
C Programmer's Guide

HP 9000
Series 300/400
Computers

C Programmer's Guide

HP 9000 Series 300/400 Computers

F/iOW HEWLETT a:J:. PACKARD

HP Part No. 81864-90008
Printed in USA 01/91

First Edition
E0191

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company 1987, 1988, 1989, 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b)(3)(ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983, 1985

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. The manual printing date and part number indicate its
current edition. The printing date changes when a new edition is printed.
(Minor corrections which are incorporated at reprint do not cause the date to
change.) The manual part number changes when extensive technical changes are
incorporated.

January 1991 ... Edition 1. This edition of the C Programmer's Guide
includes information on shared libraries and
a new compiler option for optimizing pro­
grams that contain non-reducible flow graphs
in them.

As of the 7.40 release, the Series 300/400
compilers generate a different format for
debugger information that is incompatible
with debugger information generated by
previous releases of the compilers. There­
fore, if you compile with the -g compile­
line option, you will not be able to debug
this code with pre-7.40 debuggers. Simi­
larly, the 7.40 and later de buggers cannot
be used to debug code produced by pre-7.40
Series 300/400 compilers.

iii

Contents

1. Overview
Typographical Conventions .
Compiling a C Program
Related Documents

2. C Data Types and Alignments
C Data Types (Sizes and Ranges)
Data Type Alignments
Array Size and Alignment . .
Alignment within Structures .

An HPUX_ WORD Example
An HPUX_NATURAL Example
Aligning Structures between Architectures

3. Optimizing C Programs
The Levels of Optimization.
Invoking Optimization
U sing Directives to Control Optimization

OPTIMIZE
OPT_LEVEL
HP _INLINE_LINES .
HP _INLINE_FORCE
HP _INLINE_OMIT .
HP _INLINE_DEFAULT
HP _INLINE_NOCODE
NO_SIDE_EFFECTS .

Error Messages
Levels 2 and 3 Optimization Errors
Errors Caused by Pre-6.5 Compilers

1-2
1-2
1-3

2-2
2-4
2-8
2-9

2-10
2-12
2-14

3-2
3-3
3-5
3-5
3-6
3-6
3-7
3-8
3-9

3-10
3-10
3-14
3-14
3-16

Contents-1

What to Do About Slow Compilation and Out-of-Memory
Conditions 3-17

Troubleshooting Optimization Problems 3-19
A Closer Look at Optimizations 3-20

Peephole Optimization. 3-21
Instruction Scheduling 3-22
Constant Folding . . . 3-23
Constant Propagation . 3-23
Dead Code Elimination 3-24
Coloring Register Allocation 3-24
Common Sub expression Elimination. 3-25
Dead Store Elimination 3-26
Copy Propagation. 3-26
Loop Unrolling 3-27
Code Motion of Loop Invariants 3-28
Strength Reduction of Loop Induction Variables 3-30
Elimination of Tail Recursion. 3-31
Non-Reducible Code 3-32
Procedure Integration . . . 3-34

4. Implementation Dependencies
Implementation Dependencies for C 7.0 4-1

Primary Name Definitions in C Libraries . 4-1
Implementation Dependencies for C 8.0 4-2

Support for Shared Libraries·. 4-2

5. Porting to ANSI C
The const and volatile Qualifiers 5-1

The const Qualifier 5-2
The volatile Qualifier 5-3

Upgrading Existing C Programs to Use Prototypes 5-4
Advantages of the Function Prototype 5-4
Function Prototype Considerations 5-6

How the Name Spaces Work for ANSI C and Other Standards 5-11
HP Header File and Library Implementation of Name Space 5-12

Silent Changes for ANSI C 5-14

Contents-2

A. Implementation-Defined Behaviors and Extensions to ANSI-C
1m plementation-Defined Behaviors

Diagnostic Messages .
Arguments to main ()
Interactive Device. .
Identifiers
Handling Characters
Handling Characters (continued)
Handling Integers
Handling Floating-Point Values
Handling Arrays and Pointers
Registers.
Handling of Structures, Unions, Enumerations and Bit Fields
Qualifiers
Declarator Limits . . .
Case Limits
Preprocessing Directives
Library Functions . . .
Library Functions (continued)
Library Functions (continued)

Implementation-Defined Extensions

B. HP-UX Reference Pages

Index

A-l
A-l
A-2
A-2
A-2
A-3
A-4
A-4
A-5
A-6
A-6
A-7
A-7
A-8
A-8
A-9

A-lO
A-l2
A-l4
A-l5

Contents-3

Figures

2-1. Comparison between HP-UX and DOMAIN Bit Alignments 2-7
2-2. Structure Definition for Illustrating Storage and Alignment. 2-9
2-3. How the Data is Stored in Memory Using the HPUX_ WORD

Alignment Mode 2-10
2-4. How the Data is Stored in Memory Using the

HPUX_NATURAL Alignment Mode. . . 2-12
2-5. Comparison between HPUX_ WORD and HPUX_NATURAL

Byte Alignments 2-15
3-1. Example of Using NO_SIDE_EFFECTS . 3-13
3-2. Non-Reducible Flow Graph 3-33

Tables

2-1. C Data Types for Series 300/400 Computers
2-2. Comparison of Alignment Rules
2-3. Description of Padding
2-4. Padding in HPUX_NATURAL Mode
3-1. C Optimization Levels
3-2. Optimization Compiler Options. . .
5-1. Selecting a Name Space in ANSI Mode

Contents-4

2-2
2-4

2-11
2-13
3-2
3-4

5-13

Overview

This Guide describes some essential elements of using HP's implementation
of the C and ANSI C language on Series 300/400 computers. Specifically, it
contains the following chapters:

• Chapter 1: Overview

1

Gives an overview of C on Series 300/400 computers; directs you to related,
useful C documentation; and lists the typographical conventions used
throughout the book.

• Chapter 2: C Data Types

Describes C data types as implemented on Series 300/400 computers. To aid
programmers in porting code between systems, this chapter also includes
information on Series 500, Series 600/700/800 and HP Apollo C data types.

• Chapter 3: Optimizing C Programs

Discusses how to optimize C programs using compiler options and directives.
Also discusses possible incompatibilities that may occur when linking object
files created by the C compiler in release 6.5 and later with object files
created by compilers from previous (pre-6.5) compilers.

• Chapter 4: Implementation Dependencies

Describes any implementation dependencies of a new revision.

• Chapter 5: Porting to ANSI C

Describes the process of moving existing programs to ANSI C. It also
describes the type qualifiers canst and volatile.

• Appendix A: Implementation-Defined Behaviors and Extensions to ANSI C

Provides information on all implementation-defined behaviors and extensions
for the Series 300/400 ANSI C product.

Overview 1-1

1

1

This book does not, however, teach the C language or provide detailed C
reference information. Such detail is provided in C: A Reference Manual by
Samuel P. Harbison and Guy L. Steele Jr., a companion to this document.

Typographical Conventions
The following conventions are used throughout this manual:

• C programs and examples appear in computer font.

• References of the form "name(N)" refer to a command, system call, or
library routine in the HP- UX Reference. For example, cc(l) refers to the cc
page in section 1 of the HP-UX Reference.

• User-supplied information appears in italic font. For example:

cc file_name

This means you would type cc followed by a file name of your choice.

Compiling a C Program

To compile a C program, use either the c89(l) or the cc(l) command which are
covered in the HP- UX Reference manual.

The syntax used to compile a C program is as follows:

cc file_name

where file_name is the C source file to be compiled. Executing this command,
produces an executable file named a. out.

1-2 Overview

The syntax used to compile an ANSI C program is as follows:

cc -Aa file_name

or

c89 file- name

where -Aa is the option for compiling an ANSI C program and file_name is the
ANSI C source file to be compiled. The c89 command is the POSIX command
for compiling with ANSI Standard C.

Related Documents
In addition to this book and C: A Reference Manual, you may find the
following books useful:

• HP- UX Reference-provides detailed information for HP-UX commands,
system calls to the kernel, standard and non-standard library routines, file
formats, and device drivers.

• HP-UX Portability Guide-assists programmers in porting from one HP-UX
language to another, or from non-HP-UX systems to HP-UX and vice versa.

• Programming on HP-UX-describes programming in general on HP-UX. For
example, it covers linking, loading, and several other HP-UX programming
features.

• HP- UX Documentation Roadmap-summarizes the entire HP-UX
documentation set and cross-references manuals by topics.

• American National Standard for Information Systems-Programming
Language C, ANS X3.159-1989-provides detailed reference information on
the C programming language.

Overview 1-3

1

2
C, Data Types and Alignments

This chapter summarizes the C data types. Specifically, it describes:

• data types, their sizes, and their ranges

• data type alignments

• array size and alignment

• structure size and alignment.

To aid you in porting programs, this chapter also provides relevant information
for C data types on Series 500, Series 600/700/800, and HP Apollo computers.

C Data Types and Alignments 2-1

2

2

C Data Types (Sizes and Ranges)

Table 2-1 lists the Series 300/400 C data types, their sizes, and range of
possible values.

Table 2-1. C Data Types for Series 300/400 Computers

Data Type Size Range

char 1 byte -128 to 127
signed charI

unsigned char 1 byte o to 255

short 2 bytes -32768 to 32767
signed short 1

unsigned short 2 bytes o to 65535

int 4 bytes _231 to 231 - 1
signed1

signed intI

unsigned int 4 bytes o to 232 - 1
unsigned

long 4 bytes same as int
signed long1

unsigned long 4 bytes same as unsigned int

float 4 bytes -3.402 823E+38 to -1.175 495E-38
0.0
1.175 495E-38 to 3.402 823E+38

double 8 bytes -1.797693 134 862 31D+308 to
-2.225 073 858 507 21D-308

0.0
2.225 073 858 507 21D-308 to

1. 797 693 134 862 31D+308

2-2 C Data Types and Alignments

Table 2-1.
C Data Types for Series 300/400 Computers (continued)

Data Type Size Range

enum 4 bytes 232 different enumerated values (from 0 to 232 - 1)
(but limited by compiler's symbol table size)

pointer 4 bytes a 32-bit address

long double2 16 bytes -1. 1897314953572317650857593266280070162E4932 to

1

2

-3.3621031431120935062626778173217526026E-4932
0.0
3.3621031431120935062626778173217526026E-4932 to
1. 1897314953572317650857593266280070162E4932

The signed keyword is not available on Series 500.
The long double type is only available in ANSI C. Note that ANSI C is not
available on Series 500 computers.

C Data Types and Alignments 2-3

2

2

char

Data Type Alignments
The data alignment mode provided on the various HP and HP Apollo systems
can be divided into two main categories, WORD and NATURAL. WORD
alignment is typical of the Series 300/400-based systems and is so called
because the largest alignment boundary is a word (i.e. 2 bytes). NATURAL
alignment is typical of RISC-based systems and is characterized by the
alignment of an object being relative to the size of the object.

On HP systems, there are three distinct alignments:

HPUX_ WORD The native alignment for Series 300/400
HPUX_NATURAL_S500 The native alignment for HP Series 500
HPUX_NATURAL The native alignment for Series 600/700/800

On HP Apollo systems, there are two distinct alignments:

DOMAIN_WORD The native alignment for HP Apollo Series 3000/4000
DOMAIN_NATURAL The native alignment for HP Apollo Series 10000

Finally there is an architecture-independent alignment mode called NATURAL.
The purpose of NATURAL is to provide a common alignment mode across all HP
and HP Apollo systems. NATURAL is the recommended alignment mode to be
used when writing programs that share data among several types of HP and
HP Apollo systems.

The following table illustrates the differences between the various alignment
modes.

Table 2-2. Comparison of Alignment Rules

Type Size HPUX_WORD & HPUX_NATURAL & HPUX_ NATURAL
DOMAIN_WORD DOMAIN_NATURAL NATURAL_S500

1 byte 1 byte 1 byte 1 byte 1 byte
signed char
unsigned char

short 2 bytes 2 byte 2 byte 2 byte 2 byte
signed short
unsigned short

2-4 C Data Types and Alignments

Table 2-2. Comparison of Alignment Rules (continued)

Type Size HPUX_WORD 8& HPUX_NATURAL 8& HPUX_ NATURAL
DOMAIN_WORD DOMAIN_NATURAL NATURAL_S500

int 4 bytes 4 by tel 4 byte 4 byte 4 byte
signed int
unsigned int
long
signed long
unsigned long

float 4 bytes 4 by tel 4 byte 4 byte 4 byte

double 8 bytes 4 by tel 8 byte 4 byte 8 byte

long double4 16 bytes or 4 by tel 8 byte n.a. 8 byte

enum

arrays

struct

union

bit fields

1

2

3

4

5

8 bytes

4 bytes 4 by tel 4 byte 4 byte 4 byte

Same as the alignment rule for the type of the array element.

2,3 2 by tel 1-, 2-, 4- 2- or 2-, 4- or
or 8 byte2 ,3 4 byte2 ,3,5 8 byte2 ,3

2,3 2 by tel 1-, 2-, 4- 2- or 2-, 4- or
or 8 byte2 ,3 4 byte2 ,3,5 8 byte2 ,3

Same alignment as declared type.

Within a structure on HPUX_WORD, all types larger than 2 bytes are aligned
on a 2-byte boundary.
Same as the alignment of the largest member.
Padding is done to a multiple of the alignment size.
The long double type is only available in ANSI C and on HP-UX
alignment modes (as well as NATURAL), its size is 16 bytes. On DOMAIN
alignment modes, long double is treated as double (i.e., size 8 bytes).
Series 500 computers align structures on 2 or 4 byte boundaries.

C Data Types and Alignments 2-5

2

2
With the exception of bit fields, DOMAIN_WORD structure alignment is the same
as for Series 300/400 computers and DOMAIN_NATURAL structure alignment is
the same as for Series 600/700/800 computers.

HP-UX and DOMAIN use different algorithms for aligning bit fields within a
structure. HP-UX aligns a bit field I within a structure by taking the modulo
(%) of the currenLoffset prior to I within the structure and the alignmenLol_1
and adding this result to the width_ol_/. The syntax for this algorithm is:

(currenLoffset % alignmenLol_j) + width_ol_1

If this exceeds the size of I, then it aligns I according to its type; otherwise,
it allocates it at the offset prior to I. DOMAIN uses a similar algorithm
to HP-UX's for aligning bit fields within a structure; however, all of its bit
fields are treated as type int, regardless of their declared type. For example,
consider the following struct statement:

struct S {char a:4; char b:3; char c:2;}

Under the HP-UX scheme, a is at bit offset 0, b is at bit offset 4, and c is at
bit offset 8, not at the next bit 7. The reason is bit alignment follows this
algorithm:

(7 % 8) + 2

which results in a value of 9. This exceeds the size of type char (8 bits). So,
field c is aligned according to its type (that is, on the next byte boundary).

2-6 C Data Types and Alignments

The DOMAIN algorithm for aligning bit fields is the same as HP-UX's, except
all bit fields are treated as type int, regardless of their user declared type. The
previous example would look like this using the DOMAIN algorithm:

(7 % 16) + 2

which results in a value of 9. This does not exceed the size of type int (32
bits). So, field c is aligned at bit offset 7 as seen in the following figure.

HP:

HP Apollo:

o 3 4 6 7 8 9 15

Figure 2-1.
Comparison between HP-UX and DOMAIN Bit

Alignments

With respect to size, DOMAIN treats all bit fields as into Therefore, the
following struct is allowed:

struct Group_members {
char letter: 10;
int number;
} gp_mem;

This same struct declaration would cause an error under HP-UX alignment
rules since 10 bits exceeds the size of the data type char.

NATURAL uses the same scheme for bit fields as DOMAIN.

C Data Types and Alignments 2-7

2

2

Array Size and Alignment
An array's size is computed as:

(size of array element type) x (number of elements)

For instance, the array declared below is 400 bytes (4 x 100) long:

int arr[100] ;

The size of the array element type is 4 bytes and the number of elements is
100.

On HPUX_WORD, arrays are aligned on a boundary corresponding to their
element type. For example, a double array would be aligned on a 4-byte
boundary; and a float array within a struct would be aligned on a 2-byte
boundary.

2-8 C Data Types and Alignments

Alignment within Structures

In a structure, each member is allocated sequentially at the next alignment
boundary corresponding to its type. Therefore, the structure might be padded
if its members' types have different alignment requirements. In a union, all
members are allocated starting at the same memory location. Figure 2-2
defines a structure we will use to illustrate alignment within structures.

struct

};
struct

x {
char
short

q {
char
struct
double
char
int

y [3] ;
z;

n;
x v[2];
u;
t;

s:6;
char m;
long double g;

} a = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};

Figure 2-2. Structure Definition for Illustrating Storage and Alignment

C Data Types and Alignments 2-9

2

2

An HPUX_ WORD Example

Figure 2-3 shows how the data in Figure 2-2 is stored in memory. The values
are shown in parentheses above the structure member names. Memory
locations containing slashes are padding or filler bytes. Note that in the
HPUX_WORD (and HPUX_NATURAL_S500 mode) mode a structure will be padded
at the end if needed to make its size a multiple of 2 bytes.

a + 0:

a + 4:

a + 8:

a + 12:

a + 16:

a + 20:

a + 24:

a + 28:

a + 32:

a + 36:

a + 40:

+0

(1)
a.n

(4)
a.v[OJ.y[2J

(6)
a.v[1J.y[OJ

(9)

+1

(7)
a.v[1 J.y[1 J

a.v[1 J.z

(10)
a.u

(13)
a.m

(14)

a.g

Figure 2-3.

+2

(2)
a.vCOly[OJ

(5)

+3

(3)
a.v[oJ.y[1 J

a.vCOJ.z

(8)
a.v[1 J.y[2J

(11)
a.t

How the Data is Stored in Memory Using the HPUX_ WORD
Alignment Mode

2-10 C Data Types and Alignments

The following table summarizes why padding occurred where it did in
Figure 2-3.

Table 2-3. Description of Padding

Padding Reason for Padding

a + 1 The most restrictive type of struct x is short; therefore, the
structure is 2-byte aligned.

a + 5 Aligns the short z on a 2-byte boundary.

a + 11 Aligns the short z on a 2-byte boundary.

a + 23 Aligns the char m to a 1-byte boundary.

a + 25 Aligns the long double g on a 2-byte boundary.

C Data Types and Alignments 2-11

2

2

An HPUX_NATURAL Example

Figure 2-4 shows how the members of the structure defined in Figure 2-2 would
be aligned in memory in the HPUX_NATURAL mode. The structure itself starts
on an 8-byte boundary because this is the largest type within the structure.

+0 +1 +2 +3

a + 0:
(1) (2) (3)
a.n a.v[OJ.y[OJ a.v[OJ.y[1 J

a + 4:
(4) (5)

a.v[OJ.y[2J

a + 8:
(6)

a.v[1 J.y[OJ a.v[1 J.y[1 J

a + 12:
(9)

a.v[1 J.z

a + 16:

a + 20:

a + 24:
(11)

a + 28:

a + 32:

a + 36: (14)

a.g

a + 40:

a + 48:

Figure 2-4.
How the Data is Stored in Memory Using the HPUX_NATURAL

Alignment Mode

2-12 C Data Types and Alignments

2
Table 2-4 describes why the padding occurs where it does in this structure.

Table 2-4. Padding in HPUX_NATURAL Mode

Padding Reason for Padding

a + 1 The largest type of the structure x is short; therefore, the structure
is 2-byte aligned.

a+5 Aligns the short z on a 2-byte boundary.

a + 11 Aligns the short z on a 2-byte boundary.

a + 14 through Aligns the double u on an 8-byte boundary.
a + 15

a + 25 Aligns the char m to a I-byte boundary.

a + 27 through Aligns the long double g on an 8-byte boundary.
a + 31

C Data Types and Alignments 2-13

2

Aligning Structures between Architectures

The purpose of the HP _ALIGN pragma is to provide HPUX_NATURAL_S500,
HPUX_NATURAL, DOMAIN_WORD, and DOMAIN_NATURAL alignment on computers
that use HPUX_WORD alignment. This provides a measure of portability
between architectures. To illustrate the portability problem raised by different
alignments, consider the following example.

#include <stdio.h>

struct char_int
{

};

char field1;
int field2;

main ()
{

FILE *fp;
struct char int s;

fp = fopen("myfile", "w");
fwrite(&s, sizeof(s), 1, fp);

}

2-14 C Data Types and Alignments

The alignment for the struct that is written to myfile in the above example
is shown in the following diagram. .

HPUX_WORD:

1 field1 I pad r fie:d2 ~
2 3 4 5 6

bytes

HPUX_NATURAL:

1 field1 I pad pad pad
1-- fie:d2 ~

2 3 4 5 6 7 8
bytes

Figure 2-5.
Comparison between HPUX_ WORD and HPUX_NATURAL Byte

Alignments

In the HPUX_WORD alignment mode, this results in 6 bytes being written to the
myfile. The above integer field2 begins on the 3rd byte. Whereas, in the
HPUX_NATURAL alignment mode the previous program segment results in 8 bytes
being written to myfile. The integer field2 begins on the 5th byte.

C Data Types and Alignments 2-15

2

, 2
The HP _ALIGN pragma

The syntax for this pragma is:

#pragma HP _ALIGN align_mode [PUSH]

#pragma HP _ALIGN POP

where align_mode is one of the following:

HPUX_WORD Series 300/400 computer's alignment mode (default)

HPUX_NATURAL_S500

HPUX_NATURAL

NATURAL

DOMAIN_WORD

DOMAIN_NATURAL

Series 500 computer's alignment mode

Series 600/700/800 computer's alignment mode

provides a consistent alignment scheme across HP
architectures

word alignment mode on HP Apollo architecture

natural alignment mode on HP Apollo architecture

If the optional parameter PUSH is specified with an align_mode, the current
alignment mode is saved (on an alignment mode stack) and the specified
align_ mode becomes the new alignment mode.

The second syntax (#pragma HP _ALIGN POP) restores the alignment mode that
was last pushed on the alignment mode stack. If the alignment mode stack is
empty, the compiler issues a diagnostic message.

2-16 C Data Types and Alignments

The pragma must have a global scope (i.e., outside of any function or enclosing
struct or union). For example, given the following sequence of pragmas:

#pragma HP_ALIGN HPUX_WORD PUSH

struct string_l {
char *c_string;
int counter;

};

#pragma HP_ALIGN HPUX_NATURAL PUSH

struct car {
long double
char

};

#pragma HP_ALIGN POP

struct bus {

car_speed;
*car_type;

int bus_number;
char bus_color;

};

#pragma HP_ALIGN POP

Any variables declared of type struct string_l, would be aligned according
to the HPUX_WORD alignment mode; any variables declared of type struct
car, would be aligned according to the HPUX_NATURAL alignment mode;
any variables declared of type struct bus would be aligned according to
HPUX_WORD.

C Data Types and Alignments 2-17

2

Optimizing C Programs

This chapter describes how to use the optimization capabilities of the C
compiler. In particular, this chapter discusses:

• an overview of the levels of optimization

• how to invoke optimization

• using compiler directives to control optimization

• messages produced by the compiler during optimization

• troubleshooting optimization problems

• the actual code transformations performed during optimization.

3

Optimizing C Programs 3-1

3

The Levels of Optimization
The C compiler provides four levels of optimization: levels 0, 1, 2, and 3.
Table 3-1 summarizes each level, gives the advantages and disadvantages of

3 using the level, and recommends when to use the level.

Table 3-1. C Optimization Levels

Level Optimizations Advantages Disadvantages
Performed

0 Constant folding Compiles fastest. Does very little
simple register Works with optimization.
assignment. debugger option

-g.

1 Level 0 Prod uces faster Compiles slower
optimizations, plus programs than than level o.
peephole (statement- levelO. Does not work
by-statement) Compiles faster wi th de bugging
optimizations and than level 2. option -g.
instruction
scheduling.

2 Level 1 Produces faster Compiles slower
optimizations, plus run-time code than level 1. Does
global (whole than level 1. not work with
procedure) debugging option
optimizations. -g.

3 Level 2 Produces the Compiles the
optimizations, plus fastest run-time slowest. It may
procedure code. increase program
integration. size and does not

work with
debugging option
-g.

Profiling works at all optimization levels. For details on the kinds of
optimizations performed at each level, see the last section in this chapter, "A
Closer Look at Optimizations."

3-2 Optimizing C Programs

Invoking Optimization

By default, the C compiler (cc) performs level 0 optimization. To get level 1
optimization, compile the program with the +01 option; to get level 2, compile
with +02 or synonymously, -0; to get level 3, compile with +03. 3

For example to get level 2 optimization, use one of the following C compiler
command lines (they are equivalent):

cc +02 prog.c
cc -0 prog.c

In addition to the previously mentioned options, the C compiler recognizes the
+OV option, which declares all global variables as volatile. (For details on
when to use +OV, see "Troubleshooting Optimization Problems" later in this
chapter.) For instance, if you were to compile the following program with +OV:

int i;
float a;
maine)
{

int idx;

}

It would produce the same results as applying the volatile qualifier to the
global variables i and a:

volatile int i;
volatile float a;
maine)
{

int idx;

}

Optimizing C Programs 3-3

Table 3-2 summarizes the optimization compiler options.

Table 3-2. Optimization Compiler Options

3
Option What It Does

+01 Invokes level 1 optimization.

+02 Invokes level 2 optimization.

-0 Invokes level 2 optimization.

+03 Invokes level 3 optimization.

+OV Applies the volatile qualifier to all global variables.

3-4 Optimizing C Programs

Using Directives to Control Optimization
The C compiler provides an initial optimization level to programs through
the use of special cc options (i.e., +01, +02, -0, +03). To allow the user to
refine the initial optimization level, the C compiler provides three directives, 3
also known as #pragmas: OPTIMIZE, OPT_LEVEL, and NO_SIDE_EFFECTS. They
must appear outside any function, and they apply for the remainder of the file
or until superseded by another directive. There are also directives to control
procedure inlining. These directives are HP _INLINE pragmas. These pragmas do
not have to be outside of functions and only work at level +03 optimization.

For directives to work, the source program must be compiled with one of
the optimization levels listed in the previous table "Optimization Compiler
Options." Otherwise, directives are ignored and warnings are issued. The
remainder of this section discusses each directive in detail.

OPTIMIZE

The OPTIMIZE directive turns on or off level 2 and 3 optimization. (It does
not shut off level 1 optimization.) It is useful for shutting off optimization in
sections of a source program that may cause the optimizer difficulties.

Syntax

#pragma OPTIMIZE {ON }
OFF

You should specify either ON or OFF; if you do not, the compiler generates a
warning and assumes an ON setting.

Examples

#pragma OPTIMIZE ON
#pragma OPTIMIZE OFF

restores original optimization level
sets optimization level to 1

Optimizing C Programs 3-5

OPT_LEVEL

The OPT_LEVEL directive directs the compiler to select either level 1, 2, or 3
optimization. It is useful for switching from one level to another within a

3 source program.

Note that it is not possible to use this pragma to raise the optimization level
beyond the original level. It is only possible to lower the level or remain the
same as the original level. A warning is issued if there is an attempt to raise
the original optimization level.

Syntax

#pragma OPT_LEVEL { ~ }

You should specify an optimization level; if you do not, the compiler generates
a warning and assumes level 1.

Examples

#pragma OPT_LEVEL 1
#pragma OPT_LEVEL 2
#pragma OPT_LEVEL 3

goes to level 1 optimization
goes to level 2 optimization
goes to level 3 optimization

The HP _INLINE_LINES directive is used to change the maximum number of
expressions a function may have and still be inlined. The default value is 20.
Note that this directive only affects source code that has been compiled with
level +03 optimization.

Syntax

3-6 Optimizing C Programs

The value n is the number of expressions that a function may have and still be
inlined. Functions with more than n expressions will not be inlined. This value
may also be set using the compiler options: -Wi, -1 n

Example 3

#pragma HP _INLINE_LINES 5 inline all functions with 5 or fewer
expresswns

The HP _INLINE_FORCE directive forces succeeding calls to the functions listed
to be inlined regardless of the size of the function. This directive is in force
from the line it first occurs on to the end of the file or until overridden by a
later HP _INLINE_FORCE, HP _INLINE_OMIT, or HP _INLINE_DEFAULT directive.
Note that this directive only affects source code that has been compiled with
level +03 optimization.

Syntax

#pragma HP _INLINE_FORCE name [, name]

All calls to the function(s) specified in the name list will be inlined regardless
of their size. Forcing functions to be in lined can also be done using this
compiler option: -Wi, -fname [, name] ...

Example

#pragma HP _INLINE_FORCE newfunction calls to "newfunction" are
inlined

#pragma HP _INLINE_FORCE start, function calls to "start" and ''func­
tion" are inlined

Optimizing C Programs 3-7

3
I

The HP _INLINE_OMIT directive forces succeeding calls to the functions listed
not to be inlined regardless of the size of the function. This directive is in force
from its point of inception until the end of the file or until overridden by a later
HP _INLINE_FORCE, HP _INLINE_OMIT, or HP _INLINE_DEFAULT directive. Note
that this directive only affects source code that has been compiled with level
+03 optimization.

Syntax

#pragma HP _INLINE_OMIT name [, name]

All calls to the function(s) specified in the name list will not be inlined.
Forcing functions to not be in lined can also be done using this compiler option:
-Wi, -oname, [name]

Example

#pragma HP _INLINE_OMIT func 1 calls to ''funcl'' are not
inlined

#pragma HP _INLINE_OMIT newfunc, oldfunc calls to "newJunc" and "old­
Junc" are not inlined

3-8 Optimizing C Programs

The HP _INLINE_DEF AUL T directive cancels any HP _INLINE_FORCE or
HP _I~LINE_OMIT directives for the functions listed. Note that this directive
only affects source code that has been compiled with level +03 optimization.

Syntax

#pragma HP _INLINE_DEFAULT name [, name]

All previous HP _INLINE_FORCE and HP _INLINE_OMIT directives for the
function(s) specified in the name list will be canceled.

Example

#pragma HP _INLINE_DEFAULT f1, f2 cancels any previous force and omit
directives for functions ',/1" and
',/2"

Optimizing C Programs 3-9

3

The HP _INLINE_NOCODE causes stand-alone code for the functions listed to not
be emitted. This reduces the size of the object file. The HP _INLINE_NOCODE

3 directive must not be used on a function that may be called from a routine in a
separate file or on a function that is not always inlined. Note that this directive
only affects source code that has been compiled with level +03 optimization.

Syntax

#pragma HP _INLINE_NOCODE name [,name]

All calls to the functions specified in the name list will not emit stand-alone
code. Preventing stand-alone code from being emitted by functions can be
done by using this compiler option: -Wi, -nname [, name] ...

Example

#pragma HP _INLINE_NOCODE ft 1 no stand-alone code is emitted for
',/1 "

#pragma HP _INLINE_NOCODE ft 1, ft2 no stand-alone code is emitted for
',/1" or ',/2"

By default, the optimizer assumes that all functions might modify global
variables. To some degree, this assumption limits the extent of optimizations
it can perform on global variables. The NO_SIDE_EFFECTS directive provides a
way to override this assumption. If you know for certain that some functions
do not modify global variables, you can gain further optimization of code
containing calls to these functions by specifying these functions' names to this
directive.

3-10 Optimizing C Programs

Syntax

#pragma NO_SlOE_EFFECTS name [, name]

All functions in name list are the names of functions which do not modify
the values of global variables. Global variable references can be optimized to 3
a greater extent in the presence of calls to the listed functions. Note that you
need the NO_SlOE_EFFECTS directive in the files where the calls are made, not
where the function is defined. This directive takes effect from the line it first
occurs on to the end of the file.

Examples

Figure 3-1 shows an example program with both correct and incorrect usage
of the NO_SlOE_EFFECTS directive. Line 26 illustrates correct usage because
it properly lists functions that do not modify global variables. Line 33, on
the other hand, is incorrect because it lists functions that do modify global
variables.

Optimizing C Programs 3-11

It is also important to note that the calls to funci and func2 on lines 21 and
22 are not affected by the NO_SlOE_EFFECTS directive on line 26. But the
calls to func2 and func i on lines 44 and 45 are affected (that is, additional
optimizations may be possible) because they follow the NO_SlOE_EFFECTS

3 directive.

1 1* global variables *1
2
3 int globi, glob2, glob3
4
5 mainO
6 {
7 1* functions which do NOT modify globals *1
8
9 int funci(), func2();

10
11 1* function which DO modify globals *1
12
13 int func3(), func4();
14 int x,y,Z;
15
16
17
18
19
20

1* These calls to funci and func2 are NOT affected
by the NO_SlOE_EFFECTS directive because they
come before the directive. *1

21 x = funci(O);
22 y func2(x);
23
24 }
25
26 #pragma NO_SlOE_EFFECTS funci, func2
27
28
29
30
31
32

1* The following use of NO_SlOE_EFFECTS
is INCORRECT because it lists functions
which DO modify global variables.
Take care not to misuse it this way. *1

3-12 Optimizing C Programs

33 #pragma NO_SlOE_EFFECTS func3, func4
34
35 int fO
36 {

37 int x,y,z; 3
38
39
40 1* But these calls ARE affected because
41 they appear after the NO_SlOE_EFFECTS
42 directive which lists them. *1
43
44 z = func2(y);
45 x = func1(z);
46 }

Figure 3-1. Example of Using NO_SIDE_EFFECTS

Optimizing C Programs 3-13

3

Error Messages

Levels 2 and 3 Optimization Errors

During levels 2 and 3 optimization, the compiler may produce any of several
messages. Listed below are the possible messages and a description of each:

• Global optimizer warning in command line:
-Wg, -d has been specified. CSE disabled.

Common sub expression elimination is disabled. If the -Wg and -d
command-line options or the CCOPTS environment variable is removed,
common sub expression elimination will be reenabled.

• Global optimizer warning in "procname" :
Possible infinite loop detected.

The global optimizer has detected an infinite loop. Note that the optimizer
assumes that all function calls, including calls to routines such as exit (2),

will return control to the calling routine.

• Global optimizer warning in "procname" :
Loop increment of 0 detected.

A loop increment of 0 was found. This may cause an infinite loop.

• Global optimizer warning in "procname":
Variable "var name" uninitialized before use.

The named variable is referenced without a prior assignment in any of the
control paths leading to the reference.

The absence of this message does not ensure that all variables are properly
initialized. In particular, assignments on some, but not all control paths
leading to a reference will cause this message not to be printed.

Formal parameters and global variables are implicitly assigned at the
beginning of a function, and will never appear in this message .

• Global optimizer warning in "procname" :
Location" offset (%a6) " unini tialized before use.

An uninitialized stack location was referenced, but no variable name could be
matched to it.

3-14 Optimizing C Programs

• Global optimizer warning in "procname": Procedure not
reducible (no global optimizations or register allocation
performed in this routine) .

The control flow through the routine was so irregular that the optimizer
could not discern normal loop patterns. This is usually caused by poorly
structured code with gotos. Only common sub expression elimination was
performed within each basic block. No other optimizations or register
allocation was done for this routine. For more information on this topic, read
the section "Non-Reducible Code" found in this chapter.

• Global optimizer error: out of space - unable to allocate memory for
internal use.

This message indicates that the optimizer was unable to acquire the
necessary amount of dynamic memory space. For more information on this,
read the section "What to Do About Slow Compilation and Out-of-Memory
Conditions" found in this chapter.

• Global optimizer warning in "procname" :
Di vision by 0

The global optimizer has detected an apparent division by O. This condition
may have been uncovered after optimizations such as constant folding or
constant propagation in which a division by a variable is reduced to division
by a constant O.

• Global optimizer warning in "procname":
Exceeded default complexity level for loop optimization.
Use -Wg, -All to override.

The global optimizer encountered a function whose complexity is such
that full loop optimization may take an excessive amount of time to
complete. Therefore, it will not attempt the most time consuming loop
optimizations such as code motion and strength reduction on this function.
Other optimizations and register allocations are still performed. In many
cases of this nature, the optimizations will have little effect on the overall
performance of a program. Note that the default limits may be overridden,
however, a longer compilation time should be expected.

This warning occurs only when the verbose flag (-v) is used on the cc
command line.

Optimizing C Programs 3-15

3

3

• C 1 int ernal error in "procname": .. .
C1 internal error in command line: .. .

These messages indicate an abnormal condition was detected within the
optimizer. These messages also indicate a defect in the optimizer that should
be reported to your HP support representative. A workaround is to not use
optimization or select level 1 optimization.

Errors Caused by Pre-6.S Compilers

The linker will complain about any attempt to use a pre-6.5 module by issuing
the following warning:

ld: (warning) old (pre-6. 5) file file_name may be incompatible with
newer files

3-16 Optimizing C Programs

What to Do About Slow Compilation and Out-ot-Memory Conditions

In order to perform transformations that involve entire functions, the global
optimizer must maintain large internal data structures. Compiling large
functions, especially those containing many loops or branches, may occasionally 3
take excessive time to compile or result in a "Global optimizer error: out of
space - unable to allocate memory for internal use" error. In either case,
several remedies are available:

• If possible, split the large function into smaller pieces. Compilation speed
will improve greatly and the smaller routines are frequently easier to
understand and maintain .

• Use lower-level optimization on the appropriate file or function. You can:

D Compile with the -0 option instead of the option +03

D Remove the -0 option (for level 0) or change it to +01 (for level 1) on the
command line to select the optimization level for the entire file, or

D Leave the - a option and surround the large function with a #pragma
OPT_LEVEL 1, #pragma OPT_LEVEL 2 pair; for example:

/* Very large function follows; set to level 1. */

#pragma OPT_LEVEL 1

int
int
char
char
{

very_larg_func(arg1,
arg1, arg2;
*arg3;
arg4;

arg2, arg3, arg4)

/* body of the very large function */
}

/* Out of the function, so reset to level 2. */

#pragma OPT_LEVEL 2

Optimizing C Programs 3-17

3

D Compile with the +OV option to avoid optimizing references to global
variables. Often this significantly reduces the size of optimizer internal
data structures.

The "out of space" message means the optimizer was unable to acquire
the necessary amount of dynamic memory space. This may be caused by
insufficient physical memory or disk swap space. The amount of data memory
space allowed per process may be increased by altering the kernel configuration
parameter, maxdsiz (refer to the HP-UX System Administrator Task Manual).
Swap space can be increased by configuring additional swap space disks or by
reformatting the disk with more swap space.

In some cases, the system administrator can enlarge the swap area without
reconfiguring the file system. For more information on how to enlarge the swap
area, read about the swapon (1M) command in the HP- UX Reference.

3-18 Optimizing C Programs

Troubleshooting Optimization Problems

Occasionally a program works differently after optimization. If this happens do
the following:

1. Run the lint program (see lint(l) in the HP- UX Reference) to catch
common programming errors. Pay particular attention to function calls with
too few arguments. The called function will use unrelated contents of the
stack for the remaining arguments, and the stack contents are likely to be
different when the program is optimized. Behavior may also be different if a
programming error causes an out-of-bounds array access. All references of
the form * (p+i) are assumed to remain within the bounds of the variable to
which p points.

2. Make sure that all variables are correctly initialized. With level 2
optimization (because of extensive use of registers), an uninitialized variable
is usually assigned whatever is left in the register; this value is usually
non-zero. The level 2 optimizer will print a warning if it can determine that
no path within the program will initialize a variable before use; it cannot
detect uninitialized global variables or local variables that are initialized in
only certain sequences of program execution.

3. Verify that the problem is not simply a floating point precision change
due to heavier use of MC6888x floating point registers. Level 0 and 1
optimized floating point code usually has many more MC6888x register
loads and stores, with accompanying 80-bit to 64/32-bit conversions. A
mathematically ill-conditioned solution may be adversely affected by the
added precision of fewer loads and stores.

4. Make sure that optimizer assumptions are not violated. Signal handlers that
modify global variables and memory-mapped input/output may require the
use of the volatile qualifier on the declaration of affected variables. If
many global variables are modified by signal handlers, you may also want to
consider compiling with the +OV option.

5. Try optimizing at level 1. If possible, isolate the problem to a single routine
and optimize all others at level 2 or above.

6. If none of these solutions works, try level 0 optimization.

Optimizing C Programs 3-19

3

3

A Closer Look at Optimizations
This section describes the code transformations performed during optimization:

• peephole optimization
• instruction scheduling.
• constant folding
• constant propagation
• dead code elimination
• coloring register allocation
• common su bexpression elimination
• copy propagation
• loop unrolling
• code motion of loop invariants
• strength reduction of loop induction variables
• tail recursion elimination
• non-reducible code
• procedure integration

Note An optimizer doesn't actually change the C source code; it
performs transformations internally.

3-20 Optimizing C Programs

Peephole Optimization

During compilation, the C compiler produces assembly language code.
Peephole optimization looks at a small window of this assembly language
code, looking for optimization opportunities. Wherever possible, the peephole 3
optimizer replaces assembly language instruction sequences with faster (usually
shorter) sequences, and removes redundant register loads and stores.

For example, the code

fpmov.s L14.%fpaO
fpadd.s %fpaO.%fpa1

is changed to

fpmadd.s L14.%fpaO.%fpa1

Peephole optimization is performed at levels 1 and above.

The peephole optimizer C2 also performs instruction scheduling. The scheduler
takes advantage of the processors ability to concurrently execute floating point
and integer instructions, and attempts to avoid sequences that cause A-register
or FP-register interlocks which result in a pip line stall.

The C2 optimizer is invoked for all levels of optimization (Le., +01, +02, +03,
and -0), and by default always performs instruction scheduling. This feature
may be disabled by the -i option to C2 (or W2. -i option to cc).

Optimizing C Programs 3-21

3

Instruction Scheduling

Instruction scheduling is the reordering of the instructions within a basic block
(a straight line piece of code which is entered only at the top and exits only
at the bottom) to increase execution speed while producing the same result.
The implementation details of the processor's instruction pipeline can result in
two different orderings of the same instruction sequence executing at different
speeds. For the MC68030 and MC68882 combination, performance gains can
be achieved by scheduling integer instructions to execute concurrently with
floating point instructions and by separating floating point instructions in
which the destination register of the first instruction is the source register of
the next instruction. For the MC68040, additional speed up can be achieved
by separating instructions in which the destination of the first instruction is an
A-register and the source address of the second instruction includes indirection
through that same A-register. For example, the following C program:

int i,j,k;
float a,b,c;

maine)
{

i j + k;
a = b + c;

}

produces assembly instructions for the two assignment statements as follows:

mov.l _j,%dO
add.l _k,%dO
mov.l %dO,_i
fmov.s _b,%fpO
fadd.s _c,%fpO
fmov.s %fpO,_a

3-22 Optimizing C Programs

The instruction scheduler reorders the instructions as follows:

fmov.s _b,%fpO
fadd.s _c,%fpO
mov.l _j,%dO
add.l _k,%dO
mov.l %dO,_i
fmov.s %fpO,_a

thus, allowing the evaluation of the statement i = j + k to execute concurrently
with the evaluation of the expression b + C.

Constant Folding

Constant folding computes the value of a constant expression at compile time.
For example,

secs_per_hr = 60*60;

is replaced by

secs_per_hr = 3600;

Constant folding is performed at all optimization levels, but more opportunities
may arise in combination with other level 2 optimizations.

Constant Propagation

Performed at levels 2 and above only, constant propagation replaces a variable
with a constant value, if that can be determined at compile time. For example,
after constant propagation and constant folding, the code

a = 1;
b = 2;

c = a + b;

becomes

a = l' ,
b 2' ,
c = 3;

Optimizing C Programs 3-23

3

Dead Code Elimination

Performed at levels 2 and above only, dead code elimination removes code that
cannot be reached. For example, the code

3 #define BUFFER_SIZE 512
int a [BUFFER_SIZE] ;

deadcodeO
{

int request = 256;

}

if (BUFFER_SIZE >= request)
initialize(a);

else
expand_and_init(a);

after constant propagation and dead code elimination becomes

int a[512];
deadcode()
{

initialize(a);
}

Coloring Register Allocation

Performed at levels 2 and above only, coloring register allocation replaces
memory references to variables and constants with references to hardware
registers. It does this only for those variables for which it would be most
advantageous. The entire function is examined to determine the best variables
for register allocation. The name of this optimization comes from the similarity
to map coloring algorithms in graph theory.

Simple register allocation is done at levels 0 and 1. Integer variables (including
char, short, and long) are assigned to available MC680xO "D" registers when
the storage class specifier register is included in the variable's declaration.
Similarly, pointer variables are assigned to MC680xO "A" registers. No floating
point variables are assigned to registers at levels 0 and 1.

3-24 Optimizing C Programs

At levels 2 and above optimization, candidates for register assignment are
selected based on estimated speed improvement rather than by the register
declaration. Preference is given to variables that are used frequently or that
appear within a loop. Floating point variables can be assigned to registers.
Structure fields and array elements are not eligible for register assignment. The 3
benefits of full register allocation over levels a and 1 are that it eliminates
the need to request the register storage class in the source program, and it
is able to reuse registers within a block. Furthermore, frequently used global
variables can also be allocated a register. For example, in the following code,
the same register can be used for both loop indexes; at level a or 1, a register
declaration would have to be included, and two registers would have been
reserved for i and j for the duration of the function.

int a [5]. b [5] ;
reuseO
{

int i.j;
for (i=O; i<5; i++) a[i]=O;
for (j=O; j<5; j++) b[j]=O;

}

Common Subexpression Elimination

Performed at levels 2 and above only, common sub expression elimination
locates repeated operations and uses the saved result rather than duplicating
the operation. These types of operations include loading a value from memory
into a register, as well as arithmetic computations.

For example, the code

a x + y + z;
b = x + y + w;

becomes

t1 = x + y;
a = t1 + z;
b = t1 + w;

Optimizing C Programs 3-25

Dead Store Elimination

Performed at levels 2 and above only, dead store elimination removes
assignments to variables that are not used again in the program unit. For

3 example, the following function

f(x)

int x;
{

int a;
a = 1;
return (x);

}

becomes

f(x)

int x;
{

return (x);
}

Copy Propagation

If a variable is assigned an expression and used once later in a section of
straight-line code, copy propagation replaces the use of the variable with the
expression that was assigned to it. Copy propagation may permit subsequent
constant folding and dead store elimination. For example, the code below

int a,b;
copy_propagation()
{

int t;
t 3 * a;
b 4 * t;

}

3-26 Optimizing C Programs

becomes

int a,b;
copy_propagation()
{

b = 12 * a;
}

Copy propagation is performed at levels 2 and above only.

Loop Unrolling

Performed at levels 2 and above only, loop unrolling expands a short loop into
an equivalent sequence of instructions. This may have a cost of increased
code size, but it saves incrementing and testing loop indexes and creates the
possibility for other optimizations.

For example,

int a [3] ;
unroll 0
{

int i;
for (i=O; i<3; i++) a[i] 2*i;

}

becomes

int a [3] ;
unroll 0
{

}

a[O]
a [1]
a [2]

0;
2' ,
4;

Optimizing C Programs 3-27

3

Code Motion of Loop Invariants

Performed at levels 2 and above only, code motion moves statements or
statement fragments that are relatively constant in a loop to the outside of the

3 loop, thus ensuring that they are executed only once. For example,

code_motion(x, a, b, c)
int x [100] ;
int a, b, c;
{

int i;
int tot;

tot = 0;
for (i =1 ;

{

xCi] =
tot +=

}

i < 100;

a*b+c;
xCi] ;

return(tot);
}

3-28 Optimizing C Programs

i++)

this function can be changed to read as shown below after some dead storage
elimination and replacing the relatively constant right-hand side of the
assignment to x[i]:

code_motion(a, b, c)
int a, b, c;
{

}

int i;
int tot;
int temp;

tot = 0;
temp = a*b+c;
for (i =1; i < 100; i++)

{

tot += temp;
}

return(tot);

Optimizing C Programs 3-29

3

3

Strength Reduction of Loop Induction Variables

Performed at levels 2 and above only, strength reduction replaces time
consuming arithmetic operations with less expensive ones. For example in the
strength_reduction function given below, a multiply which is inherent in the
array reference is replaced by a much quicker add.

strength_reduction()
{

}

int x [100] [100] ;
int i, j;

for (i = 0; 1 < 100; i++)
for (j = 0; j \< 100; j ++)

x [i] [j] = i + j;
return (x [99] [99]);

The above function is internally transformed into the following function after
strength reduction.

strength_reduction()
{

}

int x [100, 100];
int i, j;
int **ptr;

for (i = 0; ptr x; 1 < 100; i++)
for (j = 0; j < 100; j++)

**ptr++ = i + j;
return (x [99] [99]) ;

3-30 Optimizing C Programs

Elimination of Tail Recursion

Performed at levels 2 and above only, the optimizer detects certain forms of
recursive programs and rewrites them to use local branching instead, thus
reducing the call overhead. For example,

frecursive(c, f)
int c;
void (*f) 0 ;

{

}

(*f)(c);
c +=1;
frecursive(c, f);

becomes, by eliminating the recursive call to frecursi ve 0,

frecursive(c, f)
int c;
void (*f)O;

{

}

top:
(*f)(c);
c += 1;
goto top;

which is much faster because no intermediate calls are required.

Optimizing C Programs 3-31

3

Non-Reducible Code

Performed at level 2 and above only, the optimizer will not optimize procedures
that contain a non-reducible flow graph. Non-reducible flow graphs are blocks

3 of code that form a loop which can be entered from more than one point. For
example, this short program contains a non-reducible flow graph:

1: int i;
2: main 0
3: {

4: if (i -- 99)

5: goto label;
6: while (1)
7: {

8: if (i -- 10)

9: i 99;
10: else
11: label: i 999;
12: }

13: }

3-32 Optimizing C Programs

Note that in this program the if ... else statement of lines 8 through 11 can
be entered from the while statement on line 6 or from the goto statement on
line 5. A flow graph of this loop would look like this:

LOOP ,.---- --------,
Loop entered here

Figure 3-2. Non-Reducible Flow Graph

If you compile the previously given program using the following command:

cc -0 flow.c

you will get this message:

Global optimizer warning in "main": Procedure not reducible
(no global optimizations or register allocation performed in this routine).

To allow the procedure to be optimized, use this command:

cc -0 -Wg.-x flow.c

Optimizing C Programs 3-33

3

Procedure Integration

This section deals with procedure integration replacing function calls with
actual code from the called function. This allows for faster execution by

3 removing the overhead of a function call and may also allow increased global
optimization.

Integration of System Functions

When compiling with the optimization option +03, certain system function
calls are replaced by the actual code in order to speed up execution. The
system calls that may be replaced with inline code are:

strcpy
cosh
sin

Note

acos
exp
sinh

asin
fabs
sqrt

at an
log
tan

cos
log10
tanh

The math functions (all but strcpy) are replaced by inlined
code that does not exactly duplicate the behavior of the library
code. They do not set errno or call matherr in the case of
error conditions. Some of them may generate a floating point
exception when called with an illegal parameter (e.g., taking
the sqrt of a negative value).

Integration of User Defined Functions

User defined functions can also be inlined when compiling with the
optimization option +03. To replace a call to a user defined function with the
actual function code requires that both the call and the text of the function
being called be in the same file. Also all parameters must match with respect
to number and type. A list of directives to control which functions are and are
not inlined is given in the section "Using Directives to Control Optimization"
found in this chapter.

Inlining user defined functions can increase the code size of a program as
multiple calls to a function are replaced by copies of the called function. For
this reason inlining should only be done on small functions or where a function
is called many times during program execution.

3-34 Optimizing C Programs

4
Implementation Dependencies

This chapter describes implementation dependencies for C 7.0 and 8.0.

Implementation Dependencies for C 7.0

Primary Name Definitions in C Libraries

In order to comply with the ANSI-C and POSIX 1003.1 standards, the libe. a
and libm. a libraries will now use primary and secondary definitions in
referring to library routines. The primary definition is the name of a library
routine prefixed with one or more underscores; the secondary definition is the
name.

Your programs may be affected if you have replaced a library routine by
defining your own function with the same name. Beginning with 7.0 if you do
not use the primary definition name, instead of linking to your replacement,
your program will link to the library version. If the primary definition is used
in your replacement, your program will work just as it did before 7.0, but it
will be in violation of ANSI-C standards.

The primary and secondary definitions of a routine can be found by using
nm(1) on the library. The secondary definition will have an S next to the
segment; the primary definition will not.

The two exceptions to the new primary definitions are the matherr (3M)
and malloe (3C) routines. Because so many users write their own versions,
they will still be referenced in the old way. Programs that define their own
matherr 0, malloe 0, free 0, and/or realloe 0 will not have to change for
7.0.

Implementation Dependencies 4-1

4

4

Implementation Dependencies for C 8.0

Support for Shared Libraries

Shared libraries is a new HP-UX 8.0 feature. The Series 300/400 and Series
600/700/800 C languages provide the following support for this feature:

• Position independent code (PIC) generation

• A pragma that associates a shared library version with a module.

Position Independent Code

Series 300/400 and Series 600/700/800 C compilers provide +z and +Z as
options to generate position independent code.

For more details on shared libraries and these options, read the Programming
on HP-UX manual and the HP-UX Reference page for the cc(l) command.

Version pragma

Series 300/400 and Series 600/700/800 C compilers provide a new pragma
called HP _SHLIB_ VERSION. This pragma associates a shared library version
number with a module. The syntax of the pragma is:

#pragma HP _SHLIB_ VERSION "date"

where the format of date is mm/yy (month/year). The version number is
derived from the date and has file scope which means that it applies to all
exported objects in the source file.

4-2 Implementation Dependencies

5
Porting to ANSI C

This chapter describes the process of moving existing programs to ANSI C. In
particular, this chapter discusses:

• The const and volatile qualifiers

• How to upgrade existing programs to use function prototypes

• How name spaces work for ANSI C and other standards

• Cases where ANSI C behavior is silently different from existing C.

For information on implementation-defined behaviors and extensions for the
Series 300/400 ANSI-C product, read Appendix A in this manual.

The const and volatile Qualifiers

C on Series 300/400 computers includes two new keywords from the ANSI C
definition: const and volatile. Used in variable declarations, these keywords
qualify (or modify) the way in which the compiler treats the declared variable;
as such, they are known as qualifiers. They are reserved keywords and may not
be used as variable or function names.

Porting to· ANSI C 5-1

5

5

The const Qualifier

The const qualifier declares constant variables-that is, variables whose values
cannot be changed during program execution. Attempting to assign a value to
a const variable causes a compile error. For instance, the following statement
declares a constant variable pi of type float with initial value 3.14:

const float pi = 3.14;

A constant variable can be used like any other constant; for example:

area = pi * (radius * radius);

But attempting to assign a value to a const variable causes a compile error:

pi = 3.1416; /* this causes an error */

However, the compiler detects only obvious attempts to modify const
variables. For example, given the declaration

float *ptr;

the following code alters the contents of pi without error:

ptr = π
*ptr = 2.7;

Note that const can also be used on pointer types to declare constant pointers;
for example:

char *const prompt = "Hello> ";

Any obvious attempt to reassign the pointer prompt will cause a compile error;
for instance:

prompt = "Good-bye> "; /* This will cause an error. *1

5-2 Porting to ANSI C

The volatile Qualifier

With the 6.5 release and later, the C compiler includes a more powerful
optimizer. To do its best job, the optimizer makes assumptions about how
variables are used within a program. For example, it assumes that the contents
of memory will not be changed by entities other than the current program.
Signal handlers that alter global variables or memory-mapped input/output
may violate this assumption.

The volatile qualifier provides a way to "mark" variables that may violate
optimizer assumptions. When the optimizer encounters a volatile variable it
does not make its normal assumptions and, thus, is more conservative when
optimizing statements that reference that variable. For example, the following
code fragment marks an int array named f 00 as being volatile:

volatile int foo[100];

Note that the volatile qualifier can also be applied to pointer types; for
example:

volatile *char version_info = "Release 1.01 - 010188";

For details on using the optimizer, its assumptions, and when to use the
volatile qualifier, refer to the chapter "Optimizing C Programs."

Porting to ANSI C 5-3

5

5

Upgrading Existing C Programs to Use Prototypes
For the most part, existing programs will compile unchanged in ANSI C.
However, ANSI C has introduced a new syntax for declaring functions. The
new syntax for a function declaration defines a function and its parameters and
their types. This function declaration is called a function prototype.

Advantages of the Function Prototype

Adding function prototypes to existing C programs can yield three advantages:

• Better type checking between declarations and calls because the number
and types of the parameters are part of the function's parameter list. For
example,

struct s
{

int i;
};

int old_wayCx)
struct s x;
{

1* Function body using the old method for
declaring function parameter types

int new_wayCstruct s x)
{

1* Function body using the new method for
declaring function parameter types

*1
}

1* The functions "old_way" and "new_way" are
both called later on in the program.

5-4 Porting to ANSI C

old_way(1);
new_way(1);

1* This call compiles without complaint. *1
1* This call gives an error. *1

In this example, the function new_way gives an error because the value being
passed to it is of type int instead of type struct x .

• More efficient parameter passing in some cases. Parameters of type float
are not converted to double. For example,

void old_way(f)
float f;
{

1* Function body using the old method for
declaring function parameter types

void new_way(float f)
{

1* Function body using the new method for
declaring function parameter types

1* The functions "old_way" and "new_way" are
both called later on in the program.

float g;

old_way(g);
new_way(g);

In the above example, the function old_way is called, g is converted to a
double and pushed on the stack. The old_way function then pops g off the
stack and converts it to float. When the function new_way is called, g gets
pushed on the stack without any conversion and new_way then pops goff
the stack. This function is more efficient because the data type of g remains
unchanged.

Porting to ANSI C 5-5

5

5

• Automatic conversion of function arguments, as if by assignment. For
example, integer parameters may be automatically converted to floating
point.

/* Function declaration using the new method
for declaring function parameter types

extern double sqrt(double);

/* The function "sqrt" is called later
on in the program.

sqrt(l);

In this example, any value passed to sqrt is automatically converted to
double.

Compiling an existing program in ANSI mode will yield some of these
advantages because of the existence of prototypes in the standard header
files. To take full advantage of prototypes in existing programs, change old
style declarations (Le. without prototype) to new style declarations. The tool
protogen (see protogen(l) in the online man pages) helps add prototypes to
existing programs. For each source file, protogen can produce a header file of
prototypes and a modified source file that includes prototype declarations.

Function Prototype Considerations

There are three things to consider when using function prototypes.

• Type Difference between Actual and Formal Parameters

• Declaration of a Structure in a Prototype Parameter

• Mixing of const and volatile Qualifiers and Function Prototypes

5-6 Porting to ANSI C

Type Difference between Actual and Formal Parameters

When a prototype to a function is added, one should be careful that all calls
to that function occur with the prototype visible (in the same context). The
following example illustrates problems that may arise when this is not the case:

fune10{
float f;
fune2(f);

}

int fune2(float arg1){
1* body of fune2 *1

}

In the example above, when the call to fune2 occurs, the compiler behaves as
if fune2 had been declared with an old-style declaration int fune20. For 5
an old-style call, the default argument conversion rules cause the parameter f
to be converted to double. When the declaration of fune2 is seen, there is
a conflict. The prototype indicates that the parameter arg1 should not be
converted to double, but the call in the absence of the prototype indicates that
arg1 should be widened. When this conflict occurs within a single file, the
compiler will issue an error:

function prototype for 'func2' should contain parameters compatible
with default argument promotions when used with an empty declaration.

This error may be fixed by either making the prototype visible before the call,
or by changing the formal parameter declaration of arg1 to double. If the
declaration and call of fune2 were in separate files, then the compiler would
not detect the mismatch and the program would silently behave incorrectly.

The lint{l} command can be used to find such parameter inconsistencies across
files.

Porting to ANSI C 5-7

Declaration of a Structure in a Prototype Parameter

Another potential prototype problem occurs when structures are declared
within a prototype parameter list. The following example illustrates a problem
that may arise:

func3(struct stname *arg);
struct stname { int i; };

void func4(void) {
struct stname s;
func3(&s);

}

In this example, the call and declaration of func3 are not compatible because
they refer to different structures, both named stname. The stname referred to

5 by the declaration was created within prototype scope. This means it goes out
of scope at the end of the declaration of func3. The declaration of stname on
the line following func3 is a new instance of struct stname. When conflicting
structures are detected the compiler will issue an error:

types in call and definition of 'func3' have incompatible
struct/union pointer types for parameter 'arg'

This error may be fixed by switching the first two lines and thus declaring
-struct stname prior to referencing it in the declaration of func3.

Mixing of const and volatile Qualifiers and Function Prototypes

Mixing the const and volatile qualifiers and prototypes can be tricky. Note
that this section uses the const qualifier for all of its examples; however, you
could just as easily substitute the volatile qualifier for const. The rules for
prototype parameter passing are the same as the rules for assignments. To
illustrate this point, consider the following declarations:

5-8 Porting to ANSI C

1* pointer to pointer to int *1
int **actualO;

octuo 10: ... 1 __ :===~f-----1~~I ... __ :. ====I-----1~ .. I ... ____

1* const pointer to pointer to int *1
int **const actua11;

int

o ctuo 11 :1 ... __ :===~----1~"I ... __ :===~I-----1~"I ... ____
canst

1* const pointer to const pointer to int *1
int *const *const actua12;

int

octuoI2:1 ... __ :===~---1~"'I ... __ :====I-----1~ .. I ... ____
canst canst int

1* const pointer to const pointer to const int *1
const int *const *const actua13;

o ctuo 13 :1 ... __ :===~----1~"I ... __ :====I-----1~ .. I ... ____
canst canst canst int

Porting to ANSI C 5-9

5

5

These declarations show how successive levels of a type may be qualified. The
declaration for actualO has no qualifiers. The declaration of actuall has only
the top level qualified. The declarations of actual2 and actual3 have two and
three levels qualified. When these actual parameters are substituted into calls
to the following functions:

void fO(int **formalO);
void fl(int **const formall);
void f2(int *const *const formal2);
void f3(const int *const *const formal3);

The compatibility rules for pointer qualifiers are different for all three levels.
At the first level, the qualifiers on pointers are ignored. At the second level, the
qualifiers of the formal parameter must be a superset of those in the actual
parameter. At levels three or greater the parameters must match exactly.
Substituting actualO through actual3 into fO through f3 results in the
following compatibility matrix:

m f1 ~ f3

actualO C C C N

actuall C C C N

actua12 S S C N

actua13 NS NS N C

C = compatible

S = not compatible, qualifier level two of formal is not a superset of actual
parameter

N = not compatible, qualifier level three doesn't match

5-10 Porting to ANSI C

How the Name Spaces Work for
ANSI C and Other Standards
The ANSI C standard specifies exactly which names are reserved by the
implementation (compiler, libraries and header files). These reserved names are
given a special name space by the ANSI C implementation. The intention is
to make it easier to port programs from one implementation to another with
no fear of unexpected collisions in names. For example, since the ANSI C
standard does not reserve the keyword open, an ANSI C program may define
and use a fu.nction named open without colliding with the open(2) system call
in different operating systems.

Porting to ANSI C 5-11

5

5

HP Header File and Library
Implementation of Name Space

The HP header files and libraries have been designed to support four different
name spaces.

8

5-12 Porting to ANSI C

where:

ANSI C

POSIX

XOPEN

HP-UX

is the set of names defined in the ANSI C standard.

is the set of names defined in the POSIX 1003.1 standard. These
names are a superset of those used by ANSI C.

is the set of names defined by the XOPEN standard. These names
are a superset of those used by POSIX.

is all names defined in the header files, a superset of XOPEN.

The HP library implementation has been designed with the assumption that
many existing programs will use more routines than those allowed by the ANSI
C standard. If a program calls, but does not define a routine that is not in the
ANSI C name space (e.g. open), then the library will resolve that reference.
This allows a clean name space and backward compatibility.

The HP header file implementation uses a set of predefined names to select
the name space. In compatibility mode the default is the HP-UX name
space. Compatibility mode means that virtually all programs that compiled
and executed under previous releases of the HP C Language on HP-UX will
continue to work as expected. The following table provides information on how
to select a name space from a command line or from within a program using
the defined libraries.

Table 5-1. Selecting a Name Space in ANSI Mode

When using the Use command line or #define in
name space ... option ... source program

HP-UX -D _HPUX_SOURCE #define _HPUX_SOURCE

XOPEN -D _XOPEN_SOURCE #define _XOPEN_SOURCE

POSIX -D _POSIX_SOURCE #define _POSIX_SOURCE

ANSI C default default

Porting to ANSI C 5-13

5

5

In ANSI mode, the default is ANSI C name space. The symbols
_POSIX_SOURCE, _XOPEN_SOURCE or _HPUX_SOURCE may be used to select other
name spaces. The _HPUX_SOURCE symbol may need to be defined to make
existing programs compile in ANSI mode. For example,

#include <sys/types.h>
#include <sys/socket.h>

will result in the following compile-time error in the ANSI mode because
socket. h uses the symbol u_short and u_short is only defined in the HP-UX
name space section of types. h:

"/usr/include/sys/socket.h". line 79: syntax error:
u_short sa_family;

This error may be fixed by adding - D _HPUX_SOURCE to the command line of
the compile.

Silent Changes for ANSI C
This section describes the situations that occur when the ANSI mode silently
has different behavior from the compatibility mode. Many of these silent
behaviors can be detected by running the lint{l} program. The following list
provides some of these silent behaviors:

• A bit field declared without the signed or unsigned keywords will be
signed in ANSI mode and unsigned in the compatibility mode .

• Trigraphs are new in ANSI C. A trigraph is a three character sequence that
is replaced by a corresponding single character. For example, ??= is replaced
by #. For more information on trigraphs, read C: A Reference Manual.

5-14 Porting to ANSI C

• Promotion rules for unsigned char and unsigned short have changed.
Compatibility mode rules specify when an unsigned char or unsigned
short is used with an integer the result is unsigned. ANSI-mode rules
specify the result is signed. The following program example illustrates a
case where these rules are different.

mainO{
unsigned short us = 1;
int i = -2;
printf("%s\n",(i+us»O? "compatibility mode" : "ansi mode");

}

Note that differences in promotion rules may occur under the following
conditions: 1

D An expression involving an unsigned char or unsigned short produces 5 I

an integer-wide result in which the sign bit is set: that is, either a unary
operation on such a type, or a binary operation in which the other
operand is int or "narrower" type.

D The result of the preceding expression is used in a context in which
its condition of being signed is significant: it is the left operand of the
right-shift operator or either operand of /,%,<,<=,>, or >=.

1 Rationale for Draft Proposed American National Standard for Information
Systems - Programming Language C (311 First Street, N.W., Suite 500,
Washington, DC 20001-2178; X3 Secretariat: Computer and Business Equipment
Manufactures Association), pages 34 - 35.

Porting to ANSI C 5-15

5

• Floating point expressions with float parameters may be computed as
float precision in ANSI mode. In compatibility mode they will always be
computed in double precision.

• Initialization rules are different in some cases when braces are omitted in an
initialization.

• U nsuffixed integer constants may have different types. In compatibility
mode, un suffixed constants have type into In the ANSI mode, unsuffixed
constants less than or equal to 2147483647 have type int. Constants larger
than 2147483647 have type unsigned. For example:

-2147483648

has type unsigned in the ANSI mode and int in compatibility mode. The
above constant is unsigned in the ANSI mode because 2147483648 is
unsigned, and the - is a unary operator.

• Empty tag declarations in a block scope create a new struct instance in the
ANSI mode. The term block scope refers to identifiers declared inside a block
or list of parameter declarations in a function definition that have meaning
from their point of declaration to the end of the block. In the ANSI mode, it
is possible to create recursive structures within an inner block. For example,

struct x { int i; };
{ 1* inner scope *1

struct x;

}

struct y { struct x *xptr; };
struct x { struct y *yptr; };

In the ANSI mode, the inner struct x; declaration creates a new version of
the structure which may then be referred to by struct y. In compatibility
mode, the struct x; declaration refers to the outer structure and the
program is incorrect. For more information, read the section "Structure
Type Reference" in the chapter "Types" in C: A Reference Manual.

5-16 Porting to ANSI C

A
Implementation-Defined
Behaviors and Extensions to ANSI-C

This appendix contains information on all implementation-defined behaviors
and extensions for the Series 300/400 ANSI-C product. Except where noted
these characteristics hold true for both compatibility and ANSI mode.

Implementation-Defined Behaviors

Diagnostic Messages

Description

Format of Diagnostic Messages

Behavior

Diagnostic messages may be either
errors or warnings.
Error messages have this format:
"filename". line number: message
Warning messages have this format:
"filename". line number: warning: message

Implementation-Defined A-1
Behaviors and Extensions to ANSI-C

A

Arguments to main ()

Description Behavior

Semantics of arguments to main () argc, argv, and envp are
passed, and are writable. The arguments
from the command line invocation are
stored in argv (one argument per
entry). The number of elements is
contained in argc. The strings are
case sensitive.

Interactive Device

Description Behavior

Whether data will be line • If isatty{3C) returns true, then data is line
buffered or block buffered buffered .

• If isatty{3C) returns false, then data is block
buffered. A

Identifiers

Description Behavior

Number of significant initial 255
characters in an identifier without
external linkage

Number of significant initial 255
characters in an identifier with
external linkage

Significance of case distinction The case is significant for
in identifiers with external linkage external identifiers

A-2 Implementation-Defined
Behaviors and Extensions to ANSI-C

Handling Characters

Description

Source and execution character
sets: the source character set is
the set of characters in which
source files are written and the
execution character set is the set
of characters that may be used
during execution of a program.

Value of an integer character
constant that contains more than
one character wide character
constant or that contains more
than one multibyte character

Current locale used to convert
multiple characters into
corresponding wide characters for a
wide character constant

Behavior

The source and execution character
sets are ASCII. The members of the
source set depend on the language
used. For NLS processing, any
character that is valid in that
language may be used in strings,
character constants, and header
file names. The source character
set does not include: \xOl,
\x02. \x03. and \xff. If these
characters are seen in the input
character set, cpp issues a diagnostic
message and ignores the characters.
The execution character set includes
all other 8-bit values. Source characters
are mapped one-for-one into the
execution character set.

A warning is given for character
constants that contain more than one
character.

Uses the LC_CTYPE environment
variable at compile time

Implementation-Defined A-3
Behaviors and Extensions to ANSI-C

A

Handling Characters (continued)

Description Behavior

Whether a "plain" char has char has the same set of values
the same range of values as as a signed char
signed char or unsigned char

Handling Integers

Description Behavior

Representations of the various 2's complement representation is used
types of integers char - 8 bits

short - 16 bits
int - 32 bits
long - 32 bits

A Result of converting an integer to Preserves the value of the sign
a shorter signed integer bit and the least significant bits

Result of converting an unsigned The most significant bit of the
integer to its corresponding signed unsigned value becomes the sign bit
integer of equal length

Results of bitwise operations on Uses 2's complement representation
signed integers

Sign of the remainder on integer The sign of the remainder is the
division same as the sign of the dividend.

Result of a right shift of a This is an arithmetic shift which
negative-valued signed integral shifts in the sign bit.
type

A-4 Implementation-Defined
Behaviors and Extensions to ANSI-C

Handling Floating-Point Values

Description

Representations of the various
floating-point numbers

Direction of truncation when
an integral number is converted
to a floating-point number that
cannot exactly represent the
original value

Direction of truncation or
rounding when a floating-point
number is converted to a
narrower floating-point number

Behavior

Series 300/400 computer representations
follow the IEEE 754 standard; however,
the representations are not fully
implemented for NAN, denormalized
numbers, and infinities.

Rounds toward the nearest value.
If two values are equidistant from
the value being rounded, then the
one with a zero (0) in the least
significant bit of the mantissa is
chosen.

The truncation is the same as
for integral numbers.

Implementation-Defined A-5
Behaviors and Extensions to ANSI-C

A

Handling Arrays and Pointers

Description Behavior

Type of integer required to Unsigned integer
hold the maximum size of an
array

Result of casting a pointer The bits from pointers copy directly to int
to an integer or vice versa and vice versa.

Type of integer required to hold Uses the type int
the difference between two pointers
to elements of the same array

Registers

Description Behavior

A Extent to which objects can actually There are 6 data and 4 address (or 3 with
be placed in registers by use of the +ffpa) registers available.
register storage-class specifier.

• Only scalar types may be placed in registers
(i.e. no struct. union, or floating point).

• Pointers are placed in address registers until
they are used up.

• Integral types are placed in data registers
until they are used up.

• With optimization at level 2 or 3, register
declarations are ignored and the optimizer
performs register allocations.

A-6 Implementation-Defined
Behaviors and Extensions to ANSI-C

Handling of Structures, Unions, Enumerations and Bit Fields

Description

Padding and alignment of members
of structures

Whether a "plain" int bit-field
is treated as a signed int
bit-field or as an unsigned int
bit-field

Order of allocation of bit-fields
within an int

Crossing of bit fields over
storage-unit boundaries

Integer type chosen to represent
the values of an enumeration type

Qualifiers

Description

Access to an object that has
a volatile qualified type

Behavior

See the chapter in this manual
"Data Type Alignments"

The int bit-field is treated as
signed

The order of allocation is from left
to right (most significant to least
significant) .

Bit fields cannot cross boundaries.

Uses into

Behavior

Reads or writes of all of or part
of that object; however, volatile
objects are not placed in registers

Implementation-Defined A-7
Behaviors and Extensions to ANSI-C

A

Declarator Limits

Description Behavior

Maximum number of declarators The maximum number is 13.
(Le., array of, "[]"; pointer
to, "*"; function returns, "()")
that may modify an arithmetic,
structure, or union type.

Case Limits

Description Behavior

Maximum number of case values in Has no arbitrary limit
a switch statement.

A

A-a Implementation-Defined
Behaviors and Extensions to ANSI-C

Preprocessing Directives

Description

Determine if the value of a
single-character constant in a
constant expression (that controls
conditional inclusion) matches the
value of the same character constant
in the execution character set

Determine if the value of a
single-character constant in a
constant expression (that controls
conditional inclusion) can have a
negative value.

Method for locating includable
source files

Support of the #pragmas
directives

Definitions for _DATE_ and
_ TIME_ when the date and time of
translation are not available

Behavior

Has one-to-one mapping from source
character set to execution character
set; therefore, their values match

It can have a negative value for a
single-character constant in a
constant expression.

See the cpp (1) command in the
HP- UX Reference

The following #pragmas are
supported:
HP _ALIGN
HP _INLINE_DEFAULT
HP _INLINE_FORCE
HP _INLINE_LINES
HP _INLINE_NOCODE
HP _INLINE_OMIT
HP _SHLIB_ VERSION
NO_SIDE_EFFECTS
OPTIMIZE [ONIOFFj
OPT_LEVEL [0111213]

The null string ("").

Implementation-Defined A-9
Behaviors and Extensions to ANSI-C

A

A

Library Functions

Description

Null-pointer constant to which the
macro NULL expands

Diagnostic printed by, and the
termination behavior of the assert
function (also note that the
abort(3C) function is invoked
after the assertion failure)

Sets of characters tested for by
the isalnum, isalpha, iscntrl,
islower, isprint, and isupper
functions

Values returned by the
mathematical functions on domain
errors

Whether mathematic functions
set errno on underflow range
errors

Effect the fmod function has
when its second argument is 0

Set of signals for the signal
function

A-10 Implementation-Defined

Behavior

o

Assertion failed: <text of expression>,
file <file name>,
line <line number>

The set of characters depend on
the locale used. The default values
for Care:

isalnum: ' 0 ' - , 9', ' A ' - , Z', ' a ' - , z'
isalpha: 'A'-'Z', 'a'-'z'
iscntrl: OxO - Ox2F
islower: 'a'-'z'
isupper: ' A ' - , Z'
isprint: ' , -'-'

NAN when libM. a is used
Zero (0) when libm. a is used

errno is assigned the value
of the macro ERANGE on underflow
range errors.

Zero (0) is returned

See signal(5} in the
HP-UX Reference

Behaviors and Extensions to ANSI-C

Description

Semantics for each signal
recognized by the signal function

Default handling and the handling
at program start-up for each signal
recognized by the signal function

Whether the equivalent of
sig(sig. SIG_DFL) is
executed prior to the call of a
signal handler; the blocking of
the signal that is performed

Effects of default handling if
the SIGILL signal is received
by the handler specified to the
signal function

Need for a new-line to terminate
the last line of a text stream file

Space characters that are written
out to a text stream immediately
before a new-line character is
read in

Number of null characters that may
be appended to data written to a
binary stream

Location of the file position
indicator of an append mode stream

Effect of doing a write
on an open text stream when
the current file pointer is not
at the end of the file

Behavior

See signal{5} in the HP- UX Reference

See signal{5} in the HP-UX Reference

See signal{5} in the HP-UX Reference

See signal{5} in the HP- UX Reference

A new-line is not required

Space characters appear

No null characters are appended

It is initially positioned at the end of the file

• If the mode was append (a or a+) then
writes are always appended to the end of the
file regardless of the value of the file pointer

• If the mode was write (w or w+) or r+, the
write is done to the location of the current
file pointer. The file is not truncated beyond
that point.

Implementation-Defined A-11
Behaviors and Extensions to ANSI-C

A

Library Functions (continued)

Description Behavior

Buffering of file Supports unbuffered, buffered and
line buffered characteristic

Existence of zero-length files Supports zero-length files

File name rules Supports HP-UX file naming rules (see
the section "Naming Files" in the chapter
"Working with Files" found in
A Beginner's Guide to HP-UX

Opening a file multiple times Supports opening a file multiple times

Effects of the remove function This function removes an open file.

A
on an open file

Effects of executing the rename The function will be executed, and it
function with a file name that exists will overwrite the file that already

exists assuming the directory has write
permission.

Output for %p conversion A sequence of eight unsigned hexadecimal
in the fprintf function digits is output. If the value being

converted can be represented in fewer
digits, it will be expanded with leading
zeros.

Input for %p conversion A sequence of up to eight unsigned
in the fscanf function hexadecimal digits is read.

A-12 Implementation-Defined
Behaviors and Extensions to ANSI-C

Description

Interpretation of a character that
is neither the first nor the last
character in the scan list for
% [] conversion in the fscanf
function

Value to which the fgetpos
or ftell function set the ERRNO
macro when a failure occurs

Messages generated by the
perror function

Behavior

The construct [first - last]
represents a range of characters
where first must be lexically
less than or equal to last;
The lexical order is determined by
the program's locale (LC_COLLATE
category). For example, the scan set
[a-z] will be all lower case if the
LC_COLLATE category is set to the C
locale. It will not be all lower case
if the LC_COLLATE category is set to
the french@fold locale.

Same possible values as those set
by Iseek{2}:
EBADF - fildes is not an open file

descriptor
ESPIPE - fildes is associated with

a pipe or FIFO
EINVAL - is not one of the supported

value of the resulting
file offset would be
negative

See perror {3} in the
HP-UX Reference or the file
/usr/include/sys/errno.h

Implementation-Defined A-13
Behaviors and Extensions to ANSI-C

A

Library Functions (continued)

Description Behavior

Behavior of the calloc, For malloc, size=O causes 0
malloc, or realloc function bytes to be memory allocated (may
if the size requested is zero be grown with realloc).

For realloc, size=O causes the object
to be freed.
For calloc, size=O causes the
object to be memory allocated.

Behavior of the abort function This function closes all files.
with regard to open and temporary
files

Status returned by the exit exi t returns no value (it
function if the value of the cannot return to its caller), see the
argument is other than zero, HP- UX Reference for
EXIT _SUCCESS or EXIT _FAILURE details.

A

Altering the environment name The environment name is whatever
with the getenv function is passed in by the exec command

(set up in shell environments, etc).
The method of modifying the environment
is to use putenv(3C) call.

Contents and mode of execution It is given to sh as input.
of the string by the system
function

Messages generated by the See strerror (3) in the
strerror function HP-UX Reference or the file

/usr/include/sys/errno.h

A-14 Implementation-Defined
Behaviors and Extensions to ANSI-C

Description Behavior

Local time zone and Daylight Set according to the TZ
Savings Time environment variable

Era for the clock function See time (2) in the
llP-UJr Reference

Implementation-Defined Extensions

HP supports the following extensions to ANSI c.1 Extensions that are
compatible with the ANSI C standard are on by default. Other extensions
are turned on with the +e option. Use of these extensions may reduce the
portability of programs.

Implementation-Defined Extensions

Extension Behavior

Environment Arguments The main function receives a third argument char
*envp [] that points to a null-terminated array of strings
that provide information about the environment for the
execution of the process.

Scopes of Identifiers An identifier which contains the keyword extern has file
scope.

1 The material in this section comes from the American National Standard for
Information Systems - Programming Language C, ANS XS.159-1989 (311 First
Street, N.W., Suite 500, Washington, DC 20001-2178; X3 Secretariat: Computer
and Business Equipment Manufactures Association).

Implementation-Defined A-15
Behaviors and Extensions to ANSI-C

A

Implementation-Defined Extensions (continued)

Extension Behavior

Writable string literals String literals are modifiable. Identical strings are
distinct.

Function pointer casts Pointers may be cast from objects to functions and
vice-versa. This allows data to be invoked as a function,
and functions to be examined as objects.

Non-int bit fields Any integral type may be declared as a bit field.

asm Text between the delimiters asm (" and ") is inserted
directly in the assembly file. This option is incompatible
with ANSI C.

Common Storage Model There may be more than one external definition for an
object with or without the keyword extern. The
defini tions may not disagree and no more than one may
be initialized.

Predefined Macro See cpp(l) in the HP- UX Reference.

A Names

$ as an identifier This extension accepts the $ character as a valid
character identifier in a character string as long as it is not the

first character (e.g., a$b is valid).

A-16 Implementation-Defined
Behaviors and Extensions to ANSI-C

B
HP-UX Reference Pages

This appendix provides reference pages for C and ANSI C commands.

B

HP-UX Reference Pages B-1

cc(l) cc(l)

NAME
cc, c89 - C compiler

SYNOPSIS
cc [options 1 files
c89 [options 1 files

DESCRIPTION
cc is the HP-UX C compiler. c89 is the HP-UX POSIX conforming C compiler. Both accept several types
of arguments asfiles:

Arguments whose names end with .c are understood to be C source files. Each is compiled and
the resulting object file is left in a file having the corresponding basename, but suffixed with .0

instead of .c. However, if a single C file is compiled and linked, all in one step, the .0 file is
deleted.

Similarly, arguments whose names end with .s are understood to be assembly source files and
are assembled, producing a .0 file for each .s file.

Arguments whose names end with .i are assumed to be the output of cpp(l) (see the -P option
below). They are compiled without again invoking cpp(l). Each object file is left in a file hav­
ing the corresponding basename, but suffixed .0 instead of .i.

Arguments of the form -Ix cause the linker to search the library libx .sl or libx.a in an
attempt to resolve currently unresolved external references. Because a library is searched
when its name is encountered, placement of a -1 is significant. If a file contains an unresolved
external reference, the library containing the definition must be placed after the file on the
command line. See ld(l) for further details.

All other arguments, such as those whose names end with .0 or .a, are taken to be relocatable
object files that are to be included in the link operation.

Arguments and options can be passed to the compiler through the CCOPTS environment variable as well
as on the command line. The compiler reads the value of CCOPTS and divides these options into two
sets; those options which appear before a vertical bar (I), and those options which appear after the
vertical bar. The first set of options are placed before any of the command-line parameters to cc; the
second set of options are placed after the command-line parameters to cc. If the vertical bar is not
present, all options are placed before the command-line parameters. For example (in sh(l) notation),

CCOPTS="-v I-Imalloc"
export CCOPTS
cc -g prog.c

is equivalent to

cc -v -g prog.c -lmalloc

When set, the TMPDIR environment variable specifies a directory to be used by the compiler for tem­
porary files, overriding the default directories jtmp and jusrjtmp.

Options
It should be noted that from the cc and c89 options; -A, -G, -g, -0, -p, -v, -y, +z, +Z are not sup­
ported by the C compiler provided as part of the standard HP-UX operating system. They are sup­
ported by the C compiler sold as an optional separate product.

The following option is recognized only by cc:

- Amode Specify the compilation standard to be used by the compiler. The mode can be one of
the following letters:

c Compile in a mode compatible with HP-UX releases prior to 7.0. (See The C Pro­
gramming Language, First Edition by Kernighan and Ritchie). This option is
currently the default. The default may change in future releases.

a Compile under ANSI mode (ANSI programming language C standard ANS
X3.159-1989). When compiling under ANSI mode, header files define only those
names specified by the standard. To get the same name space as in compatibil­
ity mode (-Ac), define the symbol _HPUX_SOURCE.

HP-UX Release 8.0: January 1991 -1- (Section 1) 1

cc(l) cc(l)

The following options are recognized by both cc and c89:

-c

-c
-Dname=dej
-Dname

-E

-g

-G

-Idir

-Ix

-L dir

-n

-N

-ooutjile

-0

-p

-p

-q

-Q

-s

-8

-tx,name

2 (Section 1)

Suppress the link edit phase of the compilation, and force an object (.0) file to be pro­
duced for each .c file even if only one program is compiled. Object files produced from
C programs must be linked before being executed.

Prevent the preprocessor from stripping C-style comments (see cpp(l) for details).

Define name to the preprocessor, as if by '#define'. See cpp(1) for details.

Run only cpp(l) on the named C or assembly files, and send the result to the standard
output.

Cause the compiler to generate additional information needed by the symbolic debugger.
This option is incompatible with optimization.

Prepare object files for profiling with gproj (see gproj(l)).

Change the algorithm used by the preprocessor for finding include files to also search in
directory dir. See cpp(l) for details.

Refer to item (4) at the beginning of the DESCRIPTION section.

Change the algorithm used by the linker to search for libx.sl or libx.a. The -L option
causes cc to search in dir before searching in the default locations. See ld(l) for
details.

Cause the output file from the linker to be marked as shareable. For details and system
defaults, see ld(l).

Cause the output file from the linker to be marked as .unshareable. For details and sys­
tem defaults, see ld(1).

Name the output file from the linker outfile. The default name is a.out.

Invoke the optimizer with level 2 optimization. Equivalent to +02.

Arrange for the compiler to produce code that counts the number of times each routine
is called. Also, if link editing takes place, replace the standard startoff routine by one
that automatically calls monitor(3C) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An execution profile can
then be generated by use of proj(l).

Run only cpp(l) on the named C files and leave the result on corresponding files
suffixed.i. The -P option is also passed along to cpp(l).

Cause the output file from the linker to be marked as demand loadable. For details and
system defaults, see ld(l).

Cause the output file from the linker to be marked as not demand loadable. For details
and system defaults, see ld(l).

Cause the output of the linker to be stripped of symbol table information. See strip(1)
for more details. The use of this option prevents the use of a symbolic debugger on the
resulting program. See ld(l) for more details.

Compile the named C files, and leave the assembly language output on corresponding
files suffixed .s.

Substitute subprocess x with name where x is one or more of a set of identifiers indicat­
ing the subprocess(es). This option works in two modes: 1) if x is a single identifier,
name represents the full path name of the new subprocess; 2) if x is a set of identifiers,
name represents a prefix to which the standard suffixes are concatenated to construct
the full path names of the new subprocesses.

The x can take one or more of the values:

p Preprocessor (standard suffix is cpp)
c Compiler (standard suffix is ccom)

-2- HP-UX Release 8.0: January 1991

cc(l)

-Uname

-v

o
a
1

Same as c
Assembler (standard suffix is as)
Linker (standard suffix is Id)

cc(l)

Remove any initial definition of name in the preprocessor. See cpp(l) for details.

Enable verbose mode, which produces a step-by-step description of the compilation pro­
cess on the standard error.

-w Suppress warning messages.

-W x,argl[,arg2 ...]

-y

-y

-z

-Z

+z,+Z

Pass the argument[s] argi to subprocess x, where x can assume one of the values listed
under the -t option as well as d (driver program). The -W option specification allows
additional, implementation-specific options to be recognized by the compiler driver. For
example,

- WI, -a,archive

causes the linker to link with archive libraries instead of with shared libraries. See
ld(l) for details. For some options, a shorthand notation for this mechanism can be
used by placing "+" in front of the option name as in

+M

which is equivalent to

-Wc,-M

+M is the Series 300/400 option which causes the compiler to generate calls to the math
library instead of generating code for the MC68881 or MC68882 math coprocessor.
Options that can be abbreviated using "+" are implementation dependent, and are listed
under DEPENDENCIES.

Generate additional information needed by static analysis tools, and ensure that the
program is linked as required for static analysis. This option is incompatible with
optimization.

Enable support of 16-bit characters inside string literals and comments. Note that 8-bit
parsing is always supported. See hpnls(5) for more details on International Support.

Do not bind anything to address zero. This option allows runtime detection of null
pointers. See the note on pointers below.

Allow dereferencing of null pointers. See the note on pointers below. The -z and -Z
are linker options. See ld(l) for more details.

Both of these options cause the compiler to generate position independent code (PIC)
for use in building shared libraries. The options -g , -G , -p , and -yare ignored if +z
or +Z are used. Normally, +z should be used to generate PIC; however, when certain
limits are exceeded, +Z is required to generate PIC. The linker ld(l) issues the error
indicating when +Z is required. If both +z and +Z are specified, only the last one
encountered applies. For a more complete discussion regarding PIC and these options,
see the manual Programming on HP-UX.

Any other options encountered generate a warning to standard error.

Other arguments are taken to be C-compatible object programs, typically produced by an earlier cc run,
or perhaps libraries of C-compatible routines. These programs, together with the results of any compi­
lations specified, are linked (in the order given) to produce an executable program with the name a.out.

The first edition of "The C Programming Language", by Kernighan and Ritchie, and the various addenda
to it, are intentionally ambiguous in some areas. HP-UX specifies some of these below for compatibility
mode (- Ac) compilations.

pointers Accessing the object of a NULL (zero) pointer is technically illegal (see Kernighan and
Ritchie), but many systems have permitted it in the past. The following is provided to
maximize portability of code. If the hardware is able to return zero for reads of

HP-UX Release 8.0: January 1991 -3- (Section 1) 3

cc(l) cc(l)

identifiers

types

location zero (when accessing at least 8- and 16-bit quantities), it must do so unless the
-z flag is present. The -z flag requests that SIGSEGV be generated if an access to loca­
tion zero is attempted. Writes of location zero may be detected as errors even if reads
are not. If the hardware cannot assure that location zero acts as if it was initialized to
zero or is locked at zero, the hardware should act as if the -z flag is always set.

Identifiers are significant up to 255 characters.

Certain programs require that a type be a specific number of bits wide. It can be
assumed that an int can hold at least as much information as a short, and that a long
can hold at least as much information as an into Additionally, either an int or a long
can hold a pointer.

EXTERNAL INFLUENCES
Environment Variables

When the -Y option is invoked, LC_CTYPE determines the interpretation of string literals and comments
as single and/or multi-byte characters.

LANG determines the language in which messages are displayed.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable con­
tains an invalid setting, cc behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasionally, messages may
be produced by the preprocessor, assembler or the link editor.

If any errors occur before cc is completed, a non-zero value is returned. Otherwise, zero is returned.

EXAMPLES
The following compiles the C file prog.c, to create a prog.o file, and then invoke the link editor ld(l) to
link prog.o and procedure.o with all the C startup routines in /lib/crtO.o and library routines from
the C library libc.sl or libc.a. The resulting executable program is output in prog:

cc prog.c procedure.o -0 prog

WARNINGS
Options not recognized by cc are not passed on to the link editor. The option -W I,arg can be used to
pass any such option to the link editor.

By default, the return value from a C program is completely random. The only two guaranteed ways
to return a specific value are to explicitly call exit(2) or to leave the function mainO with a 'return
expression j' construct.

DEPENDENCIES

4

Series 300/400
It should be noted that from the following Series 300/400-specific cc and c89 options; +e, +0, +y are
not supported by the C compiler provided as part of the standard HP-UX operating system. They are
supported by the C compiler sold as an optional separate product.

The -z option is not supported.

The default is to allow null pointer dereferencing, hence using -Z has no effect.

The compiler supports the following additional options. The +optl notation can be used as a short­
hand notation for some -W options.

+bfpa Cause the compiler to generate code that uses the HP 98248A or HP 98248B float­
ing point accelerator card, if it is installed at run time. If the card is not
installed, floating point operations are done on the MC68881 or MC68882 math
coprocessor or the MC68040.

(Section I) -4- HP-UX Release 8.0: January 1991

cc(l) cc(l)

+e or -W c,-We Enables HP value added features when compiling in ANSI C mode, -Aa. This
option is ignored with -Ac since these features are already provided. Features
enabled:

$ as an identifier character
Accept embedded assembly code

+ffpa Cause the compiler to generate code for the HP 98248A or HP 98248B floating
point accelerator card. This code does not run unless the card is installed.

+M Cause the compiler not to generate inline floating point code for the MC68881 ,
MC68882 or MC68040. Library routines are referenced for matherr capability.

+ Nsecondary N Adjust the initial size of internal compiler tables. secondary is one of the
letters from the set {abdepstw}, and N is an integer value. secondary and N
are not optional. The Series 300/400 compiler automatically expands the
tables if they become full. The + N option is supported only for backwards
compatibility.

+Oopt Invoke optimizations selected by opt. If opt is 1, only level 1 optimizations are
handled. If opt is 2, all optimizations except inlining are performed. The-O
option is equivalent to +02. If opt is V, optimization level 2 is selected, but all
global variables and objects dereferenced by global pointers are treated as if
they were declared with the keyword "volatile," meaning that references to
the object cannot be optimized away. If opt is 3, all level 2 optimizations are
performed and in addition, code for certain functions is generated in line rather
than calling the function. Functions that are 'inlined' are strcpy, the transcen­
dental functions available on the MC68881 or MC68882 math coprocessor, and
certain user-defined functions. For a complete discussion of the various optimi­
zation levels, see the C Programmers Guide.

+s By default, compilation subprocesses are run concurrently and, in ANSI mode,
cpp and eCOID (cpassl) are merged into a single subprocess. This results in
better compile time performance except when available compilation memory is
scarce. Invoking this option executes the processes sequentially and executes
cpp and eCOID (cpassl) as distinct processes, thereby minimizing memory con­
sumption.

-tx,name Specify additional subprocess identifiers.

-v

-W c,-F

-W c,-YE

-W g,-All

+y

o First pass of the compiler with level 2 optimization. It is not the
same as subprocess c (standard suffix is cpassl)

1 Second pass of the compiler with level 2 optimization (standard
suffix is cpass2)

g Level 2 global optimizer (standard suffix is c.cl)
2 Peephole optimizer (standard suffix is c.c2)

Procedure integrator (standard suffix is c.cO)

Enables verbose mode in the global optimizer as well.

Perform some function inlining. The functions that are 'inlined' are strcpy, and
the transcendental functions available on the MC 68881 or MC 68882 math copro­
cessor.

Cause source code lines to be printed on the assembly (.s) file as assembly com­
ments, thus showing the correspondence between C source and the resulting
assembly code. This option is incompatible with optimization.

Cause the global optimizer to apply all optimizations. By default, the global
optimizer does not attempt certain optimizations when the complexity of a
function exceeds a certain limit. This option causes the global optimizer to
unconditionally apply all optimizations.

The default behavior for generating symbolic debugging information (-g) and
static analysis information (-y) is to generate such information only for items
referenced in the file being compiled. For example, if a structure is defined in

HP-UX Release 8.0: January 1991 -5- (Section 1) 5

cc(l) cc(l)

6

Series 700/800

some included header file yet never referenced, no symbolic debugging informa­
tion or static analysis information is generated for that structure. The +y
option causes the compiler to generate symbolic debugging information or
static analysis information for all items, whether referenced or not. The +y
option is only valid when used with -g or -yo

It should be noted that from the following Series 700-and-800-specific cc and c89 options, +e, +0, +y
are not supported by the C compiler provided as part of the standard HP-UX operating system. They
are supported by the C compiler sold as an optional separate product.

The default is to allow null pointer dereferencing, hence using -Z has no effect.

The -g option is incompatible with optimization. If both debug and optimization are specified, only the
first option encountered takes effect.

The -y option is incompatible with optimization. If both static analysis and optimization are specified,
only the first option encountered takes effect.

The -s option is incompatible with the -g , -G , -p , and -y options. If -s is specified along with any
of the above options, the -s option is ignored, regardless of the order in which the options were
specified.

Nonsharable, executable files generated with the -N option cannot be executed via exec(2). For details
and system defaults, see ld(l).

The compiler supports the following additional options. The +optl notation can be used as a short­
hand notation for some -W c options.

-Wd,-a When processing files which have been written in assembly language, does not
assemble with the prefix file which sets up the space and subspace structure
required by the linker. Files assembled with this option cannot be linked
unless they contain the equivalent information.

+DAarchitecture Generate code for the architecture specified. architecture is required. The
default code generated for the Series 800 is PA_RISC_1.0. The default code
generated for the Series 700 is PA_RISC_1.1. The default code generation may
be overriden using the CCOPTS environment variable or the command line
option +DA. Defined values for architecture are:

1.0 Precision Architecture RISe, version 1.0.
1.1 Precision Architecture RISe, version 1.1.

The compiler determines the target architecture using the following pre­
cedence:

1. Command line specification of +DA.
2. Specification of +DA in the CCOPTS environment variable.
3. The default as mentioned above.

+DSarchitecture Use the instruction scheduler tuned to the architecture specified. architecture
is required. If this option is not used, the compiler uses the instruction
scheduler for the architecture on which the program is compiled. Defined
values for architecture are:

+e or -W c,-e

(Section 1)

1.0 Precision Architecture RISe, version 1.0.
1.1 Precision Architecture RISe, version 1.1, general scheduling for the

series 700.
I.la -Scheduling for specific models of Precision Architecture RISe, version

1.1.

Enables HP value added features while compiling in ANSI C mode, -Aa. This
option is ignored with -Ac since these features are already provided. Features
enabled:

Long pointers
Missing parameters on intrinsic calls

-6- HP-UX Release 8.0: January 1991

ccCI) ccCI)

+L or -W c,-L Enable the listing facility and any listing pragmas. A straight listing prints:

A header on the top of each page
Line numbers
The nesting level of each statement
The postprocessed source file with expanded macros, included files,
and no user comments (unless the -C option is used).

If the -Aa option is used to compile under ANSI C, the listing shows the origi­
nal source file rather than the postprocessed source file.

+Lp Print a listing as described above, but show the postprocessed source file even
if one of the ANSI compilation levels is selected. This option is ineffective if the
-y option is used.

FILES
file.c
file. 0

+m or -W c,-m Cause the identifier maps to be printed. First, all global identifiers are listed,
then all the other identifiers are listed by function at the end of the listing. For
struct and union members, the address column contains B@b, where B is the
byte offset and b is the bit offset. Both Band b are in hexadecimal.

+0 or -W c,-o Cause the code offsets to be printed in hexadecimal; they are grouped by func­
tion at the end of the listing.

+Oopt
or
-W c,-Oopt

+Obbnum

+r or -W C,-r

Invoke optimizations selected by opt. If opt is 1, only level 1 optimizations are
handled. If opt is 2, all optimizations are performed. The option +02 is the
same as -0. If opt is V all memory references are treated as if they were
declared with the keyword "volatile," meaning that references to the object
cannot be optimized away.

Specify the maximum number of basic blocks allowed in a procedure which is
to be optimized at level 2. A basic block is a sequence of code with a single
entry point and single exit point, with no internal branches. Optimizing pro­
cedures with a large number of basic blocks can take a long time and may use a
large amount of memory. If the limit is exceeded, a warning is emitted giving
the name of the procedure and the number of basic blocks it contains; level 1
optimization is performed. The default value for this limit is 500. This option
implies level 2 optimization (equivalent to -0 or +02).

Inhibits the automatic promotion of float to double when evaluating expres­
sions and passing arguments. This option is ignored and a warning produced if
the -Aa option is in effect.

+Rnum or -W c,-Rnum
Allow only the first num 'register' variables to actually have the 'register'
class. Use this option when the register allocator issues an "out of general
registers" message.

+u Allow pointers to access members of non-natively aligned structs and unions.

+wn or -W C,-wn

+y

Specify the level of the warning messages. The value of n can be one of the
following values:

1 All warnings are issued.
2 Only warnings indicating that code generation might be affected are

issued. Equivalent to the compiler default without any w opts.
3 No warnings are issued. Equivalent to the -woption.

Generate static analysis information for all global identifiers not seen in the
original source file. This option only has effect if used in conjunction with the
-yoption.

input file
object file

HP-UX Release 8.0: January 1991 -7- (Section 1) 7

cc(l)

a.out
/tmp/ctm*
/usr/tmp/ctm*
/lib/ccom
/lib/cpp
/lib/cpp.ansi
/bin/as
/bin/ld
/lib/crtO.o
/lib /mcrtO.o
/lib/gcrtO.o
/lib/libc.a
/lib/libc.sl
/lib/libp/libc.a
/usr /include

Series 300/400
/lib/ccom.ansi
/lib/cpass1
/lib/cpass1.ansi
/lib/cpass2
/lib/c.cO
/lib/c.c1
/lib/c.c2

Series 700/800
/usr /lib/nls/$LANG/cc.cat

SEE ALSO

linked output
default temporary files
default temporary files
C compiler
preprocessor
preprocessor for ANSI C
assembler, as (1)
link editor, ld(l)
runtime startoff
startoff for profiling via proJt1)
startoff for profiling via gproJt1)

cc(l)

standard C library (archive version), see HP-UX Reference Section (3).
standard C library (shared version), see HP-UX Reference Section (3).
C library for profiled programs (archive version)
standard directory for #include files

ANSI C compiler
pass 1 of the optimizing compiler
pass 1 of the optimizing ANSI compiler
pass 2 of the optimizing compiler
procedure in liner
global optimizer
peephole optimizer

C Compiler message catalog

adb(l), asCI), cdb(l), cpp(l), gprof(l), Id(l), prof(l), exit(2), crtO(3), end(3C), monitor(3C),
matherr(3M).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

American National Standard for In/ormation Systems - Programming language C, ANS X3.159-1989

STANDARDS CONFORMANCE
cc:SVID2,XPG2,XPG3
c89: POSIX

8 (Section 1) -8- HP-UX Release 8.0: January 1991

cxref(l) cxref(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
exref analyzes a collection of C files and attempts to build a cross-reference table. exref utilizes a spe­
cial version of epp to include #defined information in its symbol table. It produces a listing on stan­
dard output of all symbols (auto, static, and global) in each file separately, or with the -c option, in
combination. Each symbol contains an asterisk (*) before the declaring reference. Output is sorted in
ascending collation order (see Environment Variables below).

In addition to the -D, -I and -U options (which are identical to their interpretation by ee(l)), the fol­
lowing options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-wnum Width option; format output no wider than num (decimal) columns. This option
defaults to 80 if num is not specified or is less than 51.

-0 file

-s

-t

Direct output to the namedfile.

Operate silently; do not print input file names.

Format listing for 80-column width.

-Aa Choose ANSI mode. If not specified, compatibility mode (-Ac option) is selected by
default.

-Ac Choose compatibility mode. This option is selected by default if neither -Aa nor
-Ac is specified.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the order in which the output is sorted.

If LC_COLLATE is not specified in the environment or is set to the empty string, the value of LANG is
used as a default. If LANG is not specified or is set to the empty string, a default of "c" (see lang(5)) is
used instead of LANG. If any internationalization variable contains an invalid setting, exref behaves as
if all internationalization variables are set to "c" (see environ(5)).

International Code Set Support
Single- and multi-byte character code sets are supported with the exception that multi-byte character
file names are not supported.

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot compile these files, anyway.

EXAMPLES
Create a combined cross-reference of the files orange.c, blue.c, and color.h:

cxref -c orange.c blue.c color.h

Create a combined cross-reference of the files orange.c, blue.c, and color.h: and direct the output to
the file rainbow.x:

cxref -c -0 rainbow.x orange.c blue.c color.h

WARNINGS
cxref considers a formal argument in a #define macro definition to be a declaration of that symbol. For
example, a program that #includes ctype.h will contain many declarations of the variable c.

exref uses a special version of the C compiler front end. This means that a file that will not compile
probably cannot be successfully processed by exref. In addition, exref generates references only for
those source lines that are actually compiled. This means that lines that are excluded by #ifdef sand
the like (see epp(l)) will not be cross-referenced.

cxref does not parse the CCOPTS environment variable.

HP-UX Release 8.0: January 1991 -1- (Section 1) 9

cxref(l)

FILES
/lib/cpp

cxref(l)

C-preprocessor.

/lib/xpass Compatibility-mode special version of C compiler front end.

/lib/xpass.ansi
ANSI-mode special version of C compiler front end.

SEE ALSO
cc(1), cpp(1).

STANDARDS CONFORMANCE
cxref: SVID2, XPG2, XPG3

10 (Section 1) -2- HP-UX Release 8.0: January 1991

lint(l) lint(l)

NAME
lint - a C program checker/verifier

SYNOPSIS
lint [options] file ...

DESCRIPTION
lint attempts to detect features in C program files that are likely to be bugs, non-portable, or wasteful.
It also checks type usage more strictly than the compilers. Program anomalies currently detected
include unreachable statements, loops not entered at the top, automatic variables declared but not
used, and logical expressions whose value is constant. Usage of functions is checked to find functions
that return values in some places and not in others, functions called with varying numbers or types of
arguments, and functions whose values are not used or whose values are used but none returned.

Arguments whose names end with .e are assumed to be C source files. Arguments whose names end
with .In are assumed to be the result of an earlier invocation of lint with either the -e or the -0

option used .. In files are analogous to .0 (object) files produced by the ce(1) command when given a .e
file as input. Files with other suffixes are warned about and ignored.

lint takes all the .e, .In, and llib-Ix .In files (specified by -Ix and processes them in their command line
order. By default, lint appends the standard C lint library (llib-Ie.ln) to the end of the list of files.
However, if the -p option is used, the portable C lint library (llib-port.ln) is appended instead. When
the -e option is not used, the second pass of lint checks this list of files for mutual compatibility.
When the -e option is used, all .In and llib-Ix.ln files are ignored.

Any number of lint options can be used, in any order, intermixed with file name arguments. The fol­
lowing options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs pro-
duced by lex or yacc often result in many such complaints).

-h Do not apply heuristic tests that attempt to intuitively find bugs, improve style, and
reduce waste.

-u Suppress complaints about functions and external variables used and not defined or
defined and not used. (This option is suitable for running lint on a subset of files of a
larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-Ix .In. For example, to include a lint version of the
Math Library llib-Im.ln, insert -1m on the command line. This argument does not
suppress the default use of llib-Ie.ln. These lint libraries must be in the assumed direc­
tory. This option can be used to reference local lint libraries and is useful in the
development of multiple-file projects.

-n

-p

-s

-e

-0 lib

Do not check compatibility against either the standard or the portable lint library.

Attempt to check portability to other dialects of C. Along with stricter checking, this
option causes all non-external names to be truncated to eight characters and all exter-
nal names to be truncated to six characters and one case.

Make stricter checks about pointer and structure alignments that can prevent portabil­
ity. Complain about a cast that converts a pointer from a less restrictive alignment to
a more restrictive alignment. Complain about a structure member whose offset is not a
multiple of its size.

Cause lint to produce a .In file for every .e file on the command line. These .In files are
the product of lint's first pass only, and are not checked for inter-function compatibil­
ity.

Cause lint to create a lint library with the name llib-llib .In. The -e option nullifies any
use of the -0 option. The resulting lint library serves as input to lint's second pass.

HP-UX Release 8.0: January 1991 -1- (Section 1) 11

lintel) lintel)

12

The -0 option simply causes this file to be saved in the named lint library. To produce
a Hib-llib .In without extraneous messages, use the -x option. The -v option is useful
if the source file(s) for the lint library are just external interfaces (for example, the
way the file Hib-Ie is written). These option settings are also available by using "lint
comments" (see below).

-Amode Specify the compilation standard to be used by lint. The mode can be one of the follow­
ing letters:

e Process in a mode compatible with HP-UX releases prior to 7.0. (See The C
Programming Language, First Edition by Kernighan and Ritchie). This
option is currently the default. The default may change in future
releases.

a Process under ANSI mode (December 7, 1988 Draft proposed ANSI C stan­
dard.)

-y Enable support of 16-bit characters inside string literals and comments.
Note that 8-bit parsing is always supported. See hpnls(5) for more details
on international language support.

The -D, -U, and -I options of epp(l) and the -g, and -0, options of ee(l) are also recognized as
separate arguments. The -g and -0 options are ignored, but, by recognizing these options, lint's
behavior is closer to that of the ee(l) command. Other options are warned about and ignored.
The pre-processor symbols _lint and _LINT_ are defined to allow certain questionable code to be
altered or removed for lint. In addition, the pre-processor symbol lint is defined in compatibility
mode. By default, the lint library Hib-Ie.In encodes the HP-UX namespace version of libe.a . Other
standards can be checked by including the appropriate -D option on the lint(l) command line.
For example,

lint -D_POSIX_SOURCE file.c
reprocesses llib-Ie to reflect the POSIX standard.

Certain conventional comments in the C source change the behavior of lint:

/*NOTREACHED*/

/*VARARGSn*/

at appropriate points stops comments about unreachable code. (This
comment is typically placed just after calls to functions such as
exit(2)).

suppresses the usual checking for variable numbers of arguments in
the following function definition. This comment must be placed just
before the actual code for a function. It is not used before extern
declarations of the same function elsewhere. The data types of the
first n arguments are checked; a missing n is assumed to be O.

/*ARGSUSED*/ enables the -v option for the next function.

/*LINTLIBRARY* / at the beginning of a file shuts off complaints about unused functions
and function arguments in this file. This is equivalent to using the -v
and -x options.

lint produces its first output on a per-source-file basis. Complaints regarding included files are
collected and printed after all source files have been processed. Finally, if the -e option is not
used, information gathered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or from one of its
included files, the source file name is printed, followed by a question mark.

Behavior of the -e and -0 options allows for incremental use of lint on a set of C source files.
Generally, one invokes lint once for each source file with the -e option. Each of these invocations
produces a .In file which corresponds to the .e file, and prints all messages that are about just that
source file. After all the source files have been separately run through lint, it is invoked once
more (without the -e option), listing all the .In files with the needed -Ix options. This prints all
the inter-file inconsistencies. This scheme works well with make(I); allowing make to be used to
lint only the source files that have been modified since the last time the set of source files were
processed by lint.

(Section 1) -2- HP-UX Release 8.0: January 1991

lintel) lintel)

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPE determines the interpretation of comments and string literals as single- and/or multi-byte
characters.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable con­
tains an invalid setting, lint behaves as if all internationalization variables are set to "C". See
environ(5).

When set, the TMPDIR environment variable specifies a directory to be used for temporary files, overrid­
ing the default directories /tmp and /usr /tmp.

Long error messages are split across lines to make them easier to read. The environment variable
COLUMNS controls the maximum number of characters on each line.

International Code Set Support
Single- and multi-byte character code sets are supported within file names, comments, and string
literals.

FILES
/usr/lib
/usr/lib/lint[12]
/usr /bin/lint
/usr /lib/llib-Ic.ln

/usr /lib/llib-port.ln

/usr/lib/llib-Im.ln

/usr/tmp/*lint*

WARNINGS

the directory where the lint libraries specified by the -Ix option must exist
first and second passes
shell script that invokes lint[12]
declarations for C Library functions (binary format; source is in
/usr /lib /llib-Ic)
declarations for portable functions (binary format; source is
/usr/lib/llib-port)

in

declarations for Math Library functions (binary format; source is in
/usr/lib/llib-Im)
temporaries

exit(2), longjmp (on setjmp(3C)), and other functions that do not return are not understood; this
causes various inaccuracies.

SEE ALSO
cc(l), cpp(l), make(l).

Lint C Program Checker, tutorial in C Programming Tools manual.

STANDARDS CONFORMANCE
lint: SVID2, XPG2, XPG3

HP-UX Release 8.0: January 1991 -3- (Section 1) 13

protogen (1) protogen (1)

NAME
protogen - ANSI C function prototype generator

SYNOPSIS
protogen [options] files

DESCRIPTION

14

protogen is an experimental tool that helps convert old style C code to ANSI C by generating prototypes
for function declarations. protogen does not expand macros or remove #ifdef preprocessor directives;
it only alters the declarations of functions. This approach retains the original form and content as
much as possible. However, it also imposes restrictions on the file being parsed. The restrictions are:

The program compiles with no errors.

Macro expansions cannot contain braces, parentheses, or semicolons. protogen uses these sym­
bols to determine where functions begin and end. For example, a program that uses the fol­
lowing macros will not be proto typed correctly.

#define BEGIN {
#define END }

No preprocessor directives are allowed within a function declaration. For example, the follow­
ing function will not be prototyped and a warning will be issued.

foo(a,b
#ifdef EXTENDP ARAMS
,c,d
#endif
)
char a,b
#ifdef EXTENDP ARAMS
,c,d
#endif

No more than one macro is used as a type specifier in a declaration. For example, the follow­
ing function will not be prototyped.

#define EXTERN TYPE extern int
#define SPECIAL TYPE register auto
EXTERNTYPE SPECIALTYPE fooOO

Programs that use erratic macro substitutions will not be prototyped correctly. For example,
when prototyping the following:

#define X int foo
#define Y a,b
X(Y){ ...

protogen produces:

int X(int Y){. ..

Code that violates any of these assumptions can be preprocessed by ee(l) using the -P option before
being prototyped. Use of protogen on such code may cause the offending function to be ignored and no
prototype generated, the issuance of a grammar conflict message or other warning, the incorrect proto­
type to be generated, or, when extremely erratic macro substitutions are used, protogen may produce
unpredictable results. In any case, protogen does not alter the original C source file.

When invoking protogen, use the desired options and then a list of files to be prototyped. protogen
then prototypes each file individually, and appends all prototypes to a common file specified by the -h
option or to the default file prototypes.h. All files containing functions that do not have prototypes
result in the creation of a new file with the functions prototyped. Thus, if the following files need new
prototype declarations, their resulting modifications would appear under the result file name in the
current directory.

Source File Result File
filename.c filename.a.c

(Section 1) -1- HP-UX Release 8.0: January 1991

protogen(1) protogen(l)

filename.h
filename

filename.a.h
filename.a.c

If protogen encounters an Hinclude directive and the file name is enclosed in angle brackets it is con­
sidered a system file and no modified result file is produced. The file is scanned for Hdefines and
Hifdef directives. If, however, the file name is enclosed in double quotes, it is scanned for prototype
generation. If new prototypes are added, the modifications are produced in a result file following the
same naming conventions.

Once the new result files have been created, each should be compared to the original using the diff(l)
command. Manual inspection of each file should show that only function declarations have been
altered. If any of the above assumptions where violated, they show up in the results of the diff opera­
tion. Next the prototypes.h file should be included in the proper location of each result file and com­
piled using the ANSI C compiler. Once all files have been checked and compile successfully, they should
be renamed and passed through protogen if other functions inside Hif sections still exist.

Options
protogen recognizes the following options:

EXAMPLES

-Dname-def
-D name Defines name as if by a Hdefine preprocessor directive (see cpp(l».

-u name

-I dir

-w

-hfile

Removes any initial definition of name, where name is a reserved symbol that is
predefined by the particular processor. See cpp(l) for a list of possible predefined
symbols.

Changes the algorithm for searching for Hinclude files whose names do not begin
with / to look in dir before looking in the standard directories. See cpp(l) for
more information on the -I option.

Forces all prototype definitions to be widened to the standard C default promo­
tions. All char, unsigned char, short, and unsigned short declarations are pro­
moted to into All floats are converted to double.

Specifies header output file for prototypes. If this option is not given, the default
output file prototypes.h is used.

Let this be a sample C program to be prototyped, where NODE, RecordTypeHP300, and Record­
TypeOther are defined in def.h.

/****************************** /
1* File: sample.c * /
/****************************** /
#include "def.h"
#ifdef HP300
NODE
*foo(a,b,c)
RecordTypeHP300 c;
#else
NODE
*foo(a,b,c)
RecordTypeOther c;
#endif
{j* function statements * /}

fo02(a,b)
long a;
char *b;
{j* function statements * /}

Since there are two possible paths through the program, depending on the existence of the define
HP300, protogen requires two passes to prototype the program.

HP-UX Release 8.0: January 1991 -2- (Section 1) 15

protogen(l) protogen(l)

16

$protogen -D HP300 -h sample.h sample.c
prototyping sample.c
no change def.h
generating sample.a.c

protogen has now prototyped the first declaration of foo and fo02. The results are placed in
sample.a.c. The source file and result file should then be compared using the diff command and manu­
ally inspected. After checking the contents of the file, it should be moved to a temporary file and pro­
totyped for the second path.

$mv sample.a.c temp.c
$protogen -U HP300 -h sample.h temp.c
prototyping temp.c
no change def.h
generating temp.a.c

The contents of temp.a.c:

j****************************** j
/* File: sample.c * j
j****************************** j
#include "def.h"
#ifdef HP300
NODE
*foo(int
a,

#else
NODE
*foo(int
a,

#endif

int b,
RecordTypeHP300 c)

int b,
RecordTypeOther c)

{j* function statements * j}
int foo2(long a ,

char *b)
{j* function statements * j}

After inspecting the file for differences, the prototype header file should be inserted into the apropiate
location of the source file. Line 4 would be the proper position for it in temp.a.c. Next, look at the
header file.

The contents of sample.h:

#if defined(HP300)
/*
Options -DHP300
* j
NODE *foo(int a,

int b,
RecordTypeHP300 c);

int foo2(long a ,
char *b);

#endif

#if !defined(HP300)
j*
Options -UHP300

(Section 1) -3- HP-UX Release 8.0: January 1991

protogen (1)

*/
NODE *foo(int a,

int b,
RecordTypeOther c);

int foo2(long a ,
char *b);

#endif

protogen (1)

Note that the include file has two sections for each run. Only the section with the matching defines is
used. This allows easy conversion of programs that require several passes through protogen. How­
ever, it also causes multiple declarations of the same function as with foo20. Therefore, it might be
more desirable to place the function prototypes in manually.

Once the prototypes are in place, try to compile the new source with the ANSI C compiler. When the
program compiles and executes properly, back up the old source and replace it with the new ANSI
source code.

Common Problems When adding Prototypes
For large programs, a common include file of all the prototypes decreases abstraction between files and
may introduce naming conflicts. Many definitions and types may also have to be added to the include
file in order for the prototypes to be valid. It is therefore very important to prototype programs
together only if they make several calls to each other or in closely related groups. Use protogen to gen­
erate special prototype header files for programs that are in different groups but make frequent calls to
a common group of functions. In most cases it is desirable to manually replace all empty declarations
with their new prototypes and not introduce any new header files.

The -w option can be used to widen parameters to their default promotions in function declarations.
It is necessary to remove empty declarations for functions that do not use default promotion types and
were not prototyped with the -w option. If any such declarations do exist or they use typedefs that
contain nonstandard promoted types, the following error message from ce(l) will be issued:

function prototype for <func-name> must contain
parameters compatible with default argument
promotions when used with an empty declaration

protogen is simply a scanner and performs no semantical analysis. It does not look at typedefs and
does not alter them when given the -w widen option. Typedefs that need to be widened, must be done
manually.

Functions that have variable arguments must be fixed manually, using the ellipsis notation.

DIAGNOSTICS
Error messages are sent to standard error, and report warnings and grammar conflicts. Warnings are
intended to be self-explanatory. Grammar conflicts occur due to violations in the predefined assump­
tions protogen was designed for. If a grammar conflict occurs, try preprocessing.

SEE ALSO
cpp(I), cc(l).

HP-UX Release 8.0: January 1991 -4- (Section 1) 17

Index

A
Aligning structures, 2-14
Alignment mode

DOMAIN_NATURAL, 2-16
DOMAIN_WORD, 2-16
HPUX_NATURAL, 2-16
HPUX_NATURAL_S500, 2-16
HPUX_WORD, 2-16
NATURAL, 2-16

ANSI C, 5-1
ANSI C, name space, 5-13
ANSI C, silent changes, 5-14
arrays, 2-8

B
bit field declared without signed

keyword, 5-14
bit field declared without unsigned

keyword, 5-14
block scope, 5-16

c
C, 7.0 implementation dependencies,

4-1
C, 8.0 implementation dependencies,

4-1
char, 2-3
coloring register allocation, 3-24
common subexpression elimination,

3-25
compiler directives, 3-5
compiling a C program, 1-2

compiling an ANSI C program, 1-2
const, 5-2, 5-8
constant folding, 3-23
constant propagation, 3-23
constants, optimizations performed on,

3-23
copy propagation, 3-26

o
data type alignments, 2-4
data types, 2-1
dead code elimination, 3-24
dead store elimination, 3-26
DOMAIN_NATURAL, 2-4, 2-16
DOMAIN_WORD, 2-4, 2-16
double, 2-3

E
enum, 2-3
error messages during level 2

optimization, 3-14
expressions, optimizations performed

on, 3-23, 3-25, 3-26

F
filler bytes, 2-10
float, 2-3
floating point expressions with float

parameters, 5-16
floating point precision, possible

problems, 3-19
function prototype, 5-4

Index-1

Index

Index

function prototype advantages, 5-4

G
global variables, 3-19
global variables and optimization, 5-3
global variables, effects on optimization,

3-10

H
HP _ALIGN, 2-14
HP _INLINE_DEFAULT directive, 3-9
HP _INLINE_FORCE directive, 3-7
HP _INLINE_LINES directive, 3-6
HP _INLINE_NOCODE directive, 3-10
HP _INLINE_OMIT directive, 3-8
HP_SHLIB_VERSION, 4-2
HP _SHLIB_ VERSION, version pragma,

4-2
HP-UX, name space, 5-13
HPUX_NATURAL, 2-4
:IPUX_NATURAL alignment mode, 2-16
HPUX_NATURAL_S500, 2-4
HPUX_NATURAL_S500 alignment mode,

2-16
HPUX_WORD, 2-4
HPUX_WORD alignment mode, 2-16

implementation dependencies
7.0, 4-1
8.0, 4-1

initializing variables, 3-19
int, 2-3
integer constants, un suffixed , 5-16
internal errors during compilation, 3-16

L
level 2 optimization, compiler messages

during, 3-14
library routines, naming conventions,

4-1

Index-2

lint, 3-19
long, 2-3
long double, 2-3
loop induction variables, 3-30
loop invariants, 3-28
loops, optimizations performed on, 3-27
loop unrolling, 3-27

M
maxdsiz kernel configuration parameter,

3-18
memory allocation, optimizations

performed on, 3-26
memory-mapped input/output, 3-19
memory, out of memory error during

compilation, 3-17

N
name space, 5-11
NATURAL, 2-16
NATURAL data types, 2-6
NO_SIDE_EFFECTS directive, 3-10

o
+01 compiler option, 3-4
+02 compiler option, 3-4
-0 compiler option, 3-4
optimization, 3-20

assumptions, 3-19
global variables, 3-10
problems encountered during, 3-19
troubleshooting, 3-19
volatile, 3-4, 5-3
warning messages, 3-14

optimization compiler options, 3-4
optimization levels, OPT _LEVEL, 3-6
optimization levels overview, 3-2
optimizations

transformations, 3-20
optimization transformations

coloring register allocation, 3-24

common subexpression elimination,
3-25

constant folding, 3-23
constant propagation, 3-23
copy propagation, 3-26
dead code elimination, 3-24
dead store elimination, 3-26
loop unrolling, 3-27
peephole optimization, 3-21

OPTIMIZE directive, 3-5
OPT_LEVEL directive, 3-6
out of memory error during compilation,

3-17
+OV compiler option, 3-4, 3-19

p

padding bytes, 2-10
peephole optimization, 3-21
pointer, 2-3
position independent code, 4-2
position independent code (PIC), 4-2
POSIX, name space, 5-13
pragma, 3-5
promotion rules for unsigned char,

5-15
promotion rules for unsigned short,

5-15
protogen, 5-6

Q

qualifiers, const and volatile, 5-1

R
registers, optimizations performed with,

3-24

register storage class, 3-25

S
Series 500 data types, 2-6
Series 600/700/800 data types, 2-6
shared libraries, 4-2
shared libraries, support, 4-2
short, 2-3
signal handlers, 3-19
signed char, 2-3
signed int, 2-3
signed short, 2-3
structures, 2-9
swap space, increasing to accommodate

optimizer requirements, 3-18

T
tail recursion, elimination, 3-31
trigraphs, 5-14

u
unreachable code, optimizations

performed on, 3-24
unsigned char, 2-3
unsigned int, 2-3
unsigned long, 2-3
unsigned short, 2-3

v
variables, initializing, 3-19
version pragma, 4-2
volatile, 3-4, 3-19, 5-3, 5-8

x
XOPEN, name space, 5-13

Index-3

Index

Manual Part No.
B 1864-90008

I

rli~ HEWLETT
.:~ PACKARD

Copyright ©1991 d
Hewlett-Packard Company
Printed in USA E0191

Manufacturing
Part No.
B1864-90008

I
81864-90008

