
Device I/O:
User's Guide

H~ 9000
Computers

Device 1/0:
User's Guide

HP 9000 Computers

Flin- HEWLETT
a:~ PACKARD

HP Part No. 81864-90002
Printed in USA January 1991

First Edition
E0191

Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright © Hewlett-Packard Company, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government Department of Defense is subject to restrictions as set forth in
paragraph (b)(3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.)
The manual part number changes when extensive technical changes are
incorporated.

January, 1991 ... Edition 1. This Edition documents material related to device
I/O relevant to the 8.X release of HP-UX .

• For DIL, it supersedes the "Device I/O Library" part of manual part number
97089-90057, Edition 1, dated September 1989. New information was added
regarding the Centronics-compatible Parallel interface .

• For HP-HIL, it supersedes the "Using HP-HIL Devices" part of manual
part number 97089-90081, Edition 3, dated September 1987. Information
regarding use of the Sound Generator (beeper) was added to the HP-HIL
part.

iii

Contents

1. Introduction to Device I/O
What is Device I/O?
What is DIL?
What is HP-HIL?
Choosing DIL or HP-HIL

2. Interfacing Concepts

Part I: DIL

Variation Between Computer Systems
Manual Organization
DIL Interfacing Subroutines . . .

Linking DIL Routines
Calling DIL Routines from Pascal
Calling DIL Routines from FORTRAN

General Interface Concepts .
Definition
Interface Functions .
Handshake I/O . . .

Handshake Output
Handshake Input

HP -IB Protocol . .
The HP-IB Interface

General Structure .
Handshake Lines .
Bus Management Control Lines .

Device I/O

ATN: The Attention Line ..
IFC: The Interface Clear Line

1-1
1-1
1-1
1-2

2-1
2-2
2-3
2-3
2-3
2-4
2-5
2-5
2-6
2-7
2-7
2-7
2-8
2-9
2-9

2-10
2-13
2-14
2-14

Contents-1

REN: The Remote Enable Line .
EOI: The End or Identify Line .
SRQ: The Service Request Line

The GPIO Interface
The Centronics-Compatible Parallel Interface .

3. General-Purpose Routines
Background Basics

Interface Special Files
Entity Identifiers (eid)
Programming Model
General-Purpose Routines

Additional Series 300/400 Routines
Opening Interface Special Files . .
Closing Interface Special Files
Low-Level Read/Write Operations

Example
Designing Error Checking Routines

The errno Variable
Using errno

The errno.h Header File
Displaying errno
Error Handlers .

Resetting Interfaces .
Locking an Interface .
Controlling I/O Parameters

Setting I/O Timeout
Setting Data Path Width
Setting Minimum Data Transfer Rate
Setting the Read Termination Pattern

Termination on Byte Count
Termination on Hardware Condition .
Termination on Data Pattern. . .

Disabling a Read Termination Pattern
Determining Why a Read Terminated

Example
Interrupts

HP -IB Interrupts

Contents-2

2-14
2-14
2-15
2-15
2-16

3-2
3-2
3-2
3-2
3-3
3-4
3-4
3-6
3-7
3-9

3-10
3-10
3-10
3-10
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-18
3-19
3-19
3-22
3-23
3-24
3-26
3-26

Device 1/0

GPIO Interrupts
Parallel Interrupts
The io_on_interrupt Subroutine.
The io_interrupt_ctl Subroutine

4. Controlling the HP-IB Interface
Overview of HP-IB Commands

UNLISTEN
UNTALK
DEVICE CLEAR . .
LOCAL LOCKOUT .
SERIAL POLL ENABLE
SERIAL POLL DISABLE
TRIGGER (Group Execute Trigger)
SELECTED DEVICE CLEAR . .
GO TO LOCAL
PARALLEL POLL CONFIGURE.
PARALLEL POLL ENABLE.
PARALLEL POLL DISABLE

Overview of HP-IB DIL Routines
HP-IB: The Computer's Role .

Ground Rules
A vailable Subroutines versus Controller Role

Bus Citizenship: Surviving Multi-Device/Multi-Process HP-IB
io_lock and io_ unlock
io_burst
hpib_io

Opening the HP-IB Interface File
Sending HP-IB Commands ...

Errors While Sending Commands
Changing Parity on Commands

Active Controller Role.
Determining Active Controller .
Setting Up Talkers and Listeners

Auto-Addressing
Using hpib_send_cmnd

Device I/O

Calculating Talk and Listen Addresses .
An Example Configuration

3-27
3-27
3-28
3-29

4-2
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-7
4-8
4-8
4-8

4-10
4-11
4-11
4-11
4-12
4-12
4-15
4-16
4-17
4-18
4-19
4-19
4-21
4-22
4-23

Contents-3

Remote Control of Devices
Locking Out Local Control
Enabling Local Control
Triggering Devices
Transferring Data

Data Output ..
Data Input ...

Clearing HP -IB Devices
Responding to Service Requests .

Monitoring the SRQ Line
Processing the Service Request

Parallel Polling
Configuring Parallel Poll Responses
Disabling Parallel Poll Responses
Conducting a Parallel Poll
Errors During Parallel Polls

Waiting For a Parallel Poll Response
Calculating the mask
Calculating the sense
Example

Serial Polling
Conducting a Serial Poll
Errors During Serial Poll .

Passing Control.
What If Control Is Not Accepted?
Errors While Passing Control. .

Controlling the ATN Line
Changing the Interface Bus Address

System Controller Role
Determining System Controller
System Controller's Duties

hpib_abort
hpib_ren_ctl
Errors During hpib_abort and hpib_ren_ctl

The Computer As a Non-Active Controller
Checking Controller Status. . . .
Requesting Service

Errors While Requesting Service

Contents-4

4-24
4-24
4-25
4-25
4-26
4-26
4-27
4-28
4-29
4-29
4-31
4-32
4-32
4-36
4-36
4-38
4-39
4-39
4-40
4-41
4-43
4-43
4-45
4-46
4-46
4-47
4-48
4-48
4-49
4-49
4-50
4-50
4-51
4-51
4-53
4-53
4-54
4-56

Device I/O

Responding to Parallel Polls
Calculating the Response
Limitations of hpib_card_ppoILresp
Error Conditions
hpib_ppoILresp_ctl

Disabling Parallel-Poll Response
Accepting Active Control

Errors While Waiting on Status .
Determining When You Are Addressed

Combining I/O Operations into a Single Subroutine Call
Iodetail: The I/O Operation Template.

The Mode Component . . .
The Terminator Component
The Count Component
The Buf Component

Allocating Space
Example
Locating Errors in Buffered I/O Operations

5. Controlling the GPIO Interface
Interface Configuration

Creating the GPIO Interface File
Interface Control Limitations
Using DIL Subroutines

Resetting the Interface. .
Performing Data Transfers
U sing Status and Control Lines

Driving CTLO and CTL 1
Reading STIO and STU . .

Controlling Data Path Width .
Controlling Transfer Speed

GPIO Timeouts
Burst Transfers
Read Terminations . . .

Determining Why a Read Operation Terminated
Specifying a Read Termination Pattern

Interru pts

Device I/O

4-57
4-58
4-58
4-59
4-59
4-60
4-61
4-63
4-64
4-68
4-69
4-70
4-71
4-71
4-72
4-72
4-73
4-75

5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-5
5-6
5-7
5-7
5-8
5-8
5-8
5-8
5-8

Contents~5

6. Controlling the Parallel Interface
Interface Control Limitations
Using DIL Subroutines

Resetting the Interface. .
Performing Data Transfers
Controlling Transfer Speed

Timeouts
Burst Transfers
Read Terminations . . .

Determining Why a Read Operation Terminated
Specifying a Read Termination Pattern

Interrupts

Index to Part I: DIL

Part II: HP-HIL

7. Using HP-HIL Devices with HP-UX
The Interface to HP-HIL Devices
Typical HP -HIL Devices
Using HP -HIL Devices.

A Few Terms
Creating a Special Device File for HP-HIL Devices

For the Series 300
For the Series 700
For the Series 800

Using the Sound Generator .
Sample Beeper Program .
Frequency, Duration and Volume of Tones

To Set Frequency
To Set Duration
To Set Volume .

Additional Considerations
Communicating with HP-HIL Devices

Sample C Language Program
C Program Listing

Sample Pascal Program

Contents-6

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5

7-1
7-4
7-9
7-9

7-11
7-11
7-11
7-12
7-13
7-13
7-14
7-14
7-14
7-14
7-15
7-21
7-21
7-22
7-25

Device I/O

Pascal Listing for Series 300 7-25
Sample FORTRAN Program . 7-29

FORTRAN Program Listing 7-30
Description of the Data Returned by the Programs 7-32

HP-HIL Commands 7-39
Identify and Describe Command (HILID) 7-42

Device ID Byte 7-42
Describe Record Header . 7-46
I/O Descriptor Byte. . . 7-47

Perform Self Test (HILPST) 7-52
Read Register (HILRR) 7-52
Write Register (HILWR) 7-53
Report Name (HILRN) 7-55
Report Status (HILRS) 7-56
Extended Describe (HILED) 7-56
Report Security Code (HILSC) 7-58
Sample of Report Security Format for a Product Module. 7-63
Sample of Report Security Format for an Exchange Module 7-64
Sample Report Security Program 7-65
Disable Keyswitch Auto-repeat (HILDKR) 7-69
Enable Keyswitch Auto-repeat 1 and 2 (HILER1 and HILER2) 7-69
Prompt 1 through Prompt 7 (HILP1 through HILP7) . 7-70
Prompt (HILP) 7-70
Acknowledge 1 through Acknowledge 7 (HILA 1 through

HILA7) 7-70
Acknowledge (HILA) 7-70

Keycode Set 1 7-71

Index to Part II: HP-HIL

Device I/O Contents-7

Appendixes

A. Series 300/400 Dependencies
Location of the DIL Subroutines
Linking DIL Subroutines.
The GPIO Interface on Series 300/400 Computers.

Data Lines
Handshake Lines
Special-Purpose Lines . .
Data Handshake Methods
Data-In Clock Source . .

Creating the Interface Special File
Creating the Special File .

pathname ..
major_number
minor _number
Creating an HP-IB Interface File
Creating a GPIO Interface File .
Creating a Centronics-compatible Parallel Interface File

Entity Identifiers
Hardware Effects on DIL Subroutines

hpib_send_cmnd .
hpib_status
io_get_ term_reason
io_on_interru pt
io_reset . . .
io_speed_ctl .
io_timeout_ctl

Performance Tips

B. Series 600/800 Dependencies
Compiling Programs That Use DIL
Accessing the Interface Special Files .

Major Numbers
Minor Numbers and Logical Unit Numbers.
Listing Special Files
Naming Conventions for Interface Special Files

Creating Interface Special Files

Contents-8

A-I
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-5
A-6
A-6
A-7
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-9
A-9

B-1
B-2
B-2
B-2
B-3
B-4
B-5

Device I/O

Hardware Effects on DIL Subroutines
hpib_rqst_srvce.
hpib_io
hpib_atn_ctl, hpib-address_ctl, hpib_parity _ctl
io_eoLctl
io_reset . . .
io_speed_ctl .
io_ timeout _ctl
io_ width_ctl .
Return Values for Special Error Conditions.

DIL Support of HP-IB Auto-Addressed Files
hpib_card_ppoILresp
hpib_io
hpib_ren_ctl .
hpib_send_cmd
hpib_spoll . .
hpib_wait_on_ppoll
io_on_interrupt .

Performance Tips . .
Process Locking
Setting Real-Time Priority .
Preallocating Disc Space .
Reducing System Call Overhead
Setting Up Faster Data Transfers

C. ASCII Character Codes

D. DIL Programming Example

Master Index

Device I/O

B-6
B-6
B-6
B-6
B-6
B-7
B-7
B-7
B-7
B-8
B-8

B-10
B-10
B-10
B-10
B-10
B-11
B-11
B-12
B-12
B-12
B-13
B-14
B-14

Contents-9

Figures

2-1. Interface Functional Diagram
2-2. HP -IB Handshake Sequence
7-1. Hewlett-Packard Human Interface Link
7-2. Keycode Set 2
7-3. Frame

Tables

3-1. General-Purpose Routines.
4-1. HP-IB Bus Commands
4-2. HP-IB DIL Routines
4-3. DIL Subroutine Availability Based on Interface Role
4-4. PARALLEL POLL ENABLE Bits
4-5. Constants for Constructing mode

7-1. Keycodes for the HP-HIL "Cooked" Keyboard Driver
7-2. HP-HIL Macros
7-3. HP-HIL Macros and Their Decimal Equivalent
7-4. HP-HIL Device Identification Codes
7-5. HP-HIL Keyboard Nationality Codes
7-6. Description of Extended Describe Record Header
7-7. Product, Exchange and Serial Number Formats.
7-8. Report Security Data Format Type 1
7-9. Sample Report Security Results for a Product Module

7-10. Sample Report Security Results for an Exchange Module
7-11. Keycode Set 1
B-1. DIL Auto-addressed Support
C-1. Obtaining ASCII Control Characters

Contents-10

2-5
2-12
7-2
7-7

7-10

3-3
4-3
4-7
4-9

4-34
4-70
7-16
7-40
7-41
7-43
7-44
7-57
7-60
7-62
7-63
7-64
7-71
B-9
C-1

Device I/O

C-2. ASCII Character Codes C-2

Device I/O Contents-11

Introduction to Device I/O

What is Device I/O?
For purposes of this User's Guide, device I/O involves access to arbitrary
input/output devices from HP-UX. This access may be through one of the
following interfaces:

• Hewlett-Packard Interface Bus (HP-IB)

• General-Purpose Input/Output (GPIO)

• Hewlett-Packard Human Interface Link (HP-HIL)

What is OIL?

1

DIL is the Device I/O Library. This is a library of subroutines used for
interfacing with I/O devices. The DIL part of this User's Guide not only
discusses interfacing strategies using the HP-IB and GPIO interfaces, but also
strategies for general purpose I/O programming using DIL routines.

What is HP-HIL?
HP-HIL is the Hewlett-Packard Human Interface Link. The HP-HIL part of
this User's Guide discusses communication using the HP-HIL interface, other
functions provided by the HP-HIL peripheral processor, and describes a few of
the HP-UX supported HP-HIL devices.

Introduction to Device 1/0 1-1

Choosing OIL or HP-HIL

If you want to interface with devices using GPIO, HP-IB or other protocols
that would need DIL routines, use the DIL part of this manual. You cannot,
however, access HP-HIL devices using DIL.

If you want to access HP-HIL devices, use the HP-HIL part of this User's
Guide. You can access only HP-HIL devices with the HP-HIL interface.

1-2 Introduction to Device 1/0

Part I
OIL

The Device I/O Library

• Interfacing Concepts

• General-Purpose Routines

• Controlling the HP-IB Interface

• Controlling the GPIO Interface

• Controlling the Parallel Interface

2
Interfacing Concepts

This tutorial explains how to access arbitrary I/O devices from HP-UX
through HP-IB (Hewlett-Packard Interface Bus), GPIO (General-Purpose I/O),
and Centronics-compatible Parallel interfaces by using subroutines contained
in the HP-UX Device I/O Library (DIL). Topics discussed include general I/O
programming strategies, as well as strategies related specifically to HP-IB,
GPIO, and Parallel interfaces.

It is assumed that communication with I/O devices is handled through calls to
DIL subroutines from C, Pascal, or FORTRAN programs. Examples shown
in this tutorial are written in C, but the techniques illustrated are easily
converted for use with Pascal or FORTRAN by adding a little extra code.

Variation Between Computer Systems

In general, DIL subroutines function identically on all HP-UX computers,
regardless of series or model number within a series. However, because of
certain inherent differences between processors and other hardware, some
differences do exist. If such differences arise during an explanation, they are
clearly identified.

Additional major differences related to a specific model or series are identified
in a separate appendix for that series. Separate appendices are provided for
Series 300/400 and 600/800.

Part I: OIL Interfacing Concepts 2-1

Manual Organization

Chapter 2: Interfacing Concepts presents basic I/O programming concepts and
a description of the HP-IB, GPIO, and Parallel interfaces.

Chapter 3: General-Purpose Routines discusses how to access interfaces from
HP-UX environment and how to implement I/O transfers.

Chapter 4: Controlling the HP-IB Interface describes I/O programming
techniques for the HP-IB interface.

Chapter 5: Controlling the GPIO Interface discusses I/O programming
techniques for the GPIO interface.

Chapter 6: Controlling the Parallel Interface describes I/O programming
techniques for the Centronics-compatible Parallel interface.

Appendix A: Series 300/400 Dependencies discusses hardware- and
system-dependent characteristics of DIL subroutines when used with Series
300/400 computers. If you are using a Series 300/400 HP-UX system, check
this appendix to ensure correct use of DIL subroutines.

Appendix B: Series 600/800 Dependencies is similar to other appendices, but
for Series 600/800 computers. Use this appendix to ensure the correct use of
D IL su brou tines on Series 600/800 systems.

Appendix C: Character Codes

Appendix D: DIL Programming Example shows a non-trivial example of an
Amigo-protocol HP-IB device driver suitable for driving HP-IB line printers
that support Amigo protocol (commonly used on certain HP-IB disc drives
and line printers). This example program shows good HP-UX programming
practice, and illustrates a number of other techniques and features such as
parsing a command with arguments.

2-2 Interfacing Concepts Part I: OIL

OIL Interfacing Subroutines

As mentioned previously, Device I/O Library (DIL) subroutines provide a
means for directly accessing peripheral devices through HP-IB, GPIO, and/or
Parallel interfaces connected to your computer system. Some routines are
general-purpose and can be used with any interface supported by the library,
while others provide control of only certain specific HP-IB, GPIO, or Parallel
interfaces.

Linking OIL Routines

DIL routines can be called from C, Pascal, or FORTRAN programs. However,
the -I flag must be given when invoking the C, Pascal, or FORTRAN compiler,
cc (1), pc (1), or fc (1). Otherwise, library subroutines are not automatically
linked with your program. To link DIL subroutines to a compiled C program,
invoke the C compiler as follows:

cc program.c -ldvio

Similarly, for a Pascal program, use:

pc program.p -ldvio

and for a FORTRAN program, use:

fc program.f -ldvio

In all three cases, the -I option is passed to the HP-UX linker, causing it to
link any DIL routines called by the program being compiled. To determine
the exact location of DIL library on your HP-UX system, refer to the
corresponding hardware-specific appendix in this tutorial.

Calling OIL Routines from Pascal

You must provide an external declaration for each DIL subroutine called from
a Pascal program. An external declaration consists of the subroutine heading,
including a formal parameter list and result type, followed by the Pascal
EXTERNAL directive. For example, the C description of open(2) is:

int open (path. of lag)
char *path;
int oflag;

Part I: OIL Interfacing Concepts 2-3

The equivalent external declaration for the same subroutine in a Pascal
program is:

TYPE
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
of lag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating that the
parameter is passed by reference. This simulates the passing of a pointer,
which is what open(2) expects. In general, declaring a C routine from Pascal is
straightforward.

Calling OIL Routines from FORTRAN

C and FORTRAN subroutine calls are not compatible because C passes
parameters by value while FORTRAN passes them by reference. This
incompatibility can be easily circumvented by directing the compiler to
generate a call by value through the use of FORTRAN's $ALIAS option. For
example:

$ALIAS close = 'close' (%val)

If the FORTRAN compiler on your system does not support this form of
$ALIAS, the parameter-passing differences can be resolved by writing ~n
onionskin routine which is a C-language function written for the purpose of
resolving parameter-passing irregularities between C and other languages.

For example, to access close(2) through an onionskin routine, use:

then write the onionskin routine:

int my_io_close (eid)
/* the compiler will create the external symbol "_my_io_close"

based on the above declaration*/
int *eid;
{

return (close (*eid»;
}

2-4 Interfacing Concepts Part I: OIL

General Interface Concepts
The remainder of this chapter discusses interfaces in general and the HP-IB,
GPIO, and Centronics-compatible Parallel interfaces in particular. This
background information is helpful for understanding system operation, but is
not prerequisite to being able to successfully use DIL routines.

Definition

An interface is a built-in or plug-in electronic subassembly that manages the
transfer of information between the computer and one or more peripheral
devices. It converts electrical signals from the computer to a form that is
compatible with the requirements of the peripheral device and converts signals
from the peripheral device to a form that can be used by the computer. The
interface also controls information transfer paths and transfer timing such that
data flows in an orderly manner in correct sequence.

HP 9000 computers are equipped with both built-in as well as plug-in
interfaces that can be purchased as standard or optional items. Separate
interface cabling connects the peripheral device (s) to the interface unless the
peripheral device is built into the computer housing. The following functional
block diagram illustrates the functional architecture of a typical interface:

Computer

Part I: OIL

I/O
Backplane
Connector

Interface Logic
and

Control Circuitry

Electrical
Level Conversion
Circuitry

I/O
Device
Connector

~---
Figure 2-1. Interface Functional Diagram

Peripheral
Device

Interfacing Concepts 2-5

Interface Functions

A usable interface must fill the following system requirements:

• Electrical Compatibility: The interface must convert electrical signal
voltages, currents, frequencies, and timing from the computer to a form
that is useful to the peripheral device, and vice-versa (unless no conversions
are necessary). It must also provide any special protection that might
be necessary to protect circuitry within the computer or peripheral from
damage due to external effects related to the interface cable or power source.

• Mechanical Compatibility: The interface must be mechanically structured
so that it is readily connected to both the computer and the peripheral
device. This is usually accomplished by means of an interface cable that has
appropriate connectors on each end.

• Data Compatibility. Just as two people must speak a common language
before they can communicate well, the computer and peripheral must use
compatible forms of communication. While in most cases, the computer
operating system and the programmer are responsible for general data
format, communication protocols such as those used in data communication
networks and HP-IB interconnections are usually managed by the interface
card, based upon various signals and commands from the computer and the
peripheral device.

• Timing Compatibility. Peripheral devices within a given system rarely have
identical data transfer rates and data transfer timing requirements. They
also rarely match the timing and transfer rates in the computer or other
devices in the system. For this reason, one of the most important functions
of the interface is to manage and coordinate the interaction between the
computer and the interface as well as timing between the interface and
peripheral devices by using special timing signals that are inserted into the
data being transferred (most common in data communication interfaces)
or carried on separate control signal lines (typical for HP-IB, GPIO, and
Parallel interfaces). These timing signals are used to coordinate when a
transfer begins and at what rate the information is handled.

• Processor Overhead Reduction: Another important function of the interface
card is to relieve the computer of low-level tasks, such as performing data
transfer handshakes. This distribution of tasks eases some of the computer's
burden and decreases the otherwise stringent response-time requirements of

2-6 Interfacing Concepts Part I: OIL

external devices. The actual tasks performed by each type of interface card
vary widely. The remainder of this chapter concentrates on the functions of
three particular interfaces: HP-IB, GPIO, and Parallel.

Handshake .1/0

Most HP-IB, GPIO, and Parallel interfaces operate by means of handshake
transfers which operate generally as follows:

Handshake Output

• Computer sets input/output control to output and places first word or byte
on I/O bus to interface.

• Computer asserts peripheral control line to interface to start transfer.

• Interface recognizes asserted control signal from computer and transfers data
to output drivers and interface cable.

• Interface asserts output timing signals to peripheral device and waits for
response.

• Peripheral accepts output timing signals, inputs data from interface cable,
then returns flag signal indicating data has been accepted.

• Interface recognizes flag and sets flag to computer indicating the transaction
is complete. If the sender and receiver do not agree upon start time and
transfer rate, then the transfer is carried out via a handshake process:
the transfer proceeds one data item at a time with the receiving device
acknowledging that it received the data and that the sender can transfer the
next data item. Both types of transfers are utilized with different interfaces.

Handshake Input

• Computer sets input/output control to input.

• Computer asserts peripheral control line to interface to start transfer.

• Interface recognizes asserted control signal from computer, sends data input
command sequence to peripheral device, and waits for response.

• Peripheral accepts input command sequence, places data on interface cable,
then returns flag signal indicating data is available.

Part I: OIL Interfacing Concepts 2-7

• Interface recognizes flag, moves data to computer I/O bus, and sets flag to
computer indicating the transaction is complete.

Different interfaces support variations on this basic sequence. For example,
more sophisticated data communication and HP-IB cards may be equipped
with a microprocessor and shared memory that is directly accessible to the
computer and the interface processor. The computer moves data to and from
shared memory according to program needs, while the interface processor
performs similar operations to meet the demands of any data transfers in
progress. Shared pointers and other flags prevent collisions between conflicting
demands from the two processors, and the increased efficiency of a "smart"
interface greatly reduces the complexity and overhead related to more mundane
approaches to interrupt-driven handshake I/O.

For example, instead of handling each character or word as a single transaction,
the computer can load a block of data into the shared memory then signal the
interface that data is ready for transfer. The interface then uses the shared
pointers or other means to determine how much data to transfer, handles the
transfer, then signals the computer that the task is complete.

HP-IB Protocol

When a single interface is shared by multiple peripheral devices, additional
signaling must be used to control which devices respond to each transaction
as in HP-IB interfacing. A selection of protocol signals and device commands
are used to activate or deactivate various devices on the HP-IB bus according
to the needs of the bus controller (controlling interface). This signals, their
functions, and the sequences in which they are used are discussed in greater
detail throughout this tutorial.

2-8 Interfacing Concepts Part I: OIL

The HP-IB Interface

The Hewlett-Packard Interface Bus (HP-IB) was developed at HP as the
solution to an expanding need for a universal interfacing technique that
could be readily adapted to a wide variety of electronic instruments. It was
later expanded to include high-speed disc drives and other high-performance
computer peripherals. The HP-IB architecture was subsequently proposed
to and accepted by the Institute of Electrical and Electronic Engineers
(IEEE) and is now widely used throughout the electronic industry. HP-IB is
compatible with IEEE standard 488-1978. The number of devices that can
be connected to a given HP-IB interface depends on the loading factor of
each device, but in general up to 15 devices (including the interface) can be
connected together while still maintaining electrical, mechanical, and timing
compatibility requirements on the bus.

General Structure

IEEE Standard 488-1978 defines a set of communication rules called "bus
protocol" that governs data and control operations on the bus. The defined
protocol is necessary in order to ensure orderly information traffic over the bus.

Each device (peripheral or computer interface) that is connected to the HP-IB
can function in one or more of the following roles:

System Controller Master controller of the HP-IB. The computer interface
is usually the bus controller when all peripheral devices
on the bus are slaves to the system computer. However,
any other device can become the active controller if it is
equipped to act as a controller and control is passed to
it by the System Controller. The System Controller is
always the active bus controller at power-up.

Active Controller Current controller of the HP-IB. At power-up or
whenever IFC (InterFace Clear) is asserted by the System
Controller, the System Controller is the active controller.
Under certain conditions, the System controller may pass
control to another device that is capable of managing the
bus in which case that device becomes the new active
controller. The active controller can then pass control to
another controller or back to the System Controller. If

Part I: OIL Interfacing Concepts 2-9

Talker

Listener

the System Controller asserts IFC, the active controller
immediately relinquishes control of the bus.

A device that has been authorized by the current active
controller to place data on the bus. Only one talker can
be authorized at a time.

Any device that has been programmed by the active
controller to accept data from the bus. Any number of
devices on the bus can be programmed by the active
controller to listen simultaneously at any given time.

In typical systems, an HP-IB interface in the computer can act as a controller,
talker, and listener. If more than one computer is connected to the same bus,
only one interface can be configured as System Controller to prevent conflicts
at power-up (this is usually accomplished by a switch or wire jumper on the
interface card). A device that can only accept data from the bus (such as a
line printer) usually operates as a listener, while a device that can only supply
data to the bus (such as a voltmeter) usually operates as a talker. However,
before any device can talk or listen (after power-up initialization), it must be
authorized to do so by the current active controller. Bus configuration varies,
depending on the type of activity that is prevalent at the time. However, in
any case, the bus can have only one Active Controller and only one talker at a
given time, though it can have any number of listeners.

HP-IB is composed of 16 lines (plus ground) that are divided into 3 groups:

• Eight data lines form a bi-directional data path to carry data, commands,
and device addresses.

• Three handshake lines control the transfer of data bytes.

• The five remaining lines control bus management.

Handshake Lines

The handshake lines used to synchronize data transfers are:

DAY
NRFD

DAta Valid: Valid data has been placed on bus by talker.

Not Ready For Data: One or more listeners not yet ready to
accept data from the bus.

2-10 Interfacing Concepts Part I: OIL

NDAC

Note

Part I: OIL

Not Data ACcepted: One or more listeners has not yet accepted
the data currently on the bus.

The HP-IB interface uses negative (ground-true) logic for
handshake, data, and bus management lines. This means that
when the voltage on a line is at a logic LOW level, the line is
asserted (true). When a logic HIGH voltage level is present on
the line, the line is not asserted (false).

In general, software documentation refers to handshake and
other lines by their name acronym such as DAV, NRFD,
NDAC, etc. When discussing these same signal lines in
hardware documents, it is customary to refer to ground-true
(low-true) logic lines by their name acronym with a bar across
the top such as DAV, NRFD, NDAC, etc. In this document,
both versions are used. The overbar is usually present when
discussing hardware operation, but usually absent when
software is being treated. In this tutorial, only the name is
significant. Signal names are synonymous, with or without
the overbar unless specifically noted otherwise; the overbar is
used for the convenience of those readers whose experience is
oriented more toward hardware than software.

Interfacing Concepts 2-11

The timing diagram in Figure 1-2 shows how handshake lines are used to
complete a data item transfer. The discussion which follows is based on the
contents of Figure 1-2.

Data

DAV

--1-illllllllllll.ll--r- FALSE
TRUE

___ ______ __ J: FALSE

TRUE

NRFD /:
--....... ---' 1

FALSE

-------~--------~--- TRUE
1
1

N DAC __ _---I1 __ -'-_ _____ ---JJ:
1
1
1
1
1

FALSE

"'1 ---'----- TRU E
1
1
1
1

0®©@ ®®@®
Figure 2-2. HP-IB Handshake Sequence

All handshake lines are electrically connected in a "wired-OR" configuration
which means that any device can pull the line low (active or asserted) at any
time, and more than one device may pull the line low simultaneously or later in
a given handshake cycle. The line then remains low until every device that was
previously pulling the line low has released the line, allowing it to float to its
high state. At the start of the handshake cycle (point A), the handshake lines
are in the following states:

• DAV is false (high), meaning that the current talker has not yet placed valid
data on the bus.

• NRFD is true (low), meaning that one or more listeners is not yet ready to
accept data from the bus.

• NDAC is true (low), meaning that bus data has not yet been accepted by
every listener on the bus.

2-12 Interfacing Concepts Part I: OIL

When a listener is ready to accept data, it releases NRFD, allowing it to go
high provided no other listener is still holding the line low. However (due to
the "wired-OR" interconnection scheme used by HP-IB), NRFD remains LOW
(true) until every listener releases it. When every listener is ready to accept
data (indicated by NRFD being released by every listener), NRFD changes to
its logic HIGH (false) state as indicated by point B in Figure 1-2.

By monitoring NRFD, the talker can determine when to send data: NRFD
false means that every listener is ready to accept data. The talker then places
data on the data lines and asserts DAV (point C), indicating to the listeners
that valid data is available on the data lines for them to accept.

As soon as each listener detects that DAY has been asserted, it asserts NRFD
(point D), driving it low (true) unless NRFD has already been driven low by
another listener in the same cycle.

After driving NRFD low, each listener inputs and processes the data from the
data lines. When it has accepted the data, the listener releases NDAC. As
with the NRFD line at point B, NDAC remains low (true) until every listen.er
on the bus has released the line, allowing it to go high (false). When NDAC
goes high, the false logic state indicates to the talker that every listener has
accepted the data (point E).

When the talker determines that every listener has accepted the data, it
releases the DAV line which rises to its high (false) state. At the same time,
the talker disables its outputs to the data lines, allowing them to rise to their
high (false) state (point F).

When DAV goes false, the listeners assert NDAC (point G), driving it low.
This signifies the end of the handshake (point H), at which time all bus logic
lines are again at the same state as they were before the handshake started
(point A).

Bus Management Control Lines

There are five bus management control lines:

ATN ATtentioN: Treat data on data lines as commands, not data.

IFC InterFace Clear: Unconditionally terminate all current bus
activity.

Part I: OIL Interfacing Concepts 2-13

REN Remote EN able: Place all current listeners in Remote operating
mode.

EOI End Or Identify: End of data message. If ATN is true (low),
Active Controller is conducting a parallel poll (Identify) of devices
on the bus.

SRQ Service ReQuest: Bus device is requesting service from current
Active Controller.

ATN: The Attention Line

Command messages are encoded on the data lines as 7-bit ASCII characters,
and are distinguished from the normal data characters by the attention (ATN)
line's logic state. That is, when ATN is false, the states of the data lines are
interpreted as data. When ATN is true, the data lines are interpreted as
commands.

IFC: The Interface Clear Line

Only the System Controller sets the IFC line true. By asserting IFC, all bus
activity is unconditionally terminated, the System Controller becomes the
Active Controller, and any current talker and all listeners become unaddressed.
Normally, this line is used to terminate all current operations, or to allow the
System Controller to regain control of the bus. It overrides any other activity
currently taking place on the bus.

REN: The Remote Enable Line

This line allows instruments on the bus to be programmed remotely by the
Active Controller. Any device addressed to listen while REN is true is placed
in its remote mode of operation.

EOI: The End or Identify Line

If ATN is false, EOI is used by the current talker to indicate the end of a data
message. Normally, data messages sent over the HP-IB are sent using strings of
standard ASCII code terminated by the ASCII line-feed character. However,
certain devices must handle blocks of information containing data bytes within
the data message that are identical to the line":feed character bit pattern, thus

2-14 Interfacing Concepts Part I: OIL

making it inappropriate to use a line-feed as the terminating character. For
this reason, EOI is used to mark the end of the data message.

The Active Controller can use EOI with ATN true to conduct a parallel poll on
the bus.

SRQ: The Service Request Line

The Active Controller is always in charge of overall bus activity, performing
such tasks as determining which devices are talkers and listeners, and so forth.
If a device on the bus needs assistance from the Active Controller, it asserts
SRQ, driving the line low (true). SRQ is a request for service, not a demand,
so the Active Controller has the option of choosing when and how the request
is to be serviced. However, the device continues to assert SRQ until it has
been satisfied (or until an interface clear command disables the request).
Exactly what satisfies a service request depends on the requesting device, and
is explained in the operating manual for the device.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel
interface that can be used to communicate with a variety of devices. The
GPIO interface utilizes data, handshake, and special-purpose lines to perform
data transfers by means of various user-selectable handshaking methods.

While the GPIO interfaces used on various HP-UX computers are electrically
very similar, they differ in certain important aspects. Refer to the appendices
for Series 300/400 and 600/800 for information pertaining to your specific
application.

Part I: OIL Interfacing Concepts 2-15

The Centronics-Compatible Parallel Interface
The Parallel interface is a very flexible Centronics-compatible bi-directional
interface that can be used to communicate with a variety of devices. The
Parallel interface utilizes data, handshake, and special-purpose lines to perform
data transfers by means of various user-selectable handshaking methods.

While the Parallel interfaces used on various HP-UX computers are electrically
very similar, they differ in certain important aspects. Refer to the appendices
for Series 300/400 and 600/800 for information pertaining to your specific
application.

2-16 Interfacing Concepts Part I: OIL

3
General-Purpose Routines

The DIL library contains several general-purpose subroutines that can be used
with any interface supported by the library (see Table 3-1 for a complete list).
This chapter explains how to use these subroutines in application programs.
Specifically, the following topics are presented:

• Basic introductory background concepts that are essential to understanding
correct use of DIL library routines.

• Opening interface special files.

• Closing interface special files.

• Read/write operations to interface special files.

• Designing error-checking routines.

• Resetting an interface.

• Controlling input/output parameters.

• Determining why a read terminated.

• Handling interrupts.

Part I: OIL General-Purpose Routines 3-1

I

Background Basics

Interface Special Files

HP-UX handles I/O to an interface or system peripheral device much like
it handles read/write operations to disc storage files: every I/O interface
or device is associated with an entity generally referred to as a device
file, special file, or device special file. All three terms are used
interchangeably and are usually synonymous. Any program that accesses
subroutines in the DIL library cannot be used unless an appropriate device
special file has been created for the corresponding interface. While the program
can be written before the file exists, it cannot be used. The method used to
create an interface special file depends on the model of computer being used.
Refer to the appropriate hardware-specific appendix for information about
creating interface special files on your system.

Entity Identifiers (eid)

Nearly all DIL routines require an entity identifier (eid) as a parameter. The
entity identifier is an integer returned by the open(2) system call when opening
the interface special file (eid is the file descriptor for the opened special file
on Series 300/400 and 600/800). The eid supplied as a parameter to a DIL
subroutine tells the subroutine which interface special file to use.

Programming Model

As a general rule, all programs that contain DIL subroutine calls for a specific
interface should conform to the following structure:

1. Use an open system call to obtain the interface entity identifier (eid) for the
special file being used. Opening an interface special file is discussed later in
this chapter.

2. Use the returned eid as a parameter in DIL subroutine calls to perform
desired tasks through the corresponding interface. Suitable techniques are
discussed throughout the remainder of this tutorial.

3-2 General-Purpose Routines Part I: OIL

3. When the necessary DIL subroutine calls have been completed, close the
interface special file that was opened in step 1 above as discussed later in
this chapter.

General-Purpose Routines

Table 3-1 provides a brief synopsis of the standard general-purpose routines
discussed in this chapter. Several system calls related to the use of DIL
subroutines, are also discussed: open(2), close(2), read(2), and write(2).

Table 3-1. General-Purpose Routines.

Routine Description

io_reset Reset a specified interface.

io_timeout_ctl Establish a timeout period for any operation performed on a
specified interface by a DIL routine.

io_width_ctl Set the data path width for a specified interface.

io_speed_ctl Select a data transfer speed for a specified interface.

io_eol_ctl Set up a read termination character for data read from a
specified interface.

io_get_ term_reason Determine how the last read terminated for the specified
interface.

io_on_interrupt Set up interrupt handling for a program.

io_interrupt_ctl Enable or disable interrupts for a specified interface.

io_lock Lock an interface for exclusive use by the calling process.

i~_unlock Un~ock an interface so it can be used by other processes.

Part I: OIL General-Purpose Routines 3-3

Additional Series 300/400 Routines

Series 300/400 systems also support the following DIL subroutines:

Subroutine Description

io _burst Control the data path between computer memory and an
HP-IB, GPIO, or Parallel interface. If flag = 0, all data is
handled through kernel calls with the normal associated
overhead. If f lag is non-zero, burst mode locks the interface
and data is transferred directly between memory and the I/O
mapped interface until the transfer is completed. Burst mode
yields substantial improvement in efficiency when handling
small amounts of data or high-speed data acquisition.

This subroutine handles high-speed transfers on HP-IB,
GPIO, and Parallel I/O.

io _dma_ctl Control usage of DMA channels by DIL devices.

Refer to the io_burst(3I) and io_dma_ctl(3I) entries in the HP-UX Reference
for details on using these subroutines.

Opening Interface Special Files
With the exception of the default standard input, standard output, and
standard error files, all read/write operations to any file from inside C,
FORTRAN, or Pascal programs require that the file(s) be explicitly opened
before they can be used. The HP-UX open(2) system call is used to accomplish
this as follows:

#include <fcntl.h>
~nt eid;

eid = open(filename. oflag);

filename is either a character string containing the device file's external HP-UX
name or a pointer to a buffer containing the external name.

3-4 General-Purpose Routines Part I: OIL

The integer variable ofiag specifies the access mode for the opened file, and
can have one of six possible values, as defined in the /usr/include/fcntl. h
header file: O_RDONLY (value = 0) requests read-only access, O_WRONLY (value
= 1) requests write-only access, and O_RDWR (value = 2) requests both read
and write access (three values with O_NDELAY not set, three values with
O_NDELAY set - see io_lock (31) in the HP-UX Reference, for a total of
six values). To use these constants in a programs, the #include C-compiler
directive must be present as shown in the example above.

An open system call on an interface special file returns an integer representing
the entity identifier (eid) for the opened interface. As mentioned earlier, the
entity identifier is required as a parameter in all DIL subroutine calls. It is also
required as a parameter for all read/write operations to the opened file.

The following code defines an entity identifier called eid and opens an interface
file called / dey /raw_hpi b with access enabled for both reading and writing:

#include <fcntl.h>
#include <errno.h>
~nt eid;

eid = open(II/dev/raw_hpib", O_RDWR);

Special files can also be opened by placing the character string name of the file
being opened in a string variable, then executing the open system call with a
pointer to the variable as shown in the following code segment:

#include <fcntl.h>
int eid;
c:har *buffer;

buffer = "/dev/raw_hpib";
if «eid = open (buffer , O_RDWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

If the call to open succeeds, a non-negative integer is returned as the entity
identifier. If an error occurs and the file is not opened, -1 is returned and
errno is set to indicate the error.

Part I: OIL General-Purpose Routines 3-5

r
Closing Interface Special Files
Good programming practice dictates that an open interface special file should
be closed when a program is through using it by executing a close(2) system
call. This guideline is valid even though any open files are automatically closed
by the HP-UX operating system when a process terminates (via exit(2) or a
return from the main routine).

Note HP-UX limits the number of files a given process (program)
can have open at one time to NO_FILE as defined in the
/usr/include/param.h header file. Series 300/400 systems
limit the number of open DIL files in the entire system to the
value of the configurable parameter ndilbuffers (default
is 30). See the HP- UX System Administrator Manual for
information on changing this value. Series 600/800 systems
limit the number of open DIL files to 16 per interface.

The close system call requires the entity identifier corresponding to the open
interface special file that is being closed. The following code segment shows
how to open and close an HP-IB interface:

#include <fcntl.h>
#include <errno.h>
main()
{

}

~nt eid;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

/* Code to perform I/O operations
(read/write in this case) on the open interface. */

close(eid);

3-6 General-Purpose Routines Part I: DIL

Upon completion of the close system call, the entity identifier is no longer
valid and is available for the system to assign to another file. If the file is again
opened later in the program, the system mayor may not assign the same eid
value, so appropriate caution in using eid values is in order.

close(2) returns a value of zero if the file is successfully closed. Otherwise, it
returns a -1 and the external error variable errno(2) is set to indicate the
error (error handling is discussed later in this chapter). The most common
error returned by close (EINVAL) is related to an invalid value for eid
meaning that the wrong value was used or the file is already closed.

Low-Level Read/Write Operations

Most HP-UX I/O operations to system peripheral devices is handled at a
fairly high level where the system automatically provides buffering and other
services that are not under the direct control of the user or program being run.
However, some situations that are commonly encountered by DIL users require
a much more intimate control of individual I/O transactions. These low-level
operations provide no buffering or other services, and are a direct entry into
the operating system. The two HP-UX system calls, read(2) and write(2),
provide low-level I/O read/write capabilities. Both require three arguments:

• The entity identifier for an open file

• A buffer (string variable) in the program where data is to come from during
write or go to during read (write empties a buffer; read fills a buffer).

• The number of bytes to be transferred.

Part I: OIL General-Purpose Routines 3-7

I

I
Calls to read have the form:

#include <fcntl.h>
#include <errno.h>
main()
{

int eid; I*the entity identifier*1
char buffer[10]; I*buffer in which the read data will be placed*1

if «eid = open(l/dev/raw_hpib", O_RDWR» == -1) {
printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

I*establish communication with the raw HP-IB device file
(see the next chapter, "Controlling the HP-IB interface")*1

read(eid, buffer, 10); I*reads 10 bytes from a previously opened*1
} I*file with the entity identifier "eid". *1

Calls to write are very similar:

#include <fcntl.h>
#include <errno.h>
main()
{

int eid; I*the entity identifier*1
char *buffer; 1* the buffer containing data to be written to a file*1
if «eid = open(l/dev/raw_hpib", O_RDWR» == -1) {

}

printf(lIopen failed, errno = %d\n", errno);
exit(2);

io_reset(eid);
io_timeout_ctl(eid, 1000000);

I*establish communication with the HP-IB interface
(see the next chapter, "Controlling the HP-IB Interface")*1

buffer = "data message";
write(eid, buffer, 12);

I*message to be sent*1
1*12 bytes are written to previously*1

} I*opened file with the entity identifier leid"*1

Although read and write require the number of bytes to be transferred as
their third argument, other characteristics (discussed later) of the device

3-8 General-Purpose Routines Part I: OIL

associated with the interface file eid can end the transfer before this number is
reached.

Example

Assume you have already created an auto-addressed special file, /dev/hpib_dev
for an HP-IB device. Your program must first open /dev/hpib_dev for reading
and writing:

int eid;
eid = open (II/dev/hpib_dev lI

, O_RDWR);

To place data on the bus, use write:

write(eid, "This is a test II , 14);

In this example, 14 characters are sent through eid. The literal string
expression This is a test is placed in a data storage area by the compiler for
later handling by the call to write. On output, if the number of characters
requested does not match the length of the data storage space, the message is
truncated (if the byte count is smaller than the data block) or extended into
the next data block assigned by the compiler (if the byte count is larger than
the data block).

To receive 10 bytes of data from the bus and place them in buffer, use:

char buffer[10];
read(eid, buffer, 10);

In this code segment, the read routine will attempt to read up to 10 bytes of
data from the interface and place it in buffer.

Part I: OIL General-Purpose Routines 3-9

Designing Error Checking Routines

All Device I/O Library routines return -1 and set an external HP-UX variable
called errno if an error occurs during execution.

The errno Variable

errno is an integer variable whose value indicates what error caused the failure
of a system or library routine call. It is not reset after successful routine calls,
and should never be checked for value until after you have determined that an
error has occurred.

Well-designed programs always include adequate error checking. However,
most examples shown in this tutorial (other than in this section) do not verify
successful completion of subroutine calls.

Refer to the errno(2) entry in the HP- UX Reference for complete definitions of
the various errors returned when a system call fails.

Using errno

The following code segment must be present in the early part of any program
that accesses errno:

#include <errno.h>

The errno.h Header File

The header file lusr I incl udel errno . h uses error numbers defined in header
file lusr lincludel sysl errno. h. For a complete list of errors and their
associated meanings, refer to errno(2) in the HP- UX Reference.

Displaying errno

Once errno has been declared in a program, there are two ways to check its
value if a routine fails. The simplest approach is to check the return value to
determine whether or not the routine failed, then print out the value of errno
and exit if it did. The following example illustrates this strategy:

#include <errno.h>
#include <fcntl.h>
MainO

3-10 General-Purpose Routines Part I: OIL

{

}

~nt eid;

if «eid = open (II /dev/raw_hpib ll • O_RDWR» == -1)
{

printf("Error occurred. Errno = %d". errno);
exit(l);

When this method is used, the program user must refer to the errno(2) entry
in the HP-UX Reference to determine what the printed value of errno means.

Error Handlers

Another approach that is more complex for the programmer but much
more convenient for the user is to check for specific values of errno and
execute error routines related to the value. In most cases, only a limited
number of situations can cause a particular a subroutine to fail, so there is a
correspondingly small number of errno values that can be encountered upon
failure. Possible error values are usually listed in the HP- UX Reference on the
manual page entry for the failed subroutine.

For example, checking open(2) in the HP- UX Reference reveals that errno is
set to ENOENT (defined in the errno. h header file) if you attempt to open a file
that does not exist and you have not given the system call permission to create
a new file. Armed with this information, you can incorporate the following
code segment in your program:

#include <errno.h>
#include <fcntl.h>
main()
{

}

~nt eid;

if «eid = open (II/dev/raw_hpib" • O_RDWR» == -1)
{

if (errno == ENOENT)
printf("Error: cannot open; file does not exist\n");

else
printf("Error: file exists but cannot open\n");

exit(l);

Part I: OIL General-Purpose Routines 3-11

Note that the print statements in the example above could be replaced with
calls to more sophisticated error-handling routines such as perror (see the
perror(3C) entry in the HP- UX Reference).

Resetting Interfaces
The DIL routine io_reset can be used to reset HP-IB, GPIO, and
Centronics-compatible Parallel interfaces.

The following example call to io_reset resets the interface whose entity
identifier is eid where eid is the value that was returned when the interface
special file was opened.

io_reset(eid);

Refer to the appropriate hardware-specific appendix for more information
about the exact effects of io_reset on HP-IB, GPIO, and Parallel interfaces
when used with various computer models.

For example, suppose that after opening an interface file you want to make sure
the interface has been properly initialized. This is done by calling io_reset
and looking at its return value:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

~nt eid;

if «eid = open(II/dev/raw_hpib ll
, O_RDWR» == -1) {

printf(IIopen failed, errno = Y.d\n", errno);
exit(2);

}

if (io_reset(eid) == -1)
{

printf("Possible problem with interface\n");
exit(1);

/* program continues if "io_reset" was successful */

3-12 General-Purpose Routines Part I: OIL

Locking an Interface
Using a single interface to control multiple peripheral devices provides many
advantages in convenience, cost and system operating characteristics. However,
when several programs and/or several users need simultaneous access to
peripherals sharing a single interface, conflicts arise. This problem is especially
annoying when one user needs exclusive control of the interface during a set of
critical I/O operations. Unless a mechanism is provided to lock out other users
during critical program steps, useful results may be unobtainable in some cases.

Two DIL subroutines, io_lock and io_unlock are provided for this purpose.
The first locks the interface so that only the process that locked it can use
the interface until it is unlocked. The second unlocks the interface so other
processes can again access it.

When another process attempts to access a locked interface, the process will
sleep until the interface is unlocked (or a timeout occurs) if the D_NDELAY flag
was not set at the time the requesting process executed the open(2) system
call. If the D_NDELAY flag was set during the call to open(2) and the interface is
locked, any attempts to access the locked interface fail and the DIL subroutine
call from the process returns with an error.

Locks on an interface are owned by the process, and are not associated with
the eid. This means that the same process can access a given interface through
another eid if another open is performed on the device. If a process uses a
fork(2) system call to create a child process that uses the same interface, the
child does not inherit the current lock from the parent. Since it has a different
process ID than the parent, it also cannot access the locked interface file until
the parent unlocks it.

For good programming practice, any locks created by a process should be
unlocked through a call to io_unlock before terminating. However, any locks
held by a process are released when the process terminates, whether or not a
call to io_unlock was executed. Refer to iO_lock(3I) in the HP- UX Reference
for more information about locking and unlocking interfaces.

Caution

Part I: OIL

Do not place a lock on any interface that supports any system
disc or swap device. Interface locks are enforced by the system,
and such a condition may require rebooting in order to recover.

General-Purpose Routines 3-13

Controlling I/O Parameters
The Device I/O Library provides four subroutines that perform I/O control
operations pertaining to timeout, data path width (usually 8 or 16 bits),
transfer speed, and read termination (end-of-line) pattern. The subroutines
and their functions are as follows:

Subroutine Controlled I/O Function

io_timeout_ctl Timeout: Assign a timeout value in microseconds for I/O
operations (actual timeout resolution may be limited by system
hardware).

io_width_ctl Data Path Width: Specify width of the interface's data path or
switch between supported widths for various operations.

io_speed_ctl Transfer Speed: Request a minimum speed for data transfers
through the interface in kilobytes (Kbytes) per second.

io_eol_ctl Read Termination Pattern: Assign a pattern to be recognized as a
read termination pattern.

Note It is not uncommon for a single process to have multiple
eids open simultaneously (resulting from multiple calls to
open in a single program. The subroutines io_timeout_ctl,
io_width_ctl io_speed_ctl, and io_eol_ctl, can be used
to conveniently configure different values for timeout, width,
speed, and termination pattern on any given eid without
disturbing the previously configured (or default) values
associated with other eids.

Unless specifically altered by calls to one or more of these
subroutines, interface file operation uses system defaults for
each eid.

An easy way to handle mUltiple devices that use different data formats without
having to reconfigure each individual I/O operation is to open more than one
eid on a given interface file, then configure each eid independently.

3~ 14 General-Purpose Routines Part I: OIL

Setting I/O Timeout

I/O timeout determines how long the system waits for a response from the
interface or peripheral device each time an I/O operation is initiated. If the
timeout limit is exceeded, the operation is aborted and a timeout error is
returned. The default timeout is set to 0 which disables timeout errors.

If timeout is disabled (zero) and an error condition occurs that prevents
successful completion of a data transfer or other I/O operation, the calling
program may hang. Therefore, use of a non-zero timeout value is strongly
recommended as good programming practice. To set or change the timeout use
io_timeout_ctl as follows:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;
long time;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = Y.d\n", errno);
exit(2);

}

io_reset(eid);

time = 1000000; /*set timeout of 1 second*/

/*data transfers using "eid" are controlled by the
timeout value "time"*/

eid is the entity identifier associated with the open interface file, and time is a
32-bit long integer specifying the length of the timeout in microseconds.

Each time an I/O operation is initiated, timeout is restarted. For example,
when setting up bus addressing, the system allows timeout microseconds for
completion. Each subsequent data transfer (in or out) is given the same time
limit. If a given operation is not completed within the time limit specified by
the timeout value, the operation is aborted and an error indication is returned
(return value of -1) and errno is set to Ero (not to be confused with EOI).

Part I: OIL General-Purpose Routines 3-15

Note Be sure that the timeout limit is set to a value higher than
the longest expected time to complete a transfer. If a normal
transfer takes longer than the timeout limit, the operation is
aborted even though system operation is correct.

Timeout is specified in microseconds (Ji,sec) in the call to io_timeout_ctl, but
the actual timeout used and its resolution is system-dependent. The timeout
value is always rounded up to the nearest normal time resolution interval
supported by the system executing the operation. For example, if the available
system resolution is 10 milliseconds and a timeout of 25000 microseconds (25
milliseconds) is requested, the actual timeout value used is 30 milliseconds.
To determine timeout resolution for your system, refer to the appropriate
hardware-specific appendix.

IMPORTANT A timeout value of 0 microseconds is meaningless because
no device can respond with data in less than zero time. For
this reason, the default or a specified timeout value of zero is
treated as a request to disable timeout and any condition that
would normally cause a timeout termination is ignored by the
system, usually causing the program to hang. Specifying a .
timeout of zero is not recommended.

Any interface file eid obtained by using the dup(2) system call or inherited
by a fork (2) request shares the same timeout as the original interface file eid
obtained from open(2). If the child process resulting from a fork inherits an
eid then changes the timeout, the eid used by the parent process is likewise
affected.

Setting Data Path Width

When you create a DIL special file and open it for the first time, the data
path width defaults to 8 bits. Once the file is opened, io_width_ctl can be
used to select a new width. Allowable widths vary, depending on the computer
model and interface. Refer to the appropriate hardware-specific appendix to
determine what widths are supported by specific interfaces.

3-16 General-Purpose Routines Part I: OIL

Assuming that the open device file has the entity identifier eid, io_width_ctl
is called using a code segment similar to the following:

~nt eid, width;

where width is the number of parallel bits in the new data path. The
io_width_ctl returns -1 to indicate an error if the specified width is not
supported on the interface identified by eid.

For example, to reconfigure a GPIO device to use all 16 data lines in the
interface cable instead of the default lower 8 bits, use a a code segment similar
to the following:

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid, width;
width = 16; /*width of new data path */

if «eid = open(lI/dev/raw_hpib ll
, O_RDWR» == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_width_ctlCeid, width); /*assign new width for GPIO bus*/

/*data transfers using "/dev/raw_gpio" will now
use a 16-bit bus*/

Use of io_width_ctl to change interface data path width affects only the
device associated with that particular eid. Use io_reset or io_width_ctl
to restore the default 8-bit path width. On a Series 600/800 system,
io_width_ctl affects all users of the interface referred to by eid.

Setting Minimum Data Transfer Rate

DIL provides a means for specifying a minimum acceptable data transfer rate
for a given interface special file within the limits of available hardware by use
of io_speed_ctl. The calling sequence is as follows:

Part I: OIL General-Purpose Routines 3-17

where eid is the entity identifier for the open interface file, speed is an integer
indicating a minimum speed in Kbytes per second, and a kilobyte equals 1 024
bytes.

Io_speed_ctl returns a 0 if successful, or -1 if an error occurred. For
example:

requests a minimum speed of 1 024 bytes per second. While the system may
use a faster transfer rate if possible, you are at assured that the rate will not be
less than the specified speed.

The transfer method (such as DMA or interrupt) chosen by the system is
determined by the minimum speed requested. The system selects a transfer
method that is as fast or faster than the requested speed. If the requested
speed is beyond system limitations, the fastest available transfer method is
used. Refer to the appropriate hardware-specific appendix for details.

Setting the Read Termination Pattern

During read operations on an open device file, the system recognizes certain
conditions as the end of a data transfer from the sending device. DIL supports
three methods for identifying the end of an input operation:

• Input data byte count limit is reached.

• Hardware condition is used to identify end of data.

• Predetermined character or sequence of characters is used to identify the end
of a data record.

Input termination occurs when the first termination condition is recognized,
independent of the type of condition. If two or more conditions occur
simultaneously, the first condition detected terminates the operation. However,
this first condition along with any other simultaneous events that would also
have caused termination are recorded during clean-up at the end of the transfer
for possible later use by io_get_term_reason.

Termination on Byte Count

3-18 General-Purpose Routines Part I: OIL

Any call to read must specify the maximum number of data bytes that are to
be accepted. When the specified number of bytes have been read, the data
transfer is unconditionally terminated, whether the data is complete or not.

Termination on Hardware Condition

In many cases, the number of bytes being transferred is controlled by the
peripheral device and cannot be predetermined. To make sure that no data is
lost, the byte limit is set to a value higher than the longest expected input data
record, and the interface is configured to recognize a condition, character, or
set of characters (one or two bytes only) as the end of the incoming data. For
instance, if an HP-IB interface detects that the EOI line has been asserted,
it knows that the last data byte has been transferred and halts the read
operation, whether or not the specified byte count has been reached.

Termination on Data Pattern

The DIL routine io_eol_ctl configures an interface to recognize a particular
character or pair of characters as a read termination pattern. Whether one or
two bytes are used for the pattern depends on whether the data path width
is set to 8 or 16 bits. The read termination pattern is in addition to any
other conditions that may already be in effect for the interface. The call to
io_eol_ctl has the form:

~nt eid. flag. match;

where eid is the entity identifier for the open interface file and flag, depending
on its value, enables or disables the interface's ability to recognize a read
termination pattern.

Part I: OIL General-Purpose Routines 3-19

When flag is zero, termination pattern recognition is disabled and only EOI
or a satisfied byte count can terminate a normal transfer. If flag is non-zero,
match defines the new termination pattern. When using flag = 0 to disable
eol pattern recognition, the third parameter (match) in the subroutine call is
not used. However, it is recommended that a value (such as zero) be provided
as good programming practice.

When flag is non-zero to enable end-of-line recognition (for example, flag =
1) and the interface data path width is set to 8 bits, the least-significant byte
of the 4-byte integer value of match defines the termination pattern used to
identify an end-of-line condition.

On the other hand, if the interface data path width is set to 16 bits (such as
with a GPIO interface), then, for most systems, the termination pattern is also
16 bits, defined by the two lower (least-significant) bytes of the 4-byte integer
value defined by match.

Remember: If any other read termination conditions defined for the interface
are in effect (such as EOI for an HP-IB interface), any event that matches
a currently active termination condition can cause a read operation to halt;
independent of whether the defined eol condition has been met. Also note
that the read termination pattern defined by io_eol_ctl is accepted as part
of the valid incoming data, meaning that it is transferred to the data storage
area along with the rest of the transferred data. In other words, when the
interface encounters transferred data matching the match value, it treats the
data as part of the data message but does not attempt any further data input
after the matching data pattern is found. This means that if data within an
incoming data stream happens to match the pattern defined by match, the read
is terminated whether the data message is complete or not. For this reason,
care must be exercised when defining eol character sequences for data transfer.

To illustrate how to use io_eol_ctl, suppose an HP-IB interface is being
configured to recognize a backslash-n (\n) as a read termination pattern. First,
open the HP-IB interface file and obtain the entity identifier eid. Second,
make the call to io_eol_ctl using eid as the entity identifier, ENABLE as the
flag, and \n as the match (\n is a one-byte value, and the data path width for
all HP-IB devices is 8 bits):

3-20 General-Purpose Routines Part I: OIL

#include <fcntl.h>
#include <errno.h>
#define ENABLE 1
main{)
{

int eid;

if ((eid = open(tI/dev/raw_hpib tl • O_RDWR» == -1) {
printf(tlopen failed. errno = %d\ntl. errno);
exit(2);

}

io_reset(eid);

io_eol_ctl(eid. ENABLE. '\n');

/*data transfers using tleid tl terminate with a '\n'*/

}

Interface file Idev/raw_hpib is now configured to terminate read operations
when anyone of the following occurs:

• The byte count specified in the call to read is reached.

• The HP-IB EOI line is asserted. When the interface detects that the EOI
line has been asserted, the character currently on the bus becomes the last
byte in the data message.

• backslash-n (\n) (newline character) is detected in incoming data. The
newline character becomes the last byte in the stored data message.

An interface file entity identifier returned by a dup(2) system call or inherited
by a fork request shares the same read termination pattern as the entity
identifier returned by the original call to open. If the child process resulting
from a fork inherits an entity identifier then sets a read termination pattern
for that eid, the eid used by the parent process is also affected.

If a single program or process executes more than one open system call on the
same interface file, each entity identifier returned by open can have its own
associated read termination pattern. Using io_eol_ctl on a given eid does
not affect the others. Thus, multiple entity identifiers can be set up for a single
interface to facilitate recognition of various termination characters during
program execution.

Part I: OIL General-Purpose Routines 3-21

r
Disabling a Read Termination Pattern

To disable the read termination pattern, call io_eol_ctl with the flag
parameter disabled (set to 0):

where xx represents a "don't care" value for the match argument. If the flag
argument is 0, the match argument is ignored.

The following code segment defines the ASCII . character (decimal value 46)
as a termination pattern, performs a read operation, then disables termination
pattern recognition.

#include <fcntl.h>
#include <errno.h>

maine)
{

int eid;
char buffer[12];

if «eid = open(1I /dev/hpib_dev". O_RDWR» == -1) {
printf("open failed. errno = %d\n". errno);
exit(2);

}

io_timeout_ctl(eid. 10000000);

io_eol_ctl(eid. 1. 46);
read(eid. buffer. 12); /*Read operation halts when a period character

"." is read or when the 12th byte is read*/
~o_eol_ctl(eid. O. 0); /*termination pattern recognition is disabled*/

}

3-22 General-Purpose Routines Part I: DIL

Determining Why a Read Terminated

Various situations can cause termination of read operations through an
interface. Upon completion of a read, you may want to include code to verify
that the reason for termination is what you expected. This is done by using
the DIL routine io_get_term_reason.

io_get_term_reason uses a single argument: the interface file entity identifier
eid, and returns an integer. The returned value indicating how the last read
operation ended, is interpreted as follows:

Returned Meaning
Value

-1 An error during the subroutine call.

o Read terminated abnormally (for some reason other than the ones
listed here).

1 Byte count limit caused termination.

2 End-of-line character pattern caused termination

4 Device-imposed condition (such as EOI asserted on HP-IB interface)
caused termination.

If more than one termination condition occurred simultaneously, the bit
corresponding to the above values is set for each condition, and the aggregate
value of the lower three bits represents a sum equal to the combined values of
the individual conditions. The three least-significant bits of the lowest byte
have meanings as indicated by their associated decimal values in the table
above. For example, if io_get_term_reason returns a value of 7, all three
conditions: byte count limit, hardware termination, and termination pattern
recognition occurred simultaneously.

Note

Part I: OIL

If no read is performed on an open interface file prior to a call
to io_get_term_reason, a value of zero is returned.

General-Purpose Routines 3-23

~ I

I
All entity identifiers descending from a single open request (such as from dup
or fork) affect the status returned by this routine. For example, suppose that
an entity identifier is inherited by a child process through a fork. If the parent
process calls io_get_term_reason, the last read operation of either the parent
or the child is looked at, depending on which is more recent.

Example

Suppose you want to read data through an open HP-IB interface file, but want
a printout indicating the reason for termination on every transfer, whether the
termination was normal or abnormal. The following code segment provides
that capability:

#include <fcntl.h>
#include <errno.h>

/*
** possible termination reasons
** returned by io_get_term_reason
*/
#define TR_ABNORMAL 0 /* abnormal */
#define TR_COUNT 1 /* requested count was satisfied */
#define TR_MATCH 2 /* specified eol character was matched */

/* TR_COUNT + TR_MATCH */ #define TR_CNT_MCH 3
#define TR_END 4
#define TR_CNT_END 5
#define TR_MCH_END 6
#define TR_CNT_MCH_END

/* EO! was detected */
/* TR_COUNT + TR_END */
/* TR_MATCH + TR_END */
7 /* TR_COUNT + TR_MATCH + TR_END */

{
main()

int eid, termination_reason, bytes_read;
char buffer [50] ;

if «eid = open(II/dev/raw_hpib ll
, O_RDWR» < 0) {

}

printf("Open of /dev/raw_hpib failed - errno = %d\n", errno);
exit (1) ;

io_reset(eid);
io_timeout_ctl(eid, 1000000);

bytes_read = read(eid, buffer., 50);
termination_reason = io_get_term_reason(eid);

3-24 General-Purpose Routines Part I: OIL

errno

switch (termination_reason) {
case TR_ABNORMAL: /* abnormal */

printf("Abnormal read termination, bytes_read
%d\n", bytes_read, errno);

break;

%d,

case TR_COUNT: /* requested count was satisfied */
printf("Count satisfied.\n");
break;

case TR_MATCH: /* specified eol character was matched

printf("EOL character satisfied.\n");
break;

case TR_CNT_MCH:
printf("Count and EOL character satisfied.\n");
break;

case TR_END: /* E01 was detected *1
printf("E01 detected.\n");
break;

case TR_CNT_END:
printf("Count satisfied and EO! detected.\n");
break;

case TR_MCH_END: /* TR_MATCH + TR_END */
printf("EOL character satisfied and EO! detected.\n");
break;

case TR_CNT_MCH_END:
printf("Count and EOL character satisfied and EO!

detected.\n");

errno

}

}

break;
default: /* io_get_term_reasoned failed */

printf(lIio_get_term_reason failed, bytes_read = %d,
%d\n", bytes_read, errno);

break;

Part I: OIL General-Purpose Routines 3-25

v

Interrupts
DIL provides an interrupt mechanism for HP-IB, GPIO, and Parallel interfaces
that is similar to HP-UX signal handling. Thus interrupt handlers can be
included in programs such that they are invoked when certain conditions occur.

HP-IB Interrupts

Series 300/400 and 600/800 computers recognize the following HP-IB interrupt
conditions:

Signal Condition

SRQ SRQ line has been asserted.

TLK Computer HP-IB interface has been addressed to talk.

LTN Computer HP-IB interface has been addressed to listen.

TCT Computer HP-IB interface has received control of the bus.

IFC IFC line has been asserted.

REN Remote enable line has been asserted.

DCL Computer HP-IB interface has received a device clear command.

GET Computer HP-IB interface has received a group execution trigger
command.

PPOLL A specific parallel poll response occurred.

3-26 General-Purpose Routines Part I: DIL

GPIO Interrupts

• Series 300/400 computers recognize the following GPIO interrupt condition:

Signal

ElR

Condition

ElR line has been asserted.

• The Series 600/800 HP 27112 GPIO interface recognizes the following
interrupt conditions:

Signal

SlEO

SlEl

Condition

Status line 0 has been set.

Status line 1 has been set.

• The Series 600/800 HP 27114 GPIO interface recognizes the following
interrupt condition:

Signal

ElR

Condition

ElR line has been asserted.

Parallel Interrupts

Series 300/400 computers recognize the following Parallel interrupt conditions:

Signal Condition

NERROR NERROR line has changed from high to low or from low to high.

SELECT SELECT line has changed from high to low or from low to high.

PERROR PERROR line has changed from high to low or from low to high.

Part I: OIL General-Purpose Routines 3-27

I

I
The io_on_interrupt Subroutine

The io_on_interrupt subroutine sets up interrupt conditions. It has the form:

where eid is the interface entity identifier for a GPIO, HP-IB or Parallel
interface. handler points to the function that is to be invoked when the
interrupt condition occurs, and cause_vec is a pointer to a structure of the
form:

struct interrupt_struct {
int cause;
int mask;

};

The interrupt_struct structure is defined in the include file dvio. h.

cause is a bit vector specifying which selectable interrupt or fault events will
cause the handler routine to be invoked Available interrupt causes are usually
specific to the type of interface being considered. In addition, certain exception
(error) conditions can be handled by the io_on_interrupt subroutine. If the
cause vector has a zero value, it, in effect, disables interrupts for that eid.

mask is an integer value that is used to define which parallel-poll response lines
are to be recognized in an HP -IB parallel poll interrupt. The value for mask
is formed from an 8-bit binary number, each bit of which corresponds to one
of the eight parallel-poll response lines. For example, to invoke an interrupt
handler for a response on line 2 or 6, the correct binary number is 01000100
which converts to a decimal equivalent of 68, the correct value for mask.

When the enabled interrupt condition occurs on the specified eid, the process
that set up the interrupt executes the interrupt-handler routine pointed to
by handler. The entity identifier eid and the interrupt condition cause are
returned to handl er as the first and second parameters respectively.

Whenever an interrupt condition occurs for a given eid, the interrupt is
recognized, interrupts are disabled for that eid, then the interrupt handler is
executed. After processing the interrupt, interrupts can be re-enabled for that
eid by calling io_interrupt_ctl.

Each call to io_on_interrupt returns a pointer to the previous handler if the
new handler is successfully installed, otherwise it returns -1 and errno is set.

3-28 General-Purpose Routines Part I: OIL

The following example illustrates how an interrupt handler can be set up to
handle requests on the HP-IB service request line (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
extern int service_routine();

handler (eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)
service_routine(); /* application-specific service routine*/

}

main()
{

int eid;
struct interrupt_struct cause_vec;

if «eid = open(lI/dev/raw_hpib ll
, O_RDWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

}

io_reset(eid);

cause_vec.cause = SRQ;
~o_on_interrupt(eid, &cause_vec, handler);

The io_interrupt_ctl Subroutine

Subroutine io_interrupt_ctl provides a convenient means for enabling and
disabling interrupts on a specific eid. Since interrupts are automatically
disabled when an interrupt occurs, io_interrupt_ctl is commonly used to
re-enable interrupts during a series of repetitive operations that are being
handled under interrupt control. The call to io_interrupt_ctl has the
following form:

where eid is the entity identifier for an open GPIO or raw HP-IB interface
(device) file. The value of enable_flag determines whether interrupts are to
be enabled or disabled: if enable_flag is non-zero, interrupts are enabled on
the eid; if enable_flag is zero, interrupts are disabled. Attempting to use

Part I: OIL General-Purpose Routines 3-29

r
io_interrupt_ctl on an eid fails when no previous call has been made to
io_on_interrupt for the same eid.

The following code segment shows how the previous example can be modified
slightly so that interrupts are re-enabled at the end of the interrupt service
routine:

handler(eid. cause_vec);
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)

service_routine(); /* application-specific service routine*/

}

3-30 General-Purpose Routines Part I: OIL

Controlling the HP-IB Interface

The general-purpose subroutines discussed in Chapter 3 are used to set up
and handle data transfers at a high level. However, they do not control the
lower-level interface operations that are necessary to maintain proper bus
operation and control interaction between HP-IB devices.

4

This chapter explains the use of subroutines in the Device I/O Library that
are directly related to HP-IB interface control. Chapter 5 covers comparable
material for the GPIO interface. This chapter presents a brief overview of
HP-IB commands, followed by a detailed discussion of HP-IB DIL subroutines
including how they are used to control bus activity and manage bus traffic.

Part I: OIL Controlling the HP-IB Interface 4-1

Overview of HP-IB Commands
HP-IB commands consist of various data sequences that are sent over the
eight HP-IB data lines while the ATN line is asserted (held LOW). The
DIL subroutine hpib_send_cmnd provides a convenient means for sending
bus commands by automatically handling the ATN line and the necessary
handshaking operations between devices. However, hpib_send_cmnd can be
used only when the computer interface to the bus is the active controller.
Techniques for using hpib_send_cmnd are discussed later in this chapter.

Any device that is the intended recipient of an HP-IB command must have its
remote enable line (REN) enabled by the System Controller (unless altered
by the System Controller, REN is enabled, by default). Only the System
Controller can alter the state of the REN line (see "System Controller's
Duties" section later in this chapter).

HP-IB Data Bus Commands fall into four categories:

• Universal commands cause every properly equipped device on the bus to
perform the specified interface operation, whether addressed to listen or not.

• Addressed commands are similar to universal commands, but are accepted
only by bus devices that are currently addressed as listeners.

• Talk and listen addresses are commands that assign talkers and listeners on
the bus.

• Secondary commands are commands that must always be used in
conjunction with a command from one of the above groups.

4-2 Controlling the HP-IB Interface Part I: DIL

Table 4-1 lists commands that can be sent with hpib_send_cmnd, along with
the decimal and ASCII character equivalents of each command. This table is
useful for reference when determining what values to use as parameters in
hpib_send_cmnd subroutine calls.

Table 4-1. HP-IB Bus Commands

Command Decimal ASCII Character
Value

Universal Commands:

UNLISTEN 63 ?

UNTALK 95 -

DEVICE CLEAR 20 DC4

LOCAL LOCKOUT 17 DC1

SERIAL POLL ENABLE 24 CAN

SERIAL POLL DISABLE 25 EM

PARALLEL POLL UNCONFIGURE 21 NAK

Addressed Commands:

TRIGGER 8 BS

SELECTED DEVICE CLEAR 4 EOT

GO TO LOCAL 1 SOH

PARALLEL POLL CONFIGURE 5 ENQ

TAKE CONTROL 9 HT

Part I: DIL Controlling the HP-IB Interface 4-3

I
Table 4-1. HP-IB Bus Commands (continued)

Command Decimal ASCII Character
Value

Talk and Listen Addresses:

Talk Addresses 0-30 64-94 @ thru A

(uppercase ASCII)

Listen Addresses 0-30 32-62 space thru >

(numbers and special
characters)

Secondary Commands: (If a secondary
command follows the PARALLEL
POLL CONFIGURE command, it is
interpreted as follows; otherwise its
meaning is device-dependent)

PARALLEL POLL ENABLE 96-111 ' thru 0

(lowercase ASCII)

PARALLEL POLL DISABLE 112 p

UNLISTEN

UNLISTEN unaddresses all current listeners on the bus. No means is available
for unaddressing a given listener without unaddressing all listeners on the bus.
This command ensures that the bus is cleared of all listeners before addressing
a new listener or group of listeners.

UNTALK

UNTALK unaddresses any active talkers on the bus. Since no means is
available for un addressing a given talker, the UNTALK command is sent to
all devices on the bus. This ensures that no conflict with a current talker can
occur when addressing a new one.

4-4 Controlling the HP-IB Interface Part I: DIL

DEVICE CLEAR

DEVICE CLEAR causes all devices that recognize this command to return
to a pre-defined, device-dependent state, independent of any previous
addressing. The reset state for any given device after accepting this command
is documented in the operating manual for the device in question.

LOCAL LOCKOUT

LOCAL LOCKOUT disables local (front panel) control on all devices that
recognize this command, whether the devices have been addressed or not.

SERIAL POLL ENABLE

SERIAL POLL ENABLE establishes serial poll mode for all devices that
are capable of being bus talkers, provided they recognize and support the
command. This command operates independent of whether the devices being
polled have been addressed to talk. When a device is addressed to talk, it
returns an 8-bit status byte message.

This command is handled through the DIL subroutine hpib_spoll, as
discussed later in this chapter.

SERIAL POLL DISABLE

SERIAL POLL DISABLE terminates serial poll mode for all devices that
support this command, whether or not the individual devices have been
addressed.

The DIL subroutine hpib_spoll that performs this function is discussed at
length later in this chapter.

TRIGGER (Group Execute Trigger)

TRIGGER causes devices currently addressed as listeners to initiate a
preprogrammed, device-dependent action if they are capable of doing so. Use
of this function and programming procedures are documented in operating
manuals for devices that support it.

Part I: OIL Controlling the HP-IB Interface 4-5

I
SELECTED DEVICE CLEAR

SELECTED DEVICE CLEAR resets devices currently addressed as listeners
to a device-dependent state, provided they support the command. Refer to the
device operating manual for more information about programming and the
resulting state(s).

GO TO LOCAL

GO TO LOCAL causes devices currently addressed as listeners to return to the
local-control state (exit from the remote state). Devices return to remote state
next time they are addressed.

PARALLEL POLL CONFIGURE

PARALLEL POLL CONFIGURE tells devices currently addressed as listeners
that a secondary command follows. This secondary command must be either
PARALLEL POLL ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE

PARALLEL POLL ENABLE configures devices addressed by PARALLEL
POLL CONFIGURE to respond to parallel polls with a predefined logic level
on a particular data line. On some devices, the response is implemented in a
local form (such as by using hardware jumper wires) that cannot be changed.

Use of this command must be preceded by a PARALLEL POLL CONFIGURE
command.

PARALLEL POLL DISABLE

The PARALLEL POLL DISABLE command prevents devices previously
addressed by a PARALLEL POLL CONFIGURE command from responding
to parallel polls. This command must be preceded by the PARALLEL POLL
CONFIGURE command.

4-6 Controlling the HP-IB Interface Part I: OIL

Overview of HP-IB OIL Routines

The 17 subroutines in Table 4-2, in addition to the general-purpose subroutines
discussed in Chapter 3, provide full capabilities for controlling and using the
HP -IB interface.

Table 4-2. HP-IB OIL Routines

Subroutine Description

hpib_abort Stop activity on specified HP-IB select code.

hpib_io Perform a series of HP-IB read, write, and SEND_CMD
operations from a single subroutine call.

hpib_ppoll Conduct parallel poll on HP-IB.

hpib_spoll Conduct serial poll on HP-IB.

hpib_bus_status Return status on HP-IB interface.

hpib_eoi_ctl Control EOI mode for data transfers.

hpib_pass_ctl Pass bus control to another device on the bus.

hpib_card_ppoll_resp Define HP-IB card's response to a parallel poll.

hpib_ren_ctl Assert or release HP-IB remote-enable (REN) line on
HP-IB.

hpib_rqst_srvce Initiate a service request (SRQ) when interface is not
Active Controller.

hpib_send_cmnd Send command message on HP -IB data lines while
asserting the attention (ATN) line.

hpib_wait_on_ppoll Wait until a specified device responds on its assigned
parallel poll response line indicating that it needs service.

hpib_status_wait Wait until any device on the bus asserts SRQ.

hpib_ppoll_resp_ctl Configure and enable or disable the parallel poll response
circuit on the specified device (determines how the device
will respond to the next parallel poll from a remote active
controller) .

hpib_atn_ctl Control the HP-IB ATN line.

hpib_parity_ctl Set parity type to be used for hpib_send_cmnd calls.

hpib_address_ctl Set the bus address of an HP-IB interface card.

Part I: OIL Controlling the HP-IB Interface 4-7

HP-IB: The Computer's Role

Most HP-IB applications consist of a single computer and several peripheral
devices connected to a given bus. However, some situations may require two or
more computers on the same bus along with various shared and/or dedicated
peripheral devices. This discussion applies to both configurations.

Ground Rules

The following rules are mandatory for proper HP-IB interaction:

• HP-IB allows only one System Controller per bus.

• Only one device on the bus can be active controller at any given time.

• All other devices capable of controlling the bus must be non-active
controllers unless control is passed from another active controller.

• The computer interface is configured as System Controller. If two or more
computers are interfaced to a single bus, only one can be configured as
System Controller. All other interfaces must be configured as non-controllers
(incapable of acting as System Controller). This is usually accomplished by
programming a switch or jumper on the HP-IB interface card.

At power-up, the System Controller is the Active Controller. All other
controllers on the bus are non-active controllers. If the computer interface
passes control to another device, the device receiving control becomes the new
active controller and the computer interface becomes a non-active controller
although it remains System Controller at all times and can regain control of
the bus by asserting IFC (InterFace Clear). Once control has been passed to
another device, the computer remains non-active controller until control is
passed back or IFC is asserted.

Available Subroutines versus Controller Role

Which DIL subroutines can be used depends on the computer's role on the
HP-IB at the time. Given the three possible roles, Table 4-3 indicates which
subroutines can be used with each.

4-8 Controlling the HP-IB Interface Part I: OIL

Table 4-3. OIL Subroutine Availability Based on Interface Role

Subroutine System Active Non-Active
Controller Controller Controller

hpib_abort •
hpib_io •
hpib_ppoll •
hpib_spoll •
hpib_bus_status Note 1 • •
hpib_eoi_ctl •
hpib_pass_ctl •
hpib_card_ppoll_resp Note 2 •
hpib_ren_ctl •
hpib_rqst_srvce Note 2 •
hpib_send_cmnd •
hpib_wait_on_ppoll •
hpib_status_wait Note 1 • •
hpib_ppoll_resp_ctl Note 2 •
hpib_parity_ctl Note 1 • •
hpib_atn_ctl •
hpib_address_ctl Note 1 • •

Note 1 This command is available to the System controller, but the
availability is meaningless because this command is available to
any interface on the bus, independent of its role as an active or
non-active controller.

Note 2

Part I: OIL

This command is available to the interface while it is active
controller, but the command is meaningless except when the
interface is acting in the non-active controller role.

Controlling the HP-IB Interface 4-9

Bus Citizenship:
Surviving Multi-Device/Multi-Process HP-IB
HP-UX provides a powerful environment for creative programming. As a
result, one or more users can create a large number of processes that may be
running simultaneously. At the same time, HP-IB provides the capability
of combining multiple devices on a single I/O channel or interface. As long
as only auto-addressed HP-IB interface files are used, problems are few and
infrequent. However, when processes that use DIL subroutines start accessing
raw-mode HP-IB interface files, a splendid opportunity arises for competing
processes to create bus addressing and access conflicts. If certain precautions
are not carefully maintained, performance quickly decays to chaos.

The Device I/O Library contains several subroutines that are provided
specifically for maintaining orderly HP-IB traffic and good I/O efficiency.
Correct use of these subroutines is especially important when using raw
interface files. They include:

• io_lock and io_unlock to take exclusive control of the HP-IB channel for
the duration of a transfer,

• io_burst to efficiently handle short transfers without consuming large
amounts of HP-UX kernel overhead,

• hpib_io to structure a complete bus transfer including configuration and
control operations in a buffer then handle the transfer as a single subroutine
(,:)]1 t hrou~h an interface file that is automatically locked at the beginning
_cud released at the end of the transfer.

These subroutines are discussed at length later in this chapter, but are treated
here from the point of view of overall bus applications efficiency as it pertains
to programming practice.

4-10 Controlling the HP-IB Interface Part I: OIL

When handling raw-mode (as opposed to auto-addressed) HP-IB transfers,
devices must be set up to communicate (preamble) before the transfer
(read/write) can be initiated, then the necessary clean-up (post amble)
operations must be performed to leave the bus in an acceptable state for the
next process. If you do not notify other processes that you are using the bus,
they might initiate a different transfer while you are preparing for your next
DIL subroutine call. A command sequence from another process (through a
different eid but through the same interface) could completely scramble your
bus configuration so your transfer request results in no data, erroneous data, or
possibly even more serious results, depending on the nature of the transfer.

A simple call to io_lock prior to your first call to an HP-IB subroutine and
a matching call to io_unlock after your last HP-IB subroutine call keeps
competing processes from using the bus while you have control. As soon as the
interface file is unlocked, it can be accessed by the next process that needs it.

io_burst

Series 300/400 systems support burst I/O (also called fast handshake) which
bypasses the kernel by performing a high-speed non-interrupt transfer. This
method can produce considerable performance improvement when handling
short transfers to or from high-speed HP-IB devices. Refer to the io_burst(3I)
manual entry in Section 3 of the HP- UX Reference for more information.

The DIL subroutine hpib_io is used to perform bus configuration, data
transfer, and bus clean-up as a single operation through a locked interface file.
When using hpib_io, control commands (the preamble), data to be written
or a buffer for incoming data (the data message), and clean-up commands
(postamble) are placed in a data structure prior to calling hpib_io. hpib_io
then handles the transfer as defined in the data structure (which configures
the HP-IB and handles the transfer and clean-up) then returns with the result
(transfer complete or transfer failed).

Part I: OIL Controlling the HP-IB Interface 4-11

I
Opening the HP-IB Interface File
Before DIL subroutines can be used on an HP-IB interface, the interface
special file must exist and the program must obtain a corresponding entity
identifier. The procedures for opening interface special files and obtaining
entity identifiers is discussed in Chapter 3, "General-Purpose Routines."

Sending HP-IB Commands
Once the HP-IB interface special file has been opened and the entity identifier
has been obtained, DIL subroutines can be used to send HP-IB commands to
control the interface. If the computer is Active Controller, hpib_send_cmnd
can be used to place HP-IB commands on the data bus.

One method of using this routine is to first set up a character array containing
the commands being sent. Assign the decimal value of each command to an
element in the array, then use a subroutine call having the form:

hpib_send_cmnd(eid, command, number);

where eid is the entity identifier for the open interface file, command is a
character pointer to the first element of the array containing the HP-IB
commands, and number is the number of elements (commands) in the array.
The subroutine hpib_send_cmnd places each of the commands stored in the
array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer
you can send subsets of command arrays. Suppose you create an array that
contains 10 HP-IB commands, command[O) through command[9). You can now
specify that only the last 5 commands in the array be sent by using:

hpib_send_cmnd(eid, command + 5, 5);

4-12 Controlling the HP-IB Interface Part I: OIL

This method of sending HP-IB commands by storing them in an array uses
their decimal values. Alternatively, ASCII command characters can be used by
specifying a character string and using a subroutine call of the form:

hpib_send_cmnd(eid. "command_string". number);

where eid and number are the same as before but the commands to be sent are
now specified by each character in the string command_string.

To illustrate the two methods, assume that you want to send the HP-IB
UNLISTEN and UNTALK commands. With the decimal array method, first
set up an array having two elements, place the decimal value for each command
in the appropriate location in the array, then call hpib_send_cmnd:

#include <fcntl.h>
#include <errno.h>
MainO
{

}

int eid;
char command[2]; /*command array*/

if ((eid = open(" /dev/raw_hpib". O_RDWR» == -1) {
printf("open failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid. 1000000);

command[O] = 63;
command[1] = 95;

/*decimal value for UNLISTEN*/
/*decimal value for UNTALK*/

hpib_send_cmnd(eid. command. 2);

Part I: OIL Controlling the HP-IB Interface 4-13

Using the ASCII character string method, the same effect is achieved using:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;

if ((eid = open("/dev/raw_hpib". O_RDWR» == -1) {
printf("open failed. errno = Y.d\n". errno);
exit(2);

}

io_timeout_ctl(eid. 1000000);

hpib_send_cmnd(eid. "1_". 2); /*1 is ASCII for UNLISTEN and*/
/*_ is ASCII for UNTALK */

The array method is usually preferred when sending a large number of
commands or sending the same set of commands several times in the program
because the entire set of commands can be stored once then used whenever
needed. When the string method is used, the entire set of commands must
be specified as a string in each call to hpib_send_cmnd. It is preferred when
sending only a few commands or sending a set of commands only once in a
program.

4-14 Controlling the HP-IB Interface Part I: OIL

Errors While Sending Commands

Normally, hpib_send_cmnd returns a 0 if successful. It returns a -1 if anyone
of the following error conditions exist:

• Computer interface is not Active Controller.

• eid entity identifier does not refer to an HP-IB raw interface file.

• eid entity identifier does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

• The command length specified by number is invalid.

To determine which of these conditions caused the error, check the value
of errno, an external integer variable used by HP-UX system calls.
Error-checking routines are discussed at length in Chapter 3.

The following table lists errno values corresponding to the conditions above
when detected by hpib_send_cmnd:

errno Value

EBADF

ENOTTY

EIO

ETIMEDOUT

EACCES

EINVAL

Part I: OIL

Error Condition

eid did not refer to an open file

eid did not refer to a raw interface file

The interface was not the Active Controller (EACCES on Series
600/800)

A timeout occurred (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid

number was invalid, either less than or equal to 0 or greater than
MAX_HPIB_CDMMANDS as defined in dvio. h

Controlling the HP-IB Interface 4-15

I
Changing Parity on Commands

By default, bus commands sent across the bus using hpib_send_cmnd are sent
using odd parity. On the Series 300/400, you can disable the use of parity on
bus commands using the hpib_pari ty _ctl routine.

The following sequence illustrates the use of hpib_pari ty _ctl to disable the
sending of parity and use eight bit command bytes:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;
char command [2] ;

if «eid = open(lI /dev/raw_hpib ll
, O_RDWR» == -1) {

printf(lIopen failed. errno = %d\n", errno);
exit (2) ;

}

io_timeout_ctl(eid, 1000000);

hpib_parity_ctl(eid, 0);
command[O] = 63; /*decimal value for UNLISTEN*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

4-16 Controlling the HP-IB Interface Part I: OIL

Active Controller Role
The Active Controller is responsible for originating all commands handled
on the bus and responding to requests for service from other devices.
hpib_send_cmnd is used to send HP-IB commands. Other DIL subroutines
are used for the remaining bus control tasks. Active Controller operations
discussed in this chapter include:

• Addressing individual devices to talk or listen.

• Switching devices to remote control operation.

• Locking out local front-panel control on devices.

• Switching devices to local front-panel control.

• Triggering devices to initiate device-dependent operations.

• Transferring data in or out.

• Clearing (resetting) devices

• Responding to service requests from devices.

• Conducting parallel and serial polls.

• Passing active control of the bus to another device.

Part I: OIL Controlling the HP-IB Interface 4-17

I
Determining Active Controller

A computer interface must be the Active Controller before it can handle any
bus management activities. If any other device on the bus is capable of being
Active Controller, use the hpib_bus_status subroutine to determine whether
the interface is the current Active Controller. Use the following subroutine call
form:

where eid is the entity identifier for the opened HP-IB interface device file
and ACT_CONT_STATUS tells the subroutine to examine interface status and
determine whether or not the card is the Active Controller. The value returned
by the subroutine can be tested as indicated in the example source code which
follows.

hpib_bus_status returns 0 if the condition being tested is false; 1 if true, and
-1 if an error occurred. The code that follows shows a straightforward way of
interpreting the returned value:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main{)
{

int eid, status;
if ({eid = open{lI/dev/raw_hpib ll

, O_RDWR» == -1) {
printf{lIopen failed, errno = Yod\n ll

, errno);
exit(2);

}

~f ({status = hpib_bus_status{eid,ACT_CONT_STATUS» == -1)
/*an error occurred; error-handling code*/

els~ if (status == 0)

els~

}

/*goes here. */

/*not Active Controller; code to request */
/*Active Controller status goes here */

/*Active Controller; bus-management code */
/*goes here */

4-18 Controlling the HP-IB Interface Part I: OIL

Setting Up Talkers and Listeners

Before data can be transferred over HP-IB, one talker and one or more listeners
must be assigned to handle the transfer. In addition, some HP-IB commands
are recognized only by those devices that are currently addressed as listeners,
which means that the Active Controller must specify the listeners before
sending such commands. Only one talker at a time is allowed on the bus, but
the number of listeners is not restricted.

Series 300/400 and 600/800 computers provide two methods for addressing
listeners and talkers on HP-IB: auto-addressing and command addressing.

When an HP-IB interface device file is set up as an auto-addressed file
(determined by the value of the minor number used when creating the file), any
read/write operations to or from the file automatically set up the bus talk and
listen address commands prior to transferring data. The interface must be the
Active Controller when auto-addressing is used.

The alternate method uses hpib_send_cmnd to directly control the bus from
the user program itself. However, this method of control can only be used on
raw device special files.

AutO-Addressing

Much of the tedium of addressing devices to talk or listen can be avoided
by using auto-addressed device special files to take advantage of HP-UX
auto-addressing capabilities for many peripherals. Auto-addressing is
performed only on auto-addressed HP-IB device files. Some DIL subroutines
require a raw HP-IB device file, and will fail if you attempt to use them
on an auto-addressed device file. DIL subroutines that can be used
with auto addressed device files include hpib_eoi_ctl, hpib_eol_ctl,
io_burst, io_get_term_reason, io_lock, io_unlock, io_speed_ctl,
and io_timeout_ctl. Systems determine whether a device file is raw or
auto-addressed by the minor number used when the file is created. Address 31
(hexadecimal If) is reserved for raw files. Any address in the range 0 through
30 is auto-addressed. Refer to the appropriate appendix for procedures used to
create device and interface special files.

Part I: OIL Controlling the HP-IB Interface 4-19

I
For example, suppose you are using a Series 300/400 computer with an
HP 98624 HP-IB card on select code 08 to access a peripheral device located
at bus address 03. Use mknod to create a new device file named device for
the peripheral device and place the file in directory dev underneath the root
directory as explained in Appendix A:

mknod /dev/device c 21 OxOS0300

Once the file exists, it can be listed by using the 11(1) command. In this case,
the device file named /dev/device is listed (along with other files in the /dev
directory) together with its permissions and attributes:

crw-rw-rw- 1 root other 21 OxOS0300 Nov 22 19S6 /dev/device

Since the bus address is less than decimal 31, the file is a non-raw device file
and is auto-addressable. The following code segment illustrates how to use
auto-addressing with such a device file:

#include <errno.h>
#include <fcntl.h>

maine)
{

}

int eid;

if «eid = open("/dev/device" ,O_RDWR) < 0» {

}

/*

printf("Open of /dev/device failed, errno = Y.d\n", errno);
exit(1);

** Assuming "/dev/device" has the minor number (OxOS0300), the
** system automatically addresses the interface card at select code S
** as a talker and the device at bus address 3 as a listener before
** sending data
*/

if (write(eid, "test data", sizeof("test data"» < 0) {
printf("write failed, errno = Y.d\n", errno);
exit(2);

}

4-20 Controlling the HP-IB Interface Part I: OIL

Using hpib_send_cmnd

Talkers and listeners can be configured under program control by forming
HP-IB command sequences from the talk and listen addresses of the devices
being used. However, before addressing talkers and listeners, clear the bus of
any talkers and listeners that might be left over from previous transactions
by issuing UNTALK and UNLISTEN commands (whenever a talk address
appears on the bus, well-mannered devices should recognize the address and
automatically untalk if the address is for a different device. However, not all
devices are necessarily well-mannered, so an UNTALK is considered good
programming practice). To configure a new talker and listeners:

1. Send an UNTALK command to remove any previous talkers.

2. Send an UNLISTEN command to remove any previous listeners.

3. Send the talk address of the device that will be sending data. There can
only be one talker.

4. Send the listen address of each device that is to receive the data.

After data transfer is complete, issue an UNTALK and UNLISTEN command
on the bus (repeat steps 1 and 2) to leave it in a clean state for subsequent
transactions.

DIL subroutine hpib_send_cmnd is used to perform these tasks.

Part I: OIL Controlling the HP-IB Interface 4-21

I
Calculating Talk and Listen Addresses

Before devices can be addressed to talk or listen, their HP-IB bus addresses
must be known. The bus address of the computer interface is easily obtained
by using hpib_bus_status as shown in this program code segment:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid. address;
if «eid = open("/dev/raw_hpib". O_RDWR» == -1) {

printf("open failed. errno = Y.d\n". errno);
exit(2);

}

where eid is the entity identifier for the interface file and
CURRENT_BUS_ADDRESS indicates a request for the interface HP-IB
bus address.

To determine the bus address of other devices on the bus, refer to installation
and operating manuals for each device being used (certain HP-IB addresses
may be reserved for specific devices on some systems).

Once device addresses are known for all devices of interest, setting up talk and
listen addresses is a fairly simple matter.

HP-IB commands are set up as a single ASCII character transmitted while
ATN is asserted. However, it is usually much easier to calculate addresses
based on bus address rather than looking up the corresponding ASCII
character for each address. Bus addresses range from 0 through 30, and talk
and listen addresses are derived through decimal addition as follows:

talk_address = 64 + bus_address
listen_address = 32 + bus_address

where talk_address is the decimal equivalent of the binary bit pattern
that represents the ASCII talk address command character. Likewise,
listen_address is the decimal representation of the ASCII listen address
command character. bus_address is the decimal value of the HP-IB bus
address for the device being addressed.

4-22 Controlling the HP-IB Interface Part I: OIL

The talk and listen addresses MTA ("my talk address") and MLA ("my listen
address") for the computer interface are derived similarly as follows:

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;
MLA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 32;

An Example Configuration

Assuming that the computer's HP-IB interface is currently the Active
Controller, the following code segment establishes the interface as the bus
talker. Two devices at HP-IB addresses 4 and 8 are designated as bus listeners.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid, MTA;
char command[6];
if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {

printf(IIopen failed, errno = %d\n", errno);
exit(2);

}

I*calculate My Talk Address*1
MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;
command [0] = 96; 1* UNTALK command*1
command[1] = 63; 1* UNLISTEN command*1
command [2] = MTA; /* interface talk address*/
command[3] = 32 + 4; 1* listen address for device at bus address 4*1
command[4] = 32 + 8; 1* listen address for device at bus address 8*1
hpib_send_cmnd(eid, command, 6);

Part I: OIL Controlling the HP-IB Interface 4-23

Remote Control of Devices

Most HP-IB devices can be controlled from either their front panel or the bus.
If the device's front-panel controls are currently operational, the device is in
local state. If it is being controlled through the HP-IB, it is in remote state.
Pressing the device's front-panel LOCAL key returns the device to local control
unless it has been placed in local lockout state (described in the next section).

Whether the HP-IB remote enable (REN) line is asserted or not determines
whether or not a device can respond to remote program control. While REN
is asserted, any device that is addressed to listen is automatically placed in
remote state. Only the System Controller can assert or release the REN line.
REN, by default, is asserted at power-up and remains asserted unless changed
as discussed later in this chapter under the topic System Controller Operations.

Locking Out Local Control

The LOCAL LOCKOUT command inhibits the LOCAL key or switch present
on the front panel of most HP-IB devices, thus preventing anyone from
interfering with system operations by pressing front-panel control buttons. All
devices that support local lockout are locked, whether addressed or not, and
cannot be returned to local control from their front panels.

The following code segment shows one method for sending the LOCAL
LOCKOUT command:

command[O] = 17; 1* Decimal value of LOCAL LOCKOUT*I
~pib_send_cmnd(eid, command, 1);

The GO TO LOCAL command can be used to place a device in local
(front-panel control) state.

4-24 Controlling the HP-IB Interface Part I: OIL

Enabling Local Control

During system operation, it may be necessary to place certain devices in
local state for direct operator control such as when making special tests or
troubleshooting. The GO TO LOCAL command returns all devices currently
addressed as listeners to their local state.

For example, the following code segment places devices at bus addresses 3 and
5 in local state.

command[O] = 63;
command[l] = 32 + 3;

/* the UNLISTEN command*/
/* listen address for device at address 3*/

command[2] = 32 + 5; /* listen address for device at address 5*/
command[3] = 1; /* the GO TO LOCAL command*/
~pib_send_cmnd(eid, command, 4);

Triggering Devices

The HP-IB TRIGGER command tells devices currently addressed as
listeners to initiate some device-dependent action. A typical use is triggering
a measurement cycle on a digital voltmeter. Since device response to a
TRIGGER command is strictly device-dependent, HP-IB has no direct control
over the type of action being initiated.

The following code triggers the device at bus address 5:

command[O] = 63; /* UNLISTEN command*/
command[l] = 32 + 5; /* listen address for device at address 5*/
command[2] = 8; /* TRIGGER command*/
~pib_send_cmnd(eid, command, 3);

Part I: OIL Controlling the HP-IB Interface 4-25

I

I
Transferring Data

Data Output

To output data from an Active Controller the controller must:

1. Send a bus UNTALK command.
2. Send a bus UNLISTEN command.
3. Send its own talk address (MTA).
4. Send the listen address of the device that is to receive the data. One listen

address is sent for every device that is to receive the data.
5. Send the data.
6. Repeat steps 1 and 2 to clean up the bus.

The first 3 steps are accomplished using hpib_send_cmnd. The system
subroutine write takes care of the fourth.

The following code segment illustrates how character data can be sent to a
device at HP-IB address 5.

#include <dVlo.b>
#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid, MTA;
char command [50] ;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = Y.d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64; /*compute MTA*/
command[O] = 95; /*UNTALK command*/
command[1] = 63; /*UNLISTEN command*/
command [2] = MTA; /*address interface to talk*/
command [3] = 32 + 5; /*listen address of device at*/

/*address 5 */
hpib_send_cmnd(eid. command. 4);
write (eid, "data message", 12); /*send the data*/
hpib_send_cmnd(eid, command, 2); /*clear talkers and listeners*/

4-26 Controlling the HP-IB Interface Part I: OIL

Data Input

Assume that you expect to receive 50 bytes of data from another device on the
bus. The following code segment programs the interface to receive character
data from a device at bus address 5. The integer variable MLA contains the
interface listen address.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid, MLA, len;
char buffer[51] ;
char command[4] ;

I*storage for data*1

if «eid = open(lI/dev/raw_hpibll , O_RDWR» == -1) {

printf(lIopen failed, errno = %d\n ll , errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

MLA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 32; I*compute MLA*I
command [0] = 95; I*UNTALK command*1
command[1] = 63; I*UNLISTEN command*1
command[2] = 64 + 5;

command[3] = MLA;
hpib_send_cmnd(eid, command, 4);
len = read(eid, buffer, 50);
buffer[len] = '\0';
hpib_send_cmnd(eid, command, 2);
printf(IIData read is: %Sll, buffer);

I*address device at address 5*1
I*to talk *1
I*address interface to listen*1

I*store the data in IIbufferll*1
I*terminate with NULL for printf*1

Part I: OIL Controlling the HP-IB Interface 4-27

Clearing HP-IB Devices

Two HP-IB commands are used to reset devices to pre-defined, device­
dependent states. The first, DEVICE CLEAR, causes all devices that recognize
the command to be reset, whether addressed or not. Care should be used
not to use this command on an HP-IB bus with a system (non-DIL) device
attached.

To reset all devices on an HP-IB accessed through an interface file having
entity identifier eid, use a code segment similar to:

command[O] = 20; /* DEVICE CLEAR command*/
~pib_send_cmnd(eid, command, 1);

The second command for resetting devices is SELECTED DEVICE CLEAR.
This command resets only those devices that are currently addressed as
listeners.

To reset a device at HP-IB address 7, use a code segment such as this (the
interface must already be addressed to talk):

command [0] = 63; /* the UNLISTEN command*/
command[1] = 32 + 7; /* the listen address for device at*/

/* address 7 */
command[2] = 4; /* the SELECTED DEVICE CLEAR command*/
~pib_send_cmnd(eid, command, 3);

4-28 Controlling the HP-IB Interface Part I: OIL

Responding to Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum
analyzers, are capable of generating a service request when they require the
Active Controller to take some action. Service requests are generally made after
the device has completed a task (such as taking a measurement) or when an
error condition exists (such as a printer being out of paper). The operating
or programming manual for each device describes the device's capability to
request service and the conditions under which it requests service.

Monitoring the SRQ Line

To request service, a device asserts the bus Service Request (SRQ) line. To
determine if SRQ is being asserted, check the status of the line, wait for SRQ,
or set up an interrupt handler for SRQ. The hpib_status_wai t subroutine
provides a means for suspending program operation until the SRQ line is
asserted then continuing. To structure a program so that it waits until SRQ
line is asserted, invoke hpib_status_wai t as follows:

hpib_status_wait(eid. WAIT_FOR_SRQ);

where eid is the entity identifier for the open interface file and WAIT _FOR_SRQ
indicates that the event that you are waiting for is the assertion of SRQ. The
subroutine returns 0 when the condition requested becomes true or -1 if a
timeout or an error occurred.

Part I: OIL Controlling the HP-IB Interface 4-29

I

I
The following code segment illustrates the use of hpib_status_wait:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
extern int service_routine();
main 0
{

int eid;
if «eid = open (II Idev/raw_hpib ll

, O_RDWR)) == -1) {

printf(IIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid,10000000); I*Set a 10-second timeout*/

if (hpib_status_wait(eid, WAIT_FOR_SRQ) == 0)
service_routine(); I*SRQ is asserted; service the request*1

else
printf(IIEither a timeout or an error occurred\n");

}

Another solution is to periodically check the value of the SRQ line by calling
hpib_bus_status as follows:

where, as before, eid is the entity identifier for the open interface file and
SRQ_STATUS indicates that you want the logical value of the SRQ line returned.
hpib_bus_status returns 1 if SRQ is asserted, 0 if not, and -1 if an error
occurred.

The most practical way to monitor SRQ is to set up an interrupt handler for
that condition (see "Interrupts" section of Chapter 3).

4-30 Controlling the HP-IB Interface Part I: OIL

Processing the Service Request

Once a device has asserted the SRQ line, it continues to assert the line
until its request has been satisfied. How a service request is satisfied is
device-dependent. Serial polling the device can provide the information as to
what kind of service it requires.

Many devices are designed so that they automatically clear their SRQ output
whenever they are serially polled. These devices treat the serial poll as an
acknowledgement from the Active Controller that the request has been
recognized and is being processed by the Active Controller.

If there is more than one device on the bus when SRQ is asserted, the Active
Controller must first determine which device needs service before it can
properly undertake any service related activity. There are two strategies for
doing this:

• Serial poll each individual device in sequence until the one that is requesting
service is found. This approach is reasonable if there are only a few devices
on the bus .

• Conduct a parallel poll to locate the device requesting service. Normally
each device (when capable) is programmed to respond on a given data line.
However, up to 15 devices can reside on the bus which has only 8 data lines.
Therefore it is sometimes necessary for more than one device to respond on a
given line.

If two or more devices are programmed to respond on a given parallel poll
line and the parallel poll shows that line asserted, the Active Controller must
then serially poll each device that is programmed to respond on that line
until it determines which device is requesting service.

Part I: OIL Controlling the HP-IB Interface 4-31

I
Thus, the Active Controller responds to SRQ by:

• Conducting a serial poll of individual devices on the bus,

• Conducting a parallel poll of return data lines to determine which line is
being asserted, or

• Conducting a parallel poll to identify the asserted data line followed by a
serial poll of devices programmed to assert that line when SRQ is being
asserted by the same device.

HP-IB parallel and serial polls are conducted by the DIL subroutines
hpib_ppoll and hpib_spoll, respectively. The next section explains how to
use these subroutines.

Parallel Polling

The parallel poll is the fastest means of determining which device needs service
when several devices are connected to the bus. Each device on the bus that
is capable of responding to parallel polls can be programmed to respond to
parallel polls by asserting a given data line, thus making it possible to obtain
the status of several devices in a single operation. If a given device responds to
the poll with a data line response (I need service), more information about its
specific status can be obtained by conducting a subsequent serial poll of that
device.

Configuring Parallel Poll Responses

HP-IB devices fall into three general categories:

1. Those devices that can be remotely programmed by the Active Controller to
respond to a parallel poll in a certain way, The next several pages explain
how to program these devices.

2. Devices whose parallel poll response is configured by internal hardware,
whether by setting of configuration switches, or based on device bus address.
A significant number of Hewlett-Packard products fall into this grouping. In
general, they are HP-IB devices that support secondary commands such
as SS/80 and CS/80 mass storage devices, CYPER printers, and Amigo
protocol devices including several disc drives and printers. Some important
information about these devices follows in the next few paragraphs.

4-32 Controlling the HP-IB Interface Part I: OIL

3. Devices that are not capable of responding to parallel polls, so discussing
their configuration is meaningless.

A number of operating rules have been established for devices in Category 2:

• No two devices can respond on the same data line. This means that only
eight or fewer devices in this category can reside simultaneously on a given
bus. If fewer than eight are present, data lines not used by these devices for
parallel poll response can be shared among remaining devices on the bus if
any are present.

• Each device in this category responds to a parallel poll on an assigned data
line determined by the device's HP-IB address. Devices residing at HP-IB
addresses 0 through 7 respond on data lines DI7 through DIO, respectively
(note the reversed numbering sequencing).

• Devices in this category respond to parallel polls when they need service by
driving the specified data line LOW to its ground-true logic state (the sense
cannot be reversed to high-true).

Note also that some models of HP-IB devices can be switched between normal
HP-IB operating mode and "Amigo" or "Secondary" mode (terminology varies
as well as the implementation). Refer to the device installation and operating
manuals for more information about how to configure the device for your
application and to determine whether the device supports remote configuration
by the Active Controller, uses internal configuration, or does not support
parallel poll.

To configure the parallel poll response for a given device by remote control
from the Active Controller, use the HP-IB command sequences PARALLEL
POLL CONFIGURE followed by PARALLEL POLL ENABLE. This
combination of two commands tells all devices currently addressed as listeners
to respond to any future parallel polls by asserting a specific data line with
a specific logic level. Most devices that do not support remote configuration
programming have internal configuration switches or jumpers that perform
an equivalent function but which cannot be changed remotely by the Active
Controller.

Part I: OIL Controlling the HP-IB Interface 4-33

I

I
Devices that can be remotely configured can be programmed to respond with
a logic 0 or logic 1 level on anyone of eight data lines. Thus there are 16
possible combinations of lines and logic levels since there are two possible levels
on each line and only one line can be asserted during a parallel poll. The
PARALLEL POLL ENABLE command consists of an 8-bit byte whose bits are
arranged as in Table 4-4 (the decimal equivalent value of the byte falls in the
range of 96 through 111).

Table 4-4. PARALLEL POLL ENABLE Bits

D7 D6 D5 D4 D3 D2 Dl DO Decimal Range

0 1 1 0 L X X X 96-111

where:

• The upper four bits are a fixed pattern of logical 0 (bits D7 and D4) and
logical 1 (bits D6 and D5).

• Bit D3 (response logic level) determines whether data line D3 is to be
asserted (driven to its ground-true state) or released (allowed to float to its
high-false state) by the device when responding to a parallel poll if service is
needed. If bit D3 is set (1), the device responding to the poll drives the data
line low if service is needed. If D3 is not set (0), the device responding to the
poll drives the data line low if service is not needed (bit value = 0). This bit
is most commonly set to a value of 1.

• Bits D2, D1, and DO are the 3-bit (value range 0 through 7) value
representing which data line (DO through D7 respectively) is to be used when
responding to a parallel poll.

For exam pIe, to program a given device to respond to a parallel poll by placing
a logic 1 on data line DO if it needs service, use a PARALLEL POLL ENABLE
command with a decimal value of 104 (binary 01101000).

The following code segment shows how to configure a device at bus address 5
to respond to a parallel poll by asserting data line D 1 with a logic 1 if it needs
service.

4-34 Controlling the HP-IB Interface Part I: OIL

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
maine)
{

int eid, MTA;
char command [50] ;

if ((eid = open(1I /dev/raw_hpib ll
, O_RDWR» == -1) {

printf(lIopen failed, errno = %d\n ll
, errno);

exit(2);
}

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64; /*compute MTA*/
command[O] = MTA; /*talk address of interface*/
command[l] = 63; /* the UNLISTEN command*/
command[2] = 32 + 5; /* the listen address for device at*/

/* address 5 */
command[3] = 5; /* the PARALLEL POLL CONFIGURE command*/
command[4] = 105; /* the PARALLEL POLL ENABLE command*/
hpib_send_cmnd(eid, command, 5);

}

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105
(binary 01101001) used above is constructed as follows:

Bit Position H G F E D C BA

Bit Value 0 1 1 0 1 0 0 1

Where:

• Bits H through E (0110) indicate that this is a PARALLEL POLL ENABLE
command.

• Bit D (1) indicates that the device respond with a 1 to request service.

• Bits C through A (001) indicate that the device should respond on Dl.

When the computer interface is the Active Controller, it can configure its
own parallel poll response by addressing itself as both talker and listener.
However, the configuration is meaningless until the interface is no longer Active
Controller because the Active Controller never responds to parallel polls.

Part I: OIL Controlling the HP-IB Interface 4-35

I
Disabling Parallel Poll Responses

A device whose parallel poll response can be remotely configured by the Active
Controller can also be disabled from responding.

To disable a device from responding to subsequent parallel polls, the .Active
Controller must first send a PARALLEL POLL CONFIGURE command
followed by PARALLEL POLL DISABLE. This sequence disables all devices
that are currently addressed to listen.

In the previous exam pIe a device at bus address 5 was configured to respond
to parallel polls on data line D 1. To disable parallel poll response on the same
device, use a code segment similar to the following:

command [0] = MTA;
command[1] = 63;
command [2] = 32 + 5;

command [3] = 5;
command[4] = 112;

/*talk address of interface*/
/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 5 */
/* the PARALLEL POLL CONFIGURE command*/
/* the PARALLEL POLL DISABLE command*/

Conducting a Parallel Poll

Once parallel poll responses have been (remotely or internally) configured for
all devices on the bus that are capable of responding to parallel polls, you can
use hpib_ppoll to conduct a parallel poll on the bus, provided the computer is
the current Active Controller.

The hpib_ppoll subroutine returns an integer whose least significant byte
contains the 8-bit response to the parallel poll. Each device that is enabled to
respond to a parallel poll places its status bit (service needed or not needed)
on the data line defined by its current parallel poll response configuration. The
subroutine returns -1 if an error occurs during the polL

hpib_ppoll is invoked as follows:

hpib_ppoll(eid);

where eid is the entity identifier for the open interface file associated with
bus.

4-36 Controlling the HP-IB Interface . Part I: DIL

The following code segment shows how to interpret the byte returned by
hpib_ppoll. Suppose a device at address 6 was previously configured to
respond to a parallel poll by setting DO to logic 1 (low) level if it needs service
and a device at address 7 was configured to respond similarly on D 1. Assuming
that these are the only two devices capable of responding to a parallel poll,
only the values of the 2 least significant bits of the integer returned by
hpib_ppoll are of interest. This example code segment handles the results
of the parallel poll, but does not include the code needed to handled the
requested service.

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid, status, byte;
if «eid = open(1I /dev/raw_hpib", O_RDWR» == -1) {

printf (ilopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if «status = hpib_ppoll(eid» == -1) /*conduct the parallel poll*/
{

printf("error taking ppoll\n"); /*if -1 returned then error occurred*/
exit(1);

}

byte = status

switch (byte)

}

8& 3;

{

~ase 0:

break;
~ase 1:

break;
~ase 2:

break;
~ase 3:

break;

/*set all but the least significant*/
/*2 bits to zero */

/*neither device is requesting service*/

/*device at address 6 wants service*/

/*device at address 7 wants service*/

/*both devices want service*/

Part I: OIL Controlling the HP-IB Interface 4-37

I
Errors During Parallel Polls

hpib_ppoll returns the value -1 if anyone of the following error conditions
are encountered:

• Timeout defined by io_ timeout_ctl occurred before all devices responded.

• Computer's interface is not the Active Controller.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

ETIMEDOUT

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller. (EACCES on Series 600/800)

A timeout occurred. (EIO on Series 300/400)

4-38 Controlling the HP-IB Interface Part I: DIL

Waiting For a Parallel Poll Response

Subroutine hpib_wait_on_ppoll allows you to wait for a specific parallel
poll response from one or more devices. The effect of this is similar to
using hpib_status_wai t to wait for assertion of SRQ as discussed earlier.
hpib_wai t_on_ppoll provides a mechanism for waiting until a specific device
requests service while hpib_status_wai t only waits until any device requests
service.

To call hpib_wai t_on_ppoll, use the form:

where eid is the entity identifier for an open interface file, mask is an integer
whose binary value identifies which parallel poll lines are to be monitored for
a request, and sense is an integer whose binary value identifies which lines
respond with an inverted logic sense (device responds with 0 when it wants
service instead of the usual 1). hpib_wai t_on_ppoll returns the response byte
XORed with the sense value then ANDed with the mask value, unless an error
occurs, in which case it returns -1.

Calculating the mask

hpib_wai t_on_ppoll uses only the least significant byte of the mask integer,
which means that the integer's remaining bytes can contain anything. For
simplicity, the examples in this discussion set the upper bytes to zero.

The value for mask is determined as follows:

1. Decide which parallel poll lines (the 8 data lines labeled DO through D7) are
to be monitored for service requests.

2. Set up an 8-bit binary number where the bits associated with each line
being monitored are set to 1 and all remaining bits are O. (DO is associated
with the least significant bit of the binary number, and D7 with the most
significant.)

3. Given the binary number from step 2, calculate its decimal value. The result
is the correct value for mask.

Part I: OIL Controlling the HP-IB Interface 4-39

For example, suppose that you want to wait for device A or device B to request
service. You know that device A has been configured to respond on parallel
poll line DO and device B has been configured to respond on line D4. The
correct binary value for mask is:

The decimal equivalent of this binary number is 17; the correct value for mask.

Consider a mask value of 0 which indicates that you do not want to wait
for a request on any of the parallel poll lines. In such a case, a call to
hpib_wai t_on_ppoll using a mask of 0 is meaningless and has no effect.

Calculating the sense

The subroutine hpib_wai t_on_ppoll also only looks at the least significant
byte of the sense integer. For simplicity, the examples in this discussion set
the upper bytes to zero.

The value for sense is determined as follows:

1. Decide which parallel poll lines (the 8 data lines) are to be monitored for
service requests as discussed earlier.

2. Determine which of these lines will indicate a service request by a logic
o response. This means that you must know the sense with which the
associated devices are configured to respond to parallel polls.

3. Define an 8-bit binary number where the bits associated with the lines that
use a 0 to indicate a service request are set to 1 and all of remaining bits are
O. (DO is associated with the least significant bit of the binary number, and
D7 with the most significant.)

4. Given the binary number from step 3, calculate its decimal value. The
resulting value is the sense integer you should use with hpib_wait_on_ppoll.

4-40 Controlling the HP-IB Interface Part I: OIL

Using the previous example for calculating the mask value, device A is
configured to respond on line DO with a 1 when it wants service, but device B
requests service by placing a ° on line D4. The binary value for sense is:

D6 D5 D2 Dl DO

o o o o o

The decimal equivalent of this number is 16; the correct value for sense.

If all devices on the bus respond to parallel polls with a 1 to request service,
the value for sense can always be 0, regardless of which parallel poll lines are
being monitored. If, on the other hand, all of devices request service with a 0,
the sense value can always be 255 (11111111 in binary). You need calculate
a special value for sense only if various devices on the bus respond with
dissimilar logic senses.

Example

Assume that you want to use hpib_wai t_on_ppoll to wait for one of the four
devices on a bus to request service where the bus is configured as follows:

Device Bus Address Parallel Poll Requests Service
Response Line with a:

A 5 DO 1

B 7 Dl 0

C 9 D2 0

D 11 D3 1

Begin by calculating the mask value for hpib_wai t_on_ppoll. Since responses
can be expected on lines DO, D1, D2, and D3, the correct mask value is:

Binary: Decimal:

o 0 001 111 15

Part I: OIL Controlling the HP-IB Interface 4-41

The four devices on the bus use mixed (both ground- and high-true logic), the
sense value must be determined. Devices responding on lines Dl and D2 use 0
to request service, so the sense value is:

Binary: Decimal:

o 0 0 001 1 0 6

Now that the mask and sense values have been determined, the code segment
that makes the call to hpib_wai t_on_ppoll can be written:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;
if «eid = open(II/dev/raw_hpib ll

, O_RDWR» == -1) {
printf(IIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/

if (hpib_wait_on_ppoll(eid, 15, 6) == -1)
printf(IIeither a timeout or error occurred\n");

else
service_routine();

In the code segment shown, service_routine is executed only if one of the
four devices requests service during the parallel poll. service_routine should
contain code segments to service all devices on the bus, either individually or
as a group. See the appropriate hardware-specific appendix for any restrictions
that may apply to your system.

4-42 Controlling the HP-IB Interface Part I: OIL

Serial Polling

A sequential poll of individual devices on the bus is known as a serial poll. One
entire status byte is returned by the polled device in response to a serial poll.
This byte is called the status byte message and, depending on the device,
may indicate an overload, a request for service, printer out of paper, or some
other condition. The particular response of each device depends on the device.

Not all devices can respond to a serial poll. To find out whether a particular
device can be serially polled, consult operating manuals for the device.
Attempting to serially poll a device that cannot respond to the poll causes a
timeout or suspends your program indefinitely.

The Active Controller cannot poll itself.

Unlike parallel poll responses, serial poll responses cannot be configured
remotely by the Active Controller. Responses vary, depending on the type of
device being polled. Refer to device manual for more information.

Conducting a Serial Poll

Subroutine hpib_spoll performs a serial poll on a specified device. It is called
with the form:

hpib_spoll(eid, address);

where eid is the entity identifier for an open interface file and address is the
bus address of the device being polled. The subroutine returns an integer,
the lowest byte of which contains the status byte message (the serial poll
response) from the addressed device. Only one device can be polled per call to
hpib_spoll.

Part I: OIL Controlling the HP-IB Interface 4-43

Although the status byte message supplied by the addressed device is
device-dependent, bit D6 (of bits DO through D7) always indicates whether or
not the device is currently asserting SRQ. If SRQ is currently being asserted
by the device, indicating that it needs service, be sure to handle the request
properly because the serial poll also clears SRQ so that a subsequent poll will
show no service request, whether or not the current request has been satisfied.

The following code segment shows how hpib_spoll can be used to determine
whether a device at bus address 5 is requesting service. The determination is
made by simply examining D6 which indicates whether SRQ is being asserted.

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid, status;
if «eid = open("/dev/raw_hpib", D_RDWR» == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid,100000); /*Set a O.l-second timeout*/

if «status = hpib_spoll(eid, 5» == -1) /*conduct serial poll*/
{ printf("error during serial poll\n");

exit (1) ;

}

if (status &: 64)

service_routine();

/*after setting every bit except D6*/
/*to zero; if D6 is set the device*/
/*is requesting service */

4-44 Controlling the HP-IB Interface Part I: OIL

Errors During Serial Poll

If any of the following error conditions are encountered during a call to
hpib_spoll, the subroutine returns -1:

• Addressed device did not respond to serial poll before the timeout limit
defined by io_timeout_ctl was exceeded.

• Computer interface is not current Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

• The interface associated with this eid is locked by another process and
D_NDELAY is set for this eid.

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

ETIMEDOUT

EACCES

EINVAL

Part I: OIL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

The interface was not the Active Controller. (EACCES on Series
600/800)

A timeout occurred. (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid.

Invalid bus address.

Controlling the HP-IB Interface 4-45

I
Passing Control

The subroutine hpib_pass_ctl can be used to pass control of the bus from
the computer (which must be the current Active Controller) to a Non-Active
Controller. A Non-Active Controller is a device capable of becoming Active
Controller, which usually means it is another computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl(eid. address);

where eid is the entity identifier for an open interface file that is currently the
Active Controller and address is the bus address of a Non-Active Controller.
Upon completion, the Non-Active Controller becomes the new Active
Controller and the local interface is a Non-Active Controller.

While hpib_pass_ctl can pass active control capability, it cannot pass system
control capability.

What If Control Is Not Accepted?

Your program is not suspended if the Non-Active Controller that you address
does not accept active control of the bus, but the computer still loses active
control meaning that the bus no longer has an Active Controller. If this
happens, the computer must use its position as System Controller to assume
the role of Active Controller by executing hpib_abort (see System Controller
Role section which follows) or io_reset.

No error is returned by hpib_pass_ctl if the device that you address does
not accept active control, and there is no direct way to determine in advance
whether a given device can accept active control. There is also no way for
the computer, after initiating hpib_pass_ctl, to determine whether active
control has been accepted. However, if the computer that has passed control
immediately requests service after passing control and detects a timeout before
the request is acknowledged, this indicates that active control may not have
been accepted.

4-46 Controlling the HP-IB Interface Part I: OIL

Errors While Passing Control

If any of the following errors are encountered, hpih_pass_ctl returns -1:

• Computer interface is not Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

• A timeout occurs.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

EINVAL

ETIMEDOUT

EACCES

Part I: OIL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller.

Invalid bus address.

A timeout occurred (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid

Controlling the HP-IB Interface 4-47

Controlling the ATN Line

On a Series 300/400, the subroutine hpib_atn_ctl can be used to control the
ATN line on the HP-IB bus. This routine is particularly useful when setting up
two non-active controllers for a data transfer.

hpib_atn_ctl is called as follows:

where eid is the entity identifier for an open interface file that is currently
active controller and flag is either a 0 or a 1. A flag value of 1 enables ATN;
a value of 0 disables it.

Changing the Interface Bus Address

On a Series 300/400, the subroutine hpib_address_ctl can be used to
programmatically change the bus address of an HP-IB interface card.

hpib_address_ctl is called as follows:

where eid is the new bus address for the interface card. ba must be in the
range 0-30.

4-48 Controlling the HP-IB Interface Part I: OIL

System Controller Role
When the HP-IBs System Controller is first powered on or is reset, it assumes
the role of Active Controller. Any given HP-IB bus can have only one System
Controller. The System Controller cannot pass system control to any other
controller (computer) on the bus. However, it can pass active control to
another controller.

Determining System Controller

To determine whether your computer's HP-IB interface is the System
Controller, use the hpib_bus_status subroutine which must be called as
follows:

where eid is the entity identifier for an open interface file and
SYS_CONT_STATUS indicates that you want to determine whether it is the
System Controller. The subroutine returns 1 if it is the System Controller, 0 if
not, and -1 if an error occurs.

The following code segment prints a message indicating whether the interface is
System Controller:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid. status;
if «eid = open (II Idev/raw_hpib ll

• O_RDWR» == -1) {
printf{IIopen failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid. 1000000);

if «status = hpib_bus_status{eid. SYS_CONT_STATUS» == -1)
printf("Error occurred during bus status subroutine\n");

else if (status == 1)
printf("Interface is the System Controller\n");

else
printf("Interface is not the System Controller\n");

Part I: OIL Controlling the HP-IB Interface 4-49

I

I
System Controller's Duties

The HP-IB System Controller has three major functions:

• It assumes the role of Active Controller at power-up and reset.

• It can cancel talkers and listeners from the bus and assume the role of Active
Controller by executing hpib_abort.

• It can control the logic level of the remote enable line (REN) with
hpib_ren_ctl.

hpib_abort

A call to hpib_abort performs the following actions:

• Terminates activity on the bus by pulsing the Interface Clear (IFC) line.
This un addresses all talkers and listeners on the bus.

• Sets the REN line so that devices on the bus will be placed in their remote
state when addressed as listeners.

• Clears the ATN line if it was left set by the previous Active Controller.

• System Controller then becomes Active Controller.

• Returns all devices on the bus to their local state.

hpib_abort leaves the SRQ line unchanged, meaning that any device
requesting service before hpib_abort is executed is still requesting service
when the subroutine is finished.

To use hpib_abort on a particular HP-IB, the computer must be the System
Controller of that bus. It does not have to be the Active Controller.

One situation where hpib_abort is useful is when the current Active
Controller passes active control to another device, but the device does not
accept active control (this can occur when the device addressed to receive
control is not another controller). Consequently, the bus is left without any
Active Controller, leaving the System Controller to assume that role by using
hpib_abort.

4-50 Controlling the HP-IB Interface Part I: OIL

hpib_abort is called as follows:

hpib_abort(eid);

where eid is the entity identifier for an open interface file.

hpib_ren_ctl

hpib_ren_ctl is used to enable or disable the REN line on the HP-IB. If the
REN line is enabled, all devices capable of remote operation (meaning that
they can interpret HP-IB commands) can be placed in their remote state
by the Active Controller addressing them as talkers or listeners. When REN
is disabled, all devices on the bus return to their local state and cannot be
accessed remotely.

The REN line is enabled by default by the System Controller at power-up or
reset. It is also enabled whenever the System Controller executes hpib_abort.

To use hpib_ren_ctl on a particular HP-IB, the computer must System
Controller on that bus. It does not have to be the Active Controller.

hpib_ren_ctl is called as follows:

where eid is the file descriptor for an open interface file and flag is an integer.
If flag is zero, the REN line is disabled. If it has any other value, REN is
enabled.

Errors During hpib_abort and hpib_ren_ctl

If any of the following errors is encountered, hpib_abort and hpib_ren_ctl
both return -1:

• Computer interface is not System Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

Part I: OIL Controlling the HP-IB Interface 4-51

I
To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not System Controller.

In addition, hpib_abort can return the following values for errno:

errno Value

ETIMEDOUT

EACCES

Error Condition

A timeout occurred (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid

4-52 Controlling the HP-IB Interface Part I: OIL

The Computer As a Non-Active Controller

Checking Controller Status

Subroutine hpib_bus_status is used to obtain information about the
current status of the HP-IB interface card and the HP-IB, and can be used
by any device on the bus, whether it is the current Active Controller or
System Controller or not. hpib_bus_status is mentioned briefly in previous
discussions about Active and System Controllers. The discussion that follows is

. a broader treatment of how the routine is used.

The call to hpi b_bus_status has the form:

where eid is the entity identifier for an open interface file and
status_question is an integer that indicates what question you want
answered. The value of status_question must be within the range of 0
through 7 where the relationship between value and the nature of the status
inquiry are as follows:

Value

REMOTE_STATUS

SRQ_STATUS

SYS_CONT _STATUS

ACT _CONT _STATUS

TALKER_STATUS

LISTENER_STATUS

CURRENT _BUS_ADDRESS

Part I: OIL

Status Question

Is the interface in its remote state?

Are any devices currently requesting service? (Is
SRQ asserted?)

Is there a listener that is not ready for data? (Is
NDAC asserted?)

Is the interface the current System Controller?

Is the interface the current Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

What is the interface's bus address?

Controlling the HP-IB Interface 4-53

For all values of status_question except CURRENT _BUS_ADDRESS,
hpib_bus_status returns 1 if the answer to the question is yes, or 0 if the
answer is no. If the value of status_question is CURRENT _BUS_ADDRESS,
hpib_bus_status returns the bus address of the computer's HP-IB interface.
If the value of status_question is outside the allowable set of values, -1 is
returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the
bus, use a calling sequence similar to the following code segment:

if «status = hpib_bus_status(eid. ACT_CONT_STATUS» == -1)
printf(IIError occurred while checking status\n");

else if (status == 0)
printf("Computer is a Non-Active Controller\n");

else
printf("Computer is the Active Controller\n");

Requesting Service

When your computer is a Non-Active Controller it can request service from
the current Active Controller by asserting the SRQ line. This is done with the
hpib_rqst_srvce routine which is called as follows:

hpib_rqst_srvce(eid. response);

where eid is the entity identifier for an open interface file and the lowest
byte of response is the integer value of the 8-bit response that the computer
gives if it is serially polled. The upper bytes of response are ignored by the
hpib_rqst_srvce. Using the labels dO through D7 for the data bus byte,
bit D6 sets the SRQ line. The defined values for the remaining 7 bits varies,
depending on the application. This section only discusses how to use D6
(integer value of 64) to set and clear the SRQ line.

4-54 Controlling the HP-IB Interface Part I: DIL

To request service, invoke hpib_rqst_srvce as follows:

#include <fcntl.h>
#include <errno.h>
MainO
{

}

int eid;

if «eid = open(1I /dev/raw_hpib", O_RDWR» == -1) {
printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);
hpib_rqst_srvce(eid, 64); /*Bit 6 of serial poll response is set*/

/*and SRQ is asserted */

Note that by setting response to 64, the only information that the Active
Controller receives when it serially polls your computer is that you are
asserting the SRQ line. Therefore, other data bits in response must be set
or cleared to indicate the type of service you are requesting, and the program
controlling the current Active Controller must be capable of interpreting the
data correctly before transfer of control between computers connected to the
same bus can be handled in an orderly manner.

hpib_rqst_srvce returns 0 if it executes correctly or -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active
Controller serially polls you or you call hpib_rqst_srvce again and clear bit
6 using a sequence such as hpib_rqst_srvce(eid, 0) . Once the serial poll
response is configured, your computer's HP-IB interface responds automatically
to any serial polls from the Active Controller.

A couple of notes of caution are in order here:

If another device on the bus is also asserting SRQ when your service request
is detected by the current Active Controller, SRQ remains asserted, even
after your service request is processed by the Active Controller. Thus, if you
receive control of the bus before the requesting device is serviced, you must
handle that device's service request correctly in order to maintain correct bus
operation.

On the other hand, if you call hpib_rqst_srvce while you are Active
Controller, the interface receives the service request sequence from the

Part I: OIL Controlling the HP-IB Interface 4-55

I
computer but does not place an SRQ on the bus as long as you are still Active
Controller. However, if active control is passed to another controller on the
bus, as soon as the interface changes to non-controller it immediately sets SRQ
and readies the specified response data byte for the first serial poll from the
new Active Controller.

When an Active Controller detects an asserted SRQ line, it usually conducts
a parallel poll of devices on the bus to determine which one is requesting
service. The next section discusses how to configure the HP -IB interface card
for correct response to parallel polls.

When an HP-IB device responds to a parallel poll with an I need service
message, the Active Controller then performs a serial poll to determine what
type of service is required. If two or more devices are configured to respond to
a parallel poll on a single data line and the Active Controller detects a service
request on that line, the controller must perform a serial poll of all devices that
respond on that line in order to determine which device is requesting service.

Errors While Requesting Service

If any of the following error conditions occurs, hpib_rqst_srvce returns -1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

4-56 Controlling the HP-IB Interface Part I: DIL

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

ETIMEDOUT

EACCES

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

A timeout occurred. (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and O_NDELAY was set for this eid.

Responding to Parallel Polls

Before the HP-IB interface on your computer can respond correctly to a
parallel poll from another Active Controller, the response must be configured
on the interface. This can be programmed remotely by the Active Controller as
discussed previously in the Active Controller section of this chapter, or locally
using hpib_card_ppoll_resp.

To configure a parallel-poll response:

• Specify the logic sense of the response (i.e. whether a 1 means the device
does or doesn't need service).

• Specify which data line the device responds on. Two or more devices can be
configured to respond on a single line.

To locally configure response to parallel polls, call hpih_card_ppoll_resp as
follows:

where eid is the entity identifier of an open interface file and response is an
integer whose binary value configures the response.

Part I: OIL Controlling the HP-IB Interface 4-57

I

I
Calculating the Response

The value for response is found by first forming an 8-bit binary number,
then using the decimal equivalent of that number where the bits in the binary
number are defined as follows:

D7 D6 D3

I r:
2

I r:
1

I r:o I o o s

where:

S sets the logic sense of the response. Thus, if S is 1, the device responds
with a logic 1 in response to a parallel poll if it requires service.
Likewise, if S is 0, the interface places a logic 0 on the assigned data line
in response to a parallel poll if it requires service.

P is a 3-bit binary number (value range from 0 through 7) that specifies
which of the eight available parallel poll response lines (DO-D7) is to be
used when responding to a parallel poll.

Of course, this configuration capability is possible only on those interfaces that
support it. Refer to the appropriate appendix for more information about
specific systems.

Limitations of hpib_card_ppoILresp

Hardware limitations on certain devices restrict the use of
hpib_card_ppoll_resp to configure parallel poll responses. Refer to
the appendix related to your system to determine whether any restrictions
apply. If there are restrictions on your system, you may find it easier to
configure the interface parallel poll response remotely from another Active
Controller. Don't forget that the Active Controller can configure its own
response, but the response remains dormant until control is passed to another
device.

4-58 Controlling the HP-IB Interface Part I: OIL

Error Conditions

If any of the following error conditions is encountered by
hpib_card_ppoll_resp, it returns -1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

• The device cannot respond on the line number specified by response.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

ETIMEDOUT

EACCES

EINVAL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

A timeout occurred. (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid.

The device cannot respond on the line number specified by
response.

hpib_ppoILresp_ctl

The subroutine hpib_ppoll_resp_ctl is used to control how the HP-IB
interface will respond to the next parallel poll:

• Assert the assigned data line with the previously configured logic sense if
service is required, or

• Place the opposite logic level on the same data line if the interface does not
need to interact with the Active Controller.

Part I: OIL Controlling the HP-IB Interface 4-59

I

I
Parallel poll response is set as follows:

where eid is the entity identifier of an open interface file and response_value
is an integer that indicates how the interface is to respond to the next parallel
poll. If response_value is non-zero, the computer will respond to the next
parallel poll with a request for service. If response_value is zero, the next
response will be set to indicate that no service is needed.

Disabling Parallel-Poll Response

You can also disable responses to parallel polls from another Active Controller
by using hpih_card_ppoll_resp by setting bit D4 in the routine's response
value. When D4 is 0 the interface is set to respond to parallel polls with a
service-needed logic level. When D4 is 1, the interface responds to parallel polls
with the opposite (service not needed) level. Thus, a flag value of 16 disables
the need-service response.

For example, the subroutine call:

~pib_card_ppoll_resp(eid. 16); I*disable parallel poll response*1

disables the HP-IB interface associated with entity identifier eid from
responding to any parallel polls with a service request.

4-60 Controlling the HP-IB Interface Part I: OIL

Accepting Active Control

Any Active Controller can pass control to any other device on the bus,
but only a Non-Active Controller can accept control. When an Active
Controller interface passes control to a Non-Active Controller interface, the
Non-Active interface automatically accepts control and the former Active
Controller becomes a Non-Active Controller. However, when this transfer
of control occurs, the interface receiving control does not automatically
notify the computer that control has been received unless the necessary
interrupts have been set up by the application program by use of subroutines
hpib_bus_status, hpib_status_wait, and io_on_interrupt.

hpib_status_wai t has been mentioned in previous discussions about the
Active Controller and System Controller. The following discussion provides a
look at its uses.

Call hpib_status_wait as follows:

hpib_status_wait(eid. status);

where eid is the entity identifier for an open interface file and status is an
integer indicating what condition you want to wait for. The following values for
status are defined:

Value Condition

WAIT _FOR_SRQ Wait until the SRQ line is asserted

WAIT _FOR_CONTROL Wait until this computer is the Active Controller

WAIT _FOR_TALKER Wait until this computer is addressed as a talker

WAIT _FOR_LISTENER Wait until this computer is addressed as a listener

Part I: OIL Controlling the HP-IB Interface 4-61

Suppose you are designing a program to handle a situation where the current
Active Controller is programmed such that when your computer requests
service, it passes active control to you. The following code segment shows how
you can program your computer to request service then wait until it becomes
the new Active Controller before it continues.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

int eid;

if «eid = open(lI/dev/raw_hpib ll
, O_RDWR)) == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_rqst_srvce(eid, 64) == -1) I*set SRQ line to request service*1
{

}

}

printf("Error while requesting service\n");
exit (1) ;

if (hpib_status_wait(eid, WAIT_FOR_CONTROL) == -1) I*wait until Active Controller*1
{

}

printf(IIError while waiting for status\n");
exit (1) ;

I*Computer is now the Active Controller*1

Note that for hpib_status_wait to have returned -1 (caused by an
unexpected timeout), a timeout value would have to have been set using
io_timeout_ctl after the interface file was opened. Since this example does
not contain a call to io_timeout_ctl, no timeout occurs.

4-62 Controlling the HP-IB Interface Part I: OIL

Errors While Waiting on Status

hpib_status_wai t returns -1 indicating an error if any of the following error
conditions are encountered:

• A timeout occurred before the condition the routine was waiting for became
true.

• The value specified by status is undefined.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

• The interface associated with this eid is locked by another process and
D_NDELAY is set for this eid.

• The device is active controller and status specifies WAIT _FOR_ TALKER
or WAIT_FOR_LISTENER. (Series 300/400 only)

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw HP-IB interface file.

EINVAL status contains an invalid value.

ETIMEDOUT The specified condition did not become true before a timeout
occurred. (EIO on Series 300/400)

EACCES The interface associated with this eid was locked by another
process and D_NDELAY was set for this eid.

EIO The device is active controller and status specifies
WAIT_FOR_TALKER or WAIT_FOR_LISTENER (Series 300/400
only).

Part I: OIL Controlling the HP-IB Interface 4-63

Determining When You Are Addressed

As a Non-Active Controller you may be addressed at any time by the current
Active Controller to become a bus talker or listener for data transfer. The DIL
routines hpib_bus_status, hpib_status_wai t, and io_ on_interrupt are
used to determine that the interface is currently being addressed and provide
proper notification to the controlling program.

The following code segment determines whether the interface is currently
addressed as a bus talker:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;

if «eid = open (II/dev/raw_hpib ll
, O_RDWR» == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

if (hpib_bus_status(eid. TALKER_STATUS) == 1)
{

printf("the interface is addressed as a talker\n");
write(eid, "data message II , 12); /*do the expected data transfer*/

}

else
printf("the interface is not addressed as a talker\n");

In the above call to hpib_bus_status, eid is the entity identifier for the
interface device file and TALKER_STATUS indicates that you want to know if
it is addressed to talk. The routine returns the value 1 if the answer is yes; 0 if
not.

4-64 Controlling the HP-IB Interface Part I: OIL

To determine whether the interface is currently addressed as a bus listener use
the following:

if (hpib_bus_status{eid. LISTENER_STATUS) == 1)
{

printf{"the interface is addressed as a listener\n");
read{eid. buffer. 12); I*do the data transfer*1

}

else
. printf{"the interface is not addressed as a listener\n");

If you need to wait until the interface is addressed as either a talker or
listener, then handle an appropriate data transfer, use the DIL subroutine
hpib_status_wai t, specifying both the entity identifier of the interface device
file and the bus condition that is being used to terminate the wait.

hpib_status_wait{eid. condition);

As with hpib_bus_status, a condition value of WAIT _FOR_ TALKER
causes the program to wait until the interface is addressed as a talker. With
a condition value of WAIT _FOR_LISTENER the routine waits until it is
addressed to listen. The maximum time that the routine can wait for the
specified condition is controlled by the timeout value that was previously
set for the entity identifier using subroutine io_ timeout_ctl (discussed in
Chapter 3). hpib_status_wai t returns 0 if the wait condition terminated the
wait or -1 if a timeout or other error occurred before the wait condition was
fulfilled.

Part I: OIL Controlling the HP-IB Interface 4-65

In the following example code segment, the program waits for the interface to
become a bus listener, then reads a 50-byte message.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid, len;
char buffer[51]; I*storage for message*1
if «eid = open(l/dev/raw_hpib", D_RDWR» == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 5000000); 1*5-second timeout*1

if (hpib_status_wait(eid, WAIT_FDR_LISTENER) == -1)
{

printf("Either a timeout or an error occurred\n");
exit (1) ;

}

len = read(eid, buffer, 50);
buffer[len] = '\0';
printf("Message is: %S", buffer);

I*read data into buffer*1

I*print data message*1

Note that in this example a timeout value is set for the interface file's entity
identifier so that the program cannot hang indefinitely while waiting for the
interface to be addressed as a bus listener should the condition not occur as
expected.

4-66 Controlling the HP-IB Interface Part I: OIL

The following example illustrates how to use io_on_interrupt to set up an
interrupt handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
char buffer [50] ;
main 0
{

int handlerO;
int eid;
struct interrupt_struct cause_vee;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

}

io_reset(eid);

cause_vec.cause = LTN;
~o_on_interrupt(eid, &cause_vec, handler);

handler (eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

}

if (cause_vec->cause == LTN)
read(eid, buffer, 50);

Part I: OIL Controlling the HP-IB Interface 4-67

I

I
Combining 1/0 Operations
into a Single Subroutine Call
hpib_io is a high-level DIL subroutine that provides a mechanism for
conveniently collecting a series of HP-IB I/O operations in a data structure
then using a simple subroutine call to hpib_io to handle interface and bus
management operations. This feature eliminates the need for using several long
tedious series of subroutine calls to io_lock, hpib_send_cmnd, read, write,
and io_unlock and makes these operations atomic on the Series 300/400.

A call to hpib_io has the form:

#include <dvio.h>
mainO
{

}

int eid;
struct iodetail *iovec;
;nt iolen;

~pib_io(eid, iovec, iolen);

where eid is the entity identifier of an open interface file, iovec is a pointer to
an array of I/O operation structures, and iolen is the number of structures
in the array. The name of the template for the I/O operation structures is
iodetail and it is defined in the include file dvio. h.

4-68 Controlling the HP-IB'lnterface Part I: OIL

lodetail: The I/O Operation Template

The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Where the components in structure iodetail have the following meanings:

mode Describes what kind of I/O operation the structure contains.

terminator

count

buf

Specifies whether or not there is a read termination character
for the I/O operation, and if so it specifies the value.

How many bytes are to be transferred during the I/O
operation.

A pointer to an array containing the bytes of data to be
transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is
either mode, terminator, count, or buf.

Part I: OIL Controlling the HP-IB Interface 4-69

...

The Mode Component

The mode describes what type of I/O operation is to be performed on the data
pointed to by the buf component. To determine its value, OR appropriate
constants from a set defined in the include file dvio. h. You can choose from
the constants in Table 4-5:

Name

HPIBREAD

HPIBWRITE

HPIBATN

HPIBEOI

HPIBCHAR

Note

Table 4-5. Constants for Constructing mode

Description

Perform a read operation and place the data into the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with
HPIBCHAR.

Perform a write operation using the data in the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with either
HPIBATN or HPIBEOI but not both.

If you are performing a write operation, the data is placed on the
bus with ATN asserted (you are sending a bus command). It only
has effect if you also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted
when the last byte of data is sent. It only has effect if you also
specify HPIBWRITE.

If you are performing a read operation, the transfer is halted when
the terminator component value of the iodetail structure is read.
The terminator component only has effect if you OR HPIBCHAR
and HPIBREAD. The HPIBCHAR constant only has effect if also
specify HPIBREAD.

When you construct mode, you must use either HPIBREAD
or HPIBWRITE, but not both. Optionally, you can OR
one of the other three constants with either HPIBREAD or
HPIBWRITE, but they are not required. HPIBCHAR has
effect only when it is ORed with HPIBREAD, while HPIBATN
and HPIBEOI have effect only when they are ORed with
HPIBWRITE (but not both at the same time).

4-70 Controlling the HP-IB Interface Part I: OIL

The mode component allows you to specify conditions under which an I/O
operation terminates. All I/O operations terminate when the maximum
number of bytes specified by the count component of the iodetail structure is
reached. However, additional termination conditions are possible:

• If you specify HPIBREAD and HPIBCHAR: detection of the termination
character defined by the terminator component also causes termination.

• If you specify HPIBWRITE and HPIBEOI: when the count value is reached
EOI is asserted at the time that the last byte of data is sent (unless you also
specify HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are
building and you want the structure to send several HP-IB commands. The
mode component of the structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE I HPIBATN;

The Terminator Component

The terminator component of the iodetail structure specifies a character
that causes the termination of a read operation when it is detected. The
terminator only has effect if HPIBREAD I HPIBCHAR is specified as the
structure's associated mode component.

Assign a value to the terminator component in the structure pointed to by
iovec with:

iovec->terminator = value;

For example, to define the ASCII period character (.) the termination
character, use the statement:

iovec->terminator = '.';

The Count Component

count is an integer that defines the maximum number of bytes to be
transferred during the structure's I/O operation. Reading or writing always
terminates when this value is reached, but additional termination conditions
can be set up using the structure's associated mode component.

Part I: OIL Controlling the HP-IB Interface 4-71

To seta maximum number of bytes for a structure's data transfer:

iovec->count = max_value;

where iovee is a pointer to the structure and max_value is an integer.

The Buf Component

The buf component points to a character array where data is to be stored from
a read operation (HPIBREAD) or a character array containing data to be
written to during a write operation (HPIBWRITE).

Note The value of a structure's count component should never
exceed the size of the array. If this restriction is violated,
unpredictable results and/or data loss are likely.

One way to store a message in the buf array is:

iovec->buf = "data message";

Allocating Space

Before building iodetail structures for I/O operations, storage space in
memory must be allocated. The easiest way to do this (if you are programming
in C) is to write a routine that allocates space for n iodetail structures and
returns a pointer to the first one.

Here is a sample code segment for such a routine, io_alloe:

#include <dvio.h>
struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return«struct iodetail *) malloc(sizeof(struct iodetail) * n»;

}

Refer to the HP-UX Reference for a description of malloc(3C).

For example, to use io_alloe to allocate memory space for 10 iodetail
structures your program should contain the statements:

struct iodetail *iovec; I*define an iodetail pointer*1
iovec = io_alloc(10); I*allocate space for 10 iodetail structures*!

4,;. 72 Controlling the HP-IB Interface Part I: OIL

Example

Assume the HP-IB interface is Active Controller and located at HP-IB
address 30. A data message is to be sent to a device at HP-IB address 7 then
a subsequent message is to be received from the same device by use of the
hpib_io subroutine. Such a sequence requires four iodetail structures:

1. The first structure configures the bus so that the interface is the talker and
the device at address 7 is the listener.

2. The second structure sends the data message from the interface to the
device.

3. The third structure configures the bus so that the device at address 7 is the
talker and the interface is the listener.

4. The fourth structure receives the data message from the device.

The following code segment illustrates how the four structures can be built and
implemented.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h>
struct iodetail *io_alloc(n)
int n;
{

char *malloc();

/*contains definitions for iodetail*/

return «struct iodetail *) malloc(sizeof (struct iodetail) *n»;
}

maine)
{

extern int errno;
int eid;
char buffer [4] [12];
struct iodetail *iovec. *temp; /*2 pointers to iodetail structures*/

/*Allocate space for 4 iodetail structures*/
iovec = io_alloc(4); /* use the routine described earlier */
temp = iovec;

Part I: OIL Controlling the HP-IB Interface 4-73

I

I
I*Build structure 1 -- Configuring the bus*1

temp->mode = HPIBWRITE I HPIBATN; I*you want to send commands*1
strcpy(buffer[O],I?~'"); I*address computer to talk; bus address to listen*1
temp->buf = buffer[O];
temp->count = strlen(buffer[O]);

I*Build structure 2 -- Sending the data message*1
temp++; I*use temp pointer so iovec keeps pointing to*1

I*first structure but temp now points to next one*1

temp->mode = HPIBWRITE I HPIBEOI; I*assert EOI when the transfer is
complete*1

strcpy(buffer[l] ,"data message");
temp->buf = buffer [1] ;
temp->count = strlen(buffer[l]);

I*Build structure 3 -- Configuring the bus*1
temp++ ;

pointer*1
temp->mode = HPIBWRITE I HPIBATN;
strcpy(buffer[2],I?G>");
temp->buf = buffer [2] ;
temp->count = strlen(buffer[2]);

I*increment structure

I*to send commands*1

I*Build structure 4 -- Receiving data message*1
temp++; I*increment structure pointer*1
temp->mode = HPIBREAD; I*read data until count limit is reached*1
temp->count = 10; I*accept message up to 10-bytes in length*1
temp->buf = buffer [3] ;

I*Implement the I/O operations stored in the iodetail structures*1
if «eid = open (II Idev/raw_hpib ll , O_RDWR» == -1) {

printf(lIopen failed, errno = Y.d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 4) == -1)
{

}

printf (lIhpib_io failed\n");
printf (lIerrno y'd\n",errno);
exit(l);

4-74 Controlling the HP-IB Interface Part I: OIL

/*Print data message received from the device. Note that temp still*/
/*points to the last iodetail structure. the one that did the read */

printf("%s". temp->buf);
}

One comment about the C language: Subroutine parameters are passed by
value; not by reference. This means that after hpib_io is executed, the iovec
parameter still points to the first iodetail structure, just as it did before the
subroutine was executed. Thus, another way to print out the data message
that was read into the buf component of the fourth iodetail structure in the
example above is:

printf("%s". (iovec + 3)->buf);

Locating Errors in Buffered I/O Operations

If all I/O operations specified in the array of iodetail structures complete
successfully, hpib_io returns 0 and updates the count component of each
structure to reflect the actual number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately
returns a -1 indicating the error. To determine which iodetail structure
operation was associated with the error, examine the structures' count
components. When hpib_io encounters an error, it updates the count
component of the structure that caused the error to -1. Thus, once you have
located a structure with a count of -1, you know that all previous structures
were completed successfully and all of the structures after it were not executed
at all.

Part I: OIL Controlling the HP-IB Interface 4-75

For example, suppose an array of ten iodetail structures has been built to
execute a sequence of I/O operations. The following code segment executes
the operations then checks for errors. If an error occurs, the number of the
structure that caused it (the first structure in the array is number 1) is printed.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h>
maine)
{

int FOUND, number, eid;
~truct iodetail *iovec, *temp;

/*space is allocated for the 10 structures then they are*/
/*built. "Iovec" is left pointing to the first structure*/

if «eid = open (II/dev/raw_hpib ll
, O_RDWR» == -1) {

printf(IIopen failed, errno = Y.d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations. If a -1*/
/*is returned, an error occurred*/

{

number = 1; /*initialize counter*/
FOUND = 0; /*initialize Boolean flag*/
temp = iovec; /*set temporary pointer to first structure*/

}

while (number <= 10 && FOUND != 1)

}

else

if (temp->count == -1) /*found structure that caused error*/
FOUND = 1;

else
{

temp++;
number++;
}

if (FOUND == 1)

I*move pointer to next structure*1
I*increment counter*/

printf("Structure number Y.d caused error", number);
else

printf("Error but couldn't find structure that caused it\n");

printf("No error occurred during execution of hpib_io\n");

4-76 Controlling the HP-IB Interface Part I: OIL

5
Controlling the GPIO Interface

This chapter briefly describes how to configure the GPIO interface before
accessing it from a program by use of DIL subroutines. It then discusses the
capabilities and limitations of DIL subroutines when controlling the GPIO
interface.

I nterface Configuration
The Series 300/400 GPIO interface is configured by setting several switches on
the interface card. The interface installation manual explains how each switch
is used and how it should be configured. Configurable functions associated with
these switches include:

• Data logic sense.

• Data handshake mode.

• Input data clock source.

Set the configuration switches according to the directions found in the GPIO
interface installation manual.

Creating the GPIO Interface File

After setting the necessary switches on your GPIO interface, install the card in
the computer then create an interface file for it as explained in Chapter 3. An
appropriate interface file must be created before the interface can be accessed
from HP-UX.

Part I: OIL Controlling the GPIO Interface 5-1

Interface Control Limitations

Device I/O Library (DIL) subroutines provide a means for using a GPIO
interface to communicate with devices that are not supported on your HP-UX
system. However, they do not provide full control of the interface, so you are
faced with the following limitations:

• There is no direct access to interface handshake lines: Peripheral Control
(PCTL) line, Peripheral Flag (PFLG) line, and Input/Output (I/O) line.

• You cannot read the value of the Peripheral Status line (PSTS) directly.

Using OIL Subroutines
Several DIL subroutines can be used to control the GPIO interface. They are
divided into two groups:

• General-purpose routines usable with both HP-IB and GPIO interfaces,

• GPIO routines: routines specifically designed for use with a GPIO interface.

General-purpose routines are listed and described in detail in Chapter 3.
They are used in this chapter to illustrate various aspects of controlling GPIO
interfaces from an HP-UX process.

Two DIL routines used exclusively with GPIO interfaces:

• gpio_get_status

• gpio_set_ctl.

The GPIO interface has four special-purpose lines that are used in various
ways, depending on the needs of the device connected to the interface. Two
incoming lines, STIO and STll, are driven by the peripheral device and are
usually used to provide device status information. Two outgoing lines, CTLO
and CTLl are driven by the computer, usually to control the device.

The subroutines gpio_get_status and gpio_set_ctl are used to access
these four special-purpose lines. gpio_get_status reads STIO and STll, and
gpio_set_ctl sets the values of CTLO and CTLl. Both routines are described
later in this chapter in the section Using Status and Control Lines.

5-2 Controlling the GPIO Interface Part I: OIL

By using the DIL general-purpose routines and these two GPIO-specific
routines you can:

• Reset the interface,

• Perform data transfers,

• Use the interface's 4 special purpose lines,

• Control the data path width and data transfer speed,

• Set a timeout for data transfers,

• Set a read termination character,

• Get the termination reason,

• Set up the interrupts,

• Enable or disable interrupts.

Resetting the Interface

The interface should always be reset before it is used, to ensure that it is in
a known state. All interfaces are automatically reset when the computer is
powered up, but you can also reset them from your I/O process by using the
io_reset subroutine. For example, the following code segment resets a GPIO
interface:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/
io_reset(eid); /*reset the interface*/

This has the following effect:

• Peripheral Reset line (PRESET) is pulsed low,

• PCTL line is placed in the clear state,

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared
(set to logical 0),

• Interrupts from the controlled interface are disabled on Series 300/400
systems.

Part I: OIL Controlling the GPIO Interface 5-3

Lines that are left unchanged are:

• CTLO and CTL1 output lines,

• I/O line,

• Data Out lines if the DOUT CLEAR jumper is not installed.

Performing Data Transfers

The read and write system calls are used to transfer ASCII data to and from
the GPIO interface. The following code segment illustrates how to use these
routines to write 16 bytes to the interface, then read 16 bytes back in.

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid; /*entity identifier*/
char read_buffer [16] • write_buffer[16]; /*buffers to hold data*/

if «eid = open("/dev/raw_gpio". D_RDWR)) == -1) {

printf("open failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);

write_buffer = "message to write";
write(eid.write_buffer. 16);
read(eid. read_buffer. 16);
printf("%s". read_buffer);

/*data message to send*/
/*send message*1
I*receive message*1
/*print received message*1

Using Status and Control Lines

Four special-purpose (status and control) signal lines are available for a variety
of uses. Two of the lines are for output (CTLO and CTL1), and two are for
input (STIO and STl1). The routine gpio_set_ctl allows you to control the
values of CTLO and CTL1, while the routine gpio_get_status allows you to
read the values of STIO and STIl.

5-4 Controlling the GPIO Interface Part I: OIL

Driving CTLO and CTL 1

The call to gpio_set_ctl has the following form:

where eid is the entity identifier for an open GPIO interface file and value is an
integer whose least significant two bits are mapped to CTLO (bit 0) and CTL1
(bit 1). Both CTLO and CTL1 are ground-true logic meaning that they are at
a logic LOW level when asserted. This logic polarity cannot be changed. Logic
sense of the two lines is related to value as follows:

• If value =0: CTLO and CTL1 both false (HIGH logic level)

• If value =1: CTLO true (LOW logic level) and CTL1 false (HIGH logic level)

• If value =2: CTLO false (HIGH logic level) and CTLl true (LOW logic level)

• If value =3: CTLO and CTL1 both true (LOW logic level)

This example code segment asserts both lines, setting them at a logic LOW
level:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_RDWR); /*open interface file*/
gpio_set_ctl(eid. 3); /*assert CTLO and CTL1*/

To set both lines to a logic HIGH level, call gpio_set_ctl as follows:

Reading STIO and STI1

The call to gpio_get_status has the following form:

int eid. value;
value = gpio_get_status(eid);

where eid is the entity identifier for an open GPIO interface file.
gpio_get_status returns an integer whose least significant two bits are the
values of STIO and STIl.

Like CTLO and CTL1, STIO and STI1 are ground-true logic meaning
they are at a logic LOW level when asserted. Thus the value returned by
gpio_get_status is as follows (be sure to AND value with 3 to clear upper
bits before testing):

• If value =0: STIO and STIl both false (HIGH logic level)

Part I: OIL Controlling the GPIO Interface 5-5

• If value =1: STIO true (LOW logic level) and STI1 false (HIGH logic level)

• If value =2: STIO false (HIGH logic level) and STH true (LOW logic level)

• If value =3: STIO and STI1 both true (LOW logic level)

To illustrate:

int eid; /*entity identifier*/
int value, bits;
eid = open ("/dev/raw_gpio", O_RDWR); /*open interface file*/
value = gpio_get_status(eid); /*look at STIO and STI1*/
bits = value & 03 /*clear all but the 2 least significant bits*/
if ~bits == 3) /*and see if they are both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
els~ if (bits == 1) /*only STIO is asserted*/

/*~nsert code that handles case when STIO is asserted*/

els~ if (bits == 2) /*only STI1 is asserted*/

/*~nsert code that handles case when STI1 is asserted*/

els~ /*neither are asserted*/

/*insert code that handles case when neither STIO nor STI1 is asserted*/

Controlling Data Path Width

DIL subroutine io_width_ctl is used to specify 8-bit or 16-bit data path
widths for the GPIO interface. The call has the following form:

where eid is the entity identifier for an open GPIO interface file and width is
either 8 or 16. If any other width value is specified, io_width_ctl returns -1
and sets errno to EINVAL. The GPIO interface is set to a default 8-bit path
width when the interface file is opened.

5-6 Controlling the GPIO Interface Part I: OIL

The following code segment illustrates data transfers using a 16-bit data path
width.

int eid;

eid = open("/dev/raw_gpio". O_RDWR); /*open the interface file*/
io_width_ctl(eid. 16); /*set path width to 16 bits*/
write(eid. "data message". 12); /*perform data transfer*/

Since the interface data path width is 16 bits, 2 ASCII characters are
transferred during each handshake cycle. In the first 16-bit transfer, d is
sent in the upper byte and a is sent in the lower. The actual logic sense
(ground-true or high-true) of the GPIO data output lines depends on how the
lines were configured during interface card installation.

Controlling Transfer Speed

You can request a minimum speed for the data transfer across a GPIO
interface by issuing a call to io_speed_ctl. Your system rounds the specified
speed up to the nearest defined speed. If you specify a speed that is faster
than your system allows, the highest available speed is used instead. Refer to
Chapter 3 for more information about io_speed_ctl.

GPIO Timeouts

If a non-zero timeout limit has been established for a given eid and that limit
is exceeded during a data transfer request, an error condition results. When
the subroutine handling the transfer detects the timeout error, it returns -1
and sets errno to ETIMEDOUT (EIO on Series 300/400). When a timeout
error occurs, use io_reset to reset the GPIO interface before attempting
another transfer.

Part I: OIL Controlling the GPIO Interface 5-7

I
Burst Transfers

Series 300/400 systems support high-speed burst I/O on HP-IB and GPIO
interfaces. The call to io_burst is structured as follows:

io_burst (eid, flag)

io_burst controls the data path between computer memory and the HP-IB or
GPIO interface. If flag = 0, all data is handled through kernel calls with the
normal associated overhead. If flag is non-zero, burst mode locks the interface
and data is transferred directly between memory and the I/O mapped interface
until the transfer is completed. Burst mode yields substantial improvement in
efficiency when handling small amounts of data or high-speed data acquisition.

Read Terminations

Determining Why a Read Operation Terminated

Subroutine io_get_term_reason, described in Chapter 3, is used to determine
why the last read performed on a particular eid terminated. Possible reasons
include:

• The requested number of bytes were read

• A specified read termination character was seen

• A assertion of the PSTS line was seen

• Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 3 describes subroutine io_eol_ctl which is used to specify a
character or string of characters (called a read termination pattern) that, when
encountered during a read, terminates the read operation currently underway
on a particular GPIO interface file eid.

Interrupts

Subroutines io_on_interrupt and io_interrupt_ctl are described in
Chapter 3. They are used to set up and control interrupt handlers for the
GPIO status line or for a particular GPIO interface file eid.

5-8 Controlling the GPIO Interface Part I: OIL

6
Controlling the Parallel Interface

This chapter discusses the capabilities and limitations of DIL subroutines when
controlling the Parallel interface.

Interface Control Limitations

Device I/O Library (DIL) subroutines provide a means for using a
Centronics-compatible Parallel interface to communicate with devices that
are not supported on your HP-UX system. However, they do not provide full
control of the interface, so you are faced with the limitation that there is no
direct access to interface handshake lines: STROBE line, BUSY line, and ACK
line. These handshake lines are controlled by the interface Input/Output FIFO
hardware.

Part I: OIL Controlling the Parallel Interface 6-1

I
Using OIL Subroutines

Several DIL subroutines can be used to control the Parallel interface. They are
the general-purpose routines usable with HP-IB, GPIO, and Parallel interfaces,
which are listed and described in detail in Chapter 3. They are used in this
chapter to illustrate various aspects of controlling Parallel interfaces from an
HP-UX process.

By using the DIL general-purpose routines you can:

• Reset the interface.

• Perform data transfers.

• Control the data handshake mode.

• Set a timeout for data transfers.

• Set a read termination character.

• Get the termination reason.

• Set up the interrupts.

• Enable or disable interrupts.

Resetting the Interface

The interface should always be reset before it is used, to ensure that it is in
a known state. All interfaces are automatically reset when the computer is
powered up, but you can also reset them from your I/O process by using the
io_reset subroutine. For example, the following code segment resets a Parallel
interface:

int eid; I*entity identifier*/
eid = open("/dev/parallel". O_RDWR); I*open Parallel interface file*1
io_reset(eid); I*reset the interface*1

This has the following effect:

• The NINIT signal is held low for 50 microseconds.

• The interface is reset to its power-on state.

• User interrupts enabled via io_on_interrupt are enabled (unmasked).

6-2 Controlling the Parallel Interface Part I: DIL

Performing Data Transfers

The read and write system calls are used to transfer ASCII data to and from
the Parallel interface. The following code segment illustrates how to use these
routines to write 16 bytes to the interface, then read 16 bytes back in.

#include <fcntl.h>
#include <errno.h>
main()
{

int eid; I*entity identifier*1

}

char read_buffer [16] , write_buffer[16]; I*buffers to hold data*1

if «eid = open(l/dev/parallel", O_RDWR» == -1) {
printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);

write_buffer = "message to write";
write(eid,write_buffer, 16);
read(eid, read_buffer, 16);
printf("%s", read_buffer);

I*data message to send*1
I*send message*1
I*receive message*1
I*print received message*1

Controlling Transfer Speed

You can request a minimum speed for the data transfer across a Parallel
interface by issuing a call to io_speed_ctl. Your system rounds the specified
speed up to the nearest defined speed. If you specify a speed that is faster
than your system allows, the highest available speed is used instead. Refer to
Chapter 3 for more information about io_speed_ctl.

Timeouts

If a non-zero timeout limit has been established for a given eid and that limit
is exceeded during a data transfer request, an error condition results. When
the subroutine handling the transfer detects the timeout error, it returns -1
and sets errno to ETIMEDOUT (EIO on Series 300/400). When a timeout
error occurs, use io_reset to reset the Parallel interface before attempting
another transfer.

Part I: OIL Controlling the Parallel Interface 6-3

Burst Transfers

Series 300/400 systems support high-speed burst I/O on HP-IB, GPIO, and
Parallel interfaces. The call to io_burst is structured as follows:

io_burst (eid, flag)

io_burst controls the data path between computer memory and the HP-IB,
GPIO or Parallel interface. If flag = 0, all data is handled through kernel calls
with the normal associated overhead. If flag is non-zero, burst mode locks
the interface and data is transferred directly between memory and the I/O
mapped interface until the transfer is completed. Burst mode yields substantial
improvement in efficiency when handling small amounts of data or high-speed
data acquisition.

Read Terminations

Determining Why a Read Operation Terminated

Subroutine io_get_term_reason, described in Chapter 3, is used to determine
why the last read performed on a particular eid terminated. Possible reasons
include:

• The requested number of bytes were read.

• A specified read termination character was seen.

• An assertion of the NACK line was seen.

• Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 3 describes subroutine io_eol_ctl which is used to specify a
character or string of characters (called a read termination pattern) that, when
encountered during a read, terminates the read operation currently underway
on a particular Parallel interface file eid.

6-4 Controlling the Parallel Interface Part I: OIL

Interrupts

Subroutines io_on_interrupt and io_interrupt_ctl are described in
Chapter 3. They are used to set up and control interrupt handlers for a
particular Parallel interface file eid.

Part I: OIL Controlling the Parallel Interface 6-5

Index

A
Active Controller, 4-17

auto-addressing, 4-19
calculating talk and listen addresses,

4-21
clearing HP-IB devices, 4-28
conducting a parallel poll, 4-36
conducting a serial poll, 4-43
configuring parallel poll response,

4-32
determining, 4-17
disabling parallel poll response, 4-36
enabling local control, 4-25
errors during parallel poll, 4-38
errors during serial poll, 4-45
example configuration, 4-23
locking out local control, 4-24
monitoring the SRQ line, 4-29
parallel poll for device status, 4-32
passing control to non-active controller,

4-46
remote control of devices, 4-24
serial polling, 4-43
servicing requests, 4-29
setting up talkers and listeners, 4-19
SRQ serial/parallel poll service routine,

4-31
transferring data, 4-26
triggering devices, 4-25
using hpib_send_cmd, 4-21
waiting for parallel poll response,

4-39

Part I: OIL

ASCII character codes, C-1

B
buffered HP-IB I/O, 4-68
buffered HP-IB I/O example, 4-73
buffered HP-IB I/O, locating errors in,

4-75
burst transfers, 5-8, 6-4

c
Centronics-compatible Parallel interface.

See Parallel interface
character code, ASCII, C-1
closing an interface special file, 3-6
combining HP-IB I/O operations, 4-68
controller, HP-IB, active or non-active,

4-8

D
data path width, setting, 3-14
DEVICE CLEAR, 4-5
device file (see special file or interface

special file), 3-2
differences between computers, 2-1
DIL programming example, D-1
DIL routines

calling from Fortran, 2-3
calling from Pascal, 2-3
calling program structure, 3-2
general-purpose routines, 3-3
HP-IB DIL routines, 4-2
linking, 2-3

Index-1

Index

Inaex

E
entity identifier, 3-2
errno, using, 3-10
errno variable, 3-10
error-checking routines, 3-10
errors while sending HP-IB commands,

4-15
example, DIL programming, D-1

F
Fortran calls to DIL routines, 2-3

G
GO TO LOCAL, 4-6
GPIO interface, 2-15

H

burst transfers, 5-8
configuration and set-up, 5-1
controlling data path width, 5-6
controlling the transfer speed, 5-7
creating special file for, 5-1
interrupt transfers, 5-8
limitations in controlling, 5-2
performing data transfers, 5-4
read terminations, 5-8
resetting the interface, 5-3
timeouts, 5-7
using DIL routines, 5-2
using the status and control lines, 5-4

handshake I/O interface functions, 2-7
HP-IB commands, 4-2

errors while sending, 4-15
sending, 4-12

HP-IB DIL routines, 4-7
HP-IB interface, 2-9

bus management control lines, 2-13
general structure, 2-9
handshake lines, 2-10

hpib_io, 4-10, 4-11, 4-68
HP-IB I/O, buffered, 4-68

Index-2

HP-IB I/O, buffered, example, 4-73
HP-IB I/O, buffered, locating errors in,

4-75
HP-IB I/O operations, combining, 4-68
hpib_send_cmd, 4-2

interface device file (see interface special
file), 3-2

interface locking, 3-13
interfaces

general concepts, 2-5
GPIO, 2-15
HP-IB, 2-9
Parallel, 2-16, 6-1

interface special file, 3-2, 3-4, 3-6
interrupt, hardware availability, 3-26
io_burst, 4-10, 4-11, 5-8, 6-4
iodetail storage space allocation, 4-72
iodetail, the I/O operation template,

4-69
io_get_term_reason, 3-23
io_interrupt_ctl, 3-29
io_lock, 4-10, 4-11
io_on_interrupt, 3-28
io_unlock, 4-10, 4-11

L
linking DIL routines, 2-3
LOCAL LOOKOUT, 4-5
locking an interface, 3-13

N
Non-Active Controller

accepting active control, 4-61
determining controller status, 4-53
determining when addressed, 4-64
disabling parallel poll response by

remote, 4-60
errors while requesting service, 4-56
requesting service, 4-54

Part I: OIL

responding to parallel polls, 4-57

o
opening an interface special file, 3-4
opening HP-IB interface special file,

4-12

p

Parallel interface, 2-16, 6-1
burst transfers, 6-4
controlling the transfer speed, 6-3
interrupt transfers, 6-5
limitations in controlling, 6-1
performing data transfers, 6-3
read terminations, 6-4
resetting the interface, 6-2
timeouts, 6-3
using DIL routines, 6-2

PARALLEL POLL CONFIGURE, 4-6
PARALLEL POLL DISABLE, 4-6
PARALLEL POLL ENABLE, 4-6
Pascal calls to DIL routines, 2-3
programming example, DIL, D-l

R
read termination, cause, 3-18, 3-23
read termination pattern, removing,

3-22
read termination pattern, setting, 3-14
read/write to an interface, 3-7
removing read termination pattern,

3-22
resetting interfaces, 3-12

Part I: OIL

S
SELECTED DEVICE CLEAR, 4-6
sending HP-IB commands, 4-12
SERIAL POLL DISABLE, 4-5
SERIAL POLL ENABLE, 4-5
Series 300/400 operating dependencies

and characteristics, A-I
Series 600/800 operating dependencies

and characteristics, B-1
setting data path width, 3-14
setting read termination pattern, 3-14
setting timeout, 3-14
setting transfer speed, 3-14
special file, 3-2, 3-4, 3-6
System Controller

determining if system controller, 4-49
hpib_abort, 4-50
hpib_ren_ctl, 4-51
system controller duties, 4-50

T
timeout, setting, 3-14
transfer speed, setting, 3-14
TRIGGER, 4-5

U
UNLISTEN, 4-4
UNTALK, 4-4
using ermo, 3-10

w
write/read to an interface, 3-7

Index-3

I

Part II
HP-HIL

The Hewlett-Packard Human Interface Link

• The Interface to HP-HIL Devices

• Typical HP-HIL Devices

• Using HP -HIL Devices

• HP-HIL Commands

• Keycode Set 1

Using HP-HIL Devices with HP-UX

The Interface to HP-HIL Devices
This part of the User's Guide describes communication via the Hewlett­
Packard Human Interface Link (HP-HIL), and other functions provided by

7

the HP-HIL System Device Controller (8042). It is primarily a description of
the enhancements added to handle the HP-HIL interface. This interface is
capable of supporting up to seven peripherals, such as graphics input, system
ID Modules, and other devices generally related to human input, as well as the
system keyboard.

Before launching into a discussion of the workings of the HP-HIL interface,
a general overview should be presented. Figure 1-1 illustrates the basic
components.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-1

7

7

~ Device C
Address=3

Process I
I

~ Device
Process I

B Address=2

~ Device
Process I

A Address=1

I Link Interface I
I 8042 I

Computer

Figure 7-1.
Hewlett-Packard Human Interface Link

HP-HIL initialization takes place in the following manner. The peripheral
devices in the HP-HIL link are powered up when the computer is turned
on. Next, because of the "loop-back mode" each device is recognized by the
computer as the "last" device in the link. The "loop-back mode" is where the
computer sends out a signal and the HP-HIL device sends that same signal
back to the computer through the return side of the device. Each device in the
link is checked in this manner until there are no additional devices to check in
the link. Note that the computer does not know the type of each device in the
link; it merely knows that there is a device at that location in the link.

To further explain the HP-HIL initialization process, the following example
is given. Assume the 8042 has sent out a signal looking for the first device
on the link. (The 8042 is the HP-HIL system device controller, not the
MC68000/10/20 microprocessor.) In our previously shown diagram, it would
find Device A. Being the first device on the link, it's address is considered to be

7 -2 Using HP-HIL Devices with HP-UX Part II: HP-HIL

1. The 8042 then instructs Device A to exit loop-back mode; that is, send the
signals through to a possible next device. The 8042 then attempts to contact
the second device on the link. Device B responds and is assigned address 2.
The 8042 now knows that there are at least two devices on the link. The 8042
commands Device B to exit loop-back mode, and attempts to contact the
next device. Successful, the 8042 now knows about Device C. As our diagram
illustrates, Device C is the last device on the link, so the process proceeds
differently at this point.

The 8042 instructs Device C to exit loop-back mode, and attempts to contact
(nonexistent) Device D. Since it is not there, a timeout occurs, and the 8042
deduces that Device C is the last device on the link. Therefore, it instructs
Device C to once again enter loop-back mode, and the link is configured.

The link can deal with a maximum of seven devices at anyone time (see the
NOTE in the section, "Typical HP-HIL Devices"). If there are eight or more
devices physically connected, the devices after number seven are not found.

As the above discussion indicates, the address of a particular device is merely
its sequential order of placement along the link. In the above diagram, Device
A has address 1, B has address 2, and C has address 3. This is only a result of
their physical order of connection. If Device C had been connected between
Devices A and B, Device A would still have been address 1, but Device C
would be address 2, and B would be address 3. The type of device is irrelevant
to the address assigned to it.

After the link is operational, and during subsequent link operations, each
device looks at the data being sent down the link. If a device notices that the
destination address associated with the link data is the same as that device's
address, that device receives and acts on the data. Otherwise, the data is
merely shuttled along to the next device.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-3

7

7

Typical HP-HIL Devices
This section provides a brief description of a few of the HP-UX supported
HP-HIL devices. You can make use of these devices by writing special
programs in C Language, FORTRAN, or Pascal to control them.

Before you can use an HP-HIL device, your terminal or computer must meet
the following requirements:

• It should have a built-in HP-HIL interface or HP-HIL interface card present.
This is the case for the HP Models 217, 237, 310, 318, 320, 330, and 350,
Integral Personal Computer, and Model 550 with an HP 98700H Graphics
Display Station. The HP 2393 and HP 2397 terminals also have built-in
HP-HIL interfaces .

• If you are using a Model 220, it should have an HP 9920 Option 535 (HP
09920-66535, HP-HIL Keyboard/HP-IB Interface) card inserted in its
backplane.

The following is a list of HP-HIL devices supported by the HP-UX system. It
also provides the maximum current which each device uses.

Note The total current your HP-HIL link can use before it stops
working is 750 milliamps. This current limit is true for all
HP-UX computers except the Integral PC and HP 98700A/H
which have a total current limit of 520 milliamps.

When determining the total current used by your HP-HIL link,
you should note that the current limits listed in this section
are maximum current limits. The typical current used by each
HP-HIL device is approximately two-thirds of this value, so
when calculating the total current used by your HP-HIL link
you need to take two-thirds of the sum of the maximum current
values.

To determine the total current which your HP-HIL link draws when connected
to the HP-HIL interface, add up the maximum current used by each device in
the link and multiply the result by two-thirds. Again use the following list to
determine the maximum current each device uses.

7 -4 Using HP-HIL Devices with HP-UX Part II: HP-HIL

• HP-HIL/Touchscreen model HP 35723A-This is a screen bezel which is
placed over the bezel of the HP 35731 (medium resolution black and white
monitor) and HP 35741 (medium resolution color monitor) 12-inch video
monitors. It can be programmed to select various functions by simply
touching the screen. The maximum current this device uses is 200 milliamps.

• HP-HIL Keyboard model HP 46021A-This keyboard has alphabetic and
numeric keys similar to those on a typewriter. Note that this keyboard
replaces the HP 46020A keyboard and that all of the keys in each key group
of the HP 46021A function the same as those of the HP 46020A. The key
groups you will find on this keyboard are as follows:

D Character Entry Group-allows alphabetic and numeric characters, as well
as mathematical and commercial signs to be entered. It also contains data
control keys such as (Back space) and (Return).

D Numeric Group-provides for rapid entry of numeric data.

D Display Control Group-controls the location of the cursor on the display.

D Edit Group-allows data to be inserted in and deleted from the display.

D Function Key Group-provides you with system defined function key
labels, as well as with user defined function key labels.

D System Control Group-controls system functions related to display
operations, such as using the (Stop) key to suspend the display.

The maximum current this device uses is 70 milliamps.

• HP Mouse model HP 46060A or HP 46060B-The mouse is a relative
graphics input device for some graphics programs. It is commonly used to
move the cursor to any position on the CRT (display) without using arrow
keys or a Rotary Control Knob model HP 46083A. The HP 46060A is a
two-button mouse, the HP 46060B is a three-button mouse. The maximum
current use for the HP 46060A is 200 milliamps; 120 milliamps for the HP
46060B.

Note

Part II: HP-HIL

The HP 46060A Two-Button Mouse or the HP 46060B
Three-Button Mouse must be the last device on the HP-HIL
link.

Using 'HP-HIL Devices with HP-UX 7-5

7

7

• Extension Module model HP 460S0A-The Extension Module allows you to
increase the distance between HP-HIL devices by eight feet. Note that the
HP-HIL link is capable of handling seven addresses and that the Extension
Module does not occupy one of these addresses. The maximum current this
device uses is 25 milliamps.

• HP-HIL/ Audio Extension model HP 460S1A-The Audio Extension allows
a separation of 2.4 meters (S feet) between the host computer and another
HP-HIL device. This device also contains a speaker. Note that the HP-HIL
link is capable of handling seven addresses and that the Audio Extension
does not occupy one of these address. The maximum current that this device
uses is 25 milliamps.

• HP-HIL/ Audio Remote Extension model HP 460S2A/B-The HP 460S2A
allows a separation of 15 meters (49.2 feet) between the host computer and
the graphics display station, and the HP 460S2B allows a separation of 30
meters (9S.4 feet). The Audio Remote Extension also contains a speaker.
Note that the HP-HIL link is capable of handling seven addresses and that
the Audio Remote Extension module does not occupy one of these address.
The maximum current that each of these devices use is 50 milliamps.

• Rotary Control Knob model HP 460S3A-This device provides the
additional feature of a rotary control knob to your system. Note that a
switch is provided which toggles the knob from X-axis data to Y-axis data.
The maximum current this device uses is 110 milliamps.

• HP-HIL ID Module model HP 460S4A-The HP 460S4A Module is an
HP-HIL device that returns an identification number for identifying you as
the computer user. The identification number is unique to your particular ID
Module. This allows application programs to use the ID Module to control
access to program functions, data bases, and networks.

Note The identification number is the product/exchange and serial
numbers returned in a packed format as explained in the
section entitled, "Report Security Code."

The maximum current this device uses is 60 milliamps.

• Control Dials model HP 460S5A-This module provides nine user-definable
knobs. These knobs can be software defined to provide zooming, panning,

7 -6 Using HP-HIL Devices with HP-UX Part II: HP-HIL

rotation, horizontal and vertical motion, color translation, and menu control
when using graphics. Each knob on the HP 46085A can be defined in
software to do functions other than those mentioned.

Note The HP 460S5A Module occupies 3 addresses on the link. Each
horizontal row corresponds to one address (bottom to top).

The maximum current this device uses is 320 milliamps.

• Function Box model HP 46086A-This module provides 32 function keys
to select software-defined functions. A status LED, which is controlled by
software, provides an indication of when the device is sending or receiving
data. This device uses a non-standard keycode set (Keycode Set 2) which is
shown in Figure 7-2. The maximum current this device uses is SO milliamps.

0/1 2/3 4/5 6/7

8/9 10/11 12/13 14/15 16/17 18/19

20/21 22/23 24/25 26/27 28/29 30/31

32/33 34/35 36/37 38/39 40/41 42/43

44/45 46/47 48/49 50/51 52/53 54/55

56/57 58/59 60/61 62/63

Figure 7-2. Keycode Set 2

• A-size Digitizer model HP 46087A-The A-size Digitizer allows data entry
from an ISO A4 or ANSI A-size drawing, or free-hand graphics input. It uses
either a pen-like stylus or an optional Four-Button Cursor model HP 460S9A
. The maximum current this device uses is 200 milliamps.

• B-size Digitizer model HP 46088A-The B-size Digitizer allows data entry
from an ISO A3 or ANSI B-size drawing, or free-hand graphics input. It uses

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-7

7

7
either a pen-like stylus or an the optional HP 46089A Four-Button Cursor.
The maximum current this device uses is 200 milliamps.

• Four-Button Cursor model HP 46089A-This device is a four switch puck
that may be used on the A or B-size Digitizer in place of the stylus. This
device does not take an address space, and it does not use any additional
current.

• HP-HIL/Quadrature Port model HP 46094A-This device allows interfacing
an off-the-shelf 3 Button Mouse, Trackball (or any other device which
provides an output in quadrature) to the HP-HIL link. The maximum
current this device uses is 200 milliamps.

• Keyboard model HP 98203C-This keyboard functions the same as the
HP 98203B keyboard. For information on the HP 98203B keyboard read
the section entitled, "The Series 200/300 ITE as System Console" in this
manual. The maximum current this device uses is 90 milliamps.

• Bar-Code Reader model HP 92916A-This device reads all standard
bar-codes using a wand as the input mechanism. It provides an effective
and reliable alternative to the keyboard for data entry. Note that HP-UX
supports this device in the keyboard mode, in which the input from
the device looks like keycodes. The keycodes, which can be read by the
Bar-Code Reader, are: 3 of 9, Interleaved 2 out of 5, UPC/EAN, and
Codabars USD-4 and ABC. The maximum current this device uses is 200
milliamps.

For more information on these devices, call your local HP Sales or Service
Representatives.

7 -8 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Using HP-HIL Devices

This section gives a procedure for creating special (device) files for your
HP-HIL devices, provides programs for identifying HP-HIL devices, and
includes tables for interpreting data for the sample programs. This section also
includes a discussion of the commands (opcodes) used in the macros located in
the file /usr/include/sys/hilioctl. h.

Note

A Few Terms

HP-HIL devices can be added to or removed from the HP-HIL
link without affecting the HP-UX operating system while it
is running. However, if you are running an application which
requires the use of that particular device and you:

• remove the device from the link, or

• open the link to the device, or

• open the link to add a new device

your application might not recognize the change and as a
result it will not work as expected. An HP-HIL device can
be added anywhere in the HP-HIL link provided it is not a
non-extendible device (e.g. HP 46060A, HP Mouse), in this
case the device can only be added to the end of the link.

The following terms will be used throughout this part of the User's Guide:

• A special (device) file is a file associated with an I/O device. Special (device)
files are read and written just like "ordinary files" (a type of HP-UX file
containing either a program, text or data), but requests to read or write
result in activation of a driver of the associated device. Entries for each file
normally reside in the / dey directory. In this documentation, you will find
that a special (device) file is referred to as a device file or a special file .

• A macro is a command which contains a set of instructions to be performed.
The term macro was derived from the word macroinstruction.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-9

7

7

• A frame is the way information travels through the HP-HIL link. It consists
of 15 bits of information which include: start (1 bit), stop (1 bit), command
(1 bit), parity (1 bit), address (3 bits), and data (8 bits). The frame is
transmitted around the link at the rate of 10 micro-seconds per bit, or 150
micro-seconds per frame.

Logic 1

Logic

Idle Start

State

Command/Data

Bit

Usee. per Bit

±O.5%

14---------1 Frame (150 ISee.)

Figure 7-3. Frame

Parity

Bit

Bit

Idle

State

• A command (opcode) in this documentation is an operational code used in
a lower level programming language (assembly) to perform an operation,
such as incrementation, inversion or multiplication, on one or more operands.
This is the definition for the term opcode; however, in this manual it will be
used as the definition for the term command.

• A path name is a sequence of directories and "ordinary files" (HP-UX files
containing either programs, text or data) separated by /'s which map out a
path leading to a destination file.

• A select code is part of an address used for devices; a number determined
by a setting on an interface card to which a peripheral device is connected.
Multiple peripherals connected to the same interface card share the same
select code.

7 -10 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Creating a Special Device File for HP-HIL Devices

Each device on the HP-HIL link has a unique address based on its position
in the link (e.g. the first addressable HP-HIL device is address 1 and so on).
There may be up to seven devices connected to a single HP-HIL driver board
allowing device file names in the form hili, hi12, ... , hi17. To access a
device, you must first create a special (device) file using the mknod command.

For the Series 300

The Series 300 mknod parameters should create a character device with a major
(driver) number of 24 and a minor (select code) number of OxOOOOaO where a
is the device's one digit address i.e. its position on the HP-HIL loop from the
computer interface card.

The format for using this command is:

/ete/mknod /dev/hila e 24 OxOOOOaO

where:

hil

e

24

OxOOOO

a

is the name you give to identify the HP-HIL address for which
you are creating a device file.

specifies the character mode rather than the block mode.

is the major (driver) number used with the device you are
creating. Series 300, 700 and 800 computers use major (driver)
number 24 for communicating with HP-HIL devices.

is the Series 300 select code of the device.

is the HP-HIL address of the device to which you wish to talk.
The address ranges from one to seven. An addressable device
is not an extension device, such as the HP 46080A (Extension
Module) and the HP 46081A (HP-HIL/ Audio Extension).

For the Series 700

The Series 700 mknod parameters should create a character device that is
similar to that of the Series 300. The difference is the minor (select code)
number of Ox2030aO where a is the device's one digit address; again, its
position on the HP-HIL loop from the computer interface card.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-11

7

7
The format for the Series 700 command is:

/etc/mknod /dev/hila c 24 Ox2030aO

For the Series 800

The Series 800 mknod parameters should create a character device that is
similar to that of the Series 300 and 700. The difference is the minor (select
code) number of OxOOluaO where lu is the two-digit hardware logical unit and a
is the device's one digit address.

The format for the Series 800 command is:

/etc/mknod /dev/hila c 24 OxOOluaO

or

/etc/mknod /dev/hillu.a c 24 OxOOluaO

You may need to create a special (device) file for the 8042 driver so you can
talk to the timer, talk to the beeper, or change the keyboard repeat rate. To
do this, change the device address (24) to 23 and use the appropriate form of
the mknod command:

For Series 300

/etc/mknod /dev/hila c 23 OxOOOaO

7 -12 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Using the Sound Generator

This section describes how to implement and control the Sound Generator
associated with the HP-HIL System Device Controller (8042). The Sound
Generator ("beeper") can produce tone outputs in varying frequencies,
duration and loudness. A sample program is included in this section to help
you create various sounds that can be used as user prompts, warnings or other
audio signals.

Sample Beeper Program

The following sample program, written in C Language, provides the structure
for controlling the Sound Generator. You may alter this program to fit your
needs. Remember to type in the program exactly as it appears (omit line
numbers as they are not part of the program) and compile it.

1 #include <fcntl.h>
2 #include <sys/beeper.h>
3 main(argc, argv)
4 int argc;
5 char *argv[];
6 {
7
8
9
10
11 }

int fd;
static struct beep_info ring
fd=open("/dev/rhil",o_RDWR);
ioctl(fd, DO BEEP , &ring);

/*freq dura vol*/
{440, 500, 100};

Lines 1 and 2 identify the include files for the macros that execute specific
functions required by this program. The macro f cntl. h provides the
O_RDWR File Access Mode and beeper. h sends data to the beeper.

Lines 3, 4 and 5 declare the variables (argc, argv and fd) to be used in the
program.

Line 8 is where you may insert the three variables that control frequency
duration and volume of your tone. Values entered here will produce a tone
equal to A above middle C for 500 milliseconds at maximum volume.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -13

7

7
Frequency, Duration and Volume of Tones

The three parameters asked for in the above C program line:

static struct beep_info ring = {aaa, bbb, ccc};

control the tone frequency or pitch (aaa), duration (bbb) and volume (ccc). By
altering these values in your program you can control the Sound Generator.

To Set Frequency. Enter the frequency value, in Hertz, of the tone desired
into the above program. The typical range is from 40 to 5 208 Hz depending
on your computer hardware. For a baseline, 440Hz translates to A above
Middle C on the musical scale (see sample program).

To Set Duration. Enter the tone's duration value, in milliseconds, into the
above program. Tone durations can range from 2 550 (2.55 seconds) down to 1
(0.001 second) and 0 (Off).

To Set Volume. Enter the volume value, from 0 to 100, into the above
program. Values can range from 1 (softest) through 100 (loudest) and 0 (Off).

Note Frequency, duration and volume of tone are subject to the
resolution of the Sound Generator. The frequency specified is
rounded to the nearest frequency achievable by the hardware.
Some versions of hardware are limited as to frequency, duration
and volume ranges.

7-14 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Additional Considerations

When you execute a long listing of the / dev file, you will find the device files
for HP -HIL devices on Series 300 com pu ters are as follows:

crw-rw-rw- 1 root root 24 Ox000010 Oct 29 09:02 hili
crw-rw-rw- 2 root root 24 Ox000020 May 22 19S5 hil2
crw-rw-rw- 1 root root 24 Ox000030 May 22 19S5 hil3
crw-rw-rw- 1 root root 24 Ox000040 May 22 19S5 hil4
crw-rw-rw- 1 root root 24 Ox000050 May 22 19S5 hil5
crw-rw-rw- 1 root root 24 Ox000060 May 22 19S5 hil6
crw-rw-rw- 1 root root 24 Ox000070 May 22 19S5 hil7
crw-rw-rw- 1 root root 25 OxOOOOSO May 22 19S5 hilkbd

Note that the last device file (hilkbd) listed has a different major (driver)
number. This is the device file for the HP-HIL "cooked" keyboard driver. The
HP-HIL "cooked" keyboard driver does not require a new keyboard; it simply
provides a protocol conversion for using your present HP-HIL keyboard. This
protocol only recognizes the down stroke of a key when it is pressed (not both
up and down keystrokes). Using this protocol conversion with programs that
trap individual keystrokes (by reading from the HP-HIL interface) makes the
application programs more compact, because they are keeping track of fewer
keystrokes.

Note that the keyboard sends a set of data which consist of a four byte time
stamp, one byte that contains status information as follows:

• 1000xxxx-both (Shift) and (CTRL) have been pressed,

• 1001xxxx-only (CTRL) has been pressed,

• 1010xxxx-only (Shift) has been pressed,

• 1011xxxx-neither (Shift) nor (CTRL) have been pressed,

and a final byte that contains a keycode taken from the table below. The
following is a table of the keycodes for the HP-HIL "cooked" keyboard driver.

Part II: HP-HIL USing HP-HIL Devices with HP-UX 7 -15

7

7
Table 7-1. Keycodes for the HP-HIL "Cooked" Keyboard Driver

Keycodes in Key Label

hex decimal Unshifted Shift

00 0 Unused
01 1 0 0
02 2 [) CSJ
03 3 (ESC) (DEL)

04 4 Unused
05 5 (Break) (Reset)

06 6 (Stop)

07 7 (Select)

08 8 (Enter)

09 9 (~
OA 10 (Blank 1)

OB 11 (Blank 2)

OC 12 (Blank 3)

OD 13 (Blank 4)

OE 14 (&home:)

OF 15 (Prev)

10 16 (Next)

11 17 (Enter) (Print)

12 18 (Extend char) (left)

13 19 (Extend char) (right)

14 20 (System) (User)

15 21 (Menu)

16 22 (Clear line)

17 23 (Clear display)

18 24 (Caps)

Continued on next page ...

Note that decz"mal keycodes 8 - 13 are
numerz"c keypad keys

7-16 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7
Table 7-1.

Keycodes for the HP-HIL "Cooked" Keyboard Driver (continued)

Keycodes in Key Label

hex decimal Unshifted Shift

19 25 Ci}~b)
lA 26 Unused
IB 27 (ill
lC 28 @
ID 29 @
IE 30 @
IF 31 @
20 32 @)
21 33 @
22 34 C!J
23 35 0
24 36 @
25 37 Unused
26 38 m
27 39 0
28 40 (Insert line)

29 41 (Delete line)

2A 42 Unused
2B 43 (Insert char)

2C 44 (Delete char)

2D 45 Unused
2E 46 (Back space)

2F 47 Unused
30 48 Unused
31 49 Unused
32 50 Unused

Continued on next page ...

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-17

7
Table 7-1.

Keycodes for the HP-HIL "Cooked" Keyboard Driver (continued)

Keycodes in Key Label

hex decimal Unshifted Shift

33 51 Unused
34 52 Unused
35 53 Unused
36 54 Unused
37 55 Unused
38 56 Unused
39 57 (Enter)

3A 58 Unused
3B 59 Unused
3C 60 (Q)
3D 61 0
3E 62 0
3F 63 0
40 64 CD
41 65 CD
42 66 0
43 67 0
44 68 CD
45 69 CD
46 70 0
47 71 Q)
48 72 0
49 73 0
4A 74 (2)
4B 75 0

Continued on next page ...

Note that decimal keycodes 60 - 75 are
numeric keypad keys

7-18 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7
Table 7-1.

Keycodes for the HP-HIL "Cooked" Keyboard Driver (continued)

Keycodes in Key Label

hex decimal Unshifted Shift

4C 76 Unused
4D 77 Unused
4E 78 Unused
4F 79 Unused
50 80 CD (D
51 81 CD (!)
52 82 0 (i)
53 83 CD (!)
54 84 CD ®
55 85 CD (J
56 86 0 ~
57 87 CD c:J
58 88 (2) CD
59 89 (2) GJ
5A 90 0 (J
5B 91 GJ GJ
5C 92 CD CD
5D 93 (Ill m
5E 94 0 0
5F 95 0 ()
60 96 0 8)
61 97 0 (2J
62 98 (2) CD
63 99 (Space)
64 100 @

Continued on next page ...

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -19

7
Table 7-1.

Keycodes for the HP-HIL "Cooked" Keyboard Driver (continued)

Keycodes in Key Label

hex decimal Unshifted Shift

65 101 0
66 102 0
67 103 CD
68 104 @
69 105 @
6A 106 CD
6B 107 ®
6C 108 CD
6D 109 CD
6E 110 0
6F 111 GJ
70 112 0
71 113 CD
72 114 @)
73 115 CD
74 116 @)
75 117 @
76 118 0
77 119 @
78 120 0
79 121 CD
7A 122 [)
7B 123 0
7C 124 ®
7D 125 ®
7E 126 Unused
7F 127 Unused

7 -20 Using HP-HIL Devices with HP-UX Part II: HP-HIL

If, for some reason, you need to connect more than one Keyboard to an
HP-HIL link, you must keep the following facts in mind:

• When you have multiple Keyboards in the HP-HIL link all operating in the
"cooked" mode, key presses from these key boards are sequentially merged
together .

• When you have multiple Keyboards in the HP-HIL link all operating in the
"raw" mode, key presses from each key board is specific to that device.

If a process accesses an key board in the "raw" mode and another process
accesses a separate keyboard in the "cooked" mode, these processes will
not interfere with each other. However, if there are two separate processes
accessing the same Keyboard and one process accesses it in the "raw" mode
and the other accesses it in the "cooked" mode, all of the data will go to the
"raw" mode process.

Communicating with HP-HIL Devices

This section provides sample programs which can be used to identify and
describe all of the HP-HIL devices supported by HP-UX and it explains the
data read by the programs.

To use the programs in this section, you must type them in using either the
vi editor or HP-UX editor of your choice (the line numbers are not part of the
program). Next, compile the programs using either the C Language compiler
command cc, the FORTRAN compiler command fc, or the Pascal compiler
command pc. The programs will return the device status and 5 hexadecimal
values of the Describe Record. Next, they wait for you to move the HP Mouse
around on your desk or type in something from the HP 46021A Key board
before returning any data. Note that this same process and programs may be
used to test all the HP-HIL devices supported on the HP-UX operating system.

Sample C Language Program

The sample program presented in this section is used to open a link to the
device located at link address 1, it requests that an Identify and Describe be
performed on the device, reads some data, and then closes the link to the
device. To communicate with an HP-HIL device from the C Language, these
intrinsics are used: open, close, read, and ioctl.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -21

7

7
C Program Listing.

1 #include <sys/hilioctl.h>
2 mainO
3 {
4 int fd. status. index. bytes_read. done;
5 unsigned char describe [11] • buffer[10]
6
7 /*Open the device file for the first device on the loop.*/
8
9 fd = open("/dev/hil1". 0);
10
11 for (index = 0; index < 12; index++)
12 {
13 describe[index] = • •.
14 }
15
16 /*This ioctl system call requests a describe record from
17 the device. The describe record contains information
18 describing the amount and types of data that can be
19 returned by the device.*/
20
21 status = ioctl(fd. HILID. &describe[O]);
22 printf("status %d \n".status);
23 printf("describe record\n");
24
25 for (index=O; index<12; index++)
26 {
27
28 }

printf(" %x\n". describe[index]);

29 printf ("\n-". • .);
30
31 I*Read at least 21 bytes of data from the device.*/
32
33 done = O·
34 while (done < 21)
35 {
36 bytes_read = read(fd. buffer. 1);
37 done += bytes_read;
38
39
40
41
42
43 }

for (index = 0; index < bytes_read; index++)
{

printf(" %x\n". buffer[index]);
}

44 close(fd);
45 }

The following is an explanation of the program:

7 -22 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Line 1 provides the include file (sys/hilioctl. h) which contains a list
of macros that execute specific functions when used within a C program.
The HILID macro (line 21) which is called in the above program executes
the identify and describe function. Note that the macro HILID can be
found in the file hilioctl. h. The path name for the hilioctl. h file is
/usr/include/sys/hilioctl.h. If you execute the cat or more command on
this path name, you will receive a screen listing of this file's contents.

Lines 4 and 5 declare the variables to be used in the program.

Line 9 opens the file /dev/hill for reading.

Lines 11 through 14 initialize the describe array.

Line 21 uses the system call ioctl to call the macro HILID which when
executed returns a describe array in the argument describe [0]. A function
return value is assigned to the variable status.

Line 22 prints the value for status and Line 23 prints the column header for
the describe record listing.

Lines 25 through 28 are a for loop which list the contents of the describe
array. The contents listed are the device ID, the describe record header, and
the I/O descriptor byte.

Line 29 prints a blank and executes a carriage return.

Line 33 initializes the variable done.

Lines 34 through 43 are a while loop which reads 21 bytes of data from
the device one byte at a time and then list this data on the standard output
(CRT). The data returned is the number of bytes in each packet, a time stamp,
and a poll record header and it's parameters.

Line 44 closes the file / dev /hill.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -23

7

7
The results of using this program to read data from an HP Mouse are similar
to:

status 0
describe record

68
12
C2
1E
2
o
o
o
o
o
o
o

8
2
82
D9

D3
2
1

o
8
2
82
D9

DB
2

1
1

8
2

82
D9

DD

An explanation for these results can be found in the section entitled,
"Description of the Data Returned by the Programs."

7 -24 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Sample Pascal Program

The sample program presented in this section is used to open a link to the
device located at link address 1. It requests that an Identify and Describe be
performed on the device, read some data, and then close the link to the device.
To communicate with an HP-HIL device from Pascal, the HP-HIL device
file is opened by executing a Pascal reset. There is also the need to use the
Pascal alias directive to make function and procedure calls to the C Language
commands: ioctl and sprintf. The other Pascal directive used is sysprog
on.

Pascal Listing for Series 300.

1 $sysprog on$
2
3 program hildev (input, output);
4
5 const
6 maxstr = 255;
7 maxdes = 12;
8 loopcount = 21;
9 hil_id = 1074554883;

10
11

format = '

12 type

%X'#O;

13 anystr = packed array [1 .. maxstr] of char;
14 des_array = packed array[1 .. maxdes] of char;
15
16 var
17 device_f
18 buf
19 describe
20 index, status
21 format_str
22 line
23

file of char;
char;
des_array;
integer;
packed array[1 .. 8] of char;
anystr;

24 function ioctl $alias '_ioctl'$ (fd, hilid : integer;
25 var des: des_array): integer; external;
26
27 procedure sprintf $alias '_sprintf'$ (anyvar str, format: anystr;
28 num : integer); external;
29
30 begin
31 (*Open the device file for the first device on the loop.*)
32
33 reset (device_f. '/dev/hil1');
34 for index := 1 to maxdes do describe[index] := chr(O);
35 format_str:= format;

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -25

7

7
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

(*This ioctl system call requests a describe record from
the device. The describe record contains information
describing the amount and types of data that can be
returned by the device.*)

status := ioctl(3. hil_id. describe);
writeln ('status = '. status:2);
writeln ('describe record');
for index := 1 to maxdes do

begin
sprintf (line. format_str. ord(describe[index]»;
writeln (line);

end;
writeln;

(*Read at least 21 bytes of data from the device.*)

index := 0;
while index < loopcount do

begin
read (device_f. buf);
sprintf (line. format_str. ord(buf»;
writeln (line);

60 index := index + l'

61 end;
62 close(device_f);
63 end.

The following is an explanation of the program:

Line 1 $sysprog on$ is the Series 200/300 Pascal directive which allows you to
use ANYVAR. The ANYVAR parameter specifier in a function or procedure
relaxes type compatibility checking when the routine is called.

Lines 5 through 10 are the constants defined as follows:

• maxstr is the maximum string length for a packed array of characters.

• maxdes is the maximum string length for a packed array of characters
containing the describe record.

• loopcount is the number of times the while loop of lines 55 through 61 is to
be executed.

• hil_id is the decimal value of the HILID command. The decimal values for
the other HP-HIL commands can be found in a table in the section, "Identify
and Describe Command (HILID)." Note that it is only necessary to use these

7 -26 Using HP-HIL Devices with HP-UX Part II: HP-HIL

decimal values of the HP-HIL commands when using the FORTRAN and
Pascal programming languages.

• format is the character string used to format the output of the sprintf
command.

Lines 13 through 14 are the type declarations for the program. They are
defined as follows:

• anystr is a packed array of characters. This packed array of characters is
used to declare the variables line, str, and format.

• des_array is the packed array of characters used to declare the variable
describe.

Lines 17 through 22 are a list of the variables declared for this program. They
are defined as follows:

• device_f is the file name assigned to the device file /dev/hil1.

• buf is the character variable returned from reading the device_f file.

• describe is the packed array of characters which is assigned the describe
record. The describe record is explained in the section, "Identify and
Describe Command (HILID)."

• index is a loop control variable.

• status is the variable which is assigned the status of the opened file
device_f (ldev/hil1) after executing the HILID command.

• format_str is the packed array of characters assigned the value of the
constant called format (' %X '#0).

• line is the packed array of characters that is assigned the value of the
character string that is returned when the sprintf command is executed.

Line 24 is a function which references the external HP-UX command ioctl.
Note that the string parameter in the ALIAS directive has an under score
preappended to it. This is only true for Series 300 computers.

Line 27 is a procedure which references the external HP-UX command
sprintf. Note that the string parameter in the ALIAS directive has an under
score preappended to it. This is only true for Series 300 computers.

Line 33 opens the device file /dev/hil1 and assigns it the name device_f.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -27

7

7
Line 34 initializes the packed array describe.

Line 35 assigns the constant format to the packed array of characters
format_str.

Line 42 executes the function ioctl and assigns its status value to the variable
status.

Line 43 causes the variable status to be output to the display.

Line 44 outputs the describe record label.

Lines 45 through 49 are a for loop which causes the describe record to be sent
to the display or standard output (CRT).

Line 54 initializes the count variable index to zero.

Lines 55 through 61 are a while loop which causes the data read from the
device file device_f to be sent to the display (CRT).

Line 62 closes the device file device_f.

7 -28 Using HP-HIL Devices with HP-UX Part II: HP-HIL

The results from using this program to read data from an HP Mouse are
similar to:

status 0
describe record

68
12
C2
1E
2

o
o
o
o
o
o
o

8
2
82
09
03
2
1
o
8
2
82
09
OB
2

1

1
8
2

82
09
00

An explanation for these results can be found in the section entitled,
"Description of the Data Returned by the Programs".

Sample FORTRAN Progra.m

The sample program covered in this section is used to open a link to the device
located at link address 1, it requests an identify and describe be performed
on the device, reads some data, and then closes the link to the device. To

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -29

7

7
communicate with an HP-HIL device from FORTRAN, the HP-HIL device
file is opened by executing a FORTRAN OPEN statement. There is also the
need to use the FORTRAN ALIAS directive to make calls to the C Language
commands: ioctl and read.

The program is as follows:

FORTRAN Program Listing.

1 program hildev
2 $alias ioctl='ioctl'(%val.%val.%ref)
3 $alias read='read'(%val.%ref.%val)
4 integer fd. istatus. index. HILID. count
5 parameter (HI LID = 1074554883)
6
7
8
9

10 C
11
12
13
14
15
16
17
18
19
20 100
21 110
22
23
24
25
26
27
28
29

character*12 describe
character*1 chi
open(unit=10.file="/dev/hil1")
fd=fnum(10)

count = 0
do index = 1. 12

describe(index:index) = ' ,
end do
istatus=ioctl(fd.HILID.describe)
print*."status = ".istatus
print*."describe record"
do 110 index = 1.12

write(6.100) describe(index:index)
format(' , .6X,Z2.1)

continue
write(6.' ()')

do while (count .LT. 21)
call read (fd. chi. 1)
write(6.'(7X.Z2.1)') chi
count = count + 1

end do
end

open for first hil device
get the file descriptor
for unit 10 (/dev/hil1)
initialize count variable
initialize character array
describe

check the status
output the status
label describe record

output the describe
record

read 21 bytes of data
from the device

The following is an explanation of the program:

Line 1 is the program statement which defines the name of the program. The
program name for this program is hildev.

Lines 2 and 3 are ALIAS directives used to assign internal function names to
the external HP-UX commands ioctl and read.

7 -30 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Line 4 declares the variables contained in it to be integers. These variables are
defined as follows:

• fd is file descriptor associated with unit number 10.

• istatus is the variable assigned the status value returned by the ioctl
command.

• index is the control variable for the DO loop in lines 18 through 21 of the
program.

• HILID is the variable associated with the Identify and Describe Command.
This variable is assigned the value shown in the PARAMETER statement of
line 5. The decimal code values for the various HP-HIL commands can be
found in the section entitled, "Identify and Describe Command (HILID)."

• count is the count variable for the DO WHILE loop of lines 23 through 27.

Lines 6 and 7 are character variables defined as follows:

• describe is a string of characters twelve characters long. This variable is
assigned the describe record when the ioctl function is called.

• chi is a one character string. This variable is assigned the data received
when a call to the read command is made in the DO WHILE loop of lines
23 through 27.

Line 8 opens the device file / dev /hil1.

Line 9 assigns the value of unit number 10 to fd.

Line 11 initializes the count variable to zero.

Lines 12 through 14 form a do loop which initializes each character of
describe to blank.

Line 15 assigns the value of the ioctl function call to the variable istatus.

Line 16 displays the value assigned to istatus on the standard output (CRT).

Line 17 displays the describe record label on the standard output.

Lines 18 through 21 display the contents of the character string describe on
the standard output.

Lines 24 through 28 read the data from the device file / dev /hili and display
it on the standard output.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-31

7

7
The results from using this program to read data from an HP Mouse are
similar to:

status 0
describe record

68
12
C2

1E
2
o
o
o
o
o
o
o

8
2

82

09
03

2
1

o
8
2

82

09
OB

2

8
2

82

09

00

An explanation for these results can be found in the next section.

Description of the Data Returned by the Programs

This section of the documentation provides you with an interpretation of the
data obtained from running anyone of the previously discussed programs. To
understand how to interpret the Identify and Describe Command data returned

7 -32 Using HP-HIL Devices with HP-UX Part II: HP-HIL

by these programs, read the section entitled, "Identify and Describe Command
(HILID)."

If you used the previously discussed programs to identify and describe an HP
46060A (HP Mouse), the first set of data returned to you is created by lines 21
through 29 of the C language program, 41 through 48 of the Pascal program
and 15 through 21 of the FORTRAN program .. The data looks similar to the
following:

status 0
describe record

68
12
c2
1e
2
0
0
0
0
0
0
0

where the status returned is 0 which indicates that you can communicate
with the HP-HIL device. If you receive a -1, it means you are not able to
communicate with the HP-HIL device. The remaining data created by the for
loop of lines 25 through 28 is explained as follows:

68 is the device ID for an HP 46060A (HP Mouse).

12 is the describe record header which supplies some of the parameters
of the device and provides an indication of how much additional
information is to follow this parameter. The 8 bit character string for
the hexadecimal value 12 is: 00010010. Reading this bit string from
right to left you find that bit 0 is 0, bit 1 is 1, and bit 5 is O. This says
that the header uses 16 bits describing the resolution of the device
in counts per meter, and axes X and Y will be reported. Bit 4 is set
because the 110 descriptor byte is to appear later on in the Describe.
Record.

c2 is the lower-byte resolution.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -33

7

7
le is the higher-byte resolution. To determine the total counts per meter

multiply the higher byte by 256 (100 hex) and add the result to the
lower byte read above.

lower-byte resolution -- c2 hex = 194 decimal
higher-byte resolution -- le hex = 30 decimal
100 hex = 256 decimal

Your total counts per meter reading is determined as follows:

30 x 256) + 194 = 7874 counts per meter

2 is the I/O descriptor byte. The 2 reading indicates the buttons for
which the device reports keycodes. The data here indicates that
keycodes are reported for buttons one and two.

Note that the zeros following the I/O descriptor byte (2) provide no
information. In the case of the FORTRAN sample program, blanks were
returned. These zeros and blanks fill in the data locations of the remaining
seven empty bytes of data which may be obtained from the Identify and
Describe Command depending on the device file you are reading. The Identify
and Describe Command can return up to 12 bytes of data:

Identify and Describe Command Output

Device ID byte

Describe Record Header

N umber of counts per centimeter (meter) low byte

N umber of counts per centimeter (meter) high byte

Maximum count of X -axis low byte

Maximum count of X-axis high byte

Maximum count of Y-axis low byte

Maximum count of Y-axis high byte

Maximum count of Z-axis low byte

Maximum count of Z-axis high byte

110 descriptor byte

Identify and describe command

7 -34 USing HP-HIL Devices with HP-UX Part II: HP-HIL

The interpretation of the Identify and Describe bytes can be found in the
section entitled, "Identify and Describe Command."

The second set of data received from the aforementioned program looks similar
to the following display. Note that leading zeros of the two digit hexadecimal
values have been omitted.

8
2
82
09
03
2
1
0
8
2
82
09
DB
2
1
1
8
82
09
DO

where:

8

2 82 D9 D3

2

Part II: HP-HIL

is the number of bytes contained in the packet which was read
including the length byte. Eight bytes of data were read in this
packet.

is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 42 129 875
milliseconds.

is the poll record header. This header indicates to the System
the type and quantity of information to follow, as well as
reporting simple status information. The 8 bit character string
for the hexadecimal value of 02 is: 00000010. This shows bit 0
is 0 and bit 1 is 1, which indicates that the coordinate axes the
device is reporting are: X and Y.

Using HP-HIL Devices with HP-UX 7 -35

7

7
1

o

8

2 82 D9 DB

2

o
1

8

2 82 D9 DD

is the X coordinate relative position of 1. Note that this
reading is how much the X coordinate has moved since the last
poll.

is the Y coordinate relative position of zero (0). Note that this
reading is how much the Y coordinate has moved since the last
poll variable.

is the number of bytes in the second packet of data sent. Eight
bytes of data were read in this packet.

is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 42 129 883
milliseconds.

is the poll record header. This header indicates to the System
the type and quantity of information to follow, as well as it
reports simple status information. The 8 bit character string
for the hexadecimal value of 02 is: 00000010. This shows bit 0
is 0 and bit 1 is 1, which indicates that the coordinate axes the
device is reporting are: X and Y.

is the X coordinate position of one (1).

is the Y coordinate position of one (1).

is the number of bytes in the second packet of data sent. Eight
bytes of data were read in this packet.

is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 42 129 885
milliseconds.

The last three bytes of data that were not shown in the previous data listing
were truncated by the program. These bytes of data if read would return the
Poll Record Header, X-axis coordinate position and the Y-axis coordinate
position.

7 -36 Using HP-HIL Devices with HP-UX Part II: HP-HIL

If you were using an HP 46020A (Keyboard) instead of an HP 46060A (HP
Mouse), then the second set of data read from the device would look similar to
the following display. Note that leading zeroes of the two-digit hexadecimal
values have been omitted. It should also be noted that the describe record
header returned for the HP 46020A is the hexadecimal value DF, which
indicates that it is an Extended Keyboard. The trailing zeros again should be
ignored, as they do not provide any information.

where:

7
A2

7D
37
B6

40
F2

7
A2

7D
37
BA
40
F3
7
A2

7D
49
20
40
F2

7 is the number of bytes contained in the packet which was read.
Seven bytes of data were read in this packet.

A2 7D 37 B6 is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 2 726 115
254 milliseconds (A2 7D 37 B6 hexadecimal = 2 726 115 254
decimal).

40 is the poll record header. This header indicates to the system
the type and quantity of information to follow, as well as
reporting simple status information. The 8 bit character string
for the hexadecimal value of 40 is: 0100 0000. Bit 6 is 1
(rightmost bit is bit 0), which indicates that the information
read is up to 8 bytes and that the data produced can be

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -37

7

7
interpreted by using Keycode Set 1 (Keycode Set 1 is provided
at the end of this part of the User's Guide).

f2 is the ((space bar)) which has been pressed down.

7 is the number of bytes contained in the second packet which
was read. Seven bytes of data were read in this packet.

A2 7D 37 BA is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 2 726 115
258 milliseconds (A2 7D 37 BA hexadecimal = 2 726 115 258
decimal).

40 is the poll record header. This header indicates to the system
the type and quantity of information to follow, as well as
reporting simple status information. The 8 bit character string
for the hexadecimal value of 40 is: 0100 0000. Bit 6 is 1
(rightmost bit is bit 0), which indicates that the information
read is up to 8 bytes and that the data produced can be
interpreted by using Keycode Set 1 (Keycode Set 1 is provided
at the end of this part of the User's Guide).

f3 is the ((space bar)) which has been released.

7 is the number of bytes contained in the packet which was read.
Seven bytes of data were read in this packet.

A2 7D 49 20 is a time stamp in tens of milliseconds since power-up. The
time stamp since power-up for this packet of data is 2 726 119
712 milliseconds (A2 7D 49 20 hexadecimal = 2 726 119 712
decimal).

40 is the poll record header. This header indicates to the system
the type and quantity of information to follow, as well as
reporting simple status information. The 8 bit character string
for the hexadecimal value of 40 is: 0100 0000. Bit 6 is 1
(rightmost bit is bit 0), which indicates that the information
read is up to 8 bytes and that the data produced can be
interpreted by using Keycode Set 1 (Keycode Set 1 is provided
at the end of this part of the User's Guide).

f2 is the ((space bar)) which has been pressed down.

7 -38 Using HP-HIL Devices with HP-UX Part II: HP-HIL

HP-HIL Commands

This section contains descriptions of the various HP-HIL commands (opcodes),
including their usage, effects, and format when transmitted and received. Note
that the term command as it relates to opcode is explained in the section
entitled, "A Few Terms." The commands covered in this section are used
within the macros located in the file /usr /include/ sys/hilioctl. h. As
stated earlier these macros are called by using them as parameters in an ioctl
command. For example:

ioctl(fd, HILID, &describe[O])

The following is a table of the macros included in the file
/usr/include/sys/hilioctl. h. This table contains the hexadecimal
commands (opcodes) for these macros, as well as a brief description of each
macro. A detailed description of the commands is provided in the sections
which follow this table.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -39

7

7
Table 7-2. HP-HIL Macros

Macro Opcode Description
(hexadecimal)

HILID 03h Identify and Describe

HILPST 05h Perform Self Test

HILRR 06h Read Register

HILWR 07h Write Register

HILRN 30h Report Name

HILRS 31h Report Status

HILED 32h Extended Describe

HILSC 33h Report Security Code

HI~DKR 3Dh Disable Keyswitch Auto Repeat

HILER1 3Eh Enable Keyswitch Auto Repeat, cursor
key repeat rate = 1/30 second. This is
based on a system poll rate of 1/60
second.

HILER2 3Fh Enable Keyswitch Auto Repeat, cursor
key repeat rate = 1/60 second. This is
based on a system poll rate of 1/60
second.

HILPl..HILP7 40h .. 46h Prompt 1 through Prompt 7

HILP 47h Prompt (General Purpose)

HILAl. .HILA 7 48h . .4Eh Acknowledge 1 through Acknowledge 7

HILA 4Fh Acknow ledge (General Purpose)

The above macro names cannot be used directly as parameters for an ioctl
system call from Pascal or FORTRAN. However, if you assign the decimal
value of the code to a declared integer variable and then use it as a parameter
to an ioctl command, you can use the macro within a Pascal or FORTRAN
program. The following table provides you with a listing of these macros in
their decimal form.

7 -40 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7
Table 7-3. HP-HIL Macros and Their Decimal Equivalent

Macros Decimal Equivalent

HILID 1074554883
HILPST 1073833989
HILRR -1073649658
HILWR -2147391481
HILRN 1074817072
HILRS 1074817073
HILED 1074817074
HILSC 1074817075
HILDKR -2147456963
HILER1 -2147456962
HILER2 -2147456961
HILP1 -2147456960
HILP2 -2147456959
HILP3 -2147456958
HILP4 -2147456957
HILP5 -2147456956
HILP6 -2147456955
HILP7 -2147456954
HILP -2147456953
HILA1 -2147456952
HILA2 -2147456951
HILA3 -2147456950
HILA4 -2147456949
HILA5 -2147456948
HILA6 -2147456947
HILA7 -2147456946
HILA -2147456945

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -41

7

Identify and Describe Command (HILID)

This command is used to determine the type of devices that are connected to
the HP-HIL link, as well as the characteristics of these devices. Each device
responds to the Identify and Describe command with a series of data which can
vary in length from 2 to 11 bytes. The content of this data is as follows:

• Device ID Byte,

• Describe Record Header,

• I/O Descriptor Byte.

The remainder of this section will cover how to interpret the information
contained in these bytes and header.

Device ID Byte

This is used to identify the general class of device and its nationality
in the case of a keyboard or keypad. Since the sample programs in this
documentation return only a two digit hexadecimal value as a device ID,
you need a table which can be used to interpret what this value means. The
following is a table of HP-HIL devices and the hexadecimal values which
correspond to these devices.

7 -42 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7
Table 7-4. HP-HIL Device Identification Codes

Device Type ID Range Device Description
(hex)

Keyboard EO ... FFh Standard Keyboard (85-87 keys)

CO ... DFh Extended Keyboard (107-109 keys)

AO ... BFh Compressed Keyboard (91-93 keys)

Absolute Positioners 98 ... 9Fh Undefined

90 ... 97h Graphics Tablet and Digitizer

8C ... 8Fh Touchscreen

88 ... 8Bh Touch-pad

80 ... 87h Undefined

Relative Positioners 70 ... 7Fh Undefined

6C ... 6Fh Undefined

68 ... 6Bh HP Mouse

60 ... 67h Generic Quadrature Devices (e.g.,
Control Dials, Quad Port, etc.)

Character Entry 5C ... 5Fh Barcode Reader

50 ... 5Bh Undefined

40 ... 4Fh Undefined

Other 30 ... 3Fh 32-button Module and ID Module

2C ... 2Fh Undefined

20 ... 2Bh Undefined

00 ... IF Vectra Keyboard

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -43

7
If the HP-HIL device you are using with the sample program is a keyboard or
keypad, then you can to use the following table to determine its nationality.

Table 7-5. HP-HIL Keyboard Nationality Codes

Lower 5 bits of Nationality of
Device ID (hex) Keyboard or Keypad

00 ... 02h Undefined
03h Swiss /French

04h Portuguese
05h Arabic
06h Hebrew
07h Canadian/English

08h Turkish
09h Greek
OAh Thai (Thailand)

OBh Italian
OCh Hangul (Korea)

ODh Dutch
OEh Swedish
OFh German

10h Chinese - PRC (China)

11h Chinese - ROC (Taiwan)

12h Swiss/French II

13h Spanish

14h Swiss/German II

15h Belgian (Flemish)

16h Finnish
17h United Kingdom

Continued on next page ...

7 -44 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Table 7-5. HP-HIL Keyboard Nationality Codes (continued)

Lower 5 bits of Nationality of
Device ID (hex) Keyboard or Keypad

18h French/ Canadian

19h Swiss/German

1Ah Norwegian

1Bh French

1Ch Danish
1Dh Katakana

1Eh Latin American/Spanish

1Fh United States

20 ... FFh Undefined

To use Table 7-5, assume the hexadecimal ID number returned is DF. Use the
"Device Identification Codes" table to determine the type of device being
used. Reading down the second column of this table you find that the device
corresponding to DF is an Extended Keyboard (107-109 keys). You next
need to determine its nationality since it is a keyboard. To do this, use the
"Keyboard Nationality Codes" table and the lower 5 bits of the hexadecimal
value DF. In the case of this example the lower 5 bits are 11111 binary or lf
hexadecimal. In the table lF corresponds to the United States; therefore, the
keyboard is designed for use in the United States.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -45

7

7
Describe Record Header

This is used to supply additional information about the axes used by the
device if it is intended to return coordinates, provide information about the
I/O Descriptor Byte, and give information about additional commands. The
Describe Record Header is the second hexadecimal value read by the sample
program in this documentation and each of the 8 bits of this value represents
an important piece of data. The following table can be used to interpret this
data.

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Description of Describe Record Header

Set if the device contains two independent sets of coordinate
axes. An example of two independent sets of HP-HIL devices
is a device with two joysticks connected to it. Each of the
joysticks have their own set of coordinate axes. Note that
currently joysticks are not supported on HP products. It is
assumed, however, that both sets of coordinate axes share
common characteristics as identified in the remainder of the
record. Default (clear) indicates a maximum of one set of
axes.

Set if the device is to return absolute positional data
(unsigned integers). Default (clear) indicates relative data (2's
complement).

Set if the device returns all positional information at
16-bits/ axis. Default (clear) is 8-bits/ axis.

Set if the I/O Descriptor Byte is to follow later in the
Identify and Describe Record. Default (clear) indicates that
the device has no buttons, no proximity detection, and no
prompt/acknowledge functionality, with no I/O Descriptor
Byte to follow.

Set if the device supports the Extended Describe command.
This command is covered later on in this documentation.
Default (clear) indicates that the Extended Describe command
is not supported.

Set if the device supports the Report Security Code command.
This command is covered later on in this documentation.

7 -46 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Bits 1 and 0

Default (clear) indicates that the Report Security Code
command is not supported.

Bits 1 and 0 indicate the coordinate axes the device reports.
If these bits are nonzero and bit 5 is set, then following
the header will be 16 bits (2 bytes) of data describing the
resolution of the device in counts per centimeter. However, if
bit 5 is clear, the resolution will be in counts per meter. If the
device is an absolute positioner, there will be an additional
16 bits/axis detailing the extent of each coordinate axis. For
example, if the HP-HIL device has X, Y, and Z axes then
there will be a maximum count/axis given for the lower and
higher bytes of each axis. This is true no matter if the data
is being report in 8 bit or 16 bit format. To determine the
number of axes used by an HP-HIL device, use the following
table:

bit 1 bit 0 Axes Reported

0 0 None
0 1 X
1 0 X and Y
1 1 X, Y, and Z

You now have the information necessary for interpreting a Describe Record
Header. An example using this Identify and Describe Record parameter can be
found in the section entitled, "Description of the Sample Program's Data."

I/O Descriptor Byte

This is used to indicate the buttons the device reports keycodes for, whether
the device has proximity detection, and what Prompt/Acknowledge functions,
if any, are implemented in the device. Proximity detection is a way of
determining whether the stylus is in contact with the X and Y axis sensing
device. Note that Prompt and Acknowledge are treated as a set, and no device
may indicate support of any particular Prompt or Acknowledge without also
supporting its counterpart. If none of the above features are implemented, the
I/O Descriptor Byte is not transmitted. The following is the description of this
byte:

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7-47

7

7

Bit 7

Bits 6, 5, and 4

Bit 3

Description of Bits for I/O Descriptor Byte

Set if the device implements the general purpose Prompt
and Acknowledge functions. Generally speaking, a
Prompt is an audible or visual indication to you that
the HP-UX system is ready for some form of input, and
Acknowledge is an indication to you that the input has
been received by the HP-UX system. Default (clear)
implies these functions are not implemented.

Indicate specific Prompt/Acknowledges (Prompt 1..7
and Acknowledge 1..7) implemented in the device.
Default (clear) indicates none. Use the following table to
determine Prompt/Acknowledges:

Bit 6 Bit 5 Bit 4 Prompt/Acks. Implemented

0 0 0 None
0 0 1 1
0 1 0 1 and 2
0 1 1 1, 2, and 3
1 0 0 1 4
1 0 1 1 5
1 1 0 1 6
1 1 1 1 7

Set if the device reports the Proximity In/Out keycodes.
Proximity In/Out keycodes describe the stylus or
pointers position as it moves into or out of contact
with an X and Y axis sensing device (e.g. digitizer or
touchscreen). Default (clear) indicates no proximity
detection. Proximity detection is a way of determining
whether the stylus is in contact with the X and Y axis
sensing device.

7 -48 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Bits 2, 1, and 0 Indicate the buttons for which the device reports
keycodes. A button report table is given below.

Bit 2 Bit 1 Bit 0 Buttons Reported

0 0 0 None
0 0 1 1
0 1 0 1 and 2
0 1 1 1, 2, and 3
1 0 0 1 4
1 0 1 1 5
1 1 0 1 6
1 1 1 1 7

You now have the information necessary for interpreting an I/O Descriptor
Byte. An example using this Identify and Describe Record parameter can be
found in the section entitled, "Description of the Sample Program's Data."

In the description of the Sample Program found in this documentation, you
should recall that the first for loop returned the Identify and Describe Record
data and the while loop and its internal for loop returned data read when
using the device. To interpret the latter set of data, you need to know how to
read the information included with the Poll Record Header. The Poll Record
Header returns information on X, Y, and Z coordinate positions, and keycodes
sets being used. The Poll Record Header bits are assigned as follows:

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -49

7

7

Bit 7

Bits 6, 5, and 4

Bit 3

Bit 2

Bits 1 and 0

Description of the Poll Record Header

Set if the device is reporting data from the second set of
coordinate axes. Default (clear) indicates data from set
1.

Based on the value of these bits, you can determine the
data type. The following is a table for determining the
data type:

Bit 6 Bit 5 Bit 4 Data Type

0 0 0 No character data to follow
0 0 1 Reserved Character Set 1
0 1 0 US ASCII Characters
0 1 1 Binary Data
1 0 0 Keycode Set 1
1 0 1 Reserved Character Set 2
1 1 0 Keycode Set 2
1 1 1 Keycode Set 3

(Note that Set 2 Keycodes are device dependent and user
definable. See the section entitled, "A Few HP-HIL
Devices.")

Set indicates request for status check. Default (clear)
indicates status unchanged.

Set indicates device ready for data. Default (clear)
indicates not ready for data transfer at this time.

Indicate the coordinate axes the device is reporting. The
following table provides information for determining
which axes are to be reported.

Bit 1 Bit 0 Axes Reported

o 0 None
o 1 X
lOX and Y
1 1 X, Y, and Z

7 -50 Using HP-HIL Devices with HP-UX Part II: HP-HIL

The Poll Record Header is followed by device data. If the device indicated that
it would report coordinate information as 16-bits/ axis in the Describe Record
Header, then for each axis reported there is a lower byte and then a higher
byte coordinate. Otherwise, the higher byte is not transmitted. In general, the
Poll Record format indicates the maximum data which can be reported. Note
that most devices only transmit a subset each time.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -51

7

7
Once the positional data has been given, the next set of data provided by the
Poll Record is 8 bytes of character data, as specified by the Poll Record Header
Bits 5 and 6.

Perform Self Test (HILPST)

This command causes the addressed device(s) to perform a self test, returning
1 to 15 data frames. A single data frame of OOh indicates a successful test, with
nonzero values representing device-specific failures.

Read Register (HILRR)

The Read Register provides a means for interaction with more complex devices
via HP-HIL, allowing for types of data transfer not generally supported by the
HP-HIL devices.

A device indicates support of the Read Register command in the Extended
Descri be Record (covered later in this documentation), it also indicates the
specific read registers contained in the device. To perform a register read, the
system transmits a data frame containing the address of the register it is to
read, followed by the Read Register command. The device, upon receiving the
command, transmits the contents of the register indicated by the data frame.
The following diagrams illustrate this process.

System sends:

o Register Address I

Device responds:

Register Data I

Devices which do not support the Read Register command discard all data
frames.

7 -52 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Write Register (HILWR)

Write Register provides a means of setting the contents of individual registers
in devices supporting this advanced feature, as well as providing the means for
transmitting a large amount of data to a device at speeds approaching the links
maximum of 6 500 bytes/second.

There are two forms of the Write Register command which may be used
separately or mixed. Devices indicate support of either of these two forms (or
both) in the Extended Describe Record.

To write to individual registers in a device, the system transmits the register
address, followed by the intended contents of that register. This is called Write
Register Type 1. Several register address/data pairs may be transmitted in
sequence.

System sends:

0 Register Address

Register Data

0 Register Address

Register Data

0 Register Address

Register Data

0 Register Address

Register Data

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -53

7

7
The system may also wish to write several bytes to a single register in
sequence, utilizing Write Register Type 2. Type 2 transfers are sent to the
device by setting the most significant bit in the byte containing the register
address, followed by as many data frames as desired (up to the maximum
Write Buffer Length of the device, reported in the Extended Describe Record).
Although it is possible to write several bytes to the same register using Type
1 transfers in devices supporting both types (repeating the register address
before each byte of data), the intention of the two types of data transfers is
quite different, and use of Type 2 is recommended. Write Register Type 2 has
the following format:

System Sends:

1 Register Address

Register Data

Register Data

Register Data

Register Data

7 -54 Using HP-HIL Devices with HP-UX Part II: HP-HIL

The two formats may also be mixed for devices supporting both Write Register
Type 1 and Type 2. There is, however, the restriction that all writes to
individual registers occur first, because once the device detects the most
significant bit in the register address byte to be set it assumes all following
data frames to be data for that register. The following diagram illustrates the
mixing of the two Types.

System sends:

Mixing of Register Type 1 and Type 2

0 Register Address

Register Data

0 Register Address

Register Data

1 Register Address

Register Data

Register Data

!

Register Data I

Devices which do not support the Write Register command will discard all data
frames.

Report Name (HILRN)

Report Name is used to request a string of up to 15 characters (8-bit US
ASCII) which would aid in describing the device to the user. Devices indicate
support of the Report Name command in the Extended Describe Record.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -55

7

7

Report Status (HILRS)

Report Status is used to extract device-specific status information from devices
configured on the link. Devices indicate support of the Report Status command
in the Extended Describe Record. Devices supporting the command respond
with from 1 to 15 bytes of device-specific status information. Interpretation of
the status bytes will necessarily depend upon the device in question.

Extended Describe {HI LED)

Support of the Extended Describe command is indicated in the Describe
Record header. It provides additional information concerning more advanced
device features which may not be required for basic operation.

Devices supporting the Extended Describe command respond with a series of
data types referred to as the Extended Describe Record. The record length
may vary from 1 to 15 bytes (although only 5 bytes are currently defined). The
Extended Describe Record has the following format:

Extended Describe Record

Extended Describe Record Header

0 Maximum Read Register Supported

0 Maximum Write Register Supported

Maximum Write Buffer Length Low Byte

Maximum Write Buffer Length High Byte

Localization Code

Devices responding to the Extended Describe command return at least 1 byte
of data, the Extended Describe Record Header. Devices supporting Read
Register to Write Register will need to report additional information so that
their capabilities may be more fully defined. The Extended Describe Record
Header both supplies some of the parameters of the device and provides an
indication of how much additional information is to follow. The meanings of
the individual bits in the Header are as follows:

7 -56 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Table 7-6. Description of Extended Describe Record Header

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bits 1 and 0

Part II: HP-HIL

Reserved for future use, Default will be clear.

Set if the Localization Code is supported. If set, then following
the Maximum Write Buffer Length High Byte will be one byte
indicating the nationality of the device (keyboard). See the
section entitled, "Identify and Describe Command (HILID)" for
a listing of the Localization Codes (HP-HIL Keyboard
Nationality Codes). Default (clear) indicates that the
Localization Code is not supported.

Set if the Report Status command is supported. Default (clear)
indicates Report Status not supported.

Set if the Report Name command is supported. Default (clear)
indicated Report Name not supported.

Reserved for future use. Default will be clear.

Set if Read Register supported. If set, immediately following
the Header is a byte indicating the registers supported for
reading in the device. Default is clear, indicating Read Register
not supported.

Bit 1 and bit 0 indicate support of the Write Register
command. If bit 1 is set, Write Register Type 2 is supported by
the device. If bit 0 is set, Write Register Type 1 is supported. If
both bits are set, then the device supports both Type 1 and
Type 2. If either bit 1 or bit 0 is set, then following in the
Record will be information indicating the registers supported
for writing in the device. If bit 1 is set, then an additional 16
bits will be returned indicating the maximum number of data
bytes which may be written to the device at a time using Write
Register Type 2 without data loss.

Using HP-HIL Devices with HP-UX 7 -57

7

7
If the device indicated support for the Read Register command in the Header,
then following the Header is a byte indicating the read registers supported by
the device. The maximum Read Register supported byte indicates the largest
read register address supported. Note that it is assumed that all addresses less
than this maximum are also supported. Thus a byte of OFh indicates that the
device contains 16 read registers, addressed as read registers 0 .. 15. HP-HIL
protocol allows for devices containing up to 128 read registers, addressed as
0 .. 127.

If Write Register (Type 1 or Type 2) support is indicated, then next is a
byte indicating the write registers supported. The maximum Write Register
supported byte indicates the largest write register address supported in the
device. It is assumed that all addresses less than the maximum are also
supported. Up to 128 write registers, addressed as 0 .. 127, are supported in the
HP -HIL protocol.

If Write Register Type 2 is supported, as indicated by bit 1 of the Extended
Describe Record Header being set, then following the maximum Write
Register supported byte is 16 bits of data indicating the maximum number of
bytes which may be transmitted to the device in a Type 2 transfer without
overflowing the device's internal buffer. This number, transmitted first low
byte, then high byte, represents the buffer length of the device minus 1. Thus
a device capable of buffering 1024 bytes of data would transmit a maximum
Buffer Length Low Byte of FFh and a maximum Buffer Length High Byte of
03h.

If the Localization code is supported, then the Localization Code byte will be
included in the Extended Describe Record. The Localization Code is an 8-bit
number which corresponds to a nationality (language) of a keyboard.

Report Security Code (HILSC)

The Report Security Code command is used to extract a unique identifier
from the device. Support of the command is indicated in the Describe Record
Header. The security code is a series of from 1 to 15 bytes which uniquely
identify the device in question. Similar in purpose to a serial number, it may
also contain information related to user identity, network address, or other
information which is unique to a particular user or environment.

7 -58 Using HP-HIL Devices with HP-UX Part II: HP-HIL

The only data transmitted by the ID Module is in response to the Report
Security Command and a self test command.

The Report Security command invokes a data response according to the
HP-HIL specifications. The following information applies to any device that
supports the report security command.

The Data Format Type 1 consists of a one byte header and eight bytes of
binary data. The eight data bytes are the packed product and serial numbers
of the HP-HIL device. In the case where ID Module is an exchange module
signified by a ten digit part number, the five digit prefix number remains the
same and the product number letter is replaced by the least significant digit of
the part number.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -59

7

7
The product, exchange and serial number formats are:

Table 7-7. Product, Exchange and Serial Number Formats

Header :H (1 byte header)

Product number is : DDDDDA (5 digits and 1 ASCII character)

Exchange part number : DDDDDd (5 digits and 1 ASCII character)

Serial number is : YYWW@NNNNN (9 digits and 1 ASCII character)

where:

H is the data header.

DDDDD is the product number (e.g. 46084).

A is the product number alpha character.

d is the least significant numeric character of the exchange
number.

YY is the year code (year less 60).

WW is the week code (0 to 51).

@ is the letter designation of the country manufacturing the
device.

NNNNN is the serial suffix (0 to 99,999)

The header byte is transmitted before the eight data bytes. The header's
purpose is to allow for other data formats; however, none are currently
implemented.

The five digits of the product or exchange part prefix number are converted
to a two-byte binary number and the high-order bit of a third byte. The
remaining lower seven bits of the third byte contain the ASCII character. In
products where two alpha characters are used in the product number, only the
first character is used in the data format. The order of the bytes have been
arranged to transmit the least significant byte of the number first.

7 -60 Using HP-HIL Devices with HP-UX Part II: ·HP-HIL

In a similar manner, the nine digits of the serial number are converted to a four
byte binary number. The country code of manufacturing is in the last byte to
be transmitted and is an ASCII character.

The Report Security data bytes are transmitted starting with byte 1 and
going through byte 9. Bits are numbered starting with bit 0 at the right most
position of the byte (least significant bit) and going through bit 7 (most
significant bit), left-most position.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -61

7

7
The report security Data Format Type 1 is:

Table 7-8. Report Security Data Format Type 1

Byte Bit Description

1 7-0 The first byte is the header containing the number 10 hexadecimal
for the following format. The general scheme for the header is:

Bits 7 - 4 assigned as format variations, where format 1 is
the only assignment.

Bits 3 - 0 undefined, but set to zero.

2 7-0 The second and third bytes and the 7th bit of the fourth byte
3 7 - 0 represent the 5 digits of the product or exchange part number
4 7 DDDDD in binary form. The least significant bit is bit 0 of byte

two.

4 6-0 The least significant seven bits of byte four represent the product
letter or the least significant digit of the exchange number numeric
character. The character is the US ASCII 7 bit representation of the
character.

5 7-0 The fifth, sixth, seventh bytes and the six least significant bits of
6 7-0 byte eight represent the 9 digits of the serial number
7 7-0 YYWWNNNNN in binary form, without the alpha character. The
8 5 - 0 least significant bit is bit 0 of byte 5.

8 7 - 6 The two most significant bits of byte eight are reserved for future
use and are set to zero.

9 6 - 0 The least significant seven bits of byte 9 represent the serial number
letter. The character is the US ASCII 7 bit representation of the
character.

9 7 The most significant bit of byte nine is reserved for future use and is
set to zero.

7 -62 Using HP-HIL Devices with HP-UX Part II: HP-HIL

Sample of Report Security Format for a Product Module

The following information is returned upon receiving a Report Security
command for a Product Module. The data is based on the data format
described in the last section. Byte 1 is the first byte sent from the module to
the host.

The sample results given are based on the product number 46084A and serial
number 2519AOOOOl. The serial number corresponds with the year of 1985,
week 19, and serial number suffix 00001. Note that by adding 60 to the above
serial numbers first two digits you get the year 85.

Table 7-9. Sample Report Security Results for a Product Module

Byte No. Data (hex) Description

1 10 Header

2 04 Part of product number 46084

3 B4 Part of product number 46084

4 41 Product letter "A" and part of product
number 46084

5 61 Part of serial number

6 BO Part of serial number

7 03 Part of serial number

8 OF Part of serial number

9 41 Country of Manufacturing Code

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -63

7

7

Sample of Report Security Format for an Exchange Module

The following information is returned upon receiving a Report Security
command for an Exchange Module. The data is based on the data format
described in the section, "Report Security Code (HILSC)." Byte 1 is the first
byte sent from the module to the host.

The sample results given are based on the exchange number 46084-69901 and
serial number 2519AOOOOL The serial number corresponds with the year of
1985, week 19, and serial number suffix 00001. Note that by adding 60 to the
above serial numbers first two digits you get the year 85.

Table 7-10.
Sample Report Security Results for an Exchange Module

Byte No. Data (hex) Description

1 10 Header

2 04 Part of product number 46084

3 B4 Part of product number 46084

4 31 US ASCII character "I" which is part of the
product number 460841

5 61 Part of serial number

6 BO Part of serial number

7 03 Part of serial number

8 OF Part of serial number

9 41 Country of Manufacturing Code

Since the sample is an exchange module, the exchange part number
transmitted is 460841. Byte 4 is the hexadecimal value of 31 which represents
the US ASCII character "1". Note, the prefix number 46084 does not change
from the sample of the product module and the character "I" is really an
ASCII character. When the number is displayed, the character string "-69901"
should be inserted into the part number at the appropriate place.

7 -64 USing HP-HIL Devices with HP-UX Part II: HP-HIL

Sample Report Security Program

This program returns information upon receiving a Report Security command
for a Product Module. The data is based on the data format described at the
beginning of the section, "Report Security Code (HILSC)." Byte 1 is the first
byte sent from the module to the host.

The sample results given are based on the product number 46084A and serial
number 2519A00093. The serial number corresponds with the year of 1985,
week 19, and serial number suffix 00093. Note that by adding 60 to the above
serial numbers first two digits you get the year 85.

The sample program is as follows:

1 #include <sys/hilioctl.h>
2 #define BUF_SIZ 15
3 #define MAX_DEV '7'
4

5 unsigned char dev_name[] = { l/dev/hil1" };
6
7 mainO
8 {
9 extern int errno;

10 int index, hil_fd, product_no, serial_no,
11 serial_hi, serial_lo;
12 unsigned char hil_info[BUF_SIZ], product_let, country;
13
14 while (dev_name[8] <= MAX_DEV)
15 {
16 printf("\n"};
17 if«hil_fd = open(dev_name,O}} > O}

/* device search loop */

18 { /* open device file. */
19 printf("%s -II,dev_name}; /* print device file name. */
20 if(ioctl(hil_fd,HILID,hil_info) < 0)
21 printf("ioctl error %d\n",errno}; /* invalid ioctl call. */
22 else
23 {
24 for (index = 0; index < BUF _SIZ; printf (11%. 2X" ,hil_info [index++])}
25 /* print id desc info. */
26 printf("\n");
27 if«hil_info[1] & -(-04}) == 04}
28 { /* if dev reports sec code. */
29 printf (II ID NUMBER: II);
30 if(ioctl(hil_fd,HILSC,hil_info} < O} /* return sec code. */
31 printf("ioctl error %d\n",errno}; /* invalid ioctl call. */
32 else
33 {
34 for(index = 0; index < BUF_SIZ - 6; printf(" %.2X",

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -65

7

7
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 }

58 }

}

}

hil_info[index++]» /* print security code. */

printf("\n");
product_no = hil_info[l] I hil_info [2] « 8 I

(hil_info[3] » 7) « 16;
product_let = hil_info[3] & Ox7f;
serial_no hil_info[4] I hil_info[5] « 8 I

serial_hi
serial_Io
country
printf("
printf("

hil_info[6] « 16 I (hil_info[7] & Ox3f) « 24;
serial_no/100000;
serial_no - serial_hi * 100000;
hil_info[8] & Ox7f;
product number = %u%c",product_no,product_let);
serial number = %u%c%.5u\n",
serial_hi,country,serial_lo);

}

close(hil_fd);
}

else printf("%s - open error: %d\n",dev_name,errno);
/* unable to open dev file. */

++(dev_name[8]); /* select next device file. */

7 -66 Using HP-HIL Devices with HP-UX Part II: HP-HIL

The following is an explanation of the program:

Line 1 provides the include file (sys/hilioctl. h) which contains a list
of macros that execute specific functions when used within a C Language
program. HILID and HILSC are two macros which are included in this file
and are used in this program. The path name for the hilioctl. h file is
/usr/include/sys/hilioctl. h. If you execute the cat or more command on
this path name, you will receive a screen listing of this file's contents.

Lines 2 and 3 define the constants BUF _SIZ and MAX_DEV. BUF _SIZ is
assigned the value of 15 and MAX_DEV is assigned the value of 7.

Line 5 assigns the character string "/dev/hi11" to the unsigned character
array dey _name.

Lines 9 through 12 declare the variables used in the program. These variables
are defined as follows:

• errno is the external variable that receives the error number if there is an
invalid ioctl call made.

• index is the control variable used in the for loops of lines 25 and 35.

• hil_fd is the file descriptor used in the ioctl parameter fields.

• product_no is the product number of the ID Module being used.

• serial_no is the serial number of the ID Module being used.

• serial_hi is the higher order set of bits being manipulated to interpret the
serial number.

• serial_lo is the lower order set of bits being manipulated to interpret the
serial number.

• hil_info is the unsigned character array which is assigned information
return from the HP-HIL device.

• product_let is the product letter suffixed to the product number of the
HP-HIL ID Module.

• country is the unsigned character which designates the country of the
manufacturing code for the HP-HIL ID Module.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -67

7

7
Line 14 is a HP-HIL device search loop (while loop) which tries to open an
HP-HIL device file. If the device file can be opened it continues with the
remainder of the while loop; otherwise, it prints an error message (line 54) and
increments the eighth element (line 56) of the character string dev _name and
searches for a new device.

Line 17 is an IF construct which tries to open the file dev _name. If the file can
be opened the variable hil_id is assigned the file descriptor returned from
opening the file. If the dev _name can not be opened then an error message
(line 54) is displayed and the eighth element of the character array dev _name
is incremented by one (line 56). The while loop then searches for the next
HP-HIL device.

Line 19 prints the device file name.

Line 20 checks for a valid ioctl call. If it is valid the program continues
from the else statement with the next set of instructions; otherwise, an error
message is displayed (line 21).

Line 24 is a for loop which displays the describe record information after the
label created by line 19.

Line 27 test to see if the device is an ID Module if it is not an ID Module then
nothing is printed and the while loop searches for the next device. However, if
the device is an ID Module then the program continues by making an ioctl
call using the macro HILSC.

Line 29 displays the label ID NUMBER.

Line 30 test for a valid ioctl call. If the call made is invalid then an error
message is displayed (line 31). If the call made was valid then the program
continues.

Lines 34 and 35 are a for loop which displays the hexadecimal value of the
Security Code after the ID NUMBER label.

Lines 37 through 48 make up the remainder of the if-then-else statement.
Their purpose is to unscramble the Security Code information by performing
several bit manipulations on the data. The result of all this bit manipulation is
a readable product number and serial number being displayed.

7 -68 Using HP-HIL Devices with HP-UX Part II: HP-HIL

A sample display would appear as follows assuming that an ID Module is the
first device in the HP-HIL link, an Extended Keyboard is the second device in
the HP-HIL link, and an HP Mouse is the third device in the HP-HIL link.
Note that the remaining devices shown in the display indicate an open error.
This is because these devices did not exist in the HP-HIL link.

/dev/hi11 -34 04 00 00 00 00 00 00 00 00 00 00 00 00 00
ID NUMBER: 10 04 B4 41 BD BO 03 OF 41
product number = 46084A serial number = 2519A00093

/dev/hi12 -DF 00 00 00 00 00 00 00 00 00 00 00 00 00 00

/dev/hi13 -68 12 C2 lE 02 00 00 00 00 00 00 00 00 00 00

/dev/hi14 - open error: 6

/dev/hi15 - open error: 6

/dev/hi16 - open error: 6

/dev/hi17 - open error: 6

The hexadecimal information displayed after each of the device file names
shown above can be interpreted by reading the section entitled, "Identify and
Describe Command (HILID)."

Disable Keyswitch Auto-repeat (HILDKR)

This command is used to disable the "repeating keys" feature in the addressed
device, reducing returned data to one report per keyswitch transition.

Enable Keyswitch Auto-repeat 1 and 2 (HILER1 and HILER2)

These two commands are used to enable the "repeating keys" feature in the
addressed device (if the feature is supported). Generally keys repeat at the rate
of one report every 1/30 of a second (based on a system poll rate of 1/60 of a
second). Some keys, termed "Modifier" keys, will not repeat, while based on
the opcode of the Enable Keyswitch Auto-repeat command the Cursor Keys
(cursor left, right, up and down) will repeat at either 1/30 of a second interval

Part II: HP-HIL USing HP-HIL Devices with HP-UX 7 -69

7

7
(opcode 3Eh) or 1/60 of a second intervals (opcode 3Fh). Most keys "repeat"
by generating repeated down transitions corresponding to the key position
being repeated, although repeating cursor keys report a keycode of 02h.

Prompt 1 through Prompt 7 (HILP1 through HILP7)

These commands are used to provide an audible or visual stimulus to the user,
perhaps indicating that the system is ready for a particular type of input.
Although intended to be directly associated with Acknowledge 1 through
Acknowledge 7 and Button 1 through Button 7, this association is not a
req uirement.

The Prompts supported by the device are indicated in the Describe Record,
and all unsupported Prompts will be treated the same as other unsupported
commands.

Prompt (HILP)

Intended as a general-purpose stimulus to the user, Prompt is not intended to
be associated with a particular Button as are Prompt 1 through Prompt 7. A
device indicates support of Prompt in the Describe Record.

Acknowledge 1 through Acknowledge 7 (HILA 1 through HILA7)

These commands, though similar to the Prompt 1 through Prompt 7
commands, are intended to provide an audio or visual response to the user,
and are generally directly associated with the corresponding Prompt and
Button of the same number, although this is not a requirement. Unsupported
Acknowledge commands are ignored. Since there is no explicit "Prompt Off"
function provided, this functionality may be part of the Acknowledge definition
for a particular device, if required.

Acknowledge (HILA)

This command is similar to Prompt, however, Acknowledge is not associated
with any particular Button, but merely as a general purpose audio or visual
response to the user.

7 -70 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7

Keycode Set 1
This section provides the table, "Keycode Set 1".

Table 7-11. Keycode Set 1

Keycode for United States
Transition (hex) Legend

Down Up Unshifted Shifted

OOh 0Ih 5 + Char
02h 03h <Repeat Cursor>

04h 05h Extend Char (right)

06h 07h Extend Char (left)

08h 09h Shift (right)

OAh OBh Shift (left)

OCh ODh CTRL

OEh OFh Break Reset
IOh Ilh 4 (keypad)

I2h I3h 8 (keypad)

I4h I5h 5 (keypad)

I6h I7h 9 (keypad)

I8h I9h 6 (keypad)

IAh IBh 7 (keypad)

ICh IDh , (keypad)

IEh IFh Enter (keypad)

20h 2Ih 1 (keypad)

22h 23h / (keypad)

24h 25h 2 (keypad)

26h 27h + (keypad)

28h 29h 3 (keypad)

2Ah 2Bh * (keypad)

Continued on next page ...

Note that Transition Keycode 02h is reserved for Cursor
Repeat.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -71

7
Table 7-11. Keycode Set 1 (continued)

Keycode for United States
Transition (hex) Legend

Down Up Unshifted Shifted
2Ch 2Dh 0 (keypad)

2Eh 2Fh - (keypad)

30h 31h B
32h 33h V
34h 35h C
36h 37h X
38h 39h Z
3Ah 3Bh <NOT (left)

LOADED>
3Ch 3Dh <NOT USED>
3Eh 3Fh ESC
40h 41h 6 - Char
42h 43h <blank/flO> (keypad)

44h 45h 3 (keypad) Prey

46h 47h <blank/fll> (keypad)

48h 49h (keypad)

4Ah 4Bh <blank/f9> (keypad)

4Ch 4Dh Tab >1 (keypad) 1<
4Eh 4Fh <blank/fl2> (keypad)

50h 51h H
52h 53h G
54h 55h F
56h 57h D
58h 59h S
5Ah 5Bh A
5Ch 5Dh <NOT USED>

Continued on next page ...

Note that the <NOT LOADED> key positions are located
next to (Extend Char), below (Shift), and are generally covered
by non-operative filler keys.

7 -72 Using HP-HIL Devices with HP-UX Part II: HP-HIL

7
Table 7-11. Keycode Set 1 (continued)

Keycode for United States
Transition (hex) Legend

Down Up Unshifted Shifted

5EH 5Fh Caps
60h 61h U
62h 63h Y
64h 65h T
66h 67h R
68h 69h E
6Ah 6Bh W
6Ch 6Dh Q
6Eh 6Fh Tab >1 1<
70h 71h 7 &
72h 73h 6 A

74h 75h 5 %
76h 77h 4 $

78h 79h 3 #
7Ah 7Bh 2 @

7Ch 7Dh 1 !
7Eh 7Fh , -
80h 81h <BUTTON 1>
82h 83h <BUTTON 2>
84h 85h <BUTTON 3>
86h 87h <BUTTON 4>
88h 89h <BUTTON 5>
8Ah 8Bh <BUTTON 6>
8Ch 8Dh <BUTTON 7>
8Eh 8Fh <PROXIMITY IN/OUT>

!

90h 91h Menu j

92h 93h f4
94h 95h f3

Continued on next page ...

Part II: HP-HIL USing HP-HIL Devices with HP-UX 7 -73

7
Table 7-11. Keycode Set 1 (continued)

Keycode for
Transition (hex)

United States
Legend

Down Up Unshifted

96h

98h

9Ah

9Ch

9Eh

AOh

A2h

A4h

A6h

A8h

AAh

ACh

AEh

BOh

B2h

B4h

B6h

B8h

BAh

BCh

97h

99h

9Bh

9Dh

9Fh

Alh

A3h

A5h

A7h

A9h

ABh

ADh

AFh

Blh

B3h

B5h

B7h

B9h

BBh

BDh

f2
f1

8
Stop

Enter

System

f5

f6

f7
f8

9

Clear line

Clear display

8

9

o

Back space

Insert line
BEh BFh Delete line

COh Clh I

C2h C3h 0

C4h

C6h

C8h

CAh

CCh

C5h P

C7h [

C9h 1

CBh \

CD h Insert char

Continued on next page ...

7 -7 4 Using HP-HIL Devices with HP-UX

Shifted

+ Line

Print

User

- Line

*

+

{

}

I

Part II: HP-HIL

7
Table 7-11. Keycode Set 1 (continued)

Keycode for United States
Transition (hex) Legend

Down Up Unshifted Shifted

CEh CFh Delete char

DOh Dlh J
D2h D3h K
D4h D5h L

D6h D7h ;

D8h D9h
,

"
DAh DBh Return

DCh DDh <home cursor>
DEh DFh Prey

EOh Elh M

E2h E3h , <
E4h E5h >
E6h E7h / ?

E8h E9h <NOT USED>
EAh EBh Select

ECh EDh <NOT USED>
EEh EFh Next

FOh Flh N

F2h F3h <space bar>

F4h F5h

F6h F7h <NOT (right)
LOADED>

F8h F9h <left cursor>
FAh FBh <down cursor>

FCh FDh <up cursor>

FEh FFh <right cursor>

Continued on next page ...

Note that the <NOT LOADED> key positions are located
next to (Extend Char), below (Shift), and are generally covered
by non-operative filler keys.

Part II: HP-HIL Using HP-HIL Devices with HP-UX 7 -75

Index

A

Acknowledge 1 through Acknowledge 7
(HILA1 through HILA7), 7-70

Acknow ledge (HILA), 7-70
ALIAS directive, 7-25, 7-27, 7-29, 7-30
A-size Digitizer, 7-7
A udio Extension, 7-6

B
Bar-Code Reader, 7-8
block mode, 7-11
B-size Digitizer, 7-7

c
cat, 7-67
cc, 7-21
character mode, 7-11
C language, 7-21
C language program, explanation, 7-22
C language program, sample, 7-21
close, 7-21
Command, 7-39
Command (opcode), 7-9
Communicating with HP-HIL devices

7-21
Control Dials, 7-6
"cooked" keyboard driver, 7-15

D

,

Data, description of sample programs',
7-32

Data frame, 7-9

Part II: HP-HIL

Describe record header, 7-42
Describe Record Header, 7-46
Description of sample programs' data,

7-32
device files, 7-9
Device files, 7-9
Device files, Creating, 7-11
device files, listing, 7-15
device ID, 7-32
Device ID, 7-42
Device ID byte, 7-42
Device identification codes HP-HIL , ,

7-42
directive, ALIAS, 7-25, 7-29, 7-30
Directive, ALIAS, 7-27
Disable Keyswitch Auto-repeat

(HILDKR), 7-69
Driver, 8042, 7-12, 7-15
driver number, 7-11, 7-12

E
Enable Keyswitch Auto-repeat 1 and 2

(HILERI and HILER2), 7-69
exchange module, 7-64
exchange module, report security format

for an, 7-64
Extended Describe (HILED), 7-56
Extended Describe Record, 7-53, 7-56
Extension Module, 7-4

Index-1

Index

Index
F
fe, 7-21
Fortran, 7-21
Fortran program, sample, 7-29
Four-Button Cursor, 7-8
Function Box, 7-7

H
HILA, 7-39, 7-70
HILAl..HILA7, 7-39, 7-70
HILDKR, 7-39, 7-69
HILED, 7-39, 7-56
HILER1, 7-39, 7-69
HILER2, 7-39, 7-69
HILID, 7-22, 7-27, 7-30, 7-32, 7-39,

7-42, 7-67
hilkbd, 7-12, 7-15
HILP, 7-39, 7-70
HILPl..HILP7, 7-39, 7-70
HILPST, 7-39, 7-52
HILRN, 7-39, 7-55
HILRR, 7-39, 7-52
HILRS, 7-39, 7-56
HILSC, 7-39, 7-58, 7-67
HILWR, 7-39, 7-53
HP

2393, 7-4
2397, 7-4
35723A (HP-HIL/Touchscreen), 7-4
46021A, 7-21
46021A (HP-HIL Keyboard), 7-4
46060A (HP Mouse), 7-4, 7-32
46080A (Extension Module), 7-4
46081A (Audio Extension), 7-6
46082A (Audio Remote Extension),

7-6
46083A (Rotary Control Knob), 7-6
46084A (HP-HIL ID Module), 7-6
46085A (Control Dials), 7-6
46086A (Function Box), 7-7
46087 A (A-size Digitizer), 7-7

Index-2

46088A (B-size Digitizer), 7-7
46089A (Four-Button Cursor), 7-8
46094A (HP-HIL/Quadrature Port),

7-8
92916A (Bar-Code Reader), 7-8
98203C (Keyboard), 7-8
98700H, 7-4
9920, 7-4

HP-HIL, 7-1, 7-44
98203C Keyboard, 7-8
Audio Extension, 7-6
Audio Remote Extension, 7-6
audio signals, 7-13
beeper, 7-13
beeper.h, 7-13
Beeper program, 7-13
commands, 7-39
Device identification codes, 7-42
devices, 7-4
fcntl.h, 7-13
ID Module, 7-6
interface, 7-1
Keyboard, 7-4
keyboard nationality codes, 7-44
macros, 7-39
macros and their decimal equivalent,

7-40
Quadrature Port, 7-8
Sound Generator, 7-13
system device controller, 7-1
tone duration, 7-14
tone frequency, 7-14
tone volume, 7-14
Touchscreen, 7-4

HP-HIL devices, Communicating with,
7-21

HP-HIL devices, using, 7-9
HP Mouse, 7-4, 7-21, 7-32

Part II: HP-HIL

Identification codes, HP-HIL device,
7-42

Identify and describe command (HILID),
7-42

ID Module, 7-58
include file, 7-22, 7-67
In/Out Keycodes, Proximity, 7-48
Integral Personal Computer, 7-4
ioctl, 7-21, 7-25, 7-27, 7-29, 7-30, 7-39,

7-67, 7-68
I/O descriptor byte, 7-34, 7-42
I/O Descriptor Byte, 7-47

K
keyboard nationality codes, 7-44
Keycode Set 1, 7-37, 7-71, 7-72, 7-73,

7-74,7-75
Keycodes for the HP -HIL "cooked"

keyboard driver, 7-16, 7-17, 7-18,
7-19, 7-20

Keycodes, Proximity In/Out, 7-48

L
loop-back mode, 7-2

M
Macro, 7-9
Macroinstruction, 7-9
Macros, HP-HIL, 7-39
major number, 7-11, 7-12
minor number, 7-11, 7-12
mknod, 7-11, 7-12, 7-15
mknod for Series 300, 7-11
mknod for Series 700, 7-11
mknod for Series 800, 7-12
more, 7-67

N
nationality codes, HP-HIL keyboard,

7-44

Part II: HP-HIL

o
open, 7-21

p

Pascal, 7-21
Pascal program, explanation, 7-26
Pascal program, sample, 7-25
Path name, 7-9
pc, 7-21
Perform Self Test (HILPST), 7-52
Poll Record Header, 7-36, 7-50
product module, 7-63
product module, report security format

for a, 7-63
Prompt 1 through Prompt 7 (HILP 1

through HILP7), 7-70
prompt/acknowledge function, 7-47
Prompt (HILP), 7-70
proximity detection, 7-47
Proximity In/Out Keycodes, 7-48

R
read, 7-21, 7-29, 7-30
Read Register (HILRR), 7-52
Report Name (HILRN), 7-55
Report Security Code (HILSC), 7-58
Report Security Data Format, 7-59
report security format for an exchange

module, sample, 7-64
report security format for a product

module, sample, 7-63
report security program, sample, 7-65
Report Status (HILRS), 7-56
RESET (Pascal), 7-25
Rotary Control Knob, 7-6

s
Sample programs' data, description of,

7-32
Security Data Format, Report, 7-59

Index-3

Index

Index

select code, 7-11, 7-12
Select code, 7-9
special (device) files, 7-9
Special (device) files, 7-9
Special (device) files, Creating, 7-11
sprintf, 7-25, 7-27

Index-4

SYSPROG ON, 7-25, 7-26

W
Write Register (HILWR), 7-53
Write Register Type 1, 7-53, 7-54
Write Register Type 2, 7-53, 7-54

Part II: HP-HIL

Appendixes

A
Series 300/400 Dependencies

The following information, specific to Series 300/400 computers, is discussed in
this appendix:

• Location of the DIL subroutines.

• Information about creating interface special files used by DIL subroutines.

• Relationship between entity identifiers and file descriptors.

• Hardware effects on DIL subroutines.

• Techniques for improving data transfer performance when using DIL
subroutines.

Location of the OIL Subroutines
The DIL subroutines that provide direct control of your computer's interfaces
are contained in the library /usr/lib/libdvio. a. Some of these subroutines
are general-purpose and can be used with any interface supported by the
library, while others provide control of specific interfaces. The Device I/O
Library (DIL) currently supports the HP-IB, GPIO, and Centronics-compatible
Parallel interfaces.

Appendixes Series 300/400 Dependencies A-1

A

A

Linking OIL Subroutines
The libdvio. a library redefines the read, write, fentl, dup, and ioetl entry
points. For DIL to work properly, the DIL library must be linked before libc.

The GPIO Interface on Series 300/400 Computers

The GPIO (General Purpose Input/Output) interface is a very flexible parallel
interface that allows communication with a variety of devices. On Series
300/400 computers, the interface sends and receives up to 16 bits of data with
a choice of several handshake methods. External interrupt and user-definable
signal lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose lines.

Data Lines

There are 32 data lines: 16·for input and 16 for output. These lines normally
use negative logic (0 indicates true, 1 indicates false). The logic can be changed
so that a 1 indicates true with the interface's Option Switches. Refer to your
GPIO interface manual to see how to do this.

Handshake Lines

Although four lines fall into this group, only three are used for controlling the
transfer of data:

• PCTL-Peripheral ConTroL

• PFLG-Peripheral FLaG

• I/O-Input/Output.

A-2 Series 300/400 Dependencies Appendixes

The Peripheral Control (PCTL) line is controlled by the interface and used to
initiate data transfers. The Peripheral Flag (PFLG) line is controlled by the
peripheral device and used to signal the peripheral's readiness to continue the
transfer process. The Input/Output (I/O) line is used to indicate direction of
data flow. A

Special-Purpose Lines

Four lines are available for any purpose you desire; two are controlled by the
peripheral device and sensed by the computer, and two are controlled by the
computer and sensed by the peripheral.

Data Handshake Methods

There are two handshake methods using PCTL and PFLG to synchronize data
transfers: pulse-mode handshakes and full-mode. If the peripheral uses pulses
to handshake data transfers and meets certain hardware timing requirements,
the pulse-mode handshake is used. The full-mode handshake should be used if
the peripheral does not meet the pulse-mode timing requirements. Refer to the
GPIO interface's documentation for a description of these handshake methods.

Data-In Clock Source

Ensuring that data is valid when read by the receiving device differs slightly
depending on what direction the data is flowing. When writing data out from
the computer the interface generally holds data valid while PCTL is in the
asserted state, the peripheral must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data
valid until it can signal that the data is valid or until the data is read by the
computer. The peripheral signals that the data is valid using the PFLG line.
This clocks the data into the interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data
by setting the FLAG switches on the interface card. Refer to the card's
installation manual to find out how to do this.

Appendixes Series 300/400 Dependencies A-3

Creating the Interface Special File

HP-UX treats I/O to an interface the same way it treats I/O to any
input/output device: the interface must have a special file. The general process

A of creating special files is described in the HP- UX System Administration
Tasks manual for your system. The following discussion points out specific
requirements needed for a special file associated with a given HP-IB, GPIO, or
Centronics-compatible Parallel interface.

Creating the Special File

Special files are created using the mknod (1M) command; you must be super-user
to execute this command. When used to create an interface special file, mknod
has the following syntax:

mknod pathname c major_number minor_number

The c parameter to mknod tells the system to create the file as a character
special file. Descriptions of the remaining parameters to the mknod command
follow.

path name

The pathname parameter specifies the name to be given to the newly created
interface special file. The pathname identifies the interface itself, not a
peripheral on the interface. Special files are usually kept in the directory /dev.
This is basically an HP-UX convention; some commands expect to find special
files in the / dev directory and fail if they are not there.

major _number

The major number specifies which device driver to use with the interface. The
major number for the HP-IB, GPIO, and Parallel interfaces is 21.

minor _number

The minor number parameter tells mknod the location of the interface. The
minor number has the following syntax:

OxScAdUV

A-4 Series 300/400 Dependencies Appendixes

where:

Ox specifies that the characters which follow represent hexadecimal values.

Sc

These two characters (zero and x) are entered as shown.

a two-digit hexadecimal value specifying the select code of the interface
card. The select code is determined by switch settings on the HP-IB,
GPIO, or Parallel interface card.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL
routines with the interface, the special file should be created as a raw
special file: the Ad component of the minor number should be 31 (If in
hexadecimal). If Ad is less than 31, then the file is not created as a raw
file; it is created as an auto-addressable file. (In this case, Ad specifies
the bus address of the device for which the special file is created.) If
only one device can be connected to the interface (e.g., the GPIO or
Parallel interface), the component of the minor number is ignored.

U a single-digit hexadecimal value specifying a secondary address. This
component of the minor number is ignored when the special file you
are creating is for an interface; you should set it to O.

V a single-digit hexadecimal value specifying a secondary address, such
as the volume number in a multi-volume drive. This component of the
minor number is ignored also; you should set it to O.

Creating an HP-IB Interface File

Suppose you want to create an HP-IB interface special file with the following
characteristics:

• The pathname is Idev/raw_hpib.

• The major number is 21.

• The card's select code switches are set to select code 2 (that is, the Sc
component of the minor number is 02).

• The special file must be a raw special file in order to use DIL subroutines
with it; therefore, the Ad portion of the minor number must be 31 (If in
hexadecimal) .

Appendixes Series 300/400 Dependencies A-5

A

A

Based on this information, you would use mknod as follows to create the special
file for the interface:

mknod /dev/raw_hpib c 21 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP-IB interfaces
(major number = 21) whose switches are set to select codes 2 and 3. The
following mknod commands set up a special file for the interface at select code
02 (/dev/raw_hpib1) and select code 03 (/dev/raw_hpib2):

mknod /dev/raw_hpib1 c 21 Ox021fOO

mknod /dev/raw_hpib2 c 21 Ox031fOO

Creating a GPIO Interface File

Now suppose you have a GPIO interface that you want to access with the DIL
subroutines on the same computer.

Because the GPIO interface does not use a bus architecture, the usual bus
address (Ad) and secondary address (UV) components of mknod's minor number
are ignored, and you need only determine the select code value.

Assuming that you have set the interface select code switches to 04 on the
Series 300/400 GPIO card, the following mknod command will create the
appropriate special file, named /dev/raw_gpio:

mknod /dev/raw_gpio c 21 Ox040000

Creating a Centronics-compatible Parallel Interface File

If you have a Centronics-compatible interface that you want to access with the
DIL subroutines on the same computer, here's what you do.

Because the Centronics-compatible interface does not use a bus architecture,
the usual bus address (Ad) and secondary address (UV) components of mknod's
minor number are ignored, and you need only determine the select code value.

Assuming that you have a Parallel interface at select code 05 on the Series
300/400 system, the following mknod command will create the appropriate
special file, named /dev/parallel:

mknod /dev/parallel c 21 Ox050000

A-6 Series 300/400 Dependencies Appendixes

Entity Identifiers

On Series 300/400 computers, an entity identifier for a file used by a DIL
routine is equivalent to an HP-UX file descriptor. This means that you can
obtain entity identifiers for your interface files with the system subroutines dup, A
fcntl, and creat, in addition to open.

Hardware Effects on OIL Subroutines
This section presents characteristics of the DIL subroutines specific to Series
300/400 computers. These dependencies are organized under the routine to
which they apply. The subroutines are presented in alphabetical order.

hpib_send_cmnd

By default, the Series 300/400 HP-IB interface card llses odd parity whell
you send commands via hpib_send_cmnd. To do this, it overwrites the
most-significant bit of each command byte with a parity bit. This should not
cause a problem since all HP-IB commands use only 7 bits, and the eighth is
free for use as a parity bit. The behavior of hpib_send_cmnd can be modified
to use all eight bits for commands using the hpib_parity_ctl subroutine.

hpib_status

The hpib_status routine cannot sense lines being driven (outPllt) by the
interface. In other words, listeners cannot senses NDAC and nOll-controllers
cannot sense SRQ.

io_get_ term_reason

For the GPIO interface, PSTS is checked only at the heginning of a transfer.
An interrupt caused by an EIR will also terminate a transfer. The value of the
termination reason in this case is also 4.

For the Centronics-compatible Parallel interface, a terlllillation reason value of
4 indicates that the transfer terminated because the peri pheral asserted the
ACK line.

Appendixes Series 300/400 Dependencies A·

io_on_interrupt

For the HP 98622 GPIO interface, only the EIR interrupt is available.

For the HP 98265A/B HP-IB interface, the IFC and GET interrupts are not
A available.

io_reset

Interface self-test is not supported.

When an HP-IB interface is reset via io_reset, Remote Enable (REN) is
cleared, the interrupt mask is set to 0, the parallel poll response is set to 0,
the serial poll response is set to 0, the HP-IB address is assigned, the Interface
Clear (IFC) line is pulsed (if system controller), the card is put on line, and
REN is reset (if system controller).

When a GPIO interface is reset, the peripheral request line is pulsed low, the
PTCL line is placed in the clear state, and if the DOUT CLEAR jumper is
installed, the data out lines are all cleared. The interrupt enable bit is also
cleared, and the Peripheral Reset (PRESET) line is pulsed.

io_speed_ctl

If the I/O transfer speed is set less than 7Kb/sec (i.e., the speed parameter is
less than 7), then the interface will use interrupt transfer mode. If the transfer
speed is set greater than 140Kb / sec (speed > 140), then the system chooses
the fastest mode possible. If the speed is between 7Kb and 140Kb/sec (7Kb ::;
speed ~ 140), then DMA transfer mode is used.

IMPORTANT If you are using pattern termination, via io_eol_ctl, then
you'll always get interrupt mode, regardless of speed.

c;eries 300/400 Dependencies Appendixes

This routine allows you to set a time limit for I/O operations on an entity
identifier associated with an interface file. The timeout value that you
specify is a 32-bit long integer that indicates the length of the timeout A
in microseconds. However, the resolution of the effective timeout is
system-dependent. On the Series 300/400 computers the timeout is rounded up
to the nearest 20-millisecond boundary. For example, if you specify a timeout
of 150000 microseconds (150 milliseconds), the effective timeout is rounded up
to 160 milliseconds.

Performance Tips

Device I/O performance on Series 300/400 computers using DIL subroutines
can be improved by following these guidelines:

• Use io_burst for many small data transfers (less than 4 Kbytes).

• For processes running with an effective user ID of super-user, lock the
process in memory by using plock(2) (see HP-UX Reference) which informs
the system that the process code, data, or both are not to be swapped out of
memory. Here is an example illustrating the use of plock:

#include <sys/lock.h>
main()
{

int plockO;
plock(PROCLOCK); /* lock text and data segments into memory*/

plock(UNLOCK); /* unlock my process*/
}

• Use auto-addressing for . all read and write operations (refer to the "setting
up talkers and listeners" index entry under "Active Controller.")

• Use rtprio(2) to increase the system priority of an I/O process. rtprio
requires that the process be running with an effective user ID of super-user.
The real-time priorities available with rtprio are non-degrading priorities.
Be careful when using real-time priorities. Increasing IIO process priorities
above system processes may cause undesirable behavior. For example,
requesting a real-time priority in the range of 0-63 places your process at a

Appendixes Series 300/400 Dependencies A-9

A

higher priority than the DIL interrupt handler system process. This means
that interrupts could be lost if available CPU resources are insufficient. The
following example places the calling process at the lowest (least important)
real-time priority:

#include <sys/rtprio.h>
main{)
{

}

int rtprio(). my_proc;

my_proc = 0; /* specifying process number zero tells rtprio */
/* to refer to the calling process. */

~tprio(my_proc. 127); /* priority 127 = lowest real-time priority*/

rtprio(my_proc. RTPRIO_RTOFF); /* turn off real-time priority*/

A-10 Series 300/400 Dependencies Appendixes

B
Series 600/800 Dependencies

The following information, specific to the Device I/O Library (DIL) on Series
600/800 computers, is discussed in this appendix:

• Compiling programs that use DIL subroutines.

• Accessing the special files for the interfaces that you plan to use with DIL.

• Creating special files for the interfaces that you plan to use with DIL.

• DIL subroutines affected by the Series 600/800 hardware.

• DIL support of HP-IB auto-addressed files.

• Improving performance of DIL programs.

Compiling Programs That Use OIL
The DIL subroutines are located in the library /usr/lib/libdvio. a. Thus,
programs can be linked as:

cc test.c -ldvio

Appendixes Series 600/800 Dependencies 8-1

8

Accessing the Interface Special Files

The Series 600/800 kernel is shipped with a default I/O configuration.
This means a default set of special files is made for you. For example,

8 the /dev/hpib directory contains special files created for use with HP-IB
instruments connected to the HP 27110B HP-IB interface. The special file
/ dev / gpioO is created for use with instruments or peripherals connected to the
HP27114A Asynchronous FIFO interface (AFI).

The insf command is used to install these special files all at one time. Mknod
could also be used to create them one at a time. For more information on in sf
and mlmod refer to the HP- UX Reference.

Major Numbers

Major numbers map the hardware I/O cards to the software I/O driver for
the type of I/O application the card will be doing. The driver used to talk to
the HP-IB card for instrument I/O is called instrO, and corresponds to major
number 21. The HP-IB card talks to different drivers (which use different
major numbers) to do I/O to other kinds of devices, such as disc drives or
printers. All default special files in the / dev /hpi b directory use major number
21. The driver that talks to the AFI card is called gpioO, and corresponds to
major number 22. The /dev/gpioO special file uses major number 22.

Minor Numbers and Logical Unit Numbers

Drivers use minor numbers to map the hardware I/O cards to their locations
in the Series 600/800 I/O backplane. The default I/O configuration shipped
with your Series 600/800 creates special files accessing a subset of the available
backplane slots. For the HP-IB card, two slots are available for instrument
I/O, and one slot is available for the AFI card. Slot information is accessed
through the device's logical unit number. The logical unit number is mapped
into the special file's minor number. For HP-IB special files, the HP-IB bus
address is also mapped into the minor number.

The minor number syntax for an HP-IB special file is:

OxOOLuBa

8-2 Series 600/800 Dependencies Appendixes

where Lu is the device's logical unit number, and Ba is the bus address of the
HP-IB device. Both numbers are in hexadecimal.

The minor number syntax for an AFI special file is:

OxOOLu 00

where Lu is the device's logical unit number in hexadecimal.

For example, a long listing of the special file /dev/hpib/Oa16 shows

$ 11 /dev/hpib/Oa16
crw-rw-rw- 1 root root 21 Ox000010 Mar 11 15:19 Oa16

The logical unit number is 0, and bus address 16 is 10 in hexadecimal.

Listing Special Files

The Series 600/800 I/O architecture is based on a hierarchical design. The use
of logical numbers in conjunction with the major and minor number allows
the system to keep track of all the information about the I/O structure. The
lssf command, list special file, is a tool that makes it easy to read information
about a special file without decoding it by hand.

The syntax of lssf is:

lssf [-f dev_file] path

where path is the pathname of the special file. Lssf uses the major number
from the special file to find the name of the device driver in a file called
/etc/devices. If you use the -f option, lssf looks in dev_file instead of
/etc/devices. It then decodes the minor number, outputs the logical unit
number, the device bus address (if there is one), and the corresponding CIO
slot address for the actual card in the I/O backplane.

Using the default special file /dev/hpib/Oa16 as an example, the following
output is produced:

$ lssf /dev/hpib/Oa16
instrO lu 0 bus address 16 address 8.2.16 /dev/hpib/Oa16

where instrO is the name of the instrument HP-IB driver, the logical unit
number is 0, the HP-IB bus address is 16, and the backplane address of the
HP-IB card is 8.2.16. This says that the CIO channel card is in mid-bus
address 8, and the HP-IB card should be in slot 2 of that CIO channel. There

Appendixes Series 600/800 Dependencies 8-3

8

B

are 12 CIO slots available, numbered 0-11. The last digit, in this case 16, is
the HP -IB bus address of the device Oa16.

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the
CIO channel at mid-bus address 8. A special file for each possible bus address
(0-31) is made for each card. The special files for the card at slot 2 all have a
logical unit number of 0, and the special files for the card in slot 7 all have a
logical unit number of 1.

The default GPIO special file is set up for an AFI card in slot 5 of the CIO
channel at mid-bus address 8, and uses a logical unit number of o.
For more information on lssf refer to the HP-UX Reference.

Naming Conventions for Interface Special Files

If your Series 600/800 computer was configured correctly, the special files
discussed above will already have been created.

By convention, HP-IB special files reside in the /dev/hpib directory. Also by
convention, the default special files for the HP-IB raw bus (a HP-IB card itself)
are named /dev/hpib/ X, where X is the bus's logical unit. Auto-addressed
files are named /dev/hpib/ Xa Y, where X is the logical unit, a stands for an
auto-addressed file, and Y is the file's associated HP-IB bus address (see the
"DIL Support of HP-IB Auto-Addressed Files" section of this appendix).

The naming convention for the GPIO default special files is / dey / gpioX,
where X is the device's logical unit.

If you cannot locate the default special files on your system, refer to the next
section for how to create them.

8-4 Series 600/800 Dependencies Appendixes

Creating Interface Special Files
If the special files you need for HP-IB, GPIO, or Centronics-compatible Parallel
interfaces are not available on your system, you can use the mksf command
to create them. Mksf is a high-level command implemented for the Series B
600/800, that can be used instead of mknod. Like 1ssf, mksf frees you from
having to know the major number and minor number format. Mksf makes the
special file creation process consistent for all classes of devices. The syntax of
mksf is:

mksf -d driver -1 lu [other_flags] sfname

where driver is the name of the driver associated with the special file, lu is the
file's logical unit, and sfname is the name of the special file you wish to create.

Each class of device can have additional class-dependent attributes (such as the
bus address for an HP-IB auto-addressed file).

For HP-IB devices, the driver is instrO. Thus, to create a special file named
/dev/bus for HP-IB lu 1, you use the command:

mksf -d instrO -1 1 /dev/bus

When creating auto-addressed HP-IB special files, you add another option
-a to associate the address with the device. For example, to create an
auto-addressed special file called /dev/plotter, at bus address 7 on HP-IB lu 2,
you could type:

mksf -d instrO -1 2 -a 7 /dev/p1otter

For the AFI card, the driver is gpioO. Thus, to create a special file named
/dev/afi for GPIO lu 0, you could use the command:

mksf -d gpioO -1 0 /dev/afi

For more information on mksf or mknod, refer to the HP- UX Reference.

Appendixes Series 600/800 Dependencies 8-5

Hardware Effects on OIL Subroutines

The HP-IB card supported on the Series 600/800 is the HP 27110B HP-IB
interface; the GPIO card is the HP 27114A Asynchronous FIFO Interface

B (AFI).

This section presents some restrictions on using the DIL subroutines on Series
600/800 computers. These restrictions are organized under the DIL subroutine
to which they apply. The subroutines are presented in alphabetical order. A
list of errno error names can be found in section two of the HP-UX Reference.
Errno numeric values are defined in the file /usr/include/sys/errno.h.

hpib_rqst_srvce

The hpib_rqst_srvce subroutine only permits bit 6 of the serial poll response
to be set. If hpib_rqst_srvce is called with a response having bit 6 set, the
interface sends <01000000> (64 decimal) in response to serial poll; if bit 6 is
not set in response, the interface sends <10000000> (128 decimal). (See the
"requesting service" index entry under "Non-Active Controller.")

The atomicity of hpib_io calls is not guaranteed.

hpib_atn_ctl, hpib-address_ctl, hpib_parity _ctl

These subroutines are not currently supported on the Series 600/800.

The AFI driver does not support pattern matching on reads; all io_eol_ctl
calls return -1 and set errno to EINVAL.

8-6 Series 600/800 Dependencies Appendixes

When an HP-IB interface is reset via i~_reset, the card's parallel poll
response is set to 0; its serial poll response is set to 128; its HP-IB address
is read off the hardware switches; and the card is put on-line. Any enabled
interrupts are preserved. If the card is configured as system controller, then
Interface Clear (IFC) is pulsed and Remote Enable (REN) is asserted.

When an AFI interface is reset via i~_reset, each of the three control output
lines is reset to zero, the incoming Attention Request (ARQ) is disabled, the
ARQ flip flop is cleared, the ARQ enable flip flop and the handshake to the
peripheral are disabled, and the FIFO buffer is flushed out.

io_speed_ctl

DMA is the only supported transfer method.

On Series 600/800 computers, the timeout you specify via io_ timeout_ctl is
rounded up to the nearest 10-millisecond boundary. For example, if you specify
a timeout of 125000 microseconds (125 milliseconds), the effective timeout is
rounded up to 130 milliseconds.

DIL functions, read, or write requests that time out, return a value of -1
and set errno to either ETIMEDOUT or EINTR. If the request can be aborted
normally, then errno is set to ETIMEDOUT . Otherwise, the HP-IB card is reset
and EINTR is returned.

The only allowable data path width for HP-IB devices is 8. AFI devices
support 8-bit and 16-bit data paths. If you specify any other width,
io_width_ctl returns an error indication.

Appendixes Series 600/800 Dependencies 8-7

8

8

Return Values for Special Error Conditions

On specific error conditions, the Series 600/800 sets errno values which are
different from what is expected from the DIL as documented in the HP-UX
Standard. For example, when any request times out, errno is set to ETIMEDOUT
("connection timed out") instead of setting it to EOr. Also, upon HP-IB
requests that require the interface to be the active controller or the system
controller, set errno to EACCES ("permission denied"). Requests that are
aborted due to system power failure set errno to EINTR ("interrupted system
call"); in addition, your process receives the signal SIGPWR, which indicates
recovery of system power.

OIL Support of HP-IB Auto-Addressed Files
As referenced in the "auto-addressing" index entry under "Active Controller,"
one class of HP-IB special files, known as auto-addressed files, are associated
with a given address on the bus. For read and write requests to these files,
addressing is done automatically; that is, the sequence of talk and listen bus
commands is generated for you.

In general, the DIL functions are not defined for auto-addressed files. On
the Series 600/800, however, many of them are implemented, but with more
device-oriented actions.

Important The DIL Standard does not currently specify a functional
definition for the support of auto-addressed files. When
support for auto-addressed files becomes part of the DIL
Standard, the specific functionality implemented may differ
from the implementation described here for the Series 600/800.
Please keep this in mind when developing programs which take
advantage of this new functionality.

Table B-1 shows which DIL functions are supported on auto-addressed
files. Entries in the first column work the same on both auto-addressed and
non-au to-addressed (also called raw bus) files. Entries in the second column
are somewhat different for auto-addressed files; entries in the third column are

8-8 Series 600/800 Dependencies Appendixes

not supported on HP-IB auto-addressed files and will return an error indication
if used.

Table B-1. OIL Auto-addressed Support

Subroutine Same Effect Different Effect Not Allowed
hpib_abort •
hpib_bus_status •
hpib_card_ppoILresp •
hpib_eoLctl •
hpib_io •
hpib_ pass_ctl •
hpib_ppoll •
hpib_ppoILresp_ctl •
hpib_ren_ctl •
hpib_rqst_srvce •
hpib_send_cmd •
hpib_spoll •
hpib_status_ wait •
hpib_ wait_on_ppoll •
io_eoLctl •
io_get_ term_reason •
io_interrupt_ctl •
io_on_interrupt •
io_reset •
io_speed_ctl •
io_timeout_ctl •
io_ width_ctl •

Those functions in the second column, which operate differently on raw bus
and auto-addressed special files, are discussed below.

Appendixes Series 600/800 Dependencies B-9

B

8

hpib_card_ ppoll_ resp

Calling hpib_card_ppoll_resp on an auto-addressed file does not configure
the HP-IB interface card; rather, it configures the device associated with the
file with the appropriate addressing and Parallel Poll configuration commands.

hpib_io

For those iodetail structures that send commands (by setting the mode flag
to HPIBWRITE or HPIBATN), hpib_io prefixes the command buffer buf
with the appropriate device addressing (see hpib_send_cmd, below). For data
transfers (with mode set to HPIBREAD or HPIBWRITE) using auto-addressed
files, the addressing is also done for you.

hpib_ren_ctl

Setting REN (by setting the flag parameter to a non-zero value) on an
auto-addressed file addresses the associated device before asserting REN.
Clearing REN (by setting flag to a zero) addresses the device and sends it a Go
To Local command, in lieu of clearing REN.

Sending HP-IB commands to an auto-addressed file via hpib_send_cmd does
the appropriate device addressing for you. The command buffer you pass down
to the device is preceded by the commands necessary to remove any previous
listeners on the bus, address the Active Controller to talk, and configure the
file's associated device to listen.

Performing a serial poll on an auto-addressed file polls the associated device;
any bus address passed via the ba argument is ignored.

8-10 Series 600/800 Dependencies Appendixes

For auto-addressed files, the mask argument is ignored; only the address
associated with the device is polled. In addition, the sense argument only
specifies the sense of the particular device's assertion. Successful completion of
the hpib_wai t_on_ppoll request implies that the device responded to parallel
poll.

io_on_interrupt

The only allowable interrupt for auto-addressed files is SRQ.

Appendixes Series 600/800 Dependencies 8-11

B

Performance Tips
DIL performance improvements for the Series 600/800 fall into two categories:
those that keep your process from waiting for resources, and those that actually

8 improve your I/O performance. The first three of the tips described below fall
into the first category; the last two are in the second category.

Process Locking

Normally, the operating system swaps processes in and out of memory; you can
circumvent this swapping by using the plock system call.

If you are running as the super-user (or have the PRIV _MLOCK capability),
you can use plock to lock your process in memory; plock prevents the system
from swapping out the process's code, data, or both.

The following example illustrates its use:

#include <sys/lock.h>
int plockO;

mainO {

plock(PROCLOCK); /* lock text and data segments into memory */

plock(UNLOCK); /* unlock the process */
}

Refer to plock(2) and getprivgrp(2) in the HP- UX Reference for more
information.

Setting Real-Time Priority

The operating system schedules processes based on their priority. Under
normal circumstances, the priority of a process drops over time, allowing newer
processes a greater share of CPU time. You can assign a higher priority to
your process and keep its priority from dropping by using the rtprio system
call.

If you are running as the super-user (or have the PRIV _RTPRIO capability),
you can use rtprio to give your process a real-time priority. Real-time
processes run at a higher priority than normal user processes; they get

8-12 Series 600/800 Dependencies Appendixes

preempted only by voluntarily giving up the CPU or by being interrupted by a
higher priority process or interrupt.

You must be careful when using real-time priorities because you can increase
your priority above those of important system processes. The following
example places the calling process at the lowest (least important) real-time
priority:

#include <sys/rtprio.h>
#define ME 0 /* a zero process ID means this process */
int rtprio 0 ;

mainO {
:rtprio(ME. 127); /* Turn on real-time priority for ME */

rtprio(ME. RTPRIO_RTOFF); /* Turn off real-time priority for ME */
}

Refer to rtprio(2) and getprivgrp(2) in the HP- UX Reference for more
information.

Preallocating Disc Space

if your process is reading large amounts of data and writing it to a file, you
can block while the operating system allocates disc space. However, you
can allocate disc space in advance by using the prealloc system call. The
following example opens a file and preallocates 65536 bytes of space for that
file:

#include <fcntl.h>
#define MAX_SIZE 65536
int prealloc 0 ;

mainO {
int eid;

eid = open("data_file". O_WRONLY);
prealloc(eid. MAX_SIZE); /* preallocate space to write into */

}

Refer to prealloc(2) in the HP-UX Reference for more information.

Appendixes Series 600/800 Dependencies 8-13

8

B

Reducing System Call Overhead

Most DIL function calls you make on the Series 600/800 map into system
calls. Therefore, you can cut down on operating system overhead by using
fewer library calls. In particular, use auto-addressed files for all read and write
operations, rather than using an extra call to hpib_send_cmd to do addressing.

Setting Up Faster Data Transfers

Because of the I/O architecture of the Series 600/800, data transfers run more
efficiently if your data buffers are aligned on a page boundary. The number
of bytes per page is defined as NBPG and can be referenced by including
<sys/param .h>. The following example shows how to allocate and page-align a
data buffer:

#include <sys/param.h> /* defines NBPG and roundup(x. y) *1
#define REAL_SIZE 1024 1* amount of memory we want to page-align *1
char *malloc();

mainO {

}

char *malloc_ptr. *align_ptr;

malloc_ptr = malloc(NBPG + REAL_SIZE); 1* allocate memory *1
align_ptr = roundup(malloc_ptr. NBPG); /* and round up the ptr *1

1* in future data transfers. use align_ptr *1

free(malloc_ptr); 1* when we're done with the data *1

In addition, even count transfers run more quickly than odd count transfers.

8-14 Series 600/800 Dependencies Appendixes

c
ASCII Character Codes

This appendix contains two tables:

• Table C-1 lists ASCII control characters and how to obtain them by pressing
the specified key while holding the Will key or Will and (Shift) keys down .

• Table C-2 lists all ASCII characters with their decimal, binary, octal, and
hexadecimal equivalent values as well as their corresponding HP-IB name.

Table C-1. Obtaining ASCII Control Characters

Keys ASCII Dec Oct Hex Keys ASCII Dec Oct Hex

@(Shiftl-G) NUL 00 000 00 @(E) DLE 16 020 10

@0 SOH 01 001 01 @@ DC1 17 021 11

@@ STX 02 002 02 @® DC2 18 022 12

@0 ETX 03 003 03 @® DC3 19 023 13

@@ EOT 04 004 04 @0 DC4 20 024 14

@eD ENQ 05 005 05 @@ NAK 21 025 15

@eD ACK 06 006 06 @0 SYNC 22 026 16

@@) BEL 07 007 07 @@ ETB 23 027 17

~® BS 08 010 08 ~0 CAN 24 030 18

@GJ HT 09 011 09 @0 EM 25 031 19

@0 LF 10 012 OA @0 SUB 26 032 1A

@@ VT 11 013 OB @(D ESC 27 033 1B
@J-(D FF 12 014 OC @eD FS 28 034 1C

@@ CR 13 015 OD @(D GS 29 035 1D

@@ SO 14 016 OE @(Shiftl-O RS 30 036 IE

~(Q) S1 15 017 OF @)(Shift l-O US 31 037 IF

Appendixes ASCII Character Codes C-1

C

Table C-2. ASCII Character Codes

ASCII Dec Binary Oct Hex HP-IB ASCII Dec Binary Oct Hex HP-IB
NUL 00 00000000 000 00 space 32 00100000 040 20 LAO

C
SOH 01 00000001 001 01 GTL ! 33 00100001 041 21 LA1
STX 02 00000010 002 02 " 34 00100010 042 22 LA2
ETX 03 00000011 003 03 # 35 00100011 043 23 LA3
EaT 04 00000100 004 04 SDC $ 36 00100100 044 24 LA4
ENQ 05 00000101 005 05 PPC & 37 00100101 045 25 LA5
ACK 06 00000110 006 06 % 38 00100110 046 26 LA6
BEL 07 00000111 007 07 , 39 00100111 047 27 LA7
BS 08 00001000 010 08 GET (40 00101000 050 28 LA8
HT 09 00001001 011 09 TCT) 41 00101001 051 29 LA9
LF 10 00001010 012 OA * 42 00101010 052 2A LA10
VT 11 00001011 013 OB + 43 00101011 053 2B LA11
FF 12 00001100 014 OC . 44 00101100 054 2C LA12
CR 13 00001101 015 OD - 45 00101101 055 2D LA13
SO 14 00001110 016 OE 46 00101110 056 2E LA14
S1 15 00001111 017 OF / 47 00101111 057 2F LA15

DLE 16 00010000 020 10 0 48 00110000 060 30 LA16
DC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17
DC2 18 00010010 022 12 2 50 00110010 062 32 LA18
DC3 19 00010011 023 13 3 51 00110011 063 33 LA19
DC4 20 00010100 024 14 DCL 4 52 00110100 064 34 LA20
NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21
SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22
ETB 23 00010111 027 17 7 55 00110111 067 37 LA23
CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24
EM 25 00011001 031 19 SPD 9 57 00111001 071 39 LA25
SUB 26 00011010 032 1A 58 00111010 072 3A LA26
ESC 27 00011011 033 1B . 59 00111011 073 3B LA27
FS 28 00011100 034 1C < 60 00111100 074 3C LA28
GS 29 00011101 035 1D = 61 00111101 075 3D LA29
RS 30 00011110 036 IE > 62 00111110 076 3E LA30
US 31 00011111 037 IF ? 63 00111111 077 3F UNL

C-2 ASCII Character Codes Appendixes

Table C-2. ASCII Character Codes (continued)

ASCII Dec Binary Oct Hex HP-IB ASCII Dec Binary Oct Hex HP-IB
@ 64 01000000 100 40 TAO , 96 01100000 140 60 SCO
A 65 01000001 101 41 TAl a 97 01100001 141 61 SCI

C
B 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2
C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3
D 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4
E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5
F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6
G 71 01000111 107 47 TA7 g 103 01100111 147 67 SC7
H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8
I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9
J 74 01001010 112 4A TA10 j 106 01101010 152 6A SC10
K 75 01001011 113 4B TAll k 107 01101011 153 6B SC11
L 76 01001100 114 4C TA12 1 108 01101100 154 6C SC12
M 77 01001101 115 4D TA13 m 109 01101101 155 6D SC13
N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14
0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15
p 80 01000000 120 50 TA16 P 112 01110000 160 70 SC16
Q 81 01000001 121 51 TA17 q 113 01110001 161 71 SC17
R 82 01000010 122 52 TA18 r 114 01110010 162 72 SC18
S 83 01000011 123 53 TA19 s 115 01110011 163 73 SC19
T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20
U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21
V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22
W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23
X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24
y 89 01011001 131 59 TA25 y 121 01111001 171 79 SC25
z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26
[91 01011011 133 5B TA27 { 123 01111011 173 7B SC27
\ 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28
] 93 01011101 135 5D TA29 } 125 01111101 175 7D SC29
A 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

Appendixes ASCII Character Codes C-3

D
OIL Programming Example

This appendix contains a program listing for an HP-IB driver that uses Device
I/O Library subroutines to drive various models of Hewlett-Packard Amigo
protocol HP-IB printers. It is provided solely for illustrative use, and is not
to be construed as optimum programming technique nor necessarily totally
bug-free although the program has been extensively tested.

It contains not only examples of DIL subroutine usage, but also other useful
programming techniques and structures that can make the task of writing
specialized I/O programs much easier.

1 /***/
2 /* This example Amigo printer driver uses a byte stream as standard */
3 /* input and Amigo protocol as output to HP-IB driver (21). Any special */
4 /* character handling should be done by a filter that feeds this driver. */
5 /* */
6 /* This example program is provided for solely illustrative purposes to */
7 /* demonstrate typical use of Device I/O Library (DIL) subroutines. No */
8 /* representations are made as to its suitability for any given */
9 /* application. */

10 /* */
11 /* While the program is intended to show good programming practice, it */
12 /* does not necessarily represent optimum programming efficiency. */
13 /***/
14
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <stdio.h>
18 #include <fcntl.h>
19 #include <errno.h>
20 #include <sys/sysmacros.h>
21

Appendixes OIL Programming Example 0-1

o

0

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

/* HP-IB addressing group bases */
#define LAG_BASE Ox20 /* listener address base
#define TAG_BASE Ox40 /* talker address base */
#define SCG_BASE Ox60 /* secondary address base

/* HP-IB command equates in odd parity */
#define GTL Ox01 /* go to local */
#define SDC Ox04 /* belective device clear
#define DCL 0x94 /* device clear
#define UNL Oxbf /* unlisten */
#define UNT Oxdf /* untalk */

/* HP-IB secondary commands */
#define PR_SEC_DSJ SCG_BASE+16
#define PR_SEC_DATA SCG_BASE+O
#define PR_SEC_RSTA SCG_BASE+14
#define PR_SEC_MASK SCG_BASE+Ol

*/

#define PR_SEC_STRD SCG_BASE+10 /* 2608A */

/* output of DSJ operation 2608A */
#define PR_ATTEN OxOOOl
#define PR_RIBBON Ox0002
#define PR_ATT_PAR Ox0003
#define PR_PAPERF Ox0010
#define PR_SELF Ox0020
#define PR_PRINT Ox0040

*/

*/

*/

/* output of DSJ operation the rest of the printers */
#define PR_RFDATA OxOOOO
#define PR_SDS Ox0001
#define PR_RIOSTAT Ox0002

/* ppoll mask bits */
#define PR_M_RFD Ox0010
#define PR_M_STATUS Ox0020
#define PR_M_POWER Ox0040
#define PR_M_PAPER Ox0080

/* default parallel poll mask */
unsigned char pmask[l] = {PR_M_PAPER+PR_M_POWER+PR_M_STATUS+PR_M_RFD};

0-2 OIL Programming Example Appendixes

63 /* masks for io status byte in case of 2608A */
64 #define PR_I_POW Ox0001
65 #define PR_I_OPSTAT Ox0040
66 #define PR_I_LINE Ox0080
67
68 /* masks for io status byte the rest of the printers *1
69 #define PR_I_POWER OxOOOl
70 #define PR_I_PAPER Ox0002
71 #define PR_I_PARITY Ox0008
72 #define PR_I_RFD Ox0040
73 #define PR_I_ONLINE Ox0080
74
75 /* define printer types */
76 #define T2608A 1
77 #define T2631A 2
78 #define T2631B 3
79 #define T2673A 4
80 #define QjetPlus 5
81 #define T2632A 6
82 #define T2634A 7
83
84 int ptr_type; /* type of printer */
85
86 /* setup defines for fatal returns */
87 #define F_RTRN 1
88 #define F_EXIT 0
89
90 /* setup defines for HP-IB_msg */
91 #define H_READ 1
92 #define H_WRITE 2
93 #define H_CMND 4
94
95 /* default timeout value (in seconds) to infinity */
96 int timeout = 0;
97
98 /* default size of output buffer to printer */
99 int bufsz = 32;

100

Appendixes OIL Programming Example 0-3

o

0

101
102
103
104
106
106
107
108
109
110
111
112
113
114
116
116
117
118
119
120
121
122
123
124
126
126
127
128
129
130
131
132
133
134
136
136
137
138
139
140
141

/* device file suffix for raw hpib dey */
char ptr _raw [] = "_00";

/* default output dev to printer */
char ptr_dev[100] = "/dev/lp";

extern char *optarg;
extern int optind;
extern int errno;

/* file id for raw HP-IB dev */
int eid;

/* configured listen and talk commands */
int MTA; /* my talk address */
int MLA; /* my listen address */
int DTA; /* device (printer) talk address */
int DLA; /* device (printer) listen address */

/* device bus address & my bus address */
int devba. myba;

/* my name */
char *procnam;

int Debug = 0;

main(argc. argv)
int argc;
char *argv [] ;
{

register i. c;
register unsigned char *outbuf; /* output buffer pOinter */
int status;
int selcode; /* select code of printer */
struct stat statbuf;
int errflg = 0;

procnam = argv[O]; /* save pointer to my name */

0-4 OIL Programming Example Appendixes

142 /* GET USER SUPPLIED OPTIONS AND PRINTER FILE NAME */
143 while «i = get opt (argc. argv. lib: t: p: DII» ! = EOF) {
144 switch (i) {
145 /* set the buffer size to output to printer */
146 case 'b': if «bufsz = atoi(optarg» <= 0) errflg++;
147
148

break;

149 /* get the new timeout value in seconds */
150 case 't': if «timeout = atoi(optarg» < 0) errflg++;
151 break;
152
153 /* Set the parallel poll pmask (mostly for debugging) */
154 case 'p': if «pmask[O] = atoi(optarg» < 0) errflg++;
155 break;
156
157 case 'D': Debug++; break;
158
159 case '?': errflg++;break;
160 }
161 }
162 /* get printer dey if supplied */
163 if (optind < argc)
164 strcpy(ptr_dev. argv[optind]);
165
166 if (errflg) {
167 fprintf(stderr. lI usage : %s [-bbufsz -ttmout] [printer_dev]\n". procnam);
168 fprintf(stderr. II-b bufsz > Output buf size to printer (%d)\n ll

• bufsz);
169 fprintf(stderr. lI_t tmout > Max seconds to output buffer (%d)\n".
timeout);
170 fprintf(stderr. IIprinter_dev > Printer device file (%s)\n". ptr_dev);
171 fprintf(stderr. "-p ppoll_mask > Parallel poll mask
(Ox%02x)\n".pmask[0]);
172 exit(2);
173 }
174 /* get memory for the output buffer */
175 outbuf = (unsigned char *)malloc (bufsz + 4);
176 /*
177 NOTE: Printer device file (/dev/lp) is used only to get printer select
178 code and HP-IB bus address. This is because attention-true (ATN)
179 requests can only be sent to an "HP-IB raw bus device file". Therefore
180 after getting the se and BA we will use a "HP-IB raw bus device file" to
181 do all the work. but it must exist with a name similar to the printer
182 device; i.e. "/dev/lp" is Changed to "/dev/lp_07". where the "07" is the
183 select code.
184 */

Appendixes OIL Programming Example 0-5

o

0

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

/* check if printer device exists */
if (stat (ptr_dev, &statbuf) < 0)
fatal_err("stat", ptr_dev, F_EXIT);

/* check if it is a character device file */
if «statbuf.st_mode & S_IFMT) != S_IFCHR)
fatal_err(IIMust be a char_special file", ptr_dev, F_EXIT);

/* extract selectcode from the printer device */
selcode = m_selcode(statbuf.st_rdev);

/* make the HP-IBraw bus device file name from selectcode */
ptr_raw[l] += selcode / 16;
ptr_raw[2] += selcode Y. 16;
if «selcode y. 16) >= 10) ptr_raw[2] += ('a' - '0' -10);
strcat(ptr_dev, ptr_raw);

/* get device BA from the printer device and config control bytes */
devba = m_busaddr(statbuf.st_rdev);
DLA = LAG_BASE + devba; /* device listen address */
DTA = TAG_BASE + devba; /* device talk address */

/* open the HP-IB raw bus device */
if «eid = open (ptr_dev, O_RDWR» <0) {
fatal_err(IIRaw HP-IB open II , ptr_dev, F_RTRN);

fprintf(stderr,
II The following commands executed as a super user may be necessary\n\n");
fprintf(stderr, II # mknod Y.s c 21 OxY.s1fOO\n", ptr_dev, &ptr_raw[1]);
fprintf(stderr, II # chmod 555 %s\n", ptr_dev);
fprintf(stderr, II # chown lp %s\n", ptr_dev);

exit(2);
}

/* get (my) BA of the controller and configure control bytes */
if «myba = hpib_bus_status(eid, 7» < 0)
fatal_err(IIMust be raw hpib driver (21)", ptr_dev,F_EXIT);

MLA = LAG_BASE + myba; /* controller (my) listen address */
MTA = TAG_BASE + myba; /* controller (my) talk address */

/* go do the Amigo identify */
ptr_type = amigo_identify();

0-6 OIL Programming Example Appendixes

226 if (Debug) {
printf("Y.s Identified" ptr_dev);
switch(ptr_type) {
case T2608A: printf(12608A"); break;
case T2631A: printf(12631A"); break;
case T2631B: printf(12631B"); break;
case T2673A: printf(12673A"); break;

227
228
229
230
231
232
233
234
235
236
237

case QjetPlus: printf("QuietJet Plus");break;
case T2632A: printf(12632A"); break;
case T2634A: printf(12634A"); break;

default: printf("You forgot one dummy"); break;
}

238 printf(" printer\n");
239 }
240 1* set the timeout to user requested value *1
241 if (io_timeout_ctl(eid, timeout * 1000000) < 0)
242 fatal_err(lIio_timeout_ctl", ptr_dev, F_EXIT);
243
244 1* always tag last output data byte with EOl *1
245 if (hpib_eoi_ctl(eid, 1) < 0)
246 fatal_err("hpib_eoi_ctl", ptr_dev, F_EXIT);
247
248 1* clear out the status bits *1
249 amigo_clear();
250
251 1* check the status bits *1
252 status = amigo_status();
253 if (Debug) printf("%s Printer status = Ox%x\n", ptr_dev, status);
254
255 1* set the ppoll mask required by some printers *1
256 amigo_set_pmask();
257

Appendixes DIL Programming Example D·7

D

0

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

}

/* MAIN OUTPUT LOOP */
i = 0;
while «c = getchar(» != EOF) {
if (i == bufsz) {

amigo_write(outbuf. i);
i = 0;

}

outbuf[i++] = c;
}

/* post remaining buffer */
if (i) amigo_write(outbuf. i);
exit(O);

/* ROUTINE TO DO THE MAIN I/O TO THE BUSS */
/* lock bus. do preamble. read/write. do postamble and unlock bus */
/* preamble must be 3 or 4 bytes. postamble must be 1 or 2 bytes */
int
HPIB_msg(rw_flag. pcm1. pcm2. pcm3. buffer. length. ocmO. ocml)
int rw_flag;
int pcm1;
int pcm2;
int pcm3;
char *buffer;
int length;
int ocmO;
int ocm1;
{

unSigned char pre_cmd[4];
unsigned char post_cmd[2] ;
int tlog = -1;

pre_cmd[O] = UNL; /* always issue unlisten command first */
pre_cmd[1] = pcm1;
pre_cmd[2] = pcm2;
pre_cmd[3] = pcm3;

post_cmd [0]
post_cmd [1]

ocmO;
ocm1;

/* first get exclusive use of the bus */
if (io_lock(eid) < 0)
fatal_err("io_lock". ptr_dev. F_EXIT);

0-8 OIL Programming Example Appendixes

302 1* send the preamble 3 or 4 bytes with attention true *1
303 if (hpib_send_cmnd(eid, pre_cmd, (pcm3 ? 4 : 3» < 0)
304 fatal_err(lIhpib_send_cmnd preamble II , ptr_dev, F_EXIT);
306
306 switch (rw_flag) {
307 case H_READ:
308 if «tlog = read(eid, buffer, length» < 0)
309 fatal_err(lIread ll , ptr_dev, F_EXIT);
310 break;
311
312 case H_WRITE:
313 if «tlog = write(eid, buffer, length» < 0)
314 fatal_err("write", ptr_dev, F_EXIT);
316 break;
316
317 case H_CMND:
318 return(O);
319 default:
320 return(-l);
321 }
322 1* send the postamble 1 or 2 bytes with attention true *1
323 if (hpib_send_cmnd(eid, post_cmd, (ocml ? 2 : 1» < 0)
324 fatal_err(lIhpib_send_cmnd postamble", ptr_dev, F_EXIT);
325
326 1* at last unlock the bus so other bus users can access it *1
327 if (io_unlock(eid) < 0)
328 fatal_err("io_unlock", ptr_dev, F_EXIT);
329
330 return(tlog);
331 }
332
333 int
334 amigo_identify()
336 {
336 unsigned char identify[2];
337

Appendixes OIL Programming Example 0-9

o

0

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

1* TLK31 (UNT) is special for amigo identify *1
1* finish with a MTA (UNT is not save for non-amigo devices) *1
HPIB_msg(H_READ, MLA, UNT, SCG_BASE + devba, identify, 2, MTA, 0);

switch(identify[O]) {
case 32:
1* Amigo identify *1
switch(identify[1]) {
case 1: return(T2608A);
case 2: return(T2631A);
case 9: return(T2631B);
case 11: return(T2673A);
case 13: return(QjetPlus);
case 16: return(T2632A);
case 17: return(T2634A);
default:
printf ("Unrecognized Auiigo printer, ID2 Y.d\n II ,

identify[1]); break;
}

break;
case 33:
if (identify[1] == 1)
printf("Ciper printer not supported yet!\n");

break;
default:

printf(IIUnrecognized Amigo Printer identify, ID1 Y.d, ID2 Y.d\n",
identify [0] , identify[1]);

break;
}

exit(2);
}

1* set the parallel poll mask value *1
amigo_set_pmask()
{

HPIB_msg(H_WRITE, MTA, DLA, PR_SEC_MASK, pmask, 1, UNL, 0);
}

0-10 OIL Programming Example Appendixes

376 /* do the amigo clear followed by selective device clear */
377 amigo_clear{)
378 {
379 HPIB_msg{H_WRITE, MTA, DLA, SCG_BASE + 16, "\0", 1, SDC, UNL);
380 }
381
382 /* get the dsj byte */
383 int
384 amigo_dsj 0
385 {
386 unsigned char dsj_byte[l] ;
387
388 HPIB_msg{H_READ, MLA, DTA, PR_SEC_DSJ, dsj_byte, 1, UNT, 0);
389 return(dsj_byte[O]);
390 }
391
392 /* return the amigo status byte */
393 int
394 amigo_status()
395 {
396 unsigned char status_byte[l];
397
398 HPIB_msg{H_READ, MLA, DTA, PR_SEC_RSTA, status_byte, 1, UNT, 0);
399 return(status_byte[O]);
400 }
401
402 /* output a buffer to printer */
403 amigo_write (buffer , length)
404 char *buffer;
405 int length;
406 {
407 int status, dsj = 0;
408
409 /* write the buffer */
410 HPIB_msg(H_WRITE, MTA, DLA, PR_SEe_DATA, buffer, length, UNL, 0);
411 again:
412 /* now wait for parallel poll response */
413 if (Debug) printf("%s Ppoll wait\n", ptr_dev);
414 if (hpib_wait_on_ppoll{eid, Ox80»devba, 0) < 0)
415 fatal_err(lIhpib_wait_on_ppoll", ptr_dev, F_EXIT);
416

Appendixes OIL Programming Example 0-11

o

0

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

1* a DSJ is required to remove the ppoll response from device *1
if (dsj = amigo_dsj(» {
if (Debug) printf(IIYes DSJ = OxYex\n". ptr_dev. dsj);

status = amigo_status();
if (Debug) printf(IIY.s STATUS = Ox%x\n". ptr_dev. status);
goto again;

}

}

1* output error message and conditionally abort *1
fatal_err(message. fname. flag)
char *message;
char *fname;
{

}

fprintf (stderr. II Yes : Error - Yes of Yes II procnam. message. fname);
if (errno) perror(IIII);
else fprintf(stderr. "\n");

if (flag == F_RTRN) return;
if (flag == F_EXIT) exit(2);
exit(3);

0-12 OIL Programming Example Appendixes

Master Index

Index

A
Acknowledge 1 through Acknowledge 7

(HILA1 through HILA7), 7-70
Acknow ledge (HILA), 7-70
Active Controller, 4-17

auto-addressing, 4-19
calculating talk and listen addresses,

4-21
clearing HP-IB devices, 4-28
conducting a parallel poll, 4-36
conducting a serial poll, 4-43
configuring parallel poll response,

4-32
determining, 4-17
disabling parallel poll response, 4-36
enabling local control, 4-25
errors during parallel poll, 4-38
errors during serial poll, 4-45
example configuration, 4-23
locking out local control, 4-24
monitoring the SRQ line, 4-29
parallel poll for device status, 4-32
passing control to non-active controller,

4-46
remote control of devices, 4-24
serial polling, 4-43
servicing requests, 4-29
setting up talkers and listeners, 4-19
SRQ serial/parallel poll service routine,

4-31
transferring data, 4-26
triggering devices, 4-25

Master Index

using hpib_send_cmd, 4-21
waiting for parallel poll response,

4-39
ALIAS directive, 7-25, 7-27, 7-29, 7-30
ASCII character codes, C-1
A-size Digitizer, 7-7
Audio Extension, 7-6

B
Bar-Code Reader, 7-8
block mode, 7-11
B-size Digitizer, 7-7
buffered HP-IB I/O, 4-68
buffered HP-IB I/O example, 4-73
buffered HP-IB I/O, locating errors in,

4-75
burst transfers, 5-8, 6-4

c
cat, 7-67
cc, 7-21
Centronics-compatible Parallel interface.

See Parallel interface
character code, ASCII, C-1
character mode, 7-11
C language, 7-21
C language program, explanation, 7-22
C language program, sample, 7-21
close, 7-21
closing an interface special file, 3-6
combining HP-IB I/O operations, 4-68
Command, 7-39

Index-1

I

Command (opcode), 7-9
Communicating with HP-HIL devices,

7-21
Control Dials, 7-6
controller, HP-IB, active or non-active,

4-8
"cooked" keyboard driver, 7-15

D

Data, description of sample programs',
7-32

Data frame, 7-9
data path width, setting, 3-14
Describe record header, 7-42
Describe Record Header, 7-46
Description of sample programs' data,

7-32
DEVICE CLEAR, 4-5
device files, 7-9
Device files, 7-9
Device files, Creating, 7-11
device file (see special file or interface

special file), 3-2
device files, listing, 7-15
device ID, 7-32
Device ID, 7-42
Device ID byte, 7-42
Device identification codes, HP-HIL,

7-42
differences between computers, 2-1
DIL, 1-1
DIL programming example, D-l
DIL routines

calling from Fortran, 2-3
calling from Pascal, 2-3
calling program structure, 3-2
general-purpose routines, 3-3
HP-IB DIL routines, 4-2
linking, 2-3

directive, ALIAS, 7-25, 7-29, 7-30
Directive, ALIAS, 7-27

Index .. 2

Disable Keyswitch Auto-repeat
(HILDKR),7-69

Driver, 8042, 7-12, 7-15
driver number, 7-11, 7-12

E
Enable Keyswitch Auto-repeat 1 and 2

(HILERI and HILER2), 7-69
enti ty identifier, 3-2
errno, using, 3-10
errno variable, 3-10
error-checking routines, 3-10
errors while sending HP-IB commands,

4-15
example, DIL programming, D-l
exchange module, 7-64
exchange module, report security format

for an, 7-64
Extended Describe (HILED), 7-56
Extended Describe Record, 7-53, 7-56
Extension Module, 7-4

F
fc, 7-21
Fortran, 7-21
Fortran calls to DIL routines, 2-3
Fortran program, sample, 7-29
Four-Button Cursor, 7-8
Function Box, 7-7

G

GO TO LOCAL, 4-6
GPIO interface, 2-15

burst transfers, 5-8
configuration and set-up, 5-1
controlling data path width, 5-6
controlling the transfer speed, 5-7
creating special file for, 5-1
interrupt transfers, 5-8
limitations in controlling, 5-2
performing data transfers, 5-4

Master Index

H

read terminations, 5-8
resetting the interface, 5-3
timeouts, 5-7
using DIL routines, 5-2
using the status and control lines, 5-4

handshake I/O interface functions, 2-7
HILA, 7-39, 7-70
HILAl..HILA7, 7-39, 7-70
HILDKR, 7-39, 7-69
HILED, 7-39, 7-56
HILERl, 7-39, 7-69
HILER2, 7-39, 7-69
HILID, 7-22, 7-27, 7-30, 7-32, 7-39,

7-42, 7-67
hilkbd, 7-12, 7-15
HILP, 7-39, 7-70
HILPl..HILP7, 7-39, 7-70
HILPST, 7-39, 7-52
HILRN, 7-39, 7-55
HILRR, 7-39, 7-52
HILRS, 7-39, 7-56
HILSC, 7-39, 7-58, 7-67
HILWR, 7-39, 7-53
HP

2393, 7-4
2397, 7-4
35723A (HP -HIL /Touchscreen), 7-4
46021A, 7-21
46021A (HP-HIL Keyboard), 7-4
46060A (HP Mouse), 7-4, 7-32
46080A (Extension Module), 7-4
46081A (Audio Extension), 7-6
46082A (Audio Remote Extension),

7-6
46083A (Rotary Control Knob), 7-6
46084A (HP-HIL ID Module), 7-6
46085A (Control Dials), 7-6
46086A (Function Box), 7-7
46087 A (A-size Digitizer), 7-7

Master Index

46088A (B-size Digitizer), 7-7
46089A (Four-Button Cursor), 7-8
46094A (HP-HIL/Quadrature Port),

7-8
92916A (Bar-Code Reader), 7-8
98203C (Keyboard), 7-8
98700H, 7-4
9920, 7-4

HP-HIL, 1-1, 7-1, 7-44
98203C Keyboard, 7-8
Audio Extension, 7-6
Audio Remote Extension, 7-6
audio signals, 7-13
beeper, 7-13
beeper.h, 7-13
Beeper program, 7-13
commands, 7-39
Device identification codes, 7-42
devices, 7-4
fcntl.h, 7-13
ID Module, 7-6
interface, 7-1
Keyboard, 7-4
keyboard nationality codes, 7-44
macros, 7-39
macros and their decimal equivalent,

7-40
Quadrature Port, 7-8
Sound Generator, 7-13
system device controller, 7-1
tone duration, 7-14
tone frequency, 7-14
tone volume, 7-14
Touchscreen, 7-4

HP-HIL devices, Communicating with,
7-21

HP-HIL devices, using, 7-9
HP-IB commands, 4-2

errors while sending, 4-15
sending, 4-12

HP-IB DIL routines, 4-7

Index-3

I

HP-IB interface, 2-9
bus management control lines, 2-13
general structure, 2-9
handshake lines, 2-10

hpib_io, 4-10, 4-11, 4-68
HP-IB I/O, buffered, 4-68
HP-IB I/O, buffered, example, 4-73
HP-IB I/O, buffered, locating errors in,

4-75
HP-IB I/O operations, combining, 4-68
hpib_send_cmd, 4-2
HP Mouse, 7-4, 7-21, 7-32

Identification codes, HP-HIL device,
7-42

Identify and describe command (HILID),
7-42

ID Module, 7-58
include file, 7-22, 7-67
In/Out Keycodes, Proximity, 7-48
Integral Personal Computer, 7-4
interface device file (see interface special

file), 3-2
interface locking, 3-13
interfaces

general concepts, 2-5
GPIO, 2-15
HP-IB, 2-9
Parallel, 2-16, 6-1

interface special file, 3-2, 3-4, 3-6
interrupt, hardware availability, 3-26
io_burst, 4-10, 4-11, 5-8, 6-4
ioctl, 7-21, 7-25, 7-27, 7-29, 7-30, 7-39,

7-67, 7-68
I/O descriptor byte, 7-34, 7-42
I/O Descriptor Byte, 7-47
iodetail storage space allocation, 4-72
iodetail, the I/O operation template,

4-69
io_get_term_reason, 3-23

Index-4

io_interrupt_ctl, 3-29
io_lock, 4-10, 4-11
io_on_interrupt, 3-28
io_unlock, 4-10, 4-11

K
keyboard nationality codes, 7-44
Keycode Set 1, 7-37, 7-71, 7-72, 7-73,

7-74,7-75
Keycodes for the HP-HIL "cooked"

keyboard driver, 7-16, 7-17, 7-18,
7-19, 7-20

Keycodes, Proximity In/Out, 7-48

L
linking DIL routines, 2-3
LOCAL LOOKOUT, 4-5
locking an interface, 3-13
loop-back mode, 7-2

M
Macro, 7-9
Macroinstruction, 7-9
Macros, HP-HIL, 7-39
major number, 7-11, 7-12
minor number, 7-11, 7-12
mknod, 7-11, 7-12, 7-15
mknod for Series 300, 7-11
mknod for Series 700, 7-11
mknod for Series 800, 7-12
more, 7-67

N
nationality codes, HP-HIL keyboard,

7-44
Non-Active Controller

accepting active control, 4-61
determining controller status, 4-53
determining when addressed, 4-64
disabling parallel poll response by

remote, 4-60

Master Index

o

errors while requesting service, 4-56
requesting service, 4-54
responding to parallel polls, 4-57

open, 7-21
opening an interface special file, 3-4
opening HP-IB interface special file,

4-12

p

Parallel interface, 2-16, 6-1
burst transfers, 6-4
controlling the transfer speed, 6-3
interrupt transfers, 6-5
limitations in controlling, 6-1
performing data transfers, 6-3
read terminations, 6-4
resetting the interface, 6-2
timeouts, 6-3
using DIL routines, 6-2

PARALLEL POLL CONFIGURE, 4-6
PARALLEL POLL DISABLE, 4-6
PARALLEL POLL ENABLE, 4-6
Pascal, 7-21
Pascal calls to DIL routines, 2-3
Pascal program, explanation, 7-26
Pascal program, sample, 7-25
Path name, 7-9
pc, 7-21
Perform Self Test (HILPST), 7-52
Poll Record Header, 7-36, 7-50
product module, 7-63
product module, report security format

for a, 7-63
programming example, DIL,D-l
Prompt 1 through Prompt 7 (HILPI

through HILP7), 7-70
prompt/acknowledge function, 7-47
Prompt (HILP), 7-70
proximity detection, 7-47

Master Index

Proximity In/Out Keycodes, 7-48

R
read, 7-21, 7-29, 7-30
Read Register (HILRR), 7-52
read termination, cause, 3-18, 3-23
read termination pattern, removing,

3-22
read termination pattern, setting, 3-14
read/write to an interface, 3-7
removing read termination pattern,

3-22
Report Name (HILRN), 7-55
Report Security Code (HILSC), 7-58
Report Security Data Format, 7-59
report security format for an exchange

module, sample, 7-64
report security format for a product

module, sample, 7-63
report security program, sample, 7-65
Report Status (HILRS), 7-56
RESET (Pascal), 7-25
resetting interfaces, 3-12
Rotary Control Knob, 7-6

s
Sample programs' data, description of,

7-32
Security Data Format, Report, 7-59
select code, 7-11, 7-12
Select code, 7-9
SELECTED DEVICE CLEAR, 4-6
sending HP-IB commands, 4-12
SERIAL POLL DISABLE, 4-5
SERIAL POLL ENABLE, 4-5
Series 300/400 operating dependencies

and characteristics, A-I
Series 600/800 operating dependencies

and characteristics, B-1
setting data path width, 3-14
setting read termination pattern, 3-14

Index-5

moe.x

IIIU~A

setting timeout, 3-14
setting transfer speed, 3-14
special (device) files, 7-9
Special (device) files, 7-9
Special (device) files, Creating, 7-11
special file, 3-2, 3-4, 3-6
sprintf, 7-25, 7-27
SYSPROG ON, 7-25, 7-26
System Controller

determining if system controller, 4-49
hpib_abort, 4-50
hpib_ren_ctl, 4-51
system controller duties, 4-50

Index-6

T
timeout, setting, 3-14
transfer speed, setting, 3-14
TRIGGER, 4-5

U
UNLISTEN, 4-4
UNTALK, 4-4
using errno, 3-10

W

write/read to an interface, 3-7
Write Register (HILWR), 7-53
Write Register Type 1, 7-53, 7-54
Write Register Type 2, 7-53, 7-54

Master Index

Reorder No. or
Manual Part No.
B1864-90002

Fli;- HEWLETT
a!~ PACKARD

Copyright © 1991
Hewlett-Packard Company
Printed in USA E0191

Manufacturing
Part No.
B1864-90002

B1864-90002

