
....

HP-UX Assembler and Tools

· HP-UX Assembler and Tools

HP 9000 Series 300/400 Computers

Flin- HEWLETT
a:~ PACKARD

HP Part No. 81864-90014
Printed in USA 08/92

First Edition
E0892

Legal Notices
The information contained in this manual is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Trademarks. UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © Hewlett-Packard Company, 1990-1992

Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws. All rights reserved.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph (c)(l)(ii)
of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright (C) 1980, 1984, 1986 UNIX System Laboratories, Inc.

Copyright (C) 1979, 1980, 1983,1985-1990 The Regents of the Univ. of
California.

This software and documentation is based in part on materials licensed from
The Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Printing History
New editions of this manual will incorporate all material udpated since the
previous edition. The manual printing date and part number indicate its
current edition. The printing date changes when a new edition is printed.
(Minor corrections that are incorporated at a reprinting do not cause the date
to change.) The manual part number changes when extensive technical changes
are incorporated.

Aug 1992

Jan 1991

iv

Edition 1. Part Number B1864-90014.
Replaces Edition 1 of B1864-90004. Includes all the
information of

B1864-90004 along with bug fixes. Edition 1. Part Number
B1864-90004.
Replaces HP- UX Assembler and Tools, part number
B1699-90000, which was written for the HP-UX 7.40 release.
That release included support for the M C68040 processor (that
is, HP9000 Series 400 computers). Also in that release, the
as10 and as20 assemblers were replaced with one assembler
named as. This edition of the manual includes information for
shared library support:

• The +z and +Z compile line options to generate
position-independent code.

• The +s compile line option to generate code for dynamically
loaded libraries.

• The shlib_ version pseudo-op to specify shared library
version date.

• The internal pseudo-op to keep labels from breaking up
internal to structures when placed in memory at run-time.

HP-UX Assembler and Tools

HP 9000 Series 300/400 Computers

Fli;W HEWLETT
.:~ PACKARD

HP Part No. 81864·90014
Printed in USA 08/92

First Edition
E0892

Legal Notices
The information contained in this manual is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Trademarks. UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © Hewlett-Packard Company, 1990-1992

Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws. All rights reserved.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph (c)(l)(ii)
of the' Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright (C) 1980, 1984, 1986 UNIX System Laboratories, Inc.

Copyright (C) 1979, 1980,1983,1985-1990 The Regents of the Univ. of
California.

This software and documentation is based in part on materials licensed from
The Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Printing History
New editions of this manual will incorporate all material udpated since the
previous edition. The manual printing date and part number indicate its
current edition. The printing date changes when a new edition is printed.
(Minor corrections that are incorporated at a reprinting do not cause the date
to change.) The manual part number changes when extensive technical changes
are incorporated.

Aug 1992

Jan 1991

iv

Edition 1. Part Number B1864-90014.
Replaces Edition 1 of B1864-90004. Includes all the
information of

B1864-90004 along with bug fixes. Edition 1. Part Number
B 1864-90004.
Replaces HP- UX Assembler and Tools, part number
B1699-90000, which was written for the HP-UX 7.40 release.
That release included support for the MC68040 processor (that
is, HP9000 Series 400 computers). Also in that release, the
as 10 and as20 assemblers were replaced with one assembler
named as. This edition of the manual includes information for
shared library support:

• The +z and +2 compile line options to generate
position-independent code.

• The +s compile line option to generate code for dynamically
loaded libraries .

• The shlib_ version pseudo-op to specify shared library
version date.

• The internal pseudo-op to keep labels from breaking up
internal to structures when placed in memory at run-time.

Contents

1. Introduction
Manual Contents
Related Documentation . .

Processor-Specific Manuals
HP-UX Reference
Programming on HP-UX .

Differences in Assembler Notation
Comparison Instructions .
Simplified Instructions .
Specific Forms

Invoking the Assembler .
Input Source File . . .
Naming the Object File (-0 objfile)
Generate Assembly Listing (-A). .
Send Assembly Listing to a File (-a list file)
Suppress Warning Messages (-w)
Include Local Symbols in LST (-L) . . .
Include User-Defined Local Symbols in LST (-1) .
Invoking the Macro Preprocessor (-m) .
Short Displacement (-d)
Span- Dependent Optimization (-0) . .
Set Version Stamp Field (-V number)
Generating Position-Independent Object Code (+z/ +Z)
Generating Code for Dynamically Loaded Libraries (+s) .

Invoking the Assembler from the Compilers
Overview of Assembler Operation

1-2
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-7
1-7
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9

1-10
1-10
1-10
1-10
1-11
1-11

Contents-1

2. Assembly Language Syntax
Syntax of the Assembly Language Line
Labels ..
Statements
Comments.
Identifiers
Register Identifiers

M C68000 Registers
M C680 10 Registers
MC68020/30j40 Registers
MC68881/2 Registers . . .
HP 98248 Floating-Point Accelerator Registers

Constants
Integer Constants . .
Character Constants
String Constants . .
Floating-Point Constants

3. Segments, Location Counters, and Labels
Segments
Location Counters
Labels ...

4. Expressions
Expression Types .

Absolute ..
Relocatable
External ..

Expression Rules
Precedence and Associativity Rules
Determining Expression Type
Pass-One Absolute Expressions . . .

Pass-One Absolute Expressions and Span-Dependent
Optimization

Floating-Point Expressions . 0 0 • • • • • • • • • •

Contents-2

2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-8

2-10
2-10

3-1
3-2
3-3

4-1
4-1
4-1
4-2
4-2
4-3
4-4
4-7

4-7
4-8

5. Span-Dependent Optimization
U sing the -0 Option 5-1

Default Optimizations Performed 5-2
MC68010-Compatible Optimizations 5-3
Example of Optimization Performed . 5-4
Optimization Performed with the -d Option 5-5

Restrictions When Using the -0 Option 5-6
Span-Dependent Optimization and lalign . 5-6
Symbol Subtractions 5-7

6. Pseudo-Ops
Segment Selection Pseudo-Ops 6-2
Data Initialization Pseudo-Ops 6-4
Symbol Definition Pseudo-Ops 6-7
Alignment Pseudo-Ops 6-8

A Note about lalign 6-9
A Note about align 6-9
Pseudo-Ops to Control Expression Calculation with

Span-Dependent Optimization. 6-10
Floating-Point Pseudo-Ops . 6-11
Version Pseudo-Ops 6-12
Shared Library Pseudo Ops 6-14
Symbolic Debug Support Pseudo-Ops 6-14

7. Address Mode Syntax
Notes on Addressing Modes 7-4
MC68020/30/40 Addressing Mode Optimization 7-6

Examples 7-6
Forcing Small Displacements (-d) 7-8

8. Instruction Sets
MC680xO Instruction Sets 8-1
MC6888x and MC68040 Floating-Point Instructions . 8-17
FPA Macros 8-29

Contents-3

9. Assembler Listing Options

A. Compatibility Issues
U sing the -d Option
Determining Processor at Run Time .

B. Diagnostics

C. Interfacing Assembly Routines to Other Languages
Linking
Register Conventions

Frame and Stack Pointers
Scratch Registers
Function Result Registers
Temporary Registers and Register Variables

Calling Sequence Overview
Calling Sequence Conventions
Example

C and FORTRAN
C and FORTRAN Functions . .

C and FORTRAN Functions Returning 64-Bit Double Values
C Structure-Valued Functions

FORTRAN Subroutines
FORTRAN CHARACTER Parameters
FORTRAN CHARACTER Functions . .
FORTRAN COMPLEX*8 and COMPLEX*16 Functions

Pascal
Static Links
Passing Large Value Parameters
Parameter-Passing Rules

Call-By-Reference ("var" Parameters) .
Call-By-Value (Copyvalue Parameters)
Call-By-Value (Non-Copyvalue Parameters)

Example of Parameter Passing .
Pascal Functions Return Values .
Example with Static Link
Example with Result Area .
Pascal Conformant Arrays .

Contents-4

A-2
A-3

C-l
C-2
C-2
C-2
C-3
C-3
C-4
C-4
C-5
C-8
C-8

C-IO
C-ll
C-ll
C-12
C-12
C-13
C-13
C-14
C-14
C-14
C-14
C-14
C-15
C-15
C-15
C-16
C-17
C-17

Example Using Conformant Arrays C-17
Pascal "var string" Parameters. C-18

D. Example Programs
Interfacing to C. D-l

The C Source File (prog.c) D-2
The Assembly Source File (count1.s) D-3

Using MC68881/2 and MC68040 Floating-Point Instructions .. D-6

E. Translators
atrans
astrn

F. Unsupported Instructions for Series 300/400 Computer's

G. adb
adb Syntax
adb Command Format ..
Displaying Information
Debugging C Programs

Debugging a Core Image .
Setting Breakpoints . . .
Advanced Breakpoint Usage
Other Breakpoint Facilities
Maps
Variables and Registers
Formatted Dumps
Patching
Anomalies
Command Summary

Formatted Printing
Breakpoint and Program Control .
Miscellaneous Printing.
Calling the Shell
Assignment to Variables

Format Summary
Expression Summary

Expression Components

E-l
E-l

G-l
G-2
G-3
G-6
G-6

G-IO
G-15
G-17
G-19
G-23
G-24
G-28
G-30
G-30
G-30
G-31
G-31
G-31
G-31
G-32
G-32
G-32

Contents-5

Dyadic Operators .
Monadic Operators

H. atime
Continuing to Get Information
Prerequisites
Getting Additional Information .
Manual Contents
Atime and Assembly Code .

The Overall Pi cture
The atime Features

Syntax: with Examples
The atime Syntax .
atime Options
An Example of an Input-file

A Rationale for Using atime
Sequence One
Sequence Two

A Complete Input File. . .
A Second Example of an Input-file

The In pu t File
Section One: atime Initialization
Section Two: Code Initialization
Section Three: Timed .
Section Four: Verify. .
Input-file Requirements

The atime Instructions
Restrictions on atime Instructions.
A Quick Look at the Instructions . .
assert

assert in Performance Analysis/Execution Profiling Modes .
assert in Assertion Listing Mode
Additional Information about assert . .

assert file
code oddleven
comment.
datan ame
dataset

Contents-6

G-33
G-33

H-l
H-2
H-2
H-2
H-3
H-4
H-5
H-6
H-6
H-6
H-7
H-7
H-8
H-8
H-8

H-IO
H-ll
H-ll
H-ll
H-12
H-12
H-12
H-13
H-13
H-13
H-15
H-15
H-15
H-15
H-16
H-16
H-17
H-17
H-18

include
iterate
ldopt
nolist
output.
stack oddleven
time.
title
verify

Performance Analysis Mode
U sing Command Line Options
Getting and Reading Output (the analysis)
An Example
Showing the Average Time . .

Execu tion Profiling Mode
U sing Command Line Options
Getting and Reading Output (the profile)
An Example

Examining Assertion Listing Mode
U sing Command Line Options
Getting and Using Output
An Example

Recovering from Errors
Tracking Errors
Data Set Errors. . . .
Assert Instruction Errors.
Some Notes About Error Recovery Procedures

Index

H-19
H-19
H-20
H-20
H-21
H-21
H-22
H-22
H-23
H-23
H-24
H-24
H-24
H-25
H-25
H-26
H-26
H-26
H-27
H-27
H-28
H-28
H-29
H-29
H-30
H-31
H-31

Contents-7

Figures

5-1. Span-Dependent Optimized Instructions .
G-1. C Program with a Pointer Bug
G-2. adb Output from Program of Figure 1-1
G-3. C Program to Decode Tabs
G-4. adb Output from C Program of Figure 1-3
G-5. Maps Produced by adb
G-6. Simple C Program That lliustrates Formatting and Patching .
G-7. adb Output Showing Fancy Formats.

. H-1. How atime Fits Into Developing Assembly Language

Contents-8

5-1
G-6
G-8

G-l1
G-14
G-21
G-26
G-27

H-4

Tables

2-1. M C68000 Register Identifiers 2-5
2-2. MC68010 Register Identifiers 2-6
2-3. MC68020/30j40 Control Register Identifiers 2-6
2-4. Suppressed (Zero) Registers 2-7
2-5. MC68881/2 Register Identifiers 2-7
2-6. HP 98248 Floating-Point Accelerator Registers 2-7
2-7. Special Characters 2-9
4-1. Expression Operators 4-2
5-1. Default Span-Dependent Optimizations 5-2
5-2. MC68010-Compatible Span-Dependent Optimizations . 5-3
5-3. Effective Code after Optimization 5-4
5-4. Span-Dependent Optimizations Performed with -d Option . 5-5
6-1. Segment Selection Pseudo-Ops 6-2
6-2. Data Initialization Pseudo-Ops 6-4
6-3. Symbol Definition Pseudo-Ops 6-7
6-4. Alignment Pseudo-Ops 6-8
6-5. Symbol Subtraction 6-10
6-6. Floating-Point Pseudo-Ops . . 6-11
6-7. Table 7-7. Version Pseudo-Ops 6-12
6-8. Shared Library Pseudo-Ops 6-14
7-1. Effective Address Modes . . . 7-2
8-1. M C680xO Instruction Formats 8-4
8-2. Floating-Point Condition Codes. 8-17
8-3. MC6888x/MC68040 Constant ROM Values 8~18
8-4. MC6888x and MC68040 Floating-Point Instruction Formats 8-21
8-5. FPA-Macro Formats. 8-30

G-1. Commonly Used adb Commands G-3
H-l. The atime Instructions H-14

Contents-9

1
Introduction

U sing the as assembler, you can write assembly language programs for Series
300/400 computers that use the MC680xO family of processors. In addition, as
can assemble programs that use MC6888x math coprocessors or the HP 98248
floating-point accelerators. This manual describes how to use as.

This chapter describes:

• This manual's contents.

• Related documentation.

• Differences in assembler notation.

• Using the assembler command.

• Using the compilers to invoke the assembler.

• Summary of assembler operation.

Introduction 1-1

1

Manual Contents
Chapter 1: Introduction identifies related manuals, lists various precautions
related to using as, describes how to invoke as and use its different command
options, shows how to invoke as from C and FORTRAN compilers, and
summarizes how as operates.

Chapter 2: Assembly Language Building Blocks discusses the basic building
blocks of as assembly language programs: identifiers, register identifiers, and
constants.

Chapter 3: Assembly Language Syntax describes the syntax of as assembly
language programs and introduces labels, statements, and comments.

Chapter 4: Segments, Location Counters, and Labels discusses the text, data,
and bss segments, and their relation to location counters and labels.

Chapter 5: Expressions defines the rules for creating expressions in as
as~embly language programs.

Chapter 6: Span-Dependent Optimization describes optional optimization of
branch instructions.

Chapter 7: Pseudo-Ops describes the various pseudo-ops. Pseudo-ops can
be used to select a new segment for assembly output, initialize data, define
symbols, align the assembly output to specific memory boundaries, set the
rounding mode for floating point input, and set the floating point co-processor
ide

1-2 Introduction

Chapter 8: Address Mode Syntax defines the syntax to use for various
supported addressing modes, gives hints on using various addressing modes,
and discusses how as optimizes address formats and displacement size.

Chapter 9: Instruction Sets describes instructions sets for the MC680xO
processors, the MC6888x floating-point coprocessors, and the HP 98248
floating-point accelerator.

Chapter 10: Assembler Listing Options describes use of the as listing options
-a and -A.

Appendix A: Compatibility Issues discusses issues to consider if you wish to
write code that is compatible among MC680xO processors.

Appendix B: Diagnostics provides information on diagnostic error messages
output by as.

Appendix C: Interfacing Assembly Routines to Other Languages describes
how to write as assembly language routines that call or are called from C,
FORTRAN, and Pascal languages.

Appendix D: Examples contains examples of as assembly language source code.

Appendix E: Translators describes translators which convert PLS (Pascal
Language System) and old Series 200/300 HP-UX assembly code to
as-compatible format.

Appendix P: Unsupported Instructions for Series 300s provides information on
MC680xO instructions that are not supported by various Series 300 machines.

Appendix G: adb shows how to use the assembler debugger, adb, to debug core
files.

Appendix H: atime describes the use of the atime facility for timing assembly
language code.

Introduction 1-3

1

Related Documentation
This manual deals mainly with the use of the as assembler. This manual does
not contain detailed information about the actual instructions, status register
bits, handling of interrupts, processor architecture, and many other issues
related to the M680xO family of processors. For such information, you should
refer to the appropriate processor documentation for your computer.

Processor-Specific Manuals

The following manuals are useful, depending on what processors your system
uses:

• MC68020 32-Bit Microprocessor User's Manual, which describes the
MC68020 instruction set, status register bits, interrupt handling, cache
memory, and other issues

• MC68030 32-Bit Microprocessor User's Manual, which describes the
MC68030 instruction set, status register bits, interrupt handling, cache
memory, and other issues

• MC8040 32-Bit Microprocessor User's Manual, which describes the MC68040
instruction set, status register bits, interrupt handling, cache memory, and
other issues

• MC68881 Floating-Point Coprocessor User's Manual, which describes the
floating-point coprocessor, its instruction set, and other related issues

• HP 98248 Floating-Point Accelerator Manual, which describes the
floating-point accelerator, its instruction set and other related issues.

Note The reference manuals described above are not provided with
the standard HP-UX Documentation Set. If you intend to use
the HP-UX Assembler on your system, you can order these
manuals from HP.

1·4 Introduction

HP-UX Reference

The HP-UX Reference may also be of interest; the following entries in
particular:

• as(l)-describes the assembler and its options.

• ld(l)-describes the link editor, which converts as relocatable object files to
executable object files.

• a.out(4) and magic(4)-describe the format of object files.

Programming on HP-UX

The book Programming on HP- UX contains detailed information on writing
applications on HP-UX. It covers such concepts as compilers, object files, the
linker, a.out files, libraries (archive and shared), position-independent code,
assembly code output by compilers, standard libraries and system calls, and
language-independent programming tools (such as make and SeeS).

Introduction 1-5

1

Differences in Assembler Notation
Though for the most part as notation corresponds directly to notation used in
the previously described processor manuals, several exceptions exist that could
lead the unsuspecting user to write incorrect as code. These exceptions are
described next. (Note that further differences are described in Chapter 7 and
Chapter 8.)

Comparison Instructions

One difference that may initially cause problems for some programmers is the
order of operands in compare instructions: the convention used in the M68000
Programmer's Reference Manual is the opposite of that used by as. For
example, using the M68000 Programmer's Reference Manual, one might write:

CMP.W
BLE

Is register D3 <= register D5?
Branch if less or equal.

U sing the as convention, one would write:

cmp.w Y.d3,Y.d5
ble is_less

Is register d3 <= register d5?
Branch if less or equal.

This follows the convention used by other assemblers supported on UNIX™.
This convention makes for straightforward reading of compare-and-branch
instruction sequences, but does, nonetheless, lead to the peculiarity that if
a compare instruction is replaced by a subtract instruction, the effect on
condition codes will be entirely different.

This may be confusing to programmers who are used to thinking of a
comparison as a subtraction whose result is not stored. Users of as who
become accustomed to the convention will find that both the compare and
subtract notations make sense in their respective contexts.

Simplified Instructions

Another issue that may cause confusion for some programmers is that the
MC680xO processor family has several different instructions to do basically the
same operation. For example, the M68000 Programmer's Reference Manual
lists the instructions SUB, SUBA, SUBI, and SUBQ, which all have the effect of
subtracting a source operand from a destination operand.

1-6 Introduction

The as assembler conveniently allows all these operations to be specified by a
single assembly instruction, sub. By looking at the operands specified with the
sub instruction, as selects the appropriate MC680xO opcode-i.e., either SUB,
SUBA, SUBI, or SUBQ.

This could leave the misleading impression that all forms of the SUB operation
are semantically identical, when in fact, they are not. Whereas SUB, SUBI,
and SUBQ all affect the condition codes consistently, SUBA does not affect the
condition codes at all. Consequently, the as programmer should be aware that
when the destination of a sub instruction is an address register (which causes
sub to be mapped to SUBA), the condition codes will not be affected.

Specific Forms

You are not restricted to using simplified instructions; you can use specific
forms for each instruction. For example, you can use the instructions addi,
adda, and addq, or subi, suba, or subq, instead of just add or sub. A
specific-form instruction will not be overridden if the instruction doesn't agree
with the type of its operand(s) or if a more efficient instruction exists. For
example, the specific form addi is not automatically translated to another
form, such as addq.

Invoking the Assembler
To assemble an assembly language source program, use the as command. Its
syntax is:

as [options] [file]

The as assembler creates relocatable object code (a .0 file), which can be
linked (via the Id command) with other object files to create executable
programs. For details on linking executable programs with Id, see ld(l), or the
book Programming on HP- UX.

If any errors are found during assembly, as displays descriptive error messages
and warnings to stderr.

Introduction 1· 7

1

The as command options and source file are described below. Additional
information can be found in as(l).

Input Source File

The file argument specifies the file name of the assembly language source
program. Typically, assembly source files have a . s suffix; e.g., asmprog. s. If
no file is specified, or if a hyphen (-) is specified, the assembly source is read
from standard input (stdin).

Naming the Object File (-0 objfile)

By default, as names the output object file according to these rules:

• If the assembly source is read from standard input (Le., file is not specified or
is -), then name the output file a. out .

• Otherwise, if an input file is specified, name the object file by replacing the
input file suffix with .0 (e.g., source. s becomes source. 0).

To name the output object file something other than the above defaults, use
the -0 outfile option. For example, to assemble a source file named source. s
and name the resulting object file obj ect. 0, use this command:

$ as -0 object.o source.s

To prevent accidental corruption of source files, as will not accept an outfile
name ending in . c or . s. Also, as will not accept an outfile name that starts
with the - or +.

Generate Assembly Listing (-A)

Generate an assembly listing with offsets, a hexadecimal dump of the generated
code, and the source text. The listing goes to standard output (stdout). This
option cannot be used when the input is stdin.

1-8 Introduction

Send Assembly Listing to a File (-a Ii stfil e)

To send the assembly listing to a file instead of stdout, use the -a listfile
option, where listfile is the name of the file. This option cannot be used when
the input is stdin. The listfile name cannot end with . c or . s, and cannot
start with - or +.

Suppress Warning Messages (-w)

To suppress warning messages, specify the -w option.

Include Local Symbols in LST (-L)

When the -L option is used, local symbols as well as global symbols will be
placed in the linker symbol table (LST). Normally, only global and undefined
symbols are entered into the LST. This is a useful option when using the
assembler debugger, adb, to debug assembly language programs (see the "ADB
Tu torial" in this book).

Include User-Defined Local Symbols in LST (-I)

Generates entries in the linker symbol table for all global, undefined, and local
symbols except those with"." or "L" as the first character. This option is
useful when using tools like prof on files generated by the C or FORTRAN
compilers (see prof(l)). It generates LST entries for user-defined local names
but not for compiler-generated local names.

Invoking the Macro Preprocessor (-m)

The -m option causes the m4 macro preprocessor to process the input file before
as assembles it. For details on m4, see Programming on HP-UX and m4(1).

Short Displacement (-d)

The -d option causes as to generate short displacement forms for
MC68010-compatible addressing modes, even for forward references.

Introduction 1-9

1

Span-Dependent Optimization (-0)

Turns on span-dependent optimization. This optimization is off by default.

Set Version Stamp Field (-V number)

This option causes the a_stamp field in the a. out header (see a.out(4)) to be
set to number. The -v option overrides any version pseudo-op in the assembly
source. See Chapter 6.

As mentioned at the start of this section, as creates relocatable object files.
Therefore, the .0 files created by as use the magic number RELOC_MAGIC as
defined in the /usr/include/magic.h header file. The linker, Id, must be used
to make the file executable. For details on the linker and magic numbers, see
the following pages from the HP-UX Reference: ld(l), a.out(4), and magic(4).

Generating Position-Independent Object Code (+z/+Z)

The +z and +Z options generate object files containing position-independent
code (PIC). PIC object files can be combined with Id to create shared (.sl)
libraries. For details on PIC and shared libraries and the use of the +z and +Z
options, see the book Programming on HP- UX.

Generating Code for Dynamically Loaded Libraries (+s)

If +s is specified, as generates code that can be dynamically loaded at run-time
but cannot be shared. This type of code is combined into archive (. a) libraries
with the ar command. See Programming on HP- UX for details on creating
archive libraries.

1-10 Introduction

Invoking the Assembler from the Compilers
The as assembler can also be invoked through C and FORTRAN compilers.
Options can be passed to the assembler via the -W a option. For example,

$ cc -c -W a,-L file.s

would assemble file. s to generate file. 0, with the assembler generating
LST entries for local symbols. And the command

$ f77 -0 cmd xyz.s abc.f

compiles abc. f and assembles xyz. s. The resulting .0 files (xyz. 0 and abc. 0)

are then linked to create the executable program cmd.

Overview of Assembler Operation
The as assembler operates in two passes. Pass one parses the assembly source
program. As it parses the source code, it determines operand addressing modes
and assigns values to labels. The determination of the addressing mode used
for each instruction is based on the information the assembler has available
when the instruction is encountered. Preliminary code is generated for each
instruction.

Throughout this reference, you will encounter the term pass-one absolute.
For example, some expressions allow only pass-one absolute expressions. A
pass-one absolute expression is one whose value can be determined when it is
first encountered.

Pass two of as processes the preliminary code and label values (determined
in pass one) to generate object code and relocation information. In addition,
as generates a relocatable object file that can be linked by ld to produce an
executable object code file. If you want to know more about the format of
object files generated by ld, see ld(l), a.out(4), and a.out(4).

Introduction 1-11

1

Assembly Language Syntax

This chapter discusses the syntax of as assembly language programs-that
is, the pieces of assembly language programs and how they fit together.
Specifically, it describes:

• Assembly language source lines.

• Labels.

• Statements.

• Comments.

• Identifiers.

• Register identifiers.

• Constants:

o Integer
o Character
o String
o Floating-point.

2

Assembly Language Syntax 2-1

2

Syntax of the Assembly Language Line
In general, assembly language source lines consist of three parts-label,
statement, and comment-arranged in this order:

[label] ... [statement] [comment]

Each part is optional (as denoted by the brackets []). Therefore, a line can be
entirely blank (no parts present), or it may contain any combination of the
parts in the specified order. A line can also have more than one label.

Labels, statements, and comments are separated by white space (Le., any
number of spaces or tabs), and there can also be white space before labels.

Labels
A label is an identifier followed by a colon (:). (See "Identifiers" later in this
chapter.) The colon is not considered to be part of the label. A label can be
preceded by white space. There can be more than one label per line. (This
feature is used primarily by compilers.) Here are some example labels:

Loop1:
ExitProg:
BRANCH:

Labels can precede any instruction or pseudo-op, except the text, data, and
bss pseudo-ops.

2-2 Assembly Language Syntax

Statements

A statement consists of an MC680xO opcode (or a pseudo-op) and its
operand(s), if any:

{ opcodde } [operand [,operand] ...]
pseu o-op

Several statements can appear on the same line, but they must be separated by
semicolons:

statement [; statement] ...

Here are some example statements:

emp Y.dO, MaxNum
beq Overflow

compares data register 0 to value in MaxNum
branches if they are equal to label Overflow

Comments
The # character signifies the start of a comment. Comments are ignored by
the assembler. Comments start at the # character and continue to the end of
the line. A # character within a string or character constant does not start a
comment. Here are some example comments.

This comment is on a line by itself.
LoopO: # This comment follows a label.

Note

nop # This comment follows a statment.

Some users invoke the C preprocessor, cpp, to make use of
macro capabilities (see cpp(1)). In such cases, care should be
taken not to start comments with the # in column one because
the # in column one has special meaning to cpp.

Assembly Language Syntax 2-3

2

Identifiers
An identifier is a string of characters taken from a-z, A-Z, 0-9, and _
(underscore). The first character of an identifier must be a letter (a-z or A-Z)
or the underscore (_).

The as assembler is case-sensitive; for example, loop_35, Loop_35, and
LOOP _35 are all distinct identifiers. Identifiers cannot exceed 256 characters in
length.

Identifiers can also begin with a dot (.). This is used primarily for certain
reserved symbols used by the assembler (.b, .w, .1, .5, .d, .x,and .p). To
avoid conflict with internal assembler symbols, you should not use identifiers
that start with a dot. In addition, the names ., . text, . data, and . bss are
predefined.

The dot (.) identifier is the location counter .. text, . data, and. bss are
relocatable symbols that refer to the start of the text, data, and bss segments
respectively. These three names are predefined for compatibility with other
UNIX assemblers. (For details on segments, see Chapter 3.)

The assembler maintains two name spaces in the symbol table: one for
instruction and pseudo-op mnemonics, the other for all other identifiers­
user-defined symbols, special reserved symbols, and predefined assembler
names. This means that a user symbol can be the same as an instruction
mnemonic without conflict; for example, addq can be used as either a label
or an instruction. However, an attempt to define a predefined identifier (e.g.,
using. text as a label) causes a symbol redefinition error. Since all special
symbols and predefined identifiers start with a dot (.), user-defined identifiers
should not start with the dot.

2·4 Assembly Language Syntax

Register Identifiers

A register identifier denotes a register on an MC680xO processor, MC68881/2
coprocessor, or HP 98248 floating-point accelerator. Register identifiers begin
with the Y. character. Register identifiers are the only identifiers that can
use the Y. character. In this section, register identifiers are described for the
following groups of registers:

• MC68000 registers, common to all MC680xO processors

• MC68010 registers, common to the MC68010/20/30/40 processors

• MC68020/30/40 registers, used only by the MC68020/30/40 processors

• MC68881/2 registers, used only by the MC68881/2 coprocessors

• HP 98248 Floating-Point Accelerator registers.

MC68000 Registers

Both the MC68010 and MC68020/30 processors use a common set of MC68000
registers: eight data registers; eight address registers; and condition code,
program counter, stack pointer, status, user stack pointer, and frame pointer
registers.

Table 2-1 defines these registers.

Table 2·1. MC68000 Register Identifiers

Name Description

%dO - Yed7 Data Registers 0 through 7.

%aO - Yea7 Address Registers 0 through 7.

%cc Condition Code Register

%pc Program Counter

%sp Stack Pointer (this is %a7)

%sr Status Register

%usp User Stack Pointer

%fp Frame Pointer Address Register (this is %as)

Assembly Language Syntax 2·5

2

MC68010 Registers

In addition to the MC68000 registers, the MC68010 processor supports the
registers shown in Table 2-2.

Table 2·2. MC6S0 1 0 Register Identifiers

Name Description

%sfc Source Function Code Register

%dfc Destination Function Code Register
%vbr Vector Base Register

MC68020/30/40 Registers

The entire register set of the MC68000 and MC68010 is included in the
MC68020/30/40 register set. Table 2-3 shows additional control registers
available on the MC68020/30/40 processors.

Table 2·3. MC68020/30/40 Control Register Identifiers

Name Description

%caar Cache Address Register

%cacr Cache Control Register

%isp Interrupt Stack Pointer

Y.msp Master Stack Pointer

Various addressing modes of the MC68020/30/40 allow registers to be
suppressed (not used) in the address calculation. Syntactically, this can be
specified either by omitting a register from the address syntax or by explicitly
specifying a suppressed register (also known as a zero register) identifier in the
address syntax. Table 2-4 defines the register identifiers that can be used to
specify a suppressed register.

2-6 Assembly Language Syntax

Table 2-4. Suppressed (Zero) Registers

Name Description

%zdO - %zd7 Suppressed Data Registers 0 through 7.

%zaO - %za7 Suppressed Address Registers 0 through 7.

%zpc Suppressed Program Counter

MC68881/2 Registers

Table 2-5 defines the register identifiers for the MC68881 floating-point
coprocessor.

Table 2·5. MC68881/2 Register Identifiers

Name Description

%fpO - Yefp7 Floating Point Data Registers 0 through 7

Yefpcr Floating Point Control Register

Yefpsr Floating Point Status Register

%fpiar Floating Point Instruction Address Register

HP 98248 Floating-Point Accelerator Registers

Table 2-6 defines the register identifiers for the floating-point accelerator.

Table 2-6. HP 98248 Floating-Point Accelerator Registers

Name Description

%fpaO - %fpa15 Floating Point Data Registers

%fpacr Floating Point Control Register

Yefpasr Floating Point Status Register

Assembly Language Syntax 2· 7

2

Constants
The as assembler allows you to use integer, character, string, and floating
point constants.

Integer Constants

Integer constants can be represented as either decimal (base 10), octal (base 8),
or hexadecimal (base 16) values. A decimal constant is a string of digits (0-9)
starting with a non-zero digit (1-9). An octal constant is a string of digits (0-7)
starting with a zero (0). A hexadecimal constant is a string of digits and letters
(0-9, a-f, and A-F) starting with Ox or OX (zero X). In hexadecimal constants,
upper- and lower-case letters are not distinguished.

The as assembler stores integer constants internally as 32-bit values. When
calculating the value of an integer constant, overflow is not detected.

Following are example decimal, octal, and hexadecimal constants:

35 Decimal 35
035 Octal 35 (Decimal 29)
OX35 Hexadecimal 35 (Decimal 53)
OxfF Hexadecimal ff (Decimal 255)

Character Constants

An ordinary character constant consists of a single-quote character (') followed
by an arbitrary ASCII character other than the backslash (\), which is reserved
for specifying special characters. Character constants yield an integer value
equivalent to the ASCII code for the character; because they yield an integer
value, they can be used anywhere an integer constant can. The following are all
valid character constants:

2·8 Assembly Language Syntax

Constant Value

'0 Digit Zero

'A Upper-Case A

'a Lower-Case a

'\' Single-Quote Character (see following
description of special characters)

A special character consists of \ followed by another character. All special
characters are listed in Table 2-7.

Table 2-7. Special Characters

Constant Value Meaning

\b Ox08 Backspace

\t Ox09 Horizontal Tab

\n OxOa Newline (Line Feed)

\v OxOb Vertical Tab

\f OxOc Form Feed

\r OxOd Carriage Return

\\ Ox5c Backslash

\' Ox27 Single Quote

\" Ox22 Double Quote

If the backslash precedes a character other than the special characters shown in
Table 2-7, then the character is produced. For example, \A is equivalent to A.

Assembly Language Syntax 2-9

2

In addition to the special characters shown in Table 2-7, you can optionally
represent any character by following the backslash with an octal number
containing up to three digits:

\ddd

For example, \11 represents the horizontal tab (\t); \0 represents the NULL
character.

String Constants

A string consists of a sequence of characters enclosed in double quotes. String
constants can be used only with the byte and asciz pseudo-ops, described in
Chapter 6.

Special characters (see Table 2-6) can be imbedded anywhere in a string. A
double-quote character within a string must be preceded by the \ character.

Strings may contain no more than 256 characters.

String constants can be continued across lines by ending nonterminating line(s)
with the \ character. Spaces at the start of a continued line are significant and
will be included in the string. For example,

The following lines start in the first column.

byte "This\
string \

contains a double-quote (\") character."

produces the string:

This string contains a double-quote (") character.

Floating-Point Constants

Floating-point constants can only be used as either:

• Immediate operands to MC68881/2 floating-point instructions, or

• As the operand of one of the following data-allocation pseudo-ops: float,
double, extend, and packed.

2-10 Assembly Language Syntax

A floating-point constant starts with Of (zero f) or OF and is followed by
a string of digits containing an optional decimal point and followed by an
optional exponent. The floating-point data formats are described in the
MC68881/2 User's Manual. The following are examples of floating-point
constants:

fadd.d &:Ofl. 2e+02, %fpl # the constant is 11 double 11

inferred from instr. size (.d)
float Of-1.2e3

The &: operator in the floating-point constant example specifie·s to as that the
floating-point constant is an immediate operand. For details, see Chapter 4.

The type of a floating-point constant (float, double, extend, or packed)
is determined by the pseudo-op used or, for immediate operands, by the
operation size (.s, .d, .x, or .p). When afioating-point constant is used as an
immediate operand to an instruction, an operation size must be specified in
order to define the type of the constant.

Floating-point constants are converted to IEEE floating-point formats using the
cvtnum routine. (See the cvtnum(3C).) The rounding modes can be set with
the fpmode pseudo-op. Also, special IEEE numbers can be specified with the
NAN (Not A Number) and INF (INFinity) syntaxes:

Ofinf
Of Nan (abcdeeo)

Assembly Language Syntax 2-11

2

3
Segments, Location Counters,
and Labels

This chapter discusses segments, location counters, and their relationship to
labels.

Segments
An as assembly language program may be divided into separate sections known
as segments. Three segments exist in as assembly language: text, data, and
bss. The resulting object code from assembly is the concatenation of the text,
data, and bss segments.

By convention, instructions are placed in the text segment; initialized data is
placed in the data segment; and storage for uninitialized data is allocated in
the bss segment. By default, as begins assembly in the text segment.

Instructions and data can be intermixed in either the text or data segment, but
only uninitialized data can be allocated in the bss segment.

The pseudo-ops text, data, and bss cause as to switch to the named
segment. You can switch between different segments as often as needed. These
pseudo-ops are discussed in Chapter 6.

Note In addition to the text, data, and bss segments, as supports the
xt, sIt, vt, gntt, and lntt segments, which are used primarily by
symbolic debuggers (xdb(1)). These are generated, for example,
when the C compiler is invoked with the -g option. These
segments are mainly for compiler use and are not generally of
interest to as programmers.

Segments, Location Counters, 3-1
and Labels

3

Location Counters
The assembler maintains separate location counters for the text, data, and bss
segments. The location counter for a given segment is incremented by one for
each byte generated in that segment.

The dot symbol (.) is a predefined identifier that represents the value of the
location counter in the current segment. It can be used as an operand for an
instruction or a data-allocation pseudo-op. For example:

Or,

x:

text
jmp

data
long

this is an infinite loop

., ., .
When allocating data, as in the second example, the location counter is
updated after every data item. So the second example is equivalent to:

data
x: long x, x+4, x+8 # long data items use 4 bytes each

3·2 Segments, Location Counters,
and Labels

Labels
A label has an associated segment and value. A label's segment is equivalent
to the segment in which the label is defined. A label's value is taken from the
location counter for the segment. Thus, a label represents a memory location 3
relative to the beginning of a particular segment.

A label is associated with the next assembly instruction or pseudo-op that
follows it, even if it is separated by comments or newlines. If the instruction
or pseudo-op which follows a label causes any implicit alignment to certain
memory boundaries (e.g., instructions are always aligned to even addresses),
the location counter is updated before the label's value is assigned. Explicit
assignments using the lalign pseuo-op occur after the label value is set.

The following example should help clarify what a labe1's segment and value are:

Switch to the data segment and enter the first initialized
data into it:

data
x: long Ox1234 # allocate 4 bytes for this number

byte 2 # allocate 1 byte for this number
y: # now initialize the variable "y"
z: long Oxabcd

Assuming these lines are the first statements in the data segment, then label
x is in the data segment and has value 0; labels y and z are also in the data
segment and each has value 6 (because the long pseudo-op causes implicit
alignment to even addresses, i.e., word boundaries). Note that both y and z are
labels to the long pseudo-oPe

Padding or filler bytes generated by implicit alignment are initialized to zeroes.

Segments, Location Counters, 3·3
and Labels

4
Expressions

This chapter discusses as assembly language expressions. An expression can be
extremely simple; for example, it can be a single constant value. Expressions 4
can also be complex, comprising many operators (e.g., +, -, *, I) and operands
(constants and identifiers).

Expression Types
All identifiers and expressions in an as program have an associated type, which
can be absolute, relocatable, or external.

Absolute

In the simplest case, an expression or identifier may have an absolute
value, such as 56, -9000, or 256318. All constants are absolute expressions.
Identifiers used as labels cannot have an absolute value because they are
relative to a segment. However, other identifiers (e.g., those whose values are
assigned via the set pseudo-op) can have absolute values.

Relocatable

Any expression or identifier may have a value relative to the start of a segment.
Such a value is known as a relocatable value. The memory location represented
by such an expression cannot be known at assembly time, but the relative
values of two such expressions (Le., the difference between them) can be known
if they are in the same segment.

Identifiers used as labels have relocatable values.

Expressions 4·1

External

If an identifier is never assigned a value, it is assumed to be an undefined
external. Such identifiers may be used with the expectation that their values
will be defined in another program, and therefore known at link time; but the
relative value of undefined externals cannot be known.

Expression Rules
The basic building blocks of expressions are operators, constants, and
identifiers. Table 4-1 shows all the operators supported by as.

1

Table 4-1. Expression Operators

Op Description

Unary Operators

+ Unary Plus (no-op)

Negation

1's Complement (Bitwise Negate)

Binary Operators

+ Addition
Subtraction

* Multiplication
/1 Division
(01 Modulo

> Bit Shift Right

< Bit Shift Left
&; Bitwise AND

I Bitwise OR
Bitwise Exclusive-OR

If the result of a division is anon-integer, truncation is performed so that
the sign of the remainder is the same as the sign of the quotient.

4-2 Expressions

Expressions can be constructed from the following rule:

expr == const
id
unop expr
expr binop expr
(expr)

where:

• const is a constant
• id is an identifier
• unop is a unary operator
• expr is an expression
• binop is a binary operator

Note that the definition is recursive; that is, expressions can be built from
other expressions. All of the following are valid expressions:

Ox7ffa091c
125
Default_X_Col
- 1
BitMask Be Ox3fc9 BitMask must be absolute.
(0)

(MinValue + X_offset) * ArraySize MinValue, X_offset, and Array­
Size must all be absolute.

Precedence and Associativity Rules

To resolve the ambiguity of the evaluation of expressions, the following
precedence rules are used:

unary + -

* / (0

+ -
< >
8&

HIGHEST

LOWEST

Expressions 4·3

4

Use parentheses () to override the precedence of operators. Unary operators
group (associate) right-to-left; binary operators group left-to-right. Note that
the precedence rules agree with those of the C programming language.

Determining Expression Type

An expression's type depends on the type of its operand (s). Using the following
notation:

• abs-integer absolute expression
• rel-relocatable expression
• ext-undefined external
• dabs-double floating point constant
• Jabs-floating point constant (float, extend, or packed).

The resulting expression type is determined as follows:

abs binop abs => abs
unop abs => abs

dabs binop dabs => dabs (where binop can be +, -, *, /)
unop dabs => dabs (where unop can be +, -)

Jabs (Jabs expressions are limited to single constants)

abs + rel => rel
reI + abs => reI
rel - abs => rel

abs + ext => ext
ext + abs => ext
ext - abs => ext

rel- rei => abs (provided both rei expressions are relative to the same segment)

Absolute integer constants are stored internally as 32-bit signed integer values.
Evaluation of absolute integer expressions uses 32-bit signed integer arithmetic.
Integer overflow is not detected.

4·4 Expressions

Note The value of a reI - reI expression can be computed only when
the values of both reI expressions are known. Therefore, a rei -
rei expression can appear in a larger expression (e.g., rei - rei +
abs) only if both rels are defined before the expression occurs;
this is so that the assembler can do the subtraction during
pass one. If either of the rels is not defined prior to a rei - reI
subtraction, the calculation is delayed until pass two; then the
expression can be no more complex than identifier - identifier.

When the -0 option is used to turn on span-dependent optimization, all
subtraction calculations of text symbols (labels defined in the text segment)
are normally delayed until pass two since the final segment relative offset of a
text symbol cannot be determined in pass one. This means that expressions
involving subtraction of text symbols are limited to identifier - identifier.
This default can be overridden with the allow_plsub pseudo-op which directs
the assembler to compute subtractions in pass one even if the symbols are
text symbols. The difference will be calculated using the (preliminary) pass
one values of the symbols; the two labels in such a subtraction (label1 -
label2) should not be separated by any code operations that will be modified
by span-dependent optimization (see Chapter 5 and the description of
allow_plsub Chapter 6).

Expressions must evaluate to absolute numbers or simple relocatable
quantities; that is, identifier [± abs]. Complex relocation (Le., expressions
with more than one non-absolute symbol other than the identifier - identifier
form) is not permitted, even in intermediate results. Thus, even though
expressions like (rell - re12) + (re13 - re14) are legal (if all reli are in
the same segment and defined prior to the expression), expressions such as
(rell + re12) - (re13 + re14) are not.

Since expression evaluation is done during pass one, an expression (and every
intermediate result of the expression) must be reducible to an absolute number
or simple relocatable form (Le., identifier [± offset] or identifier - identifier) at
pass one. This means that other than the special form identifier - identifier,
an expression can contain at most one forward-referenced symbol.

For example, the following code stores a NULL-terminated string in the
data segment and stores the length of the string in the memory location
login_prompt_length. The string length (not including the terminating

Expressions 4·5

4

NULL) is computed by subtracting the relative values of two labels
(login_prompt_end - login_prompt) and subtracting 1 (for the terminating
NULL). This is valid because both labels are defined prior to the subtraction
in which they are used.

login_prompt:
login_prompt_end:
login_prompt_length:

data
byte
space
short

IILogin Name: ",0

° login_prompt_end - login_prompt - 1

The space pseudo-op above causes the labellogin_prompt_end to have
the value of the location counter. If this was not included, the label
would be associated with the following short pseudo-op, which has
implicit word-alignment, and which might cause an invalid value in the
login_prompt_length calculation.

The next code example contains an invalid expression, because:

1. The expression uses two as-yet-unencountered relative expressions,
exit_prompt and exit_prompt_len.

2. The computed expression (exi t_prompt_end - exit_prompt - 1) is too
complex because of the "- 1". Expressions that use as-yet-unencountered
relative expressions cannot be any more complex than identifier - identifier.

exit_prompt_len:
exit_prompt:
exit_prompt_end:

data
short
byte
space

exit_prompt_end - exit_prompt - 1
IIGood-Bye\nll ,O

°
"To solve this problem, you could rewrite the above code as:

exit_prompt_len:
exit_prompt:
exit_prompt_end:

data
short
byte
byte

exit_prompt_end - exit_prompt - 1
II Good-Bye\nll,0

°
Notice that the exit_prompt_len expression has been reduced to a reZ - reZ
expression, exi t_prompt_ end - exit_prompt.

4-6 Expressions

Pass-One Absolute Expressions

Throughout this reference you will encounter the term pass-one absolute
expression. For example, some pseudo-op and instruction arguments must be
pass-one absolute expressions. A pass-one absolute expression is one which
can be reduced to an absolute number in pass one of the assembly. A pass-one
absolu te expression cannot contain any forward references.

Pass-One Absolute Expressions and Span-Dependent Optimization

A pass-one expression cannot contain any forward references. When the 4
-0 option is used, a symbol subtraction of two text symbols (identifier -
identifier) is not pass-one absolute because all subtraction calculations for text
symbols are delayed until pass two. This can cause problems in a program
segment like the following:

text
Lstart: long 100, 101

Lend:

Lsize:

lalign 1 # no effect except to define the
label Lend.

long (Lend - Lstart)/4 # number of table entries

Tegment would assemble correctly if the -0 option is not used, but the
calculation (Lend - Lstart) /4 would give a syntax error if the -0 option is used
because the expression would be too complex.

This can be remedied by either moving the table declarations to the data
segment, or by using the allotJ_plsub pseudo-oPe The allotJ_plsub pseudo-op
directs the assembler to perform pass one subtractions where possible even for
text symbols. The subtractions are performed using pass one values; the labels
should not be separated by any code that will be modified by span-dependent
optimization (see Chapter 5 and the description of allotJ_plsub in Chapter 6).

Expressions 4-7

Floating-Point Expressions

Floating-point constants can be fioat (single-precision), double, extended,
or packed. The particular kind of floating-point constant generated by as
is determined by the context in which the constant occurs. (See the float,
double, extend, and packed pseudo-ops in Chapter 6.)

When used with the float, extend, or packed pseudo-ops, floating-point
expressions are restricted to a single constant; for example:

float Ofl.23el0

Double floating-point expressions can be built using the unary operators + and
-, and the binary operators +, -, /, and *. Double expressions are evaluated
using C-like double arithmetic. The following shows a double expression:

double Ofl.2 * Of3.4 + Of.6

4-8 Expressions

Span-Dependent Optimization

The MC680xO branching instructions (bra, bsr, bCC) have a PC-relative
address operand. The size of the operand needed depends on the distance
between the instruction and its target. Choosing the smallest form is called
span-dependent optimization.

Using the -0 Option

5

The assembler -0 option enables span-dependent optimization in the assembler.
By default, span-dependent optimization is not enabled. (When compiling C
or Fortran programs using the -0 compiler option, the peephole optimizer
(/lib/c2) does the span-dependent optimization rather than the assembler. A
C or Fortran program should not be compiled with the -Wa, -0 option.) When
the -0 option is enabled, as attempts to optimize the PC-relative offset for the
instructions shown in Figure 5-1.

bce
bra
bsr
fbFPCC
fpbCC

{68881/2}
{HP 98248 FPA}

Figure 5-1. Span-Dependent Optimized Instructions

Span-dependent optimizations are performed only within the text segment and
affect only instructions that do not have an explicit size suffix. Any instruction
with an explicit size suffix is assembled according to the specified size suffix
and is not optimized.

Span-Dependent Optimization 5-1

By default, the assembler chooses between. b, . w, and .1 operations. If the -d
option is specified, as chooses between. band. w operations; when a . w offset
is not sufficient, as uses equivalent instructions to provide the effect of a long
offset. This means that a program that fails to assemble with the -d option
because of branch offsets that are longer than a word may assemble when as10
-0 is used.

When a branch is too long to fit in the given offset, you will get an error
message similar to as error: /l x . s " line 120: branch displacement too
large: try -0 assembler option (compiler option -Wa,-O) (with no size
on branch statement). If you are using as10 and the offset is already word
sized, then try using the -0 option and remove the. w suffix from the branch
instruction.

Default Optimizations Performed

Table 5-1 shows the default span-dependent optimizations performed by as (if
the -d option is not specified on the command line).

Table 5-1. Default Span-Dependent Optimizations

Instruction Byte Form Word Form Long Form

br, bra,bsr byte offset word offset long offset

bCC

fbeC

fpbCC

Note

byte offset word offset long offset

- word offset long offset

byte offset word offset long offset

A byte branch offset cannot be zero (Le., branch to the
following address). A br, bra, or bee to the following address
is optimized to a nop. A bsr to the following address uses a
word offset. The FPA fpbeC optimization refers to optimizing
the implied 68020 branch (see HP 98248 Floating Point
Accelerator).

5-2 Span-Dependent Optimization

MC68010-Compatible Optimizations

If you need to generate code that will run on MC68010 processors, you
should invoke as with the -d option. Table 5-2 shows the span-dependent
optimizations that are performed when as is invoked with the -d. This option
causes the assembler to use addressing modes that are compatible with the
MC68010 processor.

Table 5-2. MC680 1 O·Compatible Span-Dependent Optimizations

Instruction Byte Form Word Form Long Form

br, bra, bsr byte offset word offset jmp or jsr with absolute

bee

Note

long address

byte offset word offset byte offset conditional
branch with reversed
condition around j mp
with absolute long
address

A byte branch offset cannot be zero (Le., branch to the
following address). A br, bra, or bee to the following address
is optimized to a nop. A bsr to the following address uses a
word offset.

Span-Dependent Optimization 5-3

Example of Optimization Performed

Table 5-3 shows original assembly source and the corresponding code produced
by span-dependent optimization.

Table 5-3. Effective Code after Optimization

Original Code Optimized Code
bcs L1 nop

L1: add YedO,Yed1 L1: add YedO,%d1
bne.b L2

bne L2 bra.b L2
bra L2 bsr.b L2
bsr L2 space 80
space 80 L2: add %dO,%d1

L2: add YedO,%d1
beq.w L3

beq L3 bra.w L3
bra L3 bsr.w L3
bsr L3 space 2000
space 2000 L3: add YedO,%d1

L3: add YedO,%d1
bgt.l L4

bgt L4 bra.l L4
bra L4 bsr.l L4
bsr L4 space 40000
space 40000 L4: add YedO,%d1

L4: add YedO,%d1

5-4 Span-Dependent Optimization

Optimization Performed with the -d Option

Table 5-4 illustrates the optimizations performed when as is invoked with -d
option.

Table 5-4.
Span-Dependent Optimizations Performed with -d Option

Original Code Optimized Code
bcs Ll

Ll: add %dO,%dl nop
Ll: add %dO,%dl

bne L2
bra L2 bne.b L2
bsr L2 bra.b L2
space 80 bsr.b L2

L2: add %dO,%dl space 80
L2: add %dO,%dl

beq L3
bra L3 beq.w L3
bsr L3 bra.w L3
space 2000 bsr.w L3

L3: add %dO,%dl space 2000
L3: add %dO,%dl

bgt L4

ble.l L4x
jmp L4 #absolute.l addressing

bra L4 L4x:
bsr L4 jmp L4 #absolute.l addressing
space 40000 jsr L4 #absolute.l addressing

L4: add %dO,%d space 40000
L4: add %dO,%dl

Span-Dependent Optimization 5-5

Restrictions When Using the -0 Option
Several caveats should be followed when using the span-dependent optimization
option. These are good programming practices to follow in general when
programming in assembly.

When the span-dependent optimization option is enabled, branch targets
should be restricted to simple labels, such as L1. More complex targets, such
as L1+10, are ambiguous since the span-dependent optimizations can modify
instruction sizes. A branch with a nonsimple target may not assemble as
expected.

Absolute (rather than symbolic) offsets in PC-relative addressing modes should
be used only where the programmer can calculate the PC offset and the offset
cannot be changed by potential span-dependent optimization.

Note When using span-dependent optimization, limit text segment
targets to simple labels, such as L1. Nonsimple targets, such as
L1 +10 or PC-relative addressing with a nonsymbolic offset field
should be used only when the programmer knows that the code
between label L1 and L1+10 will always assemble to a fixed size
and cannot be modified by span-dependent optimization.

Span-Dependent Optimization and lalign
When span-dependent optimization is enabled, the assembler will preserve any
even-sized laligns relative to the start of the text segment. This may result in
some branch optimizations being suboptimal.

Only laligns of 1, 2, and 4, however, are guaranteed to be preserved by the
linker (ld(l)). (See "A Note about lalign" in Chapter 6.)

5-6 Span-Dependent Optimization

Symbol Subtractions
In normal mode, the assembler calculates symbol subtractions in pass one
if both symbols are already defined. This allows more complex expressions
involving symbol differences to be used.

Table: long 123
loz:g 234

long 231
Tend: lalign 1
Tsize: long (Tend-Table)/4

no effect except to define Tend
number of elements in Table

When span-dependent optimization is enabled, the assembler normally saves
all symbols subtractions involving text segment symbols until pass two because
the symbol values (text-relative offset) will not be known until after pass one
is complete and span-dependent optimization is performed. This restricts
expressions involving text symbol differences to identifier - identifier. In the
example program above, the line defining Tsize would assemble correctly if the
-0 option is not used but will generate a syntax error ("illegal divide") if
the -0 option is enabled.

There are two solutions to this problem. In the above example, the code lines
could be put into the data segment; span-dependent optimization does not
affect the rules for calculating symbol differences of data or bss symbols.

The second alternative is to use the allow_p1sub and end_p1sub pseudo-ops.
The allow_p1sub and end_p1sub pseudo-ops bracket areas where the
assembler is directed to calculate text symbol subtractions in pass one
(provided both symbols are already defined), even though the -0 option is
enabled. The two text symbols in a difference Labell - label2 should not be
separated by any code that could be modified by span-dependent optimization.
If the two symbols are separated by code that is optimized, the subtraction
result will be wrong since it is calculated using pass one offsets.

The following code segment is similar to the code generated by the C compiler
for a switch statement. It has been modified to calculate a Lswitch_limit
for the size of the switch table (the compiler generates an in-line constant
instead). The line defining Lswitch_limit is bracketed by allow_p1sub and
end_plsub so that the subtraction will be done in pass one and the complex

Span-Dependent Optimization 5-7

expression will be accepted by the assembler. The pass one subtraction is valid
since labels L22 and Lswitch_end are separated only by long pseudo-ops which
cannot change in size during span-dependent optimization.

L23:

L22:

subq.l
cmp.l
bhi.l
mov.l
jmp

tOxl, Y.dO
Y.dO,Lswitch_limit
L21
(L22,Y.zaO,Y.dO.l*4),Y.dO
2(Y.pc,y'dO.l)

lalign 4

long L15-L23
long L16-L23
long L17-L23
long L18-L23
long L19-L23
long L20-L23

Lswitch_end: lalign 1
allow_plsub

Lswitch_limit: (Lswitch_end-L22)/4 - 1
end_plsub

L13:

5-8 Span-Dependent Optimization

6
Pseudo-Ops

The as assembler supports a number of pseudo-ops. A psuedo-op is a special
instruction that directs the assembler to do one of the following:

• Select segments~

• Initialize data.

• Define symbols.

• Align within the current segment.

• Floating-point directives.

• Span-dependent directives for expression calculation.

• Set the a_stamp field in the a. out header.

Pseudo-Ops 6-1

6

Segment Selection Pseudo-Ops

You can control in which segment code and/or data is generated via segment
selection pseudo-ops. Table 6-1 describes the three segment selection
pseudo-ops.

Table 6-1. Segment Selection Pseudo-Ops

Pseudo-Op Description

text Causes the text segment to be the current segment-i.e., all
subsequent assembly output (until the next segment
selection pseudo-op) is generated in the text segment. By
default, assembly begins in the text segment.

data Causes the data segment to be the current segment-i.e.,
any subsequent assembly is placed in the data segment.

bss Causes the bss segment to be the current segment. The bss
segment is reserved for uninitialized data only. Attempting
to assemble code or data definition pseudo-ops (e.g., long,
byte, etc) results in an error. The only data-allocation
pseudo-ops that should be used in the bss segment are
space and lcomm.

6-2 Pseudo-Ops

An assembly program can switch between different segments any number of
times. In other words, you can have a program that switches back and forth
between different segments, such as:

text

assembly code for the text segment

data

put some initialized data here in the data segment

bss

allocate some space for an array in the bss segment

text

more assembly code in the text segment

data

more initialized data in the data segment

Pseudo-Ops 6-3

6

Data Initialization Pseudo-Ops
Table 6-2 lists all data initialization pseudo-ops. Data initialization pseudo-ops
allocate appropriate space and assign values for data to be used by the
assembly language program. Data is allocated in the current segment.

Note For float, double, packed, and extend, conversions are
performed according to the IEEE floating point standard using
the cvtnum routine (see cvtnum(3C)). The current value of
fpmode defines the rounding mode to be used.

Table 6-2. Data Initialization Pseudo-Ops

Pseudo-Op Description

byte iexpr/string[, .. ,] The byte pseudo-op allocates successive bytes of
data in the assembly output from a specified list of
integer expressions (iexpr) and/or string constants
(string).

The iexpr can be absolute, relocatable, or external.
However, only the low-order byte of each
relocatable or external iexpr is stored.

A string operand generates successive bytes of
data for each character in the string; as does not
append the string with a terminating NULL
character.

short iexpr[, ...] The short psuedo-op generates 16-bit data aligned
on word (16-bit) boundaries from a list of integer
expressions (iexpr). The iexpr can be absolute,
relocatable, or external. However, only the
low-order 16-bit word of each relocatable or
external iexpr is stored.

6-4 Pseudo-Ops

Table 6-2. Data Initialization Pseudo-Ops (continued)

Pseudo-Op Description

long iexpr[, ...] The long pseudo-op generates 32-bit data from a
list of one or more integer expressions (iexpr)
separated by commas. Data is generated on word
(16-bit) boundaries. An iexpr can be absolute,
relocatable, or external.

asciz string The asciz pseudo-op puts a null-terminated string
into the assembly output: one byte is generated for
each character, and the string is appended with a
zero byte.

float Jexpr[, ...] Generates single-precision (32-bit) floating point
values from the specified list of one or more
absolute floating point expressions (fexpr). Data is
stored on word (16-bit) boundaries. Only simple
floating point constants are allowed.

double Jexpr[, ...] Generates double-precision (64-bit) floating point
values from the specified list of one or more
absolute floating point expressions (fexpr). Data is 6
stored on word (16-bit) boundaries.

packed Jexpr[, . ..] Generates word-aligned, packed floating point
values (12 bytes each) from the list of floating
point expressions. Only simple floating point
constants are allowed for Jexpr.

extend Jexpr[, ...] Generates word-aligned, extended floating point
values (12 bytes each) from the list of floating
point expressions. Only simple floating point
constants are allowed for Jexpr.

P seudo-Ops 6-5

Table 6-2. Data Initialization Pseudo-Ops (continued)

Pseudo-Op Description

space abs When used within the data or text segment, this
pseudo-op generates abs bytes of zeroes in the
assembly output, where abs is a pass-one absolute
integer expression 2: O.

When used in the bss segment, it allocates abs
number of bytes for uninitialized data. This data
space is not actually allocated until the program is
loaded.

lcomm id,size,align Allocate size bytes within bss, after aligning to
align within the bss assembly segment. Both size
and align must be absolute integer values
computable on the first pass. Size must be 2: 0;
align must be > O.

lcomm always allocates space within bss, regardless
of the current assembly segment; however, it does
not change the current assembly segment.

6-6 Pseudo-Ops

Symbol Definition Pseudo-Ops
Symbol definition pseudo-ops allow you to assign values to symbols
(identifiers), define common areas, and specify symbols as global. Table 6-3
describes the symbol definition pseudo-ops.

Table 6-3. Symbol Definition Pseudo-Ops

Pseudo-Op Description

set id,iexpr Sets the value of the identifier id to iexpr which
may be pass-one integer absolute or pass-one
relocatable. A pass-one relocatable expression is
defined as:

sym [± abs]

where sym has been defined prior to encountering
the expression in pass one, and abs is pass-one
absolute.

comm id,abs Allocates a common area named id of size abs
bytes. The abs parameter must be pass-one
absolute. The linker will allocate space for it. The
symbol id is marked as global.

global id[,id] Declares the list of identifiers to be global symbols.
The names will be placed in the linker symbol
table and will be available to separately assembled
.0 files. This allows the linker (see ld(l)) to
resolve references to id in other programs.

Pseudo-Ops 6-7

6

Alignment Pseudo-Ops
Alignment p~eudo-ops allow the programmer to force the location counter to a
particular memory boundary. Table 6-4 defines the two alignment pseudo-ops
provided by as.

Pseudo-Op

lalign abs

even

align name,abs

6-8 Pseudo-Ops

Table 6-4. Alignment Pseudo-Ops

Description

Align modulo abs in the current segment. abs
must be a pass-one absolute integer expression.
The most useful forms are:

lalign 2
lalign 4

within the data or bss segments. These force
16-bit (word) and 32-bit alignment, respectively, in
the current segment. When used in the data or
text segment, the "filler" bytes generated by the
alignment are initialized to zeroes. If the
statement is labeled, the label's value is assigned
before the "filler" bytes are added. (See "A Note
about lalign" below for details on how this
pseudo-op is used.)

Same as lalign 2.

This pseudo-op creates a global symbol of type
align. When the linker sees this symbol, it will
create a hole beginning at symbol name whose size
will be such that the next symbol will be aligned
on a abs modulo boundary. abs must be a
pass-one absolute integer expression. (See "A Note
about lalign" below for details on this pseudo-op.)

A Note about lalign

The assembler concatenates text, data, and bss segments when forming its
output (object) file. The assembler rounds each segment size up to the next
multiple of four bytes, whiCh mayor may not leave unused space at the end of
each segment.

When multiple object (.0) files are linked, ld concatenates all text segments
into one contiguous text segment, all data segments into one contiguous data
segment, and all bss segments into one contiguous bss segment. Because of
this, only lalign values of 1, 2, and 4 can be guaranteed to be preserved; any
other lalign values cannot be guaranteed. This also applies to the lCOlDm
pseudo-op.

A Note about align

The align pseudo-op should be used with care. Consider the following
example:

Table:

bss
align
space

gap, 1024
4096

The align pseudo-op causes Table to be aligned on a 1Kb boundary in
memory. The symbol gap is the address of the hole created before the start of
Table. Because the actual alignment of gap is performed by the linker and not
the assembler (the assembler assigns addresses as though the hole size were
zero), any expression calculation which spans the alignment hole will yield
incorrect results. For example:

bss
x: space 10

align gap,
Table: space 4096
Table_end: space 0

data
bss_size: Table_end -

1024

x # The assembler assumes the size of
II gap II to be zero, so this
expression yields incorrect results.

Pseudo-Ops 6-9

6

Pseudo-Ops to Control Expression Calculation
with Span-Dependent Optimization

Table 6-5 describes pseudo-ops provided to control pass one symbol subtraction
calculations when the -0 (span-dependent optimization) option is used. These
pseudo-ops have no effect and are ignored if the -0 option is not in effect.

Table 6·5. Symbol Subtraction

Pseudo-Op Description

allow_pisub Directs the assembler to perform symbol
subtractions in pass one when both symbols are
known, even if the symbols are text symbols. Two
text symbols in a difference (identifieri -
identifier2) should not be separated by any
code that could be modified by span-dependent
optimization.

end_pi sub Directs the assembler to revert to the default for
subtractions when the -0 option is used;
subtractions involving text symbols will be delayed
until pass two.

When the -0 option is used, all subtraction calculations of text symbols are
normally delayed until pass two since the final segment relative offset of a text
symbol cannot be determined in pass one. This limits expressions involving
the subtraction of text symbols to identifier - identifier. The allow_plsub
and end_plsub pseudo-ops bracket areas where the assembler is directed to
calculate text symbol subtractions in pass one provided the symbols are already
defined. Two text symbols in a difference (labell - labe12) should not be
separated by any code that could be modified by span-dependent optimization
since the subtraction is calculated using pass one offsets.

6·10 Pseudo-Ops

Floating-Point Pseudo-Ops

Table 6-6 describes the floating-point pseudo-ops.

Table 6-6. Floating-Point Pseudo-Ops

Pseudo-Op Description

fpmode abs Sets the floating point mode for the conversion of
floating point constants used with the float,
double, extend, and packed pseudo-ops or as
immediate operands to MC68881j2 or FPA
instructions. Valid modes are defined by cvtnum
(see cvtnum(3C) for details on modes). By default,
the fpmode is initially 0 (C_NEAR).

Valid values for fpmode, as defined in cvtnum(3C)
are:

0 (C_NEAR)
1 (C_POS_INF)
2 (C_NEG_INF)
3 (C_TOZERO) 6

fpid abs Sets the co-processor id-number for the MC68881
floating point processor. By default, the id-number
is initially 1.

fpareg Yean Sets the FP A base register to be used in
translating FPA pseudo instructions to
memory-mapped move instructions. By default,
register %a2 is used. Note that this does not
generate code to load the FPA base address into
Yea2. The user must explicitly load the register (see
HP 98248A Floating-Point Accelerator Reference).

Pseudo-Ops 6-11

Version Pseudo-Ops
Table 7-7 describes the version pseudo-op. Beginning with the HP-UX 6 .. 5
release, the assembler supports a version pseudo-op for setting the a_stamp
field in the a.out header (see a.out(4)). Prior to release 6.5, this field was
always set to 0 by the assembler.

Table 6-7. Table 7-7. Version Pseudo-Ops

Pseudo-Op Description

version abs where abs must be a pass-one absolute integer
expression. Multiple version pseudo-op's will
generate a warning from the assembler and the last
occurrence will be used.

The -v number command line option can also be
used to set the a_stamp field. If the -v command
line option is used, that overrides any version
pseudo-op in the source file.

The 68020/30/40 HP-UX compilers save and restore the non-scratch floating
point registers that they use (Y.fp2 through Y.fp7 and Y.fpa3 through y'fpa15),
and will assume that called functions will do the same. The 68010 compilers do
not allocate floating point registers (there is no 68881 on the Model 310). This
incompatibility with the pre-6.5 compiler conventions can cause a problem if
new code allocates a floating point register and calls old code which uses that
register as a scratch register.

The 6.5 compilers use the a_stamp field to mark the type of code being
generated so that the linker can give warning messages about possible
incompatibilities with pre-6.5 object files. The a_stamp field is set by the
compilers according to the following conventions:

o pre-6.5 or unknown 6.5 floating point usage

1 68010 code

2 code which does not depend on new save/restore assumptions

3 68020 code which depends on called-routine save/restore of floating
point registers

6-12 Pseudo-Ops

You should set an appropriate version value using either the version
pseudo-op or the -v option.

The linker issues a warning if an attempt is made to link a combination of
version 0 with any new version code. The linker warning is:

(varning) - old (pre-6.S) £ile filename may be incompatible vith never £iles

The assembler issues a warning if no version is set and floating point opcodes
are used. The assembler warning is:

as: varning: "x.s" line 2: no version speci£ied and £loating point ops
present; version may not be properly set (set Assembler Re£erence ftanual)

Set the a_stamp field using version to an appropriate value (using version or
- V) to eliminate these warnings.

If you use permanent floating point registers but do not call any routines that
could corrupt those registers, you can safely include a version 2 directive to
avoid any warning messages when linking.

If no version pseudo-op or -v option is specified, the assembler sets the
a_stamp field according to the following rules:

o as20 invoked, floating point operations are present, and a warning
message is generated

1 asIO invoked

2 as20 invoked and no floating point operations are present

Pseudo-Ops 6·13

6

Shared Library Pseudo Ops
Table 6-8 shows pseudo-ops that can be used when creating position­
independent code (PIC) for shared libraries (Le., when as is invoked with the
+z or +Z option).

Table 6-8. Shared Library Pseudo-Ops

Pseudo-Op Description

shlib_version Sets the shared library version date. (See Programming
on HP- UX for details on shared library version
control.)

internal Keeps internal labels from breaking up data structures
when placed in memory at run-time. (See
Programming on HP- UX for details on internal labels.)

Symbolic Debug Support Pseudo-ops

The as assembler also supports pseudo-ops for use by the C debugger (see
xdb(1)). These are not of much use to as programmers and are shown here
merely for completeness:

gntt
Intt
sIt
vt
xt

6·14 Pseudo-Ops

Address Mode Syntax

Table 7-1 summarizes the as syntax for MC680xO addressing modes. The
following conventions are used in Table 7-1:

1.an Address register n, where n is any digit from 0 through 7.

1.dn Data register n, where n is any digit from 0 through 7.

7

1. ri Index register ri may be any address or data register with an optional
size designation (i.e., ri. w for 16 bits or ri.1 for 32 bits); default size is
.w.

sel Optional scale factor. An index register may be multiplied by the scaling
factor in some addressing modes. Values for sel are 1, 2, 4, or 8; default
is 1. For the MC68010, only the default scale factor 1 is allowed.

bd Two's complement base displacement added before indirection takes
place; its size can be 16 or 32 bits. (MC68020/30/40 only.)

od Two's-complement outer displacement added as part of effective address
calculation after memory indirection; its size can be 16 or 32 bits.
(MC68020 /30 /40 only.)

d Two's complement (sign-extended) displacement added as part of the
effective address calculation; its size may be 8 or 16 bits; when omitted,
the assembler uses a value of zero.

1.pc Program counter.

[] Square brackets are used to enclose an indirect expression; these
characters are required where shown. (MC68020/30/40 only.)

() Parentheses are used to enclose an entire effective address; these
characters are required where shown.

{} Braces {} indicate that a scaling factor (*sel) is optional; these characters
should not appear where shown.

Address Mode Syntax 7-1

7

Table 7-1. Effective Address Modes

MC680xO as Effective Register Register
Family Notation Notation Address Encoding Encoding

Mode >68020 ~68010

Dn Y.dn Data register direct OOO/n OOO/n

An Y.an Address register direct OOl/n OOl/n

(An) (Y.an) Address register OlO/n OlO/n
indirect

(An)+ (Y.an)+ Address register Oll/n Oll/n
indirect with
post-increment

-(An) -(y'an) Address register lOO/n IOO/n
indirect with
pre-decrement

d(An)l d(Y.an) Address register lOl/n1 lOl/n
indirect or (d.Y.an) llO/n
with displacement full fmt

d(An,Ri)2 d(Y.an.Y.ri) Address register llO/n2 llO/n
indirect or brief fmt
(d.Y.an.1.ri) with llO/n
index plus full fmt
displacement

(bd,An,Ri {*scl}) (bd. Y.an • %ri{ *scl}) Address register direct llO/n -
MC68020/30/40 only with index plus base full fmt

displacement

([bd,An,Ri{ *scl}),od) ([bd. Yean. Yeri{ *scl}] .od) Memory indirect with llOjn -
MC68020/30/40 only pre-indexing plus base full fmt

and outer displacement

([bd,An),Ri{ *scl},od) ([bd. Y.an] • Y.ri{ *scl}, od) Memory indirect with llO/n -
MC68020/30j40 only post-indexing plus full fmt

base and outer
displacement

7 -2 Address Mode Syntax

Table 7-1. Effective Address Modes (continued)

MC680xO as Effective Register Register
Family Notation Notation Address Encoding Encoding

Mode >68020 :568010

d(PC) d (Y.pc) Program counter 111/0103 111/010
indirect or (d,Y.pc) 111/011
with displacement full fmt

d(PC,Ri) d(Y.pc,Y.ri .1) Program counter 111/011 4 111/011
direct or (d.%pc,Y.ri) brief fmt
with index and 111/011
displacement full fmt

(bd,PC,Ri{ *scl})5 (bd, Y.pc .Y.ri{ *scl}) Program counter 111/011 -
MC68020/30/40 only direct with index and full fmt

base displacement

([bd,PC],Ri{ *scl},od)5 ([bd, Y.pc]. %ri{ *scl}, od) Program counter 111/011 -
MC68020/30/40 only memory indirect with full fmt

post-indexing plus
base and outer
displacement

([bd,PC,Ri{ *scl}],od)5 ([bd .Y.pc.Y.ri{ *scl}J. od) Program counter 111/011 -
MC68020/30/40 only memory indirect with full fmt

pre-indexing plus base
and outer displacement

xxx.W xxx or xxx. ,&,6 Absolute short address 111/000 111/000
(xxx signifies an
expression yielding a
IS-bit memory 7
address)

xxx.L xxx 0 r xxx .16 Absolute long address 111/001 111/001
(xxx signifies an
expression yielding a
32-bit memory
address)

#xxx I:xxx lnunediate operand or 111/100 111/100
immediate data (xxx
signifies a constant
expression); for
example, I:Of3 .14 is an
immediate operand.

Address Mode Syntax 7-3

The following notes apply to Table 7-1.

1. If d is pass-one, 16-bit absolute and the base register (Yean or Yepc is not
suppressed), then the MC68010-compatible mode is chosen; otherwise, the
more general MC68020/30/40 full form is assumed.

2. If d is not pass-one 8-bit absolute, or the base register (Yean or Yepc) is
suppressed, the more general MC68020/30/40 full-format form is assumed.

3. If d is pass-one, 16-bit absolute and the base register (Yean or Yepc is not
suppressed), then the MC68010-compatible mode is chosen; otherwise, the
more general MC68020/30/40 full form is assumed.

4. If d is not pass-one 8-bit absolute, or the base register (Yean or Yepc) is
suppressed, the more general MC68020/30/40 full-format form is assumed.

5. The size of the bd and od displacement fields is 16 bits if the displacement
is pass-one 16-bit absolute; otherwise, a 32-bit displacement is used. (For
details, see the section below entitled "MC68020/30/40 Addressing Mode
Optimization.")

6. If no size suffix is specified for an absolute address, the assembler will use
absolute-word if xxx is pass-one absolute and fits in 16 bits; otherwise,
absolu te-Iong is chosen.

Notes on Addressing Modes
The components of each addressing syntax must appear in the order shown in
Table 7-1.

It is important to note that expressions used for absolute addressing modes
need not be absolute expressions, as described in the "Expressions" chapter.
Although the addresses used in those addressing modes must ultimately be
filled-in with constants, that can be done later by the linker. There is no
need for the assembler to be able to compute them. Indeed, the absolute long
addressing mode is commonly used for accessing undefined external addresses.

Address components which are expressions (Ibd, od, d, absolute, and
immediate) can, in general, be absolute, relocatable, or external expressions.
Relocatable or external expressions generate relocation information with the

7·4 Address Mode Syntax

final value set by the linker. It should be noted that relocation of byte- or
word-sized expressions will result in truncation. The base displacement (bd
or d) of a PC-relative addressing mode can be an absolute or relocatable
expression, but not an external expression.

In Table 7-1, the index register notation should be understood as ri. size * scale ,
where both size and scale are optional. For the MC68010 processor, only the
default scale factor *1 is allowed.

Refer to the appropriate MC680xO microprocessor user's manual for additional
information about effective address modes.

Note that suppressed address register %zan can be used in place of address
register %an; suppressed PC register %zpc can be used in place of %pc; and
suppressed data register %zdn can be used in place of %dn, if suppression is
desired. (This applies to MC68020/30/40 full-format forms only.)

Note also that an expression used as an address always generates an absolute
addressing mode, even if the expression represents a location in the current
assembly segment. If the expression represents a location in the current
assembly segment and PC-relative addressing is desired, this must be explicitly
specified as xxx (%pc).

The new address modes for the MC68020/30/40 use two different formats of
extension. The brief format provides fast indexed addressing, while the full
format provides a number of options in size of displacement and indirection.
The assembler will generate the brief format if the following conditions are met:

• The effective address expression is not memory indirect.

• The value of displacement is within a byte and this can be determined at
pass one.

• No base or index suppression is specified.

Otherwise, the assembler will generate the full format.

In the MC68020/30/40 full-format addressing syntaxes, all the address
components are optional, except that "empty" syntaxes, such as () or ([J ,10),
are not legal. Omitted displacements are assumed to be 0; an omitted base
register defaults to %zaO; an omitted index register defaults to %zdO. To specify
a PC-relative addressing mode with the base register (%pc) suppressed, %zpc
must be explicitly specified since an omitted base register defaults to %zaO.

Address Mode Syntax 7-5

7

Some source code variations of the new modes may be redundant with the
MC68000 address register indirect, address register indirect with displacement,
and program counter with displacement modes. The assembler will select the
more efficient mode when redundancy occurs. For example, when the assembler
sees the form (Yean), it will generate address register indirect mode (mode 2).
The assembler will generate address register indirect with displacement (mode
5) when seeing either of the following forms (as long as bd is pass-1 absolute
and will fit in 16 bits or less):

• bd (Yean)
• (bd, Yean)

For the PC-addressing modes

• bd (Yepc)
• bd (Yepc, Yeri)
• ([bd, Yepc] , Yeri, od)
• ([bd, Yepc, Yeri] , od)

bd can either be relocatable in the current segment or absolute. If bd is
absolute, it is taken to be the displacement value; the value is never adjusted
by the assembler. If bd is relocatable and in the current segment, it is taken to
be a target; the assembler calculates the appropriate displacement. bd cannot
be an external symbol or a relocatable symbol in a different segment.

MC68020/30/40 Addressing Mode Optimization
There are several addressing mode syntaxes that could produce either 8-,
16-, or 32-bit offsets. The as assembler attempts to select the smallest
displacement, based on the information it has available at pass one when an
instruction is assembled.

Examples

The addressing mode syntax

(bd, Yean, Yeri)

7·6 Address Mode Syntax

will be translated to the most efficient form possible (Le., the shortest form of
the instruction possible), based on the information the assembler has available
at pass one-when the assembler first encounters it.

If bd is pass-one absolute and fits in 8 bits (-127 .. 128), and neither the base
(Y.an) nor index (Y.ri) register is suppressed, then the MC68020/30/40 brief
format "address register indirect with index and 8-bit displacement" mode
is chosen. (Note that if the scale factor is the default (*1), then this is a
MC68010-compatible addressing mode.)

Otherwise, the MC68020/30/40 full format "address register indirect with
index and base displacement" mode is used. The size of the Base Displacement
(16- or 32-bit) is based on whether bd is pass-one absolute and fits in 16 bits.
The following examples should help clarify:

Example One:

offset, 10 set
tst.w (offset,Y.a6,Y.d2) # Brief format with 8-bit

displacement is chosen.

In the above example, brief format with 8-bit displacement was chosen by the
assembler because the value of the base displacement (in this case, offset) was
known prior to the tst. w instruction (it was pass-one absolute) and neither
Y.a6 nor Y.d2 is a suppressed register.

Example Two:

tst.w (offset,Y.a6,Y.d2) # Full format is used and 32 bits
are reserved for the offset.

set offset,lO

In this example, full format is used for the instruction and a 32-bit
displacement is generated, even though only 8 bits are required for the base
displacement (offset). This is because the assembler does not know the value
of offset before encountering the tst . w instruction; therefore, it cannot
assume that the base displacement will fit in 8 bits.

Similarly, the addressing mode syntax

Address Mode Syntax 7·7

7

(bd, Y.an)

is converted to "address register indirect with 16-bit displacement" (Mode 5)
if the base displacement (bd) is pass-one absolute and fits in 16 bits, and if
Y.an is not a suppressed register. Otherwise, the assembler uses a 32-bit base
displacement with the equivalent form

(bd, Y.an, Y.zdO)

A similar situation holds for the displacements in PC addressing modes.

Forcing Small Displacements (-d)

Invoking as with the -d option forces the assembler to use the shortest form
and smallest base displacement possible for all MC68010-compatible addressing
modes.

For example, the addressing mode syntax

(bd, Y.an, Y.ri)

always assumes an 8-bit displacement. And,

(bd, Yean)

always assumes a 16-bit displacement. In both cases the registers cannot be
suppressed, and the only index scale allowed is the default * 1.

Refer to Appendix A for details on using this option.

7·8 Address Mode Syntax

8
Instruction Sets

This chapter describes the instructions available for the MC680xO processors,
the MC6888x and MC68040 floating-point coprocessors, and the HP 98248
floating-point accelerator.

MC680xO I nstruction Sets
Table 8-1 shows how MC680xO instructions should be written if they are to be
interpreted correctly by the as assembler. For details on each instruction, see
the appropriate processor manual. For details on the various address mode
syntaxes used, see Chapter 7.

The entire instruction set can be used on the MC68020/30/40. Instructions
that are specific to a particular processor are noted appropriately in the
"Operation" column of Table 8-1. (For further details on portability, see
Appendix A.)

Instruction Sets 8·1

8

The following abbreviations are used in Table 8-1:

S

A

CC

EA

I

Q

L

d

The letter S, as in add.S, stands for one of the operation size
attribute letters: b (byte), 'W (16-bit word), or 1 (32-bit word).

The letter A, as in add.A, stands for one of the address
operation size attribute letters: 'W (16-bit word), or 1 (32-bit
word).

In the instructions bCC, dbCC, sCC, tCC and tpCC, the
letters CC represent any of the following condition code
designations (except that the f and t conditions may not be
used in the bCC instruction):

cc carry clear 10 low (=cs)
cs carry set Is low or same
eq equal It less than
f false mi minus
ge greater or equal ne not equal
gt greater than pI plus
hi high t true
hs high or same (=cc) vc overflow clear
Ie less or equal vs overflow set

This represents an arbitrary effective address. You should
consult the appropriate reference manual for details on the
addressing modes permitted for a given instruction.

An expression used as an immediate operand. Immediate
expressions have the syntax &xxx, where xxx is a constant
expressions. For example, &42 is an immediate operand with
value 42.

A pass-one absolute expression evaluating to a number from 1
to 8.

A label reference, or any expression, representing a memory
address in the current segment.

Two's complement or sign-extended displacement added as
part of effective address calculation; size may be 8 or 16 bits;
when omitted, the assembler uses a value of zero.

8-2 Instruction Sets

Yedx, Yedy, Yedn Data registers.

Yeax, Yeay, Yean Address registers.

Yerx, 'l.ry, 'l.rn Represent either data or address registers.

'l.rc Represents a control register ('l.sfc, 'l.dfc, 'l.cacr, 'l.usp, 'l.vbr,
'l.caar, Y.msp, 'l.isp).

reglist Specifies a set of registers for the moVIn instruction. A reglist

{}

offset

width

is a set of register identifiers separated by slashes. Ranges of
registers can be specified as 'l.am-'l.an and/or'l.dm-'l.dn (where
m < n). For example, the following are valid reglists:

'l.dO/'l.d3
'l.al/'l.a2/'l.d3-'l.d6

braces represent an optional portion of an instruction; they
should not appear wher~ shown.

Either an immediate operand or a data register. An immediate
operand must be pass-one absolute.

Either an immediate operand or a data register. An immediate
operand must be pass-one absolute.

When I represents a standard immediate mode effective address (Le.,
MC68020/30/40 Mode 7, Register 4), as for the addi instruction, the
expression can be absolute, relocatable, or external. However, when I
represents a special immediate operand that is a field in the instruction word
(e.g., for the bkpt instruction), then the expression must be pass-one absolute.

Instruction Sets 8-3

8

Table 8-1. MC680xO Instruction Formats

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

ABCD abed. b %dy , %dx Add Decimal with Extend .b
abed. b - C%ay) , -C%ax)

ADD add.S EA,%dn Add Binary .W

add.S %dn, EA

ADDA add.A EA,%an Add Address .W

adda.A EA, %an

ADDI add.S &:], EA Add Immediate .W

addLS &:] , EA

ADDQ add.S &:Q, EA Add Quick .W

addq.S &:Q, EA

ADDX addx.S %dy, %dx Add Extend .W

addx.S -C%ay),-C%ax)

AND and.S EA, %dn AND Logical .W

and.S %dn, EA

ANDI and.S &:], EA AND Immediate .W

andi.S &:] , EA

ANDI to and. b &:] , %ee AND Immediate to .b
CCR andi . b &:], %ee Condition Codes

ANDI to and. w &:] , %sr AND Immediate to the .w
SR andi . w &:] , %sr Status Register

ASL asl.S %dx, %dy Arithmetic Shift Left .w
asl.S &:Q, %dy

asl.w &:] ,EA .w
asl.w EA

ASR asr.S %dx, %dy Arithmetic Shift Right .w
asr.S &:Q, %dy

asr. w &:] , EA .w
asr.w EA

8-4 Instruction Sets

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

Bcc bCC.w L Branch Conditionally' . w required
(16-Bit Displacement)

bCC.b L Branch Conditionally . b required
Short (8-Bit Displacement)

bCC.l L Branch Conditionally .1 required
Long(32-Bit Displacement)
(MC68020/30/40 only)

bCC L Same as bCC. wI .w

BCHG behg Y.d n , EA Test a Bit and Change .1 if 2nd operand
behg &:l,EA is data register,

else. b

BCLR belr Y.dn,EA Test a Bit and Clear .1 if 2nd op
belr &:l,EA is data register,

else. b

BFCHG bt ehg EA { offset: width} Complement Bit Field No suffix allowed
(MC68020/30/40 only)

BFCLR bt elr EA { offset: width} Clear Bit Field No suffix allowed
(MC68020/30/40 only)

BFEXTS btexts EA Extract Bit Field (Signed) No suffix allowed
{ offset: width} , Y.dn (MC68020/30/40 only) 8

BFEXTU btextu EA Extract Bit Field No suffix allowed
{ offset: width} , Y.d n (Unsigned)

(MC68020/30/40 only)

Instruction Sets 8·5

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

BFFFO bfffo EA Find First One in Bit Field No suffix allowed
{ offset: width} , %dn (MC68020/30/40 only)

BFINS bfins %dn,EA Insert Bit Field No suffix allowed
{ offset: width} (MC68020/30/40 only)

BFSET bfset EA {offset: width} Set Bit Field No suffix allowed
(MC68020/30/40 only)

BFTST bftst EA { offset: width} Test Bit Field No suffix allowed
(MC68020/30/40 only)

BKPT bkpt &12 Breakpoint No suffix allowed
(MC68020/30/40 only)

BRA bra.w L Branch Always (16-Bit . w required
br.w L Displacement)

bra.b L Branch Always (Short) . b required
br.b L (8-Bit Displacement)

bra.1 L Branch Always (Long) .1 required
br.1 L (32-Bit Displacement)

(MC68020/30/40 only)

br L Defaults to br . w3 .w

BSET bset %dn,EA Test a Bit and Set .1 if 2nd operand
bset &l,EA is data register,

else. b

8·6 Instruction Sets

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

BSR bsr.w L Branch to Subroutine . w required
(16-bit Displacement)

bsr.b L Branch to Subroutine . b required
(Short) (8-bit
Displacement)

bsr.1 L Branch to Subroutine .1 required
(Long) (32-bit Displace-
ment)(MC68020/30/40
only)

bsr L Same as bsr. w3 .w

BTST btst %dn,EA Test a Bit .1 if 2nd operand
btst &1,EA is data register,

else. b

CALLM cal1rn &1 , EA Call Module No suffix allowed
(MC68020/30/40 only)

CAS cas.S %dx, %dy, EA Compare and Swap .w
Operands
(MC68020/30/40 only)

CAS2 cas2.A %dx: %dy , Compare and Swap Dual .w
Yedx: %dy, Yerx: %ry Operands

(MC68020/30/40 only) 8

Instruction Sets 8-7

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

CHK Chk.ll EA, %dn Check Register Against .ll
Bounds

chk.1 EA,%dn Check Register Against .1
Bounds (Long)
(MC68020/30/40 only)

CHK2 chk2.S EA, %rn Check Register Against .ll
Bounds (MC68020/30/40
only)

CLR c1r.S EA Clear an Operand .ll

CMP cmp.S %dn, EA4 Compare .ll

CMPA cmp.A %an, EA4 Compare Address .ll
cmpa.A %an, EA4

CMPI cmp.S EA ,8&14 Compare Immediate .W

cmpi. S EA, 8&14

CMPM cmp.S (%ax)+, (%ay)+4 Compare Memory .ll
cmpm.S (%ax)+, (%ay)+4

CMP2 cmp2.S %rn ,EA4 Compare Register Against .ll
Bounds (MC68020/30/40
only)

DBcc dbCC.ll%dn,L Test Condition, .ll
Decrement, and Branch

dbra.ll %dn, L Decrement and Branch .ll
Always

dbr . II %dn , L Same as dbra. II .W

8-8 Instruction Sets

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

DIVS divs.w EA,%dx Signed Divide 32-bit -7 .w
16-bit => 32-bit

tdivs.1 EA, %dx Signed Divide (Long) .1
di vs.1 EA, %dx 32-bit -7 32-bit => 32-bit .1 required

(MC68020/30/40 only)

tdivs.1 EA,%dx :%dy Signed Divide (Long) .1
divs1.1 EA,%dx:%dy 32-bit -7 32-bit => 32r:32q

(MC68020/30/40 only)

divs.1 EA,%dx:%dy Signed Divide (Long) .1
64-bit -7 32-bit => 32r:32q
(MC68020/30/40 only)

DIVU divu.w EA,%dn Unsigned Divide 32-bit -7 .w
16-bit => 32-bit

tdivu.1 EA,%dx Unsigned Divide (Long) .1
divu.1 EA,%dx 32-bit -7 32-bit => 32-bit .1 required

(MC68020/30/40 only)

tdivu.1 EA, %dx: %dy Unsigned Divide (Long) .1
divu1.1 EA, %dx: %dy 32-bit -7 32-bit => 32r:32q

(MC68020/30/40 only)

divu.1 EA,%dx :%dy Unsigned Divide (Long) .1
64-bit -7 32-bit => 32r:32q
(MC68020/30/40 only)

EOR eor.S %dn,EA Exclusive OR Logical .w 8

EORI eor.S 8I:1,EA Exclusive OR Logical .w
eori.S 81:1, EA

EORI to eor . b 81:1 , %cc Exclusive OR Immediate .b
CCR eori . b 81:1 , %cc to Condition Code Register

Instruction Sets 8-9

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

EORl to eor.w &l,%sr Exclusive OR Immediate .w
SR eori.w &l,%sr to Status Register

EXG exg.1 Yarx, %ry Exchange Registers .1

EXT ext.w %dn Sign-Extend Low-Order .w
Byte of Data to Word

ext.1 %dn Sign-Extend Low-Order .1 required
Word of Data to Long

extb.1 %dn Sign-Extend Low-Order .1
Byte of Data to Long
(MC68020/30/40 only)

extw.1 %dn Same as ext.1 .1
(MC68020/30/40 only)

ILLEGAL illegal Take Illegal Instruction No suffix allowed
Trap

JMP jmp EA Jump No suffix allowed

JSR jsr EA Jump to Subroutine No suffix allowed

LEA lea.1 EA,%an Load Effective Address .1

LINK link. w %an ,&1 Link and Allocate .w

link.l %an ,&1 Link and Allocate .1 required
(MC68020/30/40 only)

8·10 Instruction Sets

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

LSL 1s1.S %dx , %dy Logical Shift Left .w
1s1.5 &Q, %dy
1s1.w &1,EA
1s1.w EA

LSR 1sr.S %dx , %dy Logical Shift Right .w
1sr.S &Q,%dy
1sr.w &1,EA
1sr.w EA

MOVE16 mov16 (%ax)+, (%ay)+ Move 16-Byte Block No suffix allowed
mov16 xxx. L, EA (MC68040 only)
mov16 EA, xxx. L

MOVE mov.5 EA,EA Move Data from Source to .w
Destination

MOV to mov.w EA,%cc Move to Condition Codes .w
CCR

MOVE mov. w %cc, EA Move from Condition .w
from CCR Codes

(MC68010/20/30/40 only)

MOVE to mov.w EA,%sr Move to Status Register .w
SR

MOVE mov.w %sr,EA Move from Status Register .w
from SR

MOVE mov.1 %usp, %an Move User Stack Pointer .1
8

USP mov.1 %an, %usp

MOVEA mov.A EA,%an Move Address .w
mova.A EA, %an

MOVEC to mov.1 %rn,%rc Move to Control Register .1
CR (MC68010/20/30/40 only)

Instruction Sets 8·11

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

MOVEC mov.l %rc,%rn Move from Control .1
from CR Register

(MC68010/20/30/40 only)

MOVEM movm.A 1&1 , EA Move Multiple Registers .W

movm.A EA, 1&1

movm.A reg list , EA Same as above, but using .W

movm.A EA, reglist the reglist notation.

MOVEP movp.A %dx,d(%ay) Move Peripheral Data .W
movp.Ad(%ay),%dx

MOVEQ mov.1I&I,%dn Move Quick .1
movq.1 1&1 , %dn

MOVES movs.S %rn,EA Move to/from Address .W

movs.S EA,%rn Space (MC68010/20/30/40
only)

MULS mu1s.w EA,%dn Signed Multiply 16-bit x .w
16-bit => 32-bit

tmu1s.1 EA, %dn Signed Multiply (Long) .1
muls.1 EA,%dn 32-bit x 32-bit => 32-bit .1 required

(MC68020/30/40 only)

mu1s.1 EA, %dx : %dy Signed Multiply (Long) .1
32-bit x 32-bit => 64-bit
(MC68020/30/40 only)

8-12 Instruction. Sets

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

MULU muIu.w EA,%dn Unsigned Multiply 16-bit .w
x 16-bit ::} 32-bit

tmulu.l EA, %dn Unsigned Multiply (Long) .1
mulu.l EA,%dn 32-bit x 32-bit ::} 32-bit .1 required

(MC68020/30/40 only)

muIu.l EA, %dx: %dy Unsigned Multiply (Long) .1
32-bit x 32-bit ::} 64-bit
(MC68020/30/40 only)

NBCD nbcd.b EA Negate Decimal with .b
Extend

NEG neg.S EA Negate .w

NEGX negx.S EA Negate with Extend .w

NOP nop No Operation No suffix allowed

NOT not.S EA Logical Complement .w

OR or.S EA,%dn Inclusive OR Logical .w
or.S %dn,EA

ORI or.S fl.! ,EA Inclusive OR Immediate .w
orLS fl.! ,EA 8

ORI or.b fl.! ,%cc Inclusive OR Immediate to .b
toCCR ori. b fl.! , %cc Condition Codes

ORI to SR or.w fl.! ,%sr Inclusive OR Immediate to .w
ori. w fl.! , %sr Status Register

Instruction Sets 8-13

Table 8-1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

PACK pack -(%ax) ,-(%ay) ,&1 Pack BCD No suffix allowed
pack %dx , %dy ,&1 (MC68020/30j40 only)

PEA pea.1 EA Push Effective Address .1

RESET reset Reset External Devices No suffix allowed

ROL ro1.S %dx, %dy Rotate (without Extend) .W

ro1.S &Q, %dy Left
ro1.w &I,EA
ro1.w EA

ROR ror.S %dx, %dy Rotate (without Extend) .W

ror.S &Q, %dy Right
ror.w &I,EA
ror.w EA

ROXL rox1. S %dx , %dy Rotate with Extend Left .W

roxl.S &Q, %dy
rox1.w &I,EA
rox1.w EA

ROXR roxr.S %dx, %dy Rotate with Extend Right .w
roxr.S &Q,%dy
roxr.w &I,EA
roxr.w EA

RTD rtd &1 Return and Deallocate No suffix allowed
Parameters
(MC68010j20j30j40 only)

RTE rte Return from Exception No suffix allowed

8-14 Instruction. Sets

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

RTM rtm %rn Return from Module No suffix allowed
(MC68020j30j40 only)

RTR rtr Return and Restore No suffix allowed
Condition Codes

RTS rts Return from Subroutine No suffix allowed

SBCD sbed. b %dy,%dx Subtract Decimal with .b
sbed.b -(%ay),-(%ax) Extend

Scc sCC.b EA Set According to Condition .b

STOP stop 8&1 Load Status Register and No suffix allowed
Stop

SUB sub.S EA, %dn Subtract Binary .W

sub.S %dn, EA

SUBA sub.A EA, %an Subtract Address .W

suba.A EA, %an

SUBI sub.S 8&1 , EA Subtract Immediate .W

subLS 8&1, EA

SUBQ sub.S 8&Q, EA Subtract Quick .W

subq.S 8&Q, EA

SUBX subx.S %dy, %dx Subtract with Extend .W 8
subx.S -(%ay),-(%ax)

SWAP swap.w %dn Swap Register Halves .W

Instruction Sets 8·15

Table 8·1. MC680xO Instruction Formats (continued)

MC680xO as Operation Default Size
Family Assembler Syntax

Mnemonic

TAS tas.b EA Test and Set an Operand .b

TRAP trap &15 Trap No suffix allowed

TRAPV trapv Trap on Overflow No suffix allowed

TRAPcc tCC Trap on Condition No suffix allowed
tpCC.A &1 (MC68020/30/40 only) .W

TST tst.S EA Test an Operand .W

UNLK unlk Yean Unlink No suffix allowed

UNPK unpk - (Yeay) , - (Yeay) , &1 Unpack BCD No suffix allowed
unpk Yedx, Yedy ,&1 (MC68020/30/40 only)

1. Defaults to . w if -0 option not used. When -0 option is used, assembler sets
the size based on the distance to the target L.

2. The immediate operand must be a pass-one absolute expression.

3. Defaults to .w when -0 is not used. When -0 option is used, the assembler
sets the size based on the distance to the target L.

4. The order of the operands for this instruction is reversed from that in the
MC68000 Programmer's Reference Manual.

5. The immediate operand must be a pass-one absolute expression.

8·16 Instruction Sets

MC6888x and MC68040 Floating-Point Instructions
Table 8-4, found later in this section, shows how the floating-point coprocessor
(MC6888x) instructions should be written to be understood by the as
assembler. These instructions are also available on the MC68040 processor,
which has a math coprocessor built-in. In Table 8-4, FPCC represents any of
the floating-point condition code designations shown in Table 8-2.

Table 8-2. Floating-Point Condition Codes

FPCC Meaning FPCC Meaning

Trap on· Unordered No Trap on Ordered

ge greater than or equal eq equal

gl greater or less than oge greater than or equal

gle greater or less than or equal ogl greater or less than

gt greater than ogt greater than

Ie less than or equal ole less than or equal

It less than olt less than

nge not greater than or equal or ordered

nIt not less than t always

ngl not greater or less than ule unordered or less or equal

nle not less than or equal to ult unordered less than

ngle not greater or less than or equal uge unordered greater than or equal

sneq not equal ueq unordered equal

sne not equal ugt unordered greater than

sf never un unordered

seq equal neq unordered or greater or less

st always ne unordered or greater or less

f never

Instruction Sets 8-17

8

In Table 8-4, the designation ccc represents a group of constants in
MC6888x /MC68040 constant ROM. The values of these constants are
defined in Table 8-3. (The description of the FMOVECR instruction in the
MC68881/2 User's Manual provides detailed information on these constants.)

Table 8·3. MC6888x/MC68040 Constant ROM Values

Value eee

11" 00
lOg10(2) OB

e OC
log2(e) OD

log10(e) OE

0.0 OF
logn(2) 30

logn(10) 31

10° 32
101 33
102 34
104 35
108 36
1016 37
1032 38
1064 39
10128 3A
10256 3B
10512 3C
101024 3D
102048 3E
104096 3F

8·18 Instruction Sets

Other abbreviations used in Table 8-4 are:

EA

L

I

y'dn

Represents an effective address. See the MC68881/2 User's
Manual for details on the addressing modes permitted for
each instruction.

A label reference or any expression representing a memory
address in the current segment.

Represents an absolute expression used as an immediate
operand.

Represents a data register.

Y.fpm, Y.fpn, Y.fpq Represent floating-point data registers.

fpreglist

Y.fpcr

Y.fpsr

Y.fpiar

fperlist

&eee

A list of floating-point data registers for an fmovm
instruction. (See description of reglist in the description for
Table 8-1.)

Represents floating point control register.

Represents floating point status register.

Represents floating point instruction address register.

A list of one to three floating point control register
identifiers, separated by slashes (e.g., %fpcr/%fpiar).

An immediate operand for the fmover instruction. Must be
pass-one absolute.

Instruction Sets 8·19

8

SF

A

Note

Represents source format letters; consult the MC68881
User's Manual for restrictions on SF in combination with
the EA (effective address) mode used:

Letter
b
w­
I
s
d
x
p

Means
byte integer (8 bits)
word integer (16 bits)
long word integer (32 bits)
single precision
double precision
extend precision
packed binary coded decimal

Represents source format letters w- or 1

When .SF is shown, a size suffix must be specified; there is no
default size. In forms where . x is shown, size defaults to . x.

An effective address for a packed-format operation has the form

EA{ &:k}

or

EA{ &:dn}

The first form requires k to be a pass-one absolute value.

8-20 Instruction Sets

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

Mnemonic Assembler Syntax Operation Default
Operation Size

FABS fabs.SF EA,%fpn Absolute Value Function No default; give size
fabs . x %fpm, %fpn .x
fabs.x %fpn .x

FACOS facos.SF EA,%fpn Arcosine Function No default; give size
facos. x %fpm, %fpn .x
facos . x %fpn .x

FADD fadd.SF EA,%fpn Floating Point Add No default; give size
fadd. x %fpm, %fpn .w

FASIN fasin.SF EA, %fpn Arcsine Function No default; give size
fasin.x %fpm,%fpn .x
fasin. x %fpn .x

FATAN fatan.SF EA, %fpn Arctangent Function No default; give size
fatan. x %:fpm, %:fpn .x
fatan. x %:fpn .x

FATANH fatanh.SF EA, %:fpn Hyperbolic Arctangent No default; give size
fatanh. x %:fpm, %fpn Function .x
fatanh. x %:fpn .x

FBfpcc fbFPCC.A L Co-Processor Branch .w l 8

fbr.A L Conditionally Same as .w
fbra.A L fbt. .w

FCMP fcmp.SF %:fpn, EA 2 Floating Point Compare No default; give size

Instruction Sets 8-21

Mnemonic

FCOS

FCOSH

FDBfpcc3

FDIV

FETOX

FETOXMl

FGETEXP

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Assembler Syntax Operation Default
Operation Size

fcos.SF EA,%fpn Cosine Function No default; give size
fcos.x %fpm,%fpn .x
fcos.x %fpn .x

fcosh.SF EA, %fpn Hyperbolic Cosine No default; give size
fcosh.x %fpm,%fpn Function .x
fcosh. x %fpn .x

fdbFPCC . w %dn, L Decrement and Branch .W

fdbr.w L on Condition Same as .W

fdbra.w L fdbf. .W

fdiv.SF EA,%fpn Floating Point Divide No default; give size
fdiv. x %fpm, %fpn .x

fetox.SF EA, %fpn eX Function No default; give size
fetox.x %fpm,%fpn .x
fetox. x %fpn .x

fetoxm1.SF EA, %fpn eX - 1 Function No default; give size
fetoxm1.x %fpm, %fpn .x
fetoxm1.x %fpn .x

fgetexp.SF EA,%fpn Get the Exponent No default; give size
fgetexp.x %fpm,%fpn Function .x
fgetexp.x %fpn .x

8-22 Instruction Sets

Mnemonic

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Assembler Syntax Operation Default
Operation Size

FGETMAN fgetman.SF EA,%fpn Get the Mantissa No default; give size
fgetman.x %fpm ,%fpn Function .x
fgetman.x %fpn .x

FINT fint.SF EA,%fpn Integer Part Function No default; give size
fint.x %fpm,%fpn .x
fint.x %fpn .x

FINTRZ fintrz.SF EA, %fpn Integer Part, Round to No default; give size
fintrz.x %fpm,%fpn Zero Function .x
fintrz.x %fpn .x

FLOG2 flog2.SF EA,%fpn Binary Log Function No default; give size
flog2.x %fpm,%fpn .x
flog2 . x %fpn .x

FLOGIO flogl0.SF EA, %fpn Common Log Function No defualt, give size
flogl0. x %fpm, %fpn .x
flogl0. x %fpn .x

FLOGN flogn.SF EA, %fpn Natural Log Function No default; give size
flogn. x %fpm , %fp n .x
flogn. x %fpn .x

FLOGNPI flognp1.SF EA, %fpn Natural Log (x+l) No default; give size
flognp1.x %fpm,%fpn Function .x
flognpl. x %fpn .x

Instruction Sets 8-23

8

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Mnemonic Assembler Syntax Operation Default
Operation Size

FMOD fmod.SF EA,%fpn Floating Point Modulus No default; give size
fmod. x %fpm, %fp n .x

FMOVE fmov.SF EA,%fpn Move to Floating Point No default; give size
fmov. x %fpm, %fpn Register .x

fmov.SF %fpn, EA Move from Floating No default; give size
fmov . p %fpn, EA {%dn} Point Register to .p
fmov.p %fpn, EA{&I}4 Memory .p

fmov.1 EA,%fpcr5 Move from Memory to .1
fmov.1 EA,%fpsr5 Special Register .1
fmov.1 EA,%fpiar5 .1

fmov.1 %fpcr, EA 5 Move from Special .1
fmov.1 %fpsr, EA 5 Register to Memory .1
fmov.1 %fpiar, EA 5 .1

FMOVECR fmovcr. x &eee, %fpn4 Move a ROM-Stored to .x
a Floating Point
Register

8-24 Instruction Sets

Mnemonic

FMOVEM

FMUL

FNEG

FNOP

FREM

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Assembler Syntax Operation Default
Operation Size

fmovm.x EA,&! Move to Multiple .x
fmovm. x EA ,jpreglist Floating Point Registers .x
fmovm.x EA,%dn .x

fmovm.x &! ,EA Move from Multiple to .x
fmovm. x fpreglist , EA MC68881 Control .x
fmovm.x %dn,EA Registers .x

fmovm.1 EA ,jpcrlist6 Move Multiple to .1
M C68881 Control
Registers

fmovm.1 fpcrlist , EA 6 Move from Multiple .1
Registers Registers to
Memory

fmul.SF EA, %fpn Floating Point Multiply No default; give size
fmul. x %fpm, %fpn .x

fneg.SF EA,%fpn Negate Function No default; give size
fneg. x %fpm, %fpn .x
fneg.x %fpn .x

fnop Floating Point No-Op No suffix allowed

frem.SF EA, %fpn Floating Point No default; give size
frem.x %fpm,%fpn Remainder .x

Instruction Sets 8-25

8

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Mnemonic Assembler Syntax Operation Default
Operation Size

FRESTORE frestore EA Restore Internal State of No suffix allowed
Co-Processor

FSAVE fsave EA Save Internal State of No suffix allowed
Co-Processor

FSCALE fscale.SF EA ,%fpn Floating Point Scale No default; give size
fscale.x %fpm,%fpn Exponent .x

FSfpcc fsFPCC.b EA Set on Condition .b

FSGLDIV fsgldiv.SF EA,%fpn Floating-Point No default; give size
fsgldiv.x %fpm, %fpn Single-Precision Divide .x

FSGLMUL fsglmul.SF EA, %fpn Floating-Point No default; give size
fsglmul.x %fpm,%fpn Single-Precision .x

Multiply

FSIN fsin.SF EA, %fpn Sine Function No default; give size
fsin.x %fpm,%fpn .x
fsin.x %fpn .x

FSINCOS fsincos.SF EA, Sine/Cosine Function No default; give size
%fpn:%fpq .x
fsincos.x %fpm,
%fpn:%fpq

FSINH fsinh.SF EA, %fpn Hyperbolic Sine No default; give size
fsinh.x %fpm,%fpn Function .x
fsinh.x %fpn .x

8-26 Instruction Sets

Mnemonic

FSQRT

FSUB

FTAN

FTANH

FTENTOX

FTfpcc

FTPfpcc

FTEST

Table 8-4.
MC6888x and MC68040 Floating-Point Instruction Formats

(continued)

Assembler Syntax Operation Default
Operation Size

fsqrt.SF EA, %fpn Square Root Function No default; give size
fsqrt.x %fpm,%fpn .x
fsqrt.x %fpn .x

fsub.SF EA,%fpn Floating Point Subtract No default; give size
fsub.x %fpm,%fpn .x

ftan.SF EA,%fpn Tangent Function No default; give size
ftan. x %fpm, %fpn .x
ftan.x %fpn .x

ftanh.SF EA,%fpn Hyperbolic Tangent No default; give size
ftanh.x %fpm ,%fpn Function .x
ftanh.x %fpn .x

ftentox.SF %fpn lOx Function No default; give size
ftentox.x %fpm, %fpn .x
ftentox.x %fpn .x

ftFPCC Trap on Condition No suffix allowed
without a Parameter

ftpFPCC.A &1 Trap on Condition with .w
a Parameter

ftest.SF EA Floating Point Test an No default; give size
ftest . x %fpm Operand .x

FTWOTOX ftwotox.SF EA,%fpn 2x Function No default; give size
ftwotox.X %fpm,%fpn .x
ftwotox. x %fpn .x

Instruction Sets 8-27

8

The following notes apply to Table 8-4:

1. Defaults to . w if -0 is not used. When -0 option is used, assembler sets the
size based on the distance to the target L.

2. The order of the operands for the FCMP instruction is reversed from that in
the MC68881/2 Programmer's Reference Manual.

3. The description of the FDBfpcc instruction found in the First Edition of
the MC68881/2 User's Manual incorrectly states that "The value of the
PC used in the branch address calculation is the address of the FDBcc
instruction plus two." It should say "the address of the FDBcc instruction
plus four." If you always reference this instruction using a label, then it
should not cause any problems, as the assembler will automatically generate
the correct offset.

4. The immediate operand must be a pass-one absolute expression.

5. See the MC68881/2 User's Manual for restrictions on EA (effective
address) modes with this command. See the MC68881/2 User's Manual for
restrictions on EA (effective address) modes with this command.

8·28 Instruction Sets

FPA Macros
Table 8-5 shows how floating-point accelerator macros are written for use with
the as assembler. These macros should only be used if you have the HP 98248
floating-point accelerator.

To help you interpret the "as Syntax" column of the following table, here is a
list of notations used:

YefpaS is the floating-point accelerator source.

YefpaD is the floating-point accelerator destination.

Yefpacr is the floating-point accelerator control register.

Yefpasr is the floating-point accelerator status register.

{ } indicates that the text between these braces is optional.

EA is the non-floating-point accelerator source.

L is a label.

SF is a floating-point size suffix that is required where shown:

Letter Means
s single precision
d double precision

SB is an MC68020/30/40 size suffix for a branch instruction that
is optional. If this suffix is omitted and the -0 option for
span-dependent optimization was not used, the default is . w.
However, if the -0 option is used span-dependent optimization selects
the size.

Letter
b
w
1

Means
byte integer (8 bits)
word integer (16 bits)
long word integer (32 bits)

Instruction Sets 8-29

8

Table 8-5. FPA-Macro Formats

Mnemonic Assembler Syntax Operation

FPABS fpabs.SF %fpasS{,%fpaD} absolute value of operand

FPADD fpadd.SF %fpasS ,%fpaD addition

FPAREG fpareg %an resets the address register to be
used as the base register

FPBEQ fpbeq.SB L branch if equal

FPBF fpbf.SB L branch if false

FPBGE fpbge.SB L branch if greater than or equal

FPBGL fpbgl.SB L branch if greater than or less than

FPBGLE fpbgle.SB L branch if greater than, less than, or
equal

FPBGT fpbgt.SB L branch if greater than

FPBLE fpble.SB L branch if less than or equal

FPBLT fpblt.SB L branch if less than

FPBNE fpbne.SB L branch if not equal

FPBNGE fpbnge.SB L branch if not greater than or equal

FPBNGL fpbngl.SB L branch if not greater than or less
than

FPBNGLE fpbngle.SB L branch if not greater than, less
than, or equal

FPBNGT fpbngt.SB L branch if not greater than

FPBNLE fpbnle.SB L branch if not less than or equal

FPBNLT fpbnlt.SB L branch if not less than

8-30 Instruction Sets

Table 8-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPBOGE fpboge.SB L branch if ordered greater than or
equal

FPBOGL fpbogl.SB L branch if ordered greater than or
less than

FPBOGT fpbogt.SB L branch if ordered greater than

FPBOLE fpbole.SB L branch if ordered less than or equal

FPBOLT fpbolt.SB L branch if ordered less than

FPBOR fpbor.SB L branch if ordered

FPBSEQ fpbseq.SB L branch if signalling equal

FPBSF fpbsf.SB L branch if signalling false

FPBSNE fpbsne.SB L branch if signalling not equal

FPBST fpbst.SB L branch if signalling true

FPBT fpbt.SB L branch if true

FPBUEQ fpbueq.SB L branch if unordered or equal

FPBUGE fpbuge.SB L branch if unordered or greater than
or equal

FPBUGT fpbugt.SB L branch if unordered or greater than

FPBULE fpbule.SB L branch if unordered or less than or
equal

FPBULT fpbult.SB L branch if unordered or less than
8

FPBUN fbpun.SB L branch if unordered

FPCMP fpcmp.SF Y.fpaS ,%fpaD compare

Instruction Sets 8-31

Table 8-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPCVD fpcvd. 1 %fpaS { , %fpaD } converts long word integer to
double precision

FPCVD fpcvd. s %fpaS { , %fpaD} converts single precision to double
precision

FPCVL fpcvl. d %fpaS { , %fpaD} converts double precision to a long
word integer

FPCVL fpcv1. s %fpaS { , %fpaD} converts single precision to a long
word integer

FPCVS fpcvs . d %fpaS { , %fpaD} converts double precision to single
precision

FPCVS fpcvs.1 %fpaS { , %fpaD } converts long word integer to single
precision

FPDIV fpdi v . SF %fpaS , %fpaD division

FPINTRZ fpintrz.SF %fpaS { , %fpaD} rounds to integer using the
round-to-zero mode

FPM2ADD fpm2add.SF EA, %fpaS ,%fpaD combination move to destination
and addition

FPM2CMP fpm2cmp.SF EA,%fpaS ,%fpaD combination move to destination
and compare

FPM2DIV fpm2di v. SF EA, %fpaS ,%fpaD combination move to destination
and division

FPM2MUL fpm2mul.SF EA, %fpaS ,%fpaD combination move to destination
and multiplication

FPM2RDIV fpm2rdi v .SF EA, %fpaS ,%fpaD combination move to
destinationand reverse division (i.e.
source + destination)

8-32 Instruction Sets

Table 8-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPM2RSUB fpm2rsub.SF EA,%fpaS, %fpaD combination move to
destinationand reverse subtraction
(i.e. source - destination)

FPM2SUB fpm2sub.SF EA,%fpaS ,%fpaD combination move to destination
and subtraction

FPMABS fpmabs. SF EA, %fpaS { , %fpaD} combination move and taking
absolute value of operand

FPMADD fpmadd.SF EA,%fpaS ,%fpaD combination move and addition

FPMCVD fpmcvd.1 EA, %fpaS { , %fpaD} combination move and convert long
word integer to double precision

FPMCVD fpmcvd. s EA, %fpaS { , %fpaD} combination move and convert
single precision to double precision

FPMCVL fpmcv1. d EA, %fpaS { , %fpaD} combination move and convert
double precision to long word
integer

FPMCVL fpmcv1. s EA, %fpaS { , %fpaD} combination move and convert
single precision to long word integer

FPMCVS fpmcvs . d EA, %fpaS { , %fpaD} combination move and convert
double precision to single precision

FPMCVS fpmcvs.1 EA, %fpaS { , %fpaD} combination move and convert long
word integer to single precision

FPMDIV fpmdi v . SF EA, %fpaS { , %fpaD} combination move and division

FPMINTRZ fpmintrz.SF combination move and rounding 8
EA , %fpaS { , %fpaD} tointeger using round-to-zero mode

FPMMOV fpmmov.SF EA, %fpaS , %fpaD combined move

Instruction Sets 8·33

Table 8-5. FPA-Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPMMUL fpmmul.SF EA, %fpaS, %fpaD combination move and
multiplication

FPMNEG fpmneg.SF EA, %fpaS {, %fpaD} combination move and negation

FPMOV fpmov.SF EA, %:fpaD move from an external location

fpmov.SF %fpaS, EA move to an
external location

fpmov.SF %fpaS ,%fpaD move
between two FP A registers

fpmov. SF EA, %:fpasr move to
the status register

fpmov.SF %fpasr, EA move from
the status register

fpmov.SF EA, %:fpacr move to
the control register

fpmov.SF %fpacr, EA move from
the control register

8-34 Instruction Sets

Table 8·5. FPA·Macro Formats (continued)

Mnemonic Assembler Syntax Operation

FPMRDIV fpmrdiv.SF EA,%fpaS ,%fpaD combination move and reverse
division(i.e. source -:- destination)

FPMRSUB fpmrsub.SF EA, %fpaS , %fpaD combination move and
reversesubtraction (i.e. source -
destination)

FPMSUB fpmsub.SF EA, %fpaS , %fpaD combination move and subtraction

FPMTEST fpmtest.SF EA,%fpaS combination move and test of
operand

FPMUL fpmul.SF %fpaS ,%fpaD multiplication

FPNEG fpneg.SF %fpaS{,%fpaD} negates the sign of an operand

FPRDIV fprdi v .SF %fpaS , %fpaD reverse division (i.e. source -:-
destination)

FPRSUB fprsub.SF %fpaS ,%fpaD reverse subtraction(i.e. source -
destination)

FPSUB fpsub.SF %fpaS , %fpaD subtraction

FPTEST fptest .SF %fpaS compares the operand with zero

FPWAIT fpwait generates a loop to wait for the
completion of a previously executed
instruction

8

Instruction Sets 8·35

9
Assembler Listing Options

As supports two options for generating assembling listings. The -A option
causes a listing to be printed to stdout. The -a ·listfile option writes a listing
to listfile. In general, listing lines have the form:

lineno offset code bytes source

The offset is in hexadecimal, and offsets for data and bss locations are adjusted
to be relative to the beginning of text in the a. out file. The code bytes are
listed in hexadecimal. A maximum of 24 code bytes are displayed per source
line (8 bytes per listing line, up to 3 listing lines per source line); excess bytes
are not listed. Implicit alignment bytes are not listed. The source field is
truncated to 40 characters.

The lister options cannot be used when the assembly source is stdin.

Assembler Listing Options 9-1

9

The following example shows a listing generating by assembling a small
program using the -A option.

1 0034
2 0034
3 0034

data
lalign 4
global _x

4 0034 _x:
5 0034 0000 0064 long 100
6 0038 lalign 4
7 0038 global _y
8 0038 _y:
9 0038 0000 0000 long 0

10 0000 text
11 0000 global _main
12 0000 _main:
13 0000 2FOE mov.l Y.a6,-(y'sp)
14 0002 2C4F mov.l Y.sp,Y.a6
15 0004 DFFC FFFF FFF8 adda.l &LF1,Y.sp
16 OOOA 48D7 OOCO movm.l &LS1,(y'sp)
17 OOOE 7COO movq &0,Y.d6
18 0010 7EOO movq &0,Y.d7
19 0012 L16:
20 0012 BEB9 0000 0034 cmp.l Y.d7,_x
21 0018 6COO OOOA bge L15
22 001C DC87 add.l Y.d7,Y.d6
23 001E L14:
24 001E 5287 addq.l &1,Y.d7
25 0020 6000 FFFO bra L16
26 0024 L15:
27 0024 23C6 0000 0038 mov.l y'd6,_y
28 002A L13:
29 002A 4CD7 OOCO movm.l (y'sp),&192
30 002E 4E5E unlk Y.a6
31 0030 4E75 rts
32 0032 set LF1,-8
33 0032 set LS1,192
34 003C data

9-2 Assembler Listing Options

A
Compatibility Issues

When writing as assembly language code, you should be aware that each
processor has a different register set. Because of this, it is possible to write
assembly code that works on a Model 320 computer but doesn't work on a
Model 310. Therefore, if your goal is to write portable code, keep the following
in mind:

• Instructions that use the MC68020/30/40's additional registers will not work
on either the MC68000 or MC68010.

• Likewise, instructions that use the MC68010's special registers will not
work on the MC68000. However, such instructions will work on the
MC68020/30/40 because the MC68010 register set is a subset of the
M C68020 / 30 / 40 register set.

• The MC68010 instruction set is a subset of the MC68020/30/40 instruction
set. Therefore, some MC68020/30/40 instructions will not work on the
MC68010.

• The MC68881/2 processor is not supported on Model 310 computers. If you
have a Model 310 computer, you cannot write assembly language code to use
the M C68881.

• The MC68040 processor supports MC68881/2 floating-point instructions.

Compatibility Issues A·1

Using the -d Option
The -d option to as is used under special circumstances. It is typically used
when you wish to write code that meets the following conditions:

• The code is intended to run on any M C680xO processor.

• There are actually two versions of the code: one for the MC68010 processor;
the other forthe MC68020/30/40 and MC68881/2 processors.

• The program makes a run-time decision on which code to execute.

For example, suppose you write some code to perform floating-point operations.
You want the code to run on either a Model 310 or Model 320 computer.
When the code runs on a Model 310, all floating-point operations must be
performed in software; when the code runs on a Model 320, you want the code
to use the MC68881 floating-point co-processor so that it will run faster. The
following pseudo-code illustrates this concept:

if this code runs on a computer with MC68020/30/40 and MC68881/2 then

perform floating point operations using MC68881/2

else /* code is running on a Model 310 computer * /

perform floating point operations using library routines

endif

If you write code that meets these conditions, then you should use as with
the -d option. The -d option ensures that only MC68010-compatible address
displacements will be generated. Therefore, the MC68010 code generated by as
will run on a Model 310.

A·2 Compatibility Issues

Determining Processor at Run Time
The type of code discussed in the previous section is special in that it must
determine which processor it is running on at run time. One way to make this
run-time determination on current Series 300/400 computers is to look at the
flag_680l0 flag in crtO. o. If this word is non-zero, then the processor is a
MC68010; otherwise, it is a MC68020/30/40.

Another method would be to write a routine that sets up signal-catching for
the signal SIGILL. (The SIGILL interrupt is generated if an illegal instruction
is executed.) Then the routine would execute an MC68020/30/40-only
instruction. If the illegal instruction interrupt occurs, then the code is not
running on an MC68020/30/40 processor. (See signal(2) for details on setting
up a signal handler.)

Two additional flag words are defined in crtO. 0 beginning with the 5.5 HP-UX
release. These words are as follows:

flag_6888l

is non-zero if there is a HP 98248 Floating-Point Accelerator in
the system; otherwise, the word is zero (0).

is non-zero if there is an M68881 Floating-Point Coprocessor in
the system; otherwise, the word is zero (0).

Compatibility Issues A·3

B
Diagnostics

Whenever as detects a syntactic or semantic error, a single-line diagnostic
message is written to standard error output (stderr). The message provides
descriptive information along with the line number and filename in which the
error occurred.

Most of the error messages generated by as are descriptive and
self-explanatory. Two general messages require further comment:

• "syntax error": as generates this message when a line's syntax is illegal. If
you encounter this error, check the overall format of the line and the format
of each operand .

• "syntax error Copcode/operand mismatch)": The overall syntax of the
line is legal, and the format of each operand is also legal; however, the
combination of opcode, operation size, and operand types is not legal. Check
the addressing modes for each operand and the operation sizes that are legal
for the given opcode.

Diagnostics 8-1

8

Interfacing Assembly Routines
to Other Languages

c

This appendix describes information necessary to interface assembly language
routines to procedures written in C, FORTRAN, or Pascal.

Linking

In order for a symbol defined in an assembly language source file (such as
the name of an assembly language routine) to be known externally, it must
be declared with the global pseudo-oPe (The comm pseudo-op also marks
identifiers as global. For details on these pseudo-ops, see Chapter 6.)

It is not necessary for an externally defined symbol, used in an assembly
program, to be declared in a global statement: if a symbol is used but not
defined, it is assumed to be defined externally. However, to avoid possible
name confusion with local symbols, it is recommended that you use the global
pseudo-op to declare all external symbols.

Interfacing Assembly Routines C-1
to Other Languages

C

Register Conventions
Several registers are reserved for run-time stack use and other purposes.

Frame and Stack Pointers

Register A6 is designated as a pointer to the current stack frame; its value
remains constant during the execution of a routine; all local variables are
addressed from it. Register A7 is designated the run-time stack pointer. Its
value changes during the execution of the routine.

Scratch Registers

Registers DO, DI, AO, and Al are "scratch registers" which are reserved to
contain intermediate results or temporary values which do not survive through
a call to a function. That is, a called routine is free to alter these registers
without saving and restoring previous values, and a calling routine must
save the value (in memory or a non-scratch register) before making a call
if it wants the value preserved. The C and FORTRAN compilers consider
floating-point registers %fpO and Y.fpl to be scratch registers. Values for
all other floating-point registers (Y.fp2 through %fp7) must be saved and
restored by the called routine, and saved by the calling routine, to preserve the
floating-point register value. Pascal preserves their values across procedure and
function calls.

C-2 Interfacing Assembly Routines
to Other Languages

Function Result Registers

All functions return their result in register DO except when the result is a
64-bit real number in which case the result is returned in the DO-DI register
pair. Register Al is used to pass to the called routine the address in the C
runtime stack of temporary storage where a C structure-valued function is to
write its value. That address is passed back to the calling routine in DO in the
same way as any other address valued function.

Temporary Registers and Register Variables

Registers which are not reserved as described above (D2-D7, A2-A5) are
available for two uses: First, they may be used as temporary value storage.
Unlike the scratch registers, though, their integrity is guaranteed across
function calls because their values are saved and restored. Second, they may
be reserved by the user in C and by the FORTRAN and Pascal compilers as
"register variable" locations. If the FPA option is selected, A2 is reserved as
the floating-point accelerator base register and only registers A3-A5 are
available as address registers for scratch registers and register variables.

Interfacing Assembly Routines C-3
to Other Languages

Calling Sequence Overview
This section describes the procedure calling conventions as they are currently
implemented by the Series 300 C, FORTRAN, and Pascal compilers. These
conventions must be followed in order to interface an assembly language routine
to one of these higher level languages.

Calling Sequence Conventions

The following calling conventions are used whenever a routine is called:

• The calling routine pushes function arguments onto the runtime stack in
reverse order. The called routine can always access a given parameter at a
fixed offset from %a6 (the stack frame pointer).

• The calling routine pops the parameters from the stack upon return.

• The called routine must save any registers that it uses except the scratch
registers DO, Dl, AO, AI. The float registers can be treated as scratch
registers, except when interfacing to Pascal.

• The called routine stores its return value in DO. A 64-bit real return value is
stored in the register pair DO, DI.

• The called routine uses the link instruction in its prologue code to allocate
local data space and to set up A6 and A 7 for referencing local variables and
parameters. (The link instruction modifies the values of A6 and A7. The
extension of stack space is done by the HP-UX operating system when a
%a7-relative reference would extend beyond the current stack space.)

• The called routine epilogue code uses the unlk and rts instructions to
deallocate local data space and return to the calling procedure, respectively.

C-4 Interfacing Assembly Routines
to Other Languages

Example

For example, consider the following simple C program.

int z;

maine)
{

}

int x,y;
z = test(x,y);

test(i,j)
int i;
register int j;
{

}

int k;
k = i + j;
return(k);

When compiled (but not optimized), it will generate assembly code like the
following. (Comments have been added to point out features of the calling
conventions.)

1 comm _z,4
2 global _main
3 _main:
4 link.l Y.a6,&:LFl # Allocate local data space
5 movm..l &:LS1,(y'sp) # Save non-scratch registers
6 mov.l -8(y'a6),-(Yesp) # Push argument "y"
7 mov.l -4(Y.a6),-(Yesp) # Push argument "x"
8 jsr _test # Call "test"
9 addq &:8,y'sp # Pop arguments

10 mov.l y'dO,_z # Save function result
11 movm..l (y'sp),&LSl # Restore registers
12 unlk Y.a6 # Deallocate local space
13 rts # and return
14 set LF1,-8 # Gives size for local data

Interfacing Assembly Routines
to Other Languages

C

C-5

15 set LS1,0 # Register mask of affected
16 # non-scratch registers.
17
18 global _test
19 _test:
20 link.l Y.a6,&LF2 # Allocate local data space
21 movm.l &LS2,(y'sp) # Save non-scratch registers
22
23 mov.l 12(y'a6),y'd7 # Parameter II j II. Parameters
24 # are at positive offsets off
25 # Y.a6 (moved to Y.d7 because
26 # of the "register" declaration.)
27 mov.l 8(y'a6),y'dO
28 add.l Y.d7,Y.dO
29 mov.l y'dO,-4(y'a6) # Local vars are at negative
30 # offsets off Y.a6
31 mov.l -4(y'a6),y'dO # Put return value in y'dO
32 bra.l L15
33 L15:
34 movm.l (y'sp),&LS2 # Restore registers
35 unlk Y.a6 # Deallocate and return
36 rts
37 set LF2,-8 # Displacement for link to
38 # allocate local data space
39 set LS2,128
40 data

Immediately before execution of the j sr _test instruction (line 8), the user
stack looks like:

Larger addresses

F±! 4(%sp)

A7-.. x (%sp)
(TOS)

Smaller addresses

C-6 Interfacing Assembly Routines
to Other Languages

Following the link instruction in function test, the stack looks like:

A6

A7
(rOS)

Larger addresses

~

y

x

return addr

previous A6

k

'"

~r

. ..

12(%06)

8(%06)

4(%06)

(%06)

-4(%06)

Smaller addresses

Interfacing Assembly Routines C-7
to Other Languages

C

C and FORTRAN
This section describes some of the language-specific dependencies of C and
Fortran. You should consult the manual pages for these compilers for further
information.

Assembly files can be generated by C and Fortran. You can examine the
generated assembly files for additional information. (The only current means
for looking at the code generated by the Pascal compiler is through the
debugger adb.)

Note All stack pictures in the remainder of this document depict the
state of the stack immediately preceding execution of the j sr
sub_name instruction. Larger addresses are always at the top;
the stack grows from top to bottom.

C and FORTRAN Functions

In C and FORTRAN, all global-level variables and functions declared by the
user are prefixed with an underscore. Thus, a variable name xyz in C would
be known as _xyz at the assembly language level. All global variables can be
accessed through this name using a long absolute mode of addressing.

C and FORTRAN push their arguments on the stack in right-to-Ieft order. C
always uses call-by-value, so actual argument values are placed on the stack.
The current definition of C requires that argument values be extended to int's
before pushing them on the stack; float's are extended to double's.

FORTRAN's parameter-passing mechanism is always call-by-reference, unless
forced to call-by-value via the $ALIAS directive. In this document, all examples
are call-by-reference. For each argument, the address of the most significant
byte of the actual value is pushed on the stack.

Function results are returned in register DO, or register pair DO, D 1 for a 64-bit
real result.

C-8 Interfacing Assembly Routines
to Other Languages

Note For exceptions to FORTRAN's parameter-passing and
return-value conventions, see the subsequent sections
"FORTRAN CHARACTER Parameters", "FORTRAN
CHARACTER Functions", and "FORTRAN COMPLEX*8 and
COMPLEX*16 Functions".

When a C structure-valued function is called, temporary storage for the return
result is allocated on the runtime stack by the calling routine. The beginning
address of this temporary storage space is passed to the called function through
register AI.

The following shows the state of the stack after a routine with n arguments is
called.

long func (argl, arg2, ... , argn)
INTEGER FUNCTION func (argl, arg2, ... , argn)

C
FORTRAN

l====i argn (C: value; FORTRAN: oddress of volue)

't==J org2

A7t--------i arg1

DO Will contain result value on return.

Interfacing Assembly Routines e-g
to Other Languages

c

C and FORTRAN Functions Returning 64·Bit Double Values

For C and FORTRAN functions which return a 64-bit double value, the stack
looks like:

double func (argl, arg2, ... , argn)
REAL*8 FUNCTION func (argl, arg2, ... , argn)

Rorgn
1==J arg2

A7--'}--1 arg1

C
FORTRAN

DO
D1

Most-significant 4 bytes of function value

Least-significant 4 bytes

C·10 Interfacing Assembly Routines
to Other Languages

c Structure-Valued Functions

The calling routine is responsible for allocating a result area of the proper size
and alignment. It may be anywhere on the stack above the arguments, or it
may be in static space. The address of the result area is passed to the called
routine in register AI.

(struct s) func (argl, arg2, ... , argn)

~collin9 .F==l orgn

routine may allocate result area here .

"t==J arg2

A7-+ l---1 arg1

A1

DO
Address of result area passed to called routine.

Address of result area returned to colling routine.

FORTRAN Subroutines

FORTRAN subroutines have the same calling sequences as FORTRAN
functions described above, except that no results or result areas are dealt with.

SUBROUTINE sub (argl, arg2, ... , argn)

t===i orgn (address of actual volue)

~Org2
A7-+ .F==l org1

Interfacing Assembly Routines C-11
to Other Languages

c

FORTRAN CHARACTER Parameters

Each argument of type CHARACTER*n causes two items to be pushed on
the stack. The first is a "hidden parameter" which gives the length of the
CHARACTER argument. The second is the pointer to the argument value.

FORTRAN CHARACTER Functions

CHARACTER-valued FUNCTIONs are implemented differently from other
FORTRAN functions. The calling routine is responsible for allocating the
result area. However, the address of the result area is neither passed to nor
returned from the called routine in registers. Instead, after all parameters are
pushed on the stack, the length of the return value is pushed, followed by the
address of the return area.

For example, suppose you call a character function as:

INTEGER inti, int3
CHARACTER*7 stri
CHARACTER*8 str2
CHARACTER*i5 func, result
result = func (inti, stri, str2, int3)

Then the resulting stack is:

CHARACTER*i5 FUNCTION func (argl, arg2, arg3, arg4)

I'" -I'"

8 (size of str2)

7 (size of str1)

int3 (address of actual

str2 (address of actual

str1 (address of actual

int1 (address of actual

15 (size of result)

address of result area

-

C-12 Interfacing Assembly Routines
to Other Languages

value)

value)

value)

value)

FORTRAN COMPLEX*8 and COMPLEX*16 Functions

All FORTRAN COMPLEX functions return their results through a result area.

COMPLEX*16 FUNCTION func (argl, arg2, arg3)

.

A7-+

.

Pascal

.~

.

(result area may be allocated here)

arg3 (address of actual value)

arg2 (address of actual value)

arg 1 (address of actual value)

address of result area

In Pascal, any exported user-defined function is prefixed by the module name
surrounded by underscores. A function named funk in module test would be
known as _test_funk to an assembly language programmer. If a procedure is
declared to be external, as in

procedure proc; external;

then all calls to proc will be represented by _proc in assembly language.

Pascal uses both the call-by-value and call-by-reference mechanisms discussed
for C and FORTRAN. Pascal also pushes its parameters on the stack in
right-to-Ieft order. All parameter information is stored in the parameter stack
in multiples of four bytes (e.g., an argument of type char will occupy 4 bytes
on the stack, not 1). No parameter or result area information is communicated
to the called routine through registers. Pascal has a number of conventions not
found in either C or FORTRAN. They are described below.

Interfacing Assembly Routines C-13
to Other Languages

c

Static Links

All procedures and functions declared at level 2 or greater (main program
is at level 0; contained procedures and functions are at level 1; routines
inside these routines are at level 2,) expect a static link word on the
stack below all parameter information. This word contains the address of the
enclosing routine's stack frame (Le., the value in register A6 when the routines
immediately surrounding the called routine is executing). The called routine
needs this information to access intermediate (Le., non-local, non-global)
variables on the stack.

Passing Large Value Parameters

Large value parameters are passed via a copyvalue mechanism. Calling routines
pass copyvalue parameters by pushing the address of the value on the stack
(Le., treat them the same as call-by-reference parameters). Then the called
routine makes a local copy of the parameter by dereferencing the pointer.

Parameter-Passing Rules

The rules used by the Pascal compiler for passing parameters are described
here.

Call-Sy-Reference ("var" Parameters)

For all var parameters, push the address of the most significant byte.

Call-Sy-Value (Copyvalue Parameters)

If a value parameter meets either of the following criteria:

• It is a string .

• It is larger than four bytes but is not a longreal or a procedure/function
variable.

then the address of the variable is pushed (as if by call-by-reference). Then
the called routine uses the copyvalue mechanisim to make a local copy of the
parameter.

C-14 Interfacing Assembly Routines
to Other Languages

Call-By-Value (Non-Copyvalue Parameters)

For alilongreal, procedure/function variables, and for all items that use
four or less bytes (except strings), the value of the variable is pushed.

Example of Parameter Passing

The following Pascal procedure definition produces the stack below:

procedure proc (var argl: real;
arg2: integer;
arg3: string[3]);

1* proc is declared at level 1
==> no static link in calling sequence *1

~
ar93 {address of actual

ar92 (actual value)

A7~ ar9 1 (address of actual

value - copyvclue)

value)

Pascal Functions Return Values

Like C and FORTRAN functions, Pascal functions return small results in
registers DO and D 1. Larger function values are passed through a result area.
The address of the result area is pushed before the argument values. The result
area address is not communicated through any registers.

The following Pascal function types return values in DO and possibly Dl:

• Scalar (includes char, boolean, enUID, and integer).

• Subrange.

• Real.

• Longreal.

• Pointer.

Interfacing Assembly Routines C-15
to Other Languages

C

The following Pascal function types return values through a result area:

• Procedure-valued.

• Set.

• Array.

• String.

• Record.

• File.

Example with Static Link

Suppose you've declared a Pascal procedure as:

function func (argl: longreal;
var arg2: typel;

arg3: arraytype)
(* assume sizeof(arraytype) > 4 *)

: longreal;
(* func is declared at level 2 ==> static link required *)

Then the arguments and static link would be placed on the stack as follows:

A7---

DO
D1

- -
arg3 {address of actual value - copyvalue)

arg2 {address of actual value)

arg1 {actual value, 4 LS8's)

arg1 (actual value, 4 MS8's)

static link (stack frame address of level 1
routine containing "func")

'. .

1------11 4 MSB's of longreol result
. 4 LS8's of longreal result

C-16 Interfacing Assembly Routines
to Other Languages

Example with Result Area

Suppose you've declared a Pascal function of a set type, which returns the
resul t in a result area:

function func C argl: longreal;
var arg2: typel;

arg3: arrayty)
(* assume sizeof(arraytype) > 4 *)

: settype;
(* IIfunc ll is declared at level 1 ==> no static link expected *)

Then the resulting stack would be:

~ ..

A7

". ".

address of result area

arg3 (address of actual value - copyvalue)

arg2 (address of actual value)

argl (actual value, 4 LSB's)

arg 1 (actual value, 4 MSB's)

Pascal Conformant Arrays

Several words of information are passed for conformant arrays. For every
dimension, the length (including padding bytes), upper, and lower bounds are
pushed. Last of all, the address of the array is placed on the stack.

Example Using Conformant Arrays

Consider the following Pascal code which calls a subroutine, sub, which
performs operations on a conform ant array.

var.ary: array [1 .. 3, 2 .. 5] of integer;

sub Cary);

The called routine is declared as:

procedure sub(ary[lbl .. ubl: integer;

Interfacing Assembly Routines C-17
to Other Languages

c

lb2 .. ub2: integer] of integer);
(* sub declared at level 3 ==> static link required *)

The resulting stack will be:

- -I'"

A7-.

-.. --

16 -length of dimension 1

1 -lower bound of dim 1 (identifier "Ib 1 ")

3 -upper bound of dim 1 (identifier "ub 1")

4 -length of dimension 2

3 -lower bound of dim 2 (identifier "lb2")

5 -upper bound of dim 2 (identifier "ub2")

address of "ory"

static link

Pascal "var string" Parameters.

var string parameters without a declared length have the maximum length
passed as a hidden parameter. The subroutine must have this information to
avoid writing past the end of string storage. The maximum size is pushed on
the stack before the string address.

For example, suppose you've written the following Pascal code:

var.string20: string[20];

sub (string20);

C-18 Interfacing Assembly Routines
to Other Languages

The routine sub is declared as:

procedure sub (var s: string);
(* IIsub l1 declared at level 1 ==> no static link expected *)

The resulting stack looks like:

1==:=:I 20 -maximum length

A7 -+ 1-----1 address of "string20"

of string

Interfacing Assembly Routines C-19
to Other Languages

C

D
Example Programs

This appendix provides sample assembly language programs. The intent of the
programs is to show as many features of the as assembler as possible. D

Interfacing to C
The following example illustrates a complete assembly example, and the
interface of assembly and C code. The assemly source file count i. s contains
an assembly language routine, _count_chars, which counts all the characters
in an input string, incrementing counters in a global array (count). It checks
for certain errors and uses the fprintf routine (see printf(3S)) to issue error
messages.

The example illustrates calling conventions between C and assembly code,
including access to parameters, and the sharing of global variables between
C and assembly routines. The variable Stderr is defined in counti. s but
accessed in prog. c; the array count is defined in prog. c and accessed from
counti.s.

The cc command can be used to build a complete command from these
sources:

$ cc -0 ccount prog.c counti.s

Example Programs 0·1

The C Source File (prog.c)

1* Main driver for a program to count all occurences of each
* (7-bit) ascii character in a sequence of input lines, and then
* dump the results. The loop to do the counting is done by a
* routine written in assembly.
*1

include <stdio.h>
define SMAX 100 1* maximum string size *1
char input_string[SMAX];

define NCHAR 128
unsigned short count[NCHAR];

extern int count_chars(); 1* Routine to do the count. It returns
* a count of the total number of

unsigned int totalcount;
extern FILE * Stderr;

maine) {
Stderr = stderr;

* characters it counted.
*1

1* Total letter count *1

1* Set up error descriptor required by
* count _ chars.
*1

while (fgets(input_string, SMAX, stdin) != NULL)
totalcount += count_chars(input_string);

}

dump_counts() {
register int i;

printf("Char Value
printf("=========

D-2 Example Programs

Count\nll);
===== \n II) ;

for (i =0; i<NCHAR; i++)
printf("\t%02X\t%4u\n", i, count [i]);

printf ("\nTotal Letters Counted = %d\n", totalcount);
}

The Assembly Source File (count1.s)

count_chars (s)
Routine to count characters in input string
Called as
count_chars(s)
from C.
Count the occurrences of each (7-bit) ascii character in
the input line pointed to by "s".
The input lines are guaranteed to be null-terminated.
The counts are stored in external array
unsigned short count [NCHAR]
where NCHAR -in 128.
Give an error (using fprintf from libc) if
* an input char in not in the 7-bit ascii range.
* the count overflows for a given character.
The return value is the total number of chars counted.
Illegal characters are not included in the total character
count.
Calling routine must set global variable Stderr to file
descriptor for error messages. We make this require because a C
program can more portably calculate the necessary address.

global

global
global

_fprintf
_count_chars

Register usage:

Array of unsigned short for storing

is defined externally
External function
Make _count_characters visible
externally

NOTE: We don't use scratch registers for variables we would

Example Programs 0·3

o

want preserved across calls to _printf. An alternative strategy
would be to use all scratch registers and save them around any
calls to _printf, on the assumption that such calls are rare.
Y.a2 address of count[J array
y'a3 step through input string
Y.d2 total character count
Y.d1 value of current character (scratch register)

global _Stderr

bss
_Stderr:

text
_count_chars:

space 4

Stderr file descriptor - must be
externally set.

link.l Y.a6,&-12 # No local vars. 3 registers to save
mov.m.l Y.a2-Y.a3/Y.d2,(y'sp)
mov.1 &_count,Y.a2 # Count array
mov.1 8(Y.a6),Y.a3 # Input string pointer
clr.l y'd2 # Total character count

Loop:
mov.b
beq.b
bmi.b
addq.l
ext.w
addq.w

(Y.a3)+,Y.d1
Ldone
Lneg
&1, Y.d2
y'd1
&1, (Y.a2,Y.d1.w*2)

bcs.b Lovflw
bra.b Loop

Next character
Null character terminates string
Illegal character
Increment total count
Make Y.d1 usuable as an index

Increment the appropriate

Go back for next character

Lneg: # illegal character seen -- give an
push args for fprintf, in reverse

error
order

and.l
mov.l
mov.l
mov.l
jsr

&Oxff,Y.d1 # Only want low
y'd1,-(y'sp)
&Err1,-(y'sp)
_Stderr,-(%sp)
_fprintf

D·4 Example Programs

2 bytes in arg passed.

add.l
bra.b

&12,Y.sp
Loop

Pop the 3 arguments
Go back for next character

Lovflw: # count overflowed give an error
push args for fprintf, in reverse order

and.l &Oxff,Y.dl # Only want low 2 bytes in arg passed.
mov.l Y.dl,-Cy'sp)
mov.l &Err2,-CY.sp)
mov.l _Stderr,-Cy'sp)
jsr _fprintf D
add.l &12,Y.sp # Pop the 3 arguments
bra.b Loop # Go back for next character

Ldone:
mov.l
movm.l
unlk
rts

Y.d2,Y.dO # return value

Errl:
Err2:

CY.sp),Y.a2-Y.a3/Y.d2 # restore registers
Y.a6

data
asciz
asciz

"Illegal character Cy'02X) in input\nll
"Count overflowed for character Cy'02X)\n"

Example Programs D-5

Using MC68881/2 and MC68040
Floating-Point Instructions

The following assembly language program uses MC68881/2 and MC68040
floating-point instructions to approximate a fresnel integral.

double fresnel(z) double z;

Approximate fresnel integral by calculating first hundred terms
of series expansion. For n=O to n=99, each term is:

set
text
global

_fresnel:
link
mov.l
fmov
fmov

movq
movq
fmov.w
fmov.b
fmov.d
fmov
fmul
fmul
fmov.b
fmovcr
fdiv.b
fmul

loop:

PI,O

_fresnel

Yea6,&-8
Yed2,-4(Y.a6)
Yefpcr,-8(Y.a6)
&O,y'fpcr

&O,y'dO
&1, Y.dl
&0, y'fpO
&1, Y.fpl
8(y'a6),y'fp3
Yefp3,Y.fp2
Yefp3,Y.fp3
Y.fp3,Y.fp3
&1, Y.fp4
&PI,Y.fp5
&2,Y.fp5
Y.fp5,Y.fp5

D·6 Example Programs

save d2
save control register
disable traps; round to
nearest extended format
n
4*n+l
initialize sum
(pi/2)-(2*n)
z
initialize z-(4*n+l)
z-2
z-4
initialize (2*n)!
pi
pi/2
(pi/2)-2

fmov %fp1,%fp6 # (pi/2)-(2*n)
fdiv %fp4,%fp6 # divide by (2*n)!
fdiv.l %d1,%fp6 # divide by 4*n+1
fmul Y.fp2,%fp6 # multiply by z-(4n+1)
movq &1, %d2
and.b %dO,%d2 # odd or even term?
bne.b L1
fadd Y.fp6,Y.fpO # add term
bra.b L2

L1: fsub Y.fp6,%fpO # subtract term 0
L2: addq.l &1, %dO # n=n+1

cmp.l %dO,&100 # end of loop?
beq.b L3
mov.l y'dO,%d2 # new n
asl.l &1, %d2 # n*2
fmul.l y'd2,%fp4 # update (2*n)!
subq.l &1, %d2
fmul.l Y.d2,%fp4
addq.l &4,%d1 # update 4*n+l
fmul Y.fp3,%fp2 # update z-(4*n+l)
fmul Y.fpS,%fp1 # update (pi/2)-(2*n)
bra.b loop

L3: fmov.d Y.fpO,-(y'sp) # get result
movm.l (%sp)+,%dO-%dl
mov.l -4(%a6),%d2 # restore d2
fmov -8(%a6),%fpcr # restore control register
unlk Y.a6
rts

Example Programs 0-7

E
Translators

Two assembly source translators are provided to assist in converting assembly
code from other HP systems to as assembly language for Series 300/400
computers.

atrans

The atrans translator converts Pascal Language System (PLS) assembly
language to as assembly language format. For details on using the atrans
command, see atrans(l).

astrn
The as assembler uses a UNIX-like assembly syntax which differs in several
ways from the syntax of previous HP-UX assemblers. The astrn translator
translates old HP-UX Series 200/300 assembly language to the new as
assembly language for Series 300/400 HP-UX systems. for details on the astrn
command, see astrn(l).

Note The translators are able to perform most of the translation to
as assembly language format. However, some translation is
beyond the capabilities of the translators. Lines that require
human intervention to change will generate warning messages.

Translators E-1

E

F
Unsupported Instructions
for Series 300/400 Computer's

HP-UX Series 300/400 assemblers support the complete MC68010 and
MC68020/30/40 instruction sets. However, certain instructions are provided
only on certain processors. These instructions are:

• tas

• cas

• cas2

• bkpt

The assembler generates code for these instructions, but gives warning
messages that the instructions are not fully supported by the Series 300
hardware. The following table shows which of the above instructions are
supported or not supported on various models.

Model(s)

310

320

Instructions Not Supported

The tas instruction is not supported by the Model 310.
Executing a tas instruction generates a bus error or corrupt
memory.

The instructions cas and cas2 are illegal instructions. These
instruction will cause normal exception processing for an illegal
instruction.

The bkpt instruction is not illegal, but it will end up in illegal
instruction processing.

The instructions tas, cas, and cas2 will execute; however,
they may cause cache consistency problems. These instructions
completely bypass the cache, so if you reference the same
memory locations with a different instruction you will get the

Unsupported Instructions F-1
for Series 300/400 Computer's

F

318/319, 330,
332

345, 350, 360,
370, 375

380,4xx

old data stored in the cache instead of the new data written to
memory.

The bkpt instruction will cause illegal instruction exception
processing.

The instructions tas, cas, and cas2 execute properly because
there is no cache to be inconsistent.

The bkpt instruction causes illegal instruction exception
processing.

The instructions tas, cas, and cas2 execute properly. The
cache consistency is maintained.

The instruction bkpt will cause illegal instruction exception
processing.

N one. Model 380 and all 4xx models support all instructions.

F·2 Unsupported Instructions
for Series 300/400 Computer's

G
adb

adb is a debugging program that is available on HP-UX. It provides capabilities
to look at core files resulting from aborted programs, print output in a variety
of formats, patch files, and run programs with embedded breakpoints. This
appendix provides examples of the more useful features of adb.

adb Syntax
The syntax of the adb command is:

adb [-w] [objfile [corefile]]

where objfile is an executable HP-UX file and core file is a core image file.
Often times, adb is invoked as:

adb a.out core

If adb is invoked without arguments:

adb

then the defaults are a. out and core respectively. The filename minus (-)
means "ignore this argument," as in:

adb - core

The objfile can be written to if adb is invoked with the -w flag as in:

adb -w a.out -

adb catches signals; therefore, a user cannot use a quit signal to exit from adb.
The request $q or $Q (or (CTRL J-@) must be used to exit from adb.

For details on invoking adb, see adb(1).

adb G·1

G

adb Command Format
You interact with adb by typing requests. The general format of a request is:

[address] [,count] [command] [modifier]

adb maintains a current address, called dot. When address is entered, dot is set
to that location. The command is then executed count times.

Address and count are represented by expressions. You can create expressions
from' decimal, octal, and hexadecimal integers, and symbols from the program
under test. These may be combined with the following operators:

+ addition
subtraction or negation (when used as a unary operator)

* multiplication
1. integer division
&: bi twise AND
I bitwise inclusive OR
round up to the next multiple

unary not.

All arithmetic within adb is 32 bits.

When typing symbolic names from high-level languages, such as C or
FORTRAN, type name or _name; adb will recognize both forms. The default
base for integer input is initialized to hexadecimal, but can be changed.

(CTRL l-© terminates execution of any adb command.

Table G-l illustrates some commonly used adb commands and their meanings.

G·2 adb

Table G·1. Commonly Used adb Commands

Command Description

? Print contents from a. out file

/ Print contents from core file

= Print value of "dot"

: Breakpoint control

$ Miscellaneous requests

; Request separator

! Escape to shell

Displaying Information
adb has requests for examining locations in either the objfile or the corefile.
The? request examines the contents of objfile, the / request examines the
corefile.

Following the? or / command the user specifies a format.

The following are some commonly used format letters:

c one byte as a character
x two bytes in hexadecimal
X four bytes in hexadecimal
d two bytes in decimal
F eight bytes in double floating point
i MC68xxx instruction
s a null-terminated character string
a print in symbolic form
n print a newline
r print a blank space

backup dot.

adb G·3

G

A command to print the first hexadecimal element of an array of long integers
named ints in C would look like:

ints/X

This instruction would set the value of dot to the symbol table value of _ints.
It would also set the value of the dot increment to four. The dot increment is
the number of bytes printed by the format.

Let us say that we wanted to print the first four bytes as a hexadecimal
number and the next four as a decimal one. We could do this by:

ints/XD

In this case, dot would still be set to _ints and the dot increment would be
eight bytes. The dot increment is the value which is used by the newline
command. Newline is a special command which repeats the previous
command. It does not always have meaning. In this context, it means to
repeat the previous command using a count of one and an address of dot plus
dot increment. In this case, newline would set dot to ints+Ox8 and type the
two long integers it found there, the first in hex and the second in decimal.
The newline command can be repeated as often as desired and this can be
used to scroll through sections of memory.

Using the above example to illustrate another point, let us say that we wanted
to print the first four bytes in long hex format and the next four bytes in byte
hex format. We could do this by:

ints/X4b

Any format character can be preceded by a decimal repeat character.

The count field can be used to repeat the entire format as many times as
desired. In order to print three lines using the above format we would type

ints,3/X4bn

The n on the end of the format is used to output a carriage return and make
the output much easier to read.

In this case the value of dot will not be _ints. It will rather be _ints+Oxl0.
Each time the format was re-executed dot would have been set to dot plus
dot increment. Thus the value of dot would be the value that dot had at the
beginning of the last execution of the format. Dot increment would be the size

G·4 adb

of the format: eight bytes. A newline command at this time would set dot to
ints+Ox18 and print only one repetition of the format, since the count would
have been reset to one.

In order to see what the value of dot is at this point the command

.=a

could be typed. = is a command which can be used to print the value of
address in any format. It is also possible to use this command to convert from
one base to another:

Ox32=oxd

This will print the value Ox32 in octal, hexadecimal and decimal.

Complicated formats are remembered by adb. One format is remembered for
each of the ? ,/ and = commands. This means that it is possible to type

Ox64=

and have the value Ox64 printed out in octal, hex and decimal. And after that,
type

ints/

and have adb print out four bytes in long hex format and four bytes in byte
hex format. To an observant individual it might seem that the two commands

main,10?i

and

main?10i

would be the same.

There are two differences. The first is that the numbers are in a different base.
The repeat factor can only be a decimal constant, while the count can be an
expression and is therefore, by default, in a hex base.

The second difference is that a newline after the first command would print
one line, while a newline after the second command would print another ten
lines.

adb G·5

G

Debugging C Programs
The following examples illustrate various features of adb. Certain parts of the
output (such as machine addresses) may depend on the hardware being used,
as well as how the program was linked (unshared, shared, or demand loaded).

Debugging a Core Image

Consider the C program in Figure G-l. The program is used to illustrate some
of the useful information that can be obtained from a core file. The object
of the program is to calculate the square of the variable ivaI by calling the
function sqr with the address of the integer. The error is that the value of the
integer is being passed rather than the address of the integer. Executing the
program produces a core file because of a bus error.

int ints []= {1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0};

int ival;
maine)
{

}

sqr(x)
int *x;
{

}

register int i;
for(i=0;i<10;i++)
{ ival = ints[i];

sqr(ival);
printf("sqr of %d is %d\n",ints[i],ival);

}

Figure G·1. C Program with a Pointer Bug

adb is invoked without arguments:

G-6 adb

adb

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. This request
can be used to check the validity of the parameters passed. As shown in
Figure G-2, the value passed on the stack to the routine sqr is 1, which is not
what we are expecting.

$c
_main+Ox30:
start+Ox58 :
$r

OxO

_sqr (Oxl)
_main (Oxl, OxFFFF7DAC)

ps
pc OxllC _sqr+Ox42: unlk Xa6

sp OxFFFF7D84

dO OxlAE9
dl Ox53
d2 OxFFCOl
d3 OxFFC8F405
d4 OxFFC8F40l
d5 Ox700
d6 OxO
sqr+Ox38,5?ia
_sqr+Ox38:
_sqr+Ox3A:
_sqr+Ox3C:
_sqr+Ox40:
_sqr+Ox42:
_sqr+Ox44:
$e
flag_6888l :
_environ:
_argc_value:
float_soft:

aO Oxl
al OxFFFF7DAC
a2 OxFFC8AOO4
a3 OxlF626
a4 OxlF66C
a5 OxlF3AC
a6 OxFFFF7D88

mov.w (Xa7)+,YedO
mulu.w
mov.l
mov.l
unlk

Oxl0000
OxFFFF7DB4
Oxl
OxFFFFOOOl

Xdl,XdO
Ox8(Xa6),XaO
XdO, (XaO)
Xa6

adb G-7

G

_argv_vaIue:
_ints: Ox1
_ivaI: Ox1
__ iob: OxO
__ ctype:
__ bufendtab:
__ smbuf:
__ Iastbuf:
_errno: OxO
__ stdbuf:
__ sobuf:
__ sibuf:
_asm_mhfl:
_end: OxO
_errnet:
_edata: Ox1

OxFFFF7DAC

Ox202020
OxO
OxO
Ox39D4

Ox40DC
OxO
OxO
OxO

OxO

Figure G·2. adb Output from Program of Figure 1·1

The next request

$r

prints out the registers including the program counter and an interpretation of
the instruction at that location. The instruction printed for the pc does not
always make sense. This is because the pc has been advanced and is either
pointing at the next instruction, or is left at a point part way through the
instruction that failed. In this case the pc points to the next instruction. In
order to find the instruction that failed we could list the instructions and their
offsets by the following command:

sqr+Ox38,5?ia

This would show us that the instruction that failed was

_sqr+Ox40:move.1 Y.dO, (Y.aO)

This is the first instruction before the value of the pc. The value printed out
for register aO also indicates that a write to location Ox!, which is in the text
part of the user space, would fail in a shared a. out file. The text segment is
write-protected in files that are shared or demand-loaded.

G·8 adb

The request:

$e

prints out the values of all external variables at the time the program crashed.

adb G-9

G

Setting Breakpoints
Consider the C program in Figure G-3, which program changes tabs into
blanks.

#include <stdio.h>
#define MAXLINE 80
#define YES
#define NO
#define TABSP

1
o
8

char input [] = "data";
FILE *stream;
int tabs[MAXLINE];
char ibuf[BUFSIZ];

maine)
{

G-10 adb

int col, *ptab;
char c;

setbuf(stdout,ibuf);
ptab = tabs;
settab(ptab) ;
col = 1;

I*Set initial tab stops *1

if((stream = fopen(input,"r") == NULL) {
printf("%s : not found\\n",input);
exit(S);

}

while((c = getc(stream» != EOF) {
switch(c) {

case '\t': 1* TAB *1
while (tabpos (col) != YES) {

}

break;

putchar(' '); 1* put BLANK *1
col++ ;

case '\n': I*NEWLINE *1
put char (, \n');
col = 1;

}
}

}

break;
default:

putchar(c);
col++ ;

1* Tabpos return YES if col is a tab stop *1
tabpos(col)
int col;
{

}

if(col > MAXLINE)
return(YES) ;

else
return(tabs[col]);

1* Settab - Set initial tab stops *1
settab(tabp)
int *tabp;
{

int i;

for(i = 0; i<= MAXLINE; i++)
(iYeTABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

}

Figure G·3. C Program to Decode Tabs

We will run this program under the control of adb (see Figure G-4) by:

adb a.out -

Breakpoints are set in the program as:

address: b [request]

The requests:

settab+e:b
fopen+4:b

adb G·11

G

tabpos+e:b

set breakpoints at the starts of these functions. The addresses for user-defined
functions (settab and tabpos) are entered as symbol +e so that they will
appear in any C backtrace; this is because the first few instructions of each
function are instructions which link in the new function. Note that one
of the functions, fopen, is from the C library; for this routine, fopen+4 is
appropriately used.

$ adb a.out -
executable file = a.out
ready
settab+e:b
fopen+4:b
tabpos+e:b
$b
breakpoints
count bkpt command
Ox1 _tabpos+OxE
Ox1 _fopen+Ox4
Ox1 _settab+OxE
:r
process 5139 created
a.out: running
breakpoint _settab+OxE:
settab+e:d
:c
a.out: running
breakpoint _fopen+Ox4:
$c

clr.l -Ox4(y'a6)

jsr __ findiop

_main+Ox48:
start+Ox58:
tabs/24X
_tabs:

_fopen (Ox4000, Ox4006)
_main (Ox1, OxFFFF7DAC)

G-12 adb

Ox1
OxO
Ox1
OxO

OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO

Oxl OxO OxO OxO
OxO OxO OxO OxO

:c
a.out: running
breakpoint _tabpos+OxE: movq tOx50,Y.dO
:s
a.out: running
stopped at _tabpos+Oxl0: cmp.l Y.dO,Ox8(Y.a6)

(Return)

a.out: running
stopped at _tabpos+Ox14: bge.w _tabpos+OxlE

(Return)

a.out: running
stopped at _tabpos+OxlE: mov.l Ox8(Y.a6),Y.dO

(Return)

a.out: running
stopped at _tabpos+Ox22: asl.l tOx2,y'dO

(Return)

a.out: running
stopped at _tabpos+Ox24: addi.l tOx4A50,Y.dO

(Return)

a.out: running
stopped at _tabpos+Ox2A: mov.l Y.dO, Y.aO

(Return)

a.out: running
G

stopped at _tabpos+Ox2C: mov.l (Y.aO),Y.dO
:d*
:c
a.out: running
This is it
process terminated
settab+e:b settab,5?ia
tabpos+e,3:b ibuf/20c
:r
process 5248 created
a.out: running
settab,5?ia
_settab: mov.l Y.a6,-(Y.a7)

adb G·13

_settab+Ox2: mov.l 'l.a7,'l.a6
_settab+Ox4: add.l tOxFFFFFFFC,'l.a7
_settab+OxA: movm.l <> , (Y.a7)
_settab+OxE: clr.l -Ox4(Y.a6)
_settab+Ox12:
breakpoint _settab+OxE: clr.l -Ox4('l.a6)
:c
-
a.out: running
ibuf/20c
_ibuf: This
ibuf/20c
_ibuf: This
ibuf/20c
_ibuf: This
breakpoint _tabpos+OxE: movq &Ox50,Y.dO
$q
process 5248 killed

Figure G-4. adb Output from C Program of Figure 1·3

To print the location of breakpoints type:

$b

The display indicates a count field. A breakpoint is bypassed count - 1 times
before causing a stop. The command field indicates the adb requests to be
executed each time the breakpoint is encountered. In our example no command
fields are present.

By displaying the original instructions at the function settab we see that the
breakpoint is set after the instruction to save the registers on the stack. We
can display the instructions using the adb request:

settab,5?ia

This request displays five instructions starting at settab with the addresses of
each location displayed.

To run the program simply type:

:r

G·14 adb

To delete a breakpoint, for instance the entry to the function settab, type:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for fopen), adb
requests can be used to display the contents of memory. For example:

$c

to display a stack trace, or:

tabs,3/8X

to print three lines of 8 locations each from the array called tabs. The format
X is used since integers are four bytes on M680xO processors. By this time (at
location fopen) in the C program, settab has been called and should have set
a one in every eighth location of tabs.

Advanced Breakpoint Usage
When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This"
word of the data. We can execute one instruction by

:s

and can single step again by pressing the ~ key. Doing this we can quickly
single step through tabpos and get some confidence that it is working. We can
look at twenty characters of the buffer of characters by typing:

>ibuf/20c

Several breakpoints of tabpos will occur until the program has changed the tab
into equivalent blanks. Since we feel that tabpos is working, we can remove all
the breakpoints by:

:d*

adb G·15

G

If the program is continued with:

:c

it resumes normal execution and continues to completion after adb prints the
message:

a.out: running

It is possible to add a list of commands we wish to execute as part of a
breakpoint. By way of example let us reset the breakpoint at settab and
display the instructions located there when we reach the breakpoint. This is
accomplished by:

settab+e:b settab,5?ia

It is also possible to execute the adb requests for each occurrence of the
breakpoint but only stop after the third occurrence by typing:

tabpos+e,3:b ibuf/20c

This request will print twenty character from the buffer of characters at each
occurrence of the breakpoint.

If we wished to print the buffer every time we passed the breakpoint without
actually stopping there we could type

tabpos+e,-l:b ibuf/20c

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+e:b settab,5?ia;ptab/o

could be entered after typing the above requests. The semicolon is used to
separate multiple adb requests on a single line.

Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at
settab is encountered the adb requests are executed.

G-16 adb

Note Setting a breakpoint causes the value of dot to be changed;
executing the program under adb does not change dot.
Therefore:

settab+e:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen)
not the current location (settab) at which the program is
executing.

The HP-UX quit and interrupt signals (SIGQUIT and SIGINT; see signal(2))
act on adb itself rather than on the program being debugged. If such a signal
occurs then the program being debugged is stopped and control is returned to
adb. The signal is saved by adb and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The
signal is not passed on to the test program if:

:c 0

is typed.

Other Breakpoint Facilities
To pass arguments to a program and redirect standard input and output, use
the : r request as:

:r argJ [arg2] ... <infile >outfile

This request kills any existing program under test and starts the a. out
afresh. The process will run until a breakpoint is reached or until the program
completes or crashes. To start the program without running it, the command

: e argJ [arg2] ... <infile >outfile

adb G·17

G

can be executed. This will start the process, and leave it stopped without
executing the first instruction.

If the program is stopped at a subroutine call it is possible to step around the
subroutine by

:s
This sets a temporary breakpoint at the next instruction and continues. This
may cause unexpected results if : S is executed at a branch instruction.

adb allows a program to be entered at a specific address by typing:

address:r

The count field can be used to skip the first n breakpoints as:

,n:r

The request:

, n:c

may also be used for skipping the first n breakpoints when continuing a
program.

A program can be continued at an address different from the breakpoint by:

address:c

The program being debugged runs as a separate process and can be killed by:

:k

All of the breakpoints set so far can be deleted by

:d*

A subroutine may be called by

: x address [parameters]

G·18 adb

Maps
HP-UX supports various executable file formats that determine how the file is
loaded by exec. A shared text program file is the most common and is the
default executable file format generated by the linker. Unshareable text is
produced by linking the program with the -N linker option. Demand-Ioadable
format is produced by linking with the -q option. (For details on the different
executable file formats, refer to Programming on HP- UX.) adb interprets these
different file formats and provides access to the different segments through the
maps. To print the maps, type:

$m

In unshareable files, both text (instructions) and data are intermixed. In
shared files the instructions are separated from data, and the adb request ?*
accesses the data part of the a. out file. The ?* request tells adb to use the
second part of the map in the a. out file. Accessing data in the core file shows
the data after it was modified by the execution of the program. Notice also
that the data segment may have grown during program execution. Figure G-5
shows the display of three maps for the same program linked as unshareable,
shareable, and demand-loaded, respectively. The b, e, and f fields are used
by adb to map addresses into file addresses. The f 1 field is the length of the
header at the beginning of the file. The f2 field is the displacement from the
beginning of the file to the data. For a nonshared file with mixed text and data
this is the same as the length of the header; for shared files this is the length of
the header plus the size of the text portion. G

$ adb manex.nshtxt core.nshtxt
executable file = manex.nshtxt
core file = core.nshtxt
ready
$m
? map 'manex.nshtxt'
bl = OxO el = Ox5D8 fl = Ox40
b2 = OxO e2 = Ox5D8 f2 = Ox40
/ map 'core.nshtxt'
Kernel: b = Ox140ECC e = Ox140F08 f = Oxl0
Exec: b = Ox140E7C e = Ox140ECC f = Ox5C

adb G-19

Core: b = Ox140E6C e = Ox140E70 f = OxBC
Data: b = OxO e = Ox2000 f = OxDO
Stack: b = OxFFEFFOOO e = OxFFFOOOOO f = Ox20EO
Registers: b = Ox140BB4 e = Ox140DFC f = Ox30FO
/ map (inactive) 'core.nshtxt'
bl = OxO el = Oxl000000 fl = OxO
b2 = OxO e2 = Oxl000000 f2 = OxO
$v
variables
d = Ox2000
e = OxC4
m = Oxl07
s = Oxl000
t = Ox394
$q

$ adb manex.shtxt core.shtxt
executable file = manex.shtxt
core file = core.shtxt
ready
$m
? map 'manex.shtxt'
bl = OxO el = Ox394 fl = Ox40
b2 = Oxl000 e2 = Ox1244 f2 = Ox3D4
/map 'core.shtxt'
Kernel: b = Ox140E64 e = Ox140EAO f = OxiO
Exec: b = Ox140E14 e = Ox140E64 f = Ox5C
Core: b = Ox140E04 e = Ox140E08 f = OxBC
Data: b = Oxl000 e = Ox3000 f = OxDO
Stack: b = OxFFEFFOOO e = OxFFFOOOOO f = Ox20EO
Registers: b = Ox140B4C e = Ox140D94 f = Ox30FO
/ map (inactive) 'core.shtxt'
bl = OxO el = Oxl000000 fl = OxO
b2 = OxO e2 = Oxl000000 f2 = OxO
$v
variables
b = Oxl000
d = Ox2000

G·20 adb

e = OxC4
m = Oxl08
s = Oxl000
t = Ox394
$q

$ adb manex.dltxt core.dltxt
executable file = manex.dltxt
core file = core.dltxt
ready
$m
? map 'manex.dltxt'
bl = OxO el = Ox394 fl = Oxl000
b2 = Oxl000 e2 = Ox1244 f2 = Ox2000
/ map 'core.dltxt'
Kernel: b = Ox140E64 e = Ox140EAO f = Oxl0
Exec: b = Ox140E14 e = Ox140E64 f = Ox5C
Core: b = Ox140E04 e = Ox140E08 f = OxBC
Data: b = Oxl000 e = Ox3000 f = OxDO
Stack: b = OxFFEFFOOO e = OxFFFOOOOO f = Ox20EO
Registers: b = Ox140B4C e = Ox140D94 f = Ox30FO
/ map (inactive) 'core.dltxt'
bl = OxO el = Oxl000000 fl = OxO
b2 = OxO e2 = Oxl000000 f2 = OxO
$v
variables
b = Oxl000
d = Ox2000
e = OxC4
m = Oxl0B
s = Oxl000
t = Ox394
$q

Figure G·5. Maps Produced by adb

G

adb G·21

The file address associated with a memory address is determined by a triple
(b,eJ) using the this formula:

if (b :s; address < e), then the file address = address + / - b

If an address does not satisfy the "if' condition of any triple in the map, it is
invalid.

The objectfile has two such triples, one for the text segment and one for the
data segment. The user-modifiable map for the corefile also has two triples.
The initial map for the core file has as many triples as there are core segments
in the core file (see core (4)).

Two additional requests are used with maps:

=m Toggle the address mapping of corfil between the initial map
set up for a valid core file and the default mapping pair
which the user can modify with 1m. If the corfil was invalid,
only the default mapping is available.

[? I]m bl el /1 [? I] Record new values for (bl ,el Jl). If less than three
expressions are given, the remaining map parameters are
left unchanged. If the? or I is followed by *, the second
segment (b2 ,e2 J2) of the mapping is changed. If the list

G-22 adb

is terminated by ? or I, the file (object file or core file,
respectively) is used for subsequent requests. For example,
1m? causes I to refer to the object file. A 1m command
switches the core file mapping to the default mapping pair.
For a valid core file, the =m command can be used to switch
back to the initial mapping.

Variables and Registers
adb provides a set of variables which are available to the user. A variable is
composed of a single letter or digit. It can be set by a command such as

Ox32>5

which sets the variable 5 to hex 32. It can be used by a command such as

<5=X

which will print the value of the variable 5 in hex format.

Some of these variables are set by adb itself. These variables are:

o last value printed

b base address of data segment

d length of the data segment

e the entry point

m execution type (Oxl07 (nonshared),Oxl08 (shared), or OxlOb (demand
loaded))

s length of the stack

t length of the text

These variables are useful to know if the file under examination is an
executable or core image file. adb reads the header of the core image file to G
find the values for these variables. If the second file specified does not seem
to be a core file, or if it is missing, the header of the executable file is used
instead.

Variables can be used for such purposes as counting the number of times a
routine is called. Using the example of Figure G-3, if we wished to count the
number of times the routine tabpos is called we could do that by typing the
sequence

0>5
tabpos+4,-1:b <5+1>5
:r
<5=d

adb G-23

The first command sets the variable 5 to zero. The second command sets a
breakpoint at tabpos+4. Since the count is -1 the process will never stop there
but adb will execute the breakpoint command every time the breakpoint is
reached. This command will increment the value of the variable 5 by 1. The :r
command will cause the process to run to termination, and the final command
will print the value of the variable.

$v can be used to print the values of all non-zero variables.

The values of individual registers can be set and used in the same way as
variables. The command

Ox32>dO

will set the value of the register dO to hex 32. The command

<dO=X

will print the value of the register dO in hex format. The command $r will
print the value of all the registers.

Formatted Dumps
It is possible to combine adb formatting requests to provide elaborate displays.
Below are some exam pIes.

The line:

<b~-1/404-SCn

prints 4 octal words followed by their ASCII interpretation from the data space
of the core image file. Broken down, the various request pieces mean:

<b The base address of the data segment.

<b, -1 Print from the base address to the end of file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition
(like end of file) is detected.

The format 404 SCn is broken down as follows:

40 Print 4 octal locations.

G·24 adb

4 - Backup the current address 4 locations (to the original start of the
field).

8C Print 8 consecutive characters using an escape convention; each
character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0140 to 0177. An @ is printed as
@@.

n Print a newline.

The request:

<b,<d/404-8Cn

could have been used instead to allow the printing to stop at the end of the
data segment «d provides the data segment size in bytes).

The formatting requests can be combined with adb's ability to read in a script
to produce a core image dump script. adb is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n1lC Stack Backtrace ll

$C
=3n1lC External Variables"
$e
=3n llRegisters ll

$r
O$s
=3n llData Segment ll

<b,-1/8ona

The request 120$w sets the width of the output to 120 characters (normally,
the width is 80 characters). adb attempts to print addresses as:

symbol + offset

adb G·25

G

The request 4095$8 increases the maximum permissible offset to the nearest
symbolic address from 255 (default) to 4095. The request = can be used to
print literal strings. Thus, headings are provided in this dump program with
requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all
non-zero adb variables. The request 0$8 sets the maximum offset for symbol
matches to zero thus suppressing the printing of symbolic labels in favor of
octal values. Note that this is only done for the printing of the data segment.
The request:

<b,-1/8ona

prints a dump from the base of the data segment to the end of file with an
octal address field and eight octal numbers per line.

Figure G-7 shows the results of some formatting requests on the C program of
Figure G-6.

char strl [] = "This is a character string";
int one = 1;
int number = 456;
long lnum = 1234;
:float :fpt = 1.25;
char str2[] = "This is the second character string";
maine)
{

one = 2' ,
}

Figure G·6. Simple C Program That Illustrates Formatting and Patching

$ adb a.out.shared -
executable £ile = a.out.shared
ready
<b.-1?8ona
_str1: 052150 064563 020151 071440 060440 061550 060562 060543

_str1+0x10: 072145 071040 071564 071151 067147 0 o 01

_number:

G·26 adb

_number: 0 0710 0 02322 037640 0 052150 064563

_str2+0x4: 020151 071440 072150 062440 071545 061557 067144 020143

_str2+0x14: 064141 071141 061564 062562 020163 072162 064556 063400
<b,20?404~8Cn

_str1 : 052150 064563 020151 071440 This is
060440 061550 060562 060543 a charac
072145 071040 071564 071151 ter stri
067147 0 0 01 ng@'@'@'@'@'@a

_number: 0 0710 0 02322 @'@'@aB@'@'@dR

_fpt: 037640 0 052150 064563 ? @'@'This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second c
064141 071141 061564 062562 haracter
020163 072162 064556 063400

address not found in a. out file
<b,20?404~8t8Cna

_str1 : 052150 064563 020151 071440 This is
_str1+Ox8: 060440 061550 060562 060543 a charac
_str1+Ox10: 072145 071040 071564 071151 ter stri
_str1+Ox18: 067147 0 0 01 ng@'@'@'@'@'@a
_number:
_number: 0 0710 0 02322 @'@'@aH@'@'@dR
_fpt:
_fpt: 037640 0 052150 064563 ? @'@'This
_str2+Ox4: 020151 071440 072150 062440 is the
_str2+OxC: 071545 061557 067144 020143 second c
_str2+Ox14: 064141 071141 061564 062562 haracter
_str2+Ox1C: 020163 072162 064556 063400
address not found in a.out file G
<b,a?2b8t~2cn

_str1 : Ox54 Ox68 Th
Ox69 Ox73 is
Ox20 Ox69 i
Ox73 Ox20 s
Ox61 Ox20 a
0%63 Ox68 ch
Ox61 Ox72 ar
Ox61 Ox63 ac
Ox74 Ox65 te
Ox72 Ox20 r

$q

Figure G·7. adb Output Showing Fancy Formats

adb G·27

Patching
To patch a file-that is, to change data in a file-use the write, w, or W
request. To find the data you want to patch, you could either refer to it by its
symbolic name, or you could find the data using locate, 1, or L. The request
syntax for 1 and ware similar:

?l value

?w value

The request 1 matches two bytes; L matches four bytes. The request w
writes two bytes; W writes four bytes. The value field in either request is an
expression. Therefore, decimal and octal numbers, or character strings are
supported.

In order to modify (write to) a file, adb must be called with the -w option. For
example, suppose you compiled the program shown in Figure G-6:

$ cc -0 fig6 fig6.c

To allow adb to write to the object file fig6, invoke adb as follows:

$ adb -w fig6

When used on object and core files, the locate command searches from dot
until it finds the data or encounters an addressing error, which can occur
when attempting to read past the end of the current segment. So, when using
locate, be sure to position dot in the appropriate segment and at a starting
location where the search will be successful.

G-28 adb

For example, suppose you want to search for the string "This" in the program
shown in Figure G-6, and replace it with "The". If you issue the locate
command, it starts searching (by default) at location OxO in the file's text
segment. Since the string is contained in the data segment, the locate request
fails:

$ adb -ow fig6 - Invoke adb with -ow.
executable file = fig6
ready
?L 'This' Locate the string "This".
start adb cannot find the string.
cannot locate value

What you must do now is move dot to the starting address of the data
segment, which you can determine using the map request:

$m
? map 'fig6'
b1 = OxO e1 = OxCE8 f1 = Ox40
b2 = Ox1000 e2 = Ox1528 f2 = OxD28
/ map , -'
b1 = OxO e1 = OxO f1 = OxO
b2 = OxO e2 = OxO f2 = OxO

This indicates that the data segment starts at OxlOOO and ends at Ox1528. To
search for "This", specify the starting address of the data segment when issuing
the locate request: G

Ox1000?L 'This'
_str1

Data segment starts at OxlOOO.
It finds the address of str1.

At this point, you could patch the string, replacing "This" with "The":

?W 'The '
Ox54686973 = Ox54686520

To verify that it worked, use the s request to display the string at dot:

?s
_str1 : The is a character string

adb G-29

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set by the user through adb
and the program run. For example:

$ adb a.out -
:e argl arg2
flag/w 1
:c

The : e request is used to start a. out as a subprocess with arguments argl and
arg2. If there is a subprocess running adb writes to it rather than to the file so
the w request causes flag to be changed in the memory of the subprocess.

Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the link instruction.
Putting breakpoints at the entry point to routines means that the function
appears not to have been called when the breakpoint occurs.

2. If a :S command is executed at a branch instruction, and the branch
is taken, the command will act as a : c command. This is because a
breakpoint is set at the next instruction and if is not reached, the process
will not stop.

Command Summary

Formatted Printing

? format
/ format
= format
?w expression
/ w expression

G-30 adb

print from a. out file according to format
print from core file according to format
print the value of dot
write expression into a. out file
write expression into core file

?1 expression locate expression in a. out file

Breakpoint and Program Control

:b set breakpoint at dot
: c continue running program
: d delete breakpoint
:k kill the program being debugged
: r run a. out file under adb control
: 8 single step

Miscellaneous Printing

$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print adb segment maps
$q exit from adb
$r general registers
$8 set offset for symbol match
$v print adb variables
$w set output line width

Calling the Shell G

! shelL command run shelLcommand in the user's shell

Assignment to Variables

>name assign dot to variable or register name

adb G·31

Format Summary
a the value of dot
b
c
d
f
i
o
n
r
s
nt
u
x
y

" II

one byte in hexadecimal
one byte as a character
two bytes in decimal
four bytes in floating point
MC68xxx instruction
two bytes in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
two bytes as unsigned integer
hexadecimal
date
backup dot
print string

Expression Summary

Expression Components

decimal integer
octal integer
hexadecimal
symbols
variables
registers
(expression)

G-32 adb

e.g. Od256
e.g. 0277
e.g. Oxff
e.g. flag _main
e.g. <b
e.g. <pc <dO
expression grouping

Dyadic Operators

+ add
subtract

* multiply
Y. integer division
& bitwise AND
I bitwise OR
round up to the next multiple

Monadic Operators

not
* contents of location

integer negate

G

adb G-33

H
atime

This appendix describes a MC680xO assembly language sequence timing utility
called atime. After you have developed and debugged assembly language code
for a MC680xO processor (Series 300/400 computer), you can use atime to:

• Analyze the performance of the code (performance analysis mode).

• Determine the number of times each instruction is hit (execution profiling
mode).

• Assert (verify) particular values in a code sequence to assure that various
algorithms produce identical results (assertion listing mode).

Continuing to Get Information
Now that you know what atime does, please read the next three brief sections
which:

• Describe prerequisites for using atime.

• Mention where to get additional or related information.

• Describe the sections in this manual. The descriptions of sections include
suggestions for reading them.

atime H-1

H

Prerequisites
The following items mention requirements for using atime:

• Your system needs Ibinl as and Ibin/ld.

• You have a sequence of assembler instructions you want to test and have
developed an input file containing the assembler instructions and special
at ime instructions (more on this later).

• You must run atime on a quiescent single-user system to get valid results.
(The reason is that the utility returns empirically determined performance
information.)

Getting Additional Information
In the HP-UX Reference Manual, you might want to examine the following
related pages:

as(l) The as assembler

ld(l) The link editor

prof (1) A program that lets you display profile data

gprof (1) A program that lets you display call graph profile data

Manual Contents
The following paragraphs name and describe subsequent sections in the
manual. They also suggest how to use the information.

"Atime and Assembly Code" discusses the overall picture and shows how atime
fits into the scheme of developing assembly code. (Skip this section if you
already know what to expect or do not need to see this type of information.)

"The Syntax with Examples" describes atime's syntax and options. Then, the
section shows an example of running atime in performance analysis mode using
an example of an input-file. (Some users may find that this section is all they

H-2 atime

need. Remaining sections simply discuss the input-file, atime instructions,
modes, output, and errors.)

"The Input File" describes the four sections in an input-file. (Read this section
to get more information if the previous examples did not provide enough
information.)

"The atime Instructions" describes the atime instructions, including examples.
(Read this section as necessary to learn how to use the instructions.)

"Performance Analysis Mode" describes performance analysis mode (the
default mode). (Read this and the next two sections about modes according to
your needs.)

"Execution Profiling Mode" describes execution profiling mode (use the -p
option).

"Assertion Listing Mode" describes assertion listing mode (use the -1 option).

"Recovering from Errors" describes error situations and how to handle them.

Atime and Assembly Code
In most cases, you develop assembly code to obtain maximum performance
from, for example, a critical routine. During development, it may frequently
be unclear as to which instruction, sequence of instructions, or algorithm can
be executed most efficiently by the assembly instruction set. After you have
developed and debugged two or more assembler instruction sequences, you can
use atime to determine which sequence provides optimal performance. To do
this, you run atime on each sequence and compare the results.

This section shows how atime fits into the development of assembly code and H
describes atimes features. (The remaining sections describe how to use them.)

atime H·3

The Overall Picture

Figure H-l shows where atime fits into the scheme of developing assembly
language. It also shows the relationships between atime and the input-file,
modes, and output.

(1) Develop and debug
functionally equivalent
assembler instruction
sequences to be timed

t
(2) Develop the input-file:

a file that has assembler
and atime instructions.

+
(3) Run otime with desired

options and the input-file
in one of three modes
and get related output

I • i • Performance Execution Assertion
Mode Profiling Mode Listing Mode

t t t
Output is on Output is <) Output is an

analysis profile assertion listing
of performance

Figure H·1. How atime Fits Into Developing Assembly Language

H·4 atime

The atime Features

The atime utility has the following features:

• You can check the timing (speed) of functionally equivalent assembler
instruction sequences (e.g. finding the most significant bit in a data register).

• You can specify sets of input data and the relative probability that each of
them will occur.

• The utility runs in one of performance analysis, execution profiling, or
assertion listing modes.

o Performance analysis mode (the default) causes a code sequence to execute
many times in a loop with atime calculating and reporting the average
time per iteration.

o Execution profiling mode (use the -p option) makes at ime run all or
selected data sets and reports the number of times each executable
instruction is hit.

o Assertion listing mode (use the -1 option) causes at ime to assert
particular values in a code sequence for the purpose of assuring that
various algorithms product identical results. You use this output to verify
data for subsequent performance analyses and execution profiles.

• The utility provides output containing information you can compare with the
output obtained from other runs to select the best sequence of assembler
instru ctions.

atime H-5

H

Syntax with Examples
This section shows the general syntax. Then, it describes the command line
options and shows two examples of an input-file: bit_find and max_integers.

The atime Syntax

The syntax is:

atime [options] input-file [output-file]

Use options to control such things as:

• Specifying the mode

• Specifying an assertion data file

• Specifying a minimum number of timing iterations

• Turning off code sequence listing.

The input-file has four sections with assembly code source instructions and
atime instructions.

The output-file goes to a specified file (if given) or to standard output if the
name is- or is omitted. Otherwise, if the mode is performance analysis and the
input-file has an output instruction, output goes to the file specified there.

atime Options

-afile

-icount

H-6 atime

Specify an assertion data file to be used for assertion data. The file
must have been created by a previous run of atime with the -1
option. Only one -a option can be given and it will supersede any
assert file instruction in the input-file.

Specify the minimum number of timing iterations where count
is an integer in the range 1 through 232 - 1 (you get an error
otherwise). When data sets exist, the actual value used equals
or exceeds the given count because the number of iterations
must be an integral multiple of the sum of counts in all dataset
instructions. Only one - i option can be used and it supersedes
any iterate instruction in the input-file.

-1[name] Print asserted values. If name is given, the code sequence is
executed using the dataset called name in the input-file. Multiple
-1 options are allowed. Omitting name prints assertions for all
data sets. As each assert instruction in the input-file is executed,
it prints its associated name and value. If an assertion file is
specified by a -a option or an assert file instruction and there is
a mismatch between the asserted value and the value in the file,
that value is also printed. Also, an error is printed when a value
is missing from the assertion file. Output goes to standard out
unless you specify an output-file. An output instruction in the
input-file is ignored. The output-file can be used as an assertion
file in subsequent runs of atime. The -1 option cannot be used
with the -p option.

-n Turn off listing the input-file to output. It is ignored if you use -p
or -1. This is equivalent to nolist in the input-file.

-p[name] Do execution profiling by printing hit counts for each timed
instruction where name specifies the data set to analyze from the
input-file. Multiple -p options print counts as the sums for all
designated data sets. Omitting name profiles all data sets. The -n
and -i options are ignored. Do not use the -p option with the -1
option.

-ttext Specify text as the output title (enclose multi-word titles in
quotes, for example, liThe First Sequence ll

). Leading and trailing
blanks are ignored. Only one -t option can be given, and it will
supersede any ti tIe instruction in the input-file.

An Example of an Input-file

This section shows two examples of input-files, which you create before running H
atime. The input-file contains assembler and atime instructions, and with
command line options, it determines how atime works. Be sure to debug the
assembler instruction sequence in the input-file.

A Rationale for Using atime

The two instruction sequences below do the same thing (locate the most
significant bit in the %dO data register on a 68000 processor).

atime H-7

Sequence One.

movq &31,%d1
L1: btst %d1,%dO

dbne %d1,L1

Sequence Two.

movq &31,%d1
cmp.l %dO,&OxFFFF
bhi.b L1
movq &15,%d1

L1: btst %d1,%dO
dbne %d1,L1

The question is: "Which code sequence finds the hit in the least amount of
time?" To get an answer, run atime and compare the returned information.

A Complete Input File

The following input-file named bit_find helps you examine code that finds the
most significant hit. The example shows the four sections of an input-file. To
help you differentiate instructions:

• A => precedes lines containing atime instructions .

• No => precedes lines having assembler instructions.

You could, for example, run atime in performance analysis mode (the default)
and send the output to /usr/stats/test-1 with:

atime bit_find /usr/stats/test-1

The four sections in the input-file, bit_find, look like this:

-----atime initialization section-----

=> title
=> comment
=> comment

=> dataname
=> dataset
=> dataset

H-8 atime

Example 1
The algorithm finds the most significant bit set
in an 8-bit number (original no. not destroyed)

bit7,
bit6,

$number
Ox80
Ox40

=> dataset bit5, Ox20
=> dataset bit4, Oxl0
=> dataset bit3, Ox08
=> dataset bit2, Ox04
=> dataset bitl, Ox02
=> dataset bitO, OxOl
=> dataset zero, OxOO
=> iterate 5000000
=> assert "assertfile"
=> output "logfile"

-----code initialization section-----

=> stack even
mov.l &$number,Y.dO

=> code even

-----timed section-----

=> time
mov.l Y.dO,-(y'sp)
beq.b L2
movq &31,Y.dl

Ll:
btst Y.dl,Y.dO
dbne Y.dl,Ll
bra.b L3

L2:
movq &-l,Y.dl

L3:
mov.l (Y.sp)+,Y.dO

-----verify section----- H

=> verify
=> assert.l original_value,Y.dO
=> assert.l bit_number,Y.dl

atime H-9

A Second Example of an Input-file

Here is another input-file called max_integers (the:::} points to atime
instructions).

-----atime initialization section-----

:::} title Find the maximum of three integers
:::} comment Developed by T. R. Crew
:::} comment June 9, 1987
:::} nolist
:::} dataname $argl, $arg2, $arg3
:::} dataset maxl(70) , 10, 4, 2
:::} dataset max2(35) , 5, 11, ° :::} dataset max3(20), 8, 13, 21
:::} iterate 500000
:::} assert "assertfile"
:::} output "logfile"
:::} ldopt -1m -lc

-----code initialization section-----

stack even
mov.l &$argl, y'dO
mov.l &$arg2,Y.dl
mov.l &$arg3,Y.d2
code even

-----timed section-----

:::} time
cm.p .1 y'dO,y'dl
bge.b Ll
exg y'dO,y'dl

Ll: cm.p .1 Y.dO,Y.d2
bge.b L2
exg y'dO,y'd2

L2:

-----verify section-----

:::} verify

H-10 atime

assert.l max,%dO

The I nput File
To use atime, you must create an input-file, which is specified in the atime
command line. The input-file contains assembly code source instructions and
special atime instructions, which look like assembler instructions. Together,
these instructions let you obtain the timing data you need. The input-file has
four sections, which are described next.

Section One: atime Initialization

Purpose: Set up the at ime environment

Location: First line of file to first line of assembly code or atime time,
code, or stack instruction.

Requirements: The following atime instructions can appear only in this
section (the number in parentheses shows the maximum
number of times an instruction can appear):

• assert file (1), comment, dataname (1), dataset, include,
iterate (1), ldopt (1), nolist (1), output (1), title (1).

• dataname (if used) must precede dataset instructions.

Section Two: Code Initialization

Purpose:

Location:

Requirements:

Set up environment for code to be timed

Follows the atime initialization section and continues up to
the time instruction.

Note the following:

• Can contain any valid MC680xO assembler instruction.

• Can contain code even/odd, stack even/odd, or include
instructions.

atime H-11

H

• Can contain instructions using dataname names; each
possible replacement for name must yield a valid MC680xO
instruction .

• You cannot make assumptions about the initial contents of
registers. However, the stack pointer does point to a valid
stack which can be used by code sequences. Be careful not
to destroy data above this initial stack pointer. Registers
(including stack and frame pointers) need not be saved and
restored by the code sequence.

Section Three: Timed

Purpose: Time code sequence

Location: The time instruction up to the verify instruction, or to the
end of the file.

Requirements: Any valid MC680xO assembler instruction or include.

Section Four: Verify

Purpose: Verify results

Location: From verify instruction to the end of the file.

Requirements: Any valid MC680xO instruction or include and/or:

assert. {blwll}

Input-file Requirements

• No branching among sections. Enter each section by falling into it from the
end of the previous section. No checking occurs to report errors to the user.
Trying to do this is undefined.

• Can use any valid MC680xO instruction where appropriate.

• Cannot use m4 macros or multiple instructions per line.

• Assembly code can reference external variables/routines if you provide for
resolving them during linking.

H-12 atime

The atime Instructions
The input-file contains two types of instructions: standard assembler
instructions (the code you want to test for speed, code to do initialization, and
code to aid in verification of results); and atime instructions (instructions that
dictate how atime does its work).

Restrictions on atime Instructions

• Each instruction must be on a separate line.

• An instruction cannot be labeled.

• Comments cannot follow on the same line.

• If an instruction has a corresponding command line option, the option takes
precedence.

A Quick Look at the Instructions

Table 1 lists the instructions; each instruction is described in detail following
the table.

atime H-13

H

Table H-1. The atime Instructions

htstruction Function/Purpose

assert. {blwll} name,location Verify a datum

assert file Specifies a file used for assertion data

code odd Changes code to odd or even word alignment.
code even

conunent text Writes comments to the output

dataname name, ... , name Defines names of data entries in dataset
instructions

dataset Defines one data set

include "file" Includes text from file

iterate count Specifies minimum number of timing iterations

Idopt options Specifies link editor options

nolist Turns off listing input-file contents to
output-file

output file Specifies an output-file

stack odd Adjusts stack for odd or even word alignment
stack even

time Designates section of code to be timed

title text Specifies text used as the title for output

verity Designates section of code used for algorithm
verification

H-14 atime

assert

The syntax is:

assert. n } name, location

Use assert to verify a datum, which enables consistency checking to verify
that you get identical results when you compare two or more code sequences
for performance.

assert in Performance Analysis/Execution Profiling Modes

Executing an assert instruction during performance analysis or execution
profiling modes searches for name in an assertion file. The size and value
associated with the name is compared with that of the location in the assert
instruction. A mismatch gives an error. You also get an error when name is
missing from the assertion file; or when an assertion file is not specified with
either the assert file instruction or the -a command line option.

assert in Assertion Listing Mode

Executing assert in assertion listing mode prints the name and asserted value.
If an assertion file is specified either with the assert file instruction or the -a
command line option, the name is searched for there (you get an error if name
is missing). The value in the file is printed when name exists and there is a size
or value mismatch between it and the given location.

Additional Information about assert

• name identifies an asserted datum across atime executions.

o For name, use an alphabetic character followed by 0 or more alphanumeric
or underscore characters.

o For location, use any data addressing mode such as XdO or 4 (Y.a4 ,Y.d2 • w)

• The non-optional b, w, and 1 suffixes to assert indicate a size of byte, word,
and long (respectively). Do not use the b suffix with the address register
direct mode.

• Asserted values are treated as 2's complement signed integers.

atime H-15

H

• assert does not affect registers, stack, or condition codes.

• The size of this instruction in number of code bytes is not specified.

• An assert instruction must appear in the text segment and within the verify
section of code. A given assert can be executed only once in a particular
execution of a code sequence (ignores other attempts).

Example:

assert.1 range,Y.d2
assert.w slip,-2(Y.a6)
tst.1 12 (Y.a6)
smi Y.dO
assert.b sign,Y.dO

assert file

Syntax is:

assert file

Lets you specify a file used for assertion data.

• Can appear only once in the atime initialization section of the input-file.

• For file, use an absolute or relative pathname.

• Having the -a option in the command line supersedes assert in the
input-file.

• You can use the -1 option to create an assertion file.

Example:

assert lIassertdatall

code oddleven

The syntax is:

{
Odd} code
even

H·16 atime

Changes the code to odd or even word alignment.

• Must appear in the text segment in the code initialization section.

• Cannot be executed in the timed section, but can be executed just before
entering that section.

• Does not affect registers, stack, or condition codes.

• The actual size of these instructions in number of bytes is unspecified.

Example:

code even

comment

Syntax is:

comment text

Lets you write any number of comments to the output.

• Must appear in the atime initialization section.

Example:

comment H. I. Que developed the code sequence
comment using a new algorithm.

dataname

Syntax is:

dataname name, name, ... ,name

Defines the names of data entries in dataset instructions.

• The first name corresponds to first datum in all dataset instructions, second
name to second datum, and so on.

• Can have only one dataname instruction; it must be in the atime
initialization section and precede all dataset instructions.

• Number of names in a dataname instruction must equal the number of data
entries in dataset instructions.

atime H-17

H

• Names begin with $ followed by one or more alphanumeric or underscore
characters.

• White space is ignored in the dataname list to allow specification of data sets
in tabular form; whitespace cannot appear in a name.

Example:

dataname $time, $speed, $mass, $part
dataset bicyc1e(100) , Of120.0, Of32.4, Of55.2, 100
dataset train(37) , Of24.14, Of114.8, Ofl.5E4, 16
dataset boat, Of71.6, Of37.7, Of2500.0, -6

dataset

Syntax is:

dataset name[(count)] , datum, datum, ... ,datum

Lets you define one data set. The input-file must have at least one dataset
instruction when you include a dataname instruction (see dataname).

• name identifies the data set. It permits specifying a data set with the -p
option for execution profiling or with the -1 option for listing assertions.

• An optional count (greater than or equal to 1 and in parentheses) can follow
name to specify the relative number of uses of the data set during timing
(e.g. if one data set is 100 and another is 37, then, for each 100 executions
of the first data set, the second set is executed 37 times). This lets you
specify the probability of a data set being executed in a real environment.
An omitted count defaults to 1.

• The sum of the counts in all dataset instructions (declared or defaulted)
must have an integral multiple greater than or equal to the number of timing
iterations and less than or equal to 232 - 1.

• You must give at least one datum

• The number of data items must be the same for all dataset instructions and
must match the number of names in the dataname instruction.

• Data items must not contain commas because they are treated as strings.

H-18 atime

• Having a name from a dataname instruction appear in an assembly
instruction replaces the name with the corresponding string from the
dataset instruction currently considered.

• Whitespace between items in a dataset list is ignored to provide for
specifying data sets in a tabular format.

Example:

dataname $time, $speed, $mass, $part
dataset bicycle(100) , Of120.0, Of32.4, Of55.2, 100
dataset train(37) , Of24.14, Ofl14.8, Ofl.SE4, 16
dataset boat, Of71.6, Of37.7, Of2500.0, -6

include

Syntax is:

include "file"

Includes text from file as follows:

• The file name can be an absolute or relative pathname.

• The include llfile" instruction can appear anywhere in an input-file, but not
in an include-file.

Example:

include II srcdata"

iterate

Syntax is:

iterate count

Specify the minimum number of timing iterations. (See count in dataset
above for range.)

• With data sets, the value used for count is equal to or greater than the value
given here because the number of iterations must be an integral multiple of
the sum of the counts in all dataset instructions.

atime H-19

H

• You get an error if the calculated iteration count falls outside the range;
atime terminates.

• Only one iterate instruction can be used and it must appear in the atime
initialization section.

• The -i option supersedes an iterate instruction.

• The default (not specified) timing iteration value is 1000000.

Example:

iterate 3000000

Idopt

Syntax is:

Idopt options

Specifies link editor options. An Idopt instruction passes its options to the
link editor. Only one instruction can be used and it must appear in the atime
initialization section.

Example:

Idopt ext_func.o -1m

nolist

Syntax is:

nolist

Turns off listing the input-file contents to the output-file.

• Only one instruction can be used and it must appear in the atime
initialization section.

• Listing is turned off for the whole file and for any indude-file(s).

• A no1ist instruction is ignored when you use the -p or -1 options.

Example:

H·20 atime

no1ist

output

Syntax is:

output file

Specifies an output-file where file can be an absolute or relative pathname.

• Output is appended to this file.

• Only one output instruction can be used and it must appear in the atime
ini tializa tion section.

• An output instruction is ignored when you use the -p or -1 options.

Example:

output "/usr/stats/structmove"

stack oddleven

The syntax is:

stack {Odd }
even

Adjusts the stack for odd or even word alignment by checking the current
alignment and subtracting 2 (if necessary) from the stack pointer.

• Use only in the code initialization section.

• Because the stack pointer can change, memory locations referenced as offsets
from the stack pointer can have their offsets changed.

• These instructions do not affect condition codes or any registers other than
the stack pointer.

• The size of these instructions in terms of number of code bytes is not
specified.

Example:

stack odd

atime H-21

H

time

Syntax is:

time

Designates a section of code to be timed .

• Timing of code begins with the line following the time instruction and
continues up to a verify instruction or to the end of the file .

• There can be only one timed section and it must be wholly within the
program's text segment.

Example:

mov.l
time
mov.l
swap
add.l
mov.1
verify
movq
and.l

title

Syntax is:

title text

&$value,Y.dO

Y.dO,Y.d1
Y.dO
Y.d1,Y.dO
Y.dO, CY.aO)

&1, Y.dO
CY.aO),Y.dO

Specifies text used as a title for output .

• Only one title instruction can be used and it must appear in the atime
initialization section .

• A -t option supersedes a title instruction.

Example:

title ALGORITHM 1 - values saved on stack

H-22 alime

verify

Syntax is:

verify

Designates a section of code used for algorithm verification .

• The verify section begins with the line following the verify instruction and
continues to the end of the file .

• This section normally contains one or more assert instructions.

Example:

mov.l
time
mov.l
swap
add.l
mov.l
verify
assert.l

&$value,YedO

YedO,Yedl
YedO
Yedl,YedO
YedO, CYeaO)

result,Y.dO

Performance Analysis Mode
This default mode lets you analyze the performance of your assembly code.

To analyze performance, an assembly code sequence is conceptually executed
many times in a loop. The total time for execution (minus overhead) divided
by the number of iterations gives an average execution time, which is reported
to you. For sequences of code that do the same thing, the sequence having the
lowest average has the greatest speed.

atime H-23

H

Using Command Line Options

• Valid options include: -a, -i, -n, and -to

• Do not use -p or -1 because they cause at ime to do execution profiling or
assertion listing, respectively.

• Use an option only once in any order before the input-file name.

Getting and Reading Output (the analysis)

You get output as follows:

• appends to the output-file if you specified one in the command line.

• appends to the file in an output instruction if you specified one in the
input-file.

• goes to standard out if you:

o did not specify anything.

o used - (minus) for the output-file in the command line.

An Example

The following example with annotations shows the order and appearance of the
output.

Find the Maximum of Three Integers
Developed by T. R. Crew
June 9, 1987
name: robert
machine: system1
date: Tue Jun 9 16:33:04 1987

size: 12 bytes
instructions: 6

iterations: 50000
avg. time: 780.408 nsec

H·24 atime

Separator line between sequences
Title if given by -t or title
Comment in

comment instructions
Login name
Computer hostname
Date (day, month, date, time,
year)
Size of timed section in bytes
Number of executable instructions
in timed section
Number of actual iterations
average execution time

(Note: The entire contents of
the input-file and any
include-file(s) appears here.)

The input-file (including text from
include-files) when -n and nolist
are not given.

Showing the Average Time

The average time is presented according to the following format:

0.0 sec

ddd.ddd nsec

ddd.ddd usee

ddd.ddd msec

, dd.ddd sec

dd min dd.ddd sec

dddd hr dd min dd.ddd sec

for less than 1 nsec

for 1 nsec to 999.999 nsec

for 1 psec to 999.999 J1sec

for 1 msec to 999.999 msec

for 1 sec to 59.999 sec

for 1 min to 59 min, 59.999 sec

for 1 hour or greater

Execution Profiling Mode
The execution profiling mode of atime gives you a profile by executing a code
sequence, tallying how many times each instruction is executed. Here is the
overall scheme:

• Given a list of data sets for doing execution profiling, the number of times
a particular data set is executed in the process of tallying instruction hits
equals the count associated with its particular dataset instruction (not
specifying count defaults it to 1; and if there are no data sets, the code
sequence executes once).

• The mode tallies those instructions recognized as executable by the MC680xO
assembler. It excludes other instructions such as data initialization (e.g.
byte), symbol definition (e.g. set), and alignment (e.g. lalign).

• The mode aids in defining data sets. In setting up code for timing, you will
usually specify at least one data set to execute a particular set of paths in

atime H-25

H

the code. Having the execution printing mode on for that data set verifies
that the set of paths is what is executed.

• After defining data sets, atime can determine if all code will be executed by
running execution profiling for all data sets collectively. When you notice
certain instructions not getting hit, you can add more data sets to cover
those cases.

Using Command Line Options

• You must have at least one -p option to use the mode.

• Other options include -a, -i, -n, and -t; but -i and -n have no effect. Use
at most one of each of the "other" options in any order before the input-file
name. Duplicate usage of a particular option prints a warning message and
ignores all but the first usage.

• Using -1 causes an error and terminates execution.

Getting and Reading Output (the profile)

You get output as follows:

• appends to the output-file if specified in the command line.

• goes to standard out if you did not specify anything or you used - for the
output-file.

• ignores an output instruction in the input-file.

An Example

The following example shows how execution profiling mode prints information.

Find the Maximum of Three Integers
Developed by T. R. Crew
June 9, 1987
name: robert
machine: system1
date: Tue Jun 9 16:33:04 1987

H·26 atime

Separator line between sequences
Title if given by -t or title
Comment in

comment instructions
Login name
Computer hostname
Date (day, month, date, time,
year)

The remaining output has dataname and dataset lines as they appeared in
the input-file and profile information in two fields: number of executions and
executed assembler instructions.

$argl, $arg2, $arg3
maxl(70) , 10, 4, 2
max2(35) , 5, 11, ° max3(20) , 8, 13, 21

125 cmp.1 Y,dO,Y,dl
125 bge.b Ll
55 exg Y,dO,Y,dl

125 Ll: cmp.1 Y,dO,Y,d2
125 bge.b L2
20 exg Y.dO,Y.d2

L2:

Examining Assertion Listing Mode
The assertion listing mode of atime lets you determine that results are
identical for every code sequence variation.

• Upon executing a code sequence for a specified data set, each assert
instruction prints its asserted value. If an assertion file is specified, the value
is checked against its corresponding value in the file; and on a mismatch, the
value in the assertion file is also printed. Not having a value in the assertion
file prints an error message.

• Besides printing code sequence results, output of an assertion listing can be
put into a file and used as the assertion file in subsequent runs of atime.

Using Command Line Options

• You must specify at least one -1 option.

• Other valid options include: -a, -i, -n, and -t, but -i and -n have no effect.
Use at most one each of valid "other" options. Any order is accepted; the
options must appear before the input-file. Having more than one of any
particular option generates a message and atime ignores the extras.

atime H-27

H

• Using -p generates an error and terminates execution.

Getting and Using Output

You get output as follows:

• The information in the first six lines is the same as that shown for other
modes.

• The assertion listing information begins with dataset: followed by the name
of the data set (each data set requires a name).

• Then, you see each datum in the data set as its name followed by its value.

• On executing a code sequence, each asserted value is printed as its name
followed by its value.

• If an assertion file is specified and it has a different corresponding value, that
value is also printed.

• You get MISSING when a value is missing from the assertion file.

• Asserted values have a size suffix.

An Example

The following example shows how assertion listing mode prints information.

Find the Maximum of Three Integers
Developed by T. R. Crew
June 9, 1987
name: robert
machine: system1
date: Tue Jun 9 16:33:04 1987

Separator line between sequences
Title if given by -t or title
Comment in

comment instructions
Login name
Computer hostname
Date (day, month, date, time,
year)

The remaining output shows the assertion information according to the above
description on getting output.

dataset: max1
$arg1 10
$arg2 4

H-28 atime

$arg3 2
max 10.1

dataset: max2
$argl 5
$arg2 11
$arg3 0
max 11.1

dataset: max3
$argl 8
$arg2 13
$arg3 21
max 21.1

Recovering from Errors
The atime utility provides self-explanatory error messages. In addition, you
can get error messages from the assembler or link editor. When assembly fails,
an intermediate, temporary file is retained with the error message indicating
its name. The file is important because it contains comments that help you
correlate assembly errors with errors in the input-file.

Tracking Errors

Recall that bit_find, the input-file for finding the most significant bit,
contained the line:

btst Y.d1,Y.dO

Suppose, for example, the line had a typing mistake and read:

btst Y.a1,Y.dO

Running atime on this file would return an error message similar to:

as error: lI/usr/tmp/aaaa22982 11 line 37: syntax error
(opcode/operand mismatch)

ERROR: cannot assemble file: lI/usr/tmp/aaaa22982 11

Looking at lines 36 and 37 in /usr/tmp/aaaa22982, you would see:

atime H-29

H

"bit_find", line 25
btst Yeal,YedO

This information tells you the error is in line 25 in the input-file called
bit_find. Knowing this, you can locate the error in the original input-file and
make necessary corrections (Le. change Yeal to Yedl).

Remember to remove the temporary file when you finish using it.

Data Set Errors

Suppose you made a typing error for data set bit5 by typing:

dataset bitS, Ox2X

which will create the erroneous instruction:

mov.l tOx2X,YedO

You would get an error similar to:

as error: "/usr/tmp/aaaa22997" line 116: syntax error
(opcode/operand mismatch)

as error: "/usr/tmp/aaaa22997" line 116: syntax error
ERROR: cannot assemble file: "/usr/tmp/aaaa22997"

The code in /usr/tmp/aaaa22997 around line 116 could look like:

___ Zcode2:

mov.w
mov.l
addq.w
mov.w
mov.l
mov.w
mov.l
mov.w
rtr

"bit_find", line 18, dataset: bitS
mov.l t$number,YedO

Yecc, __ Zcodecc
(Yesp)+, __ Zcodesp
t4,Yesp
__ Zcodecc,YedO
tOx2X,YedO
Yecc, __ Zcodecc
__ Zcodesp,-(Yesp)
__ Zcodecc,-(Yesp)

Backing up from line 116 and looking at the comments, you see:

• The file is bit_find.

H·30 atime

• The error occurred on line 18, which is:

mov.l &$number,YedO

• The offending data set is called bitS.

Assert Instruction Errors

Suppose you made an error in one of the assert instructions:

assert.l original_value,Yed9

Running atime would return:

as error: "/usr/tmp/aaaa23012" line 58:
invalid register symbol (1.d9)

as error: II/usr/tmp/aaaa23012 1
' line 58: syntax error

(opcode/operand mismatch)
as error: "/usr/tmp/aaaa23012" line 58: syntax error
ERROR: cannot assemble file: "/usr/tmp/aaaa23012"

Lines 57 and 58 in /usr/tmp/aaaa23012 look like:

mov.w
mov.l

Yecc, __ Z
Yed9, __ ZEA

"bit_find ll
, line 33

assert.l original_value,1.d9

Again, the comments indicate the file, offending line, and instruction in the
original file.

Some Notes About Error Recovery Procedures

Looking back at the three examples of error recovery, you see a similar pattern:

• Examine the error messages, looking for clues.

• Look at the temporary file according to implied line numbers.

• Study the code and comments to find the error.

• Correct the error in the appropriate files.

Atime catches errors associated with setting up the analysis environment. With
assertions, it also detects differing results between code sequences. In addition,
certain types of errors are caught by the assembler or link editors. Beyond this,
there are particular runtime errors that cannot be tracked down effectively

atime H·31

H

except outside of using atime. Such errors include bad pointer dereferences
and executing infinite loops. In all cases, it is best to run atime only on code
sequences you have thoroughly tested beforehand.

H·32 atime

Index

Special characters
.,2-4

A

abs, 4-4, 6-12
absolute addressing modes, 7-4
absolute expressions, 4-1, 7-4
absolute integer constants, 4-4
absolute long addressing, 7-4
absolute offsets, 5-6
adb

+ (addition operator), G-2
advanced breakpoint usage, G-15-17
anomalies, G-30
& (bitwise AND operator), G-2
I (bitwise OR operator), G-2
! command, G-2
$ command, G-2
/ command, G-2
: command, G-2
; command, G-2
= command, G-2
? command, G-2
commands (requests), G-2
(CTRL).©, G-2
dot (.) location counter, G-2, G-3,

G-4, G-16
dote .) location counter, G-2
expressions, G-2
format letters, G-3
r. (integer division operator), G-2
internal arithmetic, G-2

invoking, G-l
maps, G-18-22
* (multiplication operator), G-2
operators, G-2
registers, G-22-24
(round up to the next multiple, G-2
- (subtraction operator), G-2
symbolic address, G-2
terminating adb commands, G-2
- (unary not), G-2
variables, G-22-24

addition, 4-2
addressing modes, 7-4
address mode syntax, 7-1
address register, 2-5
$ALIAS directive, C-8
align, 6-8
alignment pseudo-ops, 6-8
align pseudo-op, 6-9
-a listfile option, 1-9
allow_plsub, 6-10
allow_plsub pseudo-op, 4-7
-A option, 1-8
a.out, 1-8,6-12
archive libraries, 1-10
as

-a option, 1-9
-A option, 1-8
command options, 1-8
-d option, 1-9 Index·
introduction, 1-1
invoking from compilers, 1-11

Index-1

-1 option, 1-9
-L option, 1-9
-m option, 1-9
-0 option, 1-8
running, 1-7
source files, 1-8
syntax, 1-7

as (1) , 1-4
ASCII character in character constants,

2-8
asciz, 6-4
asciz pseudo-op, 2-10, 6-4
assembler listing options, 9-1
Assembler operation, 1-11
assembly language expressions, 4-1
assembly language interfaces to high-level

languages, C-1
assembly language program sections,

3-1
assembly language syntax, 2-1
assembly listing, 1-8
assembly source file, D-3
assert instruction of atime, H-15, H-16
associativity rules, 4-3
as syntax, 2-1
a_stamp, 1-10, 6-12
astrn, E-1
atime

assertion listing mode , H -27
assertion listing mode output, H-28
error recovery, H-29
execution profiling mode, H-25
execution profiling mode output, H-26
features, H-5
input-file, H-11
input-file code initialization, H-ll
input-file example, H-7
input-file initialization, H-l1
input-file timed section, H-12
input-file verify section, H-12
instructions, H-13

Index-2

introduction, H-1
options, H-6
output, H-24
overview, H-3
performance analysis mode, H-23
performance analysis mode output,

H-24
prerequisites, H-2
rationale for use, H-7
restrictions on atime instructions,

H-13
syntax, H-6
table of instructions, H-13

atime examples
input-file, H-7
output from assertion listing mode,

H-28
output from execution profiling mode,

H-26
output from performance analysis

mode, H-24
atime instructions

assert, H-15, H-16
code even, H-16
code odd, H-16
comment, H-17
dataname, H-17
dataset, H-18
include, H-19
iterate, H-19
Idopt, H-20
nolist, H-20
output, H-21
stack even, H-21
stack odd, H-21
time, H-22
title, H-22
verify, H-23

atime modes
assertion listing, H-27
execution profiling, H-25

execution profiling, H-5
output from assertion listing mode,

H-28
output from execution profiling mode,

H-26
output from performance analysis

mode, H-24
performance analysis, H-23
performance analysis, H-5

atime output
assertion listing mode, H-27, H-28
execution profiling mode, H-25, H-26
performance analysis mode, H-24

atrans, E-1

B

backslash, 2-8, 2-9, 2-10
backspace, 2-9
binary operators, 4-2
bit shift right, bit shift left, 4-2
bitwise AND, 4-2
bitwise exclusive-OR, 4-2
bitwise OR, 4-2
branch offsets, 5-2
breakpoints

advanced usage in adb, G-15-17
effect on dot, G-16
setting in adb, G-9-15

bss segment, 3-1
byte, 6-4
byte pseudo-op, 2-10, 6-4

c
C, C-2, C-8
cache address register, 2-6
cache control register, 2-6
call-by-reference, C-8, C-13, C-14
call-by-value, C-8, C-13, C-14, C-15
calling sequence, C-4
calling sequence conventions, C-4
carriage return, 2-9

case sensitivity, 2-4
CBD support pseudo-ops, 6-14
cc compiler, 1-11
C compiler, 1-11
C compilers, C-4
ccp, 2-3
C functions, C-8
C functions returning 64-bit double

values, C-10
character constants, 2-8
C language, C-1
C_NEAR, 6-11
C_NEG_INF, 6-11
code even instruction of atime, H-16
code odd instruction of atime, H-16
comm, 6-7
comment instruction of atime, H-17
comments, 2-2,2-3
comm pseudo-op, C-1
comparison instructions, 1-6
compatibility issues, A-I
compiler-generated local symbols, 1-9
condition code register, 2-5
conformant arrays, C-17
constants, 2-8, 4-2
copyvalue mechanism, C-14
copyvalue parameters, C-15
core file, G-1, G-6
count 1. s, D-1
C_POS_INF, 6-11
crtO.o, A-3
C source file, D-2
C structure-valued functions, C-I1
C_TOZERO, 6-11
(CTRLl-©, G-2
cvtnum, 6-11
cvtnum(3C) routine, 2-11

D

dabs, 4-4
data initialization pseudo-ops, 6-4

Index-3

Index

dataname instruction of atime, H-17
data register, 2-5
data segment, 3-1
dataset instruction of atime, H-18
debugging assembly language programs,

1-9
debugging C programs, G-5-9
demand-Ioadable executables, debugging,

G-19
destination function code register, 2-6
determining expression type, 4-4
diagnostics, B-1
displacement, 1-9
displaying information, G-3-5
division, 4-2
dntt, 6-14
dnt_TYPE, 6-14
-d option, 1-9
dot (.), 3-2
dot identifier, 2-4
double, 4-8
double floating-point expressions, 4-8
double pseudo-op, 4-8, 6-4
double pseudo-ops, 6-11
double quote, 2-9
dumps, formatted, G-24-27
dynamically loaded libraries, 1-10

E

EA,8-2
effective address, 8-2
end_plsub, 6-10
error messages, B-1
error recovery with atime, H-29
evaluating expressions, 4-5
even, 6-8
examples

atime input-file, H-I0
atime input-file code initialization,

H-8
atime input-file initialization, H-8

Index-4

atime input-file timed section, H-8
atime input-file verify section, H-8
executing atime, H-8

executable file formats, G-18
executable programs, 1-7
expression

absolute, 4-1
external, 4-1
relocatable, 4-1

expression evaluation, 4-5
expression rules, 4-2
expressions, 4-1
expression types, 4-1, 4-4
ext, 4-4
extended, 4-8
extend pseudo-op, 4-8, 6-4
extend pseudo-ops, 6-11
external expressions, 4-1, 4-2
externally defined symbols, C-l

F

f77 compiler, 1-11
fabs, 4-4
file names, assembly language source,

1-8
filler bytes, 3-3
float, 6-4
floating-piont condition code

designations, 8-17
floating-point accelerator registers, 2-7
floating-point constants, 2-10, 4-8
floating-point control register, 2-7
floating-point data register, 2-7
floating-point directives, 6-1
floating-point expressions, 4-8
floating-point format, IEEE, 2-11
floating-point instruction address

register, 2-7
floating-point pseudo-ops, 6-11
floating-point status register, 2-7
float pseudo-op, 4-8, 6-4

float pseudo-ops, 6-11
forcing small displacements (-d), 7-8
format, executable file, G-18
format letters in adb, G-3
formatted dumps, G-24-27
form feed, 2-9
Fortran, C-8
FORTRAN, C-1
FORTRAN CHARACTER functions,

C-12
FORTRAN CHARACTER parameters,

C-12
FORTRAN compiler, 1-11, C-2
Fortran compilers, C-4
FORTRAN COMPLEX*16 functions,

C-13
FORTRAN COMPLEX*8 functions,

C-13
FORTRAN functions, C-8
FORTRAN functions returning 64-bit

double values, C-10
FORTRAN subroutines, C-11
FPA base register, 6-11
FPA macros, 8-29
fpareg, 6-11
fpid, 6-11
fpmode, 6-11
fprintf, D-1
frame pointer address register, 2-5
frame pointers, C-2
function result registers, C-3

G

global, 6-7
global pseudo-op, C-1
global symbols, 1-9

H
hexadecimal dump, 1-8
high-level language interfaces, C-1
horizontal tab, 2-9

HP 98248 Floating-Point Accelerator
Manual, 1-4

HP 98248 floating-point registers, 2-5
HP 98248 registers, 2-7

identifier, 2-4
identifiers, 4-2
IEEE floating-point format, 2-11
immediate operand, 8-2, 8-3
immediate operand syntax, 7-3
implicit alignment, 3-3
include instruction of atime, H-19
INF (INFinity), 2-11
initialized data, 3-1, 6-1
input-file

atime code initialization, H-11
atime initialization, H-11
atime requirements, H-12
atime timed section, H-12
atime verify section, H-12

instruction mnemonic, 2-4
instructions, 3-1
instruction sets, 8-1
instructions for atime, H-13
integer constants, 2-8
interfacing to C, D-1
intermediate variables, C-14
internal pseudo-op, 6-14
interrupt stack pointer, 2-6
introduction to atime, H-l
iterate instruction of atime, H-19

L

label reference, 8-2
labels, 2-2, 3-3, 4-1
label values, 1-11
lalign, 6-8, 6-9

. lalign pseudo-op, 5-6
language routines, C-1
lcomm pseudo-op, 6-4

Index-5

Index

1d, 1-7
1dopt instruction of atime, H-20
libraries

archive, 1-10
dynamically loaded, 1-10
shared, 1-10, 6-14

link, G-30
linker, 1-7, 7-4
linker symbol table (LST), 1-9
linking, C-1
listfile, 1-9
listfile option, 9-1
listing, generating to standard output

, 1-8
listing, saving to a file, 1-9
local symbols, 1-9
local symbols, user-defined, 1-9
location counter, 3-2
location counters, 3-3
location counter update, 3-3
long, 6-4
long offsets, 5-2
long pseudo-op, 3-3, 6-4
-1 option, 1-9
-L option, 1-9

M

m4 macro preprocessor, 1-9
macro preprocessor, m4, 1-9
magic number, 1-10
maps, adb, G-18-22
master stack pointer, 2-6
M C68000 registers, 2-5
MC68010 addressing compatibility, 1-9
MC68010 processor, A-2
MC68010 registers, 2-5, 2-6
MC68020/30/40 addressing mode

optimization, 7-6
MC68020/30/40 processor, A-2
MC68020/30 registers, 2-6

Index-6

MC68020 32-Bit Microprocessor User's
Manual, 1-4

MC68020 registers, 2-5
MC68030 32-Bit Microprocessor User's

Manual, 1-4
MC68030 registers, 2-5
MC68040 32-Bit Microprocessor User's

Manual, 1-4
MC68040 registers, 2-5
MC680xO instruction sets, 8-1
MC68881/2 instruction sets, 8-17
MC68881/2 processor, A-2
MC68881 Floating-Point Coprocessor

User's Manual, 1-4
MC68881 registers, 2-5, 2-7
MC68882 registers, 2-7
modulo, 4-2
-m option to as, 1-9
multiplication, 4-2

N

NAN (Not A Number), 2-11
negation, 4-2
newline (line feed), 2-9
nolist instruction of atime, H-20
nonterminating lines, backslash, 2-10
NULL character, 2-10

o
object code, 3-1
object file, naming the output, 1-8
offset, 8-3
-0 option, 1-8
Operand addressing modes, 1-11
operand size, 5-1
operators, 4-2
options for atime, H-6
order of operands, 1-6
output instruction of atime, H-21
output object file, 1-8
overriding precedence, 4-4

p

packed, 4-8
packed pseudo-op, 4-8, 6-4
packed pseudo-ops, 6-1l
padding, 3-3
parameter-passing rules, C-14
parentheses, 4-4
Pascal, C-l, C-2
Pascal compilers, C-4
Pascal conformant arrays, C-17
Pascal functions return values, C-15
Pascal Language System (PLS), E-l
Pascal result area, C-17
Pascal user-defined functions, C-13
Pascal "var string" parameters, C-18
passing large value parameters, C-14
passing parameters, rules for, C-14
pass one, 1-1l, 4-7, 5-7
Pass-One absolute, 1-11
pass-one absolute expression, 4-7
Pass two, 1-11
patching, G-27-30
PC-relative addressing mode, 7-4
performance analysis mode of atime,

H-23
PIC, 1-10
pointers, C-2
position-independent code (PIC), 1-10
precautions, 1-6
precedence override, 4-4
precedence rules, 4-3
predefined assembler names, 2-4
preliminary code, 1-11
prerequisites for running atime, H-2
program counter, 2-5
pseudo-op

lalign, 5-6
pseudo-op mnemonic, 2-4
pseudo-ops, 6-1

abs, 6-12
align, 6-8

R

allow_p1sub, 4-7, 6-10
asciz, 2-10, 6-4
byte, 2-10, 6-4
comm, 6-7
dntt, 6-14
dnt_TYPE, 6-14
double, 2-10, 4-8, 6-4
end_p1sub, 6-10
even, 6-8
extend, 2-10, 4-8, 6-4
float, 2-10,4-8, 6-4
fpareg, 6-11
fpid, 6-11
fpmode, 6-11
global, 6-7
lalign, 6-8
lcomm, 6-4
long, 3-3, 6-4
packed, 2-10, 4-8, 6-4
set, 6-7
short, 6-4
sltnormal, 6-14
sltspecial, 6-14
space, 6-4
vt, 6-14

recovering from atime errors, H-29
register conventions, C-2
register identifier, 2-5
registers, adb, G-22-24
register suppression, 2-6
register variables, C-3
reglist, 8-3
reI, 4-4
relocatable expressions, 4-1
relocatable object code, 1-7
Relocatable object file, 1-11
relocatable object files, 1-10
relocatable value, 4-1
RELOC_MAGIC, 1-10

Index-7

Index

restrictions on atime instructions, H-13
restrictions on span-dependent

optimization option, 5-6
result area, C-17
rules for associativity, 4-3
rules for expressions, 4-2
rules for precedence, 4-3
run-time check, A-3
run-time stack pointer, C-2
run-time stack use, C-2

s
+s compile line option, 1-10
scratch registers, C-2
segments, 3-1

bss, 3-1
data, 3-1
text, 3-1

segment selection pseudo-ops, 6-1, 6-2
semantic error, B-1
set, 6-7
setting breakpoints in adb, G-9-15
. s files, 1-8 .
shared executables, debugging, G-19
shared libraries, 1-10
shared library pseudo-ops, 6-14
shared library version date, 6-14
shlib_version pseudo-op, 6-14
short, 6-4
short displacement, 1-9
short pseudo-op, 6-4
SIGILL interrrupt, A-3
signal

interrupt, G-17
quit, G-17

signal SIGILL, A-3
simplified instructions, 1-6
single-line diagnostic message, B-1
single quote, 2-9
size of operands, 5-1
sltnormal, 6-14

Index-8

sltspecial, 6-14
small displacements, 7-8
source file, 1-8
source function code register, 2-6
source translators, E-l
space pseudo-op, 6-4
span-dependent directives, 6-1
span-dependent optimization, 1-10, 4-5,

4-7, 5-1, 5-2, 5-6, 6-10
span-dependent optimization option

restrictions, 5-6
special characters, 2-8, 2-10

backslash, 2-9
backspace, 2-9
carriage return, 2-9
double quote, 2-9
form feed, 2-9
horizontal tab, 2-9
newline (line feed), 2-9
single quote, 2-9
vertical tab, 2-9

special reserved symbols, 2-4
specific forms, 1-7
stack even instruction of atime, H-21
stack odd instruction of atime, H-21
stack pointer, 2-5
stack pointers, C-2
standard error output (stderr), B-1
statements, 2-2, 2-3
static link, C-16
static links, C-14
status register, 2-5
stdin, 1-8
stdout, 1-8
string constants, 2-10
structures, keeping together in memory,

6-14
subtract instructions, 1-6
subtraction, 4-2
subtraction instructions, 1-6
suppressing address registers, 2-6

suppressing program counters, 2-6
suppressing registers, 2-6
suppressing warning messages, 1-9
symbol definition pseudo-ops, 6-7
symbolic address in adb, G-2
symbolic offsets, 5-6
symbol subtractions, 5-7, 6-10
symbol table, 2-4
syntactic error, B-1
syntax, assembly language, 2-1

. syntax for atime, H-6

T

temporary registers, C-3
text segment, 3-1
text segments, 5-1
time instruction of atime, H-22
title instruction of atime, H-22
translators, E-1
type rules for expressions, 4-4

u
unary operators, 4-2
unary plus, 4-2
undefined external, 4-2
undefined external addresses, 7-4
undefined symbols, 1-9
uninitialized data, 3-1

updating the location counter, 3-3
user-defined identifiers, 2-4
user-defined local symbols; 1-9
user stack pointer, 2-5

V

variables, adb, G-22-24
"var" parameters, C-14
var string parameters, C-18
vector base register, 2-6
verify instruction of atime, H-23
Version pseudo-op override, 1-10
version pseudo-ops, 6-12
version stamp, shared libraries, 6-14
vertical tab, 2-9
vt,6-14

w
warning messages, suppressing, 1-9
width, 8-3

x
xdb(1),6-14

Z

zero register, 2-6
+z or +Z compile line option, 1-10,6-14

Index-9

Index

1vIanual Part No.
B1864-90014

FliO'l HEWLETT®
~~PACKARD

Copyright @1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B1864-90014

81864-90014

