HP aC++ Online Programmer's Guide

© Copyright 1996, 1997, 1998, 1999 Hewlett-Packard Company All rights reserved.

Send mail to report errors or comment on the documentation.

Welcometo the HP aC++ Online Programmer's Guide. The guide is divided into the following files. String
search is available within each file. (Choose Edit, then Find.) Note that each file may contain links to related
topicsin other files.

e Command-Line Options e \What's New - including release notes for this
e Command Syntax and Environment version of HP aC++
Variables

e Diagnostic Messages e Information Map - whereto find more

e Distributing Y our HP aC++ Products information about this guide and about C++

e Exception Handling

e Getting Started e Glossary

e LEX and YACC with HP aC++

e Libraries e HP C++ (cfront) to HP aC++ Migration

e Mixing HP aC++ with Other Languages Guide

e Optimizing Your Code

e Pragmas Rogue Wave Library Reference Manuals

e Precompiled Header Files

e Preprocessing e Rogue Wave Tools.h++ Version 7.0.6 Reference

e Standardizing Y our Code Manual

e Templates
o Introduction and Overview e Rogue Wave Standard C++ Library Version 1.2.1
o Detaled Information Reference Manual

e Threads

NOTE: If you are accessing this guide from the World Wide Web URL, http://docs.hp.com, rather than from a
system on which HP aC++ isinstalled, Rogue Wave documentation is not available. The above two links and
any other such links within this guide will not succeed.

Command Line Options

Y ou can specify command-line options to the aCC command. They alow you to override the default actions of
the compiler. Each option begins with either a- or a+ sign. Any number of options can be interspersed
anywhere in the aCC command and they are typically separated by blanks.

For acomplete list of options, select Alphabetical List of Command Line Options. Otherwise, select a category:

Code Generation

Data Alignment and Storage
Debugging

Error Handling

Exception Handling
Extensions to the Language
Header Files

Help Online
Inlining
Libraries
Linker

See Also:

e Concatenating Options
o CXXOPTS Environment Variable

Naming the Output File
Native Language Support

Null Pointer Handling

Optimizing Y our Code

Precompiled Header Files

Preprocessor

Profiling Y our Code

Standards

Subprocesses of the Compiler

Templates

Verbose Compile and Link Information

Alphabetical List of Command Line Options

Select the option for which you want more information:

-.suffix
-Aa

+A

-b

-C

-Dname
+d

+DA architecture
+dfname
+dryrun
+D Smodel
-ext

-E

+ESfic
+ESsfc

-d

-g0

-gl

-G

+hdr cache
+hdr create
+hdr_dir
+hdr info
+hdr use
+hdr v

+help
+inline levelnum

+inst all
+inst

+inst

auto
close

+inst directed

+inst

implicit include

+inst

include suffixes

+inst

+inst

none
used

+inst v

-ldirectory

-1-
+l
+K

-lname

-Ldirectory
+m[d]

-N

+m[d
+M[d]
-n

+noeh

+nostl

-0 outfile
-0

+01
+02
+03

+04

+0

4
[nolall

+0

[nolaggressive

+0O

nojconservative

+0|

nolinfo

+0O[no]limit
nojsize
ptimization
| objdebug

Bl

al
+pgmname

E

lola

-S
-S

+time

-tx,name

+tmtarget

-Uname

+unum

-V

-V

-W

+w

-Wc,-ans_for scope,

on

[off]

-Wc,-koenig |ookup,

on

[off]

-Wx,args
+W args
+We args
Y

-Z

+z

+Z

Optionsto Control Code Generation
These options allow you to control what kind of code HP aC++ generates.

-C
Compile to relocatable object file without linking.

+DA architecture
Generate object code for a particular version of the PA-RISC architecture. Also specifie which version
of the HP-UX math library to use.
Set the target operating system for the compiler.

+D Smodel
Perform instruction scheduling tuned for a particular implementation of the PA-RISC architecture.

+k

Generate code for programs that use alarge number of global dataitemsin shared libraries.
-S

Compile to assembly language without linking.

+tmtarget

Compile code for optimization with a specific machine architecture.
+z

Generate position-independent code (PIC) to go into a shared library.
+Z

Generate position-independent code (PIC) to go into a shared library.

-c Command Line Option Syntax

-C
Description:
Compiles one or more source files but does not enter the linking phase.

The compiler produces an object file (afile ending with . o) for each sourcefile (afileendingwith.c,. C,. s, or
.i). Notethat you must eventually link object files before they can be executed.

Example:

aCC -c sub.C prog.C
Compilessub. Cand pr og. C and puts the relocatable object code in the filessub. o and pr og. o, respectively.

+DAarchitecture Command Line Option Syntax

+DAarchitecture

architecture can be one of the following:

e amodel number of an HP 9000 system (such as 730, 877, F20, or 150)

o aPA-RISC architecture designation (suchas2. 0 or 1. 1)

e theterm portable (Use +DApor t abl e to generate code compatible across 1.1 and 2.0 workstations and
servers.)

NOTE: Seethe/ opt /1 angt ool s/ i b/ sched. nodel s filefor alist of model numbers and their PA-RISC
architecture designations.

Description:

Generates object code for aparticular version of the PA-RISC architecture. Also specifies which version of the
HP-UX math library to link in when you have specified - | m (See theHP-UX Floating-Point Guide for more
information about using math libraries.)

NOTE: Object code generated for PA-RISC 2.0 will not execute on PA-RISC 1.1 systems.

To generate code compatible across PA-RISC 1.1 and 2.0 workstations and servers, use the +DApor t abl e
option.

For best performance use +DA with the model number or architecture where you plan to execute the program.

If you do not specify a+DA option, the default code generation is based on that of the system on which you
compile.

If you specify neither a+DA nor a+D S option, default instruction scheduling is based on that of the system on
which you compile. If you do specify a+DA option and do not specify a+DS option, default instruction
scheduling is based on what you specify in +DA, and not based on that of the system on which you compile.
For example, specify +DA1.1 and do not specify +DS, and instruction scheduling will be for 1.1. Specify
+DAportable and do not specify +DS, and instruction scheduling will be for 1.1. (+DAportableis currently
equivalent to +DA1.1.)
Examples:
The following examples generate code for various architectures, as noted:

e aCC +DA1.1 prog.C (PA-RISC 1.1)

e aCC +DA867 prog.C (PA-RISC 1.1)

e aCC +DA2.0 prog.C (PA-RISC 2.0)

e aCC +DAportable prog.C (compatible across 1.1 and 2.0 workstations and servers)
For More Information:

e Compiling for Different Versions of the PA-RISC Architecture

o Scethefile/ opt /1 angt ool s/ i b/ sched. model s for model numbers and their architectures. Use the
command uname - mto determine the model number of your system.

Compiling for Different Versions of the PA-RISC Architecture

Theinstruction set on PA-RISC 2.0 is asuperset of the instruction set on PA-RISC 1.1. Code generated for HP
9000 PA-RISC 1.1 systems will run on HP 9000 PA-RISC 2.0 systems, though possibly less efficiently than if
it were specifically generated for PA-RISC 2.0.

Code generated for PA-RISC 2.0 will not run on PA-RISC 1.1 systems.

Using +DA to Generate Code for a Specific Version of PA-RISC

When you use the +DA option depends on your particular circumstances.

e If you plan to run your program on the same system where you are compiling, you don't need to use
+DA.

e If you plan to run your program on one particular model of the HP 9000 and that model is different
from the one where you compile your program, use +DAarchitecture with the model number of the
target system.

For example, if you are compiling on a 720 and your program will run on an 855, use +DA855.
e If you plan to run your program on PA-RISC 2.0 and 1.1 models of the HP 9000, use +DApor t abl e.
Compiling in Networ ked Environments
When compiles are performed using diskless workstations or NFS-mounted file systems, it isimportant to note
that the default code generation and scheduling are based on the local host processor. The system model

numbers of the hosts where the source or object files reside do not affect the default code generation and
scheduling.

+DSmodel Command Line Option Syntax

+DSmodel

model can be either amodel number of an HP 9000 system (such as 725, 890, or G40), PA-RISC architecture
designation 1.1 or 2.0, or one of the PA-RISC processor names such as PA7000, PA7100, PA7100LC, or
PA8000. Seethefile/ opt /1 angt ool s/ | i b/ sched. nodel s for model numbers and processor names.

Description:
Performsinstruction scheduling tuned for a particular implementation of the PA-RISC architecture.

Object code with scheduling tuned for a particular model will execute on other HP 9000 systems, although
possibly less efficiently.

If you specify neither a+DA nor a+DS option, default instruction scheduling is based on that of the system on
which you compile. If you do specify a+DA option and do not specify a+DS option, default instruction
scheduling is based on what you specify in +DA, and not based on that of the system on which you compile.

For example, specify +DA1.1 and do not specify +DS, and instruction scheduling will be for 1.1. Specify
+DAportable and do not specify +DS, and instruction scheduling will be for 1.1. (+DAportableis currently
equivalent to +DA1.1))

If you plan to run your program on both PA-RISC 1.1 and 2.0 systems, use the +DS2.0 designation.
Examples:
+DS720
Performs instruction scheduling tuned for one implementation of PA-RISC 1.1.
+DS745
Performs instruction scheduling for another implementation of PA-RISC 1.1.
+DSPA8000
Performs instruction scheduling for systems based on the PA-RISC 8000 processor.
For MoreInformation:

e Using +DSto Specify Instruction Scheduling

o Seethefile/ opt /1 angt ool s/ 1i b/ sched. model s for model numbers and their processor names. Use

the command uname - mto determine the model number of your system.
Using +DSto Specify Instruction Scheduling

Instruction scheduling is different on different implementations of PA-RISC architectures. Y ou can improve
performance on a particular model or processor of the HP 9000 by requesting that the compiler use instruction
scheduling tuned to that particular model or processor. Using scheduling for one model or processor does not
prevent your program from executing on another model or processor.

By default, the compiler performs scheduling tuned for the system on which you are compiling, or, if specified,
tuned for the setting of the +DA option. Use the +DS option to change this default behavior and to specify
instruction scheduling tuned to a particular implementation of PA-RISC. For example, to specify instruction
scheduling for the model 867, use +DS867. To specify instruction scheduling for the PA-RISC 8000 processor,
use +DSPA8000. Seethefile/ opt /1 angt ool s/ 1i b/ sched. nodel s for model numbers and processor names.

When you use the +Ds option depends on your particular circumstances.

e |f you plan to run your program on the same system where you are compiling, you don't need to use the
+DS option. The compiler generates code tuned for your system.

e If you plan to run your program on one particular model of the HP 9000 and that model is different
from the one where you compile your program, use +Dsmodel with either the model number of the
target system or the processor name of the target system.

For example, if you are compiling on a system with a PA7100 processor and your program will run on
a system with a PA7100L C processor, you can use +DSPA7100LC. Thiswill give you the best
performance on the PA7100L C system.

Compiling in Networ ked Environments

When compiles are performed using diskless workstations or NFS-mounted file systems, it is important to note
that the default code generation and scheduling are based on the local host processor. The system model
numbers of the hosts where the source or object files reside do not affect the default code generation and
scheduling.

+k Command Line Option Syntax

+k
Description:

By default, the HP aC++ compiler generates short-displacement code sequences for programs that reference
global datain shared libraries. For nearly al programsthisis sufficient.

If your program references alarge amount of global datain shared libraries, the default code generation for
referencing that global data may not be sufficient. If thisis the case, when you link your program the linker gives
an error message indicating that you need to recompile with the +k option. The +k option generates
long-displacement code sequences so a program can reference large amounts of global datain shared libraries.
Use +k only when the linker generates a message indicating you need to do so.

Example:
aCC +k prog.C nylib. sl

Compilespr og. C, generates code for accessing alarge number of globa dataitemsin the shared library
mylib.sl,andlinkswithnylib. sl .

+tmtarget Command Line Option Syntax

+t mtarget

Description:

+tm target specifies the target machine architecture for which compilation isto be performed. Using this
option causes the compiler to perform architecture-specific optimizations. target takes one of the following
values.

e K7200 to specify K-Class servers using PA-7200 processors
e KB8000 to specify K-Class servers using PA-8000 processors
e /2200 to specify V2200 servers

Using the +t mtarget option implies +DA architecture and +DSmodel settings as described in the following
table.

specified target value||+DAarchitecture implied||+DSmodel implied
K7200 1.1 1.1
K8000 2.0 2.0
V2200 2.0 2.0

NOTE: If you specify +DA or +DS on the aCC command line, your setting takes precedence over the setting
implied by +t mtarget .

Usage:

Use +t mtarget at optimization levels0, 1, 2, 3, and 4. The default target value corresponds to the machine on
which you invoke the compiler.

-S Command Line Option Syntax

-S
Description:

Compiles the named HP aC++ program and leaves the assembly language output in a corresponding file with a
. s Suffix.

CAUTION: The- s option isinformational only. Generated output is not meant to be used as input to the
assembler (as).

Example:
aCC -S prog. C

Compilespr og. Cto assembly code rather than to object code, and puts the assembly codein thefilepr og. s.

Data Alignment and Storage

+u
Allows pointers to access non-natively aligned data.

For Morelnformation:

e Pragma pack

+u Command Line Option Syntax

+unum
Description

The +u option allows pointers to access non-natively aigned data. This option aters the way that the compiler
accesses dereferenced data. Use of this option may reduce the efficiency of generated code. num can be
specified as:

' Assume single byte alignment. Dereferences are performed with a series of single-byte loads and
, stores.
Dereferences are performed with a series of two-byte |oads and stores.
! Dereferences are performed with a series of four-byte loads and stores.
Example:

aCC +ul app.C
Default Data Storage and Alignment

This section describes default data storage allocation and alignment for HP aC++ data types.

Data storage refers to the size of datatypes, such asbool ,short,int,fl oat,and char *. Dataalignment refers
to the way the HP aC++ compiler aligns data structures in memory. Data type alignment and storage differences
can cause problems when moving data between systems that have different alignment and storage schemes.
These differences become apparent when a structure is exchanged between systems using files or inter-process
communication. In addition, misaligned data addresses can cause bus errors when an attempt is made to
dereference the address.

The following lists the sizes and alignments of HP aC++ data types:

Data Type Si ze (bytes) Al i gnnent
bool 1 1-byte
char, unsigned char, 1 1- byte
si gned char

wchar _t 2 2-byte
short, unsigned short, 2 2-byte

si gned short

int, unsigned int 4 4-byte

 ong, unsigned | ong 4 4-byte

fl oat 4 4-byte

doubl e 8 8- byte

| ong doubl e 16 8-hyte

| ong | ong, 64 8- byte

unsi gned | ong | ong

enum 4 4-byte

arrays Size and alignment of array el ement type.
struct (*) 1-, 2-, 4- or 8-byte (%)
uni on (*) 1-, 2-, 4- or 8-byte (%)
bit-fields Size and alignnment of declared type

poi nt er 4 4-byte

(*) Alignment is the same as the strictest alignment of any member. Padding is done to amultiple of the
alignment size.

Debugging Options

Debugging options enable you to use the HP WDB Debugger or the HP/DDE Debugger.

+d
Disable all inlining of functions.
-g
Generate minimal information for debugging.
-g0
Generate full information for debugging.
-9l

Generate minimal information for debugging.

+[no]objdebug

Generate debug information in object files and not in the executable.

+d Command Line Option Syntax

+d
Description:
Prevents the expansion of inline functions.

This option is useful when you are debugging your code because you cannot set breakpoints at inline functions.
This option defeats inlining thereby allowing you to set breakpoints at functions specified asinline.

See Also:

e +0O[nolinline Command Line Option Syntax

-g Command Line Option Syntax

-9
Description:

Likethe -g1 option, - g causes the compiler to generate minimal information for the debugger. It uses an
algorithm that attempts to reduce duplication of debug information.

To suppress expansion of inline functions use the +d option.
For Morelnformation:

e Difference between -g, -g0, and -gl

e Whento Use-q, -0, or -gl

e HP WDB Debugger Documentation
e HP/DDE Debugger Documentation

-g0 Command Line Option Syntax

-go
Description:
-g0 causes the compiler to generate full debug information for the debugger.
To suppress expansion of inline functions use the +d option.
For MoreInformation:

e Difference between -g, -g0 and -g1

e WhentoUse-g, -g0, or -g1

e HP WDB Debugger Documentation
e HP/DDE Debugger Documentation

-g1l Command Line Option Syntax

-gl
Description:

Likethe -g option, - g1 causes the compiler to generate minimal information for the debugger. It uses an
algorithm that attempts to reduce duplication of debug information.

To suppress expansion of inline functions use the +d option.
For MoreInformation:

e Difference between -g, -g0, and -g1

e WhentoUse-g, -g0, or -gl
e HP WDB Debugger Documentation
e HP/DDE Debugger Documentation

Difference between -g, -g0, and -g1

The-g, -g0, and -g1 options al generate debug information. The differenceisthat the - go option emitsfull
debug information about every class referenced in afile, which can result in some redundant information.

The -g and -g1 options, on the other hand, emit a subset of this debug information, thereby decreasing the size of
your object file. If you compile your entire application with -g or -g1 no debugger functionality is lost.

NOTE: If you compile part of an application with -g or -g1 and part with debug off, (that is, with neither the -g,
the -g0, nor the -g1 option) the resulting executable may not contain complete debug information. Y ou will till
be able to run the executable, but in the debugger, some classes may appear to have no members.

When to Use-g, -g0, or -gl1

Use -g or -g1 when

e You are compiling your entire application with debug on and your application islarge, for example,
greater than 1 megabyte.

Use -g0 wheneither of the following istrue:
e You are compiling only aportion of your application with debug on, for example, a subset of thefilesin
your application.
e You are compiling your entire application with debug on and your application is not very large, for
example, lessthan 1 megabyte.
NOTE: If you compile part of an application with -g or -g1 and part with debug off, (that is, with neither the -g,
the -g0, nor the -g1 option) the resulting executable may not contain complete debug information. Y ou will still
be able to run the executable, but in the debugger, some classes may appear to have no members.
For MoreInformation:

e Difference between -g, -g0, and -g1

-g, -g1 Algorithm

In genera, the compiler looks for the first non-inline, non-pure (non-zero) virtua function in order to emit debug
information for a class.

If there are no virtual member functions, the compiler looks for the first non-inline member function.
If there are no non-inline member functions, debug information is always generated.

A problem occursif al | functionsareinline; in this case, no debug information is generated.

+[no]Jobjdebug Command Line Option Syntax

+[no] obj debug

Description:

Generate [do not generate] debug information in object files and not in the executable. The HP WDB debugger
then reads the object filesto construct debugging information. +objdebug is not compatible with the HP DDE
debugger.

CAUTION: With +objdebug, the object files or archive libraries must not be removed.

+noobjdebug is the default at compile time and is the same as versions of the compiler prior to A.01.15.
+objdebug is the default at link time.

If +noobjdebug isused at link time (not the default), all debug information goes into the executable, even if
some objects were compiled with +objdebug. This can be used to enforce the debugging paradigm prior to HP
aC++ version A.01.15.

If +objdebug is used at compile time, extra debug information is placed into each object file to help the debugger
locate the object file and to quickly find global types and constants.

Usage

Use +objdebug option, (rather than +noobjdebug where debug information is written to the executable) to
enable faster links and smaller executable file sizes for large applications.

Use +[nojobjdebug with the -g, -g0, or -g1 option.
For More Information:

@ Seedocumentation for the Linker and for theHP WDB Debugger for more details.

Error Handling Options

Use these options to control how potential errorsin your C++ code are detected and handled.

+
Disallows all anachronistic constructs.

Suppresses al compiler warning messages.
Tw

Warns about all questionable constructs.
+W args

Selectively suppress compiler warnings.

+We args
Selectively interpret warnings or future errors as errors.

+p Command Line Option Syntax

+p
Description:
Disallows all anachronistic constructs.

Ordinarily, the compiler gives warnings about anachronistic constructs. Using the +p option, the compiler gives
errors for anachronistic constructs.

Example:

aCC +p file.C

Compilesfil e. cand gives errorsfor al anachronistic constructs rather than just giving warnings.

-w Command Line Option Syntax

-w

Description:

Suppresses al warning messages.

By default, HP aC++ reports al errors and warnings.
Example:

aCC -w file.C

Compilesfi | e. C and reports errors but does not report any warnings.

+w Command Line Option Syntax

+wW

Description:

Warns about all questionable constructs, aswell as constructs that are amost certainly problems.
The default isto warn only about constructs that are dmost certainly problems.

For example, this option warns you when calls to inline functions cannot be expanded inline.
Example:

aCC +w file.C

Compilesfi | e. ¢ and warns about both questionable constructs and constructs amost certainly problematic.

+W args Command Line Option Syntax

+Wargl [,arg2,..argn]

Description

Selectively suppresses any specified warning messages, whereargl through argn arevalid compiler warning

message numbers.
Example:

aCC +Ws00 app. C

+Weargs Command Line Option Syntax

+W argl [,arg2,..argn]
Description

Selectively interpret any specified warning or future error messages as errors. argl through argn arevdid
compiler warning message numbers.

Example:

aCC +We 600, 829 app.C

Exception Handling Option

By default, exception handling isin effect. To turn off exception handling, you must use the following option.
+noeh Command Line Option Syntax

+noeh
Description:
Disables exception handling.

By default, exception handling is on. To turn off exception handling, you must use this option. With exception
handling disabled, the keywords throw and try €licit an error.

Note that if your application throws no exceptions, code compiled with and without +noeh can be mixed freely.
However, the mixing of code compiled with and without +noeh in an application which throws exceptionsis
unsupported.

Example:

aCC +noeh progex. C

Compilesand links pr ogex. C, which doesnot use exception handling.
For MoreInformation:

e Exception Handling Overview

Extensionsto the Language

This option supports extensions to the C++ language.
-ext Command Line Option Syntax

- ext
Description:

This option enables 64-bit integer data type support, allowing you to declarel ong 1 ong and unsi gned | ong
| ong datatypes.

Use this option for 64-bit integer literals and for input and output of 64-bit integers.
If you usethe- ext option, useit a both compile and link time.
Example:

aCC -ext foo.C

Compilesf oo. Cwhich containsal ong | ong declaration.
#i ncl ude <i ostream h>
void main(){

long long Il = 1;
cout << || << endl;

Header File Options

-Idirectory
Adddirectory to the directoriesto be searched for #i ncl ude files.
i

Override the default -Idirectory search-path.
+m[d]
Output quote enclosed (" ") make(1) dependency filesto stdout or to a.d file.
+M[d]
Output both quote enclosed and angle bracket enclosed (< >) make(1) dependency filesto stdout or to a
dfile.

For Morelnformation:

e Using Standard HP-UX Libraries and Header Files
@ Source File Inclusion (#include)

-ldirectory Command Line Option Syntax

-1 directory

directory isthe HP-UX directory where HP aC++ looks for header files.

Description:

During the compile phase, adds directory to the directories to be searched for #i ncl ude files during

preprocessing. During the link phase, adds directory to the directories to be searched for #i ncl ude files by the
link-time template processor.

For #i ncl ude filesthat are enclosed in double quotes (* ") within asourcefile and do not begin with a/, the
preprocessor searches in the following order:

1. Thedirectory of the sourcefile containing the#i ncl ude.
2. Thedirectory namedinthe-1 option.
3. The standard include directories /opt/aCClinclude and /usr/include.
For #i ncl ude filesthat are enclosed in angle brackets (< >), the preprocessor searchesin the following order:

1. Thedirectory namedinthe-1 option.
2. The standard include directories /opt/aCClinclude and /usr/include.

(The current directory is not searched when angle brackets (< >) are used with #i ncl ude.)
Example:

aCC -1 /opt/aCClinclude/SC file.C

This example directs HP aC++ to search in the directory / opt / aCC/ i ncl ude/ SCfor #i ncl ude files.

-I- Command Line Option Syntax

[-1dirs] -I- [-Idirs]

[-1dirs] indicates an optional list of -Idirectory specificationsin which adirectory name cannot begin with a
hyphen (-) character.

Description:
The -I- option allows you to override the default -Idirectory search-path. Thisfeatureis called view-pathing.
Specifying -I- servesadual purpose, asfollows:

e It changesthe compiler's search-path for quoteenclosed (" ") file namesin a#include directive to the
following order:

1. Thedirectory named inthe- | option.
2. The standard include directories /opt/aCClinclude and /usr/include.

The preprocessor does not search the directory of the including file.

e |t separatesthe search-path list for quoted and angle-bracketed include files.
Angle-bracket enclosed file namesin a#include directive are searched for only in the -1 directories
specified after -1- on the command-line. Quoted includes are searched for in the directories that both
precede and succeed the -1- option.

The standard aCC include directories (/usr/include and /opt/aCCl/include) are aways searched last for both types
of includefiles.

Usage:
View-pathing can be particularly valuable for medium to large sized projects. For example, imagine that a project

comprises two sets of directories. One set contains development versions of some of the headers that the
programmer currently modifies. A mirror set contains the official sources.

Without view-pathing, there is no way to completely replace the default -Idirectory search-path with one
customized specifically for project development.

With view-pathing, you can designate and separate official directories from devel opment directories and enforce
an unconventiona search-path order. For quote enclosed headers, the preprocessor can include any header files
located in devel opment directories and, in the absence of these, include headers|ocated in the official directories.

If -I- is not specified view-pathing is turned off. Thisisthe default.
Examples

With view-pathing off, the following example obtains al quoted include files from dirl only if they are not
found in the directory of a.C and from dir2 only if they are not found in dirl. Finaly, if necessary, the standard
include directories are searched. Angle-bracketed includes are searched for in dirl, then dir2, followed by the
standard include directories.

aCC -1dirl -1dir2 -c a.C

With view-pathing on, the following example searches for quoted include filesin dirl first and dir2 next,
followed by the standard include directories, ignoring the directory of a.C. Angle-bracketed includes are
searched for in dir2 first, followed by the standard include directories.

aCC -ldirl -1- -1dir2 -c a.C

CAUTION: Some of the compiler's header files are included using double quotes. Since the -I- option
redefines the search order of such includes, if any standard headers are used, it is your responsibility to supply
the standard include directories (/opt/aCClinclude and /usr/include) in the correct order in your -1- command
line.

For example, when using -1- on the aCC command line, any specified -1 directory containing a quoted include
file having the same name as an HP-UX system header file, may cause the following possible conflict. (In
generd, if your application includes no header having the same name as an HP-UX system header, thereisno
chance of aconflict.)

Suppose you are compiling program a.C with view-pathing on. a.C includes the file a.out.h which is a system
header in /usr/include:

aCC - | Devel opmentDir -1- -1OficialDir a.C

If a.C contains:

// This is the file a.C
#i ncl ude <a. out. h>
...

When a.out.h is preprocessed from the /usr/include directory, it includes other files that are quote included (like
#include "filehdr.h").

Since with view-pathing, quote enclosed headers are not searched for in the including file's directory, filehdr.h
which isincluded by a.out.h will not be searched for in a.out.h's directory (/usr/include). Instead, for the above
command line, it isfirst searched for in DevelopmentDir, then in OfficiaDir and if it isfound in neither, it is
finally searched for in the standard include directories (/opt/aCCl/include and /usr/include) in the latter of which it
will be found.

However, if you have afile named filehdr.h in DevelopmentDir or OfficiaDir, that file (the wrong file) will be
found.

Online Help Option Syntax

+help Command Line Option Syntax

+hel p
Description:

Invokestheinitial menu window of thisHP aC++ Online Programmer's Guide .

If +help isused on any command line, the compiler displays the online programmer's guide with the default web
browser and then processes any other arguments.

If $DI SPLAY is set, the default web browser is displayed. If the display variableis not set, amessage so indicates.
Set your $DISPLAY variable asfollows:

export DI SPLAY=YourDisplayAddress (ksh shell notation)
setenv DI SPLAY YourDisplayAddress (csh shell notation)
Examples:

To use abrowser other than the default, first set the BROWSER environment variable to the aternate browser's
location:

export BROASER=AlternateBrowserLocation

To invoke the online guide:

aCC +hel p

Inlining Options
These options allow you to specify the amount of source code inlining done by the HP aC++ compiler.

+d
Disables dl inlining of functions.
+inline levelnum
Controls how C++ inlining hints influence HP aC++.

See Also:

e Optionsfor Optimizing Y our Code for information about optimizer options that affect inlining.

+inline_levelnum Command Line Option Syntax

+inline_| evel num
Description

This option controls how C++ inlining hints influence HP aC++. Specify num as0, 1, 2, or 3.

num M eaning

0 No inlining is done (same effect as the +d option).
1 Only small functions are inlined.
2 Only large functions are not inlined.

Inlining hints are respected in all cases, except when the called function isrecursive or when it hasa
variable number of arguments.

The default level depends on +Oopt as shown in the following table:

opt || num

Bl W] N[] O
NI NN P P

NOTE: Thisoption controls functions declared with the inline keyword or within the class declaration and is
effective at al optimization levels.

The options+O[no]inline and +Oinlinebudget control the high level optimizer that recognizes other
opportunities in the same source file (+O3) or amongst all source files (+04).

Example:

aCC +inline_|level 3 app.C
See Also:

e Optionsfor Optimizing Y our Code for information about optimization options that affect inlining.

Library Options

Library options alow you to create, use, and manipulate libraries.

+A

Link with archivelibraries.
-b

Create ashared library.
+k

Generate code for programs that use alarge number of global dataitemsin shared libraries.
-lname

Specify alibrary for the linker to search.
-Ldirectory

Specify adirectory for the linker to search for libraries.
+nostl

Indicate header files and libraries (other than those provided with HP aC++) for compilation and
-Wx,ar I;nﬁkmg.

One use of -W isto specify linking of shared or archive libraries.
. Generate position-independent code (PIC) to go into a shared library.
“ Generate position-independent code (PIC) to go into a shared library.

See Also:

e Creating and Using Libraries

+A Command Line Option Syntax

+A
Description:

Causesthe linker to link with archive libraries rather than shared libraries and creates a completely archived
executable.

The- a, ar chi ve linker option also links archive libraries but it links the shared library / usr/1i b/ 1'i bdl d. sl .
+Alinksin/ opt/aCd | i b/ cxxshl . o instead of / usr/1i b/ 1i bdl d. sl .

Example:

aCC +A file.o -Im

Linksfil e. o andlinksinthe archived version of the math library, /1i b/ 1 i bm a, rather than the shared version,
/1ib/1ibmsl,anddoesnot linkin/usr/lib/libdl d.sl.

See Also:

o Linking archive or shared libraries with the - a linker option
e HP-UX Linker and Libraries Online User Guide

-b Command Line Option Syntax

-b

Description:

Creates ashared library rather than an executablefile.

The object files must have been created with the +z or +Z option to generate position-independent code (PIC).
Example:

aCC -b utils.o -o utils.sl

Linksutils. o (which must have been created using the +z option) and creates the shared library uti | s. sl .

For Morelnformation:

For more information on shared libraries, see Creating and Using Shared Libraries, and the HP-UX Linker and
Libraries Online User Guide .

-lname Command Line Option Syntax

- | name

Thename parameter forms part of the name of the library the linker searchs when looking for routines called
by your program.

Description:

Causes the linker to search one of the following default libraries, if they exist, in an attempt to resolve unresolved
external references:

® /usr/lib/libname .s
® /usr/lib/libname .a
® /opt/langtools/lib/libname .s
® /opt/langtool s/lib/libname .a

Whether it searches the shared library (. sl) or the archivelibrary (. a) depends on the value of the - a linker
option or the +A compiler option.

NOTE: Because alibrary is searched when its name is encountered, placement of a- | issignificant. If afile
contains an unresolved externa reference, the library containing the definition must be placed after the file on the
command line. For detailsrefer to the description of | d in theHP-UX Reference Manual or the ld(1) man page
if itisinstalled on your system. (If you see the message "Man page could not be formatted,” ensure the man
pageisinstalled.)

Example:

aCC file.o -lnuneric

Thisexample directsthelinker tolink i | e. o and (by default) search thelibrary / usr/1i b/ 1i bnumeric. sl .
See Also:

e Usethe-Ldirectory option to specify additional directoriesfor the linker to search for libraries.
e Useof the +DA architecture or the-G option affects the set of default libraries.

-Ldirectory Command Line Option Syntax

- Ldirectory

Thedirectory parameter isthe HP-UX directory where you want the linker to search for libraries your program
uses before searching the default directories.

Description:

Causes the linker to search for librariesin directory in addition to using the default search path.

The default search path isthe directory / opt / aCC/ | i b.

The- L option must precede any -Iname option entry on the command line; otherwise - L isignored. This
option is passed directly to the linker.

Example:
aCC -L/project/libs prog.C -Inylibl -Inylib2

Compilesand links pr og. C and directs the linker to search the directories/ opt / aCC/ | i b and / proj ect /i bs
for any librariesthat pr og. C uses (in this case, mylibl and mylib2).

See Also:

e The-Iname compileline option.
e TheCCLIBDIR environment variable.

+z Command Line Option Syntax

+z

Description:

Causes the compiler to generate position-independent code (PIC), necessary for building a shared library.
Use -b to create ashared library.

+z issimilar to the +z option. Use +z unless the linker generates an error message indicating that you should
use +Z7.

The-G optionisignored if either +z or +Z is used.
Example:
aCC -c +z utils.C

Compilesuti I s. Cand generates position-independent codeinuti | s. o. uti | s. o can be placed into ashared
library with the - b option.

For Morelnformation:

For more information on shared libraries, see the tutorial Creating and Using Shared Libraries and theHP-UX
Linker and Libraries Online User Guide .

+nostl Command Line Option Syntax

+nost |
Description:

By eliminating references to the standard header files and libraries bundled with HP aC++, this option allows
experienced users full control over the header files and libraries used in compilation and linking of their
applications, without potential complicatons that arise in mixing different libraries.

+nostl suppresses linking of all default -Idirectory and -Ldirectory paths and some of the -Iname libraries
(-Istd and -Istream). Use the -v option to see the effect of +nostl.

CAUTION: Complete understanding of the linking process and the behavior of the actua (third party) libraries
linked with the application isessential for avoiding link or run-time failures.

For MorelInformation:

For more information on shared libraries, see the tutorial Creating and Using Shared Libraries and the HP-UX
Linker and Libraries Online User Guide .

+Z Command Line Option Syntax

+Z

Description:

Causes the compiler to generate position-independent code (PIC), necessary for building shared libraries.
Use -b to create a shared library.

+Z isthe same as the +z option except that it allows for more imported symbols than does +z. Use the +z option
only if errors are generated when you use +z.

The-G option isignored if either +z or +z is used.

Linker Options

Y ou can specify the following linker options on the compiler command line:

The linker marks the output as sharable.

-N
The linker marks the output as unsharable.
-q
The linker marks the output as demand-loadable.
-Q
The linker marks the output as not demand-|oadable.
-S

The linker strips the symbol table from the executablefile it produces.

In addition, you can usethe -WI,args compiler option to specify any linker option on the compiler command
line. For more information on linker options, see the Id(1) man page or the HP-UX Reference Manual .

CAUTION: You must usetheaCC command to link your HP aC++ programs and libraries. This ensures that
all libraries and other files needed by the linker are available.

-n Command Line Option Syntax

Description:

Causes the program file produced by the linker to be marked as sharable.

For MoreInformation:

For details and system defaults, refer to the description of | d in theHP-UX Reference Manual or the ld(1) man

pageif itisinstalled on your system. (If you see the message "Man page could not be formatted,” ensure the
man pageisinstalled.) See dso the -N option.

-N Command Line Option Syntax

-N

Description:

Causes the program file produced by the linker to be marked as unsharable.

Unsharable executable files generated with the - N option cannot be executed with exec.

For More Information:

For details and system defaults, refer to the | d description in the HP-UX Reference Manual or theld(1) man
pageif itisinstalled on your system. (If you see the message "Man page could not be formatted,” ensure the
man pageisinstaled.)

See Also:

e The-noption

-g Command Line Option Syntax

-q

Description:

Causes the output file from the linker to be marked as demand-loadable.

For MoreInformation:

For details and system defaults, see the description of | d in theHP-UX Reference Manual or the |d(1) man

pageif itisinstalled on your system. (If you see the message "Man page could not be formatted,” ensure the
man pageisinstalled.)

-Q Command Line Option Syntax
-Q

Description:

Causes the program file from the linker to be marked as not demand-loadable.

For More Information:
For details and system defaults, see the description of I1d in the HP-UX Reference Manual or the [d(1) man

pageif itisinstalled on your system. (If you see the message "Man page could not be formatted,” ensure the
man pageisinstaled.)

-sCommand Line Option Syntax

-s
Description:

Causes the executable program file created by the linker to be stripped of symbol table information.
Specifying this option prevents using a symbolic debugger on the resulting program.

For More I nformation:

For more details, refer to the description of | d in the HP-UX Reference Manual or the ld(1) man pageif itis

installed on your system. (If you see the message "Man page could not be formatted,” ensure the man pageis
installed.)

Optionsfor Naming the Output File
These options alow you to name the compilation output file something other than the default name.
-0 outfile

Specifies the name of the output file from the compilation.
-.Suffix

Specifies afile name suffix to be used for the output file from the compilation.

-0 Command Line Option Syntax

-0 outfile

Theoutfile parameter isthe name of the file containing the output of the compilation.
Description:
Causes the output of the compilation to be placed in outfile .

Without this option the default nameisa. out . When compiling a single source file with the -c option, you can
use the - o option to specify the name and location of the object file.

-suffix Command Line Option Syntax

-.suffix

Thesuffix parameter represents the character or characters to be used as the output file name suffix.

suffix cannot be the same as the original source file name suffix.
Description:

Causes HP aC++ to direct output from the -E option into afile with the corresponding .suffix instead of into a
corresponding . c file.

Example:
aCC -E -.Pfile prog.C

Preprocesses the C++ code in pr og. C and puts the resulting code in thefile pr og. Pfi | e.

Option to Enable Native L anguage Support

-Y Command Line Option Syntax

-Y
Description:

Enables Native Language Support (NLS) of 8-bit, 16-bit and 4-byte EUC charactersin comments, string literals,
and character constants.

Thelanguage value (refer to envi ron(5) for the LANG environment variable) is used to initiaize the correct
tables for interpreting comments, string literals, and character constants. The language value is aso used to build
the path name to the proper message catalog.

For More Information:

Refer tohpnl s, I ang, and envi r on in theHP-UX Reference Manual for a description of the NLS model.

Option for Handling Null Pointers

-z Command Line Option Syntax

-Z
Description:
Disallows dereferencing of null pointersat run time.

Fatal errorsresult if null pointers are dereferenced. If you attempt to dereference anull pointer, a Sl GSEGV error
occurs at run time.

Example:

aCC -z file.C

Compilesfi | e. C and generates code to disallow dereferencing of null pointers.
For MorelInformation:

See signal(2) and signal (5) for more information. (If you see the message "Man page could not be formatted,”
ensure the man pageisinstaled.)

Optionsfor Optimizing Your Code
Optimization options can be used to improve the execution speed of programs compiled with HP aC++.
To use optimization, first specify the appropriate basic optimization level (+0O1, +02, +03, or +O4) onthe

aCC command line followed by one or more finer or more preci se options when necessary. For an introduction
with examples, refer to Optimizing HP aC++ Programs.

Categories of options are listed below.

e Basic Optimization Levels

e Additiona Optionsfor Finer Control
e Advanced +Ooptimization Options
e Profile-Based Optimization Options
°
°

Other Options that Affect Optimization
Displaying Optimization Information

For Morelnformation:

e Pragma OPTIMIZE
e PragmaOPT LEVEL
e Introduction to Optimizing HP aC++ Programs

Basic Optimization Level Options

These options alow you specify the basic level of optimization.

-0

Specify level 2 optimization.
+01

Specify level 1 optimization.
+02

Specify level 2 optimization.
+03

Specify level 3 optimization.
+04

Specify level 4 optimization.
-O Command Line Option Syntax
-0

Description:

Invokes the optimizer to perform level 2 optimization.

Example:

aCC -O prog. C

Compilespr og. Cand optimizes at level 2.

For MorelInformation:

Y ou can set other optimization levels by using the following options:
+01

+02

+03
+04

See Also:

e Pragma OPTIMIZE
e PragmaOPT LEVEL

+01 Command Line Option Syntax

+0L
Description:

Performs level 1 optimization only. This includes branch optimization, dead code elimination, faster register
allocation, instruction scheduling, and peephol e optimization.

Example:

aCC +0l prog.C

Compilespr og. Cand optimizes at level 1.

For MoreInformation:

Y ou can set other optimization levels by using the following options:
e +0O2
e +0O3
e +O4

See Also:

e Pragma OPTIMIZE
e PragmaOPT LEVEL

+02 Command Line Option Syntax

+2

Description:

Performslevel 2 optimization. Thisincludes level 1 optimizations plus optimizations performed over entire
functionsinasinglefile.

Example:

aCC +@2 prog.C

Compilespr og. Cand optimizes at level 2.

For MoreInformation:

Y ou can set other optimization levels by using the following options:
e +O1
e +0O3
e +O4

See Also:

e Pragma OPTIMIZE
e PragmaOPT LEVEL

+03 Command Line Option Syntax

+C3
Description:

Performslevel 3 optimization. Thisincludeslevel 2 optimizations plus full optimization across all subprograms
within asinglefile.

Example:

aCC +O3 prog.C

Compilespr og. Cand optimizes at level 3.

For MoreInformation:

Y ou can set other optimization levels by using the following options:
e +O1
e +0O2
e +O4

See Also:

e Pragma OPTIMIZE
e PragmaOPT LEVEL

+04 Command Line Option Syntax

+4

Description:

Performs level 4 optimization. Thisincludes level 3 optimizations plus full optimizations across the entire
application program.

When you link a program, the compiler brings all modules that were compiled at optimization level 4 into virtual
memory at the same time. Depending on the size and number of the modules, compiling at +04 can consume a
large amount of virtual memory. If you are linking alarge program that was compiled with the +04 option, you
may notice a system slow down. In the worst case, you may see an error indicating that you have run out of
memory.

If you run out of memory when compiling at +04 optimization, there are severa things you can do:

1.

Compile at +04 only those modules that need to be compiled at optimization level 4, and compile the
remaining modules at alower level.

If you till run out of memory, increase the per-process data size limit. Run the System Administrator
Manager (SAM) to increase the maxdsi z process parameter from 64 MB to 128 MB. This procedure
provides the process with additiona data space.

Refer to the System Administration Tasks manual, Chapter 11, "Reconfiguring the HP-UX Kernel."
See Appendix A for full descriptions of the different process parameters, including maxdsi z.

If increasing the per-process data size limit does not solve the problem increase the wstem Swap space.
Refer to the System Administration Tasks manual, Chapter 6, "Managing Swap Space." Pay particular
attention to the section "Adding File System Swap", because adding file system swap is easier than
increasing the amount of device swap, which requires re-configuring your disk. However, if you find
that you are consistently compiling beyond the available amount of device swap, you may not have a
choice.

For a complete discussion of swap space, refer to How HP-UX Works: Concepts for the System
Administrator .

Example:

aCC +O4 prog.C

Compilespr og. C and optimizes at level 4.

For Morelnformation:

Y ou can set other optimization levels by using the following options:

+01
+02
+03

See Also:

Pragma OPTIMIZE
Pragma OPT LEVEL

Additional Optimizationsfor Finer Control

+ESfic

Replace millicode calswith inline fast indirect calls.

+ESsfc

Replace millicode calls with inline code when performing simple function pointer comparisons.
+O[no]all

Perform maximum optimization.
+O[nolaggressive

Optimizations that may change the behavior of code.
+0O[no]conservative

Optimize with the minimum risk of side effects.
+O[no]limit

Optimize using [un]restricted compile time.
+0O[no]size

Enable [disable] code expanding optimizations.

+ESfic Command Line Option Syntax

Syntax
+ESfic
Description:

Replaces millicode calls with inline fast indirect calls. The +ESf i ¢ compiler option affects how function pointers
are dereferenced in generated code. The default isto generate low-level millicode calls for function pointer calls.

The+ESf i ¢ option generates code that calls function pointers directly, by branching through them.
NOTE: The+ESfi ¢ option should only be used in an environment where there are no dependencies on shared

libraries. The application must be linked with archive libraries only. Using this option can improve run-time
performance.

+ESsfc Command Line Option Syntax

Syntax

+ESsf ¢

Description:

Replaces millicode calls with inline code when performing simple function pointer comparisons. The +ESsf ¢
compiler option affects how function pointers are compared in generated code. The default isto generate
low-level millicode calls for function pointer comparisons.

The+ESsf ¢ option generates code that compares function pointers directly, asif they were smpleintegers.
NOTE: The+ESsf ¢ option should only be used in an environment where there are no dependencies on shared
libraries. The application must be linked with archive libraries only. Using this option can improve run-time
performance.

Example:

Following is an example of acode fragment that performs function pointer comparisons:

int (*g)()
int (*f)()

int foo ();

if (f == g)
if (f == foo)

if (f == SIGERR) /* SIGERR is defined in signal.h */
+0O[no]all Command Line Option Syntax

+(no] al |
Description:
Use +Cal | to obtain the best possible performance.

This option should be used with stable, well-structured code. These optimizations give you the fastest code, but
areriskier than the default optimizations.

Y ou can use +QOall at optimization levels 2, 3, and 4. The default is+Onoal | .
Examples:
aCC +Call prog.C
Compilespr og. C and optimizes for best performance.
aCC -O +Qall prog.C
Compilespr og. C and optimizes at level 2 with aggressive optimizations and unrestricted compile time.
For MoreInformation:
The+aal I option without +O2, +O3, or +O4 combines the following options:
e +O4

e +Oaggressive
e +Onolimit

+0O[no]aggressive Command Line Option Syntax

+(no] aggr essi ve
Description:

The+0aggr essi ve option enables aggressive optimizations. The +Onoaggr essi ve option disables aggressive
optimizations.

Aggressive optimizations can result in significant performance improvement, but can change program behavior.
They can:

e convert certain library calsto millicode and inline instructions

e alter error handling and asynchronous interrupt handling as aresult of instruction scheduling
optimization

e cause less precise floating-point results

e cause programsthat perform comparisons between pointers to shared memory and pointers to private
memory to run incorrectly

Use +Caggr essi ve with optimization levels 2, 3, or 4. By default, aggressive optimizations are turned off.
Example:

To enable aggressive optimizations at the second, third, or fourth optimization levels, type:

aCC +O2 +Caggressive sourcefile.C

or:

aCC +O3 +Caggressive sourcefile.C

or:

aCC +O4 +Caggressive sourcefile.C

For MorelInformation:

The+0aggr essi ve option invokes the following advanced optimization options:

+Qentrysched
+Onofltacc

+Onoinitcheck
+Olibcalls
+Oregionsched
+0Osignedpointers

+0O[no]conservative Command Line Option Syntax

+(no] conservative
Description:

The+Cconser vat i ve option causes the optimizer to make conservative assumptions about application code and
enableonly conservative optimizations, asubset of basic optimizations,

Use +Cconser vat i ve a optimization levels 2, 3, or 4 when your source code is unstructured or you are
unfamiliar with the source code being optimized. The default is+Onoconser vat i ve.

Example:

To enable conservative optimizations at the second, third, or fourth optimization levels, usethe +Cconser vat i ve
option asfollows:

aCC +@2 +CQconservative sourcefile.C

or:

aCC +@3 +CQconservative sourcefile.C

or:

aCC +O4 +CQconservative sourcefile.C

+O[no]limit Command Line Option Syntax

+d no]limt
Description:

The+a i ni t option suppresses optimizations that significantly increase compile-time or that consume alot of
memory.

The+0nol i ni t option enables optimizations regardless of their effect on compile time or memory
consumption.

Use +Onol i mi t with optimization levels 2, 3, or 4. Thedefaultis+Q init.
Example:

To remove optimization time restrictions at the second, third, or fourth optimization levels, use+Onol i i t as
follows:

aCC +@&2 +Onolimt sourcefile.C

or:

aCC +@3 +Onolimt sourcefile.C

or:

aCC +O4 +Onolimt sourcefile.C

+0[no]size Command Line Option Syntax

+(no] si ze
Description:

While most optimizations reduce code size, the +Gsi ze option suppresses those few optimizations that
significantly increase code size. The +Onosi ze option enables code-expanding optimizations.

Use +Gsi ze at optimization levels 2, 3, or 4. The default is+Onosi ze.
Example:

To disable code size expanding optimizations at the second, third, and fourth optimization levels, use +GCsi ze as
follows:

aCC +O2 +GCsize sourcefile.C

or:

aCC +C8 +GCsize sourcefile.C

or:

aCC +O4 +GCsize sourcefile.C

Advanced +Ooptimization Options
Advanced optimization options provide additiona control for special situations.

+O[no]dataprefetch

Enable [disable] optimizations to generate data prefetch instructions for data structures referenced

within innermost loops.
+O[no]entrysched

Perform [do not perform] instruction scheduling on a subprogram's entry and exit sequences.
+QO[nolfailsafe

Enable [disable] fail-safe optimization.
+QO[no]fastaccess

Enable [disable] fast accessto globa dataitems.
+QO[no]fltacc

Disable [enable] al optimizations that cause imprecise floating-point results.
+QO[no]initcheck

Enable[disabl€] initidization of uninitialized scalar variablesto null values.
+O[no]inline

Inline [do not inline] procedure calls.
+Qinlinebudget

Inline aggressively.
+Olevel =namel [hame2 ,..nameN]

Lower the optimization level for one or more named functions.
+O[no]libcalls

Use [do not use] millicode routines instead of certain math library cals.
+0O[no]looptransform

Transform [do not transform] eligible loops for improved cache performance.
+0O[no]loopunroll[=unroll factor]

Enable [disable] loop unrolling.
+O[no]moveflops

Move [do not move] conditional floating-point instructions out of loops.
+QO[no] parmsoverlap

Assume [do not assume] that arguments of function calls overlap in memory.
+O[no] pipeline

Enable [disable] software pipelining.
+O[no]procelim

Enable [disable] elimination of unreferenced procedures.
+O[no]promote indirect cals

Enable [disable] the promotion of indirect callsto direct calls.
+O[no] regionsched

Move [do not move] instructions across branches.
+O[no] regreassoc

Enable [disable] register reassociation.
+Oreusedir=DirectoryPath

Specify adirectory in which to save intermediate object code files for reuse.
+0O[no]signedpointers

Optimize treating pointers as signed [unsigned] quantities.
+QO[no]volatile

Assume dl global variables are [not] volatile.

+O[no]dataprefetch Command Line Option Syntax

+(no] dat apref etch

Description:

When +Qdat apr ef et ch is enabled, the optimizer inserts instructions within innermost loops to explicitly
prefetch data from memory into the data cache. Data prefetch instructions are inserted only for data structures
referenced within innermost loops using simple loop varying addresses (that is, in asimple arithmetic
progression). It isonly available for PA-RISC 2.0 targets.

Use this option for applications that have high data cache miss overhead.

Y ou can use +Qdat apr ef et ch at optimization levels 2, 3, and 4. The default is+Onodat apr ef et ch.

+O[no]entrysched Command Line Option Syntax

+J no] entrysched

Description:

The+Qent r ysched option optimizes instruction scheduling on a procedure's entry and exit sequences. Enabling
this option can speed up an application. The option has undefined behavior for applications which handle
asynchronous interrupts. The option affects unwinding in the entry and exit regions.

At optimization level +O2 and higher (using dataflow information), save and restore operations become more
efficient.

This option can change the behavior of programsthat perform error handling or that handle asynchronous
interrupts. The behavior of set j np() and 1 ongj np() isnot affected.

Use +Cent rysched at optimization levels 2, 3, or 4. The default is+Onoent rysched.

+O[no]failsafe Command Line Option Syntax

+Q no]fail safe
Description:

The+f ai | saf e option alows compilations with internal optimization errors to continue by issuing awarning
message and restarting the compilation at +Q0.

Y ou can use +nof ai | saf e at optimization levels 1, 2, 3, or 4 when you want the internal optimization errorsto
abort your build.

Thedefaultis+0r ai | saf e at levels], 2, 3, 4.

+0O[no]fastaccess Command Line Option Syntax

+(no] f ast access

Description:
The+Or ast access option optimizes for fast accessto globa dataitems.
Use +Of ast access to improve execution speed at the expense of longer compile times.

Use +Of ast access at optimization levels0, 1, 2, 3, or 4. The default is+Onof ast access at optimization levels
0,1, 2,and 3, and +Of ast access at optimization level 4.

+0O[no]fltacc Command Line Option Syntax

+d no] fltacc
Description:

The+0r | t acc option allows the compiler to make transformations which are algebraically correct, but which
may affect the result of computations dightly due to the inherent imperfection of computer floating-point
arithmetic. These transformations typically exceed those alowed by relevant language standards.

For many programs, the results obtained under +Onof | t acc are asvalid as those obtained without the
optimization. They may be dightly different, but not obvioudly better or worse. For applicationsin which

roundoff error has been carefully studied, and the order of computation carefully crafted to control error,
+Onof | t acc may be unsatisfactory.

Use +nof | t acc at optimization levels 2, 3, or 4. Thedefault is+Of | t acc.

CAUTION: The sophistication of this optimization islikely to change over time. Y ou should review the
performance of your code with subsequent releases of the HP aC++ compiler.

Example:

+Onof | t acc alowsthe compiler to substitute division by amultiplication using the reciprocal. For example, the
following code

for (int j=1;j<5;j++)
a[j] =blj] 7 x

istransformed as follows (note that x isinvariant in the loop):
x_inv = 1.0/x;
for (int j=1;j<5;j++)

a[j] = b[j] * x_inv;

Since multiplication is considerably faster than division, the optimized program runs faster.
+0O[no]initcheck Command Line Option Syntax
+J no]i ni t check

Description:

Theinitialization checking feature of the optimizer has three possible states: on, off, or unspecified.

e When on (+Q ni t check), the optimizer initializesto zero any local, scaar, non-static variables that are
uninitialized with respect to at least one path leading to a use of the variable.

e When off (+Onoi ni t check), the optimizer does not initiaize uninitialized variables, but issues warning
messages when it discovers them.

o When unspecified, the optimizer initiaizesto zero any locdl, scaar, non-static variablesthat are
definitely uninitialized with respect to all paths leading to a use of the variable.

Use +0 ni t check to look for program variables that may not be initialized.

Use +0 ni t check at any optimization level and +Onoi ni t check at optimization levels 2, 3, or 4.

+0O[no]inline Command Line Option Syntax

+d nolinline
Description:

The+0i nl i ne option indicates that any function can beinlined by the optimizer. +Onoi nl i ne disablesinlining
of functions by the optimizer. (This option does not affect functionsinlined at the source code level.

Use +Onoi nl i ne a optimization levels 3 or 4. The default is+0Onoi nl i ne at optimization levels 1 and 2 and
+0 nline a levels3 and 4.

See Also:

e +d Command Line Option Syntax

+Oinlinebudget Command Line Option Syntax

+G nl i nebudget =n
Description:

The+a nl i nebudget option controls the aggressiveness of inlining according to the value you specify for n
wheren isan integer in the range 1 - 1000000 that specifies the level of aggressiveness, asfollows:

=100
Default level of inlining.

> 100

More aggressive inlining. The optimizer isless restricted by compilation time and code size when
searching for eligible routines to inline.

Less aggressive inlining. The optimizer gives more weight to compilation time and code size when
determining whether to inline.
Only inlineif it reduces code size.

The+Onol i nit and +Csi ze options aso affect inlining. Specifying the +Onol i ni t option has the same effect
as specifying+Q nl i nebudget =200. The+GCsi ze option has the same effect as +G nl i nebudget =1.

Note, however, that the +G nl i nebudget option takes precedence over both of these options. This means that
you can override the effect of +Onol i mi t or +Gsi ze option on inlining by specifying the +O nl i nebudget
option on the same compileline.

Usethisoption at optimization level 3 or higher. The default is+0i nl i nebudget =100.

For Morelnformation:

See alsothe+Q nol i nl i ne option.

+Olevel =namel [,name2 ,..,nameN] Command Line Option Syntax

+Olevel =namel [, name2 , ..., nameN]
Description:

This option lowers optimization to the specified level for one or more named functions. level canbeO, 1, 2, 3, or
4. The name parameters are names of functions in the module being compiled. Use this option when one or
more functions do not optimize well or properly. This option must be used with abasic +Olevel or -O option.

This option works as does the OPT_LEVEL pragma. The option overrides the pragmafor the specified
functions. Aswith the pragma, you can only lower the level of optimization; you cannot raiseit above the level
specified by abasic +Olevel or -O option. To avoid confusion, it is best to use either this option or the
OPT_LEVEL pragma rather than both.

Y ou can use this option at optimization levels 1, 2, 3, and 4. The default isto optimize all functions at the level
specified by the basic +Olevel or -O option.

Examples

The following command optimizes al functions at level 3, except for the functions myfuncl and myfunc2, which
itoptimizesat level 1.

aCC +@3 +0Ol=nyfuncl, myfunc2 funcs.c nmain.c

The following command optimizes all functions at level 2, except for the functions myfuncl and myfunc2, which
it optimizesat level 0.

aCC - O +Q@0=nyfuncl, nyfunc2 funcs.c main.c

+0O[no]libcalls Command Line Option Syntax

+d no]libcalls

Description:

A number of math library functions are implemented in aspecial millicode library aswell asin the standard
math library. The millicode versions are up to 25 percent faster than the standard versions. However, they do not
set er r no and do not give an error message in the event of an exception.

The+d i bcal | s option provides access to millicode routines for the following math library calls:

sin cos tan atan2 pow |ogl0 asin acos atan exp log

Use +A i beal | s to improve the performance of these library routines only when you do not want standard
error checking. For example, you might use +Olibcalls with code that has already been debugged and runs
without error.

The default is+Onol i beal | s.

Use+d no] | i bcal | s a any optimization level.

+O[no]looptransform Command Line Option Syntax

+(no] | oopt ransf orm

Description:

The+d no] | oopt r ansf or moption enables [disables] transformation of eligible loops for improved cache
performance. The most important transformation is the reordering of nested loops to make the inner loop unit
stride, resulting in fewer cache misses.

The default is+a oopt r ansf or mat optimization levels 3 and 4. Y ou cannot use the option at levels 0-2.

+0[no]loopunroll Command Line Option Syntax

+d no] | oopunrol I [=unrol | factor]

Description:

The+a oopunrol | option turns on loop unrolling. When you use +Q oopunr ol | , you can also use the unroll
factor to control the code expansion. The default unroll factor is 4, that is, four copies of the loop body. By
experimenting with different factors, you may improve the performance of your program.

You can use+Q oopunrol | a optimization levels 2, 3, and 4. The default is+0 oopunrol | .

+0O[no]lmoveflops Command Line Option Syntax

+J no] novefl ops
Description:

The+0Omovef | ops option allows moving conditional floating point instructions out of loops. The behavior of
floating-point error handling may be atered by this option.

This option aso alows you to enable or disable replacing integer divide by afloating point multiply. This may
cause SIGFPE if IEEE inexact is enabled (+FP1).

Usage:

Use +nonovef | ops if floating-point traps are enabled and you do not want the behavior of floating-point
errorsto be altered by the relocation of floating-point instructions.

Use +Ononovef | ops at optimization levels 2, 3, and 4. The default is+Onovef | ops.

+O[no]parmsoverlap Command Line Option Syntax

+J no] par nsover | ap
Description:

The+0par msover | ap option optimizes with the assumption that the actual arguments of function calls overlap
in memory.

Use +Onopar msover | ap if C++ programs have been literally trandated from FORTRAN programs.

Use +Onopar msover | ap a optimization levels 2, 3, and 4. The default is+QOpar nsover | ap.

+O[no]pipeline Command Line Option Syntax

+{ no] pi pel i ne

Description:

The+Opi pel i ne option enables software pipelining.
Use +Onopi pel i ne to conserve code space.

Use +Onopi pel i ne a optimization levels 2, 3, and 4. The default is+Onopi pel i ne at optimization level 1 and
+Qpi pel i ne at levels 2, 3, and 4.

+O[no]procelim Command Line Option Syntax

+J no] procelim

Description:

Enable[or disable] the elimination of dead procedure code.

Used when linking an executable file, +Opr ocel i mremoves functions not referenced by the application. Used
when building ashared library, +Qor ocel i mremoves functions not exported and not referenced from within the
shared library. This may be especially useful when functions have been inlined.

Note that any function having symbolic debug information associated with it is not removed.

The default is+Onopr ocel i mat optimization levels 1 through 3 and +Qpr ocel i mat leve 4.

Use +d no] pr ocel i mat any optimization level. +O[no]promote indirect calls

+O[no]promote_indirect_calls Command Line Option Syntax

+J no]pronpte_indirect_calls

Description:

This option uses profile data from profile-based optimization and other information to determine the most likely
target of indirect calls and promotes them to direct calls. Indirect calls occur with pointers to functions and
virtual cals.

In al cases the optimized code tests to make sure the direct call is being taken and if not, executes the indirect
cal. If +Oinlineisin effect, the optimizer may a so inline the promoted calls. +Qpr oot e_i ndi rect _cal I s iS
only effective with profile-based optimization.

NOTE: The optimizer tries to determine the most likely target of indirect cals. If the profile dataisincomplete
or ambiguous, the optimizer may not select the best target. If this happens, your code's performance may
decrease.

This option can be used at optimization levels 3 and 4. At +O3, it isonly effective if indirect calls from functions
within afile are mostly to target functions within the samefile. Thisis because +O3 optimizes only within afile
whereas, +O4 optimizes across files.

The default is +Onopromote_indirect_calls.

+0O[no]regionsched Command Line Option Syntax

+{ no] r egi onsched

Description:

The+0Or egi onsched option applies aggressive scheduling techniques to move instructions across branches.
NOTE: Thisoption isincompatible with the -z option. Using this option with - z may cause a Sl GSEGV error at
run-time. See signal(2) and signal(5) for more information. (If you see the message "Man page could not be
formatted,” ensure the man pageisinstalled.)

Use +O egi onsched to improve application run-time speed.

Use +Or egi onsched at optimization levels 2, 3, and 4. The default is+Onor egi onsched.

+O[no]regreassoc Command Line Option Syntax

+J no] r egr eassoc

Description:

The+0nor egr eassoc option turns off register reassociation.

Use +Onor egr eassoc to disable register reassociation if this optimization hinders application performance.

Use +Onor egr eassoc at optimization levels 2, 3, and 4. The default is+Or egr eassoc.

+Oreusedir=DirectoryPath Command Line Option Syntax

+Or eusedi r =DirectoryPath

Description:

This option specifies adirectory for the linker to save object files created from intermediate object files when
using +O4 or profile-based optimization. It reduces link time by not recompiling intermediate object files when
they don't need to be recompiled.

When you compile with +1, +P, or +04, the compiler generates intermediate code in the object file. Otherwise,
the compiler generates regular object code in the object file. When you link, the linker first compilesthe
intermediate object code to regular object code, then links the object code. With this option you can reduce link
time on subsequent links by not recompiling intermediate object files that have already been compiled to regular
object code and have not changed.

NOTE: When you do change a source file or command line options and recompile, a new intermediate object
filewill be created and compiled to regular object code in the specified directory. The previous object filein the

directory will not be removed. Y ou should periodically remove this directory or the old object files since the old
object files cannot be reused and will not be automatically removed.

Use +O eusedi r =DirectoryPath at optimization level 4 or with profile-based optimization. The default isto
use TMPDIR and remove the temporary objects after each link.

+0O[no]signedpointers Command Line Option Syntax

+{ no] si gnedpoi nters

Description:

The+Gsi gnedpoi nt er s option performs optimizations related to treating pointers in Boolean comparisons (for
example, <, <=, >, >=) as signed quantities. Applications that allocate shared memory and that compare a pointer
to shared memory with a pointer to private memory may run incorrectly if this optimization is enabled.

Use+Gsi gnedpoi nt er s to improve application run-time speed.

Use +Gsi gnedpoi nt er s a optimization levels 2, 3, and 4. The default is+0Onosi gnedpoi nt ers.

+O[no]volatile Command Line Option Syntax

+d no]vol atile

Description:

The+0Ovol ati | e option impliesthat memory referencesto global variables are volatile and cannot be removed
during optimization. The +Onovol at i | e option impliesthat all globals are not of vol ati I e class. This means
that referencesto global variables can be removed during optimization.

Use this option to control the "volatile" semanticsfor al global variables.

Use +Ovol at i | e a optimization levels 1, 2, 3, or 4. The default is+Onovol atii | e.

Profile-Based Optimization Options

Profile-based optimization isa set of performance-improving code transformations based on the run-time
characteristics of your application.

+dfname

Specifies the profile database to use with profile-based optimization.
+l

Prepares the object code for profile-based optimization data collection.
+P

Performs profile-based optimization.
+pgmname

Specifies the execution profile data to use with profile-based optimization.
For MoreInformation:
For more information on performing profile-based optimization, see:

e Tutoria on Profile-Based Optimization
e HP-UX Linker and Libraries Online User Guide

+dfname Command Line Option Syntax

+df name
Description:

Specifies the path name of the profile database to use with profile-based optimization. This option can be used
with the + P command line option.

The profile database by default isnamed f | ow. dat a. Thisfile stores profile information for one or more
executables. Use +df whenthef | ow. dat a file has been renamed or isin adifferent directory than where you
arelinking.

Y ou can also use the FLOW DATA environment variable to specify adifferent path and file name for the profile
databasefile. The +df name command line option takes precedence over the FLOW DATA environment variable.

NOTE: The+df name option cannot be used to redirect the instrumentation output (with the +I option). Itis
only compatible with the +P option.

Example:

aCC +P +df pbo.data prog.o -o nyapp

Relinksthe object file pr og. o, optimizes using the run-time profile datain the file pbo. dat a, and putsthe
executable codein the filenyapp.

name Parameter

This parameter specifies the path name of the profile database to use with profile-based optimization.
+| Command Line Option Syntax
+1

Description:

Instructs the compiler to instrument the object code for collecting run-time profile data. The profiling

information can then be used by the linker to perform profile-based optimization. Code generation and
optimization phases are delayed until link time by this option.

After compiling and linking with +1 , run the resultant program using representative input data to collect
execution profile data. Finaly, relink with the +P option to perform profile-based optimization.

Profile datais stored inf | ow. dat a by default. Seethe +dfname option for information on controlling the
name and location of this datafile.

The +I option isincompatible with exception handling. To turn off exception handling, use the +noeh option.
The +I option isincompatible with the - g0, - g1, - G, +P, and - S options.
Example:

aCC +I -O-c prog.C
aCC +I -O -0 prog.pbo prog.o

Compilespr og. Cwith optimization, prepares the object code for data collection, and creates the executable file

pr og. pbo. Running pr og. pbo collectsrun-time information in thefilef | ow. dat a in preparation for
optimization with +P.

+P Command Line Option Syntax

+P

Description:

Directs the compiler to use profile information to guide code generation and profile-based optimization. The
compiler generates intermediate compiler code instead of compiled object code. Code generation is done at link
time.

The +P option does not affect the default optimization level, or the optimization level specified by the +o1, +02,
+08, Or +O4 options.

NOTE: Source filesthat are compiled with the +I_ option do not need to be recompiled with +P in order to use
profile-based optimization. Y ou only need to relink the object files with the +P option after running the
instrumented version of the program.

The +P option isincompatible with exception handling. To turn off exception handling, use the +noeh option.
The +P option isincompatible with the +noeh, - g0, - g1, +1 , and - S options.

Example:

aCC +P -0 nyapp prog.o

Relinksthe object file pr og. o and optimizes using the run-time profile data

+pgmname Command Line Option Syntax

+pgmame

Description:

Specifies aprogram name to look up in thef | ow. dat a file to use with profile-based optimization and the +P
option.

The+pgmame option should be used when the name of the profiled executable differs from the name of the
current executable specified by the -o option.

Example:

In the following example, the instrumented program file nameissanpl e. i nst . The optimized program file
nameissanpl e. opt . The+pgnname option is used to pass the instrumented program name, sanpl e. i nst , to
the optimizer:

aCC -c +l sanple.C

aCC -o sanple.inst +l -O sanple.o

sanple.inst < input.filel

aCC -o sanpl e.opt +P +pgm sanple.inst sanple.o
+pgm name Parameter

Thename parameter isthe instrumented executable program name that is used when performing profile-based
optimization.

Other Optionsthat Affect Optimization

+DA
Generate object code for a particular version of the PA-RISC architecture. Also specifieswhich version
of the HP-UX math library to use.

+DS

Perform instruction scheduling tuned for a particular implementation of the PA-RISC architecture.

+0O[no]info Command Line Option Syntax

+d nolinfo
Description:

+0 nf o displays informational messages about the optimization process. This option may be helpful in
understanding what optimizations are occurring.

Y ou can use the option at levels 0-4. The default is+0noi nf o at levels 0-4.

Precompiled Header Files

Y ou can reduce compilation time by precompiling common include (header) files. HP aC++ providestwo
mechanisms, header caching and manua precompiled headers.

Note that the mechanisms cannot be mixed.
Header Caching Options

+hdr_cache
Reguest header caching.

+hdr dir DirectoryPath

Specify alocation and name for the header caching directory.
+hdr_info

Request information about header cache file creation or use.

Manual Precompiled Header Options

+hdr_create
Create amanua precompiled header file.
+hdr_use
Compile using amanua precompiled header file.
+hdr_v
Lists verbose information when manually precompiling a header or when compiling a manual
precompiled header file.

See Also:
e Creating and Using Precompiled Header Files

+hdr_cache Option Syntax

+hdr _cache
Description:
Turns header caching on.

An aCC_cache subdirectory is created to contain precompiled header files. By default, it isin the sourcefile
directory. To specify adifferent aCC_cache location and/or name, use the +hdr_dir option.

Usage

When used together, the manual precompiled header options (+hdr_create and +hdr _use) override the header
caching option (+hdr_cache).

+hdr_cache can only be used when actually compiling asourcefile. If used with -P or -E, it is turned off.
Example:

aCC -c¢ +hdr_cache header.C nmain.C
/'l Preconpile and cache header.C and main.C
/1 (initial conpile).

aCC -c¢ +hdr_cache header.C nain.C
/'l header.C and main.C are not preconpiled
/1 (if no changes to conpilation environment).

Note that the -c option is needed to suppress the link step.
See Also:
e Creating and Using Precompiled Header Files

e #pragmahdr stop
e +hdr info

+hdr_dir DirectoryPath Option Syntax

+hdr _dir DirectoryPath
Description:

When you use the +hdr_cache option, an aCC_cache subdirectory is automatically created to contain
precompiled files. By default, it isin the source file directory. The +hdr_dir option allows you to specify a
different directory path and directory name in place of the aCC_cache defauilt.

NOTE: To maximize the efficiency of the cache mechanism, it is recommended that you specify adirectory in
the compilation directory or in a subdirectory of the compilation directory.

Usage

Y ou might use +hdr_dir to specify different aCC_cache locations for debug builds versus release builds, for
instance.

Example:

aCC -c¢ +hdr_cache header.C /'l Preconpile and cache header.C
/1 in the aCC _cache directory,
/1 a subdirectory of that
/1 in which header.C is |ocated

aCC -c¢ -Ddebugflag +hdr_cache +hdr _dir ./debug/aCC debug cache header.C
/'l Preconpile and cache header.C
/1 in the ./debug/aCC debug_cache directory,
/1 a subdirectory of that
/1 in which header.C is |ocated

aCC -c¢ +hdr_cache +hdr _dir ./rel ease/ aCC rel ease_cache header.C
/'l Preconpil e and cache header.C
/1 in the ./releasel/ aCC rel ease_cache
/1l directory, a subdirectory of that
/1 in which header.C is |ocated

See Also:

e Creating and Using Precompiled Header Files
e #pragmahdr stop

+hdr_info Option Syntax

+hdr _info
Description:

Generates a message stating whether a header is being re-used or precompiled. The default is off.

+hdr_create Command Line Option Syntax

+hdr _create

Description:

Creates amanua precompiled header file for subsequent use when compiling an application or alibrary with the
+hdr_use option.

Y ou can reduce compilation time by precompiling common include (header) files into a precompiled header file.
Example:

aCC headers.C -c +hdr_create preconp

From headers.C, crestes a precompiled header file named precomp.
Note that the -c option is needed to suppress the link step.
See Also:

e Creating and Using Precompiled Header Files

+hdr_use Command Line Option Syntax

+hdr _use
Description:

Compilesamanua precompiled header file and its corresponding object (.0) file. These files must have been
created by using the +hdr_create option.

Thisisknown as aload compile.
Example:

aCC mai n. C +hdr _use preconp

Compiles main.C, including a precompiled header file named precomp.
See Also:

e Creating and Using Precompiled Header Files

+hdr_v Command Line Option Syntax

+hdr _v

Description:

Provides verbose information when precompiling a header or when compiling a precompiled header file.
Examples:

aCC headers.C -c +hdr_create preconp +hdr_v

Creates a precompiled header file named precomp and displays what is going into the precompiled header file.

aCC nmai n. C +hdr _use preconp +hdr_v

Compiles main.C and displays what is being used from the precompiled header file.
See Also:

e Creating and Using Precompiled Header Files

Preprocessor Options

The following options are accepted by the preprocessor:
-Dname

- Definesname to the preprocessor.

+m[d]

M[d

Runs only the preprocessor and sends output to st dout .

Output quote enclosed (" ") make(1) dependency filesto stdout or to a.d file.

+

Output both quote enclosed and angle bracket enclosed (< >) make(1) dependency filesto stdout or to a
dfile.

£
Runs only the preprocessor and sends output to a corresponding . i file.

-.suffix

Sends preprocessed output to the corresponding output file ending with . suf fi x.
-Uname
Undefinesname in the preprocessor.

See Also:

@ Preprocessingin HP aC++

-Dname Command Line Option Syntax

- Dname [=def]

name isthe symbol name that is defined for the preprocessor.

def isthe definition of the symbol name (hame).

Description:

Defines a symbol name (name) to the preprocessor, asif defined by the preprocessing directive #def i ne.
If no definition (def) isgiven, the nameisdefined as"1".

Example:

aCC - DDEBUGFLAG file.C

Defines the preprocessor symbol DEBUGFLAG and givesit the value 1. Following is a program that usesthis
symbol.

#i ncl ude <i ostream h>
voi d mai n() {

int i, j;

#i f def DEBUGFLAG

int call_count=0;
#endi f

o

For Morelnformation:

@ Sdect Preprocessing in HP aC++

-E Command Line Option Syntax

-E

Description:

Runs only the preprocessor on the named C++ files and sends the result to standard output (st dout).
Unlike the -P option, the output of -E contains #ine entries indicating the original file and line numbers.
Redirecting Output From This Option

Use the -.suffix optionto redirect the output of this option.

+m[d] Command Line Option Syntax

+nf d]
Description:

Directsalist of the quote enclosed (" ") header files upon which your source code depends to stdout. Thelist is
in aformat accepted by the make(1) command.

If +md is specified, thelist isdirected to a.d file. The .d file name prefix is the same as that of the object file.
The .dfileis created in the same directory as the object file.

Usage:
CAUTION: Use +md when you also specify the -E or -P option, otherwise the two outputs will be intermixed.

Examples:

command line specified ||.d file name|| .d file location
aCC-c+tmacC none output to stdout
aCC-c-E-i+mdaC ad current directory
aCC-c-P+mdaC-ob.o b.d current directory
aCC-c-P+mdaC-o/tmp/c ||cd /tmp directory

+M[d] Command Line Option Syntax

+M d]
Description:

Directsalist of both the quote enclosed (" ") and angle bracket enclosed (< >) header files upon which your
source code dependsto stdout. Thelist isin aformat accepted by the make(1) command.

If +Md is specified, the list isdirected to a.d file. The .d file name prefix is the same as that of the object file.
The .dfileis created in the same directory as the object file.

Usage:

CAUTION: Use +Md when you also specify the-E or -P option, otherwise the two outputs will be intermixed.

Examples:
command line specified .d filename(| .d filelocation
aCC-c+M acC none output to stdout
aCC-c-E-i+MdaC ad current directory
aCC-c-P+MdaC-ob.o b.d current directory
aCC-c-P+MdaC-o/tmp/c||c.d /tmp directory

-P Command Line Option Syntax

-P
Description:

Only preprocesses the files named on the command line without invoking further phases. Leavestheresultin
corresponding fileswith the suffix . i .

Example:
aCC -P prog.C

Preprocesses the file pr og. Cleaving the output in thefile pr og. i . Does not compile the program.

For Morelnformation:

e Sdect Preprocessing in HP aC++

-Uname Command Line Option Syntax

- Uname

name isthe symbol name whose definition is removed from the preprocessor.

Description:

Undefines any name that hasinitially been defined by the preprocessing stage of compilation.

A name can be adefinition set by HP aC++; these are displayed when you specify the -v option. Or aname
can be a definition you have specified with the -D option on the aCC command line.

The -D option has lower precedence than the -U option. Thus, if the same nameis used in both a-U option and
a-D option, the name is undefined regardless of the order of the options on the command line.

For Morelnformation:

o Sdect Preprocessing in HP aC++

Profiling Options

HP aC++ provides the following options for profiling your code.

-G

Prepare an object file for use with gpr of .
+pa

Request that an application be compiled for routine-level profiling with Cxper f .
+pal

Request that an application be compiled for routine-level and loop-level profiling with Cxper f .

See Also:
e Profile-Based Optimization Options

-G Command Line Option Syntax

-G

Description:

Prepares an object file for use with gpr of (to get an execution profile).
Example:

aCC -G file.C

Compilesti | e. c and creates the executablefile a. out instrumented for use with gpr of .
For More Information:

Refer to the gprof(1) man page. (If you see the message "Man page could not be formatted,” ensure the man
pageisinstalled.)

+pa Command Line Option Syntax

+pa
Description:
Prepares an application for routine level profiling with CX perf.

The +paoptionisinvaid with the +O4 or +O[no]all optimization options. Also, +pal isincompatible with the
+A, -G, and -s options.

For Morelnformation:

Refer to the CXperf(1) man page. (If you see the message "Man page could not be formatted,” ensure the man
pageisinstalled.)

+pal Command Line Option Syntax

+pal
Description:
At+02 and +O3, prepares an application for routine level and loop-level profiling with CXperf.

The +pal option isinvalid with the +O4 or +O[no]all optimization options. Also, +pal isincompatible with the
+A, -G, and -s options.

For Morelnformation:

Refer to the CXperf(1) man page. (If you see the message "Man page could not be formatted,” ensure the man
pageisinstalled.)

Standards Related Options

The following options related to the ANSI/ISO C++ International Standard are accepted by the compiler.

-Aa

Enable the use of standard options (-Wc,-koenig_lookup,on and -Wc,-ansi_for_scope,on).
-Wc,-ans_for_scope,[on][off]

Enable or disable the scoping rules for init-declarationsin f or statements.
-Wc,-koenig_lookup,[on][off]

Enable or disable argument-dependent lookup rules (also known as K oenig lookup).

-Aa Command Line Option Syntax

- Aa
Description:

-Aainstructs the compiler to use Koenig lookup and strict ANSI f or scope rules. The option is equivaent to
specifying -Wc,-koenig_lookup,on and -Wc,-ans_for_scope,on. The default is off.

Usage
The standard features enabled by -Aamay be source incompatible with earlier C and C++ features.
For Morelnformation:

e Standardizing Y our Code

-Wc,-ansi_for_scope,[on][off] Command Line Option Syntax

-W, -ansi _for_scope, [on]
[of f]

Description:

This option enables or disables the standard scoping rules for init-declarationsin f or statements; the scope of
the declaration then ends with the scope of the loop body. By default, the option is disabled.

Examples:

In the following example, if the option in not enabled (the current default), the scope of k extends to the end of
the body of main() and statement (1) isvalid (and will return zero). With the option enabled, k isno longer in
scope and (1) isan error.

#i ncl ude

int main() {
for (int k = 0; k!'=100; ++k) {
printf("%\n", Kk);

}
return 100-k; // (1)
}

In the next example, with the option disabled, the code isillega, because it redefinesk in (2) when a previous
definition (1) is considered to have occurred in the same scope. With the option enabled
(-Woc,-ans_for_scope,on), the definitionin (1) isno longer in scope at (2) and thus the definition in (2) islegal.

int main() {
int sum = O;
for (int k = 0; k!=100; ++k) // (1)
sum += k;
for (int k = 100; k!= 0; ++k) // (2)
sum += k;

-Wc,-koenig_lookup,[on][off] Command Line Option Syntax

-\, - koeni g_I ookup, [on]
[of f]

Description:

This option enables or disables standard argument-dependent lookup rules (also known as Koenig lookup). 1t
causes functions to be looked up in the namespaces and classes associated with the types of the function-call
argument. By default, the option is disabled.

Example:

In the following example, if the option is not enabled (the current default), the call in main() does not consider
declaration (1) and selects (2). With the option enabled, both declarations are seen, and in this case overload
resolution will select (1).

nanespace N {

struct S {};

void f(S const&, int); [/ (1)
}

void f(N::S const& long); // (2)
int main() {

N:: S x;

f(x, 1);
For Morelnformation:

@ namespace and using Keywords

Subprocesses of the Compiler

These options alow you to substitute your own processes in place of the default HP aC++ subprocesses, or
pass options to HP aC++ subprocesses.

-tx,name
Substitutesname in place of subprocessx .

-Wx,args
Passes the optionarg to subprocessx of the HP aC++ compiling system.

-tx,name Command Line Option Syntax

-t X, name
Description:
Substitutes or insertssubprocess x using name .

This option works in two modes:

1. If x isasngleidentifier, name representsthe full path name of the new subprocess.
2. If x isasetof identifiers, name represents a prefix to which the standard suffixes are concatenated to
construct the full path names of the new subprocesses.

Example:

aCC -ta,/users/sjs/nyasnb file.s

Invokesthe assembler / user s/ sj s/ nyasnb instead of the default assembler / usr/ ccs/ bi n/ as to assemble
andlinkfile.s.

For Morelnformation:
e More Examplesof - t.

e The-W Option. (- wallows you to pass options to subprocesses.)
e Major Components of the HP aC++ Compiling System

Mor e Examples of -t
Substituting for c++filt

aCC -tf,/newbin/c++filt file.C

Compilesfi | e. Cand specifiesthat / new bi n/ c++f i 1t should be used rather than the default
/opt/aCC bin/c++filt.

Substituting for ctcom

aCC -tC, /users/proj/ctcomfile.C

Compilesfi | e. Cand specifiesthat / user s/ pr oj / ct comshould be used instead of the default
/opt/aCC | bi n/ ctcom

Substituting for All Subprocesses

aCC -tx,/new &Iriver; file.C

Compilesfi | e. C and specifies that the characters/ new acc should be used as a prefix to all the subprocesses
of HP aC++ For example, / new aCC/ ct comruns rather than the default / opt / aCC/ | bi n/ ct com

X Parameter

X isone or more identifiersindicating the subprocess or subprocesses. The value of x can be one or more of
the following:

a
Assembler (standard suffix isas).
b
C compiler driver (cc), used to invoke the assembler.
C (upper case)
HP aC++ compiler (standard suffix is ct com).
f
Filter tool (c++filt).
|
Linker (standard suffix is| d).

Code generator when using +O4 or performing profile-based optimization (standard suffix isuconp).

All subprocesses.
name Parameter

This parameter is either the full path name of the executable file that will be run, or aprefix that will be
concatenated to the default path name.

If x isasingle identifier, name represents the full path name of the new subprocess. If x isaset of identifiers,

name represents a prefix to which the standard suffixes are concatenated to construct the full path names of the
new subprocesses.

-Wx,args Command Line Option Syntax

-Wk , argl[,arg2,..,argn]
Description:

Passes the argumentsargl throughargn to thesubprocess x of the compilation. The arguments are of the
form:

-argoption[, argval ue]
Examplel:
To see which include filesled to an error or warning, specify the - W, - di agnose_i ncl udes, on option.
aCC - W, -di agnose_i ncl udes,on file.C
Specify - W, - di agnose_i ncl udes, of f (the default) to turn the option off.
Example2:
aCC -W,-v file.C
Compilesfi | e. C and passes the option - v to the linker.
aCC -W,-v file.C
Compilesfi | e. C and passes the option - v to the linker.
For More Information:
Passing Standards Related Options to the Compiler

°
e More Examples of -W

e Using-W for Linking Shared or Archive Libraries
°

°

The +A option for linking archive libraries.
The-t Option. (-t alows you to substitute subprocesses in place of the defaults.)

M or e Examples of -W
Passing Optionsto the Linker with -W

aCC file.o -W, -a,archive -Im

Linksfil e. o and passesthe option - a ar chi ve to thelinker, indicating that the archive version of the math

library (indicated by - | m) and all other driver supplied libraries should be used rather than the default shared
library.

Passing Multiple Optionsto the Linker with -W

aCC -W, -a,archive,-m-v file.o -Im
Linksfil e. o and passesthe options-a ar chi ve,-m and- v to thelinker.

This caseis similar to the previous example, with additiona options. - mindicates that aload map should be
produced. - v requests verbose messages from the linker.

argn Parameters

Each argument, argl ,arg2 , throughargn to the- woption takes the form:
-argoption[, argval ue]

where:

argoption

is the name of an option recognized by the subprocess.
argvalue

IS a separate argument to argoption , where necessary.

X Parameter

X isone or moreidentifiersindicating a subprocess or subprocesses. The value of x can be one or more of the
following:

a

Assembler (standard suffix isas).
b

C compiler driver (cc), used to invoke the assembler.
C (either upper or lower case)

HP aC++ compiler (standard suffix is ct com).
d

The driver program, aCC
f

Filter tool (c++filt).
|

Linker (standard suffix is| d).

Template Options
By using atemplate option on the aCC command line, you can:

Invoke the automatic instantiation mechanism (assigner).

Close alibrary or set of link units, to satisfy al unsatisfied instantiations without creating duplicate
instantiations.

Specify what templates to instantiate for agiven translation unit.

Name and use template files in the same way as for the cfront based HP C++ compiler.

Request verbose information about template processing.

+inst al

Requests instantiation of al templates.
+inst_auto
Requests automatic instantiation.
+inst_close
Requests closure with regard to template instantiation (for libraries that contain templates).
+inst_directed
Requests that no templates be instantiated (except explicit instantiations) and suppresses the output of
assigner information in object files.
+inst_implicit_include
Requests HP C++ style template files.
+inst_include suffixes
Requests HP C++ template definition file name suffixes.
+inst_none
For automatic (assigner) instantiation, requests that no templates be instantiated (except explicit
instantiations).
+inst_used
Requests instantiation of templates that are used.
+inst v
Requests verbose information about template processing.

Template Usage:

e All template options on an aCC command line apply to every file on the command line.

e |If you specify more than one incompatible option on acommand line, only the last option takes effect.

e Only the +inst_auto option invokes the automatic instantiation mechanism and thus the assigner. All
other template options (except the default, +inst_compiletime) write assigner information into .o files,
alowing thefilesto be used with automatic instantiation if desired.

See Also:

e Using HP aC++ Templates for an overview
e Using Templatesin HP aC++ for more detailed information

+inst_all Command Line Option Syntax

+inst _al |

Description:

Causesthe compiler to instantiate all template functions and al static data members and member functions of
template classes defined in atranslation unit, regardless of whether or not they are used, and to place these
instantiations in the resulting object file.

This option allows existing instantiations in a trand ation unit to be used by the assigner to satisfy instantiation
requests in other trandlation units.

NOTE: Because +ingt_all instantiates all templates, it is essentia to have a thorough understanding of your
application and its template usage in order to use +inst_all effectively. Otherwise, duplicate symbols may result.

Usage:

Thisoption is useful when you want to insure the file location of all templates defined in agiven trandation unit
(for example, when preparing an object code library for distribution).

Example:

The following example compilesfi | e1. Cand placesinstantiationsin filel.o.
aCC -c +inst_all filel.C

/1filel.C

<p>

/1 Define foo function tenplate

tenplate <class T> T foo (T i) {return i; };
<p>

/1 Define S class tenplate.

tenplate <class T> class S {

public:
int n;
static int m
int f();
static int g();
b
<p

tenplate <class T> int S<T>.:m
tenplate <class T> int S<T>::f
tenplate <class T> int S<T>:.:g

7?>Instantiate tenplate class Swith int to define object h

ggrnt> h; [l S<int>:m S<int> :f(), and S<int>::g()
/1l are instantiated and placed in filel.o

7?>Instantiate tenplate function foo with int.

?ﬁ? k=f oo(1); /1l foo<int>is instantiated and placed in

/Il filel.o

Migration Note: Note that the +inst_all option differs from the HP C++ -pta option which instantiates all
members of used template classes and all needed template functions.

For Morelnformation:

e Using HP aC++ Templates for an overview
@ Using Templatesin HP aC++ for more detailed information

+inst_auto Command Line Option Syntax

+inst_auto

Description:

Requests that the automatic instantiation mechanism instantiate every template used if itislisted inthe
corresponding .l file. All used template functions, all static data members and member functions of template
classes, and dl explicit instantiations are instantiated.

When you link or create a shared library, if there is more than one object file on the command line, the assigner
determines which object fileisto contain agiven instantiation.

To use +inst_auto, you must specify it at both compile-time and when creating an executable or a shared library.

Usage:

This option is necessary to insure that an archive library prepared for distribution is compatible with such a
library prepared using the prior default (assigner) instantiation mechanism. It also facilitates use of the assigner
by the library user. Refer to Deciding which Mechanism to Use.

Example:

The following example compilesfilel.C and file2.C. Instantiations are placed in either filel.o or file2.0, as
determined by the assigner during the closure operation.

Note the use of the +inst close option to satisfy all needed template instantiations.

/1 initial conpile
aCC -c +inst_auto filel.Cfile2.C

/1 closure operation to satisfy all unsatisfied instantiations
/1 in filel.o and file2.0 without creating duplicate instantiations
aCC -c +inst_auto +inst_close filel.o file2.0

For Morelnformation:

e Using HP aC++ Templatesfor an overview
e Using Templatesin HP aC++ for more detailed information
e Creating and Using Libraries

+inst_close Command Line Option Syntax

+i nst _cl ose

Description:

Use +inst_close along with the +inst_auto option to specify that automatic instantiation be used to close a
set of link units. Thisoption prevents reinstantiation of any already instantiated templatesin the .o filesor
libraries on the command line.

Note that the -c option must be used with +inst_close, otherwise an executable file or (with -b) ashared library
is created.

Usage:
+inst_closeis used when closing aset of .o filesto create alibrary.

If you want to create atemplate library that uses templates, unlike anon-template library, you must instantiate the
templates before linking the library.

ArchiveLibrary Example

To close and create an archive library containing templates, and then link the library to produce an application,
use the following commands:

aCC -c +inst_auto -1dir mylib*.C
Compile library source files containing templ ates.

aCC -c +inst_auto +inst_close mylib*.o
Close mylib*.ofilesto create template instantiations in the .o files. (-c prevents linking.)

ar cr mylib.amylib*.o

Create the mylib.aarchive library.

aCC -ldir myfile.C mylib.a-o application
Link mylib.awith myfile.C to create application.

NOTE: If alibrary is dependent on another template library, that template library must be on the command line
when you close the dependent library. If you build an application with the dependent library, the dependee
library should aso be used in the link.

Shared Library Example

To close and create a shared library containing templates, and then link the library to produce an application, use
the following commands:

aCC +z -c +inst_auto -Idir mylib*.C
Compilelibrary source files containing templates.

aCC -c +inst_auto +inst_close mylib*.o
Close mylib*.o filesto create template instantiations in the .o files. (-c prevents linking.) Refer to the
following NOTE.

aCC -b +inst_none -o mylib.sl mylib*.o
Create the mylib.d shared library.

aCC -Idir myfile.C mylib.d -0 application
Link mylib.d with myfile.C to create application.

NOTE: If desired, you can append one or more library names to this command line, indicating that you do not
want duplicate instantiations between any libraries on the command line.

For example, you may have many shared libraries attached to an a.out. And you do not want to list al of these
libraries on the -b command line when you create a shared library. However, you do want to be sure there are no
duplicate symbols.

For Morelnformation:
e Using HP aC++ Templates for an overview

e Using Templatesin HP aC++ for more detailed information
e Creating and Using Libraries

+inst_directed Command Line Option Syntax

+inst_directed

Description:

Indicates to the compiler that no templates are to be instantiated (except explicit instantiations) and suppresses
assigner output in object files.

Without the use of +inst_directed, instantiation information needed by the assigner is placed in object fileseven
when you have not requested automatic (assigner) instantiation with +inst_none.

Usage:

If you are using only explicit instantiation and have not requested automatic (assigner) instantiation, specify

+inst_directed instead of +inst_none.
Example:
aCC +inst_directed prog.C

Compilesfi | e. cwith the resulting object file containing no template instantiations, except for any explicit
instantiations coded in your soucefile.

For MorelInformation:

e Using HP aC++ Templates for an overview
e Using Templatesin HP aC++ for more detailed information

+inst_implicit_include Command Line Option Syntax

+inst_inplicit_include
Description:

Specifies that the compiler use a process similar to that of the cfront source rule for locating template definition
files. For the cfront based HP C++ compiler, if you are using default instantiation (that is, you are not using a
map file), you must have atemplate definition file for each template declaration file, and these must have the
same file name prefix.

This restriction does not apply in HP aC++. Therefore, if your code was written for HP C++ and/or you wish
to follow this rule when compiling with HP aC++, you need to specify the +inst_implicit_include option.

Example:
aCC +inst _inplicit_include prog.C

If prog.C includes a templ ate declaration file named template.h, the compiler assumes atemplate definition file
name determined by the +inst_include suffixes option.

For Morelnformation:

e Using HP aC++ Templates for an overview
@ Using Templatesin HP aC++ for more detailed information
e +inst include suffixes Command Line Option Syntax

+inst_include_suffixes Command Line Option Syntax

+i nst _i nclude_suffixes=list"

list isaset of space separated file extensions or suffixes, enclosed in quotes, that template definition files can
have.

Description:

Specifies which file name extensions the compiler uses to locate template definition files. This option must be
used with the +inst_implicit_include option.

The default extensionsin order of precedence are:

".c .C.cxx .CXX .cc .CC .cpp"

User specified extensions must begin with adot and must not exceed four charactersin total. Any extension that
does not follow these rules causes awarning and is ignored.

These restrictions do not apply in HP aC++. Therefore, if your code was written for HP C++ and/or you wish
to follow the cfront based HP C++ template definition file naming conventions when compiling with HP aC++,
you need to specify the +inst_include_suffixes option.

Example:

+i nst _i nclude_suffixes=".c .C
Specifies that template definition files can have extensionsof . ¢ or . C.
Migration:
The +inst_include_suffixes option is equivalent to the HP C++ -ptS option.
For More Information:

e Using HP aC++ Templates for an overview

e Using Templatesin HP aC++ for more detailed information
e +inst implicit include Command Line Option Syntax

+inst_none Command Line Option Syntax

+i nst _none
Description:

For automatic (assigner) instantiation, indicates to the compiler that no templates are to be instantiated (except
explicit instantiations).

Usage:

If you know that templatesin atrandation unit have been instantiated in another trandation unit that will
participate in the link, you might want to use +inst_none to prevent unneeded instantiation attempts.

If you use +inst_auto to create a shared library from .o files that have already been closed, you should use
+inst_none.

Example:

aCC +inst_none file.C

Compilesfi | e. cwith the resulting object file containing no template instantiations, except for any explicit
instantiations coded in your soucefile.

For Morelnformation:

e Using HP aC++ Templatesfor an overview
e Using Templatesin HP aC++ for more detailed information

+inst_used Command Line Option Syntax

+i nst _used
Description:

Causes the compiler to instantiate al template class members and al template functionsthat areused ina
translation unit and to place these instantiations in the resulting object file.

Template instantiation operates on member functions of template classes and template functions. Use of a
templateisacall to such afunction. For example:

tenpl ate <class T>
class A {
public:
voi d boo();
1
A<int> a;
é:boo(); /'l a use

This option allows existing instantiations in a trand ation unit to be used by the assigner to satisfy instantiation
requests in other trandation units.

NOTE: Because +inst_used instantiates all used templates, it is essentia to have a thorough understanding of
your application and its template usage in order to use +inst_used effectively. Otherwise, duplicate symbols may
result.

Usage:

This option may be useful when compiling alarge application or library containing many templates, only some
of which are used.

+inst_used is essentialy equivalent to default compile-time instantiation. However, if you intend to use the
instantiations in atrandation unit (X.C) to satisfy instantiation requests in other trandation units, using the
automatic instantiation mechanism, you should specify +inst_used instead of using the default to compile X.C.
For example:

aCC -c +inst_used X C
aCC +inst_auto Y.C X. 0

Example:
aCC -c +inst_used file.C

Compilesfi | e. Cand placesingtantiations for al used members of template classes and all used template
functionsinfil e. o.

For Morelnformation:

e Using HP aC++ Templatesfor an overview
e Using Templatesin HP aC++ for more detailed information

+inst_ v Command Line Option Syntax

+inst_v
Description:
Enables verbose mode, sending a step-by-step description of template processing to stderr. +inst_v works with
all template processing options except the default compile-time instantiation mechanism (+inst_compiletime).
M essages are produced when:

e template entities are instantiated (generated by the compiler)

e template entities are assigned (generated by the assigner)

e template entities are unassigned (generated by the assigner)

e theassigner isrun (generated by the driver)

e atrandation unit isre-compiled (generated by the driver)
In addition, when the assigner cannot satisfy an instantiation request, a message stating the reason is generated.
Usage:
Y ou can use +inst_v to help determine the locations of errorsin instantiation. Since verbose output tells you
where instantiations have been made, you might also use it to determine the layout of explicit instantiation in
applications that have many modules produced by a number of different devel opers.
Example:
aCC +inst_auto +inst_v file.C
Compilesfi | e. Cand provides details of template processing.
Migration:
The +inst_v option is similar to the HP C++ -ptv option.
For MoreInformation:

e Using HP aC++ Templates for an overview
e Using Templatesin HP aC++ for more detailed information

Requesting Verbose Compile and Link Information

Use the following options to obtain additional information abouit:

e what HP aC++ is doing while compiling or linking your program

e which subprocesses would execute for a given command line, without running the compiler
e the current compiler and linker version numbers

e executiontime

+dryrun
Requests compiler subprocess information without running the subprocesses.

+inst v

Requests verbose information about template processing.
+0info

Requests optimization information.
+time

Requests execution times.

Requests verbose information of the compilation process.
-V

Requests the current compiler and linker version numbers.
-WI,-v
Requests verbose messages from the linker.

+dryrun Command Line Option Syntax

+dryrun
Description:

Causes aCC (the driver) to generate subprocess information for a given command line without running the
subprocesses.

Usage:

Useful in the devel opment process to obtain command lines of compiler subprocesses in order to run the
commands manually or to use them with other tools.

Example:
aCC +dryrun app.C

The above command line gives the same kind of information as the -v option but without running the
subprocesses.

+time Command Line Option Syntax

+time
Description:

This option generates timing information for compiler subprocesses. For each subprocess, estimated timeis
generated in seconds for user processes, system calls, and total processing time.

Usage:

Useful in the devel opment process, for example, when tuning an application’'s compile-time performance.
Examples:

The following command line;

aCC +tinme app.C

generates information like this:

process: conpiler 0.94/u 0.65/s 4.35/r
process: |d 0.37/u 0.76/s 3.02/r

The following command line:

aCC -v +tinme app.C
generates information like this:

/opt/aCC | bin/ctcom-inst conpiletime -diags 523 -D __hppa -D __hpux
-D __unix -D _ _hp9000s800 -D _ STDCPP__ -D _ hp9000s700 -D PA RISCl 1
-1 /opt/aClinclude -1 /opt/aCC/include/iostream-1 /usr -I
/fusr/include -1 /usr/include -inline_power 0 app.C

file name: app.C
file size: app.o 444 + 16 + 1 = 461
process user sys rea

process: conpiler 0.93 0.13 1.17

[ine nunbers: app.C 7
lines/mnute: app.C 396

LPATH=/usr/lib:/usr/lib/pal.1l :/usr/lib:/opt/langtools/lib:/usr/lib
/opt/aCC lbin/ld -0 a.out /opt/aCClib/crt0.0 -u ___exit -u main
-L /opt/aCCl/lib /opt/aCC/lib/cpprt0.o0 app.o -lstd -Istream-I1Csup -Im
fusr/lib/libcl.a -Ic /fusr/lib/libdld.sl >/usr/tnmp/AAAa28149 2>&1

file size: a.out 42475 + 1676 + 152 = 44303

process user sys rea
process: |d 0.35 0. 24 0.82
total link tinme(user+sys): 0.59

removi ng /usr/tnp/ AAAa28149
removi ng app. o

-v Command Line Option Syntax

-V

Description:

Enables verbose mode, sending a step-by-step description of the compilation processto st derr .

Usage:

Thisis especially useful for debugging or for learning the appropriate commands for processing a C++ file.
Example:

Thefollowing compilesfi | e. C and gives extrainformation about the process of compiling.

aCC -v file.C

/opt/aCC | bin/ctcom-inst conpiletinme -diags 523 -D __hppa -D __hpux
-D __unix -D __hp9000s800 -D __STDCPP__ -D _ _hp9000s700 -D _PA RISCl_1
-1 /opt/aCClinclude -1 /opt/aClinclude/iostream-1 /usr -1 /usr/include
-1 /usr/include -inline_power 0 app.C

LPATH=/ usr/lib:/usr/lib/pal.1l

:lusr/lib:/opt/langtools/lib:/usr/lib

/opt/aCC |l bin/ld -0 a.out /opt/aCC/lib/crt0.0 -u __ _exit -u main
-L /opt/aCCl/lib /opt/aCCl/lib/cpprt0.o0 app.o -lstd -Istream -I| Csup
-Im/usr/lib/libcl.a -Ic /usr/lib/libdld.sl >/usr/tnmp/AAAa28149 2>&1

renovi ng /usr/tnp/ AAAa28149

-V Command Line Option Syntax

-V

Description:

Displays the version numbers of the current compiler and linker (if the linker is executed).
Usage:

Use this option whenever you need to know the current compiler and linker version numbers.
Example:

aCC -V app.C

Concatenating Options

Y ou can concatenate some options to the aCC command under asingle prefix. The longest substring that
matches an option is used. Only the last option can take an argument. Y ou can concatenate option arguments
with their optionsiif the resulting string does not match alonger option.

Examples:

Suppose you want to compileny_fi | e. Cusing the options-v and -g. Below are equivalent command lines you
could use:

aCC ny file.C-v -9l
aCC ny_file.C -vgl
aCC ny_file.C -vgl
aCC -vgl ny_file.C

Compiler Command Syntax and Environment
Variables

Compiler Command Syntax:
aCC [options] [files]

Description:

Theacc command (the driver) invokes the HP aC++ compiling system.

CAUTION: You must usetheaCC command to link your HP aC++ programs and libraries. This ensures that
all libraries and other files needed by the linker are available.

Example:

aCC prog. C

Compilesthe source file pr og. € and puts the executable code in thefilea. out .

For Morelnformation:

e More Examples of the aCC Command

e Using Environment Variables with the aCC Command

e The Manua Page for the aCC(1) Command

e Setting Up Floating Installation (how to have more than one version of HP aC++ on the same system)

files on theaCC Command Line
files representsalist of one or more files containing source or object code to be compiled or linked.
Each file can be:

A C++ sourcefile (.Cfile)

°
e A preprocessed sourcefile (.i file)

o An assembly language sourcefile (.sfile)
°

°

An object file (.o file)
A library file (.9 or .afile)

All other files are passed directly to the linker by the compiler. C++ source files can also reference C++ header
files (\H files) using the#i ncl ude preprocessor directive.

Unless you use the -0 option to specify otherwise, al filesthat the acC compiling system generates are put in the
working directory, even if the source files came from other directories.

C++ SourceFiles

HP aC++ sour ce files must be named with extensions beginning with either . ¢ or . C, possibly followed by
additional characters.

If you compile only, each C++ source file produces an object file with the same file name prefix as the source
fileand a ..o file name suffix. However, if you compile and link a single source file into an executable programin
one step, the .o fileis automatically deleted.

CAUTION: It isrecommended that your source files have extensions of . ¢ or . C only, without additional

characters. While file extensions other than . ¢ or . C are permitted for portability from other systems, other
endings may not be supported by HP tools and environments.

C++ Header Files

Typically, header files are referenced in C++ source filesusing the #i ncl ude preprocessor directive.

Preprocessed C++ Source Files

Fileswith namesendingin. i are assumed to be preprocessor output files.

Filesendingin . i areprocessed thesameas. c or . Cfiles, except that the preprocessor isnot runonthe. i file
before thefileis compiled.

Use the -P or the -E compiler option to preprocess a C++ source file without compiling it.

Assembly L anguage Sour ce Files

Fileswith namesendingin. s are assumed to be assembly sourcefiles.

The compiler invokes the assembler through cc to produce . o files from these.

Use the - S option to compile a C++ source file to assembly code and put the assembly codeinto a. s file.
Object Files

Fileswith . o extensions are assumed to be relocatable object files that are to be included in the linking.
The compiler invokesthe linker to link the object files and produce an executablefile.

Use the- ¢ option to compile a C++ sourcefileinto a. o file.

Library Files

Filesending with . a are assumed to be archive libraries. Files ending with . sI are assumed to be shared
libraries.

Usethe- ¢ and +z options to create object files of position-independent code (PIC) and the - b option to create a
shared library.

Use the - ¢ option to create object files and thear command to combine the object filesinto an archive library.

M or e Examples of theaCC Command
Compiling and Renaming the Output File

aCC -0 prog prog.C

Compilespr og. C and puts the executable code in the file pr og, rather than in the default file a. out .
Compiling and Debugging

aCC -g prog.C

Compilespr og. € and includes information allowing you to debug the program with the HP/DDE Debugger,
dde.

Compiling Without Linking
aCC -c prog.C

Compilespr og. C and putsthe object code in thefile pr og. 0. Does not link the object file and does not create
an executablefile.

Linking Several Object Files

aCC filel.o file2.0 file3.0

Linksthe listed object files and puts the executable code in thefilea. out .

CAUTION: You must usetheaCC command to link your HP aC++ programs and libraries. This ensures that
all libraries and other files needed by the linker are available.

Compiling, Optimizing, and Getting Verbose I nfor mation
aCC -O -v prog.C

Compiles and optimizes pr og. C, gives verbose progress reports, and creates an executablefilea. out .

Compiling and Creating a Shared Library

aCC +z -c prog.C
aCC -b -o nmylib.sl prog.o

Thefirst line compiles pr og. C, createsthe object file pr og. o, and puts the position-independent code (PIC) into
the object file. The second line creates the shared library nyl i b. sl , and puts the executable code into the shared
library.

Environment Variables

Y ou can use the following environment variables with HP aC++:

CXXOPTS

Specify command line options automatically.
CCLI BDI R

Specify additional directoriesfor the linker to search for libraries.
CCROOTDI R

Use this when compiler subprocesses are in aternate directories.
TMPDI R

Change the location of temporary files that the compiler creates.

The CXXOPTSEnvironment Variable

Syntax:

export CXXOPTS="options | options"” ksh notation
setenv CXXOPTS "options | options " csh notation
Description:

Provides a convenient way to include frequently used command line options automatically. Options before the
vertical bar (|) are placed before any command line options to aCC. Options after the vertical bar are placed after
any command line options. Note that the vertical bar must be delimited by white space.

If you do not use the vertical bar, al options are placed before the command line parameters.

Just set the environment variable and the options you want are automatically included each time you execute the
aCC command.

Usage:

For quick or temporary changes to your build environment, you might use CXXOPTS instead of editing your
makefiles.

Example:

export CXXOPTS="-v | -In ksh notation
setenv CXXOPTS "-v | -Inf csh notation

Causes the -v and - options to be passed to the acC command each time you execute it.
When CXXOPTS is set as above, the following two commands are equivaent:

aCC -g prog.C
aCC -v -g prog.C -Im

The CCLIBDIR Environment Variable
Syntax:

export CCLI BDl R=directory ksh notation
setenv CCLI BDI R directory csh notation

directory isan HP-UX directory where you want HP aC++ to look for libraries.

Description:

Causes theacc command to search for librariesin an aternate directory before searching in the default
directory, / opt / aCC/ 1 i b.

Example:

export CCLIBDIR=/mmt/proj/lib

Specifies that HP aC++ search the directory / mt / proj / 1 i b for libraries, then search the directory
/opt/aCC lib.

When cCLI BDI Ris set as above, the following two commands are equival ent:

aCC -L/mt/proj/lib file.o
aCC file.o

See Also:

Usethe-Ldirectory option to specify additional directoriesfor the linker to search for libraries.

The CCROOTDIR Environment Variable
Syntax:

export CCROOTDI R=directory ksh notation
set env CCROOTDI R directory csh notation

directory isan aCC root directory where you want the HP aC++ driver to look for subprocesses.
Description:

Causes acc to invoke all subprocesses from an dternate aCC directory, rather than from their default directory.
The default aCC root directory is/opt/aCC.

Example:

export CCROOTDI R=/ mt / CXX2. 1

Specifies that HP aC++ search the directories under / mt / CxX2. 1 (/mnt/CXX2.1/bin and /mnt/CXX2.1/lbin)
for subprocesses rather than their respective default directories.

The TMPDIR Environment Variable

Syntax:
export TMPDI R=directory ksh notation
setenv TMPDI R directory csh notation

directory isthe name of an HP-UX directory where you want HP aC++ to put temporary files during
compilation.

Description:

Allows you to change the location of temporary files created by the compiler. The default directory is/ var/ t np.

Example:

export TMPDI R=/mt/tenp ksh notation
setenv TMPDIR /mt/tenp csh notation

Specifies that HP aC++ should put all temporary filesin/ mt / t enp.

Floating I nstallation

Asof HP aC++ A.01.12 (for HP-UX 10.x) and HP aC++ A.03.10 (for HP-UX 11.x) and subsequent versions,
more than one version of the HP aC++ compiler can be installed on one system at the same time. The floating
installation feature allows you to ingtall the compiler in any location. Y ou can install as many compiler versions
as required, depending on your system's resources.

By default, HP aC++ isinstalled under the /opt/aCC directory. In prior releases, the compiler driver (aCC)
looked for related files in subdirectories of /opt/aCC. This prevented installation of more than one version of HP

aC++ on the same system at the same time.

Note that only thefilesin /opt/aCC are affected by floating installation. No matter which HP aC++ driver you
are using, the compiler still usesthe libraries, linker, and other fileslocated in /ust/lib and /usr/ccs.

Note: You canusethe_ HP_acc predefined macro to determine which version is being run.

CAUTION: Foating installation is not intended for use with the following:

e CCROOTDIR environment variable
e -fc,name command line option

Setting Up Floating Installation

Y ou may want to install the most recent compiler version and keep the prior version on one system. If there are
problems with the most recent version, it is easy to switch to the prior one. Following is an example of how to
set up the floating installation feature for this purpose.

Assume that your system will have two versions of the compiler, both floating install enabled. In this case,
A.03.10isthe prior version, and A.03.13 is the more recent version.

1. Copy the prior version to another directory.

cp -rp /opt/aCC /opt/aCC. 03. 10

2. Useswingtal to install the new (in this case, A.03.13) version.
3. Toinvokethe A.03.10 compiler with its absol ute path:

[opt/ aCC. 03. 10/ bi n/ aCC app . C

Alternatively, you could change your PATH environment variable or set up an diasfor the absolute
path.

4. Toinvokethe A.03.13 compiler:

aCC app . C

The HP aC++ driver accesses subprocesses for the version you invoke.

Migrating from HP C++ (cfront) to HP aC++

If you are migrating code from HP C++ (cfront) to HP aC++, the following list presents differences in syntax
and functionality that you may need to consider. Click herefor General Migration Guidelines and Tips.

NOTE: Because of incompatibilitiesin areas such as name mangling, libraries, and object layout, al of your
C++ code for an application or library must be compiled and linked with either HP C++ (cfront) or with HP
aC++. You cannot mix object files compiled with HP C++ (cfront) with those compiled with HP aC++.

e Command-Line o
e Compiler Coexistence : wgﬂd File Size

e Debugging i e Standardizing Your Code (Syntax and Semantics)
e Error and Warning Messages e Templates

: Eﬁ?}gﬂ Handling e Trandator Mode not Supported

For Morelnformation

e Additiona Sources of Migration Information

General Migration Guidelinesand Tips

Asyou begin conversion of your HP C++ (cfront) code to HP aC++, you may want to read about the following
topics:

e Getting Started
e \Writing Code for Both Compilersusing __ cplusplus Macro

e Explicit Loading and Unloading of Shared Libraries
e Memory Allocation

Getting Started with Migration

1. Compile your code with the HP C++ (cfront) compiler using the +p option. This option requests the
compiler to treat anachronistic constructs as errors. Fix the anachronisms. For example:

CC +p cfrontfile.C

2. Inyour Makefiles:
o Change CCto aCC.
o Set the path to /opt/aCC/bin.
o Review command-line options and change when necessary.

3. Compile and fix syntax errors.
o Remember that cfront-generated object code and libraries are not compatible with those
produced by aCC.
o If your program uses operator new, alow for memory allocation exceptions that may occur.
Y ou must modify your cfront code to handle memory allocation failuresto avoid having these
failures cause a program abort.

4. Makelibrary changes. Begin migration to the Standard C++ Library and Tools.h++ Library.

5. Maketemplate changes.
o If aprogram or library uses templates, consider source code changes that may be required to
direct template instantiation.
o You may want to usethe +inst_none option with theinitial compilation to defer consideration
of compile-time errors due to template instantiation.

Writing Code for Both Compilers

Usethe cplusplus macro (defined by the draft standard) to write code that can be compiled by both HP C++
and HP aC++, asin the following example:

#if __cplusplus >= 199707L
/1 HP aC++ code

#el se
/1 HP C++ code

#endif // __cplusplus >= 199707L
Explicit Loading and Unloading of Shared Libraries

HP aC++ uses system calls rather than C++ function calls to explicitly load and unload shared libraries. When
migrating to HP aC++, you will need to make the following source code changes:

e change cxxshl_load() to shl_load()
e change cxxshl_unload() to shl_unload()
e change #include <cxxdl.h> to #include <dl.h>

Command-Line Differences

In HP aC++, you invoke the compiler with the acC command instead of the cC command used to invoke HP
C++.

The following sections describe differencesin command-line options:
e New Command-Line Options

o Obsolete Command-Line Options
e Changed Command-Line Options

New Command-Line Options

New options for HP aC++ are described below. These options are not available for HP C++ (cfront), however,
if arelated option exists, it is noted here.

-q0
Replaces the -g debugger option. It generates full debug information for the debugger.

For more information, refer to HP aC++ Debugging Options.

+hel p
InvokesthisHP aC++ Online Programmer's Guide .

+noeh
Turns exception handling off. In HP aC++ exception handling is on by default.

Note that in HP C++ (cfront), exception handling is off by default. To turn it on, you must use the +eh
option which is obsolete in HP aC++.

Precompiled Header File Options

Reduce compilation time and executable file size by precompiling common include (header) files.

Template Options
There are new options and new functionality for template processing. For more information about HP
aC++ templates, refer to:
o Using Templates.
o Migration Considerations when Using Templ ates.

Obsolete Command-L ine Options

HP C++ (cfront) options that are not available in HP aC++ are listed in the following sections. If arelated
option exists for HP aC++, it is noted.

Select from an Alphabetical List of Obsolete Options or a category of options:

Debugging Option
Exception Handling Option
Library Option

Null Pointer Option
Preprocessor Options
Template Options
Trandator Mode Options
Virtual Table Options

Alphabetical List of Obsolete Command-Line Options
Select the option for which you want more information:

+a0 +al -Aa-Ac -C -depth +e0 +el +eh -F

-Fc +4i +m -pta -ptb -pth -ptH"list " -ptn -ptr'path "

-pts -ptS'list " -ptv +Rnumber -txname +T -Wx,args
+xfile -y -Z

Obsolete Debugging Option
The following HP C++ (cfront) option is not supported in HP aC++.
For HP C++ (cfront), the - y option generates a Static Analysis database if SoftBench isinstalled and
/ opt / sof t bench/ bi n isat the beginning of your path. The option is not required for HP aC++.
Obsolete Exception Handling Option
The following HP C++ (cfront) option is not supported in HP aC++.
+eh
To use exception handling with HP C++, you must use this option when compiling al filesin your
application.

In HP aC++, exception handling isin effect by default. To turn exception handling off, you must
compile with the +noeh option.

Obsolete Library Option
The following HP C++ (cfront) library option is not supported in HP aC++.
-depth

For HP C++ (cfront), this option is used to instruct the run-time system to traverse the shared library
list in a depth-first manner when calling static constructors and when loading the libraries. The default is

to traverse the shared libraries in aleft-to-right order when calling static constructors. The order of
execution of static constructors within each shared library is not affected by this option.

For HP aC++, -depth funtionality isthe default. The option is therefore unnecessary.
Obsolete Null Pointer Option
The following HP C++ (cfront) library option is not supported in HP aC++.
-Z

Allow dereferencing of null pointers at run time. The value returned from a dereferenced null pointer is
zero. Thisisthe default behavior for HP C++ (cfront) and for HP aC++.

Obsolete Preprocessor Options

HP aC++ provides support for ANSI/ISO C++ International Standard preprocessing. Since the standard
categorizes support of pre-ISO preprocessing as an anachronism, the ANSI preprocessing options of HP C++
(cfront) are not supported.

- Aa
Requests the ANSI mode HP C++ preprocessor, cpp.ansi. Thisisthe HP C++ (cfront) default.
- Ac
Requests the compatibility mode HP C++ preprocessor, cpp, not available in HP aC++.

For thisrelease of HP aC++, the following options are not supported.

-C
Prevents the preprocessor from stripping comments from your source file; comments are retained.
-W
The - woption no longer accepts p as a subprocess parameter. In HP aC++, there is no separate
subprocess for the preprocessor.

Use the CC command (HP C++) as aworkaround, asin the following example:
CC prog.C -1 /opt/aClinclude -1 /opt/aClinclude/iostream-1 /usr -1 /[usr/include
For MoreInformation

e Migration Considerations Related to Preprocessing
® Preprocessingin HP aC++

Obsolete Template Options

In HP aC++, templates are processed differently than in HP C++ (cfront). New template options provide
additional functionality. Refer to Using HP aC++ Templates and Migration Considerations when Using
Templates for information.

The following HP C++ (cfront) template options are not supported in HP aC++.

-pta
Instantiates all members of used template classes and all needed template functions.
-pth
Invokes|d instead of nm to do simulated linking.
-pth

Uses short file names for template instantiation files.
-ptH' Llist "
Specifiesfile name extensions for template declaration files (header files).

-ptn

Instantiates at link time rather than compile time.
- ptrpath

Specifies an dternate location for the template repository.
-pts

Splitstemplate instantiations into separate object files.
-ptS"list "

Specifies file name extensions for template definition files.

For HP aC++, use the +inst_include suffixes option. Note this option must be used with the
+ingt_implicit_include option.

-ptv
Gives verbose information about template processing.

For HP aC++, use the +inst v option.
-t X, name
Thefollowing valuesfor x arerelated to template subprocesses and are not supported in HP aC++.
o i -- Link-time template processor, c++ptlink
o r -- Compile-time template processor, c++ptcomp
-Wk,args
Thefollowing valuesfor x arerelated to template subprocesses and are not supported in HP aC++.
o i -- Link-time template processor, c++ptlink
o r -- Compile-time template processor, c++ptcomp

Obsolete Translator Mode Options

HP aC++ isANSI C conformant and does not support a C++ to C translator mode. The following HP C++
(cfront) trandlator mode options are not valid in HP aC++.

+a0
Causes the trandator to produce d assi ¢ C style declarations.
+al
Causes the trandator to produce ANSI C style declarations.
-F
Runs only the preprocessor and trandator, sending the resulting source code to standard output
(stdout).
-Fc
Similar to the -F option, except that C source code is generated.
+
Generates an intermediate C language source file having the file name suffix ..c in the current directory.
+m

Provides maximum compatibility with the USL C++ implementation.
+Rnumber
Allowsonly thefirst number register variables to actually be promoted to the register class.

+T
Reguests trandator mode.
-t X, name
Thefollowing valuesfor x arerelated to transator mode and are not supported in HP aC++.
o 0 (zero) -- Ccompiler
o c -- Ccompiler
o m-- mergetool, c++merge
O p -- preprocessor
o P-- patch tool, c++patch
-Wk,args

Thefollowing valuesfor x arerelated to trandator mode and are not supported in HP aC++.
o 0 (zero) -- Ccompiler
o c -- Ccompiler

o m-- merge tool, c++merge
O p -- preprocessor
o P -- patch tool, c++patch
+xFile
Reads afile of datatypes, sizes, and alignments which the compiler uses when generating code.

Obsolete Virtual Table Options
The following HP C++ (cfront) virtual table options do not apply in HP aC++.
+e0
Causesvirtual tablesto be externa and defined elsewhere, that is, uninitialized.
e Causes virtual tables to be declared externally and defined in a given module, that isinitialized.
Obsolete Template and Translator Mode Argumentsfor -tx,name

For the-t x,name option, the following argumentsfor x , related to trandator mode and templ ate subprocesses,
are not supported in HP aC++.

® 0 (zero) -- Ccompiler

e c -- Ccompiler

e i -- Link-time template processor, c++ptlink

e m-- mergetool, c++merge

® p -- preprocessor

e P -- patch tool, c++patch

e r -- Compile-time template processor, c++ptcomp

Obsolete Template and Translator Mode Argumentsfor -Wx,args

For the - Wk, args option, the following arguments for x , related to trandator mode and template subprocesses,
are not supported in HP aC++.

® 0 (zero) -- Ccompiler

e c -- C compiler

e i -- Link-time template processor, c++ptlink

e m-- mergetool, c++merge

® p -- preprocessor

e P -- patch tool, c++patch

e r -- Compile-time template processor, c++ptcomp

Changed Command-Line Options
Functionality for the following optionsis different for HP C++ (cfront) than it isfor HP aC++.
-E

Functionality of the -E option has changed. It now runs the preprocessor only on named C++ files, not
on assembly files, and sends the result to standard output (st dout).

Functionality of the -g debugger option has changed. It now generates minimal information for the
debugger as does the -g1 option. Thisisthe default.
The -g0 option replaces -g and generates full debug information for the debugger.

For more information, refer to HP aC++ Debugaging Options.

-t X, name
Thefollowing valuesfor x arerelated to trandator mode and template subprocesses and are not
supported in HP aC++.

0 (zero) -- Ccompiler

¢ -- C compiler

i -- Link-time template processor, c++ptlink

m-- merge tool, c++merge

p -- Preprocessor

P -- patch tool, c++patch

r -- Compile-time template processor, c++ptcomp

o

(¢]
(¢]
(e]
(¢]
o
(e]

- Wk, args
Thefollowing valuesfor x are related to trandator mode and template subprocesses and are not
supported in HP aC++.

0 (zero) -- Ccompiler

¢ -- C compiler

i -- Link-time template processor, c++ptlink

m-- merge tool, c++merge

p -- preprocessor

P -- patch tool, c++patch

r -- Compile-time template processor, c++ptcomp

O0O0O0O0O0O0

Compiler Coexistence

The HP C++ and HP aC++ compilers execute independently and can be installed on a single system.
HP C++ islocated at:

/opt/ CC
HP aC++ islocated at:

[opt/aCC

Migration Consider ations when Debugging

The HP/DDE Debugger supports HP aC++. The HP Symbolic Debugger, xdb, is not supported.

Functionality of the -g debugger option has changed. It now generates minimal information for the debugger as
doesthe-gl option. Thisisthe default.

The-g0 option replaces -g and generates full debug information for the debugger.

For moreinformation, refer to HP aC++ Debugging Options.

HP aC++ M essages

Asyou migrate your code from HP C++ to HP aC++, you are likely to see many error and warning messages
related to standards based syntax.

It may be helpful to compile using HP C++ (cfront) with the +p option. Then when the compiler encounters a
standards based reserved word that is used as an identifier, it generates a warning message indicating that this

syntax will cause an error in HP aC++.

Inter preting HP aC++ M essages

The aC++ compiler can issue alarge variety of diagnosticsin response to unexpected situations or suspicious
constructs. These diagnostics can be classified as follows:

Command Errors
These are issued when the command line is not correctly formed and the compiler cannot proceed with
compilation.
Command Warnings
These sometimes occur when an option is not recognized, but compilation proceeds without that option.
Fatal Errors
These areissued for ill formed programs for which the compiler cannot recover reliably. Syntax errors
usualy fal into this category. No object file will be generated if such an error is encountered.
FutureErrors
These are actually serious warnings indicating that alanguage rule was violated, but the compiler will
continue generating code. These warnings can be turned into hard errors by using the +p option
(pedantic mode).
Anachronisms
These warnings a so diagnose ISO/ANSI C++ language violations. Code that triggers this sort of
diagnostic was considered legal in the past.
Warning
These help inidentifying possible sources of bugs, often because the code triggers behavior that is not
precisely defined by the C++ standard.
Suggestion/I nfor mational
These diagnostics are not emitted unless the -w option is provided. In that case, the compiler attemptsto
identify more suspicious constructs.
Tool Errors
Very rarely, aC++ may fail in acomponent that is not specific to the C++ language (e.g., the PA-RISC
optimizer); inthat case, aTool Error isemitted. The compilation process cannot recover from these,
and they are often asign of adefect in the compiler.

Frequently Encountered M essages

Frequently encountered diagnostic message numbers are listed and described in the HP aC++ Transition
Guide at thefollowing URL:

http://ww. hp. conl esy/ | ang/ cpp/t gui de/

Migration Considerations when Using Exception Handling

When migrating exception handling code, be aware of the following characteristics of HP aC++ which differ
from those of HP C++ (cfront):

Exception Handling isthe Default

Memory Allocation Failure and operator new

Possible Differences when Exiting a Signal Handler
setj nmp/ | ongj np Behavior

Cdling unexpect ed

Unreachable cat ch Clauses

Throwing an Object having an Ambiguous Base Class

See Also

e Standard Exception Classes
e Standard Exceptions

Exception Handling isthe Default

In HP aC++ exception handling is on by default. Use the +noeh option if you need to turn exception handling
off. Note that with exception handling disabled, the keywordst hr owand t ry generate acompiler error.

The HP C++ (cfront) compiler, behaves differently; the default is exception handling off. To turn it on, you
must use the+eh option which is obsolete in HP aC++.

CAUTION: If your executable throws no exceptions, object files compiled with and without the +noeh option
can be mixed fregly.

However, in an executable which throws exceptions (note that HP aC++ run-time libraries throw exceptions),
you must be certain that no exception is thrown in your application which will unwind through afunction
compiled without the exception handling option turned on. In order to prevent this, the call graph for the
program must never have calls from functions compiled without exception handling to functions compiled with
exception handling (either direct calls or calls made through a callback mechanism). If such calls do exist, and an
exception isthrown, the unwinding can cause:

e non-destruction of local objects (including compiler generated temporaries)

e memory leaks when destructors are not executed
e run-time errors when no catch clauseis found

Memory Allocation Failure and operator new

In HP aC++ programs, when either operator new () or operator new [] cannot obtain ablock of storage, a
bad_al | oc exception results. Thisisrequired by the ANSI/ISO C++ International Standard.

In HP C++, memory allocation failures return anull pointer (zero) to the caller of oper at or new ().
To handle memory allocation failuresin HP aC++ and avoid a program abort, do one of the following:

e Writetry/catch clauses to handle the bad_alloc exception.
e Usethe nothrow_t parameter to specify the type when calling operator new and check for anull pointer.

For example:

operator new (size_t size, const nothrowt & throw);
operator new [] (size_t size, const nothrowt & throw();

#inciude
#i ncl ude

class X{};
void fool() {

X* xpl = new(not hrow()) X; /1 returns 0 when creating a nothrow
/'l object, if space is not allocated
}

void foo2() {
X* xp2 = newX: /1 may throw bad_all oc

}

voi d main() {

try {
fool();

foo2();
}

catch (bad_alloc) {
/1 code to handl e bad_alloc

}
catch(...) {
/1 code to handle all other exceptions

}
}

Possible Differences when Exiting a Signal Handler

Behavior when exiting asigna handler viaathrow (which, according to the ANSI/ISO C++ International
Standard remains "undefined"), may differ between the two compilers.

In HP aC++, atry block beginsfollowing the first call after the try keyword. This conformsto the standard
which considers that prior to thefirst call, alegal exception cannot be thrown which would consider the current
try block's handlers as candidates to catch the exception.

In HP C++ the try keyword defines the beginning of atry block.

Thus, if asigna were taken while executing between the try keyword and thefirst call's return point, athrow
from the signal handler would not find the associated handlers to be candidates for catching the exception.

Differencesin setjmp/longjmp Behavior

Interoperability with setjmp/longjmp (undefined by the ANSI/ISO C++ International Standard) is
unimplemented.

The standard has the following verbiage, suggesting that an implementation is not obligated to clean up objects
whose lifetimes are shortened by alongjmp:

The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this International Standard.
If any automatic objects would be destroyed by athrown exception transferring control to another (destination)
point in the program, then acall to longjmp(jbuf, val) at the throw point that transfers control to the same
(destination) point has undefined behavior.

Calling unexpect ed

Unlike HP C++, in HP aC++ an unexpected-handler cannot throw anything it pleases. If it wantsto exit viaa
throw, it must throw an exception that is legal according to the exception specification that caused unexpected()
to be called, unless that exception specification includes the predefined type bad_except i on. If it doesinclude
bad exception and the type thrown from the unexpected-handler is not in the exception specification, then the
thrown object isreplaced by abad_exception object and throw processing continues.

The following exampleislega in HP C++ but not in HP aC++. Y ou can make the example legal by including
the exception header and adding bad_except i on to foo's throw specification. The catch(...) in main will then
catch abad_except i on object. Thisisthe only legal way an unexpected-handler can rethrow the origina
exception.

/1 #i ncl ude Needed to nmeke the exanple | egal

voi d ny_unexpected_handl er() { throw }

void foo() throw() {

/1 void foo() throw bad_exception) { To nmake the exanple |egal,
/1 replace the previous line
/1 of code with this Iine.

t hr ow 1000;

}

int main() {
set _unexpect ed(mnmy_unexpected_handl er);

try {
foo();

}

catch(...) {

printf("fail - not legal in aCCQn");
}

return O;

}

Following is another example, illegal because my_unexpect ed_handl er isrethrowing anint. A possible
conversion isto throw &x instead, since thisisapointer to int and therefore legal with respect to the original
throw specification. Alternatively, you could add bad_except i on to the throw specification, asin the prior
example.

int x = 1000;
voi d ny_unexpected_handler() { throw }

void foo() throw(int *) {
t hrow 1000;

}

int main() {
set _unexpect ed(ny_unexpected_handl er);

try {
foo();

}
catch(...) {

printf("fail - not legal in aCQn");
}

return O;

}
Unreachable cat ch Clauses

Unreachable catch clauses are diagnosed by HP C++ but not by HP aC++. For example:

class C {
/1

b
class D: public C{

/1
b

catch(QO {
}

catch(D) { /'l Unreachabl e since previous catch masks this one.
/1 Throw of D will be caught by catch for base cl ass.
}

catch(C *) {

catch(D *) { /'l Unreachabl e since previous catch masks this one.
/1 Throw of D* will be caught by catch for pointer
/1l to base class.)

}
Throwing an Object having an Ambiguous Base Class

HP C++ generates an error for the throw of an object having an ambiguous base class. In HP aC++, athrow of
an object having an ambiguous base class is not caught by a handler for that base, since that would involve a
prohibited derived->base conversion.

In the following example, the throws are caught by the handlersfor D1 and D1*, respectively. The handlersfor
C aredisgualified because C is an ambiguous base class of E:

extern "C" int printf(char*,...);

class C {
public:

c() {};
b

class D1 : public C {
public:
_?_1() {}:

class D2 : public C{
public:
D2() {}:

class E: public D1, public D2 {
public:

EQ) {};

i

int main() {
E e;

try {
throw e;

}
catch(O {
printf("caught a C object\n");

}
catch(D1) {
printf("caught a Dl object\n");

}
catch(D2) {
printf("caught a D2 object\n");

}
catch(E) {
printf("caught an E object\n");

}

try {
throw & e;

}
catch(C) {
printf("caught ptr to C object\n");

}
catch(D1*) {
printf("caught ptr to Dl object\n");

}
catch(D2*) {
printf("caught ptr to D2 object\n");

}

catch(E*) {

printf("caught ptr to E object\n");
}

return O;

}

Migration Considerationswhen Using Libraries

Choose from the following sections for information about library migration from HP C++ (cfront) to HP
aC++. Note that the Complex Library and the Task Library are no longer supported. For information about
availability of the HP Codelibs Library, contact your HP support representative.

StandardsBased Libraries

HP aC++ provides the following libraries that are not part of the HP C++ (cfront) compiler: It is highly
recommended that you use these standards based libraries whenever possible, instead of the cfront compatibility
libraries.

e Standard C++ Library
e Tools.h++ Library
e HP aC++ Run-time Support Library

HP C++ (cfront) Compatibility Libraries

HP aC++ provides the following libraries whose functionality is part of the HP C++ (cfront) compiler. These
librariesare not standar ds based.

e |OStream Library
e Standard Components Library

HP aC++ A.01.21 Run-time Support Library

The following HP aC++ libraries replace the cfront based HP C++ libraries:

e /opt/aCC/lib/libCsup.d -- shared version, the default
e /opt/aCCl/lib/libCsup.a-- archive version

Sincethe K & R float to double promotion rule is not supported, no equivaentsto libC and libC.ans are
avalable.

For Morelnformation

e What the library supports.

For your reference, the files containing the HP C++ (cfront) run-time libraries are listed below. Different
libraries are used depending on whether or not you use exception handling.

HP C++ 3.x Stream Library File L ocations (default version, without exception handling)

® /opt/aCClib/libC a
® /opt/aCClib/libC. sl
® /opt/aCllib/libC ansi.a
® /opt/aCC/lib/libC. ansi. sl

HP C++ 10.x Stream Library File Locations (default version, without exception handling)

® /usr/lib/libC a
® /usr/lib/libC sl
® /usr/lib/libC ansi.a
® /usr/lib/libC ansi.sl

HP C++ (cfront) Stream Library File L ocations (exception handling version)

® /opt/aCC/lib/aCleh/libC. a
® /opt/aCC |lib/aCC/ eh/libC ansi.a

|OStream Library
The shared version of thislibrary islocated at /usr/lib/libstream.dl. The archive version is at /usr/lib/libstream.a.

Manual Pages

| GS. | NTRQ(3C++) -- introduction to the C++ stream library
fil ebuf (3C++) --buffer for file input and output

f st r ean(3C++) --iostream and streambuf specialized to files
i 0s(3C++) --input/output formatting

i st ream(3C++) --formatted and unformatted input

mani p(3C++) --iostream manipulators

ost r eam(3C++) --insertion (storing) into a streambuf

sbuf . pr ot (3C++) --interface for derived classes

sbuf . pub(3C++) --public interface of character buffering class
ssbuf (3C++) --streambuf specialized to arrays

st di obuf (3C++) --iostream specialized to stdio FILE

st rstream 3C++) --iostream specialized to arrays

Header Files

The following header filesare for use with the IOStream library. To direct the compiler to search these header
files, use- 1/ opt/aCC i ncl ude/ i ostream

iostream.h -- 1/O streams classesi os, i stream ostream andstreanbuf

fstream.h

strstream.h -- St r earbuf specialized to arrays

iomanip.h -- predefined manipul ators and macros

stdiostream.h -- specialized st r eans and st r eanbuf s for interaction with st di o

stream.h-- includesi ostream h, fstream h, stdiostream h andiomani p. h for compatibility
with AT& T USL C++ version 1.2

Standard ComponentsLibrary

The Standard Components Library is provided for compatibility with the cfront based HP C++ compiler. In
place of the Standard Components Library, it is highly recommended that you use the similar features of the
Standard C++ Library.

When using the Standard Components Library, note the following:

There are command-line differences between HP C++ (cfront) and HP aC++:
o with cfront use -1 /opt/CC/include/SC
o with HP aC++ use -I /opt/aCCl/include/SC

Note that -I++ is still needed on thelink line.

The following program devel opment tools that are part of the HP C++ (cfront) compiler are not part of
the HP aC++ compiler:

fscpp (symbolic freestore manager)

g2++comp

dem (demangler)

publik

incl

hier

O0O0O0O0O0

compl isamember funtion in the Bit class, which isdefined in Bit.h. If you use the Bit class, you
should change your compl callsto compl_.

In the HP C++ (cfront) compiler, two sets of Standard Components library files are provided, one for
code that uses exception handling and one for code that does not. To see their locations choose from the
following:

o HP C++ 3.x Standard Components Library File Locations

o HP C++ 10.x Standard Components Library File L ocations

HP aC++ has just one set of Standard Components library files located at:

O /opt/aCllib/lib++. a
O /opt/aClllib/libGA a
O /opt/aCCllib/libG aph.a

Manual Pages

Manual pages are located at /opt/aCC/share/man/man3.Z. To invoke a man page from the command line, enter 3s
after the man command and before the man page name. For example, to invoke the man page for Args.

man 3s Args

SC i ntro(3C++) -- introduction to Standard Components

Ar gs(3C++) -- command-line arguments

Array_al g(3C++) -- operations on arrays

Bi t s(3C++) -- variable-length bit strings

Bl ock(3C++) -- parameterized variable-size arrays
Fsm(3C++) -- Smple deterministic finite state machines
G aph(3C++) -- entities and relationships

G aph_al g(3C++) -- operations on graphs

Li st (3C++) -- parameterized variable-length sequences
Map(3C++) -- parameterized variable-size associdtive arrays
Qbj ect i on(3C++) -- rudimentary error-handling

Pat h(3C++) -- path names and search paths

Pool (3C++) -- special-purpose memory alocators

Regex(3C++) -- regular expressions
Set (3C++) -- parameterized unordered collections
St opwat ch(3C++) -- program execution time measurement

String(3C++) -- variable-length character strings

Strstrean(3C++) --i ostreamspecidized for Stri ng(3C++)

Synbol (3C++) -- unique identifiers based on character strings

Ti me_i ntro(3C++) and Ti ne(3C++) -- absolute time, time zone and duration

Header Files

Standard Components header files and template source files are listed below. To direct the compiler to search
these header files, specify - 1/ opt / aCCl i ncl ude/ SC.

Args.h e Listio.c e Timeh
Array ag.c e Listio.h e Tmppath.h
Array ag.h e Map.c e bag.c
Bits.h e Map.h e bag.h
Block.c e Mapio.c e bagio.c
Block.h e Mapio.h e bagio.h
Blockio.c e Objection.h e ipcmonitor.h
Blockio.h e Path.h ® ipcstream.h
Fsm.h e Pool.h e ksh test.h
Graph.h e Regex.h e set.c

Graph _alg.h e Search path.h e set.h

List.c e Set.h e set of p.c
List.h e Stopwatch.h e set of p.h
List old.c e String.h e set of pio.c
List old.h e Sirstream.h e set of pio.h
List oldio.c e Symbol.h e setio.c

List oldio.h e Ticket.h e setio.h

Migration Considerations

+inst implicit_include option for cfront style template definition files

HP C++ 3.x Standard ComponentsLibrary File L ocations

Default version:

® /usr/lib/lib++. a

® /usr/lib/libfs.a

® /usr/lib/libGA a

® /usr/lib/libGaph.a
® /usr/lib/libg2++. a
® /usr/lib/incl2

® /usr/lib/hier2

® /usr/lib/publik2

Exception handling version:

[fusr/lib/aCCl eh/lib++. a
lusr/liblaCCleh/libfs.a
lusr/liblaCCleh/libGA a
/usr/liblaCC eh/libG aph. a
[usr/liblaCC eh/libg2++. a

HP C++ 10.x Standard Components Library File Locations

Default version:

® /opt/CClib/lib++. a

® /opt/CClib/libfs.a

® /opt/CClib/libGA a

® /opt/CC/lib/libG aph.a
® /opt/CC1ib/llibg2++. a
® /opt/CCIliblincl2

® /opt/CC/lib/hier2

® /opt/CCl/lib/publik2

Exception handling version:

® /opt/CC/lib/leh/lib++. a
® /opt/CC/lib/eh/libfs.a
® /opt/CC/libl/leh/libCGA a
® /opt/CClibleh/libG aph.a
® /opt/CC libleh/libg2++. a

HP C++ (cfront) Complex Library Not Supported

The Complex library which is part of the cfront based HP C++ compiler product is not included with HP
aC++. In place of the Complex library, it is recommended that you use the similar features of the Standard C++

Library.
To begin your migration:

e Replace #include with <complex>.
e Remove -lcomplex from the command-line.

Manual Pages Not Available
The following manual pages describing the complex library are not part of the HP aC++ product:

CPLX. | NTRQ(3C++) -- introduction to the C++ complex mathematics library

cart pol (3C++) -- cartesian and polar functions

cpl xexp(3C++) -- exponential, logarithm, power, and square root functions for complex numbers
cpl xerr (3C++) -- error handling function

cpl xops(3C++) -- complex number operators

cpl xtri g(3C++) -- trigonometric and hyperbolic functions for complex numbers

Header File Not Available

The Complex library uses the complex.h header file.

HP C++ (cfront) Task Library Not Supported

Thetask library which is part of the HP C++ compiler product is not included with HP aC++. To develop
multi-threaded applications with HP aC++, use the pt hr ead programming interface routinesthat are available as
part of HP DCE/ 9000.

Manual Pages Not Available

The following manual pages describing task library features are not part of the HP aC++ product:

® TASK. | NTRQ(3C++) -- introduction to the C++ task library

® interrupt(3C++) -- signa handling

® queue(3C++) -- queue routines for message passing and data buffering

® task(3C++) -- the C++ task library

® tasksi n(3C++) -- histograms and random numbers for simulations with C++ tasks

Migration Consider ations Related to Performance and File Size

For information about HP aC++ performance and file size considerations, refer to the following:

e Creating and Using Precompiled Header Files
e Performance Considerations when using Exception Handling
e HP aC++ Release Notes

Migration Consider ations Related to Preprocessing

The HP C++ (cfront) compiler provides ANSI mode (the default) and K & R compatibility mode
preprocessing.

HP aC++ preprocessing complies with the ANSI/ISO C++ International Standard. Therefore, if you are
migrating from cfront ANSI mode preprocessing to HP aC++, in general, no changes are required.

HP aC++ does not support K & R compatibility mode preprocessing.
For Morelnformation
o Obsolete Preprocessor Options

@ Preprocessing in HP aC++
e Concatenating Tokens with the ## Operator

Migration Consider ations Related to Standar dization

The ANSI/ISO C++ International Standard redefines the C++ language in terms of rules, syntax, and features.

If your existing code contains any of the standards based keywords as variable names, you must change the
variable names when you convert your program to an HP aC++ program.

In addition to keyword changes, there are changesin C++ Semantics and C++ Syntax.
See Also:

e Standardizing Y our Code

Migration - C++ Semantics

When you migrate from HP C++ to HP aC++, your code will behave differently in the following areas, even

though it may compile without errors or warnings.

e Implicit Typing of Character String Literals

e Overload Resolution Ambiguity of Subscripting Operator
e When operator new fails, it throws an execption.
°
°

Static constructors in shared libraries may be executed in a different order.
Inline code isinlined more often.

Implicit Typing of Character String Literals

HP C++ implicitly types character string literals as char *. HP aC++ in accordance with the ANSI/ISO C++
International Standard, types character string literals as const char *.

This difference affects function overloading resolution. For example, in the following code, HP aC++ callsthe
first function & cfront calls the second.

voi d a(const char *);
void a(char *);

f() {
a("A_STRING') ;

To prevent existing code like the following from breaking, the ANSI/ISO C++ International Standard does
make a provision to allow the assignment of astring literal to anon-const pointer.

char *p = "B_STRING';

NOTE: The ANSI/ISO C++ International Standard defines the above as a deprecated feature, that is, not
guaranteed to be part of the Standard in future revisions.

Also, in aconditiona expression like the following, the conversion of const char * to char * isnot provided for
in this context.

char *p =f() ? "A" : "B";

The code could be changed in several ways, for example:

const char *p = f() ? "A" : "B";
or
char *p = const_cast(f() 2 "A" : "B");

Overload Resolution Ambiguity of Subscripting Operator

HP C++ and HP aC++ have different overload resolution models. When migrating to HP aC++, you may see
an overload resolution ambiguity for the subscripting operator. The following code illustrates the problem:

struct String {
char & operator[] (unsi gned);
operator char*();

...

1
void f(String &) {

s[0] ="'0";
HP C++ accepts the above code, selecting String::operator|] (unsigned) rather than the user-defined conversion,
String::operator char* (), followed by the built-in operator(].
Compiling the above with HP aC++ produces an error like the following:

Error 225: "c.C', line 8 # Anbi guous overl oaded function call
nore than one acceptable function found. Two such functions
that matched were "char &String::operator [](unsigned int)"

["c.C", line 2] and "char &operator [](char *,int)"
[Built-in operator].
s[0] ="'0";

The error message isissued (correctly) because the compiler cannot choose between:

1. not converting s, but converting "0 from type int to type unsigned int; thisimplies using the user-
provided subscript operator(]

2. converting 's to type char* (using the user-defined conversion operator), but not converting "0'; this
corresponds to using the built-in subscript operator(].

In order to disambiguate this situation in favor of the user-provided subscript operator[], make the conversion of
“0'in dternative 1. no worse than the conversion of “0' in aternative 2. Because the subscript type for the built-in
operator(] is ptrdiff_t (as defined in <stddef.h>), thisis also the type that should be used for user-defined
subscript operators. The example above should therefore be replaced by:

#i ncl ude

struct String {
char& operator[](ptrdiff_t);
operator char*();
1.

b

void f(String &) {
s[0] ="'0";

Note that "worse" isrelative to aranking of conversions as described in the ANSI/ISO C++ International
Standard on overloading. In general, a user-defined conversion is worse than a standard conversion, which in
turn isworse than no conversion at al. The complete rules are more fine- grained.

Execution Order of Static Constructorsin Shared Libraries

In HP C++ (cfront), static constructors in shared libraries listed on the link-line are executed, by default, in
left-to-right order. HP aC++ executes static constructors in depth-first order; that is, shared libraries on which
other files depend are initialized first. Use the -depth command-line option on the CC command line for the
greatest compatibility with HP aC++.

In addition, HP aC++ reverses the initialization order of .o fileson the link-line. To aid in migration, you can
group al .ofilestogether and dl .4 files together, asin the following example:

aCC filel.o file2.0 libl.sl lib2.sl lib3.s

Given the above link-line, cfront would initialize file2.0 and than filel.o, while HP aC++ initializes filel.o and
than file2.0. Y ou should take thisinto account in your cfront code to avoid link problems with HP aC++.

More Frequent Inlining of Inline Code

HP C++ does not actually inline some functions even though you have requested inlining. This happens when
the function istoo complex. If you use the +w option, the compiler displays a message whenever it does not
inline afunction you wanted inlined.

HP aC++ almost always inlines functions for which you have specified thei nl i ne keyword.

Migration - C++ Syntax

When you migrate from HP C++ to HP aC++, in addition to changes related to standards based keywords, you
may need to make changes to your source code in the following areas:

Expliciti nt Declaration

f or Statement - New Scoping Rules

st ruct as Template Type Parameter is Permitted
Base Template Class Reference Syntax Change
t ypenane in Template Declarations

Tokens after #endi f

over | oad hot a Keyword

Dangling Commain enum

Static Member Definition Required

Declaring f ri end Classes

Incorrect Syntax for Calls to operator new
Using :: in Class Definitions

Duplicate Formal Argument Names
Ambiguous Function/Object Declaration
Overloaded Operations ++ and - -

Reference Initialization

Using oper at or _newto Allocate Arrays
Parenthesesin Static Member Initidization List
&qudified-id Required in Static Member Initialization List
Non-constant Reference I nitialization

Digraph White Space Separators

Migration - Explicit i nt Declaration

HP C++
Y ou do not need to explicitly specify int types.
HP aC++

Y ou must explicitly declare int types. This change reduces opportunities for ambiguity between expressions
involving function-like casts and declarations.

Change Needed
Explicitly declareint types.

Example

Thefollowing codeisvaidin HP C++:

void f(const parm;

const n = 3;

mai n()

The equivaent, valid HP aC++ code follows:

void f(const int parm;
const int n = 3
int main()

Migration - f or Statement, New Scoping Rules

HP C++
Variablesdeclared in theinitializer list are allowed after thef or Statement.
HP aC++

In the ANSI/ISO C++ International Standard, variables declared in theinitializer list are not allowed after the
f or statement. HP aC++ provides this functionality when you specify the following aCC command-line option:

-WC, -ansi _for_scope, on

If you do not specify thisoption, (or you specify the option -WC,-ans_for_scope,off) by default the new rules
do not take effect.

Change Needed

At thistime, HP aC++ provides this standard functionality as an option to ease conversion of existing code to
the standard. No code change is currently required.

Future plans are to make the ANSI/ISO C++ International Standard syntax the default. Therefore, itis
recommended that you correct your code, by moving the declaration of thef or loop variableto its enclosing
block.

Example

The following code currently compiles error free with HP C++ and HP aC++. In the future, HP aC++, will
generate an error.

int main(int argc) {
for (int i =
}
for (i =0; i <arge; ++i) {

}

1, i < argc; ++i) {

}
Correct the code as follows:

int main(int argc) {
int i;
for (i
}

for (i

1; i < argc; ++i) {

0; i < argc; ++i) {

}
Corrected code complieswith ANSI/ISO C++ International Standard syntax and compiles with either compiler.

Migration - struct as Template Type Parameter is Permitted

HP C++
An error is generated when ast r uct isused as atemplate type parameter.
HP aC++

When ast ruct isused as atemplate type parameter, it is correctly compiled, in accordance with draft standard
syntax.

Change Needed
Thisisanew feature.
Example

tenplate class A {
public:
struct T a;

b
struct B {};
A b;

Compi l'ing the above code with HP C++ causes an error |like the follow ng:
CC. "DDB4325.C', line 3: error: T of type any redeclared as struct (1479)

The code conpiles without error with HP aC++

Migration - Base Template Class Refer ence Syntax Change

HP C++

You can reference a nenber of a base tenplate class w thout qualifying the nenber.

HP aC++

When referencing a nenber of a base tenplate class, you should qualify the nenber by
addi ng a this->.

Change Needed

Addi ng this-> forces nanme resolution to be deferred until instantiation which allows the
conpiler to find nenbers in tenplate base classes. This rule prevents the conpiler from
findi ng names declared in encl osing scopes when that is unintended

Example

tenplate class BaseT {
public:

int i;
i _ _
tenplate class DerivedT : public BaseT {
public:
void fool () {t =1; i =1; } /1 warning 721

/1t and i could be gl obal

void foo2 () { this->t = 2; this-> = 2; } /1 Correct syntax, no warning.

1
DerivedT d; /1 Here is the point of instantiation

Migration - Tokens after #endi f

HP C++ Behavior

Any characters follow ng the #endif preprocessor statenment cause a warning and are
i gnor ed.

HP aC++ Behavior

Any characters follow ng the #endif preprocessor statenent cause an error and the
program does not conpil e.

Change Needed

Renove all characters following all #endif preprocessor statements or put the token in
conment s.

Example

Conmpi ling the followi ng code with HP C++ causes a warning. Conpiling with HP aC++
generates an error.

int main(){
#i f def FLAG
int i;

i =1;

#endi f FLAG
}

To conpile with HP aC++, you can change the code to the foll ow ng:

int main(){
#i f def FLAG
int i;

i =1;

#endi f // FLAG
}

Migration - over | oad not a Keyword

HP C++

Using the overl oad keyword to specify that a function is an overl oaded function causes
an anachroni stic warning and is ignored.

HP aC++

Usi ng the overl oad keyword causes an error and the program does not comnpil e.
Change Needed

Renove all uses of the overload keyword.

Example

Compiling the followi ng code with HP C++ causes a warning. Conpiling with HP aC++

generates an error stating that overload is used as a type, but has not been defined as
a type.

int f(int i);

overload int f(float f); /'l Renove the word overl oad.
int min () {

return 1;

}

Migration - Dangling Comma in enum

HP C++

A comma following the ast elenent in an enumlist is ignored.

HP aC++

A comma following the last elenent in an enumlist generates an error.

Change Needed

Renove the comma after the |ast el ement.

Example

HP C++ accepts the follow ng code. HP aC++ generates an error stating that the , is
unexpect ed.

enum Col ors { red,
or ange,
yel | ow,
gr een,
bl ue,
i ndi go,
vi ol et /1 This comma is illegal.

b

Migration - Static Member Definition Required

HP C++

Declaring a static nenber but not defining it is allowed.

HP aC++

Declaring a static nenber but not defining it is not allowed.

Change Needed

Add a definition of the static data nmenber.

Example

Conpiling and linking the foll ow ng code on HP C++ gives no warning nor error.

Compi ling the code on HP aC++ gives no warning nor error. Linking the resulting object
file generates a linker (ld) error stating that there are unsatisfied synbols.

class A {
public:

static int staticnenber;
b

/1l int A :staticnenber=0; /1 This would fix the problem
int main ()

A :staticnenber =1;
Migration - Declaring f ri end Classes

HP C++

Declaring friend classes without the class keyword is all owed.

HP aC++

Declaring friend classes w thout the class keyword generates an error.

Change Needed

Add the class keyword to all friend class declarations.

Example

Conpiling the followi ng code on HP C++ gives no warning nor error. Conpiling the code on
HP aC++ generates an error stating that the friend declaration for Bis not in the right
formfor either a function or a class.

class foof

public:
friend bar; /1 Need to say: friend class B
1

int min (){
return 1;
}

Migration - Incorrect Syntax for Callsto operator new

HP C++

Incorrect syntax for the use of a value to a call to operator new is all owed.

HP aC++

An error is generated when this incorrect syntax for opertor new is used.

Change Needed

Add parentheses around the use of operator new. This code conpiles correctly with both
HP C++ and HP aC++.

Example

Conpiling the followi ng code on HP C++ gives no warning nor error. Conpiling the code on
HP aC++ generates errors stating operator expected instead of new and Undecl ared
vari abl e operator S

struct S {int f();};

int g() { return new S->f();}

/1 int g() { return (new S)->f();} /1 This would fix the problem
int S:: f() { return 1;}

mai n() {
return 1; }

Migration - Using :: in Class Definitions

HP C++

Menbers of classes are incorrectly allowed to be declared inside the class using the
synt ax:

cl ass_nane: : menber _nane

HP aC++

This incorrect syntax is considered an error.

Change Needed

Renove the class_nane:: specification fromthe nmenber definition

Example

Compi ling the followi ng code on HP C++ gives no warning nor error. Conpiling the code on

HP aC++ generates an error stating that you cannot qualify nmenbers of Class X in the
class definition.

class X{
int X:f();
I int f(); /1 This would fix the problem and
/1 run successfully on both conpilers.
>
int main(){

Migration - Duplicate Formal Argument Names

HP C++

Duplicate formal argunent nanes are all owed.

HP aC++

Duplicate formal argunent nanes generate an error.

Change Needed

Use uni que formal paraneter nanes.

Example

The follow ng code conpiles with HP C++. Wth HP aC++, an error is generated stating
that synbol aParaneter has been redefined and where it was previously defined.

int a(int aParanmeter, int * aParaneter);

Migration - Ambiguous Function/Object Declaration

HP C++

An anbi guous function/object declaration conpiles w thout warning, assum ng an object
decl arati on.

HP aC++

An anbi guous function/object declaration generates an error.

Change Needed

Change the code to renove the anbiguity.

Example

struct A {A(int);};

struct B {B(const A &); void g();};

void f(int p) {
B b(A(p)); /1 Declaration of function or object?
b.g(); Il Error?

}

The anmbiguity in the above code is whether b is being declared as:

® a function with one argunent (nanmed p) returning an object of type B.
® an object of type Binitialized with a tenporary object of type A

HP C++ conpiles this code successfully and assunes b is an object. Conpiling the code
with HP aC++ causes an error like the follow ng:

Error: File "objDeclaration.c", Line 5

Left side of '.' requires a class object; type found was a function "B (A)".
Did you try to declare an object with a nested constructor call?
Such a declaration is interpreted as a function declaration B b(A)
[File "objDeclaration.c, Line 4].

Modi fy the code as shown bel ow for successful conpilation with both conpilers.

struct A {A(int);};

struct B {B(const A &); void g();};

void f(int p) {
Bb=Ap); /1 declaration of object
b.g(); /1 method call

Migration - Overloaded Operations ++ and - -

Over | oaded operations ++ and -- must be correctly used. These operations require a
menber function with one argunment. If the function has no argunent:

HP C++

A warning is issued and a postfix operation is assuned.

HP aC++

The inconsi stency between the overl oaded function usage and definition is considered an
error.

Change Needed

Change the class definition so that each overl oaded function definition has the correct
nunber of argunents.

Example

class T {
public:
T():

const T& operator++ ();
b
int main () {
Tt,
t++;

}

Compi ling the above code with HP C++ causes a warning |like the follow ng:
CC. "pre.C', Line 8: warning: prefix ++/ -- used as postfix (anachronism (935)
Conpiling the code with HP aC++ generates an error like the follow ng:

Error 184: File "pre.C', Line 8
Arithnetic or pointer type expected for operator '++'; type found was 'T'.

To conpile the code with either HP C++ or HP aC++ use the followi ng class definition:

class T {
public:
T(); _ . o
const T& operator++ (); [l prefix old style postfix definition
const T& operator++ (int); // postfix

1
Migration - Reference I nitialization

Il'legal reference initialization is no |onger allowed.

HP C++

A warning is generated stating that the initializer for a non-constant reference is not
an | val ue (anachronism.

HP aC++

An illegal initialization of a reference type causes an error and the program does not
conpi | e.

Change Needed

Use a constant reference.

Example

void f() {
char ¢ = 1;
int &r = c;

}

Conpi l i ng the above code with HP C++ causes a warning |ike the follow ng:

C. "nonConstRef.C', line 6: warning: initializer for non-const
reference not an |value (anachronism((235)

Conpiling the code with HP aC++ generates an error like the follow ng:

Error: File "nonConstRef.C', Line 6

Type nmismatch; cannot initialize a 'int & wth a 'char'.

Try changing 'int & to 'const int & .

For successful conmpilation with both conpilers, change the code as shown bel ow
void f() {

char ¢ = 1;
const int &r = c;

Migration - Using oper at or newto Allocate Arrays

HP C++

operator newis called to allocate nmenory for an array.

HP aC++

operator new [] is called to allocate nenory for an array.
Change Needed

Change operator new to operator new [].

Example

t ypedef char CHAR

t ypedef unsigned int size_t;
t ypedef const CHAR *LPCSTR, *PCSTR

t ypedef unsigned char BYTE;

voi d* operator new (size_t nSize, LPCSTR | pszFileNane, int nLine);
static char THHS FILE[] = "mR2.C";
int main() {
BYTE *p;
p = new(THI S_FILE, 498) BYTE[50];
}

The above code conpiles wthout error on HP C++. On HP aC++, an error like the foll ow ng
i s generated:

Error: File "DDB4269.C', Line 10
Expected 1 argument(s) for void *operator new [](unsigned int); had 3 instead.

For Morelnformation

® Overloading new] and delete[] for Arrays

Migration - Parenthesesin Static Member Initialization List

HP C++

Redundant parentheses are allowed in a static nenber initialization list.

HP aC++

Redundant parentheses in a static nmenber initialization |ist cause an error and the
program does not conpile.

Change Needed

Renove the redundant parentheses. The resulting code conpiles correctly with either HP
C++ or HP aC++.

Example

class A {
public:

int i;

static int (A :*p);
i

int (A:*(A:p)) = &A :i);
Conpi ling the above code with HP aC++ causes an error |ike the follow ng:

Error: File "DDB4270.C', Line 7
A pointer to menber cannot be created from a parenthesized or unqualified nane.

To successfully conpile the code, remove the parentheses formthe last line, as in the
fol l owi ng exanpl e:

class A {
public:

int i;

static int (A :*p);
1

int (A:*(A:p)) = &A1,

Migration - & qualified-id Required in Static Member Initialization List

HP C++

An unqualified function nane in a static menber initialization list is allowed.

HP aC++

An unqualified function nane in a static menber initialization |ist causes an error and
the program does not conpile.

Change Needed

Use the unary operator & followed by a qualified-id in the nenber initialization |ist.
The resulting code conpiles correctly with either HP C++ or HP aC++.

Example

class A {
public:
int i;
int j();
static int (A:*p)();
1
int (A:*(A:p))O =ij;

Conpi ling the above code with HP aC++ causes the follow ng error:

Error: File "DDB4270A.C', Line 7
Cannot initialize "int (A:*)()" with 'int (*)()".

To successfully conpile with either HP C++ and HP aC++, change the initialization |ist
inline 7 to &A::j;
class A {
public:
int i;
int j();
static int (A:*p)();

}
int (A:*(A:p))() = &A :1j;

Migration - Non-constant Reference I nitialization

HP C++

If you do not initialize a non-constant reference with an [value, an anachronistic
warning is issued and conpilation continues.

HP aC++

An error is issued if you do not use an |value for a non-constant reference
initialization.

Change Needed

Use an Ivalue for the reference initialization, or define the reference as a const type.

Example

void f(int &;

int min () {
f(3);
return O;

}

Compi l'ing the above code with HP C++ generates a warning |ike the foll ow ng:

CC. "DDB04313A.C', line 4: warning: tenporary used for non-const int & argunent;
no changes will be propagated to actual argunent (anachronisn) (283)

Compi l'ing the above code with HP aC++ generates an error |ike the foll ow ng:

Future Error: File "DDB04313A.C', Line 4
The initializer for a non-constant reference nust be an | val ue.
Try changing '"int & to 'const int & .

To successfully conpile the code with either conpiler, use one of the two alternatives
shown bel ow

void f(const int &; [// Use a constant reference.
int main () {

f(3);

return O;

}

void f(int &;

int i;

int main () {
i =3;
f(i); /1 Use an |value for reference initialization.
return O;

Migration - Digraph White Space Separators

HP C++
Al ternative tokens (digraphs) are not supported.
HP aC++

Di graphs are supported and | egal C++ syntax can be considered an error because of
di graph substitution.

Change Needed

Insert a blank between the two characters of the digraph.
Example
C<i i A> a;

The characters <: are one of the alternative tokens (digraphs) for which HP aC++

perforns a substitution. In this case, < becones [. The statement to be conpil ed
becomes C[: A a;, which produces many conpilation errors.

To successfully conpile this programwi th either conpiler, insert a blank between < and
., as foll ows:

C A a;

Migration Considerationswhen Using Templates

In HP aC++, tenplates are processed differently than in HP C++ (cfront). There is no
repository; instead, instantiations are placed in an object (.0) file (with additiona
information in a .1 file if you specify the +inst_auto conmand-line option). You cannot
nodi fy these files as was possible with the files in a repository. Tenplate comrand-|ine
options are conpletely different. For information about HP aCt+ tenplates, refer to

Usi ng Tenpl at es.

To begin mgrating code containing tenplates to HP aC++, try to conpile and Iink using
conpile-tine instantiation (the default). If this fails with conpilation errors, you can
compi l e using one of the follow ng:

® the +inst _all option to see all conpile-tine errors, including tenplate
instantiation errors. Note, this nay generate errors that won't occur in your
program because the draft standard allows tenplate paranmeters that can't
instantiate all menbers. +inst_all forces instantiation of such nenbers.
® the +inst none option to nask conpile-tinme tenplate instantiation errors.
To reset after all translation units conpile successfully:

® Renove any .0 and .| files. Using a clobber nmakefile target to renove .1 files is
simlar to renoving the ptrepository directory in cfront.

® Reconpile and link using conpile-tine instantiation.

Verbose Template Processing | nfor mation

Use the +inst v option to replace the cfront -ptv option for verbose tenpl ate processing
i nformation.

For More Information
® The cfront Inmplicit Include Convention

® Converting Directed Mdde to Explicit Instantiation
® (bsol ete Tenpl ate OQotions

Common Template Migration Syntax Changes

Tenpl ate code in HP aC++ needs to use the new keyword typnane to distinguish types.
Al so, data nenbers nmay need to be referenced using the this-> notation

The cfront Implicit Include Convention

The preferred nethod for specifying tenplate declarations and definitions in HP aC++ is
to put declarations and definitions in the same file.

Wth the HP C++ (cfront) conpiler, for any .h file containing tenplate decl arati ons,

there is a .c file containing definitions for those tenpl ates.
HP aC++ provides the followi ng options to ease migration fromHP C++ (cfront).
+inst inplicit include

This option instructs the conpiler to use cfront default file nanme | ookup for
tenplate definition files.

+inst include suffixes
Use this option to replace the cfront -ptS"list" option. This specifies file
nane extensions for tenplate definition files.

Converting Directed Mode to Explicit I nstantiation

If you are using directed node instantiation with the cfront based conpiler, an awk
script can be used to convert your file to an instantiation file that uses the explicit
instantiation syntax, as in the follow ng exanpl e.

Note that explicit instantiation can be used to instantiate a tenplate class and all of
its menber functions, an individual tenplate function, or a tenplate class's nenber
function.

#!/usr/ bi n/ ksh

For a Directed-Mdde Instantiation file that is the paraneter
to the script, create a file that can be conpiled with the
aC++ conpiler using the Explicit Instantiation Syntax.

(Note that this will only work for classes.)

closure file=%$1
closure_fil e_base_nane=${1% . *}
eis_file=$closure_file_base_nane.eis.C

print "Qutput file: $eis file"
Get all of the include directives.
grep "#include" $closure file > /tnp/dm 2eisl. $$

Collect all of the Directed-Mde Instantiation directives.
grep -v "#include" $closure_file \

| gr ep _ e n >I| _ e n <|I \

| gr ep - V n (n \

| awk " {if ($1 !'="//") {print $0;} }' >/tnp/dm 2eis2.3$3$

Print the line assuning that the last elenent is the variable
nane foll owed i mediately by a sem -col on
awk '{ n=split($0,sp0);
printf("tenplate class");
for (i=1; i<=(n-1); i++) {
printf(" 9%", spO[i]);

}
printf(";\n");
}' < /tnp/dm 2eis2.$% > /tnp/dm 2ei s3. $$

cat /tnp/dm 2eisl.$$ /tnp/dm 2ei s3.$$ > $eis_file
rm-f /tnp/dni 2ei s*. $$

Migration - Translator M ode is not Supported

HP aC++ does not support a C++ to C translator node. For a list of cfront translator

node options that are obsolete, refer to bsolete Translator Mbde Options.

Distributing your C++ Products

If you wite code in HP aC++ and distribute any of the following C++ files to your
custoners, read all of the follow ng sections for recomendati ons and | ega
requirenents.

® shared libraries containing C++ code

® executable files produced by HP aC++ and applications that use shared libraries
provided with HP aC++

® object files produced by HP aC++

® archived libraries containing C++ code

® any conbination of the above

NOTE: If you choose to distribute archive libraries or object files, your customer nust
have purchased HP aC++.

Strong Recommendati ons

Applications that use HP aC++ Shared Libraries

Li nki ng Your HP aC++ Libraries with O her Languages
Installing your Application

HP aC++ Files You May Distribute

Terns for Distribution of HP aC++ Files

Strong Recommendations

We strongly recommend that you distribute your products in such a way that your customer
does not need to use the HP aC++ conpiler or driver. That is, only distribute
execut abl es and shared libraries.

Be sure your custoner has read this distribution information

NOTE: If you choose to distribute archive libraries or object files, your custonmer nust
have purchased HP aC++.

Applicationsthat use HP aC++ Shared Libraries

Thi s section explains what you need to do to ensure that your custonmers can use your
code correctly.

If your application uses any of the shared libraries that cone with HP aC++ your
custonmer nust have those libraries installed on their systemto run the application. If
your custoner already has the necessary HP aC++ shared libraries installed, the
application will work.

The following HP aC++ run-tine libraries are provided as a patch. Note, these libraries
are not part of the HP-UX 10.x core system |f you search for the patch on the patch
machi ne, |l ook for the patch nane "HP aC++ runtine libraries." For nore information about
the patch, refer to the HP aC++ Release Notes .

® /usr/lib/libCsup.sl
® /usr/lib/libstd. sl
® /usr/lib/librwool.sl
® /usr/lib/libstreams

CAUTI ON: |f you distribute either executable files or shared libraries as part of your
product, you should not ship the above HP aC++ run-tine libraries with your product in
such a way that it results in overwiting a newer library version with an ol der

i nconpatible version. If you ship any HP aC++ run-tinme library, then it is your
responsibility to ensure that an old library version is not installed over a new one.

Refer also to the CAUTION in the section Installing your Application.

Linking Your HP aC++ Librarieswith Other Languages

This section di scusses what you and your custoners need to do if your product is an HP
aC++ library to be called with another |anguage.

The C++ | anguage requires that nonlocal static objects be initialized before any
function or object is used. HP aC++ initializes nonlocal static objects in all object
files, including shared libraries, before the first statenent in main() executes. If you
distribute HP aC++ libraries that your customers will use, they nmust do the following to
ensure that nonlocal static objects are correctly initialized and destroyed

® Your custoner nust have purchased HP aC++ and nust link their code with the aCC
conmand.

® |f your custoner's nmain programis witten in a | anguage other than C++, your
custoner's main programmust first call _main() before doing anything el se.
_main() calls all nonlocal static constructors.

® HP aC++ runtine libraries and /usr/lib/dld.sl patches nmust be installed by your
cust oner.

If your libraries are C++ shared libraries, the above restrictions can be rel axed as
fol | ows:

® At |least the A 01.07 HP aC++ runtine patch is needed along the with either the
lusr/lib/aCC dld.sl patch or the /usr/lib/dld.sl patch

® main() nust still be called, before any use of aCt++ code. It could be placed in
the C++ library itself.

® The a.out mnust be |inked with:
fusr/lib/libcl.sl (or on the link line -lcl)

® Except when dynamically | oading the C++ shared library, the a.out nust be |inked
with the HP aC++ runtime libraries in the follow ng order
-lstd -lIstream-1Csup -Im-lcl -1dld

e |f the library does not use libstd (STL) or libstream (iostreans), then they can
be elimnated. If tools.h++ is used, then add -Irwtool to the left.

® The following stub file needs to be linked into the shared |ibrary or every

a.out. Assenble as foll ows:
as cpprt0O_stub.s

or

cc -c cpprtO_stub.s

A copy of the stub file cpprtO_stub.s can be shi pped

. code

; Stubs for static constructors in a.out
.export _ StaticCtorTable_Start, data
.export _ StaticCtorTabl e_End, data

__StaticCtorTable Start

__StaticCtorTabl e_End

.data
stubs for static constructors in a.out, conpiled with +z/+Z
.export _ ZStaticCtorTable Start, data
.export _ ZStaticCtorTabl e_End, data
__ZStaticCtorTable_Start
__ZStaticCorTabl e _End

In addition, your custonmers should review M xing C++ with other Languages for
information on |inking HP aC++ nodules with HP C, HP Pascal, and HP FORTRAN 77

NOTE: HP aC++ code cannot be m xed with HP C++ code.

| nstalling your Application

HP aC++ rel eases are usually forward conpatible, but HP cannot guarantee that this wll
be true for all releases. If you have questions about the conpatibility of HP aC++
rel eases, you should contact your HP support representative.

Normal Iy your custoner will already have the correct runtine installed. If your product
requires a newer version, it is recommended that the customer install the |atest patch.

Your application's installation procedure should install the appropriate HP aCt+
conmponents in the standard places on your custoner's systens. This will ensure that the
aCC commrand can find them

CAUTI ON: | f your custonmer already has HP aC++ installed and their version is newer

than yours, you should never overwite any of the existing HP aC++ conponents. In
addition, you should not install your product on a systemthat has a newer version of HP
aC++ if that newer version is inconpatible with your version.

You shoul d al so warn your customers not to install a version of HP aC++ after installing
your product if their version of HP aC++ is inconpatible with your version.

HP aC++ FilesYou May Distribute

For this release, Hew ett-Packard grants you permni ssion to package and redistribute the
foll owi ng subset of HP aC++ conponents to your custoners. The followi ng HP aC++ run-tine
libraries are provided as a patch. Note, these libraries are not part of the HP-UX 10. x
core system If you search for the patch on the patch machine, |ook for the patch nane
"HP aC++ runtine libraries.” For nore informati on about the patch, refer to the HP aC++
Release Notes .

® /usr/lib/libCsup.s
® /usr/lib/libstd.sl
® /usr/lib/librwtool.sl
® /usr/lib/libstream sl

Refer to the CAUTION in the prior section Applications that use HP aC++ Shared

Li brari es.

Termsfor Distribution of HP aC++ Files

Perm ssion to distribute the above nmenti oned HP aC++ runtine shared libraries is based
on the following terns and conditions:

1. These HP aC++ conponents cannot be redistributed as part of a C++ conpiler,
Iinker, or interpreter product.

2. Al copyright notices in the code nmust be retained.

3. The HP aC++ execut abl e conponents can only be redistributed by HP aC++ custoners.

® Return to Distributing your C++ Products

Exception Handling

Exception handling provides a standard mechani smfor coding responses to run-tine errors
or exceptions.

Exception Handling in C++

Exception Handling as Defined by the ANSI/|SO C++ International Standard
Excepti on Handli ng Exampl e

Debuggi ng Excepti on Handl i ng

Perf ormance Consi derati ons when usi ng Exception Handling

M gration Consi derations when using Exception Handling

Exception Handling isthe Default

Exception handling is on by default. To turn it off, you must use the +noeh option

CAUTI ON: |If your executable throws no exceptions, object files conpiled with and
wi t hout the +noeh option can be mixed freely.

However, in an executable which throws exceptions (note that HP aC++ run-tinme libraries
t hrow exceptions), you nmust be certain that no exception is thrown in your application
which will unwi nd through a function conpiled without the exception handling option
turned on. In order to prevent this, the call graph for the program nust never have
calls fromfunctions conpiled w thout exception handling to functions conpiled with
exception handling (either direct calls or calls made through a call back nechanism. If
such calls do exist, and an exception is thrown, the unw nding can cause

® non-destruction of |ocal objects (including conpiler generated tenporaries)
® menory | eaks when destructors are not executed
® run-tine errors when no catch clause is found

Exception Handling in C++

Following is an overview of the elenents of C++ exception handli ng:

® A try block encloses (logically) code that can cause an exception that you want
to catch.

® A catch clause, which immediately follows the try bl ock, handles an error of the
type that can occur in the try block. The catch clause is the exception handler.
You can have multiple catch clauses associated with a try bl ock

e |[f an error occurs, code in the try block throws an exception to an appropriate
catch clause. The catch clause is ignored if an error does not occur

® \Wien an exception is thrown, control is transferred to the nearest handl er
defined to handl e that type of exception. Nearest neans the handl er whose try
bl ock was nost recently entered by the thread of control, and not yet exited.

Exception Handling as Defined by the ANSI/I SO C++ International
Standard

The Standard C++ Library provides classes that C++ prograns can use for reporting
errors. These classes are defined in the header file <stdexcept> and described in the
ANSI /I SO C++ International Standard.

® The cl ass exception is the base class for object types thrown by the Standard C++
Li brary components and certain expressions.

® The runtine_error class defines errors due to events beyond the scope of the
progr am

® The logic_error class defines errors in the internal |ogic of the program

For More lnformation

® St andard Exception C asses
® St andard Exceptions

Exception Handling Example

The sinple program shown here illustrates exception handling concepts. This program

® contains a try block (fromwhich a range error is thrown) and a catch cl ause
which prints the operand of the throw.

® uses the runtine_error class defined in the Standard C++ Library to report a
range error.

#i ncl ude <stdexcept >
#i ncl ude <i ostream h>
#i ncl ude <string>
void fx ()

/] details onmited
throw range_error(string("some info"));

void main ()
{
try {
fx ();

catch (runtinme_error& r) {
/1 handl e any kind of error, including range_error
cout <<r.what() << '\n'

Debugging Exception Handling

The HP WDB Debugger and t he HP/ DDE Debugger support C++ exception handling. For nore
information see the follow ng:

® HP WDB Debugger Docunent ation
e HP/ DDE Debugger Docunent ati on

Perfor mance Consider ations when using Exception Handling

HP aC++ exception handling has no significant performance inpact at either conpile-tine
nor run-tine, if you are not using optimzation. If you are using optim zation, be aware
of the followi ng run-tine perfornmance inplications:

® Optimzation of an automatic object with a destructor is inhibited, since no part
of the object can be in a register when a function which may throw an exception
is called. This is because run-tine exception handling uses an object's assigned
address if it decides to "clean it up" (run its destructor).

® Optimization in try blocks is inhibited because there are inplicit branches from
each call in a try block to each catch cl ause.

Getting Started with HP aC++

Choose fromthe followi ng for introductory information:

Maj or Conponents of the Conpiling System
Usi ng the aCC Conmand

Conpi | ing and Executing a Sinple Program
Debuggi ng Pr ogr ans

Accessing the Online Exanple Source Files

Major Components of the Compiling System

HP aC++ includes the follow ng pieces:

® aCC -- the driver

® ctcom-- conpiles C++ source statenents

® assigner -- uses an automatic instantiation algorithmfor tenplate processing
(The assigner is not used by the default tenplate instantiation mechanism It is
i nvoked only when you specify +inst_auto or +inst_close on the command-1line.).

For More lnformation

e HP aC++ Execut abl es
® Run-tine Libraries and Header Files

Using the aCC Command

To invoke the HP aC++ conpiling system use the aCC comand at the shell pronpt. The aCC
command i nvokes a driver programthat runs the conpiling systemaccording to the
filenames and comand |ine options that you specify.

For Morelnformation:

® For nore details about the aCC command, see Conpiler Conmand Synt ax.

Compiling a Simple Program

The best way to get started with HP aC++ is to wite, conpile, and execute a sinple
program |ike the foll ow ng one:

#i ncl ude <i ostream h>

int main()
{ _

int x,y;

cout << "Enter an integer: ";

cin >> x;

y =X * 2

cout << "\n" <<y <<" jis twice " << x <<".\n";
}

If this programis in the file getting started.C, conpiling and linking the programwith
the aCC conmand produces an executable file nanmed a.out:

$ aCC getting_started.C

Executing the Program

To run this executable file, just enter the name of the file. The follow ng sumari zes
this process with the file named getting_started. C

$ a.out
Enter an integer: 7

14 is twice 7.

Debugging Programs

You can use the HP WDB Debugger or the HP/DDE Debugger to debug your C++ prograns.

To do so, first conpile your programw th either the -g, the -g0, or the -gl option.

Example
The -g0 option to aCC enabl es generation of debug information:
aCC -g0 programC

The gdb conmand runs the HP WDB Debugger in terminal interface node:

gdb -tui -xdb a.out
The dde command runs the HP/ DDE Debugger:

dde a. out

HP Specific Features of | ex and yacc

Following is a list of HP specific features of | ex and yacc. For nore information on
these tools, see the | ex and yacc nan pages or the HP-UX Reference . Another general
source of information is lex and yacc by John R Levine, Tony Mason, and Doug Brown.

® | C CTYPE and LC _MESSAGES envi ronment variable support in lex - Determ nes the
size of the characters and | anguage in which nessages are displayed while you use
| ex.

® -mcomuand |ine option for lex - Specifies that nultibyte characters may be used
anywhere single byte characters are allowed. You can interm x both 8-bit and
16-bit nultibyte characters in regular expressions if you enable the -m conmmand
I'ine option.

® -w command |ine option for lex - Includes all features in -mand returns data in
the formof the wchar_t data type

® % <locale> directive for lex - Specifies the |locale at the beginning of the
definitions section. Any valid |ocale recognized by the setlocale function can be
used. This directive is simlar to using the LC CTYPE environnent variable. To
recei ve wchar _t support with %, use the -w comand |ine option

® | C CTYPE environment variable support in yacc - Determ nes the native |anguage
set used by yacc and enables nultibyte character sets. Miltibyte characters can
appear in token nanmes, on terninal synbols, strings, comments, or anywhere ASC |
characters can appear, except as separators or special characters.

Noteson Using | ex and yacc

When using | ex and yacc, please note the follow ng:

® Prograns generated by yacc or |ex can have nany unreachabl e break statenents,
causi ng nultiple aC++ war ni ngs.

e |f you want to call the yacc generated routines, yyerror, yylex and yyparse, your
program nust include the yacc. h header file.

#i ncl ude <yacc. h>

Creating and Using Libraries

Choose fromthe followi ng topics for infornmation about the libraries provided with HP
aC++ as well as how you can create and use your own |ibraries.

For additional background, refer to the HP-UX Linker and Libraries Online User Guide
which is frequently referenced in these sections.

® HP aC++ Libraries
® Creating and Using Shared Libraries
® Advanced Shared Library Features

® Usi ng Standard HP-UX Li braries and Header Files

Migration

® M gration Considerations when Using Libraries

See Also

® Closing a Library with the +inst close Option (for libraries that contain
t enpl at es)
® Mxing Ct+ with Other Languages

HP aC++ Libraries

In addition to standard HP-UX system libraries, HP aC++ provides the follow ng C++
['ibraries.

StandardsBased Libraries

® Standard C++ Library
® Tools. h++ Library
® HP aC++ Run-tine Support Library

HP C++ (cfront) Compatibility Libraries

NOTE: HP aC++ provides the following libraries whose functionality is also provided
with HP C++ (cfront). These libraries are not standards based.

® | OStream Li brary
® St andard Conponents Library

See Also:

® HP aC++ File Locations
® Linking to C++ Libraries
® M gration Considerations when Using Libraries

Standard C++ Library

The International Standards Organization (1SO and the Anerican National Standards
Institute (ANSI) have conpleted the process of standardizing the C++ progranm ng

| anguage. A mmjor result of this standardization process is the Standard C++ Library, a
| arge and conprehensi ve collection of classes and functions. Choose fromthe follow ng
for nore details.

| ntroductory Concepts

Details

St andard C++ Library Docunentati on and Exanpl e Code

I nconpatibilities Between the Library and the Standard
Run-tine Libraries and Header Files

Introductory Concepts

HP aC++ provi des the Rogue Wave inplenentation of the ANSI/I SO Standard C++ Library.

This inmplenmentation includes the follow ng features:
® A subset of data structures and algorithns, updated fromthe original library
devel oped at Hewl ett Packard by Al ex Stepanov and Meng Lee and known as the C++
St andard Tenplate Library (STL).

NOTE: The public donmain C++ Standard Tenplate Library is not supported by this
Standard C++ Library.

For an introduction, see the follow ng topics:

o0 How the Standard C++ Library Differs from Qher Libraries
o0 The Non-hject-Oiented Design of the Standard C++ Library

® A tenplatized string class

A tenplatized class for representing conpl ex nunbers

® A uniformframework for describing the execution environnent, through the use of
a template class naned numeric_limts and specializations for each fundanental
data type

® Menory managenent features

® | anguage support features

® Exception handling features

For Morelnformation

® | ntroduction to Using the Standard C++ Library

How the Standard C++ Library Differsfrom Other Libraries

A maj or portion of the Standard C++ Library is conprised of a collection of class
definitions for standard data structures and a collection of algorithms commonly used to
mani pul ate such structures. This part of the library was derived fromthe Standard

Tenpl ate Library or STL. The organization and design of this part of the library differs
in alnost all respects fromthe design of nost other C++ class libraries, because it

avoi ds encapsul ati on and uses al nost no inheritance.

An enphasi s on encapsul ation is a key hallmark of object-oriented progranm ng. The
enphasi s on conbining data and functionality into an object is a powerful organization
principle in software devel opnent; indeed it is the prinmary organi zational technique.
Through the proper use of encapsul ati on, even exceedingly conpl ex software systens can
be divided into nanageabl e units and assigned to various nenbers of a team of
programrers for devel opnent.

I nheritance is a powerful technique for permtting code sharing and software reuse, but
it is nost applicable when two or nore classes share a conmobn set of basic features. For
exanple, in a graphical user interface, two types of w ndows may inherit froma comon
base wi ndow cl ass, and the individual subclasses will provide any required unique
features. In another use of inheritance, object-oriented container classes nay ensure
common behavi or and support code reuse by inheriting froma nore general class, and
factoring out common nenber functions.

The designers of the STL deci ded agai nst using an entirely object-oriented approach, and
separated the tasks to be performed using common data structures fromthe representation
of the structures thensel ves. The STL was designed as a collection of algorithns and,
separate fromthese, a collection of data structures that could be mani pul ated using the
al gorithns.

The Non-Object-Oriented Design of the Standard C++ Library

The portion of the Standard C++ Library derived fromthe STL was purposely designed with
an architecture that is not object-oriented. This design has both advantages and

di sadvant ages. Sone of them are nentioned bel ow.

Smaller Source Code

There are approximately fifty different algorithns and about a dozen nmjor data
structures. This separation has the effect of reducing the size of source code, and
decreasing sone of the risk that simlar activities will have dissimlar interfaces.
Were it not for this separation, for exanple, each of the algorithns would have to be
re-inplenmented in each of the different data structures, requiring several hundred nore
menber functions than are found in the present schene.

Flexibility

One advantage of the separation of algorithnms fromdata structures is that such
al gorithns can be used with conventional C++ pointers and arrays. Because C++ arrays are
not objects, algorithnms encapsulated within a class hierarchy sel dom have this ability.

Efficiency

The STL in particular, and the Standard C++ Library in general, provide a | owl evel
approach to devel opi ng C++ applications. This |owlevel approach can be useful when
specific prograns require an enphasis on efficient coding and speed of execution.

Iterators; Mismatches and Invalidations

The Standard C++ Library data structures use pointer-like objects called iterators to
descri be the contents of a container. Gven the library's architecture, it is not
possible to verify that these iterator elenents are nmatched, that is, that they are
derived fromthe sanme container. Using (either intentionally or by accident) a beginning
iterator fromone container with an ending iterator fromanother is a recipe for certain
di saster. It is very inportant to know that iterators can becone invalidated as a result
of a subsequent insertion or deletion fromthe underlying container class. This
invalidation is not checked, and use of an invalid iterator can produce unexpected
results. Familiarity with the Standard C++ Library will help reduce the nunber of errors
related to iterators.

Templates: Errorsand " Code Bloat"

The flexibility and power of tenplatized algorithns is, with nost conpilers, purchased
at a loss of precision in diagnostics. Errors in the paranmeter lists to generic
algorithns will sonetines be nanifest only as obscure conpiler errors for interna
functions that are defined many |levels deep in tenplate expansions. Again, famliarity
with the algorithnms and their requirenents is a key to successful use of the standard
library. Heavy reliance on tenplates can cause prograns to grow | arger than expect ed.
You can minimze this problemby learning to recognize the cost of instantiating a
particular tenplate class, and by making appropriate design decisions. Be aware that as
compi l ers becone nore and nore fluent in tenplates, this will becone |ess of a problem

Multithreading Problems

The Standard C++ Library nust be used carefully in a nmultithreaded environnent.
Iterators, because they exist independently of the containers they operate on, cannot be
safely passed between threads. Since iterators can be used to nodify a non const
container, there is no way to protect such a container if it spawns iterators in

mul tiple threads. Use thread-safe wappers, such as those provided by Tools. h++ Library,
if you need to access a container fromnultiple threads.

Introduction to Using the Standard C++ Library

Wthin a few years the Standard C++ Library will be the standard set of classes and
libraries delivered with all ANSI-conform ng C++ conpilers. Although the design of a

| arge portion of the Standard C++ Library is in many ways not object-oriented, C++
itself excels as a | anguage for manipul ati ng objects. How do you integrate the library's
non-obj ect-oriented architecture with the | anguage's strengths for nanipul ati ng objects?

The key is to use the right tool for each task. Object-oriented design nethods and
progranmmi ng techni ques are al nost w thout peer as guideposts in the devel opnment of |arge
conpl ex software. For the large majority of progranm ng tasks, object-oriented
techniques will remain the preferred approach. Products such as Rogue Wave's Tool s. h++
Li brary which encapsul ates the Standard C++ Library with a famliar object-oriented
interface, can provide you with the power and the advantages of object-orientation

Use Standard C++ Library conponents directly when you need flexibility or highly
efficient code. Use the nore traditional approaches to object-oriented design, such as
encapsul ation and i nheritance, when you need to nodel |arger problem donmains and knit

all the pieces into a full solution. Wien you need to devise an architecture for your
application, always consider the use of encapsul ation and inheritance to
conpartnentalize the problem But if you discover that you need an efficient data
structure or algorithmfor a conpact problem (the kind of problemthat often resolves to
a single class), look to the Standard C++ Library. The library excels in the creation of
reusabl e cl asses, where | owlevel constructs are needed, while traditional OOP

techni ques really shine when those classes are conbined to solve a |larger problem

In the future, nost libraries will use the Standard C++ Library as their foundation. By
using the Standard C++ Library, either directly or through an encapsul ati on such as
Tool s. h++ Library, you help insure interoperability. This is especially inportant in
large projects that may rely on conmuni cati on between several libraries. A good rule of
thumb is to use the highest encapsul ation |evel available to you, but nmake sure that the
Standard C++ Library is available as the base for interlibrary comuni cation and

oper ati on.

The C++ | anguage supports a wi de range of programi ng approaches because the problens we
need to solve require that range. The | anguage, and now the Standard C++ Library that
supports it, are designed to give you the flexibility to approach each uni que problem
fromthe best possible angle. The Standard C++ Library, when conbined with nore
traditional OOP techniques, puts a very flexible tool into the hands of anyone buil ding
a collection of C++ classes, whether those classes are intended to stand al one as a
library or are tailored to a specific task.

Standard C++ Library Reference

Sel ect fromthe follow ng categories to see further explanation fromthe Rogue Wave
Software Standard C++ Library Class Reference . Corresondi ng header file(s) are noted at
t he begi nning of each category. Note that system nan pages are al so avail abl e.

NOTE: If you are accessing this guide fromthe Wrld Wde Wb URL, http://docs. hp. com
rather than froma systemon which HP aC++ is installed, Rogue Wave docunentation is not
avail able. The following links will not succeed.

Al gorithns
Al |l ocators

Conpl ex Nunber Library
Cont ai ners

Exception C ass

Function Adaptors

Function Objects
Ceneral i zed Nuneric Operations
I nsert lterators

|terator Operations
Iterators

Menory Handling Prinitives
Menory NManagenent

Nunmeric Limts Library

Stream |lterators
String Library
Uility C asses
Uility Operators

Algorithms

Ceneric Algorithns-- for perform ng various operations on containers and sequences:

#i ncl ude <al gorithne

adj acent _find-- find the first adjacent pair of elements in a sequence that are
equi val ent

binary search-- algorithmto performa binary search on ordered containers
copy-- algorithmto copy values fromone specified range to another; use to copy
val ues from one container to another, or to copy values fromone location in a
container to another location in the sane container

copy backward-- algorithmto copy elenments in one specified range to another,
starting fromthe end of the sequence and progressing to the front

count-- count the nunber of elenments in a container that satisfy a given val ue
count if-- count the nunber of elenments in a container that satisfy a given

predicate
equal -- conpares two ranges for equality

equal range-- find the | argest subrange in a collection into which a given val ue
can be inserted without violating the ordering of the collection

fill-- initialize a range with a given val ue

fill n-- assign a value to the elenents in a sequence

find-- find an occurence of value in a sequence

find end-- find a subsequence of equal values in a sequence

find first of-- find the first occurrence of any value from one sequence in

anot her sequence

find if-- in a sequence, find an occurrence of a value that satisfies a specifed
predi cate

for each-- apply a function to each elenent in a range

generate-- initialize a container with values produced by a val ue-generator class
generate n-- initialize a container with values produced by a val ue-generator

cl ass

includes-- conpare two sorted sequences and returns true if every elenment in one

range is contained in the other

inplace nerge -- nerge two sorted sequences into one
iter swap-- exchange values pointed at in two |ocations

| exi cographi cal conpare-- conpares two ranges | exicographically

| ower bound-- determine the first valid position for an elenment in a sorted
cont ai ner

nake heap-- creates a heap

max-- find and return the nmaxi mum of a pair of val ues

nmax_el enent-- find the naxi numvalue in a range

nerge-- nmerge two sorted sequences into a third sequence

mn-- find and return the minimum of a pair of val ues

mn elenent-- find the mninmumvalue in a range

m snmat ch-- conpare elenments fromtwo sequences and return the first two elenments
that don't nmatch

next permutation-- generate successive pernutations of a sequence based on an
ordering function

nth el enent-- rearrange a collection so that all elenents [ower in sorted order
than the nth el enent cone before it and all elenments higher in sorter order than
the nth elenent come after it

partial sort-- tenplated algorithmfor sorting collections of entities

partial sort copy-- tenplated algorithmfor sorting collections of entities
partition-- place all of the entities that satisfy the given predicate before al
of the entities that do not

pop _heap-- nmove the largest elenment off the heap

® prev pernutation-- generate successive permnutations of a sequence based on an
ordering function

® push heap-- place a new el enent into the heap
® random shuffle -- randomy shuffle elenents of a collection

renove-- nove desired elenments to the front of a container, and return an
iterator that describes where the sequence of desired el enents ends

® renpve copy-- simlar to renove

® renove copy if-- simlar to renove

® renove if-- simlar to renove

® replace-- substitute elenents stored in a collection with new val ues

® replace copy-- simlar to replace

® replace copy if-- simlar to replace

® replace if-- simlar to repl ace

® reverse-- reverse the order of elenents in a collection

® reverse _copy-- reverse the order of elenments in a collection while copying them
to a new col |l ecton

e rotate-- left rotates the order of itens in a collection, placing the first item

at the end, second itemfirst, etc., until the itempointed to by a specified
iterator is the first itemin the collection

® rotate copy-- rotate elenents as in rotate, but instead of swapping el enents
within the same sequence, copies the result of the rotation to a container
specified by result

® search-- find a subsequence within a sequence of values that is el ement-w se
equal to the values in an indicated range

® search n-- simlar to search but searches for a given nunber of occurrences

® set difference-- construct a sorted difference that includes copies of the
el ements present in onw range but not in another, return the end of the
constructed range

® set _intersection-- construct a sorted intersection of elenents fromtwo ranges,
return the end of the constructed range

® set symmetric difference -- construct a sorted symetric difference of the
el enents fromtwo ranges, include copies of the elenents present in only one of
the ranges

® set _union-- construct a sorted union of the elenents fromtwo ranges, return the
end of the constructed range

® sort-- tenplated algorithmfor sorting collections of entities

sort heap-- convert a heap into a sorted collection

stable partition-- place all entities that satisfy the given predicate before al

entities that do not, while maintaining the relative order of elenents in each

group
stable sort-- tenplated algorithmfor sorting collections of entities
swap-- exchange val ues

swap_ranges-- exchange a range of values in one |location with those in another

transform- apply an operation to a range of values in a collection and stores

the result

uni que-- renove consecutive duplicates froma range of values and place the

resul ting unique values into the result, overwiting the existin elenments

® uni que_copy-- renpove consecutive duplicates froma range of val ues and place the
resulting unique values into the resulting Qutputlterator

® upper bound-- determines the last valid position for a value in a sorted

cont ai ner

Allocators

The Standard C++ Library allocator interface encapsul ates the types and functions needed
to nanage the storage of data in a generic way. The interface waps the nechani sm for
managi ng data storage and separates this nechanismfromthe classes and functions used
to maintian associ ati ons between data elenments. This elinmnates the need to rewite
containers and algorithns to suit different storage nmechani sns. You can encapsul ate al
the storage nechanismdetails in an allocator, then provide that allocator to an

exi sting contai ner when appropri ate.

The Standard C++ Library provides a default allocator class that inplements this
interface using the standard new and del ete operators for all storage nmanagenent.

Complex Number Library

Operations used to create and mani pul ate conpl ex nunbers.
#i ncl ude <conpl ex>

® conplex-- a tenplate class used to create objects for representing and
mani pul ati ng conpl ex nunbers

Containers

Col l ection classes are often described as Containers. A container stores a collection of
ot her objects and provides certain basic functionality that supports the use of generic
al gorithns. Containers cone in tw basic flavors: sequences and associ ative_containers.

They are further distinguished by the type of iterator they support.

#i ncl ude <bitset>

#i ncl ude <deque>

#i ncl ude

#i ncl ude <map> for map and nul ti map

#i ncl ude <queue> for queue and priority_queue
#i ncl ude <set> for set and mnulti set

#i ncl ude <stack>

#i ncl ude <vector>

® hitset-- random access to a set of binary val ues; operations can be perfornmed

using logical bit-wi se operators, no iterators for accessing el enents

® deque -- random access, insertion at front or back

® | ist-- insertion and renoval throughout

® mep -- access to values via keys, insertion and renoval

® mul tinmap-- map pernmitting duplicate keys

® nultiset-- set with repeated copies

® priority queue-- access and renoval of |argest val ue

® queue-- insertion at back, renoval from front

® set-- elenents nmaintained in order, test for inclusion, insertion, and renova
® stack-- insertion and renmoval only fromtop

°

vector-- random access to el enents, insertions at end
Exception Class

#i ncl ude <exception>
® exception-- base class to support logic and runtinme errors
Function Adaptors
Used to build new function objects out of existing function objects.
#i ncl ude <functional >
® notl-- use to reverse the sense of a unary predicate function object

® not 2-- use to reverse the sense of a binary predicate function object
e ptr fun-- adapt a pointer to a function to work where a function is called for

Function Objects

ojects with an operator() defined. Function objects are used in place of pointers to
functions as argunents to tenplated al gorithns.

#i ncl ude <functional >

® binary function-- base class for creating binary function objects

bi nary negate-- returns the conplenent of the result of its binary predicate
® bi ndlist and binderlst-- tenplatized utilities to bind a value to the first
argunment of a binary function object

bi nd2nd and bi nder2nd-- tenplatized utilities to bind a value to the second
argunment of a binary function object

® divides-- returns the result of dividing its first argunent by its second

® cqual to-- returns true if its first argunent equals its second

® greater-- returns true if its first argunent is greater than its second

® greater equal-- returns true if its first argument is greater than or equal to
its second

® | ess-- returns true if its first argunent is less than its second

® | ess equal -- returns true if its first argunent is less than or equal to its
second

® | ogical and-- returns true if both of its argunents are true

® | ogical not-- returns true if its argunent is false

® |ogical _or-- returns true if either of its argunments is true

® nminus-- returns the result of subtracting its second argunent fromits first

® nodul us-- returns the renai nder obtained by dividing the first argunent by the

second ar gument

negate-- returns the negation of its argunent

not equal to-- returns true if its first argument is not equal to its second
plus-- returns the result of adding its first and second argunents

pointer to binary function-- adapts a pointer to a binary function to work where
a binary_function function object is called for

pointer to unary function-- adapts a pointer to a function to work where a
unary_function function object is called for

tinmes-- returns the result of nmultiplying its first and second argunents

unary function-- base class for creating unary function objects

unary negate-- function object class that returns the conpl enent of the result of
its unary predicate

Generalized Numeric Operations

#i ncl ude <nuneric>

® accunul ate-- accunul ates all elenments within a range into a single value

® adjacent difference-- outputs a sequence of the differences between each adjacent
pair of elenents in a range

® i nner product-- computes the inner product A X B of two ranges A and B

® partial sum- calcul ates successive partial sunms of a range of val ues

Insert Iterators

Insert Iterators are adaptors that allow an iterator to insert into a container rather
than overwite elenents in the container.

#i ncl ude <iterator>

® pack insert iterator-- class to insert itens at the end of a collection

® back inserter-- function to create an instance of a back_ insert _iterator for a
particul ar collection type

® front insert iterator-- class to insert itenms at the beginning of a collection

front inserter-- function to create an instance of a front_insert_iterator for a

particul ar collection type

insert iterator-- class to insert itens into a specified |ocation of a collection

inserter-- function to create an instance of an insert_iterator given a

particul ar collection type and iterator

Iterator Operations

#i ncl ude <iterator>

® advance-- nove an iterator forward or backward (if available) by a specified
di st ance

® di stance-- conpute the di stance between two iterators

® di stance type-- determne the type of distance used by an iterator

® iterator category-- determ ne the category to which an iterator bel ongs

® value type-- determne the type of value to which an iterator points

Iterators
Iterators are pointer generalizations for traversal and nodification of collections.

#i ncl ude <iterator>

® reverse bidirectional iterator-- read and wite, forward and backward novi ng
® reverse iterator-- read and wite, random access

Memory Handling Primitives

#i ncl ude <menory>

® get tenporary buffer-- pointer based prinmtive to reserve the | argest possible
buffer that is less than or equal to the size requested

® return tenporary buffer-- pointer based primtive to return to avail able manory a
buffer previously allocated via get_tenporary_buffer

Memory M anagement

#i ncl ude <nenory>

® auto ptr -- a sinple, smart pointer class

® raw storage iterator-- enable iterator-based algorithnms to store results into
uninitialized nmenory

® uninitialized copy-- algorithmthat uses the construct prinitive to copy val ues
from one range to another |ocation

® uninitialized fill-- algorithmthat uses the construct primtive to set values in
a col l ection
® uninitialized fill n-- algorithmthat uses the construct primtive to set val ues

in a collection
Numeric LimitsLibrary

#include <limts>

® nuneric limts-- a class for representing informati on about scal ar types

Stream lterators

#i ncl ude <iterator>
Streamiterators allow generic algorithnms to be used directly on streans.
® streamiterator-- streamiterator provides iterator capabilities for istreans

® ostreamiterator-- streamiterator to provide iterator capabilities for ostreans
and istreans

String Library

#i ncl ude <string>

® basic string-- tenplated class for handling sequences of character-like entities

® string-- a specialization of the basic_string class
® string char traits -- a traits class providing types and operations to the
basi c_string container
® wstring-- a specializatio of the basic_string class
Utility Classes

#include <utility>

® pair-- class that provides a tenplate for encapsul ating pairs of values that may
be of different types

Utility Operators

#include <utility>

® operator!=
® operator>
® operator<=
® operator>=

Incompatibilities Between the Library and the Standard

As the ANSI/| SO C++ International Standard has evol ved over time, the Standard C++
Li brary has not always kept up. Such is the case for the "tines" function object in the
functional header file. In the standard, "tines" has been renaned to "nultiplies."

If you want to use "multiplies" in your code, to be conpatible with the ANSI/I SO C++
International Standard, use a conditional conpilation flag on the aCC conmand |i ne.

For exanple, for the follow ng program conpile with the conmand |ine
aCC -D__HPACC _USI NG_MULTI PLI ES | N_FUNCTI ONAL test.c

/]l test.c

int tinmes; //user defined variable
#i ncl ude <functional >

/1 multiplies can be used in

int main() {}
// end of test.c

Dependi ng on the existence of the conditional conpilation flag, functional defines
either "times", or "multiplies", not both.

So, if you have old source that uses "tines" in header functional and al so new source
that uses "multiplies", the sources cannot be m xed. Mxing the two sources would
constitute a non-conformng program and the old and new sources may or may not |ink.

I f your code uses the old nane "tines," and you want to continue to use the now
non-standard "tinmes" function object, you do not need to do anything to conpile the old
sour ce.

Tools.h++ Library

The Tool s. h++ Library is a fondation class library built on the Standard C++ Library.
Use its object oriented capabilities to sinplify coding and facilitate code
reuseablility. Choose fromthe followi ng for nore information

® | ntroduction to Using the Standard C++ Library
® Tool s. h++ Library Docunentation and Exanpl e Code
® Run-tine Libraries and Header Files

HP aC++ Run-time Support Library

The HP aC++ run-tinme support library is provided as a shared library,
fusr/lib/libCsup.sl and as an archive library, /usr/lib/libCsup.a.

The library supports the follow ng functionality:

Excepti on Handling

Menory Managenent (operators new and del ete)
Start and term nation of a C++ program
Run-tinme type identification (type_info)
static object constructors and desctructors

For Morelnformation

® Run-tine Libraries and Header Files

|OStream Library

NOTE: At this release of HP aC++, the standards based iostreamcapabilities of the
Standard C++ Library are still evolving. As a result, an HP C++ (cfront) conpatible
ICStream library is provided

For More Information

® M gration Considerations when Using Libraries

Standard ComponentsLibrary

NOTE: The Standard Conponents library is provided for conpatibility with HP C++
(cfront).

The library is not standards based. It is strongly recomended that you use the
capabilities of the Standard C++ Library.

For Morelnformation

® M gration Considerations when Using Libraries.

Linkingto C++ Libraries

You can conpile and Iink any C++ nodules to one or nore libraries. HP aC++ automatically

links the following with a C++ executable. Note that when you specify the -b option to
create a shared library, these defaults do not apply.

fusr/lib/libCsup.sl (the HP aC++ run-tinme support library)
fusr/lib/libstd.sl (standard C++ library)
fusr/lib/libstreamsl (iostreamlibrary)

[opt/aCC lib/cpprt0.o (for an executabl e)
/opt/aCC/lib/shlrt0.0 (for a shared library)

[opt/aCCl lib/cxxshl.o (routines used when creating archived executables with the
+A option; used instead of libdld.sl)
/opt/langtools/lib/crt0.o (start-up routines)
fusr/lib/libc.sl (the HP-UX systemlibrary)
fusr/lib/libdld.sl (routines for managi ng shared |ibraries)
[usr/lib/libcl.sl (routines for exception handling)
fusr/lib/libmsl (math library)

Linking with Shared or ArchiveLibraries

If you want archive libraries instead of shared libraries, use the -a,archive |inker
option. To create a conpletely archived executable, use the +A option.

NOTE: To maintain conpatibility on future rel eases, archive and shared |ibraries should
not be mxed. Refer to the "M xing Shared and Archive Libraries" section in the HP-UX
Linker and Libraries Online User Guide .

Specifying Other Libraries

You can specify other libraries using the -1 option. For exanple, in order to use the
Tool s. h++ library, specify -Irw ool

aCC nyapp. C -1 rwt ool

Creating and Using Shared Libraries

Thi s section provides information about shared libraries that is specific to HP aC++.
Sel ect one of the follow ng topics:

Conmpi ling for Shared Libraries

Creating a Shared Library

Using a Shared Library

Exanpl e of Creating and Using a Shared Library
Li nking Archive or Shared Libraries

Updating a Shared Library

For Morelnformation

® Refer to Advanced Shared Library Features.

® For additional information about creating and using shared libraries, refer to
the HP-UX Linker and Libraries Online User Guide

® For information on using the options to the aCC comuand, select conmand-|ine
opti ons.

Compiling for Shared Libraries

To create a C++ shared library, you must first conpile your C++ source with either the

+z or +Z option. These options create object files containing position-independent code
(PIO).

Example

aCC -c +z util.C

This exanple conmpiles util.C, generates position-independent code, and puts the code
into the object file util.o. util.o can later be put into a shared library.

Creating a Shared Library
To create a shared library fromone or nore object files, use the -b option at |ink

time. (The object files nust have been conpiled with +z or +Z.) The -b option creates a
shared library rather than an executable file.

CAUTI ON: You nust use the aCC command to create a C++ shared library. This is because
t he aCC command ensures that any static constructors and destructors in the shared
library are executed at the appropriate tinmes.

Example

aCC -b -o util.sl util.o

This exanple links util.o and creates the shared library util. sl
Using a Shared Library

To use a shared library, you sinply include the name of the library on the aCC comuand
line as you would with an archive library, or use the -l option, as with other
[ibraries.

The linker links the shared library to the executable file it creates. Once you create
an executable file that uses a shared library, you nust not nove the shared library or
the dynami c | oader (dld.sl(5)) will not be able to find it.

CAUTI ON: You nust use the aCC command to |ink any programthat uses a C++ shared

library. This is because the aCC conmand ensures that any static constructors and
destructors in the shared library are executed at the appropriate tines.

Example

aCC prog. C util.sl

This exanple conpiles prog.C, links it with the shared library util.sl, and creates the
executable file a.out.

Example of Creating and Using a Shared Library

The followi ng command conpiles the two files Strings.C and Arrays.C and creates the two
object files Strings.o and Arrays.o. These object files contain position-independent
code (PICO):

aCC -c +z Strings.C Arrays.C

The followi ng command builds a shared library naned |ibshape.sl fromthe object files
Strings.o and Arrays. o:

aCC -b -o libshape.sl Strings.o Arrays.o

The followi ng command conpiles a program draw shapes.C, that uses the shared library,
I i bshape. sl

aCC draw_shapes. C | i bshape. s
Linking Archiveor Shared Libraries

If both an archive and shared version of a particular library reside in the sane
directory, the linker links in the shared version by default. You can override this
behavior with the -a |inker option.

NOTE: You can use the +A option if you are using only archive libraries to create a
conpl etely archived execut abl e.

The -a linker option tells the linker which type of library to use. The -a option is
positional and applies to all subsequent libraries specified with the -1 option unti
the end of the conmand line or until the next -a option is encountered. Pass the -a
option to the linker with the -Wk,args option

Syntax:

The syntax of the -a linker option when used with aCC is:

-W,-a,{archive
shar ed
defaul t}

The different neanings of this option are:

-W, -a, archive
Sel ect archive libraries. If the archive library does not exist, the |inker
generates a warni ng nessage and does not create the output file.

-W, -a, shared
Sel ect shared libraries. If the shared library does not exist, the |inker
generates a warni ng nessage and does not create the output file.

-W, -a, defaul t
Sel ect the shared library if it exists; otherw se, select the archive library.

Example:

The follow ng exanple directs the linker to use the archive version of the library
i bshape, followed by standard shared libraries if they exist; otherw se select archive
ver si ons.

aCC box. o sphere.o -W, -a,archive -l1shape -W, -a, defaul t
Updating a Shared Library

The aCC conmand cannot replace or delete object nodules in a shared library. To update a
C++ shared library, you nust recreate the library with all the object files you want
the library to include

If, for exanple, a nodule in an existing shared library requires a fix, sinply reconpile
the fixed nodule with the +z or +Z option, then recreate the shared library with the -b
option. Any prograns that use this library will now be using the new versions of the
routines. That is, you do not have to relink any prograns that use this shared library
because they are attached at run tine.

Advanced Shared Library Features

Thi s section explains additional things you can do with shared libraries.
Sel ect one of the follow ng:

Forcing the Export of Synbols in nmin

Bi ndi ng Ti nes

Side Effects of C++ Shared Libraries

Routi nes and Options to Manage C++ Shared Libraries
Version Control for Shared Libraries

Addi ng New Versions to a Shared Library

Pragmas for | nproving Shared Library Perfornance

Forcing the Export of Symbolsin main

By default, the |linker exports froma programonly those synbols that were inported by a
shared library. For exanple, if an executable's shared libraries do not reference the
programis main routine, the |linker does not include the main synbol in the a.out file's
export |ist.

Normal ly, this is a problemonly when a programexplicitly calls shared library
managenent routines. (See Routines and Options to Manage C++ Shared Libraries.)

To nake the linker export all synbols froma program use the -W,-E option which
passes the -E option to the |inker.

Binding Times

Because shared library routines and data are not actually contained in the a.out file,
the dynam c | oader nust attach the routines and data to the programat run tinme. To
accel erate program startup tine, routines in a shared library are not bound unti
referenced. (Data itens are al ways bound at program startup.) This deferred binding

di stributes the overhead of binding across the total execution tinme of the program and
is especially helpful for prograns that contain nany references that are not likely to
be execut ed.

Forcing Immediate Binding

You can force i medi ate binding, which forces all routines and data to be bound at
startup time. Wth imedi ate binding, the overhead of binding occurs only at program
startup tine, rather than across the progranmis execution. |nmediate binding al so detects
unresol ved synbols at startup tine, rather than during program execution. Another use of
i medi ate binding is to provide better interactive perfornmance, if you don't mnd
program startup taking |onger. To force inmedi ate binding, use the option

-W, -B, i medi at e.

Example

The follow ng exanpl e forces i medi ate bi ndi ng:
aCC -W, - B, i nmedi ate draw_shapes. o -I|shape
To specify default binding, use -W, B, def erred.

For Morelnformation

For nore information, see the HP-UX Linker and Libraries Online User Guide .

Side Effects of C++ Shared Libraries

When you use a C++ shared library, all constructors and destructors of nonlocal static
objects in the library are executed. This differs froma C++ archive |library where only
the constructors and destructors that are actually used in the application are executed.

Routines and Optionsto Manage C++ Shared Libraries

You can call any of several routines to explicitly load and unl oad shared libraries, and
to obtain information about shared libraries.

If an error occurs when calling shared |ibrary nmanagenent routines, the systemerror
variable, errno, is set to an appropriate error value. Constants are defined for these
error values in /usr/include/errno.h (see errno (2)). Thus, if a program checks for
these values, it must include errno.h

#i ncl ude <errno. h>
Linker Optionsto Manage Shared Libraries

Li nker options are avail able for specifying shared |ibrary binding tinme, synbol export,
and other shared |ibrary nanagenent features. Note, you nust use the -\Wk,args conpiler
option to specify any I|inker option on the conpiler command |ine.

For Morelnformation

® For nore information about |ibrary managenent routines and |inker options, refer
to the HP-UX Linker and Libraries Online User Guide .
® Man pages for shl_load (3X) and shl_unload (3X)

Version Control for Shared Libraries

You can create different versions of a routine in a shared library with the

HP SHLI B VERSI ON pragna. HP_SHLI B VERSI ON assigns a version nunber to a nodule in a
shared library. The version nunber applies to all global synbols defined in the nodule's
source file. This pragna should only be used if inconpatible changes are nade to a
source file.

For Morelnformation

For nore informati on about version control in shared libraries, refer to the HP-UX
Linker and Libraries Online User Guide .

Adding New Versionsto a Shared Library

To rebuild a shared library with new versions of sone of the object files, use the aCC
conmand and the -b option with the old object files and the newWy conpiled object files.
The new source files should use the HP SHLI B VERSI ON pragma

For nore information refer to the HP-UX Linker and Libraries Online User Guide .

Using Standard HP-UX Librariesand Header Files

Several libraries providing systemservices are included with HP-UX. You can access
HP- UX standard libraries by using header files that declare interfaces to those
libraries. These library routines are docunented in the HP-UX Reference Manual .

L ocation of Standard HP-UX Header Files

The standard HP- UX header files are |ocated in /usr/include.
Using Header Files

To use a systemlibrary function, your HP aC++ source code nust include the preprocessor
directive #include. For example,

#i ncl ude <filenane. h>

where filenane.h is the name of the C++ header file for the library function you want to
use. By enclosing filenane.h in angle brackets, the HP aC++ conpiler |ooks for that
particul ar header file in a standard | ocation on the system The conpiler first |ooks
for header files in /opt/aCC/include; if none are found, it then searches /usr/include

You can use header file options to nodify the search path.

Example of Using a Standard Header File

If you want to use the getenv function that is in the standard systemlibraries
(/usr/lib/libc.sl and /usr/lib/libc.a), you should specify:

#i ncl ude <stdlib. h>

because the external declaration of getenv is found in the header file
/fusr/include/stdlib.h.

HP aC++ File L ocations

® HP aC++ Execut abl es
® Run-tine Libraries and Header Files

HP aC++ Executable Files

® /opt/aCC/ bin/aCC -- driver

the only supported interface to HP aC++ and to the |inker for HP aC++ object
files

® /opt/aCC/ | bin/ctcom-- conpiler

perforns source conpilation; preprocessing is incorporated into the conpiler
® /opt/aCC | bi n/ assi gner -- assigner

i npl ements the automatic instantiation algorithm
® /opt/aCd bin/c++filt -- nanme denangl er

i npl emrents the nanme demangling al gorithm which encodes function nane, class nane,
par anet er nunber and name

® /usr/ccs/bin/ld -- |inker
| i nks executables and builds shared libraries

HP aC++ Run-time Libraries and Header Files

Note that sone of the following run-tinme libraries are provided in both shared and

archi ve versions.
Header files for these libraries are located at /opt/aCCd i ncl ude.

® Standard C++ Library

o /usr/lib/libstd.sl -- shared version
o /usr/lib/libstd.a -- archive version

® HP aC++ Run-tine Support Library
o /usr/lib/libCsup.sl -- shared version
o /usr/lib/libCsup.a -- archive version

| CStream Li brary
o /usr/lib/libstreamsl -- shared version
o /usr/lib/libstreama -- archive version

[opt/aCC lib/cpprt0.0 -- non-shared library initializer
[opt/aCClib/shlrt0.0 -- shared library initializer

[opt/aCC lib/cxxshl.o -- used with the +A option

[opt/aCC lib/lib++. a -- used with Standard Conponents library
/opt/aCC/lib/libGA a -- used with Standard Conponents library
lopt/aCC/ lib/libGaph.a -- used with Standard Conponents library

Mixing C++ with Other Languages

This section provides guidelines for linking HP aC++ nmodul es with nodules witten in HP
C, HP Pascal, and HP FORTRAN 90 on HP 9000 Series 700/800 systens.

Select fromthe foll ow ng topics:

Ceneral Information Wien Calling Oher Languages
Data Conpatibility between C and C++

HP aC++ Calling HP C

HP C Calling HP aC++

Calling HP Pascal and HP FORTRAN from HP aC++

General Information When Calling Other L anguages

A nodule is a file containing one or nore variable or function declarations, one or nore
function definitions, or simlar items |ogically grouped together. M xing nodul es
witten in C++ with nodules witten in Cis relatively straightforward since C++ is for
the nost part a superset of C. Mxing C++ nodules with nodul es in | anguages other than C
is nmore conplicated.

When creating an executable file froma group of prograns of m xed | anguages, one of
t hem bei ng C++, you need to be aware of the follow ng:

® | n general, the overall control of the programnmust be witten in C++. In other
words, the main() function should appear in a C++ nodul e and no ot her outer bl ock
shoul d be present.

® You nust pay attention to case-sensitivity conventions for function nanes in the
di fferent | anguages.

® You nust meke sure that the data types in the different |anguages correspond. Do
not msmatch data types for paraneters and return val ues.

® Storage |layouts for aggregates differ between | anguages.

® You nust use the extern "C' |inkage specification to declare any nbdul es that are
not witten in C++; this is true whether or not the nodule is witten in C

NOTE: Do not use extern "C' when including standard C header files because these
header files already contain extern "C' directives.

® You nust use the extern "C' |linkage specification to declare any nodul es that are
witten in C++ and called from ot her | anguages.

NOTE: HP aC++ classes are not accessible to non-C++ routines

Data Compatibility between C and C++

Since C++ is for the nost part a superset of C, many of the data types are identical
Bot h | anguages support the sanme prinitive types of char, short, int, long, float, and
doubl e. ANSI C and HP C++ al so support a | ong double type. In addition, HP aC++ supports
bool, wchar _t, long long, and unsigned |ong |ong data types.

Pointers, structs, and unions that can be declared in C are al so conpatible. Arrays
conposed of any of the above types are conpati bl e.

C++ cl asses are generally inconpatible with C structs. The follow ng features of the C++
class facility may cause the conpiler to generate extra code, extra fields, or data
t abl es:

o multiple visibility of nmenbers (that is, having both private and public data
nmenbers in a class)

® inheritance, either single or multiple

® virtual functions

It is the use of these features, as opposed to whether the class keyword is used rather
than struct, that introduces inconpatibilities with C structs.

HP aC++ CallingHP C

Since C++ is for the nost part a superset of C, calling between C and C++ is a nornal
operation. You should, however, be aware of the follow ng:

® Using the extern "C' Linkage Specification -- You nust use the extern "C' |inkage
specification to declare C functions.

e Differences in Argunent Passing Conventions -- Because of function prototypes,
C++ has argunent-wi dening rules that are different fromC s rul es.

® The nmain() Function -- The overall control of the program should be witten in
CH+.

® HP aC++ Calling HP C. An Exanple -- An exanple C++ programthat calls a C
program

Using theextern " C" Linkage Specification

To handl e overl oaded function nanes the HP aC++ conpil er generates new, unique nanes for
all functions declared in a C++ program To do so, the conpiler uses a function-nane
encodi ng scheme that is inplenentation dependent. A linkage directive tells the
conpiler to inhibit this default encoding of a function name for a particular function.

If you want to call a C function froma C++ program you nust tell the conpiler not to

use its usual encodi ng schene when you declare the C function. In other words, you nust
tell the conpiler not to generate a new nane for the function. If you don't turn off the
usual encoding scheme, the function name declared in your C++ programwon't match the
function nanme in your C nodule defining the function. If the nanes don't match, the

I i nker cannot resolve them To avoid these |inkage problens, use a |inkage directive
when you declare the C function in the C++ program

Syntax of extern " C"

Al HP aC++ |inkage directives nust have either of the follow ng formats:
extern "C' function_declaration
extern "C'

function_declarationl
function_declaration2

function_declarationN

}
Examples of extern " C"

For instance, the follow ng declarations are equival ent:

extern "C' char* get_nane(); // declare the external C nodule

and
extern "C'
{
char* get nane(); /1 declare the external C nodule
}

You can al so use a linkage directive with all the functions in a file, as showm in the
following exanple. This is useful if you wish to use Clibrary functions in a C++
program

extern "C'

#i ncl ude "myclibrary. h"
}

NOTE: Do not use extern "C' when including standard C header files because these header
files already contain extern "C' directives.

Al though the string literal following the extern keyword in a linkage directive is
i mpl ement at i on- dependent, all inplenmentations nmust support C and C++ string literals.
Refer to "Linkage Specifications" in The C++ Programming Language, Third Edition .

Differencesin Argument Passing Conventions

If your C++ code calls functions witten in C, you should nake sure that the called C
functions do not use function prototypes that suppress argument wi dening. |f they do,
your C++ code will be passing "wi der" argunents than your C code is expecting.

The main() Function
When mi xi ng C++ nodul es with C nodul es, the overall control of the program nust be

witten in C++, with two exceptions. In other words, the main() function should appear
in some Ct++ nodule, rather than in a C nodule. The exceptions are C++ prograns and

libraries, including HP-supplied libraries, w thout any global class objects containing
constructors or destructors and C++ prograns and |ibraries, including HP-supplied
libraries, without static objects.

HP aC++ Calling HP C: An Example

The follow ng exanpl es show a C++ program calling c.C, that calls a C function
get _nane(). The C++ program contains a main() function.

//**

/1l This is a Ct+ programthat illustrates calling a function *
/1 witten in C It calls the get_nane() function, whichis *
/1l in the "get_nane.c" nodul e. The object nodul es generated *
/1 by compiling the "calling c.C' nodule and by conpiling *
/1 the "get_nane.c" nodule nust be linked to create an *
/'l executable file. *
//**
#i ncl ude <i ostream h>

#i nclude "string. h"
//**
/'l declare the external C nodule

extern "C' char* get_name();

cl ass account

{
private:
char* nane; /1 owner of the account
pr ot ect ed:
doubl e bal ance; /| amount of noney in the account
publi c:
account (char* c) /'l constructor
{ nanme = new char [strlen(c) +1];
strcpy(naneg, c);
bal ance = 0; }
voi d display()
{ cout << nanme << " has a bal ance of "
<< bal ance << "\n"; }
1
i nt main()
account* ny_checki ng_acct = new account (get_nane());
/'l send a nmessage to ny_checking_account to display itself
my_checki ng_acct - >di spl ay() ;
}

The follow ng exanpl e shows the nodul e get_nane.c. This function is called by the C++
program

/******************7\'**7\'******************************/

/* This is a Cfunction that is called by nain() in */
/* a C++ nodule, "calling_c.C'. The object */
/* modul es generated by compiling this nodul e and */
/* by conmpiling the "calling_c.C" nodul e nust be */
/* linked to create an executable file. */
/**/
#i ncl ude <stdio. h>
#i ncl ude "string.h"
char* get _nane()
{

static char name[80];

printf("Enter the name: ");

scanf ("%", nane) ;

return nane;

/**/

Running the Example Program

Here's a sanple run of the executable file that results when you link the object nodul es
generated by conpiling calling _c.C and get_nane. c:

Enter the nanme: Joann
Joann has a bal ance of 0

HP C Calling HP aC++

When nmi xi ng C++ nodul es with C nodul es, usually the overall control of the program nust
be witten in C++. In other words, the main() function nust appear in sonme C++ nodul e,
rather than in a C nodule, and you must link using aCC. The two exceptions to this rule
are C++ progranms and libraries (including HP-supplied |ibraries) w thout any gl obal

cl ass objects containing constructors or destructors and C++ prograns and |libraries
(including HP-supplied libraries) without static objects. Since nost C++ prograns use
the HP aC++ run-tine |libraries, few prograns nmeet these restrictions. Therefore, you can
call a Ct++ nodule froma C nodule by followi ng the points below, as well as the points
in Ceneral Infornmation Wien Calling Oher Languages:

® To prevent a function name from bei ng nangl ed, the function definition and al
decl arations used by the C++ code must use extern "C'

® The C programmer nust generate a call to function _main as the first executable
statenent in main(). Cbject libraries require this as _main calls the static
constructors to initialize the libraries' static data itens.

® Menmber functions of classes in C++ are not callable fromC. |f a nenber function
routine is needed, a non-nmenber function in C++ can be called fromC which in
turn calls the nenber function

® Since the C programcannot directly create or destroy C++ objects, it is the
responsibility of the witer of the C++ class library to define interface
routines that call constructors and destructors, and it is the responsibility of
the C user to call these interface routines to create such objects before using
them and to destroy them afterwards.

® The C user should not try to define an equivalent struct definition for the class
definition in C++. The class definition may contain bookkeeping information that
is not guaranteed to work on every architecture. All access to menbers shoul d be
done in the C++ nodul e.

The follow ng exanple prograns illustrate sone of the above points, as well as reference
parameters in the interface routine to the constructor.

HP C Calling HP aC++: An Example

//**

/1l C++ nodul e that mani pul at es obj ect obj. *

//**
#i ncl ude <i ostream h>

typedef class obj* obj ptr;

extern "C'" void initialize_obj (obj_ptré& p);
extern "C' void delete obj (obj ptr p);

extern "C' void print_obj (obj_ptr p);

struct obj {
private:
int x;
publi c:
obj () {x =7;}
friend void print_obj(obj_ptr p);
1

/1 Cinterface routine to initialize an
/'l object by calling the constructor.
void initialize_obj(obj_ptr& p) {

p = new obj;
}

/1 Cinterface routine to destroy an
/1 object by calling the destructor.
voi d del ete_obj (obj _ptr p) {

del ete p;
}

/1 Cinterface routine to display

/1 mani pul ati ng the object.

void print_obj(obj _ptr p) {

cout << "the value of object->x is " << p->x << "\n";

}

Following is a C programthat calls the C++ nodule to mani pul ate the object:

/***/

/* C programto denonstrate an interface to the */
/* C++ nodule. Note that the application needs */
/* to be linked with the aCC driver. */

/******************)\'**)\'*****************************/

t ypedef struct obj* obj_ptr;

int main () {
[* C++ object. Notice that none of the
routines should try to mani pulate the fields.

/*
obj ptr f;
/* The first executable statenent needs to be a cal
to _nmain so that static objects will be created in
libraries that have constructors defined. 1In this

application, the streamlibrary contains data
el ements that match the conditi ons.

_main();

/* Initialize the data object. Notice taking
the address of f is conmpatible with the
C++ reference construct.

/*

initialize_obj(&f);

[* Call the routine to mani pulate the fields */
print_obj (f);

/* Destroy the data object */
del ete_obj (f);

Compiling and Running the Example Programs

To conpile the exanple, enter the followi ng comands:

cc -c cfilename.c
aCC -c C++filename . C
aCC -o executable cfilename .o C++Fillename .o

CAUTI ON: During the linking phase, the aCC driver program performs several functions
to support the C++ class nechanism Linking prograns that use classes with the C
compiler driver cc leads to unpredictable results at run tine.

Calling HP Pascal and HP FORTRAN 90 from HP aC++

This section covers the foll ow ng topics:

® The mai n() Function

® Function Nani ng Conventions

® Usi ng Reference Variables to Pass Argunents
® Using extern "C' Linkage

® Strings

® Arrays

® Definition of TRUE and FALSE

® Files

® Linking HP FORTRAN 90 and HP Pascal Routines

NOTE: As is the case with calling HP C from HP aC++, you nust |ink your application
usi ng HP aC++.

The main() Function

In general, when m xing C++ nodules with nodules in HP Pascal and HP FORTRAN 90, the
overall control of the programnust be witten in C++. In other words, the main()
function must appear in some C++ nodul e and no ot her outer bl ock should be present.

If you wish to have a main() function in a nodule other than a C++ nodule, you can add a
call to _main() as the first non-declarative statenent in the nodule. However, if you
use this nethod, your code is not portable.

Function Naming Conventions

When calling an HP Pascal or HP FORTRAN 90 function from HP aC++ you nust keep in mnd
the differences between the way the | anguages handl e case sensitivity. HP FORTRAN 90 and
HP Pascal are not case sensitive, while HP aC++ is case sensitive. Therefore, all C++

gl obal names accessed by FORTRAN 90 or Pascal routines nmust be | owercase. Al FORTRAN 90
and Pascal external nanes are downshifted by default.

Using Reference Variablesto Pass Arguments

There are two nethods of passing argunments, by reference or by value. Passing by
reference neans that the routine passes the address of the argument rather than the
val ue of the argunent.

When cal ling HP Pascal or HP FORTRAN 90 functions from HP aC++, you need to ensure that
the caller and called functions use the sane nethod of argunent passing for each

i ndi vi dual argunment. Furthernore, when calling external functions in HP Pascal or HP
FORTRAN 90, you nust know the calling convention for the order of argunents.

It is not reconmended that you pass structures or classes to HP FORTRAN 90 or HP Pascal
For nmaxi mum conpatibility and portability, only sinple data types should be passed to
routines. Al HP aC++ paraneters are passed by value, as in HP C, except arrays and
functions which are passed as pointers.

HP FORTRAN 90 passes all arguments by reference. This nmeans that all actual paraneters
in an HP aCt++ call to a FORTRAN routine nust be pointers, or variables prefixed with the
unary address operator, &

HP Pascal passes argunents by val ue, unless specified as var paraneters. There are two
ways to pass variables to Pascal var paraneters. One way is to use the address operator
& The other way is to declare the variable as a pointer to the appropriate type, assign
the address to the pointer, and pass the pointer.

So, the sinplest way to reconcile these differences in argunent-passing conventions is
to use reference variables in your C++ code. Declaring a paraneter as a reference
variable in a prototype causes the conpiler to pass the argunent by reference when the
function is invoked

Example of Reference Variables as Arguments

The followi ng exanple illustrates a reference vari abl e.

int main(void)

{
/1l declare a reference vari abl e
extern void pas_func(short &);
short x;
pas_fﬁhé(X); /'l pas_func shoul d accept
C /'l its paraneters by reference
}

Refer to "References" in The C++ Programming Language, Third Edition for details about
usi ng reference vari abl es.

Using extern " C" Linkage

If you want to m x C++ nodules with HP FORTRAN 90 or HP Pascal nodul es, be sure to use
extern "C' linkage to declare any C++ functions that are called froma non-C++ nodul e
and to declare the FORTRAN or Pascal routines.

Strings

HP aC++ strings are not the sane as HP FORTRAN 90 strings. In FORTRAN 90 the strings are
not null termnated. Also, strings are passed as string descriptors in FORTRAN 90. This
nmeans that the address of the character itemis passed and a length by val ue foll ows.

NOTE: |f you use the HP FORTRAN 90 +800 option, the length follows inmediately after
the character pointer in the paraneter list. If you do not use this option, HP FORTRAN
90 passes character lengths by value at the end of the paraneter list. See the HP
FORTRAN/9000 Programmer®s Reference and the HP FORTRAN/9000 Programmer®s Guide for

i nformati on about the +800 option.

HP Pascal strings and HP aC++ strings are not conpatible. See your HP Pascal nanual for
detail s.

Arrays

HP aC++ stores arrays in row nmajor order, whereas HP FORTRAN 90 stores arrays in

col um-naj or order. The |ower bound for HP aC++ is 0. The default |ower bound for HP
FORTRAN 90 is 1. For HP Pascal, the | ower bound nay be any user-defined scal ar val ue

Definition of TRUE and FAL SE

HP aC++ does not have a Pascal bool ean type. On the HP 9000 Series 700/800, HP Pasca
all ocates 1 byte for bool ean vari ables and only accesses the rightnost bit to determnne
its value, 1 to represent TRUE and O for FALSE

On the HP 9000 Series 300/400, 2 bytes are allocated for a bool ean and any nonzero val ue
represents TRUE and O represents FALSE. On the HP 9000 Series 300/400, HP aC++ and HP
Pascal do share a conmon definition of TRUE and FALSE

Filesin FORTRAN

HP FORTRAN |/ O routines require a logical unit nunber to access a file, whereas HP aC++
accesses files using HP-UX |/ O subroutines and intrinsics and requires a stream pointer

A FORTRAN | ogi cal unit cannot be passed to a C++ routine to performl1/O on the
associated file, nor can a C++ file pointer be used by a FORTRAN routi ne. However, a
file created by a programwitten in either |anguage can be used by a program of the
other language if the file is declared opened within the latter program HP-UX |/O
(stream 1/ 0O can also be used from FORTRAN i nstead of FORTRAN I/ QO

Refer to your system FORTRAN rmanual on inter-language calls for details.
Filesin Pascal

A C++ file pointer cannot be passed to a Pascal routine for perform ng input/output. A
Pascal file variable cannot be used by a C++ program However, a file created by a
programwitten in either |anguage can be used by a program of the other |anguage if the
file is declared opened within the |atter program

If I/OfromPascal is required, it is recomrended that you use HP-UX input/out put
routines and intrinsics. This allows C++ and Pascal to use the same |/ O nechani sm

See the HP Pascal manual for your systemfor nore details.
Linking HP FORTRAN 90 Routines

When cal ling HP FORTRAN 90 routines on the HP 9000 Series 700/800, you rnust include the
appropriate run-tine libraries by adding the follow ng argunent to the aCC comrand when
i nki ng your program

-lisanstub

Linking HP Pascal Routines

When cal ling HP Pascal routines, no additional argunents to the CC conmand are needed
when |inking your program Sinply use the aCC command and include your Pascal object
files.

Optimizing HP aC++ Programs

HP aC++ provi des options to the aCC command and pragnes to control optimzation. The
foll owi ng sections introduce the basic concepts of optim zing your HP aC++ code for
i mproved efficiency.

Requesting Optimization

By default, the conpiler perforns constant folding and sinple register assignment. There
are several ways to increase and control the |evel of optimzation perforned on your
program

® Setting Basic Optinization Levels

® Additional Options for Finer Control
® Pragnas for Optimzation

® Profil e-based Optinization

Pragmas That Control Optimization

Conpi | er options provide a high-1evel, global approach to optimzation. To give you nore
refinement in optimzation, HP aC++ provides two pragnas: OPTIM ZE and OPT LEVEL.

These pragnas nust appear outside any function and they apply for the remainder of the
file or until superseded by another pragna. For these pragmas to work, the source
program must be conpiled with one of the optim zation options. Qtherw se the pragmas
are ignored.

Pragma OPTIMIZE

The OPTIM ZE pragma turns on or off optimzation. It is useful for turning off
optim zation in sections of a source program

Syntax of Pragma OPTIMIZE

To turn off optimzation for a particular function, put #pragnma OPTIM ZE OFF i mmedi atel y
before the function and #pragma OPTIM ZE ON i medi ately after the function. Then conpile
the function with one of the aCC conmand |ine options that enabl es optim zation.

Example:

#pragma OPTI M ZE OFF

voi d g() /1 Turn optimzation off.

}

#pragma OPTI M ZE ON

void f() /'l Restore optimnzation |evel.
{

}

Thi s exanpl e, when conpiled with -O, turns off optimzation for function g() and
restores it to level 2 for f().

Pragma OPT_LEVEL

The OPT_LEVEL pragma directs the conpiler to change the current optimnmization |evel to
level 1, 2, 3, or 4. It is useful for switching fromone level to another within a
source program

You cannot use this pragna to raise the optim zation |evel beyond the original |evel set
by the option you used on the aCC command |ine. The conpiler issues a warning if you
attenpt to raise the original optinization level. OPT_LEVEL 3 and 4 are only allowed at
the beginning of a file.

Syntax of Pragma OPT_LEVEL

To change optim zation levels for a particular function, put #pragma OPT_LEVEL n
i medi ately before the function, where n is the level of optimzation you want for the
function.

Examples:

#pragma OPT_LEVEL 1
void m()
{

}
#pragma OPT_LEVEL 2

voi d n()
{

}

Thi s exanpl e, when conpiled with -O lowers the optimnization level to level 1 for
function m() and restores it to level 2 for n().

Setting Basic Optimization L evels

HP aC++ provi des four basic |evels of optimzation, the higher the | evel the nore
optim zation performed and the |onger the optimnization takes.

You can specify an option on the aCC conmand |ine or in the CXXOPTS environnment
vari abl e.

Example:

aCC -O prog. C

Conpi l es prog. C and optinmizes the programat the default, level 2.
Level 1 Optimization

Level 1 optimzation includes branch optim zation, dead code elimnation, faster
regi ster allocation, instruction scheduling, and peephol e (statenent-by-statenent)
optimzation. Use +OL to get level 1 optinization.

Level 1 optimzation produces faster prograns than wi thout optim zation and conpiles
faster than level 2 optimization. Prograns conpiled at level 1 can be used with the HP
Di stributed Debuggi ng Environnment (DDE) debugger. Use the debugger option -g0 or -gl.

Level 2 Optimization

Level 2 optimzation includes level 1 optimnzations, plus optinizations perforned over
entire functions in a single file. Level 2 optimzes loops in order to reduce pipeline
stalls and anal yzes data-flow, nenory usage, |oops, and expressions. Use -Oor +O2 to

get level 2 optimzation.

Specifically, level 2 provides:
® Coloring register allocation.

® | nduction variable elimnation and strength reducti on.
® | ocal and gl obal common subexpression elinm nation.

® Advanced constant fol ding and propagation. (Sinple constant folding is done by
default.)

® Loop invariant code notion.

® Store/ copy optim zation

® Unused definition elimnation.

e Sof tware pipelining.

® Regi ster reassociation.

Level 2 can produce faster run-tinme code than level 1 if prograns use | oops extensively.
Loop-oriented floating-point intensive applications may see run tinmes reduced by 50%
Operating systemand interactive applications that use the already optinized system
libraries can achieve 30%to 50% additional inprovenment. Level 2 optimzation produces
faster programs than level 1 and conpiles faster than |evel 3 optimzation. Prograns
conpiled at level 2 can be used with the HP Distributed Debuggi ng Environnent (DDE)
debugger. Use the debugger option -g0 or -gl

L evel 3 Optimization

Level 3 optimzation includes |evel 2 optimnizations, plus full optimzation across al
subprograns within a single file. Level 3 also inlines certain subprograns within the
input file. Use +O3 to get |evel 3 optimnzation

Level 3 optimzation produces faster run-tinme code than level 2 on code that does many
procedure calls to small functions. Level 3 links faster than |level 4. But |evel 3 does
not work with the debugger options -g0 and -gl.

Level 4 Optimization

Level 4 optimzation includes |level 3 optimzations, plus full optimzations across the
entire application program Level 4 includes global and static variable optimization and
inlining across the entire program Optim zations are perforned at link tine rather than
at conpile time. Use +O4 to get level 4 optimzation

Level 4 optim zation produces faster run-tinme code than level 3 if progranms use many
gl obal variables or if there are many opportunities for inlining procedure calls. But
| evel 4 does not work with the debugger options -g0 and -gl.

Additional Optionsfor Finer Control

In addition to basic optimzation levels, optinmzation options are provided should you
require a nore precise level of control. Sone introductory exanples follow

Enabli ng Aggressive Optim zations

Enabling Only Conservative Optim zations
Renpving Conpilation Tine Limts When Optim zi ng
Limting the Size of Optim zed Code

Speci fyi ng Maxi num Opti m zati on

Conbi ning Optim zation Options

Enabling Aggressive Optimizations

To enabl e aggressive optim zations at the second, third, or fourth optim zation |evels,
use the +0aggressive option as foll ows:

aCC +O2 +0Caggressive sourcefile.C

or:

aCC +O3 +0Caggressive sourcefile.C

or:

aCC +O4 +Caggressive sourcefile.C

Thi s option enabl es additional optimn zations at each |evel

CAUTI ON: Use aggressive optinizations with stable, well-structured code. These types
of optinizations give you faster code, but may change the behavi or of prograns.

These optim zations may do any of the follow ng:
® relocate conditional floating-point instructions fromw thin |oops

® convert certain library calls to mllicode and inline instructions
® alter error-handling requirenments

Enabling Only Conservative Optimizations

You can enabl e only conservative optim zations at the second, third, or fourth
optim zation |evels by using the +Oconservative option, as foll ows:

aCC +@2 +Cconservative sourcefile.C

or:

aCC +O3 +Cconservative sourcefile.C

or:

aCC +O4 +Cconservative sourcefile.C

This option disables all but the npst conservative optimnizations at each |evel
Conservative optim zations do not change the behavior of code, in nbpst cases, even if

t he code does not conformto standards.

Use only conservative optim zations provided with level 2, 3, and 4 when your code is
unst ruct ur ed.

Removing Compilation Time Limits When Optimizing

You can renpve optim zation tinme restrictions at the second, third, or fourth
optim zation |evels by using the +Onolint option as follows:

aCC +O2 +Onolinmt sourcefile.C

or:

aCC +3 +Onolinmit sourcefile.C

or:

aCC +O4 +Onolinmit sourcefile.C

By default, the optimzer linmts the anobunt of tinme spent optimzing | arge prograns at

levels 2, 3, and 4. Use this option if longer conpile tines are acceptabl e because you
want additional optimzations to be perforned.

Limiting the Size of Optimized Code

You can disabl e optimzations that expand code size at the second, third, and fourth
optim zation |l evels by using the +Osize suboption, as follows:

aCC +@2 +0si ze sourcefile.C

or:

aCC +03 +GCsi ze sourcefile.C

or:

aCC +O4 +GCsi ze sourcefile.C

Most optim zations inprove execution speed and decrease executable code size. A few
optim zations significantly increase code size to gain execution speed. The +GCsize
opti on di sabl es these code-expandi ng optim zations.

Use this option if you have limted main nenory, swap space, or disk space.
Specifying Maximum Optimization

For maxi mum optim zation, use the +Call option as foll ows:

aCC +Qal | sourcefile.C

Thi s conbinati on perfornms aggressive optim zations with unrestricted conpile tine at the
hi ghest | evel of optimzation

CAUTI ON: Use +Call with stable, well-structured code. These types of optim zations
give you the fastest code, but are riskier than the default optim zations.

The +QCal |l option conbines the +O4, +Caggressive, and +Onolinmt options.
Combining Optimization Options
Optimization options that affect code size, (+Csize), conpile-time (+dinmit), and the

aggressi veness of the optinizations perforned (+Caggressive or +QOconservative) can be
combi ned at any of the optimzation [evels 2 through 4.

You can use +Ainmt or +Csize with either +0Caggressive or +Cconservative, but you cannot
use +Caggressive with +Cconservati ve.

Example:

For exanple, to specify conservative optim zations at |evel 2 and di sabl e code-expandi ng
optim zations, use:

aCC +@2 +Cconservative +0si ze sourcefile.C

Profile-Based Optimization

Profil e-based optim zation (PBO is a set of perfornance-inproving code transformations
based on the run-time characteristics of your application.

There are three steps involved in perfornmng this optinization

1. Instrunentation - Use +| with any level of optim zation to insert data collection
code into the object program

aCC +I -O -c sanple.C
aCC +I -O -0 sanple.exe sanple.o

2. Data Collection - Run the programwith representative data to collect execution
profile statistics:

sanple.exe < input.filel
3. Optim zation - Use +P to generate optimn zed code based on the profile data:
aCC +P -0 sanpl e. exe sanple.o

Conpile times will be fast and link tinmes will be slow when using PBO because code
generation happens at link tine.

Notes on Using Profile-Based Optimization

When using profil e-based optim zation, please note the follow ng:

® Because the linker performs code generation for profile-based optinization
linking object files conpiled with +I and +P takes nore time than |inking
ordinary object files. However, conmpile-tines will be relatively fast. This is
because the conpiler is only generating the internedi ate code

® You can conpile and instrument in one step, but you will have to reconpile again
when optim zing. You nust use the same options on both conpiles, otherw se
profil e-based optin zati on cannot be done. For exanple:

aCC +I -O sanple.C -0 sanple.exe // Conpile to instrunmented executabl e.
sanple.exe < input.filel /1 Collect execution profile data.
aCC +P -O sanple.C -0 sanple.exe [/ Reconpile with optim zation

® Nurerical applications which performthe sanme cal cul ati ons i ndependent of the
input data will only see a snall performance boost.

® Profil e-based optimn zation has the greatest inpact on application performance
when used with level 2 or greater optinzations.

® Profile-based optimzation benefits nost applications, especially large
applications with multiple conpilation units, such as conpilers, editors,
dat abase managers, and user interface nanagers.

® pProfil e-based optimzation should be enabl ed during the final stages of
application devel opnent. To obtain the best performance, re-profile and
re-optimze your application after making source code changes.

For Morelnformation:

For nmore information on profile-based optim zation, you can refer to the HP-UX Linker
and Libraries Online User Guide .

Instrumenting the Code

To instrument your program use the +l option as follows:

aCC +I -O -c sanple.C Compile for instrumentation.
aCC +I -0O -0 sanpl e.exe sanple.o Link to make instrumented executable.

The first command |ine uses the -O option to performlevel 2 optim zation and the +
option to prepare the code for instrumentation. (+l generates intermediate code.) The -c¢
option in the first command |ine suppresses |inking and creates an internedi ate object
file called sanple.o. The .o file can be used later in the optimnm zation phase, avoiding

a second conpil e.

The second command |ine uses the -o option to link sanple.o into sanple.exe. The +l
option instrunents sanple.exe with data collection code.

Not e: Instrumented prograns run slower than non-instrunented prograns. Only use
i nstrunented code to collect statistics for profile-based optimnzation

Instrumenting Code at L evel 4 Optimization

When optimzing at |evel 4, (where code generation is delayed until link tine), use the
+l option as follows:

aCC +I +O4 -c x.C y.C Create intermediate file for instrumentation.

aCC +I +O4 x.0 y.o0 Create optimized code with instrumentation.

For Morelnformation:

® Mhintaining Instrunented and Optim zed Program Fil es

Collecting Data for Profiling

To col |l ect execution profile statistics, run your instrumented programwth
representative data as follows:

sanmpl e.exe < input.filel Collect execution profile data.
sampl e.exe < input.file2 Collect execution profile data.

This step creates and logs the profile statistics to a file, by default called
flow data. The data collection file is a structured file that nay be used to store the
statistics frommnultiple test runs of different prograns that you nay have instrunented.

Maintaining Profile Data Files

Profil e-based optim zation stores execution profile data in a disk file. By default,
this file is called flow data and is located in your current working directory.

You can override the default name of the profile data file. This is useful when working
on large prograns or on projects with many different programfiles.

The FLOW DATA environnent variable can be used to specify the nanme of the profile data
file with either the +I or +P options. The +df conmand |ine option can be used to
specify the nane of the profile data file when used with the +P option

The +df option takes precedence over the FLOW DATA environnent vari able.

Examples:

In the foll owi ng exanple, the FLOW DATA environment variable is used to override the
flow data file nane. The profile data is stored instead in /users/profiles/prog.data

export FLOW DATA=/users/profil es/prog. data
aCC -c¢c +I +O3 sanmple.C

aCC -0 sanpl e.exe +l sanple.o

sanpl e.exe < input.filel

aCC -o sanple.exe +P sanple.o

In the next exanple, the +df option is used to override the flow data file name with the
nane /users/profiles/prog. data.

aCC -¢c +I +@3 sanple.C

aCC -o sanple.exe +I sanple.o

sanpl e.exe < input.filel

nv flow data /users/profilel/prog.data

aCC -o sanpl e. exe +df /users/profiles/prog.data +P sanple.o

Performing Profile-Based Optimization

To optim ze the program based on the previously collected run-tinme profile statistics,
relink the programas follows:

aCC -o sanpl e.exe +P sanple.o

When optim zing at |level 4, (where code generation is delayed until link tine), use the
+P option as follows:

aCC +P +O4 x.0 y.o

When +P is used, no reconpilation is necessary. The .o file saved fromthe
i nstrunentation phase can be used as input.

Maintaining I nstrumented and Optimized Program Files

You can naintain both instrunented and optim zed versions of a program You nmight keep
an instrumented version of the programon hand for devel opnent use, and several
optim zed versions on hand for performance testing and program di stribution.

Care nust be taken when maintaining different versions of the executable file because
the instrumented programfile nane is used as the key identifier when storing
execution profile data in the data file.

The optim zer nust know what this key identifier nane is in order to find the execution
profile data. By default, the key identifier nanme used to retrieve the profile data is
the instrumented programfile nane.

When you optimize a programfile and the optimzed programfile nane is different from
the instrumented programfile nane, you nust use the +pgm option. Specify the
instrunented programfile name with this option. The optinizer uses this value as the
key identifier to retrieve execution profile data.

Example:

In the foll owing exanple, the instrunmented programfile nane is sanple.inst. The
optimzed programfile name is sanple.opt. The +pgm nane option is used to pass the
i nstrunented programnane to the optim zer:

aCC -c +I +O3 sanple.C

aCC -o sample.inst +I sanple.o

sample.inst < input.filel

aCC -o sanpl e.opt +P +pgm sanpl e.inst sanple.o

Pragma Directives

You typically use a #pragna directive to control the actions of the conpiler in a
particul ar portion of a programw thout affecting the programas a whole.

Put pragmas in your C++ source code where you want themto take effect. Unless
ot herwi se noted below, a pragna is in effect fromthe point where it is included to the
end of the conpilation unit or until another pragna changes its status.

A #pragma directive is an instruction to the conpiler and is ignored during

pr eprocessi ng.

Syntax:

#pragnma pragma-string

pragma-string can be one of the following instructions to the conpiler w th any
requi red paraneters.

COPYRI GHT -- Specify a copyright string.

COPYRI GHT DATE -- Specify a copyright date for the copyright string.

hdr stop -- When using header caching, specify the end of the prefix header
region. In a given source file, this header cannot be reset.

HP SHLI B VERSION -- Create versions of a shared |ibrary routine.

LOCALITY -- Nane a code subspace.

OPTIM ZE -- Turn optimization on or off.

OPT LEVEL -- Set an optimn zation |evel.

pack -- Allows maxi mum ali gnnent of class fields having non-class types.
VERSI ONI D -- Specify a version string.

See Also: Pragmasfor Improving Shared Library Performance

HP NO RELOCATION -- Onit floating-point paraneter relocation stubs.

HP LONG RETURN -- Use a long return instruction sequence instead of an interspace
branch and omit export stubs.

HP DEFI NED EXTERNAL -- Inline inport stubs.

Pragma OPTIMIZE

Syntax:

#pragma OPTI M ZE
#pragma OPTI M ZE

ON
CFF

Description:

Turns optinization on or off.

Use this pragna to turn off optim zation in sections of a source program

NOTE:

® You nust specify one of the optinization options on the aCC comrand, otherw se

this pragma is ignored.

® This pragnma cannot be used within a function.

Example:

aCC +@2 prog.C

#pragma OPTIM ZE OFF
void A(){ [/ Turn off optimzation

}

/1 for this function

#pragma OPTI M ZE ON
voi d B(){ /1 Restore optimzation

/1 to level 2.

Pragma OPT_LEVEL

Syntax:

#pragma OPT_LEVEL 1
#pragma OPT_LEVEL 2
#pragma OPT_LEVEL 3
#pragma OPT_LEVEL 4

Description:
The OPT_LEVEL pragna sets the optimzation level to 1, 2, 3, or 4.

NOTE:

® You nust specify one of the optinization options on the aCC comrand, otherw se
this pragma is ignored.

® This pragnma cannot raise the optimzation |evel above the level specified in the
conmand | i ne.

® This pragna cannot be used within a function.

® OPT_LEVEL 3 and 4 are allowed only at the beginning of a file.

Example:
aCC -O prog. C

#pragma OPT_LEVEL 1

void A()({ /1 Optimize this function at level 1.
}

#pragma OPT_LEVEL 2

void B()({ /'l Restore optimzation to |level 2.

}

Pragma hdr_stop

Syntax:
#pragnma hdr_stop
Description:

When you request header caching with the +hdr_cache option, this pragma specifies the
end of the prefix header region.

In a given source file, this pragma cannot be reset. It only allows the prefix header
region to be shortened, not expanded. Al so, there is no equivalent hdr_start pragma to
alter the beginning of the prefix header region.

If the #pragnma hdr_stop occurs as the first line in a source file, header caching is
abandoned for that source file. If it occurs as the first line in a header file, header
caching is abandoned for the source file that includes the header file.

Usage

If you do not want certain headers preconpiled, no natter what source file they are
included in, instead of searching for all the sources that include themand turning the
+hdr _cache option off for each of those sources, you can specify #pragnma hdr_stop as the
first line in each such header file.

Anot her exanple m ght be useful when only a subset of headers are undergoi ng code
changes. You coul d place these headers at the end of the list of #include directives,
after specifying #pragma hdr_stop. Then, if the nore stable headers conprising the
prefix header region and the conpile environnent itself do not change, no re-conpile
wi |l take place.

Examples

In the foll owing exanple, using the default prefix header regi on, changes to any header
file will cause a re-conpile.

#i ncl ude <vector> /1l stable headers
#i ncl ude <list>

#i ncl ude <Super Base>

#i ncl ude <I OBase>

#i ncl ude <Magi kal > /1 headers you are changi ng
#include <Util>

/1 default END of prefix header region
voi d poof ();

In the next exanple, by ending the prefix header region prior to the headers you are
changing, a re-conpile does not occur unless changes are nade to a stable header file.

#i ncl ude <vector> /'l stable headers
#i ncl ude <list>

#i ncl ude <Super Base>

#i ncl ude <| OBase>

#pragma hdr_stop I/ END the prefix header region
[l prior to the default

#i ncl ude <Magi kal > /'l headers you are changi ng
#i nclude <Uil >

voi d poof();
For More Information:

® Creating and Using Automati c Preconpil ed Headers
® +hdr cache option

Pragma HP_SHLIB VERSION

Syntax:

#pragna HP_SHLI B VERSION ["] date ["]
The date argunment is of the form month/year , optionally enclosed in quotes.

® month must be 1 through 12, corresponding to January through Decenber

® year can be specified as either the last two digits of the year (94 for 1994) or
a full year specification (1994). Two-digit year codes from 00 through 40
represent the years 2000 through 2040, respectively.

Description:

Creates different versions of a routine in a shared |ibrary.

HP_SHLI B_VERSI ON assi gns a versi on nunber based on date to a nodule in a shared

i brary. The version nunber applies to all global synbols defined in the nodul e's source
file.

This pragma should only be used if inconpatible changes are made to a source file. If a

version nunber pragma is not present in a source file, the version nunber of all synbols
defined in the object nodule defaults to 1/90.

For More Information:
® Creating and Using Shared Libraries

® Advanced Shared Library Features
® See the manual HP-UX Linker and Libraries Online User Guide .

Pragma COPYRIGHT

Syntax:
#pragma COPYRI GHT "string"

string is the set of characters included in the copyright nessage in the object file.
Description:

Specifies a string to include in the copyright nessage and puts the copyright nessage
into the object file.

If no date is specified (using pragma COPYRI GHT DATE), the current year is used in the
copyri ght nessage.

Examples:

Assumi ng the year is 1999, the directive

#pragma COPYRI GHT "Acme Sof t war e"

pl aces the following string in the object code:

(C Copyright Acne Software, 1999. Al rights reserved

No part of this program nay be photocopi ed, reproduced, or
transnmtted without prior witten consent of Acne Software.

The foll ow ng pragnas

#pragnma COPYRI GHT_DATE " 1990-1999"
#pragnma COPYRI GHT "Brand X Sof t war e"

pl ace the following string in the object code:

(C) Copyright Brand X Software, 1990-1999. Al rights reserved.
No part of this program may be photocopi ed, reproduced, or
transmtted without prior witten consent of Brand X Software.

NOTE: To see the COPYRIGHT string as well as any other strings in the object file, use
the strings(1l) conmand with the -a option for exanple:

strings -a ojectFileNane. o

Pragma COPYRIGHT_DATE

Syntax:

#pragma COPYRI GHT_DATE "string "

string is a date string used by the COPYRI GHT pragna.

Description:

Specifies a date string to be included in the copyright nmessage.

Use the COPYRI GHT pragma to put the copyright nessage into the object file.
Example:

#pragnma COPYRI GHT_DATE " 1988- 1992"

Pl aces the string "1988-1992" in the copyright nessage.

NOTE: To see the COPYRI GHT_DATE string as well as any other strings in the object file,
use the strings(1l) command with the -a option for exanple:

strings -a ojectFileNane. o

Pragma LOCALITY

Syntax:

#pragnma LOCALITY "string "

string specifies a nane to be used for a code subspace.
Description:

Specifies a nane to be associated with the code witten to a rel ocatable object nodule.

Al'l code followi ng the LOCALITY pragnae is associated with the nane specified in string
Code that is not headed by a LOCALITY pragna is associated with the nane $CODES.

The snal | est scope of a unique LOCALITY pragma is a function.
Example:
#pragma LOCALI TY "M NE'

Bui | ds the nane $CODE$M NE$ and associates all code following this pragma with this
nane, unless another LOCALITY pragna i s encountered.

Pragma pack

Syntax:
#pragnma pack [n]

Where n can equal 1, 2, 4, 8, or 16 and indicates, in bytes, the nmaximum alignnent of
class fields having non-class types. If n is not specified, maxinumalignment is set to
the default val ue.

Description:

This pragma allows you to specify the maxi num alignnent of class fields having non-cl ass
types. The alignnment of the whole class is then conmputed as usual, the alignment of the
nost aligned field in the class.

NOTE: The result of applying #pragnma pack n to constructs other than class definitions
(including struct definitions) is undefined and not supported. For exanple:

#pragma pack 1
int global _var; // Undefined behavior: not a class definition

void foo() { /1 Al so undefined
}

Usage

The pack pragma may be useful when porting code between different architectures where
data type alignnent and storage differences are of concern. Refer to the foll ow ng
exanpl es:

® Basi c Exanpl e

® Tenpl ate Exanpl e

® Handling Unaligned Data

® |nplicit Access to Unaligned Data

Refer also to Default Data Storage and Alignnent.

Basic Example

The follow ng exanple illustrates the pack pragma and shows that it has no effect on
class fields unless the class itself was defined under the pragna

Exampl e 1:

struct S1 {
char cl; // Ofset 0, 3 bytes padding
int i; /[l Ofset 4, no padding
char c2; [/l Ofset 8, 3 bytes padding
}; I/ sizeof (S1)==12, alignnent 4

#pragma pack 1

struct S2 {
char cl; // Ofset 0, no padding
int i; /[l Offset 1, no padding

char c2; // Ofset 5, no padding
}; I/ sizeof (S2)==6, alignment 1

/1 S3 and S4 show that the pragnma does not affect class fields
/1 unless the class itself was defined under the pragne.

struct S3 {
char cl; // Ofset 0, 3 bytes paddi ng
Sl s; /1 Ofset 4, no paddi ng

char c2; [/l Ofset 16, 3 bytes padding
}; /1l sizeof(S3)==20, alignnent 4

struct $S4 {
char cl; // Ofset 0, no padding
S2 s; /1 Ofset 1, no padding

char c2; // Ofset 7, no padding
}; /1l sizeof(S4)==8, alignnment 1

#pragnma pack

struct S5 { // Sane as Sl
char cl; // Ofset 0, 3 bytes padding
int i; /[l Ofset 4, no padding
char c2; [/l Ofset 8, 3 bytes paddi ng
}; I/ sizeof (S5)==12, alignnent 4

Template Example

If the pragma is applied to a class tenplate, every instantiation of that class is
i nfluenced by the pragma value in effect when the tenplate was defined.

CAUTI ON: The alignnent of specializations and partial specializations of tenplates is
undefined and unsupported if either the primary tenplate or the specialization is under
the influence of a #pragnma pack directive.

Exampl e 2

#pragma pack 1

t enpl at e<cl ass T>
struct ST1 {

char cl;

T X;

char c2;

1
#pragma pack
ST1<int> obj; /1 Same layout as S2 in the prior exanple

tenplate <> /1l Explicit specialization
struct STil<void> {

char c1;
char c2;
}i /1 Undefined (unsupported) behavior
/1 ST1 was defined under a #pragma pack 1
/1 directive.

Handling Unaligned Data

Direct access to unaligned class fields is handl ed autonmatically by HP aC++. However,
this results in slower access tines than for aligned data.

I ndirect access (through pointers and references) to unaligned class fields is also
handl ed automatically.

CAUTI ON: |f you take the address of a data field and assign it to a pointer, it is not
handl ed automatically and is likely to result in premature term nation of the programif
not handl ed appropriately. For exanple:

Exanpl e 3:

#i ncl ude <stdio. h>
#pragnma pack 1

struct S1 {
char c1;
int i;
char c2;
}s

#pragma pack

int main() {

Sl s;

S1 *p = &s;

printf("%l\n", s.i); I K

printf("%l\n", p->i); /]I K

int *ip = &->i; /1 Undefined behavi or
/1 Likely Abort unless conpiled with +ul
/1 The address of a reference (*ip) is
/1 assigned to an int pointer.

printf("%l\n", *ip);

}

To enable indirect access to unaligned data that has been assigned to another type,
either of the followi ng two options are avail abl e.

® Conpile with the +tunum option, to generate safe but less efficient code for
every indirect access to nenory.

® Link in the library |ibhppa.a (part of the fileset ProgSupport.PROG AUX) and arm
the appropriate signal handler with a call to allow unaligned_data_access(). This
causes every signal due to unaligned access to be intercepted and handl ed as
expected. It also creates significant run-tinme overhead for every access to
unal i gned data, but does not inpact access to aligned data.

Implicit Accessto Unaligned Data

Calls to non-static nenber functions require that an inplicit this pointer be passed to
these functions, which can then indirectly access data through this inplicit paraneter.
If such an access is to unaligned data, the situation in the prior Exanple 3 occurs.

Furthernore, virtual function calls often require indirect access to a hidden field of a
class that could be unaligned under the influence of the #pragnma pack directive.

I f passing the address of a field to code not conpiled with the +ul option, consider the

foll owi ng exanple. Unless conpiled with -DRECOVER on the conmand-line and linked with
/fusr/lib/libhppa.a, Exanple 4 is likely to prematurely terninate with a bus error.

Exampl e 4:

#i ncl ude <stdio. h>

#i f def RECOVER

extern "C' void all ow unaligned_data_access();
#endi f

#pragma pack 1

struct PS1 {
PS1();
~PS1();

private:
char c;
int a;

1
#pragma pack
PS1::PS1(): a(l) { /'l There appears to be no pointer, but there

/1 is an unaligned access, possibly through "this."
printf("lIn constructor.\n");

}

PS1:: ~PS1() {
a = 0; /1 M saligned access, possibly though "this"
printf("In destructor.\n");

i nt main()

#i f defi ned(RECOVER)

al | ow_unal i gned_dat a_access();
#endi f

PS1 s;
}

Pragma VERSIONID

Syntax:

#pragnma VERSI ONI D "string "

string is a string of characters that HP aC++ places in the object file.
Description:

Specifies a version string to be associated with a particular piece of code. The string
is placed into the object file produced when the code is conpil ed.

Example:

#pragnma VERSI ONI D " Sof t ware Product, Version 12345. A 01.05"

Pl aces the characters Software Product, Version 12345.A. 01.05 into the object file.

NOTE: To see the VERSIONID string as well as any other strings in the object file, use
the strings(1) comrand with the -a option for exanple:

strings -a ojectFil eNane. o

Pragmasfor Improving Shared Library Performance

The pragnas described here can inprove the performance of shared |libraries by reducing
the overhead of calling shared library routines. Al three pragmas should be used

t oget her, where applicable, as they depend on one another to a certain extent. You nust
be very careful in using them because incorrect use can result in incorrect and
unpredi ct abl e behavi or. See the HP-UX Linker and Libraries Online User Guide for nore
information on inproving shared |ibrary perfornmance.

Pragma HP_NO_RELOCATION

Syntax:
#pragma HP_NO_RELCCATI ON namel [, name2 , ... nameN]

namel through nameN are nanes of functions in shared libraries. Note that C++ mangl ed
nanmes are not supported.

Any named function:

® must be the nane of an extern"C' function
® must not have C++ |inkage
® must not be a nenber function

Description:

This pragma i nproves performance of shared library calls by omtting floating-point
paraneter relocation stubs in calls to shared library functions.

Paraneter relocation stubs are instructions that nove (relocate) floating-point
paranmeters and function return values between floating-point registers and general
registers. They are generated for calls to routines in shared libraries. Relocation
stubs are generated when passing floating-point paraneters or using a floating-point
function return in routines in shared libraries. The HP_NO RELOCATI ON pragma prevents
this unnecessary relocation

Usage

Put the HP_NO RELCCATI ON pragnme in header files of functions that take floating-point
paraneters or return floating-point data and that will be placed in shared libraries.
Putting it in the header file and ensuring all calls reference the header file is one
way to ensure that it is specified at the function definition and at all calls.

This pragma is automatically supplied by HP aC++ for non-static nmenber functions.

WARNI NG: The HP_NO RELCCATI ON pragna nust be at the function definition and at al
call sites. If the pragma is omtted fromthe function definition or fromany call, the
linker will generate paraneter relocation code and the application will behave

incorrectly since floating-point paraneters will not be in expected registers.

CAUTI ON: Do not use the HP_NO RELOCATION pragma with functions that use the stdarg
macros. See the stdargs(5) nman page for information on stdargs nacros.

Pragma HP_LONG_RETURN

Syntax:

#pragma HP_LONG RETURN namel [, name2 , ... nameN]

namel through nameN are nanmes of functions in shared libraries. Note that C++ mangl ed
nanes are not supported.

Any nared function:

® must be the nane of an extern"C' function
® must not have C++ |inkage
® must not be a nenmber function

Description:

This pragma inproves performance of shared library calls by using a long return
i nstruction sequence instead of an interspace branch and by om tting export stubs.

An export stub is a short code segnent generated by the linker for a global definition
in a shared library. External calls to shared library functions go through the export
stub. An export stub is generated by default for each function in a shared library. Each
call to the function goes through the export stub. The export stub serves two purposes:
to relocate paraneters and perform an interspace return

The HP_LONG RETURN pragma generates a long return sequence in the export stub instead of
an interspace branch. If you al so use the HP_NO RELCCATI ON pragma (for functions taking
fl oating-point paranmeters), all the code in the export stub is omtted, elimnating the
export stub entirely. For functions taking non-floating-point paraneters, the

HP_LONG RETURN pragnma by itself elimnates the need for export stubs.

Usage

Put this pragma in header files of functions that will go in shared libraries. Specify
it at the function definition and at all calls. For functions with floating-point
paraneters or returns, use the HP_NO RELCOCATI ON pragma along with the HP_LONG RETURN
pragna.

This pragma is automatically supplied by HP aC++ for non-static nenber functions.

This pragma is not required if you conpile on PA-RISC 2.0 or later or with the +DA2.0
option since the effect is the default. That is, if no relocations are generated, export
stubs are not generated on PA-RISC 2.0 and later, and a long return instruction sequence
is generated by default, so this pragma has no effect.

WARNI NG: The HP_LONG RETURN pragna nmust be at the function definition and at all cal
sites. If the pragna is onitted fromthe function definition or fromany call, the
conpiler will generate inconpatible return code and the application will behave
incorrectly and |ikely abort.

CAUTI ON:

Wth floating-point paraneters, using HP_LONG RETURN wi t hout using HP_NO RELOCATI ON
could actually degrade perfornance by creating export stubs and relocation stubs.

These pragmas inprove performance of calls to shared library functions fromoutside the
shared library. Therefore do not use this pragma for hidden functions (see the -h and +e
Iinker options) nor for functions called only fromwthin the sane shared |library |inked
with the -B synbolic Iinker option, otherwi se this pragnma nay degrade perfornance. (See
the HP-UX Linker and Libraries Online User Guide for information on the above nentioned
options.)

Pragma HP_DEFINED_EXTERNAL

Syntax:

#pragnma HP_DEFI NED_EXTERNAL namel [, name2 , ... nameN]

namel through nameN are nanes of functions in shared libraries. Note that C++ mangl ed
names are not supported.

Any named functi on:
® must be the nane of an extern"C' function

® must not have C++ |inkage
® must not be a nmenber function

Description:

This pragma i nproves performance of shared library calls by inlining inport stubs.

I mport stubs are code sequences generated at calls to shared library routines. The

i mport stub queries the PLT (Procedure Linkage Table) to determine the address of the

shared library function and calls it. The HP_DEFI NED EXTERNAL pragna inlines this inport
st ub.

Usage
Place this pragma at calls to shared |ibrary routines along with the HP_NO RELOCATI ON
pragma (if using floating-point parameters or return values) and the HP_LONG RETURN

pragna.

Unli ke HP_NO RELCCATI ON and HP_LONG RETURN, HP_DEFI NED EXTERNAL is not automatically
supplied by HP aC++.

WARNI NG:

Do not use the HP_DEFI NED EXTERNAL pragma at function definitions, only at function
calls. Specifying it at function definitions will result in incorrect behavior.

On PA-RISC 1.1, use the HP_DEFI NED EXTERNAL pragma only when calling a shared library
froman executable file. Using it on calls within an executable file will cause the
programto abort.

CAUTI ON:

I f your function takes floating-point paraneters, you should al so use the
HP_NO RELOCATI ON pragna (if floating-point paraneters are present).

You shoul d al so use the HP_LONG RETURN pragna with the HP_DEFI NED_EXTERNAL pragma. |f
you don't, the inport stub may be too large to inline.

Use the HP_DEFI NED EXTERNAL pragnma only on calls to functions in shared libraries. On
PA-RISC 2.0, it will degrade performance of calls to any other functions.

Creating and Using Precompiled Header Files

You can reduce conpilation time by preconpiling common include (header) files. HP aCt++
provi des two nechani snms for preconpiling headers. Header caching is easy to use and
was first incorporated in version A 01.21 (for HP-UX 10.x) and HP aC++ A 03.13 (for
HP- UX 11.x). The prior mechanism manual precompiled headers , renmins avail able.

NOTE: M xing the two mechanisns for a single conpilation is not supported. The
+hdr _cache option is inconpatibile with the +hdr_create and +hdr_use opti ons.

Deciding which M echanism to Use

When deci di ng whet her to use header caching or manual preconpil ed headers, filespace and
ease of use are of major concern

Wth header caching, HP aC++ preconpiles what is included in the source file (prefix
header region) and is responsible for correctness. You need only specify the +hdr_cache
option. However, significantly nore disk space is required conpared to manua
preconpi l ed headers. And an initial conpile or a re-conpile nay take nore tine.

Wth manual preconpiled headers, you control exactly what is preconpiled, and when, and
you are responsible for the correctness of the code. However, you can mnimze disk
space usage and preconpilation tine.

One way of deciding which mechanismto use would be to specify +hdr_cache to determ ne
if file space is a concern. If it is, then consider the manual preconpiled header
nmechani sm

Header Caching

Header caching enables the conpiler to cache and use the result of conpiling header
files fromone build to the next. The first build after enabling this option is likely
to take sonewhat |onger but subsequent builds, to the extent that the contents of the
cache remain valid, should be neasurably faster.

To request header caching, just specify the +hdr cache option on the aCC comand |ine or
in your Makefile or use the CXXOPTS environnent variable. There are no other

requi rements. The header cachi ng nmechani smautomatically decides if and when to create a
preconpi |l ed header and if and when to reuse an existing one.

NOTE: Conpil ation caches for prograns using tenplates or |arge headers can require
substantial disk space. If you need to reclaimdisk space, it is safe to renove the
cache directory (aCC cache) inits entirety (rm-rf aCC cache), but avoid renoving only
portions of the directory.

Header Cache Processing

When you are conpiling with +hdr_cache for the first tine, or if the elenents of the
compi |l ati on environnment have changed since the prior conpilation, the conpiler does the
following for each source file on the conmand |i ne:

® Creates an aCC_cache sub-directory in the directory where the source file resides
(for an initial conpile only). This directory acts as a repository for
preconpi | ed header fil es.

Note, use the +hdr dir option to specify a different |ocation and/or nane for the
aCC_cache directory.

® |dentifies the prefix header region in each source file, preconpiles it, and
stores the preconpiled version of its contents in the the aCC cache directory.

® Encapsul ates the unique conpilation environment of the source file and stores its
content in the aCC cache directory. This information is used in future conpiles
to determ ne whether or not a given preconpiled header is valid for reuse

Use the +hdr info option to see if a cache is being reused or recreated. |If you
find that you need nore than one cache directory, use the +hdr dir option

By contrast, for an unchanged conpilation in which the conpiler has exam ned the
conpi l ation environnment and found no significant changes, the existing preconpiled
header is reused and conpilation continues. Typically, for such conpiles, performance is
significantly inproved

The Prefix Header Region

The prefix header region is the initial region of a source file that contains #include
and #define directives. The end of the prefix header region (and thus the automatic
preconpile) is reached when the conpiler encounters a code sequence other than a

#i nclude or #define directive (i.e., a declaration or operator), or when a #pragnma

hdr stop is encountered.

Performance and File Space Consider ations

In order to use header caching nost effectively, consider the follow ng points.

® |n general, conpile tine will be faster for a re-conpile using an existing
preconpi |l ed header file, than for a conpilation that does not use preconpiled
headers. Most notabl e inprovenent woul d be for code that uses many header files.

® Compile time will be slower for an initial conpilation or one for which the
prefix header region has changed than for a re-conpile using an existing
preconpi | ed header.

® A given application using automatic preconpiled header files may require nore
file space than woul d a nmanual preconpiled header file. It is good progranmm ng
practice to not include unnecessary headers.

® Try to include all necessary headers before any of the other code in a source
file. This will insure that maxi mum preconpilation occurs.

® |n conpiling a source-file, if you do not want to preconpile all #include header
files, specify the #pragnma hdr stop directive to end the prefix header region
prior to those headers that are not to be preconpil ed.

® Renenber that conpilation time is generally inproved for source code in which the
prefix header region is not nodified.

Manual Precompiled Headers

You can manual |y create a preconpil ed header file. Then when you conpil e your
application or library, you specify the preconpiled header file on the conmand li ne.
Note, with this nethod, just one preconpiled header file is allowed per conpilation
To manual |y create and use a preconpiled header file, follow these steps:

1. First you need a source (.C) file that includes all the header files you want to
preconpile (preconp.C in the follow ng exanple).

2. Next create a preconpiled header file (in this case nanmed preconp) from preconp.C
by using the +hdr create option.

Use the -c option to suppress creation of the executable file.

Each tine you use the +hdr_create option to create a preconpiled header file, by
default, a corresponding .o file is also created. Information resulting fromthe
conpi l ation of declarations is put into this .o file. The .o file nmay contain
information related to debugging, virtual function tables, and inline function
bodi es. This saves space and time by elinminating duplication in future +hdr use
conpi | es.

aCC preconp. C -c +hdr_create preconp

3. When you want to conpile preconp, use the +hdr use option. This is known as a
| oad conpile.

aCC mmi n. C +hdr _use preconp

Verbose | nformation

Use the +hdr v option for verbose informati on when preconpiling a header or when
compi ling a preconpiled header file.

To see what goes into the preconpil ed header file:
aCC preconmp. C -c +hdr_create preconp +hdr_v
To see what is being brought into the conpiler during a | oad conpile:

aCC mai n. C +hdr _use preconp +hdr_v
For Morelnformation

® Exanpl e Source Files

® Witing Headers that can be Either Conpiled or Preconpiled
® Saf equardi ng your Preconpil ed Header Files

® Creating a Two-tiered Headers Process

Example Sour ce Files

The files in the exanple below are witten so that you can conpile themeither with or
wi t hout preconpil ed headers, as described in Witing Headers that can be Either Conpiled

or Preconpiled. Thus you could issue the followi ng conmand to conpile the files w thout
preconpi | ing:

aCC main. C
O to use the preconpiled header created in the prior exanple:
aCC nmmi n. C +hdr _use preconp

In the foll owi ng exanpl e, header file a.h is included in preconp.C and precomp.C is
included in main.C

/1 a.h

#i fndef A H
#define A H
extern "C' int printf(char *, ...);
class foo {
private:
int x;
public:
foo() { printf("constructor for foo\n"); x++; }

#endif /1 AH
/'l preconp.C
#i f ndef PRECOVP
#defi ne PRECOVP

#i nclude "a. h"
class bar : foo {

private:
int vy;
publi c:

bar() { printf("constructor for bar\n");y++; }
#endif // PRECOWP
/1 main.C

#i ncl ude "preconmp. C' /1 Use this include statenent

/1 ONLY if you want

/'l headers that can be

/'l either preconpiled or conpiled.
voi d main()

bar b;

Writing Headersthat can be Either Compiled or Precompiled

If you want to be able to either conpile a header file directly or to preconpile and
than conpile it (a load conpile), the file nust have the foll owi ng characteristics.

® You nust #include the preconpil ed header source (.C) file in your nmain program
Even though this is not necessary for a |load conpile, it is required when you
conpil e without first preconpiling.

® |n order to create a preconpiled header file, you nust have one source (.C) file
that includes all of the other header files you intend to preconpile.

® Use include guards in the source file that includes the header files and in the
header files themselves. Include guards are generally used to ensure that the

contents of the header files are included only once. They are required in a | oad
conpi l e since you #include the preconpiled header source (.C) file in main.C

The +hdr _use option has the side effect of defining a conpilation flag (e.g. A H
and PRECOW), so the conditional directives prevent redefinitions of the contents
of a.h and preconp. C respectively.

For nore informati on about preprocessor directives, refer to Preprocessing in HP
aC++

Safeguarding your Precompiled Header Files

Be certain you renmake a preconpil ed header file if anyone coul d have changed any of the
header files it represents. Otherw se these header changes will not be part of the |oad
conpi | e.

It is also recormended that, fromtinme to tine, you re-conpile everything (header and .C
files) without the +hdr_use option. This ensures that each .C file contains exactly the
correct #include directives.

For exanpl e, suppose you have source files progl.C and prog2.C that each require a

#i nclude prog.h directive. If the #include directive is mssing fromprog2.C, an error
nmessage woul d be generated if you re-conpile that file without the +hdr_use option. Wth
t he +hdr_use option, however, no error is generated since prog.h is in the preconpiled
header file because of the progl.C #include directive.

Creating a Two-tiered Header s Process

When project files are under active developnent, it is sonmetines better to divide your
header files and preconpiled header files into groups, depending on how often they are
bei ng nodi fied. For exanple,

1. Build a file called Stabl eHeaders. C that includes only headers that are changed
i nfrequently.

2. Build a file called Volatil eHeaders. C that includes only headers that are
frequently changed. (If you use include guards, this file can include headers
fromthe set in Stabl eHeaders.C.)

3. Build two preconpil ed header files, and conbine theminto one using conmands |ike
the foll ow ng:

aCC St abl eHeaders. C -¢ +hdr_create Stable
aCC Vol ati | eHeaders. C +hdr_use Stable -c¢ +hdr_create Total
4. Conpile a programwith the resulting preconpiled header (in this case, Total).

aCC Prog. C +hdr _use Tot al

Preprocessing in HP aC++

HP aC++ has its own, internal, preprocessor which is sinlar to the HP C preprocessor
described in the HP C/HP-UX Reference Manual . When you issue the aCC command, your
source files are automatically preprocessed.

Directives

By coding preprocessing directives in a source file, you request that the file be
processed in a particlar way.

Summary
Syntax, Quidelines, and Exanpl es

Source File Inclusion (#include)

Macr o Repl acenent (#define, #undef)

Condi tional Conpilation (#if, #ifdef, .. #endif)
Li ne Control (#line)

Pragna Directive (#pragna)

Error Directive (#error)

Tri graph Sequences

Command Line Options

Summary

Migration

M gration Considerations Related to Preprocessing

For Morelnformation

See the aCC nman page.

Summary of Preprocessor Directives

Preprocessor directives provide the follow ng functionality:

Source File Inclusion (#include)

I nclude other source files at a given point, for exanple, to centralize
decl arations or to access standard system headers such as iostreamh
Macro Repl acenent (#define, #undef)

Repl ace token sequences with other token sequences. In C this technique is
frequently used to define nanes for constants rather than explicitly putting the
constant value into the source file. In C++ you can al so use the keyword const to
define constants.

Condi tional Conpilation (#if, #ifdef, .. #endif)

Check values and flags to either conpile or skip source code based on the outcone
of a conparison. Useful, for exanple, when witing a single source for use with
several different configurations.

Li ne Control (#line)

Set the line nunber and file name of the next |ine.

Pragna Directive (#pragnma)

G ve inpl enentati on-dependent instructions, called pragmas, to the conpiler.
Because they are system dependent, pragnas are not portable.

Error Directive (#error)

Create diagnostic nessages for the conpiler to issue.

® Trigraph Sequences

Use trigraph sequences if you don't have the full Ct+ character set.

Preprocessor Directives: Syntax, Guidelines, and Examples
Syntax

Cener al

syntax for a preprocessor directives is:

preprocessor-directive ::=
include-directive newline
macro-directive newline
conditional-directive newline
line-directive newline
pragma-directive newline
error-directive newline
trigraph-directive newline

Guidelines

Fol l owi ng are rules and gui delines for using preprocessor directives:

A preprocessor directive nust be preceeded by a pound sign (#) as the first
character on a line of your source file. (However, if you are in ANSI C node,

whi t e-space characters may precede the # character.)

The # character is foll owed by any nunber of spaces and horizontal tab characters
and a preprocessor directive.

A preprocessor directive is termnated by a newine character.

Preprocessor directives, as well as normal source |lines, can be continued over
several lines. End the lines that are to be continued with a backslash (\).

Sonme directives can take actual argunents or val ues.

Comments in the source file that are not passed through the preprocessor are
replaced with a single white space character (ASCI| character nunber decimal 32).

Examples

Foll owi ng are sone exanpl es of preprocessor directives:

include-directive:

#i ncl ude <i ostream h>

macro-directive:

#define MAC x+y

conditional-directive:

#i f def MAC
define x 25

endif

line-directive:

#ine 5 "nyfile"

pragma-directive:

#pragma OPTI M ZE ON

error-directive:

#error "FLAG not defined!"
trigraph-directive:
??=line 5 "nyfile"

Sour ce File Inclusion (#include)

You can include the contents of other files within a given source file by using the
#i nclude directive in the source file.

Syntax:

i nclude-directive ::=
#i ncl ude <filename >
#i ncl ude " Ffilename "
#i ncl ude i1dentifier

Description:

The #include preprocessing directive causes HP aC++ to read source input fromthe file
nanmed in the directive. Usually, include files are naned:

filename . h

If the file nane is enclosed in angle brackets (< >), the default systemdirectories are
searched to find the named file. If the file name is enclosed in double quotation marks

(&dquote; &dquote;), by default, the directory of the file containing the #i nclude |ine

is searched first, then directories named in -1 options in left-to-right order, and |ast
directories on a standard |ist.

For Morelnformation:

® Usi ng Standard HP-UX Libraries and Header Files
® Header File Options

Files that are included may contain #include directives themsel ves. HP aC++ supports a
nesting level of at |east 35 #include files.

The argunents to the #include directive are subject to nacro repl acenent before being
processed. Thus, if you use a #include directive of the form #i nclude identifier,
identifier nust be a previously defined macro that when expanded produces one of the
above defined forms of the #include directive. Refer to Macro Repl acenent (#define,
#undef) for nore information on nacros.

Error nessages produced by HP aC++ indicate the nane of the #include file where the
error occurred, as well as the line number within the file.

Examples:

#i ncl ude <i ostream h>

#i ncl ude "myheader. h"

#i f def M NE

define filename "filel.h"
#el se

define Ffilename "file2. h"
#endi f

#i ncl ude filename

Macr o Replacement (#define, #undef)

You can define C++ nacros to substitute text in your source file.

Synt ax _and Descri ption

Macros with Paraneters

Specifying String Literals with the # Operator

Concat enating Tokens with the ## Qperator

Usi ng Macros to Define Constants

O her Nacr os

Usi ng Constants and Inline Functions instead of Macros
Pr edefi ned Macros

Macro Syntax and Description:

Syntax:

macro-directive :@:=

#define identifier [replacement-list]

#define identifier([identifier-list]) [replacement-list]
#undef identifier

replacement-list ::=
token
replacement-list token

Description:
A #define preprocessing directive of the form
#define identifier [replacement-list]

defines the identifier as a nmacro nane that represents the replacement-list. The nacro
name is then replaced by the list of tokens wherever it appears in the source file
(except inside of a string, character constant, or coment). A nacro definition remains
in force until it is undefined through the use of the #undef directive or until the end
of the conpilation unit.

NOTE: The replacement-list nust fit on one line. If the Iine becones too long, it can
be broken up into several lines provided that all lines but the last are term nated by a
"\" character. The followi ng is an exanple.

#define mac very very | ong\
repl acement string

The "\" nust be the last character on the |line. You cannot add any spaces or conments
after it.

Macros can be redefined without an intervening #undef directive. Any paraneter used mnust
agree in nunmber and spelling with the original definition, and the replacenment |ists
must be identical. Al white space within the replacement-list is treated as a single

bl ank space regardl ess of the nunber of white-space characters you use. For exanple, the
foll owi ng #define directives are equival ent:

#define foo x + vy
#define foo x + vy

The replacement-list nay be enpty. If the token list is not provided, the macro nane is
replaced with no characters.

Macroswith Parameters

You can create nacros that have paraneters. The syntax of the #define directive that
includes formal paraneters is as follows:

#define identifier([identifier-list]) [replacement-list]

The nmacro nanme is the identifier . The fornal paraneters are provided by the
identifier-list enclosed in parentheses. The open parenthesis nust inmediately foll ow
the identifier with no intervening white space. If there is a space between the
identifier and the parenthesis, the macro is defined as if it were the first formand
the replacement-list begins with the "(" character.

The formal paraneters to the macro are separated with conmas. They nmay or nmay not appear
in the replacement-list. Wen the macro is invoked, the actual argunments are placed in
a parenthesized list followi ng the macro nane. Comas encl osed in additional matching
pai rs of parentheses do not separate argunents but are thensel ves conponents of
argunments.

The actual arguments replace the formal paraneters in the token string when the macro is
i nvoked.

Specifying String Literalswith the # Operator

If a formal paraneter in the macro definition directive's replacenent string is preceded
by a # operator, it is replaced by the correspondi ng argunent fromthe macro invocation
preceded and fol |l owed by a doubl e-quote character (") to create a string literal. This
feature, available only with the ANSI C preprocessor, nmay be used to turn nmacro
argunents into strings. This feature is often used with the fact that HP aC++

concat enat es adj acent strings.

For exanpl e,

#i ncl ude <i ostream h>

#define di splay(arg) cout << #arg << "\n" //define the macro
int nmain()

di splay(any string you want to use); /luse the macro

}

After HP aC++ expands the macro definition in the preceding program the follow ng code
results:

main ()

cout << "any string you want to use" << "\n";

}
Concatenating Tokenswith the ## Operator

Use the ## operator within nacros to create a single token out of two other tokens.
(Usual 'y, one of these two tokens is the actual argument for a macro-paraneter.) Upon
expansi on of the macro, each instance of the ## operator is deleted and the tokens
preceding and follow ng the ## are concatenated into a single token

Example 1

The following illustrates the ## operator

/1 define the nmacro; the ## operator
/| concatenates argl with arg2
#define concat (argl, arg2) argl ## arg2

i nt main()
int concat(fire,fly);

concat (fire, fly) = 1,
printf("% \n",concat(fire, fly));

}
Preprocessing the preceding programyields the follow ng:
i nt main()

int firefly ;

firefly = 1;

printf("%l \n",firefly);

Example 2

You can use the # and ## operators together:

#i ncl ude <i ostream h>
#define show ne(arg) int var##arg=arg;\

cout << "var" #arg " is " << var##arg << "\n";
i nt main()
{

show ne(1);
}

Preprocessing this exanple yields the follow ng code for the nmain procedure:

int nmain()

int varl=1l; cout << "var" "1" is << varl << "\n";

}

After conpiling the code with aCC and running the resulting executable file, you get the
follow ng results:

varl is 1

Spaces around the # and ## are optional

In both the # and ## operations, the argunments are substituted as is, wthout any

i nternmedi ate expansion. After these operations are conpleted, the entire repl acenent
text is rescanned for further macro expansions.

NOTE: The result of the preprocessor concatenation operator ## nust be a _single_
token. In particular, the use of ## to concatenate strings is redundant and not | egal C
or C++. For exanpl e:

#i ncl ude

#define concat _token(a, b) a##b
#define concat _string(a, b) ab

int main() {
/1 Wong:
printf("%\n", concat_token("Hello,", " World!'"));

/'l Correct:

printf("%\n", concat_string("Hello,", " Wrldl"));
/] Best: (macro not needed at all!):
printf("%\n", "Hello," " World!'");

}
Using Macrosto Define Constants

The nost conmmon use of the macro replacenent is in defining a constant. In C++ you can
al so declare constants using the keyword const. Rather than explicitly putting constant
val ues in a program you can nanme the constants using nmacros, then use the nanmes in

pl ace of the constants. By changing the definition of the macro, you can nore easily
change the program

#defi ne ARRAY_SI ZE 1000
float x[ARRAY_SI ZE] ;

In this exanple, the array x is dinensioned using the macro ARRAY_SI ZE rather than the
constant 1000. Note that expressions that nay use the array can al so use the nmacro

i nstead of the actual constant:

for (i=0; i<<ARRAY_SIZE, ++i) f+=x[i];

Changi ng the dinmension of x neans only changing the nacro for ARRAY_SIZE. The di mension
changes and so do all of the expressions that nake use of the dinension.

Other Macros

Two ot her macros include:

#defi ne FALSE 0O
#define TRUE 1

The following macro is nmore conplex. It has two paraneters and produces an inline
expression which is equal to the maximumof its two paraneters:

#define MAX(x,y) ((x) > (y) ?2 (x) : (y))

NOTE: Parent heses surroundi ng each argunent and the resulting expression ensure that
the precedences of the argunents and the result interact properly with any other
operators that mght be used with the MAX macro.

Because each argument to the MAX macro appears in the token string nore than once, the
actual argunents to the MAX nmacro nmay have undesirable side effects. The foll ow ng
exanpl e mi ght not work as expected because the argunent a is increnented two tinmes when
a is the nmaxi mum

i = MAX(a++, b);

which is expanded to

i =((a) > (b) ? (a) : (b))

G ven the above nmacro definition, the statenent

i = MAX(a, b+2);

i s expanded to:

i = ((a) > (b+2) ? (a) : (b+2));

More Examples

// This macro tests a nunber and returns TRUE i f
/]l the nunber is odd. |t returns FALSE ot herw se.
#define isodd(n) (((n %2) ==1) ? (TRUE) : (FALSE))

/1 This macro skips white spaces.
#defi ne eatspace()while((c=getc(input))==c=="\n'c\
="\t')
Using Constants and I nline Functionsinstead of M acros
In C++ you can use named constants and inline functions to achieve results similar to using macros.
You can useconst variablesin place of macros.

Y ou can also use inline functionsin many C++ programs where you would have used a function-like macroin a
C program. Using inline functions reduces the likelihood of unintended side effects, since they have return types
and generate their own temporary variables where necessary.

Example
The following program illustrates the replacement of a macro with an inline function:

#i ncl ude <stream h>

#define distancel(rate,tine) (rate * tine)
/'l replaced by :

inline int distance2 (int rate, int time)

return (rate * time);
i nt main()
int il1=3 i2 = 3;
printf("Di stance fromnacro : %\ n",
di stancel(il1,i2));
printf("Di stance frominline function : %\ n"
di stance2(il1,i2));
}

Predefined M acr os

Inadditionto _ LINE__and __ FILE _ (refer to Line Control (#ine)), HP aC++ provides the predefined
macros listed below. The list describes the complete set of predefined macros that produce specia information.
They cannot be undefined nor changed.

® _ cpl uspl us producesthe decima constant 199707L, indicating that the implementation supports
ANSI/ISO C++ International Standard features.

e _ DATE__ producesthe date of compilation in the form Mmm dd yyyy .

® _ FILE _ producesthe name of thefile being compiled.

e _ HP_accidentifiesthe HP aC++ compiler driver version. It isrepresented as asix digit number in the
format mmnnxx . Wheremm isthe mgor verson number, nn isthe minor version number, and xx
isany extension. For example, for verson A.01.21, _ HP_aCc=012100

e _ LINE__ producesthe current source line number.

e _ STDCPP__ produces the decimal constant 1, indicating that the preprocessor isin ANSI C/C++
mode.

e _ TIME__ producesthe time of compilation in the form hh:mm:ss.

For Morelnformation

To use some HP-UX system functions you may need to define the symbol __ HPUX_SOURCE. See the stdsyms(5)
man page if it isinstalled on your system, or in the HP-UX Reference Manual . (If you see the message "Man
page could not be formatted,” ensure the man pageisingtalled.)

Conditional Compilation (#if, #fdef, .. #endif)

Conditional compilation directives allow you to delimit portions of code that are compiled only if aconditionis
true.

Conditional Compilation Syntax and Description
Using the defined Operator

Using the #if Directive

Using the #ifdef and #ifndef Directives

Using the #else Directive

Examples

Conditional Compilation Syntax and Description

Syntax:

conditional-directive ::=

#if constant-expression newline

#i f def identifier newline [group]

#i f ndef identifier newline [group]

#el se newline [group]

#elif constant-expression newline [group]
#endi f

Here, constant-expression may also contain the def i ned operator:

defi ned identifier
defined (identifier)

Description:

Youcanuse#if,#i f def , or#i f ndef to mark the beginning of the block of code that will only be compiled
conditionally. An #el se directive optionally sets aside an alternative group of statements. Y ou mark the end of
the block using an #endi f directive.

Thefollowing #i f directiveillustrates the structure of conditional compilation:

#i f constant-expression

(Code that compilesif the expression evaluates to a nonzero value.)
#else..

(Code that compilesif the expression evaluatesto zero.)

#endi%l.

Theconstant-expression islike other C++ integral constant expressions except that all arithmetic is carried out

inlong int precison. Also, the expressions cannot usethe si zeof operator, acast, an enumeration constant, or
aconst object.

Using the defined Operator

You can usethedef i ned operator inthe#i f directive to use expressions that evaluate to 0 or 1 within a
preprocessor line. This saves you from using nested preprocessing directives.

The parentheses around the identifier are optiona. Below is an example:

#if defined (MAX) && ! defined (MN)

Without using thedef i ned operator, you would have to include the following two directives to perform the
above example:

#i f def max
#i f ndef mn

Using the #if Directive

The#i f preprocessing directive has the form:

#i f constant-expression

Use #i f totest an expression. HP aC++ evaluates the expression in the directive. If the expression evaluates to
anonzero value (TRUE), the code following the directive isincluded. Otherwise, the expression evauates to
FALSE and HP aC++ ignores the code up to the next #el se,#endi f, or #el i f directive.

All macro identifiers that appear in the constant-expression are replaced by their current replacement lists
before the expression is evaluated. All def i ned expressions are replaced with either 1 or O depending on their
operands.

The #endif Directive

Whichever directive you use to begin the condition (#i f , #i f def , or #i f ndef), you must use #endi f to end the
if section.

Using the #ifdef and #ifndef Directives
The following preprocessing directives test for a definition:

#i f def identifier
#i f ndef identifier

They behavelikethe#i f directive, but #i f def isconsidered trueif the identifier was previoudy defined using
a#def i ne directive or the- D option. #i f ndef isconsidered trueif the identifier isnot yet defined.

Nesting Conditional Compilation Directives

Y ou can nest conditional compilation constructs. Delimit portions of the source program using conditional
directives at the same level of nesting, or with a- D option on the command line.

Using the #else Directive
Use the#el se directive to specify an dternative section of code to be compiled if the#i f , #i f def , Or #i f ndef

conditionsfail. The code after the #el se directiveisincluded if the code following any of the#i f directivesis
not included.

Using the #elif Directive

The#el i f constant-expression directive tests whether a condition of the previous#i f , #i f def , or #i f ndef
wasfalse #el i f hasthe same syntax asthe#i f directive and can be used in place of an #el se directiveto
specify an alternative set of conditions.

Examples

The following examples show valid combinations of conditional compilation directives:

#i fdef SW TCH /1l conpiled if SWTCH is defined

#el se /1 conpiled if SWTCH is undefined

#endi f /1 end of if

#i f defined(TH NG /] conpiled if THING is defined

#endi f /1l end of if

#if A>47 /1l conpiled if Ais greater than 47

#el se

#if A< 20 /1 conmpiled if Ais less than 20

#el se /1l conpiled if Ais greater than or equa
/1 to 20 and less than or equal to 47

#endi f /1 end of if, Ais less than 20

#endi f /1 end of if, Ais greater than 47

Following are more examples showing conditional compilation directives:

#i f (LARGE_MODEL)

#define | NT_SIZE 32 /1 Defined to be 32 bits.
#elif defined (PC) && defined (SMALL_MODEL)
#define I NT_SIZE 16 /1 Oherw se, if PC and SMALL_ MODEL

/1 are defined, INT_SIZE is defined
/] to be 16 bits.

#endi f
#i f def DEBUG /1 1f DEBUG is defined, display
cout << "table element : \n"; [// the table el ements.
for (i=0; i << MAX TABLE SIZE; ++i)

cout << i << " " << table[i] << "\n';
#endi f

Line Control (#line)

Y ou can cause HP aC++ to set line numbers during compilation from a number specified in aline control
directive. (The resulting line numbers appear in error message references, but do not alter the line numbers of the
actual source code.)

Syntax:

line-directive ::=
#l i ne digit-sequence [filename]

Description:

The#l i ne preprocessing directive causes HP aC++ to treat lines following it in the program asif the name of
the source file were filename and the current line number were digit-sequence . This servesto control thefile

name and line number that are given in diagnostic messages. This feature is used primarily by preprocessor
programs that generate C++ code. It enables them to force HP aC++ to produce diagnostic messages with
respect to the source code that isinput to the preprocessor rather than the C++ source code that is output.

HP aC++ defines two macros that you can use for error diagnostics. Thefirstis__ LI NE__, aninteger constant

equal to the value of the current line number. Thesecondis__FI LE__, aquoted string literal equal to the name
of theinput sourcefile. Youcanchange__FILE__and__LINE__ using #i ncl ude or #l i ne directives.

Example:

#line 5 "nyfile"

Pragma Directive (#pragma)

A #pr agma directive is an instruction to the compiler. Y ou typically use a pragmato control the actions of the
compiler in aparticular portion of a program without affecting the program asawhole.

Syntax:

pragma-directive ::=
#pragma [token-list]

Description:
The#pr agma directive isignored by the preprocessor, and instead is passed on to the HP aC++ compiler. It

provides implementation-dependent information to HP aC++ Any pragmacthat is not recognized by HP aC++
will generate awarning from the compiler.

Example:
#pragma OPTIM ZE ON
For More Information:

e Refer to Pragma Directives for descriptions of pragmas recognized by HP aC++

Error Directive (#error)
Syntax:

error-directive ::=
#error [preprocessor tokens]

Description:

The#error directive causes a diagnostic message, along with any included token arguments, to be produced by
HP aC++

Examples:

/1 This directive will produce the diagnostic
/1l message "FLAG not defined!".

#i f ndef FLAG
#error "FLAG not defined!"
#endi f

/1 This directive will produce the diagnostic

/1 message "TABLE S| ZE nust be a multiple of 256!"
#if TABLE_SIZE %256 != 0
#error "TABLE S| ZE nust be a nultiple of 256!"
#endi f

Trigraph Sequences
Description:

The C++ source code character set isasuperset of the ISO 646-1983 Invariant Code Set. To enable you to
use only the reduced set, you can use trigraph sequences to represent those charactersnot in the reduced set. A
trigraph sequenceis a set of three charactersthat is replaced by a corresponding single character. The
preprocessor replaces all trigraph sequences with the corresponding character. The list below gives the complete
list of trigraph sequences and their replacement characters.

Thefollowing are al the trigraph sequences and their respective replacement characters:

??=Iisreplaced by #
22/ is replaced by \
??"is replaced by ~

?2(is replaced by
??) is replaced by
2?1 is replaced by
?2< is replaced by
72> is replaced by
??- is replaced by

| S ———

Examples:

The line below contains the trigraph sequence ??=:
??=line 5 "nyfile"

When thisline is compiled it becomes:

#ine 5 "nyfile"

Standardizing Your Code

HP aC++ A.01.21 largely conforms to the SO/IEC 14882 Standard for the C++ Programming Language (the
international standard for C++). Choose from the following for more information:

e Standard Functionality
o Explicit Template Instantiation
Keywords
Overloadingnew[] anddel ete[] for Arrays
Passing Standards Related Options to the Compiler
Standard Exception Classes
Standard Exceptions
type i nfo Class

OO0O0OO0O0O0

e HP aC++ Extensions
e Unsupported Functionality

Migration

e Migration Considerations Related to Standardization

HP aC++ Keywords

® and ® or
® and_eq ® or_eq
® bitand ® private
® bitor ® protected
® bool ® public
® catch ® reinterpret_cast
® cl ass ® static_cast
e conpl ® tenplate
e const (asoan ANSI C keyword) ® this
® const_cast ® t hrow
® delete ® true
® dynani c_cast ®try
® explicit ® typeid
® false ® typenane_
® friend ® using
® inline ® virtual
® nutable e vol atil e (alsoan ANSI C keyword)
® nanespace ® wchar t
® new ® xor
® not @ xor_eq
® not _eq
@ operator
bool Keywor d

The keyword bool represents a datatype. Variables and expressions of type bool can have avaue of either
true or fal se. Thevaueof t rue equals 1. Thevalue of f al se equals 0.

Usage

The ANSI/ISO C++ International Standard states that values of type bool areeithert rue or f al se. Thereare
no signed, unsigned, short, or long bool types or values. bool vaues behave asintegra types and participatein
integral promotions. Typesbool ,char ,wchar _t , and the signed and unsigned integer types are collectively
called integral types. A synonym for integral type isinteger type. The representations of integral types shall
define values by use of apure binary numeration system.

Example

void main(){
bool b=true; // Declare a variable of type bool and set it to true.
if (b) /1 Test value of bool variable.
b=false; // Set it to fal se.
}

dynamic-cast Keywor d

The keyword dynamic_cast is used in expressions to check the safety of atype cast at runtime. It isthe smplest
and most useful form of runtime type identification. Y ou can useit to cast safely within a class hierarchy based
on the runtime type of objects that are polymorphic types (classesincluding at least one virtual function). At
runtime, the expression being cast is checked to verify that it pointsto an instance of the type being cast to.

Usage

A dynamic cast is most often used to cast from a base class pointer to aderived class pointer in order to invoke a
function appearing only in the derived class. Virtua functions are preferred when their mechanism is sufficient.
Usually adynamic cast is necessary because the base classis being specialized, but can't (or shouldn't) be
modified.

Example Code with Discussion

cl ass Base {
virtual void f(); /'l Make Base a pol ynorphic type.
/1l other class details omtted

}s

class Derived : public Base {
/1l class details omtted
b

voi d Base::f()

/'l define Base function

}

voi d mai n()

{
Base *p;
Derived *q;

Base b;
Derived d;

&b;
dynami c_cast<Derived *> (p); /1 Yields zero.

&d;
dynam c_cast<Derived *> (p); Il Yields p treated
/1 as a derived pointer.

folho] Kolho]
I

}

Static and dynamic casts are used to move within aclass hierarchy. Static casts use only static (compile-time)
information to do the conversions. In the example above, if p isredly pointing to an object of type Derived,
either a static or dynamic cast of p to q yieldsthe sameresult. Thisisaso true if p were the null pointer. But, if p
isnot pointing to an object of type Derived, adynamic cast returns zero, and a static cast returns a stray pointer.
Dynamic casts must be done to a pointer or reference type. For example, if the cast above iswritten as:

g = dynami c_cast <Derived> (p);
The compiletime error messageis.

The result type of a dynami c cast nust be a pointer or
reference to a conplete class; the actual type was Derived.

If you attempt a dynamic cast from a non-polymorphic type, you will also get acompile-time error. For example:

cl ass Base {
!/l class details omtted
b

class Derived : public Base {
/1l class details omtted

1
voi d mai n()
{
Base *p;
Derived *q;
Base b;
p = &b;
g = dynam c_cast<Derived *> (p)
}

The above generates a compile-time error stating that:

Dynam ¢ down-casts and cross-casts nust start from a pol ynorphic class
(one that contains or inherits a virtual function); but class Base is
not pol ynor phi c.

The syntax of conditions allows declarationsin them. For example:

cl ass Base {
virtual void f(); /1 Make Base a pol ynorphic type
/1 other class details omtted

b

class Derived : public Base {
public:

voi d derivedFunction();

/1 other class details omtted

b
voi d Base::f()

/] Define Base function.

}
voi d Derived: : derivedFunction()
%
voi d mai n()
{ Base *p = new Derived
/] details omtted
if (Derived *q = dynamic_cast<Derived *> (p))
} g- >deri vedFunction(); /1 use derived function

Y ou can use dynamic casts with references aswell. Since areference can't be zero, when the cast fallsit raisesa
Bad cast exception. Before the implementation of the dynamic cast operator, you could not cast from avirtual
base class to one of its derived classes because there was not enough information in the object at runtime to do
this cast. Once runtime type identification was added, however, the information stored in a polymorphic virtual

base classis sufficient to allow adynamic cast from this base class to one of its derived classes. For example:

cl ass Basel {
/1 Not a pol ynorphic type.
/1 additional class details omtted

b

cl ass Base2 {
virtual void f(); /1 Make Base2 pol ynor phic.
/1 additional class details omtted

1

voi d Base2::f()

// Define Base2 function.

}

class Derived : public virtual Basel, public virtual Base2 {
/1 additional class details omtted

1
voi d main()
Basel *bpl;
Base2 *bp2;
Derived *dp;
bpl = new Deri ved;
bp2 = new Deri ved;
/1 dp = (Derived *) bpil; /1 Problem conpile tinme error
/1 Can't cast fromvirtual base.
/1 dp = (Derived *) bp2; /1 Problem conpile tine error
/1 Can't cast fromvirtual base.
/1 dp = dynam c_cast<Derived *> bpl; // Problem conpile tine error
/1 Can't cast from
/1 non-pol ynor phi c type.
dp = dynam c_cast <Derived *> bp2; Il K

explicit Keywor d

The explicit keyword is used for declaring constructor functions within class declarations. When these functions
are declared explicit, they cannot be used for implicit conversions.

Usage

While constructors taking one argument are often useful in the design of a class, they can alow inadvertent
conversion in expressions. This can introduce subtle bugs. The explicit keyword allows a class designer to
prohibit such implicit conversions. It is often used in the production of classlibraries.

Example Code with Discussion

class C {

public:
explicit C(int);

1
C:C(int)
{
/1 enpty definition

voi d main()

C c(5); /1 Legal
c = C(10); /1 Legal
/'l ¢ = 15; /'l Produces a conpile tinme error
/'l Message: Cannot assign 'C wth "int’
/1l ¢ + 20; /1 Produces a conpile time error

}
A classic example of this problem isan array class.

class Vector {
public:
Vector(int n); /] create a vector of n itens

/1l other class details omtted

1
voi d mai n()
{
Vect or operator + (Vector, Vector);
Vector v1(10), v2(10); /] create two 10 el enent vectors
/1 details omtted
vl = v2 + 5; /'l Legal - converts int 5to a b

/'l el ement vector and adds to v2.
/1 Not sonething you want to be
/1 1egal

}

With the explicit keyword, the constructor can be made explicit and the declarations are legal, but the addition is
acompilation error:

class Vector {
publi c:
explicit Vector(int n); /] create a vector of n itens

/1l other class details omtted

1
void main()
Vect or operator + (Vector, Vector);
Vector v1(10), v2(10); /] create two 10 el enent vectors
/1 details onmtted
/[l vl =v2 + 5 /1 Not |egal - generates conpile-
/Il time error
/'l Message: 1llegal types

/'l associated with operator '+':
/1 "Vector' and '"int'.

mutable Keywor d

The mutable keyword is used in declarations of class members. It alows certain members of constant objects to
be modified in spite of the constness of the containing object.

Usage

Often some class members are part of the implementation of the object, not part of the actual information stored
by the object. Although the information in the object needs to stay unmodified in a const object, the
implementation members may need to change. These are declared mutable.

An example of thisisause or reference count in an object that keeps track of the number of pointers referring to
it.

Example Code with Discussion

class C {

public:
) ;

int i;
mutable int j;

{CZZC() C (1), J(3)

/1 Define constructor

}
voi d mai n()

const C cl;

C c2;

/[l cl.i =0; /1 Problem conpilation error
/'l Message: The left side of '='" nust be
/1 a nodifiable |value.

cl.j = 1; Il K

c2.i = 2; Il K

c2.j = 3; [l K

}

The mutable keyword can only be used on class data members. It cannot be used for const or static data
members. Notice the difference in the two pointer declarations below:

class C {
c) {1} /1 define constructor
mut abl e const int *p; Il K
/1 mutable pointer to int const
/1 p in constant C object can be nodified
mut abl e int *const q; /1 Compile time error

/1 mutable const pointer to int

/1 const data nember can't be nutable
/'l Message: 'mutable' may be used only
// in non-static and non-constant data
/1 menber declarations within class

/1l decl arati ons.

namespace and using Keywor ds

e Basic Concepts
o Connections Across Trandation Units

® using-declarations and using-directives
e Using the -Wc,-koenig_lookup,on Command Line Option

Basic Concepts

Namespaces were introduced into C++ primarily as a mechanism to avoid naming conflicts between various
libraries. The example below illustrates how thisis achieved.

As can be seen, every namespace introduces a new scope. By default, names inside a namespace are hidden from
enclosing scopes. Selection of a particular name can be achieved using the qualified-name syntax.

Namespaces can be nested very much like classes.

#i ncl ude <stdi o. h>

nanespace N {
struct Object {
virtual char const* name() const { return "Qoject fromN"; }
1

}

nanespace M {
struct Object {
virtual char const* name() const { return "Object fromM; }

I
nanespace X { /'l a nested nanespace
struct Cbject: M:Qbject { // inherit froma class in the outer space
char const* nanme() const { return "Cbject fromM:X'; }
|
}
}
int main() {
N: : Obj ect o1,
M : Obj ect 02;

M : X:: Cbj ect 03;

printf("This object is: %.\n", ol.nane());
printf("This object is: %.\n", 02.nanme());
printf("This object is: %.\n", 03.nane());
return O;

}
Connections Across Translation Units

If atype, function, object, etc. is declared inside of a namespace, then using that entity will require naming this
namespace in some explicit or implicit way; even if the use happensin another trandation unit (or sourcefile).

One somewhat unique feature of namespaces isthat they can be extended. The example below shows this as
well as the connections between a namespace extending across different trandation units.

The example also illustrates the concept of so-called unnaned nanespaces. These namespaces can only be
extended within atrandation unit. Unnamed namespaces in different trandation units are unrelated; hence their
names effectively have interna linkage. In fact, the ANSI/ISO C++ International Standard specifies that using
stati ¢ toindicateinterna linkage is deprecated in favor of using namespaces.

#i ncl ude <stdio. h>

nanespace N {
char const* f() { return "f()"; }
}

nanespace { /1 An unnaned nanespace
char const* f(double);

} // Names in unnanmed nanmespaces are visible in their surrounding scope.
/1l They cannot be qualified since the space has no nane.

nanespace N { /1l An extension of the first part of namespace N
char const* f(int); // Leave the inplenentation to another
} /1 translation unit.

int main() {

printf("Calling: %.\n", N:f()); [/ OK declared and defined above
printf("Calling: %.\n", N:f(7)); // OK declared above (defined el sewhere)
printf("Calling: %.\n", f(3.0)); // OK declared above (defined bel ow)
return O;

}
nanespace { // An extension of the unnaned nanespace in this translation unit
char const* f(double) { return "f(double) in main() translation unit"; }
}
An Auxiliary Translation Unit
Following is an auxiliary trandation unit that illustrates how namespaces interact across trand ation units.
nanespace { // An unnanmed nanespace unrelated to the one in the other

/1 translation units.
char const* f(double) { return "f(double) in auxiliary translation unit"; }

nanespace N { // This nanespace is the sane as the one in the nmain()
/1 translation unit. We inplenment f(int) here.
char const* f(int) { return "f(int) defined in auxiliary translation unit"; }

}
using-declar ations and using-dir ectives

The C++ provides two aternatives to explicitly qualifying namesin namespaces. These are the using-declaration
and the using-directive.

using-declaration
A using-declaration introduces a declaration in the current scope as follows:

using N :x; /1 Where N is a nanespace, x is a nane in N

After thisdeclaration, all usesof x in this scope are taken to defer to N::x. (The N:: prefix is no longer required.)

If another declaration of x were introduced in the same scope, for example:

int x;

then acompiler error would occur.

using-derective

The using-directive directs the lookup for names not declared in current scope, for example:

usi ng nanmespace N, // If not found, |ookup nanmes in nanespace N

If x isanamein namespace N, but another declaration of x is present in the current scope, for example:
int x;

acompiler error is not necessarily emitted. Only if that name is used will an ambiguity occur.

CAUTION: Using-directives are trangitive. If you specify a using-directive to one namespace which itself
specifies adirective to another namespace, then names used in your scope will also be looked up in that other
namespace.

Using namespace directives can be a powerful means to migrate code to libraries that use namespaces.
Occasionaly, however, they may silently make unwanted names visible. It is therefore often suggested not to use
using-directives unless the alternatives are very inconvenient.

#i ncl ude <stdi o. h>

nanespace N {
char const* f() { return "N.:f()"; }
char const* f(double) { return "N :f(double)"; }
char const* g() { return "N.:g()"; }

}

char const* g(double) {
using N.:f; /1l Declare all f's in nanespace N
return f(2.0)

}

nanespace M { /1 1llustrate how using-directives
usi ng nanespace N, /[l are transitive

}

int main() {
usi ng nanespace N
printf("Calling: %.\n", f()); /1 calls N :f()
printf("Calling: %.\n", g(1.0)); /'l calls ::g(double)
/1 which calls
/'l N::f(double)
/1 calls N:g()

printf("Calling: %.\n", 0O);
0); /1 calls N :f()

N: :
printf("Calling: %.\n", M:
return O;

typeid Keywor d

Thet ypei d keyword is an operator, called the type identification operator, used to access type information at
runtime. The operator takes either atype name or an expression and returns a reference to an instance of
t ype_i nf o, astandard library class.

Usage

Y ou can use runtime type identification when you need to know the exact type of an object. This might, for
example, be necessary to find the name of the object class for diagnostic output. It also might be used to perform
some standard service on an object such as viaa database or 1/O system.

For More Information

® typei d Example Code with Discussion
® type info Class

t ypei d Example Code with Discussion

include <iostream h>
include <typeinfo>

cl ass Base {
virtual void f(); /1 Must have a virtual function to
/'l be a pol ynorphic type.
/] additional class details onitted

b
class Derived : public Base {

/!l class details omtted

1
voi d Base::f()

// Define function from Base.

}
void main ()
Base *p;
/1 Code which does either

/1 p new Base; or
/1 p new Deri ved;

/1 Note that this is NOT a good design for this functionality.
/1 Virtual functions would be better.

if (typeid(*p) == typeid(Base))
cout << "Base (bject\n";

else if (typeid(*p) == typeid(Derived))
cout << "Derived Object\n";

el se

cout << "Another Kind of Object\n";

}

If atypeid operation is performed on an expression that is not a polymorphic type (a class which declares or
inherits avirtua function), the operation returns the static (compile-time) type of the expression. In the example
above, if class Base did not include the virtual function f(), typeid(p) would alwaysyield the type Base.

The style of programming used in the above example might be called atypeid switch statement. It is not
generally areasonable design. One aternative isto use avirtua function in a base class specialized in each of its
derived classes. In some cases, this may not be possible, for example, when the base classis provided by a
library for which source code is not available. In other cases it may not be desirable, for example, some base
classinterfaces might betoo big if all derived class functionality isincluded.

Y ou could rewrite the above example, using virtua functions, as.

cl ass Base {
virtual void outputType() { cout << "Base bject\n"; }

// additional class details omtted

1
class Derived : public Base {
virtual void outputType() { cout << "Derived Object\n";
/1 additional class details omtted
b

void main ()
Base *p;
/'l code whi ch does either
/1 p = new Base; or
/1 p = new Derived

p- >out put Type();
}

}

A second dternative isto use adynamic cast. In many cases, this dternative is less desirable than using virtual
functions, but it is better than atypeid switch statement in nearly every case. There is a subtle difference between
this alternative and the typeid switch statement above. The typeid operation alows access to the exact type of an
object; adynamic cast returns a non-zero result for the target type or atype publicly derived from it.

Y ou could rewrite the above example as follows using dynamic casts:

cl ass Base {
virtual void f();
/1 be a pol ynorphic type
/] additional class details onmitted

/1 Miust have a virtua

b

class Derived : public Base {

/'l class details omtted

b
voi d Base::f()

/1 Define function from Base.

}
void main ()
Base *p;
/' code which

/1 p
/1 p

does either
new Base; or
new Deri ved;

if (dynam c_cast <Derived *> (p))

function to

cout << "Derived (or class derived fromDerived) Object\n";

el se
cout << "Base bject\n";

volatile Keywor d

Thekeywordvol at i | e isused in declarations. It tells the compiler not to do aggressive optimization because a
value might be changed in ways the compiler couldn't detect.

Thiskeyword is part of the ANSI C standard with the same syntax and semantics.
Usage

Objects that are hardware addresses or those used by concurrently executing pieces of code are frequently
declared volatile. Examples are an address used for the current clock time, objects used by asignal handler, or
objects used for memory mapped 1/O.

Note, you can declare an identifier to be both const and volatile. This declares a value that the program cannot
change but which can be changed by some means external to the program (such as by a piece of hardware like a
clock).

Example Code with Discussion

class C{

public: /1l public to make exanpl e sinpler
volatile int i;

/1 other class details omtted

1
C soneDat a[10] ;
void main ()

int j = soneData[5].i

j = soneData[5].i; /1 Wthout the volatile specifier, the
/1 conpiler could optinmize these two
/1l statenents into one. Wth it, it nust
/'l execute both in case the i field of
/1 soneDat a[5] has changed by sone
/1 other means.

}

wchar_t Keywor d

Wide (or multi-byte) characters can be declared with the datatypewchar _t . It isan integral type that can
represent al the codes of the largest character set among the supported |ocales defined in the localization library.
This keyword was part of the ANSI C standard.

Usage

Thistype was added to maintain ANSI C compatibility and to accomodate foreign (principally Oriental)
character sets.

Example Code with Discussion

In the following example, literals of typewchar _t consist of the character L followed by a character constant in
single quotes.

voi d main()

{

wchar _t ch = L'a';

}

wchar _t must beimplemented the same as another integral type. In other words, it must have the same size,
signedness and alignment requirements. It promotes to the smallest integral type when used in an expression
and cannot have asigned or unsigned modifier.

The standard library includes a string of wide characters known aswst ri ng. The IOStream library supports I/O
of wide characters.

In ANSI C,wchar _t isasynonym for another type, declared using atypedef in a standard header file.
typename Keywor d

Usethet ypenanme keyword in template declarations to specify that a quaified nameisatype, not aclass
member.

Usage

This construct is used to access a nested class in the template parameter class as atypein adeclaration within the
template.

Example Code

t enpl at e<cl ass T>
class Cl1 {
/'l class details omtted

[l T.:C2 *p; /1 Problem flagged as conpile-tine
/[l error. Tis atype, but T::C2 is not.
/'l Message: 'C2' is used as a type, but
/'l has not been defined as a type.

typename T::C2 *p; /1 Solution: the keyword typenane fl ags
/1 the qualified nane T::C2 as a type.
b

class C {
/1l details omtted
class C2 {
//details omtted

3
}s

void main ()

Cl<C c;
}

Discussion

In atemplate, anameis not taken to be atype unlessit is explicitly declared as one. Waysto declareaname asa
type include:

e Useit asthe argument to the template (T below):

t enpl at e<cl ass T>
class C {
/1 Additional details omtted

H

e Useit asthe name of the template (C below):

t enpl at e<cl ass T>
class C{
/1 Additional details omtted

b
e Declare aclass asamember of the class template (C2 below):

t enpl at e<cl ass T>
class Cl1 {
class C2;
/1 Additional details omtted

b
e Declareaclassin the context the template is declared within (C1 below):

class Ci;

t enpl at e<cl ass T>
class C2 {

/1 details omtted

b

Overloading new|[] and delete] | for Arrays

HP aC++ defines new and delete operators for arrays that are different from those used for single objects.
These operators, operator new[] () and operator delete]] (), can be overloaded both globally and in aclass. If
you use operator new() to allocate memory for asingle object, you should use operator delete() to dedllocate
this memory. If you use operator new|] () to alocate an array, you should use operator delete] | () to deallocate
it.

Usage

Usually, the alocation and deall ocation of operatorsis overloaded for aparticular class, not globally. This
overloading alows you to put al instances of a particular class on a class-specific heap. Y ou can then take
control of alocation either for efficiency or to accomplish other storage management functions, for example
garbage collection. If allocation and deallocation of single objectsis overloaded, you may or may not want to
overload the operators for arrays. If the overloading was done for efficiency, it may be that for arrays the default
operator isthe most efficient.

For Morelnformation

e Example Code with Discussion
e Migration -- Using oper at or _newto Allocate Arrays

Example Code with Discussion

include <iostream h>
class C{
public:
voi d* operator new] (size_t); /1 new for arrays
voi d operator delete[] (void*); /1 delete for arrays

/!l additional class details omtted

voi d* C:.:operator new | (size_t allocSize)

{

cout << "Use operator new] fromclass CQn";

/'l here, real usage would include allocation

return ::operator new] (allocSize); /1 gl obal operator
} /1 for this sinple exanple
void C: :operator delete[] (void *p)
{
cout << "Use operator delete[] fromclass CQn";

/'l here, real usage would include deallocation

::operator delete[] (p); /1 gl obal operator
} /1 for this sinple exanple

voi d main()

C *p;
p = new ([10];
delete[] p;

}

Notice that the new operator takes a class with an array specifier as an argument. The compiler uses the class
and array dimension to provide the size t argument. In the example above, the argument provided is ten timesthe
size of aclass C object. Also, the operator must return avoid* which the compiler convertsto the classtype. The
void congtructor for the class (if one exists) isinvoked to initialize the e ementsin the array.

Multidimensional arrays can be allocated and deallocated with these operators. The operator is used with severa
array dimensions, and the compiler provides the size t argument which is the space required for the entire array.
For example:

/1 call C:.:operator newf] () with
/1 an argunment of 10 * 20 * sizeof (O

p = new C [10] [20];

Additional arguments can be provided to this operator new just as for the operator for single objects. In thisway,
the operator can be overloaded in aclass. The additional arguments can be used by the storage all ocation scheme
for additional storage management.

The globa new and delete for both arrays and single objects are provided in the Standard C++ Library. This
library aso provides aversion of new for arrays and single objects that takes a second void* argument and
constructs the object at that address.

Standard Exception Classes

Classes are provided in the Standard C++ Library to report program errors. These classes are declared in the
<stdexcept> header. All of these classes inherit from a common base class named exception. The two classes
logic_error and runtime_error inherit from exception and serve as base classes for more specific errors.

Usage

These classes provide acommon framework for the way errors are handled in a C++ program. Systen-specific
error handling can be provided by creating classes that inherit from these standard exception classes.

Example

include <stdexcept>
include <iostreanp
include <string>
void f()

/1l details omtted

throw range_error(string("some info"));

}

voi d nmain()
{
try {
f0);
catch (runtine_error& r) {

/1 handl e any kind of runtine error including range_error
cout << r.what() << '\n'

}
}

Discussion

Theclasslogic_error defines objects thrown as exceptions to report errors due to the internal logic of the
program. The errors are presumably preventable and detectable before execution. Examples are violations of
logical preconditions or classinvariants. The subclasses of logic_error are:

e domain_error (the operation requested is inconsistent with the state of the object it is applied to)
e invaid_argument

e length_error (an attempt to create an object whose size equals or exceeds alowed size)

e out_of range (an argument value not in the expected range).

Runtime errors are due to events out of the scope of the program. They cannot be predicted before they happen.
The subclasses of runtime_error are:

e range_error
e overflow_error (arithmetic overflow)

The exception classincludes avoid constructor, a copy constructor, an assignment operator, avirtual destructor,
and afunction what() that returns an implementation-defined character string. None of these functions throw any
exceptions.

Each of the subclasses includes a constructor taking an instance of the Standard C++ Library string classas an
argument. They initialize an instance such that the function what(), when applied to the instance, returns avalue
equal to the argument to the constructor.

Exceptions Thrown by the Standard C++ Library

The following exceptions are thrown by the Standard C++ Library. CAUTION: If no catch clauses are
available to catch these exceptions, the default action is program termination with acall to abort(). (Note that
using the +noeh option does not disable the exceptions thrown by these library functions.)

® operator new () andoperator new [] throw abad_al | oc exception when they cannot obtain a
block of storage.

e® Adynami c_cast expressionthrowsabad_cast exception when acast to areference typefails.
e Operatort ypei d throws abad_t ype exception when a pointer to atypeid expression is zero.

e A bad_excepti on exception can be thrown when the unexpected handler function isinvoked by
unexpect ed().

Usage

Y ou need to write try/catch clauses to handle the standard exceptions. For an example, refer to Memory
Allocation Failure and operator new.

type info d ass

type_infoisaclassin the standard header file <typeinfo>. A reference to an instance of thisclassis returned by
thet ypei d operation. Implementations may differ in the exact details of thisclass, but in al casesitisa
polymorphic type (has virtual functions) that allows comparisons and away to access the name of the type.

Usage

Thisclassis useful for diagnostic information and for implementing services on objects where it is necessary to
know the exact type of the object.

Example

include <iostream h>
include <typeinfo>

cl ass Base {
virtual void f(); /1 Must have a virtual function to
/'l be a pol ynorphic type
/1 additional class details omtted

b

class Derived : public Base {
// class details omtted

b
voi d Base::f()

// Define function from Base.

}
void main ()
{

Base *p;

/1 code which does either

/1 p = new Base; or
/1 p = new Derived;
if (typeid(*p) == typei d(Base)) /1 Standard requires

/] conparison as part of

/1 this class.
cout << "Base (bject\n"

cout << typeid(*p).nanme() << '\n'; /1 Standard requires access to
/1 the nane of the type.

}

The standard requires the classt ype_i nf o to be polymorphic. Y ou can't assign or copy instances of the class
(the copy constructor and assignment operators are private). The interface must include:

i nt operator == (const type_info& const
int operator !'=(const type_info& const
const char * nane() const

int before (const type_ info& const

The operators allow comparison of object types. The name() function allows access to the character string
representing the name of the object. The before function allows types to be sorted. This alows them to be
accessed through hash tables. The before function is not alexical ordering; it might not yield the same results

HP aC++ Extensions

HP aC++ A.01.21 supports the following language features in addition to those defined in the ANSI/ISO C++
International Standard:

e longlong -- integral type specifying a signed 64-bit integer
e unsigned long long -- integral type specifying an unsigned 64-bit integer

Unsupported Functionality

Functionality defined in the ANSI/ISO C++ International Standard and not supported in this release of HP
aC++ islisted below.

NOTE: Thisisnot anall inclusivelist.

e Standard C++ Library components not in namespace std::

e covariant return types with multiply inheriting types

e Template Features
o separation modd for template compilation (export keyword)
o template template parameters
o omission of template parameter names

e function try blocks

e support for universa-character-sequences (\uxxxx)

Using HP aC++ Templates

The following sections overview template processing and describe the instantiation coding methods available to
you. Refer to the technical document Using Templates in HP aC++ for more detailed explanation.

Comparing Template I nstantiation M echanisms

Y ou have the choice of two template instantiation mechanisms. The default compile-time mechanism
instantiates every template used in agiven trandation unit in that trandation unit. Y ou can invoke the automatic
instantiation mechanism by using a comand-line option. The assigner then decides in which object file an
instantiation is placed.

When you link an application or library with aCC, you can combine object files that have been compiled using
either mechanism.

e Deciding which Mechanism to Use
e Template Processing

I nvoking I nstantiation

e Explicit Instantiation (devel oper-directed)
e Command-Line Option Instantiation (devel oper-directed)
e Compile-time Instantiation, the Default

Scope and Precedence

Explicit instantiation provides instantiation for a particular template class or template function. While command
line options and the default compile-time instantiation provide instantiation at the level of thetranslation unit.

If you use explicit instantiation in addition to command-line options or default instantiation, explicit instantiation
takes precedence.

For example, using the +inst_all option requests instantiation of all used template functions and al static data
members and member functions of instantiated template classes within atrandation unit. Whereas, using explicit
Instantiation requests instantiation of all members of a particular template class or a particular template function.

Migration Considerations

e Migrating from HP C++ (cfront) to HP aC++
e Migrating from the Automatic | nstantiation Default to the Compile-time Instantiation Dafault

See Also:

e Anintroductory C++ Template Tutorial
e HP aC++ Template Documentation
e Debugging Templates

Deciding which M echanism to Use

Why Use Automatic I nstantiation

To close aset of link units, you must use automatic instantiation. More specifically, you may want to use
automatic instantiation for the following reasons.

e If you provide archive or shared libraries for distribution, you may want to use the +inst_auto and

+inst_close options to insure consistent behavior between each distribution of your libraries.
e If you provide either archive or shared library products, and your customers need to use the prior

template instantiation default in their builds, you must build your libraries by using the +inst_auto and
+inst_close options.

Why Use Compile-Time Instantiation
e Compile-timeinstantiation isthe default. It is easy to use.
e Your code may compile faster when using compile-time instantiation.

e If your development environment uses aversion control system that is sengitive to file modifications,
you may want to use the current default, compile-time instantiation, to avoid major code rebuilds.

Migration Considerations

If you used automatic instantiation with HP aC++ A.02.00 or A.01.04 and prior versions and you wish to
continue using it with subsequent versions of HP aC++, be aware of some possible migration problems and
solutions.

Template Processing

HP aC++, provides two template instantiation mechanisms, compile-time instantiation (the default) and
automatic instantiation (invoked by using acommand-line option). Following are overviews of each type of
template processing. For more detailed information, refer to the technical document Using Templates in HP
aC++ .

The mgor difference between compile-time and automatic instantiation processing isthat, with compile-time
instantiation, the compiler instantiates every template entity it seesin atrandation unit provided it hasthe
required template definition; with automatic instantiation, the compiler instantiates only what the assigner tells it
to (except for explicit instantiations). It is the assigner's responsibility to make sure that every template entity is
instantiated and that it is instantiated only once.

Compile-time Template Processing

e Theassigner isnot invoked. The compiler places an instantiation in every .o filein which atemplateis
used and its definition is known. The linker arbitrarily chooses a .o file to satisfy an instantiation
request (use). Only the chosen instantiation appearsin the a.out or .4 file. Any redundant instantiations
in other .o filesare ignored.

e No instantiation information is placed in object (.0) files. The linker is responsible for ignoring
duplicate instantiations.

e No .| filesare created since the assigner is not used. All .o files are compiled only once.

Automatic Template Processing

Automatic instantiation uses the assigner, an executablefile that runs at pre-link time to help perform the
following tasks:

e Theassigner's automatic instantiation algorithm determines in which object (.0) file an instantiation is
placed.

e Instantiation information is placed in object (.0) files. This aids the assigner in selecting a unique
instantiation site for agiven instantiation.

e Assignment information residesin a.l file. Thisindicates to the compiler which instantiations are to be
placed in the corresponding .o file (upon recompilation).

For Morelnformation

e More about Automatic Instantiation Files
e Major Components of the Compiling System
e Migrating from the Automatic | nstantiation Dafault to the Compile-time Instantiation Dafault

Automatic Instantiation Files

Automatic instantiation involves the creation of .0 and .| instantiation files, described below. By default, these
files are placed in the directory in which you are compiling.

.0 Instantiation Files

A . o file containsinformation generated by the compiler to tell the assigner about templatesin agiven
trandation unit. It contains the following types of information recognized or produced by the assigner:

e template membersin the trandation unit (def)

e demandsfor instantiation as aresult of explicit instantiation (dem)

e requestsfor instantiation as aresult of template object declarations (req)
e actua instantiations resulting from an assignment request (ins)

e assignments of instantiations to this trandation unit (asi)

I Instantiation Files

The. 1 file, produced by the assigner, contains assignment of instantiations to a trandation unit by the
instantiation algorithm. It isan ASCII file. The command line below usesc++f i | t to view the instantiation
informationinfileal.

/opt/aCC bin/c++filt < a.l
The output shown below tells you the a.c trandation unit has been assigned three instantiations.
asi Stack<int>::Stack()

asi Stack<int>::~Stack()
asi Stack<int>::push(int)

Migrating from the Automatic I nstantiation Default to the
Compile-time I nstantiation Default

If you used automatic instantiation with HP aC++ A.02.00 or A.01.04 and prior versions and you wish to
continue using it with subsequent versions of HP aC++, modify each of your existing aCC command-lines by
adding the +inst_auto option. This applies to command-linesfor:

e creating object files

e creating an executable

e closing aset of object files prior to creating alibrary (.aor .9)

e creating ashared library (.d) provided you do not specify +inst_none

The following sections describe specific migration scenarios and illustrate possible migration problems and
solutions.

@ Possible Duplicate Symbolsin Shared Libraries
e Possible Duplicate Symbolsin Archive Libraries
e Mixing Old .o and .aFileswith New Ones

Possible Duplicate Symbolsin Shared Libraries

An existing compiler defect may be more apparent, if in HP aC++ A.02.00 or A.01.04 and prior versionsyou
built a shared library using automatic instantiation (the prior default using the assigner) and now build that
library using the current default (compile-time) instantiation. The defect relates to template objects with
constructors or other runtime initializers that have been globally defined in more than one shared library on the
link line. If such an object isdefinedinn shared libraries, it will beinitialized and destructed n times at
runtime.

When building the same application with the current default, the libraries are not closed prior to thefina link,
and the likelihood of atemplate symbol being defined in more than one shared library will increase.

Possible Duplicate Symbolsin Archive Libraries

If in HP aC++ A.02.00 or A.01.04 and prior versions you built an archive library using automatic instantiation
(the prior default using the assigner) and you rebuild that library using the current default (compile-time)
instantiation, it is possible that duplicate symbol problems not apparent in the prior release will generate errorsin
the current release.

Thisis because the current default usesthe linker rather than the assigner to determine which object file to pick
to satisfy instantiation requests. For example, when your archive library islinked with an application, library
objectsin the link may be different than those used when linking the library in a prior release.

Following are two examples of building an archive library, one built with +inst_auto/+inst_close (the prior
default), the other built with the current (compile-time) defaullt.

Building an Archive Library with +inst_auto/+inst_close

Suppose for lib.inst_auto.a, the linker chooses foo2.0 to resolve symbol x, and fo03.0 to resolve symbol stack
<int>. Symbolsx, y, and stack <int> are each resolved with no duplicates.

lib.inst_auto.a

| foo.o | foo2.0 | foo3.0 |
| | | stack<int> |
| X | x |y I
Iy I I I

Building an Archive Library with the Default (Compile-time I nstantiation)

Suppose for lib.default.a, the linker chooses f002.0 to resolve symbol x, and f0o.0 to resolve symbol stack <int>.
Symbolsx, y, and stack <int> are each resolved, but now there's a duplicate definition of symbol x. Thiswill
cause alinker duplicate symbol error. Thisisreally auser error, but was not visible before.

NOTE: Note that this example is not meant to account for all cases of changed behavior.

lib.default.a

| foo.o | foo2.0 | foo3.0 [
| stack<int> | stack<int> | stack<int> |
| x | X |y I
|y I I I

Mixing Old .0 and .a Fileswith New Ones

What happens when you mix .0 and .afiles compiled with HP aC++ A.02.00 or A.01.04 and prior versions
with files compiled with subsequent versions of HP aC++? The linker gives an old symbol precedence over a
new symbol of the same name. For example:

fool.o (old) f002.0 (new) f003.0 (new
func<int> func<int> func<int>
[ol d synbol] [new synbol] [new synbol]

In this case the linker chooses the func <int> from fool.o0 and ignores the other two, because the old func <int>
takes precedence over any of the new ones. Note that if there were more than one old func <int>, the linker
would give aduplicate symbol error.

A Special Case of Mixing Old .0 and .a Fileswith New Ones

bar.a (ol d)
| fool.o (new) | | barl.o | bar2.0 | |
[---mmmmm e [-----mmmm- - [-------- [|
| func<int> [new synbol] | | func<int> [| |
—————————————————————————— | [old synbol] | [|

Since old symbols take precedence, you would expect the linker to choose func <int> from barl.0. However,
since barl.oispart of an archive library, the linker will never even try to load it unlessit's needed to resolve some
other symbol in fool.o.

Soif Id loads barl.o, then it will choose func <int> from barl.0 However, if 1d does not load barl.o, it will
choose the only func <int> that's available, and that's the one in fool.o.

And barl.0 might not be loaded, even though it was loaded under the old default. This behavior may not cause a
problem, however, in some casesit may. For example, in a correctly written program in which multiple
definitions of func <int> are equivaent, there is no problem. However, if multiple definitions of func <int> are
not equivaent, the compiler does not detect the error.

Linker Error Checking M essages
Given all of the above, the linker provides error checking to help find out what may be happening.
e By default, Id issues generic warnings like the following when it sees a new/old pair: aCC old.o new.o

[opt/aCC |l bin/ld: (Warning) Linker features were used that may not
be supported in future rel eases. The +vall conpatwarni ngs option
can be used to display nore details, and the Id(1l) man page contains
addi tional information. This warning can be suppressed with the
+vnoconpat war ni ngs opti on.

e If you want more information: aCC old.o new.o -WI,+vallcompatwarnings

[opt/aCC |l bin/ld: (Warning) An autonatic tenplate instantiation for
menber "func <int>()" in file t.o has been overridden by an explicit
definition in fi |le new o. This behavior nmay not be supported in
future rel eases.

e |f you want to see duplicate symbol messages based on what would happen if compatibility with old .a
and .o fileswerenot supported, issue the command-line: aCC old.o new.o -WI,+strictctti This
generates amessage like the following:

[opt/aCC | bin/ld: Duplicate synbol "func<int>()" in files old.o and

new.o /opt/aCd | bin/ld: Found 1 duplicate synbol (s)

e Tosuppressal linker compatibility warnings, use the command-line: aCC old.o new.o
-WI,+vnocompatwarnings

Explicit Instantiation

Y ou request explicit instantiation by using the explicit template instantiation syntax (as defined in the ANSI/ISO
C++ International Standard) in your sourcefile.

Y ou can request explicit instantiation of a particular template class or a particular template function. In addition,
member functions and static data members of class templates may be explicitly instantiated.

Explicit instantiation of aclass instantiates all member functions and static data members of that class, regardiess
of whether or not they are used. For example, following isarequest to explicitly instantiate the Table template
classwith char*:

tenpl ate cl ass Tabl e<char*>;

When you specify an explicit instantiation, you are asking the compiler to instantiate a template at the point of
the explicit instantiation in thetranslation unit in which it occurs.

Usage

Thismight, for example, be useful when you are building alibrary for distribution and want to create a set of
compiler-generated template specidizations that you know will most commonly be used. Then when an
application islinked with thislibrary, any of these commonly used specializations need not be instantiated.

Another scenario might be afrequently used library that contains arepository of template specializations for
your devel opment team. Instantiating all such speciaizationsin one, known trandation unit would allow easy
maintenence when changes are needed and eliminate cases of duplicate definition.

Performance

Although timeis required to analyze and design code for explicit instantiation, compilation may be faster than
for the equivalent implicit instantiation.

Examples of Explicit and Implicit Instantiation
Class Template

Following are examples of explicit and implicit instantiation syntax for a class template:

tenpl ate <class T> class Array; I/ forward declaration for the
/1l Array class tenplate

tenplate <class T> class Array {/*...*/}; [/ definition of the
/1 Array class tenplate

tenpl ate class Array <int>; /'l request to explicitly
/1 instantiate Array<int>
/1 tenplate class

Array <char> tc; /'l use of Array<char>
/1 tenplate class which

/1 results in inplicit
/] instantiation

Function Template
Following are examples of explicit and implicit instantiation syntax for afunction template:

tenplate <class T> void sort(Array<T> &); [// declaration for the sort()
/1 function tenplate

tenplate <class T> void sort(Array<T> &) {/* ... */};
/1 definition of the sort()
/1 function tenplate

tenpl ate void sort<char> (Array <char>&); // request to explicitly
/1 instantiate the sort<char> ()
/1 tenplate function
/1 NOTE <char> is not requird if the conpiler can deduce this.

voi d foo() {
Array <int> ai;
sort(ai); /1 use of the sort<int> ()
/1l tenplate function which
/] results ininplicit instantiation

For Morelnformation

o Refer tothe ANSI/ISO C++ International Standard for additional detailsincluding explicit
specialization syntax.

All template options on an aCC command-line apply to every file on the command line.

If you specify more than one option on acommand-line, only the last option takes effect.

Compile-time I nstantiation, the Default

By default, compile-time instantiation isin effect. Instantiation is attempted for any use of atemplate in the
trandation unit where the instantiation is used. All used template functions, all static data members and member
functions of instantiated template classes, and all explicit instantiations are instantiated in the resulting object file.

If there are duplicate instantiations at link-time, the linker arbitrarily selects an instantiation for inclusion in the
a.out or shared library.

The following command-lines are equivaent; each compiles a.C using compile-time instantiation.

aCC -c +inst_conpiletine a.C

aCC -c a.C

Scope

If your source code contains templates and you do not specify any template command-line options nor explicit
instantiations, compile-time instantiation takes place for any use of atemplate. If you specify atemplate

command-line option, the option takes precedence for al trandation units on the command line. Any explicit
instanti ation takes precedence over either acommand-line option or compile-time instantiation.

Usage

Compared with devel oper-directed instantiation, compile-time instantiation involves less coding time for the
developer. However, the design of your application may require the use of some form of dir ected
instantiation.

Debugging Templates
The HP WDB Debugger and the HP/DDE Debugger support C++ templates.

For Morelnformation

e HP WDB Debugger Documentation
e HP/DDE Debugger Documentation

C++ Template Tutorial

Y ou can create class templates and function templates. A template defines a group of classes or functions. A
template can have one or more types as parameters. \When you use atemplate, you provide the particular types or
constant expressions as actual parameters thereby creating a particular object or function.

Class Templates

A classtemplate defines afamily of classes. To declare a class template, you use the keywordt enpl at e
followed by the template's formal parameters. Class templates can take parameters that are either types or
expressions. Y ou define atemplate class in terms of those parameters. For example, the following isaclass
template for asmple stack class. The template has two parameters, the type specifier T and thei nt parameter

si ze. Thekeyword cl ass inthe< > bracketsisrequired to declare any template type parameters. The first
parameter T is used for the stack element type. The second parameter is used for the maximum size of the stack.

tenpl ate<class T, int size>
cl ass Stack
{
public:
Stack(){top=-1;}
voi d push(const T& item{thestack[++top]=item}
T& pop(){return thestack[top--];}
private:
T thestack[si ze];
int top;
b

Class template member functions and member data use the formal parameter type, T, and the formal parameter
expression, si ze. When you declare an instance of the class St ack, you provide an actual type and a constant
expression. The object created uses that type and valuein place of T and si ze, respectively. For example, the
following program uses the St ack class template to create a stack of 20 integers by providing the typei nt and
the value 20 in the object declaration:

voi d main()
St ack<i nt, 20> nyi nt st ack;
int i;

nmyi nt st ack. push(5);
nmyi nt st ack. push(56);
nmyi nt st ack. push(980) ;
nmyi nt st ack. push(1234);

i = nyintstack. pop();
}

The compiler automatically substitutes the parameters you specified, in thiscasei nt and 20, in place of the
template formal parameters. Y ou can create other instances of this template using other built-in types aswell as
user-defined types.

Function Templates

A function template defines afamily of functions. To declare afunction template, use the keyword t enpl at e to
define the formal parameters, which are types, then define the function in terms of those types. For example, the
following is afunction template for a swap function. It smply swaps the values of its two arguments:

t enpl at e<cl ass T>
voi d swap(T& val 1, T& val 2)

T tenp=val 1;
val 1=val 2;
val 2=t enp;

}

The argument types to the function template swap are not specified. Instead, the formal parameter, T, isa
placeholder for the types. To use the function template to create an actual function instance (atemplate function),
you ssimply call the function defined by the template and provide actual parameters. A version of the function
with those parameter typesis created (instantiated).

For example, the following main program calls the function swap twice, passingi nt parametersin thefirst case
andf | oat parametersin the second case. The compiler uses the swap template to automaticaly create two
versions, or instances, of swap, one that takesi nt parameters and one that takesf | oat parameters.

voi d mai n()
int i=2, j=9;
swap(i,j);
float f=2.2, ¢g=9.9;

} swap(f, g);

Other versions of swap can be created with other types to exchange the values of the given type.

Using Threads

The HP aC++ run-time environment supports multi-threaded applications.
The following HP aC++ libraries are thread-safe:

® libstd.sl andlibstd. a

® librwool.sl andlibrwool.a

® |ibCsup.sl |ibCsup.a

® |ibstreamsl |ibstream a

In order to pick the thread safe version of 1/0 routines (cout, cin, cerr, and clog) when you include iostream.h in
your source files, you can add the-D_THREAD _SAFE compile time flag to your compilation line.

To guarantee that your 1/0 results from one thread are not intermingled with 1/0 results from other threads, you
must protect your 1/0 statement with locks. (Note, if you use locks, you do not have to use the
-D_THREAD_SAFE compiletime flag.) For example:

/] create a nmutex and initialize it
pt hread _nutex_t the_nutex;

#i fdef _PTHREADS DRAFT4 /'l for user threads

pt hread_nmutex_init(& he_nmutex, pthread_nutexattr_default);
#el se /1 for kernel threads
pthread_rnutex_init (& he_nutex, (pthread_nutexattr_t *)NULL);
#endi f

pt hread_ nutex _lock(&t he_ nutex)
cout << "sonething" ..
pt hread_rnut ex_unl ock(& _ the _mut ex) ;

Note that conditional compilation may be necessary to accomodate both the user threads and the kernel threads
interfaces, as in the above example.

Required Command-line Options

To use the multi-thread safe capabilities of the Standard C++ Library and the Tools.h++ Library, you need to
specify the following options at both compile and link time:

e -D HPACC THREAD SAFE RB_TREE (Note, code compiled with thisoptionis binary
incompatible with code that is not compiled with this option. This option is available for HP aC++
version A.01.21 and subsequent versions.)

-DRWSTD_MULTI_THREAD

-DRW_MULTI_THREAD (needed only for the Tools.h++ Library)

-D_REENTRANT

-lcma (Note, this option applies only to user threads.)

-Ipthread (Note, this option applies only to kernel threads.)

WARNING: If you do not specify these options, a run-time error will be generated or multi-thread behavior
will beincorrect.

Using - D HPACC THREAD SAFE_RB_TREE

The current standard C++ library (libstd) and RogueWave's tools.h++ library (librwtool) are not thread safe if
the underlying implementationr b_t r ee classisinvolved. In other words, if thet r ee header file (which includes
t ree. cc) under /opt/aCClinclude/ is used, these libraries are not thread safe. Most likely, it isindirectly
referenced by including the standard C++ library container classmap or set headers, or by including a
RogueWave tools.h++ header liket vset . h, tpnset.h, tpnset.h, tvset.h, tvnset.h, tvmset.h,

t pmap. h, tprmap. h, tpmmap.h, tvmap.h, tvnmap. h.

Since changing the current r b_t r ee implementation to make it thread safe would break binary compatibility, the
preprocessing macro, _ HPACC _THREAD_SAFE_RB_TREE, must be defined. Whether or not thismacro is
defined when compiling afile that includesthet r ee header, its use must be consistent. For example, a new
object file compiled with the macro defined should not be linked with older ones that were compiled without the
macro defined. Library providers whose library is built with the the macro defined may need to notify their users
to also compile their source with the macro defined when thet r ee header isincluded.

Exception Handling
Itisillegal to throw out of athread.

The following example illustrates that you cannot catch an object which has been thrown in adifferent thread. To
do so will result in aruntime abort since HP aC++ finds no available catch handler and terminate is called.

#i ncl ude <pt hread. h>

voi d foo() {
int i = 10;
throwi;

int main() {
pthread_t tid,;

try {
ret=pthread_create(&id, 0, (void*(*)(void*))foo, 0);

}
catch(int n) {}
}

For Morelnformation

See documentation on using threads and writing multi-threaded applications.

| ntroduction to HP aC++

HP aC++ is Hewlett-Packard's implementation of the ANSI/ISO C++ International Standard. The compiler
largely conformsto the standard and is evolving towards full conformance. Refer to Standardizing Y our Code
for listings of standards based features and extensions. Some of the many supported features are listed here:

e Precompiled Header Files
e Standard C++ Library
e Tools.h++ Library

e Templates
New Featuresin thisHP aC++ A.01.21 Release

e Header File Caching isan additional, simplified method of precompiling header files.

e A new debugging option, +[no] obj debug, enablesfaster links and smaller executable file sizesfor
large applications.

e Additional Optionsfor Standardizing Y our Code:
o -W, -ansi_for scope,[on] enablesstandard scoping rulesfor init-declarationsin f or
statements.
o - Aa setsall C++ standard options on (currently Koenig lookup and f or scoping rules).

e Additional Options for Code Optimization:
O +Olevel =namel [, name2 , ..., nameN |
O +O eusedir=DirectoryPath

e A new template option, +i nst _di r ect ed, t0 SUppress assigner output in object files. Useit instead of
the+i nst _none option with code that contains explicit instantiations only and does not require
automatic (assigner) instantiation.

e The#pragma pack directive alows you to specify the maximum aignment of classfields having
non-class types. This pragmamay be useful when importing code from other architectures where data
type alignment may be different from default PA-RISC aignment.

e Three new pragmas for improving the performance of shared libraries.

e By diminating references to the standard header files and libraries bundled with HP aC++, the +nost |
option alows experienced users full control over the header files and libraries used in the compilation
and linking of their applications.

e See additiona information about HP aC++ diagnostic messages.

e Toseewhichincludefilesled to an error or warning, specify the- W, - di agnose_i ncl udes, on
option.

e Floating installation alows more than one version of HP aC++ to be installed on one system at the
sametime.

e The HP accC predefined macro now contains the HP aC++ driver version number. For example, for
verson A.01.21, HP_acc= 012100

The__HP_acc predefined macro was introduced in HP aC++ version A.01.15. It'svalue was 1 for HP
aC++ A.01.15and A.01.18.

e Inprior releases, the standard C++ library (libstd) and RogueWave's tools.h++ library (librwtool) were
not thread safein al cases. The-D HPACC THREAD SAFE RB TREE preprocessor macro
insures thread safety.

Release Notes

For the latest information on new features, seethe HP aC++ Release Notes

If you see the message "Text file data could not be formatted,” ensure the release notes are installed as
/ opt / aCCl newconfi g/ Rel Not es/ ACXX. r el ease. not es.

Migration

If you are migrating code from HP C++ (cfront) to HP aC++, click hereto find out where to obtain
information.

Features Introduced in Prior Releases

o New Default Template | nstantiation Mechanism
e Support for Member Templates as Defined in the ANSI/ISO C++ Internationa Standard

New Default Template I nstatiation M echanism

The HP aC++ default template instantiation mechanism has changed to compile-time instantiation (CTTI). For
source code containing templates, the new default may result in faster compile-time processing.

The previous default behavior remains available by specifying the +inst_auto command-line option when
compiling and linking. If you provide archive or shared libraries for distribution, you may want to use
+inst_auto to insure consistent behavior between each distribution of your libraries.

Also, if you provide either archive or shared library products, and your customers need to use the prior template
instantiation default in their builds, you must build your libraries by using the +inst_auto option.

For Morelnformation

Refer to Using HP aC++ Templates in this online programmer's guide and to the online technical document,
Using Templates in HP aC++ for details about template instantiation and migration.

| nformation Map

NOTE: Thisinformation map is current as of thisrelease of HP aC++ A.01.21.

If you are accessing the map for the first time, please read the DISCLAIMER.

Choose from the following categories for information about C++ and related topics. Most books listed here are
available from technical bookstores, some of which provide online ordering on the World Wide Web.

HP aC++ A.01.21 Product Documentation

o Release Notes e HP aC++ World Wide Web Homepage
e OnlineHTML Files e HPaC++ Libraries

e Online Man Pages e HPaC++ Linking

e Example Source Files e HP aC++ Templates

e Linker and Libraries e HP WDB Debugger

e Migration from HP C++ (cfront) to HP aC++ e HP SoftBench Devel opment Environment
e Standardizing Y our Code e HP-UX

e Threads

Technical Books and Cour ses

C++ Syntax and Basics

°
e C++ Concepts
e C++ Examples
°
°

C++ Standards
Object Oriented Programming

o C++ Courses

Release Notes

HP aC++ Release Notes -- For the latest information about HP aC++, release notes are provided as follows:

e an ASCII filewhich is part of the HP aC++ product,
/opt/aCC/newconfig/RelNotes/ ACX X .rel ease.notes
e aprinted copy which is part of the HP aC++ product
e on the World Wide Web at the following URL : http://docs.hp.com/hpux/devel opment/
e onthe HP-UX CD-ROM

HTML Files

e TheRogue Wave Software Standard C++ Library Class Reference and Rogue Wave Software
Tools.h++ 7.0 Class Reference are provided asHTML formatted files. Refer to HP aC++ Libraries
for details.

e A technical paper summarizing template features defined in the proposed C++ standard and describing
template instantiation as implemented in HP aC++ is provided. Refer to HP aC++ Templates for
details.

e HP aC++ Online Programmer's Guide -- The guide you are currently viewing focuses primarily on
HP aC++ specific information. Refer to Technical Books and Courses for information related to the
C++ language and object oriented programming.

o Navigating Online -- Click with the left mouse button on any underlined word to link to
additional information. To return to aprior topic, click the right mouse button and choose
back.

o Search on aKeyword -- Tofind aparticular character string within the file you are currently
viewing, use the left mouse button to select Edit and Find.

On HP-UX, amethod of searching the entire set of files comprising the guideis to use the grep
command. For example, to display al lines containing the exact string, per f or mance followed
by a space, in all filesin the named directory:

grep 'performance ' /opt/aCC htm /C/ guide

If you want the search to be case insensitive and the results directed to a file named perf:

grep -i 'performance ' /opt/aCC/ htm /C/ guide > perf

o Printing -- From your HTML viewer menu bar, use the left mouse button to select File and
Print.

o Invoking this Online Guide -- The guide is provided as HTML formatted files, viewable by
means of your web browser. Invoke the guide in either of the following ways:

o Specify the +help option on the aCC command line.
o From your web browser, enter the appropriate URL :

file:/opt/aCl htm /Cl guide/index. htm (English)
file:/opt/aClhtm /ja JP.SJI S/ guide/index. htm (Japanese)

To see Japanese characters when using the Netscape browser, choose:

1. Options
2. Docunent Encoding
3. Japanese (Auto-Detect)

NOTE: All of the files composing the English version of the guide areinstalled in the
/opt/aCC/html/C/ directory. If you choose to move the entire English guide to adifferent
location without having to edit any links, you will need to move al of the subdirectoriesin
/opt/aCC/html/C/. All of the files composing the Japanese guide are ingtalled in
/opt/aCC/html/ja JP.SJS.

Man Pages

The following online manual pages are provided:

e aCC (1) -- Theonline manual page for the HP aC++ compiler command, aCC islocated in the
directory /opt/aCC/share/man/manl.Z. (If you see the message "Man page could not be formatted,"
ensure the man pageisingtalled.

e Online man pagesfor the Standard C++ Library are located in the directory
/opt/aCClshare/man/man3.Z.

Japanese man pages are located at:
o /opt/aCClshare/man/ja_JP.eucJP/manl.z and /opt/aCC/share/man/ja_JP.eucJP/man3.z for the
euc character set
o /opt/aCClshare/man/ja_JP.SJIS/manl.z and /opt/aCC/share/man/ja_JP.SJISYman3.z for the
SJIS character set

e Theonline manual page for c++filt is at /opt/aCC/share/man/manl.Z.

e Online manual pages for the cfront compatibility libraries are at /opt/aCC/share/man/man3.Z. For
listings of these man pages with brief descriptions, refer to:
o Standard Components Library
o 10Streams Library

Example Source Files

Online C++ example source files are located in the directory, /opt/aCC/contrib/Examples/RogueWave. These
include examples for the Standard C++ Library and for the Tools.h++ Library.

Threads

e For information specific to HP aC++ see Using Threadsin this programming guide.

e Programming with Threads on HP-UX (B2355-90060) -- To order a paper copy contact
Hewlett-Packard's Support Materials Organization (SMO) at 1-800-227-8164 and provide the above
part number.

e Thread Time: The Multithreaded Programming Guide , by Scott J. Norton and Mark D. DiPasquale
(ISBN 0-13-190067-6) -- Hewlett-Packard Professional Books, published by Prentice Hall

HP aC++ World Wide Web Homepage

Refer to the Homepage for the latest information regarding:

e Frequently Asked Questions

o Release Version and Patch Table
e Purchase and Support Information
e Documentation Links

Access the HP aC++ World Wide Web Homepage at the following URL :

http://ww. hp. conl go/ c++

HP aC++ Libraries

e Standard C++ Library

e Tools.h++ Library

e HP-UX Linker and Libraries

o HP C++ (cfront) Compatibility Libraries

Standard C++ Library

e Rogue Wave Software Standard C++ Library Class Reference -- Thisreference providesan
alphabetical listing of al of the classes, agorithms, and function objects in the Rogue Wave
implementation of the Standard C++ Library. It isprovided as HTML formatted files which you can
view with an HTML viewer such as Netscape. Thefiles are located at /opt/aCC/html/libstd/ref.htm.

Note that the Standard C++ Library Class Reference can be ordered in paper copy from Rogue
Wave Software Inc.

o Man Pages -- Online man pages for the Standard C++ Library arelocated in the directory
/opt/aCClshare/man/man3.Z.

Japanese man pages are located at:
o /opt/aCC/share/man/ja_JP.eucJP/manl.z and /opt/aCC/share/man/ja_JP.eucJP/man3.z for the
euc codeset
o /opt/aCClshare/man/ja_JP.SJISYmanl.z and /opt/aCC/share/man/ja_JP.SJS/man3.z for the
SJIS codeset

e Example Source Files -- Online example source files for the Standard C++ Library are located in the
directory, /opt/aCC/contrib/Examples/RogueWave.

e The Rogue Wave Software, Inc. home page provides additional information. To view the home page on
the World Wide Web, enter the following URL:

http://ww.roguewave. coni

Toolsh++ Library

e Rogue Wave Software Tools.h++ 7.0 Class Reference -- Thisreference describesall of the classes
and functionsin the Tools.h++ Library. It is provided as HTML formatted files which you can view
with an HTML viewer such as Netscape. Thefiles are located at /opt/aCC/html/librwtool/ref .htm.

Note that the Tools.h++ Class Reference can be ordered in paper copy from Rogue Wave Software
Inc. Also availablein paper are:

o Tools.h++ User's Guide -- How to write programs using Tools.h++.
o Tools.h++ Getting Started Guide -- Installing and using Tools.h++.

e Example Source Files -- Online example source files for the Tools.h++ Library are located under the
directory, /opt/aCC/contrib/Examples/RogueWave.

e The Rogue Wave Software, Inc. home page provides additional information. To view the home page on
the World Wide Web, enter the following URL :

http://ww.roguewave. conl

HP C++ (cfront) Compatibility Libraries

e Standard Components and 10Stream Man Pages -- HP C++ (cfront), compatible versions of the
standard conponent s classlibrary and thei ost r eamlibrary are provided with HP aC++.

e Online man pages are located in the directory /opt/aCC/share/man/man3.Z. For listings of these man
pages with brief descriptions, refer to:
o Standard Components Library
o |0Streams Library

To Order Books from Rogue Wave Software, Inc.

800- 487- 3217 (phone)

541- 757- 6650 (FAX)

HP aC++ Linking

HP-UX Linker and Libraries Online User Guide -- Thisonline help guideis provided with HP aC++, C,
COBOL, and Fortran compiler products. It replaces the Programming on HP-UX manud.

The guide describes fundamental s of software development on HP-UX, including how the basic pieces of the
development environment fit together --compilers, assemblers, linker, libraries, and object files. Also covers
using the Id linker to create executable programs, creating and linking archive and shared libraries, writing
position-independent code (used to build shared libraries), managing shared libraries from within a program,
porting applications to HP-UX, and advanced system programming techniques.

The guideis provided onlinein HP VUE or CDE format. To access, click the question mark icon (?) or enter the
command Id +help.

For Morelnformation

e Refer to Creating and Using Librariesin this programming guide.

Migration from HP C++ (cfront) to HP aC++

If you are migrating code from HP C++ (cfront) to HP aC++:

1. Refer to the migration section for information about differences between the two compilers.

Also refer to the HP aC++ Transition Guide at thefollowing URL:

http://ww. hp. coml esy/ | ang/ cpp/ t gui de

2. For general background information and experience, subscribe to the cxx-dev list server (like anotes
group). Send a message to ma ordomo@cxx.cup.hp.com with the following command in the body of
the message: subscribe list-name

Available list-names are as follows:

cxx- dev HP C++ Devel opnment Di scussion Li st
cxx-dev-announce HP Ct++ Devel opnent Announcenent s
cxx-dev-di gest HP C++ Devel opnent Di scussion List D gest

cxx-dev-announce is a so broadcast to cxx-dev, so thereis only a need to subscribe to one of thelists.
The digest aso includes both cxx-dev and cxx-dev-announce.

For additional help or information about the list server, send a message to majordomo@cxx.cup.hp.com
with the following command in the body of the message: help

3. For specific support questions, contact your HP support representative.

4. For generic C++ questions, see documents and URL 'slisted in this Information Map.

HP aC++ Templates

e Using HP aC++ Templates (in this programming guide) describes the instantiation coding methods
and options available to you and provides an overview of HP aC++ template processing.

e Using Templates in HP aC++ -- Thistechnical document summarizes template features defined in
the proposed C++ standard and describes template instantiation asimplemented in HP aC++. It is
provided with HP aC++ in the following locations and formats:

[opt / aCCl newconfi g/ TechDocs/ t enpl ates. ps -- postscript fornmat
[opt/aCC htm /G tenpl ates/tenpl ates. ht m-- HTM. fornat

C++ Syntax and Basics

The following books are available at technical bookstores.
e The Annotated C++ Reference Manual , by Margaret Ellis and Bjarne Stroustrup (ISBN
0-201-51459-1) -- A complete C++ language reference manual plus annotations and commentary that
describe in detail why features are defined asthey are.

e C++ Primer , second edition, by Stanley Lippman (ISBN 0-201-54848-8) -- A complete tutorial
introduction to C++, for those with little or no C or C++ experience.

See Also:

o Standards -- For information related to the |SO/IEC 14882 Standard for the C++
Programming Language (the international standard for C++).

o Standardizing Y our Code -- For standards that are supported by HP aC++ and migration
considerations related to standardization.

C++ Concepts

The following books are available at technical bookstores.

e Effective C++ Plus: 50 Specific Ways to Improve Your Programs and Designs , by Scott Meyers
(ISBN 0-201-563-649) -- 50 concise rules based on what experienced C++ devel opers amost always
do (or aimost dways avoid) to create efficient, portable, and maintainable software. Eachruleis
accompanied by examplesthat illustrate the rule at work.

e More Effective C++ Plus: 35 New Ways to Improve Your Programs and Designs , by Scott Meyers
(ISBN 0-201-633-71X) -- Drawing on years of experience, Meyers explains how to write software that
is more effective: more efficient, more robust, more consistent, more portable, and more reusable.

e Advanced C++ Programming Styles and Idioms , by James Coplien (ISBN 0-201-54855-0) -- For
programmer's having knowledge of C++ basics, this book imparts information gained from a broad
range of C++ programming experience.

e The Design and Evolution of C++ , by Bjarne Stroustrup (ISBN 0-201-54330-3) -- A history of the
C++ language by its creator.

C++ Examples

e C/C++ Annotated Archives , by Art Friedman, Lars Klander, Mark Michaelis, and Herb Schidit (ISBN
0-07-882504-0) -- A collection of carefully documented C/C++ components and programs covering a
wide range of computing applications.

C++ Standards

e ThelSO/IEC 14882 Standard for the C++ Programming Language (the international standard for
C++) was ratified by the C++ standardization committeesin July, 1998. It is available for download
from the World Wide Web at the ANS| Electronic Store.

The document isin PDF format with total size of 2794KB. Its cost is $18.00 USD payable online via
credit card.

e A December, 1996, HTML version of the draft (which does not reflect recent changes) is publically
available on the World Wide Web at the following URL :

http://ww. cygnus. conl m sc/ wp

The following books are available from technical book stores.

e The C++ Programming Language, Third Edition , by Bjarne Stroustrup (ISBN 0-201-88954-4) --
Based on the C++ Final Draft International Standard , this book is a complete rewrite of the second
edition. It coversthe language, its standard library, and key design techniques as an integrated whole.

e C++ Solutions: Companion to the C++ Programming Language, Third Edition , by David
Vandevoorde (ISBN 0-201-30965-3) -- This book describes solutions to a selection of examples from
Bjarne Stroustrup's book on standard C++.

e STL Tutorial & Reference Guide: C++ Programming with the Standard Template Library , by David
R. Musser R. and Atul Saini (ISBN 0-201-633-981) -- This book introduces the STL and providesthe
information and techniques you need to become a proficient STL programmer. The book includes a
tutoria, athorough description of each element of the library, numerous sample applications, and a
comprehensive reference.

See also:

o C++ Libraries-- For additional information about the Standard C++ Library.
e Standardizing Y our Code -- For standards that are supported by HP aC++ and migration
considerations related to standardization.

Object Oriented Programming

The following books are available at technical bookstores.

e Object-Oriented Design with Applications by Grady Booch (ISBN 0-805-35340-2) -- Object oriented
analysis and design concepts and implementation, using C++ and a unified notation that incorpoartes
Booch and other widely used methods.

e Design Patterns: Elements of Reusable Object-Oriented Software , by Erich Gamma, Richard Help,
Ralph Johnson, John Vissles (ISBN 0-201-63361-2) -- A catalog of 23 design patternsto help solve
commonly occurring design problems. Based on rea -world examples. Each pattern describes the
circumstancesin which it is applicable, when it can be applied in view of other design constraints, and
the consequences and trade-offs of using the pattern within alarger design.

e Design Patterns for Object Oriented Programming by P (ISBN 0-201-42294-8) -- Conceptual
background in the devel opment and reuse of semifinished software architectures (application
frameworks) rather than single components. These frameworks embody foundational components and
their behaviora interaction. A design example of a hypertext system isillustrated with ET++, the famed
user-interface framework available in the public domain.

HP-UX Information

e Assembly Language Reference (92432-90001) -- Describes the use of the Precision Architecture
RISC (PA-RISC) Assembler.

e HP-UX Floating Point Guide (B2355-90624) -- Describes how floating-point arithmetic is
implemented on HP 9000 Series 700/800 workstations, and discusses how floating-point behavior

affects the programmer. This book provides information useful to any programmer writing or porting
floating-point-intensive programs.

General HP-UX Documentation

e The Ultimate Guide to the vi and ex Text Editor (HP 97005-90015) -- Complete information about
using the vi and ex text editors on HP-UX.

HP WDB Debugger Information

To download the HP WDB product and/or documentation, access the following World Wide Web URL :

http://ww. hp. com go/ wdb

HP/DDE Debugger Information

e HP/DDE Debugger User's Guide (B3476-90011) -- Information on debugging C++ programs with
the HP Distributed Debugging Environment, dde, on the HP 9000. This document can be ordered by
contacting Hewlett-Packard's Support Materials Organization (SMO) at 1-800-227-8164 and providing

the above part number.

e Alsorefer tothedde (1) man page. (If you see the message "Man page could not be formatted,” ensure
the man page isinstalled and your MANPATH variable includes/ opt / | angt ool s/ shar e/ man.)

e Online help for DDE is available from the DDE Menu Bar.

HP SoftBench Development Environment

The following manuals are available for SoftBench products. Copies can be ordered by contacting
Hewlett-Packard's Support Materials Organization (SMO) at 1-800-227-8164.

e Getting Started with SoftBench on HP-UX 10.x -- contains SoftBench tutorials for C, C++, and
COBOL.

e C and C++ SoftBench User's Guide for HP-UX 10.x -- contains information on using C and C++
SoftBench.

e Installing and Customizing SoftBench Products -- contains installation and customization information
for SoftBench Products on HP-UX 9.x, HP-UX 10.x and Solaris.

Online Ordering

Y ou can research and order technical books on the World Wide Web. Following is a subset of the many URL's
related to technical publications.

e CompuBooks

e Computer Literacy Bookshops, Inc.

e Computer Manuals Online Bookstore (Europe)

e Ecolds Computer Publications

e Hotline (Australia)

e Softpro Books

C++ Courses

e Rogue Wave Software, Inc. provides courses on their Standard C++ Library, Tools.h++ Library, and
other products. For information, access Rogue Wave on the World Wide Web:

http://ww.roqguewave. com product s/ profserv/profserv. htnl

Glossary

aggressive optimizations
Any optimizations that can change the behavior of structured code. Thisis a superset of basic
optimizations.

anachronistic constructs
Elements of the C++ language that will be obsoleted and therefore unsupported in some future release.

archivelibrary
A collection of object files grouped using the ar command. At link time, only object files that have
needed symbols are extracted from the library.

argument declaration file
For templates, afile containing the declaration of aclass, struct, union, or enum type.

automatic instantiation
An instantiation mechanism that uses an automatic instantiation algorithm to determine in which object
file ingtantiations are placed. Instantiation is attempted for any use of atemplate.

Use the +inst_auto command-line option to request automatic instantiation.

Note that in versions A.02.00 and A.01.04 and prior versions of HP aC++, automatic instantiation was
the default. The default is now compile-time instantiation.

base class
A class from which another class, the derived class, inherits the public and protected members. That is, a

derived class inherits the nonprivate member data and nonprivate member functions from its base
class. Sometimes also called a parent class or superclass.

basename
The part of a pathname after the last /.

basic block
A sequence of ingtructions with a single entry point, single exit point, and no internal branches.

basic optimizations
Any optimizations that do not generally change the behavior of structured code. This category of
optimization is performed by default when you specify alevel of optimization. Basic optimizations are a
subset of aggressive optimizations and a superset of conservative optimizations.

class
A user-defined type. A class can have member data and member functions and these can be public,
protected, or private members.

classtemplate
A template that defines an unbounded set of related classes.

closing alibrary
Satisfying al template instantiations needed by alibrary when building the library, not when linking the
library with an application.

closing

The process of satisfying al template instantiations for aset of link units.

compile-time instantiation
In HP aC++, thisis the default instantiation mechanism. Instantiation is attempted for every template
used in atrandation unit in that trandation unit.

Note that in versions A.02.00 and A.01.04 and prior versions of HP aC++, automatic instantiation was
the defauilt.

conservative optimizations
Any optimizations that do not change the behavior of code, in most cases, even if the codeis
unstructured or does not conform to standards. Thisis a subset of basic optimizations.

constructor
An initidization function for the objects of a class. Constructors have the same name as their class.

derived class
A class that inherits the public and protected member data and the public and protected member
functions from its base class. Sometimes also called a child class or subclass.

destructor
A function that cleans up or deinitializes each object of a classimmediately before the object is
destroyed. Destructors execute when the program leaves the scope in which objects are defined and
when any object is destroyed by del et e. Destructors have the same name asthelr class, prefixed by a
tilde, ~.

directed instantiation
Template instantiation that is specified by the developer by means of an explicit instantiation or a
compiler command-line option.

exception

An exception isarun-time error condition. Exception handling is a C++ mechanism that allows the
detector of the error to pass the error condition to code (the exception handler) that is prepared to handle
it. An exception israised by at hr ow statement within at ry block and handled by acat ch clause.

Note, the ANSI/ISO C++ International Standard defines only synchronous exceptions.

explicit ingtantiation
A method of instantiation that instantiates atemplate at the point of its use. Y ou code an explicit template
instantiation (as defined in the Final Draft International Standard) in your sourcefile.

externa symbol
A name of afunction or dataitem in an object file that is available to other object filesto link against.

friend
Either aclass or afunction that has accessto all of aclass's data and member functions. That is, the
friend has access to the classs public, protected, and private members.

function template
A template that defines an unbounded set of related functions.

HP C++
HPsinitia, pre-C++ draft proposed international standard C++ compiler. It is based on the cfront
compiler and provides functionality for templates and exception handling.

HP aC++
HP's most recent C++ compiler. It closely complies with most features of the ANSI/ISO C++
International Standard.

header file
An C++ source file typically containing class or function declarations and referenced by other C++
source files using the #i ncl ude preprocessor dir ective.

include guards
Preprocessor commands (typically #i f ndef , #def i ne, and #endi f) used in aheader file to prevent
compiling that file more than once.

inline function
A function whose codeis copied in place of each function call.

instantiate
To form an instantiation by binding atemplate to particular argument types.

instantiated class
A class generated from a class templ ate by instantiation.

instantiated function
A funtion generated from afuntion template by instantiation.

instantiation
A generated class or function (a definition) that is the result of binding a template to particular argument
types. Also known as a generation.

lex
A program generator for lexical analysis of text.

link unit
A single entity submitted to the linker. A link unit can be an object file (.o file, the output of atrandation

unit), an archive library (.afile), or ashared library (.d file).

load compile
Invoking the compiler using the +hdr_use option, and a manua precompiled header file.

member data
Any data elements declared to be part of aclass.

member function
Any function declared to be part of aclass.

millicode library
The millicode library contains specia purpose routines that are tailored for performance. The routines
are implemented in PA-RISC assembly code and follow a specia stream-lined procedure calling
convention. The millicode routines are not intended to be called directly by user programs due to the
strict coding, calling, and register usage requirements. Refer to the "PA-RISC Procedure Calling
Conventions Reference Manual™ for details on the specia millicode calling convention.

multiple inheritance
The ability of aclassto inherit from more than one base class. That is, the derived class inherits al
public and protected members from al of its base classes. Compare to single inheritance.

name demangling
The process of changing the internal representation of identifiers back to their original C++ source
names. Compare to name mangling.

name mangling
The process of generating unambiguous internal identifiers from C++ identifiers to resolve the scope of
variables, overloaded operators, and overloaded functions. Compare to name demangling.

object
An instance of aclass.

parameterized type
Seetemplate.

position-independent code (PIC)
Object code that contains no absolute addresses. All addresses are specified relative to the program
counter. Position-independent code is used to create shared libraries.

pragma
An ingtruction to the compiler to compile your program in a certain way. For example, you can use
pragmas to insert copyright information into your object files, to specify aparticular template
instantiation, and to specify optimization levels.

precompiled header file
A .Cfilethat has been compiled using either the +hdr_create option (for subsequent usein aload
compile) or the +hdr_cache option.

preprocessing directive
A command entered into a source file to direct the preprocessor to perform certain actions on the source
file. For example, the preprocessor can replace tokensin the text, insert the contents of other filesinto
the sourcefile, or suppress the compilation of part of the file by conditionally removing sections of text.
It also expands preprocessor macros and conditionally strips out comments.

preprocessor
A portion of the HP aC++ compiler that manipul ates the contents of your source file according to the

preprocessing dir ectives coded in the sourcefile.

private member
A private member of aclassis adatamember or member function that is only accessible:
o from within the class defining the member and
o from any friends of the class defining the private member.

profile-based optimization
A kind of optimization in which the compiler and linker work together to optimize an application based
on profile data obtained from running the application on atypical input data set.

protected member
A protected member of aclassisadata member or member function that isonly accessible:
o from within the class defining the member,
o from any class derived from that class, and
o from any friends of the class defining the protected member.

public member
A public member of aclassis adatamember or member function that is accessible from everywhere
outside the class defining the member as well as from inside the class and from any derived classes.

shared library
A collection of object files grouped using the aCC command and comprised of position-independent
code. At link time, all object files are made available.

single inheritance
The ability for a class, the derived class, to inherit from exactly one class, its base class. Compare to
multiple inheritance.

software pipelining
A code transformation that optimizes program loops. It is useful for loops that contain arithmetic
operations on floats and doubles.

sourcefile
An HP-UX file containing C++ program code.

specidization
An ingtantiation of atemplate class or template function that overrides the standard version.

template
A skeleton or description for an infinite set of classes or functions. A class templateis a specification
for afamily or group of classes. A classtemplateis aso known as a parameterized type. A function
template is a specification for afamily or group of functions.

template argument
A type or constant specified to atemplate to distinguish a particular usage of the template.

template function
An instantiated function template.

timestamp
The date and time afile was last changed.

trandation unit

The standard term for acompilation unit. It refersto a single source file submitted to the compiler along

with al filesincluded by the compilation of that single sourcefile (technically, the output of the
preprocessor). A trandation unit normally resultsin asingle object file.

Looking at it another way, a variable name explicitly declared static has the scope of its trandation unit
and can be used as a name for other objects, functions, and so on in other trandation unitsin the same
application.

trigraph sequences
A set of three characters that is replaced by a corresponding single character by the preprocessor.

yacc
A programming tool for describing the input to a computer program.

