If these conditions exist, multiple passes will be required to draw the
same image.

Software versus Hardware-Accelerated Paths

As previously mentioned, HCRX devices with IVX hardware will use the
accelerated hardware implementation of IVL whenever possible. The following
conditions will force these devices to use the unaccelerated software path instead:

If post-convolution bias is used.
If the convolution kernel coe�cient is 16.0 or greater.
If the scale factor is outside the range of positive or negative 1.0 to 32.0,
inclusive.
For rotation angles that are not a multiple of 90 degrees, the absolute value of
the ratio of the x zoom factor and the y zoom factor must be less than 2:1. In
other words, the following condition should hold: 0:5 � jzoomxj=jzoomyj � 2:0.
The image size must be between 8�4 (width�height) pixels and 32768�32768
pixels, inclusive.
If your input format is GL_RGBA in a depth-24 visual, the hardware path will
only be used if convolution is disabled and window-level mapping is not used.

Also, only drawing operations use the hardware path. Read and copy operations
use the software path.

Chapter 5: IVL Implementation and Device-Specific Information 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Appendix A: Quick Syntax Summary for IVL

IVL Rendering Routines

glClear(mask)

glClearColor(red, green, blue, alpha)

glColorTableEXT(target, internalFormat, width, format, type, *table)

glColorTableParameterEXTfv(target, pname, *params)

glColorTableParameterEXTiv(target, pname, *params)

glConvolutionFilter2DEXT(target, internalFormat, width, height, format, type, *image)

glConvolutionParameterfEXT(target, pname, param)

glConvolutionParameterfvEXT(target, pname, *params)

glConvolutionParameteriEXT(target, pname, param)

glConvolutionParameterivEXT(target, pname, *params)

glCopyPixels(x, y, width, height, type)

glDisable(cap)

glDrawBuffer(mode)

glDrawPixels(width, height, format, type, *pixels)

glEnable(cap)

glFinish(void)

glFlush(void)

Appendix A: Quick Syntax Summary for IVL A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glGetBooleanv(pname, *params)

glGetColorTableEXT(target, format, type, *table)

glGetColorTableParameterfvEXT(target, pname, *params)

glGetColorTableParameterivEXT(target, pname, *params)

glGetConvolutionFilterEXT(target, format, type, *image)

glGetConvolutionParameterfvEXT(target, pname, *params)

glGetConvolutionParameterivEXT(target, pname, *params)

glGetDoublev(pname, *params)

GLenum glGetError(void)

glGetFloatv(pname, *params)

glGetImageTransformParameterfvHP(target, pname, *params)

glGetImageTransformParameterivHP(target, pname, *params)

glGetIntegerv(pname, *params)

const GLubyte *glGetString(name)

glImageTransformParameterfHP(target, pname, param)

glImageTransformParameterfvHP(target, pname, *params)

glImageTransformParameteriHP(target, pname, param)

glImageTransformParameterivHP(target, pname, *params)

GLboolean glIsEnabled(cap)

glPixelStoref(pname, param)

glPixelStorei(pname, param)

glPixelTransferf(pname, param)

glPixelTransferi(pname, param)

A-2 Appendix A: Quick Syntax Summary for IVL

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

glRasterPos2i(x, y)

glRasterPos2iv(*v)

glReadBuffer(mode)

glReadPixels(x, y, width, height, format, type, *pixels)

glScissor(x, y, width, height)

GLX Utility Routines

XVisualInfo* glXChooseVisual(*dpy, screen, *attribList)

GLXContext glXCreateContext(*dpy, *vis, shareList, direct)

GLXPixmap glXCreateGLXPixmap(*dpy, *vis, pixmap)

glXDestroyContext(*dpy, ctx)

glXDestroyGLXPixmap(*dpy, pix)

int glXGetConfig(*dpy, *vis, attrib, *value)

Bool glXMakeCurrent(*dpy, drawable, ctx)

Bool glXQueryExtension(*dpy, *errorBase, *eventBase)

glXSwapBuffers(*dpy, drawable)

Appendix A: Quick Syntax Summary for IVL A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

B

Appendix B: HP-IVL Reference

This portion of the document contains the reference pages for all the IVL routines.

Appendix B: HP-IVL Reference B-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glClear

Clear bu�ers to preset values.

C Specification

void glClear(GLbitfield mask)

Parameters

mask Bitwise OR of masks that indicate the bu�ers to be cleared. The
only supported value for mask is GL_COLOR_BUFFER_BIT.

Description

glClear sets the drawing area of the window to values previously selected by
glClearColor.

The pixel ownership test and the scissor test a�ect the operation of glClear.
The scissor box bounds the cleared region.

glClear takes a single argument that indicates which bu�er to clear.

The only currently supported value of mask is:

GL_COLOR_BUFFER_BIT

Indicates the bu�ers currently enabled for color writing.

Notes

If a bu�er is not present, then a glClear directed at that bu�er has no e�ect.

Errors

GL_INVALID_VALUE is generated if any bit other than GL_COLOR_BUFFER_BIT is
set in mask .

B-2 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glClear

Associated Gets

glGet (GL_COLOR_CLEAR_VALUE)

See Also

glClearColor,
glDrawBuffer,
glGet,
glScissor.

Appendix B: HP-IVL Reference B-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glClearColor

Specify color values used for clearing the color bu�ers.

C Specification

void glClearColor(GLclampf red,

GLclampf green,

GLclampf blue,

GLclampf alpha)

Parameters

red , green,
blue, alpha

Specify the red, green, blue, and alpha values used when the
color bu�ers are cleared.

Description

glClearColor speci�es the red , green, blue, and alpha values used by glClear

to clear the color bu�ers. Values speci�ed by glClearColor are clamped to the
range [0,1].

Defaults

The default values for red , green, blue, and alpha are all zero.

Associated Gets

glGet (GL_COLOR_CLEAR_VALUE)

See Also

glClear,
glGet.

B-4 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glColorTableEXT

glColorTableEXT

De�ne a color lookup table.

C Specification

void glColorTableEXT(GLenum target,

GLenum internalFormat,

GLsizei width,

GLenum format,

GLenum type,

const GLvoid *table)

Parameters

target Must be GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP.

internalFormat The internal format of the color table. The allowable values
are:

GL_LUMINANCE,
GL_LUMINANCE4_EXT,
GL_LUMINANCE8_EXT,
GL_LUMINANCE12_EXT,
GL_LUMINANCE16_EXT,
GL_RGBA,
GL_RGBA2_EXT,
GL_RGBA4_EXT,
GL_RGB5_A1_EXT,
GL_RGBA8_EXT,
GL_RGB10_A2_EXT,
GL_RGBA12_EXT, and
GL_RGBA16_EXT.

width The number of entries in the color lookup table speci�ed by
table.

format The format of the pixel data in table. The allowable values
are GL_LUMINANCE and GL_RGBA.

Appendix B: HP-IVL Reference B-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glColorTableEXT

type The type of the pixel data in table. The allowable values are
GL_UNSIGNED_BYTE and GL_UNSIGNED_SHORT.

table Pointer to the pixel data that will be processed to build the
color table.

Description

glColorTableEXT is part of the EXT_color_table extension. At present, only
the subset of EXT_color_table needed to support HP_image_transform has been
implemented.

If target is GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP, glColorTableEXT
builds a color lookup table from an array of pixels. The pixel array speci�ed by
width, format, type, and table is extracted from memory and processed just as
if glDrawPixels were called, but processing stops after the �nal expansion to
RGBA is completed.

The R, G, B, and A components of each pixel are then scaled by the four
GL_COLOR_TABLE_SCALE_EXT parameters and biased by the four
GL_COLOR_TABLE_BIAS_EXT parameters. (Use glColorTableParameterEXT to
set the scale and bias parameters.) The R, G, B, and A values are then clamped
to the range [0,1].

Each pixel is then converted to the internal format speci�ed by internalFormat.
This conversion simply maps the component values of the pixel (R, G, B,
and A) to the values included in the internal format (red, green, blue, alpha,
luminance, and intensity). If internalFormat is GL_RGBA, then the R, G, B, and
A components are mapped to the R, G, B, and A components of the internal
format. If internalFormat is GL_LUMINANCE, then the R component is mapped to
the luminance component of the internal format.

The luminance and RBGA variants are handled in the same way as their
base value. For example, GL_LUMINANCE4_EXT is handled in the same way as
GL_LUMINANCE, and GL_RGBA8_EXT is handled in the same way as GL_RGBA. It
is permissible for implementations to allocate storage in a fashion other than
what was speci�cally requested by internalFormat. Therefore the value of
internalFormat is more a hint than an exact allocation speci�cation.

B-6 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glColorTableEXT

Finally, the red, green, blue, alpha, and/or luminance components of the resulting
pixels are stored in the color table. They form a one-dimensional table with
indices in the range [0, width�1].

Notes

For GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP, width must be a power of two.

The combination of format GL_RGBA and type GL_UNSIGNED_SHORT is not
supported in this release.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if internalFormat is not one of the allowable
values.

GL_INVALID_VALUE is generated if width is less than zero or is not a power of 2.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_TABLE_TOO_LARGE_EXT is generated if the requested color table is too large
to be supported by the implementation.

Associated Gets

glGetColorTableParameterEXT

See Also

glColorTableParameterEXT,
glGetColorTableParameterEXT.

Appendix B: HP-IVL Reference B-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glColorTableParameter*vEXT

Set color lookup table parameters.

C Specification

void glColorTableParameterfvEXT(GLenum target,

GLenum pname,

const GLfloat *params)

void glColorTableParameterivEXT(GLenum target,

GLenum pname,

const GLint *params)

Parameters

target The target color table. Must be
GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP.

pname The symbolic name of a color lookup table parameter. Must be
either GL_COLOR_TABLE_SCALE_EXT or
GL_COLOR_TABLE_BIAS_EXT.

params A pointer to an array where the values of the parameters are
stored.

Description

glColorTableParameterEXT is part of the EXT_color_table extension, which
adds several color lookup tables to the pixel transfer path. At present, only
the subset of EXT_color_table needed to support the HP_image_transform
extension has been implemented.

glColorTableParameterEXT speci�es the scale factors and bias terms applied to
color components when they are loaded into the color table. The target argument
must be GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP.

The pname argument must be GL_COLOR_TABLE_SCALE_EXT to set the scale
factors. In this case, params points to an array of four values, which are the
scale factors for red, green, blue, and alpha, in that order.

B-8 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glColorTableParameter*vEXT

The pname argument must be GL_COLOR_TABLE_BIAS_EXT to set the bias terms.
The params argument points to an array of four values, which are the bias terms
for red, green, blue, and alpha, in that order.

Calling glColorTableEXT whenever a table is loaded will result in applying the
scale and bias values to the color lookup table values.

The post-image transform color lookup table is speci�ed by glColorTableEXT,
using GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP as the target.

Errors

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

Associated Gets

glGetColorTableParameterEXT

See Also

glColorTableEXT,
glGet,
glGetColorTableParameterEXT.

Appendix B: HP-IVL Reference B-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionFilter2DEXT

De�ne a two-dimensional convolution �lter.

C Specification

void glConvolutionFilter2DEXT(GLenum target,

GLenum internalFormat,

GLsizei width,

GLsizei height,

GLenum format,

GLenum type,

const GLvoid *image)

Parameters

target Must be GL_CONVOLUTION_2D_EXT.

internalFormat The internal format of the convolution �lter kernel. The
allowable values are GL_LUMINANCE and GL_RGBA.

width The width of the pixel array referenced by image.

height The height of the pixel array referenced by image.

format The format of the pixel data in image. The allowable values
are GL_LUMINANCE and GL_RGBA.

type The type of the pixel data in image. The only allowable value
is GL_FLOAT.

image Pointer to a two-dimensional array of pixel data that is
processed to build the convolution �lter kernel.

Description

glConvolutionFilter2DEXT builds a two-dimensional convolution �lter kernel
from an array of pixels.

The pixel array speci�ed by width, height, format, type, and image is extracted
from memory and processed just as if glDrawPixels were called, but processing
stops after completing the �nal expansion to RGBA.

B-10 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionFilter2DEXT

The R, G, B, and A components of each pixel are next scaled by the four
2D GL_CONVOLUTION_FILTER_SCALE_EXT parameters and biased by the four 2D
GL_CONVOLUTION_FILTER_BIAS_EXT parameters. (The scale and bias parameters
are set by glConvolutionParameterEXT using the GL_CONVOLUTION_2D_EXT

target and the names GL_CONVOLUTION_FILTER_SCALE_EXT and
GL_CONVOLUTION_FILTER_BIAS_EXT. The parameters themselves are vectors of
four values that are applied to red, green, blue, and alpha, in that order.) The
R, G, B, and A values are not clamped to [0,1] at any time during this process.

Each pixel is then converted to the internal format speci�ed by internalFormat.
This conversion simply maps the component values of the pixel (R, G, B, and A)
to the values included in the internal format (red, green, blue, alpha, luminance,
and intensity). If internalFormat is GL_RGBA, then the R, G, B, and A components
are mapped to the R, G, B, and A components of the internal format. If
internalFormat is GL_LUMINANCE, then the R component maps to the luminance
component of the internal format.

The red, green, blue, alpha, and/or luminance components of the resulting
pixels are stored in
oating-point rather than integer format. They form a two-
dimensional �lter kernel image indexed with coordinates i and j such that i starts
at zero and increases from left to right, and j starts at zero and increases from
bottom to top. Kernel location i ,j is derived from the N th pixel, where N is
i+j width.

Note that after performing a convolution, the resulting color components are also
scaled by their corresponding GL_POST_CONVOLUTION_c_SCALE_EXT parameters
and biased by their corresponding GL_POST_CONVOLUTION_c_BIAS_EXT parame-
ters (where c takes on the values RED, GREEN, BLUE, and ALPHA). These parameters
are set by glPixelTransfer.

Errors

GL_INVALID_ENUM is generated if target is not GL_CONVOLUTION_2D_EXT.

GL_INVALID_ENUM is generated if internalFormat is not one of the allowable
values.

GL_INVALID_VALUE is generated if width is less than zero or greater than the
maximum supported value. This value may be queried with

Appendix B: HP-IVL Reference B-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionFilter2DEXT

glGetConvolutionParameterEXT using target GL_CONVOLUTION_2D_EXT and
name GL_MAX_CONVOLUTION_WIDTH_EXT.

GL_INVALID_VALUE is generated if height is less than zero or greater than the
maximum supported value. This value may be queried with

glGetConvolutionParameterEXT using target GL_CONVOLUTION_2D_EXT and
name GL_MAX_CONVOLUTION_HEIGHT_EXT.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

Associated Gets

glGetConvolutionFilterEXT

glGetConvolutionParameterEXT.

Notes

The width and height arguments must both be set to 3 for this release. Values of
0, 1, or 2 will cause a GL_INVALID_VALUE error to be generated.

See Also

glConvolutionParameterEXT,
glEnable (with parameter GL_CONVOLUTION_2D_EXT),
glDrawPixels,
glGetConvolutionFilterEXT,
glGetConvolutionParameterEXT,
glPixelTransfer.

B-12 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionParameter*EXT

glConvolutionParameter*EXT

Set convolution parameters.

C Specification (for Single-Value Attributes)

void glConvolutionParameterfEXT(GLenum target,

GLenum pname,

GLfloat param)

void glConvolutionParameteriEXT(GLenum target,

GLenum pname,

GLint param)

Parameters

target The target for the convolution parameter. Must be
GL_CONVOLUTION_2D_EXT.

pname The parameter to be set. Must be
GL_CONVOLUTION_BORDER_MODE_EXT.

param The parameter value. Must be one of:

GL_REDUCE_EXT,
GL_IGNORE_BORDER_HP,
GL_CONSTANT_BORDER_HP,
GL_WRAP_BORDER_HP, or
GL_REPLICATE_BORDER_HP.

C Specification (for Multiple-Value Attributes)

void glConvolutionParameterfvEXT(GLenum target,

GLenum pname,

const GLfloat *params)

void glConvolutionParameterivEXT(GLenum target,

GLenum pname,

const GLint *params)

Appendix B: HP-IVL Reference B-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionParameter*EXT

Parameters

target The target for the convolution parameter. Must be
GL_CONVOLUTION_2D_EXT.

pname The parameter to be set. Must be one of

GL_CONVOLUTION_FILTER_SCALE_EXT,
GL_CONVOLUTION_FILTER_BIAS_EXT,
GL_CONVOLUTION_BORDER_MODE_EXT,
GL_CONVOLUTION_BORDER_COLOR_HP.

params The parameter value. If pname is
GL_CONVOLUTION_BORDER_MODE_EXT, params must be one of:

GL_REDUCE_EXT,
GL_IGNORE_BORDER_HP,
GL_CONSTANT_BORDER_HP,
GL_WRAP_BORDER_HP, or
GL_REPLICATE_BORDER_HP.

Otherwise, params must be a vector of four values (for red, green,
blue, and alpha, respectively). This vector speci�es values for
scaling (when pname is GL_CONVOLUTION_FILTER_SCALE_EXT) or
for biasing (when pname is GL_CONVOLUTION_FILTER_BIAS_EXT)
a convolution �lter kernel. Or, the params value will be used as
the border color (when pname is
GL_CONVOLUTION_BORDER_COLOR_HP).

Description

glConvolutionParameterEXT sets the value of a convolution parameter.

The target argument selects the convolution �lter to be a�ected, and must be
GL_CONVOLUTION_2D_EXT for the 2D �lter.

The pname argument selects the parameter to be changed. Legal values for
pname are:

GL_CONVOLUTION_FILTER_SCALE_EXT

If used, values pointed at by params become the current convolution �lter
scaling values for the speci�ed target. The convolution scale values are

B-14 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionParameter*EXT

applied to convolution �lter values whenever the convolution �lter is set using
glConvolutionFilter2DEXT.

GL_CONVOLUTION_FILTER_BIAS_EXT

If used, values pointed at by params become the current convolution �lter
bias values for the speci�ed target. The convolution �lter bias values are
applied to convolution �lter values whenever the convolution �lter is set using
glConvolutionFilter2DEXT.

GL_CONVOLUTION_BORDER_COLOR_HP

If used, the value in params becomes the current convolution border color
for the speci�ed target. The convolution border color is used along the
edges of a convolved image when the convolution border mode is set to
GL_CONSTANT_BORDER_HP.

GL_CONVOLUTION_BORDER_MODE_EXT

If used, the value in params becomes the current convolution border mode for
the speci�ed target. For the purpose of the following discussion, the width and
height of the current convolution �lter are speci�ed by Wf and Hf , and the
width and height of the source image are speci�ed byWs and Hs . The symbols
Cw and Ch indicate half the width and height of the current convolution �lter

and are de�ned as Cw =
j
Wf
2

k
and Ch =

j
Hf
2

k
. The legal values for params

are:

GL_REDUCE_EXT

If used, edges are eliminated, so the convolved image becomes smaller than
the input image. When this mode is in e�ect, the image resulting from
convolution is smaller than the source image. The convolved image width
will be Ws�Wf+1 and height will be Hs�Hf+1. (If this reduction would
generate an image with zero or negative width and/or height, then there
would be no image data left to process at this point in the pipeline. So, the
output is simply null, with no error generated.) The image resulting from
convolution has coordinates that range from zero through Ws�Wf in width
and zero through Hs�Hf in height.

GL_IGNORE_BORDER_HP

If the convolution border mode is GL_IGNORE_BORDER_HP, the output image
has the same dimensions as the source image, but the resulting pixels in
the Cw columns along the left and right edges will be the same as the
corresponding pixels in the source image, and the pixels in the Ch rows

Appendix B: HP-IVL Reference B-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionParameter*EXT

on the top and bottom edges will be the same as the corresponding pixels in
the source image.

GL_CONSTANT_BORDER_HP

If the convolution border mode is GL_CONSTANT_BORDER_HP, the output im-
age has the same dimensions as the source image, but the current con-
volution border color will be used as input for the convolution operation
wherever no source image pixels exist. (This occurs in the Cw columns
along the left and right edges and the Ch rows on the top and bottom
edges.) The current convolution border color is set by calling glConvolu-

tionParameterivEXT or glConvolutionParameterfvEXT with pname set to
GL_CONVOLUTION_BORDER_COLOR_HP and params containing four values that
comprise the RGBA color to be used as the image border. Integer color com-
ponents are interpreted linearly such that the most positive integer maps to
1.0, and the most negative integer maps to �1.0. Floating point color com-
ponents are clamped to the range [0,1] when they are speci�ed.

GL_WRAP_BORDER_HP

If the convolution border mode is GL_WRAP_BORDER_HP, the output image has
the same dimensions as the source image, and the source image is assumed
to be continuously wrapped in both x and y directions. Therefore, source
image pixels in the Cw columns on the right edge are used in the convolution
computation for the Cw columns on the left edge of the image, and vice versa.
Similarly, source image pixels in the Ch rows on the top of the image are
used in the convolution computation for the Ch rows on the bottom of the
image and vice versa.

GL_REPLICATE_BORDER_HP

If the convolution border mode is GL_REPLICATE_BORDER_HP, the output
image has the same dimensions as the source image, and the source image
is assumed to have replicated pixels along the borders. When computing
the convolution along the border of the source image, the replicated border
pixels are used wherever no source image pixels exist.

B-16 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glConvolutionParameter*EXT

Defaults

For each potential target, the default convolution �lter bias values are:

pname Default Values

GL_CONVOLUTION_FILTER_SCALE_EXT (1, 1, 1, 1)

GL_CONVOLUTION_FILTER_BIAS_EXT (0, 0, 0, 0)

GL_CONVOLUTION_BORDER_COLOR_HP (0, 0, 0, 0)

The default convolution border mode is GL_REDUCE_EXT.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is
GL_CONVOLUTION_BORDER_MODE_EXT and params is not one of:

GL_REDUCE_EXT,
GL_IGNORE_BORDER_HP,
GL_CONSTANT_BORDER_HP,
GL_WRAP_BORDER_HP, or
GL_REPLICATE_BORDER_HP.

Associated Gets

glGetConvolutionParameterEXT

See Also

glConvolutionFilter2DEXT,
glGetConvolutionParameterEXT.

Appendix B: HP-IVL Reference B-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glCopyPixels

Copy pixels in the frame bu�er.

C Specification

void glCopyPixels(GLint x,

GLint y,

GLsizei width,

GLsizei height,

GLenum type)

Parameters

x , y Specify the window coordinates of the lower left corner of the
rectangular region of pixels to be copied.

width, height Specify the dimensions of the rectangular region of pixels to be
copied. Both must be non-negative.

type Speci�es the type of source bu�er (color, depth, or stencil). Only
the symbolic constant GL_COLOR is allowed.

Description

glCopyPixels copies a screen-aligned rectangle of pixels from the speci�ed frame
bu�er location to a region relative to the current raster position. Its operation is
well de�ned only if the entire pixel source region is within the exposed portion of
the window. Results of copies from outside the window, or from regions of the
window that are not exposed, are hardware-dependent and unde�ned.

The x and y arguments specify the window coordinates of the lower left corner of
the rectangular region to be copied. The width and height arguments specify the
dimensions of the rectangular region to be copied. Both width and height must
be non-negative.

glCopyPixels copies values from each pixel with the lower left-hand corner at
(x+i , y+j) for 0<i�width and 0�j<height. This pixel is said to be the ith pixel
in the j th row. Pixels are copied in row order from the lowest to the highest row,
left to right across each row.

B-18 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glCopyPixels

The type argument speci�es the type of data to be copied. The only currently
allowable value for type is GL_COLOR. Details for this data type are as follows:

GL_COLOR RGBA colors are read from the bu�er currently speci�ed as the read
source bu�er (see glReadBuffer).

The red, green, blue, and alpha components of each pixel that is read
are converted to an internal
oating-point format with unspeci�ed
precision. The conversion maps the largest representable component
value to 1.0, and component value zero to 0.0.

If convolution is enabled by calling glEnable with
GL_CONVOLUTION_2D_EXT, the rectangle of pixel values being copied
will be convolved with the current 2D convolution �lter kernel. The
behavior of the convolution operation is controlled by the convolution
parameters set by glConvolutionParameterEXT. As part of the
convolution operation, IVL will also apply the post-convolution scale
and bias values (set by calling glPixelTransfer).

Next, if image transformation is enabled, IVL will scale, rotate, and
translate the pixel rectangle being copied according to the image
transformation parameters set by glImageTransformParameterHP.

Following this, if the post-image transform color table is enabled,
pixel values will undergo a table lookup operation. The values in
this lookup table are established by calling glColorTableEXT.

The resulting RGBA colors are then converted to fragments by
assigning window coordinates (xr+i ,yr+j), where (xr ,yr) is the
current raster position, and the pixel was the ith pixel in the j th row.
These pixel fragments are subsequently written to the frame bu�er.
As pixels are written, they are subjected to the pixel ownership test
and, if enabled, the scissor test.

Examples

If all of the pixel transfer operations are disabled, the following command will
copy the color pixel in the lower left corner of the window to the current raster
position:

glCopyPixels(0, 0, 1, 1, GL_COLOR);

Appendix B: HP-IVL Reference B-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glCopyPixels

Notes

Modes speci�ed by glPixelStore have no e�ect on the operation of
glCopyPixels.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if either width or height is negative.

Associated Gets

glGet(GL_CURRENT_RASTER_POSITION)
glGet(GL_CURRENT_RASTER_POSITION_VALID)

See Also

glColorTableEXT,
glConvolutionParameterEXT,
glDrawBuffer,
glDrawPixels,
glEnable,
glGet,
glImageTransformParameterHP,
glPixelTransfer,
glRasterPos,
glReadBuffer,
glReadPixels.

B-20 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawBuffer

glDrawBuffer

Specify which color bu�ers are to be drawn into.

C Specification

void glDrawBuffer(GLenum mode)

Parameters

mode Speci�es which bu�ers are to be drawn into. Symbolic constants
GL_FRONT_LEFT, GL_BACK_LEFT, GL_FRONT, and GL_BACK are
accepted.

Description

When colors are written to the frame bu�er, they are written into the color bu�ers
speci�ed by glDrawBuffer. The speci�cations are as follows:

GL_FRONT_LEFT Only the front left color bu�er is written.

GL_BACK_LEFT Only the back left color bu�er is written.

GL_FRONT Only the front left and front right color bu�ers are written. If
there is no front right color bu�er, only the front left color bu�er
is written.

GL_BACK Only the back left and back right color bu�ers are written. If
there is no back right color bu�er, only the back left color bu�er
is written.

Monoscopic contexts include only left bu�ers, and stereoscopic contexts include
both left and right bu�ers. Likewise, single-bu�ered contexts include only front
bu�ers, and double-bu�ered contexts include both front and back bu�ers. The
context is selected at IVL initialization time.

Appendix B: HP-IVL Reference B-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawBuffer

Defaults

The default value of mode is GL_FRONT for single-bu�ered contexts, and GL_BACK

for double-bu�ered contexts.

Notes

Stereo is not supported in the �rst release of IVL. Hence, GL_FRONT_LEFT is
equivalent to GL_FRONT, and GL_BACK_LEFT is equivalent to GL_BACK. Use the
bu�er names that allow your application to work properly should it ever be run
on a system that supports stereo windows. Non-stereo applications will typically
use GL_FRONT and GL_BACK.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if none of the bu�ers indicated by mode
exists.

Associated Gets

glGet (GL_DRAW_BUFFER)

See Also

glGet,
glReadBuffer.

B-22 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawPixels

glDrawPixels

Write a block of pixels to the frame bu�er.

C Specification

void glDrawPixels(GLsizei width,

GLsizei height,

GLenum format,

GLenum type,

const GLvoid *pixels)

Parameters

width , height Specify the dimensions of the pixel rectangle that will be written
into the frame bu�er.

format Speci�es the format of the pixel data. Symbolic constants
GL_RGBA and GL_LUMINANCE are accepted.

type Speci�es the data type for pixels . Symbolic constants
GL_UNSIGNED_BYTE and GL_UNSIGNED_SHORT are accepted.

pixels Speci�es a pointer to the pixel data.

Description

glDrawPixels reads pixel data from memory and writes it into the frame bu�er
relative to the current raster position. Use glRasterPos to set the current raster
position, and use glGet with argument GL_CURRENT_RASTER_POSITION to query
the raster position.

Data is read from pixels as a sequence of unsigned bytes or unsigned shorts,
depending on type. Each of these bytes or shorts is interpreted as one color
component. Color components are treated as groups of one or four values, based
on format . Groups of components are referred to as pixels .

The speci�ed widthheight rectangle of pixels are read from memory, starting
at location pixels . By default, these pixels are taken from adjacent memory
locations, except that after all width pixels are read, the read pointer is advanced

Appendix B: HP-IVL Reference B-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawPixels

to the next four-byte boundary. The four-byte row alignment is speci�ed by
glPixelStore with argument GL_UNPACK_ALIGNMENT, and it can be set to one,
two, four, or eight bytes. Other pixel store parameters specify the number of
bytes the read pointer should be advanced prior to reading the �rst row of pixels,
and the number of bytes to advance the read pointer after reading each row.
Refer to the glPixelStore reference page for details on these options.

The widthheight pixels that are read from memory are each transformed in the
same way, based on the values of several parameters that a�ect pixel transfer
operations. The details of these operations, as well as the target bu�er into
which the pixels are drawn, are speci�c to the format of the pixels, as speci�ed
by format. The format argument can assume one of two symbolic values:

GL_RGBA Each pixel is a four-component group: red �rst, followed
by green, followed by blue, followed by alpha. Signed
integer values are mapped linearly to an internal
oating-
point format with unspeci�ed precision such that the most
positive representable integer value maps to 1.0, and the most
negative representable value maps to �1.0.

If convolution is enabled by calling glEnable with
GL_CONVOLUTION_2D_EXT, the rectangle of pixel values be-
ing copied will be processed with the current 2D convolution
�lter kernel. The behavior of the convolution operation is
controlled by the parameters set by glConvolutionParame-

terEXT. As part of the convolution operation, IVL will also
apply the post-convolution scale and bias values (set by call-
ing glPixelTransfer).

Next, if image transformation is enabled, IVL will also
scale, rotate, and translate the pixel rectangle being copied
according to the image transformation parameters set by
glImageTransformParameterHP.

Following this, if the post-image-transform color table is
enabled, pixel values will be undergo a table lookup operation.
The values in this lookup table are established by calling
glColorTableEXT.

The resulting RGBA colors are then converted to fragments
by assigning window coordinates (xr+i ,yr+j), where (xr ,yr)

B-24 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawPixels

is the current raster position, and the pixel was the ith pixel
in the j th row. These pixel fragments are then written to the
frame bu�er. As pixels are written, they are subjected to the
pixel ownership test and, if enabled, the scissor test.

GL_LUMINANCE Each pixel is a single luminance component. This component
is converted to the internal
oating-point format in the same
way as the red component of an RGBA pixel is, then it is
converted to an RGBA pixel with red, green, and blue set to
the converted luminance value, and alpha set to 1.0. After
this conversion, the pixel is treated just as if it had been read
as an RGBA pixel.

The following table summarizes the meaning of the valid constants for the type
parameter:

type corresponding type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_UNSIGNED_SHORT unsigned 16-bit integer

Notes

For this release, the combination of format GL_RGBA and type GL_UNSIGNED_SHORT
is not supported.

Errors

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_ENUM is generated if format or type is not one of the accepted values.

Associated Gets

glGet (GL_CURRENT_RASTER_POSITION)
glGet (GL_CURRENT_RASTER_POSITION_VALID)

Appendix B: HP-IVL Reference B-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glDrawPixels

See Also

glColorTableEXT,
glConvolutionParameterEXT,
glCopyPixels,
glEnable,
glGet,
glImageTransformParameterHP,
glPixelStore,
glPixelTransfer,
glRasterPos,
glReadPixels,
glScissor.

B-26 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glEnable, glDisable

glEnable, glDisable

Enable or disable IVL capabilities.

C Specification

void glEnable(GLenum cap)

void glDisable(GLenum cap)

Parameters

cap Speci�es a symbolic constant indicating an IVL capability.

Description

glEnable and glDisable enable and disable various capabilities. Use
glIsEnabled or glGet to determine the current setting of any capability.

Both glEnable and glDisable take a single argument, cap, which can assume
one of the following values:

GL_CONVOLUTION_2D_EXT

If enabled, perform two-dimensional convolution during pixel transfers. See
glConvolutionFilter2DEXT.

GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See
glScissor.

GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP

If enabled, perform a color table lookup operation after the image transforma-
tion operation.

GL_IMAGE_TRANSFORM_2D_HP

If enabled, perform an image transformation operation as part of pixel transfer.
See glImageTransformParameterHP.

Appendix B: HP-IVL Reference B-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glEnable, glDisable

Errors

GL_INVALID_ENUM is generated if cap is not one of the values listed above.

See Also

glColorTableEXT,
glConvolutionFilter2DEXT,
glImageTransformParameterHP,
glIsEnabled,
glScissor.

B-28 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glFinish

glFinish

Block until all IVL execution is complete.

C Specification

void glFinish(void void)

Description

glFinish does not return until the e�ects of all previously called IVL commands
are complete. Such e�ects include all changes to IVL state, all changes to
connection state, and all changes to the frame bu�er contents.

Notes

glFinish may take more time than desired, since it must block until all rendering
is completed. Whenever possible, use glFlush instead.

See Also

glFlush.

Appendix B: HP-IVL Reference B-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glFlush

Force execution of IVL commands in �nite time.

C Specification

void glFlush(void void)

Description

Implementations of IVL on di�erent platforms may bu�er commands in several
di�erent locations, including network bu�ers and the graphics accelerator itself.
glFlush empties all of these bu�ers, causing all issued commands to be executed
as quickly as they are accepted by the actual rendering engine. Though this
execution may not be completed in any particular time period, it does complete
in �nite time.

Because any IVL program might be executed over a network, or on an accelerator
that bu�ers commands, all programs should call glFlush whenever they count
on having all of their previously issued commands completed. For example, if
user input depends on a generated image, a call to glFlush should be placed
between the calls to glDrawPixels and glReadPixels.

Notes

glFlush can return at any time. It does not wait until the execution of all
previously issued IVL commands is complete.

See Also

glFinish.

B-30 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGet*v

glGet*v

Return the value or values of a selected parameter.

C Specification

void glGetBooleanv(GLenum pname,

GLboolean *params)

void glGetDoublev(GLenum pname,

GLdouble *params)

void glGetFloatv(GLenum pname,

GLfloat *params)

void glGetIntegerv(GLenum pname,

GLint *params)

Parameters

pname Speci�es the parameter value to be returned. The symbolic
constants in the list below are accepted.

params Returns the value or values of the speci�ed parameter.

Description

These four commands return values for simple state variables in IVL. The pname
argument is a symbolic constant indicating the state variable to be returned,
and params is a pointer to an array of the indicated type in which to place the
returned data.

Type conversion is performed if params has a di�erent type than the state variable
value being requested. If glGetBooleanv is called, a
oating-point or integer
value is converted to GL_FALSE if and only if it is zero. Otherwise, it is converted
to GL_TRUE. If glGetIntegerv is called, Boolean values are returned as GL_TRUE
or GL_FALSE, and most
oating-point values are rounded to the nearest integer
value. Floating-point colors, however, are returned with a linear mapping that

Appendix B: HP-IVL Reference B-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGet*v

maps 1.0 to the most positive representable integer value, and �1.0 to the most
negative representable integer value. If glGetFloatv or glGetDoublev is called,
Boolean values are returned as GL_TRUE or GL_FALSE, and integer values are
converted to
oating-point values.

The following symbolic constants are accepted by pname:

GL_ALPHA_BITS

params returns one value, the number of alpha bitplanes in each color bu�er.

GL_BLUE_BITS

params returns one value, the number of blue bitplanes in each color bu�er.

GL_COLOR_CLEAR_VALUE

params returns four values: the red, green, blue, and alpha values used to clear
the color bu�ers. Integer values, if requested, are linearly mapped from the
internal
oating-point representation such that 1.0 returns the most positive
representable integer value, and �1.0 returns the most negative representable
integer value. See glClearColor.

GL_CONVOLUTION_2D_EXT

params returns a single Boolean value indicating whether two-dimensional con-
volution will be performed during pixel transfers. See glConvolutionFil-

ter2DEXT.

GL_CURRENT_RASTER_POSITION

params returns four values: the x, y, z, and w components of the current raster
position. x, y, and z are in window coordinates, and w is in clip coordinates.
See glRasterPos.

GL_CURRENT_RASTER_POSITION_VALID

params returns a single Boolean value indicating whether the current raster
position is valid. See glRasterPos.

GL_DOUBLEBUFFER

params returns a single Boolean value indicating whether double-bu�ering is
supported.

GL_DRAW_BUFFER
params returns one value, a symbolic constant indicating which bu�ers are
being drawn to. See glDrawBuffer.

B-32 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGet*v

GL_GREEN_BITS

params returns one value, the number of green bitplanes in each color bu�er.

GL_PACK_ALIGNMENT

params returns one value, the byte alignment used for writing pixel data to
memory. See glPixelStore.

GL_PACK_ROW_LENGTH

params returns one value, the row length used for writing pixel data to memory.
See glPixelStore.

GL_PACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped before the �rst
pixel is written into memory. See glPixelStore.

GL_PACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped before
the �rst pixel is written into memory. See glPixelStore.

GL_POST_CONVOLUTION_ALPHA_BIAS_EXT

params returns a single value, the bias term to be added to alpha immediately
after convolution. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_ALPHA_SCALE_EXT

params returns a single value, the scale factor to be applied to alpha
immediately after post-convolution scaling. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_BLUE_BIAS_EXT

params returns a single value, the bias term to be added to blue immediately
after convolution. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_BLUE_SCALE_EXT

params returns a single value, the scale factor to be applied to blue immediately
after post-convolution scaling. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_GREEN_BIAS_EXT

params returns a single value, the bias term to be added to green immediately
after convolution. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_GREEN_SCALE_EXT

params returns a single value, the scale factor to be applied to green
immediately after post-convolution scaling. See glConvolutionFilter2DEXT.

Appendix B: HP-IVL Reference B-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGet*v

GL_POST_CONVOLUTION_RED_BIAS_EXT

params returns a single value, the bias term to be added to red immediately
after convolution. See glConvolutionFilter2DEXT.

GL_POST_CONVOLUTION_RED_SCALE_EXT

params returns a single value, the scale factor to be applied to red immediately
after post-convolution scaling. See glConvolutionFilter2DEXT.

GL_READ_BUFFER

params returns one value, a symbolic constant indicating which color bu�er is
selected for reading. See glReadPixels.

GL_RED_BITS

params returns one value, the number of red bitplanes in each color bu�er.

GL_RGBA_MODE

params returns a single Boolean value indicating whether IVL is in RGBA
mode (true) or color index mode (false).

GL_SCISSOR_BOX

params returns four values: the x and y window coordinates of the scissor box,
followed by its width and height. See glScissor.

GL_SCISSOR_TEST

params returns a single Boolean value indicating whether scissoring is enabled.
See glScissor.

GL_UNPACK_ALIGNMENT

params returns one value, the byte alignment used for reading pixel data from
memory. See glPixelStore.

GL_UNPACK_ROW_LENGTH

params returns one value, the row length used for reading pixel data from
memory. See glPixelStore.

GL_UNPACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped before the �rst
pixel is read from memory. See glPixelStore.

GL_UNPACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped before
the �rst pixel is read from memory. See glPixelStore.

B-34 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGet*v

GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP

params returns a single value indicating whether the post-image transformation
color lookup table is enabled. See glColorTableEXT.

GL_IMAGE_TRANSFORM_2D_HP

params returns a single value indicating whether the 2D image transformation
operation is enabled. See glImageTransformParameterHP.

Many of the Boolean parameters can also be queried more easily using
glIsEnabled.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

See Also

glClearColor,
glColorTableEXT,
glColorTableEXT,
glConvolutionFilter2DEXT,
glDrawBuffer,
glGetColorTableParameterEXT,
glGetConvolutionFilterEXT,
glGetConvolutionParameterEXT,
glGetError,
glGetImageTransformParameterHP,
glGetString,
glImageTransformParameterHP,
glIsEnabled,
glPixelStore,
glRasterPos,
glReadPixels,
glScissor.

Appendix B: HP-IVL Reference B-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetColorTableEXT

Retrieve the contents of a color lookup table.

C Specification

void glGetColorTableEXT(GLenum target,

GLenum format,

GLenum type,

GLvoid *table)

Parameters

target Must be GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP.

format The format in which the lookup table values are to be returned.
The allowable values are GL_LUMINANCE and GL_RGBA.

type The data type in which the lookup table value are to be
returned. The allowable values are GL_UNSIGNED_BYTE and
GL_UNSIGNED_SHORT.

table Pointer to an array in which the lookup table values are returned.

Description

glGetColorTableEXT is part of the EXT_color_table extension. At present,
only the subset of EXT_color_table needed to support the HP_image_transform
extension has been implemented. See

glImageTransformParameterHP for a description of the image transformation
process.

This routine is used to return the current contents of a color table. No pixel
transfer operations are performed on the pixel values that are returned, but
applicable pixel storage modes are performed. Color components that are
requested in the speci�ed format, but which are not included in the internal
format of the color lookup table are returned as zero. The assignments of internal
color components to the components requested by format are:

B-36 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetColorTableEXT

Internal

Component

Resulting

Component

red red

green green

blue blue

alpha alpha

luminance red

Notes

The combination of a format of GL_RGBA and a type of GL_UNSIGNED_SHORT is
not currently supported.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

Associated Gets

glGetColorTableParameterEXT

See Also

glColorTableEXT,
glColorTableParameterEXT,
glImageTransformParameterHP.

Appendix B: HP-IVL Reference B-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetColorTableParameter*vEXT

Get color lookup table parameters.

C Specification

void glGetColorTableParameterfvEXT(GLenum target,

GLenum pname,

GLfloat *params)

void glGetColorTableParameterivEXT(GLenum target,

GLenum pname,

GLint *params)

Parameters

target The target color table. Must be
GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP.

pname The symbolic name of a color lookup table parameter. Must be
one of:

GL_COLOR_TABLE_SCALE_EXT,
GL_COLOR_TABLE_BIAS_EXT,
GL_COLOR_TABLE_FORMAT_EXT,
GL_COLOR_TABLE_WIDTH_EXT,
GL_COLOR_TABLE_RED_SIZE_EXT,
GL_COLOR_TABLE_GREEN_SIZE_EXT,
GL_COLOR_TABLE_BLUE_SIZE_EXT,
GL_COLOR_TABLE_ALPHA_SIZE_EXT, or
GL_COLOR_TABLE_LUMINANCE_SIZE_EXT.

params A pointer to an array where the values of the parameter will be
stored.

B-38 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetColorTableParameter*vEXT

Description

glGetColorTableParameterEXT is part of the EXT_color_table extension,
which adds several color lookup tables to the pixel transfer path. At present,
only the subset of EXT_color_table needed to support the HP_image_transform
extension has been implemented.

glGetColorTableParameterEXT retrieves the color table scale and bias parame-
ters set by glColorTableParameterEXT, as well as the format and size parameters
set by glColorTableEXT. The target argument must be
GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP to retrieve any of the post-image
transform color table parameters.

The pname argument must be GL_COLOR_TABLE_SCALE_EXT to retrieve the scale
factors. In this case, params points to an array of four elements, which receive
the scale factors for red, green, blue, and alpha, in that order.

The pname argument must be GL_COLOR_TABLE_BIAS_EXT to retrieve the bias
terms, while params points to an array of four elements, which receive the bias
terms for red, green, blue, and alpha, in that order.

The pname argument may also be one of the symbolic constants in the following
table, in which case the speci�ed parameter will be returned in the location
indicated by params :

pname Meaning

GL_COLOR_TABLE_FORMAT_EXT Internal format (e.g. GL_RGBA)

GL_COLOR_TABLE_WIDTH_EXT Number of elements in table

GL_COLOR_TABLE_RED_SIZE_EXT Size of red component, in bits

GL_COLOR_TABLE_GREEN_SIZE_EXT Size of green component

GL_COLOR_TABLE_BLUE_SIZE_EXT Size of blue component

GL_COLOR_TABLE_ALPHA_SIZE_EXT Size of alpha component

GL_COLOR_TABLE_LUMINANCE_SIZE_EXT Size of luminance component

Appendix B: HP-IVL Reference B-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetColorTableParameter*vEXT

Errors

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

See Also

glColorTableEXT,
glColorTableParameterEXT.

B-40 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetConvolutionFilterEXT

glGetConvolutionFilterEXT

Get current 2D convolution �lter kernel.

C Specification

void glGetConvolutionFilterEXT(GLenum target,

GLenum format,

GLenum type,

GLvoid *image)

Parameters

target The �lter to be retrieved. Must be GL_CONVOLUTION_2D_EXT.

format Format of the output image. Must be one of GL_RGBA or
GL_LUMINANCE.

type Data type of components in the output image. Must be
GL_FLOAT.

image Pointer to storage for the output image.

Description

glGetConvolutionFilterEXT returns the current 2D convolution �lter kernel as
an image. The one- or two-dimensional kernel is placed in image according to
the speci�cations in format and type. No pixel transfer operations are performed
on this image, but the relevant pixel storage modes are applied.

Color components that are present in format but not included in the internal
format of the �lter are returned as zero. The assignments of internal color
components to the components of format are as follows:

Appendix B: HP-IVL Reference B-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetConvolutionFilterEXT

Internal

Component

Resulting

Component

red red

green green

blue blue

alpha alpha

luminance red

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

Associated Gets

glGetConvolutionParameterEXT

See Also

glConvolutionFilter2DEXT,
glConvolutionParameterEXT,
glGetConvolutionParameterEXT.

B-42 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetConvolutionParameter*vEXT

glGetConvolutionParameter*vEXT

Get convolution parameters.

C Specification

void glGetConvolutionParameterfvEXT(GLenum target,

GLenum pname,

GLfloat *params)

void glGetConvolutionParameterivEXT(GLenum target,

GLenum pname,

GLint *params)

Parameters

target The �lter whose parameters are to be retrieved. Must be
GL_CONVOLUTION_2D_EXT.

pname The parameter to be retrieved. Must be one of:

GL_CONVOLUTION_BORDER_MODE_EXT,
GL_CONVOLUTION_FILTER_SCALE_EXT,
GL_CONVOLUTION_FILTER_BIAS_EXT,
GL_CONVOLUTION_FORMAT_EXT,
GL_CONVOLUTION_WIDTH_EXT,
GL_CONVOLUTION_HEIGHT_EXT,
GL_MAX_CONVOLUTION_WIDTH_EXT,
GL_MAX_CONVOLUTION_HEIGHT_EXT, or
GL_CONVOLUTION_BORDER_COLOR_HP.

params Pointer to storage for the parameters to be retrieved.

Appendix B: HP-IVL Reference B-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetConvolutionParameter*vEXT

Description

glGetConvolutionParameterEXT retrieves convolution parameters. The target
argument determines which convolution �lter is queried, while pname determines
which parameter is returned:

GL_CONVOLUTION_BORDER_MODE_EXT

The convolution border mode. See glConvolutionParameterEXT for a list of
border modes.

GL_CONVOLUTION_FILTER_SCALE_EXT

The current �lter scale factors. The params argument must be a pointer to an
array of four elements, which will receive the red, green, blue, and alpha �lter
scale factors in that order.

GL_CONVOLUTION_FILTER_BIAS_EXT

The current �lter bias factors. The params argument must be a pointer to an
array of four elements, which will receive the red, green, blue, and alpha �lter
bias terms in that order.

GL_CONVOLUTION_FORMAT_EXT

The current internal format. See glConvolutionFilter2DEXT for a list of
allowable formats.

GL_CONVOLUTION_WIDTH_EXT
The current �lter image width.

GL_CONVOLUTION_HEIGHT_EXT

The current �lter image height.

GL_MAX_CONVOLUTION_WIDTH_EXT

The maximum acceptable �lter image width.

GL_MAX_CONVOLUTION_HEIGHT_EXT

The maximum acceptable �lter image height.

GL_CONVOLUTION_BORDER_COLOR_HP

The current convolution border color for the speci�ed target is returned as an
array of red, green, blue, and alpha values in the array speci�ed by params .
See glConvolutionParameterEXT for a description of the allowable values.

B-44 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetConvolutionParameter*vEXT

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

See Also

glConvolutionFilter2DEXT,
glConvolutionParameterEXT,
glGetConvolutionFilterEXT.

Appendix B: HP-IVL Reference B-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetError

Return error information.

C Specification

GLenum glGetError(void void)

Description

glGetError returns the value of the error
ag. Each detectable error is assigned
a numeric code and symbolic name. When an error occurs, the error
ag is set to
the appropriate error code value. No other errors are recorded until glGetError
is called, the error code is returned, and the
ag is reset to GL_NO_ERROR. If a call
to glGetError returns GL_NO_ERROR, there has been no detectable error since
the last call to glGetError, or since initializing IVL.

To allow for distributed implementations, there may be several error
ags. If any
single error
ag has recorded an error, the value of that
ag is returned and that

ag is reset to GL_NO_ERROR when glGetError is called. If more than one
ag has
recorded an error, glGetError returns and clears an arbitrary error
ag value.
Thus, glGetError should always be called in a loop, until it returns GL_NO_ERROR,
if all error
ags are to be reset. Note that, in a distributed implementation, there
is no guarantee that the application will be able to process errors in the order in
which they occur.

Initially, all error
ags are set to GL_NO_ERROR.

The currently de�ned errors are as follows:

GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guaranteed
to be zero.

GL_INVALID_ENUM

An unacceptable value is speci�ed for an enumerated argument. The o�ending
command is ignored, having no side e�ect other than to set the error
ag.

GL_INVALID_VALUE

A numeric argument is out of range. The o�ending command is ignored, having
no side e�ect other than to set the error
ag.

B-46 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetError

GL_INVALID_OPERATION

The speci�ed operation is not allowed in the current state. The o�ending
command is ignored, having no side e�ect other than to set the error
ag.

GL_OUT_OF_MEMORY

There is not enough memory left to execute the command. The state of IVL
is unde�ned, except for the state of the error
ags, after this error is recorded.

GL_TABLE_TOO_LARGE_EXT

The implementation cannot accommodate a table of the size requested by
glColorTableEXT. The o�ending command is ignored, having no side e�ect
other than to set the error
ag.

When an error
ag is set, results of an IVL operation are unde�ned only if
GL_OUT_OF_MEMORY has occurred. In all other cases, the command generating
the error is ignored and has no e�ect on the IVL state or frame bu�er contents.

Appendix B: HP-IVL Reference B-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetImageTransformParameter*vHP

Get image transformation parameters.

C Specification

void glGetImageTransformParameterfvHP(GLenum target,

GLenum pname,

GLfloat *params)

void glGetImageTransformParameterivHP(GLenum target,

GLenum pname,

GLint *params)

Parameters

target The target image transformation. Must be
GL_IMAGE_TRANSFORM_2D_HP.

pname The parameter to be queried. Must be one of:

GL_IMAGE_SCALE_X_HP,
GL_IMAGE_SCALE_Y_HP,
GL_IMAGE_TRANSLATE_X_HP,
GL_IMAGE_TRANSLATE_Y_HP,
GL_IMAGE_ROTATE_ANGLE_HP,
GL_IMAGE_ROTATE_ORIGIN_X_HP,
GL_IMAGE_ROTATE_ORIGIN_Y_HP,
GL_IMAGE_MAG_FILTER_HP,
GL_IMAGE_MIN_FILTER_HP, or
GL_IMAGE_CUBIC_WEIGHT_HP

params A pointer to a location where the value of the parameter will be
stored.

B-48 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetImageTransformParameter*vHP

Description

glGetImageTransformParameterHP is part of the HP_image_transform exten-
sion, which adds image scaling, rotation, translation, and window level mapping
to the pixel transfer path.

glGetImageTransformParameterHP retrieves the image transformation param-
eters set by glImageTransformParameterHP. The target argument must be
GL_IMAGE_TRANSFORM_2D_HP.

The pname argument may be one of the symbolic constants in the following table.
The current value of the speci�ed parameter will be returned in the location
speci�ed by params .

pname Meaning

GL_IMAGE_SCALE_X_HP x scaling factor

GL_IMAGE_SCALE_Y_HP y scaling factor

GL_IMAGE_TRANSLATE_X_HP x translation factor

GL_IMAGE_TRANSLATE_Y_HP y translation factor

GL_IMAGE_ROTATE_ANGLE_HP rotation angle in degrees

GL_IMAGE_ROTATE_ORIGIN_X_HP x coordinate of rotation origin

GL_IMAGE_ROTATE_ORIGIN_Y_HP y coordinate of rotation origin

GL_IMAGE_MIN_FILTER_HP resampling �lter for mini�cation

GL_IMAGE_MAG_FILTER_HP resampling �lter for magni�cation

GL_IMAGE_CUBIC_WEIGHT_HP cubic weight factor for cubic sampling

Errors

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

See Also

glImageTransformParameterHP.

Appendix B: HP-IVL Reference B-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetString

Returns a string describing the current IVL connection.

C Specification

const GLubyte * glGetString(GLenum name)

Parameters

name Speci�es a symbolic constant, one of GL_VENDOR, GL_RENDERER,
GL_VERSION, or GL_EXTENSIONS.

Description

glGetString returns a pointer to a static string describing some aspect of the
current IVL connection. The name argument can be one of the following:

GL_VENDOR

Returns the company responsible for this OpenGL implementation. This name
does not change from release to release. For Hewlett-Packard the string is
\HP".

GL_RENDERER

Returns the name of the renderer. This name is typically speci�c to a particular
con�guration of a hardware platform. It does not change from release to release.

GL_VERSION

Returns a version or release number.

GL_EXTENSIONS

Returns a list of supported extensions, separated by spaces.

Because IVL does not include queries for the performance characteristics of an
implementation, it is expected that some applications will be written to recognize
known platforms and will modify their usage based on known performance
characteristics of these platforms. Strings GL_VENDOR and GL_RENDERER together
uniquely specify a platform, and will not change from release to release. They
should be used by to select platform-speci�c code. The format and contents of
the GL_VENDOR and the GL_RENDERER strings depend on the implementation.

B-50 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glGetString

The GL_VERSION string begins with a version number. The version number is of
the form hmajor numberi.hminor numberi or
hmajor numberi.hminor numberi.hrelease numberi. Vendor-speci�c informa-
tion may follow the version number. Its format depends on the implementa-
tion, but a space always separates the version number and the vendor-speci�c
information.

All strings are null-terminated.

Notes

If an error is generated, glGetString returns zero. The client and server may
support di�erent versions or extensions. glGetString always returns a version
number or list of extensions that is compatible with both the client and server.
The release number always describes the server.

Errors

GL_INVALID_ENUM is generated if name is not an accepted value.

Appendix B: HP-IVL Reference B-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glImageTransformParameter*HP

Set image transformation parameters.

C Specification (for Single-Value Attributes)

void glImageTransformParameterfHP(GLenum target,

GLenum pname,

GLfloat param)

void glImageTransformParameteriHP(GLenum target,

GLenum pname,

GLint param)

Parameters

target The target image transformation. Must be
GL_IMAGE_TRANSFORM_2D_HP.

pname The parameter to be set. Must be one of:

GL_IMAGE_SCALE_X_HP,
GL_IMAGE_SCALE_Y_HP,
GL_IMAGE_ROTATE_ANGLE_HP,
GL_IMAGE_ROTATE_ORIGIN_X_HP,
GL_IMAGE_ROTATE_ORIGIN_Y_HP,
GL_IMAGE_TRANSLATE_X_HP,
GL_IMAGE_TRANSLATE_Y_HP,
GL_IMAGE_MIN_FILTER_HP,
GL_IMAGE_MAG_FILTER_HP, or
GL_IMAGE_CUBIC_WEIGHT_HP.

param The parameter value. If pname is GL_IMAGE_MAG_FILTER_HP,
param must be one of GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP.
If pname is GL_IMAGE_MIN_FILTER_HP, param must be one of
GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP. If pname is any of
the other accepted values, the speci�ed parameter will be set to
the value of param.

B-52 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glImageTransformParameter*HP

C Specification (for Multiple-Value Attributes)

void glImageTransformParameterfvHP(GLenum target,

GLenum pname,

const GLfloat *params)

void glImageTransformParameterivHP(GLenum target,

GLenum pname,

const GLint *params)

Parameters

target The target image transformation. Must be
GL_IMAGE_TRANSFORM_2D_HP.

pname The parameter to be set. Must be one of:

GL_IMAGE_SCALE_X_HP,
GL_IMAGE_SCALE_Y_HP,
GL_IMAGE_ROTATE_ANGLE_HP,
GL_IMAGE_ROTATE_ORIGIN_X_HP,
GL_IMAGE_ROTATE_ORIGIN_Y_HP,
GL_IMAGE_TRANSLATE_X_HP,
GL_IMAGE_TRANSLATE_Y_HP,
GL_IMAGE_MIN_FILTER_HP,
GL_IMAGE_MAG_FILTER_HP, or
GL_IMAGE_CUBIC_WEIGHT_HP.

params The parameter value. If pname is GL_IMAGE_MAG_FILTER_HP,
params must be one of GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP.
If pname is GL_IMAGE_MIN_FILTER_HP, params must be one of
GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP. If pname is any of the
other accepted values, the speci�ed parameter will be set to the
value of params .

Appendix B: HP-IVL Reference B-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glImageTransformParameter*HP

Description

glImageTransformParameterHP is part of the HP_image_transform extension,
which adds image scaling, rotation, translation, and window level mapping to the
pixel transfer path.

Parameter values GL_IMAGE_SCALE_X_HP and GL_IMAGE_SCALE_Y_HP establish
the scaling factors. GL_IMAGE_ROTATE_ANGLE_HP sets the rotation angle to be
used (in degrees), and GL_IMAGE_ROTATE_ORIGIN_X_HP and
GL_IMAGE_ROTATE_ORIGIN_Y_HP specify the point about which the image is
to be scaled and rotated. If the speci�ed angle is positive, the rotation
will be counterclockwise about the speci�ed rotation origin. If the speci�ed
angle is negative, the rotation will be clockwise about the rotation origin.
GL_IMAGE_TRANSLATE_X_HP and GL_IMAGE_TRANSLATE_Y_HP set the translation
factors. All of these parameters (scale, rotation, translation, rotation origin) are
speci�ed in terms of the input image's coordinates, where the lower left corner of
the image has coordinates of (0,0).

Notes

GL_IMAGE_MIN_FILTER_HP de�nes the resampling technique that is to be applied
if the image is mini�ed by the scaling factors. GL_IMAGE_MAG_FILTER_HP

establishes the resampling technique that is to be used after the other image
transformation operators have been applied if the image is deemed to have been
magni�ed. GL_IMAGE_CUBIC_WEIGHT_HP de�nes the cubic weighting coe�cient
that is to be used whenever the resampling technique is set to GL_CUBIC_HP.

When enabled, the image transformation operation uses the current set of
image transformation parameters to compute a new window coordinate for
each incoming pixel. Although image transformation parameters are speci�ed
separately, the scaling, rotation, and translation operations are all applied
simultaneously (as if the transformation was encoded in a matrix and the resulting
matrix was applied to each incoming pixel coordinate). In the case of 2D image
transformation, if (Rx,Ry) speci�es the rotation origin, the e�ect of applying
the 2D image transformation operators can be de�ned as follows. First, the
image is translated by Rx in the x direction and Ry in the y direction so that
its rotation origin is at the origin of the 2D coordinate system. Second, the x
and y scaling factors are applied, causing the image to be scaled as speci�ed in
x and y. Third, the rotation angle is applied, causing the image to be rotated

B-54 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glImageTransformParameter*HP

about the origin by the speci�ed angle. Next, the image is translated by Rx in
the x direction and Ry in the y direction. Finally, the scaled and rotated image
is translated by the speci�ed translation factors. Resampling occurs after the
scaling/rotation/translation operations have been applied.

Since multiple input pixels can be mapped into a single output pixel (mini�cation
of input image), or since output pixels might not have any input pixels mapped
to them (magni�cation of input image), some method of resampling is required.
If the resampling method is GL_NEAREST, each output pixel will have the value
of the input pixel whose transformed coordinate value is nearest (in Manhattan
distance). If the resampling method is GL_LINEAR, each output pixel will have
a value that is the weighted average of the four input pixels whose transformed
coordinate values are nearest.

If the resampling method is GL_CUBIC_HP, each output pixel will have a value that
is a�ected by the 16 input pixels whose transformed coordinate values are nearest.
The 16 input pixels will be used to perform a cubic convolution interpolation to
determine the value of the output pixel. The cubic weight factor is a
oating-
point value that is applied to the cubic interpolation in the manner described in
Digital Image Warping by George Wolberg. Visually pleasing cubic weighting
values are typically in the range [->1,0]. The values between 1.0 and 0.5 are
most commonly used. Cubic interpolation is not performed along the edges of
the input image, where a neighborhood of 16 pixels is not available. As a result,
the outer one pixel edge of the input image will not be transformed. For image
scaling values of 1.0 in X and in Y, this causes the output image to be two pixels
less than the input image in both width and height.

Defaults

The default values for X and Y scale factors are 1.0, the default value for
the cubic weighting factor is 0.5, the default mini�cation and magni�cation
�lters are GL_NEAREST, and all other defaults are 0. Image transformation is
disabled by default, and can be enabled by calling glEnable with the value
GL_IMAGE_TRANSFORM_2D_HP.

Appendix B: HP-IVL Reference B-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glImageTransformParameter*HP

Errors

GL_INVALID_ENUM is generated if target or pname is not an acceptable value.

GL_INVALID_ENUM is generated if pname is GL_IMAGE_MAG_FILTER_HP and the
speci�ed parameter value is not one of GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP.

GL_INVALID_ENUM is generated if pname is GL_IMAGE_MIN_FILTER_HP and the
speci�ed parameter value is not one of GL_NEAREST, GL_LINEAR, or GL_CUBIC_HP.

Associated Gets

glEnable

glGetImageTransformParameterHP

B-56 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glIsEnabled

glIsEnabled

Test whether a capability is enabled.

C Specification

GLboolean glIsEnabled(GLenum cap)

Parameters

cap Speci�es a symbolic constant indicating an IVL capability.

Description

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns
GL_FALSE otherwise. The following capabilities are accepted for cap:

GL_CONVOLUTION_2D_EXT

See glConvolutionFilter2DEXT.

GL_SCISSOR_TEST

See glScissor.

GL_POST_IMAGE_TRANSFORM_COLOR_TABLE_HP

If enabled, perform a color table lookup operation after the image transforma-
tion operation.

GL_IMAGE_TRANSFORM_2D_HP

If enabled, perform an image transformation operation as part of pixel transfer.
See glImageTransformParameterHP.

Notes

If an error is generated, glIsEnabled returns zero.

Appendix B: HP-IVL Reference B-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glIsEnabled

Errors

GL_INVALID_ENUM is generated if cap is not an accepted value.

See Also

glConvolutionFilter2DEXT,
glEnable,
glImageTransformParameterHP,
glScissor.

B-58 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelStore*

glPixelStore*

Set pixel storage modes.

C Specification

void glPixelStoref(GLenum pname,

GLfloat param)

void glPixelStorei(GLenum pname,

GLint param)

Parameters

pname Speci�es the symbolic name of the parameter to be set. Four
values a�ect the packing of pixel data into memory:

GL_PACK_ROW_LENGTH,
GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS, and
GL_PACK_ALIGNMENT.

Four other values a�ect the unpacking of pixel data from
memory:

GL_UNPACK_ROW_LENGTH,
GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS, and
GL_UNPACK_ALIGNMENT.

param Speci�es the value to assign to pname.

Description

glPixelStore sets pixel storage modes that a�ect the operation of subsequent
glDrawPixels and glReadPixels.

The pname argument is a symbolic constant indicating the parameter to be set,
and param is the new value. Four of the eight storage parameters a�ect how

Appendix B: HP-IVL Reference B-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelStore*

pixel data is returned to client memory, and are therefore signi�cant only for
glReadPixels commands. They are as follows:

GL_PACK_ROW_LENGTH

If greater than zero, GL_PACK_ROW_LENGTH de�nes the number of pixels in a
row. If the �rst pixel of a row is placed at location p in memory, then the
location of the �rst pixel of the next row is obtained by skipping

k =

�
nl if s � a
a
s

�
snl
a

�
if s < a

components, where n is the number of components in a pixel, l is the number
of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than zero, the width
argument to the pixel routine otherwise), a is the value of GL_PACK_ALIGNMENT,
and s is the size, in bytes, of a single component (if a<s , then it is as if a=s).

The word \component" in this description refers to the component values
red, green, blue, and alpha. Storage format GL_RGBA, for example, has four
components per pixel: �rst red, then green, then blue, and �nally alpha.

GL_PACK_SKIP_PIXELS and GL_PACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide
no functionality that cannot be duplicated simply by incrementing the pointer
passed to glReadPixels. Setting GL_PACK_SKIP_PIXELS to i is equivalent
to incrementing the pointer by in components, where n is the number of
components in each pixel. Setting GL_PACK_SKIP_ROWS to j is equivalent
to incrementing the pointer by jk components, where k is the number of
components per row, as computed above in the GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT

Speci�es the alignment requirements for the start of each pixel row in memory.
The allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered
bytes), 4 (word alignment), and 8 (rows start on double-word boundaries).

The other four of the eight storage parameters a�ect how pixel data is read
from client memory. These values are signi�cant for glDrawPixels. They are as
follows:

B-60 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelStore*

GL_UNPACK_ROW_LENGTH
If greater than zero, GL_UNPACK_ROW_LENGTH de�nes the number of pixels in
a row. If the �rst pixel of a row is placed at location p in memory, then the
location of the �rst pixel of the next row is obtained by skipping

k =

�
nl if s � a
a
s

�
snl
a

�
if s < a

components, where n is the number of components in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than
zero, the width argument to the pixel routine otherwise), a is the value of
GL_UNPACK_ALIGNMENT, and s is the size, in bytes, of a single component (if
a<s , then it is as if a=s).

The word \component" in this description refers to the nonindex values
red, green, blue, and alpha. Storage format GL_RGB, for example, has four
components per pixel: �rst red, then green, then blue, and �nally alpha.

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide
no functionality that cannot be duplicated simply by incrementing the pointer
passed to glDrawPixels. Setting GL_UNPACK_SKIP_PIXELS to i is equivalent to
incrementing the pointer by in components or indices, where n is the number
of components or indices in each pixel. Setting GL_UNPACK_SKIP_ROWS to j is
equivalent to incrementing the pointer by jk components or indices, where k
is the number of components or indices per row, as computed above in the
GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT

Speci�es the alignment requirements for the start of each pixel row in memory.
The allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered
bytes), 4 (word alignment), and 8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each
of the storage parameters that can be set with glPixelStore.

Appendix B: HP-IVL Reference B-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelStore*

pname Type Initial

Value

Valid

Range

GL_PACK_ROW_LENGTH integer 0 [0,1)
GL_PACK_SKIP_ROWS integer 0 [0,1)
GL_PACK_SKIP_PIXELS integer 0 [0,1)
GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8
GL_UNPACK_ROW_LENGTH integer 0 [0,1)
GL_UNPACK_SKIP_ROWS integer 0 [0,1)
GL_UNPACK_SKIP_PIXELS integer 0 [0,1)
GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8

glPixelStoref can be used to set any pixel store parameter. Likewise,
glPixelStorei can also be used to set any of the pixel store parameters.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip
value is speci�ed, or if alignment is speci�ed as other than 1, 2, 4, or 8.

Associated Gets

glGet (GL_PACK_ROW_LENGTH)
glGet (GL_PACK_SKIP_ROWS)
glGet (GL_PACK_SKIP_PIXELS)
glGet (GL_PACK_ALIGNMENT)
glGet (GL_UNPACK_ROW_LENGTH)
glGet (GL_UNPACK_SKIP_ROWS)
glGet (GL_UNPACK_SKIP_PIXELS)
glGet (GL_UNPACK_ALIGNMENT)

See Also

glDrawPixels,
glReadPixels.

B-62 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelTransfer*

glPixelTransfer*

Set pixel transfer modes.

C Specification

void glPixelTransferf(GLenum pname,

GLfloat param)

void glPixelTransferi(GLenum pname,

GLint param)

Parameters

pname Speci�es the symbolic name of the pixel transfer parameter to
be set. Must be one of the following:

GL_POST_CONVOLUTION_RED_SCALE_EXT,
GL_POST_CONVOLUTION_RED_BIAS_EXT,
GL_POST_CONVOLUTION_GREEN_SCALE_EXT,
GL_POST_CONVOLUTION_GREEN_BIAS_EXT,
GL_POST_CONVOLUTION_BLUE_SCALE_EXT,
GL_POST_CONVOLUTION_BLUE_BIAS_EXT,
GL_POST_CONVOLUTION_ALPHA_SCALE_EXT, or
GL_POST_CONVOLUTION_ALPHA_BIAS_EXT

param Speci�es the value that pname is set to.

Description

glPixelTransfer sets pixel transfer modes that a�ect the operation of subse-
quent glCopyPixels, glDrawPixels, and glReadPixels commands. The algo-
rithms that are speci�ed by pixel transfer modes operate on pixels after they
are read from the frame bu�er (glCopyPixels and glReadPixels) or unpacked
from client memory (glDrawPixels). Pixel transfer operations occur in the same
order, and in the same manner, regardless of the command that resulted in the
pixel operation. Pixel storage modes (see glPixelStore) control the unpacking
of pixels being read from client memory, and the packing of pixels being written
back into client memory.

Appendix B: HP-IVL Reference B-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelTransfer*

Pixel transfer operations are used to modify the values of pixels as they are
transferred by a copy, read, or store operation. Color pixels are made up of four

oating-point values with unspeci�ed mantissa and exponent sizes, scaled such
that 0.0 represents zero intensity and 1.0 represents full intensity.

In the �rst release of IVL, the only pixel transfer operation that is de�ned is
the post-convolution scale and bias. When convolution is enabled, each of the
four color components is multiplied by a scale factor, then added to a bias factor.
These values are applied after the convolution operation, if convolution is enabled.

That is, the red component is multiplied by
GL_POST_CONVOLUTION_RED_SCALE_EXT, then added to
GL_POST_CONVOLUTION_RED_BIAS_EXT; the green component is multiplied by
GL_POST_CONVOLUTION_GREEN_SCALE_EXT, then added to
GL_POST_CONVOLUTION_GREEN_BIAS_EXT; the blue component is multiplied by
GL_POST_CONVOLUTION_BLUE_SCALE_EXT, then added to
GL_POST_CONVOLUTION_BLUE_BIAS_EXT; and the alpha component is multiplied
by GL_POST_CONVOLUTION_ALPHA_SCALE_EXT, then added to
GL_POST_CONVOLUTION_ALPHA_BIAS_EXT.

After all four color components are scaled and biased, each is clamped to the range
[0,1]. The post-convolution scale and bias operation is applied immediately after
the convolution operation is performed.

The following table gives the type, initial value, and range of valid values for each
of the pixel transfer parameters that are set with glPixelTransfer.

pname Type Initial

Value

Valid

Range

GL_POST_CONVOLUTION_RED_SCALE_EXT
oat 1.0 (�1, 1)

GL_POST_CONVOLUTION_GREEN_SCALE_EXT
oat 1. (�1, 1)

GL_POST_CONVOLUTION_BLUE_SCALE_EXT
oat 1. (�1, 1)

GL_POST_CONVOLUTION_ALPHA_SCALE_EXT
oat 1. (�1, 1)

GL_POST_CONVOLUTION_RED_BIAS_EXT
oat 0. (�1, 1)

GL_POST_CONVOLUTION_GREEN_BIAS_EXT
oat 0. (�1, 1)

GL_POST_CONVOLUTION_BLUE_BIAS_EXT
oat 0. (�1, 1)

GL_POST_CONVOLUTION_ALPHA_BIAS_EXT
oat 0. (�1, 1)

B-64 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glPixelTransfer*

glPixelTransferi can be used to set any of the pixel transfer parameters. The
param argument is converted to
oating point before being assigned to real-valued
parameters.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

Associated Gets

glGet (GL_POST_CONVOLUTION_RED_SCALE_EXT)
glGet (GL_POST_CONVOLUTION_RED_BIAS_EXT)
glGet (GL_POST_CONVOLUTION_GREEN_SCALE_EXT)
glGet (GL_POST_CONVOLUTION_GREEN_BIAS_EXT)
glGet (GL_POST_CONVOLUTION_BLUE_SCALE_EXT)
glGet (GL_POST_CONVOLUTION_BLUE_BIAS_EXT)
glGet (GL_POST_CONVOLUTION_ALPHA_SCALE_EXT)
glGet (GL_POST_CONVOLUTION_ALPHA_BIAS_EXT)

See Also

glCopyPixels,
glDrawPixels,
glPixelStore,
glReadPixels.

Appendix B: HP-IVL Reference B-65

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glRasterPos*

Specify the raster position for pixel operations.

C Specification (Discrete Coordinate Values)

void glRasterPos2i(GLint x,

GLint y)

Parameters

x , y Specify the x and y object coordinates (if present) for the raster
position.

C Specification (Vector of Coordinate Values)

void glRasterPos2iv(const GLint *v)

Parameters

v Speci�es a pointer to an array of two elements, specifying x and
y coordinates, respectively.

Description

IVL maintains the current position in window coordinates. This position, called
the raster position, is maintained with subpixel accuracy. It is used to position
pixel write operations. See glDrawPixels and glCopyPixels.

The current raster position contains two window coordinates (x and y), an eye
coordinate distance, and a valid bit.

glRasterPos2 uses the argument values for x and y .

The object coordinates presented by glRasterPos are transformed by the current
model view and projection matrices and passed to the clipping stage. The �rst
release of IVL does not implement the model view and projection matrices, so the
identity matrix is used by default. If the vertex is not culled, then it is projected
and scaled to window coordinates, which become the new current raster position,

B-66 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glRasterPos*

and the GL_CURRENT_RASTER_POSITION_VALID
ag is set. If the vertex is culled,
then the valid bit is cleared and the current raster position and its associated
data are unde�ned.

Defaults

Initially, the current raster position has (x,y,z,w) set to (0,0,0,1), and the valid
bit is set.

Notes

The raster position is modi�ed by glRasterPos. When the raster position
coordinates are invalid, drawing commands that are based on the raster position
are ignored (that is, they do not result in changes to IVL state).

Associated Gets

glGet (GL_CURRENT_RASTER_POSITION)
glGet (GL_CURRENT_RASTER_POSITION_VALID)

See Also

glCopyPixels,
glDrawPixels.

Appendix B: HP-IVL Reference B-67

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glReadBuffer

Select a color bu�er source for pixels.

C Specification

void glReadBuffer(GLenum mode)

Parameters

mode Speci�es a color bu�er. Accepted values are GL_FRONT_LEFT,
GL_BACK_LEFT, GL_FRONT, and GL_BACK.

Description

glReadBuffer speci�es a color bu�er as the source for subsequent glCopyPixels
and glReadPixels commands. The mode argument can be one of four prede�ned
values. In a fully con�gured system, GL_FRONT and GL_FRONT_LEFT name the
front left bu�er, and GL_BACK_LEFT and GL_BACK name the back left bu�er.

Non-stereo double-bu�ered con�gurations have only a front left and a back left
bu�er. Single-bu�ered con�gurations have a front left and a front right bu�er if
stereo, and only a front left bu�er if the output device does not support stereo.
It is an error to specify a nonexistent bu�er to glReadBuffer.

Defaults

By default, mode is GL_FRONT in single-bu�ered con�gurations, and GL_BACK in
double-bu�ered con�gurations.

Notes

Stereo is not supported in the initial release of IVL.

B-68 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glReadBuffer

Errors

GL_INVALID_ENUM is generated if mode is not one of the accepted values.

GL_INVALID_OPERATION is generated if mode speci�es a bu�er that does not exist.

Associated Gets

glGet (GL_READ_BUFFER)

See Also

glCopyPixels,
glDrawBuffer,
glReadPixels.

Appendix B: HP-IVL Reference B-69

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glReadPixels

Read a block of pixels from the frame bu�er.

C Specification

void glReadPixels(GLint x,

GLint y,

GLsizei width,

GLsizei height,

GLenum format,

GLenum type,

GLvoid *pixels)

Parameters

x , y Specify the window coordinates of the �rst pixel that is read
from the frame bu�er. This location is the lower left corner of a
rectangular block of pixels.

width, height Specify the dimensions of the pixel rectangle. If width and height
are both set to a value of one (1), this corresponds to a single
pixel.

format Speci�es the format of the pixel data. The following symbolic
values are accepted: GL_RGBA and GL_LUMINANCE.

type Speci�es the data type of the pixel data. Must be one of
GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT.

pixels Returns the pixel data.

Description

glReadPixels returns pixel data from the frame bu�er, starting with the pixel
whose lower left corner is at location (x , y), and stores the data in client memory
starting at the location pointed to by pixels . It is the responsibility of the
application to allocate space for holding the returned pixel values.

B-70 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glReadPixels

glReadPixels returns values from each pixel with lower left-hand corner at (x+i ,
y+j) for 0<i<width and 0<j<height. This pixel is said to be the ith pixel in
the j th row. Pixels are returned in row order from the lowest to the highest row,
left to right across each row.

The format argument speci�es the format for the returned pixel values. Accepted
values for format are as follows:

GL_RGBA
GL_LUMINANCE Pixel values are read from the color bu�er selected by glRead-

Buffer. Each color component is converted to a
oating-point
value such that zero intensity maps to 0.0 and full intensity maps
to 1.0.

GL_LUMINANCE computes a single component value as the sum
of the red, green, and blue components. The �nal values are
clamped to the range [0,1].

In order to return pixel values as unsigned bytes or unsigned shorts, each
component, c, is multiplied by the multiplier, as shown in the following table:

type Component Conversion

GL_UNSIGNED_BYTE (28 � 1)c

GL_UNSIGNED_SHORT (216 � 1)c

If pixel transfer operations such as convolution and image transformation
are disabled, return values are placed in memory as follows. If format is
GL_LUMINANCE, a single value is returned and the data for the ith pixel in
the j th row is placed in location (j) >width+i . GL_RGBA returns four values,
with all values corresponding to a single pixel occupying contiguous space in
pixels . Storage parameters set by glPixelStore, such as GL_PACK_SKIP_ROWS

and GL_PACK_ROW_LENGTH, a�ect the way that data is written into memory. See
glPixelStore for a description.

Appendix B: HP-IVL Reference B-71

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glReadPixels

Notes

For this release, the combination of format GL_RGBA and type GL_UNSIGNED_SHORT
is not supported.

Values for pixels that lie outside the window connected to the current GL context
are unde�ned.

If an error is generated, no change is made to the contents of pixels .

Errors

GL_INVALID_ENUM is generated if format or type is not an accepted value.

GL_INVALID_VALUE is generated if either width or height is negative.

See Also

glCopyPixels,
glDrawPixels,
glPixelStore,
glReadBuffer.

B-72 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glScissor

glScissor

De�ne the scissor box.

C Specification

void glScissor(GLint x,

GLint y,

GLsizei width,

GLsizei height)

Parameters

x , y Specify the lower left corner of the scissor box. Initially (0,0).

width , height Specify the width and height of the scissor box. When an IVL
context is �rst attached to a window, width and height are set
to the dimensions of that window.

Description

The glScissor routine de�nes a rectangle, called the scissor box, in window
coordinates. The �rst two arguments, x and y , specify the lower left corner of
the box. width and height specify the width and height of the box.

The scissor test is enabled and disabled using glEnable and glDisable with
argument GL_SCISSOR_TEST. While the scissor test is enabled, only pixels that
lie within the scissor box can be modi�ed by drawing commands. Window
coordinates have integer values at the shared corners of frame bu�er pixels,
so glScissor(0,0,1,1) allows only the lower left pixel in the window to be
modi�ed, and glScissor(0,0,0,0) disallows modi�cation to all pixels in the
window.

When the scissor test is disabled, it is as though the scissor box includes the
entire window.

Appendix B: HP-IVL Reference B-73

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glScissor

Errors

GL_INVALID_VALUE is generated if either width or height is negative.

Associated Gets

glGet (GL_SCISSOR_BOX)
glIsEnabled (GL_SCISSOR_TEST)

See Also

glDisable,
glEnable.

B-74 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glX.Intro

glX.Intro

Introduction to IVL in the X window system.

Overview

The Image Visualization Library (IVL) is a high-performance 2-D-oriented
renderer. It is available in the X window system through the GLX extension.
(The initial IVL implementation includes a subset of the GLX calls de�ned for
use with the OpenGL API.) Use glXQueryExtension to establish whether the
GLX extension is supported by an X server.

GLX extended servers make a subset of their visuals available for IVL rendering.
Drawables created with these visuals can also be rendered using the core X
renderer and with the renderer of any other X extension that is compatible with
all core X visuals.

GLX extends drawables with several bu�ers other than the standard color bu�er.
These bu�ers include back and auxiliary color bu�ers, a depth bu�er, a stencil
bu�er, and a color accumulation bu�er. Some or all are included in each X visual
that supports IVL.

To render using IVL into an X drawable, you must �rst choose a visual that
de�nes the required IVL bu�ers. glXChooseVisual can be used to simplify
selecting a compatible visual. If more control of the selection process is required,
use XGetVisualInfo and glXGetConfig to select among all the available visuals.

Use the selected visual to create both a GLX context and an X drawable. GLX
contexts are created with glXCreateContext, and drawables are created with
either XCreateWindow or glXCreateGLXPixmap. Finally, bind the context and the
drawable together using glXMakeCurrent. This context/drawable pair becomes
the current context and current drawable, and it is used by all IVL commands
until glXMakeCurrent is called with di�erent arguments.

Both core X and IVL commands can be used to operate on the current drawable.
The X and IVL command streams are not synchronized, however, except at
explicitly created boundaries generated by calling XSync, and glFlush.

Appendix B: HP-IVL Reference B-75

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glX.Intro

Notes

A color map must be created and passed to XCreateWindow. See the example
code above.

A GLX context must be created and attached to an X drawable before IVL
commands can be executed. IVL commands issued while no context/drawable
pair is current are ignored.

Exposure events indicate that all bu�ers associated with the speci�ed window
may be damaged and should be repainted. Although certain bu�ers of some
visuals on some systems may never require repainting (the depth bu�er, for
example), it is incorrect to code assuming that these bu�ers will not be damaged.

GLX commands manipulate XVisualInfo structures rather than pointers to
visuals or visual IDs. XVisualInfo structures contain visual, visual ID,
screen, and depth elements, as well as other X-speci�c information.

IVL does not support the use of all ancillary bu�er types. For example, it does
not support auxiliary color bu�ers, a depth bu�er, a stencil bu�er, or a color
accumulation bu�er.

Examples

Below is the minimum code required to create an RGBA-format, IVL- compatible
X window and clear it to yellow. The code is correct, but it does not include any
error checking. Return values dpy, vi, cx, cmap, and win should all be tested.

#include <GL/glx.h>

#include <GL/gl.h>

#include <unistd.h>

static int attributeListSgl[]

= { GLX_RGBA, GLX_RED_SIZE, 1,

/* Get the deepest buffer with one red bit. */

GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, None

};

static int attributeListDbl[]

= { GLX_RGBA, GLX_DOUBLE_BUFFER,

/* In case single-buffering is not supported. */

GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, None

};

static Bool WaitForNotify (Display *d, XEvent *e, char *arg)

B-76 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glX.Intro

{

return (e->type == MapNotify) && (e->xmap.window == (Window)arg);

}

int main (int argc, char ** argv)

{

Display * dpy;

XVisualInfo * vis;

Colormap cmap;

XSetWindowAttributes swa;

Window win;

GLXContext ctx;

XEvent event;

int swap_flag = FALSE;

/* Get a connection. */

dpy = XOpenDisplay(0);

/* Get an appropriate visual. */

vis = ``glXChooseVisual''(dpy, DefaultScreen(dpy),

attributeListSgl);

if (vis == NULL)

{

vis = ``glXChooseVisual''(dpy, DefaultScreen(dpy),

attributeListDbl);

swap_flag = TRUE;

}

/* Create a GLX context. */

ctx = ``glXCreateContext''(dpy, vis, 0, GL_TRUE);

/* Create a color map. */

cmap = XCreateColormap(dpy, RootWindow(dpy, vis->screen),

vis->visual, AllocNone);

/* Create a window. */

swa.colormap = cmap;

swa.border_pixel = 0;

swa.event_mask = StructureNotifyMask;

win = XCreateWindow(dpy, RootWindow(dpy, vis->screen),

0, 0, 100, 100, 0, vis->depth,

InputOutput, vis->visual,

CWBorderPixel|CWColormap|CWEventMask,

&swa);

XMapWindow (dpy, win);

XIfEvent (dpy, &event, WaitForNotify, (char *)win);

Appendix B: HP-IVL Reference B-77

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glX.Intro

/* Connect the context to the window. */

``glXMakeCurrent'' (dpy, win, ctx);

/* Clear the buffer. */

``glClearColor'' (1, 1, 0, 1);

``glClear'' (GL_COLOR_BUFFER_BIT);

``glFlush'' ();

if (swap_flag)

``glXSwapBuffers'' (dpy, win);

/* Wait a while. */

sleep (10);

}

See Also

glXCreateContext,
glXCreateGLXPixmap,
glXDestroyContext,
glXGetConfig,
glXSwapBuffers,
XCreateColormap,
XCreateWindow,
XSync.

B-78 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXChooseVisual

glXChooseVisual

Return a visual that matches speci�ed attributes.

C Specification

XVisualInfo* glXChooseVisual(Display *dpy,

int screen,

int *attribList)

Parameters

dpy Speci�es the connection to the X server.

screen Speci�es the screen number.

attribList Speci�es a list of Boolean attributes and integer attribute/value
pairs. The last attribute must be None.

Description

glXChooseVisual returns a pointer to an XVisualInfo structure describing the
visual that best meets a minimum speci�cation. The Boolean GLX attributes
of the visual that is returned will match the speci�ed values, and the integer
GLX attributes will meet or exceed the speci�ed minimum values. If all other
attributes are equivalent, then TrueColor and PseudoColor visuals have priority
over DirectColor and StaticColor visuals, respectively. If no conforming visual
exists, NULL is returned. To free the data returned by this function, use XFree.

The interpretations of the various GLX visual attributes are as follows:

GLX_LEVEL

Must be followed by an integer bu�er-level speci�cation. This speci�cation is
honored exactly. Bu�er level zero corresponds to the default frame bu�er of the
display. Bu�er level one is the �rst overlay frame bu�er, level two the second
overlay frame bu�er, and so on. Negative bu�er levels correspond to underlay
frame bu�ers.

GLX_RGBA

If present, only visuals that support RGBA rendering are considered.

Appendix B: HP-IVL Reference B-79

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXChooseVisual

GLX_DOUBLEBUFFER

If present, only double-bu�ered visuals are considered. Otherwise, only single-
bu�ered visuals are considered.

GLX_RED_SIZE

Must be followed by a non-negative minimum size speci�cation. If this value
is zero, the smallest available red bu�er is preferred. Otherwise, the largest
available red bu�er of at least the minimum size is preferred.

GLX_GREEN_SIZE

Must be followed by a non-negative minimum size speci�cation. If this value
is zero, the smallest available green bu�er is preferred. Otherwise, the largest
available green bu�er of at least the minimum size is preferred.

GLX_BLUE_SIZE

Must be followed by a non-negative minimum size speci�cation. If this value
is zero, the smallest available blue bu�er is preferred. Otherwise, the largest
available blue bu�er of at least the minimum size is preferred.

GLX_ALPHA_SIZE

Must be followed by a non-negative minimum size speci�cation. If this value
is zero, the smallest available alpha bu�er is preferred. Otherwise, the largest
available alpha bu�er of at least the minimum size is preferred.

GLX_X_VISUAL_TYPE_EXT
Must be followed by an X visual type (one of TrueColor, DirectColor,
PseudoColor, StaticColor, GrayScale, or StaticGray). If present, only
visuals of the speci�ed type will be considered.

Defaults

All Boolean GLX attributes default to False. All integer GLX attributes default
to zero. Default speci�cations are superseded by attributes included in attribList .
Boolean attributes included in attribList are understood to be True. Integer
attributes are followed immediately by the corresponding desired or minimum
value. The list must be terminated with None.

B-80 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXChooseVisual

Examples

attribList = {GLX_RGBA, GLX_RED_SIZE, 4, GLX_GREEN_SIZE, 4,

GLX_BLUE_SIZE, 4, None};

Speci�es a single-bu�ered RGBA visual in the normal frame bu�er, not an overlay
or underlay bu�er. The returned visual supports at least four bits each of red,
green, and blue, and possibly no bits of alpha. It does not support double-
bu�ering.

Notes

XVisualInfo is de�ned in Xutil.h. It is a structure that includes visual, visual
ID, screen, and depth elements.

glXChooseVisual is implemented as a client-side utility using only XGetVisual-
Info and glXGetConfig. Calls to these two routines can be used to implement
selection algorithms other than the generic one implemented by glXChooseVi-

sual.

GLX implementors are strongly discouraged, but not prohibited, from changing
the selection algorithm used by glXChooseVisual. Therefore, selections may
change from release to release of the client-side library.

There is no direct �lter for picking only visuals that support GLXPixmaps.
GLXPixmaps are supported for visuals whose GLX_BUFFER_SIZE is one of the
pixmap depths supported by the X server.

The �rst release of IVL only supports visuals for RGBA rendering.

Errors

NULL is returned if an unde�ned GLX attribute is encountered in attribList .

See Also

glXCreateContext,
glXGetConfig,
XGetVisualInfo (for X, not GLX, visuals).

Appendix B: HP-IVL Reference B-81

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXCreateContext

Create a new GLX rendering context.

C Specification

GLXContext glXCreateContext(Display *dpy,

XVisualInfo *vis,

GLXContext shareList,

Bool direct)

Parameters

dpy Speci�es the connection to the X server.

vis Speci�es the visual that de�nes the frame bu�er resources
available to the rendering context. It is a pointer to an
XVisualInfo structure, not a visual ID or a pointer to a Visual.

shareList Speci�es the context with which to share display lists. NULL

indicates that no sharing is to take place.

shareList must be set to NULL for this release.

direct Speci�es whether rendering is to be done with a direct connection
to the graphics system if possible (True) or through the X server
(False).

direct must be set to TRUE for this release.

Description

glXCreateContext creates a GLX rendering context and returns its handle.
This context can be used to render into both windows and GLX pixmaps. If
glXCreateContext fails to create a rendering context, NULL is returned.

If direct is True, then a direct rendering context is created if the implementation
supports direct rendering and the connection is to an X server that is local.
If direct is False, then a rendering context that renders through the X server
is always created. Direct rendering provides a performance advantage in some

B-82 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXCreateContext

implementations. However, direct rendering contexts cannot be shared outside a
single process, and they may not support rendering to GLX pixmaps.

Notes

XVisualInfo is de�ned in Xutil.h. It is a structure that includes visual, visual
ID, screen, and depth elements.

A process is a single execution environment, implemented in a single address
space, consisting of one or more threads. A thread is one of a set of subprocesses
that share a single address space, but maintain separate program counters, stack
spaces, and other related global data. A thread that is the only member of its
subprocess group is equivalent to a process.

Errors

NULL is returned if execution fails on the client side.

BadValue is generated if vis is not a valid visual (e.g., if the GLX implementation
does not support it).

BadAlloc is generated if the server does not have enough resources to allocate
the new context.

See Also

glXDestroyContext,
glXGetConfig,
glXMakeCurrent.

Appendix B: HP-IVL Reference B-83

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXCreateGLXPixmap

Create an o�-screen GLX rendering area.

C Specification

GLXPixmap glXCreateGLXPixmap(Display *dpy,

XVisualInfo *vis,

Pixmap pixmap)

Parameters

dpy Speci�es the connection to the X server.

vis Speci�es the visual that de�nes the structure of the rendering
area. It is a pointer to an XVisualInfo structure, not a visual ID
or a pointer to a Visual.

pixmap Speci�es the X pixmap that will be used as the front left color
bu�er of the o�-screen rendering area.

Description

glXCreateGLXPixmap creates an o�-screen rendering area and returns its XID.
Any GLX rendering context that was created with respect to vis can be used to
render into this o�-screen area. Use glXMakeCurrent to associate the rendering
area with a GLX rendering context.

The X pixmap identi�ed by pixmap is used as the front left bu�er of the resulting
o�-screen rendering area. All other bu�ers speci�ed by vis , including color bu�ers
other than the front left bu�er, are created without externally visible names. GLX
pixmaps with double-bu�ering are supported. However, glXSwapBuffers does
not a�ect these pixmaps.

Direct rendering contexts may not be able to be used to render into GLX pixmaps.

B-84 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXCreateGLXPixmap

Notes

XVisualInfo is de�ned in Xutil.h. It is a structure that includes visual, visual
ID, screen, and depth elements.

Errors

BadMatch is generated if the depth of pixmap does not match the
GLX_BUFFER_SIZE value of vis , or if pixmap was not created with respect to the
same screen as vis .

BadValue is generated if vis is not a valid XVisualInfo pointer (e.g., if the GLX
implementation does not support this visual).

BadPixmap is generated if pixmap is not a valid pixmap.

BadAlloc is generated if the server cannot allocate the GLX pixmap.

See Also

glXCreateContext,
glXDestroyGLXPixmap,
glXMakeCurrent,
glXSwapBuffers.

Appendix B: HP-IVL Reference B-85

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXDestroyContext

Destroy a GLX context.

C Specification

void glXDestroyContext(Display *dpy,

GLXContext ctx)

Parameters

dpy Speci�es the connection to the X server.

ctx Speci�es the GLX context to be destroyed.

Description

If the speci�ed GLX rendering context ctx is not current to any thread,
glXDestroyContext destroys it immediately. Otherwise, ctx is destroyed when
it is no longer current to any thread. In either case, the resource ID referenced
by ctx is freed immediately.

Errors

GLX_BAD_CONTEXT is generated if ctx is not a valid GLX context.

See Also

glXCreateContext,
glXMakeCurrent.

B-86 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXDestroyGLXPixmap

glXDestroyGLXPixmap

Destroy a GLX pixmap.

C Specification

void glXDestroyGLXPixmap(Display *dpy,

GLXPixmap pix)

Parameters

dpy Speci�es the connection to the X server.

pix Speci�es the GLX pixmap to be destroyed.

Description

If the speci�ed GLX pixmap, pix , is not current to any client, glXDestroyGLX-
Pixmap destroys it immediately. Otherwise, pix is destroyed when it is no longer
current to any client. In either case, the resource ID is freed immediately.

Errors

GLX_BAD_PIXMAP is generated if pix is not a valid GLX pixmap.

See Also

glXCreateGLXPixmap,
glXMakeCurrent.

Appendix B: HP-IVL Reference B-87

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXGetConfig

Return information about GLX visuals.

C Specification

int glXGetConfig(Display *dpy,

XVisualInfo *vis,

int attrib,

int *value)

Parameters

dpy Speci�es the connection to the X server.

vis Speci�es the visual to be queried. It is a pointer to an
XVisualInfo structure, not a visual ID or a pointer to a Visual.

attrib Speci�es the visual attribute to be returned.

value Returns the requested value.

Description

glXGetConfig sets value to the attrib value of windows or GLX pixmaps created
with respect to vis . glXGetConfig returns an error code if it fails for any reason.
Otherwise, zero is returned.

attrib is one of the following:

GLX_USE_GL

True if IVL rendering is supported by this visual, False otherwise.

GLX_BUFFER_SIZE

Number of bits per color bu�er. For visuals that support RGBA ren-
dering, GLX_BUFFER_SIZE is the sum of GLX_RED_SIZE, GLX_GREEN_SIZE,
GLX_BLUE_SIZE, and GLX_ALPHA_SIZE.

GLX_LEVEL

Frame bu�er level of the visual. Level zero is the default frame bu�er. Positive
levels correspond to frame bu�ers that overlay the default bu�er, and negative
levels correspond to frame bu�ers that underlay the default bu�er.

B-88 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXGetConfig

GLX_RGBA

True if the visual supports RGBA rendering, False otherwise.

GLX_DOUBLEBUFFER
True if color bu�ers exist in front/back pairs that can be swapped, False

otherwise.

GLX_RED_SIZE

Number of bits of red stored in each color bu�er. Unde�ned if GLX_RGBA is
False.

GLX_GREEN_SIZE

Number of bits of green stored in each color bu�er. Unde�ned if GLX_RGBA is
False.

GLX_BLUE_SIZE

Number of bits of blue stored in each color bu�er. Unde�ned if GLX_RGBA is
False.

GLX_ALPHA_SIZE

Number of bits of alpha stored in each color bu�er. Unde�ned if GLX_RGBA is
False.

GLX_X_VISUAL_TYPE_EXT

The name of the X visual type for this visual.

The X protocol allows a single visual ID to be instantiated with di�erent numbers
of bits per pixel. Windows or GLX pixmaps that will be rendered with IVL,
however, must be instantiated with a color bu�er depth of GLX_BUFFER_SIZE.

Applications are best written to select the visual that most closely meets their
requirements. Creating windows or GLX pixmaps with unnecessary bu�ers can
result in reduced rendering performance as well as poor resource allocation.

Notes

XVisualInfo is de�ned in Xutil.h. It is a structure that includes visual, visual
ID, screen, and depth elements.

Appendix B: HP-IVL Reference B-89

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXGetConfig

Errors

GLX_NO_EXTENSION is returned if dpy does not support the GLX extension.

GLX_BAD_SCREEN is returned if the screen of vis does not correspond to a screen.

GLX_BAD_ATTRIB is returned if attrib is not a valid GLX attribute.

GLX_BAD_VISUAL is returned if vis doesn't support GLX and an attribute other
than GLX_USE_GL is requested.

See Also

glXChooseVisual,
glXCreateContext.

B-90 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXMakeCurrent

glXMakeCurrent

Attach a GLX context to a window or a GLX pixmap.

C Specification

Bool glXMakeCurrent(Display *dpy,

GLXDrawable drawable,

GLXContext ctx)

Parameters

dpy Speci�es the connection to the X server.

drawable Speci�es a GLX drawable. Must be either an X window ID or a
GLX pixmap ID.

ctx Speci�es a GLX rendering context that is to be attached to
drawable.

Description

glXMakeCurrent performs two actions: It makes ctx the current GLX rendering
context of the calling thread, replacing the previously current context if there was
one, and it attaches ctx to a GLX drawable, either a window or a GLX pixmap.
As a result of these two actions, subsequent IVL rendering calls use the rendering
context, ctx , to modify the GLX drawable, drawable. Because glXMakeCurrent
always replaces the current rendering context with ctx , there can be only one
current context per thread.

Pending commands to the previous context, if any, are
ushed before it is released.

The �rst time ctx is made current to any thread, its viewport is set to the full
size of drawable. Subsequent calls by any thread to glXMakeCurrent with ctx
have no e�ect on its viewport.

To release the current context without assigning a new one, call glXMakeCurrent
with drawable set to None, and ctx set to NULL.

Appendix B: HP-IVL Reference B-91

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXMakeCurrent

glXMakeCurrent returns True if it is successful, False otherwise. If False is
returned, the previously current rendering context and drawable (if any) remain
unchanged.

Notes

A process is a single-execution environment, implemented in a single address
space, consisting of one or more threads. A thread is one of a set of subprocesses
that share a single address space, but maintain separate program counters, stack
spaces, and other related global data. A thread that is the only member of its
subprocess group is equivalent to a process.

Errors

BadMatch is generated if drawable was not created with the same X screen and
visual as ctx . It is also generated if drawable is None and ctx is not None.

BadAccess is generated if ctx was current to another thread at the time
glXMakeCurrent was called.

GLX_BAD_DRAWABLE is generated if drawable is not a valid GLX drawable.

GLX_BAD_CONTEXT is generated if ctx is not a valid GLX context.

GLX_BAD_CURRENT_WINDOW is generated if there are pending IVL commands for
the previous context and the current drawable is a window that is no longer valid.

BadAlloc may be generated in cases where the server has delayed allocation
of ancillary bu�ers until glXMakeCurrent is called, only to �nd that it has
insu�cient resources to complete the allocation.

See Also

glXCreateContext,
glXCreateGLXPixmap.

B-92 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXQueryExtension

glXQueryExtension

Indicate whether the GLX extension is supported.

C Specification

Bool glXQueryExtension(Display *dpy,

int *errorBase,

int *eventBase)

Parameters

dpy Speci�es the connection to the X server.

errorBase Returns the base error code of the GLX server extension.

eventBase Returns the base event code of the GLX server extension.

Description

glXQueryExtension returns True if the X server of connection dpy supports
the GLX extension, False otherwise. If True is returned, then errorBase and
eventBase return the error base and event base of the GLX extension. Otherwise,
errorBase and eventBase are unchanged.

errorBase and eventBase do not return values if they are speci�ed as NULL.

Notes

The eventBase argument is included for future extensions. GLX does not
currently de�ne any events.

Appendix B: HP-IVL Reference B-93

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXSwapBuffers

Exchange front and back bu�ers.

C Specification

void glXSwapBuffers(Display *dpy,

GLXDrawable drawable)

Parameters

dpy Speci�es the connection to the X server.

drawable Speci�es the drawable whose bu�ers are to be swapped.

Description

glXSwapBuffers promotes the contents of the back bu�er of drawable to become
the contents of the front bu�er of drawable. The contents of the back bu�er then
become unde�ned. The update typically takes place during the vertical retrace of
the monitor, rather than immediately after glXSwapBuffers is called. All GLX
rendering contexts share the same notion of which are front bu�ers and which
are back bu�ers.

glXSwapBuffers performs an implicit glFlush before returning. Subsequent IVL
commands can be issued immediately after calling glXSwapBuffers, but are not
executed until after the bu�er exchange completes.

If drawable was not created with respect to a double-bu�ered visual, glXSwap-
Buffers has no e�ect, and no error is generated.

Notes

Synchronization of multiple GLX contexts rendering to the same double-bu�ered
window is the responsibility of the clients. The X Synchronization Extension can
be used to facilitate such cooperation.

B-94 Appendix B: HP-IVL Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

B

glXSwapBuffers

Errors

GLX_BAD_DRAWABLE is generated if drawable is not a valid GLX drawable.

GLX_BAD_CURRENT_WINDOW is generated if dpy and drawable are respectively
the display and drawable associated with the current context of the calling
thread/process, and drawable identi�es a window that is no longer valid.

See Also

glFlush.

Appendix B: HP-IVL Reference B-95

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Glossary

API
Application Programming Interface. The API is the set of subroutine calls
that is available for use by an application programmer.

Back Bu�er
The undisplayed bu�er in a double-bu�er pair. See double-bu�ering; compare
with front bu�er.

Bitplane
A rectangular array of bits mapped one-to-one with pixels. The frame bu�er
is a stack of bitplanes.

Client State
IVL state that is not stored in the rendering context. For example, the current
drawable and the current rendering context.

Clipping
Eliminating (e.g., not displaying) some portion of the image that is being
rendered. For example, images may be clipped because some portions fall
outside the current window or current scissor box.

Color Bu�er
A logical set of bitplanes. The color bu�er may consist of a number of bu�ers
depending on whether it is single-bu�ered, double-bu�ered, stereo, or stereo
double-bu�ered. The components of a color bu�er are therefore referred to as
the front and back bu�ers. For devices that support stereo bu�ers, the color
bu�er is made up of the front left bu�er, front right bu�er, back left bu�er,
and back right bu�er.

Glossary-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Color Map
A hardware implementation of a color look-up table. The frame bu�er
hardware uses each 8-bit pixel value as an index into this table when refreshing
the physical display.

Color Model
The set of rules for manipulating color values in a processing system. IVL can
be described as using an RGBA color model since it is based on processing
pixel values with red, green, blue, and alpha components.

Color Table
An array that is used in a color look-up operation. Each incoming pixel
component value is used as an index into this array. The value stored in the
array at the indexed location is extracted and becomes the pixel component
for subsequent processing.

Convolution
A common image-processing operation that can be used to �lter an image.
The �ltering is accomplished by computing the sum of products between the
source image and a smaller image or matrix called the convolution �lter or
convolution kernel. The convolution �lter can be loaded with di�erent values
to achieve e�ects like sharpening, blurring, and edge detection.

Convolution Border Mode
An attribute that de�nes how IVL treats image borders during the convolution
process. The border mode you choose may cause the output image to be a
di�erent size than the source image.

Convolution Filter
A two-dimensional image that is used during convolution to achieve e�ects
like sharpening, blurring, and edge detection.

Convolution Kernel
Another name for convolution �lter.

Cubic Weight Factor
A coe�cient that provides additional control over the bicubic interpolation
operation. The weighting factor biases the cubic curve used to perform the
interpolation. Cubic weighting factors typically assume values from �1.0 to
0.0.

Glossary-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Current Drawable
The X window or GLX pixmap that contains the bu�ers that will be used for
all subsequent rendering operations.

Current Draw Bu�er
The bu�er that is the target of all subsequent pixel-write operations. This
term is sometimes shortened to \draw bu�er".

Current Raster Position
The location at which to draw a pixel rectangle. This value is in window
coordinates. This term is sometimes shortened to \raster position".

Current Read Bu�er
The bu�er from which pixels will be obtained during all subsequent pixel-read
operations. This term is sometimes shortened to \read bu�er".

Direct Connection
A connection that bypasses the X network transport mechanism in order to
access the rendering hardware directly.

Double-Bu�ering
The process of using two bu�ers to provide smooth animation. This is done
by drawing into the back bu�er while the front bu�er is displayed. Once
drawing is complete, the contents of the back bu�er are moved to the front
bu�er. See also front bu�er and back bu�er; compare with single-bu�ering.

Draw Bu�er
The bu�er that is the target of all subsequent pixel-write operations.

Drawable
An X window or a GLX pixmap.

Extensions
Capabilities that are not yet part of the OpenGL standard. The \EXT" su�x
indicates OpenGL extensions that are supported by two or more vendors. The
\HP" su�x indicates OpenGL extensions that are currently supported only
by Hewlett-Packard.

Glossary-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Filter
Another name for Convolution Filter.

Fragment
A data structure containing pixel information which is a product of the
pixel rasterization operation. A fragment consists of a color value and the
coordinate of the frame bu�er location at which that color value is to be
written.

Fragment Operations
Operations that are applied to a fragment prior to writing the fragment's color
value into the frame bu�er. The two fragment operations that are currently
de�ned for IVL are the pixel ownership test and the scissor test.

Frame Bu�er
A two-dimensional array of memory locations that stores pixel values. Some
of these locations correspond to the pixels that are visible on the display
screen. Other locations are used for non-displayed pixel values, such as the
back bu�er of a double-bu�ered window.

Front Bu�er
The displayed bu�er in a double-bu�er pair. See double-bu�ering; compare
with back bu�er.

GLX
The OpenGL extension to X. An X server extension that allows IVL to
coordinate its rendering operations with those of X and other extensions.

GLX Pixmap
An X pixmap that has been enabled to support rendering via IVL. GLX
pixmaps have an associated visual type, so they can contain the extended
visual attributes de�ned by IVL.

Image
A rectangular array of pixel values, either in client memory or in the frame
bu�er.

Image Format
A term used to describe the organization of the pixel components in an image.
IVL currently supports two formats: GL_LUMINANCE, which indicates that

Glossary-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

pixel values are stored as luminance (one-component) values, and GL_RGBA,
which indicates that pixel values are stored as red, green, blue, and alpha
(four-component) values.

Image Transform
The stage of the IVL pixel processing pipeline that provides support for image
scaling (zoom), rotating, translation (pan), and interpolation.

Image Type
The storage unit for each component of a pixel. Pixel components may be
either GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT.

Interpolation
Another name for resampling.

IVL
Image Visualization Library. A 2D API for image processing with a
programming interface very similar to the imaging portions of the OpenGL
API together with several de�ned imaging extensions.

IVX
Image Visualization Accelerator. Optional graphics hardware that accelerates
many of IVL's capabilities.

Logical Bu�er
Bitplanes are grouped into logical bu�ers. The only logical bu�er that is
supported in this release of IVL is the color bu�er.

Look-Up Table
See color table.

Luminance
A term used to describe images that contain only one pixel component per
pixel. A one-component image is sometimes called a \grayscale" or \intensity"
image.

Luminance Format
A one-component pixel format that contains only luminance pixel component
values.

Glossary-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Machine Data Type
The data types that are \natural" for a computer architecture. The machine
data types for a workstation may include signed and unsigned 8-bit values,
signed and unsigned 16-bit values, signed and unsigned 32-bit values, 32-bit

oating point values, and 64-bit
oating point values.

Manhattan Distance
The distance between two points on a grid addressed by integer coordinates.
This distance is the sum of the horizontal distance plus the vertical distance
between the two points.

Monoscopic Window
A window that is not stereoscopic, i.e., does not support stereo viewing.

OpenGL
A 3D graphics API that includes capabilities for 2D imaging.

OpenGL Imaging Extensions
Extensions to OpenGL that support common image processing and display
operations. See also Extensions.

Overlay Planes
A set of bitplanes that lie on top of the bitplanes for a color bu�er.
Applications can render into the overlay planes without disturbing the
contents of the color bu�er. The resulting display shows the contents of the
overlay planes superimposed on the contents of the color bu�er. Not all frame
bu�ers include overlay planes.

Pixel Component
The fundamental element of a pixel. An RGBA pixel has four components:
red, green, blue, and alpha. A luminance pixel has just one component
(luminance).

Pixel Ownership Test
The test performed by IVL to determine if the pixel location at which the
fragment is to be written is part of the current drawable. If it is not, the
fragment is discarded.

Glossary-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Pixel Rasterization
The process by which the pixels of an image are converted to fragments, each
corresponding to a pixel in the frame bu�er.

Pixel Rectangle
A rectangular array of pixels, either in client memory or in the frame bu�er.
Used synonymously with \image".

Pixel Transfer
A set of operations that are applied whenever pixels are transferred from one
place to another in the IVL environment. The operations include color table
lookup, convolution, and image transformation.

Pixel Unpacking
The process of reading pixel values from host memory using the type and
format parameters and the state values de�ned by glPixelStore.

Pixmap
A non-displayable region of the frame bu�er into which rendering may occur.
In the X Window System, a pixmap is de�ned to be very similar to a window.
The X notion of a pixmap has to be extended in order to use pixmaps for IVL
rendering. See GLX pixmap.

Post-Image Transform Color Table
The color look-up table that immediately follows the image transformation
stage of the pixel processing pipeline.

Progressive Re�nement
Rendering an image using multiple passes, with improved interpolation quality
in each pass.

Raster Position
The location at which to draw a pixel rectangle. This value is in window
coordinates.

Read Bu�er
The bu�er from which pixels will be obtained during subsequent pixel-read
operations.

Glossary-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Reconstruction
The process that maps the discrete image samples computed by resampling
into a continuous surface. In this process, pixel values between the sample
points are computed using a method such as bilinear or bicubic interpolation.
Compare with Resampling.

Rendering Context
The data structure that encapsulates server state information. The majority
of IVL state is stored in the rendering context.

Resampling
The process of transforming a sampled image from one coordinate system to
another. The two coordinate systems are related by the mapping function of
the transformation. Using the inverse of the transformation, the regular grid
corresponding to the pixel locations in the output image is mapped onto the
input image. The input image is then sampled at each of these points, and
the sampled values are assigned to their respective output locations in the
output image. Compare with Reconstruction.

RGBA
A term used to describe images that contain four pixel components per pixel
(red, green, blue, and alpha).

RGBA Format
A four-component pixel format that contains red, green, blue, and alpha pixel
component values.

Scissor Box
A rectangular clipping region, de�ned in window coordinates. When the
scissor test is enabled, only pixel locations within the scissor box can be
modi�ed.

Scissor Test
A clipping operation that eliminates any pixels that would be drawn outside
of the current scissor box.

Server State
State that resides in the server and controls the rendering process. The current
rendering context and the current drawable are among the few state values
that are not part of server state.

Glossary-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Glossary

Single-Bu�ering
A mode in which the same bu�er is used simultaneously for drawing and
displaying an image. In this mode, animations may reveal slight halting
between frames. Compare with double-bu�ering.

Stereoscopic Window
A window that contains both a left eye view and a right eye view to support
stereo viewing. When the proper viewing equipment is used, the user will see
a three-dimensional, stereo image.

Subimage
A rectangular portion of a larger image.

Visual Type
The X Visual that de�nes the display attributes of a window. There are
six visual types in X: TrueColor, DirectColor, PseudoColor, StaticColor,
GrayScale, and StaticGray.

Window-Level Mapping
An image processing term that de�nes a continuous transfer function
specifying the input to output intensity-value mapping. The window de�nes
the width or range of input intensity values that will be mapped from black
to white. The level de�nes where the center of the window range will fall with
respect to the input intensity value domain. In IVL, support for window-level
mapping is implemented as a color look-up table.

X Visual
The mechanism by which frame bu�er features are exposed and software
portability is de�ned in the X Window System. The XVisualInfo structure
in X de�nes the visual type, screen, and depth of the window, as well as the
number of bits of red, green, and blue information in a pixel.

Glossary-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

Index

A

Abstract Machine, 2-10
Angle of Rotation, 5-10
API, Glossary-1
Architecture
Hardware and Software, 2-9

Attributes, 3-6
Audience and Scope, 0-2

B

Back Bu�er, Glossary-1
Bitplane, Glossary-1
Bu�er
Back, Glossary-1
Color, Glossary-1
Draw, Glossary-3
Frame, Glossary-4
Front, Glossary-4
Logical, Glossary-5
Read, Glossary-7

C

CDE and VUE, 1-3
Client State, Glossary-1
Clipping, Glossary-1
Clip Rectangles, 5-11
Color Bu�er, Glossary-1
Color Map, Glossary-2
Color Map Management, 5-4, 5-7
Color Model, 2-4, Glossary-2
Color Table, 2-22, Glossary-2
Command

graphinfo, 1-6
uname, 1-4
what, 1-4

Compiling, 3-8
Con�guration, 1-2
GL{\under }UNSIGNED{\under }BYTE

constant, B-25
GL{\under }UNSIGNED{\under }SHORT

constant, B-25
Constants
GL{\under }UNSIGNED{\under

}BYTE, B-25
GL{\under }UNSIGNED{\under

}SHORT, B-25
GL_ALPHA_BITS, B-32
GL_BACK, B-21, B-22, B-68
GL_BACK_LEFT, B-21, B-22, B-68
GL_BLUE_BITS, B-32
GL_COLOR, B-18, B-19
GL_COLOR_BUFFER_BIT, B-2
GL_COLOR_CLEAR_VALUE, B-3, B-4,

B-32
GL_COLOR_TABLE_ALPHA_SIZE_EXT,

B-38, B-39
GL_COLOR_TABLE_BIAS_EXT, B-6, B-8,

B-38, B-39
GL_COLOR_TABLE_BLUE_SIZE_EXT,

B-38, B-39
GL_COLOR_TABLE_FORMAT_EXT, B-38,

B-39
GL_COLOR_TABLE_GREEN_SIZE_EXT,

B-38, B-39

Index-1

GL_COLOR_TABLE_LUMINANCE

_SIZE_EXT, B-38, B-39
GL_COLOR_TABLE_RED_SIZE_EXT,

B-38, B-39
GL_COLOR_TABLE_SCALE_EXT, B-6,

B-8, B-38, B-39
GL_COLOR_TABLE_WIDTH_EXT, B-38,

B-39
GL_CONSTANT_BORDER_HP, B-13, B-14,

B-15, B-16, B-17
GL_CONVOLUTION_2D_EXT, B-10, B-11,

B-12, B-13, B-14, B-19, B-24,
B-27, B-32, B-41, B-43, B-57

GL_CONVOLUTION_BORDER_COLOR_HP,
B-14, B-15, B-16, B-17, B-43,
B-44

GL_CONVOLUTION_BORDER_MODE_EXT,
B-13, B-14, B-15, B-17, B-43,
B-44

GL_CONVOLUTION_FILTER_BIAS_EXT,
B-10, B-14, B-15, B-17, B-43,
B-44

GL_CONVOLUTION_FILTER_SCALE_EXT,
B-10, B-14, B-17, B-43, B-44

GL_CONVOLUTION_FORMAT_EXT, B-43,
B-44

GL_CONVOLUTION_HEIGHT_EXT, B-43,
B-44

GL_CONVOLUTION_WIDTH_EXT, B-43,
B-44

GL_CUBIC_HP, B-52, B-53, B-54, B-55,
B-56

GL_CURRENT_RASTER_POSITION, B-20,
B-23, B-25, B-32, B-67

GL_CURRENT_RASTER_

POSITION_VALID, B-20, B-25,
B-32, B-66, B-67

GL_DOUBLEBUFFER, B-32
GL_DRAW_BUFFER, B-22, B-32
GL_EXTENSIONS, B-50
GL_FALSE, B-31, B-57

GL_FLOAT, B-10, B-41
GL_FRONT, B-21, B-22, B-68
GL_FRONT_LEFT, B-21, B-22, B-68
GL_GREEN_BITS, B-32
GL_IGNORE_BORDER_HP, B-13, B-14,

B-15, B-17
GL_IMAGE_CUBIC_WEIGHT_HP, B-48,

B-49, B-52, B-53, B-54
GL_IMAGE_MAG_FILTER_HP, B-48,

B-49, B-52, B-53, B-54, B-56
GL_IMAGE_MIN_FILTER_HP, B-48,

B-49, B-52, B-53, B-54, B-56
GL_IMAGE_ROTATE_ANGLE_HP, B-48,

B-49, B-52, B-53, B-54
GL_IMAGE_ROTATE_ORIGIN_X_HP,

B-48, B-49, B-52, B-53, B-54
GL_IMAGE_ROTATE_ORIGIN_Y_HP,

B-48, B-49, B-52, B-53, B-54
GL_IMAGE_SCALE_X_HP, B-48, B-49,

B-52, B-53, B-54
GL_IMAGE_SCALE_Y_HP, B-48, B-49,

B-52, B-53, B-54
GL_IMAGE_TRANSFORM_2D_HP, B-27,

B-35, B-48, B-49, B-52, B-53,
B-55, B-57

GL_IMAGE_TRANSLATE_X_HP, B-48,
B-49, B-52, B-53, B-54

GL_IMAGE_TRANSLATE_Y_HP, B-48,
B-49, B-52, B-53, B-54

GL_INVALID_ENUM, B-7, B-9, B-11,
B-12, B-17, B-20, B-22, B-25,
B-28, B-35, B-37, B-40, B-42,
B-45, B-46, B-49, B-51, B-56,
B-58, B-62, B-65, B-69, B-72

GL_INVALID_OPERATION, B-22, B-46,
B-69

GL_INVALID_VALUE, B-2, B-7, B-11,
B-12, B-20, B-25, B-46, B-62,
B-72, B-74

GL_LINEAR, B-52, B-53, B-55, B-56

Index-2

Index

GL_LUMINANCE, B-5, B-6, B-10, B-11,
B-23, B-25, B-36, B-41, B-70,
B-71

GL_LUMINANCE12_EXT, B-5
GL_LUMINANCE16_EXT, B-5
GL_LUMINANCE4_EXT, B-5, B-6
GL_LUMINANCE8_EXT, B-5
GL_MAX_CONVOLUTION_HEIGHT_EXT,

B-12, B-43, B-44
GL_MAX_CONVOLUTION_WIDTH_EXT,

B-11, B-43, B-44
GL_NEAREST, B-52, B-53, B-55, B-56
GL_NO_ERROR, B-46
GL_OUT_OF_MEMORY, B-47
GL_PACK_ALIGNMENT, B-33, B-59,

B-60, B-61, B-62
GL_PACK_ROW_LENGTH, B-33, B-59,

B-60, B-61, B-62, B-71
GL_PACK_SKIP_PIXELS, B-33, B-59,

B-60, B-61, B-62
GL_PACK_SKIP_ROWS, B-33, B-59,

B-60, B-61, B-62, B-71
GL_POST_CONVOLUTION_

ALPHA_BIAS_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

ALPHA_SCALE_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

BLUE_BIAS_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

BLUE_SCALE_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_c, B-11
GL_POST_CONVOLUTION_

GREEN_BIAS_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

GREEN_SCALE_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

RED_BIAS_EXT, B-33, B-63,
B-64, B-65

GL_POST_CONVOLUTION_

RED_SCALE_EXT, B-34, B-63,
B-64, B-65

GL_POST_IMAGE_TRANSFORM_

COLOR_TABLE_HP, B-5, B-6,
B-7, B-8, B-9, B-27, B-34, B-36,
B-38, B-39, B-57

GL_READ_BUFFER, B-34, B-69
GL_RED_BITS, B-34
GL_REDUCE_EXT, B-13, B-14, B-15,

B-17
GL_RENDERER, B-50
GL_REPLICATE_BORDER_HP, B-13,

B-14, B-16, B-17
GL_RGB, B-61
GL_RGB10_A2_EXT, B-5
GL_RGB5_A1_EXT, B-5
GL_RGBA, B-5, B-6, B-7, B-10, B-11,

B-23, B-24, B-25, B-36, B-37,
B-39, B-41, B-60, B-70, B-71,
B-72

GL_RGBA12_EXT, B-5
GL_RGBA16_EXT, B-5
GL_RGBA2_EXT, B-5
GL_RGBA4_EXT, B-5
GL_RGBA8_EXT, B-5, B-6
GL_RGBA_MODE, B-34
GL_SCISSOR_BOX, B-34, B-74
GL_SCISSOR_TEST, B-27, B-34, B-57,

B-73, B-74
GL_TABLE_TOO_LARGE_EXT, B-7, B-47
GL_TRUE, B-31, B-57
GL_UNPACK_ALIGNMENT, B-23, B-34,

B-59, B-61, B-62
GL_UNPACK_ROW_LENGTH, B-34, B-59,

B-60, B-61, B-62
GL_UNPACK_SKIP_PIXELS, B-34, B-59,

B-61, B-62

Index-3

GL_UNPACK_SKIP_ROWS, B-34, B-59,
B-61, B-62

GL_UNSIGNED_BYTE, B-5, B-23, B-36,
B-70, B-71

GL_UNSIGNED_SHORT, B-5, B-7, B-23,
B-25, B-36, B-37, B-70, B-71,
B-72

GL_VENDOR, B-50
GL_VERSION, B-50
GL_WRAP_BORDER_HP, B-13, B-14,

B-16, B-17
GLX_ALPHA_SIZE, B-80, B-88, B-89
GLX_BAD_ATTRIB, B-90
GLX_BAD_CONTEXT, B-86, B-92
GLX_BAD_CURRENT_WINDOW, B-92,

B-95
GLX_BAD_DRAWABLE, B-92, B-95
GLX_BAD_PIXMAP, B-87
GLX_BAD_SCREEN, B-90
GLX_BAD_VISUAL, B-90
GLX_BLUE_SIZE, B-80, B-88, B-89
GLX_BUFFER_SIZE, B-81, B-85, B-88,

B-89
GLX_DOUBLEBUFFER, B-79, B-89
GLX_GREEN_SIZE, B-80, B-88, B-89
GLX_LEVEL, B-79, B-88
GLX_NO_EXTENSION, B-90
GLX_RED_SIZE, B-80, B-88, B-89
GLX_RGBA, B-79, B-88, B-89
GLX_USE_GL, B-88, B-90
GLX_X_VISUAL_TYPE_EXT, B-80, B-89

Contents of Manual, 0-1
Conventions
Naming, 3-1

Conversion to Frame Bu�er Resolution,
2-22

Convolution, 2-18, Glossary-2
Convolution Border Mode, Glossary-2
Convolution Filter, Glossary-2
Convolution Kernel, Glossary-2
Cubic Weight Factor, Glossary-2

Current Drawable, Glossary-3
Current Draw Bu�er, Glossary-3
Current Raster Position, Glossary-3
Current Read Bu�er, Glossary-3

D

Device
Description, 5-10
Descriptions, 5-6

Device Description, 5-3
Devices, 5-1
Direct Connection, Glossary-3
Distributed Environments, 3-10
Double-Bu�ering, 1-2, Glossary-3
Double-Bu�ering Support, 4-7
Drawable, Glossary-3
Current, Glossary-3

Draw Bu�er, Glossary-3

E

Entry-Level Color Graphics Devices,
5-3

Error Handling, 3-15
Extensions, Glossary-3
Supported by HP Only, 3-2
Supported by Multiple Vendors, 3-2

Extensions to IVL, 3-2

F

Filesets, 1-1
Filter
Convolution, Glossary-2

Format
Image, Glossary-4
Luminance, Glossary-5

Formatting Conventions, 0-2
For More Information, 0-3
Fragment, Glossary-4
Operations, 2-16

Fragment Operations, 2-23, Glossary-4
Frame Bu�er, Glossary-4

Index-4

Index

Organization, 2-5
Resolution, 2-22
Writing, 2-17

Front Bu�er, Glossary-4

G

General Performance Hints, 3-13
GL_ALPHA_BITS constant, B-32
GL_BACK constant, B-21, B-22, B-68
GL_BACK_LEFT constant, B-21, B-22,

B-68
GL_BLUE_BITS constant, B-32
GL_COLOR_BUFFER_BIT constant, B-2
GL_COLOR_CLEAR_VALUE constant, B-3,

B-4, B-32
GL_COLOR constant, B-18, B-19
GL_COLOR_TABLE_ALPHA_SIZE_EXT

constant, B-38, B-39
GL_COLOR_TABLE_BIAS_EXT constant,

B-6, B-8, B-38, B-39
GL_COLOR_TABLE_BLUE_SIZE_EXT

constant, B-38, B-39
GL_COLOR_TABLE_FORMAT_EXT constant,

B-38, B-39
GL_COLOR_TABLE_GREEN_SIZE_EXT

constant, B-38, B-39
GL_COLOR_TABLE_LUMINANCE _SIZE_EXT

constant, B-38, B-39
GL_COLOR_TABLE_RED_SIZE_EXT

constant, B-38, B-39
GL_COLOR_TABLE_SCALE_EXT constant,

B-6, B-8, B-38, B-39
GL_COLOR_TABLE_WIDTH_EXT constant,

B-38, B-39
GL_CONSTANT_BORDER_HP constant,

B-13, B-14, B-15, B-16, B-17
GL_CONVOLUTION_2D_EXT constant,

B-10, B-11, B-12, B-13, B-14, B-19,
B-24, B-27, B-32, B-41, B-43, B-57

GL_CONVOLUTION_BORDER_COLOR_HP

constant, B-14, B-15, B-16, B-17,
B-43, B-44

GL_CONVOLUTION_BORDER_MODE_EXT

constant, B-13, B-14, B-15, B-17,
B-43, B-44

GL_CONVOLUTION_FILTER_BIAS_EXT

constant, B-10, B-14, B-15, B-17,
B-43, B-44

GL_CONVOLUTION_FILTER_SCALE_EXT

constant, B-10, B-14, B-17, B-43,
B-44

GL_CONVOLUTION_FORMAT_EXT constant,
B-43, B-44

GL_CONVOLUTION_HEIGHT_EXT constant,
B-43, B-44

GL_CONVOLUTION_WIDTH_EXT constant,
B-43, B-44

GL_CUBIC_HP constant, B-52, B-53,
B-54, B-55, B-56

GL_CURRENT_RASTER_POSITION constant,
B-20, B-23, B-25, B-32, B-67

GL_CURRENT_RASTER_ POSITION_VALID

constant, B-20, B-25, B-32, B-66,
B-67

GL_DOUBLEBUFFER constant, B-32
GL_DRAW_BUFFER constant, B-22, B-32
GL_EXTENSIONS constant, B-50
GL_FALSE constant, B-31, B-57
glFinish Routine, 4-8
GL_FLOAT constant, B-10, B-41
glFlush Routine, 4-9
GL_FRONT constant, B-21, B-22, B-68
GL_FRONT_LEFT constant, B-21, B-22,

B-68
GL_GREEN_BITS constant, B-32
GL_IGNORE_BORDER_HP constant, B-13,

B-14, B-15, B-17
GL_IMAGE_CUBIC_WEIGHT_HP constant,

B-48, B-49, B-52, B-53, B-54

Index-5

GL_IMAGE_MAG_FILTER_HP constant,
B-48, B-49, B-52, B-53, B-54, B-56

GL_IMAGE_MIN_FILTER_HP constant,
B-48, B-49, B-52, B-53, B-54, B-56

GL_IMAGE_ROTATE_ANGLE_HP constant,
B-48, B-49, B-52, B-53, B-54

GL_IMAGE_ROTATE_ORIGIN_X_HP

constant, B-48, B-49, B-52, B-53,
B-54

GL_IMAGE_ROTATE_ORIGIN_Y_HP

constant, B-48, B-49, B-52, B-53,
B-54

GL_IMAGE_SCALE_X_HP constant, B-48,
B-49, B-52, B-53, B-54

GL_IMAGE_SCALE_Y_HP constant, B-48,
B-49, B-52, B-53, B-54

GL_IMAGE_TRANSFORM_2D_HP constant,
B-27, B-35, B-48, B-49, B-52, B-53,
B-55, B-57

GL_IMAGE_TRANSLATE_X_HP constant,
B-48, B-49, B-52, B-53, B-54

GL_IMAGE_TRANSLATE_Y_HP constant,
B-48, B-49, B-52, B-53, B-54

GL_INVALID_ENUM constant, B-7, B-9,
B-11, B-12, B-17, B-20, B-22, B-25,
B-28, B-35, B-37, B-40, B-42, B-45,
B-46, B-49, B-51, B-56, B-58, B-62,
B-65, B-69, B-72

GL_INVALID_OPERATION constant, B-22,
B-46, B-69

GL_INVALID_VALUE constant, B-2, B-7,
B-11, B-12, B-20, B-25, B-46, B-62,
B-72, B-74

GL_LINEAR constant, B-52, B-53, B-55,
B-56

GL_LUMINANCE12_EXT constant, B-5
GL_LUMINANCE16_EXT constant, B-5
GL_LUMINANCE4_EXT constant, B-5, B-6
GL_LUMINANCE8_EXT constant, B-5

GL_LUMINANCE constant, B-5, B-6, B-10,
B-11, B-23, B-25, B-36, B-41, B-70,
B-71

GL_MAX_CONVOLUTION_HEIGHT_EXT

constant, B-12, B-43, B-44
GL_MAX_CONVOLUTION_WIDTH_EXT

constant, B-11, B-43, B-44
GL_NEAREST constant, B-52, B-53, B-55,

B-56
GL_NO_ERROR constant, B-46
GL_OUT_OF_MEMORY constant, B-47
GL_PACK_ALIGNMENT constant, B-33,

B-59, B-60, B-61, B-62
GL_PACK_ROW_LENGTH constant, B-33,

B-59, B-60, B-61, B-62, B-71
GL_PACK_SKIP_PIXELS constant, B-33,

B-59, B-60, B-61, B-62
GL_PACK_SKIP_ROWS constant, B-33,

B-59, B-60, B-61, B-62, B-71
GL_POST_CONVOLUTION_

ALPHA_BIAS_EXT constant, B-33,
B-63, B-64, B-65

GL_POST_CONVOLUTION_

ALPHA_SCALE_EXT constant, B-33,
B-63, B-64, B-65

GL_POST_CONVOLUTION_ BLUE_BIAS_EXT

constant, B-33, B-63, B-64, B-65
GL_POST_CONVOLUTION_

BLUE_SCALE_EXT constant, B-33,
B-63, B-64, B-65

GL_POST_CONVOLUTION_c constant, B-11
GL_POST_CONVOLUTION_

GREEN_BIAS_EXT constant, B-33,
B-63, B-64, B-65

GL_POST_CONVOLUTION_

GREEN_SCALE_EXT constant, B-33,
B-63, B-64, B-65

GL_POST_CONVOLUTION_ RED_BIAS_EXT

constant, B-33, B-63, B-64, B-65
GL_POST_CONVOLUTION_ RED_SCALE_EXT

constant, B-34, B-63, B-64, B-65

Index-6

Index

GL_POST_IMAGE_TRANSFORM_

COLOR_TABLE_HP constant, B-5,
B-6, B-7, B-8, B-9, B-27, B-34,
B-36, B-38, B-39, B-57

GL_READ_BUFFER constant, B-34, B-69
GL_RED_BITS constant, B-34
GL_REDUCE_EXT constant, B-13, B-14,

B-15, B-17
GL_RENDERER constant, B-50
GL_REPLICATE_BORDER_HP constant,

B-13, B-14, B-16, B-17
GL_RGB10_A2_EXT constant, B-5
GL_RGB5_A1_EXT constant, B-5
GL_RGBA12_EXT constant, B-5
GL_RGBA16_EXT constant, B-5
GL_RGBA2_EXT constant, B-5
GL_RGBA4_EXT constant, B-5
GL_RGBA8_EXT constant, B-5, B-6
GL_RGBA constant, B-5, B-6, B-7, B-10,

B-11, B-23, B-24, B-25, B-36, B-37,
B-39, B-41, B-60, B-70, B-71, B-72

GL_RGBA_MODE constant, B-34
GL_RGB constant, B-61
GL_SCISSOR_BOX constant, B-34, B-74
GL_SCISSOR_TEST constant, B-27, B-34,

B-57, B-73, B-74
GL_TABLE_TOO_LARGE_EXT constant,

B-7, B-47
GL_TRUE constant, B-31, B-57
GL_UNPACK_ALIGNMENT constant, B-23,

B-34, B-59, B-61, B-62
GL_UNPACK_ROW_LENGTH constant, B-34,

B-59, B-60, B-61, B-62
GL_UNPACK_SKIP_PIXELS constant,

B-34, B-59, B-61, B-62
GL_UNPACK_SKIP_ROWS constant, B-34,

B-59, B-61, B-62
GL_UNSIGNED_BYTE constant, B-5, B-23,

B-36, B-70, B-71

GL_UNSIGNED_SHORT constant, B-5, B-7,
B-23, B-25, B-36, B-37, B-70, B-71,
B-72

GL_VENDOR constant, B-50
GL_VERSION constant, B-50
GL_WRAP_BORDER_HP constant, B-13,

B-14, B-16, B-17
GLX, Glossary-4
`GLX ALPHA SIZE'' constant, B-80,

B-88, B-89
`GLX BAD ATTRIB'' constant, B-90
`GLX BAD CONTEXT'' constant,

B-86, B-92
`GLX BAD CURRENT WINDOW''

constant, B-92, B-95
`GLX BAD DRAWABLE'' constant,

B-92, B-95
`GLX BAD PIXMAP'' constant, B-87
`GLX BAD SCREEN'' constant, B-90
`GLX BAD VISUAL'' constant, B-90
`GLX BLUE SIZE'' constant, B-80,

B-88, B-89
`GLX BUFFER SIZE'' constant, B-81,

B-85, B-88, B-89
`GLX DOUBLEBUFFER'' constant,

B-79, B-89
`GLX GREEN SIZE'' constant, B-80,

B-88, B-89
`GLX LEVEL'' constant, B-79, B-88
`GLX NO EXTENSION'' constant,

B-90
GLX Pixmap, Glossary-4
`GLX RED SIZE'' constant, B-80,

B-88, B-89
`GLX RGBA'' constant, B-79, B-88,

B-89
`GLX USE GL'' constant, B-88, B-90
`GLX X VISUAL TYPE EXT''

constant, B-80, B-89
graphinfo Command, 1-6

Index-7

H

Hardware Architecture, 2-9
HCRX-24, 5-7
HCRX-24 Description, 5-6
HCRX-8, 5-7
HCRX-8 Description, 5-6
HCRX Family Device Descriptions, 5-5
High-Level IVL Overview, 2-7
HP Image Library, 2-3
HP-PHIGS, 2-3

I

If You Have Incompatible Software, 1-4
Image, Glossary-4
Data Formatting, 3-12
Transform, 2-21

Image Format, Glossary-4
Image Library, 2-3
Image Transform, Glossary-5
Image Type, Glossary-5
Image Visualization Accelerator Device

Description, 5-10
Imaging Operations, 3-6
Implementation Restrictions, 3-10
Incompatible Software, 1-4
Information on Revision, 1-4
Installation, 1-1
Interpolation, Glossary-5
IVL, Glossary-5
And Backing Store, 4-8
and Color Recovery, 4-6
API Routines, 3-6
Constants, 3-1, 3-5
Data Type Names, 3-4
Data Types, 3-3
Description, 2-1
Extensions, 3-2
Implementations, 5-1
Machine, 2-10
Overview, 2-7
Relationship to OpenGL, 2-2

Routines, 3-1, 3-4
What is it?, 2-1
With other graphics APIs, 2-2

IVL Data , 3-8
IVL Filesets, 1-1
IVX, Glossary-5

K

Kernel
Convolution, Glossary-2

L

Library
Image, 2-3

Linking, 3-8
Logical Bu�er, Glossary-5
Look-Up Table, Glossary-5
Luminance, Glossary-5
Luminance Format, Glossary-5

M

Machine
Abstract, 2-10

Machine Data Type, Glossary-6
Managing Rendering Contexts, 4-6
Manhattan Distance, Glossary-6
Manual Contents, 0-1
Model
Color, Glossary-2

Monoscopic Window, Glossary-6
Motif, 1-3
Multi-Threaded Applications, 3-10

N

Naming Conventions, 3-1

O

OpenGL, Glossary-6
OpenGL Imaging Extensions, Glossary-6
OpenGL Implementations, 2-3
Overlay Planes, Glossary-6

Index-8

Index

Overlay Transparency, 5-4, 5-8
Overlay Transparency with HCRX-24

Devices, 5-9
Overlay Transparency with HCRX-8

Devices, 5-8

P

Performance Hints, 5-11
Performance Hints for Workstations

with IVX Hardware, 3-13
Performance Hints for Workstations

without IVX Hardware, 3-14
Performance Tuning Tips, 3-13
PEX, 2-3
Pipeline Stages, 2-12
Pixel
Component, Glossary-6
Ownership Test, Glossary-6
Rasterization, 2-16, Glossary-7
Rectangle, Glossary-7
Transfer, 2-16, 2-17, Glossary-7
Unpack, 2-12
Unpacking, 3-9, Glossary-7

Pixel Ownership Test, 2-23
Pixel Rasterization, 2-23
Pixmap, Glossary-7
Pixmaps, 4-8
Planes
Overlay, Glossary-6

Post-Convolution Scale and Bias, 2-21
Post-Image Transform Color Table,

2-22, Glossary-7
Printing the IVL Documentation, 0-4
Programming Advice, 3-11
Progressive Re�nement, Glossary-7

Q

Query Data Values, 3-11

R

Rasterization, 5-10
Raster Position, Glossary-7
Read Bu�er, Glossary-7
Reconstruction, Glossary-8
Renderer
Names, 5-2

Rendering Context, Glossary-8
Rendering Contexts, 2-8, 4-6
Resampling, Glossary-8
Revision Information, 1-4
RGBA, Glossary-8
RGBA Data Format, 3-12
RGBA Format, Glossary-8
Routine
glFinish, 4-8
glFlush, 4-9

S

Sample Code, 3-19
Scissor Box, Glossary-8
Scissor Test, 2-24, Glossary-8
Scope and Audience, 0-2
SD-UX, 1-1
Selecting Visuals, 4-5
Server State, Glossary-8
Setting and Querying Attributes, 3-6
Setting Up an X/IVL Program, 4-4
Single-Bu�ering, Glossary-9
Single Logical Screen, 1-2
Software, 1-4
Software Architecture, 2-9
Software versus Hardware-Accelerated

Paths, 5-11
Standard IVL Routines and Constants,

3-1
Starbase, 2-3
State
Client, Glossary-1

Stereoscopic Window, Glossary-9
Subimage, Glossary-9

Index-9

Supported Data Formats, 3-8
Synchronization, 4-8
System
Window Coordinate, 2-7

T

Table
Color, Glossary-2

Transform
Image, Glossary-5

Type
Image, Glossary-5

U

uname Command, 1-4
Underlays, 3-10
Unpack Pixels, 2-12
Using Pixmaps, 4-8
Using SD-UX, 1-1
Using the glFinish Routine, 4-8
Using the glFlush Routine, 4-9
Using the graphinfo Command, 1-6
Using the uname Command, 1-4
Using the what Command, 1-4

V

Viewing IVL Documentation with Web
Browsers, 0-4

Visual
Default, 5-8
Type, Glossary-9
X, Glossary-9

Visuals, 4-5, 5-3, 5-7
VUE and CDE, 1-3

W

what Command, 1-4
What is IVL?, 2-1
Window Coordinate System, 2-7
Window-Level Mapping, Glossary-9
Window System Interaction, 3-7
Window System Routines and Constants,

3-2

X

X11, 1-2
X Con�guration, 1-2
X Interaction, 4-1
Xlib and Motif, 2-2
X Visual, Glossary-9

X Windows Capabilities, 4-4

Index-10

