
1

Patching Usage Models
White Paper

i

Table of Contents

1. Introduction .. 2

Scope ... 2

Intended Audience.. 2

2. What is a Usage Model? .. 3

Why Patch at All? ... 3

Why Develop Usage Models? .. 3

3. Patch Usage Models .. 4

New System Installation ... 5

Proactive Patching.. 8

Reactive Patching... 11

Configuration Change... 14

Operating System Version Change .. 17

ISV/IHV Qualification .. 20

4. Summary: Putting Theory into Action ... 23

2

1. Introduction
This paper focuses on different approaches to patching. Depending on the task involved, there
are different ways to patch systems. A reactive support situation, for example, should be handled
differently than a new system installation. This paper examines the most common patching
situations. For each situation, it makes recommendations on how to patch.

A usage model can be though of as a template. It is a framework around which tools and
processes can be developed. Each usage model provides guidelines for achieving the intended
goal.

The process of patching is further divided into three elements: tools, delivery, and IT processes.
The information presented in this white paper can be used to develop a comprehensive set of
patch management processes.

Scope
The recommendations given in this document are targeted for the HP-UX operating system.
However, the concepts apply to all operating systems. The goal is to present a task-oriented
approach to patching and systems maintenance. The techniques described can be extended to
other areas of data center operations, as well.

Intended Audience
This paper is primarily intended for systems administrators and IT process planners. It includes
general background information on patching along with process flowcharts for different modes of
patching. The information should be useful to anyone who must maintain systems in a data
center environment or who develops IT processes.

3

2. What is a Usage Model?

Why Patch at All?
Patches are most often associated with defect fixes. But that is not their only purpose. In addition
to fixing problems, patches can be used to:

♦ deliver new or enhanced functionality

♦ enable new hardware and software

♦ provide useful utilities

In terms of defect fixes, patches can repair problems and restore systems to normal operation.
Proactively, patches can be used to avoid downtime due to known problems. As a result, most
operating environments include a combination of a base operating system and patches.

For the HP-UX operating system, Hewlett-Packard releases a core operating system and provides
updates over time via patches. Among these patches are defect fixes, performance
enhancements, new hardware and feature enablement. Without patches, the only way to provide
changes would be to re-release the operating system. Given the dynamic nature of modern
operating systems and the time involved in a product release, this is not a practical approach.

Patches are a vital part of systems support and maintenance. Since every patch is a change to
the operating environment, and because change introduces risk, data center managers need to
develop processes for managing patches. An understanding of the various ways in which patches
are used is an important part of system operations.

Why Develop Usage Models?
There is no one "right way to patch". Rather, the approach needs to be tailored to the situation.
For example, in a reactive support situation that requires a patch, modifications should be limited
to the smallest change necessary that solves the problem. The engineer involved needs
diagnostic tools and a means of retrieving individual patches. By contrast, a person performing a
new system installation wants consistency and reliability. For them, a standard bundle of patches
may be a better solution.

Patch usage models provide a basis for process standardization. They help people involved with
patching -- from help desk agents to systems administrators to IS managers -- understand how
patching works from end to end. And they serve to reinforce good system management practices

4

3. Patch Usage Models
This section presents usage models for different modes of patching. While this list is not intended
to be comprehensive, it does cover the most common reasons for applying patches. The usage
models presented include:

♦ New system installation

♦ Proactive patching

♦ Reactive patching

♦ Configuration change

♦ Operating system version change

♦ Independent Software/Hardware Vendor (ISV/IHV) qualification

Each of these processes is mapped out and discussed. In some cases, the use model refers to
portions of other models. This fact reinforces the idea of common process building blocks. In
addition, individual process steps or groups of steps are identified as requiring one or more of the
following:

♦ Tools: A utility or application to help perform the step

♦ Delivery: A channel for obtaining needed patches

♦ IT Processes: The formal rules that govern the performance of a task

These common elements work together in meeting an organization's patching needs.

The materials in this section are intended for reference. Each usage model is presented in three
parts:

♦ Description: a short overview of the usage model

♦ Table: listing the audience, start and end points, benefits, and elements mentioned above

♦ Diagram: a flowchart showing how the process proceeds from beginning to end

5

New System Installation

Description
The first usage model covers the installation of a new computer system. The features of this
usage model are listed in Table 1. It is depicted graphically in Figure 1. As the diagram indicates,
the process begins when a system order is planned, and it ends when the system is ready for its
intended role.

As stated earlier, major versions of the base HP-UX operating system (e.g., 10.20, 11.00) are
released, and the core O/S then remains unchanged. Modifications are made over time, for things
like new hardware enablement and defect fixes, through the use of patches.

Walking through the flowchart, there are two main branches for a new system installation. The
first is for systems that are the first of their kind. In this situation, there will probably not be a
template upon which to base the configuration. In the second branch, the system is an
incremental addition to an existing application class. Ideally in the latter case, a system "golden
image" has been created using Ignite-UX, and this image can simply be applied to the new
system.

Looking at the Tools, Delivery, and IT Processes blocks, it can be seen that a tool will be required
to identify necessary patches. In addition, a means of patch delivery is required both for installing
the base O/S and for installing addition patches. Finally, all aspects of the process need to be
governed by established IT processes. Without these, system set-up is an ad hoc process that
invites problems.

6

Table 1: New System Installation
Audience Systems administrators and integrators

Starting Point Preparing to order a new system

Completion
Criteria

System is functional for its intended role

Benefits ♦ Stable, complete operating system and utilities

♦ Timeliness: quick, repeatable

♦ Highest quality

Element Need Possible Solution

A way to identify specific,
necessary, additional patches
for 3rd party hardware and
software.

Consult with product vendor

A tool to create a master system
image

Ignite-UX (IUX)

Tools

A tool for installing patches and
patch bundles

Software Distributor (SD-UX)

Standard bundles of high-quality
patches

Support Plus media Delivery

A way to retrieve individual
patches

Electronically: HP's IT Resource
Center web site

(http://ITResourceCenter.hp.com)
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Process for setting up new computer systems

2. Process to install core O/S and patches from media or archive
image

3. Process for installing and configuring applications

4. Process to create a system recovery/archive image

5. Release-to-production process

7

Figure 1: New System Installation
Begin:

Preparing to Order
New System

First Unit of
Application or
Machine Class

Additional Unit
of Existing

Application or
Machine Class

Pre-
Ignited?

Install and
configure

applications

Install O/S from
media kit including
the highest-quality

bundle, using
patch_match_target

Identify, acquire, &
install specific

necessary additional
ISV patches.

(For IHV - Use IPR
media)

Go to
Proactive Patching

step 4

1

No

Yes

2

Pre-
Ignited?

Go to 2Yes

Have Ignite
image?

Go to 1No

End:
Functioning System

for Intended Role

Install Ignite
image

Yes

DeliveryTools
IT

Processes

No (or unnecessarily
pre-Ignited) Create

recovery/
archive
image

8

Proactive Patching
The next usage model covers proactive patching. Unlike reactive patching, which aims to solve a
known problem, proactive patching seeks to prevent problems and downtime due to known
problems for which a solution exists. The usage model for proactive patching is listed in Table 2
on the next page and shown in Figure 2 on the following page.

The starting point for proactive patching is a system that is functioning normally. This raises the
question "why patch proactively?" The simple answer is that latent problems may exist on a
system that appears to be working well. There are many types of potential problems that can be
avoided or fixed through proactive patching, including:

♦ security vulnerabilities

♦ memory leaks

♦ silent data corruption

♦ performance degradation

A good example of the need for proactive patching was Y2K. Systems that functioned normally
prior to January 1, 2000, would likely have experienced problems if they had not been proactively
updated.

Looking at the process flowchart, there are two main approaches to proactive patching. The first
is normal, scheduled maintenance. This is often an opportunity for proactive support. Depending
on the needs and the level of system support, the needs may be met using a system bundle or
through a custom proactive patch analysis.

The other type of proactive patching is in response to a notification or event. For example,
organizations that subscribe to patch notifications through HP's IT Resource Center may receive a
notice about a potential security vulnerability. At that point, the IT staff responsible for systems
maintenance needs to review the notice for applicability and potential risk. Based on their
analysis, they may decide to do one of the following:

♦ apply the patch outside of a regularly-scheduled maintenance window

♦ defer installation until the next maintenance cycle

♦ not apply the patch

As with a new system installation, some of the steps in proactive patching require tools, and some
require a method for patch delivery. All steps should be part of a comprehensive plan for software
change management.

Unlike reactive patching, which has clear goals and results, the success of proactive patching is
harder to quantify. In fact, the desired result is that no one notices that it has happened. But even
so, proactive patching is a vital part of systems management.

9

Table 2: Proactive Patching
Audience IT planners, systems administrators, and proactive support engineers

Starting Point Functioning system

Completion
Criteria

Updated production standard

Benefits ♦ Problem avoidance

♦ Standardization

♦ Reduced downtime costs

♦ Reduced risk

♦ Enhanced functionality and tools

Element Need Possible Solution

Tool for proactive patch
notification

IT Resource Center web site
(http://ITResourceCenter.hp.com)

Tool for custom proactive patch
analysis

Custom Patch Manager (CPM)
available through the IT Resource
Center web site

Tools

A tool for adding or subtracting
patches from a pre-determined
list.

Software Distributor (SD-UX)

Standard bundles of high-quality
patches

Support Plus media Delivery

A way to retrieve individual
patches

Electronically: HP's IT Resource
Center web site
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Process for scheduled, normal maintenance

2. Process for evaluating off-cycle events and notifications

3. Process for testing changes in a non-production environment,
including:

♦ Software depot creation

♦ Installation on test system

♦ Operating system verification testing

♦ Application verification testing

♦ Move-to-production process

♦ Production verification

10

Begin:
Start with

functioning system

Scheduled,
normal

maintenance
on depot

Off-cycle,
triggered by
something

Figure 2: Proactive Patching

Use standard
proactive

bundle

Perform
custom

proactive
analysis

Add or subtract
additional,

specific patches,
including any

deferred patches

3

Go to 4

Install, test, &
verify
in test

environment

Update
production

depot/
archive

Review issue for
relevance,

severity,
& urgency

Is the issue
relevant?

Is the issue
urgent?

Yes

End:
Do Nothing

Yes
Go to Reactive
Patching step 6

No

Go to 3No

Update test/
pre-

production
depot/

archive

4

End:
New production

standard

DeliveryTools
IT

Processes

Deploy in
production

Testing
successful?

Yes

Determine cause of
failure and update

configuration
No

11

Reactive Patching
The kind of patch usage that people are most familiar with is reactive patching. This is done in
response to a problem that is currently visible and impacting the system. The usage model for
reactive patching is presented in Table 3 and Figure 3 on the next two pages.

The starting point for reactive patching is a system with a problem. When this happens, the
critical first step is to determine the root cause of the problem. This requires diagnostic tools and
processes for troubleshooting.

A common but inappropriate approach to reactive patching is to apply many changes at once,
hoping that one of them will fix the problem. This might consist of applying a patch bundle, or it
might simply be the application of several individual patches. In the past HP support engineers
would sometimes tell customers to "bring the system up to the latest patch level" before they
would attempt to resolve a problem. This approach is no longer recommended by HP Response
Center engineers.

There are many reasons why it is wrong to make several changes at once in a reactive situation.
First, even if the problem is solved, the cause of the problem will remain unclear. Second, any
change introduces some amount of risk. The more changes that are made, the greater the risk.
Especially in reactive support situations, changes need to be minimized. Finally, if the application
of several patches does not resolve the problem, the process of troubleshooting must start again
at the beginning. But since the system no longer matches the production standard, even if a
solution is eventually identified, it may not work for similar systems. In short, time spent in
diagnosing a problem is well worth the investment.

Returning to Figure 3, there are two possible results from problem diagnosis. Either a fix can be
identified, or none can be found. In the latter case, it is time to contact HP support. This leads to
HP's patch creation process. If, on the other hand, a patch can be found, there are still decisions
to make. If the problem is severe and it is clearly addressed by the patch, it may need to be
installed immediately. If the problem can wait, the fix may be deferred until the next regularly-
scheduled maintenance window. Finally, it may be that the problem is not severe enough, or the
fix is not complete or reliable enough, to warrant its use. In this case, the initial fix is rejected and
the process starts over.

For reactive patching, tools play a key role in the process. Tools help the system administrator to
diagnose the problem. They also help in testing and implementing a solution. It is also critical to
have established procedures in place for reactive support.

12

Table 3: Reactive Patching
Audience Systems administrators and reactive support engineers

Starting Point System is experiencing a problem

Completion
Criteria

The problem has been resolved or is judged to be minor

Benefits ♦ Problem resolution

♦ Timely delivery of fix

♦ Controlled changes

Element Need Possible Solution

Diagnostic tool to determine root
cause of problem

Diagnostic & support media
available on Support Plus

Tool to analyze patches for:

♦ Applicability

♦ Risk

♦ Dependencies

IT Resource Center web site
(http://ITResourceCenter.hp.com)

A tool for installing patches Software Distributor (SD-UX)

Tools

A means to submit bugs to HP
for which no patch exists

HP Response Center

Delivery A way to retrieve individual
patches

Electronically: HP's IT Resource
Center web site
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Problem diagnosis procedures

2. Process to evaluate candidate solutions

3. Process to submit a new defect report to vendor

4. Process for testing and validating fixes in non-production
environment

5. Process for distributing fix to software depot servers

6. Release-to-production process for fix

13

Begin:
System has a

problem

Figure 3: Reactive Patching

Fix found

No fix found

Analyze fix for:
� Risk
� Dependencies
� Installation

issues

6

Go to Proactive
Patching step 4

Contact HP for
support

To HP Patch
Creation Process

(not shown)

Fix
approved

for
immediate

action

Acquire
fix

Fix
deferred

Go to Proactive
Patching step 3

Fix
rejected

Go to 5

Diagnose or
reanalyze the

problem

5

DeliveryTools
IT

Processes

Add to
deferred list
and wait for
scheduled

maintenance

14

Configuration Change
System changes are made for many reasons. Some examples include:

♦ Addition of new hardware

♦ Replacement/upgrade of existing hardware

♦ Upgrade of existing applications

♦ Installation of new software

♦ Migration to a new hardware platform

Whenever a change is made, it may be necessary to add or update the patches on a system.
Table 4 and Figure 4 on the next two pages describe this process. There are two distinct paths
depending on whether the change is related to hardware or software. In the case of adding new
hardware, the patches required are likely to be a mix of bug fixes and hardware enablement
drivers. Once the necessary patches are identified, the process follows the standard path of
retrieval, validation, and deployment.

Because each application is unique, it may not be possible to develop specific IT processes for
upgrades. However, a generic process map will still help to outline the steps required. For many
changes, the first thing that must be determined is whether the new application or version is
supported on the current operating system. If the hardware or software involved requires a new
version of the operating system, this change must be made first.

Unlike the core operating system, HP does not always have a set of recommended patches for
third-party applications. Rather, each application provider must specify what combination of
operating system and patches their software is certified to work with. (See the usage model for
ISV/IHV qualification.) For this reason, it is often necessary to contact application vendors to get
their patch recommendations. As with hardware, once the necessary patches have been
identified, they must be retrieved. The process then moves on to testing and deployment.

15

Table 4: Configuration Change
Audience IT planners and systems administrators

Starting Point Planning for a change to hardware or software

Completion
Criteria

New hardware or software is installed and functioning properly

Benefits ♦ Minimized downtime

♦ Upgraded/enabled new hardware or software

♦ Stable operations

Element Need Possible Solution

A tool to identify necessary
patches

Vendor recommendations

Tool to analyze patches for:

♦ Risk

♦ Dependencies

♦ Applicability

IT Resource Center web site
(http://ITResourceCenter.hp.com)

Tools

A tool for installing patches Software Distributor (SD-UX)

Delivery A way to retrieve individual
patches

Electronically: HP's IT Resource
Center web site
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Process to evaluate possible changes to configuration

2. A hardware installation process

3. A new software installation process

4. A software upgrade process

5. A process for implementing, testing, and evaluating changes in a
non-production environment

6. Process for distributing software changes to software depot
servers

7. Release-to-production process

16

Begin:
Planning for change

to hardware or
software

Hardware

Figure 4: Configuration Change

Acquire &
apply enabling

software and
configure

system

Go to Proactive
Patching step 4

Install
hardware

Software

Check with
application vendor

for specific tools and
recommendations

Analyze needs
and acquire

patches

Is S/W
supported on
current O/S?

Go to O/S
Version
Change

No

Yes
Install S/W
application

Install patches
and configure

O/S

DeliveryTools
IT

Processes

Identify
necessary
patches &
software

7

Go to 7

17

Operating System Version Change
One of the most challenging tasks facing a systems administrator is performing an operating
system version change. Maintaining data integrity while minimizing system downtime can be very
difficult. For this reason, the first step in the change process should be a determination of whether
the change is really necessary. While a new version of the operating system may offer advanced
features -- 64-bit computing, for example -- these must be balanced against requirements for
stability and availability.

Often, a version change is required when migrating to a new hardware platform. For example, the
latest server platform may require the latest operating system version. In this case, the challenge
is compounded by the fact that both the software and the hardware are being changed. Since the
new hardware will not run the current operating system, the only option is to perform a new
installation and then migrate the existing data. Before this is done, it is imperative to verify that
this operation is supported by the applications involved. A data migration plan is a key component
in the overall process. The format should be similar to a disaster recovery plan, and like a
disaster recovery plan, it should be thoroughly tested in advance.

If, after reviewing all available options, an in-place version change is decided upon, the next step
is to review the existing system configuration. In terms of patches, different operating system
versions require different patch versions. In many cases, patches from preceding O/S versions
have been incorporated in the more recent O/S. However, if a patch is released for a particular
subsystem or application after both versions of the O/S are in production, there will be equivalent
patches for each operating system. The concept of patch equivalency is best illustrated with an
example. Assume that a new tape drive is released that requires an enablement patch to work
with HP-UX. There is likely to be one patch that works with HP-UX 10.x, and an equivalent patch
that works with HP-UX 11.x. In planning an O/S change, it is important to establish a patch
equivalency list to ensure that everything will function properly once the change is complete.

Testing and validation play a vital role in performing an operating system version change.
Because every configuration is different, systems used to evaluate changes should be as similar
as possible to the systems used in production. In addition to the operating system, evaluation
systems should be loaded with the complete operating system, application, and data stack. If
possible, simulated load testing should be performed. Rigorous testing in the evaluation phase
will help to ensure success in production.

As outlined above, a data migration plan should be developed for an operating system version
change. The ability to upgrade the operating system is no guarantee that existing applications
and data will continue to work. (See configuration change usage model.)

Finally, a formal release-to-production process should be established and followed when moving a
change into production. This should include details about master software location and
procedures for installation and validation. It should also include contingency planning in case of
problems, including provisions for backing out changes and returning to the original configuration.

18

Table 5: Operating System Version Change
Audience IT planners and systems administrators

Starting Point Considering a different O/S version

Completion
Criteria

System and applications functioning on new O/S version, if required

Benefits ♦ New hardware or software capability/enablement

♦ Safety of data

♦ Timeliness

♦ Enhanced functionality

Element Need Possible Solution

A tool to identify necessary
patches

IT Resource Center web site
(http://ITResourceCenter.hp.com)

A tool to identify equivalent
patches on different versions of
the operating system

IT Resource Center web site --
Patch Equivalency Tables

Tools

A tool for installing patches Software Distributor (SD-UX)

Delivery A way to retrieve necessary
patches

Electronically: HP's IT Resource
Center web site
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Process to evaluate possible changes to an O/S version

2. A software upgrade process

3. A process for evaluating changes in a non-production environment

4. Process for distributing software changes to software depot
servers

5. A data backup process

6. A data migration process

7. A data restore process

8. Release-to-production process

19

Begin:
Considering

upgrading the O/S

Figure 5: Operating System Version Change

Develop upgrade
implementation

plan

Go to New
Install step 1

New install
Develop data

migration plan

Configure pre-
production

software depot
for upgrade

Perform
upgrade and
verify on test/

pilot unit

Is O/S version
change

necessary?

Deploy
upgrade

End:
Decision to not

upgrade O/S

Upgrade or
install new

O/S?

Back up
existing data

Upgrade

Back up
existing data

End:
Systems running on

new O/S version

DeliveryTools
IT

Processes

Identify &
acquire

necessary
patches

No

Restore data

Take inventory of existing patches &
determine if equivalent patches are

needed on new O/S

8

Go to 8

Configure
production

software depot

20

ISV/IHV Qualification
The final usage model involves qualification testing by independent software vendors (ISV's) and
independent hardware vendors (IHV's). Since the requirements for this type of patching vary
depending on the vendor's goals, there are no firm rules for this usage model. But there are some
general guidelines that can help in establishing a target. These are shown in Table 6 and Figure
6.

Qualification testing often involves conflicting goals. On the one hand, there may be the need to
test with the latest features. On the other is the need for a stable O/S. Often the best approach to
balancing these requirements is to use standard patch bundles to establish a stable base O/S and
then to add any necessary individual patches.

As indicated in Figure 6, there are two basic paths for this usage model. The first branch is
followed if the product is new, or if this is the first time it is being qualified on a particular operating
system. The other path is for products that have already been qualified on one version of the O/S,
and are being re-qualified on a different O/S version or configuration.

In the case of a new qualification, the first step is to choose a target O/S version or versions. This
decision is clearly up to the vendor based on their internal research and goals. Once the
operating system version is chosen, the next step is to establish the degree of compatibility
desired. This will help to drive the choice of patches. For example, if a hardware vendor is
developing a new interface card that will only work on the newest platform, they will probably want
the newest O/S version, features, and patches. If, instead, they want maximum compatibility, they
may need to choose multiple operating system versions. In this case, the vendor will probably
want to avoid newer features in establishing a standard.

The process is somewhat easier for a product that has already been certified on a different
version of the operating system. For this situation, the first step is to analyze the differences
between the certified O/S version and the target. For minor version changes, it may be possible
to simply add patches and re-test. For changes in major O/S release, the process is similar to a
brand new certification.

Once the O/S and patches have been configured, qualification testing can begin. Again, the type
of testing involved will vary. If the testing is successful, the process ends. If not, the reasons for
certification failure must be determined. If they are related to the O/S configuration, it may be
possible to change some system software and patches and to re-test. Otherwise, hardware or
software re-work may be required. The process is repeated until the product passes the
certification tests.

21

Table 6: ISV/IHV Qualification
Audience Independent software and hardware vendors

Starting Point Product needs to be certified on O/S

Completion
Criteria

Product is certified on a particular O/S version

Benefits ♦ Confidence in result

♦ Established standard for product

Element Need Possible Solution

A way to select from standard
patch bundles

Support Plus bundle usage matrix

A tool to identify necessary
additional patches

IT Resource Center web site
(http://ITResourceCenter.hp.com)

Tools

A tool for installing patches Software Distributor (SD-UX)

Standard patch bundles Support Plus media (software)

Independent Product Release
(IPR) media (hardware)

Delivery

A way to retrieve necessary
patches

Electronically: HP's IT Resource
Center web site
Other: Request a patch tape from
the HP Response Center

IT Processes 1. Process to select target O/S version and configuration

2. A software installation process

3. A configuration update process

4. Certification testing process

22

Begin:
Product needs to be

certified on O/S

Figure 6: ISV/IHV Qualification

New product

Determine
difference

between prior
configuration and

new target

Brand new
product or update

to existing
product?

Update

Select target O/S
version and level

Identify & acquire
necessary

additional patches

DeliveryTools
IT

Processes

Select standard
patch bundle

Identify & acquire
necessary

additional patches

Perform
qualification

testing

Testing
successful?

End:
Product is certified

on O/S

9

Go to 9No
Go to Proactive
Patching step 4

Yes

23

4. Summary: Putting Theory into Action
The six patching usage models presented in this paper cover some common goals of patching.
The are summarized in Table 7. There are undoubtedly other ways in which patches are used
that were not covered. A usage model is a template that describes the goals of a process and
the steps involved. The models go a step further by identifying the key tools, delivery methods,
and processes necessary to support the overall goal.

Table 7: Summary of Patching Usage Models

Usage Model Description

New System Installation Used when installing new systems. Systems can be
either the first of kind/class or incremental units in an
existing environment. The focus is on establishing or
maintaining production standards.

Proactive Patching Covers proactive systems maintenance. Proactive
patching avoids failures due to known problems for which
solutions already exist.

Reactive Patching Used when a system or systems are experiencing
problems. The focus for this usage model is applying the
minimum change necessary to restore function.

Configuration Change This model is used when planning a change in hardware
or software to an existing system. The process
minimizes system downtime during the change.

Operating System Version Change Used when an operating system version change is being
considered. Emphasis is on maintaining data integrity
and software stack.

Independent Software/Hardware
Vendor Qualification Testing

For developers of third-party hardware and software.
Emphasis is on the development of an operating system
standard for qualification testing.

The task of patching falls within the larger framework of software change management. While
usage models are a useful tool, they need to be integrated with other operational processes.
Each operation is different. Processes must be formulated that meet specific needs. As needs
change and evolve over time, processes must reflect these changes. Otherwise, they can quickly
become outdated and fall into disuse. Creating, maintaining, and adhering to formal IT processes
is a cornerstone of high availability computing.

