
C Programming Tools

HP 9000
Computers

C Programming Tools

HP 9000 Computers

Flidl HEWLETT
~~ PACKARD

HP Part No. 81864-90009
Printed in USA 01/91

First Edition
E0191

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b) (3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the progranls in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983. 1985

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. Note that pages which are rearranged due to changes on a previous page
are not considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not .cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

January 1991 ... Edition 1.

iii

Contents

1. Introduction
Prerequisites to Reading This Manual
Manual Overview . .
Manual Conventions. . . .

2. lint: A C Program Checker
Introduction . .
How to Use lint .
Directives
Problem Detection

Unused Variables and Functions
Suppressing Unused Functions and Variables Reports

Set IU sed Information
Unreachable Code.

Suppressing Unreadable Code Reports
Function Value ...
Portability
Alignment Portability
Strange Constructions

Suppressing Strange Construction Reports
Standards Compliance

3. lex: A Lexical Analyzer and Generator
Introduction
lex Source
1 ex Regular Expressions

Operators
Character Classes . .
Arbitrary Character .
Optional Expressions

1-3
1-3
1-4

2-1
2-2
2-4
2-5
2-6
2-7
2-8
2-8
2-9
2-9

2-11
2-13
2-14
2-15
2-16

3-1
3-6
3-8
3-8
3-9

3-10
3-11

Contents-1

Repeated Expressions . .
Alternation and Grouping
Context sensitivity
Repetitions and Definitions .

Operator Precedence
1 ex Actions

Example
Ambiguous Source Rules
lex Source Definitions
Usage ...

HP-UX
lex and yacc
Examples
Left-Context Sensitivity
Character Set
Summary of Source Format
Caveats and Bugs

4. yacc: Yet Another Compiler-Compiler
Introduction . . .
Basic Specifications
Actions
Lexical Analysis
How the Parser Works
Ambiguity and Conflicts
Precedence and Associativity
Error Handling
The yacc Environment

_ Hints for Debugging. .
Hints for Preparing Specifications

Input Style. .
Left Recursion .
Lexical Tie-ins .
Reserved Words

Advanced Topics .
Simulating Error and Accept in Actions
Accessing Values in Enclosing Rules.
Support for Arbitrary Value Types

Contents-2

3-11
3-11
3-12
3-13
3-14
3-15
3-17
3-20
3-23
3-25
3-25
3-26
3-27
3-32
3-36
3-37
3-39

4-2
4-6
4-9

4-12
4-14
4-20
4-26
4-30
4-33
4-35
4-36
4-36
4-37
4-38
4-39
4-40
4-40
4-41
4-42

yacc Examples, Input Syntax, and Support
A Simple Example
Advanced Exan1ple
Input Syntax
Old Features Supported but Not Encouraged

Acknowledgements
References

Index

4-4S
4-4.5
4-48
4-S6
4-59
4-60
4-60

Contents-3

Figures

3-1. An Overview of 1 ex
3-2. Using lex with yacc

Tables

1-1. Table of C Programming Tools Covered in This Manual
1-2. Table of C Progralnming Tools Not Covered in This Manual
1-3. Typographical Conventions Used in This Manual
2-1. Options for Suppressing Unused Function and Variable Reports
3-1.

Contents-4

3-2
3-4

1-1
1-2
1-4
2-7

3-38

Introduction

This manual provides you with a tutorial on a few of the C language
programming tools that are shipped with your C language product.

1

The following table provides you with a list and description of the C tools that
are covered in this manual. It also provides a reference to chapters in this
manual that contain information about these tools.

Table 1-1. Table of C Programming Tools Covered in This Manual

C Tool Description For information,
read .. .

lex A program grIlf'rator for lrxi<'al Chapt('r 3
analysis of trxt

lint A C program chrckrr Chapt('r 2

yacc A programming tool for d('scribing Chapt('r 4
t 11(' input to a computrr program

Introduction 1-1

1

1

The following table provides you with a list and description of the C tools
that are not covered in this manual. It also provides a reference for finding
information about these tools.

Table 1-2.
Table of C Programming Tools Not Covered in This Manual

C Tool Description For information,
read .. .

cb A C program bf'autifif'r HP- UX Reference Vol.
1: Section 1

cflow A C flow graph g<'llf'rator HP- UX Reference Vol.
1: S'ection 1

cpp Thf' C lallguag<, pr<'l)l'oc<'ssor HP- UX Reference Vol,
1: Section 1

ctags A C programming tool that (Tf'atf'S a HP- UX Reference Vol.
tag fik for ex(l) or vi(1) from thf' 1: ,Section 1
sp<'cifipd C. Pascal and FORTRAN
sonrcf'S

cxref A C program cross-r<'f('n'lH'(' HP- UX Reference Vol.
gf'nf'l'ator 1: Section 1

1-2 Introduction

Prerequisites to Reading This Manual
Before reading this manual, you should have a good knowledge of:

• The HP-UX operating system

• The C programming language

• An HP-UX text editor such as vi.

Manual Overview
The following list contains a description of the contents of this manual's
chapters and appendix.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

provides a list of C tools, prerequisites to reading this
manual, a manual overview, and manual conventions.

provides a tutorial for lint the C progranl checker. It
covers error and problem detection, how to use lint, and
lint directives.

provides a tutorial for lex which is a program generator for
lexical processing of character input streams. It covers lex
source, regular expressions, actions, operator precedence,
source definitions, usage, and several lex features and
examples.

provides a tutorial for yacc which is a general progranllning
tool for describing the input to a computer progranl. It
covers basic specifications, actions, how the parser works,
precedence, error handling, advanced yacc topics, yacc
examples, input syntax, and support infonnation.

Introduction 1-3

,

I I

Manual Conventions

This Inanual uses the following typographical conventions:

Table 1-3. Typographical Conventions Used in This Manual

If you see . ..

computer text

italic text

1-4 Introduction

It means ...

Indicatrs t('xt displayrd by t ll(' comput('r systrlll. For
rxalllpl<'.

warning: loop not entered from top

is a warning lll(\Ssag<, giv('n by lint wll('n tIl(' loop
cannot 1)(' (\ut('r('d from tIl(' top.

You supply t IH' t('xt. For exalllple.

login: login name

is a login prolllPt display(\d by t h(' COlllpn t (\1'. Yon would
l'('spond by typing in yonr louin name.

N ot(' that italic text is also ns('d for ('lllphasis.

2
lint: A C Program Checker

Introduction
The lint command is a program checker and verifier for C source code. Its
main purpose is to supply the programmer with warning messages about
problems with the source code's style, efficiency, portability, and consistency.
The lint command can be used before compiling a program to check for
syntax errors and after compiling a program to test for subtle errors (e.g., type
differences, etc.).

Error messages and lint warnings are sent to standard error (stderr). Once
the code errors are corrected, the C source file(s) should be run through the C
compiler to produce the necessary object code.

lint: A C Program Checker 2-1

2

2

How to Use lint

The lint command has the fornl:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages, files
are the files to be checked that end with . c or .In, and library descriptors are
the nanles of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a

-b

-c

-h

-n

-0 name

-p

-8

-u

-v

-x

-Aa

-Ac

Suppress messages about assignments of long values to
variables that are not long.

Suppress messages about break statements that cannot be
reached.

Only check for intrafile bugs; leave external information in files
suffixed with .In.

Do not apply heuristics (which attempt to detect bugs,
inlprove style, and reduce waste).

Do not check for compatibility with either the standard or the
portable lint library.

Create a lint library from input files named IIi b-l name .In.

Attempt to check portability to other dialects of C language.

Check for cases where the alignment of structures, unions, and
pointers 111ay not be portable.

Suppress nlessages about function and external variables used
and not defined or defined and not used.

Suppress nlessages about unused arguments and functions.

Do not report variables referred to by external declarations but
never used.

Invoke lint in ANSI mode.

Invoke lint in cOlnpatibility mode. The default is
compatibility mode.

2-2 lint: A C Program Checker

The names of files that contain C language programs should end with the suffix
. c, which is mandatory for lint and the C compiler.

The lint command accepts certain arguments, such as:

-1m

The lint library files are processed almost exactly like ordinary source files.
The only difference is that functions that are defined on a library file but are
not used on a source file do not result in messages. The lint command does
not simulate a full library search algorithm and will print messages if the
source files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file
which contains descriptions of the programs which are normally loaded when a
C language program is run. When the -p option is used, another file is checked
containing descriptions of the standard library routines which are expected to
be portable across various machines. The -n option can be used to suppress all
library checking.

lint: A C Program Checker 2-3

2

2

Directives

The alternative to using options to suppress lint's comments about problem
areas is to use directives. Directives appear in the source code in the form of
code comments. The lint command recognizes five directives.

/*NOTREACHED*/

/*ARGSUSED*/

/*LINTLIBRARY*/

2-4 lint: A C Program Checker

stops an unreachable code comment about
the next line of code.

stops lint from strictly type checking the
next expression.

stops a comment about any unused
parameters for the following function.

stops lint from reporting variable numbers
of parameters in calls to a function. The
function's definition follows this comment.
The first n parameters must be present in
each call to the function; lint comments if
they aren't. If "I*VARARGS* I" appears
without the n, none of the parameters need
be present. This comment must precede the
actual code for a function. It should not
precede ext ern declarations.

must be placed at the beginning of a source
file. This directive tells lint that the source
file is used to create a lint library file and
to suppress comments about the unused
functions. lint objects if other files redefine
routines that are found there.

Problem Detection
Remember that a compiler reports errors only when it encounters program
source code that cannot be converted into object code. The main purpose
of lint is to find problem areas in C source code that it considers to be
inefficient, nonportable, bad style, or a possible bug, but which the C conlpiler
accepts as error-free because it can be converted into object code.

Comments about problems that are local to a function are produced as each
problem is detected. They have the form:

(line #) warning: message text

Information about external functions and variables is collected and analyzed
after lint has processed the source files. At that time, if a problenl has been
detected, it sends a warning message with the fonn:

message text

followed by a list of external names causing the message and the file where the
problem occurred.

Code causing lint to issue a warning message should be analyzed to detennine
the source of the problem. Sometimes the programmer has a valid reason for
writing the problem code. Usually, though, this is not the case. The lint
command can be very helpful in uncovering subtle programming errors.

The lint command checks the source code for certain conditions, about which
it issues warning messages. These can be grouped into the following categories:

• variable or function is declared but not used

• variable is used before it is set

• portion of code is unreachable

• function values are used incorrectly

• type matching does not adhere strictly to C rules

• code has portability problems

• code construction is strange.

lint: A C Program Checker 2-5

2

2
The code that you write may have constructions in it that lint objects to but
that are necessary to its application. Warning messages about problem areas
that you know about and do not plan to correct can be suppressed. There are
two nlethods for suppressing warning messages from lint. The use of lint
options is one. The lint command can be called with any combination of its
defined option set. Each option causes lint to ignore a different problem area.
The other method is to insert lint directives into the source code. The lint
directives are discussed in the section "Directives."

Unused Variables and Functions

The lint command objects if source code declares a variable that is never used
or defines a function that is never called. Unused variables and functions are
considered bad style because their declarations clutter the code.

Unused static identifiers cause the message:

(1) static identifier' name' defined but never used

Unused automatic variables cause the message:

(1) warning: 'name' unused in function 'name'

A function or external variable that is unused causes the message:

name defined but never used

followed by the function or variable name, the line nunlber and file in which it
was defined. The lint command also looks at the special case where one of the
paranleters of a function is not used. The warning message is:

warning: (line number) 'arg_ name' in 'func- name'

If functions or external variables are declared but never used or defined. lint
responds with

name declared but never used or defined

followed by a list of variable and function names and the names of files where
they were declared.

2-6 lint: A C Program Checker

Suppressing Unused Functions and Variables Reports

Sometimes it is necessary to have unused function parameters to support
consistent interfaces between functions. The -v option can be used with lint
to have warnings about unused parameters suppressed.

If lint is run on a file that is linked with other files at compile time, nlany
external variables and functions can be defined but not used, as well as used
but not defined. If there is no guarantee that the definition of an external
object is always seen before the object code is used, it is declared extern. The
-u option can be used to stop complaints about all external objects, whether or
not they are declared extern. If you want to inhibit complaints about only the
extern declared functions and variables, use the -x option.

Table 2-1.
Options for Suppressing Unused Function and Variable Reports

Option Description

-v suppress warnings about unuspd paralll('t()rS

-u stops complaints about all ('xt<)rnal obj()cts. whdlH)r or
not they arc declared ext ern

-x inhibits complaints about only the extern declared
functions and variables

lint: A C Program Checker 2-7

2

2

Set/Used Information

A problenl exists in a program if a variable's value is used before it is assigned.
Although lint attempts to detect occurrences of this, it takes into account
only the physical location of the code. If code using a local variable is located
before the variable is given a value, the message is:

warning: 'name' may be used before set

The lint command also objects if automatic variables are set in a function but
not used. The message given is:

warning: 'name' set but not used in function' June_name'

Note that lint does not have an option for suppressing the display of warnings
for variables that are used but not set or set but not used.

Unreachable Code

The lint command checks for three types of unreachable code. Any statement
following a goto, break, continue, or return statement must either be labeled
or reside in an outer block for lint to consider it reachable. If neither is the
case, lint responds with:

warning: (line number) statement not reached

The same message is given if lint finds an infinite loop. It only checks for the
infinite loop cases ofwhile(1) and fore; ;). The third item that lint looks
for is a loop that cannot be entered from the top. If one is found, then the
Inessage sent is:

warning: loop not entered from top

The lint conlmand's detection of unreachable code is by no Ineans exhaustive.
Warning messages can be issued about valid code, and conversely lint Inay
overlook code that cannot be reached.

2-8 lint: A C Program Checker

Suppressing Unreadable Code Reports

Programs that are generated by yacc or lex can have many unreachable break
statements. Normally, each one causes a complaint from lint. The -b option
can be used to force lint to ignore unreachable break statements.

Function Value

The C compiler allows a function containing both the statement

returnO;

and the statement

return (expression) ;

to pass through without complaint. The lint command, however, detects this
inconsistency and responds with the message:

warning: function 'name' has 'return(expression)' and 'return'

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a)
{

}

if (a) return (3);
gO;

Notice that if a tests false, f will ca11 g and then return with no defined
value. This will trigger a message for lint. If g (like exit) never returns, the
message will still be produced when in fact nothing is wrong. In practice, some
potentially serious bugs have been discovered by this feature.

lint: A C Program Checker 2-9

2

2
On a global scale, lint detects cases where a function returns a value that is
son1etimes or never used. When the value is never used, it may constitute an
inefficiency in the function definition. When the value is sometimes used, it
lnay represent bad style (e.g., not testing for error conditions).

The lint command will not issue a diagnostic message if that function call is
cast as void. For example,

(void) printf("%d\n",i);

tells lint to not warn about the ignored return value.

The dual problem - using a function value when the function does not return
one - is also detected. This is a serious problem.

The lint command does not have an option for suppressing the display of
warnings for inconsistent return functions and functions that return no value.

2-10 lint: A C Program Checker

Portability

The -p option of lint aids the programmer in writing portable code in four
areas:

• character comparisons;

• pointer alignments (this is default on PA-RISC computers);

• length of external variables;

• type casting.

Character representation varies on different machines. Characters nlay be
implemented as signed values. As a result, certain comparisons with characters
give different results on different machines. The expression

c<O

where c is defined as type char, is always false if characters are unsigned
values. If, however, characters are signed values, the expression could be either
true or false. Where character comparisons could result in different values
depending on the machine used, lint outputs the message:

warning: nonportable character comparison

Legal pointer assignments are determined by the alignment restrictions of the
particular machine used. For example, one machine may allow double-precision
values to begin on any modulo-4 boundary, but another may restrict them to
modulo-8 boundaries. If alignment requirements are different, code containing
an assignment of a double pointer to an integer pointer could cause problems.
The lint command attempts to detect where the effect of pointer assignlnents
is machine dependent. The warning that it sends is:

warning: possible pointer alignment problem

lint: A C Program Checker 2-11

2

2
The anlount of information about external symbols that is loaded depends on:
the nlachine being used, the number of significant characters, and whether or
not uppercase/lowercase distinction is kept. The lint -p command truncates
all external symbols to six characters and allows only one case distinction. (It
changes uppercase characters to lowercase.) This provides a worst-case analysis
so that the uniqueness of an external symbol is not machine-dependent.

The effectiveness of type casting in C programs can depend on the machine
that is used. For this reason, lint ignores type casting code. All assignments
that use it are subject to lint's type checking.

2-12 lint: A C Program Checker

Alignment Portability

The -s option of the lint command checks for the following portability
considerations:

• pointer alignments (same as -p option)

• a structure's member alignments

• trailing padding of structures and unions

The checks made for pointer alignments are exactly the sanle as for the -p
option. The warning for these cases is:

warning: possible pointer alignment problem

The alignment of structure members is different between architectures. For
example, MC680xO computers pad structures internally so that all fields of
type int begin on an even boundary. In contrast, PA-RISC computers pad
structures so that all fields of type int begin on a four-byte boundary. The
following structure will be aligned differently on the two architectures:

struct s
{ char c;

long 1; /* The offset equals 2 on MC680xO computers */
}; /* and 4 on PA-RISC computers. */

In many cases the different alignment of structures does not affect the behavior
of a program. However, problems can happen when raw structures are written
to a file on one architecture and read back in on another. The lint conunand
checks for cases where a structure member is aligned on a boundary that is
not a multiple of its size (for example, int on int boundary, short on short
boundary, and double on double boundary). The warning that it sends is:

warning: alignment of struct 'name' may not be portable

The lint command also checks for cases where the internal padding added at
the end of a structure may differ between architectures. The amount of trailing
padding can change the size of a structure. The warning that lint sends is:

warning: trailing padding of struct/union 's' may not be portable

lint: A C Program Checker 2-13

2

2

Strange Constructions

A strange construction is code that lint considers to be bad style or a possible
bug.

The lint con1mand looks for code that has no effect. For example:

where the * has no effect. The statement is equivalent to "p++;". In cases like
this, the message:

warning: null effect

is sent.

The treatn1ent of unsigned numbers as signed numbers in con1parison causes
lint to report:

warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;

if (x >= 0)

The lint command also objects if constants are treated as variables. If the
boolean expression in a conditional has a set value due to constants, such as

if(l !=O) ...

lint's response is:

warning: constant in conditional context

2-14 lint: A C Program Checker

To avoid operator precedence confusion, lint encourages using parentheses in
expressions by sending the message:

warning: precedence confusion possible: parenthesize!

The lint command judges it bad style to redefine an outer block variable in an
inner block. Variables with different functions should normally have different
names. If variables are redefined, the message sent is:

warning: name redefini tion hides earlier one

Suppressing Strange Construction Reports

The - h option suppresses lint diagnostics of strange constructions.

lint: A C Program Checker 2-15

2

2

Standards Compliance

The lint libraries are arranged for standards checking. For example,

lint -D_POSIX_SOURCE file.c

checks for routines referenced in file. c but not specified in the POSIX
standard.

The lint command also accepts ANSI standard C (-Aa) as well as compatible
C (-Ac). In ANSI mode, lint invokes the ANSI preprocessor (/lib/cpp.ansi)
instead of the compatibility preprocessor (/lib/ cpp). ANSI mode lint should
be used on source that is compiled with the ANSI standard C compiler.

2-16 lint: A C Program Checker

3
1 ex: A Lexical Analyzer and Generator

Introduction

The 1 ex command is a program generator designed for lexical processing of
character input streams. It accepts a high-level problem oriented specification
for character string matching and produces a program in a general purpose
language which recognizes regular expressions. The regular expressions are
specified by the user in the source specifications given to lex. The lex
generated code recognizes these expressions in an input stream and partitions
the input stream into strings matching the expressions. At the boundaries
between strings, program sections provided by the user are executed. The lex
source file associates the regular expressions and the program fragnlents. As
each expression appears in the input to the program generated by lex, the
corresponding fragment is executed.

The user supplies the additional code beyond expression matching needed to
complete his tasks, possibly including code written by other generators. The
program that recognizes the expressions is generated in the general purpose
programming language employed for the user's program fragnlents. Thus, a
high-level expression language is provided to write the string expressions to be
matched while the user's freedom to write actions is unimpaired. This avoids
forcing the user who wishes to use a string manipulation language for input
analysis to write processing programs in the same and often inappropriate
string handling language.

lex: A Lexical Analyzer and Generator 3-1

3

The lex command is not a complete language, but rather a generator
representing a new language feature which can be added to different
programming languages, called "host languages." At present, the only host
language is C. Just as general purpose languages can produce code to run on

3 different computer hardware, lex can generate code in different host languages.
The host language is used for the output code generated by lex and also for
the program fragments added by the user. Compatible run-time libraries for
the different host languages are also provided. This makes lex adaptable to
different environments and different users. Each application may be directed
to the combination of hardware and host language appropriate to the task,
the user's background, and the properties of local implementations. The lex
command itself exists on HP-UX, but the code generat~d by lex may be taken
anywhere the appropriate compilers exist.

The lex command turns the user's expressions and actions (called source) into
the host general-purpose language. The generated program is named yylex,
and recognizes expressions in a stream (called input). The yylex command
performs the specified actions for each expression as it is detected.

Source ---.j lex f---.- yylex

Input ---.j yylex f---.- Output

Figure 3-1. An Overview of lex

3-2 lex: A Lexical Analyzer and Generator

For a trivial example, consider a program to delete from the input all blanks or
tabs at the ends of lines.

%% A space is required before \ t.
[\tJ +$

is all that is required. The program contains a %% delimiter to mark the
beginning of the rules and one rule. This rule contains a regular expression
which matches one or more instances of the characters blank or tab (written
\ t for visibility, in accordance with the C language convention) just prior to
the end of a line. The brackets indicate the character class made of blank and
tab; the + indicates "one or more ... "; and the $ indicates "end of line,"
similar to vi. No action is specified, so the program generated by lex (yylex)
will ignore these characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add another rule:

%%
[\ tJ +$
[\tJ+ printf(" II);

The finite automaton generated for this source will scan for both rules at once,
observing at the termination of the string of blanks or tabs whether or not
there is a newline character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of lines, and the second
rule all remaining strings of blanks or tabs.

lex: A Lexical Analyzer and Generator 3-3

3

The lex command can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. The 1 ex command can also
be used with a parser generator to perform the lexical analysis phase; it is
particularly easy to interface lex and yacc. The lex programs recognize only

3 regular expressions; yacc writes parsers that accept a larg~ class of context
free grammars, but require a lower level analyzer to recognize input tokens.
Thus, a combination of lex and yacc is often appropriate. When used as a
preprocessor for a later parser generator, lex is used to partition the input
stream, and the parser generator assigns structure to the resulting pieces. The
flow of control in such a case (which might be the first half of a compiler,
for example) is shown in Figure 2. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. The'
yacc command users will realize that the name yylex is what yacc expects its
lexical analyzer to be named, so that the use of this name by lex simplifies
interfacing.

Input

lexical
rules

grammer
rules

Figure 3-2. Using 1 ex with yac c

3-4 lex: A Lexical Analyzer and Generator

Parsed Input

The lex command generates a deterministic finite automaton from the regular
expressions in the source. The automaton is interpreted, rather than conlpiled,
in order to save space. The result is still a fast analyzer. In particular, the
time taken by a lex program to recognize and partition an input streanl
is proportional to the length of the input. The number of lex rules or the 3
complexity of the rules is not important in determining speed, unless rules
which include forward context require a significant amount of re-scanning.
What does increase with the number and complexity of rules is the size of the
finite automaton, and therefore the size of the program generated by lex.

In the program written by lex, the user's fragments (representing the actions
to be performed as each regular expression is found) are gathered, as cases of
a switch statement in C. The automaton interpreter directs the control flow.
Opportunity is provided for the user to insert either declarations or additional
statements in the routine containing the actions, or to add subroutines outside
this action routine.

The lex command is not limited to source which can be interpreted on the
basis of one character look-ahead. For example, if there are two rules, one
looking for ab and another for abcdefg, and the input stream is abcdefh, lex
will recognize ab and leave the input pointer just before cd . .. Such backup is
more costly than the processing of simpler languages.

lex: A Lexical Analyzer and Generator 3-5

3

lex Source

The general format of 1 ex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The second
%% is optional, but the first is required to mark the beginning of the rules. The
absolute minimum lex program is thus

%%

(no definitions, no rules) which translates into a program which copies the
input to the output unchanged.

In the outline of lex programs shown above, the rules represent the user's
control decisions; they are a table, in which the left column contains regular
expressions (see the section "1 ex Regular Expression") and the right column
contains actions, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message
"found keyword INT" whenever it appears. In this example the host
procedural language is C and the C library function printf is used to print
the string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can just be given on
the right side of the line; if it is compound, or takes more than a line, it should
be enclosed in braces.

3-6 lex: A Lexical Analyzer and Generator

As a slightly more useful exan1ple, suppose it is desired to change a number of
words fron1 British to American spelling. The lex command rules such as

colour
mechanise
petrol

printf(ltcolor");
printf(ltmechanize");
printf(IIgas");

would be a start. These rules are not quite enough, since the word petroleum
would become gaseum. A way of dealing with this will be described later.

lex: A Lexical Analyzer and Generator 3-7

3

1 ex Regula'r Expressions
The definitions of regular expressions are similar to those in ed(l). A regular
expression specifies a set of strings to be matched. It contains text characters

3 (which nlatch the corresponding characters in the strings being compared) and
operator characters (which specify repetitions, choices, and other features).
The letters of the alphabet and the digits are always text characters; thus the
regular expression

integer

111atches the string int eger wherever it appears and the expression

a57D

looks for the string a57D.

Operators

The operator characters are

"\ [J A_? *+ I () $/{}%<>

and if they are to be used as text characters, an escape should be used. The
quotation 111ark operator (,,) indicates that whatever is contained between a
pair of quotes is to be taken as text characters. Thus

xyz"++"

matches the string xyz++ when it appears. Note that a part of a string may be
quoted. It is har111less but unnecessary to quote an ordinary text character: the
expression

"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric
character being used as a text character, the user can avoid remelllbering the
list above of current operator characters, and is safe should further extensions
to lex lengthen the list.

3-8 lex: A Lexical Analyzer and Generator

An operator character n1ay also be turned into a text character by preceding it
with \ as in

xyz\+\+

which is another, less readable, equivalent of the previous expressions. Another 3
use of the quoting n1echanism is to get a blank into an expression; nOflnally, as
explained above, blanks or tabs end a rule. Any blank character not contained
within [J (see below) must be quoted. Several normal C escapes with \ are
recognized: \n is newline, \ t is tab, and \b is backspace. To enter \ itself, use
\ \. Since newline is illegal in an expression, \n must be used; it is not required
to escape tab and backspace. Every character but space, tab, newline and the
list above is always a text character.

Note that the initial percent operator (%) is special because it is the separator
for 1 ex source segments.

Character Classes

Classes of characters can be specified using the operator pair [J. The
construction [abcJ matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ignored. Only three
characters are special: these are \, -, and -. The - character indicates ranges.
For example,

[a-zO-9<>_J

indicates the character class contaIning all the lowercase letters, the digits, the
angle brackets, and underscore. Ranges may be given in either order. Using
- between any pair of characters which are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and will get a
warning message. (For example, [O-z] in ASCII is many lnore characters than
it is in EBCDIC). If it is desired to include the character - in a character class,
it should be first or last; thus

[-+0-9J

matches all the digits and the two signs.

lex: A Lexical Analyzer and Generator 3-9

3

In character classes, the - operator must appear as the first character after the
left bracket; it indicates that the resulting string is to be complemented with
respect to the computer character set. Thus

[-abcJ

lnatches all characters except a, b, or c, including all special or control
characters; or

is any character which is not a letter. The \ character provides the usual
escapes within character class brackets.

Arbitrary Character

To lnatch almost any character, the operator character

(dot or period)

is the class of all characters except newline. Escaping into octal is possible
although non-portable:

[\40- \176J

lnatches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).

3-10 lex: A lexical Analyzer and Generator

Optional Expressions

The operator? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repeated Expressions

Repetitions of classes are indicated by the operators * and +.

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z] +

is all strings of lowercase letters. And

[A-Za-z] [A-Za-zO-9] *
indicates all alphanumeric strings with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

Alternation and Grouping

The operator I indicates alternation:

(ab I cd)

matches either ab or cd. Note that parentheses are used for grollping, although
they are not necessary on the outside level;

abl cd

would have sufficed. Parentheses can be used for more complex expressions:

(ablcd+)?(ef)*

matches such strings as abef ef, ef ef ef, cdef, or cddd; but not abc, abcd, or
abcdef.

lex: A Lexical Analyzer and Generator 3-11

3

3

Context sensitivity

The lex command will recognize a small amount of surrounding context.
The two simplest operators for this are ~ and $. If the first character of an
expression is ~, the expression will only be matched at the beginning of a line
(after a newline character, or at the beginning of the input stream). This
can never conflict with the other meaning of ~, complementation of character
classes, since that only applies within the [] operators. If the very last
character is $, the expression will only be matched at the end of a line (when
imnlediately followed by newline). The latter operator is a special case of the /
operator character, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in lex by start conditions as explained in the
section on left context sensitivity. If a rule is only to be executed when the lex
automaton interpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered "being at the
beginning of a line" to be start condition ONE, then the A operator would be
equivalent to

<ONE>

Start conditions are explained more fully later.

3-12 lex: A Lexical Analyzer and Generator

Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression. The definitions are given in the first part of the lex input, before
the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of a.

a{2, }

matches two or more occurrences of a, while

a{3}

matches exactly three occurrences of a and is equivalent to aaa.

lex: A Lexical Analyzer and Generator 3-13

3

3

Operator Precedence
The 1 ex con1mand operators are handled according to the following rules of
precedence:

• The 1 ex comn1and operators are ranked in the following order of precedence,
beginning with highest precedence and proceeding to the lowest precedence:

• All operations on a single line have the same precedence.

o * ? +
o concatenation
o repetition
o $ ~

o I
o / <>

3-14 lex: A Lexical Analyzer and Generator

lex Actions

When an expression is matched, lex executes the corresponding action. This
section describes some features of lex which aid in writing actions. Note that
there is a default action, which consists of copying the input to the output. 3
This is performed on all strings not otherwise matched. Thus, the 1 ex user
who wishes to absorb the entire input, without producing any output, must
provide rules to Inatch everything. When lex is being used with yacc, this is
the normal situation. One may consider that actions are what is done instead
of copying the input to the output; thus, in general, a rule which merely copies
can be omitted. Also, a character combination which is omitted fronl the rules
and which appears as input is likely to be printed on the output, thus calling
attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a
C null statement, ";" as an action causes this result. A frequent rule is

[\t\nJ ;

which causes the three spacing characters (blank, tab, and newline) to be
ignored.

Another easy way to avoid writing actions is the action character which
indicates that the action for this rule is the action for the next rule. The
previous example could also have been written

" "
"\t"
"\n"

with the same result, although in different style. The quotes around\n and\ t
are not required.

In more complex actions, the user will often want to know the actual text that
matched some expression like [a-z] +. The lex command leaves this text in an
external character array named yytext. Thus, to print the nanle found, a rule
like

[a-z] + printf("%s", yytext);

will print the string in yytext. The C function printf accepts a fonnat
argument and data to be printed; in this case, the format is "print string" (%
indicating data conversion, and s indicating string type), and the data is the

lex: A Lexical Analyzer and Generator 3-15

characters in yytext. So this just places the matched string on the output.
This action is so conlmon that it may be written as ECHO:

[a-z]+ ECHO;

3 is the saIne as the above. Since the default action is just to print the characters
found, one nlight ask why give a rule, like this one, which nlerely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not desired. For example, if there is a rule which lnatches read it will
nOrlnally lnatch the instances of read contained in bread or readj list; to avoid
this, a rule of the form [a -z] + is needed. This is explained below.

S0111etilnes it is more convenient to know the end of what has been found;
hence lex also provides a count yyleng of the number of characters matched.
To count both the number of words and the number of characters in words in
the input, the user might write

[a-zA-Z]+ {words++; chars += yyleng;}

which acculnulates in chars the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext[yyleng-1]

Occasionally, a lex action lnay decide that a rule has not recognized the
correct span of characters. Two routines are provided to aid with this
situation. First, yymore 0 can be called to indicate that the next input
expression recognized is to be tacked on to the end of this input. ~ormally.
the next input string would overwrite the current entry in yytext. Second.
yyless (n) may be called to indicate that not all the characters Inatched
by the currently successful expression are wanted right now. The argument
n indicates the nmnber of characters in yytext to be retained. Further
characters previously lnatched are returned to the input. This provides the
SaIne sort of look ahead offered by the / operator, but in a different form.

3-16 1 ex: A Lexical Analyzer and Generator

Example

Consider a language which defines a string as a set of characters between
double quotation (,,) nlarks, and provides that to include a " in a string it
must be preceded by a \. The regular expression that matches such a string is
sOlllewhat confusing, so you might prefer to use:

{

if (yytext[yyleng-1] == '\\')
yymore() ;

else
. .. normal user processing

}

which will, when faced with a string such as "abc \" def ", first lllatch the five
characters" abc \ ; then the call to yymore 0 will cause the next part of the
string, "def , to be tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nornlal user processing."

lex: A Lexical Analyzer and Generator 3-17

3

3

The function yyless 0 might be used to reprocess text in various
circun1stances. Consider the C problem of distinguishing the ambiguity of
=-a. 1 Suppose it is desired to treat this as =- a but print a message. A rule
might be

=- [a-zA-Z] {

printf("0perator (=-) ambiguous\n");
yyless(yyleng-1);

action for =- ...
}

which prints a n1essage, returns the letter after the operator to the input
strean1, and treats the operator as =-. Alternatively it might be desired to
treat this as = -a. To do this, just return the n1inus sign as well as the letter to
the input:

=-[a-zA-Z] {
printf("0perator (=-) ambiguous\n");
yyless(yyleng-2) ;

action for = ...
}

will perforn1 the other interpretation. Note that the expressions for the two
cases might more easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity.

1 In early versions of C, the assignment operators had the form =op. C nO\\" \\Tites
assignlllent operators in the form op= to avoid the ambiguity illustrated here.

3-18 lex: A Lexical Analyzer and Generator

In addition to these routines, lex also pennits access to the I/O routines it
uses. They are:

1. input 0 which returns the next input character;

2. output (c) which writes the character c on the output; and

3. unput (c) pushes the character c back onto the input stream to be read
later by input O.

By default these routines are provided as macro definitions, but the user
can override then1 and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or
output to be transmitted to or from strange places, including other progran1s
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by input must mean end of file; and the
relationship between unput and input must be retained or the lex look-ahead
will not work.

The 1 ex comn1and does not look ahead at all if it does not have to, but every
rule ending in +, *, 7, or $ or containing / implies look-ahead. Look-ahead is
also necessary to match an expression that is a prefix of another expression.
For a discussion of the character set used by 1 ex, read the section "Character
Set" found in this manual. The standard lex library imposes a 100 character
limit on backup.

Another lex library routine that the user will sometimes want to redefine
is yywrap 0 which is called whenever lex reaches an end-of-file. If yywrap
returns a 1, lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive fr01n
a new source. In this case, the user should provide a yywrap which arranges
for new input and returns o. This instructs lex to continue processing. The
default yywrap always returns 1.

This routine is also a convenient place to print tables, sun1n1aries, etc., at the
end of a program. Note that it is not possible to write a nonnal rule which
recognizes end-of-file; the only access to this condition is through yywrap.
In fact, unless a private version of input 0 is supplied a file containing
nulls cannot be handled, since a value of a returned by input is taken to be
end-of-file.

lex: A Lexical Analyzer and Generator 3-19

3

3

Ambiguous Source Rules
The 1 ex con1mand can handle ambiguous specifications. When n10re than one
expression can match the current input, lex chooses as follows:

1. The longest 111atch is preferred.

2. All10ng rules which matched the same number of characters, the rule given
first is preferred.

Thus, suppose the rules

integer keyword action ... ,
[a-z]+ identifier action ... ;

to be given in that order. If the input is integers, it is taken as an identifier,
because [a-z] + matches 8 characters while integer matches only 7. If the
input is integer, both rules match 7 characters, and the keyword rule is
selected because it was given first. Anything shorter (e.g. int) will not match
the expression int eger and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing
expressions like . * dangerous. For example,

, . *'

might seen1 a good way of recognizing a string in single quotes. But it is an
invitation for the program to read far ahead, looking for a distant single quote.
Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

, [- , \n] * '

which, on the above input, will stop after' first'. The consequences of errors
like this are mitigated by the fact that the . operator will not Inatch newline.
Thus expressions like. * stop on the current line. Don't try to defeat this with
expressions like [. \n] + or equivalents; the lex generated progrmn will try to
read the entire input file, causing internal buffer overfimvs.

3-20 lex: A Lexical Analyzer and Generator

Note that lex is normally partitioning the input stream, not s8arching for
all possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some lex rules to do this
nlight be 3

she s++;
he h++;
\n

where the last two rules ignore everything besides he and she. Remember
that. does not include newline. Since she includes he, lex will nornlally not
recognize the instances of he included in she, since once it has passed a she
those characters are gone.

Sometinles the user would like to override this choice. The action REJECT
means "go do the next alternative." It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example to do just that.
After counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that she includes he but not vice versa, and omit the REJECT action on he;
in other cases, however, it would not be possible a priori to tell which input
characters were in both classes.

Consider the two rules

a[bc]+ {
a [cd] + {

REJECT;}
REJECT;}

If the input is ab, only the first rule matches, and on ad only the second
matches. The input string accb matches the first rule for four characters and

lex: A Lexical Analyzer and Generator 3-21

3

then the second rule for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input strean1 but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digraph
table of the input is desired; normally the digraphs overlap, that is the word
the is considered to contain both th and he. Assuming a two-dimensional
array nmned digraph to be incremented, the appropriate source is

%%
[a -z] [a -z] {digraph [yytext [0]] [yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

3-22 lex: A Lexical Analyzer and Generator

1 ex Source Definitions

Ren1ember the format of the lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user needs additional options,
though, to define variables for use in his program and for use by lex. These
can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three
classes of such things.

1. Any line which is not part of a lex rule or action which begins with a blank
or tab is copied into the lex generated program. Such source input prior
to the first %% delimiter will be external to any function in the code; if it
appears immediately after the first %%, it appears in an appropriate place for
declarations in the function written by lex which contains the actions. This
material must look like program fragments, and should precede the first lex
rule.

As a side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated progran1.
This can be used to include comments in either the lex source or the
generated code. The comments should follow the host language convention.

2. Anything included between lines containing only %{ and %} is copied out as
above. The delimiters are discarded. This format permits entering text like
preprocessor statements that must begin in column 1, or copying lines that
do not look ljke programs.

3. Anything after the third %% delimiter, regardless of forn1ats, etc., is copied
out after the lex output.

lex: A Lexical Analyzer and Generator 3-23

3

3

Definitions intended for lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assun1ed to define lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The nan1e and translation must be separated by at least one blank or tab, and
the nan1e must begin with a letter. The translation can then be called out by
the {name} syntax in a rule. Using {D} for the digits and {E} for an exponent
field, for example, might abbreviate rules to recognize numbers:

D
E
%%
{D}+
{D}+"."{D}*({E})?
{D}*"."{D}+({E})?
{D}+{E}

[0-9]
[DEde] [-+] ?{D}+

printf("integer") ;
I
I
printf("real");

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit
before the decin1al point and the second requires at least one digit after the
decin1al point. To correctly handle the problem posed by a Fortran expression
such as 35. EQ. I, which does not contain a real nun1ber, a context-sensitive rule
such as

[0-9] +/" . "EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section n1ay also contain other COn111lands, including the
selection of a host language, a character set table, a list of start conditions,
or adjustn1ents to the default size of arrays within lex itself for larger source
progran1S. These possibilities are discussed below under "Sul1ullary of Source
Format."

3-24 lex: A Lexical Analyzer and Generator

Usage
There are two steps in conlpiling a lex source program. First, the lex source
must be turned into a generated progranl in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex 3
subroutines. The generated program is in a file named lex. yy. c. The I/O
library is defined in terms of the C standard library.

HP-UX

The library is accessed by the loader flag -11 for C, so an appropriate set of
commands is

lex source
cc lex.yy.c -11

The resulting program is placed in the usual file a. out for later execution. To
use lex with yacc see below. Although the default lex I/O routines use the C
standard library, the lex automata themselves do not do so; if private versions
of input, output and unput are given, the library can be avoided.

lex: A Lexical Analyzer and Generator 3-25

lex and yacc

If you want to use lex with yacc, note that what lex generates is a program
named yylexO, the name required by yacc for its lexical analyzer. Normally,

3 the default main program in the lex library calls this routine, but if yacc is
loaded, and its main program is used, yacc will call yylexO. In this case each
lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get access to
yacc's nan1es for tokens is to compile the 1 ex output file as part of the yacc
output file by placing the line

include "lex.yy.c"

in the last section of yacc input. If the grammar is gram. y and the lexical
rules are scan. 1 the HP-UX command sequence can just be:

yacc gram.y
lex scan.l
cc y.tab.c -ly -11

The yacc library (ly) should be loaded before the lex library, to obtain a main
program which invokes the yacc parser. The generations of lex and yacc
progran1s can be done in either order.

Alternatively, the -d option of yacc can be used to generate a file y . tab. h of
token definitions. This can be included in the lex progran1 by placing

%{
#include "y.tab.h"
%}

in the definitions section of the lex input file. If the gran1mar is gram. y and
the lexical rules are in file scan. 1, the HP-UX command sequence is:

yacc -d gram.y
lex scan.l
cc y.tab.c lex.yy.c -ly -11

3-26 1 ex: A Lexical Analyzer and Generator

Examples
As a simple example, consider copying an input file while adding 3 to every
positive number that is divisible by 7. Here is a suitable lex source program

%%
int k;

[0-9] + {

k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);
}

to do just that. The rule [0-9] + recognizes strings of digits; atoi converts
the digits to binary and stores the result in k. The operator % (renlainder) is
used to check whether k is divisible by 7; if it is, it is incremented by 3 as it is
written out. It may be objected that this program will alter such input itenls
as 49.63 or X7. Furthermore, it increments the absolute value of all negative
numbers divisible by 7. To avoid this, just add a few more rules after the
active one, as here:

%%
int k;

-?[0-9]+ {

-?[0-9.]+

k = atoi(yytext);
printf("%d", (k > 0 && k%7
}

[A-Za-z] [A-Za-zO-9]+
ECHO;
ECHO;

0) ? k+3 k) ;

Numerical strings containing a . or preceded by a letter will be picked up by
one of the last two rules, and not changed. The if-else has been replaced by
a C conditional expression to save space; the form a?b: c nleans "if a then b
else c."

lex: A Lexical Analyzer and Generator 3-27

3

3

For an example of statistics gathering, here is a program which histograms the
lengths of words, where a word is defined as a string of letters.

int lengs[100]; /* Because this line has leading blanks,

%%
[a-z] +

\n
%%
yywrapO
{

int i;

lengs[yyleng]++;
I

* it is copied to the lex.yy.c file (read
* the section "l ex Source Definitions."
*/

printf("Length No. words\n");
for(i=O; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(1) ;
}

This progranl accumulates the histogram, while producing no output. At the
end of the input it prints the table. The final statenlent return (1); indicates
that lex is to perform wrapup. If yywrap returns zero (false) it inlplies
that further input is available and the program is to continue reading and
processing. To provide a yywrap that never returns true causes an infinite loop.

As a larger example, here are some program fragments which convert double
precision FORTRAN to single precision FORTRAN. Because FORTRAN does
not distinguish uppercase and lowercase letters, this routine begins by defining
a set of classes including both cases of each letter:

a [aA]

b EbB]
c [cC]

z [z2]

3-28 lex: A Lexical Analyzer and Generator

An additional class recognizes white space:

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {
printf(yytext[O]=='d'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of
the original program. The conditional operator is used to select the proper
form of the keyword. The next rule copies continuation card indications to
avoid confusing them with constants:

~" "{5} [~ 0] ECHO;

In the regular expression, the quotes surround the blank and are follow by the
repeat operator {5}. It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different meanings of ~.
Here are some rules to change double precision constants to ordinary floating
constants:

[0-9] +{W}{d}{W} [+-]?{W} [0-9]+ I
[0-9]+{W}"."{W}{d}{W}[+-]?{W}[0-9]+ I
"."{W}[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ {

1* convert constants *1
for (p=yy text; *p != 0; p++)

{

if (*p == ' d')

*P == ' e' ;
else if (*p == 'D')

*P = 'E';
ECHO;
}

lex: A Lexical Analyzer and Generator 3-29

3

After the floating point constant is recognized, it is scanned by the f or loop
to find the letter d or D converting it to e or E, respectively. The modified
constant, now single-precision, is written out again. There follow a series of
names which must be respelled to remove their initial d. By using the array

3 yytext the same action suffices for all the names (only a sample of a rather
long list is given here).

{d}{s}{i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{t}
{d}{a}{t}{a}{n}

{d}{f}{l}{o}{a}{t} printf("%s",yytext+l);

3-30 lex: A Lexical Analyzer and Generator

Another list of names must have initial d changed to initial a:

{d}{l}{o}{g} I
{d}{1}{o}{g}10 I
{d}{m}{i}{n}l I
{d}{m}{a}{x}l {

yytext[O] =+ 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r:

{d}l{m}{a}{c}{h} {yytext[OJ =+ 'r' - 'd';
ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, sonle final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-zJ [A-Za-zO-9J *
[0-9J +

\n
ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use of keywords as identifiers.

lex: A Lexical Analyzer and Generator 3-31

3

Left-Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied
at different times in the input. For example, a compiler preprocessor might

3 distinguish preprocessor statements and analyze then1 differently from ordinary
statements. This requires sensitivity to prior context, and there are several
ways of handling such problems. The ~ operator, for example, is a prior
context operator, recognizing immediately preceding left context just as $
recognizes immediately following right context. Adjacent left context could be
extended, to produce a facility similar to that for adjacent right context, but it
is unlikely to be as useful, since often the relevant left context appeared some
tin1e earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a
simple use of flags, when only a few rules change from one environment to
another, the use of start conditions on rules, and the possibility of making
multiple lexical analyzers all run together. In each case, there are rules which
recognize the need to change the environment in which the following input
text is analyzed, and set some parameter to reflect the change. This may be a
flag explicitly tested by the user's action code; such a flag is the simplest way
of dealing with the problem, since lex is not involved at all. It may be nlore
convenient, however, to have lex remember the flags as initial conditions on
the rules. Any rule may be associated with a start condition. It will only be
recognized when lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules for the different
environments are very dissimilar, clarity may be best achieved by writing
several distinct lexical analyzers, and switching from one to another as desired.

3-32 1 ex: A Lexical Analyzer and Generator

Consider the following problem: copy the input to the output, changing the
word magic to first on every line which began with the letter a, changing
magic to second on every line which began with the letter b, and changing
magic to third on every line which began with the letter c. All other words
and all other lines are left unchanged. 3

These rules are so simple that the easiest way to do this job is with a flag:

%%
a
~b

c
\n
magic

int flag;

{flag 'a' ; ECHO;}
{flag 'b' ; ECHO;}
{flag 'c' ; ECHO;}
{flag 0 . ECHO;}
{

switch (flag)
{

case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

}

}

should be adequate.

To handle the same problem with start conditions, each start condition lllust
be introduced to lex in the definitions section with a line reading

%Start name1 name2 ...

where the conditions may be named in any order. The word Start can be
abbreviated to s or S. The conditions can be referenced at the head of a rule
with the <> brackets:

<name1>expression

is a rule which is only recognized when lex is in the start condition namel. To
enter a start condition, execute the action statement:

BEGIN name1;

lex: A Lexical Analyzer and Generator 3-33

3

which changes the start condition to namel. To resume the normal state, use:

BEGIN 0;

or

BEGIN INITIAL

which resets the initial condition of the lex automaton interpreter.

A rule may be active in several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active while in the normal state or any %s state. To specify that a rule is active
only in the normal state, prefix it with <INITIAL>. Note that INITIAL is
predefined by lex, and should not be included in a %start declaration.

The sanle example as before can be written:

%START AA BB cc
%%

a {ECHO; BEGIN AA;}
-b {ECHO; BEGIN BB;}
c {ECHO; BEGIN CC;}

\n {ECHO; BEGIN o;}
<AA>magic
<BB>magic
<CC>magic

printf("first");
printf("second") ;
printf("third");

where the logic is exactly the same as in the previous method of handling the
problenl, but lex does the work rather than the user's code.

The lex conll11and also allows the definition of exclusive start conditions. The
syntax is similar to that for start conditions, but the conditions are declared
using %x or %X. For example:

%x namel, name2, .,.

Exclusive start conditions differ from start conditions in how rules not
beginning with the <> prefix operator are handled. When in a %x state. only
rules explicitly prefixed by that <state> are active. Any rule not beginning with
the <> prefix operator is not active.

3-34 lex: A Lexical Analyzer and Generator

The following example uses the %x exclusive start state. In this example, the
scanner is looking for the keywords first and second; however, the sYlnbol
puts the scanner into a "literal" mode where the normal patterns are not
recognized. In this case, everything is just echoed (the default action) until
another ## symbol is reached that will put the scanner back into the initial 3
state.

%x LITERAL
%%
first printf("FIRST");
second printf("SECOND") ;
{ BEGIN LITERAL; }
<LITERAL>## {BEGIN INITIAL; }

lex: A Lexical Analyzer and Generator 3-35

Character Set

The programs generated by lex handle character I/O only through the
routines input, output, and unput. Thus the character representation

3 provided in these routines is accepted by lex and employed to return values in
yytext. For internal use, a character is represented as a small integer which,
if the standard library is used, has a value equal to the integer value of the
bit pattern representing the character on the host computer. Normally, the
letter a is represented as the same form as the character constant 'a'. If
this interpretation is changed, by providing I/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only %T. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next
example maps the lowercase and uppercase letters a through z together into
the integers 1 through 26, the newline character into 27, + and - into 28 and
29 respectively, and the digits 0 through 9 into 30 through 39. Note the escape
for newline. If a table is supplied, every character that is to appear either in
the rules or in any valid input must be included in the table. No character can
be assigned the number 0, and no character can be assigned a ntunber that
exceeds the size of the hardware character set.

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +

29
30 0
31 1

39 9
%T

3-36 lex: A Lexical Analyzer and Generator

Summary of Source Format
The general form of a lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

3. Included code, in the form

%{
code
%}

4. Start conditions, given in the form

%8 name1 name2 ...

5. Character set tables, in the form

%T
number space character-string

%T

6. Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

lex: A Lexical Analyzer and Generator 3-37

3

3

Letter Parameter
p positions
n statrs
r trrr nod<'s
a transitions
k packrd charact('r dassps
0 output array si7,('

Lines in the rules section have the form "expression action" where the action
nlay be continued on succeeding lines by using braces to delimit it.

Regular expressions in 1 ex use the following operators:

x

"x"
\x

[xV]

[x-z]

[- x]

Table 3-1.

thr charactpr "x"
an ··X··. ('Vrll if x is an opprator.

an ··x··. rvpn if x is all op('l"ator.

thr charactpr x or y.

tlH' charactprs x. y or 7,.

any charact('r but x.

allY charactpr but lH'wlilH'.

x all x at tIH' l)('gilllling of a lilH'.

<y>x an x W1H'll lex is ill start condition y.

x$ all x at tIl(' (,lld of a lim'.

x? all optional x.

x* 0.1.2 instanc('s of x.

x+ 1.2.3 instalH'('S of x.

x I y an x or a y.

ex) an x.

x/V an x hut only iffollow('d by y.

{xx} tIH' translation of xx from tIl(' ddinitions S('ctiOll.

x { rn , n} rn through n OCC1llT('ll('('S of x

3-38 lex: A Lexical Analyzer and Generator

Caveats and Bugs
There are pathological expressions which produce exponential growth of the
tables when converted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the
previous scan. This means that if a rule with trailing context is found, and
REJECT executed, the user must not have used unput to change the characters
forthcoming from the input stream. This is the only restriction on the user's
ability to manipulate the not-yet-processed input.

lex: A Lexical Analyzer and Generator 3-39

3

4
yacc: Yet Another Compiler-Compiler

Computer program input generally has some structure; in fact, every conlputer
program that does input can be thought of as defining an input language which 4
it accepts. An input language may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities
are limited, difficult to use, and often are lax about checking their inputs for
validity.

The yacc command provides a general tool for describing the input to a
computer program. The yacc user specifies the structures of his input, together
with code to be invoked as each such structure is recognized. The yacc
command turns such a specification into a subroutine that handles the input
process; frequently, it is convenient and appropriate to have most of the flow of
control in the user's application handled by this subroutine.

The input subroutine produced by yacc calls a user-supplied routine to return
the next basic input item. Thus, the user can specify his input in ternlS of
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

The yacc command is written in portable C. The class of specifications
accepted is a very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, Ratfor, etc., yacc has also been
used for less conventional languages, including a phototypesetter language,
several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

yacc: Yet Another Compiler-Compiler 4-1

Introduction

The yacc command provides a general tool for imposing structure on the input
to a computer program. The yacc user prepares a specification of the input
process; this includes rules describing the input structure, code to be invoked
when these rules are recognized, and a low-level routine to do the basic input.
The yacc command then generates a function to control the input process.
This function, called a parser, calls the user-supplied low-level input routine
(the lexical analyzer) to pick up the basic items (called tokens) from the input

4 stream. These tokens are organized according to the input structure rules,
called grammar rules; when one of these rules has been recognized, then user
code supplied for this rule, an action, is invoked; actions have the ability to
return values and make use of the values of other actions.

The yacc command is written in a portable dialect of C and the actions,
and output subroutine, are in C as well. Moreover, many of the syntactic
conventions of yacc follow C.

The heart of the input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example, one
grammar rule might be

date: month_name day' " year;

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma , is enclosed in single quotes; this implies that the comma is
to appear literally in the input. The colon and semicolon merely serve as
punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer.
This user supplied routine reads the input streanl, recognizing the lower
level structures, and communicates these tokens to the parser. For historical
reasons, a structure recognized by the lexical analyzer is called a terminal
symbol, while the structure recognized by the parser is called a nonterminal

4-2 yac c: Yet Another Compiler-Compiler

symbol. To avoid confusion, terminal symbols will usually be referred to as
tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_name 'J' 'a' 'n'
month_name: 'F' 'e' 'b' ;

month_name: 'D' 'e' 'c' ;

might be used in the previous example. The lexical analyzer would only
need to recognize individual letters, and month_name would be a nonternlinal
symbol. Such low-level rules tend to waste time and space, and may complicate
the specification beyond yacc's ability to deal with it. Usually, the lexical
analyzer would recognize the month nalnes, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters such as , must also be passed through the lexical analyzer,
and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

date month 'I' day 'I' year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input
errors are detected as early as is theoretically possible with a left-to-right scan;
thus, not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of'

yacc: Vet Another Compiler-Compiler 4-3

4

bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require
a more powerful recognition mechanism than that available to yacc. The
former cases represent design errors; the latter cases can often be corrected
by making the lexical analyzer more powerful, or by ~ewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which are

4 difficult for yacc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or design early in the
program development.

The theory underlying yacc has been described elsewhere 2 3 4. The yacc
command has been extensively used in numerous practical applications,
including lint 5, the Portable C Compiler 6, and a system for typesetting
mathematics 7.

The next several sections describe the basic process of preparing a yacc
specification.

Sections in this Chapter

"Basic Specifications"

"Actions"

"Lexical Analysis"

"How the Parser Works"

"Ambiguity and Conflicts"

"Precedence and Associativity"

Description

Explains the preparation of grammar rules

Covers the preparation of the user
supplied actions associated with the
grammar rules

Explains the preparation of lexical
analyzers

Covers the operation of the parser

Gives reasons why yacc lnay be unable to
produce a parser from a specification, and
what to do about it

Provides a sinlple nlechanism for handling
operator precedences in arithlnetic
expreSSIOns

4-4 yacc: Yet Another Compiler-Compiler

Sections in this Chapter

"Error Handling"

"The yacc Environment"

"Hints for Debugging"

"Hints for Preparing
Specifications"

"Advanced Topics"

"yacc Examples, Input Syntax,
and Support"

"Acknow ledgements"

Description

Covers error detection and recovery

Covers the operating environnlent and
special features of the parsers yacc
produces

Explains how to debug a yacc gramn1ar

Gives some suggestions which should
improve the style and efficiency of the
specifications

Covers advanced features of yacc

Provides yacc examples, input syntax, and
support information

Gives credit to those people who
contributed to yacc

yacc: Yet Another Compiler-Compiler 4-5

4

Basic Specifications
Names refer to either tokens or nonterminal symbols. The yacc command
requires token names to be declared as such. In addition, for reasons discussed
in the section "Lexical Analysis," it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other
programs as well. Thus, every specification file consists of three sections: the
declarations, (grammar) rules, and programs. The sections are separated
by double percent %% marks. (The percent % is generally used in yacc

4 specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal yacc
specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in
names or multi-character reserved symbols. Comments may appear wherever a
name is legal; they are enclosed in /* ... * /, as in C.

The rules section is made up of one or more grammar rules. A grammar rule
has the form:

A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the sen1icolon are yacc punctuation.

Names n1ay be of arbitrary length, and may be made up of letters, dot (.),
underscore (_), and non-initial digits. Upper and lower case letters are distinct.
The names used in the body of a grammar rule n1ay represent tokens or
nonterminal symbols.

4-6 yacc: Yet Another Compiler-Compiler

A literal consists of a character enclosed in single quotes. As in C, the
backslash (\) is an escape character within literals, and all the C escapes are
recognized. Thus

'\n' newline
'\r' return
'\' , single quote " '"
'\\' backslash "\' ,
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' "xxx' , in octal

For a number of technical reasons, the NULL character (,\0' or 0) should never
be used in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical
bar (I) can be used to avoid rewriting the left hand side. In addition, the
semicolon at the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

A B C D
A E F
A G

can be given to yacc as

A B C D
E F
G

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much Blore
readable, and easier to change.

yacc: Yet Another Compiler-Compiler 4-7

4

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty :

Nanles representing tokens must be declared; this is most simply done by
writing

%token name1 name2 . . .

in the declarations section. For more information, see the sections "Lexical
4 Analysis", "Ambiguity and Conflicts" , and "Precedence." Every name not

defined in the declarations section is assumed to represent a nonterminal
symbol. Every nonterminal symbol must appear on the left side of at least one
rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this
symbol represents the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left hand side of the
first grammar rule in the rules section. It is possible, and in fact desirable, to
declare the start symbol explicitly in the declarations section using the %start
keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the
endmarker. If the tokens up to, but not including, the endnlarker fornl a
structure which matches the start symbol, the parser function returns to its
caller after the endmarker is seen; it accepts the input. If the endnlarker is seen
in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endularker
when appropriate; see the section "Lexical Analysis," below. Usually the
endmarker represents some reasonably obvious I/O status, such as "end-of-file"
or "end-of-record".

4-8 yacc: Yet Another Compiler-Compiler

Actions
With each grammar rule, the user may associate actions to be performed each
time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output,
call subprograms, and alter external vectors and variables. An action is
specified by one or more statements, enclosed in curly braces { and }. For
example:

A

and

xxx

, (' B ')'

yyy ZZZ
{

are grammar rules with actions.

{ hello(1, "abc"); }

printf("a message\n");
flag = 25; }

To facilitate easy communication between the actions and the parser, the
action statements are altered slightly. The symbol "dollar sign" $ is used as a
signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable $$ to some
value. For example, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudo-variables $1, $2, ... ,which refer to the values
returned by the components of the right side of a rule, reading fronl left to
right. Thus, if the rule is

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by
D.

As a more concrete example, consider the rule

expr , (, expr ')'

yacc: Vet Another Compiler-Compiler 4-9

4

4

The value returned by this rule is usually the value of the expr in parentheses.
This can be indicated by

expr , (' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the form

A B

frequently need not have an explicit action. This last rule is equivalent to

A: B

{ $$ = $1; }

In the examples above, all the actions came at the end of their rules.
Sometimes, it is desirable to get control before a rule is fully parsed. The yacc
command permits an action to be written in the middle of a rule as well as at
the end. This rule is assumed to return a value, accessible through the usual
mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ 1; }

C
{ x = $2; y $3; }

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name, and a new rule Inatching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. The yacc command actually treats the above
example as if it had been written:

$ACT /* empty */
{ $$ 1; }

A B $ACT C
{ x = $2; y $3; }

4-10 yac c: Yet Another Compiler-Compiler

A good understanding of how yacc handles actions can be important when
interpreting conflict messages for such rules (see the section "Ambiguity and
Conflicts"). For exam pIe, conflicts in the grammar specification occur when an
interior action occurs in a rule before the parser can be sure which rule is being
reduced.

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there is a C function node, written so that the call 4

node(L, n1, n2)

creates a node with label L, and descendants nl and n2, and returns the index
of the newly created node. The parse tree can be built by supplying actions
such as:

expr expr '+' expr
{ $$ = node('+', $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations
and definitions can appear in the declarations section, enclosed in the l11arks
%{ and %}. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For exanlple,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all
of the actions. The yacc parser uses only names beginning in yy for parser
variables; the user should avoid such names.

In these examples, all the values returned by actions and values of tokens
are integers; a discussion of values of other types will be found in the section
"Advanced Topics."

yacc: Yet Another Compiler-Compiler 4-11

4

Lexical Analysis
The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylex. The function returns an integer,
the token number, representing the kind of token read. If there is a value
associated with that token, it should be assigned to the external variable
yyl val.

The parser and the lexical analyzer must agree on these token numbers in order
for communication between them to take place. The numbers may be chosen
by yacc, or chosen by the user. In either case, the # define mechanism of
C is used to allow the lexical analyzer to return these numbers symbolically.
For example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylexO{
extern int yylval;
int c;

c = getchar 0 ;

switch(c) {

case '0':
case ' l' :

case '9':
yylval = c-'O';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed
in the programs section of the specification file, the identifier DIGIT will be
defined as the token nUlnber associated with the token DIGIT.

4-12 yac c: Yet Another Compiler-Compiler

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved
or significant in C or the parser; for example, the use of token names if or
while will almost certainly cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling, and should not
be used naively (see the section "Error Handling").

As mentioned above, the token numbers may be chosen by yacc or by the user.
In the default situation, the numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance
of the token name or literal in the declarations section can be immediately
followed by a nonnegative integer. This integer is taken to be the token number
of the name or literal. Names and literals not defined by this mechanism retain
their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative.
This token number cannot be redefined by the user; thus, all lexical analyzers
should be prepared to return 0 or negative as a token number upon reaching
the end of their input.

The lex program is a very useful tool for constructing lexical analyzers.
Lexical analyzers are designed to work in close harmony with yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of
grammar rules. lex can be easily used to produce quite complicated lexical
analyzers, but there remain some languages (such as FORTRAN) which do not
fit any theoretical framework, and whose lexical analyzers must be crafted by
hand.

yacc: Yet Another Compiler-Compiler 4-13

4

4

How the Parser Works
The yacc command turns the specification file into a C program, which parses
the input according to the specification given. The algorithm used to go from
the specification to the parser is complex, and will not be discussed here (see
the references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the lookahead token). The current state is always the one on the top
of the stack. The states of the finite state machine are given small integer
labels; initially, the machine is in state 0, the stack contains only state 0, and
no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce,
accept, and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead
token to decide what action should be done; if it needs one, and does not
have one, it calls yylex to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser
decides on its next action, and carries it out. This may result in states being
pushed onto the stack, or popped off of the stack, and in the lookahead
token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a lookahead token. For exalllple, in state
56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becollles the current state (on the top
of the stack). The lookahead token is cleared.

The reduce action keeps the stack frolll growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule, and is prepared to announce that it has seen an instance of the

4-14 yacc: Yet Another Compiler-Compiler

rule, replacing the right hand side by the left hand side. It may be necessary to
consult the lookahead token to decide whether to reduce, but usually it is not;
in fact, the default action (represented by a ".") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce,
first pop off the top three states from the stack (In general, the number of
states popped equals the number of symbols on the right side of the rule). In
effect, these states were the ones put on the stack while recognizing x, y, and
Z, and no longer serve any useful purpose. After popping these states, a state
is uncovered which was the state the parser was in before beginning to process
the rule. Using this uncovered state, and the symbol on the left side of the
rule, perform what is, in effect, a shift of A. A new state is obtained, pushed
onto the stack, and parsing continues. There are significant differences between
the processing of the left hand symbol and an ordinary shift of a token,
however, so this action is called a goto action. In particular, the lookahead
token is cleared by a shift, and is not affected by a goto. In any case, the
uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the
states off the stack to go back to the state where the right hand side of the rule
was first seen. The parser then behaves as if it had seen the left side at that
time. If the right hand side of the rule is empty, no states are popped off of the
stack: the uncovered state is in fact the current state.

yacc: Yet Another Compiler-Compiler 4-15

4

4

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values returned from the
lexical analyzer and the actions. When a shift takes place, the external variable
yyl val is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen, together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (as opposed to the
detection of error) will be covered in the section "Error Handling."

It is time for an exam pIe! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

4-16 yacc: Yet Another Compiler-Compiler

When yacc is invoked with the -v option, a file called y. output is produced,
with a human-readable description of the parser. The y. output file
corresponding to the previous grammar (with some statistics stripped off the
end) is:

state 0

state 1

state 2

state 3

$accept _rhyme $end

DING shift 3
error

rhyme
sound

$accept

goto 1
goto 2

$end accept
error

rhyme sound_place

DELL shift 5
error

place goto 4

sound DING_DONG

DONG shift 6
error

yacc: Yet Another Compiler-Compiler 4-17

4

4

state 4
rhyme sound place_ (1)

reduce 1

state 5
place DELL_ (3)

reduce 3

state 6
sound DING DONG_ (2)

reduce 2

Notice that, in addition to the actions for each state, there is a description of
the parsing rules being processed in each state. The _ character is used to
indicate what has been seen, and what is yet to come, in each rule. Suppose
the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

4-18 yac c: Yet Another Compiler-Compiler

Initially, the current state is state 0. The parser needs to refer to the input
in order to decide between the actions available in state 0, so the first token,
DING, is read, becoming the lookahead token. The action in state ° on DING
is shift 3, so state 3 is pushed onto the stack, and the lookahead token is
cleared. Then state 3 becomes the current state. The next token, DONG, is
read, becoming the lookahead token. The action in state 3 on the token DONG
is shift 6, so state 6 is pushed onto the stack, and the lookahead is cleared.
The stack now contains 0, 3, and 6. In state 6, without even consulting the
lookahead, the parser reduces by rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of
state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
lookahead token is cleared. In state 5, the only action is to reduce by rule 3.
This has one symbol on the right hand side, so one state, 5, is popped off,
and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3,
is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is
to reduce by rule 1. There are two symbols on the right, so the top two states
are popped off, uncovering state ° again. In state 0, there is a goto on rhyme
causing the parser to enter state 1. In state 1, the input is read; the endnlarker
is obtained, indicated by $end in the y. output file. The action in state 1 when
the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL DELL,
etc. A few minutes spent with this and other simple examples will probably be
repaid when problems arise in more complicated contexts.

yac c: Yet Another Compiler-Compiler 4-19

4

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr expr '- , expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way

4 that all complex inputs should be structured. For example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr) expr

or as

expr (expr expr

(The first is called left association, the second right association).

The yacc command detects such ambiguities when it is attempting to build the
parser. It is instructive to consider the problem that confronts the parser when
it is given an input such as

expr expr expr

When the parser has read the second expr, the input that it has seen:

expr expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to
expr (the left side of the rule). The parser would then read the final part of
the input:

expr

and again reduce. The effect of this is to take the left associative
interpretation.

Alternatively, when the parser has seen

expr expr

4-20 yacc: Yet Another Compiler-Compiler

it could defer the inunediate application of the rule, and continue reading the
input until it had seen

expr expr expr

It could then apply the rule to the rightmost three symbols, reducing them to
expr and leaving

expr expr

Now the rule can be reduced once more; the effect is to take the right
associative interpretation. Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction, and has no way
of deciding between them. This is called a shift / reduce conflict. It Inay
also happen that the parser has a choice of two legal reductions; this is called
a reduce / reduce conflict. Note that there are never any shift/shift
conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still
produces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A rule describing which choice to make in a given situation is
called a disambiguating rule.

The yacc command invokes two disambiguating rules by default:

• In a shift/reduce conflict, the default is to do the shift .

• In a reduce/reduce conflict, the default is to reduce by the earlier granullar
rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in
favor of shifts. Rule 2 gives the user rather crude control over the behavior of
the parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate, and leads

yacc: Yet Another Compiler-Compiler 4-21

4

to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to produce
a correct parser, it is also possible to rewrite the grammar rules so that the
same inputs are read but there are no conflicts. For this reason, most previous
parser generators have considered conflicts to be fatal errors. Our experience
has suggested that this rewriting is somewhat unnatural, and produces slower
parsers; thus, yacc will produce parsers even in the presence of conflicts.

4 As an exan1ple of the power of disambiguating rules, consider a fragment from
a progran1ming language involving an if-then-else construction:

stat IF '(' cond ')' stat
IF '(' cond ')' stat_ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (logical) expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the
if - else rule.

These two rules form an ambiguous construction, since input of the form

IF (C1 IF (C2 S1 ELSE S2

can be structured according to these rules in two ways:

IF (C1 {

IF (C2 S1
}

ELSE S2

or

IF (C1 {

IF (C2 S1
ELSE S2
}

4-22 yacc: Yet Another Compiler-Compiler

The second interpretation is the one given in most programming languages
having this construct. Each ELSE is associated with the last preceding
"un-ELSE' d" IF. In this example, consider the situation where the parser has
seen

IF C1) IF C2) S1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

IF (C1) stat

and then read the remaining input,

ELSE S2

and reduce

IF C1 stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand
portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (C1) IF C2) S1

In general, there may be many conflicts, and each one will be associated with
an input symbol and a set of previously read inputs. The previously read
inputs are characterized by the state of the parser.

yacc: Yet Another Compiler-Compiler 4-23

4

4

The conflict nlessages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat
stat

(18)
ELSE stat

The first line describes the conflict, giving the state and the input symbol.
The ordinary state description follows, giving the granlmar rules active in the
state, and the parser actions. Recall that the underline nlarks the portion of
the grammar rules which has been seen. Thus in the exanlple, in state 23 the
parser has seen input corresponding to

IF cond stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45. Part of the description for state 45 is the line:

stat IF cond stat ELSE stat

since the ELSE will have been shifted in this state. Back in state 23, the
alternative action, described by " . ", is to be done if the input symbol is not
mentioned explicitly in the above actions; thus, in this case, if the input symbol
is not ELSE, the parser reduces by grammar rule 18:

stat IF '(' cond ')' stat

4-24 yacc: Yet Another Compiler-Compiler

Once again, notice that the numbers following shift commands refer to other
states, while the nun1bers following reduce con1mands refer to gran1mar rule
nun1bers. In the y. output file, the rule numbers are printed after those rules
which can be reduced. In most states, there will be at most one reduce action
possible in the state, and this will be the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at
the verbose output to decide whether the default actions are appropriate. In
really tough cases, the user n1ight need to know nlore about the behavior and
construction of the parser than can be covered here. In this case, one of the
theoretical references234 might be consulted; the services of a local guru Blight
also be appropriate.

yacc: Yet Another Compiler-Compiler 4-25

4

Precedence and Associativity
There is one conlnlon situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions.
Most of the comnlonly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for operators, together
with infoflnation about left or right associativity. It turns out that ambiguous
grallllnars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous

4 gramnlars. The basic notion is to write grammar rules of the fornl

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disalllbiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This infoflnation is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword:
%left, %right, or %nonassoc, followed by a list of tokens. All of the tokens on
the same line are assullled to have the same precedence level and associativity:
the lines are listed in order of increasing precedence or binding strength. Thus.

%left '+' '- ,
%left '*' 'I'

describes the precedence and associativity of the four arithmetic operators.
Plus and nlinus are left associative, and have lower precedence than asterisk
(*) and slash (I), which are also left associative. The keyword %right is used
to describe right associative operators, and the keyword %nonassoc is used
to describe operators, like the operator. LT. in FORTRAN. that may not
associate with thelnselves; thus,

A .LT. B .LT. C

4-26 yac c: Yet Another Compiler-Compiler

is illegal in FORTRAN, and such an operator would be described with
the keyword %nonassoc in yacc. As an example of the behavior of these
declarations, the description

%right '='
%left '+' '- ,
%left '* ' '/ '

%%

expr expr '=' expr
expr '+' expr
expr '- , expr
expr '* ' expr
expr '/ ' expr
NAME

might be used to structure the input

a b = c*d e

as follows:

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the saIne
symbolic representation, but different precedences. An example is unary and
binary '-'; unary minus may be given the same strength as nll11tiplication,
or even higher, while binary minus has a lower strength than nlultiplication.
The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the gran1l11ar rule,
before the action or closing semicolon, and is followed by a token nanle or
literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary minus have the
same precedence as multiplication the rules might resemble:

yacc: Yet Another Compiler-Compiler 4-27

4

4

%left '+' '-'
%left '* ' , / '

%%

expr expr
expr
expr
expr
, , -

NAME

'+' expr
'- , expr
'* ' expr

' /' expr
expr %prec '* '

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of
the rule. If the %prec construction is used, it overrides this default. SOllle
gramn1ar rules may have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict
and either the input symbol or the gramn1ar rule has no precedence and
associativity, then the two disambiguating rules given at the beginning of
the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the gramn1ar rule and the
input character have precedence and associativity associated with thenl,
then the conflict is resolved in favor of the action (shift or reduc e)
associated with the higher precedence. If the precedences are the saIne. then
the associativity is used; left associative in1plies reduce, right associative
implies shift, and nonassociating implies error.

4-28 yacc: Yet Another Compiler-Compiler

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This means
that mistakes in the specification of precedences may disguise errors in the
input grammar; it is a good idea to be sparing with precedences, and use them
in an essentially "cookbook" fashion, until some experience has been gained.
The y. output file is very useful in deciding whether the parser is actually
doing what was intended.

yacc: Yet Another Compiler-Compiler 4-29

4

4

Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it n1ay be necessary to
reclain1 parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser "restarted" after an error. A general class
of algorithms to do this involves discarding a number of tokens from the input
string, and atten1pting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple,
but reasonably general, feature. The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token error is legal. It then behaves as
if the token error were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the
error. If no special error rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat error

would, in effect, n1ean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that n1ight legally follow a statement, and
start processing at the first of these; if the beginnings of statelnents are not
sufficiently distinctive, it may make a false start in the middle of a statenlent.
and end up reporting a second error where there is in fact no error.

Actions n1ay be used with these special error rules. These actions might
atten1pt to reinitialize tables, reclainl symbol table space, etc.

4-30 yacc: Yet Another Compiler-Compiler

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as

stat error ,. , ,

Here, when there is an error, the parser attempts to skip over the statenlent,
but will do so by skipping to the next ';'. All tokens after the error and before
the next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule
will be reduced, and any "cleanup" action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule 4
might be

input: error '\n' { printf("Reenter last line: "); } input
{$$ $4;}

There is one potential difficulty with this approach; the parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to
force the parser to believe that an error has been fully recovered from. The
statement

yerrok

in an action resets the parser to its normal mode. The last example is better
written

input error '\n'
{ yyerrok;

printf("Reenter last line: ") ; }

input
{ $$ $4; }

As mentioned above, the token seen immediately after the error symbol
is the input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yacc: Yet Another Compiler-Compiler 4-31

4

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the
user, that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch () ;

yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors; moreover, the user can
get control to deal with the error actions required by other portions of the
program.

4-32 yac c: Yet Another Compiler-Compiler

The yacc Environment

When the user inputs a specification to yacc, the output is a file of C
programs, called y. tab. c. The function produced by yacc is called yyparse.
It is an integer valued function. When it is called, it in turn repeatedly calls
yylex, the lexical analyzer supplied by the user (see Chapter 3) to obtain
input tokens. Eventually, either an error is detected, in which case (if no
error recovery is possible) yyparse returns the value 1, or the lexical analyzer
returns the endmarker token and the parser accepts. In this case, yyparse
returns the value O. 4

The user must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C program,
a program called main must be defined, that eventually calls yyparse. In
addition, a routine called yyerror prints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main and yyerror. The name of this library is system dependent;
on HP-UX systems the library is accessed by a -ly argument to the loader. To
show the triviality of these default programs, the source is given below:

and

mainO{
return(yyparse());
}

include stdio.h

yyerror(s) char *s; {
fprintf(stderr, "%s\n", s);
}

yacc: Yet Another Compiler-Compiler 4-33

4

The argument to yyerror is a string containing an error message, usually the
string syntax error. The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print
it along with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages of larger
ones.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, and what
the parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

The yacc command provides command line options to allow some user
modifications to the yacc environment. The - b option allows the user to
change the default output filenames. For example:

yacc -b xx gram.y

would produce a file xx. tab. c rather than y . tab. c.

The -p option specifies a prefix to replace yy in naming external procedures
and variables. This can aid the linking of multiple parsers into a single
program. Note that if this renaming did not take place, multiple declaration
errors would occur at link time. The names changed are yyparse, yylex,
yyerror, yyl val, yychar, and yydebug. The renaming is done by emitting a
set of #defines in the y . tab. c and y. tab. h files.

4-34 yac c: Yet Another Compiler-Compiler

Hints for Debugging

Debugging a yaee grammar can be a challenge since the user's code (the yaee
grammar specification) is a level of abstraction away from the C code that is
being debugged. There are generally two areas where run time debugging is
needed:

• determining that the grammar is parsing its input as expected

• debugging action code.

To aid in debugging the parsing, yaee provides a trace facility. The trace is
enabled by compiling y. tab. e with the preprocessor symbol YYDEBUG defined
to be nonzero. This is easily done by using the -t option of yaee:

yaee -t grammar source

Then the trace is turned on by setting the variable yydebug to a nonzero
value. This can be done either by editing y. tab. e before compiling it, or while
debugging in xdb or edb. The trace gives information about which parser shift
and reduce actions are performed.

The action code and the overall program can be debugged using the symbolic
debugger xdb or edb, but some special work must be done to remove
line constructs that confuse the debuggers. Normally, yaee inserts # line
constructs into the generated y . tab. e file so that compile time errors refer to
lines in the yaee source file rather than the y. tab. e file. However, this causes
problems for the symbolic debuggers xdb and edb because the line numbers
may not be in increasing order. Once the y . tab. e file has been successfully
compiled, then run yaee with the -1 option so that no # line constructs are
generated. This y. tab. e file can then be debugged using either xdb or edb.
Remember that the code lines in either xdb or edb refer to lines in the y . tab. e
file, not the original yaee source file.

yacc: Yet Another Compiler-Compiler 4-35

4

4

Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more or less
independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following style hints owe much to Brian Kernighan.

1. Use all capital letters for token names, all lower case letters for nonterminal
names. This rule comes under the heading of "knowing who to blame when
things go wrong."

2. Put grammar rules and actions on separate lines. This allows either to be
changed without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand side in
only once, and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, and put
the semicolon on a separate line. This allows new rules to be easily added.

5. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The examples in the section "yacc Examples, Input Syntax, and Support" are
written following this style, as are the examples in the text of this chapter
(where space permits). The user must make up his own mind about these
stylistic questions; the central problem, however, is to make the rules visible
through the morass of action code.

4-36 yacc: Yet Another Compiler-Compiler

Left Recursion

The algorithm used by the yacc parser encourages so called "left recursive"
grammar rules: rules of the form

name name rest of rule

These rules frequently arise when writing specifications of sequences and lists:

list item
list , , item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first itenl only, and
the second rule will be reduced for the second and all succeeding itenls.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be in
danger of overflowing if a very long sequence were read. Thus, the user should
use left recursion wherever reasonable. It is worth considering whether a
sequence with zero elements has any meaning, and if so, consider writing the
sequence specification with an empty rule:

seq /* empty */ I seq item

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each itenl
read. Permitting empty sequences often leads to increased generality. However,
conflicts might arise if yacc is asked to decide which empty sequence it has
seen, when it hasn't seen enough to know!

yac c: Yet Another Compiler-Compiler 4-37

4

4

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined
by the lexical analyzer, and set by actions. For example, suppose a program
consists of 0 or more declarations, followed by 0 or more statements. Consider:

%{

%}

%%

prog

decls

stats

int dflag;

other declarations

decls stats

/* empty */
{ dflag

decls declaration

/* empty */
{

stats statement

other rules '"

dflag

1; }

0; }

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token Blust
be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does
not affect the lexical scan.

4-38 yacc: Yet Another Compiler-Compiler

This kind of backdoor approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not
impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or variable names, provided that such use does
not conflict with the legal use of these names in the programming language.
This is extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it "this instance of 'if' is a keyword,
and that instance is a variable". The user can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is
better that the keywords be reserved; that is, be forbidden for use as variable
names. There are powerful stylistic reasons for preferring this, anyway.

yacc: Yet Another Compiler-Compiler 4-39

4

4

Advanced Topics
This section discusses a number of advanced features of yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use
of macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the
value 0; YYERROR causes the parser to behave as if the current input symbol
had been a syntax error; yyerror is called, and error recovery takes place.
These mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

4-40 yac c: Yet Another Compiler-Compiler

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be 0 or negative. Consider:

sent adj
{

look at the sentence
}

adj THE
YOUNG

noun DOG

CRONE

noun verb adj noun

{ $$ THE; }
{ $$ YOUNG; }

{ $$ = DOG; }

{ if($0 == YOUNG){

$$ CRONE;
}

printf ("what?\n");
}

In the action following the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol noun in the input. There is
also a distinctly unstructured flavor about this. Nevertheless, at tinles this
mechanism will save a great deal of trouble, especially when a few combinations
are to be excluded from an otherwise regular structure.

yacc: Yet Another Compiler-Compiler 4-41

4

4

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers. The yacc command can also support values of other types, including
structures. In addition, yacc keeps track of the types, and inserts appropriate
union member names so that the resulting parser will be strictly type checked.
The yacc value stack (see the section "How the Parser Works") is declared
to be a union of the various types of values desired. The user declares the
union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n
construction, yacc will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking
commands such as lint5 will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those few
values where yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union
}

This declares the yacc value stack, and the external variables yyl val and
yyval, to have type equal to this union. If yacc was invoked with the -d
option, the union declaration is copied onto the y. tab. h file. Alternatively,
the union may be declared in a header file, and a typedef used to define the
variable YYSTYPE to represent this union. Thus, the header file might also have
said:

typedef union {
body of union
} YYSTYPE;

4-42 yacc: Yet Another Compiler-Compiler

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE is defined, the union member names must be associated with the
various terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is associated
with the tokens listed. Thus, saying

%left optype '+ ' '- ,

will cause any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used
similarly to associate union member names with nonterminals. Thus, one
might say

%type nodetype expr stat

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no a
priori type. Similarly, reference to left context values (such as $0 - see the
previous subsection) leaves yacc with no easy way of knowing the type. In
this case, a type can be imposed on the reference by inserting a union member
name, between < and>, immediately after the first $. An example of this usage
IS

rule aaa {$<intval>$ 3;} bbb
{ fun ($< intval>2, $< other>O); }

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in the section "An Advanced Example." The
facilities in this subsection are not triggered until they are used: in particular,
the use of %type will turn on these mechanisms. When they are used, there is a
fairly strict level of checking. For example, use of $n or to refer to sonlething
with no defined type is diagnosed. If these facilities are not triggered, the yacc
value stack is used to hold int' s, as was true historically.

yacc: Vet Another Compiler-Compiler 4-43

4

4

For parser efficiency, when an arbitrary union is defined for YYSTYPE, all of the
members of the union should be kept to the size of an integer (for example, an
integer or pointer). This is because the yacc value stack will be an array of
these union types. If some union members are large, the stack will be large
and copying stack values will be inefficient.

When larger structures are needed (for exam pIe, tree nodes in a compiler), it is
recommended that allocation and deallocation of structures be handled by user
supplied routines, and that the union member YYSTYPE be a pointer to the
appropriate structure type.

4-44 yacc: Yet Another Compiler-Compiler

yacc Examples, Input Syntax, and Support
This section contains the following information:

• An example of the yacc specification for a small desk calculator.

• An example of a grammar using some of yacc's advanced features.

• A description of the yacc input syntax.

• Old yacc features that are supported but not encouraged.

A Simple Example

This example gives the complete yacc specification for a small desk calculator;
the desk calculator has 26 registers, labeled a through z, and accepts
arithmetic expressions made up of the operators +, -, *, /, % (mod operator), &

(bitwise and), I (bitwise or), and assignment. If an expression at the top level
is an assignment, the value is not printed; otherwise it is. As in C, an integer
that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reasonable
job of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output
is produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs [26] ;
int base;

%}

%start list

yacc: Yet Another Compiler-Compiler 4-45

4

%token DIGIT LETTER

%left 'I'
%left '&'
%left '+ ' '- ,
%left '* ' '/ ' '%'
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

4 list /* empty */
list stat '\n'
list error '\n'

{ yyerrok; }

stat expr
{ printf ("%d\n", $1); }

LETTER '=' expr
{ regs[$1] = $3; }

expr ' (, expr ') ,
{ $$ $2; }

expr '+ ' expr
{ $$ $1 + $3; }

expr , - , expr
{ $$ $1 - $3; }

expr '* ' expr
{ $$ $1 * $3; }

expr '/ ' expr
{ $$ $1 / $3; }

expr '%' expr
{ $$ $1 % $3; }

expr '&' expr
{ $$ $1 & $3; }

expr 'I' expr
{ $$ $1 $3; }

, - , expr %prec UMINUS
{ $$ = - $2; }

LETTER

4-46 yacc: Yet Another Compiler-Compiler

number

%%

yylex() {
/*

through 25 */

{ $$ regs [$1] ; }

number

DIGIT
{ $$ = $1; base ($1==0) ? 8

number DIGIT
{ $$ = base * $1 + $2; }

/* start of programs */

/* lexical analysis routine */
returns LETTER for a lower case letter, yylval = 0

/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;

10; }

while((c=getchar()) { /* skip blanks */ }

/* c is now nonblank */

if(islower(c {
yylval
return
}

if(isdigit(c {

return (c);
}

yylval
return(
}

c 'a';
LETTER);

= c '0';
DIGIT);

yacc: Yet Another Compiler-Compiler 4-47

4

4

Advanced Example

This is an example of a grammar using some of the advanced features discussed
in the section "Advanced Topics." The desk calculator example in the section
"A Simple Example" in this section is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands
floating point constants, the arithmetic operations +, -, *, /, unary -, and =
(assignment), and has 26 floating point variables, a through z. Moreover, it
also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables A
through Z that may also be used. The usage is similar to that in the section
"A Simple Example" in this appendix; assignments return no value, and print
nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C. Intervals
are represented by a structure, consisting of the left and right endpoint values,
stored as double's. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating point scalars, and
integers (used to index into the arrays holding the variable values) . Notice that
this entire strategy depends strongly on being able to assign structures and
unions in C. In fact, many of the actions call functions that return structures
as well.

It is also worth noting the use of YYERROR to handle error conditions: division
by an interval containing 0, and an interval presented in the wrong order. In
effect, the error recovery mechanism of yacc is used to throwaway the rest of
the offending line.

In addition to the mixing of types on the value stack, this gra1l1111ar also
demonstrates an interesting use of syntax to keep track of the type (e.g.
scalar or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval value.
This causes a large number of conflicts when the granunar is run through yacc:
18 shift/reduce and 26 reduce/reduce. The problem can be seen by looking
at the two input lines:

2.5 + (3.5 - 4.)

4-48 yacc: Yet Another Compiler-Compiler

and

2.5 + (3.5 . 4.)

Notice that the 2.5 is to be used in an interval valued expression in the
second example, but this fact is not known until the . is read; by this tinle,
2.5 is finished, and the parser cannot go back and change its mind. More
generally, it might be necessary to look ahead an arbitrary number of tokens
to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the
left operand is a scalar, and one when the left operand is an interval. In the 4
second case, the right operand must be an interval, so the conversion will be
applied automatically. Despite this evasion, there are still many cases where
the conversion may be applied or not, leading to the above conflicts. They are
resolved by listing the rules that yield scalars first in the specification file; in
this way, the conflicts will be resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general.
If there were many kinds of expression types, instead of just two, the number
of rules needed would increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type infornlation
as part of the value, and not as part of the grammar.

Also, while this example illustrates the use of arbitrary yacc stack value types,
the union member INTERVAL results in every element of the yacc value stack
being the size of a struct interval. For large structures, this can be very
inefficient, and pointers to structures should be used instead. The user code
must then supply routines to explicitly allocate and deallocate the structures.

yacc: Yet Another Compiler-Compiler 4-49

4

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C library routine atof is used to do
the actual conversion from a character string to a double precision value. If
the lexical analyzer detects an error, it responds by returning a token that is
illegal in the grammar, provoking a syntax error in the parser, and thence error
recovery.

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {

INTERVAL vrnul(), vdiv();

double atof () ;

double dreg[26] ;
INTERVAL vreg[26 J;

%}

%start

%union

lines

{

int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREG VREG

%token <dval> CONST

double 10, hi;
} INTERVAL;

/* indices

/* floating

into dreg, vreg

point constant

%type <dval> dexp 1* expression *1

%type <vval> vexp /* interval expression */

4-50 yac c: Yet Another Compiler-Compiler

arrays */

*/

%left
%left
%left

%%

lines

line

dexp

/* precedence information about the operators */

'+ ' '- ,
'* ' '/ '
UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp '\n'
{ printf ("%15.8f\n", $1);}

vexp '\n'
{ printf ("(%15.8f, %15.8f)\n",

DREG '=' dexp '\n'
{ dreg [$lJ $3;}

VREG '=' vexp '\n'
{ vreg[$lJ $3;}

error '\n'
{ yyerrok;}

CONST
DREG

{ $$ dreg[$lJ; }

dexp '+' dexp
{ $$ $1 + $3; }

dexp '- , dexp
{ $$ $1 - $3; }

dexp '* ' dexp
{ $$ $1 * $3; }

dexp '/ ' dexp
{ $$ $1 / $3; }

'- , dexp %prec UMINUS
{ $$ - $2; }

, (, dexp ') ,
{ $$ $2; }

$1.10, $1.hi);}

yacc: Yet Another Compiler-Compiler 4-51

4

vexp dexp
{ $$.hi $$.10 $1 ; }

, (, dexp , , dexp ,) , ,
{

$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){

printf("interva1 out of order\n");
YYERROR;

4 }
}

VREG
{ $$ = vreg[$1] ; }

vexp '+ ' vexp
{ $$.hi $1.hi + $3.hi;

$$.10 $1.10 + $3.10;}
dexp '+ ' vexp

{ $$.hi $1 + $3.hi;
$$.10 $1 + $3.10;}

vexp vexp
{ $$.hi $1.hi - $3.10;

$$.10 $1.10 - $3.hi;}
dexp vexp

{ $$.hi $1 - $3.10;
$$.10 $1 - $3.hi;}

vexp '* ' vexp
{ $$ vrnu1($1.10, $1.hi, $3) ;}

dexp '* ' vexp
{ $$ vrnu1($1, $1, $3) ;}

vexp '/ ' vexp
{ if (dcheck($3 YYERROR;

$$ = vdiv($1.10, $1. hi, $3) ;}

dexp '/ ' vexp
{ if (dcheck($3)) YYERROR;

$$ vdiv($1, $1, $3) ;}
'- , vexp %prec UMINUS

{ $$.hi = -$2.10; $$.10 = -$2.hi;}
, (, vexp ') ,

{ $$ = $2;}

4-52 yac c: Yet Another Compiler-Compiler

%%

define BSZ 50 /* buffer size for floating point numbers */

yylexO{

/* lexical analysis */

register c;

while((c=getcharO) , ,){ /* skip over blanks */ }

if (isupper (c) {
yylval.ival c
returnC VREG);
}

'A' ;

if C islower C c){

if C

yyl val. ivaI = c ' a' ;
returnC DREG);
}

isdigitC c II c==' ,){
/* gobble up digits, points, exponents */

char
int

fore

buf[BSZ+l] , *cp
dot = 0, exp

Ccp-buf)&<BSZ

*cp
if C

if C

= c;
isdigitC
c == , ,

= buf;
0;

++cp,c=getchar()){

c)
){

continue;

ifCdot++ I I exp) returnC '.');
/* will cause syntax error */

continue;
}

if C c == ' e') {
if(exp++ return('e');

/* will cause syntax error */
continue;

yacc: Yet Another Compiler-Compiler 4-53

4

4

}

/* end of number */
break;
}

*cp = '\0';
if((cp-buf) >= BSZ) printf("constant too long: truncated\n");
else ungetc(c, stdin); /* push back last char read */
yylval.dval atof(buf);
return (CONST);
}

return (c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {

INTERVAL

dcheck(

/* returns the smallest interval containing a, b, c, and d */
/* used by * / routines */
INTERVAL v;

if(a>b { v.hi
= b;

a;

v.lo
v.lo

= a;

b' , }

else { v.hi }

if (c>d {

if (c>v.hi v.hi c;
if (d<v.lo v.lo d'
}

else {

if (d>v.hi v.hi d;
if (c<v.lo v.lo c;
}

return(v) ;
}

vmul(a, b, v double a, b; INTERVAL
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo
}

v INTERVAL v; {

if (v.hi >= O. && v.lo <= O.){
printf("divisor interval contains
return (1) ;

v; {
)) ;

O.\n") ;

4-54 yacc: Yet Another Compiler-Compiler

}

return (0);
}

INTERVAL vdiv(
return(
}

a, b,
hilo(

v) double a, b; INTERVAL v;
a/v.hi, a/v.lo, b/v.hi, b/v.lo

{

) ;

yacc: Yet Another Compiler-Compiler 4-55

4

4

Input Syntax

This is a description of the yacc input syntax, as a yacc specification. Context
dependencies, etc., are not considered. Ironically, the yacc input specification
language is most naturally specified as an LR(2) grammar; the sticky part
comes when an identifier is seen in a rule, immediately following an action. If
this identifier is followed by a colon, it is the start of the next rule; otherwise
it is a continuation of the current rule, which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead after
seeing an identifier, and decide whether the next token (skipping blanks,
newlines, comments, etc.) is a colon. If so, it returns the token C_IDENTIFIER.
Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERs.

%token
%token
colon
%token

/* grammar for the input to "yacc" */

/* basic
IDENTIFIER

*/
NUMBER

entities */
/* includes identifiers and literals */
/* identifier (but not literal) followed by

[0-9] +

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec defs MARK rules tail

tail MARK { In this action, eat up the rest of the file}

4-56 yac c: Yet Another Compiler-Compiler

defs

def

rword

tag

nlist

nmno

rules

rule

/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist , , , nmno

IDENTIFIER /* NOTE: literal illegal with
%type */

IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section */

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec

yacc: Yet Another Compiler-Compiler 4-57

4

4

rbody

act

prec

, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc.« } '}'

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec '. , ,

4-58 yac c: Yet Another Compiler-Compiler

Old Features Supported but Not Encouraged

This section mentions synonyms and features which are supported for historical
continuity, but, for various reasons, are not encouraged.

• Literals can also be delimited by double quotes ".

• Literals can be more than one character long. If all the characters are
alphabetic, numeric, or _, the type number of the literal is defined, just as if
the literal did not have the quotes around it. Otherwise, it is difficult to find
the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job which must be actually done
by the lexical analyzer.

• Most places where % is legal, backslash \ may be used. In particular, \ \ is
the same as %%, \left the same as %left, etc.

• There are a number of other synonyms:

o %< is the same as %left
o %> is the same as %right
o %binary and %2 are the same as %nonassoc
o %0 and %term are the same as %token
o %= is the same as %prec

• Actions can also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

• C code between %{ and %} used to be permitted at the head of the rules
section, as well as in the declaration section.

yacc: Yet Another Compiler-Compiler 4-59

4

4

Acknowledgements
B. W. Kernighan, P. J. Plauger, S. 1. Feldman, C. Imagna, M. E. Lesk, and
A. Snyder are to be recognized for their contribution of ideas to the current
version of yacc. C. B. Haley contributed to the error recovery algorithm. D.
M. Ritchie, B. W. Kernighan, and M. O. Harris helped translate this chapter
into English. Al Aho also deserves special credit for his help and favors.

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey (1978).

2. A. V. Aho and S. C. Johnson, "LR Parsing," Compo Surveys6(2) pp.
99-124 (June 1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of
Ambiguous Grammars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452
(August 1975).

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design,
Addison-Wesley, Reading, Mass. (1977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No.
65 (December 1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th
ACM Symp. on Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Charry, "A System for Typesetting
Mathematics," Comm. Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Camp. Sci. Tech. Rep.
No. 39, Bell Laboratories, Murray Hill, New Jersey (October 1975). (See
HP- UX Concepts and Tutorials, Vol. 1.)

4-60 yac c: Yet Another Compiler-Compiler

Index

A
accept action, 4-16
accept and error, simulating actions,

4-40
accessing values enclosed in rules, 4-41
action defined, 4-9
action execution by lex, 3-15
actions, user-supplies, 4-9
Alignment portability, 2-13
alternation operator, 3-11
ambiguity, 4-20
ambiguity (disambiguating rules), 4-28
ambiguous source rules, 3-20
arbitrary character matching (dot), 3-10
ARGSUSED, 2-4
arithmetic operators, 4-26, 4-27
association, left/right, 4-20

B
binary operators, 4-26
bugs, 3-39

c
cb, 1-2
cflow, 1-2
character I/O, 3-36
code, unreachable, 2-8
command syntax, lint, 2-2
compiling lex source programs, 3-25
constructions, strange, 2-14
context handling, 3-12
cpp, 1-2

.c suffix required on files, 2-2
ctags, 1-2
cxref~ 1-2

o
definition expansion, 3-13
directives, lint, 2-4
disambiguating rules, 4-28

E
endmarker, 4-8
environment, yacc, 4-33
error and accept, simulating actions,

4-40
error detection, input, 4-3
error handling, 4-30, 4-33
error messages, suppressing, 2-5
error used as token name, 4-12
example, advanced grammar, 4-48
example yacc specification, 4-45
exclusive start conditions, 3-34
expressions, optional, 3-11
expressions, repeated, 3-11
external variables and functions, 2-7

F
filename suffix .c required, 2-2
function return value, 2-9
functions, unused, 2-6

Index-1

Index

maex

G
grammar rules, 4-2
grouping characters, 3-11

H
handling shift actions, 4-15
HP-UX usage, 3-25

ignore input, 3-15
infinite loop, 2-8
input syntax, yacc, 4-56
interior actions, handling of, 4-10
1/0,3-36

L
left-context sensitivity, 3-32
left-hand side of grammar rules repeated,

4-7
left/right association, 4-20
lex, 1-1
lexical analysis, 4-12
lexical analyzer, 4-2
lex source definitions, 3-23
lex used with yacc, 3-3, 3-26
library file processing by lint, 2-3
lint, 1-1
lint directives, 2-4
LINTLIBRARY, 2-4
lint, purpose of, 2-5
literal, 4-6
literal characters treated as tokens, 4-3
literal character, token number for, 4-13
look-ahead, 3-16
look-ahead, implied, 3-19
loop not entered from top, 2-8

M
Manual conventions, 1-4
matched expression retrieval, 3-15

Index-2

N
nonterminal symbol, 4-3
NOSTRICT, 2-4
NOTREACHED, 2-4
NULL character not allowed in grammar

rules, 4-7
numeric repetitions, 3-13

o
obsolete features supported, 4-59
operator characters, 3-8
operator precedence, 3-14
operator precedence confusion, 2-15
optional expressions, 3-11

p

parser operation, 4-14
parser rules processing described, 4-18
pointer alignment, 2-11
portability, 2-11
Portability, alignment, 2-13
precedence, 4-26
precedence confusion, 2-15
precedence, operator, 3-14
preparation of grammar rules, 4-6
prior context sensitivity, 3-32
problem detection, 2-5
purpose of lint, 2-5

R

redefining variables, 2-15
reduce parser action, 4-14
regular expressions, 3-8
REJECT, 3-21
repeated expressions, 3-11
right/left association, 4-20

5
shift parser action, 4-14
simulating accept and error in actions,

4-40

source format. 3-23
source format summary. 3-37
source rules definitions. 3-23
specification file structure. 4-6
specifications

input style. 4-36
left recursion. 4-37
lexical tie-ins. 4-38
reserved words. 4-39

Standards compliance. 2-16
start conditions. 3-32. 3-34
start symbol. 4-8
strange constructions. 2-14
subtle errors. 2-5
suppressing error messages. 2-5
syntax. lint command. 2-2
syntax. yacc input. 4-56

T

terminal symbol. 4-3
token names declared. 4-6
token number. 4-12
token number for literal characters.

4-13
tokens. 4-3
tokens defined. 4-2

U

unary oprrators. 4-26. 4-27
undrfinrd return value. 2-9
unELSEd if. 4-23
unreachablr cock. 2-8
unsignrd treatrd as sign('d. 2-14
unused variables and functions. 2-6
user-suppli('d actions. 4-9
using values beforr th('y an' S('t. 2-8

v
values enclosed in rules. acc('ssillg'. 4-41
value set but not us('d. 2-8
value types. arbitrary. support for. 4-42
value used but not yrt sd. 2-8
variable redefinition. 2-15
variablrs. unus('d. 2-6
VARRARGSn.2-4
-v option when yarc is iuvoked. 4-16.

4-22

y

yacc, 1-1
yacc environmrnt. 4-33
yacc input syntax. 4-56
yacc sI)('cification ('xampl('. 4-45
yacc 11srd with lex. 3-3. 3-26

Index-3

Inaex

Reorder No. or
Manual Part No.
B 1864-90009

FliP" HEWLETT
~~ PACKARD

Copyright ©1991
H('w\('tt-Packard Company
Printed in USA E0191

Manufacturing
Part No.
B1864-90009

81864-90009

,.

,. ..

..
II

