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Preface
The HP-UX Floating-Point Guide describes how floating-point arithmetic
is implemented on HP 9000 systems and discusses how floating-point
behavior affects the programmer. This book provides information useful
to any programmer writing or porting floating-point-intensive programs.

We recommend that you start with Chapter 1, which not only provides
an overview of floating-point principles but also provides important
information about HP-UX math libraries.

If you are unfamiliar with floating-point issues, you should go next to
Chapter 2 and Chapter 3. Chapter 2 provides an overview of the IEEE
Standard for Binary Floating-Point Arithmetic, which constitutes the
foundation for many floating-point architectures, including Hewlett-
Packard’s. For more specific information about the standard, contact the
IEEE Standards Board. Chapter 3 describes the many factors that can
cause floating-point computations to produce unexpected results.

If you already understand floating-point issues, you may want to go
directly to Chapter 4 and the subsequent chapters and appendixes,
which provide specific information about floating-point behavior on HP
9000 systems and about the libraries and facilities available on these
systems.

If you have the HP FORTRAN/9000 (FORTRAN 77) compiler, all of the
sample programs in this manual are online, in the directory
/opt/fortran/lib/demos/FPGuide . In the manual, a comment in the
text of each sample program indicates the path name of the program.

Comments We welcome your comments on this manual. Please send electronic mail
to editor@ch.hp.com , or send regular mail to

MLL Learning Products
Hewlett-Packard Company
Mailstop:   CHR 02 DC
300 Apollo Drive
Chelmsford, MA 01824

Audience This manual is written for application developers who write programs
that perform mathematical operations. It assumes a basic knowledge of
the HP-UX operating system and of a high-level programming language
such as C or Fortran.
15



Summary of Technical
Changes

This edition of the HP-UX Floating-Point Guide describes the following
changes to the HP-UX math libraries at Release 10.30.

The PA1.0 math libraries are no longer supported at HP-UX Release
10.30. The math libraries provided in the /usr/lib  directory support
both PA1.1 and PA2.0 systems.

A version of the BLAS library tuned for optimal performance on PA2.0
systems is provided in the directory
/opt/fortran90/lib/pa2.0/libblas.a  (for HP Fortran 90) or
/opt/fortran/lib/pa2.0/libblas.a  (for HP FORTRAN/9000, the
Fortran 77 product).

The vector library, libvec.a , is obsolete. It is supplied for backward
compatibility but has been moved to the directory
/opt/fortran/old/lib .

At Release 10.30, the C math library implements several new functions
approved by the ISO/ANSI C committee for inclusion in the C9X draft
standard, and eliminates support for several functions supported neither
by the C9X standard nor by the XPG4.2 standard.

The following C library functions are no longer supported:

• cabs  (hypot  has equivalent functionality)

• drem  (remainder  has equivalent functionality)

• finite  (replaced by the isfinite  macro)

• The fpgetround(3M) suite of functions (replaced by the fenv(5) suite)

• matherr

The C library supports the following new functions and macros:

• The fenv(5) suite of functions (see Chapter 5)

• isfinite  macro

• isnormal  macro

• signbit  macro
16



The following C library functions are now implemented as macros:

• fpclassify  macro (supersedes fpclassify  and fpclassifyf
functions)

• isinf  macro (supersedes isinf  and isinff  functions)

• isnan  macro (supersedes isnan  and isnanf  functions)

The value of HUGE_VAL has changed from “The maximum non-infinity
value of a double-precision floating-point number” to positive infinity.

Related
Documentation

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754-1985) is the essential reference for developers of floating-point
applications. To obtain a copy, write to the IEEE Standards Board, 345
East 47th Street, New York, NY 10017, USA.

The document ANSI/IEEE Std 754-1985, entitled “IEEE Standard for
Binary Floating-Point Arithmetic,” was also published in ACM SIGPLAN
Notices 22(2), pp. 9 - 25, Feb. 1987.

The international version of the standard is Binary floating-point
arithmetic for microprocessor systems, second edition (IEC 559:1989).

Information on HP-UX programming languages and tools is available in
both online and hardcopy format. The following online guides are
available through the HP Help System if you have the relevant compilers
or tools:

• HP FORTRAN/9000 Online Reference

• HP C Online Reference

• HP C++ Online Programmer’s Guide

• HP-UX Linker and Libraries Online User Guide

You may also refer to the following hardcopy documents:

• Programming on HP-UX (B2355-90653) provides an overview of
programming on HP-UX. It includes information about linking
programs, creating and managing user libraries, and optimizing
programs.

• The HP Fortran 90 Programmer’s Reference (B3908-90001) describes
the Fortran 90 programming language on HP-UX systems.
17



• The HP FORTRAN/9000 Programmer’s Reference (B3906-90002) and
HP FORTRAN/9000 Programmer’s Guide (B3906-90001) describe
the FORTRAN 77 programming language on HP-UX systems.

• The HP C/HP-UX Reference Manual (92453-90024) and HP C
Programmer’s Guide (92434-90002) describe the C programming
language on HP-UX systems.

• The HP Pascal/HP-UX Reference Manual (92431-90005) and HP
Pascal/HP-UX Programmer’s Guide (92431-90006) describe the HP
Pascal programming language on HP-UX systems.

• The HP PA-RISC Compiler Optimization Technology White Paper
(5964-9846E) provides detailed information about compiler
optimization levels, optimization types, and specific optimizations.

• The HP/DDE Debugger User’s Guide (B3476-90015) describes the HP
DDE debugger. The HP PAK Performance Analysis Tools User’s Guide
(B3476-90017) describes the HP-UX performance analysis tools.

• The PA-RISC 1.1 Architecture and Instruction Set Reference Manual
(09740-90039) describes the PA-RISC 1.1 architecture. PA-RISC 2.0
Architecture, by Gerry Kane (Prentice-Hall, ISBN 0-13-182734-0),
describes the PA-RISC 2.0 architecture.

• The Assembly Language Reference Manual (92432-90001) describes
assembly language programming on HP-UX systems. The ADB
Tutorial (92432-90005) introduces the assembly language debugger.

To order manuals, call HP DIRECT at 1-800-637-7740. Outside the USA,
please contact your local sales office.
18
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Conventions
Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

literals This font indicates commands, keywords, options,
literals, source code, system output, and path names.
In syntax formats, this font indicates commands,
keywords, and punctuation that you must enter exactly
as shown.

user input In examples, this font represents user input.

variables, titles In syntax formats, words or characters in this font
represent values that you must supply. This font is also
used for book titles and for emphasis.

terms This font indicates the first use of a new term.

name(N) A word in title font followed by a number in
parentheses indicates an online reference page (man
page). For example, cc(1) refers to the cc page in
Section 1 of the online man pages.

Vertical ellipsis A vertical ellipsis means that irrelevant parts of a
figure or example have been omitted.

Revision bars Revision bars in the margin show where significant
changes have been made to this manual since the last
edition.
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In This Book
This manual is organized as follows:

Chapter 1 Provides an overview of the basic principles involved in
writing floating-point programs and of the HP-UX
math libraries used by most floating-point applications.

Chapter 2 Provides an overview of the IEEE Standard for Binary
Floating-Point Arithmetic, the standard on which HP
floating-point behavior is based.

Chapter 3 Describes the factors that can cause the results of
floating-point computations to vary from one system to
another or even from one execution to another.

Chapter 4 Describes the math libraries available with the HP-UX
operating system on HP 9000 platforms.

Chapter 5 Describes the methods you can use to manipulate the
floating-point status register.

Chapter 6 Describes how to enable and handle floating-point
traps.

Chapter 7 Describes techniques for obtaining the best possible
floating-point performance.

Appendix A Describes the C math library.

Appendix B Describes the Fortran math library.

Appendix C Provides a checklist to help you locate possible causes
of a floating-point programming problem.

Glossary Defines the terms used in this manual.



1 Introduction

This chapter introduces some of the basic principles involved in writing
floating-point programs and introduces the HP-UX math libraries used
by most floating-point applications.
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Overview of Floating-Point Principles
In the context of computer programming, the term floating-point refers
to the ways in which modern computer systems represent real numbers
and perform real arithmetic. Computers use special representations for
floating-point numbers. They also have special rules for performing
floating-point arithmetic that differ from the rules for performing integer
arithmetic. Usually, a computer has special hardware for performing
floating-point calculations at a higher speed than would be possible
using the computer’s integer-oriented hardware.

In all modern computer systems, representations of real numbers are
inherently inexact. There are an infinite number of real numbers, and a
digital computer can represent only a finite subset of them.

When you write a program that attempts to generate an unrepresentable
value, the computer approximates the value by choosing a representable
value close to the one you attempted to generate. Data that is input into
a computer in floating-point format is almost always approximate, and
the calculations performed by the computer are usually approximations
of the intended mathematical operations; therefore, the results you
receive from a mathematical computation are also usually
approximations.

The approximate nature of floating-point arithmetic has several
important ramifications:

• Results from floating-point calculations are almost never exactly
equal to the corresponding mathematical value.

• Results from a particular calculation may vary from one computer
system to another, and all may be valid. However, when the computer
systems conform to the same standard, the amount of variation is
drastically reduced.

• Incorrect results are not necessarily caused by programming errors in
the traditional sense. Correcting the problems may require an
understanding of the floating-point approximation techniques used
by the computer system executing the program.

The types of incorrect results and unexpected errors that floating-point
applications sometimes generate can be very difficult to interpret if you
do not understand how your computer performs floating-point
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arithmetic. The purpose of this book is to help you avoid or fix these
types of problems on HP 9000 computer systems and to help you increase
the performance of your floating-point-intensive applications.
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Overview of HP-UX Math Libraries
Basic operations such as addition and multiplication are specified by the
IEEE standard. More complex mathematical operations such as
logarithmic and trigonometric functions are provided by math library
routines. The high-level operations of math library routines are specified
not by the IEEE standard but by individual language standards (such as
ISO/ANSI C) and by programming environment specifications (such as
X/Open and SVID).

C math library functions are located in the libm  math library. The libm
functions operate according to the C standard and the latest versions of
the System V Interface Definition (currently SVID3) and of the X/Open
Portability Guide (currently XPG4.2). The XPG4.2 specification is a
superset of the POSIX.1 standard (IEEE Std 1003.1-1990). The SVID3
and XPG4.2 specifications are compatible. The libm  library also
supports some functions and macros approved by the ISO/ANSI C
committee for inclusion in the C9X draft standard.

NOTE The libM  library, which formerly supported XPG and POSIX while the
libm  library supported SVID, is obsolete now that these standards are
compatible. The various versions of libM  now exist only as soft links to
the corresponding versions of libm . (See “Locations of the Math
Libraries at Release 10.30” on page 27 for details.)

Fortran and Pascal intrinsic functions are located in the libcl  library.
In addition, Basic Linear Algebra Subroutine (BLAS) library routines
are provided in the libblas  library (provided with the HP Fortran 90
and HP FORTRAN/9000 products only).

Table 1-1 lists the math libraries available on HP-UX systems and shows
the option you specify to the compiler or linker in order to link in each
library.
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Table 1-1 HP-UX Math Libraries

Math Libraries and System Architecture
The libm  and libcl  math libraries on HP-UX operating system at
Release 10.30 and later are targeted primarily to the PA-RISC 1.1
architecture (PA1.1). They also run well on PA-RISC 2.0 (PA2.0) systems.

The libraries will execute on all HP 9000 systems that run HP-UX
Release 10.30 and later.

The HP Fortran 90 and HP FORTRAN/9000 products supply two
versions of the BLAS library, one specially tuned for PA1.1 systems and
the other specially tuned for PA2.0 systems.

NOTE The PA-RISC 1.0 architecture is no longer supported, and the PA1.0
libraries are no longer provided on HP-UX systems.

All HP 9000 systems except the oldest Series 800 systems are
PA1.1-based or PA2.0-based. If you do not know your system’s
architecture type, see “Determining Your System’s Architecture Type” on
page 26.

Library
Name Description Linker Option

libm C math library; ANSI C,
POSIX, XPG4.2, and SVID
specifications

-lm

libcl Fortran and Pascal library Linked in
automatically by f90 ,
f77 , and pc
commands; use -lcl
with other compiler
commands

libblas Basic Linear Algebra
Subroutine (BLAS) library
(provided with the HP
Fortran 90 and HP
FORTRAN/9000 products
only)

-lblas
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For complete information about the math libraries, see Chapter 4.

Determining Your System’s Architecture Type
There are two main ways to find the architecture type of your system. To
do it from the command line:

1. Issue the command uname -m  to learn the model number of your
system. For example:

$ uname -m
9000/879

2. Look up the second part of the model number in the file
/opt/langtools/lib/sched.models  to find its architecture type.
For example:

$ grep 879 /opt/langtools/lib/sched.models
879     2.0     PA8000

The 2.0  indicates that a Model 879 is PA2.0-based.

You can also learn the system architecture type at run time at HP-UX
Release 10.x. A simple program that gives you useful information
follows.

Sample Program: get_arch.c

#include <stdio.h>
#include <sys/utsname.h>

extern int _SYSTEM_ID;
extern int _CPU_REVISION;

struct utsname uts;

int main(void)
{

uname(&uts);
printf(“Release = %s\n”, uts.release);
printf(“_SYSTEM_ID = %x\n”, _SYSTEM_ID);
printf(“_CPU_REVISION = %x\n”, _CPU_REVISION);

}

The uts.release  is the release of HP-UX on the system where you run
the program. The _SYSTEM_ID is the kind of code the compiler
generated. The _CPU_REVISION is the architecture type.

If you compile this program on a PA1.1 system, then run it on a PA2.0
system running HP-UX Release 10.30, you get results like the following:

Release = B.10.30
_SYSTEM_ID = 210
_CPU_REVISION = 214
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The release, 10.30, is easy to decipher. To decode the other results, search
the file /usr/include/sys/unistd.h :

$ grep 210 /usr/include/sys/unistd.h
#  define CPU_PA_RISC1_1  0x210 /* HP PA-RISC1.1 */
$ grep 214 /usr/include/sys/unistd.h
/#  define CPU_PA_RISC2_0  0x214 /* HP PA-RISC2.0 */

The compiler generated PA1.1 code, which is running on a PA2.0 system.

Selecting Different Versions of the Math
Libraries
If you use a compilation command (f90 , cc , and so on) to invoke the link
editor (ld ), the selection of math libraries is driven by the +DA compiler
option, which allows you to generate PA1.1 code (+DA1.1 ) or PA2.0 code
(+DA2.0 ). By default, the compiler generates code for the kind of system
on which you are running the compiler. This ensures the best possible
performance on that system.

If your application must run on both PA1.1 and PA2.0 systems, compile
with +DA1.1 . Code compiled with +DA2.0  will run only on PA2.0
systems.

When you select +DA1.1  or +DA2.0 , the compilation command invokes
ld  with a library search path that begins with the PA1.1 library
directories. Again, the search path may vary from compiler to compiler.
For example, if you invoke the HP Fortran 90 compiler with +DA2.0 , it
contains the following:

/opt/fortran90/lib/pa2.0
/opt/fortran90/lib
/usr/lib
/opt/langtools/lib

Locations of the Math Libraries at Release
10.30
At Release 10.30, the main HP-UX math libraries are in the directory
/usr/lib . The BLAS library is in both /opt/fortran90/lib  and
/opt/fortran/lib . The obsolete vector library exists only in
/opt/fortran/old/lib .

NOTE The PA1.0 libraries are no longer provided.
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Table 1-2 shows the math library path names.

Table 1-2 Math Library Path Names

Library Path Name Description

/usr/lib/libm.a C math library, archive version

/usr/lib/libm.sl C math library, shared version

/usr/lib/libcl.a Compiler library (includes Fortran math
library), archive version

/usr/lib/libcl.sl Compiler library (includes Fortran math
library), shared version

/usr/lib/milli.a Millicode versions of several math library
routines, available only if you compile
with +Olibcalls . For details, see
“Millicode Versions of Math Library
Functions” on page 112.

/opt/fortran90/lib/libblas.a Basic Linear Algebra Subroutine (BLAS)
library, archive version (provided with the
HP Fortran 90 product)

/opt/fortran90/lib/pa2.0/libblas.a Basic Linear Algebra Subroutine (BLAS)
library, PA2.0 archive version (provided
with the HP Fortran 90 product)

/opt/fortran/lib/libblas.a Basic Linear Algebra Subroutine (BLAS)
library, archive version (provided with the
HP FORTRAN/9000 product)

/opt/fortran/lib/pa2.0/libblas.a Basic Linear Algebra Subroutine (BLAS)
library, PA2.0 archive version (provided
with the HP FORTRAN/9000 product)

/opt/fortran/old/lib/libvec.a Vector library, archive version (provided
with the HP FORTRAN/9000 product
only) (obsolete)
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Figure 1-1 illustrates the directory hierarchy for the math libraries.

Figure 1-1 Math Library Directory Hierarchy at Release 10.30
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Floating-Point Arithmetic
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Floating-Point Principles and the IEEE Standard for Binary Floating-Point Arithmetic
This chapter introduces the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985). Throughout this chapter and the
remainder of the book, we refer to the IEEE Standard for Binary
Floating-Point Arithmetic as “the IEEE standard” or simply “the
standard.” Programmers who intend to write floating-point-intensive
code should become familiar with the IEEE standard.
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What Is the IEEE Standard?
The IEEE standard was approved in 1985. Its main purpose is to define
specifications for representing and manipulating floating-point values so
that programs written on one IEEE-conforming machine can be moved to
another conforming machine with predictable results. In addition, the
standard is specifically designed to make it easier for programmers to
write useful and robust floating-point programs. The standard defines
the following:

• Formats for representing floating-point numbers

• Representations of special values (for example, infinity, very small
values, and non-numbers)

• Five types of exception conditions, when they occur, and what
happens when they do occur

• Four rounding modes (different algorithms for rounding values)

• A minimum set of operations that can be performed on floating-point
values, precisely defined so that they yield the same results for the
same operands on any standard-conforming system

All HP 9000 systems comply with the IEEE standard. A complete
understanding of the IEEE standard and your system’s implementation
of the standard is helpful for writing robust floating-point programs.
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Floating-Point Formats
The IEEE standard specifies four formats for representing floating-point
values:

• Single-precision

• Double-precision (optional, though a double  type wider than IEEE
single-precision is required by standard C)

• Single-extended precision (optional)

• Double-extended precision (optional)

The IEEE standard does not require an implementation to support
single-extended precision and double-extended precision in order to be
standard-conforming.

HP 9000 systems support the single-precision, double-precision, and
double-extended precision formats. Double-extended precision
format on these systems is also known as quadruple-precision or
quad-precision format.

Single-Precision, Double-Precision, and
Quad-Precision Formats
Single-precision, double-precision, and quad-precision values consist of
three fields: sign bit, exponent, and fraction. The sign bit reflects the
algebraic sign of the value. A 1 indicates a negative value; a 0 indicates a
positive value. The exponent represents an integer value that is a
power to which 2 is raised. The fraction, also called the significand,
represents a value between 1.0 and 2.0 (for normalized values). The
result of the exponent expression is multiplied by the fraction to yield the
actual numerical value.

The only difference among the single-precision, double-precision, and
quad-precision formats is the number of bits allocated for the exponent
and fraction. Figure 2-1, Figure 2-2, and Figure 2-3 show the number of
bits allocated in each format.

The single-precision format is 32 bits long: 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the fraction.
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Figure 2-1 IEEE Single-Precision Format

The double-precision format is 64 bits long: 1 bit for the sign, 11 bits for
the exponent, and 52 bits for the fraction.

The double-precision format is sometimes divided conceptually into two
32-bit words. The word containing the sign bit, the exponent field, and
the first portion of the fraction field is referred to as the most
significant word. The other word, containing the last portion of the
fraction, is called the least significant word.

Figure 2-2 IEEE Double-Precision Format

The quad-precision format is 128 bits long: 1 bit for the sign, 15 bits for
the exponent, and 112 bits for the fraction. This format is divided
conceptually into four 32-bit words: the most significant word, two
middle words, and the least significant word.
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Figure 2-3 IEEE Quad-Precision Format

NOTE On HP 9000 systems, the most significant word is stored at a lower
memory address than the least significant word. If, for example, a
double-precision value is stored at address 0x1000, the least significant
word is stored at address 0x1004. If a quad-precision value is stored at
address 0x1000, the least significant word is at address 0x100C. This
ordering is often referred to as “big-endian.”

The Fraction Field
For normalized values, the fraction represents a value greater than or
equal to 1.0 and less than 2.0. Each bit in the fraction represents the
value 2 raised to a negative power. For example, the first bit represents
the value 2−1 (0.5), the second bit is 2−2 (0.25), and so on. The sum of 1.0
and the values represented by all these bits is the value of the fraction.
The 1.0 in the sum corresponds to the zeroth fraction bit, 20. Since this
bit would always be set for a normalized value, it is not included in the
actual format, but it is implied. It is sometimes referred to as the
fraction implicit bit or the hidden bit.
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For example, if the 23 bits in the fraction field of a single-precision
number are

011 0100 0000 0000 0000 0000

and the exponent field is not all 1’s or all 0’s, the fraction value is

1.0 + 2−2 + 2−3 + 2−5 = 1.0 + 0.25 + 0.125 + .03125 = 1.40625

The 1.0 represents the fraction implicit bit, and the exponents of −2, −3,
and −5 indicate that the second, third, and fifth bits of the fraction field
are set.

The Exponent Field
The exponent field uses a biased representation. This means that the
value represented by the exponent field is the value in the exponent field
interpreted as an unsigned integer minus a constant value (the bias).
The purpose of the bias is to allow all exponent calculations to be
performed using unsigned arithmetic. For single-precision formats, the
bias is 127; for double-precision formats, it is 1023; for quad-precision
formats, it is 16383.

Floating-Point Format: Examples
The value 6.0 would be represented in single-precision format as shown
in Figure 2-4.

Figure 2-4 IEEE Single-Precision Format: Example

The first bit is the sign bit. Because the sign bit is 0, the floating-point
value is positive. The next eight bits make up the exponent. 1000 0001
equals 129, but the true value of the exponent is derived by subtracting
the bias constant 127 from this value. So the true exponent value is 2.
The fraction bits are 100 0000 0000 0000 0000 0000, which, when added
to the implicit bit, equal 1 + 0.5, or 1.5.

In algebraic terms, a floating-point value is

(-1.0) S * M * 2 E−B

where S is the value of the sign bit, M is the fraction (with implicit bit), E
is the exponent, and B is the bias.
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In our example, this would be

(-1) 0 * 1.5 * 2 2 = 1.5 * 4.0 = 6.0

Table 2-1 shows some additional examples.

Table 2-1 IEEE Representations of Floating-Point Values

Floating-Point Formats and the Limits of IEEE
Representation
Because floating-point numbers have a finite number of bits in the
fraction, only a finite subset of the continuum of real numbers can be
represented exactly in IEEE format. The unit of granularity of the
representable numbers is the ULP (Unit in the Last Place). ULPs
measure the distance between two numbers in terms of their
representation in binary. One ULP is the distance from one value to the
next representable value in the direction away from 0.

One ULP is about 1 part in 17 million for single-precision values, 1 part
in 1016 for double-precision values, and 1 part in 1034 for quad-precision
values. For this reason, there is a general rule of thumb that
single-precision arithmetic represents about 7 or 8 decimal places,
double-precision about 16, and quad-precision about 34. If you try to read
or write a value with a greater number of decimal digits, the last digits
will probably not contain useful information.

Hexadecimal
Representation Sign Exponent Fraction Value

SP: 40C0 0000
DP: 4018 0000 0000 0000
QP: 4001 8000 0000 0000
       0000 0000 0000 0000

+ 129 – 127 = 2
1025 – 1023 = 2
16385 – 16383 = 2

1.0 + 0.5 = 1.5 +1.5 * 22 = 6.0

SP: BF00 0000
DP: BFE0 0000 0000 0000
QP: BFFE 0000 0000 0000
       0000 0000 0000 0000

– 126 – 127 = –1
1022 – 1023 = –1
16382 – 16383 = –1

1.0 + 0.0 = 1.0 –1.0 * 2–1 = –0.5

SP: 7F00 0001
DP: 7FE0 0000 0000 0001
QP: 7FFE 0000 0000 0000
       0000 0000 0000 0001

+ 254 – 127 = 127
2046 – 1023 = 1023
32766 – 16383 = 16383

1.0 + 2–23

1.0 + 2–52

1.0 + 2–112

+1.00000019209 * 2127

+1.000…001 (51 zeros) * 21023

+1.000…001 (111 zeros) *
216383
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Because of this granularity in floating-point representation, most real
numbers cannot be represented exactly. The result of an arithmetic
operation (including the operation of converting from a decimal string
into IEEE format) usually must be rounded to a nearby representable
number. (For information on rounding, see “Inexact Result (Rounding)”
on page 51.)

Even some simple fractions cannot be represented exactly. Consider the
fraction 1/3. The exact value of this expression would require an infinite
number of bits, because the value is an infinitely repeating fraction
(0.33333…in decimal, 0.010101…in binary). Many values that can be
represented exactly in a few decimal digits cannot be represented exactly
in binary: for example, 1/10, which in decimal is 0.1, is in binary
0.000110011001100… Because simple numbers like 1/3 and 1/10 cannot
be represented exactly, no floating-point operation can ever yield these
exact values.

Although most real numbers cannot be represented exactly in
floating-point arithmetic, a great many can. Any integer with a
magnitude less than 16 million can be represented exactly in any format,
and any 32-bit integer can be represented exactly in double-precision or
quad-precision. Also, all numbers representable as some number over a
power of 2, such as 0.1875 (3/16) or 27.375 (219/8), can be represented
exactly if they have no more decimal digits than the chosen precision can
faithfully represent.

Normalized and Denormalized Values
Values that are represented by a sign bit, a fraction, and an exponent
whose bits are not all zeros and not all ones are called normalized
values (also called normal values). Because the value in the exponent
field of a normalized value cannot be 0, the size of the exponent field
determines the smallest value that can be represented in normalized
format. For single-precision numbers, the largest-magnitude negative
exponent is −126 (that is, 1 − 127); for double-precision numbers, it is
−1022 (that is, 1 − 1023); for quad-precision numbers, it is −16382 (that
is, 1 − 16383).

Denormalized values (also called subnormal values) fill in the gap on
the number line between the smallest-magnitude normalized value and
zero. They also allow floating-point values to satisfy the arithmetic rule
that x is equal to y if and only if x - y is equal to 0.
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A denormalized value is represented by a zero exponent field and a
nonzero fraction (if the fraction were also zero, the floating-point value
would be zero). You can compute the value of a denormalized number by
interpreting the fraction as an integer and then multiplying this integer
by 2−149 for single-precision numbers, by 2−1074 for double-precision
numbers, and by 2−16494 for quad-precision numbers. The maximum
fraction is always 2k − 1, where k is the number of bits in the fraction.
(Alternatively, you can compute the value by regarding the implicit bit as
0 and the exponent as 1 minus the bias.)

The purpose of denormalized values is to allow the space between the
smallest normalized values to be divided up, so that as values become
smaller they underflow  with a gradually increasing loss of accuracy.

In the range of representable values, normalized values flow smoothly
into denormalized values, but there is an increasing loss of accuracy as
denormalized values become smaller and smaller. Table 2-2 shows the
range of positive denormalized values. (The hexadecimal representation
of the equivalent negative values begins with the digit 8; for example, the
minimum negative denormalized value in single-precision is 8000 0001.)

When used as operands, denormalized values are treated exactly like
normalized values in most instances. When a denormalized value is the
result of an arithmetic operation, however, an underflow exception
condition may occur. See “Underflow Conditions” on page 55 for more
information about underflow exceptions. Also, you should be aware that
denormalized values can significantly degrade performance. This issue is
addressed in “Denormalized Operands” on page 180.
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Table 2-2 Minimum and Maximum Positive Denormalized Values

Infinity
Values that are larger in magnitude than the maximum-magnitude
normalized values are approximated by special bit patterns that
represent positive and negative infinity.

According to the IEEE standard, infinities are represented by setting all
the bits in the exponent field to 1 (value 255 for single-precision, 2047 for
double-precision, 32767 for quad-precision) and setting the fraction bits
to 0. There are actually two infinity values, negative infinity if the sign
bit is 1 and positive infinity if the sign bit is 0.

The IEEE standard defines the properties of infinities. For example, it
defines what happens when you add a number to an infinity or subtract
one infinity from another. Table 2-3 shows some of these properties. The
term finite value in the table refers to any floating-point value other
than infinity or NaN (see “Not-a-Number (NaN)” on page 43 for
information about NaN values). For the multiplication and division
operators, the sign of the result is determined by the usual arithmetic
rules.

Precision Values Hexadecimal
Representation Value

Single Minimum denormalized
Maximum denormalized
Minimum normalized

0000 0001
007F FFFF
0080 0000

2−149

2−149 * (223 − 1)
2−126

Double Minimum denormalized
Maximum denormalized
Minimum normalized

0000 0000 0000 0001
000F FFFF FFFF FFFF
0010 0000 0000 0000

2−1074

2−1074 * (252 − 1)
2−1022

Quad Minimum denormalized
Maximum denormalized
Minimum normalized

(24 zeros)…0000 0001
0000 FFFF …(24 more F’s)
0001 0000 …(24 more zeros)

2−16494

2−16494 * (2112−1)
2−16382
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Table 2-3 Arithmetic Properties of Infinity

NOTE In multiplication and division operations with infinity operands, the sign
is determined by the usual arithmetic rules.

Operand Operator Operand Result

+Infinity
−Infinity
+Infinity
−Infinity
+Infinity

+
+
+
+
+

Finite Value
Finite Value
+Infinity
−Infinity
−Infinity

+Infinity
−Infinity
+Infinity
−Infinity
NaN (invalid operation)

+Infinity
−Infinity
Finite Value
Finite Value
+Infinity
−Infinity
+Infinity
−Infinity

−
−
−
−
−
−
−
−

Finite Value
Finite Value
+Infinity
−Infinity
−Infinity
+Infinity
+Infinity
−Infinity

+Infinity
−Infinity
−Infinity
+Infinity
+Infinity
−Infinity
NaN (invalid operation)
NaN (invalid operation)

Infinity

Infinity
Infinity

*

*
*

Finite Value
  (except 0)
0
Infinity

Infinity

NaN (invalid operation)
Infinity

Infinity
Finite Value
Infinity

/
/
/

Finite Value
Infinity
Infinity

Infinity
0
NaN (invalid operation)

+Infinity
−Infinity

sqrt()
sqrt()

+Infinity
NaN (invalid operation)
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Not-a-Number (NaN)
A NaN (Not-a-Number) is a special IEEE representation for error
values. A NaN can be

• The result of an invalid operation

• The result returned by a library function when it would be incorrect
to return a numeric value

• An undetermined value

NaNs are represented by setting all of the bits in the exponent to 1 and
setting at least one of the bits in the fraction field to 1.

There are two types of NaNs—a signaling NaN (SNaN) and a quiet
NaN (QNaN). When an SNaN is used, it generates an invalid operation
exception and, if a trap for this exception is enabled, it produces a trap.
A QNaN does not generate an exception; instead, it silently propagates
through an operation. Floating-point operations produce only QNaNs.

NOTE The IEEE standard does not fully define the bit patterns used by the two
types of NaNs. HP 9000 systems use the most significant bit of the
fraction to differentiate between the two types. If the bit is set to 1, it is
an SNaN; if the bit is 0, it is a QNaN.

Table 2-4 shows some of the properties of NaNs.
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Table 2-4 Properties of NaNs

Zeros
The IEEE standard defines both a positive zero and a negative zero. In
both cases, the value is represented by setting all bits in the exponent
and fraction to zero. The only difference, therefore, is that the sign bit is
set for a negative zero. Table 2-5 shows some of the properties of
floating-point zeros.

Operand Operator Operand Result

SNaN
QNaN
SNaN1
QNaN1

+
+
+
+

Finite Value
Finite Value
SNaN2
QNaN2

QNaN (invalid operation)
QNaN
QNaN (invalid operation)
QNaN1 or QNaN2
(implementation-
dependent)

SNaN

QNaN

float_to_int()

float_to_int()

Largest-magnitude
integer (invalid
operation)
Largest-magnitude
integer (invalid
operation)

SNaN
QNaN

sqrt()
sqrt()

QNaN (invalid operation)
QNaN
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Table 2-5 Operations With Zero

NOTE In multiplication and division operations with positive and negative zero
operands, the sign is determined by the usual arithmetic rules.

The result of some operations is dependent on the rounding mode. The
table assumes that the rounding is set to the default round-to-nearest
mode. See “Inexact Result (Rounding)” on page 51.

Complex Data Types
The IEEE standard does not address the topic of complex arithmetic, so
it does not define complex data type formats. HP Fortran 90 and HP
FORTRAN/9000 implement two complex data types, single-precision
complex (COMPLEX, COMPLEX(KIND=4)) and double-precision complex
(COMPLEX(KIND=8)). The COMPLEX type consists of a real and an
imaginary component, each of which is a single-precision IEEE operand.
The COMPLEX(KIND=8) data type is analogous to COMPLEX, except that

Operand Operator Operand Result

+Zero .EQ. −Zero True

+Zero
−Zero
+Zero

−Zero

+
+
+

+

+Zero
−Zero
−Zero

+Zero

+Zero
−Zero
+Zero (in round-to-nearest
mode)
+Zero (in round-to-nearest
mode)

+Zero

−Zero

+Zero
−Zero

−

−

−
−

+Zero

−Zero

−Zero
+Zero

+Zero (in round-to-nearest
mode)
−Zero (in round-to-nearest
mode)
+Zero
−Zero

+Zero * −Zero −Zero

Infinity
Finite Value

/
/

Zero
Zero

Infinity
Infinity

−Zero sqrt() −Zero
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each component is a double-precision IEEE operand type. HP Fortran 90
and HP FORTRAN/9000 support both complex data types and a full
range of complex arithmetic operations.

NOTE HP Fortran 90 and HP FORTRAN/9000 also support the nonstandard
data type names DOUBLE COMPLEX and COMPLEX*16 (equivalent to
COMPLEX(KIND=8)) and COMPLEX*8 (equivalent to COMPLEX).

IEEE Representation Summary
Table 2-6, Table 2-7, Table 2-8, and Table 2-9 summarize how IEEE
values are represented in binary. To determine the class (normalized,
infinity, NaN, and so on) of a floating-point value at run time, you can

• Use one of the following macros:

• fpclassify  to determine the value class

• isnan  to determine if the value is a NaN

• isinf  to determine if the value is an infinity

• isfinite  to determine if the value is finite (that is, neither
infinity nor NaN)

• isnormal  to determine if the value is normalized

See “Floating-Point Classification Macros” on page 116 for
information about fpclassify . See the online man pages for
information about all of these macros.

• Provide code in your program that writes out the value in
hexadecimal (see “Displaying Floating-Point Values in Binary” on
page 75 for an example)

• Examine the value in hexadecimal using the debugger
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Table 2-6 IEEE Single-Precision Value Summary (Hexadecimal Values)

Value Exponent Fraction

Hexadecimal Values
(Single-Precision)

Positive Negative

Zero All zeros All zeros 0000 0000 8000 0000

Denormalized All zeros Nonzero 0000 0001
to
007F FFFF

8000 0001
to
807F FFFF

Normalized Neither all
zeros nor all
ones

Anything 0080 0000
to
7F7F FFFF

8080 0000
to
FF7F FFFF

Infinity All ones All zeros 7F80 0000 FF80 0000

Quiet NaN All ones Most
significant bit
0

7F80 0001
to
7FBF FFFF

FF80 0001
to
FFBF FFFF

Signaling NaN All ones Most
significant bit
1

7FC0 0000
to
7FFF FFFF

FFC0 0000
to
FFFF FFFF
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Table 2-7 IEEE Single-Precision Value Summary (Decimal Values)

Value

Decimal Values
(Single-Precision)

Positive Negative

Zero 0.0 0.0

Denormalized 1.4012985E-45
to
1.1754942E-38

-1.4012985E-45
to
-1.1754942E-38

Normalized 1.1754944E-38
to
3.4028235E+38

-1.1754944E-38
to
-3.4028235E+38

Infinity Not applicable Not applicable

Quiet NaN Not applicable Not applicable

Signaling NaN Not applicable Not applicable
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Table 2-8 IEEE Double-Precision Value Summary (Hexadecimal Values)

Value Exponent Fraction
Hexadecimal Values (Double-Precision)

Positive Negative

Zero All zeros All zeros 0000 0000 0000 0000 8000 0000 0000 0000

Denormalized All zeros Nonzero 0000 0000 0000 0001

to
000F FFFF FFFF FFFF

8000 0000 0000 0001

to
800F FFFF FFFF FFFF

Normalized Neither
all zeros
nor all
ones

Anything 0010 0000 0000 0000

to
7FEF FFFF FFFF FFFF

8010 0000 0000 0000

to
FFEF FFFF FFFF FFFF

Infinity All ones All zeros 7FF0 0000 0000 0000 FFF0 0000 0000 0000

Quiet NaN All ones Most
significant
 bit 0

7FF0 0000 0000 0001

to
7FF7 FFFF FFFF FFFF

FFF0 0000 0000 0001

to
FFF7 FFFF FFFF FFFF

Signaling
NaN

All ones Most
significant
 bit 1

7FF8 0000 0000 0000

to
7FFF FFFF FFFF FFFF

FFF8 0000 0000 0000

to
FFFF FFFF FFFF FFFF
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Table 2-9 IEEE Double-Precision Value Summary (Decimal Values)

Value

Decimal Values
(Double-Precision)

Positive Negative

Zero 0.0 0.0

Denormalized 4.94065E−324
to
2.22507E−308

−4.94065E−324
to
−2.22507E−308

Normalized 2.22507E−308
to
1.79769E+308

−2.22507E−308
to
−1.79769E+308

Infinity Not applicable Not applicable

Quiet NaN Not applicable Not applicable

Signaling NaN Not applicable Not applicable
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Exception Conditions
The IEEE standard defines five exception conditions, also called
exceptions:

• Inexact result

• Overflow

• Underflow

• Invalid operation

• Division by zero

The following sections describe the exceptions.

On HP-UX systems, traps for all of these exceptions are initially disabled
by default. You can enable traps for some or all of these exceptions by
using the fesettrapenable  function, the +T option (f77  only), the
+fp_exception  option (f90  only), or the +FP compiler option. For more
information, see “Enabling Traps” on page 151.

The standard requires that a conforming implementation provide
exception flags (see “The PA-RISC Floating-Point Status Register” on
page 126). If an exception occurs and a trap for the exception is not
enabled, the corresponding exception flag is set.

NOTE The IEEE standard defines the conditions under which exceptions occur
only for the basic operations (see “Floating-Point Operations” on
page 59). Exceptions for more complicated operations, such as
trigonometric and transcendental functions, can vary depending on what
compiler options you specified when compiling the program. For more
information on exception handling, see “Math Library Basics” on page 99
and Chapter 6.

Inexact Result (Rounding)
As we explained in “Floating-Point Formats and the Limits of IEEE
Representation” on page 38, all computer floating-point systems are
inherently inexact because they cannot represent all values. When a
computer system cannot represent a number exactly, it must choose a
nearby representable value. This is called rounding, and it always
Chapter 2 51



Floating-Point Principles and the IEEE Standard for Binary Floating-Point Arithmetic
Exception Conditions
produces an inexact result condition. Because most floating-point
operations produce rounded (that is, inexact) results most of the time,
the inexact result exception is not usually considered to be an error.

The IEEE standard requires that for the basic operations, the result
must always be rounded to the nearest representable value (unless the
rounding mode has been changed; see “IEEE Rounding Modes” on
page 52). So, while the result of dividing 1 by 3 is not precisely 1/3, it is
precisely repeatable, portable, and standard.

An inexact result condition is always raised along with an overflow
condition, and is also raised with an underflow condition if the result is
inexact. The overflow or underflow is always raised first. These are the
only situations where more than one exception is raised by the same
operation.

Conversions Between Decimal and Binary
Floating-Point Format
Inexactness can occur when the system attempts to convert between
decimal representations and binary floating-point representations. This
can occur, for example, during a C language scanf  or printf  call.

An inexact conversion from binary to decimal can occur if the format of
the decimal representation does not contain enough room to represent
the floating-point value—for example, if the format specification in a
printf  call is 7.5f , but the value being printed requires more than 5
decimal places.

An inexact conversion from decimal to binary can occur because the
IEEE floating-point format cannot represent all decimal values. For
instance, the IEEE format cannot represent the decimal value 0.1
exactly, because 0.1 cannot be represented by a finite sum of powers of 2.

For more information and examples, see “Conversions Between Binary
and Decimal” on page 74.

IEEE Rounding Modes
Choosing the most appropriate representable value through rounding is
not always straightforward. Whether the system rounds to the lower or
higher of two representable values depends upon the rounding mode
(algorithm for rounding values) the user selects. The available choices
include an IEEE standard default rounding mode as well as three
alternate modes.
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NOTE Most applications do not need the alternate rounding modes.

The default rounding mode is round to nearest. The four rounding
modes are:

Round To
Nearest Round to the representable value closest to the true

value. If two representable values are equally close to
the true value, choose the one whose least significant
bit is 0.

Round Toward
+Infinity Always round toward positive infinity (that is, choose

the algebraically greater value).

Round Toward
−Infinity Always round toward negative infinity (that is, choose

the algebraically lesser value).

Round Toward
Zero Always round toward zero (that is, choose the

representation with the smaller magnitude).

For all but specifically designed numerical analysis applications, round
to nearest is the best rounding mode. In round-to-nearest mode, the
nearest representable value is never more than 1/2 ULP away from the
exact result being rounded, so the error introduced from one operation by
rounding is never more than 1/2 ULP. For the other rounding modes, the
error is less than 1 ULP.

As an example of the size of a 1/2 ULP rounding error, suppose you tried
to measure precisely the distance to the sun (about 93 million miles). An
error of 1/2 ULP in single-precision would put your measurement off by
about 2.5 miles; an error of 1/2 ULP in double-precision would put it off
by about 8 microns; and an error of 1/2 ULP in quad-precision would put
it off by about 10−17 microns, which is about one millionth of the
diameter of a proton.

You can modify the rounding mode on HP 9000 systems by using library
routines in the fenv  suite of routines (see Chapter 5).

NOTE We recommend that you use the default rounding mode if your
application calls library routines. Most math library routines (for
example, log , cos , and pow) consist of many IEEE arithmetic
operations, each of which is affected by the current rounding mode.
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These routines are designed to produce the best possible results in the
default rounding mode, round to nearest. Changing the rounding mode
may cause library routines to yield results with more rounding errors in
unpredictable directions.

Be careful if you change the rounding mode in the middle of your progra
when you are optimizing your code. Some optimizations change the order
of operations in a program, and the compiler may place the change in
rounding mode after the operations it is intended to affect.

Overflow Conditions
An overflow condition occurs whenever a floating-point operation
attempts to produce a result whose magnitude is greater than the
maximum representable value. Table 2-10 shows approximate maximum
values for floating-point numbers on HP 9000 systems. For example, an
attempt to represent the value 10400 would produce an overflow
condition in single-precision and double-precision, but not in
quad-precision.

NOTE Out-of-range conditions that occur during conversions from
floating-point to integer format are discussed in “Invalid Operation
Conditions” on page 56.

Table 2-10 Approximate Maximum Representable Floating-Point Values

Several actions are possible when an overflow occurs, depending on
whether overflow traps are enabled or disabled. (By default, traps are
disabled.) If overflow traps are enabled, the system signals a
floating-point exception (SIGFPE). Then, if the program provides a trap
handler, the system takes whatever action is dictated by the trap
handler. While the IEEE standard does not define trap handler
operations, it does define what type of information should be stored in

Largest Negative
Value

Largest Positive
Value

Single-Precision −3.4E38 3.4E38

Double-Precision −1.7E308 1.7E308

Quad-Precision −1.2E4932 1.2E4932
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the result of an operation that overflows. If the program does not provide
a trap handler, the SIGFPE exception will cause the program to
terminate.

If overflow traps are disabled, the result of a floating-point operation
that overflows is assigned either an infinity code or the closest
representable number (this will be either the largest positive value or
the largest negative value). The choice of whether to use infinity or the
nearest representable value depends on the rounding mode, as shown in
Table 2-11. If overflow traps are disabled, the system generates an
inexact result condition in addition to the overflow condition.

Table 2-11 Overflow Results Based on Rounding Mode

Underflow Conditions
An underflow condition may occur when a floating-point operation
attempts to produce a result that is smaller in magnitude than the
smallest normalized value. The standard allows the vendor of the
floating-point system to choose whether an underflow condition is
detected before or after rounding. On HP 9000 systems, underflow
conditions always occur before rounding. Consequently, an operation
that underflows can produce a minimum-magnitude normalized value, a
denormalized value, or zero.

According to the standard, an underflow condition may be signaled only
if it produces an inexact result, because it is possible that the result will
be exact even though it is denormalized (for example, 2−1040). In this
case, there is no reason to signal an exception.

When an underflow condition does produce an inexact result, it is often
difficult to determine whether the inaccuracy occurs because the value is
denormalized or whether the loss of accuracy is inherent in the operation

Rounding Mode

Round To
Nearest

Round Toward
+Infinity

Round Toward
−Infinity

Round Toward
Zero

Positive
Result

+Infinity +Infinity Maximum
positive value

Maximum
positive value

Negative
Result

−Infinity Maximum
negative value

−Infinity Maximum
negative value
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being performed. For the sake of efficiency, the standard allows the
implementor to decide how to define loss of accuracy for underflow
conditions. On HP 9000 systems, the definition of loss of accuracy in
underflow conditions includes all inaccuracies, whether they originate
from denormalization or are inherent in the operation.

NOTE In many properly functioning applications, underflows may occur in the
normal course of execution—for example, in convergence algorithms.
Many mathematically intensive applications encounter underflow
conditions occasionally.

Underflow conditions can slow down floating-point operations
considerably on HP 9000 systems. See “Denormalized Operands” on
page 180 for information on what to do about performance problems
caused by underflows.

Invalid Operation Conditions
An invalid operation condition occurs whenever the system attempts
to perform an operation that has no numerically meaningful
interpretation. The following are invalid operations (also called
operation errors, operand errors, or domain errors):

• Any operation on a signaling NaN

• Magnitude subtraction of infinities (see Table 2-3 on page 42)

• Multiplication of zero by infinity

• Division of zero by zero or division of infinity by infinity

• Taking remainder( x, y)  when x is infinity or y is zero (see “The
Remainder Operation” on page 64)

• Taking the square root of a negative value (except for negative zero)

• Conversion of a floating-point value to an integer format when the
floating-point value is an infinity or NaN or when the conversion
results in a value outside the range of the integer format

• Comparison involving a <, <=, >, or >= operator when at least one
operand is a NaN (see “Comparison” on page 60)

Out-of-range results that occur while converting from floating-point to
integer trigger invalid operation conditions, but all floating-point
overflows produce overflow conditions.
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If an invalid operation condition occurs when invalid operation traps are
disabled, the system by default returns a quiet NaN as the result of the
operation. If traps are enabled, the system signals a floating-point
exception and, if a trap handler is provided, takes whatever action the
trap handler dictates.

Division by Zero Conditions
A division by zero condition occurs whenever the system attempts to
divide a nonzero, finite value by zero. More generally, this condition
occurs whenever an exact infinity is produced from finite operands. If
divide-by-zero traps are disabled, the result is infinity: positive infinity if
the two operands have the same sign, negative infinity if they have
different signs. If traps are enabled, the system signals a floating-point
exception and, if a trap handler is provided, takes whatever action the
trap handler dictates.
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Exception Processing
Exception processing refers to the sequence of events that takes place
when any of the IEEE exception conditions occur. The standard states
that a programmer should be able to enable or disable the trapping of
any of the exception conditions. The standard also defines default results
for all disabled exceptions. For example, Table 2-11 on page 55 shows
how a default result is formulated when an overflow occurs and overflow
traps are disabled.

The standard also states that a programmer should be able to define a
trap handler for each exception condition. The trap handler (also called
a signal handler) is a routine that is invoked whenever the particular
exception condition is detected, assuming that trapping for the exception
is enabled. If a program enables trapping but provides no trap handler, a
default handler will be invoked that prints an error message and causes
the process to terminate.

As we noted in “Exception Conditions” on page 51, all traps are disabled
by default on HP-UX systems. You can use the fesettrapenable
function, described in “Run-Time Mode Control: The fenv(5) Suite” on
page 125, to enable any traps you want to handle. You can also enable
traps through compiler options, which we discuss in “Command-Line
Mode Control: The +FP Compiler Option” on page 146.

On HP-UX systems, the methods for establishing trap handlers for the
IEEE-754 exceptions are the sigaction(2) routine for C programs and the
ON statement for Fortran programs. See “Math Library Basics” on
page 99 and “Handling Traps” on page 155 for more information.
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Floating-Point Operations
The IEEE standard requires a complying system to support the following
floating-point operations:

Addition Algebraic addition.

Subtraction Algebraic subtraction.

Multiplication Algebraic multiplication.

Division Algebraic division.

Comparison There are four possible relations between any two
floating-point values: less than, equal, greater than,
and unordered. The unordered relation occurs when
one or both of the operands is a Not-a-Number (NaN).
See “Comparison” on page 60 for details.

Square Root The square root operation never overflows or
underflows.

Conversion The following conversions must be supported by a
conforming implementation, if the implementation
supports single-precision, double-precision, and
quad-precision formats:

• Single-precision to double-precision

• Single-precision to quad-precision

• Double-precision to single-precision

• Double-precision to quad-precision

• Quad-precision to single-precision

• Quad-precision to double-precision

• Floating-point to integer

• Integer to floating-point

• Binary floating-point to decimal

• Decimal to binary floating-point

See “Conversion Between Operand Formats” on
page 62 for more information about these conversions.
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Round to
Nearest
Integral Value Rounds an argument to the nearest integral value (in

floating-point format) based on the current rounding
mode. Rounding modes are described in “Inexact
Result (Rounding)” on page 51.

Remainder The remainder operation takes two arguments, x and y,
and is defined as x − y * n, where n is the integer
nearest the exact value x/y. See “The Remainder
Operation” on page 64 for more information.

To understand the properties of each operation, you need a full
understanding of denormalized numbers, infinities, and NaNs (see
“Normalized and Denormalized Values” on page 39, “Infinity” on
page 41, and “Not-a-Number (NaN)” on page 43). HP 9000 systems
conform to the IEEE standard for all of these operations.

The standard requires that the result of each operation be rounded from
its mathematically exact value into an IEEE representation in
accordance with the rounding mode. In round-to-nearest mode (the
default), the result is within 1/2 ULP. (There is one exception to this rule;
conversions between binary and decimal need not be exact at the
extremes of their ranges.)

Comparison
The comparison operation determines the truth of an assertion about the
relationship of two floating-point values. The four basic assertions are

operand1 < operand2 The first operand is less than the
second.

operand1 = operand2 The first operand is equal to the
second.

operand1 > operand2 The first operand is greater than the
second.

operand1 ? operand2 Unordered. This assertion is true if
either operand is a NaN.

The basic assertions can be combined with each other. For example,
“a >= b” asserts that a is greater than or equal to b. Similarly, “a <> b”
asserts that a is either greater than or less than b; for operands that are
not NaNs, this assertion is the opposite of “a = b”.
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NOTE The assertion operators should not be confused with actual programming
language operators. Languages, for example, do not support the ?
operator.

An assertion may also be negated; for non-NaN operands, negation of an
assertion is the same as asserting the opposite assertion.

The IEEE standard defines two versions of every possible assertion: the
aware and the non-aware version. The aware version of an assertion
treats a NaN as a special value that compares as neither less than nor
greater than any numeric value, and as unequal to any value, including
any other NaN and even itself. This definition yields the interesting fact
that the assertion “x = x” will evaluate to FALSE if x  is a NaN. In fact,
applications sometimes use this comparison operation specifically to
detect NaNs, although it is a dangerous practice because some vendors’
optimizers remove this operation from the code.

The non-aware version of an assertion behaves the same as the aware
version, except that if either or both operands is a NaN, it also raises an
invalid operation exception for the <, <=, >, and >= assertions. The =, !=,
and ? assertions are the only ones that are valid with NaN operands.

Signaling NaNs cause an invalid operation exception for both aware and
non-aware assertions.

The behavior of the comparison operation for each of the possible
operand kinds is as follows:

Normalized
and
Denormalized
Values The operands are algebraically compared.

Zero Zeros are greater than any nonzero negative value and
less than any nonzero positive value. The sign of a zero
is ignored, so that two zeros always compare as equal
even if they have opposite signs.

Infinity To the comparison operators, infinity is just another
signed numeric value whose magnitude is greater than
the largest normalized magnitude. Infinities with the
same sign compare as equal to each other.

NaN A NaN compares as unequal to all other operands,
including other NaNs and itself. The rules above are
used to evaluate assertions involving NaNs as TRUE
Chapter 2 61



Floating-Point Principles and the IEEE Standard for Binary Floating-Point Arithmetic
Floating-Point Operations
or FALSE. If the assertion is non-aware, an invalid
operation exception is also signaled for any comparison
involving a <, <=, >, or >= assertion.

Conversion Between Operand Formats
The standard requires that it be possible to convert between decimal and
binary floating-point, and between binary floating-point and integer
formats. This section describes some of the properties of various
conversions. The operand type integer refers to either signed or
unsigned integers.

Single-Precision to
Double-Precision or
Quad-Precision These conversions can never overflow,

underflow, or be inexact. The only
possible type of exception is an
invalid operation if the operand is an
SNaN.

Double-Precision to
Quad-Precision These conversions can never overflow,

underflow, or be inexact. The only
possible type of exception is an
invalid operation if the operand is an
SNaN.

Quad-Precision or
Double-Precision to
Single-Precision These conversions can overflow or

underflow and are usually inexact.

Quad-Precision to
Double-Precision These conversions can overflow or

underflow and are usually inexact.

Decimal to Single-Precision,
Double-Precision, or
Quad-Precision These conversions can overflow or

underflow and are usually inexact.
See “Conversions Between Binary
and Decimal” on page 74 for more
information about these conversions.
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Single-Precision,
Double-Precision, or
Quad-Precision to Decimal These conversions can overflow or

underflow and are usually inexact.
See “Conversions Between Binary
and Decimal” on page 74 for more
information about these conversions.

Single-Precision,
Double-Precision, or
Quad-Precision to Integer These conversions are usually

inexact. Out-of-range finite values,
infinities, and NaNs cause an invalid
operation exception. The underflow
exception does not apply to these
conversions; results that are too
small to round up to one round down
to zero. Signed zeros become integer
zeros.

HP 9000 systems round these
conversions in accordance with IEEE
rounding rules. However, some
programming languages, such as C,
require that these conversions be
performed with truncation. See
“Truncation to an Integer Value” on
page 90 for information about
problems that can result when
floating-point values are truncated to
integer.

Integer to Quad-Precision These conversions are always exact
and never generate an exception.

Integer to Double-Precision or
Single-Precision These conversions are exact except

for conversions of large 32-bit integer
values to single-precision, or of large
64-bit integer values to
double-precision, which may generate
an inexact result exception.
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The Remainder Operation
The remainder operation is an exact modulo function. When y is not
equal to zero, the remainder r = remainder( x,  y)  is defined as

r = x - y * n

where n is the integer nearest the exact value x/y. When |n − x/y| = 1/2,
n is even. If r is zero, its sign is that of x.

Two examples:

• The integer closest to the exact value 1.6/2.0 is 1. So the remainder of
1.6 and 2.0 is 1.6 − (2.0 * 1), or −0.4.

• The integer closest to the exact value 5.0/2.0 is 2 (the exact value is
halfway between 2 and 3, so n is even). So the remainder of 5.0 and
2.0 is 5.0 − (2.0 * 2), or 1.

The result of the remainder operation is not affected by the rounding
mode. (The result is always exact, so rounding is not a factor.)

The C math library remainder  function implements the IEEE
remainder operation.
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Recommended Functions
In an appendix, the IEEE standard lists several useful floating-point
functions that an implementor may support but is not required to
support. Table 2-12 describes how HP-UX systems support these
functions. The supported functions and macros are provided in the C
library only. Appendix A describes these functions briefly; see the online
man pages for more information.

Table 2-12 HP-UX Support for IEEE Recommended Functions

Function Name HP Implementation

class The fpclassify  and signbit  macros provide
identical functionality. See “Floating-Point
Classification Macros” on page 116.

copysign Supported. Float version (copysignf ) also
supported.

finite The isfinite  macro provides identical
functionality.

logb Supported.

nextafter Supported.

isnan Supported.

scalb Supported.

unordered Not supported.
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3 Factors that Affect the Results
of Floating-Point Computations
67



Factors that Affect the Results of Floating-Point Computations
When a floating-point application executes, the results it yields may be
different from those of previous executions, or the results may be
inaccurate. A great many factors can contribute to such differences or
inaccuracies. This chapter describes these factors.

We’ve divided the factors that can affect application results into the
following general categories:

• Basic operations

• Mathematical library functions

• Exception conditions and library errors

• Other system-related factors, usually indirect results of the three
preceding factors

• Floating-point coding practices that lead to inaccurate results
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How Basic Operations Affect
Application Results
To understand why floating-point calculations can yield different results,
you need to know how a system performs the most basic operations: add,
subtract, multiply, divide. Recall from “Inexact Result (Rounding)” on
page 51 that these operations always round their results to the nearest
representable floating-point value using an algorithm specified by the
rounding mode, and that this rounding introduces a rounding error
into the result of the operation.

For example, suppose you run the following program. Two operations
that are mathematically equivalent may produce different results:

Sample Program: rounderr.f

      PROGRAM ROUNDERR
      REAL A, B, C, D, E, F

      PRINT *, 'Enter 4 reals:'
      READ *, A, B, C, D

      E = (A + B) * (C + D)
      F = (A * C) + (A * D) + (B * C) + (B * D)

      IF (E .EQ. F) THEN
        WRITE (*, 20) E, ' equals ', F
      ELSE
        WRITE (*, 20) E, ' not equal to ', F
        WRITE (*, *) 'Math error!'
      ENDIF

 20   FORMAT(F, A, F)
      END

Depending on the values read for A, B, C, and D, the program will indeed
print “Math error!”, although, of course, no error has actually occurred—
only legitimate rounding errors:

$ f90 rounderr.f
rounderr.f
 program ROUNDERR

21 Lines Compiled
$ ./a.out

Enter 4 reals:
1.1 2.2 3.3 4.4

25.4100018 not equal to      25.4099998
Math error!
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This example also demonstrates a guiding principle of floating-point
programming:

Be very careful about testing two floating-point values or expressions for
exact equality or inequality.

This principle derives from the fact that two given floating-point values
are almost never equal, even when the programmer might expect them
to be equal from a purely mathematical standpoint. The inequality
occurs because of the rounding errors incurred during the calculation of
the two values being compared.

For further discussion of this issue, see “Testing Floating-Point Values
for Equality” on page 82.
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How Mathematical Library Functions
Affect Application Results
Mathematical library functions do not always yield identical results from
one system to another, from one language to another, or even from one
software release to another. The reason is that computer vendors often
modify these functions for any or all of the following purposes:

• To make them faster

• To make them more accurate

• To take advantage of the capabilities of a particular hardware system

The art in algorithm design for math library routines is in finding the
best tradeoff between accuracy and performance. Some algorithms are
better than others at getting the most accurate results obtainable. For a
given function, it is usually possible to design an algorithm that produces
results that are accurate to within the 1/2 ULP mandated for the results
of the basic operations. The most precise algorithm, however, is often
unacceptably slow. Because correct rounding is not required for most
mathematical functions (though it is required for basic operations and
for some functions, such as sqrt ), algorithm designers are free to
sacrifice a small amount of accuracy in favor of better performance. As
advances in algorithm design improve the speed and/or accuracy of the
library functions, the results may change.

Because HP modifies math functions from time to time, you should not
count on always getting identical results from a given function. Instead,
it is wise to assume that a library call may have an error of 1 ULP or
thereabouts. As we explain in “Testing Floating-Point Values for
Equality” on page 82, you should test for results within a certain range,
not for an exact value.
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How Exceptions and Library Errors
Affect Application Results
When an application performs a floating-point operation that causes an
exception condition or a library error, and the application is not coded to
detect and deal with the exception or error, the default
exception-handling response of the system may introduce a dramatic
amount of error into the continuing computation. The types of exception
conditions and errors that can have this effect are

• Overflow conditions

• Underflow conditions

• Invalid operation conditions

• Division by zero conditions

• Library domain and range errors (EDOM and ERANGE)

“Exception Conditions” on page 51 describes the exception conditions.

Math library routines generate domain errors when they encounter
invalid arguments; they generate range errors when they overflow or
when they generate exact infinities from finite arguments.

Table 3-1 shows the effects of these exceptions and errors on typical
applications. In many cases, the effect of an exception or a library error
on a program is catastrophic: that is, the program continues, but the
results it produces are meaningless. A common exception to this rule is
an underflow condition. An underflow means that the value returned by
the operation is extremely small. In many cases—for example, if the
program is evaluating a function at the point where the function crosses
the X axis—a value that is very near zero is exactly what you want, so
that the occurrence of an underflow is actually a successful result. In
other cases an overflow may be an expected result. If, in the expression 1
+ 1/f(x) , f(x)  overflows, then 1/f(x)  is 0, and the expression
evaluates to 1, which may be a perfectly acceptable result.
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Table 3-1 Effects of Floating-Point Exceptions and Library Errors

The actual nature of the inaccuracies introduced by exceptions and
library errors depends on three main factors:

• The programming environment selected (C, Fortran)

• The default system error-response behavior, which is
implementation-dependent

• The additional error-response behavior defined by the programmer

Type of
Error Default System Behavior Effect on

Application

Overflow
(ERANGE)

Substitute the largest
normalized value or an infinity
as the result

May be catastrophic
unless specifically
handled

Underflow Substitute either a
denormalized or zero value as
the result: if the result after
rounding would be smaller in
magnitude than MINDOUBLE
(the smallest denormalized
value), substitute zero

Application usually
continues
successfully;
however,
performance may
suffer

Invalid
operation
(invalid
argument)
(EDOM)

Substitute a NaN as the result Catastrophic
unless specifically
handled

Division by
zero

Substitute an infinity as the
result

Catastrophic
unless specifically
handled
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Other System-Related Factors that
Affect Application Results
In the previous sections we discussed the three most fundamental causes
of inaccuracy in floating-point computations:

• Rounding in basic operations

• Math library functions

• Exceptions and library errors

This section lists the factors that can contribute to inaccuracy or to
changes in the results of an application. We also show how each factor is
derived from the previously described three fundamental factors.

These factors are

• Conversions between binary and decimal

• Compiler behavior and compiler version

• Compiler options

• Hardware version of build-time system

• Operating system release of build-time system

• Operating system release of run-time system

• Values of certain modifiable hardware status register fields

Conversions Between Binary and Decimal
A conversion from decimal to binary or from binary to decimal may take
place either at compile time or at run time. A compile-time
decimal-to-binary conversion takes place when a statement like the
following is compiled:

Y = 1.25E2

A run-time decimal-to-binary conversion takes place when the C library
routine atof  is called, or when a statement like the following is
executed:

READ (*, ’(G5.2)’) X
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The conversion between a decimal value and a binary floating-point
value may cause a loss of accuracy for any of three reasons:

• The algorithm may not be accurate, probably because speed/accuracy
tradeoffs have been made in favor of speed.

• Not all decimal values are exactly representable in binary—for
example, 0.1.

• The conversion may be specified so as to deliberately limit precision.
For example, the statements

REAL X
       READ (*, '(G5.2)') X

deliver only three decimal digits of precision (5 minus 1 for the sign
and 1 for the decimal point). If the user enters −1.23456, the last
three digits are lost. The same loss of precision on output can be
particularly confusing if it causes very small values to be printed as
zero, as in the following example:

       REAL X
       X = 1.0E-10
       WRITE(*, '(F5.2)') X

Displaying Floating-Point Values in Binary
It is possible in each language to read or print floating-point variables
directly in binary (actually hexadecimal), where no conversion
inaccuracies occur. Floating-point programmers should familiarize
themselves with these techniques and should also examine floating-point
variables in hexadecimal in the symbolic debugger.

The following Fortran program shows how you can display floating-point
values in hexadecimal:

Sample Program: flophex.f

      PROGRAM FLOPHEX
      DOUBLE PRECISION X, Y

      X = 1.234D0
      Y = DCOS(X)
      WRITE(*, *) 'Y = ', Y
      WRITE(*, 10) Y
10    FORMAT(' Y = ', Z16.16)
      END

The Fortran program displays results similar to the following:

Y = .3304651080717298
Y = 3FD526571FE8C7A5
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The following C program shows how you can use a union to display
floating-point values in hexadecimal:

Sample Program: flophex.c

#include <stdio.h>
#include <math.h>

union {
    double y;
    struct {
         unsigned int ym, yl;
    } i;
} di;

int main(void)
{
    double x;

    x = 1.234e0;
    di.y = cos(x);
    printf("di.y = %18.16g\n", di.y);
    printf("di.y = %08x%08x\n", di.i.ym, di.i.yl);
}

The C program displays results similar to the following:

di.y = 0.3304651080717299
di.y = 3fd526571fe8c7a5

You can see that, although the last digits of the floating-point values
displayed by the Fortran and C programs are not identical, the
hexadecimal values are exactly the same.

Compiler Behavior and Compiler Version
The compiler can contribute to variations in floating-point results in
several ways, including

• Conversion of constants

• Decisions about constant folding and algorithms used in constant
folding

• Rearrangement of operations

Like the math library functions, the parsing routines (both the run-time
routines such as READ and scanf  and the internal routines the compiler
uses) attempt to come as close as possible to the ideal accuracy of less
than 1/2 ULP and to be bit-for-bit compatible from one release to another.
However, these routines may change slightly from time to time. Because
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of this, the parsing of a floating-point constant might change if the exact
value of the constant lies extremely close to the halfway point between
two representable values.

The compiler usually performs compile-time expression evaluation,
which is commonly referred to as constant folding. A statement like

X = 1.1/10.0E1 + 5.0E-1

will probably be compiled as

X = 0.511

but, because an extra division and addition took place, each contributing
some rounding error, the result may not be bit-for-bit identical in all
cases.

NOTE Floating-point constants without suffixes (1.1, for example) are
evaluated differently in Fortran 90 and FORTRAN 77. FORTRAN 77
evaluates them in double precision, while Fortran 90 evaluates them in
single precision. This can lead to slight differences in the resulting
constant value.

The zeal with which the compiler pursues opportunities for constant
folding may vary from one compiler release to another and may depend
on the optimization level and other compiler options. In general, lower
optimization levels produce more repeatable results.

New versions of compilers often incorporate improved constant folders
and optimizers that compile applications into more efficient sequences of
operations. However, as we have shown, different sequences of
operations produce different results, even though the new sequence is
mathematically equivalent to the old.

Compiler Options
A compiler typically has several options that affect the sophistication of
the optimization algorithms used. As these compiler options change, the
final sequence of operations produced by the compiler changes.

HP-UX compilers by default do not reorder floating-point operations,
even at high optimization levels. The order of operations is the same as
the order your program specifies. If, however, you want to allow the
compiler to reorder floating-point operations so as to improve
performance, even at the expense of possible small differences in results,
specify the +Onofltacc  option.
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For example, by default the compiler orders the expression

a + b * c + d

as

(a + (b * c)) + d

But if you use +Onofltacc , it may change the ordering to

a + d + (b * c)

As we showed in “How Basic Operations Affect Application Results” on
page 69, this kind of reordering has an effect on rounding errors and
consequently on the final result.

The +Ovectorize  option may also reorder operations on arrays and
thus cause small differences in results. See “Optimizing Your Program”
on page 169 for details.

NOTE Optimization affects the ordering of operations around calls to the
fenv(5) suite of functions. See “Run-Time Mode Control: The fenv(5)
Suite” on page 125.

Architecture Type of Run-Time System
PA2.0 systems use two new instructions, known collectively as FMA
(fused multiply-add) instructions. These instructions, FMPYFADD and
FMPYNFADD, combine a multiplication and an addition (or subtraction)
into a single operation. Use the +DA2.0  compiler option (the default on
PA2.0 systems) to generate code that uses these instructions.

For example, in the statement

d = a * c + b

the multiplication of a and c , and the addition of the product to b, may
all be accomplished by a single FMPYFADD instruction. When the
instruction is executed, the product of a and c  is computed to infinite
precision and added to b. The result is then rounded according to the
current rounding mode.

This means, for example, that a code sequence that might be expected to
incur two rounding errors may instead incur only one. Therefore, the use
of FMA instructions may change the results of your application slightly.
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FMA instructions are generated by default at optimization levels of 2
and higher on PA2.0 systems. If you want your optimized code to
preserve exactly the expression semantics of your source code, specify
the +Ofltacc  option to suppress the generation of FMA instructions.

Operating System Release of Build-Time
System
When the compiler performs binary-decimal conversions or constant
folding, it calls system math libraries to perform certain operations. For
example, the statement

X = LOG(10.1E2) + 1.2E0

causes the constant-folding phase of the compiler to invoke a system
logarithmic function.

New operating system releases from time to time include improved math
function libraries. The changes may be for improved performance,
accuracy, or both. In any case, if the libraries on the build-time system
change, the compiler’s constant folding may yield a different result, and
the application, regardless of which system it is run on, may also yield a
different result.

Operating System Release of Run-Time
System
As stated in “Operating System Release of Build-Time System”, different
operating system releases may have different libraries. If the libraries on
the run-time system change, an application run on that system may yield
different results from those yielded on previous releases.

If your application must produce the same results on every run-time
system, you should build your application using archive libraries instead
of shared libraries. Archive libraries cause the math routines of the
build-time system to be permanently bound to the application, making it
immune to future library changes on the run-time system. If you use
archive libraries, however, you cannot take advantage of improvements
in accuracy or performance in future library releases unless you rebuild
your application. For more information about archive libraries, see
“HP-UX Library Basics” on page 97 and “Shared Libraries versus
Archive Libraries” on page 179.
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Values of Certain Modifiable Hardware Status
Register Fields
All HP 9000 systems have a modifiable floating-point status register.
Figure 5-1 on page 126 illustrates this register. Two of the fields in the
status register can be modified in ways that may change the results of an
application:

• The rounding-mode field

• The D bit, which affects underflow mode

The rounding-mode field is a two-bit field that specifies which of the four
rounding modes defined by the IEEE-754 standard is in force. The
default setting for this field is round to nearest. Changing this field
changes the rounding errors developed during computations and thus
changes the results yielded by an application.

Many HP 9000 systems have a D bit in the floating-point status register.
When this bit is set to 0 (the default), the system is fully IEEE-754
conforming. When this bit is set to 1, the system operates on
denormalized operands as if they were zeros, and results that underflow
are flushed to 0 instead of denormalized. The purpose of this bit is to
improve the performance of applications that encounter denormalized
values often, since operations on denormalized values degrade system
performance. Changes to the D bit, by virtue of its effect, can obviously
have the effect of altering application results.

You may modify the floating-point status register by using either a
compiler option or any of several library functions. For more information,
see Chapter 5.
80 Chapter 3



Factors that Affect the Results of Floating-Point Computations
Floating-Point Coding Practices that Affect Application Results
Floating-Point Coding Practices that
Affect Application Results
The most common types of floating-point “bugs” reported to
Hewlett-Packard are not bugs at all, but rather a class of programming
mistakes. These types of mistakes usually stem from one of the following
invalid assumptions:

• It is invalid to assume that an arithmetic expression in a computer
language produces an exactly representable result and that all of the
digits in a floating-point value are always meaningful. The fact that
an application prints out 25 decimal digits of a result does not mean
that the value printed actually has 25 significant digits. Many of the
rightmost digits printed may be meaningless. Values may lose
precision in the course of computation, and you must be alert for the
kinds of operations that can cause precision loss.

The significance limitations of the system are immutable. Entering a
datum of 3.14159265358979323846 for pi  is no better than entering
3.1415926535897932 (in double-precision). In fact, the former may be
worse, because it might beguile a programmer into thinking that the
system accepted all 21 digits, when in reality it accepted only 17 (9 in
single-precision).

• It is invalid to assume that an arithmetic expression in a computer
language will abide by all algebraic rules, including the associative
and distributive laws. You cannot make this assumption unless you
have made a thorough analysis of the code to determine that
rounding errors and other sources of inaccuracy will not invalidate
the rules.

Sometimes the source of an erroneous result is related to a particular
optimization generated by the compiler. This kind of problem can be
particularly hard to solve, because it may disappear when you compile
the program with a debugging option in order to debug it. See “Compiler
Behavior and Compiler Version” on page 76 for a discussion of the effects
of compiler optimization on floating-point results.
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The following sections describe common floating-point programming
mistakes that can lead to incorrect application results:

• Testing floating-point values for equality

• Taking the difference of similar values

• Adding values with very different magnitudes

• Unintentional underflow

• Truncation to an integer value

• Ill-conditioned computations

The first mistake produces results that are simply wrong. The others are
more insidious: they usually cause the result of an operation to lose a
substantial amount of precision.

NOTE The illustrations in these sections use decimal representations, rather
than binary or hexadecimal ones, so as to correspond more closely to the
way most users think about floating-point values. These examples
illustrate general principles; they cannot necessarily be reproduced
using IEEE-754 arithmetic.

Testing Floating-Point Values for Equality
Think very carefully before you test two floating-point values for
equality. Because of the inherent inexactness of floating-point
representations and because of the many sources of rounding
inaccuracies in a floating-point computation, values that should be equal
from a purely algebraic perspective in fact rarely will be.

For example, on many computers 1.2 − 0.1 is not exactly equal to 1.1.
Consider the following example.
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Sample Program: fpeq.c

#include <stdio.h>

int main(void)
{
  union {
    double x;
    int a[2];
  } u1, u2;

  u1.x = 1.2 - 0.1;
  u2.x = 1.1;

  if (u1.x == u2.x)
    printf("1.2 - 0.1 equals 1.1\n");
  else {
    printf("1.2 - 0.1 is NOT equal to 1.1.\n");
    printf("1.2 - 0.1 = %x%x\n1.1 = %x%x\n",
                           u1.a[0], u1.a[1], u2.a[0], u2.a[1]);
  }
}

From an algebraic viewpoint, this routine should print that 1.2 − 0.1
equals 1.1. In fact, though, when executed on a Series 700 machine, the
output is

1.2 - 0.1 is NOT equal to 1.1.
1.2 - 0.1 = 3ff1999999999999
1.1 = 3ff199999999999a

This anomaly occurs because the numbers 0.1 and 1.1 cannot be
represented exactly in IEEE-754 double-precision format. Both values,
1.1 and (1.2 − 0.1), are very close to the real number 1.1, but neither is
exact.

A better technique in most circumstances is to test that two values lie
within a relative proximity to each other. For example, the Fortran test

IF( X .EQ. Y )

could be replaced by

IF( ABS(X - Y) .LE. EPSILON )

where EPSILON is a sufficiently small floating-point value. This test
establishes whether X is within +/-EPSILON  of Y.
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Consider again the example, rounderr.f , in “How Basic Operations
Affect Application Results” on page 69. A better way to code that
example is to test whether the two values are sufficiently close to each
other, rather than exactly the same:

Sample Program: roundeps.f

      PROGRAM ROUNDEPS
      REAL A, B, C, D, E, F, EPSILON

      PRINT *, 'Enter epsilon:'
      READ *, EPSILON
      PRINT *, 'Enter 4 reals:'
      READ *, A, B, C, D

      E = (A + B) * (C + D)
      F = (A * C) + (A * D) + (B * C) + (B * D)

      IF (ABS(E - F) .LE. EPSILON) THEN
        WRITE (*, 20) E, ' equals ', F
      ELSE
        WRITE (*, 20) E, ' not equal to ', F
        WRITE (*, *) 'Math error!'
      ENDIF

 20   FORMAT(F, A, F)
      END

You must choose a value for the error bound EPSILON that is appropriate
to the magnitudes of the values being computed. If computations are
yielding results with magnitudes around m, then for single-precision
computations, a reasonable value for EPSILON might be m/1.0e5 ; for
double-precision computations, a reasonable value might be m/1.0e14 ;
for quad-precision computations, a reasonable value would be m/1.0e26 .
Choosing an appropriate value for the error bound, however, requires a
thorough knowledge of the mathematical nature of your application. For
example, a value of 1.0e-5  for EPSILON yields the following result,
which may or may not be acceptable in your application:

$ f90 roundeps.f
roundeps.f
   program ROUNDEPS

23 Lines Compiled
$ ./a.out

Enter epsilon:
1.0e-5
Enter 4 reals:
1.1 2.2 3.3 4.4

25.4100018 equals      25.4099998

The actual difference between the values is one bit (in hexadecimal,
41CB47AF versus 41CB47AE).
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Taking the Difference of Similar Values
Calculations can lose precision when a program attempts to take the
difference between two values that are similar in magnitude and also
have some degree of inaccuracy to begin with. If the operands have M
bits of insignificance, and the fractions are the same for the first N
significant bits, then the difference between these two values will have
M+N bits of insignificance because of the cancellation of significant bits
during the subtraction.

For example, suppose that a single-precision application performs a
computation using two different algorithms and then takes the
difference between them to check the similarity of the results. Assume
that the true result should be 1.0 and that both actual results have up to
four bits of insignificance. If the actual results are

0x3f80001f
0x3f80003e

the magnitude of the difference is

0x36780000

However, the two values were the same for the first eighteen bits of their
fractions, which were canceled during the subtraction. This leaves six
bits in the difference, four of which are insignificant. So only two bits are
significant, and the remaining 22 bits are insignificant. (Although the
fraction field has only 23 bits, we include the fraction implicit bit in our
count.)

Figure 3-1 shows how this problem commonly manifests itself in
practice. Suppose you have two very large values:

A = 1.350107523E50
B = 1.350106321E50

If you subtract B from A, the result is

C = 0.0000001202E50

which is normalized to 1.202E44. Suppose there are already 4 digits of
insignificance in A and B. Normalizing the result from 0.0000001202E50
to 1.202E44 adds another 6 digits of insignificance. So the result has 10
digits of insignificance in all, though the operands had only 4.
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Figure 3-1 Taking the Difference of Similar Values

The modulo operation (mod(x, y)  in Fortran) is an instance of this type
of problem when x is much greater than y; remember that the modulo
formula is

mod(x, y) = x - int( x/ y) * y

(See “The Remainder Operation” on page 64 for details.) Trigonometric
and transcendental functions use an enhanced version of mod(x, pi/2)
during argument reduction. Therefore, although HP-UX math libraries
perform extremely careful and accurate argument reduction,
trigonometric functions like cos( x)  can lose significance when x is large.

Adding Values with Very Different
Magnitudes
When the system adds two floating-point values, it equalizes the
operands’ exponents before performing the calculation. It does so by
right-shifting the smaller value so as to give it the same exponent as the
larger. If the two values are very different in magnitude, this right shift
causes a major loss of precision in the smaller value, as Figure 3-2
illustrates.
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Figure 3-2 Adding Values with Very Different Magnitudes

In fact, if the difference between the exponents of two single-precision
values is 25 or greater, the smaller value is right-shifted out of existence,
and adding the two values results in no change at all in the larger value.

For example, consider a criminally minded American bank employee who
arranges to have a penny transferred to his or her own account every so
often. If the bank’s computer uses single-precision floating-point
arithmetic, and if the account starts with a balance of zero, then after
almost twenty-three million transfers, when the bank account reaches
$262,144.00, it will suddenly stop growing. Well before then, the
employee may notice irregularities due to rounding errors. After 5
million transfers, the account will have more than 5 million pennies in it;
but after 15 million transfers, it will have fewer than 14 million pennies.
The larcenous employee may become frustrated with the bank’s
computer system, but it is behaving perfectly properly. (This irregularity
is the reason why bank computers use COBOL’s fixed-point arithmetic,
not floating-point.)

The following example makes the same point more simply. It
accumulates a sum by adding 0.01 to the starting value a thousand
times, in single-precision, and then subtracting it.
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Sample Program: diffmag1.f

      PROGRAM DIFFMAG1
      REAL X
      INTEGER I

      X = 0.01
      DO 10 I = 1, 1000
        X = X + 0.01
10    CONTINUE
      PRINT *, 'X is', X
      DO 20 I = 1, 1000
        X = X - 0.01
20    CONTINUE
      PRINT *, 'X is', X
      END

The result is not exact. Instead of 10.01 and 0.01, you are likely to get
results similar to the following:

X is 10.01013
X is 9.99994E-03

The following example is even simpler. At higher magnitudes, adding 1
to a value has no effect at all.

Sample Program: diffmag2.f

      REAL BIG, SMALL, SUM, DIFF
      INTEGER I

      SMALL = 1.0

      DO I = 1, 10
        BIG = 10.0**I
        SUM = BIG + SMALL
        DIFF = ABS(BIG - SUM)

        PRINT 100, SUM, DIFF
      END DO

100   FORMAT(F14.1, F8.3)
      END

The addition of 1 stops affecting the result when the value reaches about
108:

11.0 1.000
101.0 1.000

1001.0 1.000
10001.0 1.000

100001.0 1.000
1000001.0 1.000

10000001.0 1.000
100000000.0 .000

1000000000.0 .000
10000000000.0 .000
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One way to minimize this kind of precision loss, if you can tolerate the
added execution time, is to sort the elements of an array in ascending
order before you add them together.

Unintentional Underflow
An underflow may occur when a calculation produces a result that is
smaller in magnitude than the smallest normalized value. Sometimes a
calculation can lose virtually all significance when it underflows, yielding
a denormalized value that is then used in subsequent operations.

Suppose that the minimum decimal exponent of a system is −5, and that
A is assigned the value 1.23456789E−3. Then the expression A/1.0E8
would underflow, as Figure 3-3 shows.

Figure 3-3 Unintentional Underflow

Six significant digits are lost during the division, and they cannot be
recovered by scaling the quotient back into the normalized range.

As another example, suppose the familiar form of the Pythagorean
theorem is coded as

Z = SQRT(X**2 + Y**2)

Suppose further that this expression is executed using the following
values for the single-precision variables X and Y:

X = 0.95830116E-20
Y = 0.25553963E-20

These values, when squared, produce the values 9.1834095E−41 and
6.5300508E−42 respectively, whose single-precision representations in
hexadecimal are

0000ffff
00001234
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Both of these values have only 16 bits of significance. The final result,
9.9178697E−21, is a reasonable-looking normalized number. However,
because it is produced by a calculation that once lost all but 16 bits of
significance, it can have at most 16 bits of significance itself. In fact, it
actually has considerably less.

You can find out whether your application has underflowed by using the
fetestexcept  function. Alternatively, you can use the
fesettrapenable  function or the +FP compiler option to run the
application with the underflow exception trap enabled. See “Exception
Bits” on page 130 and “Command-Line Mode Control: The +FP Compiler
Option” on page 146 for more information.

If you have a single-precision application that underflows frequently, you
can solve the problem by changing to double-precision. If a
double-precision application underflows frequently, you could migrate it
to quad-precision, but at a considerable loss of efficiency; you may want
to restructure your application instead so as to avoid underflows, if
possible.

Truncation to an Integer Value
The floor of a value is the greatest whole number less than the value.
The ceiling of a value is the smallest whole number greater than the
value.

Rounding, precision mode problems, and compiler optimizations can all
contribute to inaccurate results, but under most circumstances the
inaccuracy is very small and not noticeable. However, some operations
can magnify the inaccuracy of a calculation to the point where the result
is meaningless. This can occur in algorithms that truncate a
floating-point value to make it an integer. Truncating a positive
floating-point value, for instance, reduces its magnitude to the floor
integer, regardless of how close to the ceiling value it may be. An
expression may yield 1.999999 on one system and 2.00001 on another.
Both results may be acceptable in terms of expected rounding errors.
However, if the result is truncated to an integer, these two systems will
produce 1 and 2, respectively, which can be an unacceptable difference.

The following program provides a simple example of this situation.
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Sample Program: trunc.c

#include <stdio.h>

int main(void)
{
    double x;
    int i, n;

    x = 1.5;
    for (i = 0; i < 10; i++) {
         n = x;
         printf("x is %g, n is %d\n", x, n);
         x += 0.1;
    }
}

No matter how close the value of x  gets to 2.0, C conversion rules require
the fractional part to be truncated. Therefore, the output of the program
is as follows:

x is 1.5, n is 1
x is 1.6, n is 1
x is 1.7, n is 1
x is 1.8, n is 1
x is 1.9, n is 1
x is 2, n is 2
x is 2.1, n is 2
x is 2.2, n is 2
x is 2.3, n is 2
x is 2.4, n is 2

Many algorithms legitimately require truncation of results to integral
values. One way to avoid the kind of problem illustrated by the preceding
example is to add 0.5 to the result of a floating-point value that must be
assigned to an integer:

n = x + 0.5;

Doing this will effectively round the result to the nearest integer (if x  is
greater than or equal to 0). Another solution is to call the function rint ,
which rounds a double  value to the nearest integer:

n = rint(x);

If you use either of these solutions, the program output is

x is 1.5, n is 2
x is 1.6, n is 2
x is 1.7, n is 2
x is 1.8, n is 2
x is 1.9, n is 2
x is 2, n is 2
x is 2.1, n is 2
x is 2.2, n is 2
x is 2.3, n is 2
x is 2.4, n is 2
Chapter 3 91



Factors that Affect the Results of Floating-Point Computations
Floating-Point Coding Practices that Affect Application Results
Ill-Conditioned Computations
If relatively small changes to the input of a program or to the
intermediate results generated by a program cause relatively large
changes in the final output, the program is said to be ill-conditioned or
numerically unstable.

The following example illustrates an ill-conditioned program:

Sample Program: sloppy_tangent.f

C The following program is an example of how small
C perturbations in the argument to a function near the
C function’s singularity can cause large variations in the
C function’s result. A program may be ill-conditioned because
C of a case like this, where minor inaccuracies created during
C preliminary calculations become major inaccuracies when they
C are passed through a function at a point where the function
C has a very steep slope.

PROGRAM SLOPPY_TANGENT
DOUBLE PRECISION X

     X = 1.570796D0
      WRITE(*,*) 'TAN( X-1.0D-5 ):', TAN( X-1.0D-5 )
      WRITE(*,*) 'TAN( X ):       ', TAN( X )
      WRITE(*,*) 'TAN( X+1.0D-5 ):', TAN( X+1.0D-5 )

END

The output from this program shows how small changes in the argument
to the TAN function lead to wildly varying results:

TAN( X-1.0D-5 ): 96835.46637430933
TAN( X ): 3060023.306952844
TAN( X+1.0D-5 ): -103378.351773411

Ill-conditioned computations cause trouble not because their input
values may change, but because the seemingly innocuous rounding
errors and loss of significance can have large effects on the final results.

One way to establish that rounding errors and loss of significance are
causing a program to produce incorrect results is to run the program in
various rounding modes. (See “Rounding Mode: fegetround and
fesetround” on page 128 for information on how to change rounding
modes using the fesetround  function.) However, this technique does
not always work. In the preceding example, for instance, changing the
rounding mode has little effect on the results. However, if you do observe
that simply changing the rounding mode causes large changes in the
application results, then your application is most likely ill-conditioned.
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A better technique, which does not require you to use additional
functions or even to modify your code, is to make very small changes in
the input data and to observe the amount by which the result changes.
Wild swings in output magnitude may indicate an ill-conditioned
application.

Fixing an ill-conditioned application requires a thorough understanding
of the computations executed by the application. Chances are that the
instability is caused by very few intermediate computations—possibly by
just one. You must try to identify the location of the instability using
your knowledge of the application, of the characteristics of the math
functions called, and of the data being processed.
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HP-UX Math Libraries on HP 9000 Systems
This chapter describes what libraries are and how to use them. It also
provides detailed information about the math libraries on HP 9000
systems. It covers the following topics:

• HP-UX library basics

• Math library basics, including math library error handling

• HP-UX math library contents

• Calling C library functions from Fortran

For basic information on HP 9000 math libraries, see “Overview of
HP-UX Math Libraries” on page 24.
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HP-UX Library Basics
A library is a collection of commonly used functions, precompiled in
object format and ready to be linked to an application. Because different
programming languages have different calling conventions, there are
separate libraries for various languages. On HP-UX systems, the C and
C++ languages use one set of libraries, while the Fortran and Pascal
languages use another.

In the HP-UX environment there are two types of libraries: archive
libraries and shared libraries.

An archive library is a collection of object modules. When an
application is linked with an archive library, the linker scans the
contents of the archive library and extracts the object modules that
satisfy any unresolved references in the application. The linker copies
the archive library modules into the application’s code section.

A shared library is also a collection of object modules. However, when
the linker scans a shared library, it does not copy modules into the
application’s code section. Instead, the linker preserves information in
the application’s code section about which unresolved references were
resolved in each shared library. At run time, the loader copies the
referenced modules from the shared library into memory. If multiple
applications linked with a common shared library execute
simultaneously, they will all share (or be attached to) the same physical
copy of the library in memory (hence the name shared library). The
shared library improves the efficiency of memory use and allows smaller
application binaries.

The name of an archive library is lib name.a , and the name of a shared
library is lib name.sl . Thus the library named m (for math) can have
versions named libm.a  and libm.sl . The HP-UX system libraries are
in the directory /usr/lib .

By default, the HP-UX linker selects a shared version of a library, if one
is available. Although shared libraries save space in memory, using
shared libraries makes a program run more slowly. If your application
makes heavy use of math library functions, you may want to use archive
libraries instead of shared libraries. For more information about
performance issues related to shared and archive libraries, see “Shared
Libraries versus Archive Libraries” on page 179.
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For detailed information about archive libraries and shared libraries, see
the HP-UX Linker and Libraries Online User Guide.
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Math Library Basics
Math libraries in most computer systems, including HP-UX, are
collections of frequently used mathematical functions. The functions
take one or more arguments and return one or more results. When an
application source file contains a use of a math function, the compiler
automatically generates a call to the appropriate routine name in the
appropriate math library. For example, suppose your Fortran program
contains the following declaration and statement:

DOUBLE PRECISION A, B, Y
.
.
.

Y = A**B

The statement raises A to the power B and assigns the result to Y. The
Fortran compiler emits a call to FTN_DTOD, which is one of the functions
in libcl.a  and libcl.sl . libcl  is the Fortran and Pascal library.

Conceptually, the definition of a math library function is simple; in this
example, FTN_DTOD merely raises a DOUBLE PRECISION value to the
power of another DOUBLE PRECISION value. However, there are
practical questions about math library functions that the programmer
should consider:

1. How accurate is the result returned?

2. How efficient is the function (that is, how fast does it run)?

3. What happens when an error occurs (for example, overflow or invalid
arguments)?

4. What are the calling conventions for the function?

5. What functions are available?

The answers to questions 1 and 2 are implementation-dependent. The
answers to questions 3, 4, and 5 are determined by a variety of
programming environment specifications, such as XPG4.2.

Appendix A partially answers question 5 by listing the functions in the
HP-UX C math library. The Fortran equivalents are the intrinsic
functions; see the HP Fortran 90 Programmer’s Reference or the HP
FORTRAN/9000 Programmer’s Reference for a list of these functions.
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The following section, which describes what happens when a program
calls a math library function, provides some answers to questions 1
through 4.

Anatomy of a Math Library Function Call
Figure 4-1 shows a generalized flowchart of a math library function call,
applicable to all languages and standards. The figure and the discussion
that follows assume that the function takes one argument, but they also
apply to functions that take more than one argument.

Figure 4-1 Anatomy of a Math Library Call

Steps A through E of this process are described below.
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Step A
The compiler-generated call to a math library function includes code that

• Converts the argument to the required format, if necessary

• Places the argument in the appropriate place (that is, where the
function expects it)

• Calls the function

Step B
The function determines whether the argument is valid. All functions
check for NaN arguments and make additional checks specific to the
function. For example, a logarithmic function checks for negative or zero
arguments; an exponential function checks to see if the argument is so
large that the result would overflow. If the argument is valid, control
passes to Step C, execution of the function. If the argument is not valid,
control passes to Step D.

Step C
The execution of the function involves performing the appropriate
transformation on the argument(s). For most math functions, the result
has the same data type as the argument, which is usually
double-precision.

The execution of the function actually consists of one of many possible
paths through the function code. The nature of the argument usually
determines the path taken. For example, there may be special paths for
particular argument ranges, or there may be an argument reduction
phase. Math library implementors tune the most frequently executed
paths for optimal efficiency. Consequently, arguments that are unusual
(for example, very large or very small) can cause noticeable performance
degradation.

Step D
If an argument proves to be invalid, control passes to the error-handling
function of the library. When this happens, performance slows
considerably; usually it is 2 to 3 orders of magnitude slower than for a
valid argument. This follows from the basic assumption in math library
design that errors are rare events.
Chapter 4 101



HP-UX Math Libraries on HP 9000 Systems
Math Library Basics
If you do not supply an error-handling function in your program, a math
library call that encounters an illegal argument does some or all of the
following, depending on which programming language you are using and
which standards are being enforced:

1. Supplies a system-defined default result: NaN for invalid operations,
a huge value for overflows, and so on

2. Sets the globally accessible error code variable errno

3. Sets some state in the hardware floating-point status register

4. Prints an error message to stderr

5. Returns to the calling application, returning the default result

Your program may cause any of the above steps to be modified or stopped
and may also provide an error-handling subroutine or function to be
invoked. “Math Library Error Handling for C” on page 102 describes how
these steps are performed for the C programmer in the XPG4.2 and
SVID environments; “Math Library Error Handling for Fortran” on
page 104 describes how they are performed for the Fortran programmer.
Users of other languages should refer to the appropriate language
manual for details.

Step E
When the function exits, the compiler-generated call to the function
passes the result from where the function left it to where it is needed,
converting it to the required format if necessary.

Math Library Error Handling for C
The XPG4.2 and SVID specifications specify similar math library error
handling, so we describe them together. The XPG4.2 specification is a
superset of the ANSI C standard.

To differentiate between XPG and SVID, HP-UX in the past
implemented two separate C math libraries, libm  and libM . The SVID
libraries were libm.a  and libm.sl ; the XPG libraries were libM.a  and
libM.sl .
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Because the SVID3 and XPG4.2 standards are essentially identical,
HP-UX now supplies only one library, libm . The libM  library is now
obsolete. All versions of libM  are provided only as soft links to the
corresponding versions of libm  (see “Locations of the Math Libraries at
Release 10.30” on page 27 for details).

The flowchart in Figure 4-2 summarizes the error handling in the SVID
and XPG4.2 math libraries. We use the sqrt  function as an example.

Figure 4-2 C Math Library Error Handling for the sqrt Function

If a C library function such as sqrt  encounters an invalid argument, it
ordinarily returns a default result that indicates a failure—a result that
the function could not ordinarily return. The default result is usually a
NaN, zero, or HUGE_VAL, depending on the function and the argument
value.

In addition, some functions set the global value errno , defined in the
header file errno.h . (Many HP-UX system calls also set this value.)
When a library call fails, the value of errno  may be set to an appropriate
code, also defined by errno.h . The math library functions set errno  to
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either EDOM or to ERANGE. EDOM indicates a domain error—that is, an
error in the argument. ERANGE indicates a range error—usually an
overflow in the result.

To detect errors, an application should check both the returned value and
errno . It may set errno  to 0 (that is, no error) at the beginning of a
section of code and then examine it after one or more library calls to see
if it is nonzero. A nonzero value indicates that some sort of library error
has occurred.

For example, you could use the following C code fragment to print an
error message when a call to pow fails:

errno = 0;
x = z * pow(y, w);
if (isnan(x) || errno)
    fprintf(stderr, "error in pow function: errno = %d\n", errno);

If y  is negative and w is not an integer value, this fragment would print
out

error in pow function: errno = 33

If you look up 33 in the system include file
/usr/include/sys/errno.h , you find that it indicates a domain error
(EDOM).

NOTE C math library functions formerly used a function called matherr , which
was required by the SVID2 specification but is not specified by ANSI C,
SVID3, or XPG4.2. At HP-UX Release 10.30, this function is no longer
provided.

Math Library Error Handling for Fortran
If a Fortran intrinsic function encounters an invalid argument, it returns
a default result, just as a C function does. The default result depends on
both the function and the nature of the argument. For example, a
negative argument to the DLOG function causes it to return a NaN value.
The most generally useful method of detecting errors is for the
application to check for an anomalous result and then to take
appropriate action.
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What happens after the error depends on the following factors:

• Whether an exception trap for the error is enabled

• Whether the program contains an ON EXTERNAL ERROR statement
(HP FORTRAN/9000 only)

We discuss the possible sequences of events in the following sections. The
flowchart in Figure 4-3 summarizes HP FORTRAN/9000 math library
error handling. The flowchart in Figure 4-4 summarizes HP Fortran 90
math library error handling.

Figure 4-3 Fortran 77 Math Library Error Handling
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Figure 4-4 Fortran 90 Math Library Error Handling

Enabling Exception Traps for Invalid Operations
You can enable an exception trap for any of the five floating-point
exception conditions described in “Exception Conditions” on page 51. The
exception condition that indicates an invalid argument to a math library
function is the invalid operation condition. You can enable a trap for this
condition in any of several ways:

• By compiling with the option +FPV, which enables the invalid
operation trap

• (HP Fortran 90) By compiling with the option +fp_exception ,
which enables traps for invalid operation, overflow, underflow, and
division by zero.
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• (HP FORTRAN/9000) By compiling with the option +T, which enables
traps for invalid operation, overflow, underflow, and division by zero.
(If your program contains an ON EXTERNAL ERROR statement, you
must use this option.)

• By calling the fesettrapenable  routine with the argument
FE_INVALID , which enables the invalid operation trap

See Chapter 5 and Chapter 6 for information about all of these methods.

If you do not enable a trap for invalid operations, all that happens in the
case of an invalid argument is that the invalid operation exception flag in
the status register is set and the default result is returned. You can
retrieve the value of the exception flags by calling the fetestexcept
routine, described in “Exception Bits” on page 130.

The ON EXTERNAL ERROR Statement (HP
FORTRAN/9000 only)

NOTE HP Fortran 90 does not support the ON EXTERNAL ERROR statement,
although it does support the ON statement for other kinds of error
handling.

If you use +T to enable a trap for invalid operations, what happens next
depends on whether your program contains an ON EXTERNAL ERROR
statement. If it does not, the function merely returns the default result.

If your program contains an ON statement, you must compile with the +T
option in order to enable trap handling. If your program contains an ON
statement and you do not specify +T, you get a compile-time warning.

If your program does contain an ON statement, what happens depends on
the action you specify in the statement. You can specify any of the
following:

• ABORT. If you specify ABORT, the program exits.

• IGNORE (usually not a good idea). If you specify IGNORE, the default
result is returned.

• CALL sub (call a subroutine). If you specify CALL sub, the
user-defined trap-handling subroutine sub is called. The subroutine
must have three or four arguments (four if the function takes two
arguments); see the HP FORTRAN/9000 Programmer’s Guide for
details. If the subroutine sets the first argument to 0, the program
exits. Otherwise, the default result is returned.
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NOTE A subroutine that handles a math library error takes a different number
of arguments from a subroutine that handles an IEEE exception (as
described in “Using the ON Statement (Fortran only)” on page 155). See
the HP FORTRAN/9000 Programmer’s Guide for details.

A Program Example
The following program illustrates Fortran 77 math library error
handling. It calls DLOG with a negative argument, which is invalid.

See “Run-Time Mode Control: The fenv(5) Suite” on page 125 for
information about the fetestexcept  and fegettrapenable  routines.
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Sample Program: liberr77.f

C  HP FORTRAN/9000 only
C  Compile
C    1) As is;
C    2) With comment removed from ON EXTERNAL ERROR ABORT
C       statement, and with +T
C    3) With comment removed from ON EXTERNAL ERROR CALL MYSUB
C       statement, and with +T

      PROGRAM LIBERR77
$ALIAS FETESTEXCEPT = ‘fetestexcept’ (%val)
$ALIAS FEGETTRAPENABLE = ‘fegettrapenable’

      INTEGER FE_INEXACT, FE_UNDERFLOW, FE_OVERFLOW
      INTEGER FE_DIVBYZERO, FE_INVALID, FE_ALL_EXCEPT
      PARAMETER (FE_INEXACT = Z’08000000’)
      PARAMETER (FE_UNDERFLOW = Z’10000000’)
      PARAMETER (FE_OVERFLOW = Z’20000000’)
      PARAMETER (FE_DIVBYZERO = Z’40000000’)
      PARAMETER (FE_INVALID = Z’80000000’)
      PARAMETER (FE_ALL_EXCEPT = Z’f8000000’)
      EXTERNAL FETESTEXCEPT, FEGETTRAPENABLE
      INTEGER  FETESTEXCEPT, FEGETTRAPENABLE
      DOUBLE PRECISION X, Y
      LOGICAL TEST
      INTEGER FLAGS, TRAPS

C  Abort if a function results in an error
C      ON EXTERNAL ERROR ABORT

C  Call mysub if a function results in an error
C  Other possible action is IGNORE
C  Setting I to 0 aborts the program
C      ON EXTERNAL ERROR CALL MYSUB
      X = 1.2345D0
      X = X*1.1D0
      Y = DLOG(0.0D0-X)
      FLAGS = FETESTEXCEPT(FE_ALL_EXCEPT)
      TRAPS = FEGETTRAPENABLE()
      WRITE(*,10) Y, FLAGS, TRAPS
      TEST = FLAGS .AND. FE_INVALID
      IF (TEST) THEN
        PRINT *, ‘invalid operation occurred’
      ENDIF
 10   FORMAT(G, Z10.8, Z10.8)
      END

      SUBROUTINE MYSUB(I, A, X)
      INTEGER I
      DOUBLE PRECISION A, X
      PRINT *, ‘error no. is ‘, I
      PRINT *, ‘result is ‘, A
      PRINT *, ‘arg is ‘, X
      I = 0
      RETURN
      END
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If you compile this program with the ON statements commented out and
without the +T option, no traps are enabled. Therefore, the math library
error sets the appropriate exception flag. The output of the program is as
follows:

$ f77 liberr77.f -lm
liberr77.f:
   MAIN liberr:
   mysub:
$ a.out
NaN                        88000000  00000000
 invalid operation occurred

The exception flag value indicates that both an invalid operation and an
inexact result condition were generated. (Table 5-1 on page 127 shows
the bit values for each of these conditions.).

If you compile with +T, the exception flags that correspond to the traps
set by +T are not set after an error, and it is not useful to check them.

If you remove the comment from the ON EXTERNAL ERROR ABORT
statement and compile with +T, the invalid operation trap is enabled.
When you run the program, it exits:

$ f77 +T liberr77.f -lm
liberr77.f:
   MAIN liberr:
   mysub:
$ a.out
$

Finally, if you remove the comment from the ON EXTERNAL ERROR CALL
MYSUB statement and compile with +T, the program calls the
error-handling subroutine MYSUB before exiting:

$ f77 +T liberr77.f -lm
liberr77.f:
   MAIN liberr:
   mysub:
$ a.out

error no. is 8
result is NaN
arg is -1.35795

$

HP does not support the use of the ON statement to handle math library
errors in Fortran 90. The following is a Fortran 90 version of the
program.
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Sample Program: liberr90.f

C  Compile
C    1) As is;
C    2) With the +fp_exception option

      PROGRAM LIBERR90
!$HP$ ALIAS FETESTEXCEPT = 'fetestexcept' (%val)
!$HP$ ALIAS FEGETTRAPENABLE = 'fegettrapenable'

      PARAMETER (FE_INEXACT = Z'08000000')
      PARAMETER (FE_UNDERFLOW = Z'10000000')
      PARAMETER (FE_OVERFLOW = Z'20000000')
      PARAMETER (FE_DIVBYZERO = Z'40000000')
      PARAMETER (FE_INVALID = Z'80000000')
      PARAMETER (FE_ALL_EXCEPT = Z'f8000000')
      EXTERNAL FETESTEXCEPT, FEGETTRAPENABLE
      INTEGER  FETESTEXCEPT, FEGETTRAPENABLE
      DOUBLE PRECISION X, Y
      INTEGER FLAGS, TRAPS

      X = 1.2345D0
      X = X*1.1D0
      Y = DLOG(0.0D0-X)
      FLAGS = FETESTEXCEPT(FE_ALL_EXCEPT)
      TRAPS = FEGETTRAPENABLE()
      WRITE(*,10) Y, FLAGS, TRAPS
 10   FORMAT(G, Z10.8, Z10.8)
      END

If you compile the program as we show it, it runs as follows. Because no
traps are enabled, the function returns a NaN and sets the appropriate
exception flag.

$ f90 liberr90.f -lm
liberr90.f
   program LIBERR90

29 Lines Compiled
$ . /a.out
NaN                        88000000  00000000

If you compile the program with the +fp_exception  option, the invalid
operation trap is enabled, and the program aborts with an error
message:

$ f90 +fp_exception liberr90.f -lm
liberr90.f
program LIBERR90

15 Lines Compiled
$ ./a.out
PROGRAM ABORTED :  IEEE invalid operation

PROCEDURE TRACEBACK:
( 0)  0x00009a0c   _start + 0x64  [./a.out]
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Contents of the HP-UX Math Libraries
This section describes in some detail the contents of the math libraries.
These libraries include:

• Scalar math libraries (libm  and libcl )

• The BLAS library libblas  (provided with the HP Fortran 90 and HP
FORTRAN/9000 products only)

• The vector library libvec  (provided with the HP FORTRAN/9000
product only) (obsolete)

The math libraries run well on both PA-RISC 1.1 and PA-RISC 2.0
systems. HP does not provide PA2.0 versions of the math libraries,
although it does provide PA2.0 versions of millicode functions. See
“Millicode Versions of Math Library Functions” on page 112 for details.

Scalar Math Libraries (libm and libcl)
The scalar math libraries are implemented using the PA-RISC 1.1
instruction set. The most important functions are carefully optimized.

For even faster performance, a number of frequently used math
functions are implemented in the millicode library
(/usr/lib/milli.a ) as well as in the standard math library. See
“Millicode Versions of Math Library Functions” for details.

Millicode Versions of Math Library Functions
Several of the most frequently used math functions are implemented in
the millicode library as well as in the math library. The millicode
versions have a streamlined calling sequence and are usually faster than
their counterparts in the math library.
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Millicode versions exist for the following Fortran and C functions. They
have double-precision versions only, unless otherwise specified.

acos
asin
atan
atan2
cos       (single-precision also)
exp
log       (single-precision also)
log10
pow
sin       (single-precision also)
tan       (single-precision also)

Millicode versions exist for the following Pascal functions:

arctan
cos
exp
ln
sin

To get the millicode versions of any of these functions, compile your
program with

• Any optimization level (0 through 4)

• The +Olibcalls  or the +Oaggressive  optimization option

With the f90  and f77  compiler commands, the +Olibcalls  option is
the default at optimization level 2 and above.

The +Olibcalls  option is invoked by default when you specify the
optimization type +Oaggressive ; use +Oaggressive +Onolibcalls
if you want aggressive optimization without using millicode routines.
The millicode versions are implemented in the library
/usr/lib/milli.a .

The millicode versions of functions do not provide standard-conforming
error handling. This has different implications for different languages. In
C programs, if an error occurs, the millicode versions return the same
values as their standard library counterparts, but they do not set errno .
Because the C and Pascal standards specify error handling for library
functions, you should use millicode versions in C and Pascal programs
only if your program does not require standard-conforming error
handling. The Fortran standards do not specify error handling for math
intrinsic functions, so using the millicode versions has no effect on
standards compliance. See “Optimizing Your Program” on page 169 for
more information about optimization options.
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The C Math Library (libm)

NOTE The libM  math library is obsolete. See “Overview of HP-UX Math
Libraries” on page 24 for details.

The C math library, libm , also supports

• float  versions of many mathematical functions

• Degree-valued trigonometric functions

• A group of functions and macros recommended by the IEEE standard
(see Table 2-12 on page 65), including floating-point classification
macros, and some additional classification macros approved by the
ISO/ANSI C committee for inclusion in the C9X draft standard

• A group of functions required by the COSE Common API
Specification (Spec 1170) and by the XPG4.2 specification

• The fenv(5) suite, a collection of functions (approved by the ISO/ANSI
C committee for inclusion in the C9X draft standard) that allow an
application to manipulate the floating-point status register

All of these functions are defined in math.h . However, all of these
functions are outside the ANSI C specification, and many of them are
outside the XPG4.2 specification. If you compile in strict ANSI mode
(with the -Aa  option), only the declarations of functions specified by the
ANSI C standard are ordinarily visible to your program. Therefore, to
make the additional functions visible, do one of the following:

• Compile with the extended ANSI option -Ae , which makes both ANSI
and non-ANSI function declarations visible. This option is the
default, so you need not specify it explicitly:

cc program_name.c -lm

• If your program does not use ANSI C features, compile in
compatibility mode (with the -Ac  option), which also makes both
ANSI and non-ANSI function declarations visible:

cc -Ac program_name.c -lm

Do not use this option to compile programs that call float  type math
functions, because they depend on ANSI C features. See “float Type
Math Functions” on page 115.
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• Compile with the basic ANSI option -Aa  and use the -D  option to
define the macro _HPUX_SOURCE on the command line. If this macro
is defined, all the function declarations are visible. (If you compile
with -Ae  or -Ac , this macro is defined automatically.)

cc -Aa -D_HPUX_SOURCE program_name.c -lm

NOTE To compile C++ programs that call nonstandard math library functions,
use the +a1  option.

For a complete list of the contents of libm , see Appendix A. The
functions are described in online man pages.

float Type Math Functions
Certain libm  math functions are implemented as single-precision
functions, accepting float  arguments and returning a float  result. On
HP 9000 systems, the performance of single-precision and
double-precision functions is similar. If your application uses
single-precision data types heavily, you may find it convenient to use the
float  versions of the math functions the application calls.

The names of the float  functions are the same as those of their
double-precision counterparts but with the letter f  appended. (For
float  versions of degree-valued trigonometric functions, the f  follows
the d.) This naming convention accords with that specified in Section
4.13 of the ANSI C standard, “Future Library Directions.”

The supplied functions are as follows:

• cosf , sinf , tanf , cosdf , sindf , tandf

• acosf , asinf , atanf , atan2f , acosdf , asindf , atandf , atan2df

• coshf , sinhf , tanhf

• expf , fabsf , fmodf , logf , log10f , log2f , powf , sqrtf , cbrtf

• copysignf

You must compile in ANSI mode (with -Ae , the default, or with -Aa
-D_HPUX_SOURCE) to use these functions. If you compile in ANSI mode,
ANSI C rules are followed, and the argument is treated as a float
throughout the function call. If you do not compile in ANSI mode,
traditional K&R C rules are followed, the compiler generates code to
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promote the argument to double , and the function call either generates
a linker error or produces incorrect results. Therefore, use a command
line like the following:

cc program_name.c -lm

CC +a1 program_name.C -lm

Degree-Valued Trigonometric Functions
The Fortran math library defines a set of trigonometric functions whose
arguments or results are specified in degrees rather than radians. These
functions are also implemented in libm . The names of these functions
are the same as the names of the standard versions but with the letter d
appended: sind , cosd , and so on. (For float  versions of degree-valued
trigonometric functions, the f  follows the d.)

To use these functions, compile them in any mode except strict ANSI
mode (-Aa ). Use either extended ANSI mode (-Ae , the default),
non-ANSI mode (-Ac ), or -Aa -D_HPUX_SOURCE.

Floating-Point Classification Macros
The fpclassify  macro is the HP version of the class  function
recommended by the IEEE standard. The ANSI/ISO C committee has
also approved this macro for inclusion in the C9X standard. The
fpclassify  macro accepts either a double  or a float  argument. It
returns an integer value that describes the class of the argument—that
is, what kind of floating-point value it is. Table 4-1 shows the values and
their meanings, which are defined in math.h .

Table 4-1 fpclassify Values

Class Name of Macro

Normalized FP_NORMAL

Zero FP_ZERO

Infinity FP_INFINITE

Denormalized FP_SUBNORMAL

NaN FP_NAN
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The list of classes is exhaustive: all IEEE floating-point values fall into
one of these classes. The fpclassify  macro never causes an exception,
regardless of the operand. It is useful, therefore, for classifying an
operand without risking an exception trap.

Use the signbit  macro to determine whether a value is negative or
positive.

To use the fpclassify  macro, compile your program in any mode
except strict ANSI mode (-Aa ). Use either extended ANSI mode (-Ae , the
default), non-ANSI mode (-Ac ), or -Aa -D_HPUX_SOURCE.

The following C function shows how you might use fpclassify  and
signbit  to display the class and value of a double-precision number:

Sample Function: print_class.c

#include <math.h>
#include <stdio.h>

typedef union {
  double y;
  struct {
     unsigned int ym, yl;
  } i;
} DBL_INT;

void print_classd(DBL_INT di)
{
    int class, sign;
    char *posneg[] = {"positive", "negative"};

    class = fpclassify(di.y);
    sign = signbit(di.y);

    if (class == FP_NORMAL)
        printf("%19.17g is %s normalized (%08x%08x)\n", di.y,
               posneg[sign], di.i.ym, di.i.yl);
    else if (class == FP_ZERO)
        printf("%19.17g is %s zero (%08x%08x)\n", di.y,
               posneg[sign], di.i.ym, di.i.yl);
    else if (class == FP_INFINITE)
        printf("%19.17g is %s infinity (%08x%08x)\n", di.y,
               posneg[sign], di.i.ym, di.i.yl);
    else if (class == FP_SUBNORMAL)
        printf("%19.17g is %s denormalized (%08x%08x)\n", di.y,
               posneg[sign], di.i.ym, di.i.yl);
    else if (class == FP_NAN)
        printf("%19.17g is NaN (%08x%08x), sign bit is %d\n",
               di.y, di.i.ym, di.i.yl, sign);
}
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Other macros that test the class of a floating-point value are

• isinf , which tests whether a value is an infinity

• isnan , which tests whether a value is a NaN

• isfinite , which tests whether a value is neither infinity nor NaN

• isnormal , which tests whether a value is normalized

See the online man pages for information about these macros.

COSE Common API Functions
The C math library provides several functions that are not specified by
the ANSI C standard but that are required by the COSE Common API
Specification (Spec 1170) and the XPG4.2 specification. These functions
are

acosh( x) Returns inverse hyperbolic cosine of x

asinh( x) Returns inverse hyperbolic sine of x

atanh( x) Returns inverse hyperbolic tangent of
x

cbrt( x) Returns cube root of x

expm1( x) Returns  exp(x) - 1

ilogb( x) Returns the integer form of the
binary exponent of the floating-point
value x

log1p( x) Returns log(1 + x)

logb( x) Returns the exponent of x as an
integer-valued double-precision
number

nextafter( x, y) Returns the next representable
neighbor of x in the direction of y

remainder( x, y) Returns exact floating-point
remainder as defined by IEEE
standard
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rint( x) Rounds x to integer-valued
double-precision number, in the
direction of the current rounding
mode

scalb( x, n) Returns x*(2**n), computed
efficiently

To use these functions, compile your program in any mode except strict
ANSI mode (-Aa ). Use either extended ANSI mode (-Ae , the default),
non-ANSI mode (-Ac ), or -Aa -D_HPUX_SOURCE.

The fenv(5) Suite
The fenv(5) suite is a collection of functions in the C math library that
allow an application to manipulate various modifiable control modes and
status flags in the floating-point status register. Most of the functions in
the fenv(5) suite have been approved by the ISO/ANSI C committee for
inclusion in the C9X draft standard.

For details on how to use these functions, see Chapter 5 and the online
man pages. The tables in Appendix A also list all of the functions.

The BLAS Library (libblas)
The Basic Linear Algebra Subroutine (BLAS) library routines perform
low-level vector and matrix operations. They have been tuned for
maximum performance.

The BLAS library is provided with the HP Fortran 90 and HP
FORTRAN/9000 products only, but the routines in this library are
callable from other languages than Fortran.

To call BLAS library routines, use the -l  compile-line option to link in
the libblas  library. For example, the following command line links a
Fortran program with the BLAS library:

f90 prog.f -lblas

To link with the library from C, you must also specify the library path
name on the command line.

For more information about the BLAS library routines, see “Matrix
Operations” on page 183 and the HP Fortran 90 Programmer’s Reference
or the HP FORTRAN/9000 Programmer’s Reference. In addition, online
man pages for these routines are available.
Chapter 4 119



HP-UX Math Libraries on HP 9000 Systems
Contents of the HP-UX Math Libraries
NOTE To obtain the man pages for the BLAS library, you must have
/opt/fortran90/share/man  in your MANPATH (or
/opt/fortran/share/man ). Type man blas  for an overview.

The Vector Library (libvec) (Obsolete)
The vector library (provided with the HP FORTRAN/9000 product
only) performs vector and matrix operations.

NOTE This library is obsolete. It was formerly used by the FORTRAN
Optimizing Preprocessor (FTNOPP). The performance benefits provided
by FTNOPP are now supplied by the compiler when you use the
+Ovectorize  option with either C or Fortran programs at optimization
level 3 or above. (See “Optimizing Your Program” on page 169 for
details.) The vector library is provided for compatibility reasons only, in
/opt/fortran/old/lib/libvec.a .

For more information about the libvec  routines, see the HP
FORTRAN/9000 Programmer’s Reference.
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Calling C Library Functions from
Fortran
To call a C math library function from a Fortran program, you must do
the following:

1. Use an !$HP$ ALIAS  directive (Fortran 90) or an $ALIAS
(FORTRAN 77) directive to tell the compiler that the function’s
arguments are passed by value.

2. Declare the function with the correct return value. See the online
reference pages, Appendix A, or /usr/include/math.h  to find the
return value.

3. Link in the C math library (libm ).

For example, the following Fortran program calls j0 , one of the Bessel
functions in the C math library:

Sample Program: bessel.f

C  $HP$ ALIAS directive tells the compiler to use C language
C    argument-passing conventions (Fortran 90)
C  $ALIAS is f77 version
C  Program declares j0() DOUBLE PRECISION

!$HP$ ALIAS J0 = 'j0'(%VAL)
C $ALIAS J0 = 'j0'(%VAL)
       PROGRAM BESSEL
       DOUBLE PRECISION A, B, J0

       A = 1.0
       B = J0(A)

       WRITE(*,*) "Bessel of", A, " is", B
       END

The %val  argument indicates that the argument is passed by value. For
details on the !$HP$ ALIAS  and $ALIAS  directives, see the HP Fortran
90 Programmer’s Reference or the HP FORTRAN/9000 Programmer’s
Guide.
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You can compile and run the program as follows:

$ f90 bessel.f -lm
bessel.f
   program BESSEL

16 Lines Compiled
$ ./a.out
Bessel of 1.0 is .7651976865579666
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Manipulating the Floating-Point Status Register
The floating-point status register (also known as the floating-point
control register) stores information about several aspects of the
floating-point environment:

• The rounding mode

• What traps are enabled—that is, what exceptions your program can
catch

• If traps are not enabled, what exceptions have occurred

• Whether flush-to-zero underflow mode is set (for systems that have
this capability)

• The model and revision of the system’s floating-point unit (FPU)
(also called the floating-point coprocessor)

HP-UX systems provide facilities that allow you to manipulate the status
register. The fenv(5) suite, a group of C math library functions, allows
you to retrieve any of this information or to modify the environment. The
+FP compiler option allows you to specify on the command line the traps
to enable for a particular program and the underflow mode.
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Run-Time Mode Control: The fenv(5)
Suite
This section describes the fenv(5) suite of functions, a collection of
services provided in the C math library that allow an application to
manipulate several modifiable control mode and status flags in the
floating-point status register. These functions and their associated
parameter types are declared in the header file /usr/include/fenv.h .

NOTE The fenv(5) suite replaces the fpgetround(3M) suite of functions.

You can call these functions from Fortran programs.  See “A Program
Example” on page 108 for examples.

The fenv(5) suite contains the following functions:

• fegetenv  and fesetenv , which retrieve and set the floating-point
environment

• feholdexcept  and feupdateenv , which can be used to hide
spurious exceptions

• fegetexceptflag  and fesetexceptflag , which retrieve and set
the accrued exception flags

• feraiseexcept , fetestexcept , and feclearexcept , which raise,
test, and clear exceptions

• fegetround  and fesetround , which retrieve and set the rounding
mode

• fegettrapenable  and fesettrapenable , which retrieve and set
the exception trap enable bits

• fegetflushtozero  and fesetflushtozero , which retrieve and
set the underflow mode

All of these functions except the last four (fegettrapenable ,
fesettrapenable , fegetflushtozero , and fesetflushtozero )
have been approved by the ANSI/ISO C committee for inclusion in the
C9X standard.
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NOTE Be careful if you use these functions at higher optimization levels (2 and
above). Optimization may change the order of operations in a program,
so that a call to one of these functions may be placed after an operation
you want the function to affect, or before an operation whose result you
want the function to check. These functions will then produce
unexpected results. (If it is possible to isolate the part or parts of your
program that call these functions, you could place them in a separate
module and compile it at a lower optimization level than the rest of the
program. You may also use the FLOAT_TRAPS_ON pragma to suppress
optimization for part of your program.)

The PA-RISC Floating-Point Status Register
The PA-RISC floating-point status register is fr0L , the left half of fr0 .

Figure 5-1 shows the structure and contents of fr0L . Fields marked Res
are reserved for future use.

Figure 5-1 PA-RISC Floating-Point Status Register (fr0L)

PA-RISC 2.0 Architecture and the PA-RISC 1.1 Architecture and
Instruction Set Reference Manual describe the contents of fr0L  in detail.
The fields manipulated by the fenv(5) functions are as follows:

Flags Exception flags. A flag bit is associated with each
IEEE exception. If the corresponding enable bit is not
set, the floating-point unit sets an exception flag to 1
when the corresponding exception occurs, but does not
cause a trap. Table 5-1 shows the bit names and the
corresponding exceptions. The functions
fegetexceptflag  and fesetexceptflag
manipulate these flags.
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Table 5-1 IEEE Exception Bits

Enables Exception trap enable bits. An enable bit is
associated with each IEEE exception. When an enable
bit equals 1, the corresponding trap is enabled. When
an enable bit equals 0, the corresponding IEEE
exception sets the corresponding flag to 1 instead of
causing a trap. The functions fegettrapenable  and
fegettrapenable  manipulate these bits.

RM Rounding mode for all floating-point operations. The
values corresponding to each rounding mode are shown
in Table 5-2. Note that these values are similar but not
identical to the values used by the fegetround  and
fesetround  functions (see “Rounding Mode:
fegetround and fesetround” on page 128). The functions
fegetround  and fesetround  manipulate these bits.

Table 5-2 Rounding Modes

Bit
Name Description

V Invalid operation

Z Division by zero

O Overflow

U Underflow

I Inexact result

Rounding
Mode Description

0 Round to nearest

1 Round toward zero

2 Round toward +infinity

3 Round toward −infinity
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D The D bit. When this bit is set to 1, flush-to-zero
underflow mode is enabled (see “Underflow Mode:
fegetflushtozero and fesetflushtozero” on page 143).
The functions fegetflushtozero  and
fesetflushtozero  manipulate this bit.

The fields not manipulated by the fenv(5) functions are as follows:

C The Compare bit.

Res Reserved for future use.

Model,
Revision The Model and Revision fields contain values that

correspond to various implementations of HP 9000
floating-point coprocessors.

T The Delayed Trap bit.

Rounding Mode: fegetround and fesetround
The functions fegetround  and fesetround  allow you to retrieve or
change the rounding mode for floating-point operations. The declarations
for these functions are as follows:

int fegetround(void);

int fesetround(int round);

The value returned by fegetround  and the argument of fesetround
match one of the rounding direction macros defined in fenv.h . The
rounding direction macros are as follows:

FE_TONEAREST Round to nearest

FE_TOWARDZERO Round toward zero

FE_UPWARD Round toward positive infinity

FE_DOWNWARD Round toward negative infinity

The fegetround  function returns the current rounding mode. By
default, the rounding mode is FE_TONEAREST.

The fesetround  function sets the rounding mode to the specified value.
It returns a nonzero value if and only if the argument matches a
rounding direction macro.
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The following C program uses fesetround  and fegetround  to show
how the rounding mode affects the result of an overflow (see Table 2-11
on page 55).

Sample Program: fe_round.c

/*************************************************************/
#include <stdio.h>
#include <fenv.h>

int main(void)
{
  int save_rnd, rnd;
  double x, y, z;

  save_rnd = fegetround();
  if (save_rnd == FE_TONEAREST)
    printf("rounding direction is FE_TONEAREST\n");
  else
    printf("unexpected rounding direction\n");

  x = 1.79e308;
  y = 2.2e-308;
  z = x / y;                      /* overflow */
  printf("%g / %g = %g\n", x, y, z);

  x = -1.79e308;
  y = 2.2e-308;
  z = x / y;             /* negative overflow */
  printf("%g / %g = %g\n", x, y, z);

  fesetround(FE_TOWARDZERO);
  rnd = fegetround();
  if (rnd == FE_TOWARDZERO)
    printf("rounding direction is FE_TOWARDZERO\n");
  else
    printf("unexpected rounding direction\n");

  x = 1.79e308;
  y = 2.2e-308;
  z = x / y;                      /* overflow */
  printf("%g / %g = %g\n", x, y, z);

  fesetround(FE_UPWARD);
  rnd = fegetround();
  if (rnd == FE_UPWARD)
    printf("rounding direction is FE_UPWARD\n");
  else
    printf("unexpected rounding direction\n");
                                                /* continued */
/*************************************************************/
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Sample Program: fe_round.c (cont.)

/*************************************************************/
  x = -1.79e308;
  y = 2.2e-308;
  z = x / y;             /* negative overflow */
  printf("%g / %g = %g\n", x, y, z);

/* return to round-to-nearest */
  fesetround(save_rnd);
  rnd = fegetround();
  if (rnd == FE_TONEAREST)
    printf("rounding direction is FE_TONEAREST\n");
  else
    printf("unexpected rounding direction\n");
}
/*************************************************************/

If you compile and run this program, it produces the following output:

$ cc fe_round.c -lm
$ ./a.out
rounding direction is FE_TONEAREST
1.79e+308 / 2.2e-308 = inf
-1.79e+308 / 2.2e-308 = -inf
rounding direction is FE_TOWARDZERO
1.79e+308 / 2.2e-308 = 1.79769e+308
rounding direction is FE_UPWARD
-1.79e+308 / 2.2e-308 = -1.79769e+308
rounding direction is FE_TONEAREST

See “IEEE Rounding Modes” on page 52 for more information about
rounding modes on HP 9000 systems.

Exception Bits
The IEEE-754 standard specifies five floating-point exceptions:
divide-by-zero, overflow, underflow, inexact result, and invalid operation.
If one of these five exceptions occurs and the corresponding exception
trap enable bit is set to 1, the trap takes place, and a SIGFPE signal is
generated. If an exception occurs and the exception trap enable bit is set
to 0, the corresponding exception flag is set to 1 and no trap takes
place. The exception trap enable bits are sometimes called mask bits;
the exception flags are sometimes called sticky bits. The term sticky
follows from the fact that once an exception flag is set by a disabled
exception, it remains set for the life of the process unless it is cleared by
the application (for example, by a call to fesetexceptflag  or
feclearexcept ).
130 Chapter 5



Manipulating the Floating-Point Status Register
Run-Time Mode Control: The fenv(5) Suite
The C library supplies a group of functions, all approved for inclusion in
the C9X draft standard, to manipulate the exception flags. The library
also supplies two functions, not approved for the C9X draft standard and
specific to HP, to manipulate the exception trap enable bits. The
following subsections discuss these groups of functions.

The functions use the following exception macros, defined in fenv.h , for
the exception flags and the exception trap enable bits:

FE_INEXACT Inexact result

FE_UNDERFLOW Underflow

FE_OVERFLOW Overflow

FE_DIVBYZERO Divide by zero

FE_INVALID Invalid operation

FE_ALL_EXCEPT All exceptions

For details about using these functions to detect and handle
floating-point exceptions, see “Using the fesettrapenable Function” on
page 152 and “Detecting Exceptions without Enabling Traps” on
page 162.

Manipulating the Exception Flags: fegetexceptflag,
fesetexceptflag, fetestexcept, feraiseexcept,
feclearexcept
The functions fegetexceptflag  and fetestexcept  save and restore
the current settings of the exception flags. The fesetexceptflag
function sets the flags to a previously saved state. The feraiseexcept
function raises exceptions, and the feclearexcept  function clears the
exception flags.

The C declarations for these functions are as follows:

void fegetexceptflag(fexcept_t * flagp, int excepts);

void fesetexceptflag(const fexcept_t * flagp, int excepts);

int fetestexcept(int excepts);

void feraiseexcept(int excepts);

void feclearexcept(int excepts);

The fegetexceptflag  function stores the desired exception flags (as
indicated by the argument excepts, which can be any bitwise OR of the
exception macros) in the object pointed to by the argument flagp.
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The fesetexceptflag  function sets the status for the exception flags
indicated by the argument excepts according to the representation in the
object pointed to by flagp. Use it to reset the exception flags to a
previously saved state.

The fetestexcept  function determines which of a specified subset of
the exception flags are currently set.

The feraiseexcept  function raises the exceptions represented by its
argument (and causes traps if the corresponding traps are enabled). It
allows you to raise exceptions directly without having to write operations
in your program that generate an exception.

The feclearexcept  function clears the exception flags represented by
its argument.

The following program uses all these functions. First it calls
fegetexceptflag  to retrieve the initial settings of the exception flags.
Then it calls feraiseexcept  to raise a couple of exceptions, and calls
fetestexcept  to verify that the flags are set correctly. Then it calls
feclearexcept  to clear the accumulated flags, and after another call to
fetestexcept  it calls feraiseexcept  again to set the underflow
exception. The next call to fetestexcept  shows that, as with basic
operations, raising the underflow exception also raises the inexact
exception on HP systems. Finally, the program calls fesetexceptflag
to restore the initial state of the exception flags.

Sample Program: fe_flags.c

/*************************************************************/
#include <stdio.h>
#include <fenv.h>

int main(void)
{
  fexcept_t flags;
  int excepts;
  void print_flags(int);

  fegetexceptflag(&flags, FE_ALL_EXCEPT);
  printf("at start:\n");
  print_flags(flags);

  /* raise divide-by-zero exception */
  feraiseexcept(FE_DIVBYZERO);
  excepts = fetestexcept(FE_DIVBYZERO | FE_INEXACT);
  printf("after raising divide-by-zero exception:\n");
  print_flags(excepts);
                                                /* continued */
/*************************************************************/
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Sample Program: fe_flags.c (cont.)

/*************************************************************/
  /* raise divide-by-zero exception */
  feraiseexcept(FE_DIVBYZERO);
  excepts = fetestexcept(FE_DIVBYZERO | FE_INEXACT);
  printf("after raising divide-by-zero exception:\n");
  print_flags(excepts);

  /* raise inexact exception */
  feraiseexcept(FE_INEXACT);
  excepts = fetestexcept(FE_DIVBYZERO | FE_INEXACT);
  printf("after raising inexact exception:\n");
  print_flags(excepts);

  /* clear exceptions, retrieve new setting */
  feclearexcept(FE_ALL_EXCEPT);
  excepts = fetestexcept(FE_ALL_EXCEPT);
  printf("after clearing exceptions:\n");
  print_flags(excepts);

  /* raise underflow exception; inexact also set */
  feraiseexcept(FE_UNDERFLOW);
  excepts = fetestexcept(FE_ALL_EXCEPT);
  printf("after raising underflow exception:\n");
  print_flags(excepts);

  /* restore original state of flags */
  fesetexceptflag(&flags, FE_ALL_EXCEPT);
  printf("after fesetexceptflag:\n");
  excepts = fetestexcept(FE_ALL_EXCEPT);
  print_flags(excepts);
}

void print_flags(int flags)
{
  if (flags & FE_INEXACT)
    printf(" inexact result occurred\n");
  if (flags & FE_UNDERFLOW)
    printf(" underflow occurred\n");
  if (flags & FE_OVERFLOW)
    printf(" overflow occurred\n");
  if (flags & FE_DIVBYZERO)
    printf(" division by zero occurred\n");
  if (flags & FE_INVALID)
    printf(" invalid operation occurred\n");

  if (!(flags & FE_ALL_EXCEPT))
    printf(" no exceptions are set\n");
}
/*************************************************************/
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If you run this program, it generates the following output:

$ cc fe_flags.c -lm
$ ./a.out
at start:
 no exceptions are set
after raising divide-by-zero exception:
 division by zero occurred
after raising inexact exception:
 inexact result occurred
 division by zero occurred
after clearing exceptions:
 no exceptions are set
after raising underflow exception:
 inexact result occurred
 underflow occurred
after fesetexceptflag:
 no exceptions are set

Manipulating the Exception Trap Enable Bits:
fegettrapenable and fesettrapenable
The fegettrapenable  function retrieves the current setting of the
exception trap enable bits. The fesettrapenable  function sets the trap
enable bits.

The C declarations for these functions are as follows:

int fegettrapenable(void);

void fesettrapenable(int excepts);

The fegettrapenable  function returns the bitwise OR of the exception
macros corresponding to the currently set exception trap enable bits.

The fesettrapenable  function sets the exception trap enable bits
indicated by the argument excepts, which is a bitwise OR of the exception
macros corresponding to the desired exception trap enable bits. The
function also clears the trap enable bits for any exceptions not indicated
by the argument excepts.

The following program calls these functions.
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Sample Program: fe_traps.c

/*************************************************************/
#include <stdio.h>
#include <fenv.h>
#include <signal.h>

int traps;
fexcept_t flags;

/* trap handler for floating-point exceptions */
void handle_sigfpe(int sig)
{
  void print_flags(int);
  void print_traps(int);

  printf("Raised signal %d -- floating point error\n", sig);
  print_traps(traps);
  print_flags(flags);
  exit(-1);
}

int main(void)
{
  void print_flags(int);
  void print_traps(int);
  struct sigaction act;

  /* establish the trap handler */
  act.sa_handler = &handle_sigfpe;
  sigaction(SIGFPE, &act, NULL);

  /* retrieve initial settings of flags and traps */
  traps = fegettrapenable();
  fegetexceptflag(&flags, FE_ALL_EXCEPT);
  printf("at start:\n");
  print_traps(traps);
  print_flags(flags);

  /* set a trap for the divide by zero exception */
  fesettrapenable(FE_DIVBYZERO);
  traps = fegettrapenable();
  printf("after fesettrapenable(FE_DIVBYZERO):\n");
  print_traps(traps);

  /* raise divide by zero exception with trap enabled;
     trap handler is called */
  printf("raising division by zero exception now\n");
  feraiseexcept(FE_DIVBYZERO);
}                                               /* continued */
/*************************************************************/
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Sample Program: fe_traps.c (cont.)

/*************************************************************/
void print_flags(int flags)
{
  if (flags & FE_INEXACT)
    printf(" inexact result flag set\n");
  if (flags & FE_UNDERFLOW)
    printf(" underflow flag set\n");
  if (flags & FE_OVERFLOW)
    printf(" overflow flag set\n");
  if (flags & FE_DIVBYZERO)
    printf(" division by zero flag set\n");
  if (flags & FE_INVALID)
    printf(" invalid operation flag set\n");

  if (!(flags & FE_ALL_EXCEPT))
    printf(" no exception flags are set\n");
}

void print_traps(int traps)
{
  if (traps & FE_INEXACT)
    printf(" inexact result trap enabled\n");
  if (traps & FE_UNDERFLOW)
    printf(" underflow trap enabled\n");
  if (traps & FE_OVERFLOW)
    printf(" overflow trap enabled\n");
  if (traps & FE_DIVBYZERO)
    printf(" division by zero trap enabled\n");
  if (traps & FE_INVALID)
    printf(" invalid operation trap enabled\n");

  if (!(traps & FE_ALL_EXCEPT))
    printf(" no traps are enabled\n");
}
/*************************************************************/

If you run this program, it produces the following output:

$ cc fe_traps.c -lm
$ ./a.out
at start:
 no traps are enabled
 no exception flags are set
after fesettrapenable(FE_DIVBYZERO):
 division by zero trap enabled
raising division by zero exception now
Raised signal 8 -- floating point error
 division by zero trap enabled
 no exception flags are set
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Manipulating the Floating-Point
Environment: fegetenv, fesetenv, feupdateenv,
feholdexcept
The fenv(5) suite includes a group of functions that allow you to manage
the floating-point environment as a whole. The declarations for these
functions are as follows.

void fegetenv(fenv_t * envp);

void fesetenv(const fenv_t * envp);

void feupdateenv(const fenv_t * envp);

int feholdexcept(fenv_t * envp);

All these functions take as argument a value representing the
floating-point environment. On HP-UX systems, this value is that of the
floating-point status register.

The fegetenv  function stores the current floating-point environment in
the object pointed to by envp.

The fesetenv  function establishes the floating-point environment
represented by the object pointed to by envp. The argument envp must
point to an object set by a call to fegetenv  or feholdexcept , or equal
the macro FE_DFL_ENV.

The feupdateenv  function saves the current exceptions in its automatic
storage, installs the floating-point environment represented through
envp, and then raises the saved exceptions. The argument envp must
point to an object set by a call to fegetenv  or feholdexcept , or equal
the macro FE_DFL_ENV.

The feholdexcept  function function saves the current floating-point
environment in the object pointed to by envp, clears the exception flags,
and disables all traps.

The functions can be used together to save and restore the floating-point
environment at different parts of your program and in different ways, so
that you can control whether selected exceptions are hidden from calling
routines. For example, you can call feholdexcept  to store the
floating-point environment temporarily and start afresh with no flags or
traps set. Later on, you can use either fesetenv  or feupdateenv  to
restore the saved environment, or save and update it. A call to fesetenv
does not raise any saved exceptions, however, whereas a call to
feupdateenv  does raise the exceptions.
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The following program shows the use of all these functions except
feupdateenv .

Sample Program: fe_env.c

/*************************************************************/
#include <stdio.h>
#include <fenv.h>

int main(void)
{
  double x, y, z;
  fenv_t env, holdenv;
  int set_excepts;
  fexcept_t flags;
  char c = ' ';
  void print_flags(int);

  fegetenv(&env);
  printf("at start, env is %08x\n", env);

  do {
    printf("\nEnter x and y: ");
    scanf("%lf %lf", &x, &y);
    printf("x and y are %g and %g\n", x, y);

    z = x/y;       /* perform calculations */

    set_excepts = fetestexcept(FE_ALL_EXCEPT);
    print_flags(set_excepts);
    printf("result is %g\n", z);
    printf("again? (y or n) ");
    fflush(stdin);
    scanf("%c", &c);
  } while (c != 'n');

  printf("enabling trap for inexact\n");
  fesettrapenable(FE_INEXACT);

  fegetenv(&env);
  printf("after calculations and enabling inexact trap, \
env is %08x\n", env);

  printf("saving environment\n");
                                                /* continued */
/*************************************************************/
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Sample Program: fe_env.c (cont.)

/*************************************************************/
  feholdexcept(&holdenv);

  do {
    printf("\nEnter x and y: ");
    scanf("%lf %lf", &x, &y);
    printf("x and y are %g and %g\n", x, y);

    z = x/y;       /* perform calculations */

    set_excepts = fetestexcept(FE_ALL_EXCEPT);
    print_flags(set_excepts);
    printf("result is %g\n", z);
    printf("again? (y or n) ");
    fflush(stdin);
    scanf("%c", &c);
  } while (c != 'n');

  fegetenv(&env);
  printf("after more calculations, env is %08x\n", env);

  printf("resetting env to saved version\n");
  fesetenv(&holdenv);
  set_excepts = fetestexcept(FE_ALL_EXCEPT);
  print_flags(set_excepts);

  fegetenv(&env);
  printf("env is %08x\n", env);

  feclearexcept(FE_UNDERFLOW | FE_INEXACT);
  fegetenv(&env);
  printf("after feclearexcept(FE_UNDERFLOW | FE_INEXACT), \
env is %08x\n", env);
  set_excepts = fetestexcept(FE_ALL_EXCEPT);
  print_flags(set_excepts);

  fesetenv(FE_DFL_ENV);
  fegetenv(&env);
  printf("after fesetenv(FE_DFL_ENV), env is %08x\n", env);
}

void print_flags(int flags)
{
  if (flags & FE_INEXACT)
    printf(" inexact result occurred\n");
  if (flags & FE_UNDERFLOW)
    printf(" underflow occurred\n");
  if (flags & FE_OVERFLOW)
    printf(" overflow occurred\n");
  if (flags & FE_DIVBYZERO)
    printf(" division by zero occurred\n");
  if (flags & FE_INVALID)
    printf(" invalid operation occurred\n");

  if (!(flags & FE_ALL_EXCEPT))
    printf(" no exceptions are set\n");
}
/*************************************************************/
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If you compile and run this program, the call to fesetenv  restores the
environment without raising the inexact exception, so the inexact trap is
not taken even though it is set.

$ fe_env
at start, env is 000b0800
Enter x and y: 1.0e308 1.0e-308
x and y are 1e+308 and 1e-308
 inexact result occurred
 overflow occurred
result is inf
again? (y or n) n
setting trap for inexact
after calculations, env is 280b0801
saving environment
Enter x and y: 1.0e-308 1.0e308
x and y are 1e-308 and 1e+308
 inexact result occurred
 underflow occurred
result is 0
again? (y or n) n
after more calculations, env is 1c0b0800
resetting env to saved version
 inexact result occurred
 overflow occurred
env is 2c0b0801
after feclearexcept(FE_UNDERFLOW | FE_INEXACT), env is 240b0801
 overflow occurred
after fesetenv(FE_DFL_ENV), env is 040b0800

The following program illustrates the use of the feupdateenv
function.This program computes a sum of squares. Some of the
intermediate computations may underflow, but only if the final result
underflows or overflows do we want to raise an exception. Therefore,
after setting traps for underflow and overflow exceptions, the program
calls feholdexcept  to save the previously accumulated exceptions.
After performing the intermediate computations, it clears any underflow
or inexact exceptions, then calls feupdateenv  to merge the current
exceptions with the previously accumulated ones.
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Sample Program: fe_update.c

/*************************************************************/
#include <stdio.h>
#include <values.h>
#include <fenv.h>

#define ARRLEN 11

static double argarr[ARRLEN] = { -1.73205, -0.57735,
                                 0.0174551, 0.57735, 1.0, 1.73205,
                                 2.0, -1.22465e-244,
                                 -2.44929e-207, -1.0 };

int main(void)
{
  double x, y, z;
  fenv_t env, holdenv;
  int set_excepts, i;
  fexcept_t flags;
  char c = ' ';
  void print_flags(int);

  fegetenv(&env);
  printf("at start, env is %08x\n", env);

  do {
    printf("\nEnter x and y: ");
    scanf("%lf %lf", &x, &y);
    printf("x and y are %g and %g\n", x, y);

    z = x/y;       /* perform calculations */

    set_excepts = fetestexcept(FE_ALL_EXCEPT);
    print_flags(set_excepts);
    printf("result is %g\n", z);
    printf("again? (y or n) ");
    fflush(stdin);
    scanf("%c", &c);
  } while (c != 'n');

  printf("setting traps for overflow and underflow\n");
  fesettrapenable(FE_OVERFLOW | FE_UNDERFLOW);

  fegetenv(&env);
  printf("after calculations, env is %08x\n", env);

  printf("saving environment\n");
                                                /* continued */
/*************************************************************/
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Sample Program: fe_update.c (cont.)

/*************************************************************/
  feholdexcept(&holdenv);

  /* accumulate sum of squares */
  for (i = 0; i < ARRLEN; i++) {
        z = argarr[i] * argarr[i];
        y +=z;
  }

  set_excepts = fetestexcept(FE_ALL_EXCEPT);
  print_flags(set_excepts);
  printf("sum of squares is %g\n", y);

  fegetenv(&env);
  printf("after more calculations, env is %08x\n", env);

  if (y > MINDOUBLE) {
      printf("clearing underflow & inexact exceptions\n");
      feclearexcept(FE_UNDERFLOW | FE_INEXACT);
  }
  else {
      printf("clearing inexact exception\n");
      feclearexcept(FE_INEXACT);
  }

  fegetenv(&env);
  printf("after feclearexcept, env is %08x\n", env);

  printf("merging env with saved version\n");
  feupdateenv(&holdenv);
  fegetenv(&env);
  printf("after feupdateenv, env is %08x\n", env);

  set_excepts = fetestexcept(FE_ALL_EXCEPT);
  print_flags(set_excepts);
}

void print_flags(int flags)
{
  if (flags & FE_INEXACT)
    printf(" inexact result occurred\n");
  if (flags & FE_UNDERFLOW)
    printf(" underflow occurred\n");
  if (flags & FE_OVERFLOW)
    printf(" overflow occurred\n");
  if (flags & FE_DIVBYZERO)
    printf(" division by zero occurred\n");
  if (flags & FE_INVALID)
    printf(" invalid operation occurred\n");

  if (!(flags & FE_ALL_EXCEPT))
    printf(" no exceptions are set\n");
}
/*************************************************************/
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If you compile and run this program, it produces results like the
following:

$ cc fe_update.c -lm
$ ./a.out
at start, env is 000e0000

Enter x and y: 3 0
x and y are 3 and 0
 inexact result occurred
 division by zero occurred
result is inf
again? (y or n) n
setting traps for overflow and underflow
after calculations, env is 480e0006
saving environment
 inexact result occurred
 underflow occurred
sum of squares is 12.667
after more calculations, env is 180e0000
clearing underflow & inexact exceptions
after feclearexcept, env is 040e0000
merging env with saved version
after feupdateenv, env is 4c0e0006
 inexact result occurred
 division by zero occurred

Underflow Mode: fegetflushtozero and
fesetflushtozero
The functions fegetflushtozero  and fesetflushtozero  allow the
programmer to retrieve the current underflow mode or to change the way
the system handles underflows by setting the D bit in the status register
to either 1 or 0.

Flush-to-zero mode, also known as fast underflow mode, sudden
underflow mode, or fastmode, is an alternative to
IEEE-754-compliant underflow mode. On HP 9000 systems, a
floating-point underflow involves a fault into the kernel, where the
IEEE-754-specified conversion of the result into a denormalized value or
zero is accomplished by software emulation. On many HP 9000 systems,
flush-to-zero mode allows the hardware to simply substitute a zero for
the result of an operation, with no fault occurring. (The zero has the sign
of the result for which it is substituted.) This may be a significant
performance optimization for applications that underflow frequently. For
many operations, flush-to-zero mode also causes denormalized
floating-point operands to be treated as if they were true zero operands.
Chapter 5 143



Manipulating the Floating-Point Status Register
Run-Time Mode Control: The fenv(5) Suite
NOTE Flush-to-zero mode is supported on all HP 9000 systems except those
with chip levels of PA7000 and PA7100LC. You can look up the chip level
of your system in /opt/langtools/lib/sched.models . See
“Determining Your System’s Architecture Type” on page 26 for more
information.

The C declarations for these functions are as follows:

int fegetflushtozero(void);

void fesetflushtozero(int value);

The fegetflushtozero  function returns the current flush-to-zero mode
setting: a result of 1 means that flush-to-zero mode is set, a result of 0
means that the default IEEE-754-compliant underflow mode is set. On
systems that do not support flush-to-zero mode, this function always
returns 0.

On systems that support flush-to-zero mode, the fesetflushtozero
function sets flush-to-zero mode to value, which must be either 1
(flush-to-zero mode) or 0 (IEEE-754-compliant underflow mode). On
systems that do not support flush-to-zero mode, this function has no
effect.

On systems that support flush-to-zero mode, the default setting is
IEEE-754-compliant underflow mode (0).

The following program calls fegetflushtozero  and
fesetflushtozero  to retrieve and set the underflow mode.
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Sample Program: fe_flush.c

/*************************************************************/
#include <stdio.h>
#include <fenv.h>

typedef union {
  double y;
  struct {
     unsigned int ym, yl;
  } i;
} DBL_INT;

int main(void)
{
  DBL_INT dix, diy, diz;
  int fm, fm_saved;

  fm_saved = fegetflushtozero();
  printf("underflow mode is %d\n", fm_saved);

  dix.y = -4.94066e-324;
  printf("denormalized value is %g [%08x%08x]\n", dix.y,
         dix.i.ym, dix.i.yl);

  fesetflushtozero(1);
  fm = fegetflushtozero();
  printf("after fesetflushtozero(1), mode is %d\n", fm);
  printf("denormalized value is %g [%08x%08x]\n", dix.y,
         dix.i.ym, dix.i.yl);

  fesetflushtozero(fm_saved);
  fm = fegetflushtozero();
  printf("after fesetflushtozero(%d), mode is %d\n",
         fm_saved, fm);
  printf("denormalized value is %g [%08x%08x]\n", dix.y,
         dix.i.ym, dix.i.yl);
}
/*************************************************************/

If you run this program on a system that supports flush-to-zero mode, it
produces the following output:

$ cc fe_flush.c -lm
$ ./a.out
underflow mode is 0
value is -4.94066e-324 [8000000000000001]
after fesetflushtozero(1), mode is 1
value is 0 [8000000000000001]
after fesetflushtozero(0), mode is 0
value is -4.94066e-324 [8000000000000001]
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Command-Line Mode Control: The +FP
Compiler Option
The compiler and linker option +FP allows you to specify what traps to
enable for your program and can also enable or disable flush-to-zero
mode. This option is available with the HP Fortran, C, and Pascal
compilers. It has the following syntax:

+FPflags

where flags is a series of uppercase or lowercase letters from the set
[VvZzOoUuIiDd]  with no spaces, tabs, or other characters between
them. If the uppercase letter is selected, that behavior is enabled. If the
lowercase letter is selected or if the letter is not present in the flags, the
behavior is disabled. By default, all traps are disabled.

Table 5-3 describes the behavior specified by each argument.

For example, the following command line sets traps for overflow, divide
by zero, and invalid operations, and enables fast underflow mode:

f77 +FPOZVD program_name.f

The linker (ld ) also accepts the +FP option. If you specify this option to a
separately invoked ld  command, the option is effective only if you link in
one of the supported startup files (/opt/langtools/lib/*crt0.o ).

The +FP option affects the various floating-point mode settings at
program startup. Subsequent calls to fesettrapenable ,
fesetflushtozero , or fpsetenv  may override some or all of the
values set by +FP.

NOTE If you use Fortran, you may also use the +fp_exception  (Fortran 90) or
+T (HP FORTRAN/9000) option to set traps at compile time. (If your HP
FORTRAN/9000 program contains an ON statement, you must use this
option.) These options enable traps for invalid operation, overflow,
underflow, and division by zero exceptions. If you specify both +FP and
+fp_exception  (or +T) , the +fp_exception  (or +T) option is always
processed after +FP. It does not turn off any bits set by +FP, however.

See “Using the +FP Compiler Option” on page 151 for more information
on using the +FP option.
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Table 5-3 +FP Option Arguments

Value Behavior

V Enable traps on invalid floating-point operations.

v Disable traps on invalid floating-point operations.

Z Enable traps on divide by zero.

z Disable traps on divide by zero.

O Enable traps on floating-point overflow.

o Disable traps on floating-point overflow.

U Enable traps on floating-point underflow.

u Disable traps on floating-point underflow.

I Enable traps on floating-point operations that produce
inexact results.

i Disable traps on floating-point operations that produce
inexact results.

D Enable flush-to-zero (fast underflow) mode for denormalized
values. (Selecting this value enables flush-to-zero mode only
if it is available on the processor that is used at run time.)

d Disable flush-to-zero (fast underflow) mode for denormalized
values.
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6 Floating-Point Trap Handling

By default, trapping on floating-point exceptions is disabled on HP 9000
systems, in accordance with the IEEE standard. If you want your
program to continue through floating-point exceptions without trapping,
it will do so automatically.
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Floating-point trap handling requires two main steps:

1. Setting the exception trap enable bits in the floating-point status
register

2. Defining the action to be taken when the trap occurs

Both steps vary somewhat from language to language on HP-UX
systems. In this section we suggest some methods of enabling and
handling traps in Fortran and C.

In C, you can also use the exception flags in the floating-point status
register to detect exceptions without taking a trap. See “Detecting
Exceptions without Enabling Traps” on page 162 for details.

If your code handles integer arithmetic as well as floating-point
arithmetic, you may encounter an integer exception. We discuss integer
exceptions briefly in “Handling Integer Exceptions” on page 163.

See “Exception Conditions” on page 51 for information about IEEE
exceptions. See “The PA-RISC Floating-Point Status Register” on
page 126 for information about the floating-point status register,
including the exception flags and the exception trap enable bits.
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Enabling Traps
When you enable a trap without providing a trap handler (a mechanism
for handling it), the trap causes a SIGFPE signal. The signal, in turn,
causes your program to abort with an error message that is more or less
informative, depending on the method you use to enable the trap. If you
want your program to abort when it encounters a trap, then enabling the
trap may be all you want to do. However, you may want to handle the
trap gracefully; see “Handling Traps” on page 155 for information on
trap handling.

HP 9000 systems provide several methods of enabling traps:

• The +FP compiler option (all compilers)

• The fesettrapenable  function

• The +fp_exception  (Fortran 90) and +T (HP FORTRAN/9000)
compile-line options

We discuss these briefly in the following subsections.

Using the +FP Compiler Option
The +FP option, described in “Command-Line Mode Control: The +FP
Compiler Option” on page 146, allows you to enable traps from the
compiler command line. No change in your program is required.

The disadvantage of using this option is that you cannot know exactly
where in your program the exception occurred. Moreover, unless you
enable a trap for only one exception, you cannot know the type of
exception that occurred. You merely get a core dump. The following
Fortran program, for example, generates an overflow.

Sample Program: overflow.f

      PROGRAM OVERFLOW
      DOUBLE PRECISION X, Y, Z

      X = 1.79D308
      Y = 2.2D-308
      Z = X / Y
      PRINT 30, X, Y, Z
30    FORMAT (1PE11.4, ' divided by', 1PE11.4, ' = ', 1PE11.4)
      END
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If you compile this program with traps disabled (the default), it produces
the following output:

 1.7900+308 divided by 2.2000-308 = +INF

If you compile it with the +FP option, however, you get a stack trace and
core dump. (The O flag of the +FP option enables traps for overflow
exceptions.)

$ f90 +FPO overflow.f
overflow.f
   program OVERFLOW

11 Lines Compiled
$ ./a.out
( 0)  0xc1602c5c   traceback + 0x14  [/usr/lib/pa1.1/libcl.1]
( 1)  0xc0126500   _sigreturn  [/usr/lib/libc.1]
( 2)  0x000024b4   _start + 0x6c  [./a.out]
Floating exception (core dumped)

Using the fesettrapenable Function
The fesettrapenable  function is part of the fenv(5) suite and is
described in detail in “Exception Bits” on page 130. It is provided in the
C math library.

The fesettrapenable  routine can enable one or more traps in any
combination.

Using fesettrapenable  to enable traps has the same disadvantages as
the +FP option. You get a core dump, and you cannot determine the
exception type. Moreover, the use of these routines lacks the simplicity of
the +FP option, because you must modify your code in order to use them.

NOTE Do not use this function at an optimization level greater than 0. See
“Run-Time Mode Control: The fenv(5) Suite” on page 125. (You may
instead use the FLOAT_TRAPS_ON pragma to suppress optimization.)

Here is the program from “Using the +FP Compiler Option” on page 151,
modified to enable a trap for the overflow exception using
fesettrapenable . It does this by using an !$HP$ ALIAS  or $ALIAS
directive to tell the Fortran compiler that the function’s arguments are
passed by value.
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Sample Program: overflow_trap.f

      PROGRAM OVERFLOW_TRAP
C F90:
!$HP$ ALIAS FESETTRAPENABLE = 'fesettrapenable' (%val)
C F77:
C $ALIAS FESETTRAPENABLE = 'fesettrapenable' (%val)
      PARAMETER (FE_OVERFLOW = Z'20000000')
      EXTERNAL FESETTRAPENABLE
      DOUBLE PRECISION X, Y, Z

      CALL FESETTRAPENABLE(FE_OVERFLOW)

      X = 1.79D308
      Y = 2.2D-308
      Z = X / Y
      WRITE(*,*) X, ' divided by', Y, ' = ', Z
      END

You do not need to specify any options when you compile this program,
but you need to link in the C math library. The result is even less useful
than in the preceding section:

$ f90 overflow_trap.f -lm
overflow_trap.f
   program OVERFLOW_TRAP

13 Lines Compiled
$ ./a.out
Floating exception (core dumped)

Using the +fp_exception or +T Compiler
Option (Fortran only)
The +fp_exception  option, available with the HP Fortran 90 compiler,
enables traps for four IEEE exceptions: invalid operation, division by
zero, overflow, and underflow. (Few programs need to trap for the inexact
exception, which occurs often and conveys little information.) The HP
FORTRAN/9000 equivalent is +T. For Fortran applications, these options
have the simplicity of +FP. They also provides more information than
either +FP or fesettrapenable . They tell what kind of exception
occurred and the virtual address of the statement that triggered the
exception. Moreover, they do not cause a core dump.
Chapter 6 153



Floating-Point Trap Handling
Enabling Traps
For example, if you use +fp_exception  or +T to compile the program in
“Using the +FP Compiler Option” on page 151, it produces a result like
the following:

$ f77 +T overflow.f
overflow.f:

MAIN overflow:
$ ./a.out
PROGRAM ABORTED : IEEE overflow

PROCEDURE TRACEBACK:

( 0)  0x000024e8   _start + 0x88  [./a.out]

The effect is similar with +fp_exception :

$ f90 +fp_exception overflow.f
overflow.f
   program OVERFLOW

11 Lines Compiled
$ ./a.out
PROGRAM ABORTED :  IEEE overflow

PROCEDURE TRACEBACK:

( 0)  0x000024ec   _start + 0x74  [././a.out]

See “Command-Line Mode Control: The +FP Compiler Option” on
page 146 for information about how +fp_exception  and +T interact
with +FP if you use them together. See the f90(1) man page and the HP
Fortran 90 Programmer’s Reference for details about using
+fp_exception . See the f77(1) man page and the HP FORTRAN/9000
Programmer’s Guide for details about using +T.
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Handling Traps
Once you have enabled traps, either by a compiler option or by a call to a
routine, you need a mechanism for handling them when they occur. It
may be convenient simply to have your program abort (particularly if you
enable traps with a method that does not cause a core dump). You may,
however, prefer to establish an error-handling routine that generates a
helpful error message and exits the program gracefully.

HP 9000 systems provide the following methods of handling traps:

• The ON statement (Fortran only)

• The sigaction(2) function (C only)

We discuss these briefly in the following subsections.

You may want to continue execution after handling a trap, but you
should be very cautious about doing so. The most important reason, of
course, is that if your program encounters an exception, the result of at
least that portion of your calculations is likely to be useless.

Another reason occurs if you use the C sigaction(2) function for error
handling. Floating-point exceptions are hardware exceptions, whereas
an error-handling process (such as the C sigaction(2) function or the HP
Fortran ON statement) occurs in software. A hardware exception usually
causes an operation to be interrupted at a point when values are stored
in registers but not yet stored in memory. If you use sigaction(2) to try to
substitute a new value for the one that caused the error, chances are you
will return to a point later in the instruction sequence than the point at
which the error occurred, so some essential steps may be eliminated and
the register values may be invalid. This particular problem does not
occur with the HP Fortran ON statement; the software updates the
registers appropriately.

Using the ON Statement (Fortran only)
The ON statement may be used to handle arithmetic exceptions in both
HP Fortran 90 and HP FORTRAN/9000. In HP FORTRAN/9000 the
statement must be used in conjunction with the +T compiler option. In
HP Fortran 90 it may be used in conjunction with the +fp_exception
option, but this is not required.
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The ON statement allows you to specify a particular action to be taken
when a particular exception arises. The action may be any of the
following:

• ABORT (the default action). Specifying ABORT allows you to get the
address where the error occurred, which may be useful in debugging.

• IGNORE (usually not a good idea).

• CALL sub (call a subroutine). If you call a subroutine to handle an
IEEE exception, you must pass it one argument, which is of the same
type as the type associated with the exception. If the subroutine
returns, the program uses the assigned value of the argument as the
result value of the operation that caused the handler to be invoked.

NOTE A subroutine that handles an IEEE exception takes a different number
of arguments from a subroutine that handles a math library error (as
described in “Math Library Error Handling for Fortran” on page 104).
See the HP FORTRAN/9000 Programmer’s Guide for details. HP
discourages the use of the ON statement to handle library errors in HP
Fortran 90, but using it to handle arithmetic errors poses no problems.

For example, the following program calls the subroutine HANDLE_OFL to
handle a DOUBLE PRECISION overflow. The subroutine prints a message
describing the error, prints the biased value passed to the subroutine,
then the correct value, and exits.
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Sample Program: overflow_on.f

      PROGRAM OVERFLOW_ON
      DOUBLE PRECISION X, Y, Z

      ON DOUBLE PRECISION OVERFLOW CALL HANDLE_OFL

      X = 1.79D308
      Y = 2.2D-308
      Z = X / Y
      WRITE(*,*) X, ' divided by', Y, ' = ', Z
      END

      SUBROUTINE HANDLE_OFL(A)
      DOUBLE PRECISION A, T
      INTEGER I
      WRITE(*,*) 'overflow occurred'
      WRITE(*,*) 'argument to HANDLE_OFL is ', A
C  The result is 2**1536 too small
      T = LOG10(A) + 1536 * LOG10(2D0)
      I = T                    ! Get exponent
      T = T - I
      WRITE(*,*) 'the correct answer is', 10**T,
     x           ' times 10 to the power', I
      STOP
      END

See the PA-RISC 1.1 Architecture and Instruction Set Reference Manual
for a full explanation of the bias of 1536; when traps are enabled, the
IEEE standard requires that a biased result be returned.

If you compile and run this program using HP Fortran 90 and HP
FORTRAN/9000 respectively, it produces the following result:

$ f90 overflow_on.f
overflow_on.f
   program OVERFLOW_ON
   external subroutine HANDLE_OFL

26 Lines Compiled
$ ./a.out
 overflow occurred
 argument to HANDLE_OFL is  3.375646885228544E+153
 the correct answer is 8.13636363636275  times 10 to the power 615

$ f77 +T overflow_on.f
overflow_on.f:

MAIN overflow_on:
handle_ofl:

$ ./a.out
overflow occurred
argument to HANDLE_OFL is 3.375646885228544+153
the correct answer is 8.13636363636275 times 10 to the power 615

One situation where it is useful to assign a value to the trap handler
argument and continue program execution is that of an underflow
exception (described in “Underflow Conditions” on page 55). Substituting
a value of 0 for the result of an operation that underflows may be exactly
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what you want to do. In fact, the system may perform this substitution
for you; the IEEE standard specifies that 0 may be the result of an
operation that underflows, and on HP 9000 systems it often is (when the
result of the operation is less than the smallest denormalized value). If
you want to guarantee a result of 0, you can call a handler as follows:

Sample Program: underflow_on.f

      PROGRAM UNDERFLOW_ON
      DOUBLE PRECISION X, Y, Z

      ON DOUBLE PRECISION UNDERFLOW CALL HANDLE_UFL

      X = 1.0D0
      Y = 1.79D308
      Z = X / Y
      PRINT 30, X, Y, Z
30    FORMAT (1PE11.4, ' divided by', 1PE11.4, ' = ', 1PE11.4)
      END

      SUBROUTINE HANDLE_UFL(A)
      DOUBLE PRECISION A

      WRITE(*,*) 'underflow occurred'
      A = 0.0
      RETURN
      END

If you compile and run this program, it produces the following result:

$ f90 underflow_on.f
underflow_on.f
   program UNDERFLOW_ON
   external subroutine HANDLE_UFL

21 Lines Compiled
$ ./a.out
 underflow occurred
 1.0000E+00 divided by 1.7900+308 =  0.0000E+00

$ f77 +T underflow_on.f
underflow_on.f:

MAIN underflow_on:
handle_ufl:

$ ./a.out
 underflow occurred
 1.0000E+00 divided by 1.7900+308 =   .0000E+00

If your system supports fast underflow mode, you can use it both to
guarantee a result of 0 for all underflows and to avoid the overhead of
incurring a trap. You can enable fast underflow mode with either the +FP
option (see “Command-Line Mode Control: The +FP Compiler Option” on
page 146) or the fesetflushtozero  routine (see “Underflow Mode:
fegetflushtozero and fesetflushtozero” on page 143).
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The ON statement is documented fully in the HP Fortran 90
Programmer’s Reference and the HP FORTRAN/9000 Programmer’s
Guide.

Using the sigaction(2) Function (C only)
For C programs, the standard method of handling errors is to use the
sigaction(2) function. The function establishes the address of a
signal-handling function that is called whenever the specified HP-UX
signal is raised. The major problem with this method is that there is only
one HP-UX signal, SIGFPE, for all IEEE and integer exceptions. When
SIGFPE is raised, the only way to find out which exception generated the
signal is to examine the floating-point exception registers, which can be
obtained from the sigcontext  structure that is an argument to the
sigaction(2) function. (Or you can enable a trap for only one exception.)

The following C program uses fesettrapenable  to enable a trap for
the overflow exception, and calls sigaction(2) to specify that the function
handle_sigfpe  is to be called when SIGFPE is raised.
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Sample Program: overflow_sig.c

/*************************************************************/
#include <stdio.h>
#include <math.h>
#include <fenv.h>
#include <signal.h>

int traps;
fexcept_t flags;

/* signal handler for floating-point exceptions */
void handle_sigfpe(int signo, siginfo_t *siginfo,
                   ucontext_t *ucontextptr)
{
    void print_flags(int);
    void print_traps(int);

    printf("Raised signal %d -- floating point error\n", signo);
    printf("code is %d\n", siginfo->si_code);
    printf("fr0L is %08x\n", ucontextptr->uc_mcontext.ss_frstat);
    print_traps(traps);
    fegetexceptflag(&flags, FE_ALL_EXCEPT);
    print_flags(flags);
    exit(-1);
}

int main(void)
{
    void print_flags(int);
    void print_traps(int);
    double x, y, z;
    struct sigaction act;

    act.sa_handler = &handle_sigfpe;
    act.sa_flags = SA_SIGINFO;

    /* establish the signal handler */
    sigaction(SIGFPE, &act, NULL);

    fesettrapenable(FE_OVERFLOW);
    traps = fegettrapenable();
    print_traps(traps);

    x = 1.79e308;
    y = 2.2e-308;
    z = x / y;    /* divide very big by very small */
    printf("%g / %g = %g\n", x, y, z);
}                                               /* continued */
/*************************************************************/
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Sample Program: overflow_sig.c (Cont.)

/*************************************************************/
void print_flags(int flags)
{
    if (flags & FE_INEXACT)
      printf(" inexact result flag set\n");
    if (flags & FE_UNDERFLOW)
      printf(" underflow flag set\n");
    if (flags & FE_OVERFLOW)
      printf(" overflow flag set\n");
    if (flags & FE_DIVBYZERO)
      printf(" division by zero flag set\n");
    if (flags & FE_INVALID)
      printf(" invalid operation flag set\n");

    if (!(flags & FE_ALL_EXCEPT))
        printf(" no exception flags are set\n");
}

void print_traps(int traps)
{
    if (traps & FE_INEXACT)
      printf(" inexact result trap set\n");
    if (traps & FE_UNDERFLOW)
      printf(" underflow trap set\n");
    if (traps & FE_OVERFLOW)
      printf(" overflow trap set\n");
    if (traps & FE_DIVBYZERO)
      printf(" division by zero trap set\n");
    if (traps & FE_INVALID)
      printf(" invalid operation trap set\n");

    if (!(traps & FE_ALL_EXCEPT))
        printf(" no trap enables are set\n");
}
/*************************************************************/

If you compile and run this program, it produces a result like the
following:

$ cc overflow_sig.c -lm
$ ./a.out
 overflow trap set
Raised signal 8 -- floating point error
code is 14
fr0L is 08081844
 overflow trap set
 inexact result flag set

The code 14 signifies an assist exception trap (see signal(5)), which
indicates a floating-point exception.

The main advantage of using a signal handler is that it eliminates the
core dump that you get without it if you compile with +FP or use
fesettrapenable .
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Detecting Exceptions without Enabling
Traps
If you do not enable traps for floating-point exceptions, you can still
determine whether the exceptions have occurred. When an exception
occurs and the corresponding exception trap enable bit is not set, the
system sets the corresponding exception flag. The exception flags are
cumulative; once a flag is set, it remains set for the duration of the
program unless you clear it. (This is why the exception flags are also
called sticky bits.)

At critical points in your program, you can call the fetestexcept
function (described in “Manipulating the Exception Flags:
fegetexceptflag, fesetexceptflag, fetestexcept, feraiseexcept,
feclearexcept” on page 131) to determine whether an exception has
occurred. You can then respond to the exception as you wish. The
program example in that section illustrates the use of this function.

NOTE Be careful if you use these functions at higher optimization levels (2 and
above). See “Run-Time Mode Control: The fenv(5) Suite” on page 125.
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Handling Integer Exceptions
In Fortran and C there are two kinds of integer exceptions, division by
zero and overflow. Default behavior for these exceptions differs.

Handling Integer Division by Zero
Trapping on integer division by zero is enabled by default for both
Fortran and C. The trap generates a SIGFPE error. This error may be
confusing, because the error is really an integer error, and you cannot
disable or enable it by manipulating the floating-point status register
(for example, by using +FP or fesettrapenable ).

If for some reason you wish to disable the trap, you can do so in Fortran
by using an ON INTEGER DIV 0 IGNORE  statement. You cannot disable
the trap in C.

If you want to establish a handler for an integer division by zero, you can
do so using either of the mechanisms described in “Handling Traps” on
page 155: the C sigaction(2) function or the Fortran ON statement.

Handling Integer Overflow
Trapping on integer overflow is disabled by default for Fortran and C; an
integer overflow does not generate a SIGFPE error. Detecting integer
overflows requires not only that the trap be enabled but also that the
compiler insert special code in the executable file to check for overflows.

To enable integer overflow checking for Fortran, use a !$HP$
CHECK_OVERFLOW ON directive (in HP Fortran/9000, use
$CHECK_OVERFLOW INTEGER_4 or INTEGER_2) to obtain the overflow
checking code, and use an ON INTEGER OVERFLOW statement to handle
the trap. (The !$HP$ CHECK_OVERFLOW directive does not enable
checking for operations in libraries. Using the exponentiation operator
involves a library call in HP Fortran, so it is not possible to enable
integer overflow checking for exponentiation operations.)

There is no way to enable integer overflow checking in C. HP C provides
no mechanism to insert overflow checking code into your executable,
because the C language does not define integer overflow as an error.
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7 Performance Tuning

Performance tuning is the process of refining a program to make it
run faster. Many of the techniques described in this chapter are general
techniques that work for any program running on any system. Other
techniques are specific to floating-point applications running on HP 9000
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systems. We do not discuss input/output efficiency, which often has the
most dramatic impact on a program’s execution speed. Keep in mind that
some performance tuning techniques carry a price—they may make the
program less portable or less easy to understand and maintain. You
should weigh these pros and cons before making major changes to your
program.
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Identifying and Removing Performance
Bottlenecks
Computers are so fast that the only way to change the performance of
your program noticeably is to change something that happens many,
many times. For this reason, the first step in tuning an application for
increased performance is to identify the performance bottlenecks,
those sections of your code that collectively require the most execution
time. By concentrating on these areas, you can obtain the greatest
performance improvement for your effort.

Some programs spend a high percentage of execution time in small loops,
while seemingly long pieces of sequential code actually account for a
minor fraction of the total execution time. In such programs, the
performance bottlenecks are likely to be small subroutines that are
called frequently and small loops that execute over many iterations.

With its compilers HP provides the performance analysis tool Puma,
which can help you locate bottlenecks in programs. Puma takes samples
of the program counter, the call/return stack, and other performance
statistics of executing programs, saving the results in a data file. You can
then use Puma to display the data file in a variety of graphical formats.
See the puma(1) man page and the HP PAK Performance Analysis Tools
User’s Guide for more information.

HP-UX systems also support the two UNIX tools prof(1) and gprof(1).
Both of these tools tell you what percentage of the total running time of
your program is spent in each routine called. See the prof(1) and gprof(1)
man pages for information about these tools.

A more general system performance monitoring and diagnostic tool is the
HP GlancePlus product, which provides immediate performance
information about your computer system. It lets you easily examine
system activities, identify and resolve performance bottlenecks, and tune
your system for more efficient operation.

After you have identified the bottlenecks in your program, the next step
is to figure out why the bottlenecks exist and, if possible, to remove them.
The following sections apply to all code, but the emphasis is on
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floating-point-intensive code that is running unacceptably slowly. There
are several reasons why a piece of floating-point-intensive code might
consume a lot of execution time:

• The code generated by the compiler is inefficient.

• The program does not link in the fastest version of the math library.

• The program links in shared libraries, which are slower than archive
libraries.

• The data being processed involves denormalized operands or
underflowing operations.

• The data being processed contains mixed-precision expressions.

• The code contains highly iterative loops (for example, vector and/or
matrix operations). Or the code contains loops that perform vector
and/or matrix operations, but the loops are not being vectorized.

• The data is not optimally aligned in memory.

• The program causes adverse cache aliasing effects.

• The code contains many static variables.

• The code performs quad-precision computations.

The following sections discuss each of these problems individually.
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Inefficient Code
The HP-UX compilers are highly optimizing and generally produce
extremely efficient code. However, you can control the degree of efficiency
and the types of optimizations with compiler options and directives.
Particularly important from a performance standpoint are the compiler
options that do the following:

• Optimize your program

• Specify the architecture type, causing the compiler to generate code
for a specific type of machine

• Cause the compiler to emit debugger information

• Cause the compiler to produce position-independent code, which
generally runs more slowly than absolute code

• Enable performance-based optimization (PBO)

• (Fortran only) Cause the compiler to make all local variables static
and to initialize all uninitialized static data to zero

The following sections describe each of these options. Many of the options
are available both as command-line options and as directives or pragmas
that you can place in your source code. For more information and specific
syntax, refer to the appropriate HP language reference manual.

If the compiler generates inefficient code even when you use the
appropriate options, you may choose to write parts of your program in
assembly language. “Writing Routines in Assembly Language” on
page 176 describes the advantages and disadvantages of this choice.

Optimizing Your Program
For a thorough discussion of optimization on HP 9000 systems, see the
HP PA-RISC Compiler Optimization Technology White Paper. See the
appropriate HP language manual for additional information.
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The most important compiler option affecting efficiency is the
optimization option, +O, which allows you to optimize your program in
several different ways:

Levels of
optimization Optimization levels, numbered from 0 to 4, allow you to

select a broad category of optimizations, from minimal
optimization to full optimization.

Types of
optimization Optimization types allow you to select groups of

optimizations that fall into a particular category. For
example, +Osize  suppresses optimizations that
significantly increase code size. If you specify an
optimization type, you must also specify an
optimization level.

Specific
optimizations Specific optimizations allow you to turn on or off

particular optimizations that may be appropriate or
inappropriate for your program. For example,
+Opipeline  (the default at optimization levels 2, 3,
and 4) enables software pipelining. If you specify a
specific optimization, you must also specify an
optimization level.

In general, the higher the optimization level, the more efficient the code.
In performing optimizations, the compiler often rearranges code and
makes assumptions about the way variables will be used in other
modules. There is some risk, therefore, in choosing a high optimization
level, since the compiler may make some invalid assumptions that can
cause code to run more slowly. This is particularly true if your code
makes frequent use of pointers. It is always a good idea to compile a
program at different optimization levels and compare the results to
make sure that the optimizations are not affecting either the
performance or the results. See “Compiler Behavior and Compiler
Version” on page 76 and “Compiler Options” on page 77 for information
about how compiler optimizations can affect program results.

The following specific optimizations are particularly relevant to
floating-point programs. Most of them are available at optimization
levels 2, 3, and 4.
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+O[no]dataprefetch +Odataprefetch , which has an
effect only when you use the +DA2.0
option, inserts instructions within
innermost loops to fetch data from
memory into the data cache ahead of
time so that it is already there when
it is needed. Data prefetch
instructions are inserted only for
data structures referenced within
innermost loops using simple loop
varying addresses (that is, in a
simple linear sweep across large
amounts of memory). It is useful for
applications that have high data
cache miss overhead; that is, it
improves the performance of
operations on arrays that are so large
they exceed the size of the cache.

As a general rule of thumb, using
+Odataprefetch  will probably help
performance if your application
contains numerous references to
arrays, and if the sum of the sizes of
all the arrays in your program totals
more than a megabyte. It can also
help if your application contains only
a single pass through an extremely
large array (tens of megabytes in
size). However, if your program
contains very frequent references to
small arrays, +Odataprefetch  can
actually impair performance.
Therefore, the only way to find out for
sure whether this option will help
your program is to try it.

The +Odataprefetch  option is
effective with both vectorized and
unvectorized loops. In fact, if your
PA2.0 application uses very large
arrays, you may gain considerable
performance benefit from using
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+Odataprefetch  in conjunction
with +Ovectorize . The math library
contains special prefetching versions
of the vector routines, which are
called if you specify both options.

+O[no]fltacc +Ofltacc , which is the default at
levels 2, 3, and 4, disables
optimizations that are algebraically
correct but that may result in
numerical differences. (Usually these
differences are insignificant.) To
enable these optimizations, use
+Onofltacc .

On PA2.0 systems at level 2 and
higher, if you specify neither
+Ofltacc  nor +Onofltacc , or if you
specify +Onofltacc , the compiler
generates FMA (fused multiply-add)
instructions (see “Architecture Type
of Run-Time System” on page 78 for
details). Specify +Ofltacc  to
suppress the generation of these
instructions.

The +Onofltacc  option is invoked
by default when you specify the
optimization type +Oaggressive ;
use +Oaggressive +Ofltacc  if you
want aggressive optimization without
sacrificing floating-point accuracy.

+O[no]inline ,
+Oinline_budget =n +Oinline , which is available at

levels 3 and 4 and is the default at
those levels, enables inlining of
function calls. Inlining can improve
performance significantly if your
application makes many math library
calls. It is especially effective on
PA2.0 systems. The
+Oinline_budget  option, also
available at levels 3 and 4, can be
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used to specify how aggressively you
want the compiler to pursue inlining
opportunities. The default value of n
is 100.

+O[no]libcalls +Olibcalls , which is available at all
optimization levels (0 through 4),
invokes millicode versions of several
frequently called math library
functions. It also inlines the
double-precision versions of the sqrt
and fabs  C functions.

This option is invoked by default
when you specify the optimization
type +Oaggressive ; use
+Oaggressive +Onolibcalls  if
you want aggressive optimization
without using millicode routines.

Do not use this option on a C program
that depends on the setting of errno
by math library functions. See
“Millicode Versions of Math Library
Functions” on page 112 for details.

+O[no]moveflops +Omoveflops , which is the default at
levels 2, 3, and 4, moves conditional
floating-point instructions out of
loops. This option may alter
floating-point exception behavior. Use
+Onomoveflops  if you depend on
floating-point exception behavior and
you do not want this behavior to be
altered by the relocation of
floating-point instructions.

+O[no]vectorize +Ovectorize , available with the
Fortran and C compilers only,
replaces eligible loops with calls to
vector routines in the math library.
The +Ovectorize  option is invoked
by default when you specify the
optimization type +Oaggressive ;
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use +Oaggressive +Onovectorize
if you want aggressive optimization
without vector calls.

Any files that were compiled with
+Ovectorize  must also be linked
with +Ovectorize  (this happens
automatically when the compiler
invokes the linker).

This option can be used at
optimization levels 3 and 4. The
default is +Onovectorize . This
option is valid only when you compile
for PA1.1 and PA2.0 systems.

If your PA2.0 application uses very
large arrays, you may gain
considerable performance benefit
from using +Odataprefetch  in
conjunction with +Ovectorize . The
math library contains special
prefetching versions of the vector
routines, which are called if you
specify both options.

Specifying the Architecture Type
All HP 9000 compilers support the +DA option, which specifies a
particular target architecture type, either PA-RISC 1.1 or PA-RISC 2.0.
Use of this option causes the compiler to produce architecture-specific
instructions and calls to special architecture-specific run-time libraries.

Specifying the architecture type of the systems on which your code will
run will probably improve the performance of your code if it makes
substantial use of floating-point arithmetic or math library calls. See
“Selecting Different Versions of the Math Libraries” on page 27,
“Architecture Type of Run-Time System” on page 78, and “BLAS Library
Versions” on page 178 for more information.
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Use of the +DA2.0  option to generate PA2.0 code will improve the
performance of your application even more if the source provides
opportunities for the compiler to generate FMA (fused multiply-add)
instructions (see “Architecture Type of Run-Time System” on page 78 for
details). For example, if two statements like

c = a * b

and

e = c - d

are separated by intervening statements in your program, you may want
to place them one right after the other or to combine them into

e = a * b - d

This kind of rearrangement will be most effective if done within loops.

The +DS option also has a significant effect on performance, because it
specifies an architecture-specific instruction scheduler. If your code must
be portable across all HP 9000 architectures, you must compile with
+DA1.1 , but you may compile with either +DS1.1  or +DS2.0 . Use
+DS2.0  if you want to achieve the best possible performance on PA2.0
systems. See the appropriate HP language reference manual for more
information about this option.

Including Debugging Information
All HP 9000 compilers allow you to include debugging information in the
object file at optimization levels 0, 1, and 2. Debugging information
increases the size of the object code. The debugging option is extremely
useful during program development, but for the final product you should
compile without it.

Producing Position-Independent Code
By default, compilers produce absolute code for HP 9000 systems. You
can produce position-independent code (PIC) for use in building shared
libraries. In general, absolute code is faster than PIC because addressing
calculations are simpler and shorter. Consult Programming on HP-UX
for more information about absolute and position-independent code. See
“Shared Libraries versus Archive Libraries” on page 179 for more
information on the performance impact of shared libraries.
Chapter 7 175



Performance Tuning
Inefficient Code
Using Profile-Based Optimization
HP C, HP C++, HP FORTRAN/9000, and HP Pascal support
profile-based optimization (PBO) on HP 9000 systems. PBO can improve
the performance of programs that are branch-intensive and that exhibit
poor instruction memory locality. Although these tend not to be issues in
floating-point-intensive applications, if you suspect that they may be
degrading the performance of your program, you can use PBO to
minimize their impact on your program. Under PBO, the compiler and
linker work to optimize the executable file, using profile data for a typical
data set to produce an executable file that will result in fewer instruction
cache misses, Translation Lookaside Buffer (TLB) misses, and
memory page faults. For information about PBO, see the HP-UX Linker
and Libraries Online User Guide and the appropriate compiler
documentation.

Creating and Zeroing Static Data (Fortran
only)
HP Fortran 90 provides an option, +save , that forces static storage for
all local variables and that forces the compiler to initialize all
uninitialized static variables to zero. HP FORTRAN/9000 provides an
equivalent option, -K ; the +e option also automatically saves all local
variables, if possible.

Use these options judiciously. They are costly from a performance
standpoint and also from a software engineering perspective because
they change the semantics of an entire module rather than altering
specific problem areas.

The optimization option +Oinitcheck  performs initialization in a more
selective way that has less impact on the performance of your program.
Use this option in Fortran 90 programs. See the f90(1) or f77(1) man page
for details.

See “Static Variables” on page 188 for more information about static
data.

Writing Routines in Assembly Language
If you have compiled with all of the correct compiler options and you are
still not satisfied with the program’s performance, you may want to
examine the generated code to see exactly what is happening. To get an
176 Chapter 7



Performance Tuning
Inefficient Code
expanded listing, specify the -S  option. You can also code parts of your
program directly in assembly language. Assembly language is useful if
performance is critical and portability is not.

When deciding whether to write something in assembly language, keep
in mind that the HP 9000 compilers are highly optimizing. If the code
section is large, the compiler can probably generate code as good as or
better than an assembly language program. Good candidates for
assembly language are short, frequently called routines. However, using
the +Oinline  compiler option may improve the performance of these
routines enough to make it unnecessary to rewrite them in assembly
language.
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BLAS Library Versions
As we said in “Math Libraries and System Architecture” on page 25, the
main HP-UX math libraries, libm  and libcl , are provided in a version
tuned for the PA-RISC 1.1 architecture that also runs well on PA-RISC
2.0 systems.

The two HP Fortran products, however, provide a version of the BLAS
library, libblas , that is tuned to the PA-RISC 2.0 architecture. If you
are compiling code that will run only on PA2.0 systems, use this library
for optimum performance. If you use the +DA2.0  option and link in the
BLAS library, you will automatically link in the PA2.0 version.

See Chapter 4 for more information about math libraries. See
“Determining Your System’s Architecture Type” on page 26 if you do not
know what kind of system you have.
178 Chapter 7



Performance Tuning
Shared Libraries versus Archive Libraries
Shared Libraries versus Archive
Libraries
A program that is linked to shared libraries will generally run more
slowly than a program that is linked to archive libraries. If you use
archive libraries, the linker binds into your executable code an actual
copy of each library routine you call. If you use shared libraries, the
linker merely notes in your executable code that the code calls a routine
in a shared library. Then, when the code begins execution, the dynamic
loader loads and maps the shared libraries into the process’s address
space and calls the routines indirectly as they are needed by means of a
linkage table. Using shared libraries saves space in the executable file,
but at the expense of the time needed to resolve references to the
routines in the shared libraries.

The performance impact of shared libraries is likely to be noticeable only
if a program makes heavy use of library functions, as many floating-point
applications do. If your program seems to be running unacceptably
slowly with shared libraries, you may want to find out whether archive
libraries make a difference.

For performance reasons, HP provides the BLAS library libblas  only
as an archive library, not as a shared library. The C math library libm
and the Fortran and Pascal library libcl , however, are provided in both
shared and archive versions. The linker by default looks for shared
libraries before it looks for archive libraries, so if you want to use the
archive library version of libm  or libcl , you need to specify the -a
archive  option to the linker. (To do this on the compile command line,
specify -Wl,-a,archive .)

See the HP-UX Linker and Libraries Online User Guide for more
information about shared libraries and archive libraries.
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Denormalized Operands
Denormalized values usually occur as the result of an operation that
underflows. On HP 9000 systems, the occurrence of a denormalized
operand or result, either at an intermediate stage of a computation or at
the end, can reduce the speed of an operation significantly. There are
several solutions to this problem:

• Change single-precision data to double-precision.

• Assign the value zero to data that would normally be denormalized.

• On systems that support it, enable flush-to-zero mode.

• Scale the entire data set upwards in magnitude so that the smallest
values that occur are guaranteed to be normalized.

The first solution applies primarily to code that uses single-precision
data. Because of the range of the two formats, a value that is
denormalized in single-precision will be normalized in double-precision.
On HP 9000 systems, denormalized numbers are so costly that it is
worth converting to double-precision even if this means converting
several operands from single-precision to double-precision, performing
several operations, and then converting the result back to
single-precision. The code will still run much faster than it would if it
had to process a single denormalized operand.

The second solution is useful only if you can determine that your
algorithm will work equally well when a denormalized value is treated
as zero. In this case, you can explicitly assign it the value 0 before
entering a loop where it is repeatedly accessed. For example, if A is a
denormalized operand in the following example, this code will run very
slowly on a HP 9000 system:

      SUBROUTINE VECTOR_SCALE(A, V)
      REAL A, V(1000)

      PRINT *, 'A IS', A
      DO 10 I = 1,1000
10    V(I) = V(I) * A
      RETURN
      END

If A is likely to be denormalized once in a while, it may be a good idea to
add the following line before the loop:

IF (ABS(A) .LT. 1.1754944E-38 ) A = 0.0
180 Chapter 7



Performance Tuning
Denormalized Operands
Of course, changing the denormalized value to zero can affect the
accuracy of the algorithm. You need to determine whether this change
will affect the usefulness of your program’s output.

The third solution is to use flush-to-zero mode. If your target execution
system supports flush-to-zero mode, you have the option of disabling
gradual (that is, IEEE-754-compliant) underflow. To do so, use the +FPD
compiler and linker option or the fesetflushtozero  function. (The
fesetflushtozero  function always executes successfully. However, on
system types that do not support fast underflow, the call has no effect.)
These methods are described in Chapter 5. Running the sample program
in “Underflow Mode: fegetflushtozero and fesetflushtozero” on page 143
will tell you whether your system supports fast underflow.

The final way to avoid denormalized numbers is to scale your entire
algorithm upwards in magnitude. The exact way in which you do this
depends on your algorithm because the results of most expressions do
not scale up linearly as their operands are scaled. This method is more of
a general way to rethink your overall algorithm than a way to fix the
specific problem of denormalized values.
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Mixed-Precision Expressions
Expressions that contain a mixture of single-precision and
double-precision data generally execute more slowly than expressions of
just one precision type because they require extra conversions. (Whether
the compiler converts a mixed expression to single-precision or
double-precision depends on the rules of the high-level language.) The
reason is that HP 9000 instructions require their operands to be of the
same precision. For example, for an add or multiply or any other
two-operand instruction, both operands must be either single-precision
or double-precision; they cannot be of mixed precision.

Aside from performance considerations, it is generally a good idea to
avoid mixed-precision expressions for numerical analysis reasons. If you
must mix precisions in a single expression, choose the precisions
carefully so that the compiler does not need to perform repetitive
conversions.
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Matrix Operations
If a bottleneck contains vector and/or matrix operations, you may be able
to improve program performance by specifying the +Ovectorize  option.
See “Optimizing Your Program” on page 169 for details.

Alternatively, you may be able to replace the operations with calls to the
BLAS library, libblas  (provided with the HP Fortran 90 and HP
FORTRAN/9000 products only).

The libblas  and +Ovectorize  calls are faster than code loops that you
can write yourself because they take into account alignment, data cache,
and other machine-dependent characteristics. Not all matrices, however,
are good candidates for libblas  calls or for +Ovectorize . If the array
contains fewer than about twenty elements, the overhead incurred by
making the calls may offset the increased performance yielded by these
routines.

For more information about the libblas  routines, see “The BLAS
Library (libblas)” on page 119, the HP Fortran 90 Programmer’s
Reference, and the HP FORTRAN/9000 Programmer’s Reference.
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Data Alignment
The term alignment refers to the type of address that a data object has
in memory. Data objects can have 1-byte, 2-byte, 4-byte, or 8-byte
alignment, meaning that the object is stored at an address evenly
divisible by 1, 2, 4, or 8. In general, the best performance is obtained by
natural alignment, which is the alignment that corresponds to the
length of the object. For example, the natural alignment of an HP C int
is 4-byte alignment.

For simple static variables, the compilers always naturally align data.
The alignment problem occurs in C structures, Pascal records, and
Fortran common blocks. By default, HP-UX compilers align this data
naturally. However, you can specify directives in your program or on the
command line that align data in a way that is compatible with data
alignment on other HP systems. It is also possible to use Fortran
EQUIVALENCE statements or other programming methods to obtain
nondefault data alignment. Specifying nondefault data alignment causes
the compiler to generate extra instructions, which both substantially
increase code size and substantially degrade performance. Moreover,
aligning data on a boundary less than its natural alignment boundary
(for example, aligning a double  on a 2-byte boundary) may result in a
bus error or some other kind of run-time error.

In some situations, you can improve performance by aligning data on
greater than natural addresses. This improvement is due to two factors,
both of which concern the vector routines enabled by the +Ovectorize
option:

• A single-precision array of numbers will sometimes allow better
performance if it is 8-byte aligned, because the vector routines can
use double-precision load and store operations to move two operands
at a time.

• A double-precision array of numbers will sometimes allow better
performance if it is 32-byte, or cache-line, aligned. This is because of
the way the vector routines interact with the data caches on HP 9000
systems.
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Cache Aliasing
HP 9000 systems employ high-speed cache memory to store the most
recently used instructions and data. The location of instructions and
data in the cache is a function of the n low-order bits of the address of the
data or instruction. Consequently, instructions and data that have the
same n low-order bits compete for the same cache space. Such competing
objects are called cache aliases of each other.

Programs that contain loops in which two or more cache aliases are
referenced will run more slowly than expected because the system must
repeatedly swap aliased objects into and out of the cache.

Data cache aliasing can occur when two data objects that are far apart
in virtual memory (so that their addresses have the same low-order bits
but different high-order bits) are referenced in the same loop.
Instruction cache aliasing, which is less likely to happen but has
more serious effects, can occur when two routines invoked in a loop are
aliases of each other. In this case, the invocation of the second routine
forces the first routine out of the cache, and the next time through the
loop the first routine pushes the second routine out of the cache.

Table 7-1 illustrates this situation using a 1K-byte cache example. If the
cache addresses of subr1  and subr2  overlap significantly, instruction
cache aliasing can produce a severe performance degradation.
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Table 7-1 Typical Instruction Cache Aliasing Situation

Detecting problems with instruction cache aliases is an inexact process
because the system does not keep records of cache hits and misses. You
may notice, after making some modifications to one piece of code, that a
seemingly unrelated routine runs more slowly than before. This can
happen if your modifications change the virtual address map of your
program and cause increased cache aliasing occurrences. Or you may
suspect that a routine is running much more slowly than it should.

Fixing instruction cache problems is also difficult because you do not
have much control over what virtual addresses are assigned to data and
instructions. However, you can move routines around within a source
module, and you can change the order in which object modules are joined
by the linker. There are no hard and fast rules about how the linker
orders various data and text sections, but it tends to place them in the
same order in which you list them in the compiler or ld  command line.
You can take advantage of this fact by reordering the modules on the
command line.

Code Description Address

DO 10 I = 1,1000
CALL subr1
CALL subr2

10 CONTINUE
       END

Main
program loop

SUBROUTINE subr1
.
.
RETURN
END

First
subroutine

P

P+L1
(L1 = length of
subr1 code)

SUBROUTINE subr2
.
.
RETURN
END

Second
subroutine

Q

Q+L2
(L2 = length of
subr2 code)
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Data cache aliasing is a more common performance problem than
instruction cache aliasing, but it is also easier to deal with. If you suspect
that your application is experiencing data cache performance problems
on scalar or small vectors of data, you can usually correct the situation
by rearranging the order in which your variables are allocated in
memory. In Fortran you can do this by reordering common block
assignments.

If your application uses very large arrays of data, hundreds of kilobytes
or megabytes in length, than chances are good that you will experience
data cache aliasing problems no matter how your data arrays are
allocated in memory, simply because the arrays are too big to fit in the
data cache all at once. In this case, you may be able to improve
performance by using the +Odataprefetch  option, either alone or in
conjunction with +Ovectorize . (See “Optimizing Your Program” on
page 169 for information about these options.)

Another way to improve performance for very large arrays is to increase
the locality of references to your data. This technique, sometimes called
tiling, requires selecting an algorithm that processes as much data as
possible while the data is resident in the cache so as to minimize the
number of times the data must be re-cached later. The routines in the
BLAS library use tiling when they operate on large matrices of data. For
example, in multiplying two large matrices, each matrix is cut into tiles,
which are processed in pairs. The size of the tiles is determined at run
time by the size of the matrices and the size of the data cache on the
system executing the application.
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Static Variables
A static variable retains its value between invocations of the routine in
which it is declared. From a performance standpoint, static variables are
costly because they prohibit the compiler from making certain types of
optimizations. For example, a subroutine that contains a static variable
is ineligible for certain optimizations.

There are several ways to give a variable static storage class. In C, you
can declare the variable globally, or you can use the static  storage class
specifier. In Fortran, you can use the +save , -K  or +e option (see
“Creating and Zeroing Static Data (Fortran only)” on page 176); place
variables in a common block; specify them in a SAVE statement; use a
DATA statement to initialize variables; or give the initial value in a
declaration. The preferred method is always to specify static duration
only for those variables that absolutely must be static. For example, you
should be particularly cautious about using the +save , -K  and +e
options because they place all of a program’s local variables in static
storage.
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Quad-Precision Computations
Computations involving quad-precision operands are inherently much
slower than those involving double-precision or single-precision
operands. The reason is that HP 9000 hardware supports only
single-precision and double-precision operations. All quad-precision
operations, even the simplest arithmetic ones, are performed in software.
For this reason, you should use quad-precision for performance-sensitive
code only if your application absolutely requires this degree of precision.
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A The C Math Library

The HP-UX C math library, libm , supports all mathematical functions
specified by the ANSI C standard, ANS X3.159-1989, as well as functions
specified by the XPG4.2, SVID, and COSE Common API (Spec 1170)
specifications.
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In addition, the library supports the following value-added functions
specific to HP-UX:

• float  versions of many mathematical functions

• Degree-valued trigonometric functions

• A group of functions and macros recommended by the IEEE standard
(see Table 2-12 on page 65), including fpclassify , copysign , and
isfinite

• An additional group of floating-point classification macros approved
by the ISO/ANSI C committee for inclusion in the C9X draft standard

• The fenv(5) suite, a collection of functions (approved by the ISO/ANSI
C committee for inclusion in the C9X draft standard) that allow an
application to manipulate the floating-point status register (see
Chapter 5 for more information)

If your program calls libm  math functions, you must link in the
appropriate library explicitly. See “Locations of the Math Libraries at
Release 10.30” on page 27 for a list of the different versions of libm  and
their directory locations.

For more information about math libraries, including C math library
error handling, see “HP-UX Math Libraries on HP 9000 Systems” on
page 95. For details about these functions, see the online man pages.
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C Math Library Tables
Table A-1 lists by category all of the functions provided by the C math
library. Table A-2 lists the functions alphabetically. All of these functions
are defined in the header files /usr/include/math.h  and
/usr/include/fenv.h .

If a millicode version of a function exists, the tables note it in
parentheses. See “Millicode Versions of Math Library Functions” on
page 112 for details on how to obtain these versions.
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Table A-1 The C Math Library (By Category)

Function What It Does

Trigonometric Functions for Radian-Value Arguments

double acos(double x); Returns arccosine of x in radians.
(Millicode version available)

double asin(double x); Returns arcsine of x in radians. (Millicode
version available)

double atan(double x); Returns arctangent of x in radians.
(Millicode version available)

double atan2(double y, double x); Returns arctangent of y/x in radians.
(Millicode version available)

double cos(double x); Returns cosine of x (x in radians).
(Millicode version available)

double sin(double x); Returns sine of x (x in radians). (Millicode
version available)

double tan(double x); Returns tangent of x (x in radians).
(Millicode version available)

Trigonometric Functions for Degree-Value Arguments

double acosd(double x); Returns arccosine of x in degrees.

double asind(double x); Returns arcsine of x in degrees.

double atand(double x); Returns arctangent of x in degrees.

double atan2d(double y, double x); Returns arctangent of y/x in degrees.

double cosd(double x); Returns cosine of x (x in degrees).

double sind(double x); Returns sine of x (x in degrees).

double tand(double x); Returns tangent of x (x in degrees).

Other Transcendental Functions

double acosh(double x); Returns inverse hyperbolic cosine of x.

double asinh(double x); Returns inverse hyperbolic sine of x.
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Other Transcendental Functions (cont.)

double atanh(double x); Returns inverse hyperbolic tangent of x.

double cosh(double x); Returns hyperbolic cosine of x.

double erf(double x); Returns error function of x.

double erfc(double x); Returns 1.0 − erf(x).

double exp(double x); Returns exponential function of x.
(Millicode version available)

double expm1(double x); Returns exp(x) − 1.

double gamma(double x); Returns logarithm of the absolute value of
the gamma function of x (same as
lgamma). (Obsolescent; will become true
gamma function at a future release)

int ilogb(double x); Returns the integer form of the binary
exponent of the floating-point value x.

double j0(double x); Returns Bessel function of x of the first
kind of order 0.

double j1(double x); Returns Bessel function of x of the first
kind of order 1.

double jn(int n, double x); Returns Bessel function of x of the first
kind of order n.

double lgamma(double x); Returns logarithm of the absolute value of
the gamma function of x.

double lgamma_r(double x,
                int * sign);

Returns logarithm of the absolute value of
the gamma function of x (reentrant
version of lgamma).

double log(double x); Returns natural logarithm of x. (Millicode
version available)

double log10(double x); Returns base 10 logarithm of x. (Millicode
version available)

Function What It Does
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Other Transcendental Functions (cont.)

double log1p(double x); Returns log(1 + x).

double log2(double x); Returns base 2 logarithm of x.

double logb(double x); Returns the exponent of x as an
integer-valued double-precision number;
formally, the integral part of log2 |x|.

double pow(double x, double y); Returns x to the power y. (Millicode
version available)

double scalb(double x, double n); Returns x*(2**n), computed efficiently.

double sinh(double x); Returns hyperbolic sine of x.

double tanh(double x); Returns hyperbolic tangent of x.

double y0(double x); Returns Bessel function of x of the second
kind of order 0.

double y1(double x); Returns Bessel function of x of the second
kind of order 1.

double yn(int n, double x); Returns Bessel function of x of the second
kind of order n.

Miscellaneous Mathematical Functions

double cabs(struct {double x, y} z); Obsolete (replaced by hypot ).

double cbrt(double x); Returns cube root of x.

double ceil(double x); Returns smallest integral value not less
than x.

double copysign(double x, double y); Returns x with its sign changed to y’s.

double drem(double x, double y); Obsolete (replaced by remainder ).

double fabs(double x); Returns absolute value of x.

double floor(double x); Returns largest integral value not greater
than x.

Function What It Does
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Miscellaneous Mathematical Functions (cont.)

double fmod(double x, double y); Returns floating-point remainder (f) of the
division of x by y, where f has the same
sign as x, such that x = iy + f for some
integer i, and |f| < |y|.

double frexp(double value,
             int * eptr);

Returns fraction part of a double value;
stores exponent in the location pointed to
by eptr.

double hypot(double x, double y); Returns sqrt(x * x + y * y).

double ldexp(double value, int exp); Returns value*(2**exp).

int _matherr(struct exception * x); Obsolete; see “Math Library Error
Handling for C” on page 102.

double modf(double value,
            double * iptr);

Returns signed fractional part of value;
stores integral part in the location pointed
to by iptr.

double remainder(double x,
                 double y);

Returns the remainder r = x − n*y where n
is the integer nearest the exact value of
x/y. Implements the IEEE remainder
operation.

double rint(double x); Rounds x to integer-valued
double-precision number, in the direction
of the current rounding mode.

double sqrt(double x); Returns nonnegative square root of x.

float Versions of Math Functions

float acosdf(float x); Returns arccosine of x in degrees.

float acosf(float x); Returns arccosine of x in radians.

float asindf(float x); Returns arcsine of x in degrees.

float asinf(float x); Returns arcsine of x in radians.

float atandf(float x); Returns arctangent of x in degrees.

Function What It Does
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float Versions of Math Functions (cont.)

float atanf(float x); Returns arctangent of x in radians.

float atan2df(float y, float x); Returns arctangent of y/x in degrees.

float atan2f(float y, float x); Returns arctangent of y/x in radians.

float cbrtf(float x); Returns cube root of x.

float copysignf(float x, float y); Returns x with its sign changed to y’s.

float cosdf(float x); Returns cosine of x (x in degrees).

float cosf(float x); Returns cosine of x (x in radians).
(Millicode version available)

float coshf(float x); Returns hyperbolic cosine of x.

float expf(float x); Returns exponential function of x.

float fabsf(float x); Returns absolute value of x.

float fmodf(float x, float y); Returns floating-point remainder (f) of the
division of x by y, where f has the same
sign as x, such that x = iy + f for some
integer i, and |f| < |y|.

float logf(float x); Returns natural logarithm of x. (Millicode
version available)

float log10f(float x); Returns base 10 logarithm of x.

float log2f(float x); Returns base 2 logarithm of x.

float powf(float x, float y); Returns x to the power y.

float sindf(float x); Returns sine of x (x in degrees).

float sinhf(float x); Returns hyperbolic sine of x.

float sinf(float x); Returns sine of x (x in radians). (Millicode
version available)

float sqrtf(float x); Returns nonnegative square root of x.

Function What It Does
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float Versions of Math Functions (cont.)

float tandf(float x); Returns tangent of x (x in degrees).

float tanf(float x); Returns tangent of x (x in radians).
(Millicode version available)

float tanhf(float x); Returns hyperbolic sine of x.

Floating-Point Classification Macros and Function

int isfinite( floating-type x); Returns a nonzero value just when
−infinity < x < +infinity; returns 0
otherwise (when |x| = infinity or x is
NaN).

int fpclassify( floating-type x); Returns the IEEE class of x.

int isinf( floating-type x); Returns a nonzero integer if x is an
infinity. Otherwise returns zero.

int isnan( floating-type x); Returns a nonzero integer if x is NaN
(not-a-number). Otherwise returns zero.

int isnormal( floating-type x); Returns a nonzero integer if x is a
normalized value. Otherwise returns zero.

double nextafter(double x,
                 double y);

Returns the next representable neighbor
of x in the direction of y.

int signbit( floating-type x); Returns a nonzero integer if the sign of x
is negative. Otherwise returns zero.

fenv Suite

void feclearexcept(int excepts); Clears the exception flags represented by
excepts.

void fegetenv(fenv_t * envp); Stores the current floating-point
environment in the object pointed to by
envp.

Function What It Does
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fenv Suite (cont.)

void fegetexceptflag
      (fexcept_t * flagp, int excepts);

Stores the exception flags indicated by the
argument excepts in the object pointed to
by the argument flagp.

int fegetflushtozero(void); Retrieves the value representing the
current underflow mode.

int fegetround(void); Returns the current rounding direction.

int fegettrapenable(void); Determines which exception trap enable
bits are currently set.

int feholdexcept(fenv_t * envp); Saves the current floating-point
environment in the object pointed to by
envp, clears the exception flags, and
disables all traps.

void feraiseexcept(int excepts); Raises the exceptions represented by
excepts.

void fesetenv(const fenv_t * envp); Establishes the floating-point
environment respresented by the object
pointed to by envp.

void fesetexceptflag
(const fexcept_t * flagp, int excepts);

Sets the status for the exception flags
indicated by the argument excepts
according to the representation in the
object pointed to by flagp.

void fesetflushtozero(int mode); Establishes the underflow mode
represented by mode.

int fesetround(int round); Establishes the rounding direction
represented by round.

void fesettrapenable(int excepts); Sets the exception trap enable bits as
indicated by the argument excepts.

Function What It Does
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fenv Suite (cont.)

int fetestexcept(int excepts); Determines which of a specified subset of
the exception flags are currently set.

void feupdateenv
                (const fenv_t * envp);

Saves the current exceptions in its
automatic storage, installs the
floating-point environment represented
through envp, and then raises the saved
exceptions.

Function What It Does
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Table A-2 The C Math Library (Alphabetical Listing)

Function What It Does

double acos(double x); Returns arccosine of x in radians.
(Millicode version available)

double acosd(double x); Returns arccosine of x in degrees.

float acosdf(float x); Returns arccosine of x in degrees.

float acosf(float x); Returns arccosine of x in radians.

double acosh(double x); Returns inverse hyperbolic cosine of x.

double asin(double x); Returns arcsine of x in radians. (Millicode
version available)

double asind(double x); Returns arcsine of x in degrees.

float asindf(float x); Returns arcsine of x in degrees.

float asinf(float x); Returns arcsine of x in radians.

double asinh(double x); Returns inverse hyperbolic sine of x.

double atan(double x); Returns arctangent of x in radians.
(Millicode version available)

double atand(double x); Returns arctangent of x in degrees.

float atandf(float x); Returns arctangent of x in degrees.

float atanf(float x); Returns arctangent of x in radians.

double atanh(double x); Returns inverse hyperbolic tangent of x.

double atan2(double y, double x); Returns arctangent of y/x in radians.
(Millicode version available)

double atan2d(double y, double x); Returns arctangent of y/x in degrees.

float atan2df(float y, float x); Returns arctangent of y/x in degrees.

float atan2f(float y, float x); Returns arctangent of y/x in radians.

double cabs(struct {double x, y} z); Obsolete (replaced by hypot ).

double cbrt(double x); Returns cube root of x.
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float cbrtf(float x); Returns cube root of x.

double ceil(double x); Returns smallest integral value not less
than x.

double copysign(double x, double y); Returns x with its sign changed to y’s.

float copysignf(float x, float y); Returns x with its sign changed to y’s.

double cos(double x); Returns cosine of x (x in radians).
(Millicode version available)

double cosd(double x); Returns cosine of x (x in degrees).

float cosdf(float x); Returns cosine of x (x in degrees).

float cosf(float x); Returns cosine of x (x in radians).
(Millicode version available)

double cosh(double x); Returns hyperbolic cosine of x.

float coshf(float x); Returns hyperbolic cosine of x.

double drem(double x, double y); Obsolete (replaced by remainder ).

double erf(double x); Returns error function of x.

double erfc(double x); Returns 1.0 − erf(x).

double exp(double x); Returns exponential function of x.
(Millicode version available)

float expf(float x); Returns exponential function of x.

double expm1(double x); Returns exp(x) − 1.

double fabs(double x); Returns absolute value of x.

float fabsf(float x); Returns absolute value of x.

void feclearexcept(int excepts); Clears the exception flags represented by
excepts.

void fegetenv(fenv_t * envp); Stores the current floating-point
environment in the object pointed to by
envp.
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void fegetexceptflag
      (fexcept_t * flagp, int excepts);

Stores the exception flags indicated by the
argument excepts in the object pointed to
by the argument flagp.

int fegetflushtozero(void); Retrieves the value representing the
current underflow mode.

int fegetround(void); Returns the current rounding direction.

int fegettrapenable(void); Determines which exception trap enable
bits are currently set.

int feholdexcept(fenv_t * envp); Saves the current floating-point
environment in the object pointed to by
envp, clears the exception flags, and
disables all traps.

void feraiseexcept(int excepts); Raises the exceptions represented by
excepts.

void fesetenv(const fenv_t * envp); Establishes the floating-point
environment respresented by the object
pointed to by envp.

void fesetexceptflag
(const fexcept_t * flagp, int excepts);

Sets the status for the exception flags
indicated by the argument excepts
according to the representation in the
object pointed to by flagp.

void fesetflushtozero(int mode); Establishes the underflow mode
represented by mode.

int fesetround(int round); Establishes the rounding direction
represented by round.

void fesettrapenable(int excepts); Sets the exception trap enable bits as
indicated by the argument excepts.

int fetestexcept(int excepts); Determines which of a specified subset of
the exception flags are currently set.
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void feupdateenv
                (const fenv_t * envp);

Saves the current exceptions in its
automatic storage, installs the
floating-point environment represented
through envp, and then raises the saved
exceptions.

double floor(double x); Returns largest integral value not greater
than x.

double fmod(double x, double y); Returns floating-point reainder (f) of the
division of x by y, where f has the same
sign as x, such that x = iy + f for some
integer i, and |f| < |y|.

float fmodf(float x, float y); Returns floating-point remainder (f) of the
division of x by y, where f has the same
sign as x, such that x = iy + f for some
integer i, and |f| < |y|.

int fpclassify( floating-type x); Returns the IEEE class of x.

double frexp(double value,
int * eptr);

Returns fraction part of a double value;
stores exponent in the location pointed to
by eptr.

double gamma(double x); Returns logarithm of the absolute value of
the gamma function of x (same as
lgamma). (Obsolescent; will become true
gamma function at a future release)

double hypot(double x, double y); Returns sqrt(x * x + y * y).

int ilogb(double x); Returns the integer form of the binary
exponent of the floating-point value x.

int isfinite( floating-type x); Returns a nonzero value just when
-infinity < x < +infinity; returns 0
otherwise (when |x| = infinity or x is
NaN).

int isinf( floating-type x); Returns a nonzero integer if x is an
infinity. Otherwise returns zero.
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int isnan( floating-type x); Returns a nonzero integer if x is NaN
(not-a-number). Otherwise returns zero.

int isnormal( floating-type x); Returns a nonzero integer if x is a
normalized value. Otherwise returns zero.

double j0(double x); Returns Bessel function of x of the first
kind of order 0.

double j1(double x); Returns Bessel function of x of the first
kind of order 1.

double jn(int n, double x); Returns Bessel function of x of the first
kind of order n.

double ldexp(double value, int exp); Returns value*(2**exp).

double lgamma(double x); Returns logarithm of the absolute value of
the gamma function of x.

double lgamma_r(double x,
                int * sign);

Returns logarithm of the absolute value of
the gamma function of x (reentrant
version of lgamma).

double log(double x); Returns natural logarithm of x. (Millicode
version available)

double logb(double x); Returns the exponent of x as an
integer-valued double-precision number;
formally, the integral part of log2 |x|.

float logf(float x); Returns natural logarithm of x. (Millicode
version available)

double log10(double x); Returns base 10 logarithm of x. (Millicode
version available)

float log10f(float x); Returns base 10 logarithm of x.

double log1p(double x); Returns log(1 + x).

double log2(double x); Returns base 2 logarithm of x.

float log2f(float x); Returns base 2 logarithm of x.
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int _matherr(struct exception * x); Obsolete; see “Math Library Error
Handling for C” on page 102.

double modf(double value,
            double * iptr);

Returns signed fractional part of value;
stores integral part in the location pointed
to by iptr.

double nextafter(double x,
double y);

Returns the next representable neighbor
of x in the direction of y.

double pow(double x, double y); Returns x to the power y. (Millicode
version available)

float powf(float x, float y); Returns x to the power y.

double remainder(double x,
double y);

Returns the remainder r = x − n*y where n
is the integer nearest the exact value of
x/y. Implements the IEEE remainder
operation.

double rint(double x); Rounds x to integer-valued
double-precision number, in the direction
of the current rounding mode.

double scalb(double x, double n); Returns x*(2**n), computed efficiently.

int signbit( floating-type x); Returns a nonzero integer if the sign of x
is negative. Otherwise returns zero.

double sin(double x); Returns sine of x (x in radians). (Millicode
version available)

double sind(double x); Returns sine of x (x in degrees).

float sindf(float x); Returns sine of x (x in degrees).

float sinf(float x); Returns sine of x (x in radians). (Millicode
version available)

double sinh(double x); Returns hyperbolic sine of x.

float sinhf(float x); Returns hyperbolic sine of x.

double sqrt(double x); Returns nonnegative square root of x.
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float sqrtf(float x); Returns nonnegative square root of x.

double tan(double x); Returns tangent of x (x in radians).
(Millicode version available)

double tand(double x); Returns tangent of x (x in degrees).

float tandf(float x); Returns tangent of x (x in degrees).

float tanf(float x); Returns tangent of x (x in radians).
(Millicode version available)

double tanh(double x); Returns hyperbolic tangent of x.

float tanhf(float x); Returns hyperbolic sine of x.

double y0(double x); Returns Bessel function of x of the second
kind of order 0.

double y1(double x); Returns Bessel function of x of the second
kind of order 1.

double yn(int n, double x); Returns Bessel function of x of the second
kind of order n.
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B The Fortran Math Library

The HP-UX Fortran and Pascal library, libcl , contains all Fortran and
Pascal library routines (for example, input/output routines) as well as
mathematical functions.
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The mathematical functions that libcl  supports are as follows:

• The Fortran intrinsic functions, which are described in the HP
Fortran 90 Programmer’s Reference and the HP FORTRAN/9000
Programmer’s Reference. Fortran intrinsic functions have
single-precision, double-precision, and quad-precision versions. (See
“Quad-Precision Computations” on page 189 for information about
the performance impact of quad-precision computations.)

• The Pascal predefined math functions, which are described in the HP
Pascal/HP-UX Reference Manual.

If you compile and link with the f90 , f77 , or pc  command, a version of
libcl  is linked in automatically. You may specify a nondefault location
for libcl  by linking in the library explicitly. See “Locations of the Math
Libraries at Release 10.30” on page 27 for a list of the different versions
of libcl  and their directory locations.

You can call routines from the BLAS library, libblas , by specifying
-lblas  on the f77  command line. See “The BLAS Library (libblas)” on
page 119 and the HP FORTRAN/9000 Programmer’s Reference for
information about this library.

NOTE The BLAS library is provided with the HP Fortran 90 and HP
FORTRAN/9000 products only.

For more information about math libraries, including Fortran math
library error handling, see Chapter 4.
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Floating-Point Problem Checklist
This appendix provides a checklist of problems you might encounter
when compiling, linking, or running a floating-point application. For
each kind of problem, we list possible reasons for the problem and direct
you to the section of this manual where the reason is discussed.

We divide the problems into two categories:

• Results that are different from those produced when the application
was run previously

• Results that are clearly incorrect or are much less precise than
expected

These categories are not mutually exclusive. If you find your application
produces results that are both different from before and inaccurate, look
at the suggestions in both categories.

Finally, we discuss the possible causes of compiling and linking errors
you may get when you build a floating-point application.
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Results Different from Those Produced
Previously
If your application produces results that are somewhat different from
those produced when you ran it before (either on HP-UX or on another
vendor’s system), consider the following possibilities:

• Are you porting an application to HP-UX from another vendor’s
system? If the other system does not comply with the IEEE standard,
your results will almost certainly be different on HP-UX. If the other
system is also IEEE-compliant, slight differences in results may come
from differences in the rounding errors introduced by variations in
the ordering of basic operations within expressions or within library
functions.

See Chapter 2 for an overview of the IEEE standard. See “How Basic
Operations Affect Application Results” on page 69 for information on
how basic operations affect results.

• Did you use a different version of the math library? Different versions
of the HP-UX operating system will often contain improved versions
of the math libraries. Your application may be affected by these
changes if it uses shared libraries or if you have rebuilt it on a system
that is running a different version of HP-UX. Using the +DA option on
the compile command line also affects which library version you use.

For details, see “Math Libraries and System Architecture” on page 25,
“Operating System Release of Build-Time System” on page 79, and
“Operating System Release of Run-Time System” on page 79.

For more information about the effects of math library changes, see
“How Mathematical Library Functions Affect Application Results” on
page 71 and “Operating System Release of Build-Time System” on
page 79. For specific information about the enhanced HP-UX math
libraries, see “Contents of the HP-UX Math Libraries” on page 112,
Appendix A, and Appendix B.

• Are you using a different compiler, or a different version of the
compiler? A new compiler version may perform such operations as
constant parsing and constant folding somewhat differently. It may
also order some expressions somewhat differently.
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For information about the effects of compiler version changes, see
“Compiler Behavior and Compiler Version” on page 76.

• Are you using different compiler options? Compiling at a different
optimization level may change the way the compiler performs such
operations as expression reordering and operation reordering.

For more information, see “Compiler Options” on page 77 and
“Run-Time Mode Control: The fenv(5) Suite” on page 125.

• Have you changed the rounding mode or the underflow mode for your
application? If you use the fesetround  function to change the
rounding mode from the default (round to nearest), application
results will probably change. If you use the fesetflushtozero
function or the +FP compiler option to change the underflow mode to
flush-to-zero mode, results that underflow are flushed to 0 instead of
denormalized, and application results may also change.

For more information, see “Values of Certain Modifiable Hardware
Status Register Fields” on page 80 and all of Chapter 5.
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Incorrect or Imprecise Results
If your application produces results that are either clearly incorrect or
much less precise than you expected, consider the following possibilities:

• Did your application encounter an exception condition, either in a
basic operation or in a math library function? Exceptions such as
overflows, or invalid arguments to library functions, can introduce a
dramatic amount of error into a computation. On HP-UX systems,
exceptions by default do not prevent an application from continuing;
you must detect exceptions explicitly.

For information on how exceptions can affect application results, see
“How Exceptions and Library Errors Affect Application Results” on
page 72. For information on math library error handling, see “Math
Library Basics” on page 99. For information on how to detect and trap
exceptions, see Chapter 6.

• Did you forget to include math.h  in a C program that calls math
library functions?  Or did you compile your C program with -Aa
(strict ANSI) but call a math function not specified by the ANSI C
standard? If so, the C compiler generates code that expects the
default C function return value of type int, and the function returns
an incorrect result.

For more information, see “The C Math Library (libm)” on page 114.

• Does your application convert values properly from decimal (ASCII)
to binary and vice versa? Check the points at which your program
assigns constant values to variables, reads file or keyboard input into
variables, and writes variables to files or to the screen. Make sure
that the format specifications in your program allow the right amount
of precision in the values being read and written.

For more information on conversions between decimal and binary, see
“Conversions Between Decimal and Binary Floating-Point Format” on
page 52 and “Conversions Between Binary and Decimal” on page 74.

• Does your program test floating-point values for equality? Because of
the inherent inexactness of floating-point representations, values
that should be equal from a purely algebraic perspective in fact rarely
are.
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Incorrect or Imprecise Results
For more information, see “How Basic Operations Affect Application
Results” on page 69 and “Testing Floating-Point Values for Equality”
on page 82.

• Does your application take the difference of floating-point values that
are similar in magnitude? Such subtraction can result in the loss of
many significant digits.

For more information, see “Taking the Difference of Similar Values”
on page 85.

• Conversely, does your application add values that are very different
in magnitude? Such addition can also result in the loss of many
significant digits.

For more information, see “Adding Values with Very Different
Magnitudes” on page 86.

• Does your application underflow? An unintentional underflow during
a calculation can result in the loss of many significant digits.

For more information, see “Unintentional Underflow” on page 89.

• Does your application truncate floating-point values to integer? In C
and Fortran, assigning a floating-point value to an integer variable
causes the value to be truncated, not rounded to the nearest integer.

For more information, see “Truncation to an Integer Value” on
page 90.

• Does your application contain ill-conditioned computations—those
that use arguments near a function’s singularity, where small
differences in input produce results so different that the results are
meaningless?

For more information, see “Ill-Conditioned Computations” on page 92.

• (Fortran only) Are you computing in double or quad precision, but
have one or more undeclared variables, which in Fortran default to
single precision?

For more information, see the HP FORTRAN/9000 Programmer’s
Reference.

• Does your program call functions in the fenv(5) suite of routines, and
did you compile it at an optimization level greater than +O0? If so,
operation reordering around the function calls may have unexpected
effects.
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Incorrect or Imprecise Results
For more information, see “Run-Time Mode Control: The fenv(5)
Suite” on page 125.
Appendix C 217



Floating-Point Problem Checklist
Compiling and Linking Errors
Compiling and Linking Errors
If the C compiler issues an error message like the following:

cc: ”myprog.c”, line 16: error 1588: ”FE_ALL_EXCEPT” undefined.

cc: “atanh.c”, line 59: error 1588: “HUGE_VAL” undefined.

make sure your program includes the fenv.h  and/or the math.h  header
file. If it does, make sure you are compiling with the default -Ae  option
or with both the -Aa  and -D_HPUX_SOURCE options. See “Scalar Math
Libraries (libm and libcl)” on page 112 for details.

If the linker issues an error message like the following:

/usr/ccs/bin/ld: Unsatisfied symbols:
   log10 (code)
   sqrt (code)
   pow (code)

you may have forgotten to link in a math library (-lm ). See “Scalar Math
Libraries (libm and libcl)” on page 112 for details. If the linker issues a
similar message for a macro:

/usr/ccs/bin/ld: Unsatisfied symbols:
   isfinite (code)

make sure your program includes the math.h  header file.

If the linker issues an error message like the following:

/usr/ccs/bin/ld: Illegal argument combination
(/usr/lib/libm.a(cs_fabsf.o), fabsf)

make sure you are compiling with the default -Ae  option or with both
the -Aa  and -D_HPUX_SOURCE options. See “Scalar Math Libraries (libm
and libcl)” on page 112 for details.

If you get these kinds of messages when you compile or link a C++
program, make sure you are compiling with the +a1  and
-D_HPUX_SOURCE options.
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Items in this font represent terms
that are defined elsewhere in the
glossary.

addition One of the basic
operations defined by the IEEE
standard.

alignment The type of address
that a data object has in memory.
Data objects can have 1-byte, 2-
byte, 4-byte, or 8-byte alignment,
meaning that the object is stored
at an address evenly divisible by 1,
2, 4, or 8.

archive library A collection of
object modules. When an
application is linked with an
archive library, the linker scans
the contents of the archive library
and extracts the object modules
that satisfy any unresolved
references in the application. The
linker copies the archive library
modules into the application’s
code section. See also shared
library.

aware A version of a
comparison assertion that treats
a NaN (Not-a-Number) as a
special value that compares as
neither less than nor greater than
any normalized value, and as
Glossary
unequal to any value, including
another NaN and itself. See also
non-aware.

bias In a floating-point
representation, a value that is
subtracted from the represented
exponent to get the actual
exponent. For single-precision
formats, the bias is 127; for
double-precision formats, it is
1023; for quad-precision formats,
it is 16383. See also biased
representation.

biased representation A
floating-point representation
that adds a constant value (the
bias) to the actual exponent, so
that actual exponents, which may
be negative or positive, are always
represented as positive.

BLAS library The Basic Linear
Algebra Subroutine (BLAS)
library, a math library that
contains routines that perform
low-level vector and matrix
(array) operations. This library is
provided with the HP Fortran 90
and FORTRAN/9000 products
only.

cache aliases Two sets of data
or instruction addresses that have
the same n low-order bits and
therefore occupy the same cache
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address. See also data cache
aliasing, instruction cache
aliasing.

ceiling The ceiling of a value is
the smallest whole number greater
than that value. See also floor.

comparison One of the basic
operations defined by the IEEE
standard. The comparison
operation determines the truth of
an assertion about the relationship
of two floating-point values.
There are four possible relations:
less than, equal, greater than, and
unordered. See also aware, non-
aware.

constant folding A compile-
time expression evaluation that
determines whether an expression
evaluates to a constant and, if it
does, replaces the expression with
the constant.

control register See floating-
point status register.

conversion One of the basic
operations defined by the IEEE
standard.

data cache aliasing The form of
cache aliasing that occurs when
the addresses of two data objects
have the same low-order bits but
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different high-order bits. See also
cache aliases, instruction
cache aliasing.

denormalized value A floating-
point value that is represented by
a sign bit, a zero exponent, and a
non-zero fraction. (If the fraction
were also zero, the floating-point
value would be zero.) A
denormalized value has a
magnitude greater than zero and
less than any normalized value.

division One of the basic
operations defined by the IEEE
standard.

division by zero condition The
exception condition that occurs
when the system attempts to
divide a nonzero, finite value by
zero; more generally, when an
exact infinity is produced from
finite operands.

domain errors Errors generated
by math library routines when
they encounter invalid arguments.
See also range errors.

double-extended precision See
quad-precision.

double-precision An IEEE
floating-point format in which a
value occupies 64 bits: 1 bit for the
Glossary



Glossary
sign, 11 bits for the exponent, and
52 bits for the fraction. See also
single-precision, quad-
precision.

error condition See exception
condition.

exception See exception
condition.

exception condition A condition
that may require special handling
to make further execution of an
application meaningful. In many
applications, the occurrence of an
exception indicates an error. The
IEEE standard specifies five
exception conditions: the inexact
result condition, the overflow
condition, the underflow
condition, the invalid
operation condition, and the
division by zero condition. See
also trap handler.

exception flags A group of bits
in the floating-point status
register. If an exception
condition occurs and the
corresponding exception trap
enable bit is not set, the floating-
point unit (FPU) sets the
corresponding exception flag to 1,
but does not cause a trap.
Glossary
exception trap enable bits A
group of bits in the floating-point
status register. If an exception
condition occurs and the
corresponding exception trap
enable bit is set, the floating-
point unit (FPU) causes a trap.
When the enable bit equals 0, the
exception usually sets the
corresponding exception flag to
1 instead of causing a trap.

exponent In a floating-point
representation, the bits that
represent a value to which 2.0 is
raised. See also fraction, sign bit.

fast underflow mode See flush-
to-zero mode.

fastmode See flush-to-zero
mode.

finite value A representable
floating-point value (that is, not an
infinity or a NaN (Not-a-
Number)).

floating-point Of or pertaining
to the method by which computer
systems represent and operate on
real numbers. The IEEE
standard specifies that a floating-
point value consists of a sign bit, a
fraction, and an exponent.
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floating-point status register A
register in the floating-point
unit (FPU) on PA systems that
controls the arithmetic rounding
mode, controls the underflow
mode (on many systems), enables
user-level traps, indicates
exceptions that have occurred,
indicates the result of a
comparison, and contains
information to identify the
implementation of the floating-
point unit.

floating-point unit (FPU) A
coprocessor that performs IEEE
floating-point operations on PA-
RISC systems. Also called the
floating-point coprocessor.

floor The floor of a value is the
greatest whole number less than
that value. See also ceiling.

flush-to-zero mode On some
systems, a method of handling
underflow conditions in which
the hardware simply substitutes a
zero for the result of an operation
that underflows, with no fault
occurring. (Normally, an
underflow involves a fault into the
kernel, where the IEEE-754-
specified conversion of the result
into a denormalized value or
zero is accomplished by software
emulation.)
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FMA Fused Multiply-Add, a kind
of instruction that combines a
multiplication and an addition into
a single operation. Also called
FMAC (floating-point multiply
accumulate).

fraction In a floating-point
representation, the bits that for
normalized values represent a
value between 1.0 and 2.0 that is
raised to a power of 2. See also
exponent, sign bit.

fraction implicit bit In a
floating-point representation, the
bit in the fraction that would
represent 1.0. Since this bit would
always be set, it is not included in
the actual format, but it is implied.

hidden bit See fraction
implicit bit.

IEEE standard The IEEE
Standard for Binary Floating-
Point Arithmetic (ANSI/IEEE Std
754-1985), which defines
specifications for representing and
manipulating floating-point
values so that programs written on
one IEEE-conforming machine
can be moved to another
conforming machine with
predictable results. The
international version of the IEEE
Glossary
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standard is Binary floating-point
arithmetic for microprocessor
systems (IEC 559:1989).

ill-conditioned Of or pertaining
to a computation in which small
changes to the input or to the
intermediate results cause
relatively large changes in the
final output.

inexact result condition The
exception condition that occurs
when a floating-point operation
produces a result that cannot be
represented exactly in the specified
floating-point format. Because
most floating-point operations
produce inexact results most of the
time, the inexact result condition
is not usually considered to be an
error. See also rounding.

infinity A floating-point value
that is represented by a sign bit, a
fraction that is all zeros, and an
exponent that is all ones. An
infinity has a magnitude greater
than any normalized value.

instruction cache aliasing The
form of cache aliasing that occurs
when two routines reside at
addresses that have the same low-
order bits but different high-order
bits. See also cache aliases, data
cache aliasing.
Glossary
invalid operation
condition The exception
condition that occurs whenever
the system attempts to perform an
operation that has no numerically
meaningful interpretation (for
example, 0.0/0.0).

least significant word In
double-precision and quad-
precision floating-point
formats, the 32-bit word in the
representation that contains the
last portion of the fraction. See also
most significant word.

library A collection of commonly
used routines, pre-compiled in
object format and ready to be
linked to an application.

mask bits See exception trap
enable bits.

math library A library that
contains routines that perform
higher-level mathematical
operations. On HP 9000 systems, C
math library functions are located
in the libm  math library; Fortran
and Pascal intrinsic functions are
located in the libcl  library; and
Basic Linear Algebra Subroutine
(BLAS) library routines are located
in the BLAS library (libblas ).
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most significant word In
double-precision and quad-
precision floating-point
formats, the 32-bit word in the
representation that contains the
sign bit, the exponent field, and
the first part of the fraction. See
also least significant word.

multiplication One of the basic
operations defined by the IEEE
standard.

NaN (Not-a-Number) A
floating-point value that is
represented by a sign bit, a
fraction with at least one bit set
to 1, and an exponent with all
bits set to 1. See also signaling
NaN (SNaN), quiet NaN
(QNaN).

natural alignment The
alignment that corresponds to the
length of the object. For example,
the natural alignment of an HP C
int  is 4-byte alignment.

non-aware A version of a
comparison assertion that
behaves the same as the aware
version, except that if either or
both operands is a quiet NaN
(QNaN), it also signals an invalid
operation condition for the <,
<=, >, and >= assertions. See also
aware.
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normal See normalized value.

normalization bit See fraction
implicit bit.

normalized value A floating-
point value that is represented by
a sign bit, a fraction, and an
exponent whose bits are not all
zeros and not all ones. A
normalized value has a magnitude
greater than any denormalized
value and less than infinity.

numerically unstable See ill-
conditioned.

operand errors See invalid
operation condition.

operation errors See invalid
operation condition.

overflow condition The
exception condition that occurs
when a floating-point operation
attempts to produce a result whose
magnitude, after rounding, is
greater than the maximum
representable value.

performance bottlenecks The
sections of code that require the
most execution time.
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performance tuning The
process of refining a program to
make it run faster.

precision The number of bits or
digits in which a value can be
represented. The precision of a
value indicates how close a
floating-point approximation
can be to the exact numeric value
being represented.

QNaN See quiet NaN (QNaN).

quad-precision The HP-UX
implementation of the IEEE
double-extended precision
floating-point format, in which a
value occupies 128 bits: 1 bit for
the sign, 15 bits for the exponent,
and 112 bits for the fraction. See
also single-precision, double-
precision.

quiet NaN (QNaN) A NaN (Not-
a-Number) that usually does not
generate an exception; instead, it
silently propagates unmodified
through an operation. On HP 9000
systems, a QNaN has the most
significant bit of the fraction set
to 0. See also signaling NaN
(SNaN).
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range errors Errors generated
by math library routines when
they underflow or overflow. See
also domain errors.

remainder One of the basic
operations defined by the IEEE
standard.

round to nearest The default
IEEE rounding mode, which
specifies that the result of an
operation should be the
representable value closest to the
true value. If two representable
values are equally close to the true
value, the result is the one whose
least significant bit is 0 (that is,
whose last digit is even).

round to nearest integral
value One of the basic operations
defined by the IEEE standard.

round toward +INFINITY The
IEEE rounding mode that
specifies that the result of an
operation should be the
representable value closest to
positive infinity (that is, the
algebraically greater value).

round toward −INFINITY The
IEEE rounding mode that
specifies that the result of an
operation should be the
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representable value closest to
negative infinity (that is, the
algebraically lesser value).

round toward zero The IEEE
rounding mode that specifies
that the result of an operation
should be the representable value
closest to zero (that is, the value
with the smaller magnitude).

rounding The act of choosing a
representable value when the
exact value produced by a
floating-point operation is not
representable. The IEEE
standard specifies four methods
of rounding, called rounding
modes. See also rounding error.

rounding error The error that
occurs when the result of an
operation is rounded to the nearest
representable value using an
algorithm specified by the
rounding mode.

rounding mode One of four
rounding methods specified by
the IEEE standard: round to
nearest (the default), round
toward +INFINITY, round
toward −INFINITY, and round
toward zero.
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shared library A collection of
object modules. When the linker
scans a shared library, it does not
copy modules into the application’s
code section, as it does with an
archive library. Instead, the
linker preserves information in the
application’s code section about
which unresolved references were
resolved in each shared library. At
run time, the shared library is
mapped into memory.

sign bit In a floating-point
representation, the bit that
indicates the sign of the value. In
IEEE formats, the sign bit is the
leftmost bit. See also exponent,
fraction.

signal handler See trap
handler.

signaling NaN (SNaN) A NaN
(Not-a-Number) that generates
an invalid operation condition
whenever it is used. On HP 9000
systems, an SNaN has the most
significant bit of the fraction set
to 1. See also quiet NaN (QNaN).

significand See fraction.

single-precision An IEEE
floating-point format in which
the value occupies 32 bits: 1 bit for
the sign, 8 bits for the exponent,
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and 23 bits for the fraction. See
also double-precision, quad-
precision.

SNaN See signaling NaN
(SNaN).

square root One of the basic
operations defined by the IEEE
standard.

static variable A variable that
retains its value between
invocations of the routine in which
it is declared. From a performance
standpoint, static variables are
costly because they prohibit the
compiler from making certain
types of optimizations.

sticky bits See exception flags.

subnormal See denormalized
value.

subtraction One of the basic
operations defined by the IEEE
standard.

sudden underflow mode See
flush-to-zero mode.

tiling Rearranging the
implementation of your algorithms
to process as much data as possible
while the data is resident in the
cache so as to minimize the
Glossary
number of times the data must be
re-cached later. See also cache
aliases.

Translation Lookaside Buffer
(TLB) A hardware unit that
serves as a cache for virtual-to-
absolute memory address
mapping.

trap A change in a program’s flow
of control due to the occurrence of
an exception condition.

trap handler A routine that is
invoked whenever a particular
exception condition is detected,
if the trap is enabled.

ULP (Unit in the Last
Place) The rightmost bit of a
floating-point representation.
ULPs measure the distance
between two numbers in terms of
their representation in binary. One
ULP is the distance from one value
to the next representable value in
the direction away from 0. See also
precision.

underflow condition The
exception condition that occurs
when a floating-point operation
attempts to produce a result that
may suffer extraordiary loss of
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accuracy because it is smaller in
magnitude than the smallest
normalized value.

unordered In comparison
operations, the relation that exists
between two operands if one or
both of them is a NaN (Not-a-
Number); one is neither less than,
equal to, nor greater than the
other.

vectorization The replacement
of a section of code that contains
operations on arrays with a call to
a special library routine. The
compiler attempts automatic
vectorization when invoked with
appropriate options.

zero A floating-point value that
is represented by a sign bit, a
fraction that is all zeros, and an
exponent that is all zeros. A zero
has a magnitude less than any
denormalized value.
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asinh function, 118
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61

atanh function, 118
aware version of comparison

assertions, 61
B
Basic Linear Algebra Subroutine

library. See BLAS library
bias, 37
biased representation

of exponent, 37
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converting to and from decimal
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displaying floating-point
values in, 75

BLAS library, 119
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versions of, effect on

performance, 178
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C
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commands
uname, 26
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operation, 59, 60
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