
HP-UX Portability Guide
HP 9000 Series 300/800 Computers

HP Part Number 98794-90047

Flia- HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company 1987, 1988, 1989

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b)(3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. Note that pages which are rearranged due to changes on a previous page
are not considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

September 1989 ... Edition 1. This edition reflects the changes that have
made the Series 300 and Series 800 more compatible, especially in the
areas of FORTRAN and system calls. Chapter 7, Accessing Series 300
Shared Memory, is no longer pertinent and has been removed. The Series
310 is no longer supported, and references to it have been removed. This
book replaces the HP- UX Portability Guide, part number 98794-90046.

iii

Contents

1. Introduction
A Philosophy of Portability 1-3

Standards 1-3
Standards for C 1-4
Standards for FORTRAN 1-4
Standards for Pascal 1-4

Guidelines 1-4
Some General Considerations 1-6

Compiler Directives. . . . 1-6
Floating Point Fuzziness 1-6

Series 300 Floating Point Options 1-7
Hardware 1-7

Determining Your Hardware Configuration 1-7
Compiler Options 1-9
Recommendations 1-9

Series 800 Floating Point 1-9

2. Porting VMS Code to HP-UX
General Portability Aids 2-1
Miscellaneous FORTRAN Utility Programs 2-3
System Differences 2-5

FORTRAN Application: No VMS System or Runtime
Library Calls 2-5

FORTRAN Applications With VMS System or Runtime
Library Calls . . 2-7

Graphics and Windows 2-7
C language applications 2-8

The C Language 2-9
Core Language Features 2-9

Contents-1

Preprocessor Features . 2-12
Compiler Environment 2-13

The FORTRAN Language . 2-15
Comparisons of Features 2-15

Character Sets 2-15
Control Statements . . 2-16
Data Types and Constant Syntaxes. 2-16
General Statement Syntax and Source Program Format 2-17
Input/Output Statements 2-18
Intrinsic Functions . . . 2-20
Specification Statements. 2-21
Subprograms 2-22
Symbolic Names 2-23
Type Coercions 2-23
Miscellaneous 2-24

Data Representations in Memory 2-24
Large Amounts of Local Data 2-24
Equivalencing of Data. . . . 2-24

The Effects of Recursion on Local Variable Storage 2-26
Resolving System Name Conflicts. 2-28
Predefined and Preconnected Files 2-28

The Pascal Language 2-30

3. Porting from BSD4.3 to HP-UX

4. Porting Across HP-UX
General System Dependencies

Identifying the system
Parameter Lists
Memory Organization. . .
Code/Data Size Limitations
Linker differences.
Optimization

The C Language
Data Type Sizes and Alignments
Char Data Type . .
Register Data Type .
Identifiers

Contents-2

4-2
4-2
4-2
4-3
4-4
4-4
4-4
4-5
4-5
4-6
4-7
4-7

Predefined Symbols 4-7
Shift Operators 4-7
Sizeof 4-8
Bit Fields . . . 4-9
Division by Zero 4-10
Integer Overflow 4-10
Overflow During Conversion from Floating Point to

Integral Type. 4-10
Structure Assignment and Functions 4-10
Null Pointers 4-11
Expression Evaluation 4-11
Variable Initialization 4-12
Conversions 4-12
$TMPDIR. 4-12
Compiler Command Options 4-13
Calls to Other Languages 4-13

Calls to FORTRAN 4-15
Calls to Pascal 4-16

The FORTRAN Language . 4-19
Data Type Sizes and Alignment 4-19
Long Identifiers 4-21
Error Conditions . . . 4-21
String Constants . . . 4-22
Array Dimension Limits 4-22
Data File Compatibility 4-22
Parameter Passing . . 4-24
Common Region Names 4-24
Vector Instruction Set Subroutines 4-25
Compiler Options 4-25
Compiler Directives. 4-27

Directives Only on Series 300 4-27
Directives Only on Series 800 4-27
The ALIAS Directive 4-27
The OPTIMIZE Directive . . 4-27
The SAVE_LOCALS Directive 4-27

Recursion 4-28
$TMPDIR. 4-28
Calls to Other Languages 4-29

Contents-3

Calls to C
The Pascal Language

Data Type Sizes and Alignments
Command Line Options
InHne Compiler Option Differences
Differences in Features

Control Constructs
I/O
Program Structure
Types
Miscellaneous

Calls to Other Languages
Calls to C

5. System Calls and Subroutines
System Calls .
Subroutines

6. Pascal Workstation to HP-UX
Compiler Option Differences
Differences in Features

Module Names
Real Variables
Input .
Lastpos .. .
Linepos .. .
Heap Management
File Naming . . .
Absolute Addressing
$SEARCH$ File Names
Terminal I/O
File Naming . . .
Heap Management

Library Differences
Graphics

DGL Library
STARBASE Library
SYSTEM Library

Contents-4

4-30
4-34
4-35
4-36
4-36
4-41
4-41
4-41
4-41
4-42
4-42
4-43
4-44

5-2
5-3

6-2
6-3
6-3
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-5
6-9
6-10
6-10
6-11
6-11

Assembly Language Conversion 6-12

Contents-5

1
Introduction

This manual presents guidelines and techniques for maximizing the portability of
C, Pascal, and FORTRAN programs on the HP 9000 computers with the HP-UX
Operating System. This manual does not discuss portability of programs written
for the Integral Personal Computer.

This manual concentrates on moving C, FORTRAN, and Pascal source code from
one system to another and provides a general overview in these areas:

• Porting existing code from operating systems other than HP-UX
to the HP-UX environment. You get information about known differ­
ences between the systems and the languages. You should understand the
differences before attempting to port code to the HP-UX environment. In
some cases, you get tactics to make the task easier.

• Porting C, FORTRAN or Pascal source code from one HP-UX architec­
ture to another. The de~criptions are specific to the Series 300 and 800
systems. Some of this information can be useful to people who port code
from another operating system. You get descriptions of communication
problems that exist between languages. The idea is to make the various
languages compatible so that code can be reused rather than needing to
be rewritten across language boundaries.

• Summarizes system calls and functions known to be system dependent.
You are given highlights of the more important differences.

Within these three general goals, the table on the following page named "Manual
Contents by Chapters" describes specific chapters. One chapter, "Porting from
BSD4.3 to HP-UX", and one section, "The Pascal Language" in the chapter
called "Porting VMS Code to HP-UX", have not yet been written. The material
will be added at an appropriate time.

Introduction 1-1

Table 1-1. Manual Contents by Chapters

Chapter Number and Name Description of Contents

1: Introduction Introduces the manual and discusses some
general topics.

2: Porting VMS Code to HP-UX
• Mentions general aids and FORTRAN

utilities.
• Discusses system differences related to

FORTRAN, VMS, runtime library
calls, graphics, windows, and C.

• Discusses FORTRAN, C, and Pascal
languages.

3: Porting from BSD4.3 to HP-UX Not written as yet.

4: Porting Across HP-UX Discusses porting across HP-UX versions
according to requirements for the C,
FORTRAN, and Pascal languages.

5: System Calls and Subroutines Discusses HP-UX system calls and subroutines.

6: Pascal Workstation to HP-UX Discusses the porting of Pascal to HP-UX
in terms of differences in compiler options,
features, and libraries. Also includes graphics
and assembly-language conversion.

7: Accessing Series 300 Shared Describes how to utilize shared memory
Memory between cooperating processes (works only in

Series 300 systems).

Overall, the manual provides a picture of portability as it exists now and refers
to the 7.0 release of Series 300 and Series 800. When in doubt about features
for C, FORTRAN or Pascal, refer to the HP-UX C Programmer's Guide or the
FORTRAN or Pascal reference for your system.

1-2 Introduction

A Philosophy of Portability

A software engineer needs to have the right attitude to develop portable software.
In the process of developing software, the following things can hinder porting your
code to another environment:

• Non-standard language extensions.

• Assembly code.

• Hardware dependencies.

• Absolute addressing.

• Floating point comparisons.

• Software "tricks" that exploit a particular architecture.

These things are discussed throughout the manual in relation to current topics.
The constant idea is to use programming techniques that minimize, eliminate, or
avoid system dependencies.

Standards

The use of industry standards is crucial to portability. Hewlett-Packard Company
tracks these standards in the following ways:

• HP-UX is a licensee of UNIX™1 System V.2. All HP-UX implementa­
tions pass SVVS validation.

• HP-UX has added selected 4.2bsd and 4.3bsd extensions that have become
de facto industry standards.

• HP-UX itself is an internal corporate standard that has been designed
to maximize portability across the HP9000 product family, regardless of
architecture. The HP-UX standard concerns itself with both software and
documentation.

• Hewlett Packard is an active participant in the developing POSIX
standard. It is the intent to make HP-UX track this standard.

• Likewise, Hewlett Packard has announced a commitment to track the
developing X/OPEN standard.

1 UNIX is a trademark of AT&T Bell Laboratories, Inc.

Introduction 1-3

Each language described in this manual is also subject to industry standards.

Standards for C

For C, no formal standard exists although the ANSI X3J11 committee has one
under development. Nevertheless, the C language is well standardized across the
industry. The core of the language implemented on HP-UX derives from The C
Programming Language, by Kernigan and Ritchie. Since the publication of this
book several near universal extensions have been added. All these extensions are
common to all architectures on HP-UX. This manual will describe the extensions.
C has the reputation of being the most portable of the three languages.

Standards for FORTRAN

FO RTRAN, being one of the oldest high level programming languages, has a long
history of standardization. The most widely accepted current standard is ANSI
X3.9-1978, commonly known as FORTRAN 77. Series 300 and 800 FORTRAN
compilers fully comply with this standard and have been federally validated.
A common set of extensions is set forth in the U.S. Department of Defense
publication, MIL-STD-1753 Military Standard FORTRAN, DOD Supplement
to American National Standard X3.9-1978. These extensions have been fully
implemented. They will be described later in the manual. HP-UX FORTRAN
on all implementations also conforms to FIPS PUB 69-1 and ISO 1539-1980.

Standards for Pascal

The most widely recognized standard for Pascal is ISO 7185-1983. ANSI
770X3.97-1983 is nearly identical to level 0 of this standard. HP Pascal is a
superset of ISO 7185-1983 level 0 and and a superset of level 1 with minor
exceptions. It is also an internal corporate standard to which Series 300 and
800 implementations conform or are converging. Pascal on these architectures
conforms to ISO 7185-1983 level 0 at present.

Guidelines

The following items provide guidelines for making your code portable:

• Structured programs are easier to understand. Any program of even
moderate complexity must be understood to be ported successfully. A

1-4 Introduction

well designed program that emphasizes modularity will be inherently more
portable.

• Isolate system dependent code. "Include" files, libraries, and conditional
compilation can make this task much easier. Calls to system routines not
described in the relevant language standards are often system dependent,
particularly when porting from a non-HP-UX environment.

• Avoid the use of language extensions if at all possible. In most cases they
are a matter of convenience not necessity.

• File manipulation and input/output operations have traditionally been
two of the most troublesome areas impacting portability. Most language
standards are intentionally vague in these areas to allow vendors to
make the most effective use of their architectures. Unfortunately, file
manipulation and input/output operations are also frequently critical to
performance so they are usually tuned in a system dependent manner.
The apparently conflicting goals of portability and performance can be
met by a careful design of a select number of encapsulated interface
routines.

• The beginning of each chapter in the remainder of this manual sets forth
some of the basic problem areas for a particular source language. Review
these areas before finalizing your design.

Introduction 1-5

Some General Considerations
Since programming languages define the meaning of a program, they are the
primary concern of portability. Unless the semantics of a language are exactly
the same on two different systems, you cannot assume that a program written
in that language will produce the same results on both systems. Also, one
implementation of a language may support extensions that are not available on
other systems.

Compiler Directives

Compiler directives are a mixed blessing. There are directives available on HP­
UX that generate warnings for non-standard language features. These are very
useful and are covered under each language. On the other hand, some directives
enable system dependent features that dissolve any hope of portability. In any
case, the directives should be reviewed when porting because it is unlikely that
the systems you are porting between support all the same directives. You must
balance the current usefulness of each directive against its potential for portability
problems.

Floating Point Fuzziness

Floating point operations can complicate compatibility. Computer floating-point
numbers are usually only close approximations of real numbers, so when doing
floating point compares, it is best to compare to a range of values instead of a
single value. This technique is known as a "fuzzy compare." For example, in a
fragment of Pascal code, you could replace:

if (x = 1.2267) then
y:= y + 1;

with a more accommodating fragment of code such as:

if (abs(x - 1.2267) < err_margin) then
y:= y + 1;

where err _margin is a constant representing the margin of error for comparisons.
Err _margin will not be constant across all HP-UX implementations.

1-6 Introduction

Series 300 Floating Point Options

Hardware

Here are the Series 300 hardware configurations with floating point math
performance:

Floating Point
Series Processor Coprocessor Floating Point Card

318 68020 68881 None
319 68020 68881 None
320 68020 68881 None
330 68020 68881 Optional HP 98248A
332 68030 68882 None
340 68030 68882 None
350 68020 68881 Optional HP 98248A
360 68030 68882 Optional HP 98248B
370 68030 68882 Optional HP 98248B

The Motorola 68020 and 68030 processors differ in their speed and internal
architecture, but use the same instruction set. The Motorola 68881 and 68882
floating point coprocessors use a compatible instruction set.

Determining Your Hardware Configuration

You can determine the hardware configuration of your Series 300 by accessing
flags set automatically in /lib/crtO. 0 for C and Pascal, and /lib/frtO. 0 for
FORTRAN. Each flag is declared in C to be an external short int (2 bytes).

Flag Set To Means
flag_soft non-zero HP98635A not present
flag_68881 non-zero 68881 or 68882 present
flag_fpa non-zero HP98248A or HP98248B present

Introduction 1-7

In /lib/libc. a the following four boolean functions are defined to interrogate
these flags:

is_68010_present,
is_68881_present (MC68881 and MC68882 are synonymous here)
is_98248A_present (98248A and 98248B are synonymous here)
is_98635A_present

Getcontext 0 exists as both a command and a system intrinsic function to return
configuration information in string form. See the HP- UX Reference for details.

1-8 Introduction

Compiler Options

Generation of Calls
Option Series for Floating Point Math Considerations

default 3xx inline coprocessor instructions

+M 3xx user provided library calls if user provided calls
present; else, libc. a and libm. a usually have slower

performance

+ffpa 330 or 350 with HP98248A/B aborts if no
HP98248A; 360 or HP98248A/B
370 with HP98248B present

+bfpa 330 or 350 with HP98248A/B, if present; else, will run on any
HP98248A; 360 or default Series 3xx except
370 with HP98248B 310

Recommendations

The +bfpa option for the C and FORTRAN compilers does provide additional
flexibility and performance, but it also tends to increase the code size of
statements involving floating point arithmetic. The effect of code expansion varies
widely. You may want a trial compilation of your actual program for the most
accurate measure of code size.

When using the +bfpa option, around 90% of all computation time is spent within
10% of the executable code. It is often advantageous to compile only critical
regions of your programs with these options and to compile the remainder of the
program without any floating point hardware support.

Series 800 Floating Point

Series 800 has floating point support built into the CPU and therefore it does
not require any external floating point support.

Introduction 1-9

2
Porting VMS Code to HP-UX

This chapter presents guidelines that can help you port code from the
VAX VMS™1 system to the HP-UX system. The guidelines do not provide
solutions for every problem; in many cases no satisfactory general solutions are
known. However, the chapter attempts to inform you of the differences so that
specific solutions can be developed.

General Portability Aids
HP-UX provides tools for C, FORTRAN and Pascal that may help discover some
nonportable constructs. Typically these tools perform a static analysis of a source
program to find nonstandard or dubious programming

For C, lint attempts to check for unreachable statements, poorly structured
loops, unused variables, and inconsistent function use. It is an effective first level
portability tool.

All HP-UX FORTRAN compilers have the -a option to warn about non-ANSI
features. Unlike lint, the compilers will still produce object code when this
option is selected. Keep in mind that when this option is used, the compiler can
produce copious quantities of non-fatal warning messages so it is generally useful
to redirect stderr to a file for more leisurely viewing.

Series 300 has an additional tool, flint, that provides a similar functionality for
FORTRAN that lint provides for C. It too is a distinct program that does not
generate object code.

All HP-UX Pascal compilers have the -A command line option to warn about
non-ANSI features.

1 VAX and VMS are trademarks of Digital Equipment Corporation.

Porting VMS Code to HP-UX 2-1

All HP-UX C, FORTRAN, and Pascal implementations provide support for
including source statements from another specified file or device file. This facility
can be very useful to help encapsulate system dependent source code by requiring
minimum changes to source. Although include statement syntaxes differ by
language, all HP-UX implementations within each language use the same syntax
and semantics. For example, the FORTRAN statement:

INCLUDE 'foo'

will cause source statements from file faa to be included into the current input
in the same manner in all HP-UX FORTRAN implementations.

2-2 Porting VMS Code to HP-UX

Miscellaneous FORTRAN Utility Programs

Some utility programs have been provided for use with FORTRAN source code.
Ratfor, a "rational" FORTRAN dialect preprocessor, translates a superset of
FORTRAN that adds certain control constructs patterned after statements found
in the C language to the standard FORTRAN source code. Since ratfor source
code is widespread throughout the industry, HP-UX provides this preprocessor on
all implementations. However, it is unlikely that wholesale rewriting of existing
FORTRAN into ratfor will be to your advantage.

Another utility that will be useful is asa, a filter that interprets ASA carriage
control characters. These carriage control characters will be ignored on HP-UX
unless asa is used during the execution of the FORTRAN program.

For example, consider the following FORTRAN program:

program testasa
C Unit 6 is preconnected to stdout on HP-UX.
C Note that some terminals may disregard printer control characters.

write (6 ,100)
write(6,200)
write(6,300)
write(6,400)
write(6,500)

100 format(" A blank line should precede this line.")
200 format("OThis line should be double spaced. II)
300 format("1This line should come out on a new page. II)
400 format(" This is a ")
500 format ("+ concatenated line. ")

end

Porting VMS Code to HP-UX 2-3

If this program is compiled and executed without asa by the command

a.out I lp

the output to the printer will be

A blank line should precede this line.
OThis line should be double spaced.
1This line should come out on a new page.
This is a
+ concatenated line.

On the other hand, if asa is included in the pipe as a filter as in the following
command:

a.out I asa I lp

the output to the printer will be

A blank line should precede this line

This line should be double spaced.
{new page here}
This line should come out on a new page.
This is a concatenated line.

2-4 Porting VMS Code to HP-UX

System Differences
The work involved in porting an application from the DEC VAX VMS
environment to HP-UX depends on how much the application uses features
outside of the implementation language.

FORTRAN Application: No VMS System or Runtime Library Calls

If there are no VMS system or runtime library calls, and the application is
written completely in FORTRAN, and it uses only FORTRAN I/O facilities,
then the language comparison below can be consulted on the differences between
the FORTRANs on these systems. In general, the differences between the HP-UX
and VMS operating systems will not arise in this case.

When using only FORTRAN-defined I/O, one important issue remains. If you
have a VMS FORTRAN application that writes unformatted (binary) data in a
file that will be read by a different FORTRAN program, then you should port
both the writer and the reader to HP-UX. If the writer program runs on HP­
UX, the HP-UX reader program will read the file correctly (of course). If the
writer runs on VMS, and the data file is moved to the HP-UX over a local area
network or on magnetic tape, the HP-UX reader will not be able to correctly
read the file. Both the format of the file (for example the file header and the
record headers and trailers) and the byte representations of the data will be
different between VMS and HP-UX, even though FORTRAN I/O facilities were
used exclusively. The simplest way to move data is to convert it to ASCII to
solve the bit representation problem, and then move it using a common format.
Large arrays of bytes (like graphics pixel maps) can probably be moved without
conversion to ASCII if a common file format can be agreed upon. However, some
translation will be required to make the resulting file readable as an unformatted
FORTRAN file on HP-UX. In this case, consider writing the necessary conversion
program in C to move the data to FORTRAN the first time.

The difference in hardware that exists between the VAX architecture and
most other computer architectures may cause problems since FORTRAN's
EQUIVALENCE statement and bit operations allow system dependent coding.
An application that depends on the bit representations of numbers instead of their
values can compile with no errors and still produce unexpected results when run.

Porting VMS Code to HP-UX 2-5

For example, the following program produces different results when run on VMS
and HP-UX.

C A program that compiles and produces different results
C on a VAX system than on an HP system
C

program machdep
integer*2 i(4)
integer*4 j(2) ,sum
equivalence (i,j)
do 10,ii=1,4

i(ii) = ii
10 continue

sum = 0
do 20,ii=1,2

sum = sum + j(ii)
20 continue

print *,sum
end

This example that depends on the byte ordering of integers prints 262150 on an
HP-UX system and prints 393220 on a VAX system.

2-6 Porting VMS Code to HP-UX

FORTRAN Applications With VMS System or Runtime Library Calls

To check for VMS system and runtime library calls, search the source code for
$ using the HP-UX command grep or the VMS DCL command search. VMS
system call names start with SYS$ (like SYS$Q10W and SYS$ASSIGN) and runtime
library routine names start with various prefixes including L1B$, STR$, and SMG$.
HP-UX FORTRAN compilers accept procedure names with the $ character so
problems do not become evident until the linker fails to resolve the references to
these VMS routines.

You can either write emulation routines in C or FORTRAN that use HP-UX
system and library calls or modify the source to use HP-UX routines directly.
(There is very little chance that this is as simple as finding the HP-UX routine
that exactly matches the functionality of the VMS one.) If you use emulation or
onionskin routines written in C (the easiest way to get to the HP-UX routines),
you'll probably need to change the VMS names since HP-UX C compilers will not
accept the $ character in names. A programmer undertaking this task will need
to get very familiar with sections 2 and 3 of the HP- UX Reference in addition to
being knowledgeable about VMS and the application program.

An example is a program that needs to read input from a graphical input device
without waiting for a standard terminating character. FORTRAN's READ
statement will not suffice here. The VMS solution uses SYS$ASS1GN to allocate
a channel number and then uses SYS$QIOW to perform low level reads and writes
to the device. Similar functionality on HP-UX can be obtained by using open(2)
to return a file descriptor instead of SYS$ASSIGN's channel number and by using
ioctl (2), read(2), and write (2) to set up character I/O and perform the I/O
operations.

Graphics and Windows

FORTRAN does not define any graphics functionality. The most common
graphics applications will either include a "graphics driver" written in FORTRAN
that sends Tektronix ™ 2 (or some other vendor) escape sequences over RS-232,
or it will reference an object code library for a proprietary graphics display system.
In the case of the RS-232 type driver, the code will usually port directly and can
be used to drive the same type of display connected to your HP-UX system with
RS-232.

2 Tektronix is a trademark of the Tektronix Corporation.

Porting VMS Code to HP-UX 2-7

If the application uses a proprietary display or you wish to use HP's family of
graphical devices, you will need to convert the graphics calls into HP's Starbase
library calls. For all but the simplest graphics needs, this will probably involve
some redesign of the graphics part of the application. In some cases, a nearly
one-to-one translation of graphics calls may suffice.

HP-UX and VMS (along with several other vendors' systems) now share a
common windowing system based on the XII Window System from MIT. This
brings higher compatibility for windowing and simple graphics functionality
to these systems. However, since the X library interface uses a C language
definition, it requires data types and calling conventions not normally found in
FORTRAN but available as extensions in VMS FORTRAN. Consequently, an
X application written in VMS FORTRAN will not just compile and run on all
HP-UX implementations. HP provides some FORTRAN bindings for X that will
make this task easier, but source modifications will be necessary. However, X
applications written in C should be highly portable.

C language applications

Pointers, bit fields, structs and unions are all available to produce system
dependent (and nonportable) code that relies on byte ordering, alignment
restrictions, and pointer representations. For information on how to write highly
portable code, see "The C Language" section in this chapter.

Since the C language provides no I/O capability, it depends on library routines
supplied by the host system. Data files produced by using the HP-UX calls
wri te (2) or fwri te (3) should not be expected to be portable between different
system implementations. Byte ordering and structure packing rules will make
the bits in the file system dependent, even though identical routines are used.
When in doubt, move data files using ASCII representations (as from printf (3) ,

or write translation utilities that deal with the byte ordering and alignment
problems.)

2-8 Porting VMS Code to HP-UX

The C Language
The C language itself is easy to port from VMS to HP-UX for two main reasons:

1. There is a high degree of compatibility within the HP-UX family and
between HP-UX C and other common industry implementations of C.

2. The C language itself does not consider file manipulation or input/output
to be part of the core language. These issues are handled via libraries.
Thus C encapsulates the thorniest issues of portability.

In most cases HP-UX C is a superset of VMS C. Therefore, porting from VMS to
HP-UX is easier than porting the other direction. The next several subsections
describe features of C that can cause problems in porting.

Core Language Features

• Basic Data types in VMS have the same general sizes as their counterparts
on HP-UX. In particular, all integral and floating point types have the
same number of bits. Structs and unions do not necessarily have the same
size because of different alignment rules.

• Basic data types are aligned on arbitrary byte boundaries in VMS C. HP­
UX counterparts generally have more restrictive alignments. See Table
2-2 for specifics.

• Type char is signed by default on VMS and HP-UX.

• The unsigned adjective is recognized by both systems and is usable on
char, short, int, and long. It can also be used alone to refer to unsigned
into

• Both VMS and HP-UX support void and enum data types although the
allowable uses of enum vary between the two systems. HP -UX is generally
less restrictive.

• The VMS C storage class specifiers globaldef, globalref, and global­
value have no direct counterparts on HP-UX or other implementations
of UNIX. Variables are local or global based strictly on scope or static
class specifiers on HP-UX.

Porting VMS Code to HP-UX 2-9

• The VMS C class modifiers readonly and noshare have no direct
counterparts on HP-UX.

• Structs are packed differently on the two systems. All elements are
byte aligned in VMS whereas they are aligned more restrictively on the
different HP-UX architectures based upon their type. Organization of
fields within the struct differs as well.

• Bitfields within structs are more general on HP-UX than on VMS. VMS
requires that they be of type int or unsigned whereas they may be any
integral type on HP-UX.

• Assignment of one struct to another is supported on both systems.
However, VMS permits assignment of structs if the types of both sides
have the same size. HP-UX is more restrictive because it requires that
the two sides be of the same type.

• VMS C stores floating point data in memory using a proprietary scheme.
Floats are stored in F _floating format. Doubles are stored either in
D_floating format or G_floating format. D_floating format is the
default. HP-UX uses IEEE standard formats which are not compatible
with VMS types but they are compatible with most other industry
implementations of UNIX.

• VMS C converts floats to doubles by padding the mantissa with Os. HP­
UX uses IEEE formats for floating point data and therefore must do a
conversion by means of floating point hardware or by library functions.
When doubles are converted to floats in VMS C, the mantissa is rounded
toward zero then truncated. HP-UX uses either floating point hardware
or library calls for these conversions.

The VMS D _floating format can hide programming errors. In particular,
you might not immediately notice that mismatches exist between formal
and actual function arguments if one is declared float and the counterpart
is declared double because the only difference in the internal representa­
tion is the length of the mantissa.

2-10 Porting VMS Code to HP-UX

• Due to the different internal representations of floating point data, the
range and precision of floating point numbers differs on the two systems
according to the following tables:

Table 2-1. VMS C Floating Point Types

Format Approximate Range of Ixl Approximate Precision

F_floating O.29E-38 to 1. 7E38 7 decimal digits

D_floating O.29E-38 to 1. 7E38 16 decimal digits

G_floating O.56E-308 to O.99E308 15 decimal digits

Table 2-2. HP-UX C Floating Point Types

Format Approximate Range of Ixl Approximate Precision

float 1.17E-38 to 3.40E38 7 decimal digits

double 2.2E-308 to 1.8E308 16 decimal digits

• VMS C permits the use of $ within an identifier. This is not supported
on HP-UX.

• VMS C identifiers are significant to the 31st character. HP-UX C
identifiers are significant to 255 characters.

• Register declarations are handled differently in VMS. The register
reserved word is regarded by the compiler to be a strong hint to assign
a dedicated register for the variable. On Series 300 the register
declaration causes an integral or pointer type to be assigned a dedicated
register to the limits of the system unless full optimization is requested,
in which case the compiler ignores register declarations. Series 800 treats
register declarations as hints to the compiler.

• If a variable is declared to be regi st er in VMS and the & address operator
is used in conjunction with that variable, no error is reported. Instead,
the VMS compiler converts the class of that variable to be auto. HP-UX
compilers will report an error.

Porting VMS Code to HP-UX 2-11

• Type conversions on both systems follow the usual progression on
implementations of UNIX. Both systems use conventions commonly
referred to as unsign preserving. For example, a binary arithmetic
operation involving an unsigned short will coerce that operand to an
unsigned int before it is used in the operation and the type of the result
will be unsigned. Conversions of floats or doubles to int are done by
truncation on both systems.

• Character constants (not to be confused with string constants) are
different on VMS. Each character constant can contain up to four ASCII
characters. If it contains fewer, as is the normal case, it is padded on
the left by NULs. However, only the low order byte is printed when the
%c descriptor is used with printf. Multicharacter character constants
are treated as an overflow condition on Series 300 if the numerical value
exceeds 127 (the overflow is silent). Series 800 detects all multicharacter
character constants as error conditions and reports them at compile time.

• String constants can have a maximum length of 65535 characters in VMS.
They are essentially unlimited on HP-UX.

• VMS provides an alternative means of identifying a function as being the
main program by the use of the adjective main program that is placed on
the function definition. This extension is not supported on HP-UX. Both
systems support the special meaning of main 0, however.

• VMS implicitly initializes pointers to O. HP-UX makes no implicit
initialization of pointers unless they are static so dereferencing an
uninitialized pointer is an undefined operation on HP-UX.

• VMS permits combining type specifiers with typedef names. For example:

typedef long t;
unsigned t x;

is permitted on VMS and Series 300 but not on Series 800.

Preprocessor Features

• VMS supports an unlimited nesting of #includes. HP-UX guarantees
only 11 levels of nesting.

• The algorithms for searching for #includes differs on the two systems.
VMS has two variables, VAXC$INCLUDE and C$INCLUDE which control the

2-12 Porting VMS Code to HP-UX

order of searching. HP-UX follows the usual order of searching found on
most implementations of UNIX.

• #dictionary and #module are recognized in VMS but not on HP-UX.

• The following words are predefined in VMS but not on HP-UX: vms, vax,
vaxc, vax11c, vms_version, CC$gfloat, VMS, VAX, VAXC, VAX11C, and
VMS_ VERSION.

• The following words are predefined on HP-UX but not in VMS:
hp9000s200 on Series 300
hp9000s300 on Series 300
hp9000s800 on Series 800
hpux and unix on all HP-UX systems.

• HP-UX preprocessors do not include white space in the replacement text
of a macro. The VMS preprocessor includes the trailing white space. If
your program depends on the inclusion of the white space, you can place
white space around the macro invocation.

Compiler Environment

• In VMS, files with a suffix of . C are assumed to be C source files, .OBJ
suffixes imply object files, and . EXE suffixes imply executable files. HP­
UX uses the normal conventions on UNIX that . c implies a C source file,
.0 implies an object file, and a. out is the default executable file (but
there is no other convention for executable files).

• varargs is supported on VMS and all HP-UX implementations. See
vprintf (3S) and varargs (5) in the HP- UX Reference for a description
and examples.

• Curses is supported on VMS and all HP-UX implementations. See
curses (3X) in the HP- UX Reference for a description.

• VMS supports VAXC$ERRNO and errno as two system variables to
return error conditions. HP-UX supports errno although there may be
differences in the error codes or conditions.

• VMS supplies getcharO and putcharO as functions only, not also as
macros. HP-UX supplies them as macros and it also supplies the system
functions fgetc 0 and fputc 0 which are the function versions.

Porting VMS Code to HP-UX 2-13

• Major differences exist between the file systems of the two operating
systems. One of these is that the VMS directory SYS$LIBRARY contains
many standard definition files for macros. The HP-UX directory
/usr/inelude has a rough correspondence but the contents differ greatly.

• A VMS user must explicitly link the RTL libraries SYS$LIBRARY: VAX­
CURSE.OLB, SYS$LIBRARY:VAXCRTLG.OLB or SYS$LIBRARY:VAXCRTL.OLB
to perform C input/output operations. The HP-UX stdio utilities are
included in /lib/libe. a, which is linked automatically by ee without
being specified by the user.

• Certain standard functions may have different interfaces on the two
systems. For example, strepy 0 copies one string to another but the
resulting destination may not be NUL terminated on VMS whereas it is
guaranteed to be so on HP-UX.

• The commonly used HP-UX names end, edata and etext are not
available on VMS. They are available on HP-UX.

2-14 Porting VMS Code to HP-UX

The FORTRAN Language

Because VAX VMS FORTRAN has been a popular programming environment
for many years, an enormous reservoir of FORTRAN programs exist. Although
most of these programs use extensions specific to this environment, Hewlett­
Packard Company realizes that these programs represent a substantial software
investment. Consequently, an effort has been made to understand the differ­
ences between VAX VMS FORTRAN and HP-UX FORTRAN and to provide
mechanisms to make porting of these programs easier.

As is the case with most FORTRAN implementations, the most difficult areas of
compatibility are in the areas of operating system interfaces, file manipulation,
and input/output. To some extent there are differences in extended language
feature sets and compiler options that are also irksome.

Both the VMS and the HP-UX compilers support the full ANSI FORTRAN77
standard and Mil-Std-1753 extensions. However, the VAX VMS compiler has
evolved from ANSI FORTRAN66, an earlier standard. It therefore supports
many language features that predate the current standard. It also supports a rich
set of extensions peculiar to the VMS environment. Consequently, this section
primarily describes the differences between the extensions to the FORTRAN77
standard.

Comparisons of Features

The next several subsections compare the features of VAX VMS extensions to
ANSI FORTRAN 77 and HP-UX implementation notes for each feature. Each
item is supported on all HP-UX implementations unless stated otherwise. The
features change dramatically from one release to the next. This manual reflects
only the Series 300 and Series 800 7.0 releases.

Character Sets

• Lower case ASCII letters are folded onto their upper case counterparts
except within Hollerith or quoted strings. This is the default for VMS
and HP-UX. HP-UX also provides compiler options for making lower case
and upper case ASCII characters distinct .

• <tab> characters. Tabs have the same behavior on VMS and HP-UX
implementations between columns 1-72.

Porting VMS Code to HP-UX 2-15

• Quotation mark ("), underscore (_), exclamation point (!), dollar sign ($),
ampersand (&), and percent sign (%) are supported.

• <Control> L within source code for newpage.

• Left and right angle brackets « and ». These are used only to delimit
variable expressions within formats. The variable must be simple on Series
800.

• Radix-50 character set is not supported on HP-UX.

Control Statements

• The DO ... WHILE control construct.

• The DO . .. END DO control construct.

• Forcing FORTRAN66 semantics on DO loop evaluation by requiring a
minimum of 1 iteration of the loop can be enabled via a compiler option.

• Jumps into IF blocks or ELSE blocks are allowed.

• Extended range DO loops are permitted. That is, jumps out of a DO
loop to other executable code so long as control eventually returns back
to within the DO loop by means of an unconditional GOTO are allowed.

Data Types and Constant Syntaxes.

• The BYTE data type.

• The LOGICAL*l, LOGICAL*2, LOGICAL*4 data types.

• The INTEGER*2 and INTEGER*4 data types.

• The REAL*4, REAL*8, COMPLEX*8 and COMPLEX*16 data types.

• REAL*16 is supported on Series 800 only.

• The DOUBLE COMPLEX data type (synonym for COMPLEX*16).

• Octal constants of the form 0' ddd' or 'ddd' o.
• Hexadecimal constants of the form Z' ddd' or 'ddd' x.

• Octal, hexadecimal and Hollerith constants are considered to be "type­
less" and may be used anywhere a decimal constant may be used.

2-16 Porting VMS Code to HP-UX

• Hollerith is supported on all HP-UX implementations but in different
ways. On HP-UX compilers Hollerith is treated internally as a synonym
for a quoted character constant.

• Character constants have a maximum length of 2000 characters on VMS
and on Series 300, unlimited length on Series 800.

• RECORD and STRUCT data types are supported on both Series 300 and
800. Default alignment differs from VMS. On the Series 300 only, use the
NOSTANDARD ALIGNMENT directive to force VMS alignment

• Octal constants of the form "ddd are not supported on HP-UX.

• REAL*8 (D_fioating) and COMPLEX*16 (D_fioating) are not supported
on HP-UX.

General Statement Syntax and Source Program Format

• Exclamation point can be used for end of line comments.

• D is recognized in column 1 for debug lines.

• INCLUDE 'filename' is allowed for including source statements.

• Sequence numbering in columns 73-80. VMS ignores sequence numbers.
HP -UX ignores anything in columns > 72.

• 99 continuation lines are allowed.

• An initial tab followed by a non-zero digit is interpreted as a continuation
line.

• Up to 132 columns can be made significant under a VMS compiler option.
Not supported on HP-UX.

• DATA statements can be interspersed with specification statements.

• DATA statements can be interspersed with executable statements only
on Series 300, and the - K option must be specified.

• Alternate forms of data type length specification, for example:

INTEGER FOO*4

• Variables may be initialized when they are declared, for example:

INTEGER IARRAY(3) /4,5,6/

Porting VMS Code to HP-UX 2-17

• DATA statements may be used for initialization of common block
variables outside of BLOCK DATA subprograms.

• Octal, hexadecimal and Hollerith constants are allowed within DATA
statements.

• Octal, decimal, hexadecimal, and Hollerith constants may be used within
DATA statements to initialize CHARACTER * 1 variables.

• Two arithmetic operators may be consecutive if the second is a unary
operator. Beware that precedence may be changed; for example:

I = IA + -3

• INCLUDE 'Library (module)' for including selected library routines is
not supported on HP-UX.

Input/Output Statements

• DECODE/ENCODE.

• NAMELIST directed I/O.

• List directed internal I/O.

• Files opened for DIRECT access can have sequential I/O operations
performed.

• The TYPE statement.

• An optional comma (,) is allowed to precede the iolist within a WRITE
statement; for example:

WRITE(6. 100) . A. B

is equivalent to

WRITE(6. 100) A. B

• The RECL I/O specifier for an OPEN statement will be converted to
INTEGER if it is not already.

• The UNIT and REC I/O specifiers will be converted to INTEGER if they
are not already. This is on Series 300 only.

• Variable format expressions are supported on Series 300 and partially on
800 where the format expression can be a variable or a symbolic constant.

2-18 Porting VMS Code to HP-UX

• The RECL I/O specifier counts words on VMS but bytes on HP-UX.

• The FILE I/O specifier must be CHARACTER on HP-UX.

• The ACCESS='APPEND' specifier for the OPEN statement IS not
supported on HP-UX.

• 0 and Z field descriptors.

• The $ edit descriptor.

• The H field descriptor can be used only with WRITE on HP-UX. VMS
permits it to be used with READ as well.

• The Q edit descriptors is supported on Series 800 only.

• Default field descriptors are not supported on HP-UX.

• $ and ASCII NUL carriage control characters are not supported on HP­
UX.

• The ACCEPT statement.

• DEFINE and FIND are not supported on HP-UX.

• DELETE, REWRITE, and UNLOCK statements are supported on Series 800.

• Key-field and key-of-reference specifiers are supported on Series 800.

• The VMS concept of indexed file access is supported only on Series 800.

• Unsupported VMS keywords and I/O specifiers are flagged.

Porting VMS Code to HP-UX 2-19

• The following VMS keywords are supported only on Series 800 while Series
300 gives a nonfatal warning and ignores the keyword clause:

KEY
KEYED
KEYID
READONLY
RECORDTYPE
SHARED

• HP-UX implementations give a nonfatal warning and ignores the keyword
clause for the following VMS keywords:

ASSOCIATEVARIABLE
BLOCKSIZE
BUFFERCOUNT
CARRIAGECONTROL
DEFAULTFILE
DISP
DISPOSE
EXTENDSIZE
INITIALSIZE
MAXREC
NAME
NOSPANBLOCKS
ORGANIZATION
RECORDSIZE
TYPE
USEROPEN

• A comma (.) can be used to separate numeric input data to avoid having
to blank fill (i.e. short field termination).

• Extraneous parentheses are permitted around I/O lists for READ and
WRITE statements on VMS and the Series 300 only; for example:

WRITE (6. 100) (A. B. C)

Intrinsic Functions

• Mil-Std-1753 intrinsics ISHFT, ISHFTC, IBITS, BTEST, IBSET, and
IBCLR are supported.

• The Mil-Std-1753 subroutine MVBITS is supported.

• ZEXT is supported.

2-20 Porting VMS Code to HP-UX

• Transcendental intrinsics that take arguments in degrees are:

ACOSD
ASIND
ATAN2D

ATAND
COSD
DACOSD

DASIND
DATAN2D
DATAND

DCOSD
DSIND
DTAND

SIND
TAND

• The following VMS specific intrinsics are supported:

AIMAXO CDSQRT lIB SET lISHFTC INOT JIOR JMINI
AIMINO DFLOAT lIDIM IISIGN JIABS JISHFT JMOD
AJMAXO DFLOTI lIDNNT IIXOR JIAND JISHFTC JNINT
BITEST DFLOTJ lIEOR IMAXO JIBITS JISIGN JNOT
BJTEST DREAL lIFIX IMAXI JIDIM JIXOR
CDABS lIABS lINT IMINO JIDNNT JMAXO
CDEXP lIAND lIOR IMINI JIEOR JMAXI
CDLOG IIBITS lISHFT ININT JINT JMINO

• VMS "system" support subprograms (DATE, EXIT, IDATE, TIME,
SECNDS, RAN) are supported on Series 300 and 800 as compiler options.
These routines are not compatible with HP-UX system functions of the
same name. ERRSNS is not supported on HP-UX.

• VMS specific intrinsics to support the REAL*16 data type are supported
on Series 800.

Specification Statements

• IMPLICIT NONE turns off default type rules for variables.

• This limited number of the intrinsic functions is allowed to be used within
the PARAMETER statement to define constants:

ABS CONJG
CHAR DIM
CMPLX DPROD

lAND
ICHAR
IEOR

IMAG
lOR
ISHFT

LGE
LGT
LLE

LLT
MAX
MIN

MOD
NINT
NOT

Arguments to these functions must be constants in this context.

• Support for the alternate form of the PARAMETER statement with
different semantic connotations. For example:

Porting VMS Code to HP-UX 2-21

PARAMETER ISTART = 3

• Symbolic constants may be used in run time formats.

• The VIRTUAL statement is supported.

• Multidimensional arrays may be specified with only one subscript within
EQUIVALENCE statements.

• The VOLATILE statement is supported.

• Symbolic constants may themselves be used to define COMPLEX
symbolic constants within a PARAMETER statement on VMS but not
on HP-UX.

• The NOF77 interpretation of the EXTERNAL statement (non-ANSI
semantics) is not supported on HP-UX.

Subprograms

• Entries in a subprogram must all be the same type, but may have different
length specifiers.

CHARACTER*10 FUNCTION FRED(A)

CHARACTER*5 TOM

ENTRY TOM() ! Not ANSI but allowed on HP-UX and VMS.

END

• Actual parameters may be octal or hexadecimal when the corresponding
formal parameters are CHARACTER type.

• Hollerith actual arguments are permitted. However, the corresponding
formal parameter should be CHARACTER type.

• %loc is recognized as a built-in function to compute the internal address
of a datum.

• %val, and %ref are supported within actual argument lists, but %descr is
not. The $alias compiler directive provides the same functionality and
it is supported on all HP-UX implementations.

• Implementations recognize the alternate syntax for specifying the type of
functions within a function declaration; for example:

2-22 Porting VMS Code to HP-UX

INTEGER FUNCTION FOO*2(X, Y)

• Calls to subprograms can have "missing" actual arguments whose
positions are indicated by a comma (,). The compiler implicitly assumes
that the actual argument value is 0 and it is passed by value. For example:

x = FOOe Y)

is equivalent to

x = FOO(O, Y)

• &label can be used in place of *label when specifying alternate returns.

• The controlling expression for an alternate return will be converted to
INTEGER if necessary only on Series 300.

Symbolic Names

• Symbolic names maximum length. VMS allows 31 characters within
symbolic names, all significant. All HP-UX implementations allow at
least 255 characters within symbolic names, all significant.

• Underscore in names.

• Dollar sign in names.

Type Coercions

• Arithmetic operations involving both COMPLEX*8 and REAL*8 ele­
ments are computed using COMPLEX* 16 arithmetic on all VMS and
HP-UX implementations.

• The numeric operand of a computed GOTO statement will be converted
to an INTEGER, if it is not already, on all VMS and HP-UX implemen­
tations.

• Character substring specifiers may be non-integer. They are implicitly
converted to integer by truncation.

• Noninteger array bound and subscript expressions will be converted to
INTEGER by truncation on all HP-UX implementations.

• Character constants can be used in a numeric context; they are interpreted
as Hollerith. Character constants and Hollerith are synonymous.

Porting VMS Code to HP-UX 2-23

• Logical operands can appear in arithmetic expressions and numeric
operands can appear in logical expressions on Series 300. They can appear
on Series 800 if the compiler directive HP9000 LOGICALS or FTN3000_66
LoGICALS is used.

Miscellaneous

• . XOR. and . NEQV. are functionally equivalent operators.

• Null strings are allowed in character assignments. For example:

c = ";

• VMS represents. false. by 0 and . true. by -1. By default on HP­
UX, logical . false. is represented as 0 on HP-UX and . true. is
represented by any non-zero bit pattern. This difference is noticeable
chiefly when equivalencing LOGICAL variables to INTEGER variables.
Series 300 and 800 can specify the +E2 command line option or the
NO STANDARD LOGICALS directive to cause the compiler to generate the
VMS representations for logicals.

Data Representations in Memory

The internal allocation of memory for variable storage is primarily of interest in
situations where:

• Large amounts of local data are required
• When equivalencing the same storage locations with different data types

Large Amounts of Local Data

You should have few problems porting programs that require "large" local data
storage onto HP-UX. On HP-UX, data storage is limited only by the system
limits for the maximum run time stack size and maximum process size. These
limits are set to large default values and are further configurable by your system
administrator. See the HP-UX System Administrator Manual for further details.

Equivalencing of Data

The problem with memory allocation usually involves equivalencing of data. In
general, VMS data types take the same number of 8-bit bytes as their HP­
UX counterparts. The internal representations of logical, integer, floating point,

2-24 Porting VMS Code to HP-UX

Hollerith and character data types are not necessarily the same, however, and
programs that depend them must be modified.

Another problem with equivalenced data is that the alignment restrictions on the
various data types differs between VMS and HP-UX and between the various HP­
UX architectures. VAX VMS will permit a datum to begin on an arbitrary byte
boundary, whereas HP-UX systems generally require that multibyte data types
be aligned in memory on specific boundaries. See Table 4-4 for specific alignment
requirements for the different architectures on HP-UX. The FORTRAN compilers
on HP -UX normally allocate data storage to conform to alignment restrictions
automatically. When using the EQUIVALENCE statement to force the overlay of
different data types, however, the compilers do not have the freedom to allocate
memory according to their own alignment rules. If an EQUIVALENCE class
forces an illegal alignment, HP-UX compilers will report an error at compile time
and refuse to generate further code.

Multibyte data types require a minimum of even byte alignment on HP-UX.
For performance reasons, 4 or 8 byte data types are normally further restricted
to four or 8 byte alignment. If it is necessary to use the minimum even byte
alignment because of EQUIVALENCE statement structure, both Series 300
and Series 800 have a +A compile line option. In addition, the Series 800 has
an HP1000 ALIGNMENT ON inline compiler option that will cause data storage
to use the minimum even byte alignment for multibyte data types. There
are performance penalties incurred when these options are in effect. Memory
references to minimally aligned data can slow 0-20% on a Series 300 and 0-
200% on a Series 800 when these options are used. Since FORTRAN allows for
separate compilation of different program units, it is advisable to compile only
the minimum number of program units with these options turned on. Program
units that share COMMON areas should be compiled consistently with respect
to the alignment options.

For example, the following program will not compile on either the Series 300 or
the Series 800 without special alignment instructions:

program bench
integer*2 i2. j2
real*8 a(1024). b(1024). c(1024)
common i2. a. b
integer*2 jarray(10)
equivalence (jarray(1). i2). (jarray(2). a(1))
end

Porting VMS Code to HP-UX 2-25

If +A is specified on a Series 300 or 800 or $HP1000 ALIGNMENT ON is specified on
a Series 800, the program will compile and produce the same results.

VMS-Style records are supported on Series 300 and 800 FORTRAN. This makes
interlanguage communication easier. If VMS alignment of structure members is
required, specify the NOSTANDARD ALIGNMENT option. This option has no effect
on the byte ordering of data within structure fields.

See Table 4-4 for specific alignment requirements for Series 300 and 800.

The Effects of Recursion on Local Variable Storage

Recursion, or the ability of a subprogram to call itself directly or indirectly, is a
powerful programming tool that has been implemented in all HP-UX FORTRAN
compilers. It is an extension to ANSI FORTRAN and it is not available on
VMS. In normal circumstances a non-recursive VMS program should see no effect
from the recursive capabilities of an HP-UX compiler. There are, however, some
attributes of the implementations of recursion that may give you a surprise if
your program depends on non-ANSI features.

Inherent in a compiler supporting recursion is the introduction of a run time stack
which contains activation records for each invocation of a subprogram. During
the execution of your program an activation record is constructed on the run time
stack when a subprogram is entered and it is destroyed when the subprogram is
exited. During the activation of this subprogram all local data is normally stored
within this record. The compiler allocates a location for each local variable within
the activation record relative to the beginning of the record. All operations that
relate to that variable will use this relative address even though the actual address
of the beginning of the activation record is not known until run time and in fact,
depending on the order of subprograms being executed, the location of various
activation records for the same function may vary in absolute location on the
stack as the program executes. Since the locations of the activation records
themselves may vary, so may the locations of the local data storage within them.

Many non-recursive implementations of FORTRAN do not use a relative
addressing scheme; rather, they simply assign a permanent absolute address for
a datum that is to be used throughout the execution of the program. The effect
is as though the variable had been designated as a SAVE variable; once a value
has been assigned to the variable, it remains with that variable until another
assignment. Neither ANSI nor HP-UX support this behavior except for variables

2-26 Porting VMS Code to HP-UX

that are explicitly SAVEd or in COMMON. If a subprogram has an uninitialized
variable on an HP-UX FORTRAN implementation, the initial value is random.
It will in general not be the value left when the subprogram was last executed
and exited. The effect to the program may be unpredictable.

Some older programs have been written with the assumption that an uninitialized
local variable is implicitly initialized to 0 as execution begins. Such initialization
is not supported by ANSI or HP-UX. Your program should not rely on this
behavior since it will invariably become a subtle bug sometime during the life of
the program. ANSI also does not support the implicit initialization of a common
region; however, HP-UX, as a feature of its implementation, does initialize
common regions to 0 unless otherwise initialized via DATA statements.

In most cases, programs that rely on the above assumptions do so unintentionally,
since they seem to work correctly on the system where they were developed.
It is only when they are ported and the assumptions fail that it is apparent
that something is wrong. The usual indications of a problem involving these
assumptions is that the problem program appears to be nondeterministic. That
is, it seems to give different results (or errors) at different times for the same data
or it suddenly crashes on data that works on the original architecture.

Finding bugs of this type is a tough problem as are most errors of omission.
On HP-UX there are some tools that may be useful. First, the -K compiler
option causes static memory allocation for local variables. This has the effect of
making all local variables SAVE variables and it forces an implicit initialization of
these variables to O. If the program behaves differently with -K than without it,
chances are good that somewhere there is at least one variable that's improperly
initialized. Specifying -K during compilation typically has a small effect on
program performance in the range of 0 to 5% degradation. Since data is staticly
stored using this option, your program will have a larger disk image as well.
Second, the global optimizer (enabled when -0 is specified on the command line)
will print a warning on stderr for most uninitialized variables. Finally, you can
use the cross referencing option to help look for uninitialized variables.

Porting VMS Code to HP-UX 2-27

Resolving System Name Conflicts

Occasionally, when porting a program from the non-HP-UX environment, a user­
defined subroutine or function name will conflict with a system routine name or a
library function name. The result may be an inexplicable behavior or a program
crash. If you suspect a problem in this area you can specify the -U compiler option
on all HP-UX FORTRAN implementations. This option forces the compiler to
generate external names in upper case, regardless of how they are declared. Since
all system routine names and library names contain at least one lower case letter,
name conflicts are there by avoided.

Predefined and Preconnected Files

VMS predefines several logical file names that the operating system has associated
with particular file specifications. HP-UX, since it supports FORTRAN as one
of many different languages each having different input/output characteristics,
generally does not support predefined logical file names. The one exception on
HP-UX is /dev/null, which is the "NULL" device or bit bucket.

HP-UX FORTRAN, on the other hand, uses a concept of preconnected files
for common input/output tasks. There is a rough correspondence between the
predefined logical file names on VMS, and the preconnected files available on
HP-UX that you should consider.

HP-UX and other implementations of UNIX have a vastly different view of files
from VMS. It is beyond the scope of this manual to discuss these differences; you
should review the HP- UX Reference Section 9 and the Shells and Miscellaneous
Tools tutorial (the Bourne Shell section) from HP- UX Concepts and Tutorials to
get an overview of file concepts. Only topics of concern with the preconnected
files are discussed here.

Three files of special interest on HP-UX FORTRAN are standard in (stdin),
standard out (stdout) and standard error (stderr). By default stdin is the
input device normally associated with your keyboard. By default stdout is
connected to your output device (CRT). Stderr is similar to stdout except
that it is normally used to report error messages rather than normal output.
Unlike stdout, however, it is normally unbuffered so that in the event of an
unanticipated halt of a program, error messages will be printed. It is normally
associated with the same output device as stdout. All three of these files can

2-28 Porting VMS Code to HP-UX

be easily redirected from or to other files or pipes by means of HP-UX shell
commands.

ANSI requires that all files be OPENed before they are accessed. As an extension
to the standard, the Series 800 compiler allows auto-opening of files as does VMS.
You can read or write to a file that has not been opened with the OPEN statement.
See the Series 800 reference manual for the connected file name. As a convenience
to you, HP-UX FORTRAN OPENs files automatically by associating unit 5 with
stdin, unit 6 with stdout and unit 7 with stderr. Thus, for example, the
following program will execute correctly on HP-UX.

program iotest
C Note that no files have been opened by the program itself.
write(6,100)

100 formate' Hello world')
C PRINT statement output goes to stdout.
print *, 'HP-UX'
end

Closing the preconnected files stdin, stdout, or stderr has no effect. However,
it is allowable to reopen units 5, 6, or 7 to other files as you desire. If so, the
preconnections are closed in accordance with ANSI. Stdin, stdout, and stderr
are reconnected when the newly assigned file is closed.

In the following example, unit 6 is used for stdout and a user-defined file.

program redirect6
open (6,file='fred')
write(6,*) 'file call to file fred'
close(6)
write(6,*) 'file call to stdout'
end

The output to file fred in the current directory is

file call to file fred

The output to stdout (normally your CRT) is

file call to stdout

The following table shows the rough correspondence with VMS predefined logical
file names:

Porting VMS Code to HP-UX 2-29

Table 2-3. VMS Predefined File Names

VMS HP-UX

SYS$COMMAND stdin

SYS$DISK (no default correspondence)

SYS$ERROR stderr

SYS$INPUT stdin

SYS$NODE (no default correspondence)

SYS$OUTPUT stdout

SYS$LOGIN (no default correspondence)

SYS$SCRATCH (no default correspondence)
Current directory is used unless
an absolute path name is
included.

The Pascal Language
No information is currently available on VMS Pascal.

2-30 Porting VMS Code to HP-UX

3
Porting from 8504.3 to HP-UX

No information is currently available on BSD4.3.

Porting from 8S04.3 to HP-UX 3-1

4
Porting Across HP-UX

While HP-UX is highly standardized, it is not entirely the same on all machines
or implementations. Not all system or language features are present on
every implementation, nor is it possible to isolate all hardware architecture
characteristics from a user program. This chapter can help you port programs
from one HP-UX implementation to another. It presents information about
the internal organization of data structures and language features used by C,
FORTRAN, and Pascal on all HP-UX implementations.

FORTRAN and Pascal programs must deal with porting across languages since
HP-UX is generally a C implementation. HP-UX provides library support, but it
is not always written in the same language as your own program. Consequently,
this chapter addresses interlanguage communication.

Interlanguage communication is generally based on an external routine concept.
That is, communication between routines is usually through parameter lists and
function results. It is not possible to have routines written in another language
access local data except through parameter lists, and in the case of Pascal,
the scoping of global routines written in another language is not supported.
Given this constraint, considerable effort has been made to make routine calling
protocols compatible across language boundaries.

Input / output operations are best performed in the language of the main
program because each language has startup code that is specific to input/output
initialization. Methods exist to do input/output from external routines, but
they are not generic. Difficult problems can be encountered if input/output is
performed from more than one language at a time since each language has its own
buffers, so it is recommended that input/output be done in the base language.

Unless otherwise noted, the material discussed in this chapter pertains to all
HP-UX systems except the Integral Personal Computer.

Porting Across HP-UX 4-1

General System Dependencies
Certain architectural dependencies affect more than one language. This section
describes such areas.

Identifying the system

When writing programs to run on multiple systems it is sometimes necessary to
determine the system configuration at run time. The uname system call can be
used to determine machine type and other pertinent information. See also section
"Run Time Hardware Identification" in Chapter 2 for distinguishing floating
point hardware on Series 300.

Parameter Lists

On the Series 300, parameter lists grow towards higher addresses. To use a
pointer to step through a parameter list, increment the pointer as shown in the
following C example:

parprint (a,b,c)

{
int a,b,c;

int i, *ptr;

ptr = &a; /* SET POINTER TO ADD. OF FIRST PARAM */
for (i = 1; i <= 3; i++) /* PRINT EACH PARAM */

{

printf (lI%d\n II ,*ptr) ;
++ptr;
}

} /* END parprint */

Calling this function would print its three parameters in order.

On the Series 800, parameter lists are usually stacked towards decreasing
addresses (though the stack itself grows towards higher addresses). The compiler
may choose to pass some arguments through registers for efficiency; such
parameters will have no stack location at all.

4-2 Porting Across HP-UX

For portability in C, it is highly recommended that variable argument lists
be handled using varargs. See vprintf (38) and varargs (5) in the HP- UX
Reference for details and examples of varargs use.

Parameter passing mechanisms are highly implementation dependent across the
HP-UX systems~ In most cases these mechanisms are invisible to you unless you
are calling routines in another language. See the HP- UX Assembler Reference
Manual and ADB Tutorial for Series 300 for a further description for this case
on Series 300.

Memory Organization

On HP-UX computers, the most significant byte of a datum has the lowest
address. This is the address used to access the datum as shown in Figure 4-
1.

The conventions of bit numbering differs on HP-UX implementations. On Series
300, the most significant bit of a long word is bit 31 whereas on the Series 800,
the most significant bit is bit O.

Series 300 Series 800

Address Address

7 0 .-Least
000103

Significant Byte

24 31
000103

15 8 16 23
000102 000102

23 16 8 15
000101 000101

31 24 .-Most 000100
0 7

000100
Significant Byte

T

1 Byte 1 Byte

Figure 4-1. Memory Organization

Porting Across HP-UX 4-3

Code/Data Size Limitations

HP-UX systems are not limited in code or data size except by system
configuration parameters and file system capacity. These are adjustable by your
system administrator. See the HP- UX System Administrator Manual for each
system for details.

Linker differences

HP-UX compilers and those on other implementations of UNIX generate object
files that are eventually linked together to form an executable program. Included
in these object files is space for initialized data. On the Series 300, if a global data
item (such as a COMMON region in FORTRAN) is declared in two or more files,
the size allocated for that data item will be the size of the initialized data, even
if the declared size is different elsewhere. Hence programs that declare global
variables inconsistently will have unreliable results. The Series 800 linker, on the
other hand, will adjust the allocated space to fit the largest declaration.

Optimization

All HP-UX C and FORTRAN compilers will perform those optimizations that
are most effective on the particular architecture of the system. However, you
cannot assume that the same optimization techniques will be employed on all
HP-UX systems.

Beginning with release 6.5 the Series 300 C and FORTRAN 68020/68030
compilers have added an optional global optimization pass to the compilation
path. If - 0 or +02 is specified on the f77 command line the global optimization
pass will be enabled. -0 on previous Series 300 releases enabled peephole
optimization only; this is equivalent to specifying +01 on the 6.5 release. +03
enables the global optimizer and the procedure integrator.

Series 800 C, FORTRAN and Pascal compilers have always had global optimiza­
tion. -0 on Series 800 is roughly equivalent to -0 on Series 300 although specific
optimization techniques may differ between the two machines. Procedure inte­
gration is not performed.

4-4 Porting Across HP-UX

The C Language
To write portable programs in C, give attention to data sizes, parameter passing
conventions, and the exact specification of some operations. To avoid subtle
errors, be sure the system you move your programs to behaves in expected ways.
The next several sections describe areas where the HP-UX implementation of C
may deviate from other C compilers.

Data Type Sizes and Alignments

This table shows the sizes and alignments of the C data types on the different
architectures: (On the 300, this information applies to revision 5.15 and later.)

Table 4-1. C Data Types

Alignment Alignment
Type Size (300) (800)

char 8 bits byte byte

short 16 bits 2 byte 2 byte

int 32 bits 4 byte (2 byte in a struct, 4 byte
array, or union)

long 32 bits 4 byte (2 byte in a struct, 4 byte
array, or union)

float 32 bits 4 byte (2 byte in a struct, 4 byte
array, or union)

double 64 bits 4 byte (2 byte in a struct, 8 byte
array, or union)

pointer 32 bits 4 byte (2 byte in a struct, 4 byte
array, or union)

struct/union 4 byte (2 byte in a struct, 1,2,4 or 8 byte, depending
array, or union) on types of members

Porting Across HP-UX 4-5

The typedef facility is the easiest way to write a program to be used on systems
with different data type sizes. Simply define your own type equivalent to a
provided type that has the size you wish to use.

Example: Suppose system A implements int as 16 bits and long as 32 bits.
System B implements int as 32 bits and long as 64 bits. You want to use
32 bit integers. Simply declare all your integers as type MYINT, and insert the
appropriate typedef. This would be:

typedef long MYINT

in code for system A, and would be:

typedef int MYINT

in code for system B. #include files are useful for isolating the system dependent
code like these type definitions. For instance, if your type definitions were in a file
mytypes . h, to account for all the data size differences when porting from system
A to system B, you would only have to change the contents of file mytypes . h. A
useful set of type definitions is in /usr/include/model.h.

Char Data Type

The char data type defaults to signed. If a char is assigned to an int, sign
extension takes place. A char may be declared unsigned to override this default.
The line:

unsigned char ch;

declares one byte of unsigned storage named ch. On some non-HP-UX systems,
char variables are unsigned by default.

4-6 Porting Across HP-UX

Register Data Type

The register storage class is supported on Series 300 and 800 HP-UX, and if
properly used, can reduce execution time. Using this type should not hinder
portability. However, its usefulness on systems will vary, since some ignore it.
Refer to the HP- UX Assembler Reference Manual and ADB Tutorial for Series
300 for a more complete description of the use of the register storage class on
Series 300.

Identifiers

Identifiers can be as long as you want, but they have 255 significant characters.
For universally portable code to non HP-UX systems, use considerably less than
this. Eight significant characters for internal identifiers and six for external
identifiers (identifiers that are defined in another source file) are safe. Typical
C programming practice is to name variables with all lower-case letters, and
#define constants with all upper case.

Predefined Symbols

The following words are predefined on HP-UX: hp9000s200 and hp9000s300 on
Series 300 and hp9000s800 on Series 800. hpux and unix are predefined on all
HP-UX systems.

Note When C becomes standardized, predefined symbols may be
disallowed. In that event these symbols will not be predefined
for standard conforming programs.

Shift Operators

On left shifts, vacated positions are filled with o. On right shifts of signed
operands, vacated positions are filled with the sign bit (arithmetic shift). Right
shifts of unsigned operands fill vacated bit positions with 0 (logical shift). Integer
constants are treated as signed unless cast to unsigned.

Porting Across HP-UX 4-7

Sizeof

The sizeof operator yields an unsigned result. Therefore, expressions involving
this operator are inherently unsigned. Do not expect any expression involving
the sizeof operator to have a negative value; in particular, logical comparisons
of such an expression against zero may not produce the object code you expect
(See the following exam pIe) .

maine)
{

}

int i;

i = 2;
if «i-sizeof(i» < 0) /* sizeof(i) is 4, but unsigned! */
printf("test less than O\n");

else
printf("an unsigned expression cannot be less than O\n");

When run, this program will print

an unsigned expression cannot be less than 0

because the expression (i -sizeof (i) is unsigned since one of its operands is
unsigned (sizeof (i)). By definition an unsigned number cannot be less than 0
so the compiler will generate an unconditional branch to the else clause rather
than a test and branch.

4-8 Porting Across HP-UX

Bit Fields

Bit fields are assigned left to right and are unsigned regardless of the declared
type on Series 300 but they can be signed on Series 800. They are aligned so
they do not violate the alignment restriction of the declared type. Consequently,
some padding within the structure may be required. As an example,

struct foo
{

unsigned int a:3. b:3. c:3. d:3;
unsigned int remainder: 20;
};

For the above struct, sizeof Cstruct foo) would return 4 (bytes) because none
of the bitfields straddle a 4 byte boundary. On the other hand, the following
struct declaration will have a larger size:

struct fo02
{

unsigned char a:3. b:3. c:3. d:3;
unsigned int remainder:20;
};

In this struct declaration, the assignment of data space for c must be aligned so
it doesn't violate a byte boundary, which is the normal alignment of unsigned
char. Consequently, two undeclared bits of padding are added by the compiler
so that c is aligned on a byte boundary. sizeof Cstruct foo2) would return 6
(bytes).

Bitfields on HP-UX systems cannot exceed the size of the declared type in length.
The largest possible bit field is 32 bits. All scalar types are permissible to declare
bitfields, including enUill.

EnUill bitfields are accepted on all HP-UX systems. On Series 300 they are
implemented internally as unsigned integers. On Series 800, however, they are
implemented internally as signed integers so care should be taken to allow enough
bits to store the sign plus the magnitude of the enumerated type. Otherwise your
results may be unexpected.

Porting Across HP-UX 4-9

Division by Zero

Division by zero gives the run time error message Floating exception (core
dumped).

Integer Overflow

As in nearly every other implementation of C, integer overflow does not generate
an error. The overflowed number is "rolled over" into whatever bit pattern the
operation happens to produce.

Overflow During Conversion from Floating Point to Integral Type.

HP-UX systems will report a floating exception - core dumped at runtime
if a floating point number is converted to an integral type and the value is outside
the range of that integral type.

Structure Assignment and Functions

The HP-UX C compilers support structure assignment, structure valued func­
tions, and structure parameters. The structs in a struct assignment 81=82 must
be declared to be the same struct type as in:

struct s s1,s2;

Structure valued functions support storing the result in a structure:

s = fsO;

All HP-UX implementations allow direct field dereferences of a structure- valued
function. For example:

x = fsO .a;

4-10 Porting Across HP-UX

Null Pointers

Accessing the object of a null pointer is technically illegal. However, some versions
of C permit references to null pointers. If you try to read using a null pointer on
HP-UX, a value of zero is returned. The Series 800 compiler recognizes the -z
option which causes a run time error to be produced instead. Since some programs
written on other implementations of UNIX rely on being able to reference null
pointers, you may have to change code to check for a null pointer. For example,
change:

to:

if (ch_ptr != NULL && *ch_ptr != '\0')

If the hardware is able to return zero for reads of location zero (when accessing at
least 8 and 16 bit quantities), it must do so unless the -z flag is present. The -z
flag requests that SIGSEGV be generated if an access to location zero is attempted.
Writes of location zero may be detected as errors even if reads are not. If the
hardware cannot assure that location zero acts as if it was initialized to zero or
is locked at zero, the hardware should act as if the -z flag is always set.

Expression Evaluation

The order of evaluation for some expressions will differ between HP-UX
computers. This does not mean that operator precedence is different. For
instance, in the expression:

xi = f(x) + g(x) * 5;

f may be evaluated before or after g, but g(x) will always be multiplied by 5
before it is added to f (x). Since there is no C standard for order of evaluation of
expressions, avoid relying on the order of evaluation when using functions with
side effects and function calls as actual parameters. Use temporary variables if
your program relies upon a certain order of evaluation.

Porting Across HP-UX 4-11

Variable Initialization

On some C implementations, auto variables are implicitly initialized to O. This is
not the case on HP-UX and it is most likely not the case on other implementations
of UNIX. Don't depend on the system initializing your variables; it is not good
programming practice in general and it makes for nonportable code.

Conversions

All HP-UX C implementations are unsign preserving. That is, in conversions
of unsigned char or unsigned short to int, the conversion process first con­
verts the number to an unsigned into This contrasts to some C implementa­
tions that are value preserving (e.g. unsigned char terms are first converted
to char and then to int before they are used in an expression).

The following program will print:

Unsigned preserving
Unsigned comparisons performed

on HP-UX systems (and most other C implementations):

mainO
{

int i = -1;
unsigned char uc = 2;
unsigned int ui = 2;

if (uc > i)

printf("Value preserving\n");
else
printf("Unsigned preserving\n") ;
if (ui < i)
printf("Unsigned comparisons performed\n");

}

$TMPDIR

HP-UX compilers produce a number of intermediate temporary files for their
private use during the compilation process. These files are normally invisible to
you since they are created and removed automatically. If, however, your system is
tightly constrained for file space these files, which are usually generated on /tmp
or /usr/tmp, may exceed space requirements. By assigning another directory to

4-12 Porting Across HP-UX

the TMPDIR environment variable you can redirect these temporary files. See the
cc manual page for details.

Compiler Command Options

There are some minor differences between HP-UX C compiler options. If you
are using make, you may have to change the compile lines in your makefiles when
porting your code. Here is a list of the variant options. See the HP- UX Reference
for more details. Series 800 supports all these options.

Table 4-2. Differences in C Compiler Command Line Options

Option Effect Difference

-G Enable G profiling Supported on Series 300 only.

-w Pass options to subprocesses. System dependent options. See cc (1) in
the HP- UX Reference for details.

Shorthand for -W System dependent options. See cc (1) in
+<option> the HP- UX Reference for details.

-z Allow dereferencing of null Has no effect on Series 300 pointers.
/detairs.

-z Allow run time detection of Not supported on Series 300.
null pointers.

Calls to Other Languages

It is possible to call a routine written in another language from a C program, but
you should have a good reason for doing so. Using more than one language
in a program that you plan to port to another system will complicate the
process. In any case, make sure that the program is thoroughly tested in any
new environment.

If you do call another language from C, you will have the other language's
anomalies to consider plus possible differences in parameter passing. Since all HP­
UX system routines are C programs, calling programs written in other languages
should be an uncommon event. If you choose to do so, remember that C passes
all parameters by value except arrays. The ramifications of this depend on the
language of the called function (See Table 4-3).

Porting Across HP-UX 4-13

Table 4-3. C Interfacing Compatibility

C Pascal FORTRAN

char none byte

unsigned char char character (could reside on an
odd boundary and cause a
memory fault)

char* (string) none none

unsigned char* PAC+chr(O) (PAC = packed Array of char+char(O)
(string) array [1 .. n] of char)

short (int) -32768 .. 32767 (shortint on integer*2
Series 800)

unsigned short none (0 .. 65535 will generate a none
(int) 16-bit value only if in a packed

structure)

int integer integer (*4)

long (int) integer integer (*4)

unsigned (int) none none

float real real (*4)

double longreal real*8

type* (pointer) -var, pass by reference, or use none
anyvar

&var (address) addr(var) (requires $SYSPROG$) none

*var (deref) var- none

struct record (cannot always be done; record (Series 300 only)
C and Pascal use different
packing algorithms)

union record case of ... equivalence

4-14 Porting Across HP-UX

Calls to FORTRAN

You can compile FORTRAN functions separately by putting the functions you
want into a file and compiling it with the -c option to produce a .0 file. Then,
include the name of this .0 file on the cc command line that compiles your C
program. The C program can refer to the FORTRAN functions by the names
they are declared by in the FORTRAN source.

Remember that in FORTRAN all parameters are passed by reference so actual
parameters in a call from C must be pointers or variable names preceded by
the address-of operator (&). The following program uses a FORTRAN BLOCK
DATA subprogram to initialize a COMMON area and a FORTRAN function to
access that area.

The FORTRAN function and BLOCK DATA subprogram contained in file xx. f
are compiled using f77 -0 xx. f:

double precision function get_element(i,j)
double precision array
common /
get_element = array(i,j)
end

block data one
double precision array
common /a/array(1000,10)

ompile,10)

C Note how easy large array initialization is done.
data array /1000*1.0,1000*2.0,1000*3.0,1000*4.0,1000*5.0,

* 1000*6.0,1000*7.0,1000*8.0,1000*9.0,1000*10.0/
end

The C main program contained in file x. c is then compiled using:

cc x.c xx.o:

maine)
{

int i;

extern double get_element();
for (i=1; i <= 10; i++)

printf("element = %f\n", get_element(&i,&i));
}

Porting Across HP-UX 4-15

Calling FORTRAN subprograms from other languages presents special problems
if the subprograms do any I/O. In particular, file handling for FORTRAN requires
special startup code and exit code generally provided by the frtO. 0 link file. A
program that mixes I/O from FORTRAN subprograms and functions from other
languages is not recommended if the main program is not also in FORTRAN.

Calls to Pascal

Pascal gives you the choice of passing parameters by value or by reference (var
parameters). C passes all parameters by value, but allows passing pointers to
simulate pass by reference. If the Pascal function does not use var parameters,
then you may pass values just as you would to a C function. Actual parameters
in the call from the C program corresponding to formal var parameters in the
definition of the Pascal function should be pointers.

The one exception to the pass by value parameter passing mode in C is when an
array is used as a parameter. In this case, only the address of the first element
of the array is actually passed. To pass the the array by value, it is necessary to
enclose the array within a struct type. Arrays correlate fairly well between C
and Pascal because elements of a multidimensional array are stored in row major
order in both languages. That is, elements are stored by rows; the rightmost
su bscri pt varies fastest as elements are accessed in storage order.

Note that C has no special type for boolean or logical expressions. Instead, any
integer can be used with a zero value representing false, and non-zero representing
true (as in FORTRAN long logicals). Also, C performs all scalar math in full
precision (32-bit), the result is then truncated to the appropriate destination size.

The basic method for calling Pascal functions on the Series 300 is to put the
Pascal function into a module that exports the function, compile that file using
pc -c, and then link it with your main C program by including the name of the
Pascal.o file on the cc command line.

To call Pascal procedures from C or FORTRAN on the Series 800, the user must
first call the Pascal procedure U_INIT_TRAPS. See the HP Pascal Programmer's
Guide for details about the try-recover mechanism.

To call Pascal procedures from C or FORTRAN on the Series 300, the user
must first call the procedure aSID_ini tproc to initialize the heap, initialize the
escape (try/recover) mechanism, and set up the standard files input, output,
and stderr. At the end, a call to aSID_wrapup should be made. The trick to

4-16 Porting Across HP-UX

making this work is to call asm_ini tproc with the value 0 or 1 (0 = buffered
input; 1 = unbuffered input) as a parameter by reference (i.e., a pointer to 0).
Without this parameter, asm_initproc generates a memory fault. The following
page has an example.

The Series 300 C program shown below calls two Pascal integer functions:

main() /* The C main program */
{

int noe = 1;
int *C, *a_cfunc(), *a_dfunc();
int *noecho = &noe;

asm_initproc(noecho); /* Pascal initialization */
c = a_cfunc 0 ;
printf("%d\n",c);
c = a_dfunc 0 ;
printf("%d\n",c) ;
asm_wrapup(); /* Pascal closure */

}

The source below is for the Pascal module:

module a;
export
function cfunc integer;
function dfunc integer;

implement
function cfunc : integer;
var x integer;

begin
x := MAXINT;
cfunc x;

end;

function dfunc : integer;
var x integer;

begin
x := MININT;
dfunc := x;

end;
end.

Porting Across HP-UX 4-17

The command line for producing the Pascal relocatable object is

pc -c pfunc.p

The command line on Series 300 for com piling the C main program and linking
the Pascal module is then

cc x.c pfunc.o -lpc

or on Series 800 is

cc x.c pfunc.o -lcl

Which produces the following output:

2147483647
-2147483648

4-18 Porting Across HP-UX

The FORTRAN Language
All HP-UX FORTRAN compilers implement the full ANSI FORTRAN 77
language and MIL-STD-1753 extensions. In addition, many common extensions
found in other NON-HP-UX implementations have been added, particularly those
from FORTRAN 7x on HPIOOO systems and VAX VMS FORTRAN. See Chapter
2 for further details on VAX VMS feature extensions.

Data Type Sizes and Alignment

This table shows the sizes and alignments of the FORTRAN data types on the
different architectures:

Porting Across HP-UX 4-19

Table 4-4. FORTRAN Data Types

Alignment
Type Size (300)

character 8 bits 2 byte

Hollerith1 (character) 8 bits 2 byte

byte,logical*11/ 2 / 3 8 bits 2 byte

logical*21/ 2 16 bits 2 byte

integer*21/ 2 16 bits 2 byte

logical (*4) 2 32 bits 4 byte (2 byte
with +A option)

integer (*4) 2 32 bits 4 byte (2 byte
with +A option)

real (*4) 2 32 bits 4 byte (2 byte
with +A option)

real (*16)1/2 128 bits Not supported

double 64 bits 4 byte (2 byte
precision,real*82/ 3 with +A option)

complex (*8) 2 64 bits 4 byte (2 byte
with +A option)

double 128 bits 4 byte (2 byte
complex,complex*161/ 2/ 3 with +A option)

record 4 byte (2 byte
in array or
another record;
alignment
alterable using
NOSTANDARD
ALIGNMENT)

2

3

This type is an extension to ANSI FORTRAN77.
ANSI does not support a length descriptor "*n ".
Synonymous types.

4-20 Porting Across HP-UX

Alignment
(800)

1 byte

1 byte

1 byte

2 byte

2 byte

4 byte (2 byte with $HP1000
ALIGNMENT ON)

4 byte (2 byte with $HP1000
ALIGNMENT ON)

4 byte (2 byte with $HP1000
ALIGNMENT ON)

8 byte

8 byte (2 byte with $HP1000
ALIGNMENT ON)

4 byte (2 byte with $HP1000
ALIGNMENT ON)

8 byte (2 byte with $HP1000
ALIGNMENT ON)

Aligned on most restrictive
field

Alignment requirements for the larger data types can be reduced via the +A
compiler option on Series 300 and the $HP1000 ALIGNMENT ON inline option on
the Series 800. On the Series 800 ALIGNMENT has the HP9000_300 and HP9000_500
options" available. See Chapter 2 section "Data Representations in Memory" for
further details.

Long Identifiers

All HP-UX implementations allow identifiers to be at least 255 characters long
with the first 255 being significant.

Error Conditions

The various HP-UX FORTRAN compilers are based on different technologies.
So, it is not possible to detect compile time error conditions in the same ways
on each. Since some errors are detected at compile time on a Series 300, that
might be detected at link time on a Series 800, compile time error messages are
not compatible between the systems. Series 300 gives plain text error messages.
Series 800 gives error numbers with optional text messages in a different format.

Run time errors are much more compatible because both systems use a common
set of run time libraries. In most cases run time errors will be reported with
the same message and number on all HP -UX systems. Some exceptions may
be seen when arithmetic overflow/underflow conditions occur. On Series 300,
the various floating point options may cause slightly different arithmetic error
condition response at corner cases.

HP-UX compilers are more relaxed about statement sequencing than ANSI.
In many cases duplicate declarations are allowed, although the result may be
undefined if they are conflicting. Series 800 will issue a warning message,
DUPLICATE DECLARATION OR DEFINITION, USING FIRST TYPE (767).

If you will be porting to a non-HP system, then avoid using language extensions.
Inserting the line

$OPTION ANSI ON

at the beginning of your source will make the compiler include in the listing
warnings for uses of features that are not a part of the ANSI 77 standard. The
same effect can be accomplished by specifying -a on the command line.

Porting Across HP-UX 4-21

Note Lower case letters are not supported in ANSI FORTRAN 77.
If $OPTION ANSI ON is specified on Series 300, you will get a
non-fatal warning for each lower case letter, possibly resulting
in a large stderr file. The error will be written only once per
function on Series 800.

String Constants

String constants are limited to 9000 characters in length on Series 300 whereas
they are essentially unlimited on Series 800. If a longer constant is required on
the Series 300, it can be constructed by use of the / / concatenation operator.
Such concatenated strings have no length restrictions.

Array Dimension Limits

While ANSI requires that FORTRAN implementations support at least 7
dimensions, Series 300 permits up to 20. Series 800 makes no restrictions on
the number of array dimensions.

Data File Compatibility

Since all HP-UX FORTRAN implementations use the same run time I/O libraries
and data types are compatible on all HP-UX systems, unformatted data files
created on one system can be read on any other, if no records or structures are
used. Even they can be accessed compatibly if the appropriate alignment options
are set when they are written. The ability to read unformatted data files across
systems is very useful since unformatted I/O is typically the fastest data storage
and retrieval mode available.

For example, the following writer program creates an unformatted data file
testdata. This data file can be transported to any HP-UX system and
when read will give the same results with this exception; on the Series 800 a
compiler directive or HP9000_300 LOGICALS has to be used to make the internal
representations of logical values the same as those on Series 300.

4-22 Porting Across HP-UX

program testwriter
character*1 a
integer*2 b
logical*2 c
integer*4 d. ii
logical*4 e
real f
double precision g
complex h
double complex i

open (3.file='testdata' .form='unformatted')
do 10 ii = 1.5

a =
b
c
d

e =
f

char(ii+33)
ii

(mod(ii.2)
ii

(mod(ii.2)
ii

g ii

.eq.

.eq.

h = cmplx(ii.ii+1)
i = dcmplx(ii.ii+1)

0)

0)

write(3) a.g.b.g.c.g.d.g.e.g.f.g.h.i
10 continue

end

Here is the reader program:

program testreader
character*1 a
integer*2 b
logical*2 c
integer*4 d. ii
logical*4 e
real f
double precision g.g1.g2.g3.g4.g5
complex h
double complex i

open (3.file='testdata' .form='unformatted')
do 10 ii = 1.5

read(3) a.g1.b.g2.c.g3.d.g4.e.g5.f.g.h.i
print *.a.b.c.d.e.f.g.g1.g2.g3.g4.g5.h.i

10 continue
end

Porting Across HP-UX 4-23

The output of the testreader program will be the same on all HP-UX systems.

Formatted data files created on any HP-UX system will also be readable on all
HP-UX systems in the same manner.

Parameter Passing

All HP-UX FORTRAN compilers have implemented the $alias directive which
allows you to change addressing modes when calling routines in other languages.
The statement is source compatible across the HP-UX line with the exception
that %descr, which forces pass-by-descriptor addressing, has no meaning on
Series 300. %descr will be flagged as a fatal error on that system.

Series 800 FORTRAN normally uses pass-by-descriptor conventions when passing
character strings through parameters. The HP9000_300 CHARS or HP9000 CHARS
directives can be used to pass them in the same manner as is used on the Series
300. That is, the string length is passed as a hidden parameter at the end of the
parameter list, and the string is passed by reference.

Common Region Names

ANSI FORTRAN 77 prohibits the use of the same name for a common region and
a subprogram. However, some implementations do permit this overlapping as an
extension. User programs which use the same name for a common region and a
subprogram will not run correctly on the Series 300 unless the RENAME_COMMON
directive is specified. This directive is not necessary on the Series 800 because
the compiler supports the extension by default.

Note When using the RENAME_COMMON directive, the Series 300 com­
piler changes the external name of the common region. Programs
which interface to other languages and which depend on COM­
MON regions for communication will not work unless the ALIAS
directive is also used to modify the external name.

4-24 Porting Across HP-UX

Vector Instruction Set Subroutines

The following vector instruction set subroutines are supported on HP-UX:

DVABS DVMAX DVNRM DVSSB VADD VMIB VPIV VSUB
DVADD DVMIB DVPIV DVSUB VDI#subroutineM
DVDIV DVMIN DVSAD DVSUM VDOT VMOV VSDV VSWP
DVDOT DVMOV DVSDV DVSWP VMAB VMPY VSMY
DVMAB DVMPY DVSMY VABS VMAX VNRM VSSB

Compiler Options

The HP-UX FORTRAN compilers support different command line options. Table
4-5 on the following page has a list of the options that vary between the systems.
Options that are the same on both systems are not listed here. See the HP- UX
Reference for more details.

Porting Across HP-UX 4-25

Table 4-5. Differences in FORTRAN Compiler Command Lines

Option Effect Difference

-A Specify ANSI warning level S300 only

+A Force 2-byte data alignment S300 supports additional alignment
modes.

+B Special handling of backslash ("\") S300 only

+bfpa Floating point option S300 only.

+E3 Enable VMS character passing S800 only

+E4 Enable VMS I/O on format specifiers S800 only
A and R

+ffpa Floating point option S300 only

-G Berkeley style profiling S300 only

-K force static allocation S300 has side effects

+M Floating point option S300 only

+N Adjust table sizes S300 only

-0 Specify optimization level only S800 allows a qualifier

+0 Specify optimization level S300 only

+P Invoke procedure integrator S300 only

-R Specify real constant default sizes S300 only

+T Procedure traceback S800 only

-u Implicit typing off Can be overridden in a program unit
on S300

+U Case is significant S300 only

-w66 Suppress FORTRAN 66 warnings S300 only

-y Static analysis option S800 only

4-26 Porting Across HP-UX

Compiler Directives

Most compiler directives are portable across HP-UX; but, if not, the directive is
ignored and a warning message is issued.

Directives Only on Series 300

HP9000_800 ALIGNMENT INLINE NOSTANDARDALIGNMENT RENAME_COMMON

Directives Only on Series 800

CHECK_OVERFLOW EXTERNAL_ALIAS INIT SYSINTR
CODE FTN3000_66 LIST_CODE SYSTEM INTRINSIC
CODE_OFFSETS GPROF LOCALITY VERSION
CONTINUATIONS HP1000 NOSTANDARD IO
COPYRIGHT HP9000_500 PAGEWIDTH
DEBUG HP9000 CHARS SET
ELSE HP9000 LOG I CALS STANDARD_LEVEL
ENDIF IF SYMDEBUG

The ALIAS Directive

Series 300 does not allow the %desc passing mode with the ALIAS directive.

The OPTIMIZE Directive

When you use OPTIMIZE on Series 300, the command line must also specify -0,
+01, +02 or +03.

The SAVE_LOCALS Directive

The default settings for the SAVE_LOCALS directive vary by implementation to
preserve backward compatibility.

Porting Across HP-UX 4-27

Recursion

One major feature of HP's versions of FORTRAN is that they support recursion.
This means that variable storage for subroutines and functions is dynamic. Hence,
variables in subprograms do not retain their values between invocations.

For a more detailed discussion on the effects of recursion and some debugging
hints, see Chapter 2, "The Effects of Recursion on Local Variable Storage".

$TMPDIR

Series 300 and 800 compilers produce a number of intermediate temporary files for
their private use during the compilation process. These files are normally invisible
to you since they are created and removed automatically. If, however, your system
is tightly constrained for file space these the requirements for these files, which
are usually generated on /tmp or /usr /tmp, may exceed the space available. By
assigning another directory name to the TMPDIR environment variable you can
redirect these temporary files. See the f77 manual page for details.

4-28 Porting Across HP-UX

Calls to Other Languages

Most of the comments made earlier about C calls to other languages also apply
to FORTRAN except that FORTRAN frequently needs to call system routines
which are written in C (See Table 4-6).

Table 4-6. FORTRAN Interfacing Compatibility

FORTRAN Pascal C

character charI unsigned charI

Holleri th (synonymous with
character; extension to ANSI
FORTRAN77)

byte, logical*12 (extension to ANSI -128 .. 127 or boolean charI
FORTRAN77; synonymous types)

logical*22 (extension to ANSI -32768 .. 32767 short
FORTRAN77)

integer*2 2 (extension to ANSI -32768 .. 32767 short
FORTRAN77)

logical (*4)2 integer long or int

integer (*4)2 integer long or int

real (*4)2 real float

double precision, real*S2 longreal double
(synonymous types)

complex (*8)2 record struct

double complex, complex*162 record struct
(extension to ANSI FORTRAN77;
synonymous types)

record record struct

FORTRAN can pass its characters to Pascal and C, but when calling in the other
direction the character type may reside on an odd boundary and cause a memory
fault.

2 ANSI does not support a length descriptor *n.

Porting Across HP-UX 4-29

You can create arrays for any of the primary data types.

In addition to the basic types, many programs must communicate with C
"strings". These are emulated in FORTRAN as an array of characters the
last element of which has value 0 (CHARCO»). Note that HP Pascal "strings"
(as opposed to packed arrays of characters) can be simulated also by an array
of characters, but the characters will be offset in the array due to the length
field at the front (refer to the Pascal Language Reference for details). When
communication with FORTRAN is desired, you may want to use Pascal packed
arrays of characters rather than strings.

Although the syntax for VMS-style records differs from C structs, default
packing and alignment rules are similar between the two languages.

Another caution in interfacing FORTRAN with C or Pascal stems from the
fact that FORTRAN uses a column-major storage representation for its multi­
dimensional arrays. C and Pascal use a row-major ordering. Thus for proper
accessing, the order of the subscripts must be reversed (in both the declaration
and usage-thus, we end up with the transpose of a matrix).

The FORTRAN $OPTION SHORT directive instructs the compiler to use INTE­
GER*2 and LOGICAL*2 as the defaults (when *n is not specified). This can cause
communication problems when two subroutines both specify INTEGER, but one
has this option enabled. It is best to explicitly declare the length at all times.

Calls to C

Since all the HP-UX system calls and subroutines are accessed as C functions,
you may want to call a C function from a FORTRAN program. There are some
basic obstacles to doing so. The major problem is that C and FORTRAN pass
parameters differently-C by value and FORTRAN by reference. You can
use the $ALIAS directive to change FORTRAN's parameter passing mechanism
or the name of the external C routine as searched for by the linker ld. The
$ALIAS directive is supported on all HP-UX FORTRAN implementations (See
the example):

4-30 Porting Across HP-UX

PROGRAM TESTALARM

$ ALIAS IALARM = 'alarm'(%val)

C set a 10 minute alarm
I <C=:C4<A47=7 i~ ~re+- I(C

C reset alarms, get time remaining on last alarm
I = IALARM(O)

C allow any possible non-zero "time remaining" seconds count

END

IF «I .LT. 1) .OR. (I .GT. 600)) STOP 'TESTALARM FAILED'
STOP 'TESTALARM passed'

Note these items:

Logicals

Files

Characters

C uses integers for logical types. A FORTRAN 2-byte LOGICAL
is equivalent to a C short, and a 4-byte LOGICAL by a long or
into In both C and FORTRAN, zero is false and any non-zero
value is true.

File units and pointers can be passed FORTRAN to C via
the FNUMO and FSTREAMO intrinsics. A file created by a
program written in either language can be used by a program of
the other language if the file is declared and opened in the latter
program.

Without the use of the $alias directive, passing character
data from FORTRAN to C is tricky because these languages
represent character strings in completely different ways. By
specifying %ref as a parameter passing descriptor, however,
the compiler is directed to use pass by reference addressing,
which is equivalent to passing the address of the beginning of the
character variable. To C, this is understood to be a char pointer.
Remember that FORTRAN character strings, by default, do not
contain a terminating NUL character as in C.

The technique shown in the following example works on all HP-UX systems.
However, some other FORTRAN 77 compilers may not understand aliasing. The
example shows passing a character string from a FORTRAN program to a C
function. The function returns the number of characters in the string before a
space. Otherwise it returns the maximum string length.

Porting Across HP-UX 4-31

#define MSLEN 300

sizer(x) char *x;
{

}

register int i;

for (i=O; i <MSLEN; i++)
if (x[i] == ' ,) return(i);

return(MSLEN) ;

$alias sizer='sizer'(%ref)
program test
character*300 x
integer sizer
external sizer
integer i
data x/llabcdefghi klmnopll/

i = sizer(x)
print *.i
end

The commands to compile and link these two files are:

cc -c chcount.c
f77 main.f chcount.o

The resulting object file would be left in a. out.

4-32 Porting Across HP-UX

It is possible to mix C and FORTRAN I/O via the FORTRAN FNUMO and
FSTREAMO intrinsics. FSTREAMO returns the C FILE* pointer corresponding
to a FORTRAN I/O unit. FNUMO returns the system file descriptor for an I/O
unit. Here is an example:

PROGRAM FNUM_TEST
$ALIAS IWRITE='write' (%val ,%ref ,%val)

CHARACTER*l A(10)

DO 10 J=l,10
A(J)="X"

10 CONTINUE

0for aER I, STATUS

OPEN(1,FILE='filel' ,STATUS='UNKNOWN')
I=FNUM(1)
STATUS=IWRITE(I,A,10)
CLOSE (1, STATUS = 'KEEP')

OPEN (l,FILE='filel', STATUS='UNKNOWN')
READ (1,4) (A(J), J=l,10)

4 FORMAT (10Al)
DO 12 J=l,10

IF (A(J) .NE. 'X') STOP 'FNUM_TEST FAILED'
12 CONTINUE

IF (STATUS .EQ. 10) STOP 'FNUM_TEST passed'
END

Porting Across HP-UX 4-33

The Pascal Language
HP-UX systems support a version of Pascal known as Hewlett-Packard Standard
Pascal (HP Pascal). HP Pascal is a superset of ANSI Pascal, and it implements
many advanced features. A few of the features differ between the Series 300 and
800 which are covered in this section. Another source of information, particularly
for Series 800, is the HP Pascal/HP- UX Migration Guide.

The extensions of HP Pascal are a blessing and a curse. If you plan only to run
your programs on HP computers (better yet, only HP 9000 computers), then
it won't take much work to move them, and the extra features will make your
programming much easier. However, if you should decide to port those programs
to another manufacturer's computer, the effort to do so will be proportional to
the use of non-standard Pascal extensions. Even if the system you are moving the
programs to has extensions, it is doubtful that they have the same form as HP
Pascal. Before deciding to use a non-ANSI feature, ask yourself some questions:

• Am I ever going to port this program to a non-HP system?

• How much hardship does avoiding the extension cause?

• Will another system have a similar feature?

If your answers are something like "probably not," "a lot," and "I sure hope so,"
then go ahead and use the extension.

How can you know whether any of the language features you are using are likely
to be supported on another system? HP Pascal has an option that causes the
compiler to emit errors for uses of features not included in ANSI Standard Pascal.
On all HP-UX systems, include the line

$ANSI ON$

at the beginning of your source file. You will have to use the -L option with pc
and look at a listing of your program (on the screen or hardcopy) to see where
the warnings occurred.

4-34 Porting Across HP-UX

Data Type Sizes and Alignments

Table 4-7 shows the sizes and alignments of the Pascal data types on HP­
UX architectures. For more specific information, see the appropriate Language
Reference or the HP Pascal Programmer's Guide.

Table 4-7. Pascal Data Types

Alignment Alignment
Type Size (300) (800)

char 8 bits 1 byte 1 byte

boolean 8 bits 1 byte 1 byte

shortint 16 bits Not supported 2 byte

subrange of 16 bits1 / 2 2 byte 2 byte or 4 byte, based on declared size
integer

integer 32 bits 4 byte (2 byte 4 byte
with +A option)

longint 64 bits Not supported 4 byte

enumeration 16 bits2 2 byte 2 byte or 4 byte, based on declared size

subrange of 16 bits2 2 byte 2 byte or 4 byte, based on declared size
enumeration

real 32 bits 4 byte (2 byte 4 byte
with +A option)

longreal 64 bits 4 byte (2 byte 8 byte
with +A option)

pointer 32 bits 4 byte (2 byte 4 byte
with +A option)

set Varies Varies Varies

On Series 300, allocation is 16 or 32 bits based on the declared size.
2 On Series 800, allocation can be 8, 16, or 32 bits based on the declared size.

Porting Across HP-UX 4-35

Command Line Options

Table 4-8 shows some differences in the Pascal compiler (pc) command between
the HP-UX implementations. See the HP-UX Reference, pc(l) for details.

Table 4-8. Differences in Pascal Compiler Command Lines

Option Effect Difference

+A use 2-byte alignment rules Series 300 only

-L produce a program listing Series 300 goes to a specified file

+M library calls for floating point Series 300 only

+0 optimization Series 800 only

-0 optimize Series 800 only

Inline Compiler Option Differences

HP-UX Pascal compilers support different (although intersecting) sets of compiler
options. Additionally, some common options have different semantics, and a
slightly different syntax. For portable code, keep compiler options to a minimum.
Especially avoid ones that affect the semantics of the language or enable system
level programming extensions, like $SYSPROG$ on the Series 300.

4-36 Porting Across HP-UX

The following items show options that have semantic differences on one or more
of the HP-UX implementations:

ALIAS

ALIGNMENT

ALLOW _PACKED

ANSI

ASSERT _HALT

ASSUME

BUILDINT

Series 300 does not automatically add an under­
score (_) prefix. Series 800 does.

Series 800 only. Changes storage alignment for
types other than strings and file types.

Series 300 only. Allows ANYVAR parameter
passing of fields in packed records and arrays, and
SIZEOF using packed fields and arrays ..

Available on all HP-UX implementations. Series
300 requires that it be at the top of the file.

Series 800 only. Causes the program to halt if the
assert function fails.

Series 800 only. Sets or lists optimizer assumptions.

Series 800 only. Causes the compiler to build an
intrinsic file rather than an object code file.

CHECK_ACTUAL_PARM Series 800 only. Sets level of type checking of actual
parameters for separately compiled functions or
procedures.

CHECK_FORMAL_PARM Series 800 only. Sets level of type checking of formal
parameters for separately compiled functions or
procedures.

CODE

COPYRIGHT

Available on all HP-UX implementations. Selects
whether a code file is generated. Series 300
disallows this directive within a procedure body.

Available on all HP-UX implementations. Causes
PC offsets to be included in the Listing. Series 300
disallows this directive within a procedure body.

Series 800 only. Causes a copyright string to be
placed into object code.

Porting Across HP-UX 4-37

COPYRIGHT_DATE

DEBUG

EXTERNAL

FLOAT_HDW

GLOBAL

HEAP _COMPACT

HEAP _DISPOSE

IF, ELSE, ENDIF

INLINE

KEEPASMB

LINENUM

LINES

4-38 Porting Across HP-UX

Series 800 only. Sets the copyright year and causes
it and the copyright string to be placed into object
code.

Series 300 only. Causes line number debugging
information to be included in the relocatable file.

Series 800 only. Used in conjunction with the
GLOBAL option, enables you to compile one
program as two or more compilation units.

Series 300 only. Controls generation of code for
floating point hardware.

Series 800 only. Used in conjunction with the
EXTERN AL option, enables you to compile one
program as two or more compilation units.

Series 800 only. When this and HEAP _DISPOSE
is on, free space in the heap is concatenated.

Series 800 only. Disposed space in the heap is freed
for new uses by new.

Available on all HP-UX implementations. Controls
conditional compilation. While the basic semantics
are the same, each implementation has minor
differences in semantics. Refer to the appropriate
Language Reference for details. ELSE is permitted
in conjunction with IF on Series 800. ENDIF is
required as a terminator.

Series 800 only. Causes a procedure call to be
replaced by inline code.

Series 800 only. Causes the compiler to preserve an
assembly file for the source file.

Series 300 only. Sets listing line number.

Available on all HP-UX implementations. Specifies
number of lines per page on a listing. Default values
are 60 for Series 300, and 59 for Series 800.

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

LONGSTRINGS

MLIBRARY

NOTES

OPTIMIZE

OS

RANGE

S300_EXTNAMES

SEARCH

Series 800 only. When LIST is also on, a mnemonic
listing of object code is produced.

Series 800 only. List an intrinsic file to a specified
file.

Series 800 only. Changes the semantics for the
ALIAS option.

Series 800 only. Causes a locality name to be writ­
ten to the object file for performance enhancement.

Series 300 only. Extends the maximum length of
strings from 255 to virtually unlimited.

Series 800 only. Specifies alternate file into which
the modeule export text is to be written.

Series 800 only. Causes helpful compiler notes to
be printed on the program listing.

Series 800 only. Sets level of optimization.

Series 800 only. Specifies the run time operating
system under which this program is to be run.

Available on all HP-UX implementations. Minor
differences exist between the implementations on
what items are checked. Refer to the appropriate
Language Reference for details.

Series 800 only. Changes external names to a form
consistent with Series 300 conventions.

Series 300 only. Controls scope of structured
constants.

Available on all HP-UX implementations. Series
800 has two ways to create the list of files (one
of which is the same as Series 800, the other uses
MLIBRARY).

Series 300 only. Changes number of external files
that can be searched. The default is 9.

Porting Across HP-UX 4-39

SKIP_TEXT Series 800 only. Causes the compiler to ignore
source code.

SPLINTR Series 800 only. Specifies what intrinsic file is to be
read.

STATEMENT _NUMBER Series 800 only. When enabled, the compiler
generates a special instruction to identify a code
sequence with its corresponding Pascal statement.

STRINGTEMPLIMIT Series 300 only. Specifies the maximum size of a
temporary string used within a string expression.

SUBPROGRAM Series 800 only. Separate compilation facility. Use
modules instead.

SYSINTR Series 800 only. Specifies the intrinsic file to be
searched for information on intrinsic procedures
and functions.

TABLES Available on all HP-UX implementations. Series
300 forbids its use within a procedure body whereas
Series 800 permits it anywhere.

TITLE Series 800 only. Specifies the title to appear on the
program listing.

UNDERSCORE Series 300 only. Causes ALIAS parameters to have
an underscore added as a prefix.

UPPERCASE Series 800 only. All external names are shifted to
upper case ASCII.

VERSION Series 800 only. Specifies a version stamp to be
placed in the object file.

4-40 Porting Across HP-UX

Differences in Features

Due to the varying origins of the HP-UX Pascal compilers, there are some
differences between them. Here is a list of the features that differ between Series
300 and 800 HP -UX Pascal.

Control Constructs

I/O

• Try-Recover is supported on all HP-UX implementations. Escape codes
for errors differ between the implementations.

• Mark/Release is supported on all HP-UX implementations. There are
minor differences in behavior but code is essentially portable.

• The maxpos 0 function always returns maxint on the Series 300.

• Series 300 and 800 differ in the way they allow association with an HP-UX
file descriptor in the reset 0 procedure. The association is now similar
in the associate 0 procedure.

• Series 800 uses the options string parameter on reset 0, rewrite 0,
open 0, and append 0 procedures. Series 300 ignores this parameter.

• By default, stdout is buffered on the Series 800. It can be changed to
unbuffered via an option.

Program Structure

• Modules are supported on all HP-UX implementations but some syntactic
and semantic differences exist. For example, Series 800 requires that
CaNST, TYPE, and VAR declarations precede routine declarations
within the EXPORT section whereas Series 300 permits them to be
intermixed.

• Series 300 permits separate compilation only within modules. Series 800
provides other mechanisms as well.

Porting Across HP-UX 4-41

Types

• Assignments to procedure variables have a different syntax on the two
systems.

• On the Series 300, the maximum string size is 255 characters by default
but by specifying $LONGSTRINGS$ it can be virtually unlimited. Series
800 strings are essentially unlimited.

• On the Series 300, elements of packed arrays can be passed as anyvar
parameters only if the ALLOW _PACKED compiler option has been used.

• All HP-UX implementations support structured constants but different
restrictions may apply. Series 300 restricts their use to within the CONST
section and it does not do full type checking on variant record structured
constants.

• A small difference in precision, exists between the implementations of
longreal.

• Only Series 800 implements globalanyptr and localanyptr. All
HP-UX implementations implementations have anyptr, although minor
differences exist.

• Anyvar is supported on all HP-UX implementations. Series 300 does not
perform any checks to see if anyvar values are legitimate.

Miscellaneous

• Series 800 supports readonly parameters. Series 300 does not.

• Series 300 Pascal allows using a file variable as a parameter to the sizeof
function; Series 800 does not.

• Only Series 800 supports crunched arrays and records.

• Series 800 does not fully support packed array [0 .. <anything>] of
char.

• Slight semantic differences exist between Series 300 and 800 program
parameters.

4-42 Porting Across HP-UX

Calls to Other Languages

Pascal has seven basic types, along with pointers, records and subranges. The
user may also create arrays of each of these. Pascal can pass its parameters by
value or by reference. Compatibility of these types with the other languages is
shown in Table 4-9.

Table 4-9. Pascal Interfacing Compatibility

Pascal C FORTRAN

boolean unsigned char logical*l (logical*2 and
logical*4 won't work)

char char character*l (the Pascal char must
not lie on an odd byte)

integer long; int integer (*4)

-32768 .. 32767 short integer (*2) (extension to ANSI
standard FORTRAN77)

real float real (*4)

longreal double double precision

enumerated type enum use integer*2 (extension to ANSI
standard FORTRAN77)

subrange (32-bit) use long; int use integer*4

subrange (16-bit) use short use integer*2 (extension to ANSI
standard FORTRAN77)

set none none

record struct (the fields must record
align)

A <type> (pointer) type *; &var none

<var>
A

*var none
(dereferencing)

Porting Across HP-UX 4-43

Take care when using packed records in Pascal, in that the compiler packs the data
into the smallest required space. Thus, fields may not align on byte boundaries.
This makes it extremely difficult to access the data from C and FORTRAN.

If Pascal routines are to be called from FORTRAN, make sure to declare all
parameters as V AR parameters.

On Series 300, to call an external (FORTRAN, C, or assembler) procedure, the
user must declare a Pascal interface to it, and then define it as EXTERNAL. Pascal
will then add a _ prefix to the name; this is the name that the loader will look for.
If the user wishes to use a different name (in the Pascal code), or if the routine
is an assembler routine (the assembler doesn't have a _ prefix on its external
names), then the $ALIAS$ directive is needed in the interface declaration. C and
FORTRAN also use a _ prefix, so names will match properly.

A similar situation exists on Series 800 except that the underscore is neither
added nor required for external names.

Calls to C

HP-UX system calls and subroutines are defined as C functions, so you may need
to call a C function from a Pascal program. Fortunately, Pascal and HP -UX are
flexible enough to make this a simple operation. This section contains a list of
concerns and some examples of calling a C function from a Pascal program .

• C does not have subroutines; it has functions that mayor may not return
a result. The default type of the returned value is integer, but other types
may also be returned. Since the C function will not be defined in the same
source file as your Pascal program, you will have to declare the C function
as an external Pascal function within the source file. It is important for
you to make the external declaration correspond to the definition of the
C function .

• Pascal gives you the choice of passing parameters by value or by reference.
C passes all parameters by value, but can emulate pass by reference
by declaring a formal parameter to be a pointer. This relationship is
important to understand when writing the external function declaration
through which Pascal "sees" the C function. If the C function you are
calling has a formal parameter declared as a pointer, then in your Pascal
external declaration of the function, the formal parameter should be a var
parameter. All C formal parameters that are not declared as pointers

4-44 Porting Across HP-UX

should have corresponding Pascal non-var actual parameters. See the
example below for clarification.

• Records and structs can be easily passed between C and Pascal as long
as the Pascal records are unpacked. Packed records introduce system
dependent problems that are not discussed here.

• Both C and Pascal store arrays in row-major order so they may be passed
successfully. When passing character arrays (which are actually pointers
to chars), make sure that they are terminated with chr(O). Always be sure
to debug the interface between the two languages. Don't assume that it
works just because the function works when called by a program in the
same language.

• If you want to refer to an external function by a name other than the one
it is defined under, use the alias directive.

This example shows how to call a user defined C function from a Pascal program.
First is the Pascal source:

{ SHORT PROGRAM TO CALL C FUNCTION }
program call_c(input.output);

const str_length = 50;

type mystring = packed array[l .. str_length] of char;

var x real;
s mystring;

{ DECLARE THE C FUNCTION AS AN
EXTERNAL PASCAL FUNCTION }

function c_sub (var strng : mystring): real; external;

begin
s:= 'abc';
s[4] := chr(O); { PUT NULL AT END}
x:= c_sub(s); {CALL THE FUNCTION}
writeln(x)

end.

Porting Across HP-UX 4-45

N ext is the C source:

#include <stdio.h>
/* C FUNCTION TO PRINT A STRING

AND RETURN A REAL VALUE. */
float c_sub(str)

{

}

char *str;

printf("\n %s",str);
return(1.211) ;

The procedure for compiling and linking these two source files is:

cc -c c_sub.c
pc call_c.p c_sub.o

Then, executing the file named a. out would produce:

abc 1.211000E+OO

The following page has an example that calls the HP-UX system function
truncate from a Pascal program. The alias directive is used to rename the
external symbol truncate to chop within the program. Note particularly the
section that inserts a null (chr(O)) into the character array at the end of the file
name. This is necessary because C expects all strings to be terminated by a null.

4-46 Porting Across HP-UX

program chopfile(input,output);
{ PROGRAM TO TRUNCATE A FILE TO A GIVEN LENGTH }

const str_length = 50;

type mystring=packed array[1 .. str_length] of char;

var fname: mystring;
lngth, dummy, i : integer;

function $alias 'truncate'$ chop(var path : mystring;
length: integer); integer; external;

begin
writeln('Enter name of file to be chopped: ');
readln(fname);

{ PUT NULL IN FIRST SPACE }
i:= 1;
while (fname[i] <> ' ') do

i:= i + 1;
fname[i]:= chr(O);

writeln('Enter new length: ');
readln(lngth);

{ CALL THE SYSTEM FUNCTION
WITH ITS ALIASED NAME }

dummy:= chop(fname,lngth);

if dummy <> 0 then
writeln('CALL FAILED')

end. { CHOPFILE }

Use the following commands to compile and run this program:

pc chopfile.p
a.out

Porting Across HP-UX 4-47

5
System Calls and Subroutines

This chapter explains differences between system calls and subroutines among
the HP-UX implementations. If you have hardware dependencies or need more
information about a routine, see the HP- UX Reference for your system.

On Series 800 only, many of the system calls have separate entry points suitable
for call from FORTRAN. See the HP- UX Reference for details.

System Calls and Subroutines 5-1

System Calls

acct

exec

gettimeofday

ioctl

mknod

ptrace

reboot

select

shmctl

shmop

signal

sigspace

sigvector

uname

ustat

vfork

vfsmount

Many Series 300 system dependencies exist.

Unsharable executable files are not supported on Series 800.

Series 300 has a granularity of 4 microseconds.

Asynchronous I/O is supported only on Series 800.

On Series 300 the additional value 0110000 is available under
file type and specifies network special files.

The functionality of ptrace is dependent on the hardware and
may not be portable.

Many differences exist.

Many system differences exist.

Series 300 has differences in the handling of EACCESS.

Implementation differences exist between Series 300 and 800
involving shmaddr and some variables and constants.

Implementation differences exist between Series 300 and 800.

On Series 300, guaranteed space is allocated with malloc
and may interfere with other heap management efforts. Also,
include kernel overhead in any requested amount of space.

The SV _BSDSIG flag is not supported on Series 300. The
SC_RESETHAND flag is not supported on Series 800.

The U version field is not supported on Series 300.

On Series 300, f_tfree and f_flksize are reported In
fragment size units.

Programs which rely upon the differences between fork and
vfork may not be portable across HP-UX systems.

Vfsmount of a local file system on a diskless Series 300 node
is not supported.

5-2 System Calls and Subroutines

Subroutines

abs

blclose, blread,
blget, blset

clock

dial, undial

ftok

gpio_get_status,
gpio_set_ctl

hpib_abort,
hpib_bus_status,
hpib_eoi_ctl,
hpib_rqst_srvce

hpimage

io_burst, io_lock,
i~_unlock

io_get_term_reason,
io_on_interrupt,
i~_reset,

io_speed_ctl,
io_timeout_ctl

syslog, openlog,
closelog, setlogmask

_toupper, _tolower

trig

On HP-UX, calling abs with the most negative
number returns that number.

Series 800 only.

Clock resolution is 20 milliseconds on Series 300, 10
milliseconds on Series 800.

Dial is not supported on client nodes of an HP
Cluster. Series 300 has system dependencies.

System dependencies on Series 300 diskless only.

System dependencies exist.

System dependencies exist.

Series 800 only

Series 300 only.

System dependencies exist.

Series 800 only.

Series 300 does not define the results for non-ASCII
arguments.

On Series 300 the approximate limit for values
returned by the trig functions is 1.49

A

8.

System Calls and Subroutines 5-3

6
Pascal Workstation to HP-UX

This chapter helps you port programs from the Series 200/300 Pascal Workstation
to Series 300 HP-UX. It focuses on conversions of Pascal programs, but has some
comments on assembly language translation. The information applies to a Series
300 HP-UX system. Thus, some of the comments may not apply to Series 800
porting. The topics deal with the commonly encountered porting problems.

Since the Series 300 HP-UX Pascal compiler was developed from the Series
200/300 HP Pascal workstation, the two implementations are very similar. There
are still some differences for you to note in porting between the two systems. If
your programs to be ported use operating system dependent features like low-level
I/O functions, then you may have a non-trivial porting job.

The chapter does not cover the differences between Series 200 and 300 worksta­
tions. The few differences that exist are documented in the Pascal 3.1 Work­
station System Vol. II: Programming and Configuration Topics, Chapter 20,
"Porting to Series 300" .

Pascal Workstation to HP-UX 6-1

Compiler Option Differences
The options available on HP-UX Series 300 Pascal are, with three exceptions,
a subset of the ones available on the Pascal workstation implementation. The
following options are available only on the Pascal workstation.

CALLABS Switches absolute jumps on and off.

COPYRIGHT Includes copyright information.

DEF Changes size and location of compiler's .DEF file.

HEAP _DISPOSE Controls garbage collection.

IOCHECK Controls error checking on system I/O routine calls.

REF Changes size and location of compiler's .REF file.

STACKCHECK Controls stack overflow checking.

SWITCH_STRPOS Switches order of parameters for the STRPOS function.

UCSD Allows use of UCSD Pascal extensions. UCSD extensions
are not and will not be implemented on HP-UX. There are
simple workarounds for most of these capabilities. Most
notably, the UCSD string functions are supported through
Pascal string functions. Also, to allow case statements to
"fall through," an OTHERWISE clause is needed.

In addition, there is one compiler option, PARTIAL_EVAL, which is implemented
differently on the two systems. Default on the Pascal Workstation is "OFF", but
the default on HP-UX Series 300 Pascal is "ON". This was done to make HP-UX
Series 300 Pascal compatible with older HP-UX Pascal implementations. Note
that this is different from early releases of Series 300 HP-UX Pascal.

6-2 Pascal Workstation to HP-UX

Differences in Features
There are some minor semantic differences between the workstation and HP-UX
Pascal implementations. The next several sections describe them.

Module Names

Module names on HP-UX can be up to 12 characters, while on the Pascal
workstation they can be up to 15.

Real Variables

Real variables are 32 bits on HP-UX Pascal and 64 bits on the workstation.
Longreals are 64 bits on both implementations.

Input

Although HP Standard Pascal specifies unbuffered input, on the HP-UX
implementation, input is buffered by default. To override this, add the following
statement to the beginning of your program:

rewrite(input," ,'unbuffered');

Lastpos

Not implemented on the Pascal workstation.

Linepos

Not implemented on the Pascal workstation.

Heap Management

The Series 300 HP-UX and Pascal workstation have different mechanisms for
specifying the heap manager. See the HP Pascal Language Reference for the
details of using them.

Pascal Workstation to HP-UX 6-3

File Naming

File naming within Pascal programs (e.g. in $INCLUDE statements) on HP-UX
must follow HP-UX path naming conventions. File names in programs on the
Pascal workstation are of the form:

VOL: FILENAME

Absolute Addressing

Absolute addressing of variables, available through $SYSPROG$ have little meaning
in a system which uses virtual memory. Instead, the user will need to use system
names. For example, to simulate the Workstation function IORESULT, the user
may declare:

.. m off
VAR

ioresult['asm_ioresult']: integer;

This declaration gives the user access to the ioresult variable. Note, however,
that the above declaration also gives the user a compiler warning symbol already
declared on asm_ioresul t.

Accessing absolute addresses (such as the Model 236 graphics display) will result
in the system error segmentation violation. To gain access to this memory,
the user must use the techniques described in the HP- UX Reference Section 4:
Graphics (4).

$SEARCH$ File Names

$SEARCH$ file names (300) must refer to either simple relocatable (.0) or archived
(. a) format object files. Libraries will be maintained by the ARchiver, and the
compiler will need a directory in the archive file. This is accomplished by running
the program ar -ts on the archive which creates an entry (in the archive file).
This entry can be used (by the compiler and loader) to randomly access the entry
points stored in the library.

6-4 Pascal Workstation to HP-UX

Terminal I/O

HP Pascal is defined to have unbuffered terminal I/O. However, the HP-UX
system buffers input based on a "line" (a string of characters, terminated by
8<newline> . To overcome this system buffering of input into lines, the user
must specify :

.. m off
rewrite (input , II , 'unbuffered');

File Naming

File naming on HP-UX must follow the HP-UX path naming conventions. This
occurs in $INCLUDE$, $SEARCH$, RESET, REWRITE, OPEN, and APPEND statements.
Since a user may execute a program from any directory, it is safest to use full
path names, rather than relative paths. The following special Workstation names
should translate as follows:

• CONSOLE: Should use the predefined file variable output or the name
/dev/tty in a rewrite statement.

• PRINTER: Should use /dev/rlp (/dev/lp is usually locked from user
access). Note that this bypasses the spooler, and could intermix with
someone else's output.

• SYSTERM: Simulating this capability first requires a system call to turn
off echoing, and then the statement reset (input, ' , , 'unbuffered').
Another method of doing this using system calls appears in the section
"Example Program."

Heap Management

The Pascal Workstation gives you two choices for dynamic memory management.
The normal mode uses MARK/RELEASE to form a simple scheme. For more general
cases $HEAP _DISPOSE$ is needed, which will then allow the DISPOSE statement
to return memory to the system.

On HP-UX, the user has three choices of memory managers: HEAP1, HEAP2, or
MALLOC. HEAP1 and HEAP2 are Pascal memory managers, while MALLOC is the
system library (C) memory manager.

Pascal Workstation to HP-UX 6-5

HEAPl provides for a simple scheme where DISPOSE returns memory to the Pascal
free list, while a RELEASE returns everything above the memory pointer to the
HP-UX memory system. This memory then becomes available to any other heap
manager. However, this version does not allow any RELEASE to be done after
any calls to MALLOC. This doesn't sound like much of a restriction, but consider
that any system calls that you make that need memory are likely to get them via
MALLOC!

HEAP2 is more flexible, and allows for coexistence with MALLOC calls. This is
accomplished at the cost of additional overhead in both space (8 extra bytes are
allocated forward and backward pointers), and time (a RELEASE must traverse
the linked list disposing of each block).

The last scheme uses calls to the system library procedure MALLOC to allocate
memory. This is a "do-it-yourself" memory allocation scheme, and requires using
$sysprog$ and ANYPTRs. However, this is compatible with allocation by system
intrinsics and C.

The following program (which covers several pages) shows how to use the system
intrinsic IOCTL to modify the terminal characterists. It does unbuffered, non­
echoed terminal input. IOCTL turns off echoing, and sets the minimum length
line to 1 character, and the line timeout to 0.1 seconds.

$sysprog$
program termtest(input,output);

{ control code constants for the IOCTL intrinsic }
const O_RDONLY = 0;

type

TCGETA = 21505;
TCSETAF = 21508;

{simulate a C unsigned short int for ~it manipulations}
unsigned_short = packed array[O .. 15] of boolean;

{simulate a C string}
cstring = packed array[l .. 81] of char;

{simulate the C struct "termio" from /usr/include/termio.h}
termio = packed record

c_iflag unsigned_short;
c_oflag unsigned_short;
c_cflag unsigned_short;

6-6 Pascal Workstation to HP-UX

{ : char; c_line==c_cc[-1]}
{ note that C packs this struct tighter

than Pascal can. Thus we will include
the c_line field as part of the c_cc
array }

array[-1 .. 7] of char;

var fildes,result integer;
old_state ,new_state termio;
device. buffer cstring;

{here are the EXTERNAL/$ALIAS definitions for the system intrinsics}

function $alias '_open'$ openx(var path cstring
flag integer integer;

external;

function $alias '_read'$ readx(fildes integer
var buffer cstring

num integer integer;
external;

procedure $alias '_ioctl'$ ioctl(fildes integer;
control integer;

var terminfo termio);
external;

begin
device:='/dev/tty '+chr(O);
fildes:=openx(device,O_RDONLY) ;

{ get the current terminal setup}
ioctl(fildes,TCGETA,old_state);
new_state:=old_state;

{ set the minimum number of chars for a read to 1 }
new_state.c_cc[4] :=chr(1);

{ set the timeout after the first char to .1 seconds}
new_state.c_cc[5] :=chr(1);

{ turn off echoing }
new_state.c_lflag[12] :=false;

{ turn off canonical input (i.e. erase, kill, etc.) }
new_state.c_lflag[14]:=false;

{ load this "new" terminal setup }
ioctl(fildes,TCSETAF,new_state) ;

Pascal Workstation to HP-UX 6-7

. . m

prompt('enter your name: ');
repeat

{ now read a single character }
result:=readx(fildes.buffer.l) ;

{ now echo the successor of the char }
if buffer[O]=chr(255) then write(chr(O»

else write(succ(buffer[O]»;
{ stop on AD }

until buffer[O]=chr(4);
ioctl(fildes.TCSETAF.old_state) ;

end .

6-8 Pascal Workstation to HP-UX

Library Differences
The workstation and HP-UX Pascal use different libraries. This manual will not
discuss the differences but refers you to the manuals containing the information
on the libraries.

For Pascal workstation library information, see the Pascal Procedure Library
manual. HP-UX library information is contained in several HP-UX manuals. For
Graphics see the applicable graphics manuals The system library is documented
in section 3 of HP- UX Reference. The I/O library is documented in Concepts f3
Tutorials.

On the Pascal Workstation there are three primary libraries used by almost
everyone. The first is the DGL graphics library which provides a high level
(Pascal) interface to device-independent graphics. Another library is the I/O
library which provides various levels of access to the I/O cards on the Series
300 system. These include HP-IB, GPIO, and a serial interface library. The
other library is the INTERFACE library. This is a permanently loaded library (via
ini tlib), which contains much of the operating system software (disk drivers,
keyboard, etc.). Here we will look at some of these same capabilities on HP-UX.

Pascal Workstation to HP-UX 6-9

Graphics

DGL Library

Graphics on the Pascal Workstation is performed through a library named DGL.
This is a functional copy of the old HP 1000 FORTRAN DGL library. The
interface has been changed to provide more meaningful names for the procedures
as well as a Pascal interface.

On HP-UX the original HPIOOO FORTRAN DGL library was ported and created
these differences from the Pascal Workstation:

• The names have reverted to their original names
• Parameters are all passed by reference (var)
• Strings are FORTRAN character arrays (with a separate length parame­

ter)
• Integers are 16-bit integers

To make life easier for the Pascal programmer, a pair of header files are
provided, which should be included in each program needing access to DGL.
The first header named /usr/lib/graphics/pascal/pdg11. h provides the type
definitions needed for interfacing to DGL. This includes int and string132.
The second file ... /pdg12. h provides the declarations for all the EXTERNAL DGL
procedures. This file includes $ALIAS$ statements for each procedure, such that
the name from the Pascal Workstation can still be used.

Unfortunately, there are no workarounds for other FORTRAN problems. Since
all parameters are passed by VAR, all constants must first be assigned to dummy
variables. Secondly, all integers must either be declared as INT, or assigned
to a dummy INT. Finally, Pascal strings must be assigned to variables of type
STRING132. This is a packed array [1 .. 132] of char, so direct assignments
can be made for string literals, or the procedure STRMOVE can be used to convert
from Pascal string variables.

The graphics (DGL) library is not described in the HP- UX Reference, but has a
manual of its own.

6-10 Pascal Workstation to HP-UX

STARBASE Library

Another graphics library is STARBASE. This package is intended to be an
extension of the HP Graphics Peripheral Interface Standard, which is an extension
of the ANSI standard Virtual Device Metafile, and Virtual Device Interface.
These (and thus STARBASE) will form the basis of the Graphics Kernel System.
This is a higher level ANSI standard (2D) graphics package.

The STARBASE library provides a high-performance interface to graphics
hardware and other selected graphics peripherals. It provides support unavailable
in DGL, with access to more device features. STARBASE is available on the 4.0
and subsequent releases of HP-UX.

SYSTEM Library

The SYSTEM library on HP-UX, consists of a number of library (ARchive)
files. These reside in the directories IIi band lusr IIi b as well as in the
kernel itself. The capabilities provided exceed that available on the Pascal
Workstation in many cases, and in others it falls short. Two sections of the
HP- UX Reference describe these capabilities in concise form. Section 2 describes
the system intrinsics, which are the operating system calls. Section 3 describes
the system libraries, which are the libraries for C, math, standard I/O, and
various specialized libraries. The HP-UX Reference describes these capabilities
via a C language interface (due to the fact that most of them are written in C).
Pascal interfacing to any of these functions is usually fairly easy, with the main
difficulty coming from replacing the header files that are needed.

Pascal Workstation to HP-UX 6-11

Assembly Language Conversion
The conversion of assembly language routines from the Pascal Workstation to HP­
UX is fairly easy. An HP-UX command exists on the Series 300 called atrans
which translates a Pascal Workstation assembly language source file into an HP­
UX assembly language source file using the assembly syntax available since release
5.15. On HP-UX the external names are referenced via 32-bit addresses, so the
code size may grow. Also many of the assembler directives will not port directly
to HP-UX, but some of the important ones have replacements.

• Absolute displacements off the program counter cannot be guaranteed
to translate correctly. Any line referencing the program counter will be
flagged by a warning message.

• The HP-UX assembler restricts expressions involving forward references
for which atrans makes no check. Such references may involve only a
single symbol, a symbol plus or minus an absolute expression, or the
subtraction of two symbols.

• The character @ is not accepted as valid identifier characters on the HP­
UX assembler. It is translated to A and a warning is issued.

• Lines containing these pseudo-ops have no parallel on the HP-UX
assembler and are translated as comment lines: decimal, end, lIen, list,
lprint, nolist, noobj, nosyms, page, spc, sprint, and ttl.

• Lines containing the mname, include, and src pseudo-ops are translated
as comment lines, and a warning is printed.

• Certain pseudo-ops require manual intervention to translate. Each line
containing these pseudo-ops will cause a message to be printed stated that
an error will be generated by the HP-UX assembler. These pseudo-ops
are: com, lmode, org, rorg, rmode, smode, and start.

• When specifying certain addressing modes, the Pascal workstation
assembler may allow operands to appear out of order, whereas the HP-UX
assembler does not. Atrans does not rearrange these into proper order.

6-12 Pascal Workstation to HP-UX

Index

A

abs subroutine 5-3
acct system call 5-2
asa 2-3
asm_ini tproc 4-17
asm_wrapup 4-17

B
blclose subroutine 5-3
blget subroutine 5-3
blread subroutine 5-3
blset subroutine 5-3

c
C among HP -UX versions

assignments and functions 4-10
bit fields 4-9
calls to FORTRAN 4-15
calls to other languages 4-13
calls to Pascal 4-16
char data type 4-6
code/ data size limitations 4-4
compiler command options 4-13
conversions 4-12
data type alignments 4-5
data type sizes 4-5
data types 4-5
division by zero 4-10
expression evaluation 4-11
identifiers 4-7
integer overflow 4-10
memory organization on HP-UX 4-3

Index-1

null pointers 4-11
overview 4-5
predefined symbols 4-7
register data type 4-7
shift operators 4-7
sizeof operator 4-8
structure 4-10
$TMPDIR 4-12
variable initialization 4-12

C, VMS to HP-UX
compiler environment 2-13
floating point types 2-11
language features 2-9
overview 2-1, 2-9
preprocessor features 2-12
system differences 2-8
VMS version of C 2-9

clock subroutine 5-3
closelog subroutine 5-3
compiler directives 1-6
compiler options

table of 1-9

o
dial subroutine 5-3

E
exec system call 5-2

F
flint. 2-1
floating point

fuzziness 1-6
Series 800 1-9
types for C 2-11

FORTRAN among HP-UX versions
array dimension limits 4-22
calls to C 4-30
calls to other languages 4-29
common region names 4-24
compiler directives 4-27

! Index-2

compiler options 4-25
data file compatibility 4-22
data type alignment 4-19
data type sizes 4-19
data types 4-20
error conditions 4-21
long identifiers 4-21
mixing C/FORTRAN I/O 4-33
overview 4-19
parameter passing 4-24
predefined filenames 2-30
problems with C struct 4-30
problems with Pascal record 4-30
recursion 4-28
string constants 4-22
$TMPDIR 4-28
vector instruction set 4-25

FORTRAN, VMS to HP-UX
applications without lib calls 2-5
character sets 2-15
control statements 2-16
data representation 2-24
data types, syntaxes 2-16
graphics 2-7
intrinsic functions 2-20
I/O statements 2-18
listing of 2-6
local variable storage 2-26
miscellaneous items 2-24
overview 2-15
preconnected files 2-28
predefined files 2-28
program format 2-17
recursion effects 2-26
specification statements 2-21
statement syntax 2-17
subprograms 2-22
symbolic names 2-23
system name conflicts 2-28
windows 2-7
with lib calls 2-7

Index-3

FORTRAN,VMS to HP-UX
type coercions 2-23

ftok subroutine 5-3

G
general system dependencies across HP-UX 4-2
gettimeofday system call 5-2
gpio_get_status subroutine 5-3
gpio_set_ctl subroutine 5-3
guidelines for portability 1-4

H
hardware

flags 1-7
for floating point math 1-7

heap management, Pascal workstation 6-5
hpi b_abort subroutine 5-3
hpib_bus_status subroutine 5-3
hpib_eoi_ctl subroutine 5-3
hpib_rqst_srvce subroutine 5-3
hpimage subroutine 5-3
HP-UX

portability overview 4-1-4
subroutines 5-1, 5-3
system calls 5-2

identifying the system 4-2
io_burst_ subroutine 5-3
ioctl system call 5-2
io_get_term_reason subroutine 5-3
io_lock subroutine 5-3
i~_~n_interrupt subroutine 5-3
io_reset subroutine 5-3
io_speed_ctl subroutine 5-3
io_ timeout_ctl subroutine 5-3
i~_unlock subroutine 5-3

L
linker differences across HP -UX 4-4
lint 2-1

Index-4

M
mknod system call 5-2

o
openlog subroutine 5-3
optimization 4-4

p

parameter lists across HP-UX 4-2
Pascal

among versions of HP-UX 4-34
calls to C 4-44
calls to other languages 4-43
command line options 4-36
control constructs 4-41
data type alignments 4-35
data type sizes 4-35
data types 4-35
differences in features 4-41
inline compiler options 4-36-40
I/O 4-41
miscellaneous items 4-42
program structure 4-41
types 4-42

Pascal language on VMS 2-30
Pascal workstation

absolute addressing 6-4
assembly language conversion 6-12
compiler option differences 6-2
differences in features 6-3
file naming 6-4
graphics 6-10
heap management 6-3, 6-5-8
input 6-3
introduction 6-1
lastpos 6-3
library differences 6-9
linepos 6-3
module names 6-3
real variables 6-3
$SEARCH$ File Names 6-4

Index-5

terminal I/O 6-5
portability

a philosophy 1-3
across HP -UX systems 4-1
aids 2-1-3
areas of interest 1-1
BSD4.3 to HP-UX 3-1
compiler directives 1-6
differences in VMS to HP -UX 2-5
guidelines 1-4
inhibiting factors 1-3
manual contents 1-1
Series 300 recommendations 1-9
standards for HP-UX 1-3

ptrac e system call 5-2

R
reboot system call 5-2

s
select system call 5-2
Series 300

floating point operations 1-7
HP 98248A accelerator 1-9
HP 98248B accelerator 1-9
HP 98635A card 1-9
processors 1-7
recommendations 1-9

Series 800
floating point 1-9

setlogmask subroutine 5-3
shmctl system call 5-2
shmop system call 5-2
signal system call 5-2
sigspace system call 5-2
sigvector system call 5-2
standards

C 1-4
FORTRAN 1-4
HP-UX portability 1-3
Pascal 1-4

Index-6

statements
INCLUDE 2-2

subroutines 5-3
syslog subroutine 5-3
system calls 5-2

T
_ tolower subroutine 5-3
_ toupper subroutine 5-3
trig subroutine 5-3
try/recover 4-17
typedef facility 4-6

U
U_INIT _TRAPS 4-16
uname system call 5-2
undial subroutine 5-3
ustat system call 5-2

v
vfork system call 5-2
vfsmount system call 5-2
VMS predefined filenames 2-30

Index-7

HP Part Number
98794-90047
Microfiche No. 98794-99047
Printed in U.S.A. E0989

Fli;' HEWLETT
~~ PACKARD

98794-90647
For Internal Use Only

