
HP Pascal Language Reference
HP 9000 Series 200/300 Computers

HP Part Number 98615-90053

Flid8 HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the fumishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Servic~ Office.

Copyright © Hewlett-Packard Company 1987, 1988

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3Xii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berk~ley Software Distribution under license from the Regents of the University
of California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1987 ... Edition 1

October 1987 ... Update

April 1988 ... Edition 2. Merged update and added new features from Rev .. 6.2.

98615-90059, rev: 4/88 Printing History iii

iv Printing History

Table of Contents

Overview of HP Pascal
Introduction. .. 1

Manual Organization .. 1
Notation .. , , 1
Where to Start .. 2

HP Standard Pascal .. 3
Assignment Compatibility. .. 3
CASE Statement ... 3
Compiler Options (Directives) 3
Constant Expressions. .. 4
Constructors (Structured Constants) 4
Declaration Part .. 4
Halt Procedure ... 4
Heap Procedures. .. 4
Identifiers. .. 4
File I/O ... 5
Function Return : .. 6
Longreal Numbers .. 6
Minint ... 6
Record Variant Declaration .. 6
String Literals .. 6
String Type .. 6
WITH Statement .. '. 7
Numeric Conversion Functions .. 7
Modules ... 7

HP Pascal Dictionary
abs .. 9
AND ... 10
append ... 11
arctan .. 13
ARRAy .. 14

Array Declarations '.' .. 14
Array Constants and Array Constructors 16
Array Selector. .. 18
Conformant Arrays. .. 19

Table of Contents v

Assignment ... 25
Assignment Compatibility .. , 27

Special Cases .. 27
String Assignment Compatibility 28

BEGIN ... 29
binary ... '" 30
Blocks '" ... 31
boolean. '" .. '" 32
CASE .. 33
char '" .. 36
chr '" '" 37
close ... 38
Comments 39
CONST .. 40
Constants .. 41
cos ... 43
Directives .. 44

FORWARD Directive ... 45
dispose '" , 46
DIV .. 48
DO .. 49
DOWNTO .. 49
ELSE .. 49
END ... 49
Enumerated Types ... 50
eof ... 51
eoln " .. '" ... 52
exp -.. 53
EXPORT ... 54
Expressions 55
false .. 59
FILE ... 60

File Buffer Selector ... 61
Files ... 62

Opening and Closing Files .. 65
I/O Considerations ... 66
Logical Files .. 68
Physical Files ... 69
Textfiles 70

FOR ... 71
FUNCTION. .. 75
Function Calls .. 77

vi Table of Contents

get ... 79
Global Variables .. 81
GOTO ... 82
halt .. 84
Heap Procedures. .. 85
hex .. 86
Identifiers. .. 87
IF ... 89
IMPLEMENT. .. 92
IMPORT ... 92
IN ... 93
input ... 94
integer .. 95
LABEL ... 96
lastpos ... 97
linepos ... 98
In .. 99
Local Variables ... 100
longreal .. 101
mark .. 102
maxint ... 103
maxpos .. 104
minint ... 105
MOD .. 106
MODULE ... 107
Modules 109
new '" .. 111
NIL ... 113
NOT .. 114
Numbers ... 115

Integer Literals 115
Real and Longreal Literals 115

octal : .. 117
odd ... 118
OF .. 118
open .. 119
Operators .. 121

Arithmetic Operators. .. 121
Implicit Conversion ... 123

Boolean Operators .. 125
Concatenation Operators .. 126
Relational Operators .. 127

Table of Contents vii

Simple Relational Operators 127
Set Relational Operators 128
Pointer Relational Operators 128
String Relational Operators 128

SET Operators ... 131
Operator Precedence .. 132
Summary .. 132

OR ... 134
ord .. , 135
Ordinal Types .. 136
OTHERWISE .. 137
output ... 138
overprint ... 139
pack ... 141
PACKED .. 143
page ... 144
Parameters " .. 145
Pointers ... 148

Pointer dereferencing .. 149
position .. 150
pred ... 151
PROCEDURE .. 153
Procedures ... 154
PROGRAM .. 157
Programs .. 158

Declaration Part .. 160
. prompt .. 162
put .. 164
read ... 166

Implicit Data Conversion .. 168
readdir .. 170
readln '" ... 172
real ... 173
RECORD ... '. 174

Record Constructor 178
Record Selector. .. 180

Recursion .. 181
release. .. 182
REPEAT .. 184
Reserved Words .. 186
reset .. 187
rewrite .. 189

viii Table of Contents

round ... 191
Scope ... 192
seek ... 194
Separators ... 196
SET ... 197

Restricted Set Constructor ... 198
Set Constructor ... '. 199

setstrlen .. 201
Side Effects .. 203
sin .. 204
sqr ... ' 205
sqrt '.' " 206
Standard Procedures and Functions .. 207
Statements .. 208

Compound Statements .. 210
Empty Statements .. 211

str .. 212
strappend .. 214
strdelete ... 215
Strings .. 216

String Constructor .. 218
String Literals. .. 219
strinsert ... 221
strlen .. 222
strltrim .. 223
strmax .. 224
strmove .. 225
strpos ... 227
strread .. 228
strrpt ... 230
strrtrim. .. 231
strwrite .. 232
Subrange .. '.. 235
succ '.' ... ; '.' 236
Symbols .. 237
text ... 239
THEN ' .. 240
TO .. 240
true '.' ... 240
trunc .. ' 241
TyPE ... 242

Type Compatibility .' .. ' 244

Table of Contents ix

Identical Types . 244
Compatible Types .. 244
Incompatible Types .. 245

Types ... 246
unpack .. 249
UNTIL .. 251
VAR .. 251
Variables .. 253
WHILE .. 254
WITH ... 256
write " 260

Formatting Output to Textfiles .. 263
writedir .. 265
writeln .. 267

Appendix A: HP-UX Implementation of HP Standard Pascal
Overview .. 270
Compiler Options .. 270

ALIAS .. 271
ALLOW_PACKED .. 272
ANSI .. 275
CODE ... 276
CODE_OFFSETS .. 277
DEBUG ... 278
ELSE ... 279
END .. 279
ENDIF .. 280
FLOAT _HDW .. 281
IF .. 286
INCLUDE ... 287
LINENUM .. 288
LINES ... 289
LIST .. 290
LONGSTRINGS .. 291
NLS_SOURCE ... 292
OVFLCHECK .. 293
PAGE ... 294
PAGEWIDTH .. 295
PARTIAL_EVAL ... 296
RANGE ' 297
SAVE_CONST ... 298
SEARCH .. 299

x Table of Contents

SEARCH_SIZE. .. 300
SET ... 301
STANDARD_LEVEL ... 303
STRINGTEMPLIMIT ... 304
SYSPROG .. 306
TABLES ... 307
UNDERSCORE .. 308
WARN .. 309

Implementation Dependencies .. 310
Special Compiler Warnings. .. 313
HP-UX 5.0 Changes to the Pascal Compiler 313
HP-UX 5.5 Changes to the Pascal Compiler 320
HP-UX 6.0 Changes to the Pascal Compiler 321
HP-UX 6.2 Changes to the Pascal Compiler 325

Replacements for Pascal Extensions .. 327
U CSD Pascal Language Extensions. .. 327
Other Replacements .. 328

System Programming Language Extensions 329
Error Trapping and Simulation 330
Absolute Addressing of Variables 331
Relaxed Typechecking of VAR Parameters 332
The ANYPTR Type .. 334
Procedure Variables and the Standard Procedure CALL 335
Determining the Absolute Address of a Variable 336
Determining the Size of Variables and Types 337
Memory Allocation for Pascal Variables. .. 338

Special I/O Implementation Information 345
IMPORT of STDINPUT, STDOUTPUT, and STDERROR Files 345
I/O Buffer Space Increase .. 345
Special Uses of RESET and REWRITE. .. 346
Direct Access to Non-Echoed Keyboard Input 347
Using Non-Echoed Keyboard Input 348

Unbuffered Terminal Input .. 350
HP-UX pc Command. .. 351

Using the pc Command " ... 351
The Load Format , 352
Separate Compilation ... 353
U sing the +a Option .. 353
U sing the Program Profile Monitor. .. 354

Program Parameters and Program Arguments .. 355
Program Parameters .. 355
Program Arguments. .. 356

Table of Contents xi

HP -UX Environmental Variables. .. 359
CASE Statement Coding Precautions. .. 363
Heap Management .. 365

MALLOC .. 366
HEAP1 .. 366
HEAP2 .. 367
Pitfalls .. 368
Deciding which Heap Manager to Use 368
Specifying the Heap Manager. .. 369

Pascal and Other Languages ... 370
Calling Other Languages from Pascal 370
Calling Pascal from Other Languages 371

Run-Time Error Handling. .. 372
Error Messages .. 377

Operating System Run-Time Errors .. 377
I/O Errors ... 379
System Errors .. 380
Pascal Compiler Errors .. 381

Appendix B: Workstation Implementation of HP Standard Pascal
Overview .. 389
Compiler Options .. 390

ALIAS .. 391
ALLOW_PACKED .. 392
ANSI .. 394
CALLABS .. 395
CODE ... 396
CODE_OFFSETS .. 397
COPYRIGHT .. 398
DEBUG ... 399
DEF .. 400
END .. 401
FLOAT _HDW .. 402
HEAP _DISPOSE .. 404
IF .. 405
INCLUDE ... 406
IOCHECK ... 407
LINENUM .. 408
LINES ... 409
LIST .. 410
OVFLCHECK .. 411
PAGE ... 412

xii Table of Contents

PAGEWIDTH .. 413
PARTIAL_EVAL ... 414
RANGE ... 415
REF .. 416
SAVE_CONST ... 417
SEARCH .. 418
SEARCH_SIZE ... 419
STACKCHECK .. 420
SWITCH_STRPOS ... 421
SYSPROG .. 422
TABLES ... 423
UCSD ... 424
WARN .. 425

Implementation Dependencies 426
U CSD Pascal Language Extensions , 434
System Programming Language Extensions 449

Error Trapping and Simulation 449
Absolute Addressing of Variables 451
Relaxed Typechecking of VAR Parameters 452
The ANYPTR Type .. 453
Procedure Variables and the Standard Procedure CALL 454
Determining the Absolute Address of a Variable 455
Determining the Size of Variables and Types 456
The IORESULT Function .. 457

Pascal File System .. " 460
Physical and Logical Files. .. 460
Syntax of File Specifiers (File Names) 460
Opening a File ... 464
Disposition of Files Upon Closing 466
Standard Files and the Program Heading 466
File System Differences . 467

CASE Statement Coding Precautions. .. 468
Heap Management 470

MARK and RELEASE .. 470
NEW and DISPOSE .. 471

Compilation Problems ... 473
Can't Run the Compiler ... 473
File Errors 900 through 908 .. 474
Errors when Importing Library Modules 475
Not Enough Memory .. 475
Insufficient Space for Global Variables 476
Operating System Errors 403 through 409. .. 476

Table of Contents xiii

FOR-Loop Error 702 .. 476
Error Messages .. 476

Unreported Errors .. 477
Operating System Run-Time Errors .. 478
I/O Errors ... 479
I/O LIBRARY Errors ... 482
Graphics LIBRARY Errors ... 484
Compiler Syntax Errors. .. 485

xiv Table of Contents

Overview of HP Pascal

Introduction
Niklaus Wirth designed the programming language Pascal in 1968 as a vehicle for teaching
the fundamentals of structured programming and as a demonstration that it was possible
to efficiently and reliably implement a "non-trivial" high level language. Since then,
Pascal has established itself as the dominant programming language in university-level
computer science courses. It has also become an important language in commercial
software projects, especially in systems programming.

Hewlett-Packard Standard Pascal (HP Pascal) is a company-standard language currently
implemented on several Hewlett-Packard computers and is a superset of American
National Standards Institute (ANSI) Pascal.

This section outlines the organization of this manual and summarizes the differences
between Pascal and HP Pascal. The experienced Pascal programmer may use these
summaries as a guide for further study of unfamiliar features.

Manual Organization
This manual is a Language Reference for HP Pascal. Here you will find a description
for each keyword (reserved words and standard identifiers) recognized by HP Pascal. In
addition to the keywords, this manual contains entries for topics important to HP Pascal
but not necessarily related to a particular keyword.

After the keyword section, you will find "implementation" sections. These sections
describes HP Pascal for your particular computer. This information includes the
minimum and maximum ranges for numeric values, restrictions on the sizes of variables,
compiler options, system programming extensions, and error codes.

Notation
Throughout this document, HP Pascal reserved words and directives appear in uppercase
letters, e.g. BEGIN, REPEAT, FORWARD. Standard identifiers appear in lowercase let:
ters, in a typewriter-like type-style, e.g. readln, maxint, text. General information con­
cerning an area of programming (a topic) appears as an entry with initial capitalization,
e.g. Scope, Comments, Standard Procedures and Functions.

Overview of HP Pascal 1

Where to Start
If you are totally unfamiliar with the Pascal programming language, this manual is not
the place to start learning. Like a dictionary, a reference contains the facts, but trying
to learn a language by reading its dictionary is a very difficult task. There are many
introductory texts available that make learning Pascal much more enjoyable.

If no other book is currently available, do not try to read this manual from cover to
cover. Start, instead, by reading the topics covered in this manual. Here is a partial list
to get you started.

• Symbols, Identifiers, and Reserved Words

• Operators, Numbers, and Expressions

• Constants, Types, and Variables

• Statements, Assignment, Procedures, and Functions

• Programs and Modules

When you have read all of the topics and studied the keywords, you may be able to write a
working program. Be sure to also read the implementation section of this manual. There
are several examples of working programs throughout this manual. However, there are
more "partial" examples which only show the area of interest for a particular keyword.

If you are familiar with Pascal but not HP Pascal, you may only need to refer to the
implementation section of this manual. However, HP Pascal has features not found
in other implementations. See the next section and the topics describing strings and
modules.

If you are familiar with HP Pascal, start reading the implementation section at the back
of this manual. The keyword section may prove handy when you want to check the
syntax or semantics of a particular keyword.

2 Overview of HP Pascal

HP Standard Pascal
The following is a list of the HP Pascal features which are extensions of ANSI Standard
Pascal. For the full description of a feature, refer to the appropriate keyword or topic.

Originally, the term "string" referred to any PACKED ARRAY OF char with a starting
index of 1. HP Pascal, however, supports the standard type string. To avoid confusion,
the term PAC is used for the type PACKED ARRAY OF char.

Assignment Compatibility
IfTI is a PAC variable and T2 is a string literal (or PAC variable), then T2 is assignment
compatible with TI provided that T2 is not longer than T1. If T2 is shorter than TI,
the system will pad TI with blanks.

If TI is real and T2 is longreal, the system truncates T2 to real before assignment.

CASE Statement
The reserved word OTHERWISE may precede a list of statements and the reserved word
END in a CASE statement. If the case selector evaluates to a value not specified in the
case constant list, the system executes the statements between OTHERWISE and END
(see CASE). Also, subranges may appear as case constants.

Compiler Options (Directives)
Compiler options appear between dollar signs ($). HP Pascal has five options: ANSI,
PARTIAL_EVAL, LIST, PAGE, and INCLUDE. The ANSI option sets the compiler to
identify in the listing when source code includes features which are not legal in ANSI
Standard Pascal. PARTIAL_EVAL permits the partial evaluation of boolean expressions.
LIST allows the suppression of the compiler listing. PAGE causes the listing to resume
on the top of the next page. INCLUDE specifies a source file which the compiler will
process at the current position in the program.

Other options are implementation defined. See the implementation section of this manual
for complete details.

Overview of HP Pascal 3

Constant Expressions
The value of a declared constant may be specified with a constant expression. A constant
expression returns an ordinal or floating-point value and may contain only declared
constants, literals, calls to the functions ord, chr, pred, succ, hex, octal, binary, and
the operators +. -, *, /, DIV, and MOD.

A constant expression may appear anywhere that a constant may appear.

Constructors (Structured Constants)
The value of a declared constant can be specified with a constructor. In general, a
constructor establishes values for the components of a previously declared array, record,
string or set type. Record, array, and string constructors may only appear in a CaNST
section of a declaration part of a block. Set constructors, on the other hand, may also
appear in expressions in executable statements and their typing is optional.

Declaration Part
In the declaration part of a block, you can repeat and intermix the CaNST, TYPE, and
VAR sections.

Halt Procedure
The halt procedure causes an abnormal termination of a program.

Heap Procedures
The procedure mark marks the state of the heap. The procedure release restores the
state of the heap to a state previously marked. This has the effect of deallocating all
storage allocated by the new procedure since the program called a particuiar mark.

Identifiers
The underscore character (_) may appear in identifiers, but not as the first character.

4 Overview of HP Pascal

File 1/0
A file may be opened for direct access with the procedure open. Direct access files have
a maximum number of components, indicated by the function maxpos, and the current
number of written components, indicated by the function lastpos. The procedure seek
places the current position of a direct access file at a specified component. Data can
be read from a direct access file or write to it with the procedures readdir or writedir,
which are combinations of seek and the standard procedures read or write. A text file
cannot be used as a direct access file.

A file may be opened in the "write-only" state without altering its contents using the
procedure append. The current position is set to the end of the file.

Any file may be explicitly closed with the procedure close.

To permit interactive input, the system defines the primitive file operation get as
"deferred get" .

The procedure read accepts any simple type as input. Thus, it is possible to read a
boolean or enumerated value from a file. It is also possible to read a value which is a
packed array of char or string.

The procedure write accepts identifiers of an enumerated type as parameters. An
enumerated constant may be written directly to a file.

The function position returns the index of the current position for any file which is
not a textfile. The function linepos returns the integer number of characters which the
program has read from or written to a textfile since the last line marker.

The procedures page, overprint, and prompt operate on textfiles. Page causes a page eject
when a text file is printed. Overprint causes the printer to perform a carriage return
without a line feed, effectively overprinting a line. Prompt flushes the output buffer
without writing a line marker. This allows the cursor to remain on the same screen line
when output is directed to a terminal.

Overview of HP Pascal 5

Function Return
A function may return a structured type, except the type file. That is, a function may
return an array, record, set or string.

Longreal Numbers
The type longreal is identical with the type real except that it provides greater precision.
The letter "L" precedes the scale factor in a longreal literal.

Minint
The standard constant minint is defined in the HP Pascal. The value is implementation
dependent.

Record Variant Declaration
The variant part of a record field list may have a subrange as a case constant.

String Literals
HP Pascal permits the encoding of control characters or any other single ASCII character
after the number symbol (#). For example, the string literal #G represents CTRL-G
(i.e. the bell). A character may also be encoded by specifying its value (0 .. 255) after the
number symbol. For example, #7 represents CTRL-G.

String Type
HP Pascal supports the predefined type string. A string type is a packed array of char
with a declared maximum length and an actual length that may vary at run time.

A variable of type string may be compared with a similar variable or a string literal, or
assign a string or string literal to a string.

Several standard procedures and functions manipulate strings.

• Strlen returns the current length of a string;

• Strmax the maximum length.

• Strwri te writes one or more values to a string;

• Strread reads values from a string.

• Strpos returns the position of the first occurrence of a specified string wi thin anot h('r
string.

6 Overview of HP Pascal

• Strl trim and strrtrim trim leading and trailing blanks, respectively, from a string.

• Strrpt returns a string composed of a designated string repeated a specified number
of times.

• Strappend appends one string to another.

• Str returns a specified portion of a string, i.e. a substring.

• Setstrlen sets the current length of a string without changing its contents.

• Strmove copies a substring from a source string to a destination string.

• Strinsert inserts one string into another.

• Strdelete deletes a specified number of characters from a string.

WITH Statement
The record list in a WITH statement may include a call to a function which returns a
record as its result (see WITH).

Numeric Conversion Functions
The functions binary, octal, and hex convert a parameter of type string or PAC, or a
string literal, to an integer. Binary interprets the parameter as a binary value; octal as
an octal value; hex as a hexadecimal value.

Modules
HP Pascal supports separately compiled program fragments called modules. Modules
may be used to satisfy the unresolved references of another program or module.

Typically, a module "exports" types, constants, variables, procedures, and functions. A
program can then "import" a module to satisfy its own references.

This mechanism allows commonly used procedures and functions to be compiled sep­
arately and used by more than one program without having to include them in each
program.

See MODULE.

Overview of HP Pascal 7

8 Overview of HP Pascal

abs
This function computes the absolute value of its argument.

Semantics

numeric
expression

The function abs(x) computes the absolute value of the numeric expression x. If x is an
integer value, the result will also be an integer.

An error may result from taking the absolute value of minint.

Examples

Input Result

abs(-13) 13 {integer result}

abs(-7.11) 7. 110000E+OO

abs 9

AND
This boolean operator returns true or false based on the logical AND of the boolean
factors.

Semantics

boolean
factor

The logical AND operation is illustrated in this table:

Example Code
VAR

x

false

false

true

true

bit6, bit7 boolean;
counter integer;

BEGIN

y

false

true

false

true

IF bit6 AND bit7 THEN counter := 0;

IF bit6 AND (counter = 0) THEN bit7
END

10 AND

xANDy

false

false

false

true

true;

append
This procedure adds data at the end of an existing file.

Item Description

file identifier name of a logical file

physical file spec- name to be associated with f; must be a
ifier string expression or PAC variable

options string a string expression or PAC variable

Examples
append (file_var)
append(file_var.phy_file_spec)
append(file_var.phy_file_spec.opt_str)
append(fvar.'SHORTFILE')

Semantics

Range

file cannot be of type text

implementation dependent

The procedure append(f) opens file f in the write-only state and places the current position
immediately after the last component. All previous contents of f remain unchanged. The
eof(f) function returns true and the file buffer r is undefined. Data can now be written
on f.

If f is already open, append closes and then reopens it. If a file name is specified, the
system closes any physical file previously associated with f.

Illustration
Suppose examp_file is a closed file of char containing three components. In order to open
it and write additional material without disturbing its contents, we call append.

append 11

{initial condition}

append(examp_file);

12 append

state: closed

current position
1

state: write-only
examp_file": undefined
eof(examp_file): true

arctan
This function returns the principal value of the angle which has the tangent equal to the
argument. This is the arctangent function.

Examples

Input Result

arctan (num_exp)

arctan(2) 1.107149E+OO

arctan(-4.002) -1.32594E+OO

Semantics
The result is in radians within the range -1T /2 through 1T /2. This function returns a real
for integer or real arguments, and longreal for longreal arguments.

arctan 13

ARRAY
An array is a fixed number of components that are all of the same type.

array type
identifier

Array Declarations
An array type definition consists of the reserved word ARRAY, an index type in square
brackets, the reserved word OF, and the component type. The reserved word PACKED
can precede ARRAY. It instructs the compiler to optimize storage space for the array
components.

A computable index designates each component of an array.

The index type must be an ordinal type. The component type can be any simple,
structured, or pointer type, including a file type. The symbols (. and .) can replace the
left and right square brackets, respectively.

An array type is a user-defined structured type.

A component of an array can be accessed using the index of the component in a selector.

In ANSI Standard Pascal, the term "string" designates a packed array of char with a
starting index of 1. HP Pascal defines a standard type string which is identical with a
packed array of char except that its actual length may vary at run time. To distinguish
these two data types, the acronym PAC will denote

PACKED ARRAY [1 .. n] OF char;

throughout this manual.

The maximum allowable number of elements is implementation-dependent.

14 ARRAY

Permissible Operators

Operator Type Operator

assignment .=

relational (string or PAC) <,<=, =,<>, >=, >

Standard ARRAY Procedures

Object Procedure N arne

array parameters pack, unpack

Example Code
TYPE

name = PACKED ARRAY [1 .. 30] OF char; {PAC type}
list = ARRAY [1 .. 100] OF integer;
strange = ARRAY [boolean] OF char;
flag = ARRAY [(red, white, blue)] OF 1 .. 50;
files = ARRAY [1 .. 10] OF text;

Multi-Dimensioned Arrays
If an array definition specifies more than one index type or if the components of an array
are themselves arrays, then the array is said to be multi-dimensioned. The maximum
allowable number of array dimensions is implementation-dependent.

TYPE
{ equivalent definitions of truth}
truth = ARRAY [1 .. 20] OF

ARRAY [1..5] OF
ARRAY [1 .. 10] OF boolean;

truth = ARRAY [1 .. 20] OF
ARRAY [1 .. 5. 1 .. 10] OF boolean;

truth = ARRAY [1 .. 20, 1 .. 5] OF
ARRAY [1 .. 10] OF boolean;

truth = ARRAY [1 .. 20, 1 .. 5, 1 .. 10] OF boolean;

ARRAY 15

Array Constants and Array Constructors
An array constant is a declared constant defined with an array constructor which specifies
values for the components of an array type.

An array constructor consists of a previously defined array type identifier and a list of
values in square brackets. Each component of the array type must receive a value which
is assignment compatible with the component type.

Array Constant

array type
identifier

constant

constant

structured
constant

Within the square brackets, the reserved word OF indicates that a value occurs repeat­
edly. For example, 3 OF 5 assigns the integer value 5 to three successive array compo­
nents. The symbols (. and .) can replace the left and right square brackets, respectively.
An array constant must not contain files.

Array constructors are only legal in a CONST section of a declaration part. They cannot
appear in other sections or in executable statements.

An array constant can be used to initialize a variable in the executable part of a block.
You can also access individuai components of an array constant in the body of a block,
but not in the definition of other constants (see the subtopic, Array Selector).

Values for all elements of the structured type must be specified and must have a type
identical to the type of the corresponding elements.

16 ARRAY

Example Code
TYPE

boolean_table = ARRAY [1 .. 5] OF boolean;
table = ARRAY [1 .. 100] OF integer;
row = ARRAY [1 .. 5] OF integer;
matrix = ARRAY [1 .. 5] OF row;
color = (red, yellow, blue);
color_string = PACKED ARRAY [1 .. 6] OF char;
cOlor_array = ARRAY [color] OF color_string;

CONST
true_values
init_valuesl
init_values2
identity

colors

= boolean_table [5 OF true] ;
= table [100 OF 0] ;
= table [60 OF 0,40 OF 1];
= matrix [row [1, 0, 0, 0, 0],

row [0, 1, 0, 0, 0],
row [0, 0, 1,0,0],
row [0, 0, 0, 1,0],
row [0, 0, 0, 0, 1]];

cOlor_array [color_string ['RED', 3 OF ' '],
cOlor_string ['YELLOW'],
cOlor_string ['BLUE', 2 OF ' ']];

In the last example, the type of the array component is char, yet both string literals and
characters appear in the constructor. This is one case where a value (string literal) is
assignment compatible with the component type (char). Alternatively, you could write

colors = color_array['RED','YELLOW','BLUE'];

for the last constant definition.

The name of the previously declared literal string constant can be specified within a
structure constant.

CONST
red 'red ,.
yellow = 'yellow';
blue 'blue ';

coiors = color_array color_string[red] ;
cOlor_string [yellow] ;
color_string[blue]];

ARRAY 17

Array Selector
An array selector accesses a component of an array. The selector follows an array
designator and consists of an ordinal expression in square brackets.

array type
identifier

ord in'a 1
expression

The expression must be assignment compatible with the index type of the array. An
array designator can be the name of an array, the selected component of a structure
which is an array, or a function call which returns an array. The symbols (. and .) can
replace the left and right brackets, respectively. The component of a multiple-dimension
array can be selected in different ways (see example).

For a string or PAC type, an array selector accesses a single component of a string
variable; that is, a character.

Example Code
PROGRAM show_arrayselector;
TYPE

a_type ARRAY [1 .. 10] OF integer;
VAR

integer; m.n
simp_array
multi-array
p

ARRAY [1 .. 3] OF 1 .. 100;
ARRAY [1 .. 5.1 .. 10] OF integer;
Aa_type;

BEGIN

m:= simp_array [2] ;

multi_array[2.9] := m;
multi_array[2] [9] := m;

{Assigns current ¥alue of 2nd
{component of simp_array to m.
{These are
{equivalent.

}
}
}
}

n:= pA[m MOD 10 + 1] * m {Dynamic array with computed }
END. { selector. }

18 ARRAY

Conform ant Arrays
The conformant array feature allows arrays of various sizes to be passed to a single
formal parameter of a routine. It also provides a mechanism for determining at runtime
the indices with which the actual parameter was declared.

Formal Parameter List

Formal Parameter Type

Index Type

formal
parameter type

Conformant arrays are defined within the formal parameter list of a procedure or
function. The diagrams show the extended syntax for a formal parameter list, and
the syntax for the definition (or "schemas") of conform ant arrays.

ARRAY 19

Conformant arrays can be passed by value or by reference.

Conformant arrays can be packed or unpacked. A "schema" is a organizational de­
scription of a conformant array parameter. Packed schemas are limited to one index.
Unpacked schemas can have any number of indices. In a schema with multiple indices,
the final array definition can be either packed or unpacked.

Conformant arrays cannot be PAC types.

An abbreviated syntax is allowed for specifying multi-dimensional conformant arrays.
The schema:

ARRAY [Index_type1] OF
ARRAY [Index_type2] OF

ARRAY [Index_type3] OF Type_IO

can be written as:

ARRAY [Index_type1; Index_type2; ... ; Index_type3] OF Type_IO

The bound identifiers (the low bound id and the high bound id in the index type
specification) are used to determine the indices of the actual parameter passed to the
formal conformant array. Their values are set when the routine is entered, and they
remain constant throughout that activation of the routine.

Bound identifiers are special objects. They are not constants and are not variables; thus
they cannot be used in CaNST or TYPE definitions, cannot be assigned to, and cannot
be used in any other context in which a variable is expected (such a.~ an actual VAR
parameter, FOR loop control variable, etc.).

Conformability
An actual array parameter must "conform" to the corresponding formal parameter. An
array variable can be passed to a routine with a corresponding formal conformant array
parameter if the array variable's type, AT "conforms with" the schema, S, of the formal
parameter.

An informal way of describing conformability is to say that AT conforms with S if, for
each dimension of AT (and S), the index types and component types of AT and S match.

20 ARRAY

For a more formal definition, let

AT an array type or conformant array type with a single index.
A1T the index type of AT.
ACT the component type of AT.

S a conformant array schema.
S1 the index type of S.
SC the component type of S.

The type AT conforms with S if all of the following are true:

• A1T is an ordinal type, and A1T is compatible with S1.

• The bounds of A1T are both within the closed interval specified by SI.

• Either:

• SC is the same type as ACT, or

• SC is a conformant array schema, and ACT conforms with se.
• Both AT and S are either packed or unpacked.

For example, given the following types and conformant array schemas:

Type:

type
INDEX = 1..20;
Tl = PACKED ARRAY [1 .. 10] OF INTEGER;
T2 = ARRAY [1 .. 5, 1 .. 10] OF INTEGER;
T3 = ARRAY [1 .. 50] OF INTEGER;

Conformant Array Schemas:

81 = ARRAY [10 .. hi: INDEX] OF ARRAY [smallest .. largest: INDEX] OF INTEGER;
82 = PACKED ARRAY [little .. big: INDEX] OF INTEGER;
83 = ARRAY [least .. greatest: INDEX] OF INTEGER;
84 = ARRAY [10 .. hi: INDEX; 102 .. hi2: INDEX] OF INTEGER;

Conformance:

Type Conforms With Does not Conform With

Tl 82 81,83,86

T2 81, 84 82, 83

T3 none 81,82,83,84

ARRAY 21

Note

Single-character literals are never compatible with conformant
formal parameters.

Equivalence
Two conformant array schemas are "equivalent" if all of the following are true:

• The ordinal type identifier in each corresponding index type specification denotes
the same type.

• Either:

• the type identifier of the two schemas denotes the same type, or

• the component conformant array schemas of both schemas are equivalent.

Congruence
An actual array parameter of an actual procedure or function parameter must be
"congruent" with the corresponding formal parameter. Two conformant array schemas
are "congruent" if all of the following are true:

• The two schemas are both packed or unpacked.

• The two schemas are both by-value or by-reference schemas.

• The two schemas are equivalent.

Example
PROGRAM show_conform (output);

CONST
small_size = 3;
large_size = 7;

int = O .. 100;

small_matrix = ARRAY [1 .. small_size] OF
ARRAY [1 .. small_size] OF INTEGER;

large_matrix = ARRAY [1 .. large_size] OF
ARRAY [1 .. large_size] OF INTEGER;

VAR
small: small_matrix;
large: large_matrix;

22 ARRAY

PROCEDURE initialize_matrix
(VAR matrix: ARRAY [101 .. hi1: int] OF

ARRAY [102 .. hi2: int] OF INTEGER;
var

i: 1 .. large_size;
j: i .. large_size;

BEGIN
writeln ('--------------------------------');
FOR i := 101 to hi1 DO BEGIN

FOR i := 102 to hi2 DO BEGIN
matrix [i.j] := i;
write (i: 4);

END;
writeln;

END;
END;

BEGIN
writeln;
writeln('Small Matrix: ');
initialize_matrix (small);

writeln;
writeln('Large Matrix: ');
initialize_matrix (large);
END.

Inside the procedure, L01, Hi1, L02 and Hi2 can be used anywhere a variable or constant
can be used, except:

• In declaration statements. That is, you cannot declare another variable such as:

var
NewArray: array [L02 .. Hi2] of integer; { Illegal! }

• Nor can you "redimension"-change the size of-an array by assigning a value to
a bounds identifier:

L02:=3;
Hi2:=4;

{ Illegal! }
{ Illegal! }

• Nor can you do anything else to try to change such a value, such as pass it by
reference to a procedure or function.

ARRAY 23

To send multiple conformant arrays to a procedure (or function; all these statements
about conformant arrays can be applied to function parameters, too), you just separate
them by semicolons in the usual way. Also, you can intermix conformant arrays passed
by value and conformant arrays passed by reference.

If you pass a conformant array to a procedure, and, from that procedure, you wish to
pass the array to another procedure, you must pass it (the second time) by reference.

24 ARRAY

Assignment
An assignment statement assigns a value to a variable or a function result. The
assignment statement consists of a variable or function identifier, an optional selector~ a
special symbol (:=), and an expression which computes a value.

variable
identifier

function
identifier

expreSSlcr

The receiving element can be of any type except file, or a structured type containing a
file type component. An appropriate selector permits assignment to a component of a
structured variable or structured function result.

The type of the expression must be assignment compatible with the type of the receiving
element (see below).

Types must be identical except when an implicit conversion is done, or a run-time check
is performed which verifies that the value of the expression is assignable to the variable.

Assignment 25

Example Code
FUNCTION show_assign: integer;

TYPE
ree = RECORD

f: integer;
g: real;

END;

index = 1 .. 3;
table ARRAY [index] OF integer;

CONST
ct table [10, 20, 30];
cr rec [f:2, g:3.0];

VAR
s: integer;
a: table;
i: index;
r: rec;
pl,
p: -integer;
str: string[10];

FUNCTION show_structured: rec;
BEGIN

show_structured.f := 20;
show_structured := cr;
show_assign := 50;

{Assign to a }
{part of the record, }
{whole record, }
{outer function. }

END;

BEGIN {show_assign}
s := 5; i:= 3;
a := ct;
a [i], : = s + 5;
r := cr;
r.f := 5;
p := pl;
p- := r.f - a [i];
str : = ' Hi ! ' ;
show_assign := p-;

END; {show_assign}

26 Assignment

{Assign to a }
{simple variable, }
{array variable, }
{subscripted array variable, }
{record variable, }
{selected record variable, }
{pointer variable, }
{dynamic variable, }
{string variable, }
{function result variable. }

Assignment Compatibility
A value of type T2 can only be assigned to a variable or function result of type TI if T2
is assignment compatible with Tl. For T2 to be assignment compatible with TI, any of
the following conditions must be true:

• TI and T2 are type compatible types which are neither files nor structures that
contain files.

• TI is real or longreal and T2 is integer or an integer subrange. The compiler
converts T2 to real or longreal prior to assignment.

• TI is longreal and T2 is real. The compiler converts T2 to longreal prior to
assignment.

• TI is real and T2 is longreal. The compiler rounds T2 to the precision of TI prior
to assignment.

Furthermore, a run-time or compile-time error will occur if the following restrictions are
not observed:

• If TI and T2 are type compatible ordinal types, the value of type T2 must be in
the closed interval specified by Tl.

• If TI and T2 are type compatible set types, all the members of the value of type
T2 must be in the closed interval specified by the base type of TI.

• A special set of restrictions applies to assignment of string literals or variables of
type string, PAC, or char (see below).

Special Cases
The pointer constant NIL is both type compatible and assignment compatible with any
pointer type.

The empty set [] is both type compatible and assignment compatible with any set type.

Assignment 27

String Assignment Compatibility
Certain restrictions apply to the assignment of string literals or variables of the type
string, packed array of char (PAC), or char.

• If Tl is a string variable, T2 must be a string variable or a string literal whose
length is equal to or less than the maximum length of Tl. T2 cannot be a PAC or
char variable. Assignment sets the current length ofTl.

• If Tl is a PAC variable, T2 must be a PAC or a string literal whose length is less
than or equal to the length of Tl. Tl will be blank filled if T2 is a string literal
or PAC which is shorter than Tl. T2 cannot be a string or a char variable. (See
table below.)

• If Tl is a char variable, T2 can be a char variable or a string literal with a single
character. T2 cannot be a string or PAC variable.

The following table summarizes these rules. The standard function strmax{s) returns the
maximum length of the string s. The standard function strlen{ s) returns the current
length of the string s.

String constants are considered string literals when they appear on the right side of an
assignment statement.

Any string operation on two string literals (such as the concatenation of two string
literals) results in a string of string type.

String, PAC, and String Literal Assignment

Tl:=T2 string PAC char string literal

string Only if Not allowed Not allowed Only if
strmax(Tl) >= strmax(Tl) >=
strlen(T2) 1 strlen(T2) 1

PAC Not allowed Only if Not allowed Only if
T1length >= T1length >=
T2 length strlen(T2)1
T2 is padded T2 is padded
if necessary if necessary

char Not allowed Not allowed Yes Only if
strlen(T2) = 11

1 The strlen function can only be used with strings; not PAC's.

28 Assignment

BEGIN
This reserved word indicates the beginning of a compound statement or block.

Semantics
BEGIN indicates to the compiler that a compound statement or block follows.

Example Code
PROGRAM show_begin(input. output);

VAR
running boolean;
i. j integer;

BEGIN
i := 0;
j := 1;
running := true;
writeln('See Dick run. ');
writeln('Run Dick run.');
IF running then

END;
END.

BEGIN
I := i + 1;
J := j - 1;

END;

BEGIN 29

binary
This function converts a binary string expression or PAC into an integer.

Item Description Range

binary string string expression or PAC variable implementation dependent

Examples

Input Result

binary(strng)

binary(' 10011 ,) 19

-binary('10011') -19

binary('llllllllllllllllllllllllll101101,)1 -19

Semantics
The string or PAC is interpreted as a binary value.

The three numeric conversion functions are binary, hex, and octal. All three accept
arguments which are string or PAC variables, or string literals. The compiler ignores
leading and trailing blanks in the argument. All other characters must be legal digits in
the indicated base.

Since binary, hex, and octal return an integer value, all bits must be specified if a negative
result is desired. Alternatively, you can negate the positive representation.

1 If your system supports 32-bit 2's-complement notation, this form also works.

30 binary

Blocks
A block is syntactically complete section of code.

label
declaration

Semantics

constant
declaration

type
declaration

variable
declaration

module
declaration

import
list

procedure
declaration

function
declaration

There are two parts to a block, the declani.tion part and the executable part. Blocks can
be nested. All objects appearing in the executable part must be defined in the declaration
part or in the declaration part of an outer block.

Note

MODULE declarations and IMPORT lists can not appear in inner
blocks. (Le. in procedures or functions)

Blocks 31

boolean
This predefined ordinal type indicates logical data.

-{SOOLEANr

Example
VAR

loves_me: boolean;

HP Pascal predefines the type boolean as:

TYPE
boolean = (false, true);

The identifiers false and true are standard identifiers, where true> false.

Boolean is a standard simple ordinal type.

Permissible Operators

assignment

boolean

relational

Standard Fonctions

Function Type

boolean argument

boolean return

32 boolean

Operator

AND, OR, NOT

<,<=,=,<>, >=, >, IN

Function Name

ord, pred, succ

eof, eoln, odd

CASE
The CASE statement selects a certain action based upon the value of an ordinal
expression.

Semantics
The CASE statement consists of the reserved word CASE, an ordinal expression (the
selector), the reserved word OF, a list of case constants and statements, and the reserved
word END. Optionally, the reserved word OTHERWISE and a list of statements can
appear after the last constant and its statement.

The selector must be an ordinal expression, i.e. it must return an ordinal value. A case
constant can be a literal, a constant identifier, or a constant expression which is type
compatible with the selector. Subranges can also appear as case constants.

A case constant cannot appear more than once in a list of case constants. Subranges
used as case constants must not overlap other constants or subranges.

Several constants can be associated with a particular statement by listing them separated
by commas.

It is not necessary to bracket the statements between OTHERWISE and END with
BEGIN .. END.

CASE 33

When the system executes a CASE statement:

1. It evaluates the selector.

2. If the value corresponds to a specified case constant, it executes the statement
associated with that constant. Control then passes to the statement following the
CASE statement.

3. If the value does not correspond to a specified case constant, it executes the
statements between OTHERWISE and END. Control then passes to the statement
after the CASE statement. A run time error occurs if you have not used the
OTHERWISE construction.

34 CASE

Example Code
PROCEDURE scanner;

BEGIN
get_next_char;
CASE current_char OF

'a' .. 'z', {Subrange label. }
'A' .. 'Z':

scan_word;

'0' .. '9':
scan_number;

OTHERWISE scan_special;
END;

END;

FUNCTION octal_digit
(d: digit): boolean;

BEGIN
CASE d OF

O .. 7: octal_digit
8 .. 9: octal_digit .=

END;
END;

{TYPE digit

true;
false;

O .. 9}

FUNCTION op
(operator:
operandi,
operand2:

: real;
BEGIN

{TYPE operators=(plus ,minus ,times ,divide)}
operators;

real)

CASE operator OF
plus: op operandi + operand2;
minus: op.- operandi - operand2;
times: op operandi * operand2;
divide: op operandi / operand2;

END;
END;

CASE 35

char
This predefined ordinal type is used to represent individual characters.

The char type supports any 8-bit character set (such as ASCII, ROMAN8, and others)
that is available and installed on your system. The Pascal compiler on HP-UX systems
equipped for handling 16-bit international character sets also support 16-bit characters
as char type.

A pair of single quote marks encloses a char literal.

Permissible Operators

Operator Type

assignment

relational

Standard Functions

Function Type

char argument

char return

Example Code
VAR

dO_YOU: char;

BEGIN
dO_YOU 'Y';

END;

36 char

Operator

<, <=,=, <>, >=, >, IN

Function Name

ord

chr,pred, succ

chr
This function converts an integer numeric value into an ASCII character.

Item Description Range

argument integer numeric expression o through 255

Examples

Input Result

chr(x)

chr(63) ?

chr(82) R

chr(13) Carriage Return

Semantics
The function chr(x) returns the character value, if any, whose ordinal number is equal
to the value of x. An error occurs if x is not within the range 0 through 255.

chr 37

close
This procedure closes a file so that it can no longer be accessed.

Item

file
identifier

Description

file identifier

options string

name of a logical file

a string expression or PAC variable

Examples
close(fil_var)
close(fil_var,opt_str)

Semantics

Range

implementation dependent

The procedure close(f) closes the file f so that it is no longer accessible. After close,
any references to the function eof(f) or the buffer variable (r) produce an error, and
any association of f with a physical file is dissolved.

When closing a direct access file , the last component of the file will be the highest-indexed
component ever written to the file (lastpos(f)). The value ofmaxpos for the file, however,
remains unchanged.

Once a file is closed, it can be reopened. Any other file operation on that file will produce
an error.

Option String
The options string specifies the disposition of any physical file associated with the file.
The value is implementation dependent. The compiler ignores leading and trailing blanks'
and considers upper and lower case equivalent. If no options string is supplied, the file
retains its previous (original) status. This means that after creating a file, if no option
string is specified, the file will be deleted.

See the Implementation Dependencies section in the HP-UX or Workstation Appendices
for further information.

38 close

Comments
Comments consist of a sequence of characters delimited by the special symbols { and },
or the symbols (* and *). The compiler ignores all the characters between these symbols.
Comments usually document a program.

Examples
{comment}
(*comment*)
{comment*)
{ { { {comment}
{This comment

occupies more than one line.}

Semantics
A comment is a separator and can appear anywhere in a program where a separator is
allowed. A comment can begin with { and close with *), or begin with (* and close with
}.

Nested comments are not legal, but comments in source code can occupy two or more
contiguous lines.

Comments 39

CONST
This reserved word indicates the beginning of one or more constant definitions.

identifier

Semantics

constant

structured
constant

Constant definitions appear after the program header (any LABEL declarations) and
before any procedure or function definitions. In HP Pascal, CONST, TYPE, and VAR
definitions can be intermixed.

Example Code
PROGRAM show_CONST;

LABEL 1;

TYPE
typel = integer;
type2 = boolean;
strl = string [5] ;

CONST
constl = 3.1415;
const2 = true;
strconst = strl['abcde'];

VAR
varl typel;

BEGIN
END.

40 CONST

Constants
A constant definition establishes an identifier as a synonym for a constant value. The
identifier can then be used in place of the value. The value of a symbolic constant must
not be changed by a subsequent constant definition or by an assignment statement.

The reserved word CaNST precedes one or more constant definitions. A constant
definition consists of an identifier, the equals sign (=), and a constant value. (See
CaNST.)

Constant Structured Constant

The reserved word NIL is a pointer value representing a nil-value for all pointer types.
Declared constants include the standard constants maxint and minint as well as the
standard enumerated constants true and false.

Constant expressions are a restricted class of HP Pascal expressions. They must return
an ordinal or floating-point value that is computable at compile time. Consequently,
operands in constant expressions must be integers, floating-point, or ordinal declared
constants. Operators must be +, -, *, /, DIV, or MOD. All other operators are excluded.
Furthermore, only calls to the standard functions odd, ord, chr, pred, succ, abs, hex, octal,
and binary are legal.

Starting at HP-UX Release 6.0, HP Pascal supports floating-point constant expressions
in the constant-definitions program segment. Leading + and - in front of real values are
allowed, and the real operators +, -, *, and / are recognized in expressions.

98615-90053, rev: 4/88 Constants 41

Here is an example of a typical floating-point constants definition:

CONST
x=2.0;
y=3.0;
z=x*y;

To change the sign of a real or longreal declared constant, use the negative real unary
operator (-). The positive operator (+) is legal but has no effect.

A constructor specifies values for a previously declared array, string, record, or set
type. Subsequent pages describe constructors and the structured declared constants
they define.

Constant definitions must follow label declarations and precede function or procedure
declarations. You can repeat and intermix CONST sections with TYPE and VAR
sections.

Example Code
CONST

fingers = 10;

pi = 3.1415;

message = 'Use a fork!';

nothing = NIL;

delicious = true;

{Unsigned integer.

{Unsigned real.

{String literal.

{Standard constant.

}

}

}

}

= -pi; {Real unary operator. }

} hands = fingers DIV 5; {Constant expression.

numforks = pred(hands);

42 Constants

{Constant expression with }
{call to standard function. }

98615-90053, rev: 10/87

cos
This function returns the cosine of the angle represented by its argument (interpreted in
radians). The range of the returned value is -1 through + 1.

Item Description Range

argument numeric expression implementation dependent

Examples

Input Result

cos (x_rad)

cos(1.62) -4.91836E-02

cos 43

Directives
A directive can replace a block in a procedure or function declaration.

formal
parameter list

formal
parameter list

In HP Standard Pascal, the only directive is FORWARD. The FORWARD directive
makes it possible to postpone full declaration of a procedure or function. Additional
directives can be provided by an implementation.

The term FORWARD can appear as an identifier in source code and, at the same time,
as a directive.

44 Directives

FORWARD Directive
The FORWARD directive permits the full declaration of a procedure or function to follow
the first call of the procedure or function. For example, suppose you declare procedures
A and B on the same level. A and B cannot both call each other without using the
FORWARD directive.

PROCEDURE A; FORWARD;
PROCEDURE B;

BEGIN

A; {calls A}

END;
PROCEDURE A; {full declaration of A}

BEGIN

B; {calls B}

END;

After using the FORWARD directive, you must fully declare the function or procedure
in the same declaration part of the block. Formal parameters, if any, and the function
result type must appear with the FORWARD declaration. You can omit these formal
parameters or result type, however, when making the subsequent full declaration (see
example below). If repeated, they must be identical with the original formal parameters
or result type.

The FORWARD directive can appear with a procedure or function at any level.

Example Code
FUNCTION exclusive_or (x.y: boolean): boolean;

FORWARD;

FUNCTION exclusive_or;
BEGIN

{Parameters not repeated.}

exclusive_or:= (x AND NOT y) OR (NOT x AND y);
END;

Directives 45

dispose
This procedure indicates that the storage allocated for the given dynamic variable is no
longer needed.

pOinter
identifier

Item Description

pointer identifier a variable of type pointer

tag value a case constant value

Examples
dispose (ptr_var)
dispose (ptr_var , tt, ... ,tn)

Range

cannot be NIL or undefined

must match case
constant value specified

in new

The procedure dispose(p) indicates that the storage allocated for the dynamic variable
referenced by p is no longer needed.

An error. occurs if p is NIL or undefined. After dispose, the system has closed any files
in the disposed storage and p is und~fined.

If you specified case constant values when calling new, the identical constants must appear
as t parameters in the call to dispos~.

The pointer p must not reference a dynamic variable that is currently an actual variable
parameter, an element of the record variable list of a WITH statement, or both.

46 dispose

Example Code
PROGRAM show_dispose (output);
TYPE

marital_status = (single, engaged, married, widowed, divorced);
year = 1900 .. 2100;
ptr = Aperson_info;
person_info = RECORD

name: string[25];
birdate: year;
next_person: ptr;
CASE status: marital_status OF

married .. divorced: (when: year;
CASE has_kids: boolean OF

true: (how_many: 1 .. 50);
false: 0

;) ;
engaged: (date: year)

VAR
P : ptr;

BEGIN

new(p);

dispose(p);

END;

new(p,engaged);

single 1;

dispose(p,engaged);

new(p,married,false);

dispose(p,married,false);

END.

dispose 47

DIV
This operator returns the integer portion of the quotient of the dividend and the divisor.

--..f dividend ~ divisor ~

Item

dividend

divisor

Examples

48 DIV

Description

an integer or integer subrange

an integer or integer subrange

Input

dvd DIV dvr

413 DIV 6

Range

not equal to 0

Result

68

DO
See FOR, WHILE, WITH.

DOWNTO
See FOR.

ELSE
See IF.

END
See BEGIN.

END 49

Enumerated Types
An enumerated type is an ordered list of identifiers in parentheses. The sequence in
which the identifiers appear determines the ordering. The ord function returns 0 for the
first identifier; 1 for the second identifier; 2 for the third identifier; and so on.

Enumerated Type

~ide~
There is no arbitrary limit on the number of identifiers that can appear in an enumerated
type. The limit is implementation dependent.

Enumerated types are user-defined simple ordinal types.

Permissible Operators

Operation

assignment:

Standard Functions

Parameter

enumerated argument

enumerated return

Example Code
TYPE

Operators

<, <-,;, <>, >=, >, IN,

Function

ord,pred, succ

pred, succ

days (monday. tuesday. wednesday.
thursday. friday. saturday. sunday);

color = (red. green, blue. yellow. cyan. magenta. white. black);

50 Enumerated Types

eof
This boolean function returns true when the end of a file is reached.

Item

file variable

Examples
eof
eof(file_var)

Semantics

Description Range

variable of type file file must be open

If the file f is open, the boolean function eof(f) returns true when f is in the write­
only state, when f is in the direct-access state and its current position is greater than
the highest-indexed component ever written to f, or when no component remains for
sequential input. Otherwise, eof(f) returns false. If false, the next component is
placed in the buffer variable.

When reading non-character values (e.g. integers, reals, etc.) from a textfile, eof may
remain false even if no other value of that type exists in the file. This can occur if the
remaining components are blanks.

If f is omitted, the system uses the standard file input.

eof 51

eoln
This boolean function returns true when the end of a line is reached in a textfile.

~~
~~ext fileKD--')

varlable

Item Description

textfile variable variable must be a textfile

Examples
eoln
eoln(text_file)

Semantics

Range

file must be open in the
read-only state

The boolean function eoln(f) returns true if the current position of textfile f is at an
end-of-line marker. The function references the buffer variable r, possibly causing an
input operation to occur. For example, after readln, a call to eoln will place the first
character of the new line in the buffer variable.

If f is omitted, the system uses the standard file input.

52 eoln

exp
This real function raises e to the power of the argument. The value used for N aperian e
is implementation dependent.

Item Description Range

argument numeric expression implementation dependent

Examples

Input Result

exp(num_exp)

exp(3) 2.00855369231877L+OOl

exp(8.8E-3) 1.008839E+OO

exp(8.8L-3) 1.00883883382898L+OOO

exp 53

EXPORT
This reserved word precedes the types, constants, variables, procedures, and functions
of a MODULE that can be used (IMPORTed) by other programs and modules.

See MODULE.

54 EXPORT

Expressions
An expression is a construct that represents the computation of a result of a particular
type. An expression is composed of operators and operands. An operator performs an
action on objects denoted by operands and produces a value.

Operators are classified as arithmetic, boolean, relational, set, or concatenation oper­
ators. An operand can be a literal, constant identifier, set constructor, or variable.
Function calls are also operands in the sense that they return a result which an operator
can use to compute another value.

The result type of an expression is determined when the expression is written. It never
changes. The actual result, however, may not be known until the system evaluates the
expression at run time. It may differ for each evaluation. A constant expression is an
expression whose actual result is computable at compile time.

In the simplest case, an expression consists of a single operand with no operator.

Examples

Example Expression

x:= 19;

100 + x;

(A OR B) AND (C OR D)

x > y

setA * setB;

'ice'+'cream'

Description

Simplest case. 19 is the expression in the
statement: x : = 19

Arithmetic operator with literal and variable
operands.

Boolean operator with boolean operands.

Relational operator with variable operands.

Set operator with variable operands.

Concatenation operator with string literal
operands.

Expressions 55

Syntax
Expression

integer
expression

real
expression

boolean
expression

string
expression

set
expression

Expression

simple
expression

Simple Expression

56 Expressions

simple
expression

Term

Simple Set Expression

Relational Expressions Involving Sets

simple ordinal
expresslon

simple set
expression

simple set
expresslon

Expressions 57

Factor

Set Factor

58 Expressions

simple ordinal
expression

false
This predefined boolean constant is equal to the boolean value false.

Example Code
PROGRAM show_false(output);

TYPE
what, lie boolean;

BEGIN
IF false THEN writeln('always false, never printed');
what := false;
lie := NOT true;
IF what = lie THEN writeln('Would I lie?');

END.

false 59

FILE
This reserved word designates a declared data structure.

file type
identifier

Semantics

type
identifier

A file type consists of the reserved words FILE OF and a component type. See also text.

A logical file is a declared data structure in a HP Pascal program. A physical file is an
independent entity controlled by the operating system. During execution, logical files
are associated with physical files, allowing a program to manipulate data in the external
environment.

A logical file is a sequence of components, all of the same type. They can be of any
type except a file type or a structured type with a file type component. The number of
components is not fixed by the file type definition.

File components can be accessed sequentially or directly using a variety of HP Pascal
standard procedures and functions.

It is legal to declare a packed file. Whether this has any effect on the storage of the file
is implementation dependent.

60 FILE

Example Code
TYPE

person = RECORD
name: PACKED ARRAY [1 .. 30] OF char;
age: 1 .. 100;

END;
person_file = FILE OF person;

bit_vector = PACKED ARRAY [1 .. 100] OF boolean;
vector_file FILE OF bit_vector;

data_file FILE OF integer;
doc_file = text;

File Buffer Selector
A file buffer selector accesses the contents, if any, of the file buffer variable associated
with the current position of a file. The selector follows a file designator and consists of
the circumflex symbol (A).

Buffer Variable:

---+j file ~
variable

A file designator is the name of a file or the selected component of a structure that is a
file. The @ symbol can replace the circumflex.

If the file buffer variable is not defined at the time of selection. a run-time error occurs.

Example Code
PROGRAM show_bufferselector;
VAR

f
a,b

BEGIN

FILE OF integer;
integer;

a:= f- + 2;

f-:=a + b;

END.

{Assigns current contents of file }
{buffer plus 2 to a. }

{Assigns sum of a and b to buffet }
{variable. }

FILE 61

Files
Files are the means by which a program receives input and produces output. A file is a
sequence of components of the same type. This type can be any type, except a file type
or a structured type with a file type component.

Logical files are files declared in a HP Pascal program. Physical files are files that exist
independently from a program and are controlled by the operating system. Logical and
physical files can be associated, enabling a program to manipulate data objects external
to itself.

The components of a file are indexed starting at component 1. Each file has a
current component. The standard procedure read(f,x) copies the contents of the current
component into x and advances the current position to the next component. The
procedure write(f,x) copies x into the current component and, like read, advances the
current position.

Each file has a buffer variable whose contents, if defined, can be accessed by using a
selector.

Each of the standard procedures reset, rewrite, append, and open opens a file for input
or output. The manner of opening a file determines the permissible operations. In
particular, reset opens a file in the read-only state, i.e. writing is prohibited; rewrite
and append open a file in the write-only state; that is, reading is prohibited; and open
opens a file in the read-write state, i.e. both reading and writing are legal.

All files are automatically closed on exit from the block in which they are declared,
whether by normal exit or non-local GOTO. Files allocated on the heap are automatically
closed when the file or structure containing the file is disposed. All files are closed at the
end of the program.

Files opened with reset, rewrite, or append are sequential files. The current position
advances only one component at a time. Files opened with open are direct-access files.
You can use the seek procedure to relocate the current position anywhere in the file.
Direct-access files have a maximum number of components, the number of which can be
determined by the standard function maxpos. However, no Pascal function exists that
can determine the maximum number of components in a sequential file.

62 Files

Textfiles are sequential files with char type components. Furthermore, end-of-line
markers substructure text files into lines. The standard procedure wri teln creates these
markers. The standard files input and output are textfiles. You cannot open textfiles for
direct access.

The following table lists each HP Pascal file procedure or function, together with a
brief description of its action. The third column of the table indicates the permissible
categories of files that a procedure or function can reference.

File Procedures and Functions

Procedure Permissible
or Function Action Files

append Opens file in write-only state. Current position any
is after the last component and eof is true.

close Closes a file. any

eof Returns true if file is write-only, if no component any
exists for sequential input, or if current position
in direct-access file is greater than lastpos.

eoln Returns true if the current position in a text file text files
is at an end-of-line marker.

get Allows assignment of current component to read-only or
buffer and, in some cases, advances current po- read-write files
sition.

linepos Returns number of characters read from or writ- text files
ten to textfile since last line marker.

lastpos Returns index of highest written component of direct-access
direct-access file. files

maxpos Returns maxint or the maximum component direct-access
read or written. Check implementation. files

open Opens file in read-write state. Current position any except a
is 1 andeof is false. textfile

overprint A form of write that causes the next line of a write-only
textfile to print over the textfile's current line. text files

page Causes skip to top of new page when a textfile write-only
is printed. text files

Files 63

File Procedures and Functions (continued)

Procedure Permissible
or Function Action Files

position Returns integer indicating the current compo- any file except
nent of a non-text file. a text file

prompt A form of write that ensures textfile buffers have write-only
been written to the device. No line marker is text files
written.

put Assigns the value of the buffer variable to the write-only or
current component and advances the current read-write files
position.

read Copies current component into specified variable read-only or
parameter and advances current position. read-write files

readdir Moves current position of a direct-access file to direct-access
designated component and then performs read. files

readln Performs read on textfile and then skips to next read-only
line. textfiles

reset Opens file in read-only state. Current position any
is 1.

rewrite Opens file in write-only state. Current position any
is 1 and eof is true. Old components discarded.

seek Places current position of direct-access file at direct-access
specified component number. files

write Assigns parameter value to current file compo- write-only or
nent and advances current position. read-write files

writedir Advances current position in direct-access file to direct-access
designed component and performs a write. files

writeln Assigns parameter value to current textfile com- write-only
ponent, appends a line marker and advances cur- textfiles
rent position.

64 Files

Opening and Closing Files
A program must open a logical file before any input, output, or other file operation
is legal. Four file opening procedures are available: reset, rewrite, append, or open.
When they appear as program parameters, the standard textfiles input and output are
exceptions to this rule. The system automatically resets input and rewrites output.

The procedure reset opens a file in the read-only state without disturbing its contents.
After reset, the current position is the first component and the program can read data
sequentially from the file. No output operation is possible.

The procedure rewrite opens a file in the write-only state and discards any previous
contents. After rewrite, the current position is the beginning of the file. The program
can then write data sequentially to the file. No input operation is possible.

The procedure append is identical to the procedure rewrite except that the current
position is placed after the last component and the file contents are undisturbed. The
program can then append data to the file.

The procedure open opens a file in the read-write state. The contents of the file, if any,
are undisturbed and the current position is the beginning of the file. The program can
then read or write data.

A file opened in the read-write state is a direct-access file. Using the procedure seek,
the current position can be placed anywhere in the file. Furthermore, direct-access files
permit calls to the standard procedures readdir or writedir, which are combinations of
seek and the procedures read or write. Direct-access files have a maximum number of
components. The function maxpos returns this number.

In contrast, files opened in the read-only or write-only states are sequential files; the
current position only advances one component at a time and the maximum number of
components cannot be determined by a Pascal function.

The procedure close explicitly closes any logical file and its associated physical file. You
need not use this procedure, however, before opening a file in a new state. For example,
suppose file f is in the write-only state and the program calls reset(f). The system first
closes f and then resets f in the read-only state.

The system also closes any file that is not on the heap when the program exits from the
scope in which the file was declared. The system closes a "heap" file when the dispose
procedure uses the pointer to the file as a parameter or when the program terminates.

Files 65

When a program finishes using an existing file, the file is closed in the same state that it
was in when it was opened.

When a program closes a file it has created, the implementation can allow an optional
parameter to be specified in the close procedure. This parameter may affect the state
of the file after the program terminates.

I/O Considerations
The procedures read and write perform the fundamental input and output operations.
Read(f,x) copies the contents of the current component into x and advances the current
position. Write(f,x) copies x into the current component and advances the current
position.

The original Pascal standard describes read and write in terms of the buffer variable
f~ and the procedures get and put. The procedure put writes the contents of the buffer
variable to the current component, then advances the position. The procedure get copies
the current component to the buffer variable, then advances the position.

Thus, the following are equivalent:

Write(f ,x)

And these are equivalent:

Read(f,x)

fA:: x;
put(f);

x:= f-;
get (f) ;

These definitions of get and read, however, have certain unfortunate consequences when
I/O operations occur with interactive devices such as terminals (which were not available
at the time Pascal was designed). In particular, at the initiation of a program or following
a call to read In, the system tries to read a response before asking the question (writing
a prompt).

66 Files

HP Standard Pascal addresses this issue by defining a "deferred" get which postpones
the actual loading of a component into the buffer variable. When programming, keep
these practical implications in mind:

1. Suppose read(f,x) has just placed the value of component n in x. A reference to r
then copies the value of component n+ 1 into the buffer variable. It is not necessary
to call get explicitly; however, if get is called after a read, a reference to fA copies
the value of component n+2 into the buffer, skipping over component n+1.

2. The buffer variable is undefined after calls to put, write, seek, wri tedir, wri teln,
open, rewrite, and append. Before inspecting the current component, you must
explicitly call get or read.

3. It is best to not use the buffer variable with direct-access files. After read. for
example, a reference to r places the next component in the buffer even if r appears
on the left side of an assignment statement.

4. When reading a file sequentially, there may come a time when no component is
available for assignment to x. Calling read in this case causes a run-time error
(use eof to determine whether another component exists). On some files, notably
terminals, this may require that a device read be performed to request another
component. The component is held in the files's buffer variable and will be produced
as the next result of a call to read.

5. If f is a direct-access file, eof(f) is distinct from maxpos(f). In particular eof is
determined by the highest-indexed component ever written to f. Maxpos, on the
other hand, is a limit on the size of the associated physical file. An error occurs if
a program attempts to read a a component beyond the current eof. It is always
possible, however, to write to a component with an index no greater than maxpos(f).
This will create a new eof condition if the index of the component written is greater
than the index of any previously written component. It is never possible to write
beyond maxpos(f). See the implementation section for more details.

6. When writing to a direct-access file, a program may skip certain components. If
the file is later read sequentially, these components will have unpredictable values.

7. In a direct-access file, the system does not allocate components preceding n until
n is written~ If n is very large and preceded by many unused components, this
allocation may take a significant amount of time. (Use lower-indexed components
in preference to higher-indexed components.)

Files 67

Logical Files
Any file declared in the declaration part of an HP Pascal block is a logical file. Within a
program, the scope of a file name is the scope of any other HP Pascal identifier. However,
you can associate the logical file with a physical file that exists outside the program. Then
operations performed on the logical file are performed on the physical file.

A logical file consists of a sequence of components of the same type. This type can be
any type, except the type file or a structured type with a file type component. Every
logical file has a buffer variable and a current position pointer.

The buffer variable is the same type as the type of the file's components. It is denoted:

where f is the designator of the logical file. You can use the buffer variable to preview
the value of the current component.

The current position pointer is an integer index, starting from 1. It indicates the
component that the next input or output operation will reference. The function position
returns the value of this index, except in the case of textfiles.

After certain file operations (such as write with direct-access files) the buffer variable
is undefined. You must call get before r can access the value of the current position.
After other operations such as read, a subsequent reference to r will successfully access
the current component; no get is necessary.

You can assign the contents of r to a declared variable of the appropriate type.
Alternatively, the value of an expression with an appropriate result type can be assigned
to fA.

Textfiles are a special class of logical files substructured into lines (see below). Input and
output are standard textfiles.

You must explicitly open any logical file before performing a file operation, except for
input and output when they appear as program parameters (see below). The four file
opening procedures are reset, rewrite, append, and open (see below). The manner of
opening a logical file determines its "state". For example, a file opened with append is in
the write-only state. No input operation is possible.

You can use the procedures read, write, get, and put, and the function eof, with any
appropriately opened logical file, regardless of its type.

68 Files

Example Code
PROGRAM show_logfile (input.output.bfile);
TYPE

book_info = RECORD
title PACKED ARRAY [1 .. 50] OF char;
author PACKED ARRAY [1 .. 50] OF char;
number 1 .. 32000;
status (on_shelf.checked_out.lost.ordered)

END;
VAR

old_book: book_info;
bfile FILE OF book_info;
posnum

BEGIN
integer;

{Declaring a logical file. }

reset(bfile); {Opening logical file which is associated }
{by default with the file named 'BFILE'. }

posnum:= position(bfile);

END.

Physical Files

{Assigning buffer variable to }
{declared variable. }

{Using index of current }
{component. }

The operating system controls physical files which exist independently of an HP Pascal
program. These files can be permanent files on disc or other media, or interactive files
created at a terminal.

A particular physical file can be associated with a logical file declared in an HP Pascal
program. The type of the logical file determines the characteristics of the physical file.

Except for textfiles, all physical files associated with Pascal logical files are fixed length
binary files. The record length of these files depends on the type of the component.

The system associates text files with variable-length ASCII files.

Files 69

Textfiles
Textfiles are a special class of logical files that are substructured into lines by end-of-line
markers. Textfiles are declared with the standard identifier text. The components of a
textfile are type char.

If the current position in a textfile advances to a line marker (that is, beyond the last
character of aline), the function eoln returns true and the buffer variable is assigned a
blank. When the current position advances once more, a reference to the buffer variable
accesses the first character of the next line and eoln returns false, unless the next line
has no characters. An end-of-line marker is not an element of type char. Only the
procedure wri teln places it in a textfile. A line marker always precedes an eof condition,
whether the last line was terminated with writeln or not.

The procedures readln, wri teln, page, prompt, and overprint, and the functions eoln and
linepos are available exclusively for textfiles.

Reading from a textfile may entail implicit data conversion. In certain cases, the
operation searches the textfile for a sequence of characters that satisfies the syntax for a
string, PAC, or simple type other than char.

Writing to a textfile may entail formatting of the output value. You can specify a field­
width parameter or allow the system to use various default field-width values.

Textfiles cannot be opened for direct access. Their format is incompatible with certain
direct-access operations.

The system defines two standard textfiles, input and output.

10 Files

FOR
The FOR statement executes a statement a predetermined number of times.

Item

loop counter

initial value

final value

Semantics

Description

ordinal variable

ordinal expression

ordinal expression

Range

must be local to the block in
which the loop appears

The FOR statement consists of the reserved word FOR and a control variable initialized
by an ordinal expression (the initial value); either the reserved word TO indicating
an increment or the reserved word DOWNTO indicating a decrement; another ordinal
expression (the final value); the reserved word DO; and a statement.

The control variable is assigned each value of the range before the corresponding iteration
of the statement.

The control variable must be a local ordinal variable. It must not be a component of
a structured variable or a locally declared procedure or function parameter. The initial
and final values must be type compatible with the control variable. They must also be
in range with the control variable when the initial value is first assigned. The statement
after DO, of course, can be a compound statement.

FOR 71

When the system executes a FOR statement, it evaluates the initial and final values and
assigns the initial value to the control variable. Then it executes the statement after
DO. Next, it repeatedly tests the current value of the control variable and the final value
for inequality, increments or decrements the control variable, and executes the statement
after DO.

After completion of the FOR statement, the control variable is undefined.

In a FOR .. TO construction, the system never executes the statement after DO if the
initial value is greater than the final value. In a FOR .. DOWNTO construction, it never
executes the statement if the initial value is less than the final value.

The FOR statement

FOR control_var
statement

initial TO final DO

is equivalent to the statement

BEGIN
tempi := initial;
temp2 := final;
IF tempi <= temp2 THEN

BEGIN
control_var := tempi;
statement;
WHILE control_var <> temp2 DO

BEGIN
control_var
statement:

END;
END

ELSE BEGIN END;
END

72 FOR

:= succ(control_var); {increment}

{Don't execute statement at all;}
{control_var now undefined. }

The FOR statement

FOR control_var
statement

initial DOWNTO final DO

is equivalent to the statement

BEGIN
tempi := initial;
temp2 := final;
IF tempi >= temp2 THEN

BEGIN
control_var := tempi;
statement;
WHILE control_var <> temp2 DO

BEGIN

END

control_var
statement;

END;

ELSE BEGIN END;
END

pred(control_var); {decrement}

{Don't execute statement at all;}
{control_var now undefined. }

In the statement after DO, the compiler protects the control variable from assignment.
You cannot pass the control variable as a variable parameter or use it as the control
variable of a second FOR statement nested within the first. Furthermore, it must not
appear as a parameter for the standard procedures read or readln. Also, the statement
cannot call a procedure or function that changes the value of the control variable, nor
can it have a new value assigned to it within the body of the loop. Enforcement of these
rules may be implementation-dependent.

FOR 73

The system determines the range of values for the control variable by evaluating the two
ordinal expressions once, and only once, before making any assignment to the control
variable. So the statement sequence

i := 5;
FOR i := pred(i) TO succ(i) DO writeln('i='.i:l);

writes

i=4
i=5
i=6

instead of

i=4
i=5

Example Code
{VAR color: (red. green. blue. yellow);}
FOR color := red TO blue DO

writeln ('Color is '. color);

FOR i := 10 DOWNTO 0 DO
writeln (i);

writeln ('Blast Off');

FOR i := (a[j] * 15) TO (f(x) DIV 40) DO
IF odd (i) THEN

x[i] '= cos(i)
ELSE

x [i] sin (i) ;

74 FOR

FUNCTION
A function is a block that is activated with a function call and which returns a value. A
function declaration consists of a function heading followed by a block or a directive.

Formal Parameter List

Heading

formal
parameter lIst

formal
parameter 1 i st

formal
parameter list

FUNCTION 75

Item

function
identifier

Description

name of a user-defined function

formal parameter see syntax diagram
list

result type

heading

Semantics

type identifier

see syntax diagram

Range

any valid identifier

any previously defined type

A function heading consists of the reserved word FUNCTION, an identifier (function
name), an optional formal parameter list, and a result type. The result type can be any
type, except a file type or a structured type containing a file.

A directive can replace the function block to inform the compiler of the location of the
block.

In the body of a function block there must be at least one statement assigning a value to
the function identifier. This assignment statement determines the function result. If the
function result is a structured type, you must assign a value to each of its components
using an appropriate selector.

Function declarations can occur at the end of a declaration section after label, constant,
type, variable declarations, and MODULE declarations at the outer level. You can repeat
function declarations and intermix them with procedure declarations.

76 FUNCTION

Function Calls

A function call activates the block of a standard or declared function.
Factor Containing a Function:

Semantics
The called function returns a value to the calling point of the program. An operator
can perform some action on this value. For this reason, a function call is treated as an
operand.

A function call consists of a function identifier, an optional list of actual parameters in
parentheses, and an optional select'or.

The actual parameters must match the formal parameters in number, type, and order.
The function result has the type specified in the function heading.

Actual value parameters are expressions that must be assignment compatible with the
formal value parameters.

Actual variable parameters are variables that must be type identical with the formal
variable parameters. Components of a packed structure must not appear as actual
variable parameters.

Actual procedure or function parameters are the names of declared procedures or
functions. Standard functions or procedures are not legal actual parameters.

Function Calls 77

The parameter list, if any, of an actual procedure or function parameter must be
congruent with the parameter list of the formal procedure or function parameter. See
the Procedure Statement.

Functions can call themselves recursively. See Recursion.

If, upon activation, an actual function or procedure parameter accesses any entity non­
locally, the accessed entity is one that was accessible to the function or procedure when
its identifier was passed. For example, suppose Procedure A uses the non-local variable
x. If A is passed as a parameter to Function B, it still has access to x, even if x is
otherwise inaccessible in B.

If the function result is a structured type, the function call can select a particular
component as the result. This requires the use of an appropriate selector.

Example Code
PROGRAM show_function (input.output);
VAR

n.
coef.
answer: integer;

FUNCTION fact (p: integer) integer;
BEGIN

IF P > 1 THEN
fact := p * fact (p-1)

ELSE fact 1
END;

FUNCTION binomial_coef (n. r: integer) : integer;
BEGIN

binomial_coef := fact (n) DIV (fact (r) * fact (n-r»
END;

BEGIN {show_function}
read(n);
FOR coef := 0 TO n DO

writeln (binomial_coef (n. coef»;
END. {show_function}

78 Function Calls

get
This procedure assigns the value of the current component of a file to its argument.

Item

file identifier

Example
get (file_ var)

Semantics

file
identifier

Description

variable of type file

The file must be in the read-only or read-write state.

Range

file must be open to read

The procedure get (f) advances the current file position and causes a subsequent reference
to the buffer variable f~ to actually load the buffer with the current component. In certain
circumstances (namely after a call to read) get also advances the current position.

If the current component does not exist when get is called, f~ is undefined and eOf{f)
will return true. An error occurs if f is in the write-only state or if eof(f) is true prior
to the call to get.

If you open a file, a get must be performed before the buffer variable contains valid data.
However, if you reset a file, the buffer variable contains valid data and a get should not
be performed until you want to access the second component.

get 79

Illustration
Suppose examp_file is a file of char with three components and has just been opened
in the read-write state. The current position is the first component and examp_file~ is
undefined. To inspect the first component, we call get:

{initial condition for open}

current position

t

get(examp_file);

current position

t

state: read-write
examp_fileA: undefined
eof(examp_file) : false

state: read-write
abc examp_fileA(deferred) : a
eof(examp_file) : false

The current position is unchanged. Now, however, a reference to examp_file- loads the
first component into the buffer. We assign the buffer to a variable.

chacvar:= examp_fiJe'"

curren t position

t

get(examp_file);

current position

t

80 get

state: read-write
examp_fileA : a
eof(examp_file) : false

state: read-write
examp_fileA(deferred) : b
eof(examp_file) : false

Global Variables
Global variables are declared in the outermost block of a program or module and are
available to all of the procedures and functions within the program or module.

Conversely, "local" variables are declared within a particular procedure or function and
their "scope" is limited to that procedure or function.

Global Variables 81

GOTO
A GOTO statement transfers control unconditionally to a statement marked by a label.

Semantics
A GOTO statement consists of the reserved word GOTO and the specified label.

The scope of labels is restricted. Labels can only mark statements appearing in the
executable portion of the block where they are declared. They cannot mark statements
in inner blocks. GOTO statements, however, can appear in inner blocks and reference
labels in an outer block. Thus, it is possible to jump out of a procedure or function but
not into one.

A GOTO statement cannot lead into a component statement of a structured statement
from outside that statement or from another component statement of that statement.
For example, it is illegal to branch to the ELSE part of an IF statement from either the
THEN part, or from outside the IF statement.

A GOTO statement that refers to a non-local label declared in an outer routine will
cause any local files to be closed.

82 GOTO

Example Code
PROGRAM show_goto;
LABEL 500. 501;
TYPE

index = 1 .. 10 ;
VAR

i: index;
target: integer;
a: ARRAY[index] OF integer;

PROCEDURE check;
VAR

answer: string [10];
BEGIN

{ask user if OK to search}
IF answer= 'no' THEN GO TO 501; {jumping out of procedure}

END;

BEGIN {show_goto}

check;

FOR i := 1 TO 10 DO
IF target = a[i] THEN GOTO 500;

writeln (' Not found');
GO TO 501;

500:
writeln (' Found');

501:
END. {show_goto}

GOTO 83

halt

This procedure terminates the execution of the program.

~ .
integer ~ expression

Examples
halt
halt (int_exp)

Semantics
Execution of a program is stopped by the halt procedure. When an integer expression
is included, the operating system will return the integer value in an error message.

84 halt

Heap Procedures
HP Pascal distinguishes two classes of variables: static and dynamic.

A static variable is explicitly declared in the declaration part of a block and can then be
referred to by name in the body. The compiler allocates storage for this variable on the
stack. The system does not deallocate this space until the process closes the scope of the
variable.

On the other hand, a dynamic variable is not declared and cannot refer to by name.
Instead, a declared pointer references this variable. The system allocates and deallocates
storage for a dynamic variable during program execution as a result of calls to the
standard procedures new and dispose. The area of memory reserved for dynamic variables
is called the "heap".

HP Pascal also supports the standard procedures mark and release. Mark records the
state of the heap. A subsequent call to release returns the heap to the state recorded
by mark. Effectively, this disposes any variables allocated since the call to mark.

Dynamic variables permit the creation of temporary buffer areas in memory. Further­
more, since a pointer can be a component of a structured dynamic variable, it is possible
to write programs with dynamic data structures such as linked lists or trees.

Depending on implementation, mark and release mayor may not perform any action.

Heap Procedures 85

hex
This function converts a hexadecimal string expression or PAC into an integer.

Item

hexadecimal
string

Examples

Semantics

hexadecimal
string

Description

string expression or PAC variable

Input

hex (strng)

hex(>FF')

-hex('FF')

hex('FFFFFF01,)1

Range

implementation dependent

Result

255

-255

-255

The function hex(s) converts s to an integer. S is interpreted as a hexadecimal value.

The three numeric conversion functions are binary, hex, and octal. All three accept
arguments that are string or PAC variables, or string literals. The compiler ignores
leading and trailing blanks in the argument. All other characters must be legal digits in
the indicated base.

Since binary, hex, and octal return an integer value, all bits must be specified if a negative
result is desired. Alternatively, you can negate the positive representation.

1 This form can be used on systems that support 32-bit 2's-complement notation.

86 hex

Identifiers
An HP Pascal identifier consists of a letter preceding an optional character sequence of
letters, digits, or the underscore character (_).

Examples

Identifier Description

GOOD_TIME_9 These identifiers
good_time_9 are
gOOd_Tlme_9 equivalent.

x2_GO
a_long_identifier
boolean Standard identifier.

Semantics
Identifiers denote declared constants, types, variables, procedures, functions, and pro­
grams.

A letter can be any of the letters in the sub ranges A .. Z or a .. z. The compiler makes no
distinction between upper and lower case in identifiers. A digit can be any of the digits
o through 9. The underscore (_) is an HP Standard Pascal extension of ANSI Standard
Pascal.

An identifier can be up to a source line in length with all characters significant.

Identifiers 87

In general, you must define an identifier before using it. Two exceptions are identifiers
that define pointer types and are themselves defined later in the same declaration part,
and identifiers that appear as program parameters and are declared subsequently as
variables. Also, you need not define an identifier that is a program, procedure, or function
name, or one of the identifiers defining an enumerated type. Its initial appearance in a
function, procedure, or program header is the "defining occurrence". Finally, HP Pascal
has a number of standard identifiers that can be redeclared. These standard identifiers
include names of standard procedures and functions, standard file variables, standard
types, and procedure or function directives.

Reserved words are system defined symbols whose meaning can never change; that is,
you cannot declare an identifier that has the same spelling as a reserved word.

88 Identifiers

IF
An IF statement specifies a statement the system will execute provided that a particular
condition is true. If the condition is false, then the system doesn't execute the statement,
or, optionally, it executes another statement.

The IF statement consists of the reserved word IF, a boolean factor, the reserved word
THEN, a statement, and, optionally, the reserved word ELSE and another statement.

When an IF statement is executed, the boolean factor is evaluated to either true or false,
and one of the three actions is performed.

1. If the value is true, the statement following THEN is executed

2. If the value is false and ELSE is specified, the statement following the ELSE is
executed.

3. If the value is false and no ELSE is specified, execution continues with the statement
following the IF statement.

The statements after THEN or ELSE can be any HP Pascal statements, including other
IF statements or compound statements. No semicolon separates the first statement and
the reserved word ELSE.

The following IF statements are equivalent:

IF a = b THEN
IF c = d THEN

a := c
ELSE

a := e;

IF a = b THEN
BEGIN

IF c = d THEN
a := c

ELSE
a

END;
e;

That is, ELSE parts that appear to belong to more than one IF statement are always
associated with the nearest IF statement.

IF 89

A common use of the IF statement is to select an action from several choices. This often
appears in the following form:

IF e1 THEN

ELSE IF e2 THEN

ELSE IF e3 THEN

ELSE

This form is particularly useful to test for conditions involving real numbers or string
literals of more than one character, since these types are not legal in CASE statements.

It is possible to direct the compiler to perform partial evaluation of the boolean
expressions used in an IF statement. See the compiler directives for your particular
implementation.

90 IF

Example Code
PROGRAM show_if (input, output);

VAR
i,j integer;
s
found:

PACKED ARRAY [1 .. 5] OF char;
boolean;

BEGIN

IF i = 0 THEN writeln ('i = 0');
IF found THEN

writeln ('Found it')
ELSE

writeln ('Still looking');

IF i = j THEN
writeln ('i j')

ELSE IF i < j THEN
writeln ('i < j')

ELSE {i > j}
writeln ('i > j');

IF s = 'RED' THEN
i := 1

ELSE IF s 'GREEN' THEN
i := 2

ELSE IF s
i 3;

END.

'BLUE' THEN

{IF with no ELSE. }
{IF with an ELSE part. }

{Select among different}
{boolean expressions. }

{This IF statement }
{cannot be rewritten as}
{a CASE statement }

IF 91

IMPLEMENT
This reserved word indicates the beginning of the internal part of a MODULE. The
implement section can be empty or it may contain declarations of the types, imports,
constants, variables, procedures, and functions that are only used within the module.

See MODULE.

IMPORT
This reserved word indicates what modules will be needed to compile a program or
module.

See MODULE.

92 IMPORT 98615-90053, rev: 10/87

IN
This operator returns true if the specified element is in the specified set.

--..j element ~ set ~
identifier IN identifier

Item Description Range

element identifier expression of an ordinal type see semantics

set identifier expression of type SET see semantics

Example
IF item IN set_of_items THEN process;

Semantics
Both the element being tested and the elements in the setmust be of the same type.

The result is false if the object is not a member of the set.

Example Code
PROGRAM show_in(output);

VAR
ch char;
good set of char;
more set of char;
member : boolean;

BEGIN
ch := 'y';
good : = [, y' • 'Y' . 'n' . 'N'] ;
more : = [, a ' .. 'z'] ;
IF ch IN good THEN

member := true
ELSE

member := false;
writeln(member) ;

END.

IN 93

input
The standard textfiles input and output often appear as program parameters. When
they do, there are several important consequences:

1. You must not declare input and output in the source code.

2. The system automatically resets input and rewrites output.

3. The system automatically associates input and output with the implementation­
dependent physical files.

4. If certain file operations omit the logical file name parameter, input or output is
the default file. For example, the call read(x), where x is some variable, reads a
value from input into x. Or consider:

PROGRAM mute (input);
VAR answer : string [255] ;
BEGIN

readln(answer);
END.

The program waits for something to be typed. No prompt can be written without
adding output to the program heading.

94 input

integer
This type is a subrange whose lower bound is the standard constant minint and whose
upper bound is the standard constant maxint.

----c INTEGER r

Examples
VAR

wholenum:
i,j,k,l

Semantics

integer;
integer;

Integer is a standard simple ordinal type whose range is implementation defined.

Permissible Operators

Operation Operator

assignment

relational <, <=, =, <>, >, >=, IN,

arithmetic +, -, *, /,DIV, MOD

Standard Functions

parameter Function

integer argument abs, arctan, chr, cos, exp, In, odd. ord,pred, sin,
sqr, sqrt, succ

integer return abs, binary, hex, linepos, lastpos, maxpos, oc-
tal, ord, position, pred, round, strlen, strmax,
strpos, sqr, trunc

integer 95

LABEL
A label declaration specifies integer labels that mark executable statements in the body
of the block. The GOTO statement transfers control to a labeled statement.

Label Declaration

Labelled Statement

Semantics

unlabelled
statement

The reserved word LABEL precedes one or more integers separated by commas.

Integers must be in the range 0 to 9999. Leading zeros are not significant. For example,
the labels 9 and 00009 are identical.

Label declarations must come first in the declaration part of a block.

You cannot use a label to mark a statement in a procedure or function nested within the
procedure, function, or outer block where the label is declared. This means a GOTO
statement can jump out of but not into a procedure.

The Label declaration must occur in the declaration part of the block that contains the
label.

Example
LABEL 9, 19, 40;

96 LABEL

lastpos
This function returns the integer index of the last component written on a file.

Item Description

file identifier a file type variable

Example
lastpos(file_var)

Semantics

Range

file must be opened in the
read-write state

The function lastpos(f) returns the integer index of the last component of f that the
program can access. An error occurs if f is not opened as a direct access file.

lastpos 97

linepos
This function returns the number of characters read from or written to a textfile since
the last end-of-line marker.

Item Description

textfile identifier a textfile

Example
linepos(text_file)

Semantics

Range

textfile must be opened

The function linepos(f) returns the integer number of characters read from or written
to the textfile f since the last end-of-line marker. This does not include the character
in the buffer variable r. The result is zero after reading a line marker, or immediately
after a call to readln or writeln.

The standard files input or output must be specified by name.

98 linepos

In

This function returns the natural logarithm (base e) of the argument.

Item Description Range

argument numeric expression must be greater than 0

Examples

Input Result

In (num_exp)

In(43) 3.761200E+OO

In(2.121) 7.518874E-Ol

In(O) error

Semantics
The function In(x) computes the natural logarithm of x. If x is 0 or less than 0, a
run-time error occurs.

In 99

Local Variables
Local variables are variables declared within a particular procedure or function and their
"scope" is limited to that procedure Or function.

Conversely, "global" variables are declared in the outermost block of a program or module
and are available to all of the procedures and functions within the program or module.

100 Local Variables

longreal
This standard simple type represents a subset of real numbers.

---1(LONGREAL~

Semantics
Longreal is a standard simple type. Although similar in usage to the real type, the letter
"L" is used to indicate the start of the exponent instead of the letter "E". (See below.)

Permissible Operators

Operation Operator

assignment .=

relational <, <=, =, <>, >=, >

arithmetic +, -, *, /

Standard Functions

parameter Function

longreal argument abs, arctan, cos, exp, In, round, sin, sqr, sqrt, trunc

longreal return

Example Code
VAR

abs,arctan, cos, exp, In, sin, sqr, sqrt

precisenum: longreal;
BEGIN

precisenum:= 1. 1234567891L+l04;

longreal 101

mark
This procedure marks the state of the heap.

Item

heap marker

Example
mark (ptr_var)

Semantics

Description

a pointer variable

Range

The procedure mark(p) marks the state of the heap and sets the value of p to specify that
state. In other words, mark saves the state of the heap in p, which must not subsequently
be altered by assignment. If altered, you will be unable to perform the corresponding
release.

The pointer variable appearing as the p parameter must be a dedicated variable. It
should not be dynamic variable.

Mark is used in conjunction with release. See the example under release.

102 mark

maxint
This standard constant returns the largest value that can be represented by the integer
type.

Semantics
The constant maxint returns the largest value that can be represented by an integer.
The value is implementation dependent.

Example Code
PROGRAM show_maxint(input.output);

VAR
i.j integer;
r real;

BEGIN
readln(i.j);
r := i + j;
IF r > maxint THEN writeln('Sum too large for integers. ');

END.

maxint 103

maxpos
This function returns the index of the last accessible component of a file.

-.c MAXPOS ~ ide~~i~ier ~

Item Description

file identifier name of a logical file

Example
maxpos(file_var)

Semantics

Range

file must be opened

The function maxpos(f) returns the integer index of the last component of f that the
program could possibly access. An error occurs if f is not opened as a direct access
(read-write) file.

For extensible files, maxpos(f) returns the value of maxint.

104 maxpos

minint

This standard constant returns the smallest value that can be represented by the integer
type.

---1(MINI NT ~

Semantics
The constant minint returns the smallest value that can be represented by an integer.
The value is implementation dependent.

In general, the range of signed integers allows the absolute value of minint to be greater
than maxint.

Example Code
PROGRAM show_minint(input,output);

VAR
i,j integer;
r real;

BEGIN
readln(i,j); r := i - j;
IF r < minint THEN writeln('Difference too large for integers.');

END.

minint 105

MOD
This operator returns the remainder of an integer division.

-..j dividend ~ divisor ~

Item

dividend

divisor

Examples

106 MOD

Description

an integer or integer subrange

an integer or integer subrange

Input

dvs MOD dvr

4 MOD 3

7 MOD 5

Result

1

2

Range

greater than 0

MODULE
This reserved word indicates the beginning of a separate unit of compilation.

Example
MODULE mod_id

Semantics

declarations need not
duplicate information
contained in the EXPORT
list.

When modules are
being compiled separately.
the last module in a file

must end with a period.

A MODULE can be compiled separately or included in the compilation of a program.
The general form of a module is shown in the following example.

98615-90053, rev: 10/87 MODULE 107

Example Code
MODULE show_module; {Module declaration }

IMPORT my_mOdule; {Other modules needed for }

{compilation of this module }

EXPORT {Start of export text }

TYPE
byt e = O .. 255 ; {Exported type }

VAR
testbyte : byte; {Exported variable }

FUNCTION control(i byte) boolean; {Exported function }

IMPLEMENT {Start of implementation }

TYPE
boot = o .. 255 ; {Non-exported type }

PROCEDURE check(i : byte); {Non-exported procedure }
BEGIN

IF i > 127 THEN writeln('non-ASCII character');
END;

FUNCTION control(i :byte) : boolean;
BEGIN

END.

IF i < 32 then control := true
ELSE control := false;

END;

108 MODULE

{Exported function }

Modules
A module provides a mechanism for separate compilation of program segments.

Semantics
A module is a program fragment that can be compiled independently and later used
to complete otheIWise incomplete programs. A module usually defines some data types
and variables, and some procedures that operate on the data. Such definitions are made
accessible to users of the module by its export declarations.

The source text input to a compiler (complete unit of compilation) can be a program or
a list of modules separated by semicolons (;). An implementation can allow only a single
module to be compiled at a time, thus requiring multiple invocations of the compiler to
process several modules. The input text is terminated by a period.

A module is a collection of global declarations that can be compiled independently and
later made part of a program block. Any module used by a program whether appearing
in the program's globals or compiled separately, must be named in an import declaration.
Modules and the objects they export always belong to the global scope of a program that
uses them.

A module cannot be imported before it has been compiled, either as part of the importing
program or by a previous invocation of the compiler. This prevents construction of
mutually-referring modules. Access to separately compiled modules is discussed below.

Although a module declaration defines data and procedures that will become globals of
any program importing the module, not everything declared in the module becomes
known to the importer. A module specifies exactly what will be exported to the
"outside world", and lists any other modules on which the module being declared is
itself dependent.

The export declaration defines constants and types, declares variables, and gives the
headings of procedures and functions whose complete specifications appear in the
implement part of the module. It is exactly those items in the export declaration that
become accessible to any other code and which subsequently import the module.

Modules 109

There need not be any procedures or functions in a module if its purpose is solely to
declare types and variables for other modules.

Any constants, types and variables declared in the implement part will not be made
known to importers of the module; they are only useful inside the module, and outside
it they are hidden. Variables of the implement part of a module have the same lifetime
as global program variables, even though they are hidden.

Any procedures or functions whose headings are exported by the module must subse­
quently be completely specified in its implement part. In this respect the headings in the
export declaration are like FORWARD directives, and in fact the parameter list of such
procedures need not be (but can be) repeated in the implement part. Procedures and
functions that are not exported can be declared in the implement part; they are known
and useful only within the module.

Separately compiled modules are called "library modules". To use library modules, a
program imports them just as if they had appeared in the program block.

When an import declaration is seen, a module must be found matching each name in
the import declaration. If a module of the required name appears in the compilation
unit before the import declaration, the reference is to that module. Otherwise, external
libraries must be searched.

The compiler option $SEARCH 'string' $ names the order in which external libraries
are searched, The parameter is a literal string describing the external libraries in an
implementation-dependent fashion. Multiple files are specified by multiple strings. For
instance, $SEARCH 'filel'.' fils2' • 'fileS' $ or $SEARCH 'filel. file2. fileS! $. This
option can appear anywhere in a compilation unit, and overrides any previous SEARCH
option.

110 Modules 98615-90053, rev: 10/87

new
This procedure allocates storage for a dynamic variable.

Item

~ointer

identifier

Description

pointer identifier a pointer type variable

tag case constant

Examples
new(ptr)
new(ptr.tagl tagn)

Semantics

Range

The procedure new(p) allocates storage for a dynamic variable on the heap and assigns its
address to the pointer variable p. If insufficient heap space is available for the allocation,
a run-time error occurs.

If the dynamic variable is a record with variants, then t can be used to specify a case
constant. This constant only determines the amount of storage allocated. The procedure
call does not actually assign it to the dynamic variable. For nested variants, you must
list the values contiguously and in the order of their declaration.

If you call new for a record with variants and do not specify any case constants, the
compiler determines storage by the size of the fixed part plus the size of the largest
variant.

Be careful when using an entire dynamic record variable allocated with one or more case
constants as an operand in an expression, an actual parameter, or on the left side of an
assignment statement. The variant can be smaller than the actual size at run time.

new 111

The pointer variable can be a component of a packed structure.

Pointer dereferencing accesses the actual values stored in a dynamic variable on the heap.

Example Code
PROGRAM show_new (output);
TYPE

marital_status = (single. engaged. married. widowed. divorced);
year = 1900 .. 2100;
ptr = Aperson_info;
person_info = RECORD

name: string[25];
birdate: year;
next_person: ptr;
CASE status: marital_status OF

married .. divorced: (when: year;

VAR
P : ptr;

BEGIN

new(p);

END;

new(p.engaged);

new(p.married) ;

CASE has_kids: boolean OF
true: (how_many: 1 .. 50)

;) ;
engaged: (date: year)
single 1;

{Various legal calls of new.}

new(p.widowed.false);

END.

112 new

NIL
This predefined constant is used when a pointer does not contain an address.

Semantics
NIL is compatible with any pointer type. A NIL pointer (a pointer that has been assigned
to NIL) does not point to any variable at all.

NIL pointers are useful in linked list applications where the "link" pointer points to the
next element of the list. The last element's pointer can be assigned to NIL to indicate
that there are no further elements in the list.

An error occurs when a NIL valued pointer is dereferenced.

NIL 113

NOT
This boolean operator complements a boolean factor.

~ boolean ~
factor

Example
NOT done

Semantics
The NOT operator complements the value of the boolean factor following the NOT
operator. The result is of type boolean.

Example Code
PROGRAM show_not(input,output);

VAR
time, money
line
test_file

BEGIN

boolean;
string[255] ;
file;

IF NOT (time AND money) THEN wait;

WHILE NOT eof(test_file) DO
BEGIN

readln(test_file,line);
writeln(line);

END;

END.

114 NOT

Numbers

HP Pascal recognizes three sorts of numeric literals: integer, real, and longreal.

Integer Literals
An integer literal consists of an sequence of digits from the subrange 0 through 9. No
spaces are allowed between digits in a single literal and leading zeroes are not significant.
The compiler interprets unsigned integer literals as positive values.

The maximum unsigned integer literal is equal in value to the standard constant maxint.
The minimum signed integer literal is equal in value to the standard constant minint.
The actual value is implementation dependent.

Unsigned Integer Signed Integer

-ydi9it~

Real and Longreal Literals
A real or longreal literal consists of a coefficient and a scale factor. An "E" preceding
the scale factor is read as "times ten to the power of" and specifies a real literal. An
"L" preceding the scale factor also means "times ten to the power of", but specifies a
longreal literal.

Lowercase "e" and "1" are legal. At least one digit must precede and follow a decimal
point. A number containing a decimal point and no scale factor is considered a real
literal.

Numbers 115

Unsigned Real Signed Real

Number

Examples

Literal Description

100 Integer

0.1 Real with no scale factor

5E-3 Real with decimal point

3. 14159265358979LO Longreal

87.35e+8 Real

116 Numbers

octal
This function converts a string or PAC, whose literal value is an octal number, to an
integer.

Item Description Range

octal string string expression or PAC variable implementation dependent

Examples

Input Result

octal (strng)

octal (, 77 ') 63

-octal (, 77') -63

octal('37777777701') 1 -63

Semantics
The function octal(s) converts s to an integer. S is interpreted as an octal value.

The three numeric conversion functions are binary, hex, and octal. All three accept
arguments that are string or PAC variables, or string literals. The compiler ignores
leading and trailing blanks in the argument. All other characters must be legal digits in
the indicated base.

Since binary, hex, and octal return an integer value, all bits must be specified if a negative
result is desired. Alternatively, you can negate the positive r~presentation.

1 This form can be used provided your system supports 32-bit 2's-complement notation.

octal 117

odd
This function returns true if the integer expression is odd, and false otherwise.

Examples

OF

integer
expression

Input

odd(inL var)

odd(ord(color))

odd(2 + 4)

odd(-32767)

odd(32768)

odd(O)

Result

false

true

false

false

See ARRAY, CASE, FILE, and String Constructor.

118 OF

open

This procedure opens a file in the read-write state and places the current position at the
beginning of the file.

Item

file identifier

file
identifier

Description

name of a logical file

physical file spec- name to be associated with f; must be a
ifier string expression or PAC variable

options string a string expression or PAC variable

Examples
open(file_var)
open(file_var,phy_file_spec)
open(file_var,phy_file_spec,opt_str)
open(filvar,'TESTFILE')

Range

file cannot be of type text

implementation dependent

open 119

Semantics
The procedure open(f) opens f in the read-write state and places the current position at
the beginning of the file. The function eof returns false, unless the file is empty. The
buffer variable i is undefined.

After a call to open, f is said to be a direct access file. You can read or write data using
the procedures read, write, readdir, or writedir. The procedure seek and the funCtions
lastpos and maxpos are also legal. Eof(f) becomes true when the current position is
greater than the highest-indexed component ever written to f.

Direct access files have a known maximum number of components. The function maxpos
returns this number. On implementations that allow direct access files to be extended,
maxpos returns the value of maxint (the maximum possible number of components).

The lastpos function returns the index of the highest-written component of a direct
access file.

You cannot open a textfile for direct access because its format is incompatible with direct
access operations.

When the s parameter is specified, the system will close any physical file previously
associated with f.

When f does not appear as a program parameter and s is not specified, the system
maintains any previous association of a physical file with f. If there is no such association,
it opens a temporary nameless file. This file cannot be saved. It becomes inaccessible
after the process terminates or the physical-to-Iogical file association changes.

Illustration
Suppose examp_file is a file of integer with three components. To perform both input
and output, we call open:

open(examp_file};

current position
~

000

120 open

state: read-write
examp_file"': undefined
eof(examp_file}: false

Operators
An operator performs an action on one or more operands and produces a value.

An operand denotes an object that an operator acts on to produce a value. An operand
can be a literal, a declared constant, a variable, a set constructor, a function call, a
dereferenced pointer, or the value of another expression.

Operators are classified as arithmetic, boolean, set, relational, and concatenation opera­
tors. A particular symbol can occur in more than one class of operators. For example,
the symbol "+" is an arithmetic, set and concatenation operator representing numeric
addition, set union, and string concatenation, respectively.

Precedence ranking determines the order in which the compiler evaluates a sequence of
operators (see Operator Precedence).

The value resulting from the action of an operator can in tum serve as an operand for
another operator.

Arithmetic Operators
Arithmetic operators perform integer and real arithmetic. They include +, -, *, /, DIV,

and MOD.

Most arithmetic operators permit real, longreal, integer, or integer subrange operands.
DIV and MOD, however, only accept integer operands.

Operators 121

In general, the type of its operands determines the result type of an arithmetic operator.
In certain cases, the compiler implicitly converts an operand to another type as explained
after the table:

Input

+

(unary)

(unary)

+
(addition)

(subtraction)

Result

The value of a single operand. Can be any numeric type.

The negated value of a single operand. Can be any numeric type.

The sum of two operands. Operands can be of same or dissimilar
numeric type.

The difference between two operands. Operands can be of same
or dissimilar numeric type.

* The product of two operands. Operands can be of same or
(mUltiplication) dissimilar numeric type.

/
(division)

DIV
(division with
truncation)

MOD
(modulus)

122 Operators

The quotient of two operands. Operands can be of same or
dissimilar numeric type. If both operands are type integer or
integer subrange, the result is, nevertheless, real.

The truncated quotient of two operands. Operands must be
integer or or integer subrange. The sign of the result is positive if
the signs of the operands are the same, negative otherwise. The
result is zero if the first operand is zero.

The remainder when the right operand divides the left operand.
Both operands must be integers or integer subrange, but an error
occurs if the right operand is negative or zero. The result is always
positive, regardless of the sign of the left operand, v;hich must be
parenthesized if it is a negative literal (see example). The result
is zero if the left operand is zero. Formally, MOD is defined as

i MOD j = i - «i DIV j) * j)

where i > 0 and j > 0, or

i MOD j = i - «i DIV j) * j) + j

where i < 0 and j > o.

Implicit Conversion
The operators +, -, *, and / permit operands with different numeric types. For example,
it is possible to add an integer and a real number. The compiler converts the integer to
a real number and the result of the addition is real.

This implicit conversion of operands relies on a ranking of numeric types:

Rank Type

highest longreal

real

integer

lowest integer subrange

If two operands associated with an operator are not the same rank, the compiler converts
the operand of the lower rank to an operand of the higher rank prior to the operation.
The result will have the type of the higher rank operand. In sum:

First Operand Type Second Operand Type Result Type

integer subrange integer subrange integer

integer subrange integer integer

integer real real

integer longreal longreal

real longreal longreal

Real division (I) is an exception. If both operands are integers or integer subranges, the
compiler changes both to real numbers prior to the division and the result is real.

It is not legal to perform real or longreal arithmetic in a constant definition.

Operators 123

Examples

Expression

-(+10)

5 + 2

5 - 2.0

5 * 2

5.0 / 2.0

5/2

5.0LO / 2

5 DIV 2

5 DIV (-2)

-5 DIV 2

-5 DIV (-2)

5 MOD 2

5 MOD (-2)

(-5) MOD 2

124 Operators

Result

10

7

3.0

10

2.5

2.5

2.5LO

+2

-2

-2

+2

+1
error

+1

Description

Unary -.

Addition with integer operands.

Subtraction with implicit conversion.

Multiplication with integer operands.

Division with real operands.

Division with integer operands, real re­
sult.

Division with implicit conversion.

Division with truncation.

Modulus.

Right operand must be positive.

Result is positive regardless of sign of left
operand which is parenthesized because
MOD has higher precedence than - (see
Operator Precedence).

Boolean Operators
The boolean operators perform logical functions on boolean type operands and produce
boolean results. The boolean operators are NOT, AND, and OR.

When both operands are boolean, = denotes equivalence, <= implication, and <>
exclusive or.

Operator Evaluation and Result

NOT Evaluates the logic sense of a single boolean
(logic negation) operand:

If a is true, NOT a is false;
If a is false, NOT a is true.

AND Evaluates logic sense of two boolean operands
(logic AND) (a and b):

If a and b are both true,
a AND b is true;

If either a or b (or both) is false,
a AND b is false;

OR Evaluates logic sense of two boolean operands (a and b):
(inclusive OR) If either a or b (or both) is true,

a AND b is true;
If a and b are both true,

a AND b is true;

The compiler can be directed to perform partial evaluation of boolean operators used in
statements. For example:

IF right_time AND right_place THEN

By specifying the $PARTIAL_EVAL ON$ compiler directive, if "right_time" is false,

the remaining operators will not be evaluated since execution of the statement depends
on the logical AND of both operators. (Both operators would have to be true for the
logical AND of the operators to be true.)

Similarly, the logical OR of two operators would be true even if only one of the operators
was true.

With careful planning of "most likely" values for boolean operators, partial evaluation
can reduce execution time of a program.

Operators 125

Example Code
IF NOT possible THEN forget_it;

WHILE time AND money DO your_thing;

REPEAT ... UNTIL tired OR bored;

IF has_rope = true DO skip;

IF pain <= heartache THEN try_it;

FUNCTION NAND (A, B : BOOLEAN) : BOOLEAN;
NAND := NOT(A AND B); {NOT AND}

FUNCTION XOR (A. B : BOOLEAN) : BOOLEAN;
lOR := NOT(A AND B) AND (A OR B); {EXCLUSIVE OR}

FUNCTION lOR (A. B : BOOLEAN) : BOOLEAN;
lOR := A <> B;

Concatenation Operators
The concatenation operator + concatenates two operands. The operands can be string
variables, string literals, function results of type string, or some combination of these
types.

If one of the operands is type string, the result of the concatenation is also type string.
If both operands are string literals, the result is a string.

It is not legal to use the concatenation operator in a constant definition.

Example Code
VAR

s1.s2: string[80];
BEGIN

s1:= 'abc';
s2:= 'def';
s1:= s1 + s2; {S1 is now 'abcdef'}

s2:= 'The first six letters are' + s1;

END.

126 Operators

Relational Operators
Relational operators compare two operands and return a boolean result. The relational
operators are:

Operator Comparison Test for

< less than

<= less than or equal to

= equal to

<> not equal to

>= greater than or equal to

> greater than

IN set membership

Depending on the operand type, relational operators are classified as simple, set, pointer,
or string relational operators.

Simple Relational Operators
A simple relational operator has operands of any simple type, i.e. integer, boolean, char,
real, longreal, enumerated, or subrange. All the operators listed above except IN can
be simple relational operators. The operands must be type compatible, but the compiler
may implicitly convert numeric types before evaluation (see Arithmetic Operators).

For numeric operands, simple relational operators impose the ordinary definition of
ordering. For char operands, the ASCII collating sequence defines the ordering. For
enumerated operands, the sequence in which the constant identifiers appear in the type
definition defines the ordering. Thus the predefinition of boolean as

TYPE boolean = (false, true);

means that false < true.

If both operands are boolean, the operator = denotes equivalence, <= implication, and <>
exclusive or.

Operators 127

Set Relational Operators
A set relational operator has set operands. The set relational operators are =, <>, >=, <=,
and IN.

The operators = and <> compare two sets for equality or inequality, respectively. The <=
operator denotes the subset operation, while >= indicates the superset operation. Set A
is a subset of Set B if every element of A is also a member of B. When this is true, B is
said to be the superset of A.

The IN operator determines if the left operand is a member of the set specified by the
right operand. When the right operand has the type SET OF T, the left operand must be
type compatible with T. To test the negative of the IN operator, use the fonowing form:

NOT (element IN set)

Pointer Relational Operators
You can use the operators = and <> to compare two pointer variables for equality or
inequality, respectively. Two pointer variables are equal only if they point to exactly the
same object on the heap. You can compare two pointers of the same type or the constant
NIL to a pointer of any type.

String Relational Operators
You can use the string relational operators =, <>, <, <=, >, or >= to compare operands of
type string, PAC, char, or string literals.

The system performs the comparison character by character using the order defined by
the ASCII collating sequence.

If one operandis a string variable, the other operand can be a string variable or string
literal. If the operands are not the same length and the two are equal up to the length of
the shorter, the shorter operand is less. For example, if the current value of Sl is "abc"
and the current value of S2 is "ab", then Sl > 82 is true. It is not possible to compare
a string variable with a PAC or char variable.

If one operand is a PAC variable, the other can be a PAC (of any length) or a string
literal no longer than the first operand. If shorter, the string literal is blank filled prior
to comparison. It is not possible to compare a PAC with a string or char variable.

If one operand is a char variable, the other can be a char variable or a single-character
string literal. It is not possible to compare a char variable with a string or PAC variable.

128 Operators

If one operand is a string literal, the other can be a string variable, a PAC, a string
literal, or a char variable provided that the string literal is only of length 1.

The following table summarizes these rules. The standard function strmax{ s) returns the
maximum length of the string variable s. The standard function strlen(s) returns the
current length of the string expression s.

A string constant is considered a string literal when it appears on either side of a relational
operator.

String, PAC, Char, String Literal Comparison

string PAC char string literal
A/<relop>/B

string Length of Not allowed Not allowed Length of
comparison comparison
based on based on
smaller strlen smaller strlen

PAC Not allowed The shorter of Not allowed Only if
the two is A length >=
padded with strlen{B}
blanks

B is blank filled
if necessary

char Not allowed Not allowed Yes Only if
strlen{B} = 1

string literal Length of The shorter of Only if Yes
comparison the two is strlen{A) = 1
based on padded with A or B is blank
smaller strlen blanks filled if neces-

sary

Operators 129

Example Code
PROGRAM show_relational;
TYPE

color = (red, yellow, blue);
VAR

a,b,c: boolean;
p,q: Aboolean;
s,t: SET OF color;
col: color;
stg: string[10];

BEGIN

b := 5 > 2;
b := 5 < 25.0L+1;

{Types of relational

b := a AND (b OR (NOT c AND (b <= a»);
IF (p = q) AND (p <> NIL) THEN pA:= a = b;
b := s <> t;
b := s <= t;
b := col IN [yellow, blue];
stg := 'alpha';
c := stg > 'beta';

END.

130 Operators

operators: }
{simple, }
{simple, }
{implication,}
{pointer, }
{set, }
{set, subset,}
{set, IN, }

{string. }

SET Operators
The set operators perform set operations on two set operands. The result is a third set.
The set operators are +, -, and *.

Operator Result

+ A set whose members are all elements found
(union) in the left set operand and all elements in the

right, including members that are present in
both sets.

- A set whose members are those elements that
(difference) are members of the left set but which are not

members of the right set.

* A set whose members are only those elements
(intersection) that are present in both the left and the right

set.

Operands used with set operators can be variables, constant identifiers, or set construc­
tors. The base types of the set operands must be type compatible with each other.

Example Code
PROGRAM show_setops;
VAR

a, b, c: SET OF 1 .. 10;
x : 1. .10;

BEGIN

a:= [1, 3, 5];
b:= [2, 4];
c: = [1. .10] ;
x:= 9;
a:= a + b
b:= c - a
c:= a * b

{Union; a is now [1, 2, 3, 4, 5].
{Difference; b is now [6, 7, 8, 9,
{Intersection; c is now [].

}

c:= [2, 5]
END.

10] .}
}
}
}

+ [x] {Set constructor operands; c is now
{[2, 5, 9].

Operators 131

Operator Precedence
The precedence ranking of a HP Pascal operator determines the order of its evaluation
in an unparenthesized sequence of operators. The four levels of ranking are:

Precedence Operators

highest NOT

.. *, /,OIV, MOO,ANO

.. +, -, OR

lowest <, <=, =, <>, >=, >

The compiler evaluates higher precedence operators first. For example, since * ranks
above +, it evaluates these expressions identically:

(x + y * z) and (x + (y * z»

When a sequence of operators has equal precedence, the order of evaluation is implemen­
tation dependent.

If an operator is commutative (e.g. *), the compiler may choose to evaluate the operands
in any order.

Within a parenthesized expression, of course, the compiler evaluates the operators and
operands without regard for any operators outside the parentheses.

Summary
The following table lists each HP Pascal operator together with its actions, permissible
operands, and type of results. In the table, the term "real" indicates both real and
longreal types.

132 Operators

HP Pascal Operators

Operator Actions Operand Types Results Type

+ addition real, integer real, integer
set union any set type T T
concatenation string, string literal string

- subtraction real, integer real, intege
set difference any set type T T

* multiplication real, integer real, integer
set intersection any set type T T

/ division real, integer real

DIV division with truncation integer integer

MOD modulus integer integer

AND logical AND boolean boolean

OR logical OR boolean boolean

NOT logical negation boolean boolean

< less than any simple type boolean
string or PAC boolean

> greater than any simple type boolean
string or PAC boolean

<= less than or equal to; any simple type boolean
set subset string or PAC boolean

any set boolean

>= greater than or equal to; any simple type boolean
set superset string or PAC boolean

any set boolean

= equal to any simple type boolean
string or PAC boolean
any set type boolean
pointer boolean

<> not equal to any simple type boolean
string or PAC boolean
any set type boolean
pointer boolean

IN set membership left operand: boolean
anyordinal type T

right operand:
set of T

Operators 133

OR
This boolean operator returns the logical OR of its two factors.

---..j boolean ~ boolean ~
factor factor

Example
ok OR quit

Semantics
The truth table is:

a

false

false

true

true

Example Code
PROGRAM show_or(input.output);

VAR
ch
time
energy

BEGIN

char;
boolean;
boolean;

IF time OR energy then doit;

b

false

true

false

true

IF (ch = 'Y') OR (ch = 'y') THEN ch 'Y';

END.

134 OR

a OR b

false

true

true

true

ord
This standard function returns an integer designating the position of the argument in an
ordered set.

Examples

Semantics

ordinal
expression

Input

ord(ord_exp)

ord('a')

ord('A')

ord(-l)

ord(yellow)

ord(red)

Result

97

65

-1

2 {TYPE color=(red,blue,yellow)}

0

The function ord{x) returns the integer representing the ordinal associated with the value
of x. If x is an integer, x itself is returned. If x is type char, the result is an integer value
between 0 and 255 determined by the ASCII order sequence. If x is any other ordinal
type (Le., a predefined or user-defined enumerated type), then the result is the ordinal
number determined by mapping the values of the type onto consecutive non-negative
integers starting at zero. For example, since the standard type boolean is predefined as:

TYPE boolean = (false,true)

the call ord{false) returns 0, and the call ord{true) returns 1.

For any character ch, the following is true:

chr(ord(ch» = ch

ord 135

Ordinal Types
Ordinal types are types that can be uniquely mapped into the set of natural numbers.

Ordinal Type

ordinal type
identifier I--..........,~

enumerated
type

subrange
type

Ordinal types include enumerated types, subrange types, integers, booleans, and charac­
ters (char type).

Ordinal types are declared by enumerating all of the possible values that their variables
and functions can possess. Predefined ordinal types include integers, boolean values, and
characters.

Permissible Operators
Any of the relational operators can be used with ordinal types. The IN (membership
test) operator can also be used with ordinal types.

For relational tests, the two factors must be of the same type. When membership tests are
performed, the left-operand type must be a single ordinal value while the right-operand
is of a SET type.

136 Ordinal Types

Permissible Functions
The following functions can be used with all ordinal types.

Function Result

succ This function returns the next value in the list of possible
values the variable can possess. The succ of the last value is
undefined.

pred This function returns the previous value in the list of possible
values. The pred of the first value is undefined.

ord This function returns the ordinal number of the given value.

OTHERWISE
In HP Pascal, a CASE statement can include an OTHERWISE part.

See CASE.

OTHERWISE 137

output
The standard textfiles input and output often appear as program parameters. When
they do, there are several important consequences:

1. You cannot declare input and output in the source code.

2. The system automatically resets input and rewrites output.

3. The system automatically associates input and output with the implementation
dependent physical files.

4. If certain file operations omit the logical file name parameter, input or output is
the default file. For example, the call read(x), where x is some variable, reads a
value from input into x. Or consider:

PROGRAM sample (output);
BEGIN

writeln(J I like Pascal! J) ;

END.

The program displays the string literal on the terminal screen. Output must appear
as a program parameter; input need not appear, however, since the program doesn't
use it.

138 output

overprint
This procedure writes a special character to a text file and suppresses the generation of
a line-feed after the item is printed.

OVERPRINT

Write Parameter

enumerated
expressIon

integer
expression

real
expression

Item

text file
identifier

minimum
field width

minimum
field width

Description

text file identifier variable of type text
default = output

write parameter see drawing

minimum field integer expression
width

fraction length integer expression

Range

file must be opened

greater than 0

greater than 0

overprint 139

Examples
overprint (file_var)
overprint (file_var, exp)
overprint (file_var, exp1, ... ,expn)
overprint (exp)
overprint (exp1, ... ,expn)
overprint

Semantics
The procedure overprint(f) writes a special line marker on the textfile f and advances
the current position. When f is printed, this special marker causes a carriage return
but suppresses the line feed. This means the printer will print the line after the special
marker over the line preceding it.

After the execution of overprint(f), the buffer variable r is undefined and eoln(f) is
false.

The expression parameter behaves exactly like the equivalent parameter for the procedure
write.

140 overprint

pack
This standard procedure transfers data from unpacked arrays to packed arrays.

Item

non-packed array
identifier

Description

non-packed array variable of type array
identifier

starting position expression which is type compatible with the
index of the non-packed array

packed array
identifier

Example

variable of type PACKED array

pack (array ,start_pos ,packed_array)

Semantics

packed array
identifler

Range

see semantics

see semantics

Assuming a: ARRAY[m .. n] OF t and x: PACKED ARRAY [u .. v] OF t; the procedure
pack(a,i,z) assigns components of the unpacked array a, starting at component i, to
each component of the packed array z. The unpacked array must be as long as or longer
than the packed array; that is, n-m >= v-u. The value of i must be greater than or
equal to m, the lower bound of a. Since all the components of z are assigned a value, the
normalized value of i must be less than or or equal to the difference between the lengths
of a and z plus 1; that is, i-m+l <= (n-m) - (v-u) + 1. Otherwise, an error occurs
when pack attempts to access a non-existent component of a (see example below).

The component types of arrays a and z must be type identical. The index types of a and
z, however, may be incompatible.

pack 141

The call pack(a,i,z) is equivalent to:

BEGIN
k:= i;
FOR j:= u TO v DO

BEGIN

END;

z [j] : = a [k] ;
IF j <> v THEN k:= succ(k);

END;

where k and j are variables that are type compatible with the index type of a and the
index type of z, respectively.

Example Code
PROGRAM show_pack (input,output);
TYPE

clothes = (hat, glove, shirt, tie, sock);
VAR

dis: ARRAY [1 .. 10] OF clothes;
box: PACKED ARRAY [1 .. 5] of clothes;
index: integer;

BEGIN

index:= 1;
pack(dis,index,box);

index:= 8;

{After pack executes, box contains
{the first 5 components of dis.

}
}

pack(dis ,.index, box) ; {An error results when pack attempts }
{to.access non-existent 11th component}
{of dis. }

END.

142 pack

PACKED
This reserved word indicates that the compiler should optimize data storage.

PACKED can appear with an ARRAY, RECORD, SET, or FILE.

By declaring a PACKED item, the amount of memory needed to store an item is generally
reduced.

Whether data storage is optimized depends on the implementation.

PACKED 143

page
This procedure writes a special character to a textfile which causes the printer to skip to
the top of form when the file is printed.

~. I ~(I textfile I r."'\. t
~ identifier ~

Item Description

textfile identifier variable of type text;
default = output

Examples
page (t ext _f il e)
page

Semantics

Range

file must be open

The procedure page(f) writes a special character to the textfile f which causes the printer
to skip to the top of form when f is printed. The current position in f advances and the
buffer variable l' is undefined.

If f is omitted, the system uses the standard file output.

144 page

Parameters
When a procedure or function is declared, the heading may optionally include a list of
parameters. This list is called the formal parameter list.

A procedure statement or function call in the body of a block provides the matching
actual parameters which correspond by their order in the list. The list of actual
parameters must be assignment compatible with their corresponding formal parameters.

The four sorts of formal parameters are value, variable, function, and procedure
parameters. Value parameters are identifiers followed by a colon {:} and a type identifier.
Variable parameters are identical with value parameters except they are preceded by
the reserved word VAR. Function or procedure parameters are function or procedure
headings.

Formal Parameter List

Heading

formal
parameter list

formal
parameter list

Parameters 145

You can repeat and intermix the four types of formal parameters. Several identifiers can
appear, separated by commas. They then represent formal variable or value parameters
of the same type.

A formal value parameter functions as a local variable during execution of the procedure
or function. It receives its initial value from the matching actual parameter. Execution
of the procedure or function doesn't affect the actual parameter, which, therefore, can
be an expression.

A formal variable parameter represents the actual parameter during execution of the
procedure. Any changes in the value of the formal variable parameter will alter the value
of the actual parameter, which, therefore, must be a variable. A string type formal
variable parameter need not specify a maximum length, it will assume the type of the
actual parameter.

A formal procedure or function parameter is a synonym for the actual procedure or
function parameter. The parameter lists, if any, of the actual and formal procedure or
function parameters must be congruent.

Example Code
PROGRAM show_varparm(output);

VAR
i,j : integer;

PROCEDURE fix(VAR i : integer; j : integer);

BEGIN
i j ;
j : = 0;

END;

{i is passed by reference, it will return equal to 42}
{j is passed by value, this assignment will}
{not change the value of j in the main program}

BEGIN {show_varparm}
i:= 0;
j:= 42;
fix(i,j);
IF i = j THEN writeln('They both = 42');

END.

146 Parameters

PROGRAM show_formparm;
VAR

test: boolean;

FUNCTION chekl (x. y. z: real): boolean;
BEGIN

{Perform some type of validity check on x. y. z }
{and return appropriate value. }

END;

FUNCTION chek2 (x. y. z: real): boolean;
BEGIN

{Perform an alternate validity check on x. y. z }
{and return appropriate value. }

END;

PROCEDURE read_data (FUNCTION check (a. b. c: real): boolean);
VAR p. q. r: real;
BEGIN

{read and validate data}
readln (p. q. r);
IF check (p. q. r) THEN ...

END;

BEGIN {show_formparm}

IF test THEN read_data (chekl)
ELSE read_data (chek2);

END.

Parameters 147

Pointers
A pointer references a dynamically allocated variable on the heap. A pointer type consists
of the circumflex (A) and a type identifier.

Pointer Type

The type can be any type, including file types. The @ symbol can replace the circumflex.

You need not have previously defined the type appearing after the circumflex. This is
an exception to the general rule that Pascal identifiers are first defined and then used.
However, you must define the identifier after the circumflex within the same declaration
part, although not necessarily within the same TYPE section.

A type identifier used in a pointer type declaration in an EXPORT section need not be
defined until the IMPLEMENT section.

The pointer value NIL belongs to every pointer type; it points to no variable on the heap.

Permissible Operators

Operation Operator

assignment:

equality: =, <>

Standard Procedures

Input Result

pointer parameters new, dispose, mark, release

148 Pointers

Examples
TYPE

ptrl = -reel;
ptr2 = -ree2;
reel = RECORD

fl, f2: integer;
link: ptr2;

END;
ree2 = RECORD

fl, f2: real;
link: ptrl;

END;

Pointer dereferencing
A pointer variable points to a dynamically-allocated variable on the heap. The current
value of this variable can be accessed by dereferencing its pointer.

Pointer dereferencing occurs when the circumflex symbol (~) appears after a pointer
designator in source code.

---..J pOinter ~
identifie~

The pointer designator can be the name of a pointer or selected component of a structured
variable which is a pointer. The @ symbol can replace the circumflex.

If the pointer is NIL or undefined, dereferencing causes an error.

A dereferenced pointer can be an operand in an expression.

Examples
PROGRAM show_pointerderef (output);
TYPE

p = -integer;
VAR

integer; a,b
p_array
ptr

ARRAY [1 .. 10] OF p;
p;

BEGIN

writeln(ptr- * 2); {Derefereneed pOinter is operand. }

END.

Pointers 149

position
This function returns the index of the current file component.

---.(POSITION~ ide~~i~ier ~

Item Description

file identifier variable of type file

Example
position(file_var)

Semantics

Range

must not be a text file

The function posi tion(f) returns the integer index of the current component of f, starting
from 1. Input or output operations will reference this component. fmust not be a textfile.
If the buffer variable C is full, the result is the index of the component in the buffer.

150 position

pred
This function returns the value whose ordinal number is one less than the ordinal number
of the argument.

Examples

Semantics

ordinal
expression

Input

pred(ord_var)

pred(l)

pred(-5)

pred('B')

pred(true)

Result

0

-6

A

false

The function pred(x) returns the value, if any, whose ordinal number is one less than the
ordinal number of x. The type of the result is identical with the type of x. A run-time
error occurs if pred(x) does not exist. For example, suppose:

TYPE day = (monday.tuesday.wednesday)

Then,

pred(tuesday) = monday

but pred(monday) is undefined.

pred 151

PROCEDURE
A procedure is a block which is activated with a PROCEDURE statement. A procedure
declaration consists of a procedure heading, a semi-colon (;), and a block or a directive
followed by a semi-colon.

Formal Parameter List

Heading

152 PROCEDURE

formal
parameter list

formal
parameter list

Item Description

procedure identi- name of a user-defined procedure
fier

formal parameter see diagram
list

heading see drawing

Semantics

Range

any valid identifier

The procedure heading consists of the reserved word PROCEDURE, an identifier (the
procedure name), and, optionally, a formal parameter list.

A directive can replace the procedure block to inform the compiler of the location of
the block. A procedure block consists of an optional declaration part and a compound
statement.

Procedure declarations must occur at the end of a declaration part after label, constant,
type, and variable declarations and after the module declarations in the outer block. You
can intermix procedure and function declarations.

PROCEDURE 153

Procedures
A procedure statement transfers program control to the block of a declared or standard
procedure. After the procedure has executed, control is returned to the statement
following the procedure call. A procedure statement consists of a procedure identifier
and, if required, a list of actual parameters in parentheses.

Procedure Statement

procedure
identifier

The procedure identifier must be the name of a standard procedure or a procedure
declared in a previous procedure declaration.

The declaration can be an actual declaration (i.e. heading plus body), a forward
declaration, or it can be the declaration of a procedure parameter.

If a procedure declaration includes a formal parameter list, the procedure statement must
supply the actual parameters. The actual parameters must match the formal parameters
in number, type and order. There are four kinds of parameters: value, variable, procedure·
and function.

Actual value parameters are expressions which must be assignment compatible with the
formal value parameters.

Actual variable parameters are variables which must be type identical with the formal
variable parameters. Components of a packed structure cannot appear as actual variable
parameters.

Actual procedure or function parameters are the names of procedures or functions de­
clared in the program. Standard procedures or functions are not legal actual parameters.

154 Procedures

If a procedure or function passed as an actual parameter accesses any entity non-locally
upon activation, then the entity accessed is one which was accessible to the procedure or
function when it was passed as a parameter. For example, suppose Procedure A uses the
non-local variable x. If A is then passed as an actual procedure parameter to Procedure
B, it will still be able to use x, even if x is not otherwise accessible from B.

The formal parameters, if any, of an actual procedure or function parameter must be
congruent with the formal parameters of the formal procedure or function parameter.
Two formal parameter lists are congruent if they contain an equal number of parameters
and the parameters in corresponding positions are equivalent. Two parameters are
equivalent if any of the following conditions are true.

1. They are both value parameters of the identical type. Assignment compatibility is
not sufficient.

2. They are both variable parameters of the identical type.

3. They are both procedure parameters with congruent parameter lists.

4. They are both function parameters with congruent parameter lists and identical
result types.

Procedures 155

Example Code
PROGRAM show_pstate (output);

PROCEDURE wow; forward;

PROCEDURE bow;
BEGIN

write('bow-') ;
wow;

END;

PROCEDURE wow;
BEGIN

write('wow');
END;

{Forward declaration.

{procedure used before
{ it is defined

}

}
}

{Forward procedure defined}

PROCEDURE actual_proc {Actual procedure declaration.}
(al: integer;
a2: real);

BEGIN
IF a2 < al THEN

actual_proc (al, a2-al) {recursive call}

END;

PROCEDURE outer {Another actual declaration. }
(a: integer;
PROCEDURE proc_parm
(pl: integer; p2 : real»;

PROCEDURE inner; {nested procedure}
BEGIN

actu~l_proc (50, 50.0);
END;

BEGIN {outer}
writeln ('Hi');
inner;
proc_parm (2, 4.0);

END; {outer}

BEGIN {show_pstate}
outer (30, actual_proc);

END. {show_pstate}

156 Procedures

{Calling a
{predefined procedure,
{inner procedure,
{procedure parameter.

{procedure parameters.

}
}
}
}

}

PROGRAM
An HP Pascal program consists of three major parts; the program heading, the program
declaration, and the program block.

...,
L
ro

Q.

c
o

...,
ro
L
ro

u
w
o

11
Q.

label
declaration

See Programs.

program
identifier

constant
declaratIon

variable
declaration

type
declaration

import
declaration

module
declaration

procedure
declaration

function
declaration

PROGRAM 157

Programs
An HP Pascal compiler will successfully compile source code which conforms to the
syntax and semantics of an HP Pascal program. The form of an HP Pascal program
consists of a program heading, a semicolon (;), a program block, and a period.

I program ~ ~
heading I blOC~

The program heading consists of the reserved word PROGRAM, an identifier (the
program name) and an optional 'parameter list.

program
identifier

The identifiers in the parameter list are variables which must be declared in the outer
block, except for the standard textfiles input and output.

Input and output are standard file variables which the system associates by default
with system dependent files and devices which it opens automatically at the beginning
of program execution. In HP Pascal, input or output need only appear as program
parameters if some file operation, e.g. read or write, refers to them explicitly or by
default.

Program parameters are often the names of file variables, but a logical file, i.e. a file
declared in the program, need not necessarily appear as a program parameter. What
must appear is system dependent.

158 Programs

The program block consists of an optional declaration part and a required statement
part.

declaration
part

The declaration part (see next page) consists of definitions of labels, constants and types,
and declarations of variables, procedures, functions, and modules. The statement part is
made up of a compound statement which can be empty or can contain several simple or
structured statements (see Statements). The statement part is also termed the "body"
or "executable portion" of the block.

Example Code
PROGRAM minimum;
BEGIN
END.

{The minimum program the HP Pascal }
{compiler will process successfully: }
{no program parameters. }

PROGRAM show_formi (output); {Uses the standard textfile output }
BEGIN {and the standard procedure writeln.}

writeln ('Greetings!')
END.

PROGRAM show_form2 (input ,output) ;
VAR

a,b,total: integer;

FUNCTION sum (i,j: integer): integer;
BEGIN

sum:= i + j
END;

BEGIN
write ('Enter two integers: ');
prompt;
readln (a,b);
total:= sum (a,b);
writeln ('The total is: total)

END.

{Function declaration }

Programs 159

Declaration Part
The declaration part of an HP Pascal program block defines the labels, declared
constants, data types, variables, procedures, functions, and modules which will be used
in the executable statements in the body of the block.

The reserved word LABEL precedes the declaration of labels; CONST or TYPE the
definition of declared constants or types; VAR the declaration of variables; IMPORT a
list of modules; MODULE the declaration of a module; PROCEDURE or FUNCTION
the declaration of a procedure or a function.

Type Declaration

~ identifier ~ type i==QOL

Constant Declaration

identifier

Variable Declaration

-0!f 'I~ l-'de-nt-if-ier-~

Within a declaration part, label declarations must come first; procedure or function
declarations last. You can intermix and repeat CONST and TYPE definition sections,
VAR declaration sections (see example below) and MODULE declarations.

160 Programs

ANSI Standard Pascal does not allow any of the reserved words, LABEL, CONST,
TYPE, or VAR to be used more than once.

You can redeclare or redefine a standard declared constant, type, variable, procedure or
function in a declaration part. You will, of course, lose any previous definition associated
with that item.

Example Code
PROGRAM show_declarepart;
LABEL 25;
VAR

birthday: integer;
TYPE

friends = (Joe, Simon, Leslie, Jill);
CONST

maxnuminvitee = 3;
VAR

invitee: friends;
PROCEDURE hello;

BEGIN
writeln('Hi') ;

END; {End of declaration part.}

BEGIN {Beginning of body. }

END.

Programs 161

prompt
This procedure causes the system to write any buffers associated with a textfile to the
output device.

Write Parameter

enumerated
expression

integer
expression

real
expression

text file
identifier

minimum
field width

minimum
field width

Item Description

text file identifier variable of type text;
default = output

write parameter see drawing

minimum field integer expression
minimum field
width

fraction length integer expression

162 prompt

Range

file must be opened to write

greater than 0

greater than 0

Examples
prompt (file_var)
prompt(file_var.exp)
prompt(file_var.expl expn)
prompt (exp)
prompt(expl expn)
prompt

Semantics
The procedure prompt(f) causes the system to write any buffers associated with text file
f to the device. Prompt does not write a line marker on f. The current position is not
advanced and the buffer variable C becomes undefined.

You normally use prompt when directing I/O to and from a terminal. Prompt causes the
cursor to remain on the same line after output to the screen is complete. The user can
then respond with input on the same line.

The expression parameter e behaves exactly like the equivalent parameters in the
procedure write.

prompt 163

put
This procedure assigns the value of the buffer variable to the current file component.

Item

file identifier

Example
put (file_var)

Semantics

file
identifier

Description

variable of type file

Range

file must be open to write

The procedure put(f) assigns the value of the buffer variable fA to the current component
and advances the current position. Following the call, fA is undefined.

An error occurs if f is open in the read-only state.

Illustration
Suppose examp_file is a file of integer with a single component opened in the write-only
state by append. Furthermore, we have assigned 9 to the buffer variable examp_file ~. To
place this value in the second component, we call put:

append(examp_file);
examp_file":= 9;

current position

~

164 put

state: write-only
examp_file": 9
+ ----- + eof(examp_file): true

put(examp_file);

current position

1
state: write-only
1 9 examp_filer>.: undefined
eof(examp_file): true

put 165

read
This procedure assigns the value of the current component of a file to its arguments.

Item

file identifier

file
identifier

Description

variable of type file

variable identifier type compatible with file type;
see semantics

Examples
read(file_var.variable)
read(file.variablel variablen)
read (variable)
read(variablel variablen)

Semantics

Range

file must be open to read;
default = output

The procedure read(f,v) assigns the value of the current component of f to the variable v,
advances the current position, and causes any subsequent reference to the buffer variable
r to actually load the buffer with the new current component.

Variable Compatability
If the file is a textfile, the variable can be a simple, string, or PAC variable. If the file
is not a textfile, its components must be assignment compatible with the variable. Any
number of variable identifiers can appear separated by commas.

The parameter v can be a component of a packed structure.

166 read

The following statement:

read(f.v)

is equivalent to

v := f­
get(f);

If f is a textfile, an implicit data conversion can precede the read operation (see below).

The call

read(f.vl• vn);

is equivalent to

read(f.vl);
read(f.v2);

read(f.vn);

Illustration
Suppose examp_file is a file of char opened in the read-only state. The current position
is at the second component. To read the value of this component into char_var, we call
read:

{initial condition}

current position
~

state: read-only
examp_file"': i or undefined
eof (examp_file): false
char_var: old value, if any

read 167

read(examp_file,chac var)

current position

t

Implicit Data Conversion

state: read-only
examp_fileA(deferred): p
eof(examp_file): false
char_var: i

If f is a textfile, its components are type char. The parameter v, however, need not be
type char. It can be any simple, string, or PAC type. The read procedure performs
an implicit conversion from the ASCII form which appears in the textfile f to the actual
form stored in the variable v.

If v is type real, longreal, integer, or an integer subrange, the read operation searches
f for a sequence of characters which satisfies the syntax for these types. The search skips
preceding blanks or end-of-line markers. If v is longreal, the result is independent of the
letter preceding the scale factor.

An error occurs if the read operation finds no non-blank characters or a faulty sequence
of characters, or if an integer value is outside the range of v. After read, a subsequent
reference to the buffer variable r will actually load the buffer with the character
immediately following the number read. Also note that eof will be false if a file has
more blanks or line markers, even though it contains no more numeric values.

If v is a variable of type string or PAC, then read(f,v) will fill v with characters from
f. When v is type PAC and eoln(f) becomes true before v is filled, the operation puts
blanks in the rest of v. If v is type string and eoln(f) becomes true before v is filled to its
maximum length, no blank padding occurs. Strlen(v) then returns the actual number
of characters in v. You may wish to use this fact to determine the actual length of a line
in a textfile.

If v is a variable of an enumerated type, read(f,v) searches f for a sequence of characters
satisfying the syntax of a HP Pascal identifier. The search skips preceding blanks and
line markers. Then the operation compares the identifier from f with the identifiers which
are values of the type of v, ignoring upper and lower case distinctions. Finally, it assigns
an appropriate value to v. An error occurs if the search finds no non-blank characters,
if the string from f is not a valid HP Pascal identifier, or if the identifier doesn't match
one of the identifiers of the type of v.

168 read

The following table shows the results of calls to read with various sequences of characters
for different types of v.

Implicit Data Conversion

Sequence of characters in f
following current position v: Type v: Result

(space) (space) 1.850 real 1.850

(space) (linemarker)(space} 1.850 longreal 1.850

10000(space} 10 integer 10000

8135(end-of-line} integer 8135

54(end-of-line }36 integer 54

1.583E7 real 1.583xlO(7}

1.583E+7 longreal 1.583xlO(7}

(space) Pascal string[5] , Pasc'

(space }Pas(end-of-line }cal string[9] , Pas'

(space)Pas(end-of-line }cal PAC {length = 9} , Pas ' {length 9}

(end-of-line)Pascal rAC {length = 5} 'Pasca' {length 5}

(space) Monday (space) enumerated Monday

read 169

readdir
This procedure reads a specified component from a direct-access file.

Item

file identifier

index

file
identifier

Description

variable of type file

integer expression

variable
identifier

Range

file must be open to read;
file must not be a textfile

greater than 0;
less than laspos(file identi­
fier)

variable identifier variable that is type compatible with file see semantics
type

Examples
readdir(file_var.indx.variable)
readdir(file_var.indx.variablel variablen)

Semantics
The procedure readdir(f,k,v) places the current position at component k and then reads
the value of that component into v. Formally, this is equivalent to:

seek(f.k);
read(f.v);

The call get(f) is not required between seek and read because of the definition of read.

You can use the procedure readdir only with files opened for direct access. Thus, a
textfile cannot appear as a parameter for readdir.

170 readdir

Illustration
Suppose examp_file is a file of integer with four components opened in the read-write
state. The current position is the first component. To read the third component into
int_ var, we call readdir. After readdir executes, the current position is the fourth
component.

{initial condition}

current position
~

readdir(examp_file,3,inLvar);

current position

t

state: read-write
examp_file": undefined
eof(examp_file}: false
inLvar: old value

state: read-write
examp_file" (deferred): 10
eof(examp_file}: false
inLvar: 40

readdir 171

readln
This procedure reads a value from a textfile and then a.dvances the current position to
the beginning of the next line.

text file
identifier

Item Description Range

text file identifier variable of type textfile;
default = input

file must be open to read

variable identifier variable must be a simple type, a string type -
or a PAC

Examples
readln(file)
readln(file.variable)
readln(file.variable1 variablen)
readln(variable)
readln(variable1, ... ,variablen)
readln

Semantics
The procedure readln(f,v) reads a value from the textfile f into the variable v and then
advances the current position to the beginning of the next line, i.e. the first character
after the next end-of-line marker. The operation performs implicit data conversion if v
is not type char (see discussion of read above).

The call readln (f . v1 vn) is equivalent to

read(f.v1 vn);
readln(f);

If the parameter v is omitted, readln simply advances the current position to the
beginning of the next line.

172 readln

real
The type real represents a subset of the real numbers.

The type real is a standard simple type. For HP Pascal, the range of the subset is
implementation dependent.

Permissible Operators

Operation Operator

assignment .=

relational <, <=, =, <>, >=, > subtraction -, +, *, /
negation -,

Standard Functions

Parameter Function

real argument: abs, arctan, cos, exp, In, round, sin, sqr, sqrt, trunc

real return: abs, arctan, cos, exp, In, sin, sqr, sqrt

Example Code
PROGRAM show_realnum(output);

VAR
realnum: real;

BEGIN
realnum := 6.023E+23;
writeln(realnum);

END.

real 173

RECORD
A record is a collection of components which are not necessarily the same type. Each
component is termed a field of the record and has its own identifier.

A record type is a structured type and consists of the reserved word RECORD, a field
list, and the reserved word END.

The reserved word PACKED can precede the reserved word RECORD. It instructs the
compiler to optimize storage of the record fields.

record type
identifier

Field list
The field list has a fixed part and an optional variant part.

174 RECORD

In the fixed part of the field list, a field definition consists of an identifier, a colon (:),
and a type. Any simple, structured, or pointer type is legal. Several fields of the same
type can be defined by listing identifiers separated by commas.

Fixed Part of a Field List

In the variant part, the reserved word CASE introduces an optional tag field identifier
and a required ordinal type identifier. Then the reserved word OF precedes a list of case
constants and alternative field lists. Fields of type file or of a type which contains files
are not legal in the variant part of a record.

Variant Part of a Field List

identifier

type
identifier

Case constants must be type compatible with the tag. Several case constants can be
associated with a single field list. The various constants appear separated by commas.
Subranges are also legal case constants. The empty field list can be used to indicate that
a variant doesn't exist (see example). HP Pascal does not require that you specify all
possible tag values.

RECORD 175

Field List

You cannot use the OTHERWISE construction in the variant part of the field list.
OTHERWISE is only legal in CASE statements.

Variant parts allow variables of the same record type to exhibit structures that differ in
the number and type of their component parts. If a record has multiple variants, when
a variant is assigned to the tag field, any fields associated with a previous variant cease
to exist and the new variant's fields come into existence with undefined values. An error,
occurs if a reference is made to a field of a variant other than the current variant.

A field of a record is accessed by using the appropriate field selector.

Permissible Operators

Operation Operator

assignment .=

(entire record)

field selection

176 RECORD

Example Code
TYPE

word_type = (int, ch);
word = RECORD {variant part only with tag}

CASE word_tag: word_type OF
int: (number: integer);
ch : (chars: PACKED ARRAY [1 .. 2] OF char);

END;

polys (circle, square, rectangle, triangle);
polygon = RECORD {fixed part and tagless variant part}

poly_color: (red, yellow, blue);
CASE polys OF

circle: (radius: integer);
square: (side: integer);
rectangle: (length, width: integer);
triangle: (base, height: integer);

END;

name_string
date_info

PACKED ARRAY [1 .. 30] OF char;
PACKED RECORD {fixed part only}

mo: (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

da: 1 .. 31;
yr: 1900 .. 2001;

END;
marital_status = (married, separated, divorced, single);
person_info = RECORD {nested variant parts}

name: name_string;
born: date_info;
CASE status: marital_status OF

married .. divorced:
(when: date_info;

)
single: 0;

END;

CASE has_kids: boolean OF
true: (how_many: 1 .. 50);
false: (); {Empty variant}

RECORD 177

Record Constructor
A record constant is a declared constant defined with a record constructor which specifies
values for the fields of a record type.

A record constructor consists of a previously declared record type identifier and a list
in square brackets of fields and values. All fields of the record type must appear, but
not necessarily in the order of their declaration. Values in the constructor must be
assignment compatible with the fields.

Record Constant

record type
identifier

field
identifier constant

structured
constant

For records with variants, the constructor must specify the tag field before any variant
fields. Then only the variant fields associated with the value of the tag can appear. For
free union variant records, i.e. tagless variants, the initial variant field selects the variant.

The values can be constant values or constructors. To use a constructor as a value, you
must define the field in the record type with a type identifier. A record constant cannot
contain a file.

A record constructor is only legal in the CaNST section of a declaration part. It cannot
appear in other sections or in an executable statement.

A record constant can be used to initialize a variable in the body of a block. You can
also select individual fields of a record constant in the body of a block, but not when
defining other constants.

178 RECORD

Example Code
TYPE

securtype
counter

report

CONST
no_count
big_report

(light, medium, heavy);
RECORD

pages: integer;
lines: integer;
characters: integer;

END;
RECORD

revision: char;
price: real;
info: counter;
CASE securtag: securtype OF

light: ();
medium: (mcode: integer);
heavy: (hcode: integer;

password: string[10]);
END;

counter [pages: 0, characters: 0, lines: 0];
report [revision: 'B',

price: 19.00,
info: counter [pages: 19,

securtag: heavy,
hcode: 999,
password: 'unity'];

report [revision
price
info
securtag

, ,. ,
0.00;
no_count;
light] ;

lines: 25,
characters: 900],

RECORD 179

Record Selector
A record selector accesses a field of a record. The record selector follows a record
designator and consists of a period and the name of a field.

~ field ~
. identifier

A record designator is the name of a record, the selected component of a structure which
is a record, or a function call which returns a record.

The WITH statement "opens the scope" of a record. making it unnecessary to specify a
record selector.

Example Code
PROGRAM show_recordselector;
TYPE

r_type = RECORD

VAR
a,b
ch
r
rec_array

BEGIN

f1: integer;
f2: char;

END;

integer;
char;
r_type;
ARRAY [1 .. 10] OF r_type;

a:= r.f1 + b; {Assigns current value of integer field }
{of r plus b to a. }

rec_array[a] .f2:= ch; {Assigns current value of ch to char }
{field of a'th component of rec_array.}

END.

180 RECORD

Recursion
A recursive procedure or function is a procedure or function that calls itself. It is also
legal for procedure A to call procedure B which in turn calls procedure A. This is indirect
recursion and is often an instance when the FORWARD directive is useful.

When a routine is called recursively, new local variables are created dynamically (on the
stack).

Example Code
FUNCTION factorial (n: integer): integer;
{Calculates factorial recursively}

BEGIN
IF n = 0 THEN

factorial 1
ELSE

factorial := n * factorial(n-l);
END;

Recursion 181

release
This procedure returns the heap to its state when it was marked by the mark procedure.

Item

heap marker

Example
release (ptr)

Semantics

Description

a pointer variable

Range

pointer should have previ­
ously appeared as a param­
eter in a call to mark, and
should not have been passed
to release see semantics

The procedure release(p) returns the heap to its state when mark was called with p as
a parameter. This has the effect of deallocating any heap variables allocated since the
program called mark(p). The system can then reallocate the released space. The system
O:>11+ArYl"d-iF><:.lh, F>l",o"o o:>r ' f:1,nco in +1-. ,n1"o:>o".rl 0:>.,..,,0:>
CAllA.\JV~""'.1.U\J.1.'-'UI.L.1.J '-'.1.vtJ\.....-tJ (AI.L..I..J .1..1..1.,-,t.:) .1...1..£. \J.J...I.\,..... .I.'-'.I.'-'UltJ\v'-...L U.L\,.....«.AI.

An error occurs if p is not passed as a parameter to mark, or if it was previously passed
to release explicitly or implicitly (see example below). After release, p is undefined.

182 release

Example Code
PROGRAM show_markrelease;
VAR

w,x,y: -integer;
BEGIN

mark(w);

release(w); {Returns heap to state marked by w. }

mark(x);

mark(y);

release(x); {Returns heap to state marked by x. The }
{pointer y no longer marks a heap state.}

END. {Release(y) is now an error. }

release 183

REPEAT

A REPEAT statement executes a statement or group of statements repeatedly until a
given condition is true.

A REPEAT statement consists of the reserved word REPEAT, one or more statements,
the reserved word UNTIL, and a boolean factor (the condition).

The statements between REPEAT and UNTIL need not be bracketed with BEGIN .. END.

When the system executes a REPEAT statement, it first executes the statement sequence
and then evaluates the condition. If it is false, it executes the statement sequence and
evaluates the condition again. If it is true, control passes to the statement after the
REPEAT statement.

The statement

REPEAT
statement;

UNTIL condition

is equivalent to the following:

1: statement;
IF NOT condition THEN GOTO 1;

Usually the statement sequence will modify data at some point so that the condition
becomes false. Otherwise, the REPEAT statement will loop forever. Of course, it is
possible to branch unconditionally out of a REPEAT statement using a GOTO statement.

184 REPEAT

The compiler can be directed to perform partial evaluation of boolean operators used in
a REPE.-\'T ... C~\TIL statement. For example:

REPEAT ... UNTIL done OR finished

By specifying the $PARTIAL_EVAL ON$ compiler directive, if "done" is true, the
remaining operators will not be evaluated since execution of the statement depends on
the logical OR of both operators. (Both operators would have to be false for the logical
OR of the operators to be false.)

Example Code
sum := 0;
count := 0;

REPEAT
writeln('Enter trial value, or "-i" to quit');
read (value);
sum := sum + value;
count := count + 1;
average := sum / count;
writeln ('value =', value, '

UNTIL (count >= 10) OR (value =

REPEAT
write~n (real_array [index]);
index := index + 1;

UNTIL index> limit;

average =', average)
-1);

REPEAT 185

Reserved Words
These are the reserved words recognized by HP Pascal:

AND EXPORT MOD RECORD
ARRAY FILE MODULE REPEAT
BEGIN FOR NIL SET
CASE FUNCTION NOT THEN
CONST GO TO OF TO
DIV IF OR TYPE UNTIL
DO IMPLEMENT OTHERWISE VAR
DOWN TO IMPORT PACKED WHILE
ELSE IN PROCEDURE WITH
END LABEL PROGRAM

Reserved words cannot be used as identifiers.

The lettercase of reserved words is unimportant. They can be typed in either uppercase
or lowercase.

186 Reserved Words

reset
This procedure opens a file in the read-only state and places the current position at the
first component.

Item Description Range

file identifier variable of type file

physical file spec- name to be associated with f; must be a -
ifier string expression or PAC variable

options string a string expression or PAC variable

Examples
reset (file_var)
reset (file_var, file_name)
reset(file_var,file_name,opt_str)

Semantics

implementation dependent

The procedure reset(f) opens the file f in the read-only state and places the current
position at the first component. The contents of f, if any, are undisturbed. The file f can
then be read sequentially.

If f is not empty, eof(f) is false and a subsequent reference to the buffer variable C will
actually load the buffer with the first component. The components of f can now be read
in sequence. If f is empty, however, eof (f) is true and C is undefined. A subsequent call
to read produces an error.

If f is already open at the time reset is called, the system automatically closes and then
reopens it. If the parameter s is specified, the system closes any physical file previously
associated with f.

reset 187

Illustration
Suppose examp_file is a closed file of char with three components. To read sequentially
from examp_file, we call reset:

{initial condition}

reset(examp_file);

current position
~

188 reset

state: closed

state: read-only
examp_file" (deferred): a
eof{examp_file): false

rewrite
This procedure opens a file in the write-only state and places the current position at the
beginning of the file.

Item Description Range

file identifier variable of type file

physical file spec- name to be associated with f; must be a -
ifier string expression or PAC variable

options string a string expression or PAC variable

Examples
rewrite(f);
rewrite(f, '#3:TEST');
rewrite(f,'#5:AFILE', 'EXCLUSIVE');

Semantics

implementation dependent

The procedure rewrite(f) opens the file f in the write-only state and places the current
position at the beginning of the file. The system discards any previously existing
components of f. The function eof (f) returns true and the buffer variable C is undefined.
You can now write on f sequentially.

If f is already open at the time rewrite is called, the system closes it automatically and
then reopens it. If s is specified, the system closes any physical file previously associated
with f.

rewrite 189

Illustration
Suppose examp_file is a closed file of char with three components. To discard these
components and write sequentially to examp_file, we call rewrite:

{initial condition}

rewrite(examp_file);

current position

l

190 rewrite

state: closed

state: write-only
examp_file~ : undefined
eof(examp_file): true

round
This function returns the argument rounded to the nearest integer.

Examples

Semantics

real
expreSSlon

Input

round (bad_real)

round(3.1)

round (-6.4)

round (-4.6)

round(1.5)

Result

3

-6

-5

2

The function round{x) returns the integer value of x rounded to the nearest integer. If x
is positive or zero, then round{x) is equivalent to trunc{x + 0.5); otherwise, round{x) is
equivalent to trunc{x - 0.5). An integer overflow occurs if the result is not in the range
minint .. maxint.

round 191

Scope
The scope of an identifier is its domain of accessibility, i.e. the region of a program in
which it can be used.

In general, a user-defined identifier can appear anywhere in a block after its definition.
Furthermore, the identifier can appear in a block nested within the block in which it is
defined.

If an identifier is redefined in a nested block, however, this new definition takes
precedence. The object defined at the outer level will no longer be accessible from the
inner level (see example below).

Once defined at a particular level, an identifier cannot be redefined at the same level
(except for field names).

Labels are not identifiers and their scope is restricted. They cannot mark statements in
blocks nested within the block where they are declared.

Identifiers defined at the main program level are "global". Identifiers defined in a function
or procedure block are "local" to the function or procedure.

The definition of an identifier must precede its use, with the exception of pointer type
identifiers, program parameters, and forward declared procedures or functions.

For a module, identifiers declared in the EXPORT section are valid for the entire module,
identifiers declared after the IMPLEMENT keyword are valid only within the module.

192 Scope

Example Code
PROGRAM show_scope (output);
CONST

asterisk = '*';
VAR

x: char;
PROCEDURE writeit;

CONST
x = 'LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT';

BEGIN
write (x)

END;
BEGIN {show_scope} .

x:= asterisk;
write (x);
writeit;
wri te (x)

END. {show_scope}

Results:

LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT

Scope 193

seek

This procedure places the current position of a file at the specified component.

~ ide~~~~ier ~ position ~

Item Description Range

file identifier variable of type file must be direct access;
must be open for read-write

index integer expression greater than 0

Example
seek(file_var.indx)

Semantics
The procedure seek(f,k) places the current position of f at component k. If k is greater
than the index of the highest-indexed component ever written to f, the function eof(f)
returns true, otherwise false. The buffer variable fA is undefined following the cali to
seek. An error occurs if f is not open in the read-write state.

194 seek

Illustration
Suppose examp_file is a file of char with four components opened for direct access. The
current position is the second component. To change it to the fourth component, we call
seek.

{initial condition}

current position
l

seek(examp_file,4);

current position

l

state: read-write
examp-fileA(deferred): e
eof(examp_file): false

state: read-write
examp_fileA: undefined
eof(examp_file): false

seek 195

Separators
A separator is a blank, an end-of-line marker, a comment, or a compiler option.

At least one separator must appear between any pair of consecutive identifiers, numbers,
or reserved words. When one or both elements are special symbols, however, the
separator is optional.

Example Code
IF eof THEN GOTO 99
x := x + 1
x:=x+l

196 Separators

{Required separators.}
{Optional separators.}
{No separators. }

SET
A set is the powerset, i.e. the set of all subsets, of a base type. A set type consists of
the reserved words SET OF and an ordinal base type.

Set Type:

set type
identifier

A set type is a user-defined structured type. The base type can be any ordinal type.
The maximum number of elements is implementation defined but must be at least
256 elements. It is legal to declared a packed set, but whether this affects storage is
implementation dependent.

Permissible Operators

Example Code
TYPE

charset
fruit
somefruit
poets
some_set

Operation Operator

assignment

union +

intersection *
difference -

subset <=

superset· >=

equality =, <>

inclusion IN

SET OF char;
(apple, banana. cherry, peach, pear, pineapple);
SET OF apple .. cherry;
SET OF (Blake, Frost, Brecht);
SET OF 1.. 200 ;

SET 197

Restricted Set Constructor
A set constant is a declared constant defined with a restricted set constructor which
specifies set values.

Set Constant

set type
indentifier

constant

constant

A restricted set constructor consists of an optional previously declared set type identifier
and a list of constant values in square brackets. Subranges can appear in this list.

Restricted Set Constructor

set type
identifier

A value must be an ordinal constant value or an ordinal subrange. A constant expression
is legal as a value. The symbols (. and .) can replace the left and right square brackets,
respectively.

Restricted- set constructors can appear in a CONST section of a declaration part or in
executable statements. Unrestricted set constructors permit variables to appear as values
within the brackets.

You can use a set constant to initialize a set variable in the body of a block.

198 SET

Example Code
TYPE

digits = SET OF O .. 9;
charset = SET OF char;

CONST
all_digits
odd_digits
letters
no_chars
no_iden

= digits [0 .. 9];
= digits [1, 1+2, 5,

chars et [, a' .. 'z ' ,
charset [];
[2, 4, 6, 8]

Set Constructor

{Subrange.}
7, 9];
'A' .. 'Z,] ;

{No set identifier.}

A set constructor designates one or more values as members of a set whose type may
or may not have been previously declared. A set constructor consists of an optional set
type identifier and one or more ordinal expressions in square brackets. Two expressions
can serve as the lower and upper bound of a subrange.

Set Constructor

set type
,identifier expression

expression

If the set type identifier is specified, the values in the brackets must be type compatible
with the base type of the set. If no set type identifier appears, the values must be type
compatible with each other. The symbols (. and.) can replace the left and right square
brackets, respectively.

Set constructors can appear as operands in expressions in executable statements. Set
constructors with constant values are legal in the definition of constants.

SET 199

Example Code
PROGRAM show_setconstructor;
TYPE

int_set = SET OF 1 .. 100;
cap_set = SET OF 'A' .. 'Z';

VAR
a.b: O .. 255;
sl: SET OF integer;
s2: SET OF char;

BEGIN

sl:= int_set[(a MOD 100) + (b MOD 100)]
s2:= cap_set['B' .. 'T'. 'X'. 'Z'];

END.

200 SET

setstrlen
This procedure sets the current length of s to the specified length.

SETSTRLEN string
identifier

Item Description

string identifier variable of type string

new length integer expression

Example
setstrlen(str_var,int_exp)

Semantics

Range

o thru the maximum length
of the. string

The procedure setstrlen(s,e) sets the current length of s to e without modifying the
contents of s.

If the new length of s is greater than the previous length of s, the extra components will
be undefined. No blank filling occurs. If the new length of s is less than the previous
length of s, previously defined components beyond the new length will no longer be
accessible.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

setstrlen 201

Example Code
VAR

alpha: string[80];
BEGIN

alpha:= 'abcdef'; {strlen(alpha) = 6}

setstrlen(alpha,2*strlen(alpha»; {Doubles current length}
{of alpha. Alpha[7] }
{through alpha[12] not }
{defined. }

setstrlen(alpha,2) {Alpha[3] through }
{alpha[80] unavailable. }

END.

202 setstrlen

Side Effects
A side effect is the modification, by a procedure or function, of a variable not appearing
in the parameter list.

Global variables are declared at the beginning of a program before any procedure
declarations. Global variables are valid during the execution of the program.

Local variables are variables declared within a procedure or function (or in the headings
as parameters) and are only valid during the execution of the procedure of function.

If you declare a local variable using the same identifier as a global variable, the local
variable can be modified without affecting the global variable. A side effect is likely to
occur if you forget to declare the variable within the procedure or the procedure heading.
Without the local declaration, the compiler assumes that the global variable is to be used.

Example Code
PROGRAM show_effects(output);

VAR i.j : integer; {Global variables}

PROCEDURE oops(i : integer); {i is local to the procedure}

BEGIN
IF i > 0 THEN j := j - 1; {j is a global variable}

END;

BEGIN
i := 2;
j := 3;
oops(i);
IF i = j THEN writeln('There was a side effect');

END.

Side Effects 203

sin
This function returns the sine of the angle represented by its argument.

Examples

Semantics

numeric
expression

Input

sin(rad)

sin(O.024)

Result

2.399770E-02

The function sin(x) computes the sine of x, where x is interpreted to be in radians. X
can be any numeric value.

204 sin

sqr
This function computes the square of its argument.

Examples

Semantics

numeric
expression

Input

sqr(3)

sqr(1.198E3)

sqr(maxint)

Result

9

1.435204E+06

error

The function sqr(x) computes the value of x squared. If x is an integer value, the result
is also an integer. If the value to be returned is greater than the maximum value for a
particular type, a run-time error occurs.

sqr 205

sqrt
This function computes the square root of its argument.

Item Description Range

argument numeric expression greater than or equal to 0

Examples

Input Result

sqrt(64) 8.000000E+OO

sqrt(13.5E12) 3.764235E+06

sqrt(O) O.OOOOOOE+OO

sqrt(-5) error

Semantics
The function sqrt(x) computes the square root of x. If x is less than 0, a run-time error
occurs.

206 sqrt

Standard Procedures and Functions
The standard procedures and functions recognized by HP Pascal are listed in the following
tables. These identifiers can be redefined within a program since they appear "global"
to a program.

Standard HP Pascal Procedures

append overprint release strmove
close pack reset strread
dispose page rewrite strwrite
get prompt seek unpack
halt put setstrlen write
mark read strappend writedir
new readdir strdelete writeln
open readln strinsert

Standard HP Pascal Functions

abs hex position strmax
arctan lastpos pred strltrim
binary linepos round strpos
chr In sin strrpt
cos maxpos sqr strrtrim
eof octal sqrt succ
eoln odd str trunc
exp ord strlen

Standard Procedures and Functions 207

Statements
A statement is a sequence of special symbols, reserved words, and expressions which
either performs a specific set of actions on data or controls program flow.

Statement

208 Statements

unlabelled
statement

assignment
statement

CASE
statement

FOR
statement

GOTO
statement

IF
statement

PROCEDURE
statement

REPEAT
statement

WHILE
statement

WITH
statement

HP Pascal statement types and purposes include:

Statement Type Purpose

compound group statements

empty do nothing

assignment assign a value to a variable

procedure activate a procedure

GOTO transfer control unconditionally

IF, CASE conditional selection

WHILE, REPEAT, FOR iterate a group of statements

WITH manipulate record fields

Empty, assignment, procedure, and GOTO statements are "simple" statements. IF,
CASE, WHILE, REPEAT, FOR, and WITH statements are "structured" statements
because they themselves may contain other statements.

A GOTO statement requires a label to mark the location of the statement where
execution is to continue. The label consists of an unsigned integer and a colon ":"
preceeding the "target" statement. When a label is used, a LABEL declaration must
appear in the declaration section of the block containing the GOTO statement and its
destination statement.

The following pages describe compound, and empty statements.

Statements 209

Compound Statements
A compound statement is a sequence of statements bracketed by the reserved words
BEGIN and END. A semi-colon (;) delimits one statement from the next. The system
executes the sequence of statements in order.

Certain statements can alter the flow of execution in order to achieve effects such as
selection, iteration, or invocation of another procedure or function.

After the last statement in the body of a routine has executed, control is returned to the
point in the program from which the routine was called. The program terminates after
the last statement is executed.

Compound Statement

A compound statement has two primary uses: (1) it defines the statement part of a block;
(2) it replaces a single statement within a structured statement. A compound statement
can also serve to logically group a series of statements.

Compound statements are allowed but not required in the following cases.

1. The statements between REPEAT and UNTIL

2. The statements between OTHERWISE and the end of the CASE statement.

210 Statements

Example Code
PROCEDURE check_min;

BEGIN
IF min > max THEN

BEGIN

{This }
{compound }

{Compound } {statement }
writeln('Min is wrong.');
min := 0;

{statement is} {is }
{part of IF } {the }

END; {statement. } {procedure's}
END; {body. }

BEGIN
BEGIN

start_part_1;
finish_part_1;

END;

{Nested compound statements }
{for logically grouping statements.}

BEGIN
start_part_2;
finish_part_2;

END;
END;

Empty Statements
An empty statement performs no action and is denoted by no symbol. It is often useful
for indicating that nothing should occur or for inserting extra semi-colons in code.

These two statements, for example, explicitly speCify no action when i is 2,3,4,6,7,8,9, or
10:

CASE i OF
o start;
1 continue;
2 .. 4
5 report_error;
6 .. 10:
11 stop;
OTHERWISE fatal_error;

END;

IF i IN [2 .. 4,6 .. 10] THEN
{do nothing}
ELSE continue;

In this compound statement, there is an empty statement before END:

BEGIN
1:= J + 1;
K:= I + J;

END

Statements 211

str
This function returns a portion of a string.

Item Description

source string expression of type string

beginning integer expression
position

substring length integer expression

Example
str(str_exp.beg_pos.sub_len)

Semantics

Range

1 thru the current length of
the string + 1

o thru 1 + the maximum
length of the string - the
beginning position

The function str(s,b,e) returns the portion ors which starts at s[b] and is of length e.
The result is type string and can be used as a string expression. An error occurs if
strlen(s) is less than the sum of band e minus 1, or b.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

212 str

Example Code
VAR

i: integer;
wish_list: string[132];
granted: string [5] ;

BEGIN

i:= 13;
wish_list:= 'wish1 wish2 wish3 wish4 wishS';
granted:= str(wish_list,i,5}; {Selects the 3rd wish.}

{Granted is 'wish3'. }
END.

str 213

strappend
This procedure appends one string to the end of another.

STRAPPEND

Item

string
identifier

Description

string identifier variable of type string

string expression expression of type string

Example
strappend(str_var,str_exp)

Semantics

string
expression

Range

length must be less than the
difference between the max­
imum and actual length of
the string variable

The procedure strappend(sl,s2) appends string s2 to s1. The call passes sl as an actual
variable parameter to the procedure. The strlen of s2 must be less than or equal to
strmax(sl)-strlen(sl). That is, it cannot exceed the number of characters left to fill in
cd rr'"ho ... l1 ont lonn+"h nf cd ;'" llr.rl",tOrl tn. ",t ... lon(c,1 \..L"f ... ln ("l)\
U-L • ..L.a..&."", '-''-'L'&''&''-'.I..&.V .&.'\...I.&..&.0"'&'..I. '-'.&. U..L .&.U Up'-A.c.AlV'\...I'-'- \)V UU.L.I.'-'.1..1.\tJ.LJ I O\l.1..1.'-'..l~\O~J.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures asslime that the string parameters contain valid information.

Example Code
VAR

message: string[132]
BEGIN

message:= 'Now hear ';
strappend(message,'this! ');

END.

214 strappend

strdelete
This procedure deletes characters from a string.

Item

string identifier

beginning
position

deletion length

string
identifier

Description

variable of type string

integer expression

integer expression

Example
strdelete(str_var.begin_pos.del_len)

Semantics

Range

1 thru the current length of
the string

o thru 1 + the maximum
length of the string - the
beginning position

The procedure strdelete(s,p,n) deletes n characters from s starting at component s[p],
and the current length of s is updated to the length s-n.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
PROGRAM show_strdelete;
VAR

long. short: string[80];
BEGIN

long:= 'tiny pickle';
strdelete(long.4.5);
short:= long;

END.
{short is 'tinkle'.}

strdelete 215

Strings
In HP Pascal, a string is a packed array of char whose maximum length is set at compile
time but whose actual length may vary during program run time.

A string type consists of the standard identifier string and an integer constant expression
in square brackets which specifies the maximum length.

Str i ng Type:

Item Description

maximum length integer expression

Range

1 thru an implementation­
dependent number

The limit for the maximum length is implementation defined. The symbols (. and.)
can replace the left and right square brackets, respectively. To allow strings longer than
255 characters, use the $LONGSTRINGS$ compiler directive. See also $STRINGTEMPLIMIT n$ if
you use .the formal reference parameter type STRING or STRRPT with $LONGSTRINGS$.

A String type is a standard structured type. Characters enclosed in single quotes are
string literals. The compiler interprets a string literal as type PAC, string, or char,
depending on context.

Integer constant expressions are constant expressions which return an integer value, an
unsigned integer being the simple case (see Constant Definition above).

When a formal reference parameter is type string, you can choose not to specify the
maximum length (see example below). This allows actual string parameters to have
various maximum lengths.

A single component of a string can be accessed by using an integer expression in square
brackets as a selector. The numbering of the characters in the string begins at one (1).
In other words, to select the first character of a string named s, type: s [1]. The standard
function str selects a substring of a string.

216 Strings

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Note

Variables of string type, like other Pascal variables, are not initial­
ized. The current string length contains meaningless information
until you initialize the string.

Permissible String Operators

Operation Operator

assignment

concatenation +

relational =, <>, <=, >=, <, >

Standard String Functions

Parameter Function Name

string argument: str, strlen, strltrim, strmax, strpos, str-
rpt, strrtrim

string return: str, strltrim, strrpt, strrtrim

Standard String Procedures

Object Procedure Name

string parameter setstrlen, strappend, strdelete, strinsert,

Example Code
CONST

maxlength = 100;

TYPE
name string[30];

strmove, strread, strwrite

remark = string[maxlength * 2];

PROCEDURE procl (VAR s: string); EXTERNAL; {Maximum length}
{not required. }

Strings 217

String Constructor
A string constant is a declared constant defined with a string constructor which specifies
values for a string type.

A string constructor consists of a previously defined string type identifier and a list of
values in square brackets.

String Constructor

string type
identifier

Within the square brackets, the reserved word OF indicates that a value occurs re­
peatedly. For example 3 OF 'a' assigns the character "a" to three successive string
components. The symbols (. and .) can replace the left and right brackets, respectively.
String literals of more than one character can appear as values.

The length of the string constant must not exceed the maximum length of the string
type used in its definition.

String constructors are only legal in a CONST section of a declaration part. They cannot
appear in other sections or in executable statements.

A string constant can be used to initialize a variable in the statement part of a block.
You can also access individual components of a string constant in the body of the block,
but not in the definition of other declared constants.

Example Code
TYPE

s = string [80] ;

CaNST
blank = ' ';
greeting = s['Hello!'];
farewell = s['G',2 OF 'o','d' ,'bye'];
blank_string = s[10 OF blank] ;

218 Strings

String Literals
A string literal consists of any combination of the following.

• A sequence of ASCII printable characters enclosed in single quote marks.

• A number symbol (#) followed by a single character.

• A number symbol (#) followed by up to three digits which represent the ASCII
value of a character.

Literal

Up to 3 digits

The printable characters appearing oetween the single quotes are those ASCII characters
assigned graphics and encoded by ordinal values 32 through 126.

A letter or symbol (any non-numeric typing character) after a number symbol is treated
as an ASCII control character. For example, #G or #g is interpreted as CTRL-G, the
bell character. The compiler interprets the letter or symbol in such sequences according
to the expression chr(ord(letter)MOD 32). Thus, the ordinal value of G is 71; modulus
32 of 71 is 7; and the ASCII equivalent to a numerical value of 7 is the bell character.

A number after a number symbol can contain up to three digits but must be in the
range 0 through 255. The numerical value is converted to its 8-bit binary equivalent and
treated as an ASCII character, printing or non-printing.

This method of character representation can be combined with normal ASCII text in
program source files in several ways by surrounding ASCII text characters in the sequence
with single quotes. For example, #65' BC '#68 and 'ABCD' are equivalent expressions.

String Literals 219

Be careful, though. Two single-quoted strings cannot be appended as in the example
, AB' , CD'. This string is interpreted as AB' CD, not ABCD (two single quotes in succession
causes the second single quote to be treated as text; not as a delimiter).

In another example, the string literal #80#65#83#67#65#76 is equivalent to the string literal
PASCAL.

A string literal is type char, PAC or string, depending on the context.

If a single quote is a character in a string literal, it must appear twice.

A string literal must not be longer than a single line of source code, nor can it contain
separators, except for spaces (blanks) within the quotes.

Two consecutive quote marks (") specify the null or empty string literal. Assigning this
value to a string variable sets the length of the variable to zero. Assigning it to a PAC
variable blank-fills the variable.

Examples
'Please don"t!'
'A'

{Single quote character.}

#F
#243#H

{Null string.

#27'that was an ESC char, and this is also'#[
'this string has five bells'#G#g#g#7#7' in it'

220 String Literals

}

strinsert
This procedure inserts a string into another string.

STRINSERT

Item Description

insert string expression of type string

destination string variable of type string

insert position integer expression

Example
strinsert(insert,dest,pos)

Semantics

destination
string

Range

length less than maximum
length of destination - in­
sert position

1 thru current length of des­
tination string

The procedure strinsert(sl,s2,n) inserts string sl into s2 starting at s2[n]. Initially, s2
must be at least n-1 characters in length or an error will occur. The resulting string must
not exceed strmax(s2). The current length of s2 is updated to strlen(sl) + strlen(s2).

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
VAR

remark: string[80];
BEGIN

remark:= 'There is missing!';
strinsert(' something',remark,9);

END.

strinsert 221

strlen
This function returns the current length of a string.

Example
strlen(str_exp)

Semantics
The function strlen{s) returns the current length of the string expression s.

If s is not initialized, strlen{s) is undefined.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Note

The strlen function can only be used with strings, not PAC's.

Example Code
VAR

ars, vita: string [132] ;
b: boolean;

BEGIN

IF strlen(ars) > strlen(vita) THEN
b:= true

ELSE
halt;

END.

222 strlen

strltrim

This function returns a string trimmed of all leading blanks.

Example
strltrim(str_exp)

Semantics
The function strltrim(s) returns a string consisting of s trimmed of all leading blanks.
The function strrtrim trims trailing blanks.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
VAR

s: string [80] ;
BEGIN

s:= abc' ;
s:=strltrim(s) ;

END.

{s is now 'abc'}
{strlen(s) = 3 }

strltrim 223

strmax
This function returns the maximum allowable length of a string.

--..(STRMAX)--.{D--1 i d~~~ ~~; er ~

Item Description Range

string identifier variable of type string

Example
strmax(str_var)

Semantics
The function strmax(s) returns the maximum length of s.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
VAR

s: string[132];
BEGIN

IF strlen(s) = strmax(s) THEN
BEGIN

END.

s:= strltrim(s);
s:= strrtrim(s);

END;

224 strmax

strmove
This procedure copies characters from one string or PAC to another.

Itenl

copy length

source

source position

destination
identifier

destination
position

Example

Description Range

expression of type integer see semantics

expression of type string or variable of type -
PAC

integer expression

variable of type string or PAC

integer expression

1 thru current length of
source string

1 thru current length of des­
tination string - 1

strmove(copy_len, source,source_pos ,dest_id,dest_pos)

strmove 225

Semantics
The procedure strmove(n,sl,pl,s2,p2) copies n characters from sl, starting atsl[pl], to
s2, starting at s2[p2]. String length is updated, if needed, to p2 + (n-l) if p2+(n-l) >
strlen(s2).

If p2 equals strlen(s2) + 1, strmove is equivalent to appending a subset of sl to s2.

You can use strmove to convert PAC's to strings and vice versa. It is also an efficient
way of manipulating subsets of PAC's.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

You should not strmove into an uninitialized variable regardless of its type.

Example Code
VAR

pac: PACKED ARRAY[l .. 15] OF char;
s: string[80];

BEGIN
S ·= ". . ,
pac:= 'Hewlett-Packard';
strmove(15,pac,1,s,1); {Converts a PAC to a string.}

END.

226 strmove

strpos
This function returns the starting position of the first occurrence of a series of characters
within a string.

Item

source string

pattern string

Example

Description

expression of type string

expression of type string

strpos(source,pattern)

Semantics

Range

The function strpos(sl,s2) returns the integer index of the position of the first occurrence
of s2 in s1. If s2 is not found, zero is returned.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

NOTE: Some HP Pascal implementations have the order of the two parameters reversed.
Also, a compiler option may ~xist for reversing the order of parameters.

Example Code
CONST

separator = ' ,.
VAR

i: integer;
names: string [80] ;

BEGIN
names:= 'Jon Jill Ruth Marnie Bob Joan Wendy';
i:= strpos (names,separator);
IF i <> 0 THEN

strdelete(names,1,i); {deletes first name}
END

strpos 227

strread
This procedure reads a value from a string as if it were an external textfile.

Item Description

string expression expression of type string

starting position expression of type integer

next free charac- variable of an integer or integer subrange -
ter type 1

variable identifier simple, string, or PAC variable

Examples
strread(str_exp , start_pos ,next_char, variable)
strread(str_exp,start_pos,next_char,variablel variablen)

Range

1 Some HP Pascal implementations (Series 200/300 Workstation Pascal and Series 200/300 HP-UX) require
that the next free character be an integer (integer subrange is not allowed).

228 strread

Semantics
The procedure strread(s,p,t,v) reads a value from s, starting at s[p], into the variable v.
After the operation, the value of the variable appearing as the t parameter will be the
index of s immediately after the index of the last component read into v.

S is treated as a single-line textfile. Strread(s,p,t,v) is analogous to read(f,v) when f is a
text file of one line. Like read, strread implicitly converts a sequence of characters from
s into the types integer, real, longreal, boolean, enumerated, PAC, or string.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

An error occurs if strread attempts to read beyond the current length of s.

The call

strread(s.p.t.v1 vn);

is equivalent to

strread(s.p.t.v1);
strread(s.t.t.v2);

strread(s.t.t.vn);

Example Code
VAR

s: string[80];
p.t: integer;
m.n: integer;

BEGIN

s:= 12 564

p:= 1;
strread(s.p.t.m);

strread(s.t.t.n);

END.

98615-90053, rev: 10/87

{The value of m will be 12; }
{t will be 6. }

{The value of n will be 564;}
{t will be 11. }

strread 229

strrpt
This function returns a string composed several copies of its string argument.

string
expression

Item Description

string expression expression of type string

repeat count expression of type integer

Example
strrpt(str_exp,rep_count)

Semantics

Range

The function strrpt (s, n) returns a string composed of s repeated n times.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
CONST

one =) 1) ;
VAR

b_num: string[32];
BEGIN

b_num:= strrpt(one,strmax(b_num»;

END.

230 strrpt

strrtrim
This function returns a string trimmed of trailing blanks.

Example
strrtrim(str_exp)

Semantics
The function strrtrim(s) returns a string consisting of s trimmed of trailing blanks.
Leading blanks are stripped by the function strltrim (see above).

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid information.

Example Code
VAR

s: string[80]
BEGIN

s:= 'abc

s:= strrtrim(s);

END.

, . .
{s is now 'abc'}

{strlen(s) = 3 }

strrtrim 231

strwrite
This procedure writes a value to a string as if it were an external textfile.

Write Parameter

Item Description

string identifier variable of type string

starting position expression of type integer

Range

1 thru current length of the
string + 1

next character variable of an integer or integer subrange -
type!

write parameter see drawing

minimum field
width

fraction length

integer expression

integer expression

greater than 0

greater than 0

Some HP Pascal implementations (Series 200/300 Workstation Pascal and Series 200/300 HP-UX) require

232 strwrite

Examples
strwrite (str_exp , start_pos ,next_char, variable)
strwrite(str_exp,start_pos,next_char,variablel, ... ,variablen)

Semantics
The procedure strwrite(s,p,t,e) writes the value of e on s starting at s[p]. After the
operation, the value of the variable appearing as the t parameter will be the index of the
component of s immediately after the last component of s that strwri te has accessed.

S is treated as a single-line textfile. Strwrite(s,p,t,e) is analogous to write(f,e) when f is
a one-line textfile. As with write, strwrite also permits you to format the value of e as
it is written to s using the formatting conventions. The same default fonnatting values
hold for strwri teo

Strwrite can write into the middle of a string without altering the original length.

An error occurs if strwri te attempts to write beyond the maximum length of s, or if p
is greater than strlen(s) + 1.

A string expression can consist of a string literal, a string variable, a string constant, a
function result which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and
procedures assume that the string parameters contain valid infonnation.

The call

strwrite(s,p,t,el, ... en);

is equivalent to

strwrite(s,p,t,el);
strwrite(s,t,t,e2) ;

strwrite(s,t,t,en);

that the next free character be an integer (integer subrange is not allowed).

strwrite 233

Example Code
VAR

s: string[80]
p.t: integer;
f.g: integer;

BEGIN
f:= 100;
g:= 99;
p:=1;

strwrite(s.p.t.f:1);
strwrite(s.t.t.' '.g:1);

END.
END.

234 strwrite

{S is now '100'; t is 4 }
{S is now '100 99'; t is 7. }

Subrange
A subrange type is a sequential subset of an ordinal host type. A subrange type consists
of a lower bound and an upper bound separated by the special symbol " .. " (i. e.
10 .. 99). The upper and lower bounds must be constant values of the same ordinal type
and the lower bound cannot be greater than the upper bound.

Subrange Type

-1 constant ~ constant ~

A constant expression can appear as an upper or lower bound.

A subrange type is a simple ordinal type: boolean, char, integer, and user-defined
enumeration or subrange types.

Permissible Operations and Standard Functions
A variable of a subrange type possesses all the attributes of the host type of the subrange,
but its values are restricted to the specified closed range.

Example Code
TYPE

day_of_year = 1 .. 366;

lowercase

days

weekdays
weekend

tat .. tz'; {Host type is char. }

(Monday. Tuesday. Wednesday.
Thursday.Friday.Saturday.Sunday);

= Monday .. Friday;
Saturday .. Sunday;

1 .. maxsize - 1 {Upper bound is con- }
{stant expression. }
{Maxsize is declared }
{constant. }

Subrange 235

succ
This function returns the value whose ordinal number is one greater than the ordinal
number of the argument.

Examples

Input Result

succ(ord_type)
succ(l) 2
succ(-5) -4

succ ('a') 'b'
succ(false) true
succ(true) error

Semantics
The function succ(x) returns the value, if any, whose ordinal number is one greater than
the ordinal number of x. The type of the result is identical with the type of x. A run-time
error occurs if succ(x) does not exist. For example, suppose:

TYPE color = (red. blue. yellow)

Then,

succ(red) =·blue

but succ (yellow) is undefined.

236 succ

Symbols
The following table lists the special symbols valid in HP Pascal.

Symbol

+

*
/

<>
<
>

<=
>=

Purpose

add, set union, concatenate strings
su btract, set difference
multiply, set intersection
divide (real results)

equal to
not equal to
less than
greater than

less than or equal, subset
greater than or equal, superset

() delimit a parameter list or a sub expression
[] delimit an array index or a constructor

;

:

can be replaced by (. or .)
assign value to a variable

select record field, decimal point
separate listed identifiers
delimit statements
delimit list of identifiers - define or dereference pointers, access file buffer. Can be
replaced by @.

..
{ }

$
,

-

subrange
delimit a comment. Can be replaced by (* or *)
encode a control character
delimit a compiler option
delimit a string literal

can appear within an identifier

Symbols 237

Separators must not appear within special symbols having more than one component
such as :=.

Certain special symbols have synonyms. In particular, (. and .) can replace the left and
right brackets [and]. The symbol @ can substitute for the circumflex C). Also, (* and
*) can take the place of the left and right curly braces, { and }.

238 Symbols

text
The standard file type text permits ordinary input and output oriented to characters
and lines. Text type files have two important features:

1. The components are type char.

2. The file is subdivided into lines by special end-of-line markers.

Text type variables are called "text files" .

A text file type consists of the predefined type text.

Textfiles cannot be opened for direct access with the procedure open, but they can
be sequentially accessed with the procedures reset, rewrite, or append. All standard
procedures that are legal for sequentially accessed files are also legal for textfiles.

Certain standard procedures and functions, on the other hand, are legal only for textfiles:
readln, wri teln, page, prompt, overprint, eoln, and linepos.

Textfiles permit conversion from the internal form of certain types to an ASCII character
representation and vice versa.

Example Code
VAR

myfile: text;

text 239

THEN
See IF.

TO
See FOR.

true
This predefined constant is equal to the boolean type whose value is true.

Example Code
PROGRAM show_true(output);

TYPE
what, truth boolean;

BEGIN
IF true THEN writeln('always true, always printed');
what := true;
truth := NOT false;
IF what = truth THEN writeln('Everything I say is a lie. ');

END.

240 true

trunc
This function returns the integer part of a real or longreal expression.

Examples

Semantics

real
expression

Input

trunc{reaLexp)

trunc{5.61)

trunc{-3.38)

trunc{18.999)

Result

5

-3

18

The function trunc{x) returns an integer result which is the integral part of x. The
absolute value of the result is not greater than the absolute value of x. An integer
overflow occurs if the result is not in the range minint .. maxint.

trunc 241

TYPE
This reserved word delimits the start of the type declarations in a program, module,
procedure or function.

A type definition establishes an identifier as a synonym for a data type. The identifier
can then appear in subsequent type or constant definitions, or in variable declarations.

The reserved word TYPE precedes one or more type definitions. A type definition
consists of an identifier, the equals sign (=), and a data type.

Type Definition

~,--i_de_n_t_i_fl_.e_r_~

A data type determines a set of attributes which include:

• the set of permissible values

• the set of permissible operations

• the amount oi storage required

Subsequent pages explain the permissible values and operations for the various data
types.

The three most general categories of data type are simple, structured, and pointer.

Simple data types are the types ordinal, real, or longreal. Ordinal types include the
standard types integer, char, and boolean, as well as user-defined enumerated and
subrange types.

Structured data types are the types array, record, set, or file. The standard type string
is also a structured data type. The standard type text is a variant of the file type.

Pointer data types define pointer variables which point to dynamically allocated variables
on the heap.

242 TYPE

The following figure shows the relation of these various categories:

DRTR TYPES

POINTER

SIMPLE STRUCTURED

RERL RRRRY

LOI'JGRERL RECORD

ORDHJRL SET

INTEGER STRING

BOOLERN

CHRR

ENUMERRTED

SUBRRNGE

HP Pascal Data Types

TYPE 243

Type Compatibility
Relative to each other, two HP Pascal types can be identical, type compatible, or
incompatible.

Identical Types
Two types are identical if either of the following is true:

1. Their types have the same type identifier.

2. If A and B are their two type identifiers, and they have been made equivalent by a
definition of the form:

TYPE A = B

Compatible Types
Two types Tl and T2 are type compatible if any of the following is true.

1. T 1 and T2 are identical types.

2. Tl and T2 are subranges of the same host type, or Tl is a subrange of T2, or T2
is a sub range of Tl.

3. Tl and T2 are set types with compatible base types and both Tl and T2 or neither
are packed.

4. Tl and T2 are PAC types with the same number of components, or if either Tl or
T2 is a character constant or a string literal constant whose length is less than the
length of the other type, in which case the constant is extended on the right with
blanks to reach a compatible length.

5. Tl and T2 are both string types.

6. Tl and T2 are both real types, i.e. real or longreal.

244 TYPE

Incompatible Types
Two types are incompatible if they are not identical, type compatible, or assignment
compatible.

Example Code
TYPE

VAR

interval = O .. 10;
range = interval;

v1 : 0 .. 10;
v2, v3: 0 .. 10 ;
v4 interval;
v5 interval;
v6 range;

All of the variables are type compatible, but v4, v5, and v6, have identical types. The
variables v2 and v3 also have identical types.

Just because two types look compatible, it does not mean they are compatible. In the
following example, type Tl and T2 are not compatible.

TYPE
T1 = record

a integer;
b char;

end;

T2 record
c integer;
d char;

end;

TYPE 245

Types
'The following data types are available in HP Pascal.

Type

simple
type

structured
type

pOinter
type

Simple Type

Integer Type

246 Types

Structured Type

Pointer Type

Integer Subrange Type

----..I integer ~ integer L
~ 30nstant ~ constant r---

Subrange Type

--..J constant ~ constant ~

Real Type

Types 247

Array Type

array type
identifier

File Type

Record Type

record type
identifier

Set Type

248 Types

unpack
This procedure transfers data from a packed array to a regular array.

non-paCked
array ident,f,er

Item Description

packed array
identifier

variable of type PACKED array

non-packed array variable of type array
identifier

starting position expression which is type-compatible with the
index of the non-packed array

Example
unpack (packed_array ,array, start_pos)

Semantics

Range

see Semantics

see Semantics

Assuming a: ARRAY[m .. n] OF t and z: PACKED ARRAY [u .. v] OF t; the procedure un­
pack(z,a,i) successively assigns the components of the packed array z, starting at com­
ponent u, to the components of the unpacked array a, starting at a [i] .

All the components of z are assigned. Hence, z must be shorter than or as long as a;
i.e. (v-u) <= (n-m). Also, the normalized value of i must be less than or equal to
the difference between the lengths of a and z plus 1; i.e. i-m+1 <= (n-m)-(v-u)+l.
Otherwise, an error occurs when unpack attempts to index a beyond its upper bound (see
example below).

The index types of a and z need not be type-compatible. The components of the two
arrays, however, must be type-identical.

unpack 249

The call unpack (z , a, i) is equivalent to:

BEGIN
k:= i;
FOR j:= u TO v DO
BEGIN

a [k] : = z [j] ;
IF j <> v THEN k:= succ(k);

END;
END;

where k and
respectively.

are variables that are type-compatible with the indices of a and z,

Example Code
PROGRAM show_unpack (input,output);
TYPE

suit_types = (casual, business, leisure, birthday);
VAR

suit PACKED ARRAY [1 .. 5] OF suit_types;
kase ARRAY [1 .. 10] OF suit_types;

BEGIN

END.

unpack(suit,kase,l); {After execution, the first 5 }
{components of kase contain the }
{value of suit. }

unpack(suit,kase,7); {An error results because unpack }
{attempts to assign a component of }
{suit to a component of kase which }
{is out of range. }

250 unpack

UNTIL

See REPEAT.

VAR
This reserved word delimits the beginning of variable declarations in a Pascal program
or module.

A variable declaration associates an identifier with a type. The identifier can then appear
as a variable in executable statements.

The reserved word VAR precedes one or more variable declarations. A variable
declaration consists of an identifier, a colon (: L and a type. Any number of identifiers
can be listed, provided they are separated by commas. These identifiers will then be
variables of the same type.

Variable Declaration

If o·
~ ... 1 identifier

The type can be any simple, structured, or pointer type. The form of the type can be a
standard identifier, a declared type identifier, or a data type (see example below).

You can repeat VAR sections and intermix them with CONST and TYPE sections.

Components of a structured variable can be accessed using an appropriate selector.
Pointer variable dereferencing accesses dynamic variables on the heap.

VAR 251

HP Pascal predefines two standard variables, input and output, which are textfiles.
Formally,

VAR
input, output: text;

These standard text files commonly appear as program parameters and serve as default
files for various file operations.

Each variable is a statically declared object and is accessible for the duration of the
program procedure or function in which it is declared. Module variables are accessible
for the duration of the program which imports the module.

Every declaration of a file variable F with components of type T implies the additional
declaration of a buffer variable of type T. The buffer variable, denoted as FA, can be
used to access the current component of the file F.

Example Code
TYPE

answer = (yes, no, maybe);
VAR

pagecount,
linecount,
charcount: integer; {Standard identifier. }

whats_the: answer; {User-declared identifier.}

album

252 VAR

RECORD {Data type.
speed: (lp, for5, sev8);
price: real;
name string[20] ;

END;

}

Variables
A variable appearing in an executable statement takes the following form:

Variable

variable
identifier

field
identifier

Variables 253

WHILE
The WHILE statement executes a statement repeatedly as long as a given condition is
true. The WHILE statement consists of the reserved word WHILE, a boolean factor (the
condition), the reserved word DO, and a statement.

When the system executes a WHILE statement, it first evaluates the condition. If the
condition is true, it executes the statement after DO and then re-evaluates the condition.
When the condition becomes false, execution resumes at the statement after the WHILE
statement. If the condition is false at the beginning, the system never executes the
statement after DO.

The statement

WHILE condition DO statement

is equivalent to:

1: IF condition THEN BEGIN
statement;
GOTO 1;

END;

Usually a program will modify data at some point so that the condition becomes false.
Otherwise, the statement will repeat indefinitely. It is also possible, of course, to branch
unconditionally out of a WHILE statement using a GOTO statement.

The compiler can be directed to perform partial evaluation of boolean operators used in
WHILE statements. For example:

By specifying the $PARTIAL_EVAL ON$ compiler directive, if "a_one" is false, the
remaining operators will not be evaluated since execution of the statement depends on
the logical AND of both operators. (Both operators would have to be true for the logical
AND of the operators to be true.)

254 WHILE

Example Code
WHILE index <= limit DO

BEGIN
writeln (real_array [index]);
index index + 1;

END;

WHILE NOT eof (f) DO
BEGIN

read (f, ch);
writeln (ch);

END;

WHILE 255

WITH
A WITH statement allows you to refer to record fields by field name alone. A WITH
statement consists of the reserved word WITH, one or more record designators, the
reserved word DO, and a statement.

A record designator can be a record identifier, a function call which returns a record, or
a selected record component.

The statement after DO can be a compound statement. In this statement, you can refer
to a record field contained in one of the designated records without mention of the record
to which it belongs. The appearance of a function reference as a record designator is an
invocation of the function.

You cannot assign a new value to a field of a record constant or a field of a record returned
by a function.

When the system executes a WITH statement, it evaluates the record designators and
then executes the stater.l1ent after DO.

The following statements are equivalent:

WITH ree DO
BEGIN

fieldl := el;
writeln(fieldl * field2);

END;

256 WITH

BEGIN
ree.fieldl := e1;
writeln(ree.fieldl

* ree.field2);
END;

Since the system evaluates a record designator once and only once before it executes the
statement, the statement sequence, where f is a field,

i := 1;
WITH a[i] DO

BEGIN
writeln(f);
i:=2;
writeln(f)

END;

produces the same effect as:

writeln(a[l] .f);
writeln(a[2] .f);

Records with identical field names can appear in the same WITH statement. The
following interpretation resolves any ambiguity:

The statement

WITH record1. record2 recordn DO
BEGIN

statement;
END;

is equivalent to

WITH record1 DO
BEGIN

WITH record2 DO
BEGIN

WITH recordn DO
BEGIN

statement;
END;

END;
END;

WITH 257

Thus, if field f is a component of both record! and record2, the compiler interprets an
unselected reference to f as a reference to record2.f. You can access the synonymous field
in record! using normal field selection, i.e. recordl.f.

This interpretation also means that if rand f are records, and f is a field of r, then the
statement

WITH r DO
BEGIN

WITH r.f DO
BEGIN

statement;
END;

END;

is equivalent to

WITH r,f DO
BEGIN

statement;
END;

If a local or global identifier has the same name as a field of a designated record in a
WITH statement, then the appearance of the identifier in the statement after DO is
always a reference to the record field. The local or global identifier is inaccessible.

258 WITH

Example Code
PROGRAM show_with;

TYPE
status = (married. widowed. divorced. single);
date = RECORD

month

day
year

END;
person = RECORD

name

(jan. feb. mar. apr. may. jun.
july. aug. sept. oct. nov. dec);

1. .31;
integer;

RECORD

VAR

first. last: string [10]
END;

ss integer;
sex (male. female);
birth date;
ms status;
salary real

END;

employee : person;

BEGIN {show_with}

WITH employee. name. birth DO
BEGIN

last := 'Hacker';
first := 'Harry';
ss := 2147483647;
sex := male;
month := feb;
day := 29;
year := 1952;
ms := single;
salary 32767.0

END;

WITH 259

write
This procedure assigns a value to the current component of a file and then advances the
current position.

Write Parameter

enumerated
expression

expression

real
expression

260 write

text file
identifier

f i 1 e
identifier

minimum
field width

minimum
field width

Item Description

textfile identifier file of type text;
defaults = output

wri te parameter see drawing

file identifier variable of type file

write expression expression

minimum field integer expression
width

fraction length integer expression

Examples
write(file_var.exp:5)
write(file_var.expl expn)
write (exp)
write(expl expn)

Semantics

Range

file must be opened

must be opened to write

must be type compatible
with file

greater than 0

greater than 0

The procedure write(f,e) assigns the value of e to the current component of f and then
advances the current position. After the call to write, the buffer variable fA is undefined.
An error occurs if f is not open in the write-only or read-write state. An error also occurs
if the current position of a direct access file is greater than maxpos(f).

If f is not a textfile, an expression whose result type is assignment compatible with the
components of f. If f is a textfile, e can be an expression whose result type is any simple
or string type, a variable of type string or PAC, or a string literal. Also, you can format
the value of e as it is written to a text file (see below).

The call write (f. e) is equivalent to

f- := e;
put(f);

The call write(f,el, ... en) is equivalent to

write(f. et);
write(f.e2);

write(f.en);

write 261

Illustration
Suppose examp_file is a file of integer opened in the write-only state and that we have
written one number to it. To write another number, we call write again:

{initial condition}

current position
1

write(examp_file, 19);

current position

1

262 write

state: write-only
examp_file A

: undefined
eof(examp_file}: true

state: write-only
examp_file A

: undefined
eof(examp_file}: true

Formatting Output to Textfiles
When f is a textfile, the result type of e need not be char. It can be any simple, string,
or PAC type, or a string literal. The value of e can be formatted as it is written to fusing
the integer field-width parameters m and, for real or longreal values, n. If m and n are
omitted, the system uses default formatting values. Thus, three forms of e are possible
in source code:

e {default formatting}
e:m {when e is any type}
e:m:n {when e is real or longreal}

The following table shows the system default values for m:

Default Field Widths

Type of e Default Field Width (m)

char 1

integer 12

real 13

longreal 22

boolean length of identifier

enumerated length of identifier

string current length of string

PAC length of PAC

string literal length of string literal

If e is boolean or an enumerated type, what gets written is implementation defined.

When m is specified and the value of e requires less than m characters for its repre­
sentation, the operation writes e on f preceded by an appropriate number of blanks. If
the value of e is longer than m, it is written on f without loss of significance. i.e. m is
defeated, provided that e is a numeric type. Otherwise, the operation writes only the
leftmost m characters. M can be 0 if e is not a numeric type.

When e is type real or longreal, you can specify n as well as Ill. In this case, the
operation writes e in fixed-point format with n digits after the decimal point. If n is
0, the decimal point and subsequent digits are omitted. If you do not specify n, the
operation writes e in floating-point format consisting of a coefficient and a scale factor.
The Workstation Implementation will not allow you to write more significant digits than

98615-90053, rev: 4/88 write 263

the internal representation contains. This means write can change a fixed-point format
to a floating-point format in certain circumstances.

Example Code
PROGRAM show_formats (output);
VAR

x: real;
lr: longreal;
george: boolean;
list: (yes. no. maybe);

BEGIN
writeln(999);
writeln(999:1);
wri teln(' abc') ;
writeln('abc' :2);
x:= 10.999;
writeln(x);
writeln(x:25);
writeln(x:25:5);
writeln(x:25:1);
writeln(x:25:0);
lr : = 19. 1111 ;
writeln(lr);
george:= true;
writeln(george);
writeln(george:2);
list:= maybe;
writeln(list) ;

END.

The output of this program is:

{default formatting}
{format defeated}

{string literal truncated}

{default formatting}

{default format}

{default formatting}

Workstation Implementation

999

HP-UX Implementation

999
999
abc
ab

1.099900E+Ol
1.099900E+Ol

10.99900
11.0

11
1.91110992431641L+001

TRUE
TR
MAYBE

264 write

999
abc
ab

1.099900E+Ol
1.099900000000000000E+Ol

10.99900
11.0

11
1.91110992431641L+00l

TRUE
TR
MAYBE

98615-90053, rev: 4/88

writedir

This procedure places the current position at the specified component and then writes
the value of its argument to that component.

Item

file identifier

index

file
identifier

Description

variable of type file

integer expression

write
expression

Range

file must be open to write;
file must not be a text file

greater than 0;
less than laspos(file identi­
fier)

write expression expression that is type compatible with file see semantics
type

Examples
writedir(fil_var, indx, exp)
writedir(fil_var, indx, expl , ... ,expn)

Semantics
The procedure writedir(f,k,e) places the current position at the component of f specified
by k and then writes the value of e to that component. It is equivalent to

seek(f,k);
write(f,e)

An error occurs if f has not been opened in the read-write state or if k is greater than
maxpos(f). After writedir executes, the buffer variable fA is undefined and the current
position is k+ 1.

wri tedir 265

Illustration
Suppose file examp_file is a file of integer opened for direct access. The current position
is the third component. To write a number to the first component, we call wri tedir:

{initial condition}

current position

~

writedir(examp_file,1,4 + 5);

current position

~

266 writedir

state: read-write
examp_fileA(deferred): 1
eof(examp_file): false

state: read-write
examp_fileA: undefined
eof(examp_file): false

writeln
This procedure writes the value of its argument to a textfile.

Write Parameter

enumerated
expression

integer
expression

real
expression

text file
identifier

minimum
field width

minimum
field width

Item Description

text file identifier file of type text;
default = output

write parameter see drawing

minimum field integer expression
width

fraction length integer expression

Range

file must be opened to write

greater than 0

greater than 0

writeln 267

Examples
writeln(fil_var)
writeln(fil_var,exp:4)
writeln(fil_var,exp1 expn)
writeln(exp)
writeln(exp1• expn)
writeln

Semantics
The procedure writeln(f,e) writes the value of the expression e to the textfile f, appends
an end-of-line marker, and places the current position immediately after this marker.
After execution, the file buffer r is undefined and eof(f) is true. You can write the value
of e with the formatting conventions described for the procedure write.

The call writeln(f,ei, ... ,en) is equivalent to

write(f.e1);
write(f.e2);

write(f.en);
writeln(f)

The call wri teln without the file or expression parameters effectively inserts an empty
line in the standard file output.

268 writeln

HP-UX Implementation of
HP Standard Pascal

Appendix A: HP-UX Implementation of HP Standard Pascal

A
Overview .. 269
Compiler Options ... " 270

ALIAS .. 271
ALLOW_PACKED .. 272
ANSI ... '" 275
CODE ... 276
CODE_OFFSETS .. 277
DEBUG ... 278
ELSE ... 279
END .. 279
ENDIF .. 280
FLOAT_HDW .. 281
IF .. 286
INCLUDE ... 287
LINENUM ... " 288
LINES ... 289
LIST ... , 290
LONGSTRINGS .. " 291
NLS_SOURCE ... 292
OVFLCHECK ; " 293
PAGE ... 294
PAGEWIDTH .. , '" .. 295
PARTIAL_EVAL ... 296
RANGE ... 297
SAVE_ CONST ... 298
SEARCH .. 299
SEARCH_SIZE ... " 300
SET ... 301
STANDARD_LEVEL ... 303
STRINGTEMPLIMIT ; " 304
SYSPROG ... " 306
TABLES ... 307
UNDERSCORE -................. " 308
WARN .. 309

Implementation Dependencies " " 310

98615-90053, rev: 10/87

Special Compiler Warnings ... 313
HP-UX 5.0 Changes to the Pascal Compiler 313
HP-UX 5.5 Changes to the Pascal Compiler 320
HP-UX 6.0 Changes to the Pascal Compiler 321
HP-UX 6.2 Changes to the Pascal Compiler 325

Replacements for Pascal Extensions .. 327
UCSD Pascal Language Extensions. .. 327
Other Replacements. .. 328

System Programming Language Extensions 329
Error Trapping and Simulation .. 330
Absolute Addressing of Variables 331
Relaxed Typechecking of VAR Parameters .,. .. 332
The ANYPTR Type .. 334
Procedure Variables and the Standard Procedure CALL 335
Determining the Absolute Address of a Variable 336
Determining the Size of Variables and Types 337
Memory Allocation for Pascal Variables 338

Special I/O Implementation Information 345
IMPORT of STDINPUT, STDOUTPUT, and STDERROR Files 345
I/O Buffer Space Increase .. 345
Special Uses of RESET and REWRITE. .. 346
Direct Access to Non-Echoed Keyboard Input 347
Using Non-Echoed Keyboard Input 348

Unbuffered Terminal Input ... 350
HP -UX pc Command. .. 351

Using the pc Command .. 351
The Load Format .. 352
Separate Compilation ... 353
U sing the +a Option .. 353
U sing the Program Profile Monitor. .. 354

Program Parameters and Program Arguments .. 355
Program Parameters .. 355
Program Arguments. .. 356

HP-UX Environmental Variables .. 359
CASE Statement Coding Precautions. .. 363
Heap Management .. 365

MALLOC .. 366
HEAP! ' 366
HEAP2 .. 367
Pitfalls .. 368
Deciding which Heap Manager to Use 368
Specifying the Heap Manager. .. 369

98615-90053, rev: 10/87

Pascal and Other Languages ... 370
Calling Other Languages from Pascal 370
Calling Pascal from Other Languages. .. 371

Run-Time Error Handling. .. 372
Error Messages .. 377

Operating System Run-Time Errors .. 377
I/O Errors .. 379
System Errors .. 380
Pascal Compiler Errors .. 381

98615-90053, rev: 10/87

HP-UX Implementation of
HP Standard Pascal A
This appendix describes the implementation-specific details of HP Pascal for the HP-UX
operating system on the Series 300 Computers.

The following, topics are described in this appendix:

• Compiler Options

• Implementation Dependencies

• Replacements for Pascal Extensions

• System Programming Language Extensions

• Special I/O Implementation Information

• Unbuffered Terminal Input

• HP-UX pc Command

• Program Parameters and Program Arguments

• HP-UX Environmental Variables

• CASE Statement Coding Precautions

• Heap Management

• Pascal and Other Languages

• Run-Time Error Handling

• Error Messages

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 269

Compiler Options
The pages in this section describe the compiler options (compiler directives) you can use
with Pascal on Series 300 HP-UX systems. When specified, compiler options usually
have a default action and restrictions on where they can appear. These restrictions are
shown on every page below the option. The explanation of these restrictions is given
below:

Location

Anywhere

At front

Restrictions on the Placement of Compiler Directives

Restriction

No restriction.

Applies to entire source file; must appear before the first "token" in
the source file (before PROGRAM, or before MODULE if compiling a list of
modules).

Not in body Applies to a whole procedure or function; can't appear between BEGIN

and END. It is a good practice to put these options immediately before
the word BEGIN, or the procedure heading.

Statement

Special

Can be applied on a statement-by-statement basis or to a group of
statements, by enabling before and disabling after the statements of
interest.

Explained under the particular option.

If a option appears in the interface (import or export) part of a module, it will have
effect as the module is compiled. However, the option itself will not become part of the
interface specification (export text) in the compiled module's object code and will have
no effect in the implement section of the module being compiled.

Note

The syntax of the two compiler options $IF and $SEARCH do not
conform to the syntax of all other allowable options.

270 HP-UX Implementation of HP Standard Pascal

ALIAS
Default: External name = Procedure Name

Location: Special (See below)

This option causes a name, other than the name used in the Pascal procedure or function
declaration, to be used by the loader.

Item

external name string

Semantics

Description Range

Entire declaration must fit
on one line.

The string parameter specifies the external name for the procedure in whose header the
option appears.

Example
procedure $alias 'charlie'S p (i: integer); external;

Within the program, calls use the name p; but the loader will link to a physical routine
called "charlie".

The option must appear between the keywords PROCEDURE or FUNCTION and the first symbol
following the semicolon (;) denoting the end of the procedure or function declaration.

Beginning at HP-UX 5.5, ALIAS can be included in the export section. Correspondingly,
only compilers beginning at HP-UX 5.5 are able to import modules that export any
procedure having an ALIAS in the declaration.

Refer also to the UNDERSCORE option, which can be used to automatically put an underscore
at the beginning of the ALIAS name.

HP-UX Implementation of HP Standard Pascal 271

Default: OFF

Location: Anywhere

This option permits or prohibits the passing of elements of packed arrays or records
to VAR parameters when, due to implementation-dependent allocation alignments, those
fields are aligned as if they were not packed.

~LLOW....PACKEO)I---'~------r-.... ~~
ON

OFF

Semantics
"ALLOW_PACKED" is interpreted as "ALLOW_PACKED ON".

Passing elements of packed arrays or records to VAR parameters is illegal in HP Standard
Pascal, but Series 300 HP-UX Pascal compilers prior to Version 2.1 allowed it. Pascal
2.1 and subsequent compilers allow passing of packed elements to VAR parameters only if
the compiler option ALLOW_PACKED is ON.

ON specifies that elements of packed structures will be allowed to be passed to V AR

parameters in functions and procedures. You may need to specify ALLOW_PACKED ON to
compile pre-2.1 Pascal source code.

OFF specifies that passing elements of packed structures to VAR parameters is illegal.
Attempts to do so result in a compile-time error message 154: "Illegal argument to
match pass-by-reference parameter".

Note

Pre-2.1 compilers allowed only certain packed elements to be
passed to VAR parameters. These are the elements which AL­

LOW_PACKED affects. Others, which pre-2.1 compilers forbade from
being passed, are still forbidden in 2.1 and later compilers.

272 HP-UX Implementation of HP Standard Pascal

Example
procedure a(var b: integer); forward;
var

r= packed record
f1: integer;
f2: integer;

end;

begin
a(r.f2);

$ALLOW_PACKED ON$
$ALLOW_PACKED OFFS

HP-UX 6.0 Changes
The ALLOW_PACKED ON directive changed at HP-UX 6.0 in an attempt to be safer and
detect non-portable instances.

In general, in order to circumvent the normal restriction on passing elements of packed
structures as VAR (reference) parameters, the procedure or function heading must declare
the parameter as an ANYVAR parameter and ALLOW_PACKED ON must be in the source. This
does not ensure that the generated object code will be correct in all cases, so it is up to
the user to determine that the particular situation in use will work. Fields that do not
begin and end on a byte boundary cannot be correctly passed to reference parameters.
This information can be obtained from a listing generated with TABLES ON.

One additional factor must be considered. This also applies in some instances where the
actual parameter being passed is not an element of a packed structure. The following
example shows the situation:

program example;
var

char_array: array[1 .. 10] of char;

procedure p(ANYVAR i : integer);

begin
i :+ i + 1;
end;

begin
p(char_array[1]);
p(char_array[2]);
end.

ALLOW_PACKED ON is not necessary because the elements being passed are not elements of
a packed structure.

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 273

Both calls to p will not work when this code is run on an MC68010 processor. One or
the other of the characters specified will be allocated on an odd-byte boundary. The
procedure p accesses the parameter being passed as an integer. The MC68010 processor
does not support 16- and 32-bit accesses on odd boundaries. Be careful.

As mentioned above, to pass an element of a packed structure as a reference parameter,
use ANYVAR in the procedure or function header and put ALLOW_PACKED ON in effect around
the actual call. There is one exception where conformant arrays are involved: .A
conformant array parameter cannot be declared as an ANYVAR parameter. In this situation
it is sufficient to declare the parameter as a VAR parameter and insert ALLOW_PACKED ON

in the source.

274 HP-UX Implementation of HP Standard Pascal

ANSI
Default: OFF

Location: At front

This option selects whether an error message is to be emitted for use of any feature of
HP Standard Pascal not contained in ANSI/ISO Standard Pascal.

Semantics
"ANSI" is interpreted as "ANSI ON".

ON causes error messages to be issued for use of any feature of HP Standard Pascal which
is not part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example
$ansi on$

See Also:

• STANDARD_LEVEL option.

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 275

CODE
Default: ON

Location: Not in body

This option is used to control whether a CODE file will be generated by the compiler.

Semantics
"CODE" is interpreted as "CODE ON".

ON specifies that executable code will be emitted.

OFF specifies that executable code will not be generated.

Example
$code off$

276 HP-UX Implementation of HP Standard Pascal

Default: OFF

Location: Not in body

This option controls the inclusion of program counter offsets in the compiler listing.

CODE_OFFSETS)---r--------r~

Semantics
"CODE_OFFSETS" is interpreted as "CODE_OFFSETS ON".

ON specifies that line number-program counter pairs will be printed for each executable
statement listed. This can be applied on a procedure-by-procedure basis.

OFF specifies that program counter offsets will not be included in the compiler listing.

Example
$code_offsets on$

HP-UX Implementation of HP Standard Pascal 277

DEBUG
Default: OFF

Location: Not in body

This option controls whether the code produced by the compiler contains the additional
information necessary for reporting line number information with error messages.

Semantics
"DEBUG" is interpreted as "DEBUG ON".

ON causes debugging instructions to be emitted, which assign the current line number to
the system variable asm_line, for the procedure bodies following it. These instructions
are not stripped by the strip(l) command of HP-UX.

OFF specifies that the code produced by the compiler does not contain the information
necessary for reporting line numbers with error messages.

This option can be applied on a procedure-by-procedure basis.

Example
procedure buggy;
var i: integer;
$debug on$
begin

end;
$debug off$

278 HP-UX Implementation of HP Standard Pascal

ELSE
See SET option.

END
Default:

Location:

Not applicable

Special (See below)

This option marks the end of conditional compilation that is initiated by the IF compiler
option when the SET option is not used.

--®-®-@--

NOTE: Generally, it is preferable to use the SET option mode of conditional compilation
for portability across HP-UX.

Semantics
This option is only used in conjunction with the IF option (refer to the IF option later in
this section). If the SET option was used before the IF option, ENDIF must be used instead
of END (refer to the ENDIF option later in this section).

Example
const

limit = 10;
size = 9;

$if (size+1)<limit$

{ this will be skipped }
SendS

See Also:

• IF option.

• ENDIF option.

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 279

ENDIF
Default:

Location:

Not applicable

Special (See below)

This option marks the end of conditional compilation that is initiated by the IF compiler
option when the SET option has been used.

~

Semantics
This option is used only in conjunction with the IF option when IF was preceded by SET

(refer to the SET option later in this section).

Example
$set 'goodexpr = true, fancy = false'S

$if 'fancy and goodexpr'$

{ this will be skipped }
$endif$

See Also:

• SET option.

280 HP-UX Implementation of HP Standard Pascal 98615-90053, new page: 10/87

Default: OFF

Location: Not in body

This option enables and disables the use of floating-point hardware.

FLOAT _HOW

Semantics
To increase the execution speed of floating-point math programs, the following hardware
is available:

• Optional floating-point hardware card (HP 98635A) for Series 200 and Model 310
Computers,

• HP 98248A Floating-point Accelerator card for Model 330 and 350 computers
beginning at Series 300 HP-UX Release 5.5,

• MC68881 math co-processor hardware built into Model 318/320/330/350 Comput­
ers.

Floating-point hardware access is determined at compile time by the use of one of three
compiler directives, or by use of command-line options when the HP-UX pc command
is given. If a floating-point hardware compiler option is given in the pc command, and
a conflicting FLOAT_HDW directive is present in the program source code at compile time,
the source code directive overrides the pc command-line option.

HP-UX Implementation of HP Standard Pascal 281

Compiler Directive Options
The three FLOAT_HDW compiler directive options and their corresponding or complementary
HP-UX command line options control the availability of hardware math capabilities to
the compiler. Since the object code produced by the compiler varies according to the
type of processor present in the system, floating-point hardware object code will also vary
to match the hardware. For all Series 200/300 systems, the default compiler directive
"FLOAT_HDW" without an accompanying option is interpreted as "FLOAT_HDW ON". The three
directive options are:

ON Causes the compiler to generate hardware accesses for most floating-point
operations instead of using math libraries. If the ON directive is used at
compile time and the hardware is not present in the system at program
execution time, an error results.

On Series 200 and Model 310 computers, this option enables access to
the HP 98235A floating-point card. On MC68020-based computers, the
MC68881 coprocessor is used unless the +ffpa option is used in the pc
command line in which case the HP 98248A Floating-point Accelerator is
used (must be present or an error results).

OFF Tells the compiler to generate calls to libraries for all floating-point
operations instead of using hardware, regardless of computer model.

TEST Causes the compiler to generate both hardware accesses and library calls
along with additional code to test HP-UX environment variables for the
presence of floating-point hardware. At execution time, hardware accesses
are used if the test shows that the hardware is present. Otherwise the
library calls are used.

On Series 200 and Model 310 computers, this option enables access to the
HP 98235A floating-point card, if present, or uses library routines if the
card is absent. On MC68020-based computers, the MC68881 coprocessor
is used unless the +bfpa option is used in the pc command line in which
case the HP 98248A Floating-point Accelerator is used, if present (if absent,
access reverts to the M C68881).

Refer to the HP-UX command line option descriptions that follow for information about
the types of math operations that are performed on each floating-point hardware type.

282 HP-UX Implementation of HP Standard Pascal

HP-UX Command Line Options
When compiler directives are used to select or disable floating-point hardware, the
compiler determines what hardware is present on the system at compile time and
generates object code accordingly. However, there may be times when the compiler
on a given system is being used to generate object code for a different computer that
may be equipped differently. Since the same compiler program is used on all Series 300
systems, such cross-compiling capability is readily available by using HP-UX command
line options.

The following HP-UX command line options generate object code for the hardware
combinations indicated. They are equivalent in function to the source-code compiler
directive options discussed previously, but provide object code for specific equipment
combinations.

Cross-compile Options for MC68010 and MC68020:
These options generate code for MC68010 or MC68020-based Series 300 systems as
indicated:

+X Produces MC68010 object code. Does not access extended capabilities
of MC68020 or MC68881 coprocessor. Object code generated by this
option can be run on any Series 300 computer, whether MC68010-based or
MC68020-based.

+x Produces MC68020 object code and generates accesses to MC68881 copro­
cessor for floating-point operations. Object code can be run on Models
318/320/330/350.

The MC68881 coprocessor supports addition, subtraction, multiplication, division, nega­
tion, and the abs, arctan, cos, exp, In, sin, and sqrt functions. All other math functions
call library routines.

HP-UX Implementation of HP Standard Pascal 283

MC68010 and MC68000 Floating-Point Hardware Options:
The +h and +f options generate object code for Series 200 (MC68000-based) and Model
310 (MC68010-based) computers. These options are not used when object code is for
other Series 300 (M C68020-based) systems.

+b

+f

Floating point operations access the HP 98635A Floating Point card.
Additional test code is produced to access libraries if the floating-point
hardware is not present at program run time. Equivalent to $FLOAT_HDW

TEST$ compiler directive.

Floating-point operations access the HP 98635A Floating-Point card which
must be present at program run-time. Equivalent to $FLOAT_HDW ON$

compiler directive.

The HP 98635A supports addition, subtraction, multiplication, division, negation, and
the sqr function. All other math functions call library routines.

Model 330/350 Floating-Point Accelerator Options:
These options generate object code for MC68020-based Series 300 systems. Object code
produced by the +ffpa and +bfpa options can only be run on systems that support the
HP 98248A Floating-Point Accelerator.

+M

+ffpa

+bfpa

Floating-point operations access library routines instead of using MC68881
coprocessor.

Floating-point operations access the HP 98248A Floating-Point Accelera­
tor which must be present at program run-time.

Floating-point operations access the HP 98248A Floating-Point Acceler­
ator if present at program run-time. If the accelerator is not present,
MC68881 is used instead.

The HP 98248A handles basic floating-point math functions such as addition, subtrac­
tions, multiplication, division, and conversions. Instrinsic functions such as sin, cos,
and In are handled by the MC68881 coprocessor. Other math functions use library
subroutines.

284 HP -UX Implementation of HP Standard Pascal

Accelerated Libraries
Certain libraries (such as I 'ibm. a and l'ibc.a) also access floating-point hardware. Hardware
can also be used by any operation that converts an integer to a real or longreal, converts
a real to a longreal, or converts a longreal to a real (Series 200 and Model 310 computers
do not use the HP 98635A to convert reals or longreals into integers).

Run-Time Errors
Because of their register architecture, the MC68881 coprocessor and HP 98248A Floating­
Point Accelerator do not return run-time error codes -15, -16, and -17. They return
errors for intrinsics (sin, cos, In, sqrt) having the values -5, -6, -7, or -36 instead.

Example
$fIoat_hdw testS

HP-UX Implementation of HP Standard Pascal 285

IF
Default:

Location:

Not applicable

Anywhere

This option allows conditional compilation.

IMPORTANT

The IF option operates differently when preceded by a SET. See the
SET option for further details. It is generally preferable to use the
SET mode of the IF, for portability across HP-UX.

Item Description Range

boolean expression that evaluates to a boolean result can only contain compile
expression time constants

conditional text source to be conditionally compiled

Semantics
If the boolean expression evaluates to FALSE, then text following the option is skipped
up to the next END option.

If the boolean expression evaluates to TRUE, the following text is compiled normally.

IF .. END option blocks cannot be nested.

Example
const

limit 10;
size = 9;

$if (size+1)<limit$

{ this will be skipped }
end

286 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

INCLUDE
Default:

Location:

Not applicable

Anywhere

This option allows text from another file to be included in the compilation process.

Item Description Range

file specifier string any valid file specifier

Semantics
The string parameter names a file which contains text to be included at the current
position in the program. Included code can contain additional INCLUDE options.

Example
program inclusive;
$include '/users/steve/declars',
$include '/users/steve/body'$
end.

HP-UX Implementation of HP Standard Pascal 287

LINENUM
Default:

Location:

Not applicable

Anywhere

This option allows the user to establish an arbitrary line number value.

~ LINENUM n line number ~

Item Description Range

line number integer numeric constant 1 through 65 534

Semantics
The integer parameter becomes the current line number (for listing purposes and
debugging purposes if DEBUG is enabled).

Example
$linenum 20000$

288 HP -UX Implementation of HP Standard Pascal

LINES
Default:

Location:

60 lines per page

Anywhere

This option allows the user to specify the number of lines per page on the compiler listing.

Item Description Range

lines per page integer numeric constant 20 through MAXINT

Semantics
Specifying 2 000 000 lines per page suppresses autopagination.

Examples
$lines 55$
$lines 2000000$ {suppress autopagination}

HP-UX Implementation of HP Standard Pascal 289

LIST
Default:

Location:

QN to Standard output file (stdout)

Anywhere

This option controls whether or not a listing is being generated, and where it is being
directed.

Item Description Range

file specifier string any valid file specifier

Semantics
"LIST" is interpreted as "LIST ON".

LIST with a file specifier specifies that the file is to receive the compilation listing.

LIST OFF suppresses the compilation listing.

LIST ON resumes listing. No listing will be produced at all, regardless of this option,
unless requested by the operator when the compiler is invoked (Le., the -L option of the
pc command is specified.)

Example
$list '/users/steve/keeplist'$
$list off$

290 HP-UX Implementation of HP Standard Pascal

LONGSTRINGS
Default: OFF

Location: At Front

This option allows string lengths greater than 255. Added feature at HP-UX Release
6.0.

Semantics
"LONGSTRINGS" is interpreted as "LONGSTRINGS ON".

OFF specifies the maximum string allowed is 255 bytes.

ON specifies the maximum string allowed is MAXINT bytes.

The actual amount of storage allowed depends on the maximum heap, stack, or global
data space configured for your kernel (see HP- UX System Administrator Manual).

All separately compiled modules in a program must use the same LONGSTRINGS mode. It is
an error for one module to have LONGSTRINGS ON and another module to have LONGSTRINGS

OFF, but Pascal does not issue an error message when such a condition occurs.

Examples
$longstrings$
Program strbuf(output);

Var
s:string[1000] ;

Begin
s := strrpt('ten chars ',100);
writeln(s);

end.

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 291

Default: OFF

Location: Anywhere

This allows the support of 15-bit character Native Languages.

-@-C NLS.SOURCE) ~ • C!)-
ON

OFF

Semantics
This option enables 15-bit character parsing within literal strings and comments. Note
that 8-bit characters are always parsed correctly.

ON specifies the enabling of 15-bit characters. For further details, refer to "The HP
Native Language Support" article in Concepts and Tutorials and hpnis (7) in the HP- UX
Reference (it is the'same as for C and FORTRAN77).

OFF specifies that 15-bit characters are not supported.

Example
$nIs_source on$

292 HP-UX Implementation of HP Standard Pascal

OVFLCHECK
Default: ON

Location: Statement

This option gives the user some control over overflow checks on arithmetic operations.

~ OVFLCHECK)~~------....... ®------­
ON

OFF

Semantics
"OVFLCHECK" is interpreted as "OVFLCHECK ON".

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks; they will still be made for 32-bit integer DIV, MOD, and
multiplication, plus all floating point exceptions when used with the MC68881 chip.

Example
$ovflcheck off$

HP-UX Implementation of HP Standard Pascal 293

PAGE
Default:

Location:

Not applicable

Anywhere

This option causes a formfeed to be sent to the listing file if compilation listing is enabled.

Semantics
Compilation listing is enabled by default and can be disabled via the LIST option.

Example
$page$

294 HP-UX Implementation of HP Standard Pascal

PAGEWIDTH
Default:

Location:

120 characters

Anywhere

This option allows the user to specify the width of the compilation listing.

Item

characters per
line

Semantics

Description Range

integer numeric constant 80 through 132

The integer parameter specifies the number of characters in a printer line.

Example
$pagewidth 80$

HP-UX Implementation of HP Standard Pascal 295

PARTIAL_EVAL
Default: ON

Location: Statement

This option enables partial evaluation of boolean expressions.

PARTIAL~VAL }--~-----r-t~

Semantics
"PARTIAL_EVAL" is interpreted as "PARTIAL_EVAL ON".

ON suppresses the evaluation of the right operand of the AND operator when the left
operand is FALSE. The right operand will not be evaluated for OR if the left operand is
TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition
of any other operands.

Example
$partial_eval on$
while (p<>nil) and (p-.count>O) do

p := p-.link;

296 HP-UX Implementation of HP Standard Pascal

RANGE
Default: ON

Location: Statement

This options enables and disables run-time checks for range errors.

Semantics
"RANGE" is interpreted as "RANGE ON".

ON specifies that run-time checks will be emitted for array and case indexing, subrange
assignment, set assignments, and pointer dereferencing.

OFF specifies that run-time checks for range errors will not occur.

Example
var a: array[1 .. 10] of integer; i: integer;

i .- 11;
$range off$
a[i] := 0; { invalid index not caught! }

HP-UX Implementation of HP Standard Pascal 297

Default: ON

Location: Anywhere

This option controls whether the name of a structured constant can be used by other
structured constants.

---@--(SAVE_CONST ~
ON

OFF

Semantics
"SAVE_CONST" is interpreted as "SAVE_CONST ON".

ON specifies that compile-time storage for the value of each structured constant will be
retained for the scope of the constant's name (so that other structured constants can use
the name).

OFF specifies that storage will be deallocated after code is generated for the structured
constant.

F'vAmnlA
_ 'I11III'

$save_const off$
type ary = array [1 .. 100] of integer;
const acon = ary [345,45691, ...];

{big constants take lots of compile-time memory}

298 HP-UX Implementation of HP Standard Pascal

SEARCH
Default:

Location:

Not applicable

Special

This option is used to specify files to be used to satisfy IMPORT declarations.

Item Description Range

file specifier string any valid file specifier

Semantics
SEARCH must be the last option in an option list!

Each string specifies a file that can be used to satisfy IMPORT declarations. Files will be
searched in the order given. The file, /lib/libpc. a is always searched last. A default
maximum of 30 files can be listed. (Refer to the SEARCH_SIZE entry for information on
changing the default number of files.)

Specified files can be either "a. out" or archive (". a") format.

Example
$search '/users/steve/firstfile.a'. '/users/steve/secondfile.a'$
import complexmath. polarmath;

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 299

Default:

Location:

30 files

At front

This option allows you to increase the number of external files you can SEARCH during a
module's compilation.

Item Description Range

number of files integer numeric constant less than 32 767

Semantics
When compiling a Pascal module, it is sometimes desirable to import another module
from another file. To import a module from another file, the SEARCH option is used to
identify the file. Up to 30 SEARCH files can be given unless the SEARCH_SIZE option is used.
The SEARCH_SIZE option allows you to SEARCH up to 32 766 external files for imported
modules.

Example
$search_size 50$

300 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

SET
Default:

Location:

Not applicable

At front

This option (added at HP-UX 6.0) allows you to define boolean constants for later use
in conditional compilations.

Semantics
This option was added in order to support Series 800-style compilation. If no SET option
is present, IF options are handled as explained on the IF option page. If a SET option is
present before any IF options, IF options are handled as explained in this section.

When SET appears before IF options, the following conditions exist:

• The SET option must be used to define boolean constants.

• SET-defined constants are distinct from any program constants (when the SET option
is not used, conventional Series 300 compilation requires use of program constants
in IF options).

• IF/ELSE pairs can be nested much like nesting if/else statements in Pascal, up to
16 levels deep.

• ENDIF is used to close each IF/ELSE block.

Implementation of SET in program code is as shown here:

$SET '<id>={TRUEIFALSE} [,<id>={TRUEIFALSE} ...] '$ (must appear at front)

$IF '<any boolean expression>' $ (may appear anywhere)

$ELSE$ (may appear anywhere)

$ENDIF$ (may appear anywhere)

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 301

Implementation of IF when it has been preceded by SET is as follows:

Note that this version of the IF option requires single quotes around the boolean
expression.

Item Description Range

boolean expression that evaluates to a boolean result can only contain SET option
expression constants

conditional text source to be conditionally compiled

Example
$set 'a=true, b=false, c=true'$
$if 'a and b'$

$else$
{this will be skipped}

$if 'c'$

{included text}
$else$

{this will be skipped}
$endif$

{included text}
$endif$

302 HP-UX Implementation of HP Standard Pascal 98615-90053, new page: 10/87

STANDARD_LEVEL
Default:

Location:

STANDARD_LEVEL 'HP'

Anywhere

Defines the compatiblity level with various versions of Pascal. Added at HP-UX Release
6.0

STANDARDJ-EVEL I-r------------~M

Semantics
"STANDARD_LEVEL" is interpreted as "STANDARD_LEVEL 'HP'''.

Several extensions· to ANSI Standard Pascal have been provided to enhance the basic
language features and support machine-dependent programming. STANDARD_LEVEL can be
used to restrict the class of extensions supported, hence facilitating portability.

These extensions are grouped into the following classes:

• $STANDARD_LEVEL 'ANSI '$: Only ANSI Standard Pascal is supported.

• STANDARD_LEVEL 'ISO' $: All of ANSI Standard Pascal, plus conformant arrays.

• $STANDARD_LEVEL 'HP' $: All of ISO Standard Pascal, plus the features explained at
the beginning of this reference manual as HP Standard Pascal.

• $STANDARD_LEVEL 'HP _MODCAL' $: All of HP Standard Pascal, plus the features
explained in the "System Programming Language Extensions" section of this
appendix.

Compatibility Level Pre 6.0 Equivalent

$STANDARD_LEVEL 'ANSI'$ $ANSION$

$STANDARD_LEVEL'ISO'$ <like $ANSI ON$ + conformant arrays>

$STANDARD_LEVEL 'HP'$ $ANSI OFF, SYSPROG OFF$

$STANDARD_LEVEL 'HP _MODCAL'$ $SYSPROG ON$

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 303

STRINGTEMPLIMIT
Default: 5000

Location: Not in body

This option specifies the maximum size of the temporary string that is used to evaluate
a string whose maximum size cannot be determined at compile time. This option was
added at HP-UX 6.0.

~STRINGTEMPLIMIT~ o~u~~~~s ~

Semantics
MAXSIZE = "number of characters needed for temporary string expression" + 4 (where 4
is the number of bytes in the length field of any LONGSTRING).

Two kinds of constructs could require STRINGTEMPLIMIT:

• sl#:=I#STRRPT(Stringvar,Repeatcount);

If Repeatcount is not a constant or a literal, the compiler cannot determine how
much space to allocate for the results of the STRaPT .

• Procedurel#p(Varl#varstring:string);

If the user does not specify the length of a string in a formal string parameter
(varstring), the compiler cannot determine how much space to allocate for string
expressions involving that variable.

Pascal automatically allocates 5000 bytes of temporary storage for STRRPT and varstring
expressions. If this is not sufficient for program needs, use:

$stringtemplimit maxsize$

to allocate maxsize bytes for STRaPT and varstring temporary expression results.

The allowed minimum limit for MAXSIZE is 1, although any limit below 5 is useless because
5 bytes are required to store the 4-byte length field plus a single character.

304 HP-UX Implementation of HP Standard Pascal 98615-90059, new page: 10/87

Example
$longstrings$
Program strbuf(output);

type bigst = string[100000];
Var

s:string[1000] ;

Procedure p(sf:string,i:integer);
var

s1: bigst;

$stringtemplimit 100004$
{100004 will accommodate a 100000-byte temp string with}
{its hidden string-length field of 4 bytes}

Begin
s1 .= strrpt(sf,i);
s1 .= s1 + sf + sf;

end;

Begin
s1 := strrpt('ten chars ',100);
p(s,10);

end.

98615-90059, new page: 10/87 HP-UX Implementation of HP Standard Pascal 305

SYSPROG
Default:

Location:

System programming extensions not enabled

At front

This option makes available some language extensions which are useful in systems
programming applications.

Semantics
Several extensions to HP Pascal have been provided to support machine-dependent
programming. These extensions are only available when the $sysprog$ option is included
at the beginning of the program. (Refer to "System Programming Language Extensions"
in this appendix for more information.)

NOTE

With Release 6.0, the $STANDARD_LEVEL 'HP _MODeAL$ option should
be used instead of $SYSPROG$.

ExamnlA ------- --
$sysprog$
program machinedependent;

306 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

TABLES
Default: OFF

Location: Not in body

This option turns on and off the listing of symbol tables.

~ TABLES)t"-...-~-----,-..~~
ON

OFF

Semantics
"TABLES" is interpreted as "TABLES ON".

ON specifies that symbol table information will be printed following the listing of each
procedure. Printing the symbol table information is useful for very low-level debugging.

OFF specifies that symbol table information will not be included in the listing.

Example
$tables$
procedure hasabug (var p: integer);
var

HP-UX Implementation of HP Standard Pascal 307

UNDERSCORE
Default: OFF

Location: Anywhere

Automatically insert an underscore at the beginning of all ALIAS parameters.

Semantics
''UNDERSCORE'' is interpreted as "UNDERSCORE ON".

ON automatically inserts an underscore at the beginning of all ALIAS parameters.

OFF means the exact names given in the ALIAS are used. The default of OFF provides
backward compatibility with all previous Series 300 HP-UX Pascal releases.

Example
$underscore on$

or

$underscore off$

308 HP-UX Implementation of HP Standard Pascal 98615-90059, new page: 10/87

WARN
Default: ON

Location: At front

This option allows the user to suppress the generation of compiler warning messages.

Semantics
"WARN" is interpreted as "WARN ON".

ON specifies that compiler warnings will be issued.

OFF specifies that compiler warnings will be suppressed.

Example
Swarn offS

HP-UX Implementation of HP Standard Pascal 309

Implementation Dependencies
The following HP Pascal features have implementation-dependent behavior; in other
words, the feature may be implemented differently in the HP-UX implementation of HP
Pascal than in other implementations of HP Pascal.

Feature

ANSI

Dependency

Some differences with ANSI Standard Pascal occur in this implementation.

Variant record tagging is not enforced.

Modifying the for loop counter from within the nested routine is not
disallowed.

append The optional third parameter, the t in append(f . s. t), has no significance.

ARRAY ., OF No limit on the number of elements in an ARRAY exists.

close The following literals can be used as the optional string parameter in the
close procedure:

Directives

'LOCK' or 'SAVE' : The system will save the file as a permanent
file.

'NORMAL', 'TEMP', or none: If the file is already permanent, it remains in
the directory. If the file is temporary, it is
removed.

'Pl.,TRGE'

The external directive allows Pascal to use externally defined code seg­
ments.

external This directive can be used to indicate a procedure or function that
is described externally to the program. Refer to "Pascal and Other
Languages" later in this appendix.

File Names File names and path names are limited to 255 characters. This file and
path name restriction applies to a path name specification of a file to be
compiled by the compiler and to path names used in conjunction with
calls to reset, rewrite, open, and append.

310 HP-UX Implementation of HP Standard Pascal 98615-90053, rev: 4/88

functions

Heap
Procedures

import or
include

longreal

mark

maxint

maxpos

minint

Modules

Nested
FOR loops

Functions returning structured type results can be declared external.
However, only Pascal definitions are guaranteed to work. Other language
definitions for these functions may use different function-return conven­
tions. Refer to the HP- UX Assembler Reference Manual for more infor­
mation.

The supported heap procedures are: new, mark, release, dispose. Refer to
the "Heap Management" section later in this appendix.

The maximum allowed number of include files and/or imported modules
is 50.

The approximate range is:

-1. 797693134862 31L+308 through -2.225073858507 20L-308,
0,
2.22507385850720L-308 through 1.797693134862 31L+308

Refer to the "Heap Management" section later in this appendix.

The value of maxint is 2147483647.

This function always returns maxint. (Refer to lastpos).

The value of minint i: -2147483648.

Module identifiers are restricted to 12 characters.

Nested routines are allowed to change FORloop control variables that are
used in outer scopes.

Path Names Path names and file names are limited to 255 characters. This path and
file name restriction applies to a path name specification of a file to be
compiled by the compiler and to path names used in conjunction with
calls to reset, rewrite, open, and append.

real The approximate range is:

release

rewrite

-3.402823E+38 through -1.175 494E-38,
0,
1.175 494E-38 through 3.402 823E+38

Files in the heap will not be closed by release.

The optional third parameter, the t in rewrite (f. s. t), is used for buffered
or unbuffered input. Refer to the "Unbuffered Terminal Input" section
later in this appendix for more details.

98615-90053, rev: 4/88 HP-UX Implementation of HP Standard Pascal 311

Source Lines Pascal source lines are limited to 120 characters. Any characters beyond
column 120 will be IGNORED.

Strings

strread

strwrite

tags

Temporary
Files

To allow strings that are longer than 255 characters, use the longstrings
compiler option.

The return parameter (indicating the next character to be used with the
next strread operation) must be an integer (an integer subrange is not
allowed).

The return parameter (indicating the next position to be used with the
next strwri te operation) must be an integer (an integer subrange is not
allowed).

Tag checking in variant records is not enforced.

Temporary files created by a user program or by the compiler itself have
a flexible scheme for determining the file system location of these files.
A temporary file is any file created by rewrite, open, or append without
specifying a name (e.g. rewrite (f)). In releases prior to HP-UX 6.2, these
files were always located in the /usr/tmp directory.

Pascal now supports the use of the TMPDIR environment variable for
temporary files created by a Pascal program as well as temporary files
created by the compiler itself.

The TMPDIR environment variable points to a directory where all temporary
and logical files will be created. If the user does not specify the TMPDIR
environment variable, /usr /tmp is the next choice for temporary files. If
iusr itmp is not accessible, /tmp will be used as a last resort.

WITH When f is a function call, WITH f DO is not allowed.

312 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 4/88

Special Compiler Warnings
The following warnings may occur occasionally when multiple modules are compiled in
the same source file. When generating . a files (i.e., when using pc +a), these warnings
should never be seen:

warning (l~ne number) symbol defined already: (symbol name)
warning (lme number) symbol not found: (symbol name)

The appearance of these warnings when using pc +a usually indicates a problem with
your compiler. The program may not run correctly. If you suspect this to be true,
contact your Hewlett-Packard Service Engineer.

HP-UX 5.0 Changes to the Pascal Compiler
This section highlights the changes made to the HP-UX Pascal 2.1 compiler for the 5.0
release of HP-UX. Only changes are noted here, as it is assumed that you are familiar
with the 2.1 release. Changes implemented at HP-UX Release 5.5 are listed later.

The following subjects will be addressed:

• HP Standard Compiler Options

• Conformant Arrays

• Symbolic Debugger Support

• Native Language Support

• Expanded Set Capacity

• Change in Partial Evaluation Default

• 32-Bit (REAL) Floating Point Math Library

Note: The HP-UX "what" command should return the following version/date stamps for
the HP-UX 5.0 release of the Pascal support environment:

/bin/pc - Rev 5.2 850624
/lib/libpc.a - Rev 5.1 850617
/usr/lib/libheap2.a - Rev 5.1 850617
/usr/lib/pascomp - Rev 5.1 850617

HP-UX Implementation of HP Standard Pascal 313

HP Standard Compiler Options
The 5.15 release of the Pascal compiler incorporates the new HP Compiler Options
Standard. This standard applies to all HP compiler products, across all HP-UX systems.
The newly defined options are documented in the "HP-UX Reference Section I" or
"brick" manual. This should be available through the "man" command if you have the
new HP-UX host system fully installed.

The environment variable PCOPTS can be used to pass compiler command line arguments
as defaults to the "pc" command.

The following new options are supported:

-A Same as $ANSI ON$.

-C Same as $CODE OFF$.

-g Compile/link for symbolic debugger PDB (CDB).

- N Link as unsharable program.

-n Link as sharable program.

-Pn Same as $LINES n$

-Q Link as not demand loadable.

-q Link as demand loadable.

-8 Link stripped of symbol table information.

-t Substitute pc command subprocess.

-w Pass arguments to specific command subprocess.

-x Cross-compile MC68020 object code.

-x Cross-compile MC68010 object code.

-y 15-bit Native Language Support (same as NLS_SOURCE).

314 HP-UX Implementation of HP Standard Pascal

Conformant Arrays
The ISO Level 1 Pascal standard for conformant arrays is now supported. This allows
arrays of various sizes to be passed to a single formal parameter of a routine. It also
provides a mechanism for determining, at runtime, the indices with which the base actual
parameter was declared.

For example:

procedure x (var str: packed array[lo .. hi: integer] of char);
var i : integer;
begin (* blank out variable length strings *)

for i := 10 to hi do
str[i] := • •.

end;

Symbolic Debugger Support
Support for symbolic debugging is now available through use of the -g option on the pc
command. The supported debugger is essentially the cdb command, but for use with
Pascal programs the debugger is accessed with the pdb command. This debug support
provides a powerful source level tool.

The following is a list of items not handled by the pdb debugger:

• Ordinal values, not tokens, are shown for set types, except for set constants.

• Pointer to an array (e.g., p-[1]).

• Labels.

• Files (file buffer).

• Some function results of user-defined structured types cause segmentation violation
when displaying.

• Cannot call a function parameter.

• Cannot call a function with a function parameter.

• Procedures display a garbage result when called from the command line.

• Cannot call a nested procedure or function from the command line.

Refer to the documentation on "cdb" /"pdb" for more details.

HP-UX Implementation of HP Standard Pascal 315

Native Language Support
The -y option (or the NLS_SOURCE source directive) provides support for parsing 15-
bit characters in comments and literal strings. This option allows native languages
(e.g., Japanese Kanji) to be used in applications, with relative ease. Note also that
8-bit characters are parsed correctly in strings and literals with or without "-Y" (or
NLS_SOURCE).

For more information on Native Language Support, refer to the article in Concepts and
Tutorials called "Native Language Support".

Expanded Set Capacity
Sets were previously limited to a 256-element capacity. This limit has been raised to a
262000 element capacity. The default capacity is 8176 elements. By using HP Pascal's
constructor constant syntax (refer to SET in the "HP Pascal Dictionary"), you can set
the actual capacity anywhere between 4 bytes and 32752 bytes. For example:

type s = set of 0 .. 261999;

begin
x := s[2619999];

Change in Partial Evaluation Default
The compiler directive $partial_eval$ controls whether all operands are guaranteed to
be evaluated in boolean expressions. This directive defaulted to OFF in previous releases
of Pascal. Beginning in the 2.1 release of the Pascal compiler, the default is ON.

32-Bit (REAL) Floating Point Math Library
The predefined HP Pascal intrinsic functions previously converted "real" (32-bit) ar­
guments to "longreal" (64-bit) and called the Pascal code to perform the function on
the longreal value. Then the function result was re-converted back to real for the user's
result.

These longreal conversions no longer occur. Instead, the HP-UX math library
(llib/libm.a) routines are called directly with the 32-bit arguments. These direct calls
result in a great increase in efficiency. The longreal arguments still cause the original Pas­
cal runtime function calls, as before. But when real arguments are used, the operations
will go much faster.

316 HP-UX Implementation of HP Standard Pascal

The use of the HP-UX math library also required that Pascal supply its own default
version of the matherr routine, which is used by HP-UX to give error-handling capability
to the user. The Pascal default matherr routine simply maps the appropriate HP-UX
errors to the previous Pascal escape-handling mechanism. The source for this default
matherr follows:

(* Name: matherrmod - HP-UX matherr(3m) substitute module

Description:

This module defines the function "matherr", which is substituted for the
HP-UX "matherr" function described in section (3m) of the HP-UX Reference
(man) manual. This version of matherr maps HP-UX math library (/lib/libm.a)
errors to the corresponding Pascal escape codes. and invokes the Pascal
escape mechanism. This permits use of the HP-UX system math library by
Pascal. resulting in more efficiency.

Currently only real (as opposed to longreal) operands will cause the compiler
to generate runtime calls to any functions in the HP-UX math library. The
following table shows the predefined functions which cause calls to the HP-UX
math library routines, and the names of the functions thus called.

HP Pascal Standard Function -> HP-UX Math Function

ARCTAN -) fatan
COS -> fcos
EXP -> fexp
LN -> flog
SIN -) fsin
SQRT -> fsqrt

In order to facilitate m1x1ng C and Pascal, the HP-UX error number status
variable (errno) is set according to the same conventions used by the default
matherr.

The user can define his own version of matherr. which will be linked into his
program instead of this Pascal supplied version. Care must then be taken to
ensure proper escape handling for the HP Pascal standard predefined
functions. It is strongly suggested that a user's version be based on this
Pascal supplied version.

See Also: /usr!include/sys/errno.h
/usr/include/math.h
The man pages for: exp(3m). matherr(3m). trig(3m)

module matherrmod;

HP-UX Implementation of HP Standard Pascal 317

export

const

type

EDaM = 33;
ERANGE = 34;

(* HP-UX domain error *)
(* HP-UX range error *)

maxnamelength = 5; (* max chars in called HP-UX lib names *)

sincos_esc = -15;
log_esc = -16;
sqrt_esc = -17;
exp_esc = -6;

(*
(*
(*
(*

Pascal
Pascal
Pascal
Pascal

escape code
escape code
escape code
escape code

for SIN and COS *)
for LN *)
for SQRT *)
for overflow (EXP)*)

strarray = packed array[1 .. maxnamelength] of char;
strrec = record

str : strarray;
end;

exceptionrec = record
typ : integer;
name : Astrrec;
arg1, arg2 : real;
ret val : real

end;

(* error type *)
(* function name *)
(* function arg(s) *)
(* default ftn return *)

implement

function math err $alias '_matherr'$ (var x exceptionrec)

var

begin

errno ['_errno'] : integer;(* HP-UX error status var *)

idx : O .. (maxnamelength+1);(* local index counter *)
name : strarray; (* local name buffer *)

(* Translate "c" string into Pascal string format *)

idx := 1;

integer;

while (idx < (maxnamelength+1» and (x.nameA.str[idx] <> chr(O» do
begin

name[idx] := x.nameA.str[idx];
idx := idx + 1;

end;
for idx := idx to maxnamelength do

name[idx] := ' ';

(* Map HP-UX errors into appropriate escape handling *)

318 HP-UX Implementation of HP Standard Pascal

if (name = 'fsqrt') then
begin (* SQRT *)

end

errno := EDOM;
escapee sqrt_esc);

else if (name = 'fcos ') or (name = 'fsin ,) then
begin (* COS() or SIN() *)

errno := &RANGE;
escapee sincos_esc);

end

else if (name = 'fexp ') then
begin

end

errno := &RANGE;
escapee exp_esc);

else if (name = 'flog ') then
begin

end
else

errno := EDOM;
escapee log_esc);

(* EXPO *)

(* Let HP-UX do its default error handling *)
matherr := 0;

end;

end.

Linking for "matherr"
The compiler uses the HP-UX math library /lib/libm.a for 32-bit (REAL) floating-point
intrinsic functions (e.g., sin, cos). Refer to the HP-UX manual for trig(3) and exp(3).
The ld command would look like:

ld (user options) /lib/ crtO. 0 (user object) /lib/libpc. a /lib/libc. a /lib/libm. a

The command "pc -v" writes the actual "ld" call used on the HP-UX stderr file.

The math library uses the matherr function to handle errors. Pascal supplies its own
matherr to map errors into the appropriate escapecodes, and then call escape. Refer to
the HP-UX manual entry for matherr(3) for more details.

The supplied matherrO is listed in the section "32-Bit (REAL) Floating Point Math
Library".

HP-UX Implementation of HP Standard Pascal 319

You may wish to directly access other functions in /lib/libm. In this event, the above
matherr (supplied by Pascal) should be used as a starting point. If any Pascal intrinsics
are used, the same basic functionality must be provided in the user's math err 0 . If
no Pascal intrinsics are used, this would not be required, although escape handling is
recommended.

HP-UX 5.5 Changes to the Pascal Compiler
Several new command line options were added at HP-UX Release 5.5 on Series 300
computers to add support for the HP 98248A Floating-Point Accelerator. These changes
fall into two general categories: options -G and -p to support system monitor and profiling
capabilities, and a larger series of Series 300 implementation-dependent options.

New Profiling and Monitor Options
The profiling and monitor support options are handled as standard pc command options
and are implemented on all HP-UX systems that support those capabilities. They
function as follows:

-G

-p

Enable gprojprofiling support (as opposed to standard pro/profiling). This
option is similar to the -p option except that a different process entry
module (/lib/gcrtO.o) is linked instead of the usual /lib/mcrtO.o.

Enable profiling support for later use with standard system monitor and
profiling commands.

New Unique Options for Series 300
Several new options are implemented on Series 300 only starting at HP-UX Release 5.5.
The first four options pertain to floating-point hardware oppration:

+b

+bfpa

+f

+ffpa

Compiler produces MC68010 object code but floating-point operations use
the HP 98635 floating-point card if present at run time.

Similar to +b except compiler produces MC68020 object code that accesses
the HP 98248A Floating-Point Accelerator. If accelerator is absent at run
time, MC68881 coprocessor is used instead.

Similar to +b, but error results if floating-point card is absent at run time.

Similar to +bfpa, but error results if floating-point accelerator is absent at
run time.

320 HP-UX Implementation of HP Standard Pascal

For more information about the above options, refer to the FLOAT_HDW compiler directive
described earlier in this appendix.

The following new options are also implemented on Series 300 only at HP-UX Release
5.5:

+R

+8

+U

Disable range checking (enabled by default). Same as $RANGE_OFF$.

Force use of 4-byte alignment rules instead of 2-byte.

Allow certain packed fields/elements to be passed by VAR. Same as $AL­

LOW_PACKED ON$.

HP-UX 6.0 Changes to the Pascal Compiler
Several new features were added to the Pascal compiler at HP-UX Release 6.0:

• Strings can now exceed 255 characters in length.

• If compiling for the MC68010 microprocessor, storage space for procedure local
variables has now been expanded past 32767 bytes.

• Sets now generate in-line code.

• Some Series 300/Series 800 convergence issues have been resolved.

Longer Pascal Strings
To use strings longer than 255 characters, see LONGSTRING8 and 8TRINGTEMPLIMIT.

There is a global Pascal byte field called asm_strlenfieldwidth. This field is set to 1 for
$longstrings off$, and set to 4 for $longstrings on$.

ARG: if you are calling argn from a program where the main program was not written in
Pascal and argn is returning a value to a Pascal string with $longstrings on$, you must
set asm_strlenfieldwidth to 4. To do this, write the following assembler procedure, then
call the procedure before calling argn:

text
global _fixstrparm

_fixstrparm: nop
move.b &Ox4.~sm_strlenfieldwidth

rts

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 321

MC68010 Procedure Local Variable Space
Object code generated for the MC68010 microprocessor no longer restricts variable
storage space requirements to less than 32 Kbytes. The limit for variable storage is
now the same as for the MC68020 which is the maximum stack size configured for your
system. Refer to the HP-UX System Administrator Manual for more information about
stack space allocation.

Changes in Data Structure for Sets
The HP-UX 6.0 Pascal compiler has been changed to improve the performance of object
code associated with set structures. The effects of this improvement are small, but not
invisible. To help you understand how this change might affect your applications, a few
details about how set operations are implemented are included here.

Prior to HP-UX 6.0 all set operations were implemented by calling run time support
routines to manipulate set operands. A set data type consists of 16 bits of current length
information followed by one bit for each element in the set. Th~ element portion of a set
begins allocation of bits with element zero (even if the first possible element is greater
than zero) then continues in increments of two bytes until all possible elements of the set
have been accounted for.

This allocation scheme produces several side effects:

• Sets cannot be declared with negative elements.

• SET OF O .. 50 and SET OF 40 .. 50 require the same amount of storage space.

• 32 bits are required to represent the smallest possible set.

The length information in the set data type is maintained by the run-time support
routines and is a byte count of the highest element currently included in the set. Because
the run-time support for sets is always performed on 16 bits at a time, the length is always
an even number.

+----------------+----------------+----------------+----------------+
+----------------+----------------+----------------+----------------+
16 bits of length -{ 16-bit increments representing 1 bit per element }-

This implementation favors set operations on sets that can accommodate a large number
of possible elements but usually have only a few 'low valued' elements present at any
given time. However, it is not efficient for sets having only a small number of possible
elements.

322 HP-UX Implementation of HP Standard Pascal 98615-90059, new page: 10/87

One objective in improving set operations was to minimize the effect on existing user
programs. To this end the allocation rules for sets were not changed. Programs compiled
on HP-UX 6.0 or later still allocate the same number of bytes as earlier HP-UX releases,
so the side effects previously mentioned still remain and a set can still have up to 26 200
elements.

If in-line code was produced for all set operations, regardless of the size of the set,
an enormous volume of object code could be generated for what appears to be a simple
operation. Consequently, there is a cross-over point where set operations are implemented
by calling existing run-time support routines or by generating in-line object code. Thus
at compile time, in-line object code is generated for small sets, and run-time support
routines are used for big sets. The cross-over point between small and big sets was
selected such that a SET OF CHAR would be treated as a small set. Any set declaration
whose largest element has an ordinal value of 255 or less is a small set. All others are,
and always have been, big sets.

As mentioned, small sets still have a length field allocated for them, but this length
field is not maintained or used in the code generated for small sets. This one simple
statement accounts for the incompatibilities between HP-UX releases starting at 6.0 and
earlier versions. The alternative of eliminating this incompatibility by maintaining the
length field in in-line code would result in only a limited improvement in set operations.

This places two restrictions on existing Pascal programs:

• Any object code produced by Pascal compilers before HP-UX 6.0 cannot be mixed
with object code produced by the HP-UX 6.0 or later compilers .

• Any data files containing sets that were created prior to HP-UX 6.0 must be
converted to the HP-UX 6.0 sets fonnat before they can be used with object code
produced by HP-UX 6.0 or later Pascal compilers.

The first item is easy to accommodate; simply recompile all existing program code after
installing HP-UX 6.0. If your application does not use sets stored in data files you have
no other concerns. If your data files contain sets, this sample program can be used to
convert existing data files to the new format.

$standard_level 'hp_modcal'$
program convert_data;

type
SHORTINT = -32768 .. 32767;
elements = (zero,one,two,three,four,five,six,seven,eight,nine,ten,

eleven,twelve,thirteen,fourteen.fifteen,sixteen.seventeen.
eighteen,nineteen.twenty.twentyone,twentytwo.twentythree.
twentyfour,twentyfive);

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 323

const
smallest_element = five;
biggest_element = twenty;
MAXPOSSIBLE = 261999;

type
settype = set of smallest_element .. biggest_element;
data_type = record

set_field : settype;
end;

MAXSET = SET OF O .. MAXPOSSIBLE;
SETCONVERT = RECORD

LENGTH : SHORTINT;
A : ARRAY(O .. (MAXPOSSIBLE+l) DIV 16] OF SHORTINT;

END;

var
fin,
fout : file of data_type;
data_rec : data_type;

PROCEDURE CONVERTSET(ANYVAR S SETCONVERT; MAXELEMENT: INTEGER);
VAR

I : INTEGER;
BEGIN
FOR I := S.LENGTH DIV 2 TO MAXELEMENT DIV 16 DO

S.A[I] := 0;
END;

begin
reset(fin,'oldfile~);

rewr:ite(fout, 'newfile');

while not eof(fin) do
begin
read(fin.data_rec);

convertset(data_rec.set_field,ord(biggest_element»;

write(fout,data_rec);
end;

close(fin);
close(fout,'save');
end.

The conversion process inputs an existing file, one element or record at a time. All fields
of a set type are converted by zeroing the portion of the set beyond the current length.
That element or record is then written to a new converted copy of the file.

324 HP-UX Implementation of HP Standard Pascal 98615-90053, new page: 10/87

This sample program is for the hypothetical situation in which the file contains records
with one field which happens to be a set. You must tailor this conversion program to
handle your specific data file structure. The portion of the program that is written in
uppercase letters will be common to all conversions. The portion in lowercase text must
be tailored to your situation.

Be careful. Don't blindly convert set fields occurring in the variant portion of a record.
Check to make sure that the variant containing the set is active.

HP-UX 6.2 Changes to the Pascal Compiler
Several new features were added to the Pascal Compiler at HP-UX Release 6.2:

• File names and path names are limited to 255 characters.

• Temporary files created by a program or by the compiler itself have a more flexible
scheme for determining their file system location.

• The WADDRESS and BADDRESS functions for determining the absolute address of a
variable have been added.

• Real numbers can now be displayed in accordance with ANSI and ISO standards.

Length Limitations for File Names and Path Names
File names and path names are limited to 255 characters. This file and path name
restriction applies to a path name specification of a file to be compiled by the compiler
and to path names used in conjunction with calls to reset, rewrite, open, and append.

Temporary Files
Temporary files created by a user program or by the compiler itself have a more flexible
scheme for determining the file system location of th~se files. A temporary file is any
file created by rewrite, open, or append without specifying a name (e.g. rewrite(f»). In
releases prior to HP-UX 6.2, these files were always located in the /usr/tmp directory.

98615-90059, rev: 4/88 HP-UX Implementation of HP Standard Pascal 325

WADDRESS and BADDRESS Functions
WADDRESS and BADDRESS are different names for accessing the same function. They are
system programming extensions. In order to use them, your source must contain a
$STANDARD_LEVEL 'HP_MODCAL'$ directive or a $SYSPROG ON$ directive.

The WADDRESS and BADDRESS functions take one parameter, which is any variable, pointer
dereference, unpacked record field selection, or unpacked array element selection. The
value returned by WADDRESS and BADDRESS is an INTEGER representing the memory address
of the parameter.

These functions are very similar to the ADDR function, with the following two differences:

1. The ADDR function supports an additional optional parameter which is an offset to
be added to the result.

2. The result of the ADDR function is of type ANYPTR instead of INTEGER.

Real Numbers
The HP Pascal standard stated that when writing a real number, no more digits could
be displayed than are available in the internal representation of a real number. This
restriction is in direct conflict with the ANSI and ISO standards and it has been
eliminated from the HP Pascal standard.

r := 1.0E-10;
WRITE('-->',r:30:25,'<--');

Used to result in:

--> 0.000000<--

It now results in:

--> 0.0000000001000000000000000<--

Similar effects occur when using exponential notation.

326 HP-UX Implementation of HP Standard Pascal 98615-90059, new page: 4/88

Replacements for Pascal Extensions

UCSD Pascal Language Extensions
Over the years, various implementations of Pascal have added extensions to simplify
certain operations. One of the more common implementations, the UCSD implementa­
tion, added several string functions, byte functions, and I/O intrinsics. To simplify the
conversion of UCSD Pascal programs to HP Pascal programs for the Series 300 HP-UX
operating system, the Table A-I lists replacements for many of the UCSD extensions.

Table A-I. UCSD Pascal Language Extensions and HP-UX Replacements

Extension Replacement

function length Use strlen and setstrlen.

function pos Use strpos (note: parameters are reversed from pos).

function concat Use infix "+" operator.

function copy Use str.

procedure delete Use strdelete.

procedure insert Use strinsert.

function scan Recode using a FOR loop.

procedure moveleft Recode using a FOR loop.

procedure moveright Recode using a FOR loop.

function blockread Recode to use file of buf512
where buf512 = PACKED ARRAY[O .. 511] of char.

function blockwri te Recode to use file of buf512
where buf512 = PACKED ARRAY [0 .. 511] of char.

HP-UX Implementation of HP Standard Pascal 327

Other Replacements
Table A-2 shows additionar replacements to use when converting Pascal programs for the
Series 300 HP-UX operating system.

Table A-2. Other Replacements for Use in Converting Pascal Programs

Term

PRINTER:

CONSOLE:

SYSTERM:

Replacement

Use: rewrite(f,' /dev/lp');

Note that use of /dev/lp may be restricted by the system. Contact your
system administrator or refer to the System Administrator's Manual for more
information.

Use input.

Add the following variable declaration:

keyboard: text;

Then add these procedures to the beginning of the main program:

reset (keyboard, '0');
reset (keyboard, ",'unbuffered');

IORESULT Convert to access the variable IORESULT['asm_ioresult']. Refer to the section
"System Programming Language Extensions" .

Note

The keyboard file descriptor is allocated in the run-time libra!"'J and
does not take the space normally used by file variables (similar to
stdin, stdout, and stderr). See the memory allocation section of
this appendix for more information about memory allocation for
files.

328 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

System Programming Language Extensions
Eight extensions to HP Pascal have been provided to support machine-dependent
programming and give users better control over (or access to) the hardware. The eight
system programming language extensions are:

• Error Trapping and Simulation

• Absolute Addressing of Variables

• Relaxed Typechecking of VAR Parameters

• The ANYPTR Type

• Procedure Variables and the Standard Procedure CALL

• Determining the Absolute Address of a Variable

• Determining the Size of Variables and Types

• Non-echoed Keyboard Input

These extensions can be used in any compilation which includes the $STANDARD_LEVEL

'HP _MODCAL'$ option at the beginning of the text. The extensions may not he supported
by other HP Pascal implementations. The compiler displays a warning message at the
end of compilation when they are enabled.

Following the discussion of the eight system programming language extensions, memory
allocation for Pascal variables is addressed.

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 329

Error Trapping and Simulation
The TRY .. RECOVER statement and the standard function ESCAPECODE have been added to
allow programmatic trapping of errors. The standard procedure ESCAPE has been added
to allow the generation of soft (simulated) errors.

The programmatic layout for the TRY .. RECOVER statement is:

try
(statement) ;
(statement) ;

(statement)
recover

(statement)

When TRY is executed, certain information about the state of the program is recorded
in a marker called the recover-block, which is pushed on the program's stack. The
recover-block includes the location of the cor;responding RECOVER statement, the height of
the program stack, and the location of the previous recover-block if one is active. The
address of the recover-block is saved, then the statements following TRY are executed
in sequence. If none of them causes an error, the RECOVER is reached, its statement is
skipped, and the recover-block is popped off the stack.

If an error occurs, the stack is restored to the state indicated by the most recent recover­
block. Files are closed, and other cleanup takes place during this process. If the TRY
was itself nested within another one, or within procedures called while a TRY was active,
then the outermost recover-block becomes the active one. Then the statement following
RECOVER is executed. Thus, the nesting ofTRYs is dynamic, according to calling sequence,
not statically structured like nonlocal GOTOS which can only reach labels declared in
containing scopes.

The recovery process does not "undo" the computational effects of statements executed
between TRY and the error. The error simply aborts the computation, and the program
continues with the RECOVER statement.

When an error has been caught, the function ESCAPECODE can be called to get the number
of the error. ESCAPECODE has no parameters. It returns an integer error number selected
from the error code table.

330 HP-UX Implementation of HP Standard Pascal

Escape codes generated by the system are always negative. The programmer can simulate
errors by calling the standard procedure ESCAPE(n), which sets the error code to nand
starts the error sequence. By convention, programmed errors have numbers greater than
zero. If an ESCAPE is not caught by a recover-block within the program, it will be reported
as an error by the operating system. Negative values are reported as standard system
error messages, and positive values are reported as a halt code value. Note that HALT(n)
is exactly the same as ESCAPE (n) .

TRY /RECOVER statements are usually structured in the following fashion:

try

recover
if escapecode = (whatever you want to catch) then

begin
(recovery sequence)
end

else
escape(escapecode);

This has the effect of ensuring that errors you don't want to handle get passed on out to
the next recover-block, and eventually to the system. All programs which are executed
are first surrounded by the operating system with a TRY .. RECOVER sequence. The recovery
action for the system is to display an error message.

Absolute Addressing of Variables
A variable can be declared as located at an absolute or symbolically named address. For
example,

var
ioport [416000]: char;
assemblysymbol['asm_external_name']: integer;

Each variable named in a declaration can be followed by a bracketed address specifier.
An integer constant specifier gives the absolute address of the variable. A quoted string
literal gives the name of a load-time symbol which will be taken as the location of t4e
variable; such a symbol must be global in assembly-language which will be loaded with
the program.

Absolute addressing with integer constants has little meaning to "virtual memory"
operating systems such as HP-UX. However, symbolic addressing can be very useful,
as demonstrated in the next section.

HP-UX Implementation of HP Standard Pascal 331

Determining 1/0 Errors
When errors are trapped and handled programmatically, by the TRY .. RECOVER mechanism,
it is often useful to know the exact cause of the error so that the appropriate response
can be taken. Since these errors occur "outside" the program, a method of accessing the
error-code from within the program is needed. By adding the following declaration to
your program, the last I/O error can be accessed:

var
IORESULT['asm_ioresult']: integer;

If you include this declaration within your program, you can test for some errors. For
example, suppose you try to reset a file (inside a TRY .. RECOVER block). When you check
the standard function ESCAPECODE, it returns -10 (indicating an I/O error has occurred).
You can now check IORESULT and take the appropriate action.

The list of IORESULT values is included at the end of this appendix.

This feature may not be supported on future implementations.

Relaxed Typechecking of VAR Parameters
The ANYVAR parameter specifier in a function or procedure heading relaxes type compat­
ibility checking when the routine is called. This is sometimes useful to allow libraries to
act on a general class of objects. For instance, an I/O routine may be able to enter or
output an array of arbitrary size:

type
buffsr ~ array [0 .. maxint] of char;

var
al: array [2 .. 50] of char;
a2: array [0 .. 99] of char;

procedure output_hpib(anyvar ary:buffer; lobound.hibound:integer);

output_hpib(al.2.50);
output_hpib(a2.0.99);

ANYVAR parameters are passed by reference, not by value; that is, the address of the
variable is passed. Within the· procedure, the variable is treated as being of the type
specified in the heading.

332 HP-UX Implementation of HP Standard Pascal

This can be very dangerous! For instance, if an array of 10 elements is passed as an
ANYVAR parameter which was declared to be an array of 100 elements, an error will very
likely occur. The called routine has no way to know what you actually passed, except
perhaps by means of other parameters as in the example above. ANYVAR should only be
used when it's absolutely required, since it defeats the compiler's normal type safety
rules.

Programs calling routines with ANYVAR parameters should be very thoroughly debugged.

Also see the ALLOW_PACKED option. In the current release, ANYVAR parameters are influenced
by the ALLOW_PACKED option.

HP-UX Implementation of HP Standard Pascal 333

The ANYPTR Type
Another way to defeat type checking is with the non-standard type ANYPTR. This is a
pointer type which is assignment-compatible with all other pointers, just like the constant
NIL. However, variables of type ANYPTR are not bound to a base type, so they can't be
dereferenced. They can only be assigned or compared to other pointers. Passing as a
value parameter is a form of assignment.

The following example illustrates the use of ANYPTR:

type
p1 = -integer;
p2 = -record

fl,f2: real;
end;

var
v1,vla: pl; v2: p2;
anyv: anyptr;
which: (typel,type2);

begin
new(vl); new(v2);

if ... then
begin anyv := vl;

else
begin anyv .= v2;

if which = typel then
begin

vla := anyv;

end;
end;

which := typel end

which := type2 end;

This can be very dangerous! The compiler has no way to know if ANYPTR tricks were
used to put a value into a normal pointer. If a pointer type which is bound to a small
object has its value tricked into a pointer bound to a large object, subsequent assignment
statements which dereference the tricked pointer may destroy the contents of adjacent
memory locations.

Programs using this feature must be very thoroughly debugged.

334 HP -UX Implementation of HP Standard Pascal

Procedure Variables and the Standard Procedure CALL
Sometimes it is desirable to store in a variable the name of a procedure, and then later
to call that procedure.

A variable of this sort is called a procedure variable. The "type" of a procedure variable
is a description of the parameter list it requires. That is, a procedure variable is bound
to a particular procedure heading:

type procvar = procedure (op:integer);
var p: procvar;

procedure q(op:integer); {identically structured parameter list}

p := q;
call(p,i) ;

{p gets the name of q; in effect p points to q}
{name of proc variable, then appropriate parameter list}

A procedure variable is "called" by the standard procedure CALL, which takes the
procedure variable as its first parameter, and a further list of parameters just as they
would be passed to a real procedure having the corresponding specification.

It is not possible to create a function variable, that is, a variable which can hold the
name of a function.

Don't assign the name of an inner (non-global) procedure to a procedure variable which
isn't declared in the same block as the procedure being assigned. Such a variable might be
called later, after exiting the scope in which the procedure was declared. The appropriate
static link would be missing, yielding unpredictable results.

HP-UX Implementation of HP Standard Pascal 335

Determining the Absolute Address of a Variable
ADDR Function
The ADDR function returns the address of a variable in memory as a value of type ANYPTR.

It accepts, as an optional second parameter, an integer "offset" expression which will be
added to the address; this has the effect of pointing "offset" bytes away from where the
variable begins in memory. For example,

p := addr(variable);
p := addr(variable,offset);

ADDR is primarily used for building or scanning data structures whose shapes are defined
at run-time rather than by normal Pascal declarations.

Never use ADDR to create pointers to the local variables of a procedure or function. When
the routine exits, storage for local variables is recovered thus making the value returned
by ADDR useless.

NOTE: The ADDR function is very dangerous! It has the same dangers described above
for ANYPTRS, in addition to some of its own. Use of the "offset" can produce a pointer to
almost anywhere. This can be dangerous to the integrity of the task's memory. Programs
using this feature must be very carefully debugged.

WADDRESS and BADDRESS Functions
WADDRESS and BADDRESS are different names for accessing the same function. They are
system programming extensions. In order to use them, your source must contain a
$STANDARD_LEVEL 'HP_MODCAL'$ directive or a $SYSPROG ON$ directive.

The WADDRESS and BADDRESS functions take one parameter, which is any variable, pointer
dereference, unpacked record field selection, or unpacked array element selection. The
value returned by WADDRESS and BADDRESS is an INTEGER representing the memory address
of the parameter.

These functions are very similar to the ADDR function, with the following two differences:

1. The ADDR function supports an additional optional parameter which is an offset to
be added to the result.

2. The result of the ADDR function is of type ANYPTR instead of INTEGER.

336 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 4/88

Determining the Size of Variables and Types
The size (in bytes) of a type or variable can be determined by the SIZEOF function:

n := sizeof(variable);
n := sizeof(typename);

If the variable or type is a record with variants, an optional list of tagfield constants can
follow the parameter. This is similar to the procedure new (although new implies that
space is to come from the heap).

n := sizeof(varrec.true.blue);

SIZEOF is not really a function, although it looks like one; it is actually a form of compile­
time constant.

HP-UX Implementation of HP Standard Pascal 337

Memory Allocation for Pascal Variables
This section has a table for each of the three Pascal constructs: independent constructs,
unpacked structures, and packed structures. Following the tables are a series of
allocation/ alignment notes for specific data types.

Allocation of Independent Constructs

Type Allocation Alignment

boolean 1 byte byte aligned

integer 4 bytes 2- or 4-byte aligned 1

integer subrange in range -32768 .. 32767: 2 bytes 2-byte aligned
outside that range: 4 bytes 2- or 4-byte aligned 1

enumeration 2 bytes 2-byte aligned;
where list names are assigned
values O .. n, assignment is from
left to right

subrange of (same as host enumeration type)
enumeration

real 4 bytes 2- or 4-byte aligned1

longreal 8 bytes 2- or 4-byte aligned1

char 1 byte byte aligned

pointer 4 bytes 2- or 4-byte aligned 1

file, array, record, (SEE Memory Allocation Notes)
set, string

1 By default, the HP 9000 Series 300 HP-UX 5.15 Pascal (and subsequent releases) aligns variables larger
than 2 bytes on four byte boundaries to leverage the use of a 32-bit memory bus. The pc +A option
forces the use of 2-byte alignments in these instances. Previous versions of the compiler simply used the
2-byte alignments. Note that structure parts (record fields and array elements) and parameters are not
affected by this.

338 HP-UX Implementation of HP Standard Pascal

Allocation in Unpacked Structures

Type Allocation Alignment

all Allocation the same as for independent Similar to the alignment for in-
constructs. dependent constructs (refer to

previous table). The differences
are: alignments are relative to
the beginning of the structure,
and the 4-byte alignment rules
are not used in any structures.

Allocation in Packed Structures

Type Allocation Alignment

boolean 1 bit bit-aligned

integer 4 bytes 2-byte aligned

integer subrange minimum number of bits necessary to (SEE Memory Allocation
represent all values (including sign bit if Notes)
necessary) ;
exception: minint .. maxint range is
treated like integer

enumeration same as integer subrange (SEE Memory Allocation
Notes); where list names are as-
signed values D .. n, assignment is
from left to right

subrange of (same as host enumeration type)
enumeration

real 4 bytes 2-byte aligned

longreal 8 bytes 2-byte aligned

char 1 byte (SEE Memory Allocation
Notes)

pointer 4 bytes 2-byte aligned

file, array, record, (SEE Memory Allocation Notes)
set, string

HP-UX Implementation of HP Standard Pascal 339

Memory Allocation Notes
Allocations for elements of packed structures:
Types which fit into four bytes are called packable types. When a packable type gets
packed in a field, only the exact number of bits needed to represent the type are used
for storage (except certain cases of array elements-see paragraph on arrays below).

Only packable types are actually packed in structures under HP 9000 Series 300 Pascal.
Types which are not packable are allocated according to the same rules used for unpacked
structures.

Packable fields are allowed to cross byte-pair boundaries.

Array elements are packed such that the elements use 1, 2, 4, 8, or 16 bits. For instance,
anelement of type 0 .. 7 will be allocated 4 bits instead of 3 bits (the minimum required
to hold all the subrange values is 3, but this is rounded up to 4 in order to improve
accessibility) .

Set elements are never packed.

Char Allocation:
An independent char variable or declared constant occupies 1 byte of storage.

In an unpacked array or record, a char type component occupies 1 byte of storage.

In a packed record, a char type component occupies 8 bits of storage. The compiler
allocates such a field on a bit boundary and will permit it to cross a byte-pair boundary.
In a packed array, a char type component occupies 1 byte of storage and is byte-aligned
(the array itself is 2- or 4-byte word aligned).

Set Allocation:
Let N be the largest ordinal value of elements in the base set type. Note that N is not
necessarily the cardinality of the base type.

A set is 2- or 4-byte word aligned and occupies (((N+16) DIV 16) + 2) bytes of storage.
The first 2 bytes contain the length of the set object, in number of bytes. Subsequent
bytes (in byte-pair mUltiples) contain the set elements themselves.

Set elements are represented by positional association with the ordinal value of the
element. The sixth elemental bit position (from left to right) represents the presence
(1) or absence (0) of the set element whose ordinal value is five (note the zero based
element ordinal positioning).

340 HP-UX Implementation of HP Standard Pascal

All sets are allocated to contain ordinal values representing O .. N, where N is the largest
ordinal value in the set (even if the set is defined to exclude elements in the ordinal range
O .. M, forM less than N).

Note: The PACKED modifier on a SET object does not change the allocation or
alignment of a set.

Sets are limited to a 262000 element capacity. The default capacity is 8176 elements (Le.,
maximum ordinal value is 8176). By using HP Pascal's constructor constant syntax (see
SET in the "HP Pascal Dictionary"), you can set the actual capacity anywhere between
4 bytes and 32 752 bytes. For example:

type s = set of 0 .. 261999;

begin
x := s[261999];

Refer also to the section on "Storage Optimization" .

Integer Subrange Storage:
As an independent variable or in an unpacked structure, an integer subrange requires 2
bytes of storage (2-byte aligned) when contained in the range -32768 .. 32767. Otherwise,
it requires 4 bytes of storage and is 2- or 4-byte aligned (refer to footnote 1 following the
table on "Allocation of Independent Constructs" for an explanation of how the 2- and
4-byte alignments are used).

In a packed array or record, an integer subrange requires the minimum number of bits
required to represent each value of the subrange (no bias is used). An extra bit is also
required to represent the sign of a negative value.

In a packed array or structure, the compiler aligns subranges on a bit boundary and
will permit them to cross a byte-pair boundary. For improved accessibility an integer
subrange is not allowed to cross two successive byte-pair boundries. This restriction only
applies to packed subranges requiring 18 or more bits.

Note that the subrange "minint .. maxint" is treated as if it were of type "integer" for
purposes of allocation. This means that even in packed structures, 2-byte alignment is
used in this case.

98615-90053, rev: 4/88 HP-UX Implementation of HP Standard Pascal 341

Array Allocation and Alignment:
Arrays are stored in Row Major order.

Arrays are 2- or 4-byte aligned (refer to the footnote following the table on "Allocating
Independent Constructs" for a description of 2- . vs. 4-byte alignment). They are never
"packable" , but their elements may be.

If the array is not packed, the elements are aligned as independent constructs (note that
elements will never be 4-byte aligned).

If the array is packed, elements are packed such that the elements use 1, 2, 4, 8, or 16
bit offsets. Upward rounding is used to attain one of these offsets.

Enumerated Type Allocation and Alignment:
As an independent variable or a component of an unpacked structure, an enumerated
type object requires 2 bytes of storage (2-byte aligned);

If the enumerated type object is a component of a packed structure it requires the number
of bits necessary to represent its maximum ordinal value. The compiler aligns such an
object on a bit boundary and does permit it to cross a word (2 byte) boundary.

A subrange of an enumerated type requires the same storage as its host type. except
in packed structures. In a packed structure it requires the minimum number of bits
necessary to represent the maximum value in the subrange.

File Allocation and Alignment:
File types require 8367 bytes! (2- or 4-byte aligned-refer to the footnote following
the table on Allocation of Independent Constructs) for the file descriptor record this
implementation defines. Both text and non-text files use this file descriptor type. Buffer
space is included in this file descriptor.

Note: The PACKED modifier on a FILE object does not change the allocation or
alignment of a FILE.

1 stdin, stdout, and stderr are exceptions. They are allocated in the run-time library libpc, and take up
only 176 bytes. They are unbuffered.

342 HP-UX Implementation of HP Standard Pascal 98615-90053, rev: 10/87

Record Allocation and Alignment:
The size of a record allocation is the sum of the allocation of the fixed part and, if any,
the allocations of the tag field and the largest (or specified-see next paragraph) variant.

Variables and parameters of any record type are allocated space according to the largest
variant part. The user can, however, allocate only enough space for any particular
variant(s) by allocating the object in the heap. A call to NEW(recptr, variantI, variantJ,
...) will result in the allocation of only enough space to accommodate the specific
variant (s) named. This means the user must be sure to assign only to the allocated
part. Similarly, DISPOSEO must be used with the same variant specifications used to
allocate the space. Note too, the compiler and runtime do not check for proper variant
size handling.

In variant records, the tag field is part of the fixed part of the record and is aligned and
allocated space in the same fashion as any other field. If a fixed part (and/or tag) is
present, the variant part is not forced to be 2- or 4-byte word aligned, whether the record
is packed or unpacked.

Variant parts do not always start at the same absolute offset from the beginning of the
record. The same rules for alignment and allocation used in the fixed part are used
throughout the variant part.

If the record is an independent variable or a component of an unpacked structure, the
record occupies a rounded-up whole number of bytes (unused bits in the last byte will
be wasted) and the entire record is word (2- or 4-byte word) aligned.

In general, records are 2- or 4-byte word aligned, whether in a packed or unpacked
structure. The one exception to this rule is a record type that fits into a single byte.
The "one byte record" structure can be byte aligned.

String Allocation and Alignment:
The compiler allocates storage for a string according to the declared maximum length
of the string. Each character takes a single byte. In addition, each string requires a
length field that occupies the first byte (short strings whose lengths range between 0 and
255) or first four bytes (long strings whose lengths range between 0 and MAXINT - see
LONGSTRINGS). The actual string characters follow the length byte or bytes in consecutive
memory.

Strings are 2- or 4-byte aligned (refer to the footnote following the table on "Allocation
of Independent Constructs"). They occupy (2 + <max-str-Ien» characters of storage.

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 343

Storage Optimization: A Summary
The previous pages of this section describe, in detail, the storage requirements for the
various Pascal/9000 (Series 300). Here is a summary of the ways you can optimize
storage:

• Both an unpacked and PACKED ARRAY of CHAR (PAC) require the same amount
of storage and the same code sequences to access. Since PACs are more versatile,
there is little reason to use unpacked ARRAY of CHAR unless a component of the
array needs to be passed as a VAR parameter.

• In an unpacked or packed record, list the record fields in a particular order to take
advantage of allocation, alignment, and packing rules. There are two options which
may prove valuable in relation to this type of tuning: TABLES and CODE_OFFSETS.

These source compiler options or directives also help in understanding the rules of
allocation.

• A set containing elements whose ordinal values are large requires a fairly large data
object (see section on "Sets" for allocation details). If you use sets whose cardinality
is small, but whose ordinals values are large (e.g. set of 32751..32767), you might
want to consider applying a bias to your treatment of the elements. This will allow
the object size (which is based on the largest ordinal value of all possible elements)
to be reduced considerably. For instance, setvar:= setvar + [(reaLelem_ordinaLval
- 32751)], where setvar is defined to be set of 0 .. 15 (requiring 4 byte object) instead
of being defined as set of 32751..32767 (requiring a 4098 byte object).

• Pascal makes a single copy of each value parameter when a program calls a
procedure or function. This can use up a critical amount of storage if, for example,
a value parameter is a large array.

• Use of the command line option "+A" may result in tighter variable allocations.
This option causes the 4-byte alignment rule to be disabled: the 2-byte alignments
are used instead of the 4-byte. Note, this could also be at the expense of
performance. The 4-byte alignment rule was added to minimize fetches across
the new 32 bit memory bus architectures.

344 HP-UX Implementation of HP Standard Pascal

Special I/O Implementation Information

IMPORT of STDINPUT, STDOUTPUT, and STDERROR Files
Starting at HP-UX 6.0, the IMPORT statement in a MODULE can include the names
stdinput, stdoutput, and stderr. These are predefined pseudo-modules required by Series
800 Pascal compilers that can be imported to gain access to INPUT (the HP-UX stdin
file), OUTPUT (the HP-UX stdout file), and/or STDERROR (the HP-UX stderr file).
These additions to the Series 300 Pascal compiler provide compatible support for these
files when so imported.

I/O Buffer Space Increase
Also starting at HP-UX 6.0, I/O buffer space was increased to 8 Kbytes for improved
user I/O program execution performance. This change makes current and previous Pascal
run-time libraries partially or completely compatible or incompatible as follows:

• All Pascal run-time libraries (/lib/libpc.a) for HP-UX Release 5.x are compatible
with object code generated by the Pascal compiler included with the same release.

• All Pascal run-time libraries (/lib/libpc.a) for HP-UX Release 6.0 are compatible
with object code generated by the HP-UX 6.0 Pascal compiler.

• Pascal run-time libraries (/lib/libpc.a) for HP-UX Release 5.x are technically
compatible with object code generated by the HP-UX 6.0 Pascal compiler, but
cannot access all of the buffer space allocated by the newer compiler. Recompile
old programs to use the current run-time library if you want improved buffering.

• Pascal run-time libraries (/lib/libpc.a) for HP-UX Release 6.0 are incompatible with
object code generated by earlier HP-UX Pascal compilers. Recompiling is required
if old programs are to use the newer 6.0 libraries.

In connection with this change,. file variables (except STDERR, INPUT, and OUTPUT)
now require 8367 bytes of storage space instead of the 687 bytes required in previous
releases. If you need to conserve storage space, these files can be moved to the heap and
disposed of when no longer needed, or moved to an outer scope level such as the global
level.

Note that by default, the files INPUT, OUTPUT, and STDERR cannot improve their
performance due to larger buffer space allocations because they are bound to the stdin,
stdout, and stderr HP-UX files which are set up for terminal I/O.

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 345

Special Uses of RESET and REWRITE
HP-UX File Descriptors
It is sometimes desirable to create an HP-UX file or pipe from a language other than
Pascal, and then call a Pascal routine to continue reading or writing without having to
close and then re-open the file. There is a special instance of RESET and REWRITE which
make this possible. Tne first parameter to RESET and REWRITE is the name of the file. The
second parameter is the name of an external file. To connect a file or pipe which has
been established outside the Pascal program to the file variable, simply put the HP-UX
file descriptor in a quoted string as the second parameter. For example:

PROGRAM P;
VAR F : TEXT;
BEGIN RESET(F,'6');
WRITE(F, ' ABC') ;
END.

This program will connect the file variable F with the HP-UX file descriptor 6. The string
must contain only the file descriptor; if leading or trailing blanks are present, the string
will be interpreted as a file name. No file positioning is done; the file is not rewound.
If the file descriptor is associated with a regular file, current position is determined and
POSITION (F) is set to this value.

If it is necessary to rewind one of these special files from Pascal, this can be accomplished
in either of two ways:

PROGRAM P;
VAR F : file of CHAR;
BEGIN
OPEN(F, '6');
SEEK(F,l);
END.

PROGRAM P;
VAR F : TEXT;
BEGIN
RESET(F, '6') ;
RESET(F);
END.

When attempting to close one of these special HP-UX files, it is not possible to purge it.
Even if the "purge" option is specified by CLOSE, the file will be saved.

This feature works for OPEN and APPEND, as well.

The file descriptors for the standard HP-UX files are: "stdin" = 0, "stdout" = 1, and
"stderr" = 2.

346 HP-UX Implementation of HP Standard Pascal

Converting an Integer Expression or Variable to an ASCII String Representation
To open a file indicated by an integer expression or variable representing the HP-UX file
id of a currently open file, the integer must first be converted to a string. This can be
done very easily with the following sequence of statements:

{ fileid - integer variable representing the file id of the file to
be opened }
{f - file variable of any file type }
{ stemp - temporary string variable }
{i - integer temporary variable }

setstrlen(stemp.O);
strwrite(stemp.l.i.fileid:l);
reset(f.stemp);

Resetting File INPUT
RESET (INPUT) is not flagged as an error but it will not rewind the file after previous reads.
This is because input is bound to the HP-UX file stdin, and due to the potential for
terminal and pipe stdin bindings (when rewinding makes no sense), rewinding is not
done. User-defined files can be used instead.

Direct Access to Non-Echoed Keyboard Input

New Pascal Feature Added at HP-UX 6.0

This is a non-standard, non-portable feature that is implemented
only on Series 300 HP-UX HP Pascal implementation. To em­
phasize the nonstandard nature of this feature it has been imple­
mented as part of the $STANDARD_LEVEL 'HP _MODCAL '$ feature. Keep
the non-portable nature of this feature in mind when using it in
application programs.

98615-90053, rev: 4/88 HP-UX Implementation of HP Standard Pascal 347

Using Non-Echoed Keyboard Input
You have no doubt encountered applications that utilize non-echoed keyboard input.
One of the most common examples is a computer login and password sequence where the
password is not echoed as it is typed. When you use a text editor such as vi, commands
and cursor control operations are not echoed as you press the command keys. Only
the effects of such operations are seen. Until now, this capability has not been easily
accessible from a Pascal program. .

To access this feature from a compilation unit contained in a main program, you must:

• Include $STANDARD_LEVEL 'HP _MODeAL'S at the beginning of the program.

• Include keyboard in the program parameters.

• Declare keyboard in the main program's global variables as a text file.

• Use keyboard as the file parameter in read and readln operations.

Here is an example program segment:

$standard_level 'hp_modcal'$
program example(input,output,keyboard);
var

keyboard : text;
S : string[100];

begin
write('Enter text followed by a <cr>, input will be echoed: ');
readln(input,s);
write('Enter text followed by a <cr>, input will not be echoed: ');
readln(keyboard,s);
writeln;
writeln('You entered: ',s);
end.

348 HP-UX Implementation of HP Standard Pascal 98615-90059, new page: 10/87

To access this capability from a compilation unit contained in a module:

• Include $STANDARD_LEVEL 'HP_MODCAL'$ at the beginning of the module.

• Declare keyboard as a global variable (text file) in the implement section, not in the
export section.

• Use keyboard as the file parameter in read and readln operations.

Here is an example module segment:

$standard_level 'hp_modcal'$
module m;
export

procedure p;
implement
var

keyboard : text;
s : string[100];

procedure p;
begin
write('Enter text followed by a <cr>, input will be echoed: ');
readln(input,s);
write('Enter text followed by a <cr> , input will not be echoed: .);
readln(keyboard,s);
writeln;
writeln('You entered : », s);
end;

end. { m }

REMEMBER

This is not a portable feature. The HP-UX Portability Guide
manual contains a description of how to access non-echoed input
in ~ portable manner by calling standard HP-UX I/O libraries.

98615-90053, rev: 4/88 HP-UX Implementation of HP Standard Pascal 349

Unbuffered Terminal Input
Normally, terminal input on HP-UX is processed in units of lines. A line is delimited by
a new-line (ASCII LF) character, an end-of-file (ASCII EOF) character, or an end-of-line
character. This means that a program attempting to read will be suspended until an
entire line has been typed. Also, no matter how many characters are requested in the
read call, at most one line will be returned. It is not, however, necessary to read a whole
line at once; any number of characters can be requested in a read, even one, without
losing information. By default, input from the terminal will behave in this way; that is,
it will be buffered into lines.

The HP Pascal Standard requires that input from the standard input device be un­
buffered. In order to override the system default of buffered input, the user can add the
following statement to his program:

REWRITE(INPUT,",'UNBUFFERED');

In this mode, Pascal issues a call to ioctl to turn off buffering and echoing. (Refer to
ioctl(2) in the HP-UX Reference for more information on ioctl). Pascal then manages
the terminal echoing, and terminal input is processed in units of bytes. This means that
a program attempting to read will receive each byte as it is typed. A line is delimited
by a new-line (ASCII LF) character. The end-of-file (ASCII EOF) character behaves the
same as if end-of-file was reached while reading from a regular file. To restore the state
to buffered input the user can add the following statement to his program:

REWRITE(INPUT,",'BUFFERED');

350 HP-UX Implementation of HP Standard Pascal

HP-UX pc Command
The pc command on the Series 300 HP-UX system is a program (lbin/pc) that
coordinates the execution of the Pascal compiler (lusr/lib/pascomp) and the linker-loader
(lbin/ld) of the HP-UX system.

When invoked, pc parses its arguments. If one of its arguments is a file with a ".p"
extension, it calls the Pascal compiler (by default). The compiler creates a simple object
(" . 0") file for each ". p" file (refer to "The Load Format").

If the compilation is successful, Id (the link editor) is called, which links the ".0"
file with the appropriate library files (llib/crtO.o (lusr/lib/end.o if the -g option is
selected), /lib/libpc.a, /lib/libc.a, /lib/libm.a), and any other files which were given
as arguments to the pc command and are also needed to satisfy unresolved references.

Unless the "-0" option was invoked to cause the final output file to be a particular
name, the resulting file is named "a. out" , and is ready to run. No matter the pathname
of the Pascal source file, the a. out file is left in the current directory from whence pc
was invoked. If multiple ". p" files are given, the resulting ".0" files will remain in the
current directory. If only one ". p" file was given the corresponding ".0" file will be
purged, leaving only the a. out file.

Refer to pc(1) in the HP-UX Reference for more information.

Using the pc Command
For Series 300 HP-UX, invoking the Pascal language compiler is very similar to invoking
the other language compilers. However, it will not accept source files of any language
other than Pascal.

The pc command can be used to compile Pascal source files, or to link any ". a" or ".0"
files that require loading with Pascal run-time support. The pc command will accept any
combination or' number of ". p", ". a" , and ".0" files. Usually a compile will go all the
way to an "a. out" file, which is linked and loaded.

HP-UX Implementation of HP Standard Pascal 351

Compiling Programs Using Separately Compiled Modules
There are two approaches to compiling programs consisting of a main program and one
or more separately compiled modules. Assume for example there are two files; main. p
containing a main program which imports module xx, and mod. p containing the module
xx.

• The simplest approach to compiling this program with its two parts is to compile
both pieces with the same invocation of "pc".

pc mOd.p main.p

Notice that in this approach, mod.p must be listed first so it will be compiled first,
since its mod. 0 file is referenced by main. p. Both pieces will be compiled, and if
no errors occur in either piece, the results will be linked together with the default
Pascal support libraries. The object file will be in the file a. out .

• The other approach is to compile each piece with separate invocations of "pc". The
file mod. p must be compiled first because it is needed by main. p.

pc -c mOd.p
pc main.p mod.o

When compiling main. p, mod. 0 must be listed after main. p. If mod. 0 were listed first,
it would not be loaded because no reference would have preceded it. A ".0" file
will only be loaded if a reference exists to that file by a previous file in the list.

The Load Format
The Series 300 HP-UX HP Standard Pascal compiler (lusr/lib/pascomp) produces code
that is formatted into simple object files. Each ". p" file causes a ".0" file to be generated.
Information on Ha. out " format files can be found in the HP- UX Reference under a. out (5) .

All external symbols (module entry points, exported procedures, global data areas,
external procedures, aliased names) appear in the link editor symbol table. For user
programs, different types of symbols are created by different conventions, and are shown
in the following table:

Symbol type

global data area

exported procedure

module entry points

aliased procedure name

structured constants

Construction

(module name)

_ (module name) _ (proc name)

_ (module name) _ (module name)

(aliased name)

(module name) _ (constant name)

352 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 4/88

aliased variables (aliased name) or
_ (aliased name) if $UNDERSCORE ON$

external procedure(not aliased) _{proc name)

main program entry point _main and _ (programname) _ (programname)

Separate Compilation
The SEARCH option must be given argum~nts that are filenames suffixed with ". a" or ".0",
which are files that are results of a compilation by this compiler. The SEARCH option looks
for ".0" files within the ". a" files. If you desire to combine several ". a" files into one (so
fewer files have to be searched) you must use the ar command to extract the". 0" files,
and then recombine them into another" .a" file.

Note

The ar command will archive anything you tell it to, even ". a"
files. The compiler is not guaranteed to find ". 0" files in a ". a"
file that is so constructed.

Using the +a Option
When invoked with the "+a" option, the Pascal compiler produces code that is formatted
into archive files. Each module in the source causes a ".0" file to be generated, which is
then collected with all ".0" files of a single compilation (a compilation of a single ". p"
file), and archived into a ". a" file. Information on archive files and "a. out" format files
can be found in the HP-UX Reference.

Using the "+a" option permits mixing and matching of object code modules for different
Pascal source "modules", using the ar command. The name of each ".0" file is taken
from the module name in the source. For purposes of creating this ".0" file, the name can
be no longer than twelve characters in length. The compiler treats the main program as
a module also. If the name of the program is longer than 12 characters (which is allowed
by the compiler), the name is truncated to 12 before being associated with the ".0" file.

Loading and linking separately compiled ". a" files can be tricky. The loader will not
load from an archive file unless entry points defined in it have been previously entered
into the link editor symbol table as undefined. This means that in linking several ". a"
files derived from Pascal source, the file with the unresolved reference must be given to
the loader before the file with the definition.

HP-UX Implementation of HP Standard Pascal 353

Using the Program Profile Monitor
Beginning at Series 300 HP-UX Release 5.5, the Pascal compiler fully supports the system
monitor. To enable profile monitoring on a program, the HP-UX pc command must
include the -p or -G option in the HP-UX command line as follows:

pc -p (other options) files

to access the standard profprofiler, or

pc -G (other options) files

to access the gprof profiler which provides all of the data from prof as well as additional
information about nested routines.

When the -p or -G option is present in the pc command line, the compiler inserts a
monitor call at the beginning of each routine in the program. It also creates symbols for
each entry point that can be used for debugging at the assembly level. Symbol names
are determined as follows:

Pascal Run-Time Library

where mod is replaced by the current module's name,
X is replaced by an integer number count whose pur­
pose is to ensure that each symbol created is unique
(this number increments with each new symbol), and
rtn is the nested routine's source name.

The system monitors, prof and gproJ, are also supported by special versions of the Pascal
Run-time Library. /lib/l£bpc_p.a replaces /l£b/l£bpc.a, and /usr/i£b/iibheap2_p.a repiaces
/usr/l£b/l£bheap2.a when profiling is selected.

354 HP-UX Implementation of HP Standard Pascal

Program Parameters and Program Arguments

Program Parameters
It is often desirable to pass the name of one or more files to a Pascal program. This
can be accomplished by the use of "program parameters". On Series 300 HP-UX Pascal,
these parameters must be of type file. The parameters are specified in the program
heading in much the same way that input and output are specified.

For example, this program has one program parameter named READFILE:

PROGRAM file_example(input. output. READFILE);
VAR

readfile : text;
BEGIN

reset(readfile);

read(readfile);

close(readfile);
END.

The name of the physical file to be used by the program parameter is passed by including
it as an argument when executing the program. For example,

a. out (file name)

Where (file name) is the name of a physical file.

Multiple file names can be passed by specifying multiple program parameters and
providing the names of the fiJes at the time of execution. Each parameter takes one
of the specified files.

In the event that no file name is specified for a program parameter, a file will be created.
The file name will be the same as the identifier used as the program parameter (the file
name will appear in all uppercase letters regardless of the letter case of the identifier).

HP-UX Implementation of HP Standard Pascal 355

Program Arguments
A more traditional HP-UX operating system approach to passing arguments to a program
is supported by using routines exported from module ARG.

The ARG module exports several functions. The ARGC function returns a count of the
number of arguments in the command line. The ARGV function returns a pointer to an
array of pointers to the arguments in the command line. The ARGN function returns any
particular argument converted to a Pascal string. In addition, a function with similar
purpose to ARGN (PAS_PARAMETERS) is provided for compatibility with Series 500 HP-UX
Pascal.

The "arguments" module (listed below) can be imported by your program to allow
programmatic access to any arguments specified in the command line. Your program
does not require a $SEARCH ••• $ option to access this module, because it is included in
libpc. a, which is searched automatically.

The following program defines the ARG module that can be imported by user programs:

$standard_level 'hp_modcal', range off, ovflcheck off$
module arg;

export

type
arg_string255 = string[255];
argtype = packed array[1 .. maxint] of char;
argarray = array[O .. maxint] of Aargtype;
argarrayptr = Aargarray;

function argv: argarrayptr;
function argc: integer;
function argn(n: integer): arg_string255;
function pas_parameters(n: integer; anyvar p: argtype; 1: integer): integer;

implement

var
argc_value['_argc_value']
argv_value['_argv_value']

const
value_range_error = -8;

function argv: argarrayptr;
begin
argv argv_value;
end;

integer;
argarrayptr;

356 HP-UX Implementation of HP Standard Pascal 98615-900059, rev: 10/87

function argc: integer;
begin
argc argc_value;
end;

function argn(n: integer): arg_string255;
var

s: arg_string255;
i: O .. 256;

begin
if (n >= argc_value) or (n < 0) then

escape(value_range_error);
setstrlen(s.255) ;
i := 1;
while argv_value-[n]-[i] <> chr(O) do

begin
s[i] := argv_value-[n]-[i];
i := i + 1;
end;

setstrlen(s.i-1);
argn .= s;
end;

function pas_parameters(n: integer; anyvar p: argtype; 1: integer): integer;
var

i: integer;
begin
if (n >= argc_value) or (n < 0) then

pas_parameters -1
else

begin
i := 1;
while (argv_value-[n]-[i] <> chr(O» and (i <= 1) do

begin
p[i] := argv_value-[n]-[i];
i := i +-1;
end;

pas_parameters .= i-1;
while i <= 1 do

begin
p[i] := • ';
i := i + 1;
end;

end;
end; {pas_parameters}

end.

HP-UX Implementation of HP Standard Pascal 357

Programming Example
The following example demonstrates the use of the ARG module:

PROGRAM arg_demo(input,output);

VAR
f: text;
line: string[255];
fname: string[80];

IMPORT arg;

BEGIN
IF argc > 1 THEN

END.

BEGIN
fname := argn(l);
reset(f,fname);
WHILE NOT eof(f) DO

END;

BEGIN
readln(f,line) ;
writeln(line);

END;

When argc indicates an argument has been passed, the program assigns the first argument
to a filename. The program then resets the file and lists its contents.

You can test the program with the following command line.

til 1'111+ tII"rat'tAmn n _._-- --o--"'-'r

The contents of the file will be listed to the screen.

358 HP-UX Implementation of HP Standard Pascal

HP-UX Environmental Variables
You may need to check or use HP-UX environmental variables from your Pascal program.
There are two ways to do this: access the "_environ" variable directly or access the
variables indirectly via the "_getenv" function call. Refer to the HP- UX Reference,
getenv(3C), for more details.

Listed below are example programs to show you how to access HP-UX environmental
variables from Pascal. As shown in the main program, demo. p, the modules can be
imported by your program to allow you to access the variables from your Pascal program.

To compile the example programs, use the command line:

pc -v env.p demo.p

To execute the compiled example, use the command line:

a.out

When you execute the a. out file, the output will be similar to the following:

getenv('SHELL') = '/bin/csh'

environ[0]: 'HOME=/users/<yourlogin>'
environ[1]: 'PATH=. :/bin:/usr/bin:/usr/local/bin:/usr/contrib/bin'
environ[2]: 'LOGNAME=<yourlogin>'
environ[3]: 'SHELL=/bin/csh'

Example Program: env.p

$standard_level 'hp_modcal'. range off. ovflcheck off$

module env;

import arg;

export
const

type

(* S200/300/IPC HP-UX Environment Variables utilities.
*)

(* Note that the HP-UX environment variables are
accessed in the same fashion (structuring) as
the HP-UX command line arguments.

*)

argptr = -argtype;
function envc integer;
function envy : argarrayptr;

(* Count of environ vars *)
(* Pointer to environ's array of var pointers *)

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 359

function envp(n : integer (* Pointer to the "n"th environ var *)
: argptr;

function envn(n : integer (* Value of the "n"th environ var *)
: arg_string255;

procedure ctop(c argptr; (* Convert C string to Pascal STRING *)
var s : arg_string255);

implement

var
argarrayptr; env_value ['_environ']

envc_value : integer; (* Assumes zero init global data area *)

procedure ctop(c : argptr; var s : arg_string255);
var i : integer;
begin (* Convert C string to Pascal STRING *)

i := 1;
while c-[i] <> chr(0) do

begin s[i] := c-[i]; i·= i + 1; end;
setstrlen(s, (i - 1));

end;

function envy : argarrayptr;
begin (* Simply provide Environment pointer interface *)

envy env_value;
end;

function envc : integer;
label 1;
var i : integer;
hAain - -0--- (* Count

if envc_value > 0 then
envc := envc_value

else
begin

envc := 0;
for i := 0 to maxint do

the number o£

if env_value-[i] = NIL then
begin

1 :
end;

end;

envc .= i;
goto 1;

end;

360 HP-UX Implementation of HP Standard Pascal

1r _..: _\..., __ ~\

.a.L~a.U.L't:tt ,

function envp(n : integer) : argptr;
var tmp : anyptr;
begin (* Return the "n"th Environment string pOinter *)

if envc_value = 0 then
envc_value := envc;

if (n >= envc_value) or (n < 0) then
escape(value_range_error);

tmp := env_value A

[n];
envp tmp;

end;

function envn(n : integer
var

s : arg_string255;

arg_string255;

begin (* Return the "n"th Environment string value *)
ctop(envp(n), s);
envn s;

end;

end.

Example Program: demo.p

$standard_level 'hp_modcal'$

program demo(output); (* S200/300/IPC HP-UX Environment access demo
*)

(* Two basic ways to access the HP-UX environment variables from
Pascal are:

1 - access the HP-UX "/lib/crtO.o" process global
variable "_environ" directly from Pascal
via some scenario similar to the "env" module

2 - access them indirectly, by name, via the HP-UX
system routine "getenv" (refer to section three
in the HP-UX.Reference)

$search 'env.o'$
import

arg, env;
const

not_found_error = 999; (* Environ. var not found *)
var

i, limit: integer;
s : packed array[1 .. 255] of char;
sptr : argptr;
str : arg_string255;

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 361.

function getenv(anyvar name argtype) anyptr; external;

begin

(* Access the normally present variable "SHELL". via getenvO *)

s := 'SHELL'#O; (* Note. zero terminated string *)
sptr := getenv(s);
if sptr = NIL then

escapee not_found_error
else

ctop(sptr. str);
wri teln (, getenv (, , SHELL' ')
writeln;

str. "");

(* Access them all via the env module *)

limit := (envc - 1);
for i := 0 to limit do

writeln('environ[' i:1. ']:

end.

en vn (i). "");

362 HP -UX Implementation of HP Standard Pascal

CASE Statement ·Coding Precautions
Certain precautions are necessary when coding case statements. The technique used to
generate code for case statements is essentially the same for both the Pascal Workstation
compiler and the HP-UX Pascal compiler, even though the ramifications of using these
techniques is not the same for both systems.

The Pascal compiler uses a very simple jump table technique when generating object
code for case statements. It creates a table of offsets associated with each case entry for
each case statement. Thus it is very possible that relatively simple case statements can
result in a large amount of generated object code, making it advisable to recode the case
statement for more efficient operation. To assist in detecting inefficient code generation,
the compiler issues warning messages according to two methods for measuring case
statement code efficiency. A warning is generated whenever a case statement contains
more than 256 entries. A warning is also generated when a case statement has more than
100 entries and more than 1/2 of the entries reference the same case entry. Some case
statements cause both warnings to be issued.

Here are some simple code examples that will cause such warnings to be issued.

program case_warnl;
var

i : integer;

begin

case i of
O .. 100
101 .. 200
201 .. 300

end;

end.

The case statement jump table for this example requires 301 entries, one for each possible
value of i.. Each entry requires 2 bytes, resulting in a 602-byte table to implement the
case statement. Recoding the case statement using if statements reduces object code
space substantially.

98615-90053, new page: 10/87 HP-UX Implementation of HP Standard Pascal 363

program case_warn2;
var

i : integer;

begin

case i of
1
2
3
150:

end;

end.

The case statement jump table for this example requires 150 entries, again one entry for
each possible value of i. However, any value of i in the range of 4 through 149 would
result in a run-time case statement error. Using an otherwise clause replaces the 146
entries with a single code reference associated with the otherwise clause.

The previous two examples show relatively minor inefficiencies in case statement code
generation. However, the consequences that result from this piece of code are something
quite different:

program bigcase;
var

i : integer;
begin

case i of
0: ;
maxint

end;

end.

This code segment does not produce any warnings, but, instead, simply aborts the
compiler. By attempting to construct a jump table for each possible value of i in the
integer range of zero through maxint, the compiler runs out of available memory, disk
space, or other needed resources, and cannot complete the compilation, so it aborts. The
exact nature of the abort will vary, depending on the operating system in use and on
system configuration. Warning messages are not issued because they are produced after
object code has been generated and has been found to exceed certain parameters.

364 HP-UX Implementation of HP Standard Pascal 98615-90053, new page: 10/87

Heap Management
The heap is the area of memory from which so-called dynamic variables are allocated by
the standard procedure NEW. When a process begins, it has one area of memory available
for dynamic data. The Pascal heap access routines (NEW, DISPOSE, MARK, and RELEASE)
must share this area of memory with any other memory allocation package called from
the same process (e.g., MALLOC-the HP-UX system supplied heap manager).

Conceptually, the Pascal heap routines NEW, MARK, and RELEASE operate in a purely stack­
like fashion. When the process finishes with all the variables allocated since a MARK, a
RELEASE is called to move the top of the heap (the next available space) back to the value
saved by MARK. Note that a one to one correspondence exists between any MARK and the
subsequent matching RELEASE.

Note

It is up to the user to ensure legitimate use of the Pascal heap
manager. There must be exactly a one to one correspondence
between each MARK and its matching RELEASE, and also between
each NEW and its matching DISPOSE. You cannot re-RELEASE or
re-DISPOSE anything without causing an error that may not be
detectable within Pascal's heap managers. This can lead to bizarre
symptoms.

The sections that follow describe MALLOC-the system allocation mechanism, HEAP1 and
HEAP2-two HP-UX Pascal allocation mechanisms, and when and how to use the different
allocation mechanisms. It is important that you read all the information to gain a full
understanding of the Pascal heap managers.

HP-UX Implementation of HP Standard Pascal 365

MALLOC
MALLOC is currently available in two versions: MALLOC(3e) (default version) and MALLOC(3x).

Refer to the HP- UX Reference manual for details. The pertinent issues for mixing MALLOC

calls with Pascal are:

• At the system level of HP-UX, all memory allocation/deallocation requests are
made through the kernel routines BRK and SBRK. BRK and SBRK can be called
directly or through MALLOC. Refer to BRK (2) in the HP- UX Reference for deta:ils.
The important things to note are:

• MALLOC(3e), the default manager, assumes it is the only place in a process
which calls BRK or SBRK. Therefore, if MALLOC(3e) is called directly in a process,
then all other heap managers must do management by calling MALLOC as

opposed to BRK/SBRK .

• MALLOC(3x) allows other parts of a process to call BRK/SBRK. MALLOC(3x) is
linked in with the "-1 ma1loe" linker option .

• Neither version of MALLOC does a stack-like heap management. This means that the
default Pascal heap manager's RELEASE will not work correctly in conjunction with
MALLOC.

Pascal provides two heap managers, HEAP1 and HEAP2. Each is described in the sections
that follow.

HEAP1
Version I is a 24-bit address heap manager. It does not allow RELEASE to be executed
after any MALLOC has been done by the process. Memory which has been allocated to
the Pascal heap manager can be returned to the Series 300 HP-UX memory manager by
RELEASE, and can then be allocated to another heap manager (for example, MALLOC(3x)

or BRK).

NEW(P) allocates exactly enough space for a new dynamic variable, and returns the address
of the newly-created dynamic variable in P. This space can be allocated from the Pascal
free list, or from memory which has never been allocated in this process. The space
cannot be allocated from the free lists of other memory allocation packages.

DISPOSE(P) indicates that the space used by the variable P- is no longer needed, and can
therefore be used when dynamic variables are to be created. This space is returned to
the Pascal free list, and the pointer P is set to nil.

366 HP-UX Implementation of HP Standard Pascal

MARK (P) causes the first free address in the heap to be assigned to P. The next execution
of NEW will allocate memory which begins at the address contained in P.

RELEASE(P) can be done only after a MARK(P) has assigned an address to P. This restores
the heap to its state at the moment the statement MARK (P) was executed. All dynamic
variables created after the MARK statement are effectively destroyed by RELEASE, and the
memory space that they used is freed for new dynamic variables.

HEAP2
Version II is a 32-bit address heap manager. It permits a process to do any combination
of allocates and frees by any of the following memory managers: Pascal packet heap
(NEW and DISPOSE), Pascal stack heap (NEW, MARK, and RELEASE), and HP-UX packet heap
manager (MALLOC and FREE).

HEAP2 manages a doubly linked list of packets. Packets are obtained from HP-UX
memory by calls to MALLOC and are added to the tail of the list (NEW and MARK). Packets
are returned to HP-UX memory by calls to FREE (DISPOSE and RELEASE).

HEAP2 performs slower for most heap operations (significantly slower to do a RELEASE),

and requires more space. The Pascal-level packets consist of a four-byte "next packet"
link pointer at offset zero and a four-byte "previous packet" link pointer at offset four;
the rest of the packet is the user's space. MALLOC also uses space for its level of packet
management-refer to the HP-UX Reference for details.

NEW(P) calls MALLOC with the total size (user's space plus eight bytes for linking). The
packet is added to the tail of a doubly linked list.

DISPOSE(P) indicates that the space used by the variable p A is no longer needed. This
packet is removed from the doubly linked list and the space is returned to available
HP-UX free memory by a call to FREE. The pointer P is set to nil.

MARK(P) calls MALLOC with a request for eight bytes, and adds a null packet to the tail of
the list. All subsequent calls to NEW get added to the tail of the list.

RELEASE(P) can be done only after a MARK(P) has created a marker in the list of allocated
packets. RELEASE restores the heap to its state at the moment the statement MARK (P) was
executed. It frees all packets in the list (by calls to FREE) from the current packet to the
packet created by MARK. RELEASE will only free memory which has been allocated by NEW

and MARK; it does not affect memory which was allocated by any other memory allocation
package (i.e., direct calls to MALLOC or BRK/SBRK).

HP-UX Implementation of HP Standard Pascal 367

Pitfalls
Pascal standards place certain restrictions on heap operations. You may be able to
write a program which lets you "get away with" ignoring the following restrictions using
Version I, whereas Version II will produce unpredictable results.

• The pointer variable passed to RELEASE must have been generated only by a MARK.

• It is not permissible to RELEASE a pointer which was returned by NEW.

• Pointer~variables returned by NEW and MARK can be compared only for equality or
inequality. The result of comparing these pointers in any other relation is undefined.

Deciding which Heap Manager to Use
If you have a stand-alone Pascal program which does not call any library routines and
uses 24-bit or less heap address space, then you should use Version I. Version I is more
efficient than Version II.

If your process never calls RELEASE, then you can call MALLOC(3x) when using Version I.
However, Version I should never use MALLOC(3c) (the default) since it calls BRK and SBRK

directly to allocate/deallocate space.

If your process calls both MALLOC and RELEASE, or uses greater than 24-bit heap address
space, you must use Version II.

Version II can be used with either version of MALLOC, and RELEASE can be used concurrently
with MALLOC.

Note that you may not be able to tell whether both MALLOC and RELEASE are called (either
can be called from a library routine). In this case, you should try using Version I first.
If you ever get:

ERROR -31:Calls to RELEASE and MALLOC are incompatible.

you should then use Version II.

368 HP-UX Implementation of HP Standard Pascal

Specifying the Heap Manager
Version I is automatically included with the Pascal run time support, whether you use
the pc command or compile in another language and link /lib/1ibpc. a. If you decide to
use Version II, you must specify this explicitly, by giving a -1 option:

or
pc prog.p -1 heap2

pc -c prog.p
cc cprog.c prog.a -1 heap2 /lib/1ibpc.a

Note

If heap2 and /lib/1ibpc. a are both specified, heap2 must precede
/lib/1ibpc.a.

MALLOC (3c) is the default version of MALLOC. If you wish to specify MALLOC(3x), you must
use a -1 option:

pc;prog.p -1 ma110c

HP-UX Implementation of HP Standard Pascal 369

Pascal and Other Languages
This section gives a brief overview of how Pascal communicates with other languages in
HP-UX. For a thorough description, refer to the HP-UX Assembler Reference Manual
and ADB Tutorial.

Series 300 HP-UX Pascal can communicate with other languages on the system. Simple
data types, like integers and longreals are the same for Pascal, C, and Fortran. Pascal
and C also have the same parameter passing convention for characters. Therefore, these
simple types can be passed to routines written in other languages. Strings and other
complex data types cannot be passed between languages, unless you construct types
that each language can understand and the data types are passed by reference.

Calling Other Languages from Pascal
An external declaration is required to call other languages (including Series 300 HP-UX
system calls) from Pascal. Like other compilers on this HP-UX system, this compiler
prepends an underscore ("_") on most external symbols (refer to the previous section:
"The Load Format"). If the external name is the same as the one you are going to use in
Pascal, then no $alias ... $ is required. If you want to use a different nam.e, then you must
also use $alias "_{proc name)"$ in the procedure heading, prepending an underscore for
C, FORTRAN, and Pascal names. Since the assembler does not prepend underscores on
symbol names, use one in a $alias ... $ option only if it actually appears in the source.

A program containing an external declaration requires an EXTERNAL directive. The
EXTERNAL directive is similar in construction to the FORWARD directive. For example,

PROCEDunE elsewhere(i: integer; b: boolean); EXTERNAL;
PROCEDURE $alias '_realproc'$ myproc(i; integer); EXTERNAL;

370 HP-UX Implementation of HP Standard Pascal

Calling Pascal from Other Languages
Calling Pascal from any other languages requires that calls to asm_ini tproc and
asm_wrapup bracket the program containing calls to Pascal routines. These routines are
in assembler and the symbol names are "_asm_initproc" and "_asm_wrapup" (they are
located in /lib/libpc.a). The initproc procedure has one parameter that is a pointer
to an integer. The integer can be zero (echo) or non-zero (no echo). Only one call to
each of these routines is required per program. Among other things, they set up the
Pascal file system, heap manager, and error recovery. Without them, results may not be
as expected.

When a Pascal module is linked into another language's main program, the first reference
to the Pascal module must be a call to the main entry point of the module (i.e _mod_mod
w here mod is the module name). There are no parameters to this call. The call ensures
that the run-time set-up code for the module's global file descriptors is executed before
any file variable is referenced.

HP-UX Implementation of HP Standard Pascal 371

Run-Time Error Handling
During the execution of a Pascal program, an error can originate from several sources:

• In-line compiled code

• Miscellaneous run time support routines (String, Set, Math, etc.)

• Pascal file system

• HP-UX file system support (system errors)

• Hardware (SIGNALS)

By using the $STANDARD_LEVEL 'HP_MODCAL'$ extensions TRY, RECOVER, and ESCAPECODE,

almost all of these errors can be trapped for inspection. A kill signal cannot be caught.

In the broadest sense, there are two kinds of errors; errors resulting from the execution
of in-line code and errors resulting from calls to support routines "outside" the program.
The in-line errors include range violation errors, NIL pointer errors, and math overflow
errors.

When a program is compiled, the compiler normally emits calls to an error routine which
will generate an escapecode upon the detection of an in-line error. These calls can be
suppressed by the use of compiler options. Refer to the compiler options RANGE and
OVFLCHECK.

Errors detected during the execution of miscellaneous run time support routines generate
escapecodes the same way that in-line compiled code does. The key difference is that
errors detected by support routines cannot have the error generation suppressed.

Errors detected by the Pascal file system (I/O errors) are generated by a combination of
run time support code and in-line compiled code. The file system detects an error and
assigns an appropriate I/O error number to a global variable. After each call to a file
system routine, the compiler also emits code to test the I/O error global variable and
conditionally generates an escapecode error of -10. You can access this global variable
by adding a declaration to your program. Refer to the "System Programming Language
Extensions" section.

During normal execution of the Pascal file system, HP-UX file support routines are
continuously called to actually perform the desired actions. In most cases, if an error
condition is returned to the Pascal file system, its significance is translated into a Pascal
file system I/O error. There are, however, conditions which arise that are totally
unexpected, and in these cases a SYSTEM error is generated (escapecode of -30). The
generation of these errors cannot be suppressed.

372 HP-UX Implementation of HP Standard Pascal 98615-90053, rev: 10/87

The final way in which an error can be generated is by an HP -UX signal. All signals that
can be intercepted by a user process are converted into appropriate escapecode values.

When emitting code for a main program, the Pascal compiler first emits a call to an
initialization routine. When executed, the initialization routine calls the Pascal procedure
catch_signals (see listing). The catch_signals procedure instructs the operating system
to transfer control to the catch_all procedure whenever a signal occurs. The catch_all
procedure determines which signal occurred and generates an appropriate escapecode.
While the generation of these errors cannot be suppressed, you can set up your own
routine to handle any particular signal desired.

Also refer to the HP-UX documentation for SIGNAL.

A listing of all I/0, SYSTEM and ESCAPECODE messages that could be generated appears
at the end of this appendix. What follows is a complete listing of the signal handling
module:

$standard_Ievel 'hp_modcal'$
module signals;

export
procedure catch_signals;

procedure default_signals;

procedure catch_all(sig_no: integer; typ: integer; ptr: anyptr);

implement

type
shortint = -32768 .. 32767;
sigvals = (dummy , sighup, sigint , sigquit , sigill,sigtrap,sigiot ,sigemt ,

sigfpe,sigkill,sigbus,sigsegv,sigsys,sigpipe,sigalarm,
sigterm,userl,user2,sigchild,sigpwr);

sig_proc = procedure(sig_no: integer; typ: integer; ptr: anyptr);

fpstatrec = packed record
case boolean of

false: (typ : integer;);
true : (fa, fb : char;
bsun, snan, operr, ovfl,

unfl, dz, inex2, inexl boolean;
fc : char)

end;

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 373

var
r record case integer of

1: (proc : sig_proc);
2: (address: anyptr;

static: integer);
end;

asm_sig_no['asm_sig_no'] : integer;

const
sigdfl = NIL;

function signal $ALIAS '_signal'S
(i: integer; p: anyptr): anyptr; external;

procedure catch_all(sig_no: integer; typ: integer; ptr: anyptr);
var

p : anyptr;
dumy : fpstatrec;

begin
r.proc := catch_all;
asm_sig_no := sig_no;
p := signal(sig_no,r.address);
case sig_no of

ord(sighup): {hangup}
escape(-21);

ord(sigint): {interrupt -- break key or -C }
escape(-20);

ord(sigquit): {quit -- -I}
escape(-21);

ord(sigill): {illegal instruction -- not reset to default}
case typ of

6: begin
asm_sig_no .= ord(sigterm);
escape(-8); {chk}
end;

7: begin
asm_sig_no .= ord(sigterm);
escape(-4); {trapv}
end;

otherwise escape(-13);
end;

ord(sigtrap): {trace trap
escape(-21);

not reset to default}

374 HP-UX Implementation of HP Standard Pascal

ord(sigiot): {linea}
escape(-21);

ord(sigemt) : {unimplemented instruction}
escape(-21);

ord(sigfpe): {floating point exception and divide by zero}
begin
if (typ = 0) then

escapee -36)
else
if (typ = 5) then

begin
asm_sig_no := ord(sigterm);
escape(-5); {zerodiv}
end

else
begin

dumy.typ := typ;
with dumy do

if dz then
begin

asm_sig_no
escape(-5);

end
else if ovfl then

begin

ord(sigterm);
{zerodiv}

asm_sig_no := ord(sigterm);
escape(-6); {overflow}

end
else if unfl then

begin
asm_sig_no := ord(sigterm);
escape(-7); {underflow}

end
else

end;
end;

escape(-36);

ord(sigkill): {cannot be caught};

ord(sigbus): {bus error}
escape(-12);

ord(sigsegv): {address violation}
escape(-l1) ;

HP-UX Implementation of HP Standard Pascal 375

ord(sigsys): {bad arg to system call}
escape (-21) ;

ord(sigpipe): {write on pipe with no one to read}
escape(-21);

ord(sigalarm):{alarm clock went off}
escape(-21);

ord(sigterm): {software termination -- similar to sigkill}
escape(-20);

ord(userl) :

ord(user2):

{user defined}
escape(-21);

{user defined}
escape (-21) ;

ord(sigchild):{child died

ord(sigpwr): {power fail

end; {case}
end;

procedure catch_signals;
const

sig_ign = 1;
var

i: shortint;
rec: record case integer of
1: (ptr: anyptr);
2: (i : integer);

end;
begin
r.proc := catch_all;

do not catch this signal}

will never get to user} ;

for i := ord(sighup) to ord(sigpwr) do
begin
if i <> ord(sigchild) then

begin
rec.ptr := signal(i,r.address); {maintain signals that are ignored}

if rec.i = sig_ign then
rec.ptr signal(i,rec.ptr);

end;
end;

end;

376 HP-UX Implementation of HP Standard Pascal

procedure default_signals;
var

i: shortint;
p: anyptr;

begin
for i := ord(sighup) to ord(sigpwr) do

p := signal(i,sigdfl);
end;

end.

Error Messages
This section contains all of the error messages and conditions that you are likely to
encounter when using HP Pascal on a Series 300 HP-UX system. The errors discussed
include:

• Operating System Run-Time Errors

• I/O Errors

• System Errors

• Pascal Compiler Errors

Operating System Run-Time Errors
Errors detected during the execution of a program generate an integer number. An error
message is obtained by scanning the appropriate error message file for a line beginning
with the same integer value.

There is nothing to prevent you from modifying the error messages. If the error message
file cannot be found or if its contents are invalid, subsequent error messages will be
displayed as integer values.

Note that use of in-line floating-point commands (including 68881 op-codes) causes a
different error message to be returned than in previous releases. See the footnote.

When using the TRY .. RECOVER construct, the following numbers correspond to the value
of ESCAPECODE.

These messages are in the file named: lusr/lib/escerrs.

HP-UX Implementation of HP Standard Pascal 377

Table A-3. Operating System Run-time Errors

Error Message

-1 Abnormal termination.

-2 Not enough memory.

-3 Reference to NIL pointer.

-4 Integer overflow.

-5 Divide by zero.

-6 Real math overflow.

-7 Real math underflow.

-8 Value range error.

-9 Case value range error.

-10 Non-zero IORESULT.

-11 Segmentation violation.

-12 CPU bus error.

-13 Illegal CPU instruction.

-14 CPU privilege violation.

-15 Bad argument-SIN/COS.1

-16 Bad argument-Natural Log.1

-17 Bad argument-SQRT.1

-18 Bad argument-real/BCD conversion.

-19 Ba.d a.rgument-R(;D /real conversion.

-20 Stopped by user.

-21 Unassigned or unexpected signal.

-30 System error.

-31 Calls to RELEASE and MALLOC are incompatible.

-32 Heap operations out of sequence.

-33 Illegal variant on dispose.

-34 Heap manager range overflow - currently limited to 24 bit addresses.

-35 Invalid RELEASE attempted, entire Pascal heap was released.

-36 Unassigned floating point exception has occurred.

1 Errors -15, -16, and -17 only occur when the floating point math libraries or the HP 98635 Floating­
Point math card are used. The floating point co-processor (MC68881) and accelerator generate either
-5, -6, -7, or -36 upon errors for intrinsics such as sin, cos, In, or sqrt.

378 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 4/88

I/O Errors
When ESCAPECODE=-lO, one of the following errors has occurred. You can determine
which error has occurred if you include the following variable declaration in your program.

VAR IORESULT['asm_ioresult'] : integer;

The value of IORESULT will match one of the following errors.

These messages are in the file named: /usr/lib/ioerrs.

Table A-4. I/O Errors

Error Message

7 Bad file name.

8 No room on volume.

10 File not found.

13 File not open.

14 Bad input format.

24 File not opened for reading.

25 File not opened for writing.

26 File not opened for direct access.

28 String subscript out of range.

29 Bad file close string parameter.

30 Attempt to read past end-of-file mark.

36 File type illegal or does not match request.

39 Undefined operation for file.

HP-UX Implementation of HP Standard Pascal 379

System Errors
The following are HP-UX system error messages.

When using the TRY .. RECOVER construct, an ESCAPECODE=-30 indicates a system error
has occurred.

The HP-UX system variables: _errno and _errinfo can be accessed for more infonnation.
(For example: var err [) _errno)] : integer;)

The following messages are in the file named /usr/lib/syserrs:

Table A-5. System Errors

Error Message

1 Not owner.

2 No such file or directory.

3 No such process.

4 Interrupted system call.

5 I/O error.

6 No such device or address.

7 Arg list too long.

8 Exec format error.

9 Bad file number.
11\ No child processes. ~v

11 No more processes.

12 Not enough space.

13 Permission denied.

14 Bad address.

15 Block device required.

16 Mount device busy.

17 File exists.

380 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

Table A-5. System Errors (continued)

Error Message

18 Cross-device link.

19 No such device.

20 Not a directory.

21 Is a directory.

22 Invalid argument.

23 File table overflow.

24 Too many open files.

25 Not a typewriter.

26 Text file busy.

27 File too large.

28 No space left on device.

29 Illegal seek.

30 Read-only file system.

31 Too many links.

32 Broken pipe.

33 Math argument.

34 Result too large.

Pascal Compiler Errors
Errors detected during the compilation of a program generate an integer number. An
error message is obtained by scanning the appropriate error message file for a line
beginning with the same integer value.

There is nothing to prevent you from modifying the error messages. If the error message
file cannot be found or if its contents are invalid, subsequent error messages will be
displayed as integer values.

These messages are in the file named: /usr/lib/paserrs.

HP-UX Implementation of HP Standard Pascal 381

Table A-6. Pascal Compiler Errors

,
"

Error ~ Message

1 Erroneous declaration of simple type;

2 Expected an identifier;

4 Expected a right parenthesis ")";

5 Expected a colon ":";

6 Symbol is not valid in this context;

7 Error in parameter list;

8 Expected the keyword OF;

9 Expected a left parenthesis "(";

10 Erroneous type declaration;

11 Expected a left bracket "[";

12 Expected a right bracket "]";

13 Expected the keyword END;

14 Expected a semicolon ";";

15 Expected an integer;

16 Expected an equal sign "=";

17 Expected the keyword BEGIN;

18 Expected a digit following".";

19 Error in field list of a record declaration;

20 Expected a comma ",";

21 Expected a period ".";

22 Expected a range specification symbol " .. " ;

23 Expected an end of comment delimiter;

24 Expected a dollar sign "$";

50 Error in constant specification;

51 Expected an assignment operator ": =" ;

52 Expected the keyword THEN;

53 Expected the keyword UNTIL;

54 Expected the keyword DO;

55 Expected the keyword TO or DOWNTO;

56 Variable expected;

382 HP-UX Implementation of HP Standard Pascal 98615-90059, rev: 10/87

Table A-6. Pascal Compiler Errors (continued)

Error Message

58 Erroneous factor in expression;

59 Erroneous symbol following a variable;

98 Illegal character in source text;

99 End of source text reached before end of program;

100 End of program reached before end of source text;

101 Identifier was already declared;

102 Low bound>high bound in range of constants;

103 Identifier is not of the appropriate class;

104 Identifier was not declared;

105 Non-numeric expressions cannot be signed;

106 Expected a numeric constant here;

107 Endpoint values of range must be compatible and ordinal;

108 NIL must not be redeclared;

110 Tagfield type in a variant record is not ordinal;

111 Variant case label is not compatible with tagfield;

113 Array dimension type is not ordinal;

115 Set base type is not ordinal;

117 An unsatisfied forward reference remains;

121 Pass by value parameter cannot be type FILE;

123 Type of function result is missing from declaration;

125 Erroneous type of argument for built-in routine;

126 Number of arguments different from number of formal parameters;

127 Argument is not compatible with corresponding parameter;

129 Operands in expression are not compatible;

130 Second operand of IN is not a set;

131 Only equality tests (=,<» allowed on this type;

132 Tests for strict inclusion «, » not allowed on sets;

133 Relational comparison not allowed on this type;

134 Operand(s) are not proper type for this operation;

135 Expression does not evaluate to a boolean result;

98615-90053, rev: 10/87 HP-UX Implementation of HP Standard Pascal 383

Table A-6. Pascal Compiler Errors (continued)

Error Message

136 Set elements are not of ordinal type;

137 Set elements are not compatible with set base type;

138 Variable is not an ARRAY structure;

139 Array index is not compatible with declared subscript;

140 Variable is not a RECORD structure;

141 Variable is not a pointer or FILE structure;

143 FOR loop control variable is not of ordinal type;

144 CASE selector is not of ordinal type;

145 Limit values not compatible with loop control variable;

147 Case label is not compatible with selector;

149 Array dimension is not bounded;

150 Illegal to assign value to built-in function identifier;

152 No field of that name in the pertinent record;

154 Illegal argument to match pass by reference parameter;

156 Case label has already been used;

158 Structure is not a variant record;

160 Previous declaration was not forward;

163 Statement label not in range o .. 9999;

164 Target of nonlocal GOTO not in outermost compound statement;

165 Statement label has already been used;

166 Statement label was already declared;

167 Statement label was not declared;

168 Undefined statement label;

169 Set base type is not bounded;

171 Parameter list conflicts with forward declaration;

177 Cannot assign value to function outside its body;

181 Function must contain assignment to function result;

182 Set element is not in range of set base type;

183 File has illegal element type;

184 File parameter must be of type TEXT;

384 HP-UX Implementation of HP Standard Pascal

Table A-6. Pascal Compiler Errors (continued)

Error Message

185 Undeclared external file or no file parameter;

190 Attempt to use type identifier in its own declaration;

300 Division by zero;

301 Overflow in constant expression;

302 Index expression out of bounds;

303 Value out of range;

304 Element expression out of range;

400 Unable to open list file;

401 File not found;

403 Compiler error;

404 Compiler error;

405 Compiler error;

406 Compiler error;

407 Compiler error;

408 Compiler error;

409 Compiler error;

600 Directive is not at beginning of the program;

602 Directive not valid in executable code;

604 Too many parameters to $SEARCH;

605 Conditional compilation directives out of order;

606 Feature not in Standard PASCAL flagged by ANSI restriction;

607 Language feature not allowed;

608 $INCLUDE exceeds maximum allowed depth of files;

609 Cannot access this $INCLUDE file;

610 $INCLUDE or IMPORT nesting too deep to IMPORT <module-name>;

611 Error in accessing library file;

612 Language extension not enabled;

613 Imported module does not have interface text;

614 LINENUM must be in the range O .. 65535;

620 Only first instance of routine can have $ALIAS;

HP-UX Implementation of HP Standard Pascal 385

Error

621

630

631

632

633

646

647

648

649

651

652

653

654

655

657

658

659

660

661

662

663

665

667

668

671

672

673

674

675

676

Table A-6. Pascal Compiler Errors (continued)

Message

$ALIAS not in procedure or function header;

15--bit character mode not allowed to cross file boundaries;

15-bit character mode is not allowed to cross line boundary;

Native language support error;

Control character illegal as second byte in 15-bit character mode;

Directive not allowed in EXPORT section;

Illegal file name;

Illegal operand in compiler directive;

Unrecognized compiler directive;

Reference to a standard routine that is not implemented;

Illegal assignment or CALL involving a standard procedure;

Routine cannot be followed by CONST, TYPE, VAR, or MODULE;

Module declaration must not follow structured constant declaration;

Record or array constructor not allowed in executable statement;

Loop control variable must be local variable;

Sets are restricted to the ordinal range O .. 8175 (default) or O .. 262000 (maxi­
mum);

Cannot blank pad literal to more than 255 characters;

String constant cannot extend past text line;

Integer constant exceeds the range implemented;

Nesting level of identifier scopes exceeds maximum (20);

Nesting level of declared routines exceeds maximum (15);

CASE statement must contain a non-OTHERWISE clause;

Routine was already declared forward;

Forward routine must not be external;

Procedure too long;

Structure is too large to be allocated;

File component size must be in range 1 .. 32766;

Field in record constructor improper or missing;

Array element too large;

Structured constant has been discarded (cf. $SAVE_CONST);

386 HP-UX Implementation of HP Standard Pascal

Table A-6. Pascal Compiler Errors (continued)

Error Message

677 Constant overflow;

678 Allowable string length is 1 .. 255 characters;

679 Range of case labels too large;

680 Real constant has too many digits;

681 Real number not allowed;

682 Error in structured constant;

683 More than 32767 bytes of data;

684 Expression too complex;

685 Variable in READ or WRITE list exceeds 32767 bytes;

686 Field width parameter must be in range O .. 255;

687 Cannot IMPORT module name in its EXPORT section;

688 Structured constant not allowed in FORWARD module;

689 Module name must not exceed 12 characters;

690 Allowable string length is 1..2 147 483 627 characters;

691 Must use LONGSTRINGS compiler option before using this option;

692 Attempt to allocate >2147483627 bytes of temp storage;

696 Array elements are not packed;

697 Array lower bound is too large;

698 File parameter required;

699 32-bit arithmetic overflow;

701 Cannot dereference (-) variable of type anyptr;

702 Cannot make an assignment to this type of variable;

704 Illegal use of module name;

705 Too many concrete modules;

706 Concrete or external instance required;

707 Variable is of type not allowed in variant records;

708 Integer following # is greater than 255;

709 Illegal character in a "sharp" string;

710 Illegal item in EXPORT section;

HP-UX Implementation of HP Standard Pascal 387

Table A-6. Pascal Compiler Errors (continued)

Error Message

711 Expected the keyword IMPLEMENT;

712 Expected the keyword RECOVER;

714 Expected the keyword EXPORT;

715 Expected the keyword MODULE;

716 Structured constant has erroneous type;

717 Illegal item in IMPORT section;

718 CALL to other than a procedural variable;

719 Module already implemented (duplicate concrete module);

720 Concrete module not allowed here;

730 Structured constant component incompatible with corresponding type;

731 Array constant has incorrect number of elements;

732 Length specification required;

733 Type identifier required;

750 Error in constant expression;

751 Function result type must be assignable;

780 Undefined set identifier;

781 Can't mix HP Standard and "old" S300 style conditional compilation;

782 set ids must be assigned TRUE or FALSE only;

791 Exceeded maximum if f$else$ nesting depth;

792 $else$ seen, but $if stack is empty;

793 end seen, but $if stack is empty;

794 Cannot place single quote inside of a literal argument;

795 No matching if for current $else$;

796 Missing the terminating dollar sign ($);

900 Error opening code file;

901 Error writing to code file;

388 HP-UX Implementation of HP Standard Pascal

Index: HP-UX Implementation

a
ADDR function .. 336
ALIAS compiler option .. 271, 370
ALLOW_PACKED compiler option .. 272
ANSI compiler option ... 275, 314
ANSI/ISO Standard Pascal ... 275, 315
ANYPTR .•.•.••••••.•.•.•..•.•..••..•.••..••••..•••..••••.••....•••.. 334, 336
ANYVAR parameter ... 332
a.out file ... 351,352
append procedure .. 310,346
ar command ... 353
ARG module functions .. 321, 356, 358
Array:

Allocation and alignment .. <..... 341
Conformant ... 315
Implementation dependencies .. 310

b
BADDRESS function ... 326, 336
blockread function ... 327
blockwrite function ... 327

c
CALL procedure ... 335
CASE Statements .. 363
catch_signals procedure "... 373
Caution when using CASE statements 363
cdb command .. 315
CLOSE procedure ... 310, 346
CODE compiler option ... 276, 314
CODE file ... 276
CODE_OFFSETS compiler option ... 277, 344
Commands:

ar .. 353
cdb 315

Index: HP-UX Implementation 1

hpnls ... 292
ioctl ... 350
Id .. 319
man•.................•..............•.•.......................... 314
pc .. 290, 313, 314, 315, 319, 338, 351
pdb ... 315
strip ... 278
what .. 313

Compile-time constant .. 337
Compiler options:

ALIAS•...•.•....•.....................•.•.••. 271, 370
ALLOW _PACKED ...••.......•....... 272
ANSI ..••. 275, 314
CODE•.•...•.....................•.•..•.•.•••. 276, 314
CODE_OFFSETS ... 277, 344
DEBUG ...••• 278, 288
ELSE•......................................•.............•....... 301
END ...••..••. 279, 286
ENDIF •..•............•...•....•......•..•......•....•••...••..•.. 280, 301
FLOAT _HDW•..•...•.•...............•...... 281
IF ..• 270, 279, 280, 286, 301
INCLUDE•.....•...••.....••..............•..............•....... 287
LINENUM ...••..••..••.. 288
LINES•..............•.•....•....•....•............ 289, 314
LIST ••..•.. 290, 294
LONGSTRINGS ..•......••....•....•....•.........................•....... 291
NLS_SOURCE """"""""""""""" , , , , , , , , , , , , " 292; 314; 316
OVFLCHECK•..•. 293, 372
PAGE •..•.•..••...... 294
PAGEWIDTH•..•..•.•...•...................•....... 295
PARTIAL_EVAL ... 296, 316
RANGE •..•..•.•...•. 297,372
Restrictions ... 270
SAVE_ CONST•............•......•.•.•......................•...... 298
SEARCH ... 270, 299, 300, 353, 356
SEARCH_SIZE•....•.........•••..•.•..•..................•...•. 299, 300
SET•.•..................•...••........•.• 280, 301
STANDARD_LEVEL••..............•...•...... 303
STANDARD_LEVEL 'HP_MODCAL'•....•........... 306,326,329,336,347,348
STRINGTEMPLIMIT•.•..•..............•............••..•••..••. 304
SYSPROG••...•..............•.•..........•..••... 306, 326, 336, 372
TABLES ...••..........•...••................••..............•..••• 307, 344

2 Index: HP-UX Implementation

UNDERSCORE••.•••...••.•.•....•.......•••.••....•....••.••..• 271, 308
WARN ...••••......••••..••••...••.....•••...•..•••....•....••••..•.•... 309

Compiler:
Directives ... 270
HP-UX 5.0 .. 313
HP-UX 5.5 .. 320
HP-UX 6.0 ... 321, 325
Standard options ... 314
Underscore .. 308
Warning messages ... 309,313

concat function .. 327
Conformant arrays ... 315
Constants:

Compile-time ... 337
Structured .. 298

Conversion to ASCII strings ... 347
copy function .. 327

d
DEBUG compiler option .. 278, 288
delete procedure ... 327
DISPOSE procedure ... 311, 365, 366, 367
Dynamic variables .. 365

e
ELSE compiler option .. 301
END compiler option .. 279, 286
ENDIF compiler option .. 280, 301
Enumerated type ... 342
Environmental variables 281, 312, 314, 325, 359
Errors:

Compiler syntax ... 381
Error trapping ,. .. 330
I/O 332, 372, 379
Math library ... 319
Run-time ... 372, 377
System. 372, 380

ESCAPE procedure .. 319, 330
ESCAPECODE function 319, 330, 332, 372, 377, 379, 380
external directive ... 310, 370

Index: HP-UX Implementation 3

f
Files:

Allocation and alignment .. 342
Archive ... 353
External ... 299,300,346
Names ... 310,325
stderr ... '. 319
stdin .. 347, 350
Temporary ... 312, 325

FLOAT_HDW compiler option ... 281
Floating-point operations 281
FOR statement ... 311, 327
forward directive ... 370
Function:

ADDR •••.•.••••.••.•.•••..••.•..•.•••••.••..•••..•••.•.••..•.••.••••••. 336
ARGC, ARGV, ARGN ••.••..•••..••••..•••....••....••.......•••.......• 356, 358
BADDRESS •••.••.••.•.•••..•....••.•.•.••.•••••.....•..•••....••••• 326, 336
blockread ... 327
blockwri te .. 327
concat .. 327
copy .. 327
ESCAPECODE •.••..••••••......••...••.•••.••.• 319, 330, 332, 372, 377, 379, 380
IORESULT ••.•.•..•••..••..••......•.••..•••.••••...••.•••.•.•• 328,332, 379
Keyword .. 271
lastpos ... 311
length .. 327
matherr .. 317, 319
maxpos .. 311
pos ... 327
scan .. 327
SIZEOF .•.•••••..•.•••••......•••••.•.••.•••.••.•••••.•••••..••..•••••• 337
str ... 327
strlen .. 327
STRPOS••.••..•••.••..••••.....•••.•.•....••...•.••.••.•••••..•..•• 327
WADDRESS ..••.•..••••••••.•...•.•••••....•••..•.••••.••...•••••..• 326, 336

9
GOTO statement ... 330
gpro/ .. 354

4 Index: HP-UX Implementation

h
HALT procedure ... 330
Hardware, Floating-point .. 281
Heap management 311, 365, 366, 367, 369
HP Standard Pascal ... 269, 310
HP-UX:

5.0 release ... 313
5.5 release ... 320
6.0 release .. 321, 325
Compiler options ... 270
Implementation ... 269,310
UCSD Pascal language extensions .. 327

hpnls command .. 292

.
I

IF compiler option 270, 279, 280, 286, 301
Implementation dependencies:

HP-UX ... 310
IMPORT reserved word ... 299
INCLUDE compiler option ... 287
Independent constructs ... 338
INPUT file ... 328, 347
insert procedure ... 327
integer .. 312, 341
ioctl command .. 350
IORESULT function ... 328, 332, 379

Keyword:
FUNCTION

PROCEDURE

Language extensions:

k

I

271
271

System programming .. 304, 306, 329
U CSD Pascal .. 327
Workstation implementation ... 328

Language level:
Standard programming ... 303

Index: HP-UX Implementation 5

lastpos function ... 311
ld command ... 319
length function .. 327
LINENUM compiler option ... 288
LINES compiler option .. 289, 314
Link editor (ld) .. 351
Linking programs .. 314
LIST compiler option ... 290, 294
longreal ... 311, 316
LONGSTRINGS compiler option ... 291

m
MALLOC 365, 366
man command .. 314
MARK procedure .. 311, 365, 366, 367
matherr function .. 317, 319
maxint .. 311
maxpos function .. 311
Memory allocation ... 366
Memory management .. 330, 336, 340
minint .. 311
Modules ... 311, 356, 358
moveleft procedure ... 327
moveright procedure .. 327

~
II

Native language support ... 292, 316
NEW procedure ... 311, 337, 365, 366, 367
NLS_SOURCE compiler option 292, 314, 316

o
OPEN procedure ... 346
Operating system:

HP-UX .. 327, 328
Other languages .. 370
OVFLCHECK compiler option .. 293, 372

6 Index: HP-UX Implementation

p
packed array of char ... '" 327,344
Packed structures ... 339, 340
PAGE compiler option .. 294
PAGEWIDTH compiler option ... 295
PARTIAL_EVAL compiler option ... 296, 316
Path names. .. 311, 325
pc command 290, 313, 314, 315, 319, 338, 351
PCOPTS environmental variable .. " 314
pdb command .. 315
pos function ... 327
Precautions when using CASE statements 363
Procedure:

append ... 310, 346
CALL•....•.........•............. 335
catch_signals .. " 373
CLOSE .•.................•....•..........•....•....••...••.....••. 310, 346
delete .. 327
DISPOSE ...•.....................................•.......• 311, 365, 366, 367
ESCAPE•................•........•.......•. 319, 330
HALT•....•.....•....•...............•.....•.........•.....•••...•• 330
insert .. 327
Keyword .. 271
MARK•....•..........•... 311,365, 366, 367
moveleft .. 327
moveright ... 327
NEW•.............••...•.....••...••.........•• 311, 337, 365, 366, 367
OPEN•..............•.....•....•.....•....•..•..• 346
RELEASE•.....................•....•.... 311,365,366,367
RESET •....•........•................•....................•....•....... 346
REWRITE ..•..•.......... 311, 328, 346
setstrlen ... 327
strdelete ... 327
strinsert ... 327
strread ... 312
strwri te .. 312
Variable ... 335

prof .. 354
Profile Monitor .. 354
Program arguments ... 356, 358
Program parameters .. 355

Index: HP-UX Implementation 7

r
RANGE compiler option .. 297, 372
real ... 311, 316, 319
Real numbers .. 326
Records ... 343
RELEASE procedure ... 311, 365, 366, 367
Reserve word:

IMPORT•...•....•....................•.....•...••....•••..•••..•• 299
RESET procedure .. 346
REWRITE procedure ... 311, 328, 346

s
SAVE_CONST compiler option .. 298
scan function .. 327
SEARCH compiler option 270, 299, 300, 353, 356
SEARCH_SIZE compiler option .. 299, 300
SET compiler option .. 280, 301
Sets ... 316, 322, 341, 344
setstrlen procedure .. 327
SIZEOF function .. 337
Source lines ... 311
Standard programming language level 303
STANDARD_LEVEL compiler option .. 303
STANDARD_LEVEL 'HP_MODCAL' compiler option 306,326,329,336,347,348
Statements:

FOR •........••...•......•...........................•....•...•........ 327
GOTO•.....................•...••.•............•......•••..• 330
TRY .. RECOVER••..............•....•.•.....•.....•... 330, 372, 377, 380
WITH ..•............•..•..............•.............•..........••...•.. 312

stderr file ... 319
stdin file ... 347, 350
str function ... 327
strdelete procedure .. 327
Strings ... 312, 321, 343
STRINGTEMPLIMIT compiler option ... 304
strinsert procedure .. 327
strip command .. 278
strlen function .. 327
STRPOS function ... 3·27
strread procedure .. 312
Structured constants .. 298

8 Index: HP-UX Implementation

strwri te procedure ... 312
Subrange ... 312, 341
Symbol table listings. .. 307, 314, 352
Symbolic debugger .. 314,315
SYSPROG compiler option 306, 326, 336, 372
System allocation ... 365, 366
System Monitor .. 354
System programming language extensions 304, 306, 329
System variable .. 278

t
Table:

A-l. UCSD Pascal Language Extensions and HP-UX Replacements 327
A-2. Other Replacements for Use in Converting Pascal Programs 328
A-3. Operating System Run-time Errors 378
A-4. I/O Errors .. 379
A-5. System Errors ... 380
A-6. Pascal Compiler Errors ... 382

TABLES compiler option ... 307, 344
Temporary files ... 312, 325
Terminal input ... 350
TMPDIR••••••••••.••••..•.•...•...••.•.••..•••.•..•••••••••..••. 312, 325
TRY .. RECOVER statement 330,372,377, 380
Type:

ANYPTR ••••••••.•.•.•••.••.•...•••..•••.••.••••••••••••••••••••••• 334, 336
Checking .. 332
Enumerated ... 342
integer .. 312, 341
longreal ... 311, 316
Memory allocation .. 338, 339, 340
packed array of char .. 327, 344
real ... 311, 316, 319
set ... 316, 341, 344
Size .. 337

u
U CSD Pascal:

Language extensions .. 327
UNDERSCORE compiler option ... 271, 308
Unpacked structures ... 339, 341

Index: HP-UX Implementation 9

v
VAR parameter .. 272, 332, 344
Variables:

Absolute addressing ... 331, 336
ANYPTR ••..............•.••.••.•.•••....••...••.•...•••..••.•..•••.••.• 334
Dynamic .. 365
Environmental .. 281, 312, 314, 325, 359
Procedure ... 335
Size .. 337
System .. 278

Virtual memory .. 331

w
WADDRESS function ... 326, 336
WARN compiler option .. 309
what command ... 313
WITH statement ... 312

10 Index: HP-UX Implementation

Workstation Implementation
of HP Standard Pascal

Appendix B: Workstation Implementation of HP Standard Pascal

B
Overview .. 389
Compiler Options .. 390

ALIAS .. 391
ALLOW _PACKED .. 392
ANSI .. 394
CALLABS ... 395
CODE ... 396
CODE_OFFSETS .. 397
COPYRIGHT. .. 398
DEBUG ... 399
DEF .. 400
END .. 401
FLOAT _HDW .. 402
HEAP_DISPOSE ... 404
IF .. 405
INCLUDE ... 406
IOCHECK ... 407
LINENUM ... 408
LINES ... 409
LIST .. 410
OVFLCHECK .. 411
PAGE ... 412
PAGEWIDTH .. 413
PARTIAL_EVAL ... 414
RANGE ... 415
REF .. 416
SAVE_CONST ... 417
SEARCH .. 418
SEARCH_SIZE ... 419
STACKCHECK .. 420
SWITCH_STRPOS ... 421
SYSPROG ... 422
TABLES ... 423
UCSD ... 424
WARN .. 425

Implementation Dependencies 426
UCSD Pascal Language Extensions 434
System Programming Language Extensions 449

Error Trapping and Simulation 449
Absolute Addressing of Variables 451
Relaxed Typechecking of VAR Parameters .. 452
The ANYPTR Type .. 453
Procedure Variables and the Standard Procedure CALL 454
Determining the Absolute Address of a Variable 455
Determining the Size of Variables and Types .. 456
The 10RESULT Function .. 457

Pascal File System 460
Physical and Logical Files. .. 460
Syntax of File Specifiers (File Names) 460
Opening a File ... 464
Disposition of Files Upon Closing -...................... 466
Standard Files and the Program Heading 466
File System Differences .. 467

CASE Statement Coding Precautions. .. 468
Heap Management .. 470

MARK and RELEASE .. 470
NEW and DISPOSE .. 471

Compilation Problems ... 473
Can't Run the Compiler .. 473
File Errors 900 through 908 .. 474
Errors when Importing Library Modules .. 475
Not Enough Memory .. 475
Insufficient Space for Global Variables 476
Operating System Errors 403 through 409. .. 476
FOR-Loop Error 702 .. 476

Error Messages .. 476
Unreported Errors .. 477
Operating System Run-Time Errors. .. 478
I/O Errors ... 479
I/O LIBRARY Errors ... 482
Graphics LIBRARY Errors. .. 484
Compiler Syntax Errors. .. 485

Workstation Implementation
of HP Standard Pascal B
This appendix describes the implementation-specific details of HP Standard Pascal (HP
Pascal) for the Series 300 Workstation Language System. The following topics are
discussed:

• Compiler Options

• Implementation Dependencies

• UCSD Pascal Language Extensions

• System Programming Language Extensions

• Pascal File System

• CASE Statement Coding Precautions

• Heap Management

• Compilation Problems

• Error Messages

If you are not already familiar with the Pascal language, the information presented in this
appendix may not be sufficient for you to successfully compile and execute a non-trivial
Pascal program. If you have difficulties, please refer to the user manuals and techniques
manuals provided with your Series 300 Workstation for more information.

98615-90053, rev: 10/87 Workstation Implementation of HP Standard Pascal 389

Compiler Options
The pages in this section describe the compiler options (compiler directives) you may use
with HP Pascal on Series 300 Workstations. When specified, compiler options usually
have a default action and restrictions on where they may appear. These restrictions are
shown on every page below the option. The explanation of these restrictions is given
below:

Location

Anywhere

At front

Restrictions on the Placement of Compiler Options

Restriction

No restriction.

Applies to entire source file; must appear before the first "token" in
the source file (before PROGRAM, or before MODULE if compiling a list of
modules).

Not in body Applies to a whole procedure or function; can't appear between BEGIN

and END. It is a good practice to put these options immediately before
the word BEGIN, or the procedure heading.

Statement

Special

Can be applied on a statement-by-statement basis or to a group of
statements, by enabling before and disabling after the statements of
interest.

Explained under the particular option.

If an option appears in the interface (import or export) part of a module, it \\7i!! ha,\re
effect as the module is compiled. However, the option itself will not become part of the
interface specification (export text) in the compiled module's object code and will have
no effect in the implement section of the module being compiled.

Note

The syntax of the two compiler options SIF and $SEARCH do not
conform to the syntax of all other allowable options.

390 Workstation Implementation of HP Standard Pascal

ALIAS
Default: External name = Procedure Name

Location: Special (See below)

This option causes a name, other than the name used in the Pascal procedure or function
declaration, to be used by the loader.

Item

external name string

Semantics

Description Range

Entire declaration must fit
on one line.

The string parameter specifies the external name for the procedure in whose header the
option appears.

Example
procedure $alias 'charlie'$ p (i: integer); external;

Within the program, calls use the name Pi but the loader will link to a physical routine
called charlie.

The option must appear between the keywords PROCEDURE or FUNCTION and the first symbol
following the semicolon (;) denoting the end of the procedure or function declaration.

The option may not appear in an export section.

Workstation Implementation of HP Standard Pascal 391

Default: OFF

Location: Anywhere

This option permits or prohibits the passing of elements of packed arrays or records
to VAR parameters when, due to implementation-dependent allocation alignments, those
fields are aligned as if they were not packed.

ALLOW.,pACKED }----r------r-~

Semantics
"ALLOW_PACKED" is interpreted as "ALLOW_PACKED ON".

Passing elements of packed arrays or records to VAR parameters is illegal in HP Standard
Pascal, but Series 200 Pascal compilers prior to Version 3.1 allowed it. Pascal 3.1 and
subsequent compilers allow passing of packed elements to VAR parameters only if the
compiler option ALLOW_PACKED is ON.

ON specifies that elements of packed structures will be allowed to be passed to V AR
parameters in functions and procedures, You may need to specify ALLOW_PACKED ON to
compile pre-3.1 Pascal source code.

OFF specifies that passing elements of packed structures to VAR parameters is illegal.
Attempts to do so result in a compile-time error message 154: "Illegal argument to
match pass-by-reference parameter".

Note

Pre-3.1 compilers allowed only certain packed elements to be
passed to VAR parameters. These are the elements which AL­

LOW_PACKED affects. Others, which pre-3.1 compilers forbade from
being passed, are still forbidden in 3.1 and later compilers.

392 Workstation Implementation of HP Standard Pascal

Example
procedure a(var b: integer); forward;
var

r= packed record

begin
a(r.f2) ;

f 1 : integer;
f2: integer;

end;

$ALLOW_PACKED ON$
$ALLOW_PACKED OFF$

Workstation Implementation of HP Standard Pascal 393

ANSI
Default: OFF

Location: At front

This option selects whether an error message is to be emitted for use of any feature of
HP Standard Pascal not contained in ANSI/ISO Standard Pascal.

Semantics
"ANSI" is interpreted as "ANSI ON".

ON causes error messages to be issued for use of any feature of HP Standard Pascal which
is not part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example
$ansi on$

394 Workstation Implementation of HP Standard Pascal

CALLABS
Default: ON

Location: Statement

This option determines whether I6-bit relative or 32-bit absolute jumps are to be
generated by the compiler.

Semantics
"CALLABS" is interpreted as "CALLABS ON".

ON specifies that 32-bit absolute jumps will be emitted for all forward and external
procedure calls.

OFF specifies I6-bit PC-relative jumps.

This option is allowed on a statement-by-statement basis.

Example
$callabs off$

Workstation Implementation of HP Standard Pascal 395

CODE
Default: ON

Location: Not in body

This option is used to control whether a . CODE file will be generated by the compiler.

Semantics
"CODE" is interpreted as "CODE ON".

ON specifies that executable code will be emitted.

OFF specifies that executable code will not be generated.

Example
Scode offS

396 Workstation Implementation of HP Standard Pascal

Default: OFF

Location: Not in body

This option controls the inclusion of program counter offsets in the compiler listing.

~ODE_OFFSET~~"T'~~ ON ~ ~

~

Semantics
"CODE_OFFSETS" is interpreted as "CODE_OFFSETS ON".

ON specifies that line number-program counter pairs will be printed for each executable
statement listed. This can be applied on a procedure-by-procedure basis.

OFF specifies that program counter offsets will not be included in the compiler listing.

Example
$code_offsets on$

Workstation Implementation of HP Standard Pascal 397

COPYRIGHT
Default:

Location:

Not applicable

Anywhere

This option is provided for inclusion of copyright information.

Item

copyright
message

Semantics

string

Description Range

Entire copyright must fit on
one line.

The string parameter is placed in the object file as the owner of the copyright. If more
than one COPYRIGHT option is included, the last one is effective.

Example
$copyright 'Hewlett Packard Company, 1983'$

398 Workstation Implementation of HP Standard Pascal

DEBUG
Default: OFF

Location: Not in body

This option controls whether the code produced by the compiler contains the additional
information necessary for reporting line number information with error messages.

Semantics
"DEBUG" is interpreted as "DEBUG ON".

ON causes debugging instructions to be emitted by the compiler and may be applied on
a procedure-by-procedure basis.

OFF specifies that code produced by the compiler will not contain the additional infor­
mation necessary for the full use of the debugger.

The use of the DEBUG compiler option causes additional code to be emitted by the compiler.
As a result, programs which are compiled with this option run slower.

Example
procedure buggy;
var i: integer;
$debug on$
begin

end;
$debug off$

Workstation Implementation of HP Standard Pascal 399

DEF
Default:

Location:

10 records (on same volume as code output)

At front

This option allows the user to change the size and location of the temporary compiler
file .DEF. .

Item Description Range

def file size integer numeric constant less than 32 767

def file volume id string valid volume identifier

Semantics
The temporary compiler file called . DEF holds external definitions.

If the parameter for the DEF option is a number, it specifies how many logical records
will be allocated for the . DEF file.

If the parameter is a string, it specifies the volume where a temporary compiler file . DEF

will be stored.

Refer to the section "Compilation Problems" later in this appendix for more information
on the . DEF file.

Examples
$def 50$
$def 'compvol:' $
$def 'junkvol:', def 50$

400 Workstation Implementation of HP Standard Pascal

END
Default:

Location:

Not applicable

Special (See below)

This option marks the end of conditional compilation that is initiated by the IF compiler
option.

Semantics
This option is only used in conjunction with the IF option (refer to the IF option later
in this section).

Example
const fancy = true;

limit = 10;
size = 9;

$if fancy and «size+1)<limit)$

(* this will be skipped *)
end

Workstation Implementation of HP Standard Pascal 401

Default:

Location:

OFF (ON for COMPILE20 compiler)

Not in body

This option enables and disables the use of floating-point hardware.

FLOAT.-HDW

Semantics
"FLOAT_HDW" is interpreted as "FLOAT_HDW ON".

HP 98635 Floating-point Math Card
The HP 98635 is an optional PC board that increases the execution speed of floating-point
math computations. This board can be installed in all Series 200 computers.

• ON tells the compiler to generate accesses to HP 98635 hardware for the floating­
point operations listed below. If the hardware is not installed when the program is
executed, an error will be reported.

@! OFF instructs the compiler to generate math library calls for all floating-point
operations.

• TEST causes the compiler to generate both hardware accesses and library calls.
The compiler automatically includes code to test for the presence of floating-point
hardware. At execution time, if the test succeeds, the hardware accesses are used;
otherwise, the library calls are used.

Operations that can use the HP 98635 floating-point card include: addition, subtraction,
multiplication, division, negation, and the sqr function. Floating-point hardware can
also be used by any operation that converts an integer to a real or longreal. All other
math functions call library routines.

Libraries also exist that access the floating-point hardware.

402 Workstation Implementation of HP Standard Pascal

MC68881 Floating-point Math Co-processor
The MC68881 floating-point math co-processor is an option on Series 300 computers.
When using this option with the COMPILE20 compiler, the FLOAT_HDW option has slightly
different meaning:

• ON causes COMPILE20 to generate MC68881 co-processor instructions.

• OFF causes COMPILE20 to generate code that uses Pascal math libraries.

• TEST is not allowed (COMPILE20 reports an error).

Operations that can potentially use the MC68881 hardware include all floating-point
math computations except trunc.

Example
$float_hdw off$

Workstation Implementation of HP Standard Pascal 403

HEAP _DISPOSE
Default: OFF

Location: At front

This option enables and disables "garbage collection" in the heap.

Semantics
"HEAP _DISPOSE" is interpreted as "HEAP _DISPOSE ON".

ON indicates that DISPOSE allows disposed objects to be reused.

OFF does not recycle disposed objects.

If enabled, this option must appear at the front of the main program. It has no effect in
separately compiled modules.

The HEAP _DISPOSE option must be the same (either ON or OFF) in the program and in
all modules imported by the program. Erroneous results may occur if the HEAP _DISPOSE

declarations do not agree, because no way exists for the compiler to check on which
option other modules have used.

Example
$heap_dispose on$
program recycle;

begin
dispose(p);
new(p);

end.

(*free up cell*)
(*probably gets same cell back*)

404 Workstation Implementation of HP Standard Pascal

IF
Default:

Location:

Not applicable

Anywhere

This option allows conditional compilation.

Item Description Range

boolean expression that evaluates to a boolean result may only contain compile
expression time constants

conditional text source to be conditionally compiled

Semantics
If the boolean expression evaluates to FALSE, then text following the option is skipped
up to the next END option.

If the boolean expression evaluates to TRUE, then the text following the option is
compiled normally.

IF .. END option blocks may not be nested.

Example
const fancy = true;

limit = 10;
size = 9;

$if fancy and «size+1)<limit)$

(* this will be skipped *)
end

Workstation Implementation of HP Standard Pascal 405

INCLUDE
Default:

Location:

Not applicable

Anywhere

This option allows text from another file to be included in the compilation process.

Item Description Range

file specifier string any valid file specifier

Semantics
The string parameter names a file which contains text to be included at the current
position in the program. Included code may contain additional INCLUDE options.

The remainder of the line containing this option must be blank except for the closing
"$".

Example
PROGRAM inclusive;

$include 'SOURCE:DECLARS'$
$include 'SOURCE:BODY'$

END.

406 Workstation Implementation of HP Standard Pascal

IOCHECK
Default: ON

Location: Statement

This option enables and disables error checking following calls to system I/O routines.

Semantics
"IOCHECK" is interpreted as "IOCHECK ON".

ON specifies that error checks will be emitted following calls on system I/O routines such
as RESET, REWRITE, READ, WRITE.

OFF specifies that no error will be reported in case of failure.

This option can be used in conjunction with the standard function IORESULT if the UCSD

or SYSPROG language extension options have been enabled. (For more information on the
language extension options, refer to the UCSD and SYSPROG entries later in this section.)

IOCHECK can be specified on a statement-by-statement basis.

Example
$ucsd$

$iocheck off$
reset(f, 'datafile');
$iocheck on$
if ioresult <> 0 then writeln('IO error');

Workstation Implementation of HP Standard Pascal 407

LINENUM
Default:

Location:

Not applicable

Anywhere

This option allows the user to establish an arbitrary line number value.

~ LINENUM n line numbei ~

Item Description Range

line number integer numeric constant 1 through 65 535

Semantics
The integer parameter becomes the current line number (for listing purposes and
debugging purposes if $debug$ is enabled).

Example
$linenum 20000$

408 Workstation Implementation of HP Standard Pascal

LINES
Default:

Location:

60 lines per page

Anywhere

This option allows the user to specify the number of lines per page on the compiler listing.

Item Description Range

lines per page integer numeric constant 20 through MAXINT

Semantics
Specifying 2 000 000 lines per page suppresses autopagination.

Examples
$lines 55$
$lines 2000000$ (*suppress autopagination*)

Workstation Implementation of HP Standard Pascal 409

LIST
Default: ON to PRINTER:

Location: Anywhere

This option controls whether or not a listing is being generated, and where it is being
directed.

Item Description Range

file specifier string any valid file specifier

Semantics
"LIST" is interpreted as "LIST ON".

LIST with a file specifier specifies that the file is to receive the compilation listing.

LIST OFF suppresses the compilation listing.

LIST ON resumes listing.

Examples
$list 'MYVOL:KEEPLIST'$
$list 'PRINTER:'$
$list off$

410 Workstation Implementation of HP Standard Pascal

OVFLCHECK
Default: ON

Location: Statement

This option gives the user some control over overflow checks on arithmetic operations.

Semantics
"OVFLCHECK" is interpreted as "OVFLCHECK ON".

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks; they will still be made for 32-bit integer DIV, MOD, and
multiplication, plus all floating-point exceptions when used with the MC68881 chip.

Example
$ovflcheck off$

Workstation Implementation of HP Standard Pascal 411

PAGE
Default:

Location:

Not applicable

Anywhere

This option causes a formfeed to be sent to the listing file if compilation listing is enabled.

Semantics
Compilation listing is enabled by default and can be disabled via the LIST option.

Example
$page$

412 Workstation Implementation of HP Standard Pascal

PAGEWIDTH
Default:

Location:

120 characters

Anywhere

This option allows the user to specify the width of the compilation listing.

Item

characters per
line

Semantics

Description Range

integer numeric constant 80 through 132

The integer parameter specifies the number of characters in a printer line.

Example
$pagewidth 80$

Workstation Implementation of HP Standard Pascal 413

Default: OFF

Location: Statement

This option enables partial evaluation of boolean expressions.

Semantics
"PARTIAL_EVAL" is interpreted as "PARTIAL_EVAL ON".

ON suppresses the evaluation of the right operand of the AND operator when the left
operand is FALSE. The right operand will not be evaluated for OR if the left operand is
TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition
of any other operand.

Example
$partial_eval on$
while (p<>nil) and (p~.count>O) do

p : = p- . link ;

414 Workstation Implementation of HP Standard Pascal

RANGE
Default: ON

Location: Statement

This option enables and disables run-time checks for range errors.

Semantics
"RANGE" is interpreted as "RANGE ON".

ON specifies that run-time checks will be emitted for array and case indexing, subrange
assignment, set assignments, and pointer dereferencing.

OFF specifies that run-time checks for range errors will not occur.

Example
var a: array[1 .. 10] of integer; i: integer;

i 11;
$range off$
a[i] := 0; (* invalid index not caught! *)

Workstation Implementation of HP Standard Pascal 415

REF
Default:

Location:

30 records (on same volume as code output)

At front

This option allows you to change the size and location of the temporary compiler file
".REF".

Item Description Range

ref file size integer numeric constant less than 32 767

ref file volume id string valid volume identifier

Semantics
The temporary compiler file called . REF holds external references.

If the parameter for the REF option is a number, it specifies how many logical records
will be allocated for the . REF file.

If the paramet.er is a. string j it specifies the volume where a temporary compiler file . REF

will be stored.

Refer to the section "Compilation Problems" later in this appendix for more information
on the . REF file.

Examples
$ref 20$
$ref 'REFVOL:' $
$ref 'JUNKVOL: '. ref 50$

416 Workstation Implementation of HP Standard Pascal

Default: ON

Location: Anywhere

This option controls whether the name of a structured constant may be used by other
structured constants.

Semantics
"SAVE_CaNST" is interpreted as "SAVE_CaNST ON".

ON specifies that compile-time storage for the value of each structured constant will be
retained for the scope of the constant's name (so that other structured constants may
use the name).

OFF specifies that storage will be deallocated after code is generated for the structured
constant.

Example
$save_const off$
type ary = array [1 .. 100] of integer;
const acon = ary [345.45691];

(*big constants take lots of compile-time memory*)

Workstation Implementation of HP Standard Pascal 417

SEARCH
Default:

Location:

Not applicable

Special

This option is used to specify files to be used to satisfy IMPORT declarations.

Item Description Range

file specifier string any valid file specifier

Semantics
SEARCH must be the last option in an option list!

Each string specifies a file which may be used to satisfy IMPORT declarations. Files will
be searched in the order given. The System Library (as defined by the What command) is
always searched last. A default maximum of 10 files may be listed. (Refer to SEARCH_SIZE

later in this section for information on changing the default number of files.)

~vfliltiple SEARCH options are alloVv"€d; for instance, JlOU mU)T "rant to use one for each IMPORT
declaration. Note: Only the last SEARCH option encountered during compilation will be
in effect for any IMPORT statement. In other words, SEARCH options are not cumulative.

Example
$search 'FIRSTFILE'.'SECONDFILE'$
import complexmath. polarmath;

418 Workstation Implementation of HP Standard Pascal

Default:

Location:

10 files

At front

This option allows you to increase the number of external files you may SEARCH during a
module's compilation.

Item Description Range

number of files integer numeric constant less than 32 767

Semantics
When compiling a Pascal module, it is sometimes desirable to import another module
from another file. To import a module from another file, the SEARCH option is used to
identify the file. Up to ten SEARCH options may be given unless the SEARCH_SIZE option
is used. The SEARCH_SIZE option allows you to SEARCH up to 32 766 external files for
imported modules.

Example
$search_size 30$

Workstation Implementation of HP Standard Pascal 419

STACKCHECK
Default: ON

Location: Not in body

This option enables and disables stack overflow checks.

~ STACKCHECK) ~rGJt~ ON ~ ~

~

Semantics
"STACKCHECK" is interpreted as "STACK CHECK ON".

ON specifies that stack overflow checks will be generated at procedure entry.

OFF specifies that stack overflow checks will not be generated at procedure entry. Turning
overflow checks off is very dangerous! Obscure and unreported errors may result.

Example
$stackcheck off$
procedure unsafe;
var
may_smash_heap: array [1 .. 500] of integer;

begin ... end;

420 Workstation Implementation of HP Standard Pascal

SWITCH_STRPOS
Default:

Location:

N on-standard order for STRPOS function parameters

Anywhere

This option reverses the positions of the STRPOS function parameters.

Semantics
Without this option, the order of parameters for the STRPOS function is:

STRPOS(search_pattern. source_string)

When HP Pascal Standard was established, the order of parameters was reversed. Thus,
if you use the STRPOS function, the compiler issues a harmless warning to indicate that
you are not conforming to the standard.

If you wish to conform to the standard, include the Sswi tCh_strposS option and reverse
the order of the parameters.

Note

Refer to strpos function in the "HP Pascal Dictionary" in this
manual.

Example
$switch_strpos$

STRPOS(source_string. search_pattern);

STRPOS('i', 'hurricane');

Workstation Implementation of HP -Standard Pascal 421

SYSPROG
Default:

Location:

System programming extensions not enabled

At front

This option makes available some language extensions which are useful in system
programming applications.

Semantics
Several extensions to HP Pascal have been provided to support machine-dependent
programming. These extensions are only available when the $sysprog$ option is included
at the beginning of the program. (Refer to "System Programming Language Extensions"
in this appendix for more information.)

Example
$sysprog$
PROGRAM machinedependent;

422 Workstation Implementation of HP Standard Pascal

TABLES
Default: OFF

Location: Not in body

This option turns on and off the listing of symbol tables.

Semantics
"TABLES" is interpreted as "TABLES ON".

ON specifies that symbol table information will be printed following the listing of each
procedure. Printing the symbol table information is useful for very low-level debugging.

OFF specifies that symbol table information will not be included in the listing.

Example
$tables$
procedure hasabug (var p: integer);
var

Workstation Implementation of HP Standard Pascal 423

UCSD
Default:

Location:

UCSD not enabled

At front

This option allows the compiler to accept most U CSD Pascal language extensions.

Semantics
Several UCSD Pascal extensions are supported by HP Pascal. These extensions are only
available when the $ucsd$ option is included at the beginning of the program. (Refer to
"UCSD Pascal Language Extensions" in this appendix for more information.)

Example
$ucsd$
program funnyio;
var

f: file; (* no type specified! *)
begin

unitread(8.ary.80.10);
end.

424 Workstation Implementation of HP Standard Pascal

WARN
Default: ON

Location: At front

This option allows the user to suppress the generation of compiler warning messages.
Pascal Version 3.0 or later is required.

Semantics
"WARN" is interpreted as "WARN ON".

ON specifies that compiler warnings will be issued.

OFF specifies that compiler warnings will be suppressed.

Example
$warn off$

Workstation Implementation of HP Standard Pascal 425

Implementation Dependencies
The following HP Pascal features have implementation-dependent behavior; in other
words, the feature may be implemented differently in the Workstation implementation
of HP Pascal than in other implementations of HP Pascal.

Feature Dependency

ARRAY .. OF Arrays are limited to 32767 elements.

binary A variable of the type packed array of char may not be used as an
argument for the binary function.

CASE CASE statements are implemented using a "jump table". This table is
organized as an array of 16-bit values, each an "offset" or distance from
the head of the statement to the various cases. The number of entries in
the table is the inclusive range from the lowest to the highest labels in the
statement. If the lowest is labeled "1" and the highest is "15000", there
will be 15 000 entries!

close

The compiler displays a warning if it decides a CASE statement is unrea­
sonably large and most of the values in the table are absent or correspond
to the same case. If you get such a warning, you should probably recode
the statement using IF statements or a combination of IF's and a smaller
CASE statement.

Despite the warning, the compiler will try to generate the statement as
written. If the jump table is very large, it may take a long time to write
to the output file. You may even think the compiler has gotten hung up
somehow, but the warning message indicates this is not the case.

The following literals may be used as the optional string parameter in the
close procedure:

'LOCK' or 'SAVE' : The system will save the file as a permanent
file.

'NORMAL', 'TEMP', or none: If the file is already permanent, it remains in
the directory. If the file is temporary, it is
removed.

'PURGE' : The system will remove the file.

426 Workstation Implementation of HP Standard Pascal

Compiler
Input

Constants

Directives

dispose

external

File
System

Input to the Compiler is normally prepared by the Editor. Files produced
by the Editor are text files, that is, they can be read as files of type text.
However, they are more restricted in structure than text files produced by
Pascal WRITE statements.

Text files are stored as "pages" consisting of 1024 bytes per page. The
restriction imposed by the Editor is that no line ever crosses a page
boundary; instead, when a line is too long to fit into the current page,
the page is padded with Null characters (ASCII zero) and the line which
would have spanned the boundary between two pages starts at the front
of the next page. WRITE statements simply do not impose this restriction.

The Compiler is unable to properly process a line which spans a page
boundary. It will "see" spurious characters in the line, and report a syntax
error. If you wish to compile a text file not produced by the Editor, the
easiest way to fix it is to bring the file into the Editor and immediately
save it. The Editor will resolve automatically all page boundary problems.

A structured constant of type packed array of char cannot have the
values of its components specified as a sequence of character constants; a
quoted literal is allowed. For example:

type pac = packed array [1 .. 5] of char;
const pac1 = pac ['abcde'];

pac2 = pac ['a'. 'b'. 'c'. 'd'. 'e'];
(*permitted*)
(*forbidden*)

CaNST definitions using floating-point expressions are not supported.

The external directive allows Pascal to use externally defined code seg­
ments.

Refer to the "Heap Management" section later in this appendix.

This directive may be used to indicate a procedure or function that
is described externally to the program. Refer to "Pascal and Other
Languages" in the "HP-UX Implementation of HP Standard Pascal"
appendix.

To allow for the fact that different computers provide different underlying
operating system support, HP Pascal allows certain variations in the
parameters passed to the standard procedures for opening and closing files.
These parameters appear as strings passed to the standard procedures; it
is their content which may vary.

98615-90053, rev: 10/87 Workstation Implementation of HP Standard Pascal 427

Global
Variables

For instance, the file naming conventions are very different in different
operating systems. Such variations may require minor changes in a
program if it is moved to a type of computer different from the one on
which it was developed. (Refer to the "Pascal File System" section later
in this appendix for more information.)

The global variables of a program or module must not exceed 65 536 bytes
of space.

Global areas are accessed through the processor's A5 register. The A5
register actually points to a location 32 768 bytes below the start of global
space. By adding (subtracting) a displacement value (which can range
from -32 768 through +32 767) to the contents of register A5, all 65 536
bytes of global space can be accessed.

The main command level's m command allows you to see the current
amount of global space (and free space) available for programs and
libraries.

Every module loaded is allocated global area at load time. The sum of
global space for all the modules and programs loaded at any time can't
exceed 65536 bytes. About 2000 bytes of global space are taken up by
the operating system. The Compiler and Assembler each take about 7000
bytes, the Editor about 4000 bytes, the Librarian about 2000 bytes, and
the Filer about 1000 bytes.

If you're writing a program which needs a very large global area (i.e.,
a big array), it can be allocated out of the heap by a call to new, then
referencea tnrough a pomter. The use of pointers together with the
standard procedure new is a bit of a nuisance, but carries a negligible
performance penalty. The following example illustrates this method:

program bigarray;
type

gigantic = array [1 .. 20000] of real; {needs 160.000 bytes}
ptr = Agigantic;

var bigthing: ptr;
i.j: integer;

begin
new(bigthing) ;
for i .= 1 to 20000 do bigthingA[i] := 0.0;

end.

428 Workstation Implementation of HP Standard Pascal

Note

Each time you permanently load (P-Ioad) a program or library,
there will be fewer bytes of global space for use by an application
program. The only way to regain the global space is to reboot.

Heap
Procedures

The supported heap procedures are: new, mark, release, and dispose.
Refer to the "Heap Management" section later in this appendix.

hex

IMPORT

INCLUDE

integers

lastpos

linepos

A variable of the type packed array of char may not be used as an
argument for the hex function.

Unless the $SEARCH_SIZE$ compiler option is specified in your source file,
the compiler can only keep track of a maximum of 10 active input files
at once. This means that an INCLUDE file can include another file, and so
forth, up to nine times. Exceeding this limit causes errors 608 or 610.

When a module is imported which hasn't been previously imported during
a compilation, a form of inclusion takes place in which various library files
are opened and searched. These files are counted against the maximum of
ten while they are open (during the processing of the IMPORT declaration).

If module "A" is imported, and its interface specification imports module
"B" , and so on, the compiler will chase the importation chain to its very
end (unless it runs into the name of a module which has already been
seen). If you encounter a situation in which the chain exceeds the limit
of ten open input files, you can avoid the problem by making the first
module in the chain import all the others in reverse order: the end of the
chain first, then the modules which depend on that last one, and so on.

Import statements in the implement section of a module are not sup­
ported.

Refer to the restrictions for IMPORT.

The range is: -2147483648 through +2147483647.

The HP Standard Pascal function lastpos is not implemented on the
Workstation.

The HP Standard Pascal function linepos is not implemented on the
Workstation.

98615-90059, rev: 10/87 Workstation Implementation of HP Standard Pascal 429

Local
Variables

longreal

mark

maxint

minint

Modules

octal

overprint

The local variables of a procedure or function must not exceed 32 767
bytes of space.

The approximate range is:

-1.797693134862 31L+308 through -2.225073858507 20L-308,
0,
2.225073858507 20L-308 through 1.797693 134862 31L+308

Refer to the "Heap Management" section later in this appendix.

The value of maxint is: 2 147 483 647.

The value of minint is: -2147483648.

Module identifiers are restricted to 15 characters. No other identifiers are
restricted in length in this implementation.

When you create a module, avoid use of any of the module names in the
operating system. If you create a module having the same name as a
system module, and your module exports a procedure which has the same
name as a procedure exported from that operating system module, the
loader will hook up external references to the wrong place.

You can use the Librarian to list the file directory of the system modules
to discover what names are used by the operating system. In particular,
check the INITLIB, LIBRARY, IO, INTERFACE, and GRAPHICS modules.

Some common module names are listed below:

CI
FS
KBD
LOADER
DISCHPIB

MINI
ASM
ISR
SYSGLOBALS
UIO

IODECLAP.l.TIONS
KERNEL
LOCKMODULE
DEBUGGER
ALLREALS

A variable of the type packed array of char may not be used as an
argument for the octal function.

The HP Standard Pascal procedure overprint is not implemented on the
Workstation.

430 Workstation Implementation of HP Standard Pascal

real Type real has the same preCISIon as longreal. However, in write
statements the default field width for longreal is the same as for real,
and the exponent is written preceded by E instead of L.

Records

release

Sets

The approximate range is:

-1.797693134862 31E+308 through -2.225073858507 20E-308,
0,
2.225 073 858 507 20E-308 through 1.797693 134 862 31E+308

Records may not be declared which require more than 32767 bytes for
their representation.

Files in the heap will not be closed by release. Refer to the "Heap
Management" section later in this appendix for more information.

In Pascal 3.1 and later versions, the operating system supports larger
set types. Previously, the maximum size limit for sets was fixed at 256
elements (in the ordinal range o .. 255). The new version supports up to
262 000 elements (in the ordinal range o .. 261999). The default set size is
8176 elements.

This expansion means that set operands can now be up to 32 767 bytes
in size, as opposed to the previous maximum size of 34 bytes. Given
Pascal's routine local stack frame size limit of 32K bytes, the use of very
large sets can easily cause stack frame overflow. This can be avoided
by use of the heap for any user-defined variables. However, the user
has no direct control over the fact that the compiler allocates temporary
expression operands on the local stack frame, along with the user-defined
local variables. In the event that large set operands are being used, they
may easily fill a routine's local stack frame (or cause overflow). Of course,
the computer issues an error in the event of stack frame overflow, but the
memory usage requirements may generally be of importance to any given
application.

Workstation Implementation of HP Standard Pascal 431

Strings

strread

-~-... -..: -
O"LWL.I."'~

The lack of control over temporary operand allocation leads to the one
caveat concerning the use of very large sets. If a set constructor contains
variable elements, then the minimum size required for the temporary
operand used to build the set may not be determinable at compile time. In
this event, the default size for set constructor operands containing variable
elements has been set to 8176 elements (in the ordinal range O .. 8175).

With this default, 1024 bytes of stack are used for the constructor
temporary operand (as opposed to 34 bytes previously used). In order
to use constructor-built sets with a larger capacity, the user must specify
a set type name before the constructor:

type
BigSetType=

var
A. B:
I. J:

IV

set of [1 .. 10000];

BigSetType;
integer;

A:=BigSetType[10 .. 9900];
IV

B:=A+BigSetType[I .. J];

This is a previously-supported HP extension to the Pascal standard.

The longest possible string contains 255 characters.

The return parameter (indicating the next character to be used with the
next strread operation) must be an integer (an integer subrange is not
allowed).

The return parameter (indicating the next position to be used with the
next strwrite operation) must be an integer (an integer subrange is not
allowed).

432 Workstation Implementation of HP Standard Pascal

Subrange A variable declared as a subrange needing 16 or fewer bits for its repre­
sentation will be stored as a word instead of a longword. For example,

type integer = -32768 .. 32767;

If all the operands of an expression are represented as 16-bit objects,
the compiler implements the expression in 16-bit rather than 32-bit
instructions. In particular, integer overflow is detected as a carry into
the 17th bit. The rules are:

add, subtract: overflow will be detected.

divide:

multiply:

-32 768 div -1 yields integer overflow.

the result is widened to 32 bits.

Note: The representation of an unpacked subrange of integer always
reserves room for a sign bit. Hence the range 0 .. 65535 will not be
represented in 16 bits, even though in fact it could be.

text Appending to a text file is not allowed.

WITH When f is a function call, Wlm f DO is not allowed.

Workstation Implementation of HP Standard Pascal 433

UCSD Pascal Language Extensions
Over the years, various implementations of Pascal have added extensions to simplify
certain operations. One of the more common implementations, the UCSD1 implementa­
tion, added several string functions, byte functions, and I/O intrinsics. The Workstation
implementation of HP Pascal allows you to use many UCSD extensions by including the
$UCSD$ compiler option in your program. To simplify porting UCSD Pascal programs
to the Workstation Language System, this section lists many of the UCSD extensions
supported by the Workstation. HP Pascal replacements for these extensions are given
where possible.

HP Pascal will not provide perfect compatibility with UCSD Pascal or IEM Pascal
(HP 9835/9845 systems). Ip. particular, it isn't possible to directly interpret P-code
programs since HP Workstation Pascal translates programs directly into the native
language of the processor. In addition, it is not possible to provide complete compatibility
due to definition conflicts between UCSD Pascal and HP Pascal. Most programs should
port easily, but some programmer attention will be required.

blockread This non-standard predefined integer function transfers data from a disc
file to an array.

Examples:

count := blockread(file_id, array_id, num_blocks);
count := blockread(file_id, array_id, num_blocks, block_num);
count := blockread(file_id, array_id[indx],

num_blocks, block_num);

Where file_id is the name of an untyped file, array_id is the name of an
array, and num_blocks is the number of 512-byte blocks to be transferred.
The optional block_num parameter specifies the offset (starting with zero)
into the file where the transfer should start. If block_num is omitted, the
transfer will start at the current position in the file window. The optional
indx parameter specifies the first element of the array to be accessed by
the transfer. The function returns an integer value indicating the actual
number of blocks transferred.

Replacement: Recode to use file of buf512:

buf512 = PACKED ARRAY [0 .. 511] of char)

1 "UCSD Pascal" is a trademark of the Regents of the University of California.

434 Workstation Implementation of HP Standard Pascal

blockwri te This non-standard predefined integer function transfers data from an array
to a disc file.

CASE

close

Examples:

count := blockwrite(file_id, array_id, num_blocks);
count := blockwrite(file_id, array_id, num_blocks, block_num);
count := blockwrite(file_id, array_id[indx],

num_blocks, block_num);

Where file_id is the name of an untyped file, array_id is the name of an
array, and num_blocks is the number of 512-byte blocks to be transferred.
The optional block_num parameter specifies the offset (starting with zero)
into the file where the transfer should start. If block_num is omitted, the
transfer will start at the current position in the file window. The optional
indx parameter specifies the first element of the array to be accessed by
the transfer. The function returns an integer value indicating the actual
number of blocks transferred.

Replacement: Recode to use file of buf512:

buf512 = PACKED ARRAY[O .. 511] of char

In HP Pascal you must add an OTHERWISE clause to a CASE statement to
trap illegal selectors that are between the ordinals of the lowest and the
highest CASE labels listed.

In UCSD Pascal, if the selector of a CASE statement doesn't match any
of the labelled cases, the entire statement is skipped. HP Pascal reports
error -9, "Case statement range error" instead.

This problem can be avoided by putting an OTHERWISE clause at the end
of the case statement:

case i of
1: writeln('case 1');
2: writeln('case 2');
otherwise

writeln('The value of i is ',i:5);
end;

For HP Pascal, the file options LOCK, NORMAL, PURGE, or CRUNCH must be
enclosed in quotes.

Workstation Implementation of HP Standard Pascal 435

Comments

Compilation
Units

UCSD Pascal supports the use of nested comments. This feature can be
supported by HP Pascal by using the compiler's $IF option.

Comments in UCSD Pascal programs may be delimited by either curly
braces or parenthesis-asterisk pairs:

{ this is a comment }
(* and so is this *)

UCSD Pascal requires that the closing delimiter of a comment be the same
"kind" as the opening one. HP Pascal treats the two kinds of opening (and
closing) delimiter as synonmyms.

(* this is an HP Pascal comment }
(* this is all one { UCSD } comment *)

The last example will get a syntax error in HP Pascal because the curly
brace after the word "UCSD" terminates the comment.

The easiest way to get around nested comments in a U CSD Pascal program
is to surround the outer comment with conditional compilation options:

$if false$
all of the material inside gets skipped

SendS

The syntax of UCSD Pascal UNITs can readily be changed into an equiv­
alent MODULE for compilation by HP Pascal implementations. The word
INTERF ACE is removed. The word USES is replaced by IMPORT. Other decla­
rations in the interface part of the UNIT are preceded by the word EXPORT.

unit goodstuff;
interface

uses badstuff,betterstuff;
const

(constant declarations)
type

(type declarations)
var

(variable declarations)
procedure pi (a,b: integer);
function f(x): real;

implementation

end.

module goodstuff;
import badstuff,betterstuff;
export

const

type

var

procedure pi (a,b: integer);
function f(x): real;

implement

end.

436 Workstation Implementation of HP Standard Pascal

Compiler
Options

The compiler options for U CSD Pascal and HP Pascal differ in syntax.
Even if you choose not to convert your U CSD Pascal programs to HP
Pascal, you may still need to convert other UCSD compiler options to HP
compiler options and include the HP option, $UCSD$, at the beginning of
your program. The UCSD compiler options include:

AUTOPAGE

COPYRIGHT

DEBUG

FLIP

GO TO

IOCHECK

INCLUDE

LIBRARY

Use LINES 2000000 to tum off pagination.

Supported.

Supported.

The byteflip option is unsupported (irrelevant).

Unsupported (GOTO's are always allowed).

Supported. Also, refer to the TRY . . RECOVER language
extension.

Intermixed declarations in INCLUDE are supported.

Use the $SEARCH$ option.

LINESPERPAGE Use the $LINES$ option.

LINEWIDTH

LIST

PAGE

QUIET

RANGE

SWAP

TABLE

TRACE

TRACEPAUSE

USERMODE

Use the $PAGEWIDTH$ option.

Use LIST <file specification> to replace LIST,
LIST <filename>, and LISTFILE.

Supported.

Unsupported (irrelevant).

Supported.

Unsupported.

Use $TABLES$.

Use $DEBUG$ and use the debugger.

Use $DEBUG$ and use the debugger.

Unsupported (irrelevant).

Workstation Implementation of HP Standard Pascal 437

concat

copy

delete

exit

This non-standard predefined function concatenates any number of
strings.

Example: str _exp : = concat (strl, str2, ... strn);

Replacement: Use the infix + concatenation operator.

This non-standard predefined function returns a string obtained by copy­
ing from another string, starting at the specified position.

Example: str_var := copy {source_str, start_pos, count);

Where start_pos and count are integers.

Replacement: Use the str function.

This non-standard predefined procedure removes a specified number of
characters from a string.

Example: delete {source_str , start_pos, count);

Where start_pos and count are integers.

Replacement: Use the strdelete procedure.

This non-standard predefined procedure is used to alter program flow.

In UCSD Pascal, the statement EXIT{proc) causes normal program flow
to be altered. The current procedure is discontinued, and procedures are
exited in order (most recently called first) until procedure proc is exited.
The program continues at the next statement after the call on proc.

This UCSD implementation has no exactly comparable ieature in HP
Pascal; the program must be altered. If the EXIT statement occurs within
the procedure which is to be exited, a simple GOTO statement will suffice.
Otherwise, you must use the TRY .. RECOVER statement, which is enabled by
the $SYSPROG$ compiler option.

The basic technique is to surround with a TRY the entire body of any
procedure which is the target of an EXIT. The EXIT itself is simulated
by calling ESCAPE with an error code corresponding to the name of the
procedure to be exited. The target procedure catches this escape in its
recovery part and then exits normally.

438 Workstation Implementation of HP Standard Pascal

external

The following examples illustrate the use of TRY .. RECOVER in place of the
UCSD EXIT statement:

$ucsd$
program UCSDexits;

procedure pl;

begin

exit (pl);

end;

procedure p2;
procedure p3;
begin

exit(p3);

exit(p2);

end; {p3}
begin {p2}

p3;

end; {p2}

begin {main}
pl ;
p2;

end.

$sysprog$
program HPtryrecover;
const exitp2 = 100; exitp3 =101;

procedure pl;
label 1;
begin

goto 1; {simple local exit}

1: end;

procedure p2;
procedure p3;
begin

try

escape (exitp3) ;

escape(exitp2);

recover
if escapecode <> exitp3 then

escape (escapecode) ;
end; {p3}

begin {p2}
try

p3;
recover

if escapecode <> exitp2 then
escape(escapecode);

end; {p2}

begin {main}
p1;
p2;

end.

Replacement: This procedure can be simulated by the TRY .. RECOVER

statement.

The external directive is supported. Refer to the user manuals for
information on using the external directive.

Workstation Implementation of HP Standard Pascal 439

Files UCSD Pascal doesn't prevent writing to a file which was opened for
reading (using RESET). The converse is also true. If you get I/O error 24,
25 or 26, the file should have been opened using the HP Pascal standard
procedure OPEN.

fill char

gotoxy

UCSD Pascal's random access mechanism (SEEK) considers that the first
component of a file is number zero. HP Pascal considers that files begin
with component number one. The $UCSD$ option does not fix this problem.

UCSD Pascal recognizes a text file type called INTERACTIVE, which differs
from files of type TEXT in that a component of the file· isn't fetched until
it is needed. All HP Pascal text files exhibit this "lazy 10" behavior, so
you should change INTERACTIVE files to files of type TEXT.

Refer to the "Pascal File System" section later in this appendix for more
information on files.

This non-standard predefined procedure fills a range of memory with a
specified value.

Example: fillchar(variable, count, character);

Where variable may be any type except file, count is an integer expression,
and character is of type char.

Replacement: Recode the program using a FOR loop.

This non-standard predefined procedure positions the cursor on the system
terminal.

Example: gotoxy(column,row);

Replacement: No direct replacement for gotoxy exists in HP Pascal. On
the Workstation, your program can IMPORT the file-system module (FS). FS

will access the fgotoxy procedure to achieve the same effect.

Example: fgotoxy(output,column,row);

hal t This non-standard procedure terminates the execution of a program.

Heap
Procedures

Example: halt;

The halt procedure, with differing syntax, is supported in HP Pascal.

Refer to the "Heap Management" section later in this appendix for
information on heap procedures.

440 Workstation Implementation of HP Standard Pascal

insert This non-standard predefined procedure inserts a string into another
string, at a specified location.

Example: insert (source_str. dest_str. index);

Where source_str and dest_str are string expressions and index is an
integer.

Replacement: Use the strinsert procedure.

INTERACTIVE This file type specifier is disallowed in HP Pascal but the behavior is
provided by the TEXT file type.

Integers

ioresult

length

log

Long
Integers

memavail

HP Pascal integers use 32 bits. You may declare a 16-bit subrange.

Example:

TYPE
inti6 -32768 .. 32767;

This non-standard predefined function returns the result of the last I/O
operation. The result value differs for UCSD Pascal (enabled by $UCSD$)

and HP Pascal (enabled by $SYSPROG$).

This non-standard predefined function returns the length of a string.

Example: int_var := length (str_exp) ;

Replacement: Use strlen and setstrlen.

This non-standard predefined real function returns the decimal logarithm
of its parameter.

The log function is not supported in HP Pascal.

Replacement: The natural log function, In, is supported. Note that log(x)
= In(x)/ln(10).

Long BCD integers up to 36 digits are not supported by HP Pascal.

This heapspace interrogation function returns the size in bytes, not words
(import ASM file • * INTERF ACE •).

Workstation Implementation of HP Standard Pascal 441

moveleft

moveright

Multiword
Comparisons

pos

Program
Heading

PWROFTEN

Reals

This non-standard predefined procedure moves a specified number of
bytes, starting with the leftmost byte, to a new location.

Examaple: moveleft(source_var. dest_var. count);

Where source_ var and dest_ var are variables of any type except file. The
count is an integer expression.

Replacemaent: Recode the program using a FOR loop.

This non-standard predefined procedure moves a specified number of
bytes, starting with the rightmost byte, to a new location.

Examaple: moveright (source_ var. dest_ var. count);

Where source_ var and dest_ var are variables of any type except file. The
count is an integer expression.

Replacemaent: Recode the program using a FOR loop.

The multiword comparisons of arrays and records are not supported.

This non-standard predefined function returns the position of the first
occurrence of a substring within a string.

Examaple: int_var := pos(pattern_str_exp. source_str_exp);

Replacement: Use strpos. Note that the parameters are reversed from
strpos.

A program heading without listing the standard files (i.e, input, output)
is supported when the $UCSD$ option is enabled.

Replacement: Include the standard files in the program heading.

This non-standard predefined real procedure returns the value of integer
powers of ten.

This function is not supported.

Replacemaent: Use exponentiation.

This implementation of HP Pascal uses the same internal representation
for both real and longreal types (64-bits). 32-bit reals are not supported.

442 Workstation Implementation of HP Standard Pascal

scan

seek

SEGMENT

Sets

SIZEOF

Standard
Units

This non-standard predefined function scans a specified section of memory
for a specific byte.

Examples:

scan (count , = chr_exp, test_var);
scan (count , <> chr_exp, test_var);

Where count is the number of bytes to scan, chr_exp is an expression which
evaluates to a character, and test_ var is any variable except a file variable.
The scan can either match a character (=) or not match a character «».
Replacement: Recode the program using a FOR loop.

This non-standard predefined procedure positions the file window in an
arbitrary place.

Example: seek(file_var, indx);

Where file_ var is a file variable of a file that was opened using the open
procedure, and indx is the index of the desired component of the file. In
HP Pascal the first component's index is one (1), while in UCSD Pascal,
the first component's index is zero (0).

UCSD SEGMENT procedures are not supported by HP Pascal.

Either the entire program must be resident or the segmentation procedures
supplied with the Workstation Language System must be used.

UCSD Pascal supports sets with up to 4096 elements. HP Pascal sets
may contain up to 262 000 elements. Refer to the discussion of sets in the
"Implementation Dependencies" section of this appendix.

This non-standard predefined integer function returns the number of bytes
that a variable uses in memory.

Examples:

num_bytes := sizeof(type_id);
num_bytes := sizeof(var_id);

Where type_id is a type identifier, and var_id is a particular variable.

This function is supported when system programming language extensions
are enabled via the $SYSPROG$ compiler option).

The standard units: PRINTER, CONSOLE, and SYSTERM are supported. Refer
to "Pascal File System" later in this appendix for more information.

Workstation Implementation of HP Standard Pascal 443

str

Strings

This non-standard predefined procedure converts an integer or long integer
into a string.

Example: str(int_var.str_var);

Where int_var is an integer variable, and str_var is a string variable.

Replacement: HP Pascal has the more general procedure strwrite. Note:
HP Pascal uses this identifier for its "string copy" procedure.

HP Pascal supports most of the string features available in UCSD Pascal.
In U CSD Pascal, the declaration:

var s: string

is equivalent to the HP Pascal declaration:

var s: string[80]

HP Pascal requires the length specifier.

A similar comment applies to strings value parameters; the specifier string
is equivalent to the name of an 80-character string type; whereas, HP
Pascal requires an explicit string typename specifier for value parameters.

UCSD Pascal considers that all strings are compatible as VAR parameters,
even if the actual parameter is shorter than the specified formal parameter.
This can lead to unexpected bugs. HP Pascal allows two forms of VAR

string parameter. If a string typename is used, only another string of
identical type may be passed. If the specifier string is used, any string may
be passed. In the latter case, however, an "invisible" second parameter iR
also passed, giving the maximum length of the actual parameter. Thus
range checking can be performed.

Example: TYPE s = string [maxlength]

Replacement: In HP Pascal, use the setstrlen procedure to set the string
length. The maximum string length is 255 characters.

444 Workstation Implementation of HP Standard Pascal

time

The following examples illustrate the different treatment of strings re­
quired in UCSD Pascal and HP Pascal:

program UCSDstrings;
type

string15 = string[15];

var
sl: string;
s2: string [15];
s3: string [80] ;

procedure pi (s: string);

procedure p2 (s: string15);

procedure p3 (var s: string);

procedure p4 (var s: string15);
string15) ;

string80) ;

begin
p1(sl) ;
p2(sl);
p3(sl):
p3(s2);
p4(sl);
p4(s2);

end.

{legal}
{legal}
{legal}
{legal}
{legal}
{legal}

program HPstrings;
type

string15 = string[15];
string80 = string [80] ;

var
sl: string80;
s2: string15;
s3: string[80];

procedure pi (s: string80);

procedure plb (s: string);
{illegal}

procedure p2 (s: string15);

procedure p3 (var s: string);

procedure p4 (var s:

procedure p5 (var s:

begin
p1(sl) ;
p2(s1) ;
p3(sl);
p3(s2);
p4(sl);
p4(s2);
p5(sl);
p5(s3);

end.

{legal}
{legal}
{legal}
{legal}
{illegal}
{legal}
{legal}
{illegal}

This non-standard procedure or function returns the value of the system's
real-time clock.

To read the clock, IMPORT the SYSDEVS module (for Pascal revision 3.0 and
later) or KBD module (for pre-3.0 Pascal) and use the sysclock procedures
and functions.

Workstation Implementation of HP Standard Pascal 445

Type
Checking

UNIT

unitbusy

unitclear

HP Pascal enforces stricter compatibility rules than UCSD Pascal. HP
Pascal generally requires that types be identical or equivalent where UCSD
Pascal will accept mere similarity of form:

program UCSDisnotpicky;
type

complex = record
re,im: real

end;
polar = record

var

r,theta: real
end;

a: complex;
b: polar;

begin
a := b; {legal}

end.

program HPispicky;
type

complex = record
re,im: real

polar
end;
record

r,theta: real
end;

roundly = polar;
var

a: complex;
b: polar;
c: roundly;

begin
a := b; {illegal}
c := b; {legal}

end.

A UCSD Pascal UNIT is functionally a subset of a HP Pascal MODULE. The
syntax a little different.

This non-standard predefined function tests if an I/O device is busy.

Example: dey_busy := unitbusy(unit_num);

Where uni t_num is an integer expression which evaluates to a valid unit
number in the unit-table, and dey_busy is a boolean. The function returns
TRUE if the device is busy.

This non-standard predefined procedure resets an I/O device.

Example: unitclear(unit_num);

Where unit_num is an integer expression which evaluates to a valid unit
number in the unit-table.

This operation sets the value of ioresult.

446 Workstation Implementation of HP Standard Pascal

unitread

unitwait

This non-standard predefined procedure performs low-level input opera­
tions on various devices.

Examples:

unit read (unit_num , store_array, count);
unitread(unit_num, store_array, count, block_num);
unitread(unit_num, store_array, count, block_num, async);
unitread(unit_num, store_array [indx], count, block_num, async);

Where unit_num is the integer identifier of the unit in the unit-table,
store_array is a packed array in which the data will be stored, and count
is the number of bytes to be read.

The optional parameter block_num is required for block-structured devices
and indicates which block is read. The default is zero. When the optional
boolean async parameter is true, the transfer is made asynchronously. The
default is false.

When specified, the indx of the storage array indicates the first element
of the array to receive data.

This non-standard predefined procedure waits until an 110 operation is
finished.

Example: unitwait(unit_num);

Where unit_num is an integer expression which evaluates to a valid unit
number in the unit-table.

Workstation Implementation of HP Standard Pascal 447

unitwrite

Untyped
Files

This non-standard predefined procedure performs low-level output oper­
ations on various devices.

Examples:

unitwrite(unit_num. store_array. count);
unitwrite(unit_num. store_array. count. block_num);
unitwrite(unit_num. store_array. count. block_num. async);
unitwrite(unit_num. store_array[indx]. count. block_num. async);

Where unit_num is the integer identifier of the unit in the unit-table,
store_array is a packed array containing the available data, and count
is the number of bytes to be written.

The optional parameter block_num is required for block-structured de­
vices and indicates which block is written. The default is zero. When
the optional boolean async parameter is true, the transfer is made asyn­
chronously. The default is false.

When specified, the indx of the storage array indicates the first element
of the array in which data is available.

Untyped files are supported with the $UCSD$ option. Untyped files do not
have an associated buffer variable.

Example: var un_file : file;

448 Workstation Implementation of HP Standard Pascal

System Programming Language Extensions
Eight extensions to HP Pascal have been provided to support machine-dependent
programming and give users better control over (or access to) the hardware. The eight
system programming language extensions are:

• Error Trapping and Simulation

• Absolute Addressing of Variables

• Relaxed Typechecking of VAR Parameters

• The ANYPTR Type

• Procedure Variables and the Standard Procedure CALL

• Determining the Absolute Address of a Variable

• Determining the Size of Variables and Types

• The IORESULT Function

These extensions may be used in any compilation which includes the $SYSPROG ON$ option
at the beginning of the text.

The extensions may not be supported by other HP Pascal implementations. The compiler
displays a warning message at the end of compilation when they are enabled.

Error Trapping and Simulation
The TRY . . RECOVER statement and the standard function ESCAPECODE have been added to
allow programmatic trapping of errors. The standard procedure ESCAPE has been added
to allow the generation of soft (simulated) errors.

Workstation Implementation of HP Standard Pascal 449

The programmatic layout for the TRY .. RECOVER statement is:

try
(statement) ;
(statement) ;

(statement)
recover

(statement)

When TRY is executed, certain information about the state of the program is recorded
in a marker called the recover-block, which is pushed on the program's stack. The
recover-block includes the location of the corresponding RECOVER statement, the height of
the program stack, and the location of the previous recover-block if one is active. The
address of the recover-block is saved, then the statements following TRY are executed
in sequence. If none of them causes an error, the RECOVER is reached, its statement is
skipped, and the recover-block is popped off the stack.

If an error occurs, the stack is restored to the state indicated by the most recent recover­
block. Files are closed, and other cleanup takes place during this process. If the TRY was
itself nested within another one, or within procedures called while a TRY was active, the
previous recover-block becomes the active one. Then the statement following RECOVER
is executed. Thus, the nesting of TRYs is dynamic, according to calling sequence, rather
than statically structured like nonlocal GOTO's which can only reach labels declared in
containing scopes.

The recovery process does not "undo" the computational effects of statements executed
between TRY and the error. The error simply aborts the computation, and the program
continues with the RECOVER statement.

When an error has been caught, the function ESCAPECODE can be called to get the number
of the error. ESCAPECODE has no parameters. It returns an integer error number selected
from the error code table. System error numbers are always negative.

The programmer can simulate errors by calling the standard procedure EscAPE(n), which
sets the error code to n and starts the error sequence. By convention, programmed errors
have numbers greater than zero. If an ESCAPE is not caught by a recover-block within the
program, it will be reported as an error by the operating system. Negative values are
reported as standard system error messages, and positive values are reported as a halt
code value. Note that HALT(n) is exactly the same as ESCAPE (n).

450 Workstation Implementation of HP Standard Pascal

TRY .. RECOVER statements are usually structured in the following "canonical" fashion:

try

recover
if escapecode = (whatever you want to catch)

then
begin

{recovery sequence}
end

else
escape (escapecode) ;

This has the effect of ensuring that errors you don't want to handle get passed on out to
the next recover-block, and eventually to the system. All programs which are executed
are first surrounded by the Command interpreter with a TRY .. RECOVER sequence. The
recovery action for the system is to display an error message.

Absolute Addressing of Variables
A variable may be declared as located at an absolute or symbolically named address:

var ioport [416000]: char;
assemblysymbol ['asm_external_name']: integer;

Each variable named in a declaration may be followed by a bracketed address specifier.
An integer constant specifier gives the absolute address of the variable; this is useful for
addressing I/O interface hardware. A quoted string literal gives the name of a load-time
symbol which will be taken as the location of the variable; such a symbol must be defined
(DEF'ed) by an assembly-language module which will be loaded with the program.

Workstation Implementation of HP Standard Pascal 451

Relaxed Typechecking of VAR Parameters
The ANYVAR parameter specifier in a function or procedure heading relaxes type compat­
ibility checking when the routine is called. This is sometimes useful to allow libraries to
act on a general class of objects. For instance, an I/O routine may be able to enter or
output an array of arbitrary size:

type
buffer = array [O .. maxint] of char;

var
a1: array [2 .. 50] of char;
a2: array [0 .. 99] of char;

procedure output_hpib(anyvar ary:buffer; lobound,hibound:integer);

output_hpib(a1,2,50);
output_hpib(a2,O,99);

ANYVAR parameters are passed by reference, not by value; that is, the address of the
variable is passed. Within the procedure, the variable is treated as being of the type
specified in the heading.

For instance, if an array of 10 elements is passed as an ANYVAR parameter which was
declared to be an array of 100 elements, an error is very likely to occur. The called
routine does not know what you actually passed, except perhaps by means of other
parameters as in the example above. For this reason, ANYVAR should only be used when
it's absolutely required.

Note

The use of ANYVAR parameters can be very dangerous, since it de­
feats the compiler's normal type safety rules! Programs calling
routines with ANYVAR parameters should be very thoroughly de­
bugged. Careless use of this feature can crash your system.

452 Workstation Implementation of HP Standard Pascal

The ANYPTR Type
Another way to defeat type checking is with the non-standard type ANYPTR. ANYPTR is a
pointer type which is assignment-compatible with all other pointers, just like the constant
NIL. However, variables of type ANYPTR are not bound to a base type, so they can't be
dereferenced. They may only be assigned or compared to other pointers. Passing as a
value parameter is a form of assignment. The following example illustrates the use of
ANYPTR:

type

var

pi -integer;
p2 = -record

f1,f2: real;
end;

v1,v1a: pi; v2: p2;
anyv: anyptr;
which: (type1,type2);

begin
new(v1); new(v2);

if ... then
begin anyv vi;

else
begin anyv v2;

if which = type1 then
begin

end;

via := anyv;
v1a- := v1a- + 1;

end;

which .= type1 end

which .= type2 end;

With ANYPTR, a value can be placed in a normal pointer. If a pointer type which is bound
to a small object has its value tricked into a pointer bound to a large object, subsequent
assignment statements which dereference the tricked pointer may destroy the contents
of adjacent memory locations.

Note

Use of ANYPTR can be very dangerous! The compiler cannot
determine whether ANYPTR tricks were used to put a value into
a normal pointer. Careless use of ANYPTR can crash your system.
Programs using this feature must be very thoroughly debugged.

Workstation Implementation of HP Standard Pascal 453

Procedure Variables and the Standard Procedure CALL
Sometimes it is desirable to store the name of a procedure in a variable, then later to
call that procedure. For instance, the system "Unitt able" is an array which contains the
name of the driver to be called to perform I/O on each logical volume.

A variable of this sort is called a "procedure variable". The "type" of a procedure variable
is a description of the parameter list it requires; that is, a procedure variable is bound to
a particular procedure heading. The following example illustrates the use of procedure
variables:

type procvar = procedure (op:integer);
var p: procvar;

procedure q(op:integer); {identically structured parameter list}

p := q;
call(p,i);

{p gets the name of q; in effect p pOints to q}
{name of proc variable, then appropriate parameter list}

A procedure variable is "called" by the standard procedure CALL, which takes the
procedure variable as its first parameter, and a further list of parameters just as they
would be passed to a real procedure having the corresponding specification.

It is not possible to create a "function variable", that is, a variable which can hold the
name of a function.

Don't assign the name of an inner (non-global) procedure to a procedure variable which
isn't declared in the same block as the procedure being assigned. Such a variable might be
called later, after exiting the scope in which the procedure was declared. The appropriate
static link would be missing, yielding unpredictable results.

454 Workstation Implementation of HP Standard Pascal

Determining the Absolute Address of a Variable
The ADDR function returns the address of a variable in memory as a value of type ANYPTR.
The syntax for the ADDR function is:

p := addr(variable);
p := addr(variable,offset);

where:

variable is the address of a variable in memory. The address is of type ANYPTR.

offset is an optional second parameter which is an integer.

The offset expression is added to the address; this offset has the effect of pointing
offset bytes away from where the variable begins in memory. Use of the offset can
produce a pointer to almost anywhere, with concomitant dangers to the integrity of
system memory.

ADDR is primarily used for building or scanning data structures whose shapes are defined
at run-time rather than by normal Pascal declarations.

Never use ADDR to create pointers to the local variables of a procedure or function. Storage
for local variables is recovered when the routine exits, so the value returned by ADDR is
ephemeral.

Note

The ADDR function is very dangerous! It has the same dangers
described previously for ANYPTRs, in addition to some of its own.
Careless use of the pointers returned by ADDR can crash your system.
Programs using this feature must be very carefully debugged.

Workstation Implementation of HP Standard Pascal 455

Determining the Size of Variables and Types
The size (in bytes) of a type or variable can be determined by the SIZEOF function. The
SIZEOF function is enabled by the $UCSD$ option. (Refer to the discussion of the SIZEOF
function in the section "UCSD Pascal Language Extensions" earlier in this appendix.)

The following examples illustrate determining the size of a variable and a type, respec­
tively;

n ;= sizeof(variable);
n := sizeof(typename);

If the variable or type is a record with variants, an optional list of tagfield constants may
follow the parameter. This works like the standard Pascal procedure NEW:

n := sizeof(varrec,true,blue);

SIZEOF is not really a function, although it looks like one; it is actually a form of compile­
time constant.

In conjunction with the SIZEOF function, knowing the memory allocations for Pascal
variables is useful. The following list indicates the storage allocations for common Pascal
data types:

Type Allocation

boolean: One byte, O-false I-true

character: One byte, ASCII character values 0 through 255

Enumerated scalar: Two bytes, unsigned

integer: Four bytes signed, -2147483648 to 2147483647

longreal: Eight bytes, approximate range is:
±1.179 769 313 486 2315L+308 thru ±2.225 073 858 507 202L-308

Pointer: Four bytes containing 24-bit logical address

Procedure: Eight bytes containing address and static nesting information

real: Four bytes, approximate range is:
±3.40823E+38 through ±1.175 494E-38

SET: Two bytes of length plus multiples of 2 bytes to contain possible
elements which require 1 bit each to a maximum of 256 elements

String: One byte of length field plus up to 255 bytes

456 Workstation Implementation of HP Standard Pascal

SUbrange: Two bytes if maximum and minimum values are in
[-32768 .. +32767]

The IORESULT Function
Normally the compiler emits instructions after each I/O statement to verify that the
transaction completed properly. If it fails, the program is terminated with an error
report.

It is possible to trap I/O errors programmatically, using the TRY .. RECOVER statement.
The system function IORESULT can then be called to discover what went wrong with the
transaction.

I/O Checks and Results
Normally the compiler emits instructions after each I/O transaction to verify that the
transaction completed properly. If it didn't, the program is terminated with an error
report. The error code for all I/O errors is -10.

You may wish to intercept I/O errors programmatically rather than have them terminate
the program. This programmatic interception can be done two different ways. The
program or module must be compiled with the $SYSPROG$ or $UCSD$ compiler option at
the front of the source text. These options both make the IORESULT system function
available. IORESULT returns an integer value reporting on the success of the most recent
I/O transaction. A result of zero indicates a successful transaction; other values are
given in "I/O Errors" in the "Error Messages" section at the end of this appendix.

Workstation Implementation of HP Standard Pascal 457

Method 1: $SYSPROG$ Enabled
This method is the preferred one. Compile the program or module with $SYSPROG$

enabled, and use the TRY .. RECOVER statement to trap the errors:

$sysprog$
program trapmethod (input,output);
var

name: string[80];
f: text;
ior: integer;

begin
repeat

write('Open what file? ');
readln(name);
try

reset(f,s+'.text');
ior := 0; (*if we get here, it didn't fail*)

recover
if escapecode = -10 then (*it's an 10 error*)

begin
ior := ioresult; (*save it; will be affected by write stmt*)
writeln(' Can"t open it. IOresult =',ior);

end
else

escape(escapecode);
until ior = 0;

end.

458 Workstation Implementation of HP Standard Pascal

Method 2: $UCSD$ Enabled
This method is used in UCSD Pascal programs. For it to work, you must also suppress
the error checks normally emitted by the compiler:

$ucsd$
program ucsdmethod (input,output);
var

name: string[80];
f: text;
ior: integer;

begin
repeat

write('Open what file? ');
readln(name);
$iocheck off$
reset(f,s+'.text');
$iocheck on$
ior := ioresult;
if ior <> 0 then

(*save it; will be affected by write stmt*)

writeln(' Can"t open it. IOresult =',ior);
until ior = 0;

end.

Workstation Implementation of HP Standard Pascal 459

Pascal File System
The file system for the Workstation Language System is covered in detail in the "File
System" chapter of the Pascal Workstation System manual. This abbreviated discussion
focuses on how the connection between physical files and Pascal file variables is made.

Physical and Logical Files
A physical file is a collection of data on physical storage media. A physical file is identified
by a file specifier, which contains information such as: on what physical device the file
is stored, the name of the file, and its type.

A logical file is simply a file-structured variable declared in a Pascal program. A file
variable is associated with a particular physical file when the file is opened by a call to
one of the standard procedures RESET, REWRITE or OPEN.

Syntax of File Specifiers (File Names)
A file specifier is a string literal or string expression which conforms to the syntax shown
in Figure B-1.

NOTE

Passwords are not allowed in HFS file specifications.

460 Workstation Implementation of HP Standard Pascal

Figure B-1. Syntax of File Specifiers

Item Description Range

unit number integer constant 1 through 50

volume name literal any valid volume name

password literal any valid password (SRM
only)

directory name literal any valid SRM or HFS di-
rectory name

file name literal any valid file name

number of blocks integer constant 1 through the number of
blocks in the volume

Workstation Implementation of HP Standard Pascal 461

File Name Length
On LIF and (Workstation revision 1.0) directories, the file specifier is a name from one
to nine characters long (ten characters if there is no suffix).

On HFS directories the file specifier is a name from one to fourteen characters long,
including the suffix.

On Shared Resource Management (SRM) directories, the file specifier is one to sixteen
characters long (including the suffix). Refer to the list of allowable characters below. If
the volume specified is an unblocked volume (like PRINTER) which has no directory,
the file specifier is ignored.

File Name Suffixes
The file name may end in one of following reserved suffixes:

· TEXT denotes a Pascal text file; usually created by the Editor.

· CODE denotes an executable code file.

· BOAT denotes a file of type BASIC BDAT.

· ASC denotes a file of ASCII format.

· ux denotes a file of bytes primarily used to permit data exchange with HP-UX
systems.

· SYSTM denotes a special file recognized by the Boot ROM as a file containing an
operating system.

A file whose name doesn't end in one of these suffixes at the time of creation is said to
be of type DATA.

File Size
For LIF format, the number of blocks parameter can optionally be used when creating a
new file. If it is omitted, the file is created in the largest unused area on the volume. The
asterisk syntax ([*]) allocates either the second largest free area, or half of the largest
free area, whichever is greater. If a specific size is given, the integer indicates how many
512-byte blocks will be allocated to the file. The size must be at least two blocks, and
can't be bigger than the largest free area in the volume. No volume can exceed 32 767
blocks, so no file may be larger than 16 776 704 bytes.

462 Workstation Implementation of HP Standard Pascal

For HFS, if the number of blocks parameter is omitted, a file of size 0 is created. If a
specific size is given, the integer indicates how many 512-byte blocks will be allocated to
the file. The asterisk syntax ([*]), as described for LIF files, is ignored. No volume can
exceed 4194304 blocks, which corresponds to a maximum file size of 2147483648 bytes.

For SRM files, the file size is ignored. Files are established using the minimum number
of blocks required, providing the physical limit of the volume is not exceeded. Consult
your SRM documentation for further information.

Characters Allowed in Volume and File Names
When specifying file names, letter case is important! The file named info is not the same
as the file named INFO. Also, a file named stuff. text will be saved as stuff. TEXT; that is,
the suffix will be converted by the Workstation File System to its uppercase equivalent.

Note

Only the HP Pascal 1.0 Workstation converted all lowercase alpha­
betic characters to uppercase.

All characters are allowed in names except the following:

• Control characters (those with ordinal value less than 32).

• Space" "

• Sharp "#"

• Asterisk "*"
• Comma ","

• Colon ":"

• Equals "="

• Question mark "1"

• Left bracket "["

• Right bracket "]"

• Del (ordinal 127)

Workstation Implementation of HP Standard Pascal 463

Opening a File
A file specifier is associated with a particular physical file when the file is opened via one
of the standard procedures RESET, REWRITE, and OPEN.

In the REWRITE and OPEN procedures, the third parameter can be used to define the file
type on creation of a file. To ensure that the system recognizes a file type entry in this
string, the use of a specific delimiter is necessary, namely the character '\'. The backslash
is used to introduce and terminate the file type information in the string. If no file type
information is given, or the information is unrecognized, the file type defaults to DATA.

Either the type (e.g., ASC, BDAT, ux) or the type code (e.g., -5791, -5582) may be entered
as the file type specifier.

The examples in this section assume the following variable declarations:

var t: text;
c: file of char;
f: file of integer;

These examples illustrate many of the variations in file specifiers that are possible when
opening a file:

reset(t.'MYTEXT.TEXT');

reset(c. 'MYTEXT'):

reset(c.':MYTEXT');

reset(t.'*JUNK.TEXT');

reset(t.'MYVOL:MINE.TEXT');

reset(t.'#8:MINE.TEXT');

reset(t.'SYSTERM: ');

rewrite(t. 'PRINTER: ');

The . TEXT suffix must be specified, even
though t is declared as a textfile. The suffix
is part of the name! The file is on the default
volume.

This is a data file on the default volume.

This example is the same as the previous one.
An empty volume name is assumed to precede
the colon.

The file is on the system volume. The colon is
optional for a * volume specifier.

The file is on the volume labelled MYVOL, wher­
ever that might be found.

The file is on whatever volume is presently in
unit #8.

Open the keyboard for input.

Open the unblocked volume PRINTER for
output.

464 Workstation Implementation of HP Standard Pascal

rewrite(t,'CONSOLE:');

rewrite(t,'#6: ');

rewrite(t,'#6');

rewrite(f,'*JUNK');

rewrite(t,'MINE.TEXT[*]');

rewrite(f,'JUNK[50]');

rewrite(f,'afiIe.ASC','\ux\');

Open the CRT volume for output.

Open logical unit #6 for output. The system
printer is #6 by convention.

The colon in the previous example is optional.

Open a data file called JUNK on the system
volume. Allocate the largest free area to this
file.

Open a text file on the default volume; allocate
half of the largest free area to this file.

Open a data file of 50 blocks.

Open a file called afile. ASC of type ux.

U sing the Filer, an ordinary listing of the di­
rectory containing afile. ASC will not disclose
the fact that the file is of type ux. There­
fore, this method of naming files is not rec­
ommended. The lack of type visibility is very
misleading.

rewrite(f, 'afile .ASC' , '\junk\') ; Open a file called afiIe.ASC of type DATA, since
junk is unrecognized as a file type.

rewrite (f , ' afile' , ' \ -5791 \ ') ; Open a file called afile of type BDAT. Instead
of using the file type, the file code is used as
the file type specifier.

open(f) ; Open a file for both reading and writing. The
system will generate a dummy name for it.

open (f , ' #5: AFILE' , ' EXCLUSIVE\ TEXT\ '); Open a file called AFILE on #5 (probably an
SRM unit) of type TEXT. The file is opened for
exclusive access (refer to Pascal 3.2 Worksta­
tion System Vol. II, the section "Programming
with Files" , subsection "SRM Concurrent File
Access" for use of EXCLUSIVE).

Workstation Implementation of HP Standard Pascal 465

Disposition of Files Upon Closing
When a file is closed, its disposition depends on the second parameter to the CLOSE

standard procedure:

close(f, 'SAVE')

close(f, 'LOCK')

close(f,'NORMAL')

close(f)

close(f,'PURGE');

The file is made permanent in the volume directory.

This example is the same as the SAVE example.

If the file is already permanent, it remains in the directory;
otherwise, it is removed.

This example is the same as the NORMAL example.

If the file was permanent, it is removed from the directory.

Standard Files and the Program Heading
Four standard files which, if used by your program, are automatically opened when the
program starts. If one of these files is used, it must be listed in the program heading.
No other files should be listed in the heading.

All the standard files are text files.

The standard files are:

INPUT The default file for read statements is the keyboard. Characters are echoed
to the CRT at the current cursor position as they are read.

KEYBOARD This file also reads from the keyboard, but characters are not echoed as
they are read. The keystrokes are read straight through, and editing is not
enabled.

LISTING The default printer file; automatically opened to volume 'PRINTER:'.

OUTPUT The default file for write statements. Characters are written to the CRT.

Note

The files INPUT and OUTPUT must not be redeclared in the program,
while the files KEYBOARD and LISTING must be declared as type
TEXT. Do not explicitly close, reset or rewrite any of these system
files. If they are ever closed, the Initialize command on the main
command interpreter prompt will re-open them.

466 Workstation Implementation of HP Standard Pascal

An example of the use of standard files follows:

program use_them_all (input.output.keyboard.li8ting);
var

s: string[80];
KEYBOARD.LISTING.lp: text;

begin rewrite(lp. 'PRINTER: ');
readln(s); (* from keyboard; echoes to CRT *)
writeln(s); (* to the CRT *)
readln(KEYBOARD.s); (* not echoed *)
writeln(LISTING.s); (* goes to the printer *)
writeln(lp.s) ; (* so does this *)

end.

File System Differences
To allow for the fact that different computers provide different underlying operating
system support, HP Pascal allows certain variations in the parameters passed to the
standard procedures for opening and closing files. These parameters appear as strings
passed to the standard procedures; it is their content which may vary. For instance, the
file naming conventions are very different in different operating systems. Such variations
may require minor changes in a program if it is moved to a type of computer different
from the one on which it was developed.

When a file is open, its behavior in performing the input and output operations of HP
Pascal should be the same in all implementations.

Workstation Implementation of HP Standard Pascal 467

CASE Statement Coding Precautions
Certain precautions are necessary when coding case statements. The technique used
when coding case statements is essentially the same for both the Pascal Workstation
compiler and the HP-UX Pascal compiler, even though the ramifications of using these
techniques is not the same for both systems.

The Pascal compiler uses a very simple jump table technique when generating object
code for case statements. It creates a table of offsets associated with each case entry for
each case statement. Thus it is very possible that relatively simple case statements can
result in a large amount of generated object code, making it advisable to recode the case
statement for more efficient operation. To assist in detecting inefficient code generation,
the compiler issues warning messages according to two methods for measuring case
statement code efficiency. A warning is generated whenever a case statement contains
more than 256 entries. A warning is also generated when a case statement has more than
100 entries and more than 1/2 of the entries reference the same case entry. Some case
statements cause both warnings to be issued.

Here are some simple code examples that will cause such warnings to be issued.

program case_warnl;
var

i : integer;

begin

case i of
O .. 100
101 .. 200
201 .. 300

end;

end.

The case statement jump table for this example requires 301 entries, one for each possible
value of i.. Each entry requires 2' bytes, resulting in a 602-byte table to implement the
case statement. Recoding the case statement using if statements reduces object code
space substantially.

468 Workstation Implementation of HP Standard Pascal 98613-90053, new page: 10/87

program case_warn2;
var

i : integer;

begin

case i of
1
2
3
150:

end;

end.

The case statement jump table for this example requires 150 entries, again one entry for
each possible value of i. However, any value of i in the range of 4 through 14 would result
in a run-time case statement error. U sing an otherwise clause replaces the 146 entries
with a single code reference associated with the otherwise clause.

The previous two examples show relatively minor inefficiencies in case statement code
generation. However, the consequences that result from this piece of code are something
quite different:

program bigcase;
var

i : integer;
begin

case i of
0: ;
maxint

end;

end.

This code segment does not produce any warnings, but, instead, simply aborts the
compiler. By attempting to construct a jump table for each possible value of i in the
integer range of zero through maxint, the compiler runs out of available memory. disk
space, or other needed resources, and cannot complete the compilation, so it aborts. The
exact nature of the abort will vary, depending on the operating system in use and on
system configuration. Warning messages are not issued because they are produced after
object code has been generated and has been found to exceed certain paranleters.

98613-90053, new page: 10/87 Workstation Implementation of HP Standard Pascal 469

Heap Management
The "heap" is the area of memory from which so-called dynamic variables are allocated
by the standard procedure NEW. When a program begins running, it has available one
area of memory for data. The program's stack begins at the high-address end of this
area and grows downward; the heap begins at the low-address end and grows upward. If
the stack and heap collide, a Stack Overflow error (escapecode -2) is reported.

Two regimes are available for the recovery of heap variables after they become unwanted:
the MARK/RELEASE method, and the DISPOSE method. The first is simpler and
faster, the second more general.

MARK and RELEASE
The MARK/RELEASE method uses two standard procedures to manage the heap in a
purely stack-like fashion. MARK is called to set a pointer to the next available byte at the
top of the heap. Subsequent calls to NEW will all take space from above this point. When
the program finishes with all the variables above the mark, RELEASE is called to move the
top of the heap (the next available space) back to the value saved by MARK. The following
example illustrates this method:

program markrelease;
type

ptr = A rec;
rec = record

f1.f2: integer;
end;

var
.... ,,'W"\. "",0 +
U".t' • .t'. 1'''

i: integer;
begin

mark(top); (* remember the base of the heap *)
repeat

for i := 1 to 5000 do
begin

new(p); (* allocate from next highest heap address *)

end;
release(top);

until false;
end.

(* cut back the heap; recover all space *)
(* program will run forever *)

470 Workstation Implementation of HP Standard Pascal

Note

When using the MARK/RELEASE method, the computer does
not prevent you from making the mistake of releasing to a point
above the current top-of-heap!

NEW and DISPOSE
Alternatively, the standard procedure DISPOSE can be used to return each unwanted
dynamic variable back to a pool of free space. Calls to DISPOSE will have no effect (the
freed storage will not be reused) unless the main program and the modules containing
the NEW and DISPOSE calls are compiled with the option $HEAP _DISPOSE ON$.

The following example illustrates the use of the procedure DISPOSE to free storage:

program disposal;
type

ptr = A rec;
rec = record

var

next: ptr;
f1.f2: integer;

end;

top.p.root: ptr;
i: integer;

begin
mark(top); (* remember the base of the heap *)
repeat

root := nil;
for i := 1 to 5000 do

begin
new(p); (* after disposes. will allocate from free list *)
pA.next := root; root:= p; (* chain all cells together *)

end;

repeat (* give back all cells one at a time *)
p := root;
root := rootA.next; (* follow the chain *)
dispose(p); (* mem manager puts on a free list *)

until root = nil;
until false; (* program will run forever *)

end.

Workstation Implementation of HP Standard Pascal 471

The recycling algorithm shown above takes advantage of the fact that programs which
use the heap operate on a great many variables of just a few types. Each type has a
characteristic size. When a variable is disposed, it is saved at the front of a list of other
variables of the same size. When a variable is allocated, the NEW routine first looks on the
list corresponding to the size required; if there is a free object there, it can be allocated
immediately. Usually there will be very little computational overhead for either NEW or
DISPOSE.

The memory manager maintains free lists for objects of sizes 6, 8, ... , 32 bytes, and one
more list for all larger objects. Objects are allocated from this last list on a first-fit basis.
No dynamic variable is ever allocated an odd number of bytes. NOTE: In versions of
Pascal prior to Release 3.2, lists are also maintained for 4-byte objects.

During program execution, the heap may become fragmented (broken into many small
pieces). If a request then arrives to allocate space for a large variable, the memory
manager will try to recombine the fragments to make a piece big enough to satisfy
the request. The fragments must be sorted by address and adjacent ones merged. This
recombination process takes much longer than a simple allocation. Consequently, in real­
time applications it is important to analyze the dynamic behavior of programs which use
DISPOSE.

Note

An object should only be disposed once. Multiple calls to DISPOSE

for any object may produce unpredictable results.

Mixing DISPOSE and RELEASE
The MARK/RELEASE and DISPOSE methods can be mixed successfully. However, not
all implementations of HP Pascal allow mixing these methods in a program. A program
which does so may not run properly on other implementations.

If you RELEASE a properly marked pointer after some calls to DISPOSE, the memory manager
will leave on the free lists all disposed objects whose addresses are below the released
location. All the space above the released location becomes free, whether or not it was
disposed.

During this process the memory manager also recombines any adjacent free fragments,
so RELEASE can also be used to reduce fragmentation. Just MARK the current top of the
heap, then immediately RELEASE to the same spot.

472 Workstation Implementation of HP Standard Pascal

Compilation Problems
This section discusses some problems which may occur when using the compiler, and
how to solve them. The problems which are discussed include:

• Can't Run the Compiler

• File Errors 900 through 908

• Errors when Importing Library Modules

• Not Enough Memory

• Insufficient Space for Global Variables

• Operating System Errors 403 through 409

• FOR-Loop Error 702

Can't Run the Compiler

• If the system reports, Cannot open 'COMPILER', the volume with the compiler is not
online. You may have removed the volume and not put it back. If the compiler
wasn't found when the system booted, you are expected to insert the disc containing
the compiler in the drive before invoking it. The system is shipped with the compiler
on the diskette labelled CMPASM.

• If the system reports, Cannot load 'COMPILER', either the disc is bad or not enough
memory is installed in the computer to run the compiler. At least 393K bytes of
memory is desirable; the system is normally sold with at least 512K bytes.

Workstation Implementation of HP Standard Pascal 473

File Errors 900 through 908
During compilation, three files are written by the compiler: the . CODE file, which is the
one you want, and the . REF and . DEF files. The latter two are temporary working storage
for linkage information which is appended to the code file if the compilation terminates
normally. All three of these files are normally opened on the same volume (the volume
to which you directed the code file).

Each of these files is subject to three classes of error:

• Error in opening the file.

• Insufficient space to open the file.

• File fills up before compilation finishes.

An error in opening the file usually means the volume is not online. It can also indicate
that the volume's directory is full.

The amount of space allocated to the code file is usually half of the largest free area on
the volume, with the potential to expand to the second half of that area if needed. If
you get errors 900, 903, or 906, you need to make more room on the volume to which
the code file was directed, or use a different volume.

By default, the .REF file is opened with 30 blocks of disk space on the same volume as
the code file. A compiler directive (REF) at the beginning of the source program can
change the size and the volume selected for .REF. No simple rule gives the "right" size for
the . REF file. If the file fills up (error 907), make it bigger in proportion to the amount
of program that remained to compile when the error occurred:

$REF 50$ Allocate 50 blocks

$REF 'V3:' $ Put it on volume V3

$REF 'V4:'. REF 50$ Put it on V 4 and allocate 50 blocks

Exactly analogous remarks hold for the . DEF file, except that its default size is 10 blocks
and the directive is DEF.

474 Workstation Implementation of HP Standard Pascal

Errors when Importing Library Modules
There are several errors that can occur when importing modules.

• Syntax errors in the interface of an imported library module. This error usually
indicates that the library module itself tried to import some other module which
was not found by the compiler's search algorithm.

• Errors 608, 610: INCLUDE or IMPORT nesting is too deep. If module "A" imports "B",
which imports "e" and so forth, the compiler must follow the chain to its end. The
chain can only be 10 imports deep (unless you use the $SEARCH_SIZE$ option). Since
the same file handling mechanism is used to process $IMPORT$ and $INCLUDE$ files,
the default combined limit on import and inclusion nesting is 10 as well.

• Error 613: "Imported module does not have interface text." If the library has been
linked by the Librarian, the interface specification has been removed. Also, a main
program looks· internally like a module; but it has no interface text.

Not Enough Memory
If the compiler generates error -2, "Not enough memory", there isn't enough room in
memory to compile the program. You can watch the numbers which appear on the screen
in square brackets as the compilation proceeds-they show approximately how much
memory is left. Two primary reasons for running out of memory during a compilation
exist. One of them is large procedure bodies, and the other is permanently loaded ("P­
loaded") files.

Large Procedure Bodies
When the compiler processes a procedure, the entire procedure (declarations and body)
is scanned. An internal representation of the procedure, called a tree, is built. This tree
is not complete until the scanner reaches the end of the procedure, and only then does
code generation begin. The tree form takes a lot of storage, particularly the statements
making up the body. If you write a procedure whose body is ten pages long, the compiler
is very likely to run out of memory. Keep your procedures reasonably short. A good
guideline is that no procedure should be longer than a page or two.

P-Ioaded Files
If you've Permanent-loaded a lot of libraries or programs, or space has been allocated
to a memory-resident mass storage volume, you can reboot the system to recover the
memory, and try again.

Workstation Implementation of HP Standard Pascal 475

Insufficient Space for Global Variables
You may discover, either at compile time or at run time, that there isn't sufficient space
for the global variables of your program. If this happens, refer to the "Implementation
Restrictions" errors in the "Error Messages" section in this appendix.

Operating System Errors 403 through 409
These errors should never be reported by the operating system. They usually indicate a
malfunction in the compiler itself. (One may also occur due to a strange coding error.)
If this ever happens, show the program which causes it to your HP field support contact.

FOR-Loop Error 702
In versions prior to Revision 3.1, the restrictions on assignment to the index variable of
a FOR loop were not enforced. In Revision 3.1, attempts to reassign the index variable in
the body of the loop caused compile error 702. This error is a result of conformance to
HP Pascal standards.

Error Messages
This section contains all of the error messages and conditions that you are likely to
encounter during the operation of your workstation. The errors which are discussed
include:

• Unreported Errors

e Operating System Run-Time Errors

• I/O Errors

• I/O LIBRARY Errors

• Graphics LIBRARY Errors

• Compiler Syntax Errors

476 Workstation Implementation of HP Standard Pascal

Unreported Errors
Certain errors in Pascal programs are not reported by this implementation:

• Disposing a pointer while in the scope of a WITH referencing the variable to which
it points.

• Disposing a pointer while the variable it points to is being used as a VAR parameter.

• Disposing an uninitialized or NIL pointer.

• Disposing a pointer to a variant record using the wrong tagfield list.

• Assignment to a FOR-loop control variable while inside the loop (reported in Revision
3.1 and later).

• GOTO into a conditional or structured statement.

• Exiting a function before a result value has been assigned.

• Changing the tagfield of a dynamic variable to a value other than was specified in
the call to NEW.

• Accessing a variant field when the tagfield indicates a different variant.

• Negative field width parameters in a WRITE statement.

• The underscore character "_" is allowed in identifiers. This is permitted in HP
Pascal, but is not reported as an error when compiling with SANSIS specified.

• Value range error is not always reported when an illegal value is assigned to a
variable of type SET.

• Multiple DISPOSE calls for the same object.

Workstation Implementation of HP Standard Pascal 477

Operating System Run-Time Errors
These errors may occur when you are running a program. Errors detected by the
operating system during the execution of a program generate one of the following error
messages. When using the TRY .. RECOVER construct, the following numbers correspond to
the value of ESCAPECODE.

Table B-1. Operating System Run-Time Errors

Error Message

0 Normal termination.

-1 Abnormal termination.

-2 Not enough memory.

-3 Reference to NIL pointer.

-4 Integer overflow.

-5 Divide by zero.

-6 Real math overflow. (The number was too large.)

-7 Real math underflow. (The number was too small.)

-8 Value range error.

-9 Case value range error.

-10 Non-zero IORESULT.

-11 CPU word access to odd address.

-12 CPU bus error.

-13 Illegal CPU instruction.

-14 CPU privilege violation.

-15 Bad argument - SIN/COS.

-16 Bad argument - Natural Log.

-17 Bad argument - SQRT. (Square root.)

-18 Bad argument - real/BCD conversion.

-19 Bad argument - BCD/real conversion.

-20 Stopped by user.

478 Workstation Implementation of HP Standard Pascal

Table B-1. Operating System Run-Time Errors

Error Message

-21 UnassignedOPU trap.

-22 Reserved

-23 Reserved

-24 Macro Parameter not 0 .. 9 or a .. z

-25 Undefined Macro parameter.

-26 Error in I/O subsystem.

-27 Graphics error.

-28 RAM Parity error.

-29 Misc. floating-point hardware error.

-30 Arcsin, arccos argument> 1

-31 Illegal real number.

1/0 Errors
These error messages are automatically printed by the system unless you have enclosed
the statement in a TRY . . RECOVER construct. Within a RECOVER block, when ESCAPECODE
= -10, one of the following errors has occurred. You can determine which error if you
examine the system variable IORESUL T.

Table B-2. I/O Errors

Error Message

0 No I/O error reported.

1 Parity (eRO) incorrect.

2 Illegal unit number.

3 Illegal I/O request.

4 Device timeout.

5 Volume went off-line.

6 File lost in directory.

7 Bad file name.

Workstation Implementation of HP Standard Pascal 479

Table B-2. I/O Errors (continued)

Error Message

8 No room on volume for data.

9 Volume not found.

10 File not found.

11 Duplicate directory entry.

12 File already open.

13 File not open.

14 Bad input format.

15 Disc block out of range.

16 Device absent or unaccessible.

17 Media initialization failed.

18 Media is write protected.

19 Unexpected interrupt.

20 Hardware/media failure.

21 Unrecognized error state.

22 DMA absent or unavailable.

23 File size not compatible with type.

24 File not opened for reading.

25 File not opened for writing.

26 File not opened for direct access.

27 No room in directory or too many files on volume.

28 String subscript out of range.

29 Bad file close string parameter.

30 Attempt to read or write past end-of-file mark.

31 Media not initialized.

32 Block not found.

33 Device not ready or medium absent.

34 Media absent.

480 Workstation Implementation of HP Standard Pascal

Table B-2. I/O Errors (continued)

Error Message

35 No directory on volume.

36 File type illegal or does not match request.

37 Parameter illegal or out of range.

38 File cannot be extended.

39 Undefined operation for file.

40 File not lockable.

41 File already locked.

42 File not locked.

43 Directory not empty.

44 Too many files open on device.

45 Access to file not allowed.

46 Invalid password.

47 File is not a directory.

48 Operation not allowed on directory.

49 Cannot create /WORKSTATIONS/TEMP _FILES.

50 Unrecognized SRM error.

51 Medium may have been changed.

52 File system is corrupt.

53 File system or file is too big.

54 No permission for requested access.

55 File system cache full.

56 Driver configuration failed.

57 10 result was 57.

Workstation Implementation of HP Standard Pascal 481

I/O LIBRARY Errors
When run-time error -26 occurs, a problem exists in an I/O LIBRARY procedure.
The operating system puts a value in the system variable IOE_RESULT. By importing the
IODECLARATIONS module, you can access IOE_RESULT and call the IOERROR_MESSAGE function,
which returns the error description. For example:

$SYSPROG ON$

IMPORT iodeclarations

BEGIN
TRY

{statements}
RECOVER

END.

IF escapecode = ioescapecode
THEN writeln (ioerror_message(ioe_result»;

escape(escapecode);

ESCAPE is a procedure you can call and ESCAPECODE is a variable you can access when you
use the $SYSPROG ON$ compiler directive. IOESCAPECODE is a constant (equal to -26) you
can import from the IODECLARATIONS module.

Error

1

2

3

4

5

6

7

8

9

10

11

12

13

Table B-3. I/O LIBRARY Errors

I ~e .. age

Not active controller.

Should be device address, not select code.

No space left in buffer.

No data left in buffer.

Improper transfer attempted.

The select code is busy.

The buffer is busy.

Improper transfer count.

Bad timeout value.

No driver for this card.

NoDMA.

482 Workstation Implementation of HP Standard Pascal

Table B-3. I/O LIBRARY Errors (continued)

Error Message

14 Word operations not allowed.

15 Not addressed as talker.

16 Not addressed as listener.

17 A timeout has occurred.

18 Not system controller.

19 Bad status or control.

20 Bad set/clear/test operation.

21 Interface card is dead.

22 End/eod has occurred.

23 Miscellaneous - value of parameter error.

306 Data-Comm interface failure.

313 USART receive buffer overflow.

314 Receive buffer overflow.

315 Missing clock.

316 CTS false too long.

317 Lost carrier disconnect.

318 No activity disconnect.

319 Connection not established.

325 Bad data bits/parity combination.

326 Bad status/control register.

327 Control value out of range.

Workstation Implementation of HP Standard Pascal 483

Graphics LIBRARY Errors
When run-time error -27 occurs, a problem exists in a graphics LIBRARY procedure.

By importing the DGL_LIB module and enclosing the main body in a TRY .. RECOVER
statement, you can call the GRAPHICSERROR function which returns an integer value you
can cross reference with the numbered list of graphics errors. For example:

$SYSPROG ON$

import DGL_LIB

BEGIN
TRY

RECOVER
{statements}

IF escapecode = -27

END.

THEN writeln ('Graphics error #', graphicserror, ' has occurred')
ELSE escape(escapecode);

You may wish to write a procedure which takes the integer value from GRAPHICSERROR
and prints the description of the error on the CRT. You could keep this procedure with
your program or, for more global use, in SYSVOL:LIBRARY.

Error

o
1

2

3

4

5

6

7

8

9

10

Table B-4. Graphics LIBRARY Errors

Message

No error. {Since last call to graphics error or init_graphics.}

The graphics system is not initialized.

The graphics display is not enabled.

The locator device is not enabled.

ECHO value requires a graphic display to be enabled.

The graphics system is already enabled.

Illegal aspect ratio specified.

Illegal parameters specified.

The parameters specified are outside the physical display limits.

The parameters specified are outside the limits of the window.

The logical locator and the logical display use the same physical device. {The
logical locator limits cannot be redefined explicitly. They must correspond to
the logical view surface limits.}

484 Workstation Implementation of HP Standard Pascal

Table B-4. Graphics LIBRARY Errors (continued)

Error Message

11 The parameters specified are outside the current virtual coordinate system
boundary.

12 The escape function requested is not supported by the graphics display device.

13 The parameters specified are outside of the physical locator limits.

Compiler Syntax Errors
During the compilation of a program, various compiler syntax errors may occur. The
compiler will show the number of the error and you can look it up. Categories of syntax
errors include:

• ANSI/ISO Pascal Errors

• Compiler Options

• Implementation Restrictions

• N on-ISO Language Features

Table B-5. ANSI/ISO Pascal Errors

Error Message

1 Erroneous declaration of simple type

2 Expected an identifier

4 Expected a right parenthesis ")"

5 Expected a colon ":"

6 Symbol is not valid in this context

7 Error in parameter list

8 Expected the keyword OF

9 Expected a left parenthesis "("

10 Erroneous type declaration

11 Expected a left bracket "["

12 Expected a right bracket "J"
13 Expected the keyword END

14 Expected a semicolon ";"

Workstation Implementation of HP Standard Pascal 485

Table B-5. ANSI/ISO Pascal Errors (continued)

Error Message

15 Expected an integer

16 Expected an equal sign "="

17 Expected the keyword BEGIN

18 Expected a digit following '.'

19 Error in field list of a record declaration

20 Expected a comma ","

21 Expected a period "."

22 Expected a range specification symbol " .. "

23 Expected an end of comment delimiter

24 Expected a dollar sign "$".

50 Error in constant specification

51 Expected an assignment operator ":="

52 Expected the keyword THEN

53 Expected the keyword UNTIL

54 Expected the keyword DO

55 Expected the keyword TO or DOWNTO

56 Variable expected

58 Erroneous factor in expression

59 Erroneous symbol following a variable

98 Illegal character in source text

99 End of source text reached before end of program

100 End of program reached before end of source text

101 Identifier was already declared

102 Low bound > high bound in range of constants

103 Identifier is not of the appropriate class

104 Identifier was not declared

105 Non-numeric expressions cannot be signed

106 Expected a numeric constant here

107 Endpoint values of range must be compatible and ordinal

108 NIL may not be redeclared

486 Workstation Implementation of HP Standard Pascal

Table B-5. ANSI/ISO Pascal Errors (continued)

Error Message

110 Tagfield type in a variant record is not ordinal

111 Variant case label is not compatible with tagfield

113 Array dimension type is not ordinal

115 Set base type is not ordinal

117 An unsatisfied forward reference remains

121 Pass by value parameter cannot be type FILE

123 Type of function result is missing from declaration

125 Erroneous type of argument for built-in routine

126 Number of arguments different from number of formal parameters

127 Argument is not compatible with corresponding parameter

129 Operands in expression are not compatible

130 Second operand of IN is not a set

131 Only equality tests (=, <>) allowed on this type

132 Tests for strict inclusion (<, >) not allowed on sets

133 Relational comparison not allowed on this type

134 Operand(s) are not proper type for this operation

135 Expression does not evaluate to a boolean result

136 Set elements are not of ordinal type

137 Set elements are not compatible with set base type

138 Variable is not an ARRAY structure

139 Array index is not compatible with declared subscript

140 Variable is not a RECORD structure

141 Variable is not a pointer or FILE structure

143 FOR loop control variable is not of ordinal type

144 CASE selector is not of ordinal type

145 Limit values not compatible with loop control variable

147 Case label is not compatible with selector

149 Array dimension is not bounded

150 Illegal to assign value to built-in function identifier

152 No field of that name in the pertinent record

Workstation Implementation of HP Standard Pascal 487

Table B-5. ANSI/ISO Pascal Errors (continued)

Error Message

154 Illegal argument to match pass by reference parameter

156 Case label has already been used

158 Structure is not a variant record

160 Previous declaration was not forward

163 Statement label not in range 0 .. 9999

164 Target of nonlocal GOTO not in outermost compound statement

165 Statement label has already been used

166 Statement label was already declared

167 Statement label was not declared

168 Undefined statement label

169 Set base type is not bounded

171 Parameter list conflicts with forward declaration

177 Cannot assign value to function outside its body

181 Function must contain assignment to function result

182 Set element is not in range of set base type

183 File has illegal element type

184 File parameter must be of type TEXT

185 Undeclared external file or no file parameter
inn
~~v Attempt to use ty·pe identifier in its o\vn declaration

300 Division by zero

301 Overflow in constant expression

302 Index expression out of bounds

303 Value out of range

304 Element expression out of range

400 Unable to open list file

401 File or volume not found

403 . .409 Compiler errors

488 Workstation Implementation of HP Standard Pascal

Table B-S. Compiler Options

Error Message

600 Directive is not at beginning of the program

601 Indentation too large for $PAGEWIDTH

602 Directive not valid in executable code

604 Too many parameters to $SEARCH

605 Conditional compilation directives out of order

"606 Feature not in Standard PASCAL flagged by $ANSI ON

607 Feature only allowed when $UCSD enabled

608 $INCLUDE exceeds maximum allowed depth of files

609 Cannot access this $INCLUDE file

610 $INCLUDE or IMPORT nesting too deep to IMPORT <module-name>

611 Error in accessing library file

612 Language extension not enabled

613 Imported module does not have interface text

614 LINENUM must be in the range 0 .. 65535

620 Only first instance of routine may have $ALIAS

621 $ALIAS not in procedure or function header

646 Directive not allowed in EXPORT section

647 Illegal file name

648 Illegal operand in compiler directive

649 Unrecognized compiler directive

Workstation Implementation of HP Standard Pascal 489

Error

651

652

653

655

657

658

659

660

661

662

663

665

667

668

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

Table B-7. Implementation Restrictions

Message

Reference to a standard routine that is not implemented

Illegal assignment or CALL involving a standard procedure

Routine cannot be followed by CONST, TYPE, VAR, or MODULE

Record or array constructor not allowed in executable statement

Loop control variable must be local variable

Sets are restricted to the ordinal range 0 .. 262199

Cannot blank pad literal to more than 255 characters

String constant cannot extend past text line

Integer constant exceeds the range implemented

Nesting level of identifier scopes exceeds maximum (20)

Nesting level of declared routines exceeds maximum (15)

CASE statement must contain a non-OTHERWISE clause

Routine was already declared forward

Forward routine may not be external

Procedure too long

Structure is too large to be allocated

File component size must be in range 1. .32766

Field in record constructor improper or missing

Array element too large

Structured constant has been discarded (cf. $SAVE_CONST)

Constant overflow

Allowable string length is 1 .. 255 characters

Range of case labels too large

Real constant has too many digits

Real number not allowed

Error in structured constant

More than 32767 bytes of data

Expression too complex

Variable in READ or WRITE list exceeds 32767 bytes

Field width parameter must be in range 0 .. 255

490 Workstation Implementation of HP Standard Pascal

Table B-7. Implementation Restrictions (continued)

Error Message

687 Cannot IMPORT module name in its EXPORT section

688 Structured constant not allowed in FORWARD module

689 Module name may not exceed 15 characters

696 Array elements are not packed

697 Array lower bound is too large

698 File parameter required

699 32-bit arithmetic overflow

Table B-S. Non-ISO Language Features

Error Message

701 Cannot dereference (e.g., Pointer A

) variable of type anyptr

702 Cannot make an assignment to this type of variable

704 Illegal use of module name

705 Too many concrete modules

706 Concrete or external instance required

707 Variable is of type not allowed in variant records

708 Integer following # is greater than 255

709 Illegal character in a "sharp" string

710 Illegal item in EXPORT section

711 Expected the keyword IMPLEMENT

712 Expected the keyword RECOVER

714 Expected the keyword EXPORT

715 E?cpected the keyword MODULE

716 Structured constant has erroneous type

717 Illegal item in IMPORT section

718 CALL to other than a procedural variable

719 Module already implemented (duplicate concrete module)

720 Concrete module not allowed here

Workstation Implementation of HP Standard Pascal 491

Table B-S. Non-ISO Language Features (continued)

Error Message

730 Structured constant component incompatible with corresponding type

731 Array constant has incorrect number of elements

732 Length specification required

733 Type identifier required

750 Error in constant expression

751 Function result type must be assignable

900 Insufficient space to open code file

901 Insufficient space to open ref file

902 Insufficient space to open def file

903 Error in opening code file

904 Error in opening ref file

905 Error in opening def file

906 Code file full

907 Ref file full

908 Def file full

492 Workstation Implementation of HP Standard Pascal

Index: Workstation Implementation

a
ADDR function ... 336, 455
ALIAS compiler option .. 271, 370, 391
ALLOW_PACKED compiler option ... 272, 392
ANSI compiler option ... 275, 314, 394, 477
ANSI/ISO Standard Pascal 275, 315, 394, 485
ANYPTR•.....••............•......•••...•.•....•....... 334, 336, 453, 455
ANYVAR parameter. .. 332, 452
a. out file ... 351, 352
append procedure .. 310, 346
ar command ... 353
ARG module functions .. 356, 358
Array:

Allocation and alignment .. 341
blockread ... 434
blockwri te .. 435
Conformant ... 315
Implementation dependencies 310, 426
Multiword comparisons ... 442

b
BADDRESS function 325,336
binary function .. 426
blockread function .. 327, 434
blockwrite function. .. 327, 435

c
CALL procedure .. 335, 454
CALLABS compiler option ... 395
CASE statement .. 426, 435, 468
CASE statement coding precautions .. 468
CASE Statements .. 363
catch_signals procedure .. 373
Caution when using CASE statements 363

Index: Workstation Implementation 1

cdb command .. 315
CLOSE procedure ... 310, 346, 426, 435, 466
CODE compiler option ... 276, 314, 396
CODE file .. 276, 396, 474
CODE_OFFSETS compiler option 277, 344, 397
Commands:

ar .. 353
cdb ... 315
hpnls ... 292
ioctl ... 350
Id .. 319
man ...•.....•.....•.....•... 314
pc .. 290, 313, 314, 315, 319, 338, 351
pdb ... 315
strip ... 278
What•..........•......•.....•..........•...........•....••. 418
what••...•..............•......•.....•.........•.•....•...• 313

Comments 436
Compile-time constant ... 337,456
Compiler options:

ALIAS•.....•......••.....•......•..........•••..... 271, 370, 391
ALLOW_PACKED••.......................•.. 272, 392
ANSI•....•......•..........................•.. 275, 314, 394, 477
CALLABS•....•.........•...•..............•........................ 395
CODE•.......•.....•.......•.....•.....•..... 276,314,396
CODE_OFFSETS•......•................•..... 277, 344, 397
COPYRIGHT•....•.•....•......•........•..........•.....•.•.. 398, 437
DEBUG•.....••....................•..... 278, 288, 399, 408, 437
DEF•....•.....•........•......••.......•...•.....•....... 400, 474
ELSE•....•......•..............•.....•.....••...•••...••... 301
END ..•.............••.....•...................••......... 279, 286, 401, 405
ENDIF•.........................••.........•.•...• 280, 301
Errors ... " ... 489
FLOAT_HDW•...............•..........•......•....•.....•.... 281, 402
HEAP_DISPOSE•.•...............•...... 404, 471
IF•.....•.............•..... 270, 279, 280, 286,301, 390, 401, 405, 436
INCLUDE•••...•.•....•..............•.......... 287, 406, 429, 437, 475
IOCHECK•.....••.....•.......•...................•.... 407, 437
LINENUM ...•.....•....••...................•...............•...... 288, 408
LINES•.•...••.............................. 289, 314, 409, 437
LIST•....•.....•....•.......................... 290, 294, 410, 412, 437
LONGSTRINGS•...........•....•.....•...............•..... 291

2 Index: Workstation Implementation

NLS_SOURCE •.•....••..•••........••••..•.•...••...••...••..•.• 292, 314, 316
OVFLCHECK ..••.••••.••..•...•....•••.•.•.•...••....•....•..... 293, 372, 411
PAGE ..•..•.•.•...•••.•.•••..••...•...•••..••.•.••...•.......• 294, 412, 437
PAGEWIDTH .•.•.•..••..•••.•..•....•.....•...•••..•..•.•....... 295, 413, 437
PARTIAL_EVAL •..•..••..•••..••...•..••...•••..•....••..••...•• 296, 316, 414
RANGE ••.•....•..•••.•..••...•...•...••..••..•.•..••••.••• 297, 372, 415, 437
REF••••••..•..••..•.•...•......•.•••..•.•.••...•...••.. 416, 474
Restrictions .. 270, 390
SAVE_CONST •.•••..••....•.•..•.•...•..•.••.••.•.•...•••••••..••••. 298, 417
SEARCH ..•.....•...•...••••..••••..•• 270,299,300,353, 356, 390, 41~ 419, 437
SEARCH_SIZE •••..•••.....••..••..•••...•..•..••.•• 299, 300, 418, 419, 429, 475
SET .••.•...•.••.••••....•.•.••.•.•••...••..•.•.•.•••.•...•...•... ' 280, 301
STACKCHECK ..•.•.•..••..••...•.•.•...••.••.•..•••..••...•..••••••..•••• 420
STANDARD_LEVEL •..••.•.•.•.•...•••..•...•.•.•.•.•••.••••.•...••.•••.•.•• 303
STANDARD_LEVEL 'HP_MODCAL' ••..•.•..••...•.•.••.••. 306,325,329,336,347,348
STRINGTEMPLIMIT .••.•.•..•••..•••...•.••.••....•.•••••••..•••..•.••••••. 304
SWITCH_STRPOS .•..••.•••.••••.••••.•••••.••••.•.•..•••.••••••.•••••••••• 421
SYSPROG •.••..•. 306,325,336,372,407,422,438,441,443,449, 457, 458, 482, 484
TABLES ..••.•..••...••...••.•.•.•..••.•.•.•••...••.•••..•• 307, 344, 423, 437
UCSD .•..•...•...•...•....•• 407,424,434,437,440,441,442,448,456,457,459
UNDERSCORE •...•...••.•.••••..•••.••.•.•.••.•.•••••.•••.••••..•••• 271, 308
WARN ••..•.....•.•.•.•....•..••..•.•.••.•.•••..•••.•••••••..••.••• 309, 425

Compiler:
HP-UX 6.0 .. 321
Compilation problems .. 473
Directives .. 270, 390
HP-UX 5.0 .. 313
HP-UX 5.5 .. 320
Input via Editor ... 427
Standard options ... 314
Syntax errors .. 485
Underscore .. 308
Warning messages ... 309, 313, 425

concat function ... 327, 438
Conformant arrays ... 315
CONSOLE ..••.••..•••.•••.•..••.....••.•.•.•.•••.••.•.•.•.•...••.••.••.•.• 443
Constants:

Compile-time ... 337, 456
IOESCAPECODE ..•••.•.•••..•.••..•••.•.•••.•.•.........••..•.•.•••.•.•.• 482
Structured ... 298, 417, 427

Conversion to ASCII strings , ... - 347
copy function ... 327, 438

Index: Workstation Implementation 3

COPYRIGHT compiler option 398, 437

d
DEBUG compiler option 278, 288,399,408,437
DEF compiler option .. 400, 474
. DEF file .. 400, 474
delete procedure .. 327, 438
DISPOSE procedure 310,365,366,367,404,427,429,471,477
Dynamic variables .. 365

e
ELSE compiler option .. 301
END compiler option .. 279, 286, 401,405
ENDIF compiler option .. 280, 301
Enumerated type ... 342
Environmental variables 281, 311, 314, 325, 359
Errors:

ANSI/ISO Pascal errors ... 485
Compilation .. 473, 474, 475
Compiler options ... 489
Compiler syntax .. 381,485
Error messages ... 476
Error trapping .. 330, 449
FOR loop index variable .. 476
Graphics library ... 484
Implementation restrictions ,"",. 476, 490
Importing library modules ... 475
I/O .. 332, 372, 379, 457, 479
I/O library .. 482
Math library ... 319
Non-ISO language features .. 491
Operating system ... 476,478
Run-time ... 372, 377, 478
Stack overflow ... 470
System. .. 372,380
Unreported .. 477

ESCAPE procedure 319,330, 438, 450, 482, 484
ESCAPECODE function 319, 330, 332, 372, 377, 379, 380, 450, 478, 479, 482, 484
exi t procedure ... 438
EXPORT reserved word ... 436
external directive ... 310, 370, 427, 439

4 Index: Workstation Implementation

f
fgotoxy procedure .. 440
File system:

Operating system differences ... " 467
Pascal workstation .. 428, 460
Standard units ... 443

Files:
Allocation and alignment .. 342
Archive ... 353
Errors .. 474
External ... 299, 300, 346, 418, 419
File specifier .. 460, 463
Logical .. 460
Names ... 310, 325
Physical ... " 460
Size (number of blocks) ... 462
Standard .. 466
stderr .. 319
stdin .. 347, 350
Suffixes ... 462
Temporary ... 311, 325
UCSD Pascal .. 440
Untyped .. 448

f illchar procedure ... 440
FLOAT_HDW compiler option .. 281, 402
Floating-point operations. .. 281, 402
FOR statement 311, 327, 440, 442, 443, 476, 477
forward directive ... 370
Function:

ADDR •.•••...•••.•..••..••....•..•.••..••.••.••..•••••.•••.••.••.. 336, 455
ARGC, ARGV, ARGN ••..•.•..••••..••.•.•••..•..•.•••..•••.•..•..•.•••. 356, 358
BADDRESS •••.•..•.•...•..••••.•.....•.•.•••••.••..•••••.••.••.••.. 325, 336
binary .. 426
blockread .. 327, 434
blockwrite ... 327, 435
concat ... 327, 438
copy ... 327, 438
ESCAPECODE ••••••••••.•• 319,330,332,372,377,379,380,450,478,479,482,484
GRAPHICSERROR •.••.•••...•...........••......•.•••..••••.•••••..•.•..• " 484
hex ... 429
rOERROR_MESSAGE •••.••••..••••.•.•..••••..••..••..•.•••••••.••. • • . • • • • •• 482

Index: Workstation Implementation 5

IORESULT•....•...••...... 328, 332, 379, 407, 441, 446, 457, 479
Keyword ... 271, 391
lastpos .. 310, 429
length ... 327, 441
linepos ... 429
In .. 441
log ... 441
matherr .. 317, 319
maxpos .. 310
memavail .. 441
octal ... 430
pos .. 327, 442
scan ... 327, 443
SIZEOF•....•.............•..•...•.........•.. 337, 443, 456
str .. 327, 438
strlen ... 327, 441
STRPOS•..............•..•.....•.•...• 327, 421, 442
sysclock .. 445
time .. 445
unitbusy .. 446
WADDRESS .•......•.....•.........•...•......•.....•.......•....... 325, 336

9
Global variables ... 428, 476
GOTO statement .. 330,437, 438, 450, 477
gotoxy procedure ... 440
gproj 354
GRAPHICSERROR function .. 484

h
HALT procedure .. 330, 440, 450
Hardware, Floating-point ... 281, 402
Heap management 310, 311, 365, 366, 367, 369, 428, 429, 431, 440, 470
HEAP _DISPOSE compiler option ... 404, 471
hex function ... 429
HP Standard Pascal ... 269, 310, 389, 426
HP-UX:

6.0 release 321
5.0 release ... 313
5.5 release ... 320
Compiler options ... 270

6 Index: Workstation Implementation

Implementation ... 269, 310
UCSD Pascal language extensions .. 327

hpnls command .. 292

.
I

IEM Pascal 434
IF compiler option 270,279,280, 286, 301, 390, 401, 405, 436
IF statement ... 426
Implementation dependencies:

HP-UX ... 310
Restrictions ... 490
Workstation ... 426

IMPORT reserved word 299, 418, 429, 436, 440, 445, 475, 482, 484
INCLUDE compiler option 287, 406, 429, 437, 475
Independent constructs ... 338
INPUT file ... 328, 347, 466
insert procedure .. 327, 441
integer .. 311, 341, 429, 433, 441
INTERACTIVE file type ... 440, 441
I/O procedures .. 407
IOCHECK compiler option ,... 407, 437
ioctl command .. 350
IOE_RESULT variable ... 482
IOERROR_MESSAGE function .. 482
IOESCAPECODE constant .. 482
IORESULT function 328, 332, 379, 407, 441, 446, 457, 479

k
KEYBOARD file 466
Keyword:

FUNCTION . ",'•.................................•.......• 271, 391
271, 391 PROCEDURE

I
Language extensions:

System programming 304,306,329,422,449
UCSD Pascal ... 327,424,434
Workstation implementation ... 328

Language level:
Standard programming ... 303

Index: Workstation Implementation 7

lastpos function ... :.. 310, 429
ld command ... 319
length function ... 327, 441
LINENUM compiler option .. 288, 408
linepos function ... 429
LINES compiler option .. 289, 314, 409, 437
Link editor (ld) .. 351
Linking programs .. 314
LIST compiler option 290, 294, 410, 412, 437
LISTING file .. 466
Local variables .. 430, 431
log function ... 441
Logical file .. 460
Long integers .. 441
I ongreal ... 310, 316, 430, 431, 442
LONGSTRINGS compiler option ... 291

m
MALLOC 365, 366
man command .. 314
MARK procedure 310, 365,366, 367, 429, 430, 470
matherr function .. 317, 319
maxint ... 310, 430
maxpos function .. 310
memavail function .. 441
Memory allocation "... 366
Memory management 330, 336, 340, 431, 450, 455, 456, 470, 473, 475, 476
minint ... 311, 430
Modules 311, 356, 358, 430, 436, 440, 445, 446, 475, 482, 484
moveleft procedure .. 327, 442
moveright procedure ... 327, 442

n
Native language support ... 292, 316
Natural log (In) function .. 441
NEW procedure 310,337,365,366,367,428,429,456,470,477
NLS_SOURCE compiler option 292, 314, 316

8 Index: Workstation Implementation

o
octal function ... 430
OPEN procedure .. 346, 440, 443, 460, 464
Operating system:

Differences .. 467
Errors ... 476, 478
HP-UX .. 327, 328
Modules .. 430

Other languages .. 370
OTHERWISE clause ... 435
OUTPUT file ... 466
overprint procedure .. 430
OVFLCHECK compiler option .. 293, 372, 411

p
P -code programs ... 434
P-Ioaded files ... 429, 475
packed array of char 32~ 344, 426, 427, 429, 430
Packed structures ... 339,340
PAGE compiler option ... 294, 412, 437
PAGEWIDTH compiler option .. 295, 413, 437
PARTIAL_EVAL compiler option 296, 316, 414
Path names. 311,325
pc command 290, 313, 314, 315, 319, 338, 351
PCOPTS environmental variable .. 314
pdb command .. 315
Physical file ... 460
pos function .. 327, 442
Precautions when using CASE statements 363
PRINTER••......•.••...•...... 443, 466
Procedure:

append ... 310, 346
CALL .•......•.. 335,454
catch_signals .. 373
CLOSE •.....•............•...•...............•...•...• 310, 346, 426, 435, 466
delete ... 327, 438
DISPOSE ...•......•.........•........ 310,365,366, 367,404,427, 429, 471, 477
ESCAPE ...••...........•..•...................•... 319, 330,438, 450, 482, 484
exit .. 438
fgotoxy ... 440
fillchar .. 440

Index: Workstation Implementation 9

gotoxy .. 440
HALT ••••.•.•••••••..•••••.••••.••..••...•....••••..•.•..•.••. 330, 440, 450
insert ... 327, 441
Keyword .. '. 271, 391
MARK .•••.•..••••••..••••••.••••..••.•.•.•••. 310,365,366,367,429,430, 470
moveleft ... 327, 442
moveright .. 327, 442
NEW•....•...•...•...•...•. 310, 337,365,366, 367, 428, 429, 456, 470, 477
OPEN .•.•..•..•...•...••..•..••••.••••...••...•...•••. 346,440,443, 460, 464
overprint ... 430
PWROFTEN .•..•••..•...•..••..••.•.••••..•••.•.•....•.••.•.••.••.•.••••• 442
READ .••..••..•...•..••..••.•.•.....••.•••.•..••.••.•...••••.••••• 407, 466
RELEASE •.•..•...••...••..••.•..•..•.•..• 310, 311, 365, 366, 367, 429, 431, 470
RESET ••...••..•..••..••••.••..•...••...••.••••.•. 346, 407, 440, 460, 464, 466
REWRITE •....•.•••.•...••..•..•.••.•••.•••.•• 311, 328, 346, 407, 460, 464, 466
seek ... 440, 443
SEGMENT .•.......••..•...••.•••..•••...••••..•••.••.•...••••.•••••••••• 443
setstrlen .. 327, 441, 444
Size of procedure body .. 475
str ... 444
strdelete .. 327, 438
strinsert .. 327, 441
strread .. 311, 432
strwrite ,.................. 311, 432, 444
sysclock .. 445
time .. 445
unitclear ... 446
unitread .. 447
unitwait .. 447
unitwrite ... 448
Variable. 335,454
WRITE •.•••••••.••..•.••...•..••..••..••••.••••...••.. 407,427,431, 466, 477

prof .. 354
Profile Monitor .. 354
Program arguments ... 356, 358
Program heading .. 442, 466
Program parameters .. 355
PWROFTEN procedure ... 442

r
RANGE compiler option 297, 372, 415, 437

10 Index: Workstation Implementation

READ procedure .. 407, 466
real ... 311, 316, 319, 431, 442
Real numbers .. 325
Records .. 343,431,442,456
REF compiler option .. 416, 474
.REF file .. 416,474
RELEASE procedure '" 310,311,365,366,367,429,431,470
Reserve word:

EXPORT•..........................•..........••....•..•..•....... 436
IMPORT .•..•...........•......•...... 299,418,429,436,440,445,475,482,484

RESET procedure 346, 407, 440, 460, 464, 466
REWRITE procedure 311,328,346,407,460,464,466

s
SAVE_CONST compiler option ... 298, 417
scan function ... 327, 443
SEARCH compiler option 270, 299, 300, 353, 356, 390, 418, 419, 437
SEARCH_SIZE compiler option 299,300,418,419, 429, 475
seek procedure .. 440, 443
SEGMENT procedure .. 443
SET compiler option .. 280, 301
Sets ... 316, 341, 344, 431, 443
setstrlen procedure ... 327, 441, 444
SIZEOF function ... 337, 443, 456
Source lines ... 311
STACKCHECK compiler option .. 420
Standard files .. 466
Standard programming language level 303
STANDARD_lEVEL compiler option .. 303
STANDARD_lEVEL 'HP _MODCAl' compiler option 306,325, 329, 336, 347, 348
Statements:

CASE •.......•....•....•.............•...........•....••.•.... 426, 435, 468
FOR .•.......•....•....•.•..............•....••..• 327, 440, 442, 443, 476, 477
GOTO•...........•.••....•..... 330,437,438, 450, 477
IF .••................•...................•..•....•.............••.•... 426
TRY .. RECOVER 330, 372, 377, 380, 437, 438, 450, 457,478,479, 482, 484
WITH ..••..••......•...•....•.........•.....•.........••...... 311, 433, 477

stderr file ... 319
stdin file ... 347, 350
str function .. 327, 438
str procedure (UCSD) .. 444

Index: Workstation Implementation 11

strdelete procedure ... 327, 438
Strings ... 311, 343, 432, 444, 460
STRINGTEMPLIMIT compiler option ... 304
strinsert procedure ... 327, 441
strip command .. 278
strlen function ... 327, 441
STRPOS function ... 327, 421, 442
strread procedure ... 311, 432
Structured constants ... 298, 417, 427
strwrite procedure :................. 311, 432, 444
Subrange ... 311, 341, 433
SWITCH_STRPOS compiler option ... 421
Symbol table listings ... 307, 314, 352, 423
Symbolic debugger .. 314, 315
sysclock procedures and functions .. 445
SYSPROG compiler option

... 306,325,336,372,407,422,438,441,443,449,457, 458, 482, 484
System allocation ... 365, 366
System Monitor .. 354
System programming language extensions 304, 306, 329, 422, 449
System variable .. 278
SYSTERM ••.•........••....•.••••.•...••..••..•.••..•.•...••••.•.••••••••• 443

t
Table:

A-1. UCSD Pascal Language Extensions and HP-UX Replacements 327
A-2. Other Replacements for Use in Converting Pascal Programs 328
A-3. Operating System Run-time Errors 378
A-4. I/O Errors .. 379
A-5. System Errors ... 380
A-6. Pascal Compiler Errors ... 382
B-l. Operating System Run-Time Errors 478
B-2. I/O Errors .. 479
B-3. I/O LIBRARY Errors .. 482
B-4. Graphics LIBRARY Errors ... 484
B-5. ANSI/ISO Pascal Errors .. 485
B-6. Compiler Options .. 489
B-7. Implementation Restrictions .. 490
B-8. Non-ISO Language Features ... 491

TABLES compiler option 307, 344,423,437
Temporary files ... 311, 325

12 Index: Workstation Implementation

Terminal input ... 350
text ... 427, 433, 440, 441, 466
time function or procedure .. 445
TMPDIR •.•.•••.•••.•..••....••...••..•••.••...•.••••.•.••..••...•••• 311, 325
TRY .. RECOVER statement 330, 372, 377, 380, 437, 438, 450, 457, 478, 479, 482, 484
Type:

ANYPTR .••...............................••..••...•...•..• 334, 336, 453, 455
Checking " 332,446, 452
Enumerated ... 342
File suffix ... 462
integer .. 311, 341, 429, 433, 441
Long integers .. 441
longreal ... 310, 316, 430, 431, 442
Memory allocation .. 338, 339, 340, 456
packed array of char 327,344,426,427,429,430
real ... 311, 316, 319, 431, 442
set .. 316, 341, 344, 431, 477
Size ... 337, 456
text ... 427, 433, 440, 441, 466

u
UCSD compiler option. 407,424,434,437, 440, 441, 442,448, 456, 457, 459
U CSD Pascal:

Compiler options ... 437
Files .. 440
Language extensions ... 327, 424, 434

UNDERSCORE compiler option ... 271, 308
unitbusy function ' .. 446
uni tclear procedure .. 446
uni tread procedure ... 447
Units ... 436, 446
unitwait procedure ... 447
uni twri te procedure .. 448
Unpacked structures ... 339, 341

v
VAR parameter 272, 332, 344, 392, 444, 452, 477
Variables:

Absolute addressing 331, 336, 451, 455
ANYPTR •••••.•.•..•••.••.•....•.••••....•....•••.••.••..••..•••.•. 334, 453
Dynamic .. 365

Index: Workstation Implementation 13

Environmental .. 281, 311, 314, 325, 359
File ... 460
Global ... 428,476
Heap ... 470
IDE_RESULT •..••••...•••.•••••..•••..•....••••.•.••.•..•....•••..•••••• 482
Local .. 430, 431
Procedure .. 335, 454
Size ... 337, 456
System .. 278

Virtual memory .. 331
Volume names ... 463

w
WADDRESS function ... 325, 336
WARN compiler option ... 309, 425
What command ... 418
what command ... 313
WITH statement .. 311, 433, 477
Workstation:

Compiler options ... 390
File system .. 460
Implementation ... 389, 426, 434

WRITE procedure ... 407, 427, 431, 466, 477

14 Index: Workstation Implementation

HP Part Number
98615-90053
Microfiche No. 98615-99053
Printed in U.S.A. E0488

Flid8 HEWLETT
a:~ PACKARD

II
98615-90631
For Internal Use Only

