
FINAL TRIM SIZE : 7.5 in x 9.0 in

Graphics Administration Guide

HP 9000 Servers

ABCDE

HP Part No. B2355-90122

Printed in USA E0497

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard provides the following material \as is" and makes no warranty
of any kind with regard to this manual, including, but not limited to, the implied
warranties of merchantability and �tness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages (including lost pro�ts) in connection with
the furnishing, performance, or use of this material whether based on warranty,
contract, or other legal theory.

Some states do not allow the exclusion of implied warranties or the limitation
or exclusion of liability for incidental or consequential damages, so the above
limitation and exclusions may not apply to you. This warranty gives you speci�c
legal rights, and you may also have other rights which vary from state to state.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

Copyright c
 1997 Hewlett-Packard Company This document contains informa-
tion which is protected by copyright. All rights are reserved. Reproduction,
adaptation, or translation without prior written permission is prohibited, except
as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DoD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and
exible disc(s), or tape cartridge(s), or CD-ROM supplied
for this pack is restricted to this product only. Additional copies of the programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

can be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

PEX and PEXlib are trademarks of Massachusetts Institute of Technology.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

April 1997 . . . Edition 1. This manual is valid for HP-UX release 10.30 on all
HP 9000 servers.

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

0

Preface

Why This Document?

This document was created to �ll a need that became evident as Hewlett-Packard
began to o�er multiple Application Programmer Interfaces (APIs). The situation
was this: As HP created one API|say, Starbase|particular aspects of graphical
operation were noted and diligently explained in the Starbase documentation.
However, some of these aspects were not unique to Starbase, they pertained to
graphics operation in general: they applied to all of our APIs. Therefore, those
users who had HP-PHIGS would be encountering some of the same graphical
questions that were already well-documented in the Starbase documentation.
But HP-PHIGS users wouldn't necessarily have the Starbase documentation.
Are they just out of luck? The same situation occurred with HP PEX.

Our dilemma was this: do we copy the general-graphics explanations that
already existed in the Starbase documentation, into the documentation for the
other APIs as well? This would mean two, three, or even more virtually
identical copies of the same explanations in di�erent places, requiring similar
changes in each whenever new capabilities or devices were introduced. And
if all documents containing these similar explanations were not reprinted
simultaneously, \current" documents for the various APIs might contradict each
other.

Preface 0-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

0

A more elegant solution is: this document. While the API-speci�c documents
still contain most of their previous contents, the general graphical information|
common to all APIs|was moved here. Examples include:

Pathnames: File locations have changed between HP-UX 9.x and HP-UX 10.x ,
with its new, standardized V.4 �le system structure.
Creating device �les: Regardless of whether it is Starbase, HP-PHIGS, or HP
PEX that creates an image, you have to tell the operating system where the
display is and how to talk to it.
Compiling and Linking: The process of turning your source code into executable
code has many common ideas, regardless of API or �le system structure.
X Windows issues: All APIs interact with X windows, so non-unique X
Windows information comes here.

The above topics, and others as well, are good candidates for a common area.
With this approach, only one copy of the common information need exist, and
revisions can happen in a more timely manner, and at less risk of contradicting
other documents.

Document Conventions

Below is a list of the typographical conventions used in this document:

mknod /usr/include Verbatim computer literals are in computer font.
Text in this style is letter-for-letter verbatim and,
depending on the context, should be typed in exactly
as speci�ed, or is named exactly as speci�ed.

In every case . . . Emphasized words are in italic type.

. . . device is a freen . . . New terms being introduced are in bold-faced type.

. . . the hdevice idi . . . Conceptual values are in italic type, enclosed in angle
brackets. These items are not verbatim values, but
are descriptors of the type of item it is, and the user
should replace the conceptual item with whatever
value is appropriate for the context.

0-2 Preface

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

0. Preface

Why This Document? 0-1
Document Conventions 0-2

1. Pathnames

Using \whence" . 1-1
Using \find" . 1-2
Starbase, HP-UX 9.x File System 1-3
Starbase, HP-UX 10.x File System 1-4
HP-PHIGS, HP-UX 9.x File System 1-5
HP-PHIGS, HP-UX 10.x File System 1-6
HP PEX, HP-UX 9.x File System 1-7
HP PEX, HP-UX 10.x File System 1-8

2. Compiling Your Application

Compiling Starbase Applications 2-2
Compiling with Shared Libraries 2-2
Examples . 2-2

Compiling with Archive Libraries 2-3
Examples . 2-3

Compiling HP-PHIGS Applications 2-5
Compiling with Shared Libraries 2-5
Compiling with Archive Libraries 2-5

Device Driver Libraries 2-7
Compiling HP PEX Applications 2-8

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3. X Windows, HP-UX 9.0x
The X*screens File . 3-1
Miscellaneous Topics 3-2
Setting/Unsetting Environment Variables 3-2
Double Bu�er Extension (DBE) 3-3
Performing Bu�er Swaps on Vertical Blank 3-3
Supported Devices 3-4

MBX . 3-4
Single Logical Screen (SLS) 3-6
Supported SLS Con�gurations 3-6
HP VUE and Single Logical Screen 3-7

HP Color Recovery 3-7
Dynamic Loading . 3-9
Shared Memory Usage 3-9
Changing Graphics Shared Memory Size 3-10

Count Transparent In Overlay Visual 3-10
Enable Overlay Transparency 3-11
3-Bit Center Color 3-11
Image Text Via BitMap 3-11
Obsolete Environment Variables 3-12
Special Device Files 3-13

Supported X Con�gurations 3-16
Supported Graphics Devices 3-16
Multi-Display Support 3-17
Multi-Screen Support 3-18

Integrated Color Graphics Device-Dependent Information . . . 3-21
Supported Visuals 3-21
Supported Environment Variables 3-21
Colormaps and Colormap Management 3-21
The Default Colormap Management Scheme 3-21
Accessing HP Color Recovery Technology via Xlib 3-22

Internal Color Graphics, Internal GrayScale Graphics, CRX,
GRX, andDual-CRX Device-Dependent Information 3-25
Supported Visuals 3-25
Supported Environment Variables 3-25

CRX-24[Z] Device-Dependent Information 3-26
Supported Visuals 3-26
Supported Environment Variables 3-26

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

CRX-24[Z] Transparent Overlay Visuals 3-26
CRX-48Z Device-Dependent Information 3-28
Supported Visuals 3-28
Supported Environment Variables 3-28
CRX-48Z Transparent Overlay Visuals 3-28

HCRX Device-Dependent Information 3-30
Supported Visuals 3-31
Supported Environment Variables 3-32
HCRX Con�guration Hints 3-32
HCRX-8[Z] and HP Visualize-8 Visuals and Double-Bu�er

Support . 3-32
Implications and Suggestions for HCRX-8[Z] and HP

Visualize-8 3-33
HCRX Overlay Visuals and Overlay Transparency 3-33
Overlay Transparency on the HCRX-8[Z] and HP

Visualize-8 3-33
Overlay Transparency on the HCRX-24[Z], HP

Visualize-24, and -48 3-34
HCRX Colormaps 3-36
HCRX-8[Z] and HP Visualize-8: Eight Overlay Planes

and Two Depth-8 Banks of Image Planes 3-36
HCRX-24[Z] and HP Visualize-24: 8 Overlay Planes and

24 Image Planes 3-36
HP Visualize-48: Eight Overlay Planes and 48 Image

Planes . 3-37
Accessing HP Color Recovery Technology via Xlib 3-37

Freedom Series Graphics (S3150, S3250 and S3400)
Device-Dependent Information 3-41
Supported Visuals 3-41
Supported Environment Variables 3-41
GLX . 3-41

VRX Device-Dependent Information 3-42
Supported Visuals 3-42
VRX Device Files . 3-42

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4. X Windows: HP-UX 10.x
The X*screens File . 4-1
Description of the X*screens Con�guration File 4-1
Syntax Guidelines 4-2

The X*screens File Format 4-3
Server Options . 4-4
Screen Entries . 4-5

Sample X*screens Files 4-7
Miscellaneous Topics 4-14
Double Bu�er Extension (DBE) 4-14
Performing Bu�er Swaps On Vertical Blank 4-14
Determining Swap Performance 4-15
Supported Devices 4-15

Display Power Management Signaling (DPMS) 4-15
Prior to HP-UX 10.30 4-16
HP-UX 10.30 and Beyond 4-17

MBX . 4-18
Shared Memory Extension (MIT_SHM) 4-19
Supported Devices 4-20

Shared Memory Transport (SMT) 4-20
Performance Tuning of SMT 4-21
HP Color Recovery 4-24
HP Color Recovery Extension 4-25
Accessing HP Color Recovery Technology via the Color

Recovery Extension 4-26
Dynamic Loading . 4-27
Include Inferiors Fix 4-28
Shared Memory Usage With 3D Graphics 4-29
Changing Graphics Shared Memory Size 4-29

Count Transparent In Overlay Visual 4-30
Enable Overlay Transparency 4-30
3-Bit Center Color 4-31
Image Text Via BitMap 4-31
Obsolete Environment Variables 4-32
Special Device Files 4-32

Supported X Con�gurations 4-35
Supported Graphics Devices 4-35
Multi-Display Support 4-37

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Multi-Screen Support 4-40
Single Logical Screen (SLS) 4-43
Supported SLS Con�gurations 4-44
3D Acceleration and Single Logical Screen 4-44
HP VUE/CDE and Single Logical Screen 4-44

Integrated Color Graphics Device-Dependent Information . . . 4-45
Supported Visuals 4-45
Supported Screen Options 4-46
Colormaps and Colormap Management 4-46
Default Colormap Management Scheme 4-46

Accessing HP Color Recovery Technology via Xlib 4-47
Internal Color Graphics, Internal Grayscale Graphics, CRX,

GRX, and Dual-CRX Device-Dependent Information 4-50
Supported Visuals 4-50
Supported Screen Options 4-50

CRX-24[Z] Device-Dependent Information 4-51
Supported Visuals 4-51
Supported Screen Options 4-51
CRX-24[Z] Transparent Overlay Visuals 4-52

CRX-48Z Device-Dependent Information 4-53
Supported Visuals 4-53
Screen Options . 4-53
CRX-48Z Transparent Overlay Visuals 4-53

HCRX and HP Visualize Device-Dependent Information . . . 4-54
Supported Visuals 4-55
Supported Screen Options 4-57
HP Visualize-EG Modes 4-57
HCRX Con�guration Hints 4-58
HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8

Visuals and Double-Bu�er Support 4-58
Implications and Suggestions for HCRX-8[Z], HP

Visualize-EG(D) and HP Visualize-8 4-58
HCRX Overlay Visuals and Overlay Transparency 4-59
Overlay Transparency on the HCRX-8[Z], HP

Visualize-EG(D) and HP Visualize-8 4-59
Overlay Transparency on the HCRX-24[Z], HP

Visualize-24, and HP Visualize-48 4-60
HCRX Colormaps 4-62

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP Visualize-EG(8): 8 Image planes 4-62
HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8:

Eight Overlay Planes and Two Depth-8 Banks of Image
Planes . 4-62

HCRX-24[Z] and HP Visualize-24: Eight Overlay Planes
and 24 Image Planes 4-63

HP Visualize-48: Eight Overlay Planes and 48 Image
Planes . 4-63

Accessing HP Color Recovery Technology via Xlib 4-63
Freedom Series Graphics Device-Dependent Information 4-66
Supported Visuals 4-66
Supported Screen Options 4-67
Freedom Video Formats 4-67

VRX Device-Dependent Information 4-68
Supported Visuals 4-68
VRX Device Files . 4-69

5. X Windows Con�guration Details

Making an X*.hosts File 5-1
X0.hosts and X0screens Relation 5-2
Using an /etc/hosts File 5-2

Using Special Input Devices 5-3
How the X Server Chooses the Default Keyboard and Pointer 5-3
X*devices File . 5-4
Explicitly Specifying Input Device Use 5-5
Explicitly Specifying RS-232 Input Device Use 5-5
Specifying HP-HIL Input Device Use by Device Type and

Position . 5-7
Selecting Values for X*devices Files 5-8
Examples . 5-9

Specifying HP-HIL Input Device Use by Device File Name . . 5-10
Rede�ning the HP-HIL Search Path 5-10
Stopping the X Window System 5-11

Initializing the Colormap with xinitcolormap 5-12
Customizing the Mouse and Keyboard 5-13
Changing Mouse Button Actions 5-13
Going Mouseless with the X*pointerkeys File 5-15
Con�guring X*devices for Mouseless Operation 5-15

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

The Default Values for the X*pointerkeys File 5-16
Creating a Custom X*pointerkeys File 5-16
Syntax . 5-16
Assigning Mouse Functions to Keyboard Keys 5-17
Modi�er Keys 5-21
Specifying Pointer Keys 5-22
Examples . 5-22

Customizing Keyboard Input 5-24
Modifying Modi�er Key Bindings with xmodmap 5-24
Specifying Key Remapping Expressions 5-25

Examples . 5-27
Printing a Key Map 5-28

Using the Keyboards 5-29
Understanding the Keyboards 5-29
Default Keyboard Mapping 5-30
Equivalent Keys . 5-31
Changing Key Mapping 5-32
C1429 Keyboard 5-32
46021 Keyboard 5-32
Comparing the Keyboards 5-33

6. PowerShade: Enhanced 3D Rendering in Software
Compatibility Considerations 6-1
Re-Installing PowerShade 6-2
HP Series 700 Graphics Performance 6-3

7. Miscellaneous Topics

3D Thread-Sa�ng . 7-1
General Information 7-1
Other Threads-Related Information 7-2

SIGALRM Details 7-2
SIGCHLD and the GRM Daemon 7-3
SIGCHLD and the Starbase Input Daemon 7-4
SIGPIPE Details . 7-4

HP CDE and HP VUE 7-5
Shared Memory Usage 7-6
Reference Documentation 7-7

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

A. Reference

X Windows . A-1
X Server . A-26

Index

Contents-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

4-1. Results of Minimal Legal X*screens File 4-7
4-2. Two Physical Displays, Two Separate Screens 4-7
4-3. PVRX/TVRX Display with Overlays 4-9
4-4. Two Physical Displays, Single Logical Screen (1�2) 4-10
4-5. Four Physical Displays, Single Logical Screen (1�4) 4-11
4-6. Four Physical Displays, Single Logical Screen (4�1) 4-12
4-7. Four Physical Displays, Single Logical Screen (2�2) 4-13
4-8. Three Physical Displays, Screen plus Single Logical Screen

(1�2) . 4-13
4-9. 4-37
4-10. 4-38
4-11. 4-39
5-1. Keycap, Keycode, and Keysym Relationships 5-29

Contents-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. 1-3
1-2. 1-4
1-3. 1-5
1-4. 1-6
1-5. 1-7
1-6. 1-8
2-1. Device/Device Driver Correlation 2-7
3-1. Setting and Unsetting Environment Variables 3-2
3-2. Special Device Files: Major/Minor Numbers 3-14
3-3. Graphics Devices Supported on HP-UX 9.x 3-16
3-4. mknod Information for HP-UX 9.x 3-42
4-1. Power-Saving States De�ned by VESA 4-16
4-2. Special Device Files on HP-UX 10.x 4-33
4-3. HP 9000 Supported Graphics Devices Table 4-35
4-4. Alternative Supported Freedom Video Formats 4-67
4-5. Alternative Unsupported Freedom Video Formats 4-68
4-6. VRX Device Files . 4-69
5-1. Values for X*devices Files 5-8
5-2. Default Mouse Button Mapping 5-13
5-3. Alternative Mouse Button Mappings 5-14
5-4. Pointer Movement Functions 5-17
5-5. Pointer Distance Functions 5-18
5-6. Button Operation Functions 5-18
5-7. Button Mapping Functions 5-19
5-8. Reset and Threshold Functions 5-19
5-9. Button Chording . 5-20
5-10. Specifying a Portion of a Tablet 5-21
5-11. Valid xmodmap Expressions 5-26
5-12. 5-31
6-1. Optimized vs. Normal 3D Performance 6-4

Contents-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Pathnames

This chapter contains information on locating �les that reside at some location|
currently unknown to you|in the �le system. This is important, because you
may have an \old" �le system (on HP-UX 9.x and earlier) or a \new" V.4 �le
system (on HP-UX 10.x and later). Most �les in the old �le system still exist in
the new, but they may reside in di�erent locations. This can cause inconvenience
if the new location of a �le is unknown to you. This chapter addresses the task
of �nding �les, regardless of your �le system.

Using \whence"

There are two main methods of �nding �les, assuming you know the name of
the �le you're looking for. The �rst method is to use the Korn-shell command
whence, which tells you where commands reside (if you're not using the Korn
shell, you can use the system command whereis):

$ whence mknod �Return�
/etc/mknod

The above approach, while satisfactory in many cases, has two limitations:

First, the directory in which the command resides must be one of the entries
in the PATH variable; if it is not, it won't be found. So in a sense, whence and
whereis can only �nd things if you tell them where to look. They are still
valuable, though: you may not remember which, of the dozens of directories
that may be in your PATH variable, is where a particular command resides. Also,
if you have two commands of the same name in two di�erent directories, whence
and whereis will tell you which one will be found �rst, and thus executed.
Secondly, both whence and whereis only �nd executable �les; that is,
commands (both compiled programs and shell scripts). If you want to �nd a
�le that is not executable|an include �le, for instance|whence and whereis

Pathnames 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
will not �nd it, even if the include �le's directory is in your PATH. To �nd non-
executable �les, you can use find, discussed below.

Using \find"

The find command will �nd any �le in your �le system, executable or not. For
example, to locate the include �le we couldn't locate above, you could say:

$ find / -name h�le namei �Return�

where h�le namei is the name of the �le you're looking for. In the above example,
the \/" is the root directory, and everything is under that, so|assuming you
speci�ed the correct �le name, and it is somewhere in the �le system|the above
command is guaranteed to �nd what you're looking for, though it make take a
while. You can shorten the search time by giving a subdirectory here, if you know
it; for example, \find /opt . . . ". Also, you can specify just a partial �lename;
find will locate all �les containing a speci�ed substring in their names. The find
command has many other options for re�ning a search; see the reference page for
details.

Subsequent sections of this chapter contain the actual pathnames referred to in
other HP graphics API documents, such as Starbase, PEX, etc. A particular
paragraph might refer to, say, the hdemosi directory. That directory on an 9.x
system may be in a di�erent location than on a 10.x system, so the sections below
allow you to resolve the actual path name, given the HP-UX operating system
version you have, and the API you are working with.

Find the API you're looking for, then under that, the operating system you have
(the old 9.x or the new 10.x �le system). In that section is an alphabetical list of
\generic names"|the �le system path references used in the other documents|
and with each, you will see its actual location in the �le system.

1-2 Pathnames

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Starbase, HP-UX 9.x File System

Table 1-1.

hcommoni (didn't exist in 9.x �le system)

hdevi /dev

hformattersi /usr/lib/starbase/formatters

hnlsi /usr/lib/nls

hsb-demosi /usr/lib/starbase/demo

hsb-fontsi /usr/lib/starbase/stroke

hsb-font-infoi /usr/lib/starbase/stroke/font_info

hsb-incli /usr/include

hsb-libi /usr/lib

hsb-utilsi /usr/lib/starbase/demos/SBUTILS

hscreeni /dev/screen

hstarbasei /usr/lib/starbase

htmpi /tmp

hvue-con�gi /usr/vue/config

hx11 i /usr/lib/X11

hx11-admini /usr/lib

hx11r5 i /usr/lib/X11R5

hx11r5-incli /usr/include/X11R5

hxcon�gi /usr/lib/X11

Pathnames 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Starbase, HP-UX 10.x File System

Note that before HP-UX 10.20, the default release number of the X window
system was X11R5; as of HP-UX 10.20, it is X11R6. If your version of HP-UX
is 10.20 or newer, the occurrences of X11R5 in the pathnames below should be
understood as X11R6.

Table 1-2.

hcommoni /opt/graphics/common

hdevi /dev

hformattersi /opt/graphics/starbase/formatters

hnlsi /opt/graphics/common/lib/nls/msg/C

hsb-demosi /opt/graphics/starbase/demo

hsb-fonti /opt/graphics/common/stroke

hsb-font-infoi /opt/graphics/common/stroke/font_info

hsb-incli /opt/graphics/starbase/include

hsb-libi /opt/graphics/common/lib

hsb-utilsi /opt/graphics/starbase/demos/starbase/SBUTILS

hscreeni /dev/screen

hstarbasei /opt/graphics/starbase

htmpi /var/tmp

hvue-con�gi /etc/vue/config

hx11 i /usr/lib/X11

hx11-admini /etc/X11

hx11r5 i /usr/lib/X11R5

hx11r5-incli /usr/include/X11R5

hxcon�gi /etc/X11

1-4 Pathnames

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP-PHIGS, HP-UX 9.x File System

Table 1-3.

happ-defaultsi /usr/lib/X11/app-defaults

hcommoni (didn't exist in 9.x �le system)

hdevi /dev

hnlsi /usr/lib/nls

hphigsi /usr/lib/phigs

hphigs-demosi /usr/lib/phigs/demos

hphigs-examplesi /usr/lib/phigs/examples

hphigs-incli /usr/include

hphigs-libi /usr/lib

hphigs-widgeti /usr/include/Motif1.2

hscreeni /dev/screen

hspooli /usr/spool

hstarbasei /usr/lib/starbase

hvue-con�gi /usr/vue/config

hx11 i /usr/lib/X11

hx11r5 i /usr/lib/X11R5

hx11r5-incli /usr/include/X11R5

hxcon�gi /usr/lib/X11

Pathnames 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP-PHIGS, HP-UX 10.x File System

Note that before HP-UX 10.20, the default release number of the X window
system was X11R5; as of HP-UX 10.20, it is X11R6. If your version of HP-UX
is 10.20 or newer, the occurrences of X11R5 in the pathnames below should be
understood as X11R6.

Table 1-4.

happ-defaultsi /usr/lib/X11/app-defaults

hcommoni /opt/graphics/common

hdevi /dev

hnlsi /opt/graphics/common/lib/nls/msg/C

hphigsi /opt/graphics/phigs

hphigs-demosi /opt/graphics/phigs/demos

hphigs-examplesi /opt/graphics/phigs/examples

hphigs-incli /opt/graphics/phigs/include

hphigs-libi /opt/graphics/phigs/lib

hphigs-widgeti /opt/graphics/phigs/include/Motif1.2

hscreeni /dev/screen

hspooli /var/spool

hstarbasei /opt/graphics/starbase

hvue-con�gi /etc/vue/config

hx11 i /usr/lib/X11

hx11r5 i /usr/lib/X11R5

hx11r5-incli /usr/include/X11R5

hxcon�gi /etc/X11

1-6 Pathnames

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP PEX, HP-UX 9.x File System

Table 1-5.

happ-defaultsi /usr/lib/X11/app-defaults

hcge-examplesi /usr/lib/PEX5/cge_examples

hcge-utilsi /usr/lib/PEX5/cge_utilities

hcontribi /usr/contrib

herr-helpi /usr/lib/PEX5

hextensionsi /usr/lib/X11/extensions

hhp-examplesi /usr/lib/PEX5/hp_examples

hmani /usr/man

hnlsi /usr/lib/nls

hora-examplesi /usr/lib/PEX5/ora_examples

hpexi /usr/lib/PEX5

hpexdi /usr/bin/X11

hpex-examplesi /usr/lib/PEX5/examples

hpex-fontsi /usr/lib/PEX5/fonts

hpex-incli /usr/include

hpex-libi /usr/lib

hpex-utilsi /usr/lib/PEX5/utilities

hpro�lei /usr/contrib/PEX5/lib

hrel-notesi /etc/newconfig

hspooli /usr/spool

hvhelpi /usr/vhelp

hvuei /usr/vue

hx11 i /usr/lib/X11

hx11-incli /usr/include/X11

hx11r5 i /usr/lib/X11R5

hx11r5-incli /usr/include/X11R5

Pathnames 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP PEX, HP-UX 10.x File System

Note that before HP-UX 10.20, the default release number of the X window
system was X11R5; as of HP-UX 10.20, it is X11R6. If your version of HP-UX
is 10.20 or newer, the occurrences of X11R5 in the pathnames below should be
understood as X11R6.

Table 1-6.

happ-defaultsi /usr/lib/X11/app-defaults

hcge-examplesi /opt/graphics/PEX5/examples/cge

hcge-utilsi /opt/graphics/PEX5/utilities/cge

hcontribi /opt/graphics/PEX5/contrib

herr-helpi /opt/graphics/PEX5/help5.1

hextensionsi /opt/graphics/PEX5/newconfig/usr/lib/X11/extensions

hhp-examplesi /opt/graphics/PEX5/examples/hp

hmani /opt/graphics/PEX5/share/man

hnlsi /opt/graphics/PEX5/lib/nls/msg/C

hora-examplesi /opt/graphics/PEX5/examples/OReilly

hpexi /opt/graphics/PEX5

hpexdi /opt/graphics/PEX5/lbin

hpex-examplesi /opt/graphics/PEX5/examples

hpex-fontsi /opt/graphics/PEX5/fonts

hpex-incli /opt/graphics/PEX5/include/X11R5/X11/PEX5

hpex-libi /opt/graphics/PEX5/lib

hpex-utilsi /opt/graphics/PEX5/utilities

hpro�lei /opt/graphics/PEX5/contrib

hrel-notesi /opt/graphics/PEX5/newconfig/opt/graphics/PEX5

hspooli /var/spool

hvhelpi /opt/graphics/PEX5/help5.1

hvuei /usr/vue

1-8 Pathnames

FINAL TRIM SIZE : 7.5 in x 9.0 in

1
Table 1-6. (continued)

hx11 i /opt/graphics/PEX5/newconfig/usr/lib/X11

hx11-incli /usr/include/X11R5/X11

hx11r5 i /opt/graphics/PEX5/lib/X11R5

hx11r5-incli /usr/include/X11R5

Pathnames 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

Compiling Your Application

This chapter provides information for compiling you application with either
archived or shared libraries for the following Application Programming Interfaces
(APIs): Starbase, HP-PHIGS, and HP PEX. Compiling examples are given for
C, Fortran, and Pascal.

The actual pathnames of the conceptual (italicized and angle-bracketed) directory
names in this chapter depends on the �le system structure, which di�ers between
HP-UX 9.x and HP-UX 10.x . See Chapter 1 for details.

Compiling Your Application 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Compiling Starbase Applications

Compiling with Shared Libraries

The compiler programs (cc, f77, and pc) link with Starbase shared li-
braries by default. Starbase will explicitly load the appropriate device driver
library at run time when you compile and link with the shared library
hcommoni/lib/libhpgfx.sl, or use the -lhpgfx option. This loading occurs at
gopen(3G) time.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with the
shared library driver, use the forms below. Again, if your version of the operating
system is HP-UX 10.20 or newer, the X11 release number should be X11R6, not
X11R5.

cc example.c -I/usr/include/X11R5/X11 -I hsb-incli \

-Lhcommoni -Lhx11r5i -Lhsb-libi \

-lXwindow -lhpgfx -lXhp11 -lX11 -lm -o example

For FORTRAN:

fort77 example.f -I/usr/include/X11R5/X11 -Ihsb-incli \

-Lhcommoni -Lhx11r5i -Lhsb-libi \

-lXwindow -lhpgfx -lXhp11 -lX11 -lm -o example

For Pascal:

pc example.p -I /usr/include/X11R5/X11 -Ihsb-incli \

-Wl,-Lhcommoni -Wl,-Lhx11r5i \

-Wl,-Lhsb-libi -lXwindow -lhpgfx -lXhp11 -lX11 -lm -o example

2-2 Compiling Your Application

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Compiling with Archive Libraries

You can link the appropriate library, for your speci�c device driver, to a program
by using any one of the following:

The path name hsb-libi/hlibrary namei.a;
An appropriate relative path name; or
The -lddhdevice driveri option (for example, -lddhcrx) with the LDOPTS

environment variable set to -a archive and exported.

By default, the linker program ld(1) looks for a shared library driver �rst and
then the archive library driver if a shared library was not found. By exporting
the LDOPTS variable, the -l option will refer only to archive drivers.

As of HP-UX 9.05, archive libraries utilize functionality that is included in
libXext.a. Because the archive library libhpgfx1.a references functionality
in libXext.a, it is necessary to explicitly link libXext.a with your program.
Otherwise, the linker will have unde�ned references.

Examples

Assuming you are using ksh(1), to compile and link a C program for use with
this driver, use the forms below. Again, if your version of the operating system
is HP-UX 10.20 or newer, the X11 release number should be X11R6, not X11R5.

The \-l:libdld.sl" below speci�es the dynamic loader, which is available only
in shared-library form.

export LDOPTS="-a archive"

and then:

export CCOPTS="-I hsb-incli/X11R5/X11"

cc example.c -I/usr/include/X11R5/X11 -Ihsb-incli \

-Lhcommoni -Lhx11r5i -Lhsb-libi \

-lddhdevice driveri -lXwindow -lhpgfx1 -lhpgfx2 -lXhp11 \

-lX11 -lXext -Wl,-E -Wl,+n -l:libdld.sl -lm -o example

For FORTRAN, use:

fort77 example.f -I/usr/include/X11R5/X11 -Ihsb-incli \

-Lhcommoni -Lhx11r5i -Lhsb-libi \

-lddhdevice driveri -lXwindow -lhpgfx1 -lhpgfx2 -lXhp11 \

-lX11 -lXext -Wl,-E -Wl,+n -l:libdld.sl -lm -o example

Compiling Your Application 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

For Pascal, use:

pc example.p -I/usr/include/X11R5/X11 -Ihsb-incli \

-Wl,-Lhcommoni -Wl,-Lhx11r5i \

-Wl,-Lhsb-libi -lddhdevice driveri \

-lXwindow -lhpgfx1 -lhpgfx2 -lXhp11 -lX11 -lXext \

-Wl,-E -Wl,+n -l:libdld.sl -lm -o example

2-4 Compiling Your Application

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Compiling HP-PHIGS Applications

If your version of the operating system is HP-UX 10.20 or newer, the X11 release
number should be X11R6, not X11R5.

Compiling with Shared Libraries

If you are using shared libraries, as we recommend, linking is device-independent.
To compile a C program using shared libraries, you would use the following
command:

cc example.c -Ihx11r5-incli -Ihphigs-incli \

-Lhcommoni/lib -Lhphigs-libi \

-Ihphigs-widgeti/Motif1.2 -Lhx11r5i \

-lXwindow -lphigs -ldl -lhpgfx -ldld \

-lXhp11 -lXi -lXext -lX11 -lm -o example

FORTRAN users can simply replace cc with fort77 in the above command.
Also, if you are a FORTRAN user and prefer using the f77 command, you can
replace cc with f77 and change linking options that are speci�ed as follows:

-Lhpathnamei

to

-Wl,-Lhpathnamei

For more information on compiling and linking, read the section \PHIGS PLUS
Di�erences Between HP-PHIGS 2.2/2.3 and 3.0" in the chapter \Functional
Overview" in the HP-PHIGS Graphics Techniques manual.

Compiling with Archive Libraries

If you are using archived libraries, you need to include your device's driver
library. Note that shared libraries are used by default unless you specify (with
the environment variable LDOPTS) that you want to use archived libraries. You
can set this environment variable in the POSIX, Korn, or Bourne shell to specify
the use of archived libraries by executing the following commands at the shell
prompt or placing them in your shell's start-up script (.profile):

LDOPTS="-a archive"

export LDOPTS

Compiling Your Application 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If you are using the C shell, you can set the LDOPTS environment variable to
specify the use of archived libraries by executing the following command at the
shell prompt or placing it in your shell's start-up script (.cshrc):

setenv LDOPTS "-a archive"

To compile a C program using archived libraries, you would use the following
command:

cc example.c -Ihx11r5-incli -Ihphigs-incli \

-Lhcommoni/lib -Lhphigs-libi \

-Ihphigs-widgeti/Motif1.2 -Lhx11r5i \

-ldddlhdevice driversi -Wl,-E -Wl,+n -l:libdld.sl -lXwindow \

-lphigs -ldl -lhpgfx1 -lhpgfx2 -lXhp11 -lXi -lXext -lX11 \

-lm -o example

The \-l:libdld.sl" above speci�es the dynamic loader, which is available only
in shared-library form.

Multiple graphics device driver libraries may be indicated in the hdevice driversi
location. For example, if your application source �le is called app_one.c and
the executable is app_one and you are using the CRX graphics device driver
(libddgcrx), your compile command would look like this:

cc app_one.c -Ihx11r5-incli -Ihphigs-incli \

-Lhcommoni/lib -Lhphigs-libi \

-Ihphigs-widgeti/Motif1.2 -Lhx11r5i \

-ldddl -lddgcrx -Wl,-E -Wl,+n -l:libdld.sl -lXwindow -lphigs \

-ldl -lhpgfx1 -lhpgfx2 -lXhp11 -lXi -lXext -lX11 -lm -o app_one

The \-l:libdld.sl" above speci�es the dynamic loader, which is available only
in shared-library form.

Fortran users can simply replace cc with fort77 in the above command. Also,
if you are a Fortran user and prefer using the f77 command, you can replace cc
with f77 and change linking options that are speci�ed as follows:

-Lhpathnamei

to

-Wl,-Lhpathnamei

For more information on compiling and linking, read the section \PHIGS PLUS
Di�erences Between HP-PHIGS 2.2/2.3 and 3.0" in the chapter \Functional
Overview" in the HP-PHIGS Graphics Techniques manual.

2-6 Compiling Your Application

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Device Driver Libraries

The following table lists the device driver libraries that should be used with your
particular device driver if you are using archived libraries.

Table 2-1. Device/Device Driver Correlation

libddgcrx.a: HP GRX; HP CRX; HP Dual CRX; HP CRX-24;
HP CRX-24Z; Integrated Graphics:

Color (1280�1024),
Color (1024�768), and
Grayscale (1280�1024);
Internal Color Graphics

libddcrx48z.a: HP CRX-48Z

libddhcrx.a: HP HCRX-8; HP HCRX-8Z; HP HCRX-24; HP
HCRX-24Z

libdd98705.a: PersonalVRX

libdd98766.a: TurboVRX (accelerated)

libddhpgl.a: HP-GL devices with HP-IB interface

libdvio.a: HP-GL devices with RS-232 interface

libddCADplt.a: HP HP-GL/2; HP CADplt; HP CADplt2

No additional libraries required: HP VMX

Compiling Your Application 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Compiling HP PEX Applications

HP PEXlib is supported on the Series 700 workstations using shared libraries
that must be linked with the application program. Only PEX programs written
in C (not FORTRAN or Pascal) are supported.

When you compile your PEXlib programs, you must link the application with the
PEXlib library libPEX5. Note that the PEX library is dependent on the math
library.

A compile line will typically appear:

cc program.c -I hincludei/X11R5 -Lhx11r5i \

-lPEX5 -lXext -lX11 -lm''

For more information on compiling and linking PEXlib programs, see the appro-
priate chapters in the HP PEX Implementation and Programming Supplement .

2-8 Compiling Your Application

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

X Windows, HP-UX 9.0x

This chapter documents information speci�c to the HP X server on HP-UX 9.0x .
It describes features unique to HP's X server, provides information on how to
con�gure the X server and includes a list of supported X con�gurations. For
each supported graphics device, device-dependent con�guration information is
provided.

Information speci�c to a new release of the X server, beyond the scope of the
general information in this document, can be found in the HP-UX release notes
located in /etc/newconfig.

If you prefer to see this information in an ASCII �le, please refer to the �le
/usr/lib/X11/Xserver/info/screens/hp. It includes the same information as
is contained in this chapter.

The X*screens File

The X*screens �le is used to con�gure the operation of the X server. Please refer
to the sample �le in /usr/lib/X11/X0screens, for more information on how to
use the X*screens �le.

X Windows, HP-UX 9.0x 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Miscellaneous Topics

Setting/Unsetting Environment Variables

Each type of shell (sh, csh and ksh) have di�erent ways of setting and unsetting
the value of environment variables to desired values. The following table shows
an example of how the DISPLAY variable is set (where hvaluei would be in the
hhosti:hdisplayi.hscreeni format) and unset for each shell type.

Table 3-1. Setting and Unsetting Environment Variables

Shell Setting the Variable Unsetting the Variable

sh DISPLAY=hvaluei
export DISPLAY

unset DISPLAY

ksh export DISPLAY=hvaluei unset DISPLAY

csh setenv DISPLAY hvaluei unsetenv DISPLAY

Throughout this �le, when an environment variable is de�ned, it will include
a list of valid values or will state that any value is acceptable. When any
value is speci�ed, any non-null string is acceptable, but often the value is set
by convention, to TRUE (e.g., \export hvariablei=TRUE" in ksh).

3-2 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Double Buffer Extension (DBE)

DBE is an extension to the X server that provides a double-bu�ering Application
Programming Interface (API). Note that MBX (the Multi-Bu�ering eXtension
to X) has not been adopted as an industry standard, as DBE has. Thus, it
is recommended that applications that use MBX be ported to DBE usage in
preparation for future MBX obsolescence. For more information about DBE and
the API, consult the DBE man pages:

DBE
XdbeQueryExtension

XdbeGetVisualInfo

XdbeFreeVisualInfo

XdbeAllocateBackBufferName

XdbeDeallocateBackBufferName

XdbeSwapBuffers

XdbeBeginIdiom

XdbeEndIdiom

XdbeGetBackBufferAttributes

Performing Buffer Swaps on Vertical Blank

For performance reasons, the default DBE behavior is to not synchronize bu�er
swaps with the monitor's vertical retrace period. In some instances, therefore,
image tearing (seeing part of the old image and part of the new image on the
display at the same time) could be visible while swapping large DBE windows.
For those instances where tearing would occur and is undesirable, an optional X
server mode is available to allow for synchronization of bu�er swaps with vertical
retrace. To activate this optional X server mode, set the environment variable
SWAP_BUFFERS_ON_VBLANK to any value before the X server is started.

X Windows, HP-UX 9.0x 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Supported Devices

The X server supports DBE on the following devices:

Internal Color Graphics
Integrated Color Graphics
Color Graphics cards
Dual Color Graphics cards
CRX
CRX-24[Z]
CRX-48Z
HCRX-8[Z]
HCRX-24[Z]
HP Visualize-8
HP Visualize-24
HP Visualize-48
Freedom SeriesTM Graphics: S3150, S3250 and S3400. (\Freedom Series" is a
trademark of Evans & Sutherland Computer Corporation.)

MBX

The MBX extension (Multi-Bu�ering Extension) is supported on all graphics
devices supported on the HP 9000/700 machines, except the PersonalVRX and
the TurboVRX.

HP's implementation of MBX exists mainly to support fast double-bu�ering for
PEX applications. Therefore, MBX only supports allocation of one or two MBX
bu�ers; no more. Some graphics devices/visuals have a single 8-plane bu�er;
these include Internal Color Graphics, Integrated Color Graphics, Color Graphics
cards, Dual Color Graphics cards and the overlay planes on the CRX-24[Z],
CRX-48Z, the HCRX family and the Freedom Series Graphics (S3150, S3250
and S3400). For these devices, MBX double-bu�ering is still supported, but the
second bank is allocated in virtual memory. Rendering and bu�er-swapping in
these instances is slower than devices/visuals that support true hardware double-
bu�ering.

Currently, there is no easy way to determine which visuals, from a device's list of
visuals, support fast MBX hardware double-bu�ering. The CRX and Dual-CRX
device is a double-bu�ered device and therefore always supports MBX hardware
double-bu�ering. The Internal Color Graphics, Integrated Color Graphics, Color

3-4 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Graphics cards and Dual Color Graphics cards only support MBX software
bu�ering. All other devices that have both overlay and image planes support fast
MBX hardware double-bu�ering in the image planes and slower MBX software
double-bu�ering in the overlays. Consult the following device-speci�c sections
for a list of visuals that support software and hardware MBX double-bu�ering.

For performance reasons, the default MBX behavior is to not synchronize with
the monitors vertical retrace period. In some instances, image tearing could be
visible while swapping large MBX windows. For those instances where tearing
would occur and is undesirable, an optional X server mode is available to allow for
synchronization with vertical retrace. To activate this optional X server mode,
set the environment variable SWAP_BUFFERS_ON_VBLANK to any value before the
X server is started.

With this mode enabled, all MBX bu�er swaps are synchronized with the
monitor's vertical retrace period. This mode is not needed in drawables used
for PEX rendering. PEX turns synchronization on and thus does not require this
tuning.

The MBX Application Programming Interface is thoroughly discussed in the
O'Reilly & Associates, Inc. PEXlib Programming Manual by Tom Gaskins.
Consult that manual to understand the creation, manipulation, and destruction
of MBX bu�ers.

Since MBX is not an industry standard, developers should replace MBX calls
with DBE calls.

Note Note that XmbufGetScreenInfo() can indicate that a window
supports MBX even if only one MBX bu�er is supported. An
application should always check the max_buffers �eld in the
returned XmbufBufferInfo structure before assuming that a
window supports two MBX bu�ers.

X Windows, HP-UX 9.0x 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Single Logical Screen (SLS)

SLS is a mechanism for treating homogeneous multi-display con�gurations as
a single \logical" screen. This allows the moving/spanning of windows across
multiple physical screens. \Homogeneous" means SLS only works if the graphics
devices included in the \SLS Con�guration" are of the same type (see the list
of the supported SLS con�gurations shown below.) SLS is enabled via the
/usr/lib/X11/X0screens �le with the syntax:

SingleLogicalScreen n m

/dev/crt0 ... /dev/crtk

where n=the number of \rows" in the physical con�guration, m=the number of
\columns" in the physical con�guration, and the product of n�m is less than or
equal to four.

For example, to create a logical screen that is one screen tall by two screens wide,
the following syntax would be used:

SingleLogicalScreen 1 2

/dev/crt0 /dev/crt1

Whereas for a logical screen that is two screens tall by one screen wide, the syntax
would be:

SingleLogicalScreen 2 1

/dev/crt0 /dev/crt1

Supported SLS Configurations

Series 712 with an Integrated Color Graphics + plug-in Color Graphics
Series 715 with an Integrated Color Graphics + plug-in Color Graphics
Series 720 with a Dual CRX
Series 725 with an Integrated Color Graphics + plug-in Color Graphics
Series 730 with a Dual CRX
Series 735 with a Dual CRX
Series 750/755 with a Dual CRX
Series 750/755 with two Dual CRXs
Series 750/755 with two CRX24s
Series 750/755 with two CRX24Zs
Series 770 with two HCRX24s
Series 770 with a Duet

3-6 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP VUE and Single Logical Screen

Please note that HP VUE has not been modi�ed to take advantage of the Single
Logical Screen capability. When presenting information on your display, HP VUE
may split a window across physical screens. Examples include:

The login screen.
The Front Panel.
Window move and resize boxes.
The screen lock dialog.

This behavior is the result of HP VUE's naive assumption that it is running
against one large screen; it centers these windows accordingly.

If you are using the default HP VUE key bindings, you can easily reposition the
Front Panel so that it is completely contained within one physical screen:

1. With the input focus on the Front Panel, press �Alt�-�Space� (on older keyboards,
use �Extend Char� �Space�).

2. With the Front Panel menu posted and the \Move" menu item selected, press
�Enter� (on older keyboards, �Return�) to start the move.

3. Use the mouse or the arrow keys to reposition the Front Panel to the desired
location.

4. Press �Enter� (or �Return�) to complete the move. You may instead press �Esc� to
cancel the move.

Afterwards, this setting will be remembered and restored at your next login. If
you have previously set a Home session, you will need to re-set the Home session
in the Style Manager to register the new Front Panel position.

Note that there is no mechanism in HP VUE for repositioning the login screen,
window move/resize boxes, or the screen lock dialog.

HP Color Recovery

Color Recovery is a technique that generates a better picture by eliminating the
graininess caused by traditional dithering techniques. It is available on these
graphics devices:

Integrated Color Graphics and plug-in Color Graphics cards
HCRX: HCRX-8[Z], HCRX-24[Z], HP Visualize-8, HP Visualize-24, HP
Visualize-48

X Windows, HP-UX 9.0x 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Color Recovery is available when using either PseudoColor or depth-8 TrueColor
visuals.

There are two components to the Color Recovery process. First, a di�erent
dither-cell size (16�2) is used when rendering shaded polygons. Second, a digital
�lter is used when displaying the contents of the frame bu�er to the screen.

Under some conditions, Color Recovery can produce undesirable artifacts in the
image (this also happens with dithering, but the artifacts are di�erent). However,
images rendered with Color Recovery are seldom worse than what dithering
produces. In most cases, Color Recovery produces signi�cantly better pictures
than dithering.

Color Recovery is available by default for all depth-8 color visuals on devices
that support the feature. If, for some reason, you wish to disable Color Recovery,
set the HP_DISABLE_COLOR_RECOVERY environment variable to any value before
starting the server.

Color Recovery is enabled in conjunction with a particular X colormap that is
associated with your window. If the X colormap is not installed in hardware,
you may not see the e�ect of the Color Recovery �lter (you may not even see the
correct colors for that window). Given that more than one hardware colormap
(or \color lookup table") is available, this should happen infrequently.

The Color Recovery colormap is a read-only colormap. Any attempts to change
it will be ignored and no error will be reported.

Access to the Color Recovery capability is transparent when using a 3D graphics
API such as Starbase, HP-PHIGS or PEX. If you are producing graphics using
Xlib calls, your application must perform some of the necessary processing.
The method to access Color Recovery via Xlib is described in a section called
\Accessing HP Color Recovery Technology via Xlib" in the device-dependent
sections.

3-8 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Dynamic Loading

HP's X server now dynamically loads the appropriate device drivers and
extensions based on the target graphics display device and the extensions it
supports. This feature should be transparent to X server users.

The extension/device relationships are explained in the extension speci�c sections
of this �le.

Note Altering or removing �les under /usr/lib/X11/Xserver may
prevent the X server from running.

Shared Memory Usage

Graphics processes use shared memory to access data pertaining to the display
device and X11 resources created by the server. (\Resources" includes windows,
colormaps, and cursors.) The X11 server initiates an independent process
called the Graphics Resource Manager (GRM) to manage these resources among
graphics processes. Graphics processes include PEXlib, PHIGS, and Starbase
applications. One problem encountered with GRM shared memory is that it may
not be large enough to run some applications.

Graphics applications that require VM double-bu�ering (for example, when the
HP_VM_DOUBLE_BUFFER environment variable is used) use large amounts of shared
memory. Shared memory can be completely consumed by several double-bu�ered
graphics windows. When an application attempts to use more shared memory
than is available, the application encounters errors and might terminate.

You can circumvent the problem by using environment variables to change the
shared memory size.

X Windows, HP-UX 9.0x 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Changing Graphics Shared Memory Size

The size of the shared memory segment used by the GRM can be controlled
through an environment variable. The default value is 0x580000 (5.5 Mbytes) on
Series 700 computers.

Note The actual GRM shared memory size on a system can be
determined by running \ipcs -ma", �nding the entry with CPID
matching the process ID of the grmd process and then checking
the segment size (SEGSZ) �eld.

If more shared memory space is needed, graphics shared memory size can be
increased. For example, to set it to eight megabytes in ksh:

export GRM_SIZE=0x800000

Note that the value must be in hexadecimal. The new value won't take e�ect
until you restart the X11 server.

It is also possible to decrease the size of GRM shared memory. You may want to
do this if you want to reduce the swap space requirements of your system and/or
you do not intend to run any 3D graphics processes. For example, you could
reduce graphics shared memory size to 0x100000 (one megabyte).

Count Transparent In Overlay Visual

In some con�gurations, an 8-plane overlay visual may have less than 256 colors.
This should not cause a problem for most applications. If an application depends
on 8-plane visuals having 256 colormap entries, this option may be useful. Setting
this option to any value will cause the X server to count transparent entries in
the number of colormap entries.

Examples of Relevant Graphics Devices: CRX-24[Z], CRX-48Z, HCRX-8[Z],
HCRX-24[Z], HP Visualize-8, HP Visualize-24, HP Visualize-48

Environment Variable To Use: HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

3-10 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Enable Overlay Transparency

This option is used to enable the usage of an overlay transparent color on devices
that can support it, but, by default, do not allow it (for example, HCRX-8).

Examples of Relevant Graphics Device: HCRX-8[Z], HP Visualize-8

Environment Variable To Use: HP_ENABLE_OVERLAY_TRANSPARENCY

The variable may be set to any value before starting the X server.

Note that setting this variable will cause the number of colormaps to drop to one
in the Overlay planes and one in the Image planes. See the section on the HCRX
family of devices for more information.

3-Bit Center Color

This option is available to force the X server to center colors in the colormap
to values that will reduce the amount of twinkle on
at-panel conversion. This
option applies only to
at-panel displays.

The twinkling e�ect is caused by the analog-to-digital conversion. Due to noise
in the analog signal, it is possible for a color near a boundary between two digital
values to cause the conversion to bounce back-and-forth between the two colors
(i.e., twinkle). In order to avoid this e�ect, the server \centers" the colors as far
from the color boundaries as possible.

Examples of Relevant Graphics Device: Integrated Color Graphics, Color
Graphics cards, Internal Color Graphics

Environment Variable To Use: HP_3_BIT_CENTERCOLOR

The variable may be set to any value before starting the X server.

Image Text Via BitMap

When using the Xlib XDrawImageString() call to draw text, a visual e�ect may
be seen where text appears to
icker as the background and foreground are drawn
in distinct graphics operations. This option is available to eliminate the
icker
e�ect but at the expense of reduced text performance. The option will make
the X server �rst draw text to an o�-screen pixmap prior to displaying it to the
screen.

X Windows, HP-UX 9.0x 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Examples of Relevant Graphics Device: Integrated Color Graphics, Color
Graphics cards, CRX-24[Z], CRX-48Z, HCRX-8[Z], HCRX-24[Z], HPVisualize-
8, HP Visualize-24, HP Visualize-48

Environment Variable To Use: HPGCRX_IMAGETEXT_VIA_BITMAP

The variable may be set to any value before starting the X server.

Note Using this option will reduce text performance.

Obsolete Environment Variables

These environment variables are no longer supported:

HP_SUPPRESS_TRUECOLOR_VISUAL

HP_COLORMAP_MANAGEMENT_SCHEME

These environment variables are being replaced and may not be supported in
future releases:

Old Name: WMSHMSPC
New Name: GRM_SIZE
Old Name: MBX_SWAP_BUFFERS_ON_VBLANK
New Name: SWAP_BUFFERS_ON_VBLANK
Old Name: CRX24_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL
New Name: HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

3-12 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Special Device Files

Special device �les are used to communicate between the computer and peripheral
devices. The X server requires the use of a special device �le for each graphics
card present in the system.

Special device �les are created with the mknod command. The mknod command
resides in /etc and may only be invoked by a superuser (i.e., root). Although
special device �les can be made in any directory of the HP-UX �le system, the
convention is to create them in the /dev directory. Any name may be used for
the special device �le; however, the names that are suggested for the devices
are crt, crt0, crt1, crt2, or crt3. It is also acceptable to use a name that is
descriptive of the graphics device, for example, crt1.left or crt1.right. The
usage statement for the mknod command is:

mknod: arg count

usage: mknod name b|c major minor [cnode]

mknod name p

X Windows, HP-UX 9.0x 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

All graphics special device �les are character device �les with read-write
permissions by all. For 9.0x systems, the major number will always be 12 (On
10.0 systems, the major number will always be 174). The following table, in which
the leading \0x" indicates that the number is in hexadecimal format, indicates
which minor numbers to use for creating alternate device �les:

Table 3-2. Special Device Files: Major/Minor Numbers

Device
Filename

9.0x
Minor Number

10.x
Minor Number

Description

/dev/crt 0x100000 0x000000 Standard console device �le

/dev/crt.r 0x100000 0x000000 Dual CRX Graphics console,
right device

/dev/crt.l 0x100004 0x000004 Dual CRX Graphics console, left
device

/dev/hcrx 0x000000 0x010000 Secondary graphics device �le

/dev/freedom 0x000000 0x010000 Freedom Series, secondary
graphics device �le

/dev/crt1.r 0x000000 0x010000 Secondary graphics device is
Dual CRX Graphics, right device

/dev/crt1.l 0x000004 0x010004 Secondary graphics device is
Dual CRX Graphics, left device

/dev/crt2 (note 1) 0x020000 Third graphics device �le

/dev/crt3 (note 1) 0x030000 Fourth graphics device �le

Following are some examples of using the mknod entry for the HP-UX Operating
System.

For an SPU with only one SGC interface slot (e.g., a Model 720) running Dual
CRX graphics, a sample 9.07 mknod entry for the second graphics device would
be:

/etc/mknod /dev/crt0.left c 12 0x000004

chmod 666 /dev/crt0.left

3-14 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

For an SPU with two SGC interface slots, a sample mknod entry for the other
slot would be:

/etc/mknod /dev/crt1.right c 12 0x000000

chmod 666 /dev/crt1.right

Note that once the device �le has been created, it is necessary to ensure that it
has read-write permissions by all; i.e., \chmod 666".

X Windows, HP-UX 9.0x 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Supported X Configurations

Supported Graphics Devices

The table below summarizes the graphics devices that are supported on each of
the HP9000 Series systems:

Table 3-3. Graphics Devices Supported on HP-UX 9.x

Graphics Devices Supported HP 9000 Models

Integrated GrayScale Graphics1 712 (all models), 715/64, 715/80, 715/100, 725/100

Integrated Color Graphics2 712 (all models), 715/64, 715/80, 715/100,
725/100, 748i/64, 748i/100, V743/64, V743/100

Color Graphics card 712 (all models), 715/64, 715/80, 715/100,
725/100, 748i/64, 748i/100, J200, J210

Dual Color Graphics card 715/64, 715/80, 715/100, 725/100, J200, J210

Internal GrayScale Graphics1 705, 710, 715/33, 715/50, 715/75, 725/50, 725/75

Internal Color Graphics2 705, 710, 715/33, 715/50, 715/75, 725/50, 725/75,
745i/50, 745i/100, 747i/50, 747i/100

CRX, Dual CRX 720, 730, 735, 735/125, 750, 755, 755/125, 747i/50,
747i/100

GRX 720, 730, 735, 735/125

CRX-24 715/33, 715/50, 715/75, 720, 725/50, 725/75, 730,
735, 735/125, 747i/50, 747i/100, 750, 755, 755/125

CRX-24Z 715/33, 715/50, 715/75, 720, 725/50, 725/75, 730,
735, 735/125, 750, 755, 755/125

3-16 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-3.

Graphics Devices Supported on HP-UX 9.x (continued)

Graphics Devices Supported HP 9000 Models

CRX-48Z 715/50, 715/75, 715/100, 725/50, 725/75, 725/100,
735, 735/125, 755, 755/125, J200, J210

HCRX-8, HCRX-8Z, HCRX-24,
HCRX-24Z, HP Visualize-8,
HP Visualize-24

715/64, 715/80, 715/100, 725/100, J200, J210

PersonalVRX, TurboVRX 720, 730, 735, 735/125, 750, 755, 755/125 (no
longer on the Corporate Price List)

Freedom SeriesTM Graphics
(S3150, S3250 and S3400)

715/80, 715/100, J200, J210

HP Visualize-48 J200, J210

1 Integrated GrayScale Graphics and Internal GrayScale Graphics is
supported on high-resolution (1280�1024) for all Models speci�ed above.

2 Integrated Color Graphics and Internal Color Graphics are supported on
both medium-resolution (1024�768) and high-resolution (1280�1024)
con�gurations of the Series 700 Models 705, 710, 712 (all models), and
715/33. High resolution is supported on all other Models speci�ed above.

Multi-Display Support

The following de�nitions are included to help alleviate confusion between the
terms multi-display, multi-screen, multi-seat, and single logical screen.

Multi-Display: A con�guration with multiple graphics devices (displays) used
concurrently. Any multi-seat or multi-screen con�guration is referred to as a
multi-display con�guration.
Multi-Screen: A con�guration in which a single X server with a mouse and
keyboard drives multiple graphics devices (where each head is a di�erent X11
screen) concurrently while only allowing the cursor, not windows, to be moved
between heads.
Multi-Seat: A con�guration with multiple instantiations of the X server, each
with its own mouse, keyboard, and heads. Multi-seat is not supported on the
HP-UX 9.0x release.

X Windows, HP-UX 9.0x 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Single Logical Screen: A con�guration in which a single X server with a single
mouse and keyboard drives multiple homogeneous graphics devices (heads)
concurrently while allowing the heads to emulate a large single screen. This
di�ers from a multi-screen environment by allowing windows to be moved and
displayed across heads. See the section in this document on Single Logical
Screen.

Note that di�erent monitor resolutions are not supported with multi-display
con�gurations.

Multi-Screen Support

This section refers to multi-screen con�gurations only. Running one X server
on more than one graphics display is called a \multi-screen" operation. The
keyboard and pointer are shared among the screens. Multiple screens are enabled
via the /usr/lib/X11/X*screens �le. The X*screens �le is used to con�gure
the operation of the X server. The screens are de�ned in the X*screens �le by
specifying the appropriate special device �les. See the section in this document
on special device �les and /usr/lib/X11/X0screens for more information.

A separate screen entry for each graphics display is entered in the X*screens �le.
The order of entries determines each screen number starting at 0. The devices
can be arranged in any order.

For example, in the following multi-screen system, the screen numbers are
assigned as indicated:

/dev/crt1 # first entry is screen 0 (as in local:0.0)

/dev/crt0 # second entry is screen 1 (as in local:0.1)

/dev/crt2 # third entry is screen 2 (as in local:0.2)

The X server supports up to four screens at a time. Specifying more than four
screens will cause a server error message.

3-18 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The following multi-screen con�gurations are supported (unless otherwise stated,
di�erent resolutions are not supported with multi-display con�gurations):

712/60 and 712/80:
Integrated Color Graphics and one plug-in Color Graphics card.

715/33:
Internal Color Graphics and one CRX-24
Internal Color Graphics and one CRX-24Z

715/50, 715/75, 725/50, and 725/75:
Internal Color Graphics and one CRX-24
Internal Color Graphics and one CRX-24Z
Internal Color Graphics and one CRX-48Z

715/64, 715/80, and 715/100:
Integrated Color Graphics and one plug-in Color Graphics card.
Integrated Color Graphics and one Dual Color Graphics card
Integrated Color Graphics and one HCRX-24
Integrated Color Graphics and one HCRX-24Z
Integrated Color Graphics and one HP Visualize-24

725/100:
Integrated Color Graphics and up to two plug-in Color Graphics cards
Integrated Color Graphics and one Dual Color Graphics card
Integrated Color Graphics and one HCRX-24
Integrated Color Graphics and one HCRX-24Z
Integrated Color Graphics and one HP Visualize-24

720, 730, 735, and 735/125:
One Dual CRX

748i/64 and 748i/100:
Integrated Color Graphics and one plug-in Color Graphics card (3x5)
Two plug-in Color Graphics cards (3x5)

747i/50 and 747i/100:
One Dual CRX
Internal Color Graphics and one Dual CRX

750, 755 and 755/125:
One Dual CRX
Two Dual CRXs
Two CRX-24s

J200 and J210:

X Windows, HP-UX 9.0x 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Up to four screens with any combination of plug-in Color Graphics cards and
Dual Color Graphics cards
One or two Dual Color Graphics cards
Up to three plug-in Color Graphics cards
One Dual Color Graphics card and up to two plug-in Color Graphics cards

Two HCRX-24 cards
One plug-in Color Graphics card and one HCRX-24Z
One plug-in Color Graphics card and one HP Visualize-24
One plug-in Color Graphics card and one CRX-48Z

3-20 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Integrated Color Graphics Device-Dependent Information

This sections includes information on Integrated Color Graphics, Color Graphics,
and Dual Color Graphics cards.

Supported Visuals

For color displays:

Class PseudoColor Depth 8:
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8:
supports DBE and MBX software double-bu�ering

For grayscale displays, only one visual is supported:

Class GrayScale Depth 8:
supports DBE and MBX software double-bu�ering

Supported Environment Variables

The following environment variables are supported:

SWAP_BUFFERS_ON_VBLANK
HP_DISABLE_COLOR_RECOVERY

HP_3_BIT_CENTERCOLOR

HPGCRX_IMAGETEXT_VIA_BITMAP

Colormaps and Colormap Management

Color Graphics devices have two hardware colormaps (color lookup tables), each
with 256 entries. The X server controls the allocation and contents of these
hardware colormaps.

The Default Colormap Management Scheme

Many applications use the default X11 colormap. A \technicolor" e�ect in
the windows using the default colormap occurs when a non-default colormap
is downloaded into the hardware colormap that had previously contained the
default colormap.

X Windows, HP-UX 9.0x 3-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Because so many applications use the default X11 colormap|including the
window manager|and because Color Graphics devices have two hardware
colormaps, the default behavior on this device is to dedicate one hardware
colormap to always hold the default X11 colormap. The second hardware
colormap is available to applications that use colormaps other than the default.

The default behavior can cause technicolor if two or more applications are using
di�erent, non-default colormaps. For example, Application A uses the default
X11 colormap, Application B uses a di�erent colormap, and Application C uses
a third colormap. If applications A, B, and C are all executed simultaneously on
a Model 712, application A would look correct. Either application B or C would
have a technicolor e�ect|the application whose colormap was last downloaded
into the hardware colormap would look correct.

Accessing HP Color Recovery Technology via Xlib

Color Recovery is a technique to generate a better picture by attempting to
eliminate the graininess caused by dithering. Access to the Color Recovery
capability is transparent when using a 3D graphics API such as Starbase, HP-
PHIGS or PEX. If you are producing graphics using Xlib calls, your application
must perform some of the necessary processing. At server startup (if Color
Recovery is not disabled in the X*screens �le), the following properties are de�ned
and placed on the root window:

_HP_RGB_SMOOTH_TRUE_MAP

_HP_RGB_SMOOTH_PSEUDO_MAP

_HP_RGB_SMOOTH_MAP_LIST

These properties are of type RGB_COLOR_MAP and carry pointers to struc-
tures of type XStandardColormap. They may be interrogated with calls to
XGetRGBColormaps. The colormaps in the _HP_RGB_SMOOTH_TRUE_MAP and
_HP_RGB_SMOOTH_PSEUDO_MAP structures identify colormaps which are created
at server startup and are for use with the TrueColor and PseudoColor visuals,
respectively. They are both initialized to contain the 3:3:2 ramp of 8-bit True-
Color. Neither of these colormaps can be modi�ed, as they are read-only . The
property _HP_RGB_SMOOTH_MAP_LIST is a list of colormaps that are associated
with window visual IDs that support Color Recovery. When the XGetRGBCol-

ormaps routine searches through this list for a colormap with a visual ID that
matches your window's visual ID and it �nds one, your application knows that

3-22 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

your visual supports Color Recovery, and uses that colormap for any Color Re-
covery window in your window's visual.

Note that the algorithm used for the Color Graphics device is slightly di�erent
from that used for the HCRX family of devices. If you do not wish for your
application to have to do device-speci�c checks, HP recommends that you use
the HCRX encoding algorithm for Color Recovery regardless of the device on
which your application is executing. The results on the Color Graphics device
will not be optimal, but will generally still be much better than a standard
dither. If you are willing to do device-speci�c checks, the existence of either
the _HP_RGB_SMOOTH_TRUE_MAP or _HP_RGB_SMOOTH_PSEUDO_MAP property will
indicate the device is Color Graphics.

Color Recovery uses all 256 entries of one of the available colormaps. The color
visual used by Color Recovery emulates the 24-bit TrueColor visual, thus, the
colors red, green, and blue are typically declared as integers in the range from
0 to 255. Note that each window that uses Color Recovery will have the same
colormap contents.

For Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue, and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range 0..255.

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to three bits of red and green
and two bits of blue. The quantized results are packed into an 8-bit unsigned
char and then stored in the frame bu�er. In the process of sending the contents
of the frame bu�er to the CRT, a special section in the hardware then converts
the frame bu�er's 8-bit data into a 24-bit TrueColor data for display.

X Windows, HP-UX 9.0x 3-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue, GreenValue, BlueValue, Xp, Yp)

int RedValue, GreenValue, BlueValue, Xp, Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9}};

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0}};

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5} };

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

/* Determine the dither table entries to use based on the pixel address */

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

/* Start with the initial values as supplied by the calling routine */

red = RedValue;

green = GreenValue;

blue = BlueValue;

/* Generate the red dither value */

red += dither_red[y_dither_table][x_dither_table];

/* Check for overflow or underflow on red value */

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

/* Generate the green dither value */

green += dither_green[y_dither_table][x_dither_table];

/* Check for overflow or underflow on green value */

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

/* Generate the blue dither value */

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

/* Check for overflow or underflow on blue value */

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

/* Generate the pixel value by "or"ing the values together */

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

3-24 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Internal Color Graphics, Internal GrayScale Graphics,
CRX, GRX, andDual-CRX Device-Dependent Information

Supported Visuals

Only one visual is supported.

For color displays:

Class PseudoColor Depth 8:
supports DBE and MBX hardware double-bu�ering (CRX, Dual CRX);
supports DBE and MBX software double-bu�ering (Internal Color Graphics).

For grayscale displays:

Class GrayScale Depth 8:
supports DBE and MBX hardware double-bu�ering (GRX); supports DBE and
MBX software double-bu�ering (Internal GrayScale Graphics).

Supported Environment Variables

The following environment variables are supported:

SWAP_BUFFERS_ON_VBLANK

HP_3_BIT_CENTERCOLOR (Internal Color Graphics only)
HPGCRX_IMAGETEXT_VIA_BITMAP

X Windows, HP-UX 9.0x 3-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

CRX-24[Z] Device-Dependent Information

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
supports DBE and MBX software double-bu�ering
Class DirectColor Depth 12 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 12 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image:
does not support DBE and MBX double-bu�ering
Class TrueColor Depth 24 Layer Image:
does not support DBE and MBX double-bu�ering

Supported Environment Variables

The following environment variables are supported:

SWAP_BUFFERS_ON_VBLANK

HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

HPGCRX_IMAGETEXT_VIA_BITMAP

CRX-24[Z] Transparent Overlay Visuals

The default number of colormap entries in the overlay visual for the CRX-24[Z]
is 255. Entry 255 is excluded because its value is hard-coded to transparent (that
is, show the image planes).

This may have the following two consequences for X11 applications running in
the overlay planes (the default visual):

Clients attempting to allocate 256 entries do not have their request granted.
Clients requesting (via XAllocNamedColor) the rgb.txt value of Transparent
are not returned entry 255.

3-26 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

This default behavior can be changed by setting the environment variable
HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL to any value. When this option
is enabled, the X server does the following:

Speci�es that the overlay visual has 256 entries.
Creates the default colormap with entry 255 pre-allocated to Transparent. A
client calling XAllocNamedColor for entry Transparent in the default colormap
will be returned entry 255.
For all other colormaps, returns all 256 entries as allocable, but issues a warning
message:

Warning: XCreateColormap is creating 256 entry cmaps in overlay visual.

Though allocable, entry 255 is hard-coded to transparency.

This warning is issued once per server execution.

X Windows, HP-UX 9.0x 3-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

CRX-48Z Device-Dependent Information

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
supports DBE and MBX software double-bu�ering
Class DirectColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering

Supported Environment Variables

The following environment variables are supported:

SWAP_BUFFERS_ON_VBLANK

HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

HPGCRX_IMAGETEXT_VIA_BITMAP

CRX-48Z Transparent Overlay Visuals

The default number of colormap entries in the overlay visual for the CRX-48Z is
255. Entry 255 is excluded because its value is hard-coded to transparent (that
is, show the image planes).

This may have the following two consequences for X11 applications running in
the overlay planes (the default visual):

Clients attempting to allocate 256 entries do not have their request granted.
Clients requesting (via XAllocNamedColor) the rgb.txt value of Transparent
are not returned entry 255.

3-28 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

This default behavior can be changed by setting the environment variable
HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL to any value. When this option
is enabled, the X server does the following:

Speci�es that the overlay visual has 256 entries.
Creates the default colormap with entry 255 pre-allocated to Transparent. A
client calling XAllocNamedColor for entry Transparent in the default colormap
will be returned entry 255.
For all other colormaps, returns all 256 entries as allocable, but issues a warning
message:

Warning: XCreateColormap is creating 256 entry cmaps in overlay visual.

Though allocable, entry 255 is hard-coded to transparency.

This warning is issued once per server execution.

X Windows, HP-UX 9.0x 3-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HCRX Device-Dependent Information

This section includes information on the HCRX-8[Z] and HCRX-24[Z] devices,
and the HP Visualize-8, HP Visualize-24, and HP Visualize-48 devices.

The HCRX-8[Z] is a one board device (two, with the optional accelerator that
has eight overlay planes, two banks of 8 image planes, and 4 hardware colormaps.
This device provides a superset of functionality in the CRX.

The HCRX-24[Z] is a one board device (two, with the optional accelerator) that
has eight overlay planes, two banks of 12 image planes, and 4 hardware colormaps.
This device provides a superset of functionality in the CRX-24[Z].

The HP Visualize-8 is a two board accelerated device that has eight overlay
planes, two banks of 8 image planes, and 4 hardware colormaps. This device
provides a superset of functionality in the CRX.

The HP Visualize-24 is a two board accelerated device that has eight overlay
planes, two banks of 12 image planes, and 4 hardware colormaps. This device
provides a superset of functionality in the CRX-24[Z].

The HP Visualize-48 is a two-board accelerated device (three, with the optional
texture- mapping hardware) that has eight overlay planes, two banks of 24
image planes, and six hardware colormaps. This device provides a superset of
functionality in the CRX-48Z. The hardware support for accelerating 2D Xlib
primitives is similar to that in the other HCRX devices. The hardware for
accelerating 3D geometry, lighting, and shading, is new.

3-30 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Supported Visuals

The following visuals are supported on the HCRX-8[Z] and HP Visualize-8:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
(see Note) supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent:
(see Note) supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering

Note The two overlay visuals are mutually exclusive, based on the
presence of the HP_ENABLE_OVERLAY_TRANSPARENCY environment
variable (i.e., if the HP_ENABLE_OVERLAY_TRANSPARENCY environ-
ment variable is set, then the visual that supports transparency
is available, otherwise the visual which does not support trans-
parency is available).

The following visuals are supported on the HCRX-24[Z] and HP Visualize-24:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent:
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 12 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 12 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image:
does not support DBE and MBX double-bu�ering
Class TrueColor Depth 24 Layer Image:
does not support DBE and MBX double-bu�ering

X Windows, HP-UX 9.0x 3-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The following visuals are supported on the HP Visualize-48:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent:
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering

Supported Environment Variables

The following environment variables are supported:

SWAP_BUFFERS_ON_VBLANK

HP_DISABLE_COLOR_RECOVERY

HP_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

HP_ENABLE_OVERLAY_TRANSPARENCY (HCRX-8[Z] and HP Visualize-8 only)
HPGCRX_IMAGETEXT_VIA_BITMAP

HCRX Configuration Hints

HCRX-8[Z] and HP Visualize-8 Visuals and Double-Buffer Support

The 8-plane HCRX-8[Z] and HP Visualize-8 are the �rst members of the Series
700 graphics family whose overlay planes and image planes are both depth 8.

There are two depth-8 PseudoColor visuals (one in the overlay planes, the
other in the image planes). There is also a depth-8 TrueColor visual in the
image planes.
The default visual (where the root window and default colormap reside) is in
the overlay planes.
Fast 8/8 double-bu�ering (two hardware bu�ers) is supported in the depth-8
image planes, but not in the overlays. The overlay planes support the slower
virtual-memory-based double-bu�ering.

3-32 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Implications and Suggestions for HCRX-8[Z] and HP Visualize-8

The default colormap cannot be used with a window in a non-default visual, even
one of the same depth as the default visual.

Before trying to use the default colormap in a depth-8 window, verify that the
window is in the default visual. If the window is not in the default visual, create
a colormap in that visual. This process is the same as the one used to create
windows in depth-12 or depth-24 visuals.

Unlike the CRX, the HCRX-8[Z]'s default visual and the HP Visualize-8's
default visual do not have fast hardware double-bu�ering (but the image planes
do).

To obtain hardware double-bu�ering, �nd a visual in the image planes. The
best method is to �nd all the depth-8 PseudoColor visuals returned by
XGetVisualInfo and then eliminate the visuals that are reported in the
SERVER_OVERLAY_VISUALS property (discussed below).

HCRX Overlay Visuals and Overlay Transparency

As on the CRX-24[Z] and CRX-48Z, the SERVER_OVERLAY_VISUALS property on
the root window is used to describe the visuals that are in the overlay planes.

Overlay Transparency on the HCRX-8[Z] and HP Visualize-8

The 8-plane HCRX-8[Z] and the 8-plane HP Visualize-8 both have one visual
in the overlay planes (depth-8 PseudoColor). By default, these overlay visuals
have no transparent index available to applications for rendering transparency.
This means the overlay windows with \
oating text" are not supported in the
typical X server operation on the HCRX-8[Z] or HP Visualize-8.

For applications that require transparent overlay windows on the HCRX-8[Z] or
HP Visualize-8, an optional X server mode is available to allow for overlay
transparency, but it is restrictive. In this optional mode, overlay colormaps
provide a single entry that can be used to render transparency. Only one hardware
colormap is available in the overlays (instead of two) and only one hardware
colormap is available in the image planes (instead of two).

To activate this optional X server mode to enable transparency, set the
environment variable HP_ENABLE_OVERLAY_TRANSPARENCY to any value. You will
need to restart the X server for the option to take e�ect.

X Windows, HP-UX 9.0x 3-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

With this mode enabled, colormaps created in the default visual have 255 entries;
entry 256 is reserved for transparency. As on the CRX-24[Z] and CRX-48Z, the
environment variable HP_ENABLE_OVERLAY_TRANSPARENCY can be used to include
the transparent index in the colormap size (256 entries instead of 255).

Programmer's Note If transparency is not enabled, there are only 252 colors
available. Entries 252-255 are not writable, and should
not be used; there are only 252 colormap extries available,
even though the server states that there are 256.

Overlay Transparency on the HCRX-24[Z], HP Visualize-24, and -48

The HCRX-24[Z], HP Visualize-24, and HP Visualize-48 have two visuals in
the overlay planes, both depth-8 PseudoColor.

The default overlay visual has 256 entries per colormap and no transparency.

The second overlay visual has 255 entries per colormap and supports transparency
in the same way as the CRX-24[Z] and CRX-48Z. As on the CRX-24[Z] and CRX-
48Z, the environment variable HP_ENABLE_OVERLAY_TRANSPARENCY can be used
to include the transparent index in the colormap size (256 entries instead of 255).

To allow applications to determine which visuals are in the overlay planes, both
overlay visuals are listed in the SERVER_OVERLAY_VISUALS property attached
to the root window. The default overlay visual has a transparent type of
\0" (None) while the transparent overlay visual has a transparent type of \1"
(TransparentPixel).

3-34 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

If you need an overlay colormap that supports transparency, create the colormap
using the visual that has transparency in its SERVER_OVERLAY_VISUALS property.
To look at the contents of this property, you would use code similar to the
following:

{

typedef struct {

VisualID overlayVisualID;

Card32 transparentType;/* None, TransparentPixel, TransparentMask */

Card32 value; /* Either pixel value or pixel mask */

Card32 layer;

} OverlayVisualPropertyRec;

OverlayVisualPropertyRec *pOverlayVisuals, *pOVis;

XVisualInfo getVis;

XVisualInfo *pVisuals;

Atom overlayVisualsAtom, actualType;

...

/* Get the visuals for this screen and allocate. */

getVis.screen = screen;

pVisuals = XGetVisualInfo(display, VisualScreenMask, &getVis, &nVisuals);

pOverlayVisuals = (OverlayVisualPropertyRec *)

malloc ((size_t)nVisuals * sizeof(OverlayVisualPropertyRec));

/* Get the overlay visual information for this screen. Obtain

* this information from the SERVER_OVERLAY_VISUALS property. */

overlayVisualsAtom = XInternAtom(display, "SERVER_OVERLAY_VISUALS", True);

if (overlayVisualsAtom != None)

{

/* Since the Atom exists, request the property's contents. */

bytesAfter = 0;

numLongs = (nVisuals * sizeof(OverlayVisualPropertyRec) + 3) / 4;

XGetWindowProperty(display, RootWindow(display, screen),

overlayVisualsAtom, 0, numLongs, False,

AnyPropertyType, &actualType, &actualFormat,

&numLongs, &bytesAfter, &pOverlayVisuals);

if (bytesAfter != 0) {/* Serious Failure Here */} ;

X Windows, HP-UX 9.0x 3-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

/* Loop through the pOverlayVisuals array. */

...

nOVisuals = numLongs/sizeof(OverlayVisualPropertyRec);

pOVis = pOverlayVisuals;

while (--nOVisuals >= 0)

{

if (pOVis->transparentType == TransparentPixel)

{/* Found a transparent overlay visual, set ident. aside. */};

pOVis++;

}

XFree(pOverlayVisuals);

/* There might be some additional checking of the found

transparent overlay visuals wanted; e.g., for depth. */

}

XFree(pVisuals);

}

This program fragment is not complete; its main purpose is to give the idea of
how to �nd an overlay visual having transparency.

HCRX Colormaps

The following information discusses the number of supported colormaps for the
HCRX con�gurations.

HCRX-8[Z] and HP Visualize-8: Eight Overlay Planes and Two Depth-8 Banks of

Image Planes. When environment variable HP_ENABLE_OVERLAY_TRANSPARENCY

is not set, the overlay planes contain the default colormap permanently installed
in the hardware, plus one other hardware colormap available to applications. The
image planes contain two hardware colormaps each usable by applications.

When the environment variable HP_ENABLE_OVERLAY_TRANSPARENCY is set, both
the overlay planes and the image planes have access to one hardware colormap.
The default colormap is not permanently installed in the hardware.

HCRX-24[Z] and HP Visualize-24: 8 Overlay Planes and 24 Image Planes. The
overlay planes contain the default colormap permanently installed in the
hardware, plus one other hardware colormap available to applications. The image
planes contain two hardware colormaps, each usable by applications.

Although two hardware colormaps are available to applications in the image
planes, a hardware restriction allows only one depth-12 or depth-24 colormap
to be installed at any given time. Therefore, if two applications are run
simultaneously and use di�erent depth-12 or depth-24 colormaps, the application
that has the colormap focus looks correct and the other is technicolored.

3-36 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

HP Visualize-48: Eight Overlay Planes and 48 Image Planes. The overlay planes
contain the default colormap permanently installed in the hardware, plus one
other hardware colormap available to applications. The image planes contain
four hardware colormaps, each usable by applications.

The four hardware colormaps in the image planes can be treated as depth-8 or
depth-24 colormaps. There are no restrictions on the types of colormaps that can
be installed in the hardware at any given time. All four colormaps can be used
with any visual class.

Accessing HP Color Recovery Technology via Xlib

Color Recovery is a technique to generate a better picture by attempting to
eliminate the graininess caused by dithering. Access to the Color Recovery
capability is transparent when using a 3D graphics API such as Starbase, HP-
PHIGS or PEX. If you are producing graphics using Xlib calls, your application
must perform some of the necessary processing. At server startup (if Color
Recovery is not disabled in the X*screens �le), the _HP_RGB_SMOOTH_MAP_LIST
property is de�ned and placed on the root window. The above property is of type
RGB_COLOR_MAP and carries pointers to structures of type XStandardColormap.
It may be interrogated with calls to XGetRGBColormaps. The property
_HP_RGB_SMOOTH_MAP_LIST is a list of colormaps that are associated with window
visual IDs that support Color Recovery. When the XGetRGBColormaps routine
searches through this list for a colormap with a visual ID that matches your
window's visual ID and it �nds one, your application knows that your visual
supports Color Recovery, and uses that colormap for any Color Recovery window
in your window's visual.

Color Recovery uses all 256 entries of one of the available colormaps. The color
visual used by Color Recovery emulates the 24-bit TrueColor visual, thus, the
colors red, green, and blue are typically declared as integers in the range from
0 to 255. Note that each window that uses Color Recovery will have the same
colormap contents.

For Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue, and BlueValue are generated

X Windows, HP-UX 9.0x 3-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

by an application. In this example, the color values are assumed to be in the
range 0..255.

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to three bits of red and green
and two bits of blue. The quantized results are packed into an 8-bit unsigned
char and then stored in the frame bu�er. In the process of sending the contents
of the frame bu�er to the CRT, a special section in the hardware then converts
the frame bu�er's 8-bit data into a 24-bit TrueColor data for display.

3-38 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue, GreenValue, BlueValue, Xp, Yp)

int RedValue, GreenValue, BlueValue, Xp, Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9}};

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0}};

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5}};

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

/* Determine the dither table entries to use based on the pixel address */

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

/* Start with the initial values as supplied by the calling routine */

red = RedValue;

green = GreenValue;

blue = BlueValue;

/* Generate the red dither value */

if (red >= 48) /* 48 is a constant required by this routine */

red=red-16;

else

red=red/2+8;

red += dither_red[y_dither_table][x_dither_table];

/* Check for overflow or underflow on red value */

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

/* Generate the green dither value */

if (green >= 48) /* 48 is a constant required by this routine */

green=green-16;

else

green=green/2+8;

green += dither_green[y_dither_table][x_dither_table];

/* Check for overflow or underflow on green value */

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

X Windows, HP-UX 9.0x 3-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

/* Generate the blue dither value */

if (blue >= 112) /* 112 is a constant required by this routine */

blue=blue-32;

else

blue=blue/2+24;

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

/* Check for overflow or underflow on blue value */

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

3-40 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Freedom Series Graphics (S3150, S3250 and S3400)
Device-Dependent Information

This sections describes support for the Freedom Series on Hewlett-Packard
workstations.

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image:
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay:
supports DBE and MBX software double-bu�ering

Supported Environment Variables

No device-speci�c environment variables are supported.

GLX

GLX is the OpenGL Extension to the X Window System. It is supported only
on the Freedom Series Graphics Devices when attached to HP systems.

X Windows, HP-UX 9.0x 3-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

VRX Device-Dependent Information

This section includes information on the PersonalVRX (PVRX) and TurboVRX
(TVRX) graphics devices.

Supported Visuals

The following visuals are supported:

Depth 3 (overlay and combined mode)
Depth 4 (overlay and combined mode)
Depth 8 (image and combined mode)
Depth 12 (image and combined mode, TVRX only)
Depth 16 (Creates a double-bu�er version of the Depth 8 visual)
Depth 24 (image and combined mode, TVRX only)

None of these visuals support DBE and MBX double-bu�ering.

In image mode, the default visual is the Depth 8 PseudoColor visual. In overlay
mode it is the depth 3 or depth 4 PseudoColor visual as speci�ed by the device
�le. In combined mode the �rst device �le speci�es the default visual. Examples
are shown in the section below.

VRX Device Files

Di�erent device �les exist for the image planes and overlay planes on VRX devices.
The following table shows examples of device �les for VRX devices:

Table 3-4. mknod Information for HP-UX 9.x

Device
Filename

9.0x Major
Number

10.0 Major
Number

Minor
Number

Description

/dev/crt 12 174 0x000000 Image mode

/dev/ocrt 12 174 0x000001 Overlay mode (3 planes)

/dev/o4crt 12 174 0x000003 Overlay mode (4 planes)

The X server supports three di�erent modes of operation on VRX devices: image,
overlay and combined.

3-42 X Windows, HP-UX 9.0x

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

In image mode, the X server runs only in the image planes. This is the default on
VRX devices. To operate in image mode, the image device �le should be speci�ed
as the primary screen device. For example:

/dev/crt # Image mode

In overlay mode, the X server runs only in the overlay planes. Since only 3 or 4
planes are available in the overlay planes on VRX devices, the number of colors
is very limited. To operate in overlay mode, the overlay device �le should be
speci�ed as the primary screen device. For example:

/dev/ocrt # Overlay mode using 3 overlay planes

or

/dev/o4crt # Overlay mode using 4 overlay planes

In combined mode, the X server runs in both image and overlay planes. To
con�gure the X server to operate in combined mode, a primary and a secondary
device must be speci�ed. The VRXSecondaryDevice is used for this purpose. For
example:

/dev/ocrt /dev/crt # default visual lives in overlay planes

or

/dev/crt /dev/ocrt # default visual lives in image planes

X Windows, HP-UX 9.0x 3-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4

X Windows: HP-UX 10.x

This chapter documents information speci�c to the HP X server. It describes
features unique to HP's X server, provides information on how to con�gure the
X server and includes a list of supported X con�gurations. For each supported
graphics device, device-dependent con�guration information is provided.

Information speci�c to a new release of the X server, beyond the scope of the
general information in this document, can be found in the HP-UX Release Notes
located in /usr/share/doc.

If you prefer to read this information on paper, see the Graphics Administration
Guide. It includes the same information as is contained here in this on-line
document.

The X*screens File

The X*screens �les are used to con�gure the operation of the X server. These
�les may be con�gured manually or through SAM. For manual changes please
refer to the sample �le in /etc/X11/X0screens for more information on how to
use the X*screens �les (one is included here for reference).

Description of the X*screens Configuration File

This �le belongs in /etc/X11/X*screens, where *" is the display number
of the server. For example, the \X0screens" �le is used when the $DISPLAY

environment variable is set to hhostnamei:0.hscreeni and the server is invoked
using the \:0" option.

X Windows: HP-UX 10.x 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The X*screens �le is used to specify:

Device-independent server options, and
For each screen:
What device �le to use (required),
The default visual,
Monitor size, and
Device-dependent screen options.

Note that all of the items above, except for device-independent server options,
are speci�ed on a per-screen basis.

The X server supports up to four screens at a time. Specifying more than four
screens will cause a server error message.

Syntax Guidelines

Blank lines and comments (text following \#") are ignored.
Entries can occupy more than a single line.
All symbols in the �le are recognized case-insensitive.

4-2 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The X*screens File Format

Items must appear in the X*screens �le in the order that they are speci�ed
below.

[ServerOptions
hserver optioni...
hserver optioni]

fScreen hdevice nameig jj
fSingleLogicalScreen hnRowsi hnColsi hdevice name1 i . . . hdevice nameN ig
[DefaultVisual
[Class hvisual classi]
[Depth hdepthi]
[Layer hlayeri]
[Transparent]]

[MonitorSize hdiagonal lengthi hunitsi]
[MinimumMonitorPowerSaveLevel hleveli]
[ScreenOptions
hscreen optioni...
hscreen optioni]

Brackets (\[" and \]") denote optional items. Italicized items in angle brackets
(\h" and \i") denote values to be speci�ed. The double vertical line (\jj") denotes
that one of the ored values (items surrounded by braces, \f" and \g") must be
included.

The block from the \Screen hdevice namei" line to the �nal \hscreen optioni"
line is referred to as a either a \Screen Entry" or as a \Single Logical Screen
entry".

As shown above, the X*screens format is composed of an optional block
specifying device-independent server options followed by one or more either
Screen or Single Logical Screen entries (maximum of four graphics devices).

The minimum X*screens �le is a line with the keyword \Screen" followed by a
screen device �le. For example:

Screen /dev/crt

X Windows: HP-UX 10.x 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Server Options

For more information about server options, or about additional server options,
look in an information �le (e.g., /usr/lib/X11/Xserver/info/screens/hp).

GraphicsSharedMemorySize hmemory sizei
Specify the size of the graphics shared memory region. The size must be
speci�ed in bytes and must be in hexadecimal.
Default value: 0x580000
Environment Variables Replaced: GRM_SIZE, WMSHMSPC.

SMTSizes hsize speci
The size of the SMT regions (see the Shared Memory Transport section).
Default value: 100000,90000,90000

FileDescriptors hnumberi
The number of �le descriptors available to the X server for its use. The number
of connections (clients, more or less) is limited by the number of �le descriptors.

The minimum value is 25, and a current maximum (as of HP-UX 10.20) of
384, allowing a maximum of slightly under 256 total connections to the server.
The default value is 192 (which allows a few under 128 connections). If a value
provided is out of range, the server yields a warning and continues using the
minimum or maximum, as appropriate. There is, however, a limit of 128 clients
that can connect.

The command line option -lf hnumberi also speci�es the value.

ServerMode XPrintjXVideo
This server option places the X server in either XPrint or XVideo mode, XVideo
being the default behavior. XPrint is an X extension supporting managment
of networked printers. Use of the XPrint mode disables the normal video
output mode of the X server. It is necessary to start two X servers to have
both functionalities. To do this, run each invocation with a di�erent display
identi�er.

ConfigXPrintServer hpath �le namei
This server option identi�es a con�guration �le for use by the XPrint extension.
ConfigXPrintServer is only meaningful when used in conjuction with the
server option \ServerMode XPrint".

The command line option -Xpfile hpath �le namei is an alternate method to
specify the same information.

4-4 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

ImmediateLoadDles

The Xserver delays loading of some X extensions until the �rst protocol request
to the given extension is received. Specifying this server option forces all
extensions to be loaded at X server startup. Immediate loading of X extensions
is the historical behavior of the HP-UX 10.10 and 10.20 X servers.

Screen Entries

The minimum screen entry is a line with the keyword \Screen" followed by a
screen device �le.

Optional speci�cations for default visual, monitor size, and device-dependent
screen options may follow this minimal screen description line.

DefaultVisual

This optional part of the format speci�es the default visual that the screen
uses. Valid keywords following the \DefaultVisual" keyword are \Class",
\Depth", \Layer", and \Transparent".

If no default visual is speci�ed, then the standard default visual class, depth,
layer, and transparency for the graphics device is used.

Not all default visual speci�cations will work on all devices.

If there is an error in a speci�cation, look in an information �le for more details
(for example, /usr/lib/X11/Xserver/info/screens/hp), in case it is newer
than the document you're now reading.

Class hStaticGrayi j hGrayScalei j hStaticColori j hPseudoColori j
hTrueColori j hDirectColori
Specify the class of the default visual.

Depth hdepth valuei
Specify the depth of the default visual (for example 8, 12, or 24).

Layer hImagei j hOverlayi
Specify the layer of the default visual.

Transparent Specify that a visual with an application-accessible transparent
entry in the default colormap be used.

Speci�cations in the \DefaultVisual" section, except for \Depth", are ignored
on VRX devices. See the \ScreenOptions" section below for VRX-related
options.

X Windows: HP-UX 10.x 4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

MonitorSize hdiagonal lengthi Inches j MM;
Specify the diagonal size of the monitor. After the \MonitorSize" keyword,
you must specify the diagonal length of the monitor and then the units. Use
this entry only if you are using a non-standard monitor.

MinimumMonitorPowerSaveLevel hvaluei
Specify the minimum power save level to be used by the monitor during screen
blanking. You must specify a level of 0|3. If the option is not used, the default
is level 0. On devices that do not support DPMS, this option will be ignored.

ScreenOptions

Screen options are device-dependent options documented in a �le in the X
server information directory (e.g., /usr/lib/X11/Xserver/info/screens/hp).

4-6 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Sample X*screens Files

Below are several sample X*screens �les that illustrate the new format.

This is the minimum legal X*screens �le: the \Screen" keyword followed by
the screen device. Since no other information is given, the X server will assume
default values for other options and settings.

Screen /dev/crt

Figure 4-1. Results of Minimal Legal X*screens File

This is the minimum speci�cation for a two-screen con�guration. The
maximum number of screens supported on the X server is four. Here,
the displays associated with /dev/crt0 and /dev/crt1 are referred to as
\hhosti:0.0" and \hhosti:0.1", respectively.

Screen /dev/crt0

Screen /dev/crt1

Figure 4-2. Two Physical Displays, Two Separate Screens

X Windows: HP-UX 10.x 4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

This sample X*screens �le could be used on a system using Internal Color
Graphics with a 17-inch monitor. In this example, the GraphicsSharedMemo-
rySize is decreased to 1 Mbyte in order to reduce the swap space requirements
of the system. Decreasing GraphicsSharedMemorySize is appropriate when
you do not intend on running any 3D graphics applications.

ServerOptions

GraphicsSharedMemorySize 0x100000

Screen /dev/crt

MonitorSize 17 inches

The display diagram would be the same as that of the \Results of Minimal
Legal X*screens File" con�guration, above.
This sample X*screens �le could be used on a system with a CRX24 graphics
device. The overlay visual is selected as the default. There are 255 overlay
colormap entries available on the CRX24. The 256th entry is hard-wired to
transparent. Having less than 256 colormap entries should not cause a problem
for most applications, but for those applications that require 256 colormap
entries, the CountTransparentInOverlayVisual screen option should be used
as shown below. Note that any attempts to modify the 256th entry will have
no e�ect on the colormap.

Screen /dev/crt

ScreenOptions

CountTransparentInOverlayVisual

The display diagram would be the same as that of the \Results of Minimal
Legal X*screens File" con�guration, above.
This sample X*screens �le could be used on a system with a HCRX-24 graphics
device. The default visual on the HCRX-24 is the opaque overlay visual.
All 256 colormap entries are opaque and allocable. If an application requires
transparency in the default visual, the \Transparent" keyword can be used to
select the transparent overlay visual as shown below.

Screen /dev/crt

DefaultVisual

Transparent

The display diagram would be the same as that of the \Results of Minimal
Legal X*screens File" con�guration, above.

4-8 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

This sample X*screens �le could be used on a system with a HCRX-8
graphics device. By default on the HCRX-8, the overlay visual does not
have a transparent entry available to applications for rendering transparency.
If an application requires overlay transparency, an optional X server mode
is available, but it is restrictive. In this optional mode, only one hardware
colormap is available in the overlays (instead of two) and only one hardware
colormap is available in the image planes (instead of two). The optional X
server mode can be set via the EnableOverlayTransparency screen option as
shown below.

Screen /dev/crt

ScreenOptions

EnableOverlayTransparency

The display diagram would be the same as that of the \Results of Minimal
Legal X*screens File" con�guration, above.
This sample X*screens �le could be used on a system using either a PVRX or
TVRX graphics device. The server will run in combined mode with the default
visual residing in the overlay planes. All visual depths which are supported by
the graphics device will be available.

Screen /dev/ocrt

ScreenOptions

VRXSecondaryDevice /dev/crt

Figure 4-3. PVRX/TVRX Display with Overlays

X Windows: HP-UX 10.x 4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

This sample X*screens �le could also be used on a system using PVRX or
TVRX graphics. The server will run in combined mode with the default visual
in the overlay planes and an 8/8 double-bu�ered visual in the image planes.
In general, specify VRXDoubleBuffer if applications will be using DHA (Direct
Hardware Access) double-bu�er functionality (e.g., Starbase double bu�ering).

Screen /dev/ocrt

ScreenOptions

VRXSecondaryDevice /dev/crt

VRXDepth 16

VRXDoubleBuffer

The display diagram would be the same as that of the \PVRX/TVRX Display
with Overlays" con�guration, above.
These sample X*screens �le entries could be used on a system with two
homogeneous graphics devices. Assuming the �rst device is associated with
the device �le \/dev/crt0" and the second device is associated with the device
�le \/dev/crt1", both examples specify a horizontal Single Logical Screen
con�guration.

SingleLogicalScreen 1 2

/dev/crt0 /dev/crt1

or

SingleLogicalScreen 1 2

/dev/crt0

/dev/crt1

Figure 4-4. Two Physical Displays, Single Logical Screen (1�2)

4-10 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

These sample X*screens entries could be used on a system with four
homogeneous graphics devices. Assuming the �rst device is associated with
the device �le \/dev/crt0", the second device is associated with the device �le
\/dev/crt1", etc. The following examples specify valid Single Logical Screen
con�gurations.

SingleLogicalScreen 1 4

/dev/crt0 /dev/crt1 /dev/crt2 /dev/crt3

Figure 4-5. Four Physical Displays, Single Logical Screen (1�4)

X Windows: HP-UX 10.x 4-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

SingleLogicalScreen 4 1
/dev/crt0

/dev/crt1

/dev/crt2

/dev/crt3

Figure 4-6. Four Physical Displays, Single Logical Screen (4�1)

4-12 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

SingleLogicalScreen 2 2
/dev/crt0 /dev/crt1

/dev/crt2 /dev/crt3

Figure 4-7. Four Physical Displays, Single Logical Screen (2�2)

It is possible to include a Screen Entry and an SLS Screen Entry in the same
X*screens File. This creates a situation where there are two X Screens (e.g.
hhosti:0.0 and hhosti:1.0), one of which happens to be a Single Logical Screen.
Below is an example of this:

Screen /dev/crt0

SingleLogicalScreen 1 2

/dev/crt1 /dev/crt2

Figure 4-8. Three Physical Displays, Screen plus Single Logical Screen (1�2)

X Windows: HP-UX 10.x 4-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Miscellaneous Topics

Double Buffer Extension (DBE)

DBE is an extension to the X server that provides a double-bu�ering Application
Programming Interface (API). Note that MBX (the Multi-Bu�ering eXtension
to X) has not been adopted as an industry standard, as DBE has. Thus, it
is recommended that applications that use MBX be ported to DBE usage in
preparation for future MBX obsolescence (HP-UX 11.0). For more information
about DBE and the API, consult the DBE man pages:

DBE
XdbeQueryExtension

XdbeGetVisualInfo

XdbeFreeVisualInfo

XdbeAllocateBackBufferName

XdbeDeallocateBackBufferName

XdbeSwapBuffers

XdbeBeginIdiom

XdbeEndIdiom

XdbeGetBackBufferAttributes

Performing Buffer Swaps On Vertical Blank

For performance reasons, the default DBE behavior is to not synchronize bu�er
swaps with the monitor's vertical retrace period. In some instances, therefore,
image tearing (seeing part of the old image and part of the new image on the
display at the same time) could be visible while swapping large DBE windows.
For those instances where tearing would occur and is undesirable, an optional X
server mode is available to allow for synchronization of bu�er swaps with vertical
retrace. To activate this optional X server mode, set the following screen option
in the X*screens File before the X server is started:

SwapBuffersOnVBlank

Note that MBX_SWAP_BUFFERS_ON_VBLANK is obsolete with this release. The
SwapBuffersOnVBlank Screen Option works for both DBE and MBX.

4-14 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Determining Swap Performance

The DBE API does not allow users to determine if double-bu�ering in a
visual is through software or hardware. However, the API does provide a
way to determine relative swapping performance on a per-visual basis. The
XdbeScreenVisualInfo() function returns information about the swapping
performance levels for the double-bu�ering visuals on a display. A visual
with a higher performance level is likely to have better double-bu�er graphics
performance than a visual with a lower performance level. Nothing can be
deduced from any of the following: the magnitude of the di�erence of two
performance levels, a performance level in isolation, or comparing performance
levels from di�erent servers.

For more information, refer to the DBE man page on XdbeScreenVisualInfo().

Supported Devices

The X server supports DBE on the following devices:

Internal Color Graphics
Integrated Color Graphics
CRX-24[Z]
CRX-48Z
HCRX-8[Z]
HCRX-24[Z]
HP Visualize-EG
HP Visualize-8
HP Visualize-24
HP Visualize-48
Freedom SeriesTM Graphics (S3150, S3250 and S3400)

Display Power Management Signaling (DPMS)

Monitors constitute a large percentage of the power used by a workstation even
when not actively in use (i.e., during screen blanking). In order to reduce the
power consumption, the Video Electronic Standards Association (VESA) has
de�ned a Display Power Management Signaling (DPMS) standard which can be
used to greatly reduce the amount of power being used by a monitor during screen
blanking.

X Windows: HP-UX 10.x 4-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The X server features the ability to make use of DPMS on the following graphics
devices:

HCRX: HCRX-8[Z], HCRX-24[Z], HP Visualize-EG, HP Visualize-8, HP
Visualize-24, and HP Visualize-48.

The following table is a description of the states that are de�ned by VESA. The
Power Savings column indicates (roughly) the level of power savings achieved in
the given state. The Recovery Time is the amount of time that the screen takes
to return to a usable state when the screen saver is turned o� (by pressing a key
or the moving the mouse).

Table 4-1. Power-Saving States Defined by VESA

Level State DPMS Compliance
Requirements

Power Savings Recovery Time

0 Screen Saver Not Applicable None Very Short (<1 sec)

1 Stand-by Optional Minimal Short

2 Suspend Mandatory Substantial Longer

3 O� Mandatory Maximum System Dependent

The actual amount of power saved and the recovery time for each of the states is
monitor-dependent and may vary widely. The customer can compensate for this
by choosing an appropriate level for the monitor that is currently in use.

Prior to HP-UX 10.30

By default, the DPMS level used is the Screen Saver (i.e. no power savings). If
you wish to use power saving during screen blanking, set the following X*screens
�le entry before starting the server:

MinimumMonitorPowerSaveLevel hleveli

where hleveli is replaced with the single digit 0, 1, 2, or 3 as speci�ed in the Level
column in the above table.

4-16 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

HP-UX 10.30 and Beyond

The X Consortium proposed standard DPMS Extension has been implemented
and is available on HP-UX 10.30, and will be available on all subsequent HP-UX
releases.

The DPMS Extension lets individual users customize their personal DPMS
settings to meet their work styles and any restrictions imposed by their employers.
For example, an employer may decide that all monitors must save power after 30
minutes of idle time. The individual user may decide that 30 minutes is too long,
and adjust the time downward to meet his or her own work preference.

More information (including sample code) on the DPMS Extension entrypoints
can be found on-line, via man pages, or via HP's X Server Team homepage at:

http://www.hp.com/go/xwindow

The extension entrypoints are:

DPMS

DPMSQueryExtension

DPMSGetVersion

DPMSCapable

DPMSSetTimeouts
DPMSGetTimeouts

DPMSEnable

DPMSDisable

DPMSForceLevel

DPMSInfo

X Windows: HP-UX 10.x 4-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

MBX

The MBX extension (Multi-Bu�ering Extension) is supported on all graphics
devices supported on the HP 9000/700 machines, except the PersonalVRX and
the TurboVRX.

HP's implementation of MBX exists mainly to support fast double-bu�ering for
PEX applications. Therefore, MBX only supports allocation of one or two MBX
bu�ers; no more. Some graphics devices/visuals have a single 8-plane bu�er;
this includes the color graphics device and the overlay planes on the CRX-24[Z],
CRX-48Z, HCRX, and HP Visualize family. For these devices, MBX double-
bu�ering is still supported, but the second bank is allocated in virtual memory.
Rendering and bu�er-swapping in these instances is slower than devices/visuals
that support true hardware double-bu�ering.

There is no easy way to determine which visuals, from a device's list of visuals,
support fast MBX hardware double-bu�ering. The CRX and Dual-CRX device
is a double-bu�ered device and therefore always supports MBX hardware double-
bu�ering. The Internal Color Graphics, Integrated Color Graphics or Color
Graphics card devices only support MBX software bu�ering. All other devices
that have both overlay and image planes support fast MBX hardware double-
bu�ering in the image planes and slower MBX software double-bu�ering in the
overlays. Consult the following device-speci�c sections for a list of visuals that
support software and hardware MBX double-bu�ering.

For performance reasons, the default MBX behavior is to not synchronize with
the monitors vertical retrace period. In some instances, image tearing could be
visible while swapping large MBX windows. For those instances where tearing
would occur and is undesirable, an optional X server mode is available to allow for
synchronization with vertical retrace. To activate this optional X server mode,
set the SwapBuffersOnVBlank Screen Option in the X*screens �le before the X
server is started.

Note that MBX_SWAP_BUFFERS_ON_VBLANK is obsolete with this release. The
SwapBuffersOnVBlank Screen Option works for both DBE and MBX.

With this mode enabled, all MBX bu�er swaps are synchronized with the
monitor's vertical retrace period.

This mode is not needed in drawables used for PEX rendering. PEX turns
synchronization on and thus does not require this tuning.

4-18 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The MBX Application Programming Interface is thoroughly discussed in the
PEXlib Programming Manual by Tom Gaskins, and published by O'Reilly &
Associates, Inc. Consult that manual to understand the creation, manipulation,
and destruction of MBX bu�ers.

Since MBX is not an industry standard, and will be discontinued on HP-UX 11.0,
developers should replace MBX calls with the appropriate DBE calls.

Note Note that XmbufGetScreenInfo() can indicate that a window
supports MBX even if only one MBX bu�er is supported. An
application should always check the max_buffers �eld in the
returned XmbufBufferInfo structure before assuming that a
window supports two MBX bu�ers.

Shared Memory Extension (MIT_SHM)

The MIT shared memory extension provides both shared-memory XImages and
shared-memory pixmaps based on the SysV shared memory primitives.

Shared memory XImages are essentially a version of the XImage interface where
the actual image data is stored in a shared memory segment, and thus need not be
moved through the Xlib interprocess communication channel. For large images,
use of this facility can result in increased performance.

Shared memory pixmaps are a similar concept implemented for the pixmap
interface. Shared memory pixmaps are two-dimensional arrays of pixels in a
format speci�ed by the X server, where the pixmap data is stored in the shared
memory segment. In all other respects, shared memory pixmaps behave the same
as ordinary pixmaps and can be modi�ed by the usual Xlib routines. In addition,
it is possible to change the contents of these pixmaps directly without the use of
Xlib routines merely by modifying the pixmap data.

X Windows: HP-UX 10.x 4-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Devices

The X server supports the MIT shared memory extension on the following devices:

Internal Color Graphics
Integrated Color Graphics
CRX-24[Z]
CRX-48Z
HCRX-8[Z]
HCRX-24[Z]
HP Visualize-EG
HP Visualize-8
HP Visualize-24
HP Visualize-48

Shared Memory Transport (SMT)

Shared Memory Transport (SMT) is a means to more rapidly transport large
amounts of data from the client to the server. It is distinct from the MIT Shared
Memory Extension, which is speci�cally for various types of images, although
SMT can be used with that extension.

SMT is particulary advantageous for operations that move large amounts of data
in a single request, such as a polyline or a polypoint, and for images when the
MIT Shared Memory Extension is not used. It will work with the Big Requests
Extension, but whether it will exhibit a performance increase depends on the
size of the actual extended size request. There are some X requests for which no
improvement is expected.

SMT is the default transport for 10.20 whenever a display name of any of the
forms listed below are used, and when the client and server are actually on the
same host. Note that \:0.0" is used for simplicity. This behavior is equally
applicable for displays such as \:1.0", etc.

:0.0

local:0.0

hhostnamei:0.0
shmlink:0.0

A display name of the form unix:0.0 will force the use of Unix Domain Sockets
(UDS), which is identical to the local transport used before HP-UX 10.20.

4-20 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

A display name of the form nn.nn.nn.nn:0.0 (where nn.nn.nn.nn is an IP
address) will force the use of Internet Sockets, which is the remote transport
normally used, and which can be used locally. (This will be slow.)

It is possible that an application which violates the X interface standard will run
correctly using UDS but hang or coredump when using SMT. Users encountering
this problem can use:

DISPLAY=unix:0 hcommand and argsi

to run the application compatibly, but without the performance improvement of
SMT.

Note that if neither SMT nor UDS are desired, setting XFORCE_INTERNET=True

before starting the X server forces all protocol to interact directly with the
hardware internet card.

SMT uses �le space on the �le system containing /var/spool/sockets/X11.
Should it be the case that that �le system is full, the X server will use Unix
Domain Sockets (UDS) but print a warning (in /var/vue/Xerrors if VUE is in
use or /var/dt/Xerrors CDE is in use) on each connection startup. To address
this (and if space cannot be made), /var/spool/sockets/X11 can be a symbolic
link to another �le system with more space. If /var/spool/sockets/X11 is on a
NFS �le system, currently SMT will (silently) not start, and the connection will
be made using Unix Domain Sockets. Again, a symbolic link to a conventional
�le system may be used to deal with this.

Performance Tuning of SMT

The default values of some bu�er sizes have been tuned for optimal performance
in most situations. However, these are not necessarily optimal in all conditions.
Under some circumstances system performance might be optimized (possibly
at the expense of X performance) by tuning these parameters. Under most
curcumstances this should be unnecessary.

The Server accepts these parameters via the X*screens �le, in the ServerOp-

tions section. In this case, the default for all SMT connections is set.

The client accepts these parameters via the environment variable X_SMT_SIZES.
For the client, the value a�ects all client connections to the server made while
this environment variable is set.

X Windows: HP-UX 10.x 4-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

In either case, the format and meaning of the �elds is the same:

hregion sizei[,hhigh wateri[, hbu�er sizei]]

with no embedded blanks. For examples:

32000,16000,5000

32000

0

The default is 100000,90000,90000.

The values are accepted as positive decimal, hex, or octal values according to the
C conventions.

The special value of 0 (for bu�er size; all other values are ignored) indicates that
SMT is to be suppressed.

hregion sizei controls the amount of shared memory allocated for the transport
(in bytes). This has the largest e�ect on system performance.
The value is rounded up to the next page boundary. Larger
values yield faster X performance but there is a point of
diminishing returns. The default is 100000 (which is rounded
to 0x19000).

hhigh wateri is a soft boundary which a�ects the load on the Virtual Memory
system. The value is rounded up to the next page boundary.
The smaller the value, the smaller the number of pages actually
used while sending \normal, small" X messages. Large messages
can still be sent at high e�ciency. In a memory-poor system
making this small may be an advantage, but if su�cient memory
is available, the value should be near the default.

The default value for hhigh wateri is 90000 or, if hregion sizei
is given, 1/8 of the region size (which is appropriate in memory-
poor systems), with a minimum of 4096. If hhigh wateri is
speci�ed (and if hregion sizei is speci�ed, hhigh wateri usually
should be also) it must be less than the hregion sizei.

hbu�er sizei is the size used for the \small" requests that X normally generates
protocol for. It is extremely unlikely that this will need tuning.
It is not rounded. It must be at least 4096, but defaults to the

4-22 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

same as the hhigh wateri size (if the option is used). Space is
left for a control region if necessary.

The hhigh wateri value must �t within the region (and should be smaller), the
bu�er must �t within the high-water mark (and consequently the bu�er must �t
within the whole region).

If these parameters are used, be sure to con�rm that they actually cause
an improvement in actual usage situations. Incorrect values can degrade
performance.

Note Begin Note for Programmers:

X Applications which call fork(), and access the same display
structure from both the parent and the child cannot be expected
to operate reliably without extreme care (if at all), whether or
not SMT is used. However, SMT is more sensitive to this than
UDS. The problem is quite similar to stdio, where fflush()

must be used to assure that data makes it from the bu�er onto
the �le exactly once.

Similarly to stdio's use of fflush(), XFlush() (not _XFlush())
must be called immediately before any fork() call that will be
accessing the display from both the parent and child, as well as
any time control is transferred between the parent and child, or
vice-versa. (Calls to fork() which immediately do an exec()
are not a problem.)

The SMT library code attempts to detect improper use of
display connections after a fork, and issues a warning at runtime.
However, not all all such usages can be detected. Symptoms
include reporting the error, and applications hanging.

Also, because the parent and child might read from the same
display connection (either replies or events) the library can detect
inconsistent sequence numbers, which it will report. It will
attempt to recover from such errors, but depending on what the
application has done, recovery cannot always be successful.

X Windows: HP-UX 10.x 4-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Only for R5 Applications

SMT requires a change to an internal interface with the X library.
In theory, no application should be calling this interface, but some
applications, including at least one X test suite, are known to
call it. The interface is _XConnectDisplay. Applications using
it directly may not be able to use SMT for the display speci�ed,
and must add an extra (ninth) parameter, which is the address
of an integer:

int dummy;

_XConnectDisplay(..., &dummy);

Symptoms include both damaged data and core dumps.

(There was an earlier HP Shared Memory Transport, which this
one replaces. It used the same parameter, so it may be the case
that any such calls have already been �xed.)

This problem does not occur in the R6 library.

End Note for Programmers

HP Color Recovery

Color Recovery is a technique that generates a better picture by eliminating the
graininess caused by traditional dithering techniques. It is available on these
graphics devices:

Integrated Color Graphics and plug-in Color Graphics cards
HCRX: HCRX-8[Z], HCRX-24[Z], HP Visualize-EG, HP Visualize-8, HP
Visualize-24, and HP Visualize-48.

Color Recovery is available when using either depth-8 PseudoColor or depth-8
TrueColor visuals.

There are two components to the Color Recovery process. First, a di�erent
dither-cell size (16�2) is used when rendering shaded polygons. Second, a digital
�lter is used when displaying the contents of the frame bu�er to the screen.

Under some conditions, Color Recovery can produce undesirable artifacts in the
image (this also happens with dithering, but the artifacts are di�erent). However,

4-24 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

images rendered with Color Recovery are seldom worse than what dithering
produces. In most cases, Color Recovery produces signi�cantly better pictures
than dithering.

Color Recovery is available by default for all depth-8 color visuals on devices that
support the feature. If, for some reason, you wish to disable Color Recovery, set
the DisableColorRecovery Screen Option in the X*screens �le before starting
the server (note that this disables Color Recovery for 3D APIs as well).

Color Recovery is enabled in conjunction with a particular X colormap that is
associated with your window. If the X colormap is not installed in hardware,
you may not see the e�ect of the Color Recovery �lter (you may not even see the
correct colors for that window). Given that more than one hardware colormap
(or \color lookup table") is available, this should happen infrequently.

The Color Recovery colormap is a read-only colormap. Any attempts to change
it will be ignored and no error will be reported.

Access to the Color Recovery capability is transparent when using a 3D graphics
API such as Starbase, HP-PHIGS or PEX. If you are producing graphics using
Xlib calls, your application must perform some of the necessary processing.
The method to access Color Recovery via Xlib is described in a section called
\Accessing HP Color Recovery Technology via Xlib" in the device-dependent
sections.

HP Color Recovery Extension

An extension has been added to the HP X server in HP-UX 10.30 that provides
easy access to HP Color Recovery technology and HP's dithering hardware from
Xlib applications.

If an application currently has code to create, generate, and display 24-bit images,
only a few slight modi�cations are necessary to utilize the HP Color Recovery
Extension. The modi�cations include making sure the new extension (HP-COLOR-
RECOVERY) exists, issuing a request to determine which colormap and/or visual
should be used to create the 8-bit window with, and changing the reference to
the XPutImage call.

Also, the HP Color Recovery extension is hardware independent! It doesn't
matter what graphics hardware is installed on the system. If the graphics
hardware supports HP Color Recovery, it will be used. If the graphics hardware
does not support HP Color Recovery and the hardware has dithering hardware,

X Windows: HP-UX 10.x 4-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

it is used to display the 24-bit image. If the hardware neither supports HP Color
Recovery nor hardware dithering, software dithering is used.

The extension can even be used to software dither a 24-bit image to an 8-bit
pixmap.

See the HP Color Recovery man pages, HP-COLOR-RECOVERY(3x), for more
information and coding examples. Additional information is also included in
the next section.

Accessing HP Color Recovery Technology via the Color Recovery Extension

The HP Color Recovery Extension API has three entrypoints:

XhpCrQueryVersion(3x)
XhpCrGetCmapAndVisual(3x)
XhpCrPutImage(3x)

Instead of using the method described below in the section entitled \Accessing
HP Color Recovery Technology via Xlib," the method described here is a nice
alternative. The original method is worth reading, however, because it provides
more insight into what is happening \behind the scenes" in this new extension.

Assuming that the client application already supports 24-bit rendering, this
extension is a very simple to port.

First, if a 24-bit visual is not found on the target display and the HP Color
Recovery extension exists, the client application should �gure out which colormap
and/or visual needs to be used to access HP Color Recovery. This is accomplished
via a call to XhpCrGetCmapAndVisual(3x). The returned colormap ID should be
used to create the destination window and subsequent rendering requests.

Next, the 24-bit image is created as usual and �lled with 24-bit data.

Finally, instead of calling XPutImage to display the data to the screen, the data
is rendered using XhpCrPutImage(3x). If the underlying hardware supports HP
Color Recovery, it will be used to display the data. If Color Recovery is not
supported on the underlying hardware, HP's dithering hardware will be used to
display the image. If neither are supported, a software dithering algorithm is
applied to the data.

4-26 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The destination drawable of XhpCrPutImage(3x) may either be a Window or
a Pixmap. If it is a Pixmap, the data will always be rendered using software
dithering, regardless of what the underlying hardware supports.

Setting the environment variable HP_DISABLE_COLOR_RECOVERY can be used to
control precicely which method is used to convert the 24-bit data to 8 bits.
Constants are found in hpcrP.h which can be used to force a speci�c method.
For example, XhpCrMethodSwDithering is currently de�ned to be 1. Setting
HP_DISABLE_COLOR_RECOVERY=1 will force the software dithering path.

The Color Recovery Extension will be ported to previous patch releases of HP-
UX in the future. See http://www.hp.com/go/xwindow for more information on
the Color Recovery Extension. Coding examples can be downloaded as well!

Dynamic Loading

HP's X server now dynamically loads the appropriate device drivers and
extensions based on the target graphics display device and the extensions the
device driver supports. This feature should be transparent to X server users.

When possible, the loading of X extensions is deferred until the �rst protocol
request is encountered for a given extension. This feature should be transparent to
X server users; however, it is expected to provide some performance enhancement.

Dynamically loaded modules are recorded by the X server in the �les
\/var/X11/Xserver/logs/X*.log", where the *" of X*.log re
ects the display
identi�er for that given run. Only that last invocation against a given display
identi�er is retained. The log �le contains the parsed contents of the given
X*screens �le and the full path name for all dynamically loaded modules for
the given X server invocation. Deferred loaded modules are recorded as they are
referenced.

Note Altering or removing �les under /usr/lib/X11/Xserver may
prevent the X server from running.

X Windows: HP-UX 10.x 4-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Include Inferiors Fix

When a client application creates an X Graphics Context (GC), it is possible to
specify the subWindowMode component. The two possible values are ClipByChil-
dren (default) and IncludeInferiors. If the GC speci�es ClipByChildren, any
rendering to a window with inferior windows (i.e., the child is wholly enclosed
by the parent) will appear only in the destination window. In other words, the
rendering will not take place inside the inferiors. If the GC speci�es IncludeIn-
feriors, and the same rendering request is made, it is the responsibility of the X
Server to ensure that the rendering is not clipped from the inferior windows. In
other words, the rendering will appear in the destination window and the inferior
windows.

With the advent of multi-layer devices, the IncludeInferiors mode became
defective. Depending upon which layer or hardware bu�er the destination
drawable and inferior windows were in, the rendering may or may not have taken
place. Also, the GetImage protocol clearly speci�es that the default GetImage
behavior is to include the depth-dependant contents of inferior windows (in other
words, GetImage requires that IncludeInferiors work properly).

As of the 10.10 release, HP has o�ered a solution to the IncludeInferiors

defect. Some customers create their test image archives using XGetImage (which
currently returns incorrect data for multi-layer and double-bu�ered devices).
Therefore, the Include Inferiors Fix will not be enabled by default. To enable
the Include Inferiors Fix, add the EnableIncludeInferiorsFix Screen Option
to the X*screens �le.

For example:

Screen /dev/crt/

ScreenOptions

EnableIncludeInferiorsFix

This gives a system administrator control over when the �x is active and when it
is not. In this way, each site can evaluate whether or not it is bene�cial to enable
this �x.

4-28 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Shared Memory Usage With 3D Graphics

Graphics processes use shared memory to access data pertaining to the display
device and X11 resources created by the server. (\Resources" includes windows,
colormaps, and cursors.) The X11 server initiates an independent process
called the Graphics Resource Manager (GRM) to manage these resources among
graphics processes. Graphics processes include PEXlib, PHIGS, and Starbase
applications. One problem encountered with GRM shared memory is that it may
not be large enough to run some applications.

Graphics applications that require VM double-bu�ering use large amounts of
shared memory. Shared memory can be completely consumed by several double-
bu�ered graphics windows. When an application attempts to use more shared
memory than is available, the application encounters errors and might terminate.

You can circumvent the problem by using Server Options to change the shared
memory size.

Changing Graphics Shared Memory Size

The size of the shared memory segment used by the GRM can be controlled
through a Server Option. The default value is 0x580000 (5.5 Mbytes) on Series
700 computers.

Note The actual GRM shared memory size on a system can be
determined by running \ipcs -ma", �nding the entry with CPID
matching the process ID of the grmd process and then checking
the segment size (SEGSZ) �eld.

If more shared memory space is needed, graphics shared memory size can be
increased. For example, to set it to eight megabytes:

ServerOptions

GraphicsSharedMemorySize=0x800000

Note that the value must be in hexadecimal. The new value won't take e�ect
until you restart the X Server.

It is also possible to decrease the size of GRM shared memory. You may want to
do this if you want to reduce the swap-space requirements of your system and/or

X Windows: HP-UX 10.x 4-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

you do not intend to run any 3D graphics processes. For example, you could
reduce graphics shared memory size to 0x100000 (one megabyte).

Count Transparent In Overlay Visual

In some con�gurations, an 8-plane overlay visual may have less than 256 colors.
This should not cause a problem for most applications. If an application depends
on 8-plane visuals having 256 colormap entries, this option may be useful. Setting
this option will cause the X server to count transparent entries in the number of
colormap entries.

Examples of Relevant Graphics Devices:

CRX-24[Z], CRX-48Z, HCRX-8[Z], HCRX-24[Z], HP Visualize-EG, HP
Visualize-8, HP Visualize-24, and HP Visualize-48.
X*screens File Screen Option To Use: CountTransparentInOverlayVisual

Enable Overlay Transparency

This option is used to enable the usage of an overlay transparent color on devices
that can support it, but, by default, do not allow it (for example, HCRX-8).

Examples of Relevant Graphics Device:

HCRX-8[Z], HP Visualize-EG, HP Visualize-8
X*screens File Screen Option To Use: EnableOverlayTransparency

4-30 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

3-Bit Center Color

This option is available to force the X server to center colors in the colormap
to values that will reduce the amount of twinkle on
at-panel conversion. This
option applies only to
at-panel displays.

The twinkling e�ect is caused by the analog-to-digital conversion. Due to noise
in the analog signal, it is possible for a color near a boundary between two digital
values to cause the conversion to bounce back-and-forth between the two colors
(i.e., \twinkle"). In order to avoid this e�ect, the server \centers" the colors as
far from the color boundaries as possible.

Examples of Relevant Graphics Device:

Integrated Color Graphics, Color Graphics cards, Internal Color Graphics
X*screens File Screen Option To Use: 3BitCenterColor

Image Text Via BitMap

When using the Xlib XDrawImageString() call to draw text, a visual e�ect may
be seen where text appears to
icker as the background and foreground are drawn
in distinct graphics operations. This option is available to eliminate the
icker
e�ect but at the expense of reduced text performance. The option will make
the X server �rst draw text to an o�-screen pixmap prior to displaying it to the
screen.

Examples of Relevant Graphics Device:

Integrated Color Graphics, Color Graphics cards, CRX-24[Z], CRX-48Z,
HCRX-8[Z], HCRX-24[Z], HP Visualize-EG, HP Visualize-8, HP Visual-

ize-24, and HP Visualize-48
X*screens File Screen Option To Use: ImageTextViaBitMap

Note Using this option will reduce text performance.

X Windows: HP-UX 10.x 4-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Obsolete Environment Variables

These HP-UX 9.x environment variables are no longer supported:

HP_SUPPRESS_TRUECOLOR_VISUAL

HP_COLORMAP_MANAGEMENT_SCHEME
WMSHMSPC

MBX_SWAP_BUFFERS_ON_VBLANK

CRX24_COUNT_TRANSPARENT_IN_OVERLAY_VISUAL

Special Device Files

Special device �les are used to communicate between the computer and peripheral
devices. The X server requires the use of a special device �le for each graphics
card present in the system. On HP-UX 10.x systems, �ve special graphics device
�les are automatically created. The �rst or primary graphics card, also known
as the \console", uses the \/dev/crt" or \/dev/crt0" device �le. The others
are called \crt1", \crt2", and \crt3" and also reside in \/dev". Those systems
containing multiple graphics devices on a single card (Dual Color Graphics and
Dual CRX, for example) need to have special device �les manually created for
them.

Special device �les are created with the \mknod" command. The mknod command
resides in /usr/sbin and may only be invoked by a superuser (i.e., user root).
Although special device �les can be made in any directory of the HP-UX �le
system, the convention is to create them in the /dev directory. Any name may
be used for the special device �le; however, the names that are suggested for the
devices are crt, crt0, crt1, crt2, or crt3. It is also acceptable to use a name
that is descriptive of the graphics device, for example, crt1.left or crt1.right.
See the manual page for mknod(1M) for more information regarding its usage.

4-32 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

All graphics special device �les are character device �les with read-write
permissions by all. On 10.x systems, the major number will always be 174. The
following table indicates which minor numbers to use for creating alternative
device �les. (The leading \0x" indicates that the number is in hexadecimal
format.)

Table 4-2. Special Device Files on HP-UX 10.x

Device
Filename

10.x
Minor
Number

Description

/dev/crt 0x000000 Standard console device �le

/dev/crt.r 0x000000 Dual CRX Graphics console, right device

/dev/crt.l 0x000004 Dual CRX Graphics console, left device

/dev/crt1 0x010000 Secondary graphics device �le

/dev/freedom 0x010000 Freedom Series, secondary graphics device
�le

/dev/crt1.r 0x010000 Secondary graphics device is Dual CRX
Graphics, right device

/dev/crt1.l 0x010004 Secondary graphics device is Dual CRX
Graphics, left device

/dev/crt2 0x020000 Third graphics device �le

/dev/crt3 0x030000 Fourth graphics device �le

Following are some examples of using the mknod entry for the HP-UX Operating
System.

For example, an HP workstation running Dual CRX graphics, a sample 10.x
mknod entry for the \left" graphics device would be:

/usr/sbin/mknod /dev/crt.l c 174 0x000004

chmod 666 /dev/crt.l

X Windows: HP-UX 10.x 4-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

and the other, \right," graphics device would be:

/usr/sbin/mknod /dev/crt.r c 174 0x010000

chmod 666 /dev/crt.r

Note that once the device �le has been created, it is necessary to ensure that it
has read-write permissions by all; i.e. \chmod 666".

4-34 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported X Configurations

Supported Graphics Devices

The table below summarizes the graphics devices that are supported on each of
the HP9000 Series systems.

Table 4-3. HP 9000 Supported Graphics Devices Table

Graphics Devices Graphics
Product
Numbers

Supported HP 9000 Models

Integrated Grayscale Graphics* N/A 712 (all models), 715/64, 715/80,
715/100, 725/100

Integrated Color Graphics with
HP Color Recovery**

N/A 712 (all models), 715/64, 715/80,
715/100, 725/100, 748i/64,
748i/100, V743/64, V743/100

Color Graphics card with HP
Color Recovery

A4077A 712 (all models), 715/64, 715/80,
715/100, 725/100, 748i/64,
748i/100, J200, J210, K100,
K200, K210, K400, K410, D200,
D210, D250, D310, D350

Dual Color Graphics card A4078A 715/64, 715/80, 715/100,
725/100, J200, J210

Internal Grayscale Graphics* N/A 705, 710, 715/33, 715/50, 715/75,
725/50, 725/75

Internal Color Graphics** N/A 705, 710, 715/33, 715/50, 715/75,
725/50, 725/75, 745i/50,
745i/100, 747i/50, 747i/100

CRX, Dual CRX A1659A,
A2262A

720, 730, 735, 735/125, 750, 755,
755/125, 747i/50, 747i/100,

GRX A4053A 720, 730, 735, 735/125

CRX-24 A2673A,
A2271A,
A2272A

715/33, 715/50, 715/75, 720,
725/50, 725/75, 730, 735,
735/125, 747i/50, 747i/100, 750,
755, 755/125

X Windows: HP-UX 10.x 4-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-3.

HP 9000 Supported Graphics Devices Table (continued)

Graphics Devices Graphics
Product
Numbers

Supported HP 9000 Models

CRX-24Z A2674A,
A1454A

715/33, 715/50, 715/75, 720,
725/50, 725/75, 730, 735,
735/125, 750, 755, 755/125

CRX-48Z A2675A 715/50, 715/75, 715/100, 725/50,
725/75, 725/100, 735, 735/125,
755, 755/125, J200, J210

HCRX-8, HCRX-8Z A4070A,
A4079A

715/64, 715/80, 715/100,
725/100, J200, J210

HP Visualize-EG (internal) N/A C160L, C160U, C180-XP

HP Visualize-EG card A4450A C160L, C160U, K460-XP

Dual HP Visualize-EG A4451A C160L, C160U

HCRX-24, HCRX-24Z, HP
Visualize-8, HP Visualize-24

A4071A,
A4179A,
A4441A,
A4442A

715/64, 715/80, 715/100,
725/100, J200, J210

HP Visualize-48 N/A J200, J210

Freedom Series Graphics A4091A,
A4093A

715/80, 715/100, J200, J210

PersonalVRX, TurboVRX (No longer on
the Corporate
Price List)

720, 730, 735, 735/125, 750, 755,
755/125

* Integrated Grayscale Graphics and Internal Grayscale Graphics is
supported on high resolution (1280�1024) for all Models speci�ed above.

** Integrated Color Graphics and Internal Color Graphics is supported on
both medium-resolution (1024�768) and high-resolution (1280�1024)
con�gurations of the Series 700 Models 705, 710, 712 (all models), and
715/33. High resolution is supported on all other Models speci�ed above.

N/A Graphics product number not available at time of printing.

4-36 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Multi-Display Support

The following de�nitions are included to reduce confusion between the terms
\multi-display," \multi-screen," \multi-seat," and \single logical screen."

Multi-Display A con�guration with multiple graphics devices used
concurrently. Any multi-screen, multi-seat, or single
logical screen con�guration is referred to as a multi-
display con�guration.

Multi-Screen A con�guration in which a single X server with a mouse
and keyboard drives multiple graphics devices (where
each display is a di�erent X Screen) concurrently while
only allowing the cursor, not windows, to be moved
between displays.

Figure 4-9.

X Windows: HP-UX 10.x 4-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Multi-Seat A con�guration with multiple instantiations of the X
server, each with its own mouse, keyboard, and dis-
play(s). Multi-seat is not supported in any HP-UX 10.*
release.

Figure 4-10.

4-38 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Single Logical Screen A con�guration in which a single X server with a
single mouse and keyboard drives multiple homogeneous
graphics devices concurrently while allowing the displays
to emulate a large single screen. This di�ers from a multi-
screen environment by allowing windows to be moved
and displayed across displays. See the section in this
document on Single Logical Screen.

Figure 4-11.

Note that di�erent monitor resolutions are not supported
with the multi-display con�gurations unless stated oth-
erwise in the table below.

X Windows: HP-UX 10.x 4-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Multi-Screen Support

This section refers to multi-screen con�gurations only. Running one X server
on more than one graphics display is called a \multi-screen" operation. The
keyboard and pointer are shared among the screens. Multiple screens are enabled
via the /etc/X11/X*screens �le. The X*screens �le is used to con�gure the
operation of the X server. The screens are de�ned in the X*screens �le by
specifying the appropriate special device �les. See the section in this document
on special device �les and /etc/X11/X0screens for more information.

A separate screen entry for each graphics display is entered in the X*screens

�le. The order of entries always determines the screen number starting at 0. The
devices can be arranged in any order.

For example, in the following multi-screen system, the screen numbers are
assigned as indicated:

Screen /dev/crt1 # first entry is screen 0 (as in local:0.0)

Screen /dev/crt0 # second entry is screen 1 (as in local:0.1)

Screen /dev/crt2 # third entry is screen 2 (as in local:0.2)

The X server supports up to four screens at a time. Specifying more than four
screens will cause a server error message.

4-40 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The following multi-screen con�gurations are supported:

712/60, 712/80, and 712/100:
1. Integrated Color Graphics and one plug-in Color Graphics card.
715/33:
1. Internal Color Graphics and one CRX-24.
2. Internal Color Graphics and one CRX-24Z.
715/50, 715/75, 725/50, and 725/75:
1. Internal Color Graphics and one CRX-24.
2. Internal Color Graphics and one CRX-24Z.
3. Internal Color Graphics and one CRX-48Z.
715/64, 715/80, and 715/100:
1. Integrated Color Graphics and one plug-in Color Graphics card.
2. Integrated Color Graphics and one Dual Color Graphics card.
3. Integrated Color Graphics and one HCRX-8[Z].
4. Integrated Color Graphics and one HP Visualize-8.
5. Integrated Color Graphics and one HCRX-24[Z].
6. Integrated Color Graphics and one HP Visualize-24.
7. Integrated Color Graphics and one HP Visualize-48.
725/100:
1. Integrated Color Graphics and up to two plug-in Color Graphics cards.
2. Integrated Color Graphics and one Dual Color Graphics card.
3. Integrated Color Graphics and one HCRX-8[Z].
4. Integrated Color Graphics and one HP Visualize-8.
5. Integrated Color Graphics and one HCRX-24[Z].
6. Integrated Color Graphics and one HP Visualize-24.
720, 730, 735, and 735/125:
1. One Dual CRX.
748i/64 and 748i/100:
1. Integrated Color Graphics and up to two plug-in Color Graphics cards

(3�5).
2. Integrated Color Graphics, one plug-in Color Graphics cards (3�5) and one

HCRX-8 (3�5).
3. Integrated Color Graphics or a plug-in Color Graphics cards (3�5) and one

HCRX-8 (3�5).
4. Integrated Color Graphics plug-in Color Graphics cards (3�5) and one

HCRX-24 (3�5).
747i/50 and 747i/100:
1. One Dual CRX.

X Windows: HP-UX 10.x 4-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

2. Internal Color Graphics and one Dual CRX.
750, 755 and 755/125:
1. One Dual CRX.
2. Two Dual CRXs.
3. Two CRX-24s.
C160L and C160U:
1. Built-In HP Visualize-EG and one HP Visualize-EG card.
2. Built-In HP Visualize-EG and one HP Visualize-24.
3. Built-In HP Visualize-EG and one Dual HP Visualize-EG card.
4. Built-In HP Visualize-EG and one HP Visualize-EG card and one Dual

HP Visualize-EG card.
5. Two HCRX-24 cards.
J200 and J210:
1. Up to four screens with any combination of plug-in Color Graphics cards

and Dual Color Graphics cards.
a. One or two Dual Color Graphics cards.
b. Up to three plug-in Color Graphics cards.
c. One Dual Color Graphics card and up to two plug-in Color Graphics

cards.
2. Two HCRX-24 cards.
3. One plug-in Color Graphics card and one HCRX-24Z.
4. One plug-in Color Graphics card and one HP Visualize-24.
5. One plug-in Color Graphics card and one CRX-48Z.
K200, K210, K400, and K410:
1. Up to four plug-in Color Graphics cards.
K460:
1. Up to four plug-in HP Visualize-EG cards.

* Unless otherwise stated, di�erent resolutions are not supported in multi-display
con�gurations.

4-42 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Single Logical Screen (SLS)

SLS is a mechanism for treating homogeneous multi-display con�gurations as
a single \logical" screen. This allows the moving/spanning of windows across
multiple physical monitors. The word \homogeneous" is included because SLS
only works if the graphics devices included in the SLS Con�guration are of the
same type. See the list of the supported SLS con�gurations shown below. SLS is
enabled via the /etc/X11/X*screens �le via the syntax:

SingleLogicalScreen n m

/dev/crt0 ... /dev/crtk

where: n = the number of \rows" in the physical con�guration, m = the number
of \columns" in the physical con�guration, and the product of n� m is
less than or equal to four.

For example, to create a logical screen that is one monitor tall by two monitors
wide, the following syntax would be used:

SingleLogicalScreen 1 2

/dev/crt0 /dev/crt1

Whereas for a logical screen that is two monitors tall by one monitor wide, the
syntax is:

SingleLogicalScreen 2 1

/dev/crt0 /dev/crt1

X Windows: HP-UX 10.x 4-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported SLS Configurations

All supported multi-screen combinations (see the list of supported multi-screen
con�gurations in the Multi-Display Support section) consisting of only one
graphics device type (three Color Graphics devices, for example) are supported
by SLS. A fairly comprehensive list of these con�gurations is shown below:

Series 720 with a Dual CRX
Series 712 with an Integrated Color Graphics + plug-in Color Graphics
Series 715 with an Integrated Color Graphics + plug-in Color Graphics
Series 725 with an Integrated Color Graphics + plug-in Color Graphics
Series 730/735 with a Dual CRX
Series 750/755 with a Dual CRX
Series 750/755 with two Dual CRX plug-in cards
Series 750/755 with two CRX-24 plug-in cards
Series 770 (J-Series) with two HCRX-8 plug-in cards
Series 770 (J-Series) with two HP Visualize-8 plug-in cards
Series 770 (J-Series) with two HCRX-24 plug-in cards
Series 770 (J-Series) with a Dual Color Graphics card.
C160L and C160U: All multi-screen con�gurations using only HP Visualize-
EG

3D Acceleration and Single Logical Screen

Currently, SLS does not take advantage of 3D acceleration (e.g. CRX-24Z). 3D
applications (from any supported HP 3D API) will continue to run with SLS;
However, 3D performance with SLS will be much slower than it is without SLS.

HP VUE/CDE and Single Logical Screen

Please note that HP VUE/CDE has not been modi�ed to take advantage of the
Single Logical Screen capability. When presenting information on your display,
HP VUE may split a window across physical screens. Examples include:

The login screen.
The Front Panel.
Window move and resize boxes.
The screen lock dialog.

This behavior is the result of HP VUE's naive assumption that it is running
against one large screen; it centers these windows accordingly.

4-44 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

If you are using the default HP VUE key bindings, you can easily reposition the
Front Panel so that it is completely contained within one physical screen:

1. With the input focus on the Front Panel, press �Alt��Space� (on older keyboards,
use �Extend Char� �Space�).

2. With the Front Panel menu posted and the \Move" menu item selected, press
�Enter� (on older keyboards, �Return�) to start the move.

3. Use the mouse or the arrow keys to reposition the Front Panel to the desired
location.

4. Press �Enter� (or �Return�) to complete the move. You may instead press �Esc� to
cancel the move.

Afterwards, this setting will be remembered and restored at your next login. If
you have previously set a Home session, you will need to re-set the Home session
in the Style Manager to register the new Front Panel position.

Note that there is no mechanism in HP VUE for repositioning the login screen,
window move/resize boxes, or the screen lock dialog.

Integrated Color Graphics Device-Dependent Information

This sections includes information on Integrated Color Graphics and Color
Graphics cards.

Supported Visuals

For color displays:

Class PseudoColor Depth 8|
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8|
supports DBE and MBX software double-bu�ering

For grayscale displays, only one visual is supported:

Class GrayScale Depth 8|
supports DBE and MBX software double-bu�ering

X Windows: HP-UX 10.x 4-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Screen Options

The following Screen Options are supported:

DisableColorRecovery

3BitCenterColor

ImageTextViaBitMap

Colormaps and Colormap Management

Color Graphics devices have two hardware colormaps (color lookup tables), each
with 256 entries. The X server controls the allocation and contents of these
hardware colormaps.

Default Colormap Management Scheme

Many applications use the default X11 colormap. A technicolor e�ect in the
windows using the default colormap occurs when a non-default colormap is
downloaded in the hardware colormap that had previously contained the default
colormap.

Because so many applications use the default X11 colormap|including the
window manager|and because Color Graphics devices have two hardware
colormaps, the default behavior on this device is to dedicate one hardware
colormap to always hold the default X11 colormap. The second hardware
colormap is available to applications that use colormaps other than the default.

The default behavior can cause technicolor if two or more applications are using
di�erent, non-default colormaps. For example, Application A uses the default
X11 colormap, Application B uses a di�erent colormap, and Application C uses
a third colormap. If applications A, B, and C are all executed simultaneously on
a Model 712, application A would look correct. Either application B or C would
have a technicolor e�ect|the application whose colormap was last downloaded
in the hardware colormap would look correct.

4-46 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Accessing HP Color Recovery Technology via Xlib

For HP-UX 10.30 and beyond, the HP Color Recovery Extension has been added
to HP's X server. It provides a simple API for taking a 24-bit image and
displaying it in an 8-bit window. See the section entitled

Accessing HP Color Recovery Technology via the Color Recovery Extension for
more information.

Color Recovery is a technique to generate a better picture by attempting to
eliminate the graininess caused by dithering. Access to the Color Recovery
capability is transparent when using a 3D graphics API such as Starbase, HP-
PHIGS or PEX. If you are producing graphics using Xlib calls, your application
must perform some of the necessary processing. At server startup (if Color
Recovery is not disabled in the X*screens �le), the following properties are
de�ned and placed on the root window:

_HP_RGB_SMOOTH_TRUE_MAP

_HP_RGB_SMOOTH_PSEUDO_MAP

_HP_RGB_SMOOTH_MAP_LIST

These properties are of type RGB_COLOR_MAP and carry pointers to struc-
tures of type XStandardColormap. They may be interrogated with calls to
XGetRGBColormaps. The colormaps in the _HP_RGB_SMOOTH_TRUE_MAP and
_HP_RGB_SMOOTH_PSEUDO_MAP structures identify colormaps which are created
at server startup and are for use with the TrueColor and PseudoColor visuals,
respectively. They are both initialized to contain the 3:3:2 ramp of 8-bit True-
Color. Neither of these colormaps can be modi�ed as they are read-only . The
property _HP_RGB_SMOOTH_MAP_LIST is a list of colormaps that are associated
with all of the root window's visual IDs that support Color Recovery. When the
XGetRGBColormaps routine searches throughout this list for a colormap with a
visual ID that matches the visual ID that your window is using and it �nds one,
your application knows that your visual supports Color Recovery, and uses that
colormap for any Color Recovery window in your window's visual.

Note that the algorithm used for the Color Graphics device is slightly di�erent
from that used for the HCRX family of devices. If you do not wish for your
application to have to do device-speci�c checks, HP recommends that you use
the HCRX encoding algorithm for Color Recovery regardless of the device on
which your application is executing. The results on the Color Graphics device
will not be optimal, but will generally still be much better than a standard

X Windows: HP-UX 10.x 4-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

dither. If you are willing to do device-speci�c checks, the existence of either
the _HP_RGB_SMOOTH_TRUE_MAP or _HP_RGB_SMOOTH_PSEUDO_MAP property will
indicate the device is Color Graphics.

Color Recovery uses all 256 entries of one of the available colormaps. The color
visual used by Color Recovery emulates the 24-bit TrueColor visual; thus, the
colors red, green, and blue are typically declared as integers in the range from
0 to 255. Note that each window that uses Color Recovery will have the same
colormap contents.

For Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue, and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range 0..255.

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to three bits of red and green
and two bits of blue. The quantized results are packed into an 8-bit unsigned
char and then stored in the frame bu�er. In the process of sending the contents
of the frame bu�er to the CRT, a special section in the hardware then converts
the frame bu�er's 8-bit data into 24-bit TrueColor data for display.

4-48 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue,GreenValue,BlueValue,Xp,Yp)

int RedValue, GreenValue, BlueValue, Xp, Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9}};

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0}};

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5} };

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

/* Determine the dither table entries to use based on the pixel address */

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

/* Start with the initial values as supplied by the calling routine */

red = RedValue;

green = GreenValue;

blue = BlueValue;

/* Generate the red dither value */

red += dither_red[y_dither_table][x_dither_table];

/* Check for overflow or underflow on red value */

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

/* Generate the green dither value */

green += dither_green[y_dither_table][x_dither_table];

/* Check for overflow or underflow on green value */

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

/* Generate the blue dither value */

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

/* Check for overflow or underflow on blue value */

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

/* Generate the pixel value by "or"ing the values together */

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

X Windows: HP-UX 10.x 4-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Internal Color Graphics, Internal Grayscale Graphics,
CRX, GRX, and Dual-CRX Device-Dependent Information

Supported Visuals

Only one visual is supported.

For color displays:

Class PseudoColor Depth 8|
supports DBE and MBX hardware double-bu�ering (CRX, Dual CRX)
supports DBE and MBX software double-bu�ering (Internal Color Graphics)

For grayscale displays:

Class GrayScale Depth 8|
supports DBE and MBX hardware double-bu�ering (GRX)
supports DBE and MBX software double-bu�ering (Internal GrayScale Graph-
ics)

The \layer" and \transparent" default visual options are not supported.

Supported Screen Options

The following Screen Options are supported:

SwapBuffersOnVBlank

3BitCenterColor (Internal Color Graphics only)
EnableIncludeInferiorsFix

4-50 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CRX-24[Z] Device-Dependent Information

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay|
supports DBE and MBX software double-bu�ering
Class DirectColor Depth 12 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 12 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image|
doesn't support DBE and MBX double-bu�ering
Class TrueColor Depth 24 Layer Image|
doesn't support DBE and MBX double-bu�ering

Supported Screen Options

The following Screen Options are supported:

CountTransparentInOverlayVisual

SwapBuffersOnVBlank

ImageTextViaBitMap

CRX24_FULL_DEFAULT_VISUAL

EnableIncludeInferiorsFix

X Windows: HP-UX 10.x 4-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CRX-24[Z] Transparent Overlay Visuals

The default number of colormap entries in the overlay visual for the CRX-24[Z]
is 255. Entry 255 is excluded because its value is hard-coded to transparent (that
is, show the image planes).

This may have the following two consequences for X11 applications running in
the overlay planes (the default visual):

Clients attempting to allocate 256 entries do not have their request granted.
Clients requesting (via XAllocNamedColor) the rgb.txt value of \Transpar-
ent" are not returned entry 255.

This default behavior can be changed by setting the CountTransparentInOver-
layVisual screen option.

When this option is enabled, the X server does the following:

Speci�es that the overlay visual has 256 entries.
Creates the default colormap with entry 255 pre-allocated to Transparent. A
client calling XAllocNamedColor for entry Transparent in the default colormap
will be returned entry 255.
For all other colormaps, returns all 256 entries as allocable, but issues a warning
message:

Warning: XCreateColormap is creating 256 entry cmaps in overlay visual.

Though allocable, entry 255 is hard-coded to transparency.

This warning is issued once per server execution.

4-52 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

CRX-48Z Device-Dependent Information

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay|
supports DBE and MBX software double-bu�ering
Class DirectColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering

Screen Options

The following Screen Options are supported:

CountTransparentInOverlayVisual

SwapBuffersOnVBlank

ImageTextViaBitMap

EnableIncludeInferiorsFix

CRX-48Z Transparent Overlay Visuals

The default number of colormap entries in the overlay visual for the CRX-48Z is
255. Entry 255 is excluded because its value is hard-coded to transparent (that
is, show the image planes).

This may have the following two consequences for X11 applications running in
the overlay planes (the default visual):

Clients attempting to allocate 256 entries do not have their request granted.
Clients requesting (via XAllocNamedColor) the rgb.txt value of Transparent
are not returned entry 255.

This default behavior can be changed by setting the CountTransparentInOver-
layVisual screen option.

X Windows: HP-UX 10.x 4-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

When this option is enabled, the X server does the following:

Speci�es that the overlay visual has 256 entries.
Creates the default colormap with entry 255 pre-allocated to Transparent. A
client calling XAllocNamedColor for entry Transparent in the default colormap
will be returned entry 255.
For all other colormaps, returns all 256 entries as allocable, but issues a warning
message:

Warning: XCreateColormap is creating 256 entry cmaps in overlay visual.

Though allocable, entry 255 is hard-coded to transparency.

This warning is issued once per server execution.

HCRX and HP Visualize Device-Dependent Information

This section includes information on the HCRX-8[Z], HCRX-24[Z], HP Visu-

alize-EG, HP Visualize-8, HP Visualize-24, and HP Visualize-48 graphics
devices.

The HCRX-8[Z] is a one board device (two, with the optional accelerator that
has eight overlay planes, two banks of 8 image planes, and 4 hardware colormaps.
This device provides a superset of functionality in the CRX.

The HCRX-24[Z] is a one board device (two, with the optional accelerator) that
has eight overlay planes, two banks of 12 image planes, and 4 hardware colormaps.
This device provides a superset of functionality in the CRX-24[Z].

The HP Visualize-EG is either an unaccelerated built-in graphics device or
a single board unaccelerated graphics device (not counting the optional memory
daughter card in either case). This device provides compatable functionality with
the Integrated Color Graphics device when in 8 plane mode and has functionality
compatable with the HCRX-8 device when in double-bu�er mode. See below for
a description of these modes. For shorthand notation, from this point on in the
document, HP Visualize-EG will refer to either mode, HP Visualize-EG(8)
will refer to 8 plane mode only and HP Visualize-EG(D) will refer to double-
bu�er mode only.

4-54 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The HP Visualize-8 is a two board accelerated device that has eight overlay
planes, two banks of 8 image planes, and 4 hardware colormaps. This device
provides a superset of functionality in the CRX.

The HP Visualize-24 is a two board accelerated device that has eight overlay
planes, two banks of 12 image planes, and 4 hardware colormaps. This device
provides a superset of functionality in the CRX-24[Z].

The HP Visualize-48 is a two-board accelerated device (three, with the optional
texture-mapping hardware) that has eight overlay planes, two banks of 24
image planes, and six hardware colormaps. This device provides a superset of
functionality in the CRX-48Z. The hardware support for accelerating 2D Xlib
primitives is similar to that in the other HCRX devices. The hardware for
accelerating 3D geometry, lighting, and shading, is new.

Supported Visuals

The following visuals are supported on the HP Visualize-EG(8):

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image|
supports DBE and MBX software double-bu�ering

The following visuals are supported on the HCRX-8[Z], HP Visualize-EG(D)
and HP Visualize-8:

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay - (see Note)
supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent - (see Note)
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering

X Windows: HP-UX 10.x 4-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Note The two overlay visuals are mutually exclusive, based on the
presence of the EnableOverlayTransparency screen option (i.e.,
if the EnableOverlayTransparency screen option is set, then
the visual that supports transparency is available, otherwise the
visual which does not support transparency is available).

The following visuals are supported on the HCRX-24[Z] and HP Visualize-24:

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay|
supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent|
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 12 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 12 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image|
doesn't support DBE and MBX double-bu�ering
Class TrueColor Depth 24 Layer Image|
doesn't support DBE and MBX double-bu�ering

The following visuals are supported on the HP Visualize-48:

Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class PseudoColor Depth 8 Layer Overlay|
supports DBE and MBX software double-bu�ering
Class PseudoColor Depth 8 Layer Overlay Transparent|
supports DBE and MBX software double-bu�ering
Class TrueColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering

4-56 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Screen Options

The following Screen Options are supported:

CountTransparentInOverlayVisual

DisableColorRecovery

EnableOverlayTransparency (HCRX-8[Z], HP Visualize-EG(D) and HP
Visualize-8 only)
SwapBuffersOnVBlank

ImageTextViaBitMap

CRX24 FULL DEFAULT VISUAL (HCRX-24[Z] only)
EnableIncludeInferiorsFix

HP Visualize-EG Modes

The following modes are supported:

8 Plane mode
Double-Bu�er mode

The modes are set from the Boot-Admin at bootup time by selecting from the
menu of options a con�guration that supports double-bu�er or not. From that
point on (without rebooting) the server will use the selected mode.

Eight-plane mode is compatible with the Integrated Color Graphics device. It
has eight image planes and uses only software double-bu�ering.

Double-Bu�er mode is compatible with the HCRX-8 device. This mode requires
an optional memory daughter card. If the daughter card is installed, selecting
this mode will result in eight overlay planes and 16 image planes (the same as
HCRX-8 and HP Visualize-8 devices). Double-Bu�er mode allows the use of
hardware double-bu�ering.

X Windows: HP-UX 10.x 4-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

HCRX Configuration Hints

HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8 Visuals and

Double-Buffer Support

The eight-plane HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8 are the
�rst members of the Series 700 graphics family whose overlay planes and image
planes are both depth 8.

There are two depth-8 PseudoColor visuals (one in the overlay planes, the other
in the image planes). There is also a depth-8 TrueColor visual in the image
planes.
The default visual (where the root window and default colormap reside) is in
the overlay planes. A DefaultVisual speci�cation in a Screen Entry in the
X*screens �le may instead locate the default visual in the Image Planes (see
the X*screens File section, above).
Fast 8/8 double-bu�ering (two hardware bu�ers) is supported in the depth-8
image planes, but not in the overlays. The overlay planes support the slower
virtual-memory-based double-bu�ering.

Implications and Suggestions for HCRX-8[Z], HP Visualize-EG(D) and HP

Visualize-8

The default colormap cannot be used with a window in a non-default visual, even
one of the same depth as the default visual.

Before trying to use the default colormap in a depth-8 window, verify that the
window is in the default visual. If the window is not in the default visual, create
a colormap in that visual. This process of creating a non-default colormap is the
same as the one used to create windows in depth-12 or depth-24 visuals.

If you have an application that assumes that the default colormap can be used
with any depth-8 window (even one in an image-plane visual) speicy an image
plane visual as the default.

Unlike the CRX, the HCRX-8[Z]'s default visual the HP Visualize-EG(D)'s
default visual and the HP Visualize-8's default visual do not have fast hardware
double-bu�ering (but the image planes do).

To obtain hardware double-bu�ering, �nd a visual in the image planes. The
best method is to �nd all the depth-8 PseudoColor visuals returned by

4-58 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

XGetVisualInfo and then eliminate the visuals that are reported in the
SERVER_OVERLAY_VISUALS property (discussed below).

If you have an application that assumes the default visual has fast double-
bu�ering, specify an image plane visual as the default.

HCRX Overlay Visuals and Overlay Transparency

As on the CRX-24[Z] and CRX-48Z, a property on the root window,
SERVER_OVERLAY_VISUALS, is used to describe the visuals that are in the overlay
planes.

Overlay Transparency on the HCRX-8[Z], HP Visualize-EG(D) and HP

Visualize-8

The HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8 each have one
visual in the overlay planes (depth-8 PseudoColor). By default, this overlay visual
has no transparent index available to applications for rendering transparency.
This means the overlay windows with \
oating text" are not supported in the
typical X server operation on the HCRX-8[Z], HP Visualize-EG(D) or HP
Visualize-8.

For applications that require transparent overlay windows on the HCRX-8[Z], HP
Visualize-EG(D) or HP Visualize-8, an optional X server mode is available to
allow for overlay transparency, but it is restrictive. In this optional mode, overlay
colormaps provide a single entry that can be used to render transparency. Only
one hardware colormap is available in the overlays (instead of two) and only one
hardware colormap is available in the image planes (instead of two).

To activate this optional X server mode to enable transparency, set the
EnableOverlayTransparency screen option. You will need to restart the X server
for the option to take e�ect.

With this mode enabled, colormaps created in the default visual have 255
entries; entry 256 is reserved for transparency. As on the CRX-24[Z] and CRX-
48Z, the screen option EnableOverlayTransparency can be used to include the
transparent index in the colormap size (256 entries instead of 255).

X Windows: HP-UX 10.x 4-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Note For Programmers:
If transparency is not enabled, there are only 252 colors available.
Entries 252-255 are not writable, and should not be used; there
are only 252 colormap entries available, even though the server
states that there are 256.

Overlay Transparency on the HCRX-24[Z], HP Visualize-24, and HP

Visualize-48

The HCRX-24[Z], HP Visualize-24, and HP Visualize-48 have two visuals in
the overlay planes, both depth-8 PseudoColor.

The default overlay visual has 256 entries per colormap and no transparency.

The second overlay visual has 255 entries per colormap and supports transparency
in the same way as the CRX-24[Z]. As on the CRX-24[Z] and CRX-48Z, the screen
option EnableOverlayTransparency can be used to include the transparent
index in the colormap size (256 entries instead of 255).

To allow applications to determine which visuals are in the overlay planes, both
overlay visuals are listed in the SERVER_OVERLAY_VISUALS property attached
to the root window. The default overlay visual has a transparent type of
0 (None) while the transparent overlay visual has a transparent type of 1
(TransparentPixel).

4-60 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

If you need an overlay colormap that supports transparency, create the colormap
using the visual that has transparency in its SERVER_OVERLAY_VISUALS property.
To look at the contents of this property, you would use code similar to the
following:

{

typedef struct {

VisualID overlayVisualID;

Card32 transparentType;/* None, TransparentPixel, TransparentMask */

Card32 value; /* Either pixel value or pixel mask */

Card32 layer;

} OverlayVisualPropertyRec;

OverlayVisualPropertyRec *pOverlayVisuals, *pOVis;

XVisualInfo getVis;

XVisualInfo *pVisuals;

Atom overlayVisualsAtom, actualType;

...

/* Get the visuals for this screen and allocate. */

getVis.screen = screen;

pVisuals = XGetVisualInfo(display, VisualScreenMask, &getVis, &nVisuals);

pOverlayVisuals = (OverlayVisualPropertyRec *)

malloc ((size_t)nVisuals * sizeof(OverlayVisualPropertyRec));

/* Get the overlay visual information for this screen. Obtain

* this information from the SERVER_OVERLAY_VISUALS property. */

overlayVisualsAtom = XInternAtom(display, "SERVER_OVERLAY_VISUALS", True);

if (overlayVisualsAtom != None)

{

/* Since the Atom exists, request the property's contents. */

bytesAfter = 0;

numLongs = (nVisuals * sizeof(OverlayVisualPropertyRec) + 3) / 4;

XGetWindowProperty(display, RootWindow(display, screen),

overlayVisualsAtom, 0, numLongs, False,

AnyPropertyType, &actualType, &actualFormat,

&numLongs, &bytesAfter, &pOverlayVisuals);

if (bytesAfter != 0) {/* Serious Failure Here */} ;

/* Loop through the pOverlayVisuals array. */

...

nOVisuals = numLongs/sizeof(OverlayVisualPropertyRec);

pOVis = pOverlayVisuals;

while (--nOVisuals >= 0)

{

if (pOVis->transparentType == TransparentPixel)

{/* Found a transparent overlay visual, set ident. aside. */};

pOVis++;

}

XFree(pOverlayVisuals);

X Windows: HP-UX 10.x 4-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

/* There might be some additional checking of the found

transparent overlay visuals wanted; e.g., for depth. */

}

XFree(pVisuals);

}

This program fragment is not complete; its main purpose is to give the idea of
how to �nd an overlay visual having transparency.

HCRX Colormaps

The following information discusses the number of supported colormaps for the
HCRX con�gurations.

HP Visualize-EG(8): 8 Image planes

The image planes contain the default colormap permanently installed in the
hardware plus one other hardware colormap available to applications. No issues
involving transparency exist because of the lack of Overlay planes.

HCRX-8[Z], HP Visualize-EG(D) and HP Visualize-8: Eight Overlay Planes

and Two Depth-8 Banks of Image Planes

When the default visual is in the overlay planes (default location) and the screen
option EnableOverlayTransparency is not set, the overlay planes contain the
default colormap permanently installed in the hardware, plus one other hardware
colormap available to applications. The image planes contain two hardware
colormaps each usable by applications.

When the default visual is in the image planes and the screen option EnableOver-
layTransparency is not set, the overlay planes contain a single hardware col-
ormap available to applications, plus a colormap reserved by the server (i.e.,
unavailable to applications) to guarantee the existence of transparency, and the
image planes contain the default colormap permanently installed into the hard-
ware, plus one other hardware colormap available to applications.

When the screen option EnableOverlayTransparency is set, both the overlay
planes and the image planes have access to one hardware colormap. The default
colormap is not permanently installed in the hardware and is in the overlay planes
by default, but the Default Visual can be located in the image planes as described
in a previous section.

4-62 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

HCRX-24[Z] and HP Visualize-24: Eight Overlay Planes and 24 Image Planes

The overlay planes contain the default colormap permanently installed in the
hardware, plus one other hardware colormap available to applications. The image
planes contain two hardware colormaps, each usable by applications.

Although two hardware colormaps are available to applications in the image
planes, a hardware restriction allows only one depth-12 or depth-24 colormap
to be installed at any given time. Therefore, if two applications are run
simultaneously and use di�erent depth-12 or depth-24 colormaps, the application
that has the colormap focus looks correct and the other is technicolored.

HP Visualize-48: Eight Overlay Planes and 48 Image Planes

The overlay planes contain the default colormap permanently installed in the
hardware, plus one other hardware colormap available to applications. The image
planes contain four hardware colormaps, each usable by applications.

The four hardware colormaps in the image planes can be treated as depth-8 or
depth-24 colormaps. There are no restrictions on the types of colormaps that can
be installed in the hardware at any given time. All four colormaps can be used
with any visual class.

Accessing HP Color Recovery Technology via Xlib

For HP-UX 10.30 and beyond, the HP Color Recovery Extension has been added
to HP's X server. It provides a simple API for taking a 24-bit image and
displaying it in an 8-bit window. See the section entitled

Accessing HP Color Recovery Technology via the Color Recovery Extension for
more information.

Color Recovery is a technique to generate a better picture by attempting to
eliminate the graininess caused by dithering. Access to the Color Recovery
capability is transparent when using a 3D graphics API such as Starbase, HP-
PHIGS or PEX. If you are producing graphics using Xlib calls, your application
must perform some of the necessary processing. At server startup (if Color
Recovery is not disabled in the X*screens �le), the _HP_RGB_SMOOTH_MAP_LIST
property is de�ned and placed on the root window.

The above property is of type RGB_COLOR_MAP and carries pointers to structures
of type XStandardColormap. It may be interrogated with calls to XGetRGBCol-

X Windows: HP-UX 10.x 4-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

ormaps. The property _HP_RGB_SMOOTH_MAP_LIST is a list of colormaps that
are associated with window visual IDs that support Color Recovery. When the
XGetRGBColormaps routine searches throughout this list for a colormap with a
visual ID that matches your window's visual ID and it �nds one, your application
knows that your visual supports Color Recovery, and uses that colormap for any
Color Recovery window in your window's visual.

Color Recovery uses all 256 entries of one of the available colormaps. The color
visual used by Color Recovery emulates the 24-bit TrueColor visual, thus, the
colors red, green, and blue are typically declared as integers in the range from
0 to 255. Note that each window that uses Color Recovery will have the same
colormap contents.

For Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue, and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range 0..255.

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to three bits of red and green
and two bits of blue. The quantized results are packed into an 8-bit unsigned
char and then stored in the frame bu�er. In the process of sending the contents
of the frame bu�er to the CRT, a special section in the hardware then converts
the frame bu�er's 8-bit data into a 24-bit TrueColor data for display.

4-64 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue,GreenValue,BlueValue,Xp,Yp)

int RedValue,GreenValueBlueValue,Xp,Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9}};

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0}};

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5}};

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

/* Determine the dither table entries to use based on the pixel address */

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

/* Start with the initial values as supplied by the calling routine */

red = RedValue;

green = GreenValue;

blue = BlueValue;

/* Generate the red dither value */

if (red >= 48) /* 48 is a constant required by this routine */

red=red-16;

else

red=red/2+8;

red += dither_red[y_dither_table][x_dither_table];

/* Check for overflow or underflow on red value */

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

/* Generate the green dither value */

if (green >= 48) /* 48 is a constant required by this routine */

green=green-16;

else

green=green/2+8;

green += dither_green[y_dither_table][x_dither_table];

/* Check for overflow or underflow on green value */

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

X Windows: HP-UX 10.x 4-65

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

/* Generate the blue dither value */

if (blue >= 112) /* 112 is a constant required by this routine */

blue=blue-32;

else

blue=blue/2+24;

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

/* Check for overflow or underflow on blue value */

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

Freedom Series Graphics Device-Dependent Information

This sections describes support for the Freedom Series from Evans & Sutherland
on Hewlett-Packard workstations.

Note Note that the Freedom Series is no longer supported as of HP-
UX 10.30; the information below is presented for those who are
running previous versions of the operating system.

Supported Visuals

The following visuals are supported:

Class PseudoColor Depth 8 Layer Overlay|
Class PseudoColor Depth 8 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class DirectColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering
Class TrueColor Depth 24 Layer Image|
supports DBE and MBX hardware double-bu�ering

4-66 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Screen Options

The following Screen Options are supported:

FreedomVideoFormat

Freedom Video Formats

Freedom Series graphics devices have the ability to support several di�erent video
formats. The default format is 1280� 1024 @ 75 Hz VESA timing. Other
supported video formats may be selected by using the FreedomVideoFormat

screen option in the appropriate X*screens �le. This screen option replaces
the 9.07 environment variable, ES_VIDEO_FORMAT. The appropriate video format
must be selected to support the speci�c display device connected to the Freedom
accelerator. Multisync monitors can support several di�erent video formats.

Alternative supported formats:

Table 4-4. Alternative Supported Freedom Video Formats

Screen Option Resolution Description

ntsc_cvo 640�480 U.S. composite TV format with CVO*

pal_cvo 768�576 European composite TV format with CVO*

* \CVO" is the Composite Video Output card, which must be installed in the
Freedom accelerator for this video format to work.

While the following formats are provided there is no intent to claim \support"
for these formats, they are untested and unsupported con�gurations.

X Windows: HP-UX 10.x 4-67

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Alternative unsupported formats:

Table 4-5. Alternative Unsupported Freedom Video Formats

Screen Option Resolution Description

ntsc 640�480 U.S. composite TV format

pal 768�576 European composite TV format

hdtv 1920�1024 60 Hz interlaced

stereo1 640�512 60 Hz frame rate per eye

stereo2 1280�512 60 Hz frame rate per eye

vga 640�480 Standard VGA

video60 1280�1024 60 Hz

video76 1280�1024 76 Hz

VRX Device-Dependent Information

This section includes information on the PersonalVRX (PVRX) and TurboVRX
(TVRX) graphics devices.

Note Note that the PersonalVRX and the TurboVRX are no longer
supported as of HP-UX 10.30; the information below is presented
for those who are running previous versions of the operating
system.

Supported Visuals

The following visuals are supported:

Depth 3 (overlay and combined mode)
Depth 4 (overlay and combined mode)
Depth 8 (image and combined mode)
Depth 12 (image and combined mode, TVRX only)
Depth 16 (Creates a double-bu�er version of the Depth 8 visual)
Depth 24 (image and combined mode, TVRX only)

4-68 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

None of these visuals support DBE and MBX double-bu�ering.

In image mode the default visual is the Depth 8 PseudoColor visual. In overlay
mode it is the depth 3 or depth 4 PseudoColor visual as speci�ed by the device
�le. In combined mode the �rst device �le speci�es the default visual. Examples
are shown in the section below.

VRX Device Files

Di�erent device �les exist for the image planes and overlay planes on VRX devices.
The following table shows examples of device �les for VRX devices:

Table 4-6. VRX Device Files

Device
Filename

10.x
Major
Number

10.x
Minor
Number

Description

/dev/crt 174 0x000000 Image mode

/dev/ocrt 174 0x000001 Overlay mode (3 planes)

/dev/o4crt 174 0x000003 Overlay mode (4 planes)

The X server supports three di�erent modes of operation on VRX devices: image,
overlay or combined.

In image mode, the X server runs only in the image planes. This is the default on
VRX devices. To operate in image mode, the image device �le should be speci�ed
as the primary screen device. For example:

/dev/crt # Image mode

In overlay mode, the X server runs only in the overlay planes. Since only 3 or 4
planes are available in the overlay planes on VRX devices, the number of colors
is very limited. To operate in overlay mode, the overlay device �le should be
speci�ed as the primary screen device. For example:

/dev/ocrt # Overlay mode using 3 overlay planes

or

/dev/o4crt # Overlay mode using 4 overlay planes

X Windows: HP-UX 10.x 4-69

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

In combined mode, the X server runs in both image and overlay planes. To
con�gure the X server to operate in combined mode, a primary and a secondary
device must be speci�ed. The VRXSecondaryDevice is used for this purpose. For
example:

/dev/ocrt /dev/crt # default visual lives in overlay planes

or

/dev/crt /dev/ocrt # default visual lives in image planes

4-70 X Windows: HP-UX 10.x

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

X Windows Configuration Details

This chapter discusses several details concerning the con�guration of X hosts,
colormaps, mouse, and keyboard.

Making an X*.hosts File

The /etc/X0.hosts �le is an ASCII text �le containing the hostnames of each
remote host permitted to access your local server.

If you are running as a stand-alone system, you must have your system's name
in this �le.
If you are part of a network, the other system names must be included.

The syntax is as follows:

hhosti

hhosti

hhosti

For example, if you are hpaaaaa, and regularly ran clients on hpccccc, and
hpddddd, you would want the following lines.

hpaaaaa

hpccccc

hpddddd

Note that aliases work as well as hostnames, provided they are valid, that is,
commonly known across the network.

X Windows Configuration Details 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

X0.hosts and X0screens Relation

The default screen con�guration �le X0screens uses the default X11 remote host
�le X0.hosts.

Each custom X*screens �le is associated with a special X*.hosts �le. The
number represented by the *" causes the correct screen and host �les to be used
together. For example, X3screens takes an X3.hosts �le. Both are referenced
by the server when it is started with a /usr/bin/X11/X :3 command.

If you use a special X*screens �le, you need to set your DISPLAY variable
appropriately. For the previous example, it would be set to hostname:3.0.

Note The number in an Xnscreens �le does not necessarily refer to a
physical screen number; anymeaning implied by the number is for
the user to de�ne. There are no semantics applied to the number
except that the Xnscreens �les are used when X is started on
display hnamei:n.0. For example, an X3screens �le does not
necessarily imply device �le /dev/crt3; an X3screens �le can
use whatever device �le the user speci�es. The same applies to
the X*devices, X*.hosts, X*.pointerkeys, etc., �les as well.

Using an /etc/hosts File

This �le need not be present if your system is con�gured to query a nameserver.

The /etc/hosts �le is an ASCII text �le containing a list of all the host names
and internet addresses known to your system, including your own system.

If your system is not connected to a network, use the loopback address
(127.0.0.1) and the hostname unknown:

127.0.0.1 unknown

For a local system to access a remote host:

The address and hostname of the remote host must be listed in the local
system's /etc/hosts �le.
The user must have a valid login (username and password) and home directory
on the remote host.

5-2 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Using Special Input Devices

Input devices are connected to Hewlett-Packard computers through several
di�erent hardware interfaces. Among the interfaces supported are the Hewlett-
Packard Human Interface Link (HP-HIL) and the industry standard RS-232C
(serial) and DIN interfaces. Some Hewlett-Packard computers do not support all
of these interfaces.

How the X Server Chooses the Default Keyboard and Pointer

The X server can access input devices through any of the above interfaces. Devices
that use the HP-HIL interface and devices that use the DIN interface and are
compatible with the HP DIN keyboard and mouse can be used by simply plugging
them into the computer. Devices that use the RS-232C interface require the
installation of input device driver software before they can be used.

If no explicit input device con�guration is done, the X server chooses the X
keyboard device and X pointer device from the input devices that are connected
to the computer (in most cases, the keyboard and a mouse). On computers that
support both HP-HIL and DIN interfaces, the DIN input devices are used if both
types of devices are connected.

HP-HIL input devices can plug into other HP-HIL devices, with up to seven
input devices connected together. If there are no DIN input devices connected,
and there are multile HP-HIL input devices, the following algorithm is used to
choose an X keyboard and pointer device.

1. If no explicit speci�cation is made through the X*devices �le, the last mouse
(the one farthest from the computer on the HP-HIL line) is used as the X
pointer and the last keyboard is used as the X keyboard.

2. If no mouse is available, the last pointing device (such as a dial box, graphics
tablet, or trackball) is used as the X pointer. If no keyboard is available,
the last key device (such as a buttonbox or barcode reader) is used as the X
keyboard.

3. If either the pointer or keyboard are unavailable, the X server won't run unless
explicitly con�gured to run with no input devices.

X Windows Configuration Details 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

X*devices File

The X server reads an input device �le, X0devices in /etc/X11, to �nd out what
input devices it should open and attach to the display.

Note A sample X0devices �le is loaded into /etc/X11 unless one
already exists. In that case, it is loaded into
/usr/newconfig/etc/X11.

The default X0devices �le contains lines of text, but does not specify any input
con�guration. Rather, it assumes the default input con�guration of one keyboard
and one pointer.

If this is your con�guration, you may not want to change the contents of the �le
for three reasons:

Clients can request and receive the services of an input device regardless of
whether the device is speci�ed in a device con�guration �le. Thus, you need
not change the X0devices �le, or create a custom �le, even though you have a
custom input con�guration.
Even if you have other screen con�gurations, you can rely on the default input
device con�guration without having to create an X*devices �le to match every
X*screens �le. For example, if you had a custom X*screens �le, you would
not necessarily need an X*devices �le.

A custom X*devices �le is required only when you want to tell the X server
about a custom input device con�guration.

5-4 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Explicitly Specifying Input Device Use

The X server can be explicitly con�gured to use a speci�c input device as the X
pointer or X keyboard, or merge the data from an input device with that from
the X pointer or keyboard. This con�guration is done by adding information to
the X*devices �le. There is one syntax to use for HP-HIL devices, and another
syntax for devices that require a device driver to be loaded by the X server (such
as RS-232 devices).

HP-HIL devices can be speci�ed in either of two ways:

Device type and position.
Device �le name.

Explicitly Specifying RS-232 Input Device Use

Some RS-232C input devices can be used with the X server. A device driver
must exist for the desired serial input device, and it must reside in the
/usr/lib/X11/extensions directory. Input device drivers are usually supplied
by the input device vendor along with the input device. Sample input device
drivers and documentation describing how to write an input device driver may
be found in the /usr/contrib/X11drivers/input directory.

X Windows Configuration Details 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To use an RS-232 input device, you must modify the X*devices �le to inform
the X server which input device driver is to be loaded, the serial port to which
it is connected, and how it is to be used. This is done by adding an entry to the
X*devices �le of the following form:

Begin_Device_Description

Name hdevice driver namei

Path hdevice �le pathi

Use hdevice usei

End_Device_Description

where:

hdevice driver namei Speci�es the name of the input device driver shared
library.

hdevice �le pathi Speci�es the name of the device �le for the serial port
being used.

hdevice usei Speci�es the desired use of the input device, such as
\keyboard", \pointer", \other", or \extension".

The following example speci�es a Spatial System Spaceball R
 connected to the
serial port associated with device �le /dev/tty00 as the X pointer:

Begin_Device_Description

Name spaceball.sl

Path /dev/tty00
Use pointer

End_Device_Description

More examples of input device speci�cations for RS-232 input devices are in the
/usr/newconfig/etc/X11/X0devices �le.

5-6 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Specifying HP-HIL Input Device Use by Device Type and Position

The device can be speci�ed using its device type and position by adding an entry
to the X*devices �le with the following form:

hrelative positioni hdevice typei husei #hcommentsi

where:

hrelative positioni Speci�es the position of the device on the HP-HIL relative
to the other devices on the HP-HIL, for example, \first",
\second", and so on.

hdevice typei Speci�es the type of input device, such as \keyboard",
\mouse", or \tablet".

husei Is \keyboard", \mouse", or \other".

#hcommentsi Describes device. Comments are optional, but if present,
must start with a \#".

Separate the parts of your entry with tabs or spaces.

The position of an input device on the HP-HIL is relative to other devices of
the same type. For example if you have two keyboards, a graphics tablet,
and a mouse connected, they are referred to as \first keyboard", \second
keyboard", \first tablet", and \first mouse".

This syntax is useful for computers on which a single X server is running, and on
which no other programs directly access input devices. With this syntax, if you
add a new input device to the HP-HIL, you don't have to edit the X*devices �le
unless the device is of the same type as one already named in the �le and you
add the device ahead of the existing device.

This syntax should not be used if more than one X server will be run on the same
computer, or if non-X programs will be directly accessing input devices. The X
server interprets \�rst" to mean \�rst accessible", so you may not always get the
�rst on the HP-HIL, just the �rst one not already in use.

X Windows Configuration Details 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Selecting Values for X*devices Files

X*devices �les use the following special names for positions, devices, and uses:

Table 5-1. Values for X*devices Files

Positions Device Type (Device Class) Uses

first keyboard (keyboard) keyboard

second mouse (pointer) pointer

third tablet (pointer) other

fourth buttonbox (keyboard)

fifth barcode (keyboard)1

sixth one_knob (pointer)

seventh nine_knob (pointer)2

quadrature (pointer)

touchscreen (pointer)

trackball (pointer)3

null

1. Note also that the HP barcode reader has two modes: keyboard and ASCII.
The modes are set via switches on the reader. If you set the barcode reader to
ASCII transmission mode, it appears to the server as a barcode reader and the
device name is therefore barcode. However, if you set the barcode reader to
emulate a keyboard, the barcode reader appears as a keyboard and the device
name should therefore be keyboard. What distinguishes a barcode reader set
to keyboard mode from a real keyboard is the relative position or the device
�le name, depending on which syntax you use.

2. The nine-knob box appears to the X server as three separate input devices.
Each row of knobs is a separate device, and the �rst device is the bottom row.

3. Similar to the barcode reader, the trackball appears to the server, not as a
trackball, but as a mouse. Therefore, to specify a trackball, use the mouse

device name. Again, what speci�es the trackball instead of the real mouse is
the relative position or the device �lename, depending on which syntax you
use.

5-8 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Examples

You can create a system on which the X server runs, but which does not have
any input devices. In this case, clients could be run from a remote terminal, or
from a remote host, and their output directed to the X server. To create a system
with no input, include the following lines in the X0devices �le:

first null keyboard

first null pointer

If you had a more complicated con�guration, such as two graphics tablets, two
keyboards, and a barcode reader, your X*devices �le could look like this:

first tablet pointer The pointer
second tablet other Merged with the pointer
first keyboard other Merged with the keyboard
second keyboard keyboard The keyboard
first barcode other Merged with the keyboard

In this example, the �rst tablet acts as the pointer, the second keyboard acts as
the keyboard, input from the second tablet is treated as if it came from the X
pointer, and input from the �rst keyboard and the barcode reader is treated as
if it came from the X keyboard.

Note that the barcode reader is in ASCII mode in this example. If the barcode
reader were in keyboard mode, the last line of the example would read as follows:

third keyboard other

More examples can be found in the X0devices �le in /usr/newconfig/etc/X11.

X Windows Configuration Details 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Specifying HP-HIL Input Device Use by Device File Name

The device can be speci�ed using the name of the device to which it is attached.
This can be done by adding an entry to the X*devices �le with the form:

/hpathi/device �le husei #hcommentsi

where:

hpathi/hdevice �lei Speci�es the name of the device �le associated with the input
device.

husei is \keyboard", \pointer", or \other".

#hcommentsi Describes the device. Comments are optional, but if present,
must be preceded by a \#".

This syntax should be used if more than one X server will be running on the
computer, or if non-X programs will be accessing the input devices. It refers to
a speci�c position on the HP-HIL.

Redefining the HP-HIL Search Path

The X*devices �le can be used to rede�ne the path searched for HP-HIL devices.
By default, the path searched is /dev/hil. The device �les are named by
appending the numbers \1" through \7" to the path.

The path is rede�ned by adding an entry to the X*devices �le with the following
form:

hpathi hhil pathi #hcommenti

where:

hpathi Speci�es the path to be searched for the HP-HIL input devices.

#hcommentsi Describes the path. Comments are optional, but if present, must
be preceded by a \#".

The X server appends the numbers \1" through \7" to the speci�ed path. For
example, specifying:

/tmp/fred hil_path

results in the device names /tmp/fred1, /tmp/fred2, and so on.

5-10 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Stopping the X Window System

After stopping all application programs, stop the window system by holding down
the �Ctrl� and left �Shift� keys, and then pressing the �Reset� key. This stops the
display server, and with it the window system. (If you have a PC-style keyboard,
press �Shift� �Ctrl� �Pause� instead.)

The sequence of keys that stops the display server can be customized in the
X*pointerkeys �le. Refer to the X0pointerkeys �le in /etc/X11.

X Windows Configuration Details 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Initializing the Colormap with xinitcolormap

The xinitcolormap client initializes the X colormap. Speci�c X colormap entries
(pixel values) are made to correspond to speci�ed colors. An initialized colormap
is required by applications that assume a prede�ned colormap (for example, many
applications that use Starbase graphics).

xinitcolormap has the following syntax:

xinitcolormap [hoptionsi]

where the hoptionsi are:

-f hcolormap�lei Speci�es a �le containing a colormap.

-display hdisplayi Speci�es the server to connect to.

-c hcounti Only the �rst count colors from the colormap �le will be
used if this parameter is speci�ed.

-k or -kill Deallocate any colormap entries that were allocated by a
previous run of xinitcolormap.

xinitcolormap choses a colormap �le in the order shown below. Once one is
found, then the other sources aren't searched.

1. The command line option [-f hcolormap�lei].
2. .Colormap default value.
3. The xcolormap �le in /usr/lib/X11.
4. If no colormap �le is found, this default colormap speci�cation is assumed|

black (colormap entry 0), white, red yellow, green, cyan, blue, magenta
(colormap entry 7).

xinitcolormap should be the �rst client program run at the start of a session in
order to assure that colormap entries have the color associations speci�ed in the
colormap �le. Sometimes you may encounter this X toolkit warning:

X Toolkit Warning: cannot allocate colormap entry for 94c4d0

where \94c4d0" is a color speci�ed in the application running. If this occurs,
it means that you have probably reached the limit of colors for your graphics
card/display combination. Executing xinitcolormap may solve the problem.

For more information about xinitcolormap, refer to its reference page.

5-12 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Customizing the Mouse and Keyboard

This section describes the following customizations:

Changing mouse button actions.
The xmodmap client.
Going mouseless.
Customizing keyboard input.

Related information:

Chapter 7 contains mwm mouse and keyboard bindings.

Changing Mouse Button Actions

Normally, the mouse pointer buttons are mapped as follows:

Table 5-2. Default Mouse Button Mapping

Button Number Button on a
2-button mouse

Button on a
3-button Mouse

Button 1 Left button Left button

Button 2 Both buttons
simultaneously

Middle button

Button 3 Right button Right button

Button 4 Left and middle buttons
simultaneously

Button 5 Middle and right buttons
simultaneously

X Windows Configuration Details 5-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

However, you can change these mappings. To generate buttons 4 and 5 on a
three-button mouse, you must enable button chording as described later in this
chapter.

Table 5-3. Alternative Mouse Button Mappings

To press: Left-Handed Mapping OSF/Motif Mapping

2-button mouse 3-button mouse 2-button mouse 3-button mouse

Button 1 Right button Right button Left button Left button

Button 2 Both buttons
simultaneously

Middle button Right button Middle button

Button 3 Left button Left button Both buttons
simultaneously

Right button

Button 4 Middle and
right buttons
simultaneously

Left and middle
buttons

simultaneously

Button 5 Middle and left
buttons

simultaneously

Right and
middle buttons
simultaneously

The xmodmap utility can be used to change mouse button mappings. The syntax
for changing mouse button mappings with xmodmap is:

xmodmap f-e "pointer = fdefault j number [number . . .] g" j -ppg

-e Speci�es a remapping expression. Valid expressions are covered in
\Customizing Keyboard Input".

default Set mouse keys back to default bindings.

number Speci�es a list of button numbers to map the mouse keys to. The
order of the numbers refers to the original button mapping.

pp Print the current pointer mapping.

For example, to reverse the positions of buttons 1 and 3 for left-handed mapping:

xmodmap -e "pointer = 3 2 1" (2-button mouse)
xmodmap -e "pointer = 3 2 1 5 4" (3-button mouse)

5-14 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

To establish OSF/Motif-standard button mapping:

xmodmap -e "pointer = 1 3 2" 2-button mouse
xmodmap -e "pointer = 1 3 2 4 5" 3-button mouse

Going Mouseless with the X*pointerkeys File

Your work situation may lack su�cient desk space to adequately use a mouse
pointer. You may, therefore, want to \go mouseless" by naming the keyboard (or
some other input device) as the pointer.

To go mouseless, you need to have the proper con�guration speci�ed in the
X*devices �le and to have a special con�guration �le named X*pointerkeys.
The default X*pointerkeys �le is X0pointerkeys in /usr/lib/X11.

The X*pointerkeys �le lets you specify:

The keys that move the pointer.
The keys that act as pointer buttons.
The increments for movement of the pointer.
The key sequence that resets X11.
The pixel threshold that must be exceeded before the server switches screens.
That button chording is enabled or disabled.
That button latching is enabled or disabled.
Tablet subsetting.
Screen switching behavior for multi-screen con�gurations.

If you modify a X*pointerkeys �le, it does not take e�ect until you restart the
X server.

Configuring X*devices for Mouseless Operation

If you have only one keyboard and no pointer device, and you want the keyboard
to serve as both keyboard and pointer, you don't have to change the default
con�guration of X0devices. The default input device con�guration automatically
assigns the pointer to the keyboard if a pointer can't be opened by the server.

If you have two or more input devices, you may need to explicitly specify which
device should be the keyboard and which the pointer.

X Windows Configuration Details 5-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The Default Values for the X*pointerkeys File

By default, when you con�gure your keyboard as the pointer, the X server chooses
certain number pad keys and assigns them mouse operations. Some number pad
keys are assigned to pointer movement; other number pad keys are assigned to
button operations.

If you don't need to change the pointer keys from their default speci�cations,
you don't need to do anything else to use your keyboard as both keyboard and
pointer. However, if you need to change the default pointer keys, you must edit
the X0pointerkeys �le or create a new X*pointerkeys �le. The X*pointerkeys
�le is the �le that speci�es which keys are used to move the pointer when you
use the keyboard as the pointer.

The default key assignments are listed in the tables in the following section on
customizing the X*pointerkeys �le.

Creating a Custom X*pointerkeys File

You need to modify the existing X0pointerkeys �le only if one or more of the
following statements are true:

You want to use the keyboard for a pointer.
You want to change the pointer keys from their default con�guration.
You use the X0screens �le to con�gure your display.

You need to create a custom X*pointerkeys �le only if the following statements
are true:

You want to use the keyboard for a pointer.
You want to change the pointer keys from their default con�guration.
You use a con�guration �le other than the X0screens �le to con�gure your
display.

Syntax. You assign a keyboard key to a mouse function (pointer movement or
button operation) by inserting a line in the X*pointerkeys �le. Lines in the
X*pointerkeys �le have the syntax:

hfunctioni hkeynamei [# hcommenti]

5-16 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Assigning Mouse Functions to Keyboard Keys. You can assign any mouse
function, either a pointer movement or a button operation, to any keyboard
key. However, make sure that the key you are assigning doesn't already serve a
vital function.

You can assign keyboard keys to pointer directions by specifying options in an
X*pointerkeys �le. The following table lists the pointer movement options, the
X*pointerkeys functions that control them, and their default values:

Table 5-4. Pointer Movement Functions

Movement Option Function Default Key

Move the pointer to the left. pointer_left_key keypad_1

Move the pointer to the right. pointer_right_key keypad_3

Move the pointer up. pointer_up_key keypad_5

Move the pointer down. pointer_down_key keypad_2

Add a modi�er key to the
pointer direction keys.

pointer_key_mod1 (no default)

Add a second modi�er key to the
pointer direction keys.

pointer_key_mod2 (no default)

Add a third modi�er key to the
pointer direction keys.

pointer_key_mod3 (no default)

Note that the pointer direction keys are the keypad number keys on the right side
of the keyboard, not the keyboard number keys above the text character keys.

X Windows Configuration Details 5-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

You can assign keyboard keys to pointer distances by specifying options in a
X0pointerkeys �le. The following table lists the options that determine the
distance of pointer movements, the X*pointerkeys functions that control them,
and their default value:

Table 5-5. Pointer Distance Functions

Movement Function Default

Move the pointer a number of pixels pointer_move 10 pixels

Move the pointer using a modi�er key pointer_mod1_amt 40 pixels

Move the pointer using a modi�er key pointer_mod2_amt 1 pixel

Move the pointer using a modi�er key pointer_mod3_amt 5 pixels

Add a modi�er to the distance keys pointer_amt_mod1 no default

Add a modi�er to the distance keys pointer_amt_mod2 no default

Add a modi�er to the distance keys pointer_amt_mod3 no default

You can assign keyboard keys to mouse button operations by specifying options
in a X*pointerkeys �le. The following table lists the button operations, the
X*pointerkeys functions that control them, and their default values:

Table 5-6. Button Operation Functions

Button Operation Function Default Key

Perform button 1 operations pointer_button1_key keypad_*

Perform button 2 operations pointer_button2_key keypad_/

Perform button 3 operations pointer_button3_key keypad_+

Perform button 4 operations pointer_button4_key keypad_-

Perform button 5 operations pointer_button5_key keypad_7

5-18 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

You can change the mapping of buttons on the pointer by using options in the
X*pointerkeys �le. The following table lists the X*pointerkeys functions that
control button mapping and their default values. Like xmodmap and xset, these
functions a�ect only the X pointer, not any extension input devices.

Table 5-7. Button Mapping Functions

Button Mapping Function Default Key

Set button 1 value button_1_value 1

Set button 2 value button_2_value 2

Set button 3 value button_3_value 3

Set button 4 value button_4_value 4

Set button 5 value button_5_value 5

You can change the key sequence that exits the X Window System. Also, if you
use both image and overlay planes, you can change the distance you must move
the pointer before you switch planes. The following table lists these options, the
X*pointerkeys functions that control them, and their default values:

Table 5-8. Reset and Threshold Functions

Option Function Default Key

Exit the X Window
System

reset break

Add a modi�er to the
exit key

reset_mod1 control

Add a modi�er to the
exit key

reset_mod2 left shift

Add a modi�er to the
exit key

reset_mod3 no default

Set the threshold for
changing between

screens

screen_change_amt 30 pixels (0 if a graphics tablet is
used)

screen_change_amt is used only if your system is con�gured for more than
one screen. screen_change_amt enables you to avoid switching from one
screen to another if you accidentally run the pointer o� the edge of the screen.

X Windows Configuration Details 5-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

screen_change_amt establishes a \distance threshold" that the pointer must
exceed before the server switches screens. As the previous table shows, the default
width of the threshold is 30 pixels, but acceptable values range from 0 to 255.

When a graphics tablet is used as the X pointer, the screen_change_amt de�nes
an area at the left and right edges of the tablet surface that will be used to control
screen changes. Moving the puck or stylus into the left or right area will cause
the X server to switch to the previous or next screen.

Table 5-9. Button Chording

Option Function Default Action

Turn button
chording o� or on

button_chording On for devices with two buttons, o� for
devices with more than two buttons

Button chording refers to the generation of a button-press by pressing two other
buttons. If you have a two-button mouse, you can generate Button 3 by pressing
both buttons together. With a three-button mouse, you can generate button 4
by pressing the left and middle buttons together and button 5 by pressing the
middle and right buttons together. See the button chording examples in the
X*pointerkeys �le.

You can also use the X*pointerkeys �le to con�gure pointer buttons so they are
latched. When this feature is enabled, a button you press stays logically down
until you press it again. See the example X*pointerkeys �le in /usr/lib/X11

for information on con�guring this functionality.

Note The sample X*pointerkeys �le is placed in /usr/lib/X11 at
install time. If you subsequently update your system, the
X*pointerkeys �le in /usr/lib/X11 is not overwritten, and the
sample �le is placed in /usr/newconfig.

5-20 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Table 5-10. Specifying a Portion of a Tablet

Option Function Default

Use a subset of the
tablet surface as the X

pointer device

tablet_subset_width

tablet_subset_height

tablet_subset_xorigin

tablet_subset_yorigin

disabled

If a tablet is used as the X pointer device, it may be desirable to use only a portion
of the tablet surface. A rectangular subset of the surface may be speci�ed with
these functions. The units are in millimeters from the upper left corner of the
tablet surface. For example, if you want to use only an \A" size portion of a
larger \B" size tablet, the following lines could be added to the X*pointerkeys
�le:

tablet_subset_xorigin 68

tablet_subset_yorigin 40

tablet_subset_width 296

tablet_subset_height 216

You can also use the X*pointerkeys �le to control screen switching behav-
ior in multi-screen con�gurations. See the example X*pointerkeys �le in
/usr/lib/X11 for an example of this functionality.

Note The sample X*pointerkeys �le is placed in /usr/lib/X11 at
install time. If you subsequently update your system, the
X*pointerkeys �le in /usr/lib/X11 is not overwritten, and the
sample �le is placed in /usr/newconfig.

Modifier Keys. You can select up to three keys from among the two �Shift� keys,
the two �Extend Char� keys, and the �Ctrl� key and use them each as modi�er keys. A
modi�er key is a key that, when you hold it down and press another key, changes
the meaning of that other key.

Modi�er keys in the X*pointerkeys �le have three functions:

They specify that a certain operation can't take place until they are pressed.
They enable you to adjust the distance covered by the pointer during a
movement operation.
They enable you to change the key sequence that exits you from X11.

X Windows Configuration Details 5-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

For example, you can overcome the problem in the last example by assigning
the left �Shift� key as a modi�er to the pointer direction keys. Now, to move the
hpterm cursor to the right, you press �!� as usual. To move the x server pointer
to the right, you press left �Shift� �!�.

Specifying Pointer Keys. To �nd out what key names are valid for the keyboard
you are using, enter

xmodmap -pk

You may also use the default X Keysymbol names assigned to these keys by the
X Server.

Examples. If you only have one keyboard and no mouse, and you can live with the
default pointer key assignations, you don't have to do anything else to con�gure
your system for mouseless operation. To move the pointer to the left 10 pixels,
you would press the �1� key on the keypad. To press mouse button 1 you would
press the �*� key on the keypad.

However, suppose you wanted to move only one pixel to the left. Although
the default value of pointer_mod2_amt is one pixel, no key is assigned to the
modi�er for that amount. Thus, you would need to edit the X0pointerkeys �le
(or create an X*pointerkeys) to include a line assigning one of the modi�er keys
to pointer_amt_mod2. The following line in X0pointerkeys assigns the left �Shift�
key to pointer_amt_mod2:

###pointerfunction key

pointer_amt_mod2 left_shift

Or suppose you wanted to set up your X0pointerkeys �le so that you could move
1, 10, 25, and 100 pixels. The following lines show one way to specify this:

###pointer function key

pointer_amt_mod1 left_extend

pointer_amt_mod2 left_shift

pointer_amt_mod3 control

pointer_move 1_pixels

pointer_mod1_amt 10_pixels

pointer_mod2_amt 25_pixels

pointer_mod3_amt 100_pixels

With these lines in e�ect, one press of the �1� key on the keypad moves the pointer
1 pixel to the left. Pressing the left �Extend Char� and �1� moves the pointer 10 pixels

5-22 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

to the left. Pressing left �Shift� �1� moves the pointer 25 pixels to the left. And
pressing �Ctrl� �1� moves the pointer 100 pixels to the left.

Or, take the case, previously mentioned, where you want to use the arrow keys
for both text cursor and mouse pointer. You could insert the following lines in
your X0pointerkeys �le:

###pointer function key

pointer_key_mod1 left_shift

pointer_left_key cursor_left

pointer_right_key cursor_right

pointer_up_key cursor_up

pointer_down_key cursor_down

The above lines enable you to use the arrow keys for cursor movement, while
using the shifted arrow keys for pointer movement. Note that only the left �Shift�
key (and not the right �Shift�) modi�es the press of an arrow key from cursor to
pointer movement.

Now, suppose you want to use the arrow keys to operate the pointer, and you also
need the arrow keys to control the cursor in an hpterm window. Furthermore,
another application uses the shift-arrow key sequence to control its cursor.

The easiest way to solve this dilemma is to call in another modi�er. The following
lines illustrate this. Compare them to the previous example.

###pointer function key

pointer_key_mod1 left_shift

pointer_key_mod2 left_extend

pointer_left_key cursor_left

pointer_right_key cursor_right

pointer_up_key cursor_up

pointer_down_key cursor_down

In this example,

Pressing the �"� key moves the hpterm text cursor up.
Pressing left �Shift� �"� moves the cursor up in the program you frequently
operate.
Pressing left �Shift� left �Extend Char� �"� moves the pointer up.

Using a similar technique, you can also reassign the �Ctrl� left �Shift� �Reset� sequence
that aborts a session. You can specify the press of a single key or a combination

X Windows Configuration Details 5-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

of two, three, or four key presses. Just make sure that the key sequence you select
isn't something you're going to type by accident.

Customizing Keyboard Input

Besides remapping the mouse's pointer and buttons to your keyboard, you can
remap any key on the keyboard to any other key.

Modifying Modifier Key Bindings with xmodmap

To change the meaning of a particular key for a particular X11 session, or to
initialize the X server with a completely di�erent set of key mappings, use the
xmodmap client.

Note Note
There are now two keyboards available for Hewlett-Packard
workstations, the 46021 keyboard, and the C1429 keyboard.
See \Using the Keyboards" for more information on using these
keyboards and the di�erences between them.

5-24 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The syntax for xmodmap is as follows:

xmodmap hoptionsi [h�lenamei]

where hoptionsi are:

-display hhosti:hdisplayi Speci�es the host, display number, and screen to use.

-help Displays a brief description of xmodmap options.

-grammar Displays a brief description of the syntax for modi�-
cation expressions.

-verbose Prints log information as xmodmap executes.

-quiet Turns o� verbose logging. This is the default.

-n Lists changes to key mappings without actually
making those changes.

-e hexpressioni Speci�es a remapping expression to be executed.

-pm, -p Prints the current modi�er map to the standard
output. This is the default.

-pk Prints the current keymap table to the standard
output.

-pp Print the current pointer map to the standard output.

- Speci�es that the standard input should be used for
the input �le.

h�lenamei Speci�es a particular key mapping �le to be used.

Specifying Key Remapping Expressions

Whether you remap a single key \on the
y" with a command-line entry or
install an entire new keyboard map �le, you must use valid expressions in your
speci�cation, one expression for each remapping.

X Windows Configuration Details 5-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

A valid expression is any one of the following:

Table 5-11. Valid xmodmap Expressions

To do this . . . Use this expression . . .

Assign a key symbol to a keycode keycode hkeycodei = hkeysymi

Replace a key symbol expression with another. keysym hkeysymi = hkeysymi

Clear all keys associated with a modi�er key. clear hmodi�eri

Add a key symbol to a modi�er. add hmodi�eri = hkeysymi

Remove a key symbol from a modi�er. remove hmodi�eri = hkeysymi

keycode Refers to the numerical value that uniquely identi�es each key on a
keyboard. Values may be in decimal, octal, or hexadecimal.

keysym Refers to the character symbol name associated with a keycode; for
example, KP_Add.

hmodi�eri Speci�es one of the eight modi�er names: Shift, Control, Lock,
Mod1, Mod2, Mod3, Mod4, and Mod5.

On Hewlett-Packard keyboards, the lock modi�er is set to the �Caps Lock� key.
However, any of the modi�ers can be associated with any valid key symbol.
Additionally, you can associate more than one key symbol with a modi�er (such
as Lock = Shift_R and Lock = Shift_L), and you can associate more than one
modi�er with a key symbol (for example, Control = Caps_Lock and Lock =

Caps_Lock).

For example, on a PC-style keyboard, you can press �D� to print a lower case \d",
�Shift� �D� to print a capital \D", �Alt��D� to print something else, and �Shift� �Alt�
�D� to print still something else.

The xmodmap client gives you the power to change the meaning of any key at any
time or to install a whole new key map for your keyboard.

5-26 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Examples

Suppose you frequently press the �Caps Lock� key at the most inopportune moments.
You could remove the �Caps Lock� lock key from the lock modi�er, swap it for the
�f1� key, then map the �f1� key to the lock modi�er. Do this by creating a little
swapper �le that contains the following lines:

!This file swaps the [Caps] key with the [F1] key.

remove Lock = Caps_Lock

keysym Caps_Lock = F1

keysym F1 = Caps_Lock

add Lock = Caps_Lock

Note the use of the ! in the �le to start a comment line. To put your \swapper"
�le into e�ect, enter the following on the command line:

xmodmap swapper

If you use such a swapper �le, you should probably have an unswapper �le. The
following �le enables you to swap back to the original keyboard mapping without
having to exit X11:

!This file unswaps the [F1] key with the [Caps] key.

remove Lock = Caps_Lock

keycode 88 = F1

keycode 55 = Caps_Lock

add Lock = Caps_Lock

Note the use of the hexadecimal values to reinitialize the keycodes to the proper
key symbols. You put your \unswapper" �le into e�ect by entering the following
command line:

xmodmap unswapper

On a larger scale, you can change your current keyboard to a Dvorak keyboard
by creating a �le with the appropriate keyboard mappings.

xmodmap .keymap

X Windows Configuration Details 5-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Printing a Key Map

The -pk option prints a list of the key mappings for the current keyboard.

xmodmap -pk

The list contains the keycode and up to four 2-part columns. The �rst column
contains unmodi�ed key values, the second column contains shifted key values,
the third column contains meta (�Extend Char�) key values, and the fourth column
contains shifted meta key values. Each column is in two parts: hexadecimal key
symbol value, and key symbol name.

5-28 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Using the Keyboards

There are now two keyboards available for Hewlett-Packard workstations. In
addition to the 46021 keyboard, a personal computer-style keyboard, C1429
is also available. This new keyboard is also known as the \Enhanced Vectra"
keyboard.

Understanding the Keyboards

If an application is reading input directly from the keyboard, it receives a keycode
when a key is pressed. Equivalent keys on the two keyboards are those that
generate the same keycode. If an equivalent key does not exist, there is no way
to generate the corresponding keycode.

In an X Window System environment, keycodes are mapped into key symbols
by the X library. The key symbols are stored in a keysym table. Application
programs then reference these key symbols when accessing keys.

Figure 5-1. Keycap, Keycode, and Keysym Relationships

Equivalent keys are those keys that are mapped to the same key symbol. One
advantage of this mapping is that if a key does not physically exist on a
keyboard, its equivalent key symbol can be mapped to some other key through
the corresponding keycode.

X Windows Configuration Details 5-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Default Keyboard Mapping

The default keyboard mapping supplied with the X Window environment maps
the C1429 keyboard to the same key symbols that are used for the 46021
keyboard. This allows existing X client programs that expect to receive input
from a 46021 keyboard to be used with either keyboard. However, the result is
that some keys on the C1429 keyboard are mapped to key symbols that do not
match the engravings on their keycaps.

5-30 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Equivalent Keys

Some applications may expect to use keys that exist on one of the keyboards but
not the other. In most cases, if a key does not exist on the keyboard in use, it is
still possible to use some other key that is equivalent. To do this, it is necessary
to know which keys are equivalent on the two keyboards.

There are 14 keys on the C1429 keyboard that generate keycodes equivalent to
keys on the 46021 keyboard, but have di�erent engravings on the keycaps. Some
have the same key symbol on both keyboards, while others do not. These C1429
keys, their 46021 equivalents, and the corresponding symbol names are shown in
the following table.

Table 5-12.

C1429 Keycap 46021 Keycap Default Key
Symbol

XPCmodmap
Symbol

�f9� blank1 F9 F9

�f10� blank2 F10 F10

�f11� blank3 F11 F11

�f12� blank4 F12 F12

�Print Screen/SysRq� �Menu� Menu Print

�Scroll Lock� �Stop� Cancel Scroll Lock

�Pause/Break� �Break/Reset� Break/Reset Pause/Break

�Page Up� Prior Prior

�Num Lock� �System/User� System/User Num Lock

�End� �Select� Select End

�Page Down� Next Next

�Enter� �Return� Return Return

�Alt� (left) �Extend Char� (left) Meta L Alt L

�Alt� (right) �Extend Char� (right) Meta R Alt R

X Windows Configuration Details 5-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Changing Key Mapping

X provides the means to change the key mapping, if you so desire. One way
to accomplish this is by running the xmodmap client program. Hewlett-Packard
provides two �les in the directory /usr/lib/X11 to use with xmodmap. One,
XPCmodmap, causes xmodmap to change the key mapping to match the keycap
engravings on the C1429 keyboard. The other, XHPmodmap, causes xmodmap to
change the key mapping to match the keycap engravings on the 46021 keyboard,
which are the defaults. This allows either keyboard to be used with applications
that expect the other keyboard, although only one mapping can be used at any
given time. When the mapping is changed, the X Server noti�es all clients that
are executing at that time. Some clients may load the new mapping from the
server right away, but others may have to be restarted in order to recognize the
new mapping. For more information about using the xmodmap client, see the
xmodmap man page.

C1429 Keyboard

Execute the following command to change the mapping of the keys shown above
to match the engravings on the C1429 keycaps.

/usr/bin/X11/xmodmap /usr/lib/X11/XPCmodmap

46021 Keyboard

Execute the following command to change the mapping to match the 46021
keyboard.

/usr/bin/X11/xmodmap /usr/lib/X11/XHPmodmap

5-32 X Windows Configuration Details

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Comparing the Keyboards

The 46021 keyboard has 107 keys, while the C1429 keyboard has 101 keys. There
are 7 keys on the 46021 keyboard whose keycodes cannot be generated by any
key on the C1429 keyboard, and whose key symbols cannot be generated when
using the default keymap for the C1429 keyboard. The missing keys are:

�Clear Line�
�Clear Display�
�Insert Line�
�Delete Line�
�Print/Enter�
�,� (on number pad)
�Tab� (on number pad)

�,� and �Tab� exist elsewhere on the C1429 keyboard, and the others are not needed
by most applications. Applications that do need one or more of them must assign
their key symbols to the keycodes of existing keys. The xmodmap client can be
used to determine the keycode-to-key symbol mapping of existing keys, and it
can also be used to assign the key symbol to the desired keycode. These keys
use HP speci�c key symbol names whose correct spelling can be found in the �le
/usr/lib/X11/XKeysymDB.

The right �Ctrl� key on the C1429 keyboard generates a keycode that has no
equivalent on the 46021 keyboard. This key has the same e�ect as the left �Ctrl�
key by default.

Keys not mentioned above exist on both keyboards, and have the same key
symbols.

X Windows Configuration Details 5-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

6
PowerShade: Enhanced 3D Rendering in
Software

PowerShade is a software product that allows lighting, shading, and hidden-
surface removal. It o�ers the capability for both surface rendering and volumetric
rendering. (Volumetric rendering is available on supported devices only.)

PowerShade is not supported on the GRX or on any grayscale version of the
Models 705, 710, 715 or 725. (See your Owner's Guide for more details on HP
9000 workstations.)

Instructions on how to install PowerShade are included in this document. Once
PowerShade has been installed, any 9.x applications that use PowerShade will
run on the HP-UX 10.20 system.

Because PowerShade functionality is API-independent, it is fully supported
by Starbase, HP-PHIGS, and HP PEX. For more information, refer to the
appropriate API manual set.

Compatibility Considerations

You should consider the following information before you run an HP-UX 9.x
application on an HP-UX 10.x system. This applies to applications that use HP
PEXlib, Starbase, or HP-PHIGS graphics libraries.

If your HP-UX 9.x application uses PowerShade functionality, you need to
make sure you have PowerShade installed on your HP-UX 10.x system for it to
run. To do this, use swlist to con�rm that the PowerShade �leset has been
installed on your system.
If your HP-UX 9.x application uses HP VMX and it is designed to send output
to an X terminal, you need to have PowerShade installed on your HP-UX
10.x system. Note that even though some graphics devices automatically have

PowerShade: Enhanced 3D Rendering in Software 6-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

PowerShade capabilities, you still need to have PowerShade installed in order
to output graphics to a remote X terminal.

As part of the transition to only supporting 3D computer graphics within the X
Windows environment, the Release 10.x versions of Starbase no longer support
input directly from interactive devices such as a keyboard, mouse, trackball,
digitizing tablet, button box, knob box, or similar devices. Applications should
request input of this type through the X server.

The result of directly accessing an interactive input device from Starbase in
Release 10.x is unde�ned. If your application reads input directly from a mouse,
keyboard, etc., using Starbase input calls, you should modify that application to
use Xlib calls to read data from these devices. (This statement does not apply
to HP-PEXlib since that API does not include input mechanisms. The PEXlib
programmer should already be using Xlib for input.)

Starbase applications that are linked with HP-UX 9.x shared or archived libraries
may see di�erent input handling behavior when run on an HP-UX 10.x system.

Versions of HP-UX prior to Release 10.x will continue to support direct input as
before. Hewlett-Packard documentation will continue to describe input calls for
Starbase because these manuals are also used with versions of these APIs that
support direct input.

Re-Installing PowerShade

PowerShade comes bundled with the HP-UX operating system (10.30 and later),
but in case you ever need to re-install it, do the following:

1. Follow the instructions in the HP-UX manualManaging HP-UX Software with
SD-UX to install software (using the /usr/sbin/swinstall process).

2. Select the PowerShade product for installation.

6-2 PowerShade: Enhanced 3D Rendering in Software

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

HP Series 700 Graphics Performance

The following information is intended to help application developers understand
graphics performance on the HP 9000 Series 700 family of graphics workstations.

The VRX family of graphics devices (for example, PersonalVRX and TurboVRX)
have not changed in any signi�cant way with the 9.0 or later releases. Therefore,
the information presented here should not be applied to these devices. See the
HP-UX Starbase Device Drivers Manual for more information on the VRX family.

Note Important!

If you are not certain what devices are running on your
workstation, you can obtain speci�c information about your
graphics device (product name, device driver and capabilities
supported) by executing:

/opt/graphics/common/bin/graphinfo

For a detailed description of this utility, see the manpage on
graphinfo(1G) in the Starbase Reference Manual .

HP has optimized graphics performance for many typical cases. The data in
the following table describes how to get the maximum performance for polygon,
polyline, and polymarker primitives. In addition to primitive-speci�c data, there
is also data regarding general rendering conditions and window con�gurations.
It is important to note that these general rendering conditions and window
con�gurations must be considered in addition to the primitive-speci�c conditions
in order to make an accurate analysis of performance.

Maximum performance can be achieved using features listed under \Performance
Optimized For" in the following table. Any combination of these features can
be used for optimal performance. In general, performance will slowly degrade as
more of these features are used. (For example, rendering with seven directional
light sources is slower than with only a single one.)

Other features are available (listed as \Factors A�ecting Performance") but
should be used with discretion as performance is signi�cantly slower if even one
of these features is used.

PowerShade: Enhanced 3D Rendering in Software 6-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Note The following table was complete as of the date of publication
of this document. For updated table entries that provide more
performance/optimization information, see the online release
notes in

/opt/graphics/starbase/PERF_NOTES

Table 6-1. Optimized vs. Normal 3D Performance

Performance Optimized For Factors A�ecting Performance

Rendering Conditions

Up to 15 directional lights plus ambient.
Directional or positional eyepoint.
Specular re
ections on or o�.
Back face cull on or o�, and with or without
supplied geometric normal.
Clip check trivial accept or reject.
Perspective or parallel projections.
Isotropic modeling matrix (that is,
angle-preserving).
CMAP_FULL.

Positional light sources.
Picking.
Heavily interleaved modal
calls:

double_buffer,
vertex_format,
shade_mode,
hidden_surface.

Frequent attribute changes:
fill_color.

Window Conditions

Unobscured or obscured by overlay windows
only.
Single HP PEXlib renderer per window, or
single Starbase gopen per window.

Obscured window.
Backing Store.
Multiple renderers, gopens.
Heavily interleaving Xlib calls
with 3D API operations.

6-4 PowerShade: Enhanced 3D Rendering in Software

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-1. Optimized vs. Normal 3D Performance (continued)

Performance Optimized For Factors A�ecting Performance

Polygon Primitives

Primitives with normals per vertex and lighting
on, or primitives with RGB color data per
vertex and lighting o�.
HP PEXlib PEXFillAreaWithData,
PEXSetOfFillAreaSets,
PEXFillAreaSetWithData, PEXTriangleStrip.
Z-bu�ering disable.
Depth cue turned o�.
Starbase polygon3d, polygon_with_data3d.
Starbase triangular_strip,
triangular_strip_with_data, and
polyhedron_with_data.
HP-PHIGS (one set only)
fill_area_set_3_with_data.
HP-PHIGS triangle_strip_3_with_data

Normals may be unit length or not.
With or without move/draw edge
ags, with
edging o� or on.
Convex geometry.
Fewer Starbase calls with more vertices per call
(up to 128 vertices).
Geometric normals with and without vertex
data.

Extra data actually used per
vertex (for example, RGB and
normals per vertex both used,
alpha per vertex, etc.).
More than 64 vertices in a
polygon.
Fill area set primitives with
greater than one set.
Starbase partial polygons.
2D polygons and �ll areas or
�ll-area sets.
Device Coordinate (DC)
Polygons.
Edged polygons.

PowerShade: Enhanced 3D Rendering in Software 6-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Table 6-1. Optimized vs. Normal 3D Performance (continued)

Performance Optimized For Factors A�ecting Performance

Polyline Primitives

Extra data per vertex which is not used (that is,
skipped).
Z-bu�ering disabled.
HP PEXlib, Starbase, or HP-PHIGS polyline
primitives.
2D or 3D transforms.
Depth cue turned o�
User-supplied move/draw
ags present or not
present.
CMAP_FULL or CMAP_NORMAL (except CRX where
CMAP_NORMAL is faster).
Fewer polylines with more vectors in each
polyline.

Z-bu�ering in software using
PowerShade (for example, on
CRX-24, Internal Color
Graphics).
Non-polyline vector primitives
(for example, stroked text,
INT_OUTLINE polygons, EDGED
polygons).
CMAP_MONOTONIC.
User-supplied RGB, indirect
color, or intensity per vertex.
Frequent line color or line type
changes.

Polymarker Primitives

Z-bu�ering disabled.
HP PEXlib, Starbase, or HP-PHIGS polymarker
primitives.
2D or 3D transforms.
Depth cue turned o�
User-supplied move/draw
ags present or not
present.
CMAP_FULL or CMAP_NORMAL.

Z-bu�ering in software using
PowerShade (for example, on
CRX-24, Internal Color
Graphics).
CMAP_MONOTONIC (Starbase).
User-supplied RGB, indirect
color, or intensity per vertex.
Pseudo color mapping method
(HP-PHIGS)

6-6 PowerShade: Enhanced 3D Rendering in Software

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

7

Miscellaneous Topics

3D Thread-Safing

General Information

For HP-UX release 10.30 and later, Hewlett-Packard's 3D graphics APIs are
supported in multi-threaded applications (using POSIX threads). However,
these libraries are thread-restricted and can be accessed only from a single
dedicated thread of a multi-threaded program. This documentation is not a
tutorial on threads programming or multiprocessing application issues. For more,
and general, information about the use of POSIX threads, consult the HP-UX
documentation set. Further restrictions on use of these APIs in multi-threaded
programs are:

The 3D graphics libraries support kernel threads only (libpthread); they do
not support the DCE user threads package (libcma).
If your multi-threaded application uses both 3D graphics and X11, or 3D
graphics and Motif routines, then the 3D graphics routine calls are restricted
to the same single thread as the X11 or Motif routine calls. This restriction
applies to X11 or Motif routines in any of the libraries: libX11, libXext,
libXhp11, libXi, libXt, and libXm.
Miscellaneous signal handling restrictions.
SIGALRM See the \SIGALRM Details" section below for more information.
SIGCHLD A multi-threaded application should not change the SIGCHLD

action during the short periods when the graphics libraries are
starting the Graphics Resource Manager daemon (\grmd") or
terminating the Starbase input daemon. See the \SIGCHLD
and the GRM Daemon" and \SIGCHLD and the Starbase Input
Daemon" sections below for more information.

SIGPIPE A graphics application that uses an HP Visualize-48/48XP de-
vice with hardware texture mapping, or an HP-PHIGS application

Miscellaneous Topics 7-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

that does graphics input should not change the SIGPIPE signal ac-
tion. See the \SIGPIPEDetails" section below for more informa-
tion.

Other Threads-Related Information

1. All of the 3D graphics functions are cancellation points.
2. None of the 3D graphics functions are async-cancel safe.
3. None of the 3D graphics functions are async-signal safe.
4. None of the 3D graphics functions are fork-safe, i.e., they cannot be called by

a child process after a fork(2), but before an exec(2).

Note Note: Calls to 3D graphics functions between a fork and an exec
have never been supported.

5. There is one situation in which graphics behavior may be di�erent for multi-
threaded versus single-threaded programs. In a multi-threaded Starbase
application, a call to gopen(3g) a serial plotter might not return if the plotter
does not respond (e.g., if the plotter is turned o�). In this multi-threaded
case, the graphics thread could wait forever for the device. Single-threaded
behavior in this case is for the gopen(3g) to timeout and return an error.

SIGALRM Details

The Starbase library temporarily sets a SIGALRM signal handler and uses
setitimer(2) to start a timer in two situations:

1. To set a timeout for device access in calls to gopen(3g) for a serial plotter.
2. To set a maximum time to wait for an event in calls to await_event(3g),

read_choice_event(3g), read_locator_event(3g), and
intread_locator_event(3g).

Calls to the above Starbase functions should not be made in one thread while at
the same time another thread performs any of the following:

Changes the SIGALRM signal action;
Calls sigwait(2), selecting the SIGALRM signal;
Uses setitimer(2);
Uses timer_settime(2) to set a timer which will generate a SIGALRM signal.

7-2 Miscellaneous Topics

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Possible consequences of violating these non-concurrency restrictions are:

The Starbase function call never returns;
The wait for a plotter response or for an event is shorter than it should be;
Alarm signals from timers set in other threads do not have the desired e�ect
(because the graphics signal handler is in place);
Unpredictable results due to concurrent use of the process-wide timer provided
by setitimer(2).

SIGCHLD and the GRM Daemon

The Graphics Resource Manager Daemon (grmd) is started when the X11 Server
is started. In normal operation, a Starbase, HP PEX, or HP-PHIGS application
will not start the daemon, and so will not be a�ected by the SIGCHLDmanipulation
that occurs as part of that startup (see below). However, if the grmd dies for some
reason, the graphics libraries will restart the daemon whenever they need shared
memory. This can occur in the following instances:

During calls to the following Starbase functions: gopen(3g), gclose(3g),
enable_events(3g), disable_events(3g), set_signals(3g), and track(3g).
When HP-PHIGS and HP PEX initialize their output devices.
When HP-PHIGS input is initialized.
During calls to glXCreateContext or glXMakeCurrent.

When the grmd is started, the sequence of events is:

1. Set the SIGCHLD action to SIG_DFL, saving the old action.
2. fork(2) and exec(2) an intermediate process, which is the grmd's parent.
3. Call waitpid(2) to wait for the intermediate process to die (after starting the

grm daemon).
4. Restore the saved SIGCHLD action.

Between the time that the graphics thread sets the SIGCHLD action to SIG_DFL

and restores the saved action, other threads should not change the SIGCHLD action
by calls to sigaction(2), sigvector(2), signal(2), sigset(2), or sigwait(2).

Miscellaneous Topics 7-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

The following are possible consequences of such concurrency:

If the concurrent operation sets the SIGCHLD action to SIG_IGN, the graphics
thread could hang.
If the concurrent operation installs a signal handler for SIGCHLD, that handler
may be invoked when the graphics child process dies.
A call to sigwait might return in response to the death of the graphics child
process.
Any SIGCHLD action concurrently set by the application could be overwritten
when the graphics thread restores the saved SIGCHLD action.

SIGCHLD and the Starbase Input Daemon

The Starbase input daemon is started whenever tracking or event monitoring is
enabled. When tracking and event monitoring are turned o� or when the output
device is closed, Starbase terminates the daemon, using this process:

1. Set the SIGCHLD action to SIG_DFL, saving the old action.
2. Send a message to the input daemon asking it to terminate.
3. Call waitpid(2) to wait for the daemon's death.
4. Restore the saved SIGCHLD action.

In a Starbase application using tracking or events, a non-graphics thread should
not set the SIGCHLD action by calls to sigaction(2), sigvector(2), signal(2),
sigset(2), or sigwait(2) concurrently with calls in the graphics thread to
track(3g), track_off(3g), disable_events(3g), or gclose(3g).

Possible consequences of violating this restriction are the same as those listed
above for the grmd daemon.

SIGPIPE Details

The graphics libraries start a daemon process and communicate with that process
via sockets in two situations:

For hardware texture mapping on an HP Visualize-48/-48XP display using
the Texture Interrupt Manager Daemon (timd).
For HP-PHIGS input using the PHIGS daemon (phg_daemon).

7-4 Miscellaneous Topics

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

When starting either of these daemons, the graphics library permanently sets the
SIGPIPE action to SIG_IGN. This prevents the terminating SIGPIPE signal from
being delivered to the process should the daemon die abnormally.

If your application changes the SIGPIPE action to SIG_DFL or to a speci�c
handler, an abnormal death of either timd or phg_daemon will result in a SIGPIPE
signal being delivered to the process when the graphics library next attempts
to communicate with the daemon. If the action is SIG_DFL, the process will
terminate.

HP CDE and HP VUE

Hewlett-Packard is in the process of a transition to a standard user environment.
Two user environments were shipped with HP-UX 10.20: HP VUE and HP CDE
(Common Desktop Environment). Starting with HP-UX 10.20, HP CDE was be
the default user environment, and although HP VUE was still be available with
HP-UX 10.20, but is not be available in HP-UX 10.20 releases. See the Common
Desktop Environment User's Guide for more information on HP CDE.

From a 3D graphics point of view, the change in user environments should have
no e�ect.

Miscellaneous Topics 7-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Shared Memory Usage

Graphics processes use shared memory to access data pertaining to the display
device and the X11 resources created by the server (for example, color maps,
cursors, etc.). The X11 server initiates an independent process called the
Graphics Resource Manager (GRM) to manage these resources among graphics
processes. One problem encountered with GRM shared memory is that it may
not be large enough to run some applications.

HP PEX, Starbase, and HP-PHIGS use GRM shared memory for VM double-
bu�ering. If your application is running on a low-end graphics system (for exam-
ple, an HP 710 or 712), you set the environment variable HP_VM_DOUBLE_BUFFER
(or SB_710_VM_DB), and you have several large double-bu�ered windows open
simultaneously, then your application could use up available GRM shared mem-
ory. If you encounter a dbuffer_switch error message while using VM double-
bu�ering, you may have encountered this problem.

You can prevent this problem by changing with Shared Memory size through
HP-UX's SAM (System Administration Manager) program.

7-6 Miscellaneous Topics

FINAL TRIM SIZE : 7.5 in x 9.0 in

7

Reference Documentation

You may �nd the following documentation helpful when using HP graphics
products:

For Starbase programming
Starbase Reference
Starbase Graphics Techniques
HP-UX Starbase Device Drivers Manual
Starbase Technical Addendum for HP-UX 10.20
Starbase Display List Programmer's Manual
Fast Alpha/Font Manager Programmer's Manual

For PEXlib programming
PEXlib Programming Manual
PEXlib Reference Manual
HP PEX Implementation and Programming Supplement

For HP-PHIGS programming
HP-PHIGS C and Fortran Binding Reference
HP-PHIGS Graphics Techniques
HP-PHIGS Workstation Characteristics and Implementation
HP-PHIGS Technical Addendum for HP-UX 10.20

For installing products
HP-UX Reference
System Administration Tasks
Installing and Updating HP-UX

Miscellaneous Topics 7-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Reference

X Windows

A portable, network-transparent window system.

Synopsis

The X Window System is a network-transparent window system developed at
MIT which runs on a wide range of computing and graphics machines. It should
be relatively straightforward to build the MIT software distribution on most
ANSI C-compliant and POSIX-compliant systems. Commercial implementations
are also available for a wide range of platforms.

The X Consortium requests that the following names be used when referring to
this software:

X
X Window System
X Version 11
X Window System, Version 11
X11

X Window System is a trademark of the Massachusetts Institute of Technology.

Reference A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Description

X Window System servers run on computers with bit-mapped displays. The
server distributes user input to and accepts output requests from various client
programs through a variety of di�erent interprocess communication channels.
Although the most common case is for the client programs to be running on the
same machine as the server, clients can be run transparently from other machines
(including machines with di�erent architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics opera-
tions, on both monochrome and color displays. For a full explanation of the
functions that are available, refer to:

Xlib - C Language X Interface,
The X Window System Protocol speci�cation,
X Toolkit Intrinsics - C Language Interface, and
The various Toolkit documents.

The number of programs that use X is quite large. Programs provided in the
core MIT distribution include: a terminal emulator (xterm), a window manager
(twm), a display manager (xdm), a console redirect program (xconsole), mail
managing utilities (xmh and xbiff), a manual page browser (xman), a bitmap
editor (bitmap), a resource editor (editres), a ditro� previewer (xditview),
access control programs (xauth and xhost), user preference setting programs
(xrdb, xcmsdb, xset, xsetroot, xstdcmap, and xmodmap), a load monitor
(xload), clocks (xclock and oclock), a font displayer (xfd), utilities for listing
information about fonts, windows, and displays (xlsfonts, xfontsel, xwininfo,
xlsclients, xdpyinfo, and xprop), a diagnostic for seeing what events are
generated and when (xev), screen image manipulation utilities (xwd, xwud, xpr,
and xmag), and various demos (xeyes, ico, xgc, x11perf, etc.).

Hewlett-Packard provides a graphical user environment called The Common

Desktop Environment (CDE). HP CDE is the user interface, enabling the user to
control a workstation by directly manipulating graphic objects instead of typing
commands on a command-line prompt. See the CDE User's Guide for complete
information on HP CDE.

A-2 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Hewlett-Packard does not provide or support the entire core MIT distribution.
Many of these programs or clients are sample implementations, or perform tasks
that are accomplished by other clients in Hewlett-Packard's Common Desktop
Environment. The primary di�erences between the core MIT distribution and
the Hewlett-Packard X11 release are listed below:

Terminal Emulation Although hpterm is the primary terminal emulator,
xterm is also provided and supported.

Window Management twm is replaced by mwm and dtwm.

Display Manager xdm is replaced by an enhanced version called dtlogin.

Bitmap Editing bitmap is replaced by dticon.

Font Display This is handled by the terminal emulation option \-fn
override". xfd is supplied but not supported.

Demos Obtained from the InterWorks users group.

A number of unsupported core MIT clients and miscellaneous utilities are
provided in /usr/contrib/bin. In addition, the entire core MIT distribution,
compiled for Hewlett-Packard platforms, can be obtained from HP's users group
InterWorks for a nominal fee.

Many other utilities, window managers, games, toolkits, etc. are included as user-
contributed software in the MIT distribution, or are available using anonymous
ftp on the Internet. See your site administrator for details.

Starting Up

Normally, the X Window System is started on Hewlett-Packard systems by
dtlogin, which is an enhanced version of the MIT client xdm. dtlogin can
be used to bring up a full CDE session, a light CDE session, or a fail-safe session
that uses no other part of CDE. If dtlogin is not used, xinit may be used with
x11start. See the reference pages for these functions for more information.

Reference A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Display Names

From the user's perspective, every X server has a display name of the form:

hostname:displaynumber.screennumber

This information is used by the application to determine how it should connect
to the server and which screen it should use by default (on displays with multiple
monitors):

hostname The hostname speci�es the name of the machine to which the
display is physically connected. If the hostname is not given,
the most e�cient way of communicating to a server on the same
machine will be used.

displaynumber The phrase \display" is usually used to refer to the collection of
monitors that share a common keyboard and pointer (mouse,
tablet, etc.). Most workstations tend to only have one
keyboard, and therefore, only one display. Larger, multi-user
systems, however, will frequently have several displays so that
more than one person can be doing graphics work at once. To
avoid confusion, each display on a machine is assigned a display
number (beginning at 0) when the X server for that display is
started. The display number must always be given in a display
name.

screennumber Some displays share a single keyboard and pointer among two
or more monitors. Since each monitor has its own set of
windows, each screen is assigned a screen number (beginning at
0) when the X server for that display is started. If the screen
number is not given, then screen 0 will be used.

On POSIX systems, the default display name is stored in your DISPLAY

environment variable. This variable is set automatically by the xterm terminal
emulator. However, when you log into another machine on a network, you'll need
to set DISPLAY by hand to point to your display. For example,

% setenv DISPLAY myws:0 (C Shell)
$ DISPLAY=myws:0; export DISPLAY (Korn Shell)

The xon script can be used to start an X program on a remote machine; it
automatically sets the DISPLAY variable correctly.

A-4 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Finally, most X programs accept a command line option of \-display display-
name" to temporarily override the contents of DISPLAY. This is most commonly
used to pop windows on another person's screen or as part of a \remote shell"
command to start an xterm pointing back to your display. For example,

$ xload -display joesws:0 -geometry 100x100+0+0

$ rsh big xterm -display myws:0 -ls </dev/null

X servers listen for connections on a variety of di�erent communications channels
(network byte streams, shared memory, etc.). Since there can be more than one
way of contacting a given server, the hostname part of the display name is used
to determine the type of channel (also called a transport layer) to be used. X
servers generally support the following types of connections:

local The hostname part of the display name should be the empty string.
For example: \:0", \:1", or \:0.1". The most e�cient local
transport is chosen.

TCP/IP The hostname part of the display name should be the server ma-
chine's IP address name. Full Internet names, abbreviated names,
and IP addresses are all allowed. For example: expo.lcs.mit.edu:0,
expo:0, 18.30.0.212:0, bigmachine:1, and hydra:0.1.

Access Control

An X server can use several types of access control. Mechanisms provided in
Release 5 are:

Host Access (simple host-based access control);
MIT-MAGIC-COOKIE-1 (shared plain-text \cookies");
XDM-AUTHORIZATION-1 (secure DES based private-keys); and
SUN-DES-1 (based on Sun's secure rpc system).

dtlogin/xdm initializes access control for the server, and also places authorization
information in a �le accessible to the user. Normally, the list of hosts from which
connections are always accepted should be empty, so that only clients with are
explicitly authorized can connect to the display. When you add entries to the host
list (with xhost), the server no longer performs any authorization on connections
from those machines. Be careful with this.

The �le from which Xlib extracts authorization data can be speci�ed with the
environment variable XAUTHORITY, and defaults to the �le .Xauthority in the

Reference A-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

home directory. dtlogin/xdm uses $HOME/.Xauthority and will create it or
merge in authorization records if it already exists when a user logs in.

If you use several machines, and share a common home directory across all of
the machines by means of a network �le system, then you never really have to
worry about authorization �les; the system should work correctly by default.
Otherwise, as the authorization �les are machine-independent, you can simply
copy the �les to share them. To manage authorization �les, use xauth. This
program allows you to extract records and insert them into other �les. Using this,
you can send authorization to remote machines when you log in, if the remote
machine does not share a common home directory with your local machine. Note
that authorization information transmitted \in the clear" through a network �le
system or using ftp or rcp can be \stolen" by a network eavesdropper, and as
such may enable unauthorized access. In many environments this level of security
is not a concern, but if it is, you should know the exact semantics of the particular
authorization data to know if this is actually a problem.

Geometry Specifications

One of the advantages of using window systems instead of hardwired terminals
is that applications don't have to be restricted to a particular size or location
on the screen. Although the layout of windows on a display is controlled by the
window manager that the user is running (described below), most X programs
accept a command line argument of the form:

-geometry widthxheight+xo� +yo�

(where width, height, xo� , and yo� are numbers) for specifying a preferred size
and location for this application's main window.

A-6 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

The width and height parts of the geometry speci�cation are usually measured
in either pixels or characters, depending on the application. The xo� and yo�
parts are measured in pixels and are used to specify the distance of the window
from the left (or right) and top (or bottom) edges of the screen, respectively.
Both types of o�sets are measured from the indicated edge of the screen to the
corresponding edge of the window. The X o�set may be speci�ed in the following
ways:

+xo� The left edge of the window is to be placed xo� pixels in from the left
edge of the screen (i.e., the X coordinate of the window's origin will be
xo�). xo� may be negative, in which case the window's left edge will
be o� the screen.

-xo� The right edge of the window is to be placed xo� pixels in from the right
edge of the screen. xo� may be negative, in which case the window's
right edge will be o� the screen.

The Y o�set has similar meanings:

+yo� The top edge of the window is to be yo� pixels below the top edge of
the screen (i.e. the Y coordinate of the window's origin will be yo�).
yo� may be negative, in which case the window's top edge will be o�
the screen.

-yo� The bottom edge of the window is to be yo� pixels above the bottom
edge of the screen. yo� may be negative, in which case the window's
bottom edge will be o� the screen.

O�sets must be given as pairs; in other words, in order to specify either xo� or
yo� both must be present. Windows can be placed in the four corners of the
screen using the following speci�cations:

+0+0 (the upper left-hand corner)
-0+0 (the upper right-hand corner)
-0-0 (the lower right-hand corner)
+0-0 (the lower left-hand corner)

Reference A-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

In the following examples, a terminal emulator will be placed in roughly the center
of the screen and a load average monitor, mailbox, and clock will be placed in
the upper right hand corner:

xterm -fn 6x10 -geometry 80x24+30+200 &

xclock -geometry 48x48-0+0 &

xload -geometry 48x48-96+0 &

xbiff -geometry 48x48-48+0 &

Window Managers

The layout of windows on the screen is controlled by special programs called
window managers. Although many window managers will honor geometry
speci�cations as given, others may choose to ignore them (requiring the user to
explicitly draw the window's region on the screen with the pointer, for example).

Since window managers are regular (albeit complex) client programs, a variety
of di�erent user interfaces can be built. The Hewlett-Packard distribution comes
with windowmanagers named mwm and dtwm, which support overlapping windows,
popup menus, point-and-click or click-to-type input models, title bars, nice icons
(and an icon manager for those who don't like separate icon windows).

See the user-contributed software in the MIT distribution for other popular
window managers.

Font Names

Collections of characters for displaying text and symbols in X are known as
fonts. A font typically contains images that share a common appearance and
look nice together (for example, a single size, boldness, slantedness, and character
set). Similarly, collections of fonts that are based on a common type face|the
variations are usually called roman, bold, italic (or oblique), and bold italic (or
bold oblique)|are called families.

Fonts come in various sizes. The X server supports scalable fonts, meaning it is
possible to create a font of arbitrary size from a single source for the font. The
server supports scaling from outline fonts and bitmap fonts. Scaling from outline
fonts usually produces signi�cantly better results on large point sizes than scaling
from bitmap fonts.

A-8 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

An X server can obtain fonts from individual �les stored in directories in the
�le system, or from one or more font servers, or from a mixtures of directories
and font servers. The list of places the server looks when trying to �nd a font is
controlled by its font path. Although most installations will choose to have the
server start up with all of the commonly used font directories in the font path,
the font path can be changed at any time with the xset program. However, it
is important to remember that the directory names are on the server's machine,
not on the application's. Usually, fonts used by X servers and font servers can be
found in subdirectories under /usr/lib/X11/fonts:

/usr/lib/X11/fonts/iso_8859.1/75dpi

This directory contains bitmap fonts contributed by Adobe Systems, Inc.,
Digital Equipment Corporation, Bitstream, Inc., Bigelow and Holmes, and
Sun Microsystems, Inc. for 75 dot-per-inch displays. An integrated selection
of sizes, styles, and weights are provided for each family.

/usr/lib/X11/fonts/iso_8859.1/100dpi

This directory contains 100 dot-per-inch versions of some of the fonts in the
75dpi directory.

Bitmap font �les are usually created by compiling a textual font description
into binary form, using bdftopcf. Font databases are created by running the
mkfontdir program in the directory containing the source or compiled versions
of the fonts. Whenever fonts are added to a directory, mkfontdir should be rerun
so that the server can �nd the new fonts. To make the server reread the font
database, reset the font path with the xset program. For example, to add a font
to a private directory, the following commands could be used:

$ cp newfont.pcf ~/myfonts

$ mkfontdir ~/myfonts

$ xset fp rehash

The xlsfonts program can be used to list the fonts available on a server. Font
names tend to be fairly long, as they contain all of the information needed to
uniquely identify individual fonts. However, the X server supports wildcarding
of font names, so the full speci�cation
\-adobe-courier-medium-r-normal--10-100-75-75-m-60-iso8859-1"
might be abbreviated as
\-*-courier-medium-r-normal--*-100-*-*-*-*-iso8859-1".

Reference A-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Because the shell also has special meanings for *" and \?", wildcarded font
names should be quoted, as in:

$ xlsfonts -fn '-*-courier-medium-r-normal--*-100-*-*-*-*-*-*'

The xlsfonts program can be used to list all of the fonts that match a given
pattern. With no arguments, it lists all available fonts. This will usually list the
same font at many di�erent sizes. To see just the base scalable font names, try
using one of the following patterns:

-*-*-*-*-*-*-0-0-0-0-*-0-*-*

-*-*-*-*-*-*-0-0-75-75-*-0-*-*

-*-*-*-*-*-*-0-0-100-100-*-0-*-*

To convert one of the resulting names into a font at a speci�c size, replace one
of the �rst two zeros with a nonzero value. The �eld containing the �rst zero
is for the pixel size; replace it with a speci�c height in pixels to name a font at
that size. Alternatively, the �eld containing the second zero is for the point size;
replace it with a speci�c size in decipoints (there are 722.7 decipoints to the inch)
to name a font at that size. The last zero is an average width �eld, measured in
tenths of pixels; some servers will anamorphically scale if this value is speci�ed.

Font Server Names

One of the following forms can be used to name a font server that accepts TCP
connections:

tcp/hostname:port
tcp/hostname:port/cataloguelist

The hostname speci�es the name (or decimal numeric address) of the machine
on which the font server is running. The port is the decimal TCP port on which
the font server is listening for connections. The cataloguelist speci�es a list of
catalogue names, with \+" as a separator. For example:

tcp/expo.lcs.mit.edu:7000

tcp/18.30.0.212:7001/all.

A-10 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Color Names

Most applications provide ways of tailoring (usually through resources or
command-line arguments) the colors of various elements in the text and graphics
they display. A color can be speci�ed either by an abstract color name, or by a
numerical color speci�cation. The numerical speci�cation can identify a color in
either device-dependent (RGB) or device-independent terms. Color strings are
case-insensitive.

X supports the use of abstract color names, for example, \red", \blue". A value
for this abstract name is obtained by searching one or more color-name databases.
Xlib �rst searches zero or more client-side databases; the number, location, and
content of these databases is implementation-dependent. If the name is not found,
the color is looked up in the X server's database. The text form of this database
is commonly stored in the �le /usr/lib/X11/rgb.txt.

A numerical color speci�cation consists of a color space name and a set of values
in the following syntax:

color space name:value/ . . . /value

An RGB Device speci�cation is identi�ed by the pre�x \rgb:" and has the
following syntax:

rgb:red/green/blue

where red , green, and blue are encoded as h, hh, hhh, or hhhh , and h represents
a single hexadecimal digit.

Note that h indicates the value scaled in 4 bits; hh, the value scaled in 8 bits;
hhh , the value scaled in 12 bits; and hhhh the value scaled in 16 bits, respectively.
These values are passed directly to the X server, and are assumed to be gamma
corrected.

Reference A-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

The eight primary colors can be represented as:

Black: rgb:0/0/0
Red: rgb:ffff/0/0
Green: rgb:0/ffff/0
Blue: rgb:0/0/ffff
Yellow: rgb:ffff/ffff/0
Magenta: rgb:ffff/0/ffff
Cyan: rgb:0/ffff/ffff
White: rgb:ffff/ffff/ffff

For backward compatibility, an older syntax for RGB device is supported, but its
continued use is not encouraged. The syntax is an initial \pound-sign" character,
followed by a numeric speci�cation, in one of the following formats:

#rgb (4 bits each)
#rrggbb (8 bits each)
#rrrgggbbb (12 bits each)
#rrrrggggbbbb (16 bits each)

The r , g , and b represent single hexadecimal digits. When fewer than 16 bits
each are speci�ed, they represent the most-signi�cant bits of the value (unlike
the \rgb:" syntax, in which values are scaled). For example, #3a7 is the same
as #3000a0007000.

An RGB intensity speci�cation is identi�ed by the pre�x \rgbi:" and has the
following syntax:

rgbi:red/green/blue

The red , green, and blue are
oating-point values between 0.0 and 1.0, inclusive.
They represent linear intensity values, with 1.0 indicating full intensity, 0.5
indicating half intensity, and so on. These values will be gamma-corrected by
Xlib before being sent to the X server. The input format for these values is an
optional sign, a string of numbers possibly containing a decimal point, and an
optional exponent �eld containing an \E" or \e" followed by a possibly signed
integer string.

A-12 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

The standard device-independent string speci�cations have the following syntax:

CIEXYZ:X/Y/Z (none, 1, none)

CIEuvY:u/v/Y (�.6, �.6, 1)

CIExyY:x/y/Y (�.75, �.85, 1)

CIELab:L/a/b (100, none, none)

CIELuv:L/u/v (100, none, none)

TekHVC:H/V/C (360, 100, 100)

All of the values (C , H , V , X , Y , Z , a, b, u, v , y , x) are
oating-point values.
Some of the values are constrained to be between zero and some upper bound;
the upper bounds are given in parentheses above. The syntax for these values
is an optional \+" or \-" sign, a string of digits possibly containing a decimal
point, and an optional exponent �eld consisting of an \E" or \e" followed by an
optional \+" or \-"sign, followed by a string of digits.

For more information on device independent color, see the Xlib reference manual.

Reference A-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Keyboards

The X keyboard model is broken into two layers: server-speci�c codes (called
keycodes) which represent the physical keys, and server-independent symbols
(called keysyms) which represent the letters or words that appear on the keys.
Two tables are kept in the server for converting keycodes to keysyms:

Modi�er List Some keys (such as Shift, Control, and Caps Lock) are known
as modi�ers and are used to select di�erent symbols that are
attached to a single key (such as Shift-a, which generates a
capital \A", and Control-l, which generates a control character
\^L"). The server keeps a list of keycodes corresponding to the
various modi�er keys. Whenever a key is pressed or released,
the server generates an event that contains the keycode of the
indicated key as well as a mask that speci�es which of the
modi�er keys are currently pressed. Most servers set up this
list to initially contain the various shift, control, and shift-lock
keys on the keyboard.

Keymap Table Applications translate event keycodes and modi�er masks into
keysyms using a keysym table which contains one row for each
keycode and one column for various modi�er states. This
table is initialized by the server to correspond to normal
typewriter conventions. The exact semantics of how the table
is interpreted to produce keysyms depends on the particular
program, libraries, and language input method used, but the
following conventions for the �rst four keysyms in each row are
generally adhered to.

The �rst four elements of the list are split into two groups
of keysyms. Group 1 contains the �rst and second keysyms;
Group 2 contains the third and fourth keysyms. Within each
group, if the �rst element is alphabetic and the the second
element is the special keysym NoSymbol, then the group is
treated as equivalent to a group in which the �rst element is
the lowercase letter and the second element is the uppercase
letter.

Switching between groups is controlled by the keysym named \Mode Switch",
by attaching that keysym to some key and attaching that key to any one of the

A-14 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

modi�ers Mod1 through Mod5. This modi�er is called the group modi�er. Group
1 is used when the group modi�er is o�, and Group 2 is used when the group
modi�er is on.

Within a group, the modi�er state determines which keysym to use. The �rst
keysym is used when the Shift and Lock modi�ers are o�. The second keysym
is used when the Shift modi�er is on, when the Lock modi�er is on and the
second keysym is uppercase alphabetic, or when the Lock modi�er is on and
is interpreted as ShiftLock. Otherwise, when the Lock modi�er is on and is
interpreted as CapsLock, the state of the Shift modi�er is applied �rst to select
a keysym; but if that keysym is lowercase alphabetic, then the corresponding
uppercase keysym is used instead.

Options

Most X programs attempt to use the same names for command line options and
arguments. All applications written with the X Toolkit Intrinsics automatically
accept the following options:

-display display This option speci�es the name of the X server to use.

-geometry geometry This option speci�es the initial size and location of the
window.

-bg color ,
-background color

Either option speci�es the color to use for the window
background.

-bd color ,
-bordercolor color

Either option speci�es the color to use for the window
border.

-bw number ,
-borderwidth number

Either option speci�es the width in pixels of the window
border.

-fg color ,
-foreground color

Either option speci�es the color to use for text or
graphics.

-fn font , -font font Either option speci�es the font to use for displaying text.

-iconic This option indicates that the user would prefer that
the application's windows initially not be visible as
if the windows had be immediately iconi�ed by the
user. Window managers may choose not to honor the
application's request.

Reference A-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

-name This option speci�es the name under which resources for
the application should be found. This option is useful
in shell aliases to distinguish between invocations of an
application, without resorting to creating links to alter
the executable �le name.

-rv, -reverse Either option indicates that the program should simu-
late reverse video if possible, often by swapping the fore-
ground and background colors. Not all programs honor
this or implement it correctly. It is usually only used on
monochrome displays.

+rv This option indicates that the program should not
simulate reverse video. This is used to override any
defaults since reverse video doesn't always work properly.

-selectionTimeout This option speci�es the timeout in milliseconds within
which two communicating applications must respond to
one another for a selection request.

-synchronous This option indicates that requests to the X server should
be sent synchronously, instead of asynchronously. Since
Xlib normally bu�ers requests to the server, errors do
not necessarily get reported immediately after they occur.
This option turns o� the bu�ering so that the application
can be debugged. It should never be used with a working
program.

-title string This option speci�es the title to be used for this window.
This information is sometimes used by a window manager
to provide some sort of header identifying the window.

-xnllanguage

language[territory]
[.codeset]

This option speci�es the language, territory, and codeset
for use in resolving resource and other �lenames.

-xrm resourcestring This option speci�es a resource name and value to over-
ride any defaults. It is also very useful for setting re-
sources that don't have explicit command line arguments.

A-16 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Resources

To make the tailoring of applications to personal preferences easier, X provides
a mechanism for storing default values for program resources (e.g., background
color, window title, etc.). Resources are speci�ed as strings that are read in from
various places when an application is run. Program components are named in a
hierarchical fashion, with each node in the hierarchy identi�ed by a class and an
instance name. At the top level is the class and instance name of the application
itself. By convention, the class name of the application is the same as the program
name, but with the �rst letter capitalized, although some programs that begin
with the letter \x" also capitalize the second letter for historical reasons.

The precise syntax for resources is:

ResourceLine = Comment | IncludeFile | ResourceSpec | empty line

Comment = "!" {any character except null or newline}

IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace

FileName = valid �lename for operating system

ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value

ResourceName = [Binding] {Component Binding} ComponentName

Binding = "." | "*"

WhiteSpace = {space | horizontal tab}

Component = "?" | ComponentName

ComponentName = NameChar {NameChar}

NameChar = "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-"

Value = {any character except null or unescaped newline}

Elements separated by vertical bar (\|") are alternatives. Braces (\{" . . . \}")
indicate zero or more repetitions of the enclosed elements. Brackets (\[" . . . \]")
indicate that the enclosed element is optional. Quotes (" . . . ") are used around
literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the
speci�ed �le. The word \include" must be in lowercase. The �lename is
interpreted relative to the directory of the �le in which the line occurs (for
example, if the �lename contains no directory or contains a relative directory
speci�cation).

If a ResourceName contains a contiguous sequence of two or more Binding
characters, the sequence will be replaced with single \." character if the sequence
contains only \." characters, otherwise the sequence will be replaced with a single
*" character.

Reference A-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

A resource database never contains more than one entry for a given Resource-
Name. If a resource �le contains multiple lines with the same ResourceName, the
last line in the �le is used.

Any whitespace character before or after the name or colon in a ResourceSpec
are ignored. To allow a Value to begin with whitespace, the two-character
sequence \space" (backslash followed by space) is recognized and replaced by
a space character, and the two-character sequence \tab" (backslash followed by
horizontal tab) is recognized and replaced by a horizontal tab character. To
allow a Value to contain embedded newline characters, the two-character sequence
\n" is recognized and replaced by a newline character. To allow a Value to be
broken across multiple lines in a text �le, the two-character sequence \newline"
(backslash followed by newline) is recognized and removed from the value. To
allow a Value to contain arbitrary character codes, the four-character sequence
\nnn", where each n is a digit character in the range of 0-7, is recognized and
replaced with a single byte that contains the octal value speci�ed by the sequence.
Finally, the two-character sequence \\" is recognized and replaced with a single
backslash.

A-18 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

When an application looks for the value of a resource, it speci�es a complete
path in the hierarchy, with both class and instance names. However, resource
values are usually given with only partially speci�ed names and classes, using
pattern matching constructs. An asterisk (*") is a loose binding and is used to
represent any number of intervening components, including none. A period (\.")
is a tight binding and is used to separate immediately adjacent components. A
question mark (\?") is used to match any single component name or class. A
database entry cannot end in a loose binding; the �nal component (which cannot
be \?") must be speci�ed. The lookup algorithm searches the resource database
for the entry that most closely matches (is most speci�c for) the full name and
class being queried. When more than one database entry matches the full name
and class, precedence rules are used to select just one. The full name and class
are scanned from left to right (from highest level in the hierarchy to lowest),
one component at a time. At each level, the corresponding component and/or
binding of each matching entry is determined, and these matching components
and bindings are compared according to precedence rules. Each of the rules is
applied at each level, before moving to the next level, until a rule selects a single
entry over all others. The rules (in order of precedence) are:

1. An entry that contains a matching component (whether name, class, or \?")
takes precedence over entries that elide the level (that is, entries that match
the level in a loose binding).

2. An entry with a matching name takes precedence over both entries with a
matching class and entries that match using \?". An entry with a matching
class takes precedence over entries that match using \?".

3. An entry preceded by a tight binding takes precedence over entries preceded
by a loose binding.

Reference A-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Programs based on the X Tookit Intrinsics obtain resources from the following
sources (other programs usually support some subset of these sources):

RESOURCE_MANAGER root window property
Any global resources that should be available to clients on all machines should
be stored in the RESOURCE_MANAGER property on the root window of the �rst
screen using the xrdb program. This is frequently taken care of when the user
starts X through the display manager.

SCREEN_RESOURCES root window property
Any resources speci�c to a given screen (e.g. colors) that should be available
to clients on all machines should be stored in the SCREEN_RESOURCES property
on the root window of that screen. The xrdb program will sort resources
automatically and place them in RESOURCE_MANAGER or SCREEN_RESOURCES, as
appropriate.

Application-speci�c �les
Directories named by the environment variable XUSERFILESEARCHPATH or the
environment variable XAPPLRESDIR, plus directories in a standard place (usually
under /usr/lib/X11, but this can be overridden with the XFILESEARCHPATH

environment variable) are searched for for application-speci�c resources. For
example, application default resources are usually kept in /usr/lib/X11/app-

defaults. See the X Toolkit Intrinsics - C Language Interface manual for
details.

XENVIRONMENT

Any user- and machine-speci�c resources may be speci�ed by setting the
XENVIRONMENT environment variable to the name of a resource �le to be
loaded by all applications. If this variable is not de�ned, a �le named
\$HOME/.Xdefaults-hostname" is looked for instead, where hostname is the
name of the host where the application is executing.

-xrm resourcestring
Resources can also be speci�ed from the command line. The resourcestring is a
single resource name and value as shown above. Note that if the string contains
characters interpreted by the shell (e.g., asterisk), they must be quoted. Any
number of -xrm arguments may be given on the command line.

A-20 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Program resources are organized into groups called classes, so that collections of
individual resources (each of which are called instances) can be set all at once.
By convention, the instance name of a resource begins with a lowercase letter and
class name with an uppercase letter. Multiple word resources are concatenated
with the �rst letter of the succeeding words capitalized. Applications written
with the X Toolkit Intrinsics will have at least the following resources:

background (class Background)
This resource speci�es the color to use for the window background.

borderWidth (class BorderWidth)
This resource speci�es the width in pixels of the window border.

borderColor (class BorderColor)
This resource speci�es the color to use for the window border.

Most applications using the X Toolkit Intrinsics also have the resource fore-

ground (class Foreground), specifying the color to use for text and graphics
within the window.

Reference A-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

By combining class and instance speci�cations, application preferences can be set
quickly and easily. Users of color displays will frequently want to set Background
and Foreground classes to particular defaults. Speci�c color instances such as
text cursors can then be overridden without having to de�ne all of the related
resources. For example,

dticon*Dashed: off

XTerm*cursorColor: gold

XTerm*multiScroll: on

XTerm*jumpScroll: on

XTerm*reverseWrap: on

XTerm*curses: on

XTerm*Font: 6x10

XTerm*scrollBar: on

XTerm*scrollbar*thickness: 5

XTerm*multiClickTime: 500

XTerm*charClass: 33:48,37:48,45-47:48,64:48

XTerm*cutNewline: off

XTerm*cutToBeginningOfLine: off

XTerm*titeInhibit: on

XTerm*ttyModes: intr ^c erase ^? kill ^u

XLoad*Background: gold

XLoad*Foreground: red

XLoad*highlight: black
XLoad*borderWidth: 0

hpterm*Geometry: 80x65-0-0

hpterm*Background: rgb:5b/76/86

hpterm*Foreground: white

hpterm*Cursor: white

hpterm*BorderColor: white

hpterm*Font: 6x10

If these resources were stored in a �le called .Xdefaults in your home directory,
they could be added to any existing resources in the server with the following
command:

$ xrdb -merge $HOME/.Xdefaults

This is frequently how user-friendly startup scripts merge user-speci�c defaults
into any site-wide defaults. All sites are encouraged to set up convenient ways of

A-22 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

automatically loading resources. See the Xlib manual section \Resource Manager
Functions" for more information.

Examples

The following is a collection of sample command lines for some of the more
frequently used commands. For more information on a particular command,
please refer to that command's manual page.

$ xrdb $HOME/.Xdefaults

$ xmodmap -e "keysym BackSpace = Delete"

$ mkfontdir /usr/local/lib/X11/otherfonts

$ xset fp+ /usr/local/lib/X11/otherfonts

$ xmodmap $HOME/.keymap.km

$ xsetroot -solid 'rgbi:.8/.8/.8'

$ xset b 100 400 c 50 s 1800 r on

$ xset q

$ mwm

$ xclock -geometry 48x48-0+0 -bg blue -fg white

$ xlsfonts '*helvetica*'

$ xwininfo -root

$ xhost -joesworkstation

$ xwd | xwud

$ xterm -geometry 80x66-0-0 -name myxterm $*

Reference A-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Diagnostics

A wide variety of error messages are generated from various programs. The
default error handler in Xlib (also used by many toolkits) uses standard resources
to construct diagnostic messages when errors occur. The defaults for these
messages are usually stored in /usr/lib/X11/XErrorDB. If this �le is not present,
error messages will be rather terse and cryptic.

When the X Toolkit Intrinsics encounter errors converting resource strings to
the appropriate internal format, no error messages are usually printed. This is
convenient when it is desirable to have one set of resources across a variety of
displays (e.g. color vs. monochrome, lots of fonts vs. very few, etc.), although it
can pose problems for trying to determine why an application might be failing.
This behavior can be overridden by the setting the StringConversionsWarning
resource.

To force the X Toolkit Intrinsics to always print string conversion error messages,
the following resource should be placed in the .Xdefaults �le in the user's home
directory. This �le is then loaded into the RESOURCE_MANAGER property using the
xrdb program:

*StringConversionWarnings: on

To have conversion messages printed for just a particular application, the
appropriate instance name can be placed before the asterisk:

xterm*StringConversionWarnings: on

See Also

bdftopcf(1), bitmap(1), fs(1), hpterm(1) mkfontdir(1), mwm(1), xauth(1),
xclock(1), xcmsdb(1), xfd(1), xhost(1), xinitcolor(1), xload(1), xlsfonts(1),
xmodmap(1), xpr(1), xprop(1), xrdb(1), xrefresh(1), xset(1), xsetroot(1),
xterm(1), xwd(1), xwininfo(1), xwud(1), Xserver(1), Xlib - C Language X
Interface, and X Toolkit Intrinsics - C Language Interface.

A-24 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Windows

Copyright

The following copyright and permission notice outlines the rights and restrictions
covering most parts of the core distribution of the X Window System from
MIT. Other parts have additional or di�erent copyrights and permissions; see
the individual source �les.

Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991 by the Massachusetts

Institute of Technology.

Permission to use, copy, modify, distribute, and sell this software and its

documentation for any purpose is hereby granted without fee, provided that the

above copyright notice appear in all copies and that both that copyright

notice and this permission notice appear in supporting documentation, and that

the name of MIT not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission. MIT

makes no representations about the suitability of this software for any

purpose. It is provided "as is" without express or implied warranty.

Trademarks

X Window System is a trademark of MIT.

Authors

A cast of thousands, literally. The MIT Release 5 distribution is brought to you
by the MIT X Consortium. The names of all people who made it a reality will be
found in the individual documents and source �les. The sta� members at MIT
responsible for this release are: Donna Converse (MIT X Consortium), Stephen
Gildea (MIT X Consortium), Susan Hardy (MIT X Consortium), Jay Hersh (MIT
X Consortium), Keith Packard (MIT X Consortium), David Sternlicht (MIT X
Consortium), Bob Schei
er (MIT X Consortium), and Ralph Swick (Digital/MIT
Project Athena).

Reference A-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Synopsis

X :displaynumber [-option] ttyname

Description

\X" is the generic name for the window system server. It is started by the
dtlogin(1X) program which is typically run by init(1M). Alternatively it may
be started from the xinit(1) program, which is called by x11start. The
displaynumber argument is used by clients in their DISPLAY environment variables
to indicate which server to contact (machines may have several displays attached).
This number can be any number. If no number is speci�ed, 0 is used. This number
is also used in determining the names of various startup �les. The ttyname
argument is passed in by init and isn't used.

The Hewlett-Packard server has support for the following protocols:

TCP/IP The server listens on port 6000+n, where n is the display
number.

Local Socket IPC
Mechanism

The socket �le name is \/usr/spool/sockets/X11/*",
where *" is the display number.

Shared Memory IPC This is the default connection that the X Library will
use to connect to an X server on the same machine if
the DISPLAY environment variable is set to \local:*" or
\:*" where *" is the number of the display.

When the server starts up, it takes over the display. If you are running on a
workstation whose console is the display, you cannot log into the console while
the server is running.

A-26 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Options

The following options can be given on the command line to the X server.

-a number Sets pointer acceleration (i.e. the ratio of how much
is reported to how much the user actually moved the
pointer).

-audit level Sets the audit trail level. The default level is 1,
meaning only connection rejections are reported. Level
2 additionally reports all successful connections and
disconnects. Level 0 turns o� the audit trail. Audit lines
are sent as standard error output.

-auth

authorization-�le
Speci�es a �le which contains a collection of authorization
records used to authenticate access.

bc Disables certain kinds of error checking, for bug compat-
ibility with previous releases (e.g., to work around bugs
in R2 and R3 xterms and toolkits). Deprecated.

-bs Disables backing store support on all screens.

-c Turns o� key-click.

c volume Sets key-click volume (allowable range: 0-100).

-co �lename Sets name of RGB color database.

-core Causes the server to generate a core dump on fatal errors.

-dpi resolution Sets the resolution of the screen, in dots per inch. To
be used when the server cannot determine the screen size
from the hardware.

-f volume Sets beep (bell) volume (allowable range: 0-100).

-fc cursorFont Sets default cursor font.

-fn font Sets the default font.

-fp fontPath Sets the search path for fonts. This path is a comma-
separated list of directories which the server searches for
font databases.

Reference A-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

-help Prints a usage message.

-I Causes all remaining command line arguments to be
ignored.

-logo Turns on the X Window System logo display in the
screen-saver. There is currently no way to change this
from a client.

nologo Turns o� the X Window System logo display in the
screen-saver. There is currently no way to change this
from a client.

-p minutes Sets screen-saver pattern cycle time in minutes.

-pn Allows X server to run even if one or more communica-
tions mechanisms fails to initialize.

-pn Permits the server to continue running if it fails to
establish all of its well-known sockets, but establishes at
least one.

-r Turns o� keyboard auto-repeat.

r Turns on keyboard auto-repeat.

-s minutes Sets screen-saver timeout time in minutes.

-su Disables save under support on all screens.

-t number Sets pointer acceleration threshold in pixels (i.e. after
how many pixels pointer acceleration should take e�ect).

-terminate Causes the server to terminate at server reset, instead of
continuing to run.

-to seconds Sets default connection timeout in seconds.

-tst Disables all testing extensions (e.g., XTEST, XTrap, XTes-
tExtension1).

ttyxx Ignored; for servers started the ancient way (from init).

-terminate Causes server to terminate when all clients disconnect.

v Sets video-on screen-saver preference. A window that
changes regularly will be used to save the screen.

A-28 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

-v Sets video-o� screen-saver preference. The screen will be
blanked to save the screen.

-wm Forces the default backing-store of all windows to be
WhenMapped; a less-expensive way of getting backing-
store to apply to all windows.

You can also have the X server connect to xdm(1) or dtlogin(1X) using XDMCP.
Although this is not typically useful as it doesn't allow xdm to manage the server
process, it can be used to debug XDMCP implementations, and serves as a sample
implementation of the server side of XDMCP. The following options control the
behavior of XDMCP:

-query host-name Enable XDMCP and send Query packets to the speci�ed
host.

-broadcast Enable XDMCP and broadcast BroadcastQuery packets
to the network. The �rst responding display manager
will be chosen for the session.

-indirect host-name Enable XDMCP and send IndirectQuery packets to the
speci�ed host.

-port port-num Use an alternate port number for XDMCP packets.
Must be speci�ed before any -query, -broadcast or -

indirect options. Default port number is 177.

-class display-class XDMCP has an additional display quali�er used in
resource lookup for display-speci�c options. This option
sets that value, by default it is \MIT-Unspeci�ed" (not
a very useful value).

-cookie

xdm-auth-bits
When testing XDM-AUTHENTICATION-1, a private key is
shared between the server and the manager. This option
sets the value of that private data (not that it's very
private, being on the command line and all . . .).

-displayID display-id Yet another XDMCP-speci�c value, this one allows the
display manager to identify each display so that it can
locate the shared key.

Reference A-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Running From init

Though X will usually be run by dtlogin from init, it is possible to run X
directly from init. For information about running X from dtlogin, see the
dtlogin man page.

To run X directly from init, it is necessary to modify /etc/inittab and
/etc/gettydefs. Detailed information on these �les may be obtained from the
inittab(4) and gettydefs(4) man pages.

To run X from init on display 0, with a login xterm running on /dev/ttypf, in
init state 3, the following line must be added to /etc/inittab:

X0:3:respawn:env PATH=/bin:/usr/bin/X11:/usr/bin xinit -L ttyqf -- :0

To run X with a login hpterm, the following should be used instead:

X0:3:respawn:env PATH=/bin:/usr/bin/X11:/usr/bin xinit hpterm =+1+1 -n \

login -L ttyqf -- :0

In addition, the following line must be added to /etc/gettydefs (this should be
a single line):

Xwindow# B9600 HUPCL PARENB CS7 # B9600 SANE PARENB CS7 ISTRIP IXANY TAB3 #X login: #Xwindow

There should not be a getty running against the display whenever X is run from
xinit.

A-30 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Security

The sample server implements a simplistic authorization protocol, MIT-MAGIC-
COOKIE-1 which uses data private to authorized clients and the server. This
is a rather trivial scheme; if the client passes authorization data which is the
same as the server has, it is allowed access. This scheme is inferior to host-based
access control mechanisms in environments with unsecure networks as it allows
any host to connect, given that it has discovered the private key. But in many
environments, this level of security is better than the host-based scheme as it
allows access control per-user instead of per-host.

In addition, the server provides support for a DES-based authorization scheme,
XDM-AUTHORIZATION-1, which is more secure (given a secure key-distribution
mechanism), but as DES is not generally distributable, the implementation
is missing routines to encrypt and decrypt the authorization data. This
authorization scheme can be used in conjunction with XDMCP's authentication
scheme, XDM-AUTHENTICATION-1 or in isolation.

The authorization data is passed to the server in a private �le named with the
-auth command line option. Each time the server is about to accept the �rst
connection after a reset (or when the server is starting), it reads this �le. If
this �le contains any authorization records, the local host is not automatically
allowed access to the server, and only clients which send one of the authorization
records contained in the �le in the connection setup information will be allowed
access. See the Xau manual page for a description of the binary format of this
�le. Maintenance of this �le, and distribution of its contents to remote sites for
use there, is left as an exercise for the reader.

The sample server also uses a host-based access control list for deciding whether or
not to accept connections from clients on a particular machine. This list initially
consists of the host on which the server is running as well as any machines listed
in the �le /etc/Xn.hosts, where n is the display number of the server. Each
line of the �le should contain an Internet hostname (e.g., expo.lcs.mit.edu).
There should be no leading or trailing spaces on any lines. For example:

joesworkstation

corporate.company.com

Reference A-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Users can add or remove hosts from this list and enable or disable access control
using the xhost command from the same machine as the server. For example:

$ xhost +janesworkstation

janesworkstation being added to access control list

$ xhost +

all hosts being allowed (access control disabled)

$ xhost -

all hosts being restricted (access control enabled)

$ xhost

access control enabled (only the following hosts are allowed)

joesworkstation

janesworkstation

corporate.company.com

Signals

The X server attaches special meaning to the following signals:

SIGHUP This signal causes the server to close all existing connections, free all
resources, and restore all defaults. It is sent by the display manager
(xdm or dtlogin) whenever the main user's main application exits to
force the server to clean up and prepare for the next user.

SIGTERM This signal causes the server to exit cleanly.

SIGUSR1 This signal is used quite di�erently from either of the above. When
the server starts, it checks to see if it has inherited SIGUSR1 as
SIG_IGN instead of the usual SIG_DFL. In this case, the server
sends a SIGUSR1 to its parent process after it has set up the
various connection schemes. xdm uses this feature to recognize when
connecting to the server is possible.

A-32 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Fonts

Fonts are usually stored as individual �les in directories. The list of directories in
which the server looks when trying to open a font is controlled by the font path.
Although most sites will choose to have the server start up with the appropriate
font path (using the -fp option mentioned above), it can be overridden using the
xset program.

Font databases are created by running the mkfontdir or stmkdirs program in
the directory containing the compiled versions of the fonts (mkfontdir) or font
outlines (stmkdirs.) Whenever fonts are added to a directory, mkfontdir or
stmkdirs should be rerun so that the server can �nd the new fonts. If mkfontdir
or stmkdirs is not run, the server will not be able to �nd any of the new fonts
in the directory.

In addition, the X server supports font servers. A font server is a networked
program that supplies fonts to X servers and other capable programs. In order
to communicate with a font server, the font servers address must be supplied as
part of the X server's font path. A font server's address is speci�ed as:

transport/hostname:port-number

where transport is always \tcp", hostname is the hostname of the machine being
connected to (no hostname means a local connection) and port-number is the tcp
address that the font server is listening at (typically 7000.)

Diagnostics

Too numerous to list them all. If run from init(1M), errors are logged in the �le
/usr/adm/X*msgs.

Reference A-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Files

/etc/inittab Script for the init process

/etc/gettydefs Speed and terminal settings used by getty

/etc/X*.hosts Initial access control list

/usr/lib/X11/fonts Top level font directory

/usr/lib/X11/rgb.txt Color database

/usr/lib/X11/rgb.pag Color database

/usr/lib/X11/rgb.dir Color database

/usr/spool/sockets/X11/* IPC mechanism socket

/usr/adm/X*msgs Error log �le

/usr/lib/X11/X*devices Input devices used by the server. This �le
contains many example con�gurations.

/usr/lib/X11/X*screens Screens used by the server. This �le contains
many example con�gurations.

/usr/lib/X11/X*pointerkeysKeyboard pointer device �le. This �le contains
many example con�gurations.

/usr/lib/X11/XHPkeymaps Key device database used by the X server.

Notes

The option syntax is inconsistent with itself and xset(1). The acceleration option
should take a numerator and a denominator like the protocol. The color database
is missing a large number of colors. However, there doesn't seem to be a better
one available that can generate RGB values.

Copyright

Copyright 1984-1997 Massachusetts Institute of Technology.
Copyright 1992-1997 Hewlett Packard Company.

See X(1) for a full statement of rights and permissions.

A-34 Reference

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

X Server

Origin

MIT Distribution.

See Also

dtlogin(1X), bdftopcf(1), fs(1), getty(1M), gettydefs(4), gwindstop(1),
hpterm(1), init(1M), inittab(4), mkfontdir(1), rgb(1), stmkdirs(1),
x11start(1), xclock(1), xfd(1), xhost(1), xinit(1), xinitcolormap(1),
xload(1), xmodmap(1), xrefresh(1), xseethru(1), xset(1), xsetroot(1),
xterm(1), xwcreate(1), xwd(1), xwdestroy(1), xwininfo(1), xwud(1).

Reference A-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

Index

3

3BitCenterColor, 3-11

B

Bu�erSwapsonVerticalBlank, 3-3
buttons
actions, 5-13
changing mappings, 5-14
cording, 5-20
mappings, 5-14
mouse, 5-13, 5-17
operation functions, 5-18

C

CenterColor, 3-11
chording, 5-20
colormap, 5-12
ColormapManagement, 3-21
ColormapsandColormapManagement,

3-21
ColorRecovery, 3-7
Compiling
HP PEX, 2-8
HP-PHIGS, 2-5
Starbase, 2-2

con�guration
special, 5-1

Con�gurations
XServer, 3-16

CRX, 3-25
CRX24Z, 3-26
CRX48Z, 3-28

D

DBEDoubleBu�erExtension, 3-3
default
screen con�guration �le, 5-1
X0devices con�guration, 5-15

device
input, 5-3

Devicedriver
Libraries, 2-7

device drivers, 5-5
DeviceFiles, 3-13
DIN interface, 5-3
DoubleBu�erExtensionDBE, 3-3
DualCRX, 3-25
Dvorak keyboard, 5-27
DynamicLoading, 3-9

E

EnableOverlayTransparency, 3-11
EnvironmentVariables
Obsolete, 3-12
SettingUnsetting, 3-2

/etc/hosts �le, 5-2

F

File
Device, 3-13
Xscreens, 3-1

Freedom SeriesTM, 3-41

Index-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

G

GLX, 3-41
GraphicsResourceManagerGRM, 3-9
GRMGraphicsResourceManager, 3-9
GRX, 3-25

H

HCRX, 3-30
host
names, 5-2

HPColorRecovery, 3-7
HP-HIL interface, 5-3, 5-7
HP PEX
Compiling, 2-8

HP-PHIGS
Compiling, 2-5

HPVUEandSingleLogicalScreen, 3-7

I

ImageTextViaBitMap, 3-11
input devices, 5-3
IntegratedColorGraphics, 3-21
interfaces, input, 5-3
InternalColorGraphics, 3-25
InternalGrayScaleGraphics, 3-25

K

key
bindings, 5-24
map, 5-28
remapping expressions, 5-25

keyboard, 5-17
46021, 5-24, 5-29
assigning mouse functions, 5-17
C1429, 5-24, 5-29
Dvorak, 5-27
input, 5-24
modi�er keys, 5-21

L

Libraries
Devicedriver, 2-7

Loading
Dynamic, 3-9

loopback address, 5-2

M

mapping
mouse buttons, 5-14

MBX, 3-4
modi�er
key bindings, 5-24
keys, 5-21

modifying
X0pointerkeys, 5-16

mouse
button, 5-14
button mappings, 5-14
buttons, 5-13, 5-17
functions, 5-17
keys, 5-20
without, 5-15

mouseless operation, 5-15
MultiDisplaySupport, 3-17
MultiScreenSupport, 3-18

O

ObsoleteEnvironmentVariables, 3-12
operation functions, 5-18

P

PEX
Compiling, 2-8

PHIGS
Compiling, 2-5

pointer
direction keys, 5-17
distance functions, 5-18
movement functions, 5-17
specifying keys, 5-22

Index-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Index

printing
key map, 5-28

R

remapping, 5-24, 5-25
reset functions, 5-19
RS-232C interface, 5-3, 5-5

S

screen
default con�guration �le, 5-1

SettingUnsettingEnvironmentVariables,
3-2

SharedMemory, 3-9
SingleLogicalScreenandHPVUE, 3-7
SingleLogicalScreenSLS, 3-6
SLSSingleLogicalScreen, 3-6, 3-7
special con�gurations, 5-1
SpecialDeviceFiles, 3-13
special input devices, 5-3
Starbase
Compiling, 2-2

T

tablet size, 5-21
threshold functions, 5-19
Transparency, 3-10

V

Variables
Environment, 3-2

VerticalBlank
Bu�erSwapson, 3-3

VRX, 3-42
VUEandSingleLogicalScreen, 3-7

X

X0devices, 5-4
X0devices �le, 5-4, 5-15
X0.hosts �le, 5-2
X0screens �le, 5-2, 5-15, 5-16
XCon�gurations, 3-16
X*devices �le, 5-3, 5-4, 5-5, 5-8, 5-10,

5-15
X*.hosts �le, 5-1
X keyboard devices, 5-3
xmodmap client, 5-26, 5-27
X pointer devices, 5-3
X*pointerkeys, 5-20, 5-21
X*pointerkeys �le, 5-12, 5-15, 5-16,

5-21
X*screens �le, 5-1, 5-4
XscreensFile, 3-1
X Toolkit warning, 5-12
X Window System, 5-11

con�guring, 5-9

Index-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

