
HP-UX Portability Guide

HP 9000
Computers

HP-UX Portability Guide

HP 9000 Computers

FA HEWLETT
a!J:. PACKARD

HP Part No. 82355·90025
Printed in USA 8/92

Second Edition
E0892

The information contained in this document is subject to change without
notice.

Hewlett~Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability or
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for direct, indirect, special, incidental or consequential
damages in connection with the furnishing or use of this material.

Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in paragraph (c)(1)(ii) of the
Rights in Technical Data and Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

All rights reserved.

Copyright © 1992 Hewlett-Packard Company.

Trademarks. The following registered trademarks appear in this manual:

Tektronix is a trademark of the Tektronix Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories Inc. in the
USA and other countries.

VAX and VMS are registered trademarks of Digital Equipment Corporation.

X Window System is a trademark of Massachusetts Institute of Technology.

Copyright © 1980, 1984, 1986 UNIX System Laboratories, Inc.
Copyright © 1990 Motorola, Inc. All Rights Reserved.
Copyright © 1979, 1980, 1983, 1985-1990 The Regents of the Univ. of
. California.
This software and documentation is based in part on materials licensed from

The Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Printing History

New editions are complete revisions of the manual. Update packages may be
issued between editions.

The software code printed alongside the date indicates the version level of the
software product at the time the manual was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections
may be done without accompanying product changes. Therefore, do not expect
a one-to-one correspondence between product updates and manual updates.

First Edition
Second Edition

January 1991
August 1992

This edition replaces the HP- UX Portability Guide, B1864-90006, Edition
1. That edition was written to reflect changes to languages as of the HP-UX
8.0 languages release. This edition reflects changes made for the HP- UX 9.0
release.

iv

Preface

Manual Contents

This manual is organized into the following chapters and appendices:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

An Introdu.ction to Portability
This chapter introduces you to the subject matter of this
manual.

Writing Portable Programs
Provides general guidelines for writing portable programs.
Read this if you want to understand potential porting pitfalls
and how using industry standards can enhance portability.

Porting between Series 300/400 and 700/800
Because the Series 300/400 and 700/800 architectures are
different, they cannot be completely compatible. This chapter
describes the differences between Series 300/400 and 700/800
implementations that might cause problems when porting
code between systems-for example, floating-point hardware
differen ces.

Porting from BSD4.3 to HP- UX
Describes libc, libm, libmp, and libU77 routines that are
supported in BSD4.3 that mayor may not be supported in
HP-UX.

Porting C Programs
Describes general considerations for writing portable HP C
programs, and shows how to port between the following:

• Series 300/400 and 700/800
• traditional C and ANSI C
• HP C and Domain/C
• HP C and VMS C

It also describes how to call routines written in languages other
than C.

v

Chapter 6

Chapter 7

Porting FORTRAN Programs
Describes general considerations for writing portable HP
FORTRAN programs, and how to port between the following
systems:

• Series 300/400 and 700/800
• HP-UX FORTRAN and VMS FORTRAN

It also describes how to call routines written in languages other
than FORTRAN.

Porting Pascal Programs
Describes general considerations for writing portable HP Pascal
programs, and how to port between the following systems:

• Series 300/400 and 700/800
• HP-UX Pascal and the HP Pascal Workstation

Also describes how to call routines written in languages other
than Pascal.

Additional Documentation

The following manuals are referenced in this manual:

• HP- UX Reference (all Series) (B2355-90033)
• Procedure Calling Conventions Reference Manual (Series 700/800)

(09740-90015)
• PA-RISC 1.1 Architecture and Instruction Set Reference Manual (Series

700/800) (09740-90039)
• Precision Architecture and Instruction Set Reference Manual (Series 700/800)

(09740-90014)
• Assembly Language Reference Manual (Series 700/800) (92432-90001)
• How HP- UX Works: Concepts for the System Administrator (all Series)

(B2355-90029)
• HP-UX System Administration Tasks (Series 700/800) (B3108-90005)
• HP-UX Assembler Reference and Supporting Documents (Series 300/400)

(B1864-90014)
• Shells: User's Guide (all Series) (B2355-90046)
• Programming on HP- UX (all Series) (B2355-90026)
• C Programmer's Guide (Series 300/400) (B1864-90008)

vi

• HP C Programmer's Guide (Series 700/800) (92434-90002)
• HP C/HP- UX Reference Manual (Series 700/800) (92453-90024)
• HP-UX Floating-Point Guide (Series 700/800) (B2355-90024)
• HP Pascal/HP-UX Programmer's Guide (Series 700/800) (92431-90006)
• HP Pascal Reference (Series 300/400) (B2373-90000)
• Pascal \Vorkstation documentation set:

o Pascal Workstation System "Volumes I f3 II (98615-90023)
o Pascal Procedure Library (98615-90032)
o Pascal Graphics Techniques (98615-90037)
o Pascal User's Guide (98615-90042)

• FORTRAN/9000 Programmer's Reference (all Series) (B2408-90010)
• FORTRAIV/9000 Programmer's Guide (all Series) (B2408-90009)

vii

Conventions

Typeface Conventions Used throughout Manual

If You See This . . . It Represents ...

typewriter font Computer literal text-for example, messages displayed by the
computer, names of files and directories, keywords and
'identifiers in programming languages.

underlined text Text that you type in examples. For instance, in the example
below, you would type the underlined text (the Is command) to
see the files in the current directory:

bold text

italic text

viii

$ Is
bar foo

Newly introduced terms in the text. For example, "a library is
a collection of often-used routines that can be linked with
object files to create executable programs."

Depending on the context, italic text can represent any of the
following:

• Emphasis-as in "do not press this button."

• Book titles-as in "refer to HP- UX Portability Guide."

• Pages in the HP-UX Reference-for example, "see ce(l)"
means to refer to the "cc(l)" page in section 1 of the HP- UX
Reference.

• Variable text that you must type in place of the italics-as in
"type cc filename." In this case, you would type a valid file
name in place of filename.

Contents

1. An Introduction to Portability
What is Portability?
What This Manual Covers . .
What This Manual Does Not Cover

2. Writing Portable Programs
A Philosophy of Portability
Common Causes of Portability Problems

Non-Standard Language Extensions ..
Unstructured Programming
Compile Line Options and Compiler Directives .
Assembly Language Code
Absolute Addressing
Language Semantics. . .
Floating-Point Fuzziness .
Data File Incompatibility and Input/Output
Data Alignment Differences

Isolating System-Dependent Code
Industry Standards

UNIX Standards
HP- UX and Multiple Standards. .
Language Standards. . ..

Standards for C.
Standards for FORTRAN
Standards for Pascal
Standards for C++

1-1
1-2
1-3

2-2
2-2
2-2
2-3
2-4
2-4
2-4
2 .. 4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9

Contents-1

3. Porting between Series 300/400 and 700/800
System Architecture Differences 3-2

Byte Ordering, Word Size, and Alignment 3-3
Program Address Space 3-3
Memory Organization Differences . . 3-5
Code and Data Size Limitations 3-6
Execution Stack and Parameter Lists 3-6

Identifying the System at Run Time. . 3-7
Determining the Processor at Run Time on Series 300/400 . 3-9
Differences in Object File Space Allocation and Format 3-9
Optimization Differences 3-10
Language Differences 3-10
System Call and Library Differences 3-11

System Calls 3-11
Subroutine Libraries. 3-12

Floating-Point Hardware. 3-14
Series 300/400 Floating-Point Hardware 3-14

Identifying Your Series 300/400 Floating-Point Configuration
at Run Time 3-16

Series 300/400 Compile Line Options 3-17
Recommendations. 3-17

Series 700/800 Floating-Point Hardware 3-18

4. Porting from BSD4.3 to HP-UX
libc Entry Points . 4-2
libm Entry Points . 4-4
libmp Entry Points 4-5
lib U77 Entry Points 4-6
Header Files 4- 7
Applications . . . 4-7

5. Porting C Programs
General Portability Considerations 5-2

Data Type Sizes and Alignments 5-2
Data Type Alignment Pragmas . 5-4
Dereferencing Pointers to Unaligned Data 5-5
Accessing Unaligned Data 5-6
Checking for Alignment Problems with lint 5-8

Contents-2

Ensuring Alignment without Pragmas
Casting Pointer Types
Type Incompatibilities and typedef .
Condi tional Compilation
Isolating System-Dependent Code with #include Files
Parameter Lists. . . .
The char Data Type .
Register Storage Class
Identifiers
Predefined Symbols
Shift Operators . .
The sizeof Operator
Bi t-Fields
Floating-Point Exceptions
Integer Overflow
Overflow During Conversion from Floating Point to Integral

Type
Structure Assignment . . .
Structure-Valued Functions
Dereferencing Null Pointers
Expression Evaluation
Variable Initialization . . .
Conversions between unsigned char or unsigned short and int .
Temporary Files ($TMPDIR) .
Compile Line Options
Input/Output

Checking for Standards Compliance
Porting between K&R C and ANSI C

Compile Line Options
How Name Spaces Work for ANSI C and Other Standards

HP Header File and Library Implementation of Name Space
Silent Changes for ANSI C

Porting between HP C and Domain/C
Porting between HP C and VMS C

Core Language Features
Preprocessor Features .
Compiler Environment.

Calling Other Languages .

5-9
5-10
5-11
5-12
5-13
5-13
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-17
5-18

5-18
5-18
5-18
5-19
5-19
5-20
5-20
5-21
5-21
5-24
5-25
5-26
5-26
5-26
5-27
5-29
5-33
5-35
5-35
5-39
5-39
5-41

Contents-3

Calling FO RTRAN 5-43
Calling Pascal 5-46

6. Porting FORTRAN Programs
General Portability Considerations 6-2

Data Type Sizes and Alignment 6-2
Accessing Unaligned Data 6-4
Symbolic Names 6-6
Lowercase Letters . . 6-7
Error Conditions . . 6-7
Character Constants 6-8
Holleriths 6-8
Array Dimension Limits 6-8
Logicals 6-8
Recursion 6-9
Data File Compatibility 6-10
Parameter Passing 6-14
Common Region Names 6-17
Vector Instruction Set Subroutines 6-17
Compile Line Options 6-18
Compiler Directives 6-20

Directives Only on Series 300/400 6-20
Directives Only on Series 700/800 6-21
OPTIMIZE 6-21
SAVE_LOCALS 6-21

Temporary Files ($TMPDIR). . 6-21
lintfor: Extended Syntax Checker 6-21
ratfor Support 6-22
ASA Carriage Control 6-22
Checking for Standards Compliance 6-23

Porting FORTRAN Programs between Series 300/400 and Series
700/800 6-24

Data Alignment 6-25
Implementation Differences . 6-27
Arithmetic Differences . . . 6-27
Language Feature Differences 6-28
Development Environment Differences 6-28

Porting between HP-UX FORTRAN and VMS FORTRAN 6-29

Contents-4

FORTRAN Applications without VMS System or Run-Time
Library Calls

FORTRAN Applications with VMS System or Run-Time
Library Calls

Graphics and Windows
Comparisons of Core Language Features

Character Sets
Control Statements
Data Types and Constant Syntaxes .
General Statement Syntax and Source Program Format
Input/Output Statements
Intrinsic Functions
Specification Statements
Subprograms . .
Symbolic Names
Type Coercions .
Miscellaneous. .

Data Representations in Memory
Large Amounts of Local Data
Equivalencing of Data

The Effects of Recursion on Local Variable Storage
Resolving System Name Conflicts .
File Names
Predefined and Preconnected Files

Calling Other Languages
Calling C
Calling Pascal

Logicals
Arrays. . .
Files
Parameter Passing Methods
Complex Numbers
Hollerith and Character .
Passing String Parameters

6-29

6-31
6-32
6-32
6-32
6-33
6-33
6-34
6-3.5
6-38
6-39
6-40
6-41
6-41
6-41
6-42
6-42
6-42
6-44
6-4.5
6-46
6-46
6-49
6-50
6-53
6-53
6-54
6-54
6-54
6-54
6-55
6-55

Contents-5

7. Porting Pascal Programs
General Portability Considerations 7-2

Data Type Sizes and Alignments 7-2
Control Constructs 7-4
Input/Output 7-4
Modules 7-4
Assignment to Procedure Variables 7-5
Maximum String Size 7-5
Packed Arrays and anyvar Parameters 7-5
Structured Constants . . . 7-5
longreal Precision 7-5
globalanyptr and localanyptr 7-5
anyvar Value Checking 7-5
Miscellaneous. 7-6
Compile Line Options . . . 7 -7
Inline Compiler Options (Directives) 7-9

Porting between HP-UX Pascal and the Pascal Workstation 7-14
Module Names . 7-14
Real Data Type 7 -15
Input . 7 -15
lastpos 7 -15
linepos 7 -15
Absolute Addressing 7-15
File Naming 7-16
$SEARCH$ File Names 7-16
Terminal I/O 7:16
Heap Management 7-17
The HP-UX IOCTL System Call 7-17
Library Differences 7-20

Pascal Workstation Libraries . 7-20
HP-UX Libraries 7-20

The DGL Graphics Library 7-21
STARBASE Library. . 7-21
SYSTEM Library 7-21

Compiler Option Differences . 7 -22
Assembly Language Conversion 7-23

Porting between HP Pascal and VMS Pascal 7-24
Lexical Elements 7-24

Contents-6

ASCII Character Set 7-24
Special Symbols 7-24
Reserved words 7-24
Directives 7-24
Identifiers 7-25
Predefined Identifiers: 7-25

Compilation Unit Structure 7-26
Declarations 7-26
Data Types . 7-26
Expressions 7-26
Operators 7-26
Statements . 7-26
User Declared Routines 7-27
Functions 7-27

Calling Other Languages. 7-28
Calling C 7-30
Calling FORTRAN 7-34

Booleans . 7-34
Arrays. 7-34
Files 7-34
Parameter Passing Methods 7,.34
Complex Numbers 7-35
Hollerith and Character 7-35

Index

Contents-7

Figures

3-1. Series 300/400 Process Address Space 3-3
3-2. Series 700/800 Process Address Space 3-4
3-3. Series 300/400 and 700/800 Memory Organization Differences 3-6
3-4. Identifying the System with the uname System Call 3-7
5-1. ANSI C Name Spaces5-27
5-2. Compatibility Mode Promotion Rules 5-30
5-3. ANSI Mode Promotion Rules 5-31

Contents-8

Tables

2-1. Standard-Enforcing Compile Line Options 2-3
3-1. Series 800 PA-RISC Architecture 3-2
3-2. Series 300/400 Floating-Point Hardware Configurations 3-15
3-3. Series 300/400 Floating-Point Hardware Flags 3-16
3-4. Series 300/400 Floating-Point Compile Line Options. 3-17
5-1. C Data Types 5-3
5-2. Differences in C Compile Line Options. 5-22
5-3. Selecting a Name Space in ANSI Mode 5-28
5-4. VMS C Floating-Point Types. . 5-37
5-5. HP-UX C Floating-Point Types. . 5-37
5-6. C Interfacing Compatibility 5-42
6-1. FORTRAN Data Types . . . 6-3
6-2. Representations of . TRUE. 6-8
6-3. Compiler Tests for . TRUE. . • 6-9
6-4. Differences in FORTRAN Compiler Command Lines 6-19
6-5. VMS Predefined File Names 6-48
6-6. FORTRAN Interfacing Compatibility 6-49
7 -1. HP Pascal Data Types. 7-3
7-2. Differences in Pascal Compiler Command Lines 7-8
7-3. Pascal Inter-Language Compatibility 7-29

Contents-g

1
An Introduction to Portability

What is Portability?
The process of porting a program consists of making any necessary
modifications to enable it to run on a different computer, or, in SOlne cases, on
the same computer with a different or updated operating system. As a result of
a hardware and/or operating system upgrade, existing applications must often
be moved to the new system.

If the programmer uses inherently portable code as he or she develops new
programs, considerable time and expense can be saved in the long run if
porting becomes required. If, on the other hand, the programmer, for whatever
reason, does not have the luxury of planning for or having portability already
built into programs, he or she may be faced with making a substantial
investment of time to convert the code after the fact.

Note The term "'porting" is sometimes used interchangeably with
"migrating" within computer documentation or common usage.
This manual will use the term "porting" exclusively since its
focus is on porting programs while "migrating" sometimes
suggests other user or systems activities as well.

An Introduction to Portability 1-1

1

1

What This Manual Covers
This manual presents guidelines for both writing inherently portable code and
for converting an existing program after the fact. Most of the information on
writing portable code is presented in Chapter 2, "Writing Portable Programs".
Other information on writing portable programs is presented in Chapters 5, 6,
and 7 under the heading "General Portability Considerations". The remainder
of the information in the manual is geared toward programmers who must
belatedly do porting tasks from one platform or operating system or operating
system version to another.

This manual deals primarily with porting programs written in C, FORTRAN,
and Pascal. Further, it is restricted to a discussion of porting issues between
any of the various HP 9000 implementations and between an HP 9000 system
and another vendor's system.

In particular, it provides useful information to programmers regarding each of
the following porting scenarios:

• porting programs between Series 300/400 and Series 700/800

• porting programs between HP-UX and BSD 4.3

• porting programs between HP-UX and VMS™

• porting programs between HP- UX and Domain/OS

• porting programs between HP- UX and the Pascal Workstation

This manual also describes how to call routines written in another languages
from within your HP- UX program-for example, how to call C routines from
FORTRAN.

1·2 An Introduction to Portability

What This Manual Does Not Cover
This manual is intended for programmers. As such, it does not cover general
differences between the particular operating systems discussed that might be of
interest to general users or system administrators, or that might be of value to
those considering an overall migration from one system to another. The focus
is on programming information, system calls, and library information only.

Because portability information on each of the following HP-UX languages is
included in existing documentation sets for each language, this manual does not
cover:

• Ada
• COBOL

It also does not cover porting issues that arise if you must rewrite your
program from one language to another-for example, converting a FORTRAN
program to a C program.

An Introduction to Portability 1-3

1

2
Writing Portable Programs

This chapter presents general guidelines for writing portable programs. It
first describes a philosophy of portability-that is, the predisposition a
programmer should have to write code that can be more easily ported between
different systems. Then it describes some specific common causes of portability
problems. Finally, it describes the UNIX standards and language standards
that HP adheres to, the use of which promotes portable code.

In sum, this chapter describes

• a philosophy of portability

• common portability problems

• isolating system-specific code

• the use of industry standards

Writing Portable Programs 2-1

2

2

A Philosophy of Portability
Your approach to portability should be straightforward: Avoid using language
or operating system features that are found only on a particular system; try
to use only standard language and operating system features. In general, use
programming techniques that minimize or avoid the use of system-dependent
features. Following this philosophy will make it easier to port programs
between different systems.

This does not mean that you should never use non-standard language features.
Some non-standard features may provide great increases in performance or
productivity. Nevertheless, before using a non-standard language feature, ask
whether the benefits of using the feature outweigh the potential disadvantages
if you must port the code to another system that does not support the feature.
It is not always an easy decision, and it must be weighed carefully.

Common Causes of Portability Problems
This section describes some of the common causes of portability problems.

Non-Standard Language Extensions

U sing industry standards is crucial to ensuring that your code is portable.
Code that uses only standard features is more easily ported to other systems
that support the same standard. The section "Industry Standards" at the end
of this chapter summarizes various industry standards that HP is committed to
following.

The HP-UX compilers have compile line options (command options) that
make the compilers flag the use of non-portable constructs in your programs.
Table 2-1 summarizes these options for each language. For details on these
options, see the appropriate page in the HP-UX Reference.

2-2 Writing Portable Programs

Table 2·1. Standard·Enforcing Compile Line Options

Language Option Description

C -As The parameter s can be the letter c or a. If it is c
(- Ac), the compiler enforces the C language as
defined by Kernighan and Ritchie's The C
Programming Language, First Edition, sometimes
referred to as K&R C. It also includes some
Berkeley Software Distribution (BSD) extensions.
If it is a (-Aa), the compiler enforces the ANSI
X3.l59-1989 (ANSI C) standard. If this option is
not specified, the compiler assumes -Ac option.
(See cc(1).) For further information, refer to
"Porting Between K&R C and ANSI C" in chapter
5.

FORTRAN -a Produces warning messages for any non-ANSI 77
features, but the program still compiles. (See
/77(1).)

-As Allows you to choose which non-standard features
cause the compiler to generate warning messages.
(See /77(1).)

Pascal -A Produces error messages for any non-ANSI Pascal
features. (See pc(1).)

Unstructured Programming

Structured programs are easier to understand. A well designed program that is
modular is inherently more portable.

To this end, HP- UX provides tools that can aid in finding unstructured
program constructs~for example, uninitialized variables or unreachable
code. For the C programming language, the lint program can be used; for
FORTRAN, the lintfor program is useful. Since these programs often
produce large quantities of warning messages to stderr, it is best to capture
their output by redirecting it to a file for later viewing.

Note also that these commands do not produce an object file~they only check
program structure.

Writing Portable Programs 2·3

2

2

Compile Line Options and Compiler Directives

Conlpile line options that flag the use of non-standard features, such as those
shown in Table 2-1, are clearly useful to programmers who want to write
portable code. However, some options and directives enable systenl-dependent
features and extensions that decrease the portability of code. Be sure to review
the use of options and directives when porting code between systems because it
is unlikely that the systems you port to will support all the same directives.

Assembly Language Code

Because assembly language code is based on the architecture of the machine on
which it runs, assembly language code is not usually highly portable between
systems. When the assembly language routines are ported to a system that
has a different architecture, the assembly language will almost certainly need
rewriting. And assembly language is one of the most difficult languages to
work in for most programmers. Fortunately, with the optinlization technologies
available on many compilers today, programming in assembly language is less
of a necessity than it used to be.

Absolute Addressing

Absolute addressing is the programming practice of using numeric constants
to refer to objects by their absolute virtual or physical memory addresses
as opposed to referring to symbolic addresses. Absolute addressing is
sometimes done to take advantage of knowledge about the location of various
objects in virtual memory. The problem is that such knowledge is highly
system-dependent, and, therefore, tends not to be portable. Note that absolute
addressing is not the same as incrementing or decrementing pointers.

Language Semantics

Because a programming language defines a program's meaning, differences in
semantics for a given language between different systems can affect portability.
Unless such semantics are completely identical, you may find that a program
written in that language will produce different results on the two systems.
Unfortunately, it is often difficult to know beforehand whether the semantics
of a compiler implementation for one language will be the same on another
system. To help you to be aware of potential differences, later chapters on

2·4 Writing Portable Programs

porting C, FO RTRAN, and Pascal sumlnarize some of the languages' features
that nlay have different semantics on other systems.

Floating-Point Fuzziness

Floating-point operations can complicate compatibility. Computer
floating-point values only closely approximate actual numbers, so when
comparing floating-point values, it is best to compare to a range of values
instead of a single value. This technique is known as a "fuzzy compare." For
example, in a fragment of Pascal code, you could replace

if (x = 1.2267) then
y:= y + 1;

with a more accommodating fragment of code such as:

if (abs(x - 1.2267) < err_margin) then
y:= y + 1;

for comparisons. The value of err _margin will be very small; however, it
will not be constant across all HP-UX implementations. For example, it will
differ among Series 300/400 systems, depending on whether the program was
compiled with the +ffpa or -0 option.

For more information about how floating-point operations can affect
compatibility, refer to the HP-UX Floating-Point Guide.

Data File Incompatibility and Input/Output

File manipulation and input/output operations have traditionally been two of
the most troublesome areas impacting portability. Most language standards are
intentionally vague in these areas to allow vendors to make the most effective
use of their architectures. Unfortunately, file manipulation and input/output
operations are also frequently critical to performance, so they are usually
manipulated in a system-dependent manner. The apparently conflicting
goals of portability and performance can be met by a careful design that
encapsulates interface routines.

Additionally, input/output operations should be performed in the same
language as the main program; for example, avoid having a main FORTRAN
program that calls C input/output routines. Methods exist to do input/output

Writing Portable Programs 2-5

2

2
from external routines, but they are not generic. In addition, difficult problems
can be encountered if input/output is performed from more than one language
at a time since each language has its own buffers.

Data Alignment Differences

Data alignment refers to the way in which a system or language aligns data
structures in virtual memory. For example, by default Series 300/400 C
aligns variables of type double on 4-byte boundaries, while Series 700/800 C
aligns them on 8-byte boundaries. This is done to realize greater efficiency in
accessing data based on a particular hardware architecture.

These differences in alignment can cause problems for code that makes
assumptions about the location of variables. It can also cause problems for
programs that write and read data structures to files: A file written by one
system may be read incorrectly by the same code on another system because
the variable alignment is different on the two systems.

Data type alignments for each language are summarized in the appropriate
language chapters later in this manual. In addition, HP-UX provides ways
to force a particular alignment on different systems; for example, to force
Series 700/800 C to align data the same way as Series 300/400, use the
#pragma HP _ALIGN HPUX_WORD directive. These directives are covered in later
language-specific chapters.

Isolating System-Dependent Code
It is not always possible to avoid using some non-standard features. It may be
that you can get better performance from using some non-standard features, or
may be able to accomplish some feat that isn't possible with standard features.
In such cases, it is best to "isolate" such system-dependent code in include files,
libraries, or conditional compilation blocks. Then, when you port the code
to another system it will be clear what code must be rewritten for the new
system.

2-6 Writing Portable Programs

Industry Standards
The use of industry standards for UNIX and languages is crucial to portability.

UNIX Standards

Hewlett-Packard Company adheres to UNIX standards in the following ways:

• HP-UX is based on UNIX System V.3. All HP-UX implementations pass
SVVS validation.

• HP-UX has added selected BSD4.2 and BSD4.3 extensions that have become
de facto industry standards.

• HP- UX itself is an internal corporate standard that has been designed to
maximize portability across the HP 9000 product family, regardless of
architecture. The HP- UX standard concerns itself with both software and
documentation.

• Hewlett-Packard is an active participant in the developing POSIX standard.
HP intends to makeHP-UX track this standard.

• Likewise, Hewlett-Packard is committed to following the X/OPEN standard.

HP-UX and Multiple Standards

Industry standards for UNIX overlap and at times even conflict. In order to
support portability of applications that conform to different standards, HP-UX
provides multiple interfaces to selected services and enables administrators to
configure certain aspects of the run-time environment.

• When routine names do not conflict, libe contains overlapping routines, such
as beopy from BSD and memepy/memmove from ANSI C, X/Open, and SYS
V.

• Compatibility libraries may be provided (for example, see bsdproc(2)).

• File systems can support either 14-character filenames or long filenames (see
convertfs(1M)).

• Administrators can control the run-time environment via environment
variables or setpri vgrp 0 .

Writing Portable Programs 2-7

2

2
In some cases routines are provided for portability, but not all routines have
equivalent performance.

Note The use of POSIX signals is strongly recommended for
maximum performance and portability.

Language Standards

Each language described in this manual is subject to industry standards.
Information on standards for C++ is also presented below.

Standards for C

All HP- UX systems support compilation in two modes: compatibility mode
and ANSI mode.

Compatibility mode which is the default supports the C syntax and semantics
of previous releases in order to provide full backward compatibility with C code
written prior to the Series 800 HP-UX 7.0 release and Series 300/400 7.40
release. Although Series 300/400 and 700/800 are not fully compatible, there is
a high degree of compatibility between the two implementations, as described
in Chapter 5.

Beginning with release 7.0 on Series 800, release 7.40 on Series 300/400, and
release 8.05 on Series 700, ANSI mode became available. This mode provides
a full implementation of ANSI X3.159-1989. The HP implementation of ANSI
C also conforms to FIPS 160 and ISO 9899:1990. Of all HP- UX languages, C
has the reputation as being the most portable, due to its high adherence to
standards.

Standards for FORTRAN

FORTRAN, being one of the oldest high level programming languages, has a
long history of standardization. The most widely accepted current standard is
ANSI X3.9-1978, commonly known as FORTRAN 77. All HP-UX FORTRAN
compilers fully comply with this standard and have been federally validated.
A common set of extensions is set forth in the U.S. Department of Defense
publication, MIL-STD-1753 Military Standard FORTRAN, DOD Supplement
to American National Standard X3.9-1978. These extensions have been fully

2·8 Writing Portable Programs

implemented. HP- UX FORTRAN on all implementations also confornls to
FIPS PUB 69-1.

Standards for Pascal

The most widely recognized standard for Pascal is ISO 7185-1983. ANSI
770X3.97-1983 is nearly identical to level 0 of this standard. HP Pascal is a
superset of ISO 7185-1983 level 0 and and a superset of level 1 with minor
exceptions. HP also has an internal corporate standard to which Series 300/400
and 700/800 implementations conform or are converging. Pascal on these
architectures conforms to ISO 7185-1983 level 0 at present.

Standards for C++

HP C++ is based on USL's implementation of cfront, the C++ to C
translator. HP C++ is, however, a true compiler, compiling C++ source
code directly to object code. HP C++ conforms to the definition of C++ as
described in the The Annotated C++ Reference Alanual, which is being used as
the base document by the ANSI C++ standards committee.

Writing Portable Programs 2-9

2

Porting between Series 300/400
and 700/800

3

Although Series 300/400 and Series 700/800 are highly compatible, some
differences are inevitable because of architectural differences. Specifically, Series
300/400 is Motorola-based and Series 700/800 is PA-RISC-based.

This chapter summarizes some of the differences between the implementations
which you should be aware of when porting code between them. Specifically,
this chapter discusses

• system architecture differences

• identifying the system at run thne

• determining the processor at run time (on Series 300/400)

• differences in object files and associated tools

• optimization differences

• language differences

• system call and library differences

• floating-point hardware

Porting between Series 300/400 3-1
and 700/800

3

System Architecture Differences

Series 300/400 computers are based on the Motorola 68000 (68K) series of
microprocessors and co-processors. Most Series 300/400~s running HP- UX

3 have either a 68020 processor with a 68881 floating-point co-processor, a 68030
processor with a 68882 floating-point co-processor, or a 68040 processor with
a built-in co-processor. (Refer to Table 3-2 later in this chapter for more
complete information.)

Series 700/800 computers are based on PA-RISC architecture. Series 700
computers are based on PA-RISC Version 1.1 which is an upward-compatible
evolution of PA-RISC Version 1.0. Some models of Series 800 computers are
based on PA-RISC 1.0 and some on PA-RISC 1.1. Table 3-1 shows which
Series 800 computers are PA-RISC 1.0 and which are PA-RISC 1.1. You can
use the command uname -m if you do not know the model number of your
system.

Table 3·1. Series 800 PA·RISC Architecture

PA-RISC 1.0 PA-RISC 1.1

808, 810,815, 825, 835, 840, 807,817, 827,837, 847, 857,
845, 850, 855, 860, 865, 870 867, 877

Code compiled on the PA-RISC 1.1 machines will not execute on the PA-RISC
1.0 Series 800 machines unless it was compiled with the +DA1. 0 compiler
option. It will execute, however, on other PA-RISC 1.1 machines.

If you do not specify the +DA compiler option, DA1.l is the default on the
Series 700; DA1. 0 is the default on the Series 800. For best performance, you
should specify +DA with the architecture or model number of the system where
you plan to execute the program.

The +DS compiler option performs instruction scheduling tuned for a particular
implementation of the PA-RISC architecture. If you do not specify this option,
the default instruction scheduling is for the system you are compiling on. To
improve performance on a particular model of the HP 9000, use +DS with that
model number. You should note that scheduling tuned for a particular model
will still execute on other HP 9000 systems, although possibily less efficiently.

3·2 Porting between Series 300/400
and 700/800

For more information on the +DA and +DS compiler options, see Chapters 5, 6,
and 7.

Motorola-based and PA-RISC-based architectures have completely different
instruction sets, so any assembly language routines will have to be converted by
hand. Such a port is beyond the scope of this document.

Byte Ordering, Word Size, and Alignment

Both the Motorola-based and PA-RISC architectures have 32-bit words with
the most significant byte of the word having the lowest address (used to access
that word). However, PA-RISC has stricter requirements on how multi-byte
data is aligned in memory. Data alignment is one of the biggest portability
issues and is discussed in the subsequent chapters on C, FORTRAN, and
Pascal.

Program Address Space

The layout of a process' logical address space is different for the two
architectures. For most programs, the differences are unimportant. However,
you should be aware of these differences if your programs do any of the
following:

• Use shared memory

• Do custom memory management

• Generate executable code

• Access architecture-dependent memory addresses

The Series 300/400 has a linear four gigabyte address space, shown in
Figure 3-1.

Text Data

i
Heap Shared Stack

(Code)

OxO

---tJ- Memory ~

Oxffffffff

Figure 3·1. Series 300/400 Process Address Space

Porting between Series 300/400 3·3
and 700/800

3

The layout of memory on the Series 700/800 is a little more complicated and
in order to keep this description brief, a few details have been glossed over.
The details are described in other documents, listed at the end of this section.
Figure 3-2 shows what memory looks like on the Series 700/800 if we look at it

3 as having a four gigabyte linear address space.

Text Data
;

Heap Stack Shared Library Shared
(Code) I -... -... Code Memory

I

• • • • OxO Ox40000000 1 Ox~ooo
Ox68000000

Oxcooooooo Oxffffffff

Note

Figure 3·2. Series 700/800 Process Address Space

You should not rely on the boundaries shown above as they
may be modified from release to release.

Here are some important implications of these address space differences:

• First, if your programs manipulate the most significant two or three bits of
pointers because you think you will never have an address that high, your
code will break on the Series 700/800 because data are allocated at addresses
above Ox40000000 .

• Use of shared memory is also slightly different. On the Series 700/800, you
must let the system decide where to attach shared memory by setting the
shmaddr parameter to 0 when calling shmat (see shmat(2)). Also, due to the
way the Series 700/800 addresses shared memory through space registers,
if you are accessing more than two shared memory segments, you may
experience performance degradation, particularly if accesses to the different
segments are interleaved.

3·4 Porting between Series 300/400
and 700/800

If you need more detailed information on these types of issues than the short
overview provided here, consult the following HP manuals:

• Precision Architecture and Instruction Reference fl,fanual (Version 1.0, Series
700/800).

• PA-RISC 1.1 Architecture and Instruction Reference Manual (Version 1.1,
Series 700/800).

• Procedure Calling Conventions Alanual (Series 700/800).

• Assembly Language Reference Manual (Series 700/800).

• How HP- UX Works: Concepts for the System Administrator (all Series).

• HP-UX Assembler Reference and Supporting Documents (Series 300/400).

Memory Organization Differences

On HP- UX computers, memory is accessed by byte address. The most
significant byte of a memory element is addressed first and has the lowest
numeric address. This value is used to access the entire memory element. For
example, a 32-bit integer is accessed by the most-significant byte address. This
memory addressing system is referred to as big-Endien.

The conventions of bit numbering differ on HP- UX implementations, as shown
in Figure 3-3. On Series 300/400, the most significant bit of a long word is bit
31; on the Series 700/800, the most significant bit is bit O.

Porting between Series 300/400 3-5
and 700/800

3

3

Series 300/400 Series 700/800

Address Address

000103 7 0 Least
4-- Significant ---... 000103 24 31

000102 15 8
Byte

000102 16 23

000101 23 16 000101 8 15

31 24 000100
Most

4-- Significant ---... 000100 0 7

Byte

\ T
, \

T
I

1 byte 1 byte
LG200213 _ 002

Figure 3·3. Series 300/400 and 700/800 Memory Organization Differences

Code and Data Size Limitations

On Series 300/400, the maximum address space is four gigabytes (4Gb). On
Series 700/800, the code is limited to 1Gb, data is limited to 1Gb, and shared
memory is limited to approximately 0.75Gb. For details, refer to How HP-UX
Works: Concepts for the System Administrator.

Execution Stack and Parameter Lists

The execution stacks on the two architectures are also different: the stack
on the Series 300/400 grows towards lower addresses; the stack on the Series
700/800 grows towards higher addresses. In addition, the compiler may choose
to pass some parameters through registers instead of on the stack.

Normally this information is not important because parameter-passing is
invisible to programs. Occasionally, though, programmers may try to take
advantage of this information to pass variable numbers of arguments to a
routine-for example, by manually stepping through the execution stack. Such
practice is highly non-portable.

If you need more information on the execution stack on the Series 700/800, you
should consult the Procedure Calling Conventions Manual; on Series 300/400,
consult HP- UX Assembler Reference and Supporting Documents.

3·6 Porting between Series 300/400
and 700/800

Identifying the System at Run Time
When writing progranls to run on multiple systems I it is sometimes necessary
to determine the system configuration at run time. The uname system call can
be used to determine machine type and other pertinent information. (Similarly, 3
it may be necessary to determine what floating-point hardware is available;
this is described later in the section "Floating-Point Hardware".) The program
shown in Figure 3-4 calls the uname systenl call to display hardware and
software information.

Note Run -time characteristics can also be determined by using the
sysconf system call.

#include <sys/utsname.h>
#include <stdio.h>

mainO
{

}

struct utsname un;

if (uname(&un) == -1) /* if -1, an error occurred */
{

fprintf (stderr, "uname failed\n");
exit(1);

}

/* no errors occurred,
printf("System name:
printf ("Node name:
printf("HP-UX Release:
printf("HP-UX Version:
printf("Machine:

.printf("ID Number:

so display the fields */
%s\n", un.sysname);
%s\n", un.nodename);
%s\n", un.release);
%s\n", un.version);
%s\n", un.machine);
%s\n", un. __ idnumber);

Figure 3·4. Identifying the System with the una me System Call

Porting between Series 300/400 3·7
and 700/800

:3

Shown below is the output from compiling and running this program on a
Series 300 Model 360 running HP-UX 9.0:

$ cc - Ac -0 myuname myuname. c
$ myuname
System name:
Node name:
HP-UX Release:
HP-UX Version:
Machine:
ID Number:

HP-UX
nodel
9.0

B

9000/360

Compile it.

Run it.

Shown below is the output from compiling and running this program on a
Series 800 Model 840 running HP-UX 9.0:

$ cc - Ac -0 myuname myuname. c Compile it.

$ myuname Run it.

System name:
Node name:
HP-UX Release:
HP-UX Version:
Machine:
ID Number:

HP-UX
node2
A.B9.00
B

9000/840
25427968

For details on the information returned by the uname system call, see
uname(2). Within shell scripts, the uname command accomplishes a similar
function (see uname(l)).

The uname function is a C function but can be called from other languages
as well. For details on calling C functions from FORTRAN or Pascal, see the
appropriate language chapter later in this manual.

You can also use the getcontext system call if you wish to get hardware and
system configuration information in string form. A getcontext command is
also available. For details, see getcontext(2) and getcontext(1).

3·8 Porting between Series 300/400
and 700/800

Determining the Processor at Run Time on Series 300/400

A Series 300/400 computer uses either the MC68020, MC68030, or MC68040
processor, depending on the model. In addition, some models support more
than one processor; for example, a Model 375 uses either the MC68030 or 3
MC68040. Because of this, it is not always possible to determine from the
uname system call what processor a computer is using. You should use sysconf
to tell them apart.

Differences in Object File Space Allocation and Format

On the Series 300/400, if a global data item is declared in two or more files,
the size allocated for that data item in the object file by the linker is the size
of the initialized data, even if the declared size is different elsewhere. Hence,
programs that declare global variables inconsistently will have unreliable
results. The Series 700/800 linker, on the other hand, adjusts the allocated
space to fit the largest declaration.

In addition, the Series 700/800 object file format is considerably different than
on the Series 300/400. The differences go beyond just the differences in the
binary machine instructions (see a.out(4) for details). As a result, there are
some differences in two commands that deal with object files shown below.
(You may want to check the HP- UX Reference for further details.)

• nm(l): The two implementations have completely distinct sets of options
and very different forms of output. If you have any scripts that expect run
output in the format of the Series 300/400 version, they will have to be
modified for the Series 700/800. Also, run on the 700/800 now supports -p to
get output similar to that on the Series 300/400 .

• ld(l): There are several differences in options.

Porting between Series 300/400 3-9
and 700/800

3

Optimization Differences
All HP-UX C and FORTRAN compilers perform the optimizations that are
most effective on the particular architecture of the system you are using.

The Series 300/400 C and FORTRAN compilers have an optional global
optimization pass to the compilation path. If -0 or +02 is specified on the
compile command line, the global optimization pass is enabled. On the C and
FORTRAN compilers, +03 enables the global optimizer and the procedure
integrator.

Series 700/800 C, FORTRAN and Pascal compilers also have global
optimization. -0 on Series 700/800 is roughly equivalent to -0 on Series
300/400 although specific optimization techniques may differ between the two
machines.

Optimization directives are also available in C and FORTRAN, and may
act differently on Series 300/400 versus 700/800. For details, refer to each
language's documentation set.

Language Differences

In general, there is a very high degree of compatibility between Series 300/400
and 700/800 languages. However, because of the differences in architecture and
the origins of the compilers on the two systems, there are differences that you
should be aware of when porting between systems. These differences for C,
FORTRAN, and Pascal are documented in later chapters of this Guide, one for
each language.

HP C++ is based on USL's cfront translator on both the Series 300/400 and
the Series 700/800.

3-10 Porting between Series 300/400
and 700/800

System Call and Library Differences
This section shows the differences between system calls and subroutine libraries
across Series 300/400 and 700/800 HP-UX implementations. If you need more
information, refer to the DEPENDENCIES section of the particular routine's 3
man page in the HP- UX Reference; system calls are documented in section 2 ;
subroutine library entry points are documented in section 3.

On Series 700/800 only, many of the system calls have separate entry
points suitable for calling from FORTRAN (described in the FORTRAN
documentation).

There are differences in the way shared libraries are implemented across
Series 300/400 and Series 700/800. Some of this information is available in
Programming on HP-UX.

System Calls

acct

exec

gettimeofday

ptrace

reboot

rtprio

select

shmctl

On Series 300/400, the system accounting routine ignores
locks placed on the process accounting file; also, if the
process accounting file reaches 5000 blocks, records for
processes terminating after that point are lost.

Series 700/800 supports shareable executable files and
demand-Ioadable executable output files, both created with
the -n linker option. U nshareable files (created with the - N
linker option) are not supported on Series 700/800.

Series 700/800 has a granularity of 1 microsecond. Series
300/400 has a granularity of 4 microseconds.

The functionality of ptrace is dependent on the hardware
and will probably not be portable.

Various dependencies exist.

Series 800 dependency exists.

Some dependencies in supported devices and file types.

Series 300/400 has differences in the handling of EACCES.

Porting between Series 300/400 3·11
and 700/800

3

shmop

signal

sigspace

sigstack

sigsuspend

Various dependencies exist. On Series 700/800, programs
cannot attach shared memory at a specific address.

The codes for illegal instruction (S1G1LL) and floating-point
exception (S1 GFPE) signals are different on Series 300/400
versus Series 700/800.

On Series 300/400, kernel overhead is taken out of reserved
space.

System dependencies exist as a result of differences in how
the stack grows on the two architectures.

Series 300/400 only.

Subroutine Libraries

blmode,blclose, blread,
blget, blset

cachectl

clock

crtO

cvtnum

dial,undial

end

gpio_get_status,
gpio_set_ctl

Series 800 only.

Series 300/400 only.

Clock resolution is 20 milliseconds on Series
300/400, 10 milliseconds on Series 700/800.

Various dependencies exist.

Series 300/400 only. (3) library calli

Use on the Series 300/400 causes an implicit call to
alarm(2).

On the Series 700/800, the linker defines a
_ text_start and _data_start symbol.

System dependencies exist. Not available on Series
700.

3·12 Porting between Series 300/400
and 700/800

hpib_abort, System dependencies exist.
hpib_bus_status,
hpib_eoi_ctl,
hpib_card_ppoll_resp,
hpib_io,hpib_pass_ctl,
hpib_rqst_srvce,
hpib_send_cmnd,
hpib_spoll,
hpib_status_wait,
hpib_wait_on_ppoll

hpib_address_ctl, Series 300/400/700 only.
hpib_atn_ctl,
hpib_parity_ctl

hppac Series 800 ,only.

_INITIALIZER Series 300/400 can have a default initializer;
a Series 700/800 initializer must be declared
explicitly.

io_burst, io_dma_ctl Series 300/400/700 only.

io_lock, io_unlock Series 300/400 only.

io_get_ term_reason, System dependencies exist.
i~_~n_interrupt,

i~_reset, io_speed_ctl,
io_timeout_ctl

is_hw_present Series 300 only.

shl_definesym Series 300/400 only.

shl_findsym On Series 300/400, symbol names begin with an
underscore (_); on Series 700/800, they do not.

shl_get On Series 300/400, the name of the main program
is not known; the filename a. out is used instead.
The format of the descriptor differs across
implementations.

Porting between Series 300/400 3-13
and 700/800

3

3

shl_getsymbols

shl_load

_toupper~ _tolower

The format of the shared library descriptor varies
slightly across implementations.

Series 300/400 only.

On Series 700/800, the address argument is
ignored. BIND_RESTRICTED and DYNAMIC_PATH
modifiers are not supported on Series 300/400.

Series 300/400 does not define the results for
non-ASCII arguments.

Floating-Point Hardware
This section describes different floating-point hardware configurations available
on Series 300/400 and Series 700/800.

Series 300/400 Floating-Point Hardware

Table 3-2 shows the various Series 300/400 hardware configurations with
floating-point math performance.

3-14 Porting between Series 300/400
and 700/800

Table 3-2.
Series 300/400 Floating-Point Hardware Configurations

Series Processor Floating-Point Floating-Point Card
Co-processor

318 68020 68881 None
319 68020 68881 None
320 68020 68881 None
330 68020 68881 Optional HP 98248A
332 68030 68882 None
340 68030 68882 None
345 68040 built-in None

or
68030 68882 None

350 68020 68881 Optional HP 98248A
360 68030 68882 Optional HP 98248B
370 68030 68882 Optional HP 98248B
375 68040 built-in None

or
68030 68882 None

425S 68040 built-in None

The 11otorola 68020 and 68030 processors differ in their speed and internal
architecture, but use the same instruction set. The Motorola 68040 processor
has an additional instruction, MOVE16, described in the manual HP- UX
Assembler Reference and Supporting Documents.

The Motorola 68881 and 68882 floating-point co-processors use a compatible
instruction set. The 68040 processor has a built-in math co-processor that
supports most of the primary 68881 or 68882 floating-point instruction set.
However, some 6888x instructions, such as SIN, are not implemented on the
68040 processor; instead, the 68040 traps such instructions to library calls
that emulate the instruction in software. Such "trapped" instructions can
potentially execute slowly. Therefore, to speed up execution, the compilers
do not emit these instructions but call the library routines directly, thus
eliminating the hardware "trap" that can slow down execution.

Porting between Series 300/400 3-15
and 700/800

3

3

Identifying Your Series 300/400 Floating-Point Configuration at Run Time

You can determine the floating-point hardware configuration of your Series
300/400 by accessing flags set automatically in /lib/crtO.o for C and Pascal,
and /lib/frtO. 0 for FORTRAN. Each flag is declared in C to be an external
short int (2 bytes). Table 3-3 summarizes these flags.

Table 3-3. Series 300/400 Floating-Point Hardware Flags

Flag Set To Means

flag_soft non-zero HP98635A not present

flag_6SSSi non-zero 68881 or 68882 present

flag_fpa non-zero HP98248A or HP98248B present

In /lib/libc. a, the following four functions are defined to interrogate these
flags:

is_680l0_present (this is an obsolete processor)
is_6888l_present (MC68881 and MC68882 are synonymous here)
is_98248A_present (98248A and 98248B are synonymous here)
is_98635A_present (this is an obsolete card)

These functions return a four byte integer (int) value. If the hardware is
present, the function returns a value of 1; otherwise, it returns o.

3-16 Porting between Series 300/400
and 700/800

Series 300/400 Compile Line Options

Table 3-4 lists compile line options that can be used to specify floating-point
hardware on Series 300/400.

Table 3-4. Series 300/400 Floating-Point Compile Line Options

Option Model Generation of Calls Considerations
for Floating-Point Math

default All 300/400s inline co-processor instructions

+M All 300/400s user-provided library calls if user-provided calls
present; else, libc. a and libm. a are usually slower

+ffpa 330 or 350 with HP98248A/B aborts if no
HP98248A; 360 or HP98248A/B
370 with HP98248B present

+bfpa 330 or 350 with HP98248A/B, if present; else, will run on any
HP98248A; 360 or default Series 300/400
370 with HP98248B except 310, which is

now obsoleted

Recommendations

The +bfpa option for the Series 300/400 C and FORTRAN compilers does
provide additional flexibility and performance, but it also tends to increase
the code size of statements involving floating-point arithmetic. The effect of
code expansion varies widely. You may want a trial compilation of your actual
program for the most accurate measure of code size.

It is often advantageous to compile only critical regions of your programs
with these options and to compile the remainder of the program without any
floating-point hardware support.

Porting between Series 300/400 3-17
and 700/800

3

3

Series 700/800 Floating-Point Hardware

The Series 700 has floating-point support built into the CPU and therefore it
does not require any external floating-point support. Additionally, some of the
Series 800 systems have optional floating-point hardware. However, regardless
of whether floating-point hardware is present on a given Series 800 system,
floating-point instructions can still be executed. If the floating-point hardware
is not present, floating-point instructions will actually be emulated by the
system software. As a result, all Series 800 systems can execute floating-point
instructions.

3·18 Porting between Series 300/400
and 700/800

4
Porting from 8504.3 to HP-UX

This chapter lists BSD4.3 library routines, header files, and applications that
are either not supported in HP-UX or implemented differently on HP-UX. 4

This chapter does not describe fixes for these routines. It merely lists them so
you will be aware of them when porting BSD4.3 applications to HP- UX.

Porting from 8S04.3 to HP-UX 4-1

4

libc Entry Points
The following BSD4.3 Iibe entry points are provided on HP-UX but only
in the library libBSD. A program can call these routines if it is linked with
libBSD (-IBSD).

killpg(2) getwd(3) sigvec(2)

The following BSD4.3 Iibe entry points are found in both the HP-UX Iibe
and libBSD:

getpgrp(2) setpgrp(2) signal(2)

To get the BSD4.3 implementation of these routines, the following ee command
line should be used:

$ ee bsdprog.e -IBSD

Or, link with libBSD, making sure that libBSD precedes the -Ie option on the
command line. For example:

$ Id /lib/ertO.o bsdprog.o -IBSD -Ie

4·2 Porting from BSD4.3 to HP·UX

The BSD4.3 libc entry points listed below are not provided in HP- UX. If your
application calls these routines, you must provide fixes. For instance, you could
write your own versions of the routines to accomplish the same action and link
with them. Or you could use ifdefs to isolate such code, and use alternative
standard methods to do the same thing.

adjtime(2) getpriority(2) re_comp(3) setruid(3)
alloca(3)1 getrusage(2) re_exec(3) setstate(3)
alphasort(3) getttyent(3) remque(3) setttyent(3)
byteorder(3N) getttynam(3) setbuffer(3S) siginterrupt (3)
closelog(3) initstate (3) setegid(3) srandom(3)
comp(3) insque(3) seteuid(3) ualarm(3)
endttyent(3) moncontrol(3) sethostid(2) usleep(3)
errlist(3) monstartup(3) setkey(3) utimes(2)
fiock(2) network(3N) setlinebuf(3S) valloc(3C)
Jtime(3C) ns(3N) setpriority(2) vhangup(2)
getdisk(3) ntohl(3N) setpwJile(3) vlimit(3C)
getdtablesize(2) ntohs(3N) setregid(2) vtimes(3C)
gethostid(2) psignal(3) setreuid(2)
getpagesize(2) random(3) setrgid(3)

1 Although alloca is provided in /lib/libPV. a, you should note that its use is largely discouraged,
especially where perlormance and/or memory utilization are critical. It is inherently non-portable
and most public domain implementations do not work when linked with optimized code. It
only reclaims space when it is called a second time, not when the calling routine returns. When
linking this function, you can use the following ce command to prevent picking up undesired
functions from libPV.a: ee [-IBSn] -Ie -IPV -Vl,-a,arehive. Or, do so by using this ld
command: ld [-IBSn] -Ie -IPV -a archive -Ie.

Porting from 8S04.3 to HP-UX 4-3

4

4

libm Entry Points
For HP-UX 9.0, the following BSD4.3 libm entry points are not supported on
the Series 300/400 or on the PA-RISe 1.0 versions of the math library on the
Series 700/800:

acosh(3M)
asinh(3M)
atanh(3M)
cabs(3M)

cbrt(3M)
copysign(3M)
drem(3M)
expmJ(3M)

finite(3M)
infnam(3M)
logJp(3M)
logb(3M)

rint(3M)
scalb(3M)

See the HP- UX Reference and the HP- UX Floating-Point Guide for more
information about these functions.

The PA-RISe 1.1 versions of the math library on the Series 700/800 support
all of these routines except expml (3M), infnam(3M), and loglp(3M). (The
PAl.1library is the default on the Series 700. The PAl.O library is the default
on the Series 800.)

Note PA-RISe 1.1 versions of the math library may not run on the
Series 800.

4-4 Porting from 8SD4.3 to HP-UX

libmp Entry Points
Listed below are entry points in the BSD4.3 library libmp, which provides
support for multi-precision math functions; they are not supported on HP-UX.
If your programs call these routines, you must provide fixes for them.

fmin(3M) m_out(3M) mout(3M) omin(3M)
fmout(3M) madd(3M) move(3M) omout(3M)
gcd(3M) mcmp(3M) msqrt(3M) pow(3M)
invert(3M) mdiv(3M) msub(3M) rpow(3M)
itom(3M) min(3M) mult(3M) sdiv(3M)
m_in(3M)

Porting from BSD4.3 to HP-UX 4-5

4

4

IibU77 Entry Points
libU77 is the FORTRAN BSD4.3 system call library. It is new on HP-UX with
the 9.0 release. It is available on all the HP 9000 implementations.

Listed below are the entry points for the library functions. These functions
provide an interface from /77 programs to the system. The +U77 /77 compiler
option causes it to recognize and load the functions. For more information, see
intro(3F).

access zerrno
alarm isatty
chdir itime
chmod kill
ctime link
dtime loc
etime lstat
falloc ltime
fdate malloc
fgetc perror
fork putc
fputc qsort
free rename
fseek signal
fstat sleep
ftell stat
gerror symlnk
getarg system
getc tdose
getcwd time
getenv topen
getgid tread
getlog trewin
getpid tskipf
getuid tstate
gmtime ttynam
hostnm twrite
iargc unlink
idate wait

4-6 Porting from 8S04.3 to HP-UX

Header Files
The following BSD4.3 header files are not provided in HP- UX:

lusr/include/mp.h
lusr/include/struct.h
lusr/include/lastlog.h
lusr/include/pcc.h
lusr/include/ttyent.h
lusr/include/vfont.h
lusr/include/frame.h

Applications
A concerted effort to port all BSD commands has not been made~ though
many-such as vi, csh, more, etc-are available. HP- UX does not include the
applications listed below, which may cause problems when porting to HP- UX.
There are additional missing applications not noted here.

• /etc/timed
• /usr/bin/talk
• letc/renice
• Ipr /lpd-though Ip provides BSD-style network spooling
• bibliography tools

Porting from 8S04.3 to HP-UX 4-7

4

5
Porting C Programs

HP- UX C is standard C. By default, the HP C compilers support the
Kernighan and Ritchie language definition (as described in The C Programming
Language, First Edition) as well as some BSD extensions. This standard
version is referred to as compatibility mode throughout this manual.

If the -Aa option is specified, the compilers use the ANSI C standard language
definition. Whenever practical, new code should be written to conform to
ANSI specifications since Series 300/400 and 700/800 compilers are ANSI
compliant and there is more extensive error checking in ANSI mode. ANSI C
code is also likely to be more portable across other vendors' systems.

Even though HP C is standard, there are some features, especially in
implementation-specific areas, where other vendors' C may vary from HP C.
This chapter describes general portability considerations when programming in
HP C. In addition, it describes portability considerations for specific versions
of C. It also describes how to call other languages from C. Specifically, this
chapter describes:

• general portability considerations when programming in HP C

• checking for standards compliance

• porting between Kernighan and Ritchie compliant C (referred to here as
K&R C) and ANSI C

• porting between HP C and Domain/C

• porting between HP C and VMS C

• calling other languages

Porting C Programs 5-1

5

5

General Portability Considerations
This section summarizes some of the general considerations to take into
account when writing portable HP C programs. Some of the features listed
here may be different on other implementations of C. Differences between
Series 300/400 versus 700/800 implementations are also noted in this section.

Data Type Sizes and Alignments

Table 5-1 shows the sizes and alignments of the C data types on the different
architectures. (On the 300/400, this applies to revision 5.15 and later.)

5·2 Porting C Programs

Table 5-1. C Data Types

Type Size Alignment Alignment
(in bytes) (300/400) (700/800)

char 1 byte byte

short 2 2-byte 2-byte

int 4 4-byte1 4-byte

long 4 4-byte1 4-byte

float 4 4-byte1 4-byte

double 8 4-byte1 8-byte

long double 16 4-byte1 8-byte
(ANSI mode
only)

pointer 4 4-byte1 4-byte

struct/union 4-byte1 1-, 2-, 4- or 8-byte,
depending on types of
members

enum 4 4-byte (2-byte in a 4-byte (1-, 2-, or 4-byte
struct, array, or union) if a char, short, or

int/long type specifier
is used during
declar ation)

1 Aligned on 2-byte botllldary in struct, array, or union.

On Series 300/400, a structure ends on a 2-byte boundary; on Series 700/800,
it ends on the same byte boundary as the start of the structure.

These default alignments can be overridden with data type alignment pragmas,
descri bed next.

Porting C Programs 5-3

5

Data Type Alignment Pragmas

Differences in data alignment can cause problems when porting code or data
between systems that have different alignment schemes. For example, if you
write a C program on Series 300/400 that writes records to a file, then read
the file using the same program on Series 700/800, it may not work properly
because the data may fall on different byte boundaries within the file due
to alignment differences. To help alleviate this problem, HP C provides the
HP _ALIGN pragma, which forces a particular alignment scheme, regardless of the
architecture on which it is used. There are two forms of the HP _ALIGN pragma:

#pragrna HP _ALIGN align_scheme [PUSH]

#pragrna HP _ALIGN POP

5 align_scheme is one of the following:

HPUX_WORD Use the Series 300/400 alignment scheme-the default
alignment used on Series 300/400 systems.

Use the Series 700/800 alignment scheme-the default
alignment used on Series 700/800 systems.

HPUX_NATURAL_S500 Use the Series 500 alignment scheme-the default

NATURAL

DOMAIN_NATURAL

NOPADDING

alignment used on Series 500 systems.

Use the natural alignment scheme-a mode created
specifically for providing a consistent alignment scheme
across all HP architectures.

Use Domain word alignment mode from the Apollo
Domain/C implementation.

Use the Domain natural alignment mode from the Apollo
Domain/C implementation.

Causes all struct and union members that are not
bit-fields to be packed as tightly as possible on a byte
boundary.

If the optional parameter PUSH is specified with align_scheme, the current
alignment scheme is saved (on an alignment scheme stack) and the specified
align_scheme becomes the new alignment scheme.

5·4 Porting C Programs

The second pragma (#pragma HP _ALIGN POP) restores the alignment scheme
that was saved at the last PUSH on the alignlnent scheme stack. If the
alignment scheme stack is empty, the default alignment mode is used.

Note U sing data type alignment pragmas can degrade performance.
For deta.ils on using these pragmas, see the HP C Programmer's
Guide for Series 300/400, or the HP C/HP- UX Reference
Manual for Series 700/800.

Dereferencing Pointers to Unaligned Data

Prior to 9.0, to allow your Series 700/800 program to read and write the same
binary files as your Series 300/400 program, HP _ALIGN pragmas could be used
before and after the declaration of the structures that are written to disk. This
could then be followed by compiling your program with the +u option. As a 5
result, the compiler generated half-word access for all pointer dereferences
which resulted in significant performance cost.

With 9.0, the compiler is now able to designate individual pointers to hold
the addresses of non-natively aligned data enabling better code generation for
properly aligned pointers. This is accomplished by using typedefs defined
within the scope of the alignment pragma. Here is an example:

#pragma HP_ALIGN HPUX_WORD

struct t1 { char a; int b; } foo;

#pragma HP_ALIGN POP

maine)
{

int i;
hp_aligned_int *p = &foo.b;

i = *p;
}

Porting C Programs 5·5

5

In the presence of the HP _ALIGN pragma, the typedef will have alignment
information carried with it.

As an alternative to using the above code, you can use the
allow_unaligned_data_accessO function, discussed below.

Accessing Unaligned Data

The Series 700/800 like all PA-RISC processors requires data to be accessed
from locations that are aligned on multiples of the data size. The C compiler
provides an option to access data from misaligned addresses using code
sequences that load and store data in smaller pieces, but this option will
increase code size and reduce performance. A bus error handling routine is also
available to handle misaligned accesses but can reduce performance severely if
used heavily.

Here are your specific alternatives for avoiding bus errors:

1. Change your code to eliminate misaligned data, if possible. This is the only
way to get maximum performance, but it may be difficult or impossible
to do. The more of this you can do, the less you'll need the next two
alternatives.

2. Use the +unumber compiler option available at 9.0 to allow 2-byte
alignment. However, the +unumber option, as noted above, creates big,
slow code compared to the default code generation which is able to load a
double precision number with one 8-byte load operation. Refer to the HP
CjHP- UX Reference Manual (Series 700/800) for more information.

3. Finally, you can use allow_unaligned_data_access() to avoid alignment
errors. allow_unaligned_data_access 0 sets up a signal handler for
the SIGBUS signal. When the SIGBUS signal occurs, the signal handler
extracts the unaligned data from memory byte by byte.

To implement, just add a call to allow_unaligned_data_access 0 within
your main program before the first access to unaligned data occurs. Then
link with -lhppa. Any alignment bus errors that occur are trapped and
emulated by a routine in the libhppa. a library in a manner that will be
transparent to you. The performance degradation will be significant, but if
it only occurs in a few places in your program it shouldn't be a big concern.

Whether you use alternative 2 or 3 above depends on your specific code.

5·6 Porting C Programs

The +unumber option costs significantly less per access than the handler~ but it
costs you on every access, whether your data is aligned or not, and it can make
your code quite a bit bigger. You should use it selectively if you can isolate the
routines in your program that may be exposed to misaligned pointers.

There is a performance degradation associated with 3 because each
unaligned access has to trap to a library routine. You can use the
unaligned_access_count variable to check the number of unaligned accesses
in your program. If the number is fairly large~ you should probably use 2. If
you only occasionally use a misaligned pointer, it is probably better just use
the allow_unaligned_data_access handler. There is a stiff penalty per bus
error, but it doesn~t cause your program to fail and it won't cost you anything
when you operate on aligned data.

The following is a an example of its use within a C program:

extern int unaligned_access_count;
1* This variable keeps a count

of unaligned accesses. *1

char arr [] ="abcdefgh";
char *cp, *cp2;
int i=99, j=88, k;
int *ip; 1* This line would normally result in a

bus error on Series 700 or 800 *1
mainO
{

}

allow_unaligned_data_access();
cp = (char *)&i;
cp2 = &arr[l];
for (k=O; k<4; k++)

cp2[k] = * (cp+k);
ip = (int *)&arr[l];
j = *ip;
printf(lY.d\n", j);
printf(lIunaligned_access_count is

Porting C Programs 5-7

5

To compile and link this program, enter

cc filename. c -lhppa

This enables you to link the program with allow_unaligned_data_access()
and the int unaligned_access_count that reside in /usr/lib/libhppa. a.

Note that there is a performance degradation associated with using this library
since each unaligned access has to trap to a library routine. You can use the
unaligned_access_count variable to check the number of unaligned accesses
in your program. If the number is fairly large, you should probably use the
compiler option.

Checking for Alignment Problems with lint

If invoked with the -s option, the lint command generates warnings for C
5 constructs that may cause portability and alignment problems between Series

300/400 and Series 700/800, and vice versa. Specifically, lint checks for these
cases:

• Internal padding of structures. lint checks for cases where a structure
member may be aligned on a boundary that is inappropriate according to the
most-restrictive alignment rules. For example, given the code

struct s1 { char c; long 1; };

1 int issues the warning:

warning: alignment of struct 's1' may not be portable

• Alignment of structures and simple types. For example, in the following
code, the nested struct would align on a 2-byte boundary on Series 300/400
and an 8-byte boundary on Series 700/800:

struct s3 { int i; struct { double d; } s; };

In this case, lint issues this warning about alignment:

warning: alignment of struct 's3' may not be portable

5·8 Porting C Programs

• End padding of structures. Structures are padded to the alignment of the
most-restrictive member. For example, the following code would pad to a
2-byte boundary on Series 300/400 and a 4-byte boundary for Series 700/800:

struct s2 { int i; short s; };

In this case, lint issues the warning:

warning:
trailing padding of struct/union 's2' may not be portable

Note that these are only potential alignment problems. They would cause
problems only when a program writes raw files which are read by another
system. This is why the capability is accesible only through a command line
option; it can be switched on and off.

lint does not check the layout of bit-fields.

Ensuring Alignment without Pragmas

Another solution to alignment differences between systems would be to define
structures in such a way that they are forced into the same layout on different
systems. To do this, use padding bytes-that is, dumlny variables that are
inserted solely for the purpose of forcing struct layout to be uniform across
across implementations. For example, suppose you need a structure with the
following definition:

struct S {
char cl;

};

int i;
char c2;
double d;

Porting C Programs 5-9

5

5

An alternate definition of this structure that uses filler bytes to ensure the
same layout on Series 300/400 and Series 700/800 would look like this:

struct S {

char cl; 1* byte 0 *1
char padl ,pad2 ,pad3; 1* bytes 1 through 3 *1
int i; 1* bytes 4 through 7 *1
char c2; 1* byte 8 *1
char pad9,padl0,padll, 1* bytes 9 *1

pad12,pad13,pad14, 1* through *1
pad15; 1* 15 *1

double d; 1* bytes 16 through 23 *1
};

Casting Pointer Types

Before understanding how casting pointer types can cause portability problems,
you must understand how Series 700/800 aligns data types. In general, a data
type is aligned on a byte boundary equivalent to its size. For example, the
char data type can fall on any byte boundary, the int data type must fall on a
4-byte boundary, and the double data type must fallon an 8-byte boundary. A
valid location for a data type would then satisfy the following equation:

location mod sizeof (data_type) == 0

Consider the following program:

#include <string.h>
#include <stdio.h>
maine)
{

struct chStruct {
char chi;

char chArray[9];

} foo;

int *bar;

5·10 Porting C Programs

1* aligned on
an even boundary *1

1* aligned on
an odd byte boundary *1

1* must be aligned
on a word boundary *1

}

strcpy(foo.chArray, "1234");

bar = (int *) foo.chArray;
printf("*bar = %d\n" ,*bar);

1* place a value
in the ch array *1

1* type cast *1
1* display the value *1

Casting a smaller type (such as char) to a larger type (such as int) will not
cause a problem. However, casting a char* to an int* and then dereferencing
the int* may cause an alignment fault. Thus, the above program crashes on
the call to printf () when bar is dereferenced.

Such programming practices are inherently non-portable because there is no
standard for how different architectures reference memory. You should try to
avoid such progralnming practices.

As another example, if a program passes a casted pointer to a function that 5
expects a parameter with stricter alignment, an alignment fault may occur. For
example, the following program causes an alignment fault on Series 700/800:

void main (int argc, char *argv[])
{

char pad;
char name [8] ;

intfunc((int *)&name[1]);
}

int intfunc (int *iptr)
{

printf("intfunc got passed %d\n", *iptr);
}

Type Incompatibilities and typedef

The C typedef keyword provides an easy way to write a program to be
used on systems with different data type sizes. Simply define your own type
equivalent to a provided type that has the size you wish to use.

For example, suppose system A implements int as 16 bits and long as 32 bits.
System B implements int as 32 bits and long as 64 bits. You want to use 32

Porting C Programs 5·11

5

bit integers. Simply declare all your integers as type INT32, and insert the
appropriate typedef on system A:

typedef long INT32;

The code on system B would be:

typedef int INT32;

Conditional Compilation

U sing the #ifdef C preprocessor directive and the predefined symbols
__ hp9000s300, __ hp9000s700, and __ hp9000s800, you can group blocks of
system-dependent code for conditional compilation, as shown below:

#ifdef __ hp9000s300

Series 300/400-specific code goes here ...

#endif

#ifdef __ hp9000s700

Series 700-specific code goes here ...

#endif

#ifdef __ hp9000s800

Series 700/800-specific code goes here ...

#endif

If this code is conlpiled on a Series 300/400 system, the first block is compiled;
if compiled on Series 700, the second block is compiled; if compiled on either
the Series 700 or the Series 800, the third block is compiled. You can use this
feature to ensure that a program will compile properly on either Series 300/400
or 700/800.

If you want your code to compile only on the Series 800 but not on the 700,
surround your code as follows:

5·12 Porting C Programs

#if (defined(__ hp9000s800) && ldefined(__ hp9000s700))
&vellipsis;

Series 800-specific code goes here ...
&vellipsis;

#endif

Isolating System-Dependent Code with #include Files

#include files are useful for isolating the system-dependent code like the type
definitions in the previous section. For instance, if your type definitions were
in a file mytypes .h, to account for all the data size differences when porting
from system A to system B, you would only have to change the contents of file
mytypes .h. A useful set of type definitions is in /usr/include/model.h.

Note If you use the symbolic debugger, xdb, include files used
within union, struct, or array initialization will generate
correct code. However, such use is discouraged because xdb
may show incorrect debugging information about line numbers
and source file numbers.

Parameter Lists

On the Series 300/400, parameter lists grow towards higher addresses. On
the Series 700/800, parameter lists are usually stacked towards decreasing
addresses (though the stack itself grows towards higher addresses). The
compiler may choose to pass some arguments through registers for efficiency;
such parameters will have no stack location at all.

ANSI C function prototypes provide a way of having the compiler check
parameter lists for consistency between a function declaration and a function
call within a compilation unit. lint provides an option (-Aa) that flags cases
where a function call is made in the absence of a prototype.

The ANSI C <stdarg. h> header file provides a portable method of writing
functions that accept a variable number of arguments. Refer to the HP
C/HP- UX Reference Manual or stdarg(5) for details and examples of the use of
<stdarg.h>.

Porting C Programs 5-13

5

5

You should note that <stdarg. h> supersedes the use of the varargs macros.
varargs is retained for compatibility with the pre-ANSI compilers and earlier
releases of HP C/HP-UX. See varargs(5) and vprintj(3S) for details and
examples of the use of varargs.

The char Data Type

The char data type defaults to signed. If a char is assigned to an int, sign
extension takes place. A char may be declared unsigned to override this
default. The line:

unsigned char ch;

declares one byte of unsigned storage named ch. On some non-HP- UX systems,
char variables are unsigned by default.

Register Storage Class

The register storage class is supported on Series 300/400 and 700/800
HP-UX, and if properly used, can reduce execution time. Using this type
should not hinder portability. However, its usefulness on systems will vary,
since some ignore it. Refer to the HP-UX Assembler and Supporting Tools for
Series 300/400 for a more complete description of the use of the register
storage class on Series 300/400.

Also, the register storage class declarations are ignored when optimizing at
levels 2 or greater on all Series.

Identifiers

To guarantee portable code to non-HP- UX systems, the ANSI C standard
requires identifier names without external linkage to be significant to 31
case-sensitive characters. Names with external linkage (identifiers that
are defined in another source file) will be significant to six case-insensitive
characters. Typical C programming practice is to name variables with all
lower-case letters, and #define constants with all upper case.

5·14 Porting C Programs

Predefined Symbols

The symbol __ hp9000s300 is predefined on Series 300/400; the symbols
__ hp9000s800 and __ hppa are predefined on Series 700/800; and
__ hp9000s700 is predefined on Series 700 only. The symbols __ hpux, and
__ unix are predefined on all HP- UX implementations.

This is only an issue if you port code to or from systems that also have
predefined these symbols.

Shift Operators

On left shifts, vacated positions are filled with O. On right shifts of signed
operands, vacated positions are filled with the sign bit (arithmetic shift). Right
shifts of unsigned operands fill vacated bit positions with 0 (logical shift).
Integer constants are treated as signed unless cast to unsigned. Circular shifts 5
are not supported in any version of C. Shifts greater than 32 bits give an
undefined result.

The sizeof Operator

The sizeof operator yields an unsigned int result, as specified in section
3.3.3.4 of the ANSI C standard (X3.159-1989). Therefore, expressions involving
this operator are inherently unsigned. Do not expect any expression involving
the s izeof operator to have a negative value (as may occur on some other
systems). In particular, logical comparisons of such an expression against
zero may not produce the object code you expect as the following example
illustrates.

mainO
{

int i;
i = 2;

if ((i-sizeof(i)) < 0)

printf (Iltest less than O\n");
else

1* sizeof(i) is 4,
but unsigned! *1

printf(llan unsigned expression cannot be less than O\nll);
}

Porting C Programs 5-15

When run, this program will print

an unsigned expression cannot be less than 0

because the expression (i -sizeof (i)) is unsigned since one of its operands
is unsigned (sizeof(i)). By definition, an unsigned number cannot be less
than 0 so the compiler will generate an unconditional branch to the else clause
rather than a test and branch.

Bit-Fields

The ANSI C definition does not prescribe bit-field implementation; therefore
each vendor can implement bit-fields somewhat differently. This section
describes how bit-fields are implemented in HP C.

Bit-fields are assigned from most-significant to least-significant bit on all
5 HP- UX and Domain systems.

On all HP-UX implementations, bit-fields can be signed or unsigned,
depending on how they are declared.

On the Series 300/400, a bit-field declared without the signed or unsigned
keywords will be signed in ANSI mode and unsigned in compatibility mode
by default.

On the Series 700/800, plain int, char, or short bit-fields declared without
the signed or unsigned keywords will be signed in both compatibility mode
and ANSI mode by default.

On the Series 700/800, and for the most part on the Series 300/400, bit-fields
are aligned so that they cannot cross a boundary of the declared type.
Consequently, some padding within the structure may be required. As an
example,

struct foo
{

};

unsigned int
unsigned int

5·16 Porting C Programs

a:3, b:3, c:3, d:3;
rernainder:20;

For the above struct, sizeof(struct foo) would return 4 (bytes) because
none of the bit-fields straddle a 4 byte boundary. On the other hand, the
following struct declaration will have a larger size:

struct fo02
{

};

unsigned char
unsigned int

a:3, b:3, c:3, d:3;
remainder:20;

In this struct declaration, the assignment of data space for c must be aligned
so it doesn't violate a byte boundary, which is the normal alignment of
unsigned char. Consequently, two undeclared bits of padding are added by
the compiler so that c is aligned on a byte boundary. sizeof (struct fo02)
returns 6 (bytes) on Series 300/400, and 8 on Series 700/800. Note, however,
that on Domain systems or when using #pragma HP _ALIGN NATURAL, which
uses Domain bit-field mapping, 4 is returned because the char bit-fields are
considered to be ints.)

Bit-fields on HP- UX systems cannot exceed the size of the declared type in
length. The largest possible bit-field is 32 bits. All scalar types are permissible
to declare bit-fields, including enum.

Enum bit-fields are accepted on all HP-UX systems. On Series 300/400 in
compatibility mode they are implemented internally as unsigned integers. On
Series 700/800, however, they are implemented internally as signed integers so
care should be taken to allow enough bits to store the sign plus the nlagnitude
of the enumerated type. Otherwise your results may be unexpected. In ANSI
mode, the type of enum bit-fields is signed int on all HP-UX systems.

Floating-Point Exceptions

In accordance with the IEEE standard, floating-point exceptions such as
division by zero do not cause a trap using HP C on Series 700/800. By
contrast, when using HP C on Series 300/400, floating-point exceptions will
result in the run-time error message Floating exception (core dumped). One
way to handle this error on Series 700/800 is by setting up a signal handler
using the signal system call, and trapping the signal SIGFPE. For details, see
signal(2), signal(5), and Chapter 12, "Advanced HP-UX Programming" in
Programming on HP- UX.

Porting C Programs 5·17

5

5

For full treatment of floating-point exceptions and how to handle them, see
HP-UX Floating-Point Guide.

I nteger Overflow

In HP C, as in nearly every other implementation of C, integer overflow does
not generate an error. The overflowed number is "rolled over" into whatever
bit pattern the operation happens to produce.

Overflow During Conversion from Floating Point to Integral Type

HP- UX systems will report a floating exception - core dumped at run time
if a floating point number is converted to an integral type and the value is
outside the range of that integral type. As with the error described previously
under "Floating-Point Exceptions", a program to trap the floating-point
exception signal (SIGFPE) can be used. See signal(2) and signal(5) for details.

Structure Assignment

The HP-UX C compilers support structure assignment, structure-valued
functions, and structure parameters. The structs in a struct assignment sl=s2
must be declared to be the same struct type as in:

8truct 8 81,82;

Structure assignment is in the ANSI standard. Prior to the ANSI standard, it
was a BSD extension that some other vendors may not have implemented.

Structure-Valued Functions

Structure-valued functions support storing the result in a structure:

s = fs 0;

All HP-UX implementations allow direct field dereferences of a structure­
valued function. For example:

x = fsO .a;

Structure-valued functions are ANSI standard. Prior to the ANSI standard,
they were a BSD extension that some vendors may not have implemented.

5-18 Porting C Programs

Dereferencing Null Pointers

Dereferencing a null pointer has never been defined in any C standard.
Kernighan and Ritchie's The C Programming Language and the ANSI C
standard both warn against such progranuning practice. Nevertheless, some
versions of C permit dereferencing null pointers.

Dereferencing a null pointer returns a zero value on all HP-UX systems. The
Series 700/800 C compiler provides the -z compile line option, which causes
the signal SIGSEGV to be generated if the program attempts to read location
zero. Using this option, a program can "trap" such reads.

Since some programs written on other implementations of UNIX rely on being
able to dereference null pointers, you nlay have to change code to check for a
null pointer. For example, change:

if (*ch_ptr != '\0')

to:

if «ch_ptr != NULL) && *ch_ptr != '\0')

Writes of location zero may be detected as errors even if reads are not. If the
hardware cannot assure that location zero acts as if it was initialized to zero or
is locked at zero, the hardware acts as if the -z flag is always set.

Expression Evaluation

The order of evaluation for some expressions will differ between HP-UX
implementations. This does not mean that operator precedence is different.
For instance, in the expression:

xi = f(x) + g(x) * 5;

f may be evaluated before or after g, but g(x) will always be multiplied by 5
before it is added to f (x). Since there is no C standard for order of evaluation
of expressions, you should avoid relying on the order of evaluation when using
functions with side effects or using function calls as actual parameters. You
should use temporary variables if your program relies upon a certain order of
evaluation.

Porting C Programs 5-19

5

5

Variable Initialization

On some C implementations, auto (non-static) yariables are implicitly
initialized to O. This is not the case on HP-UX and it is most likely not the
case on other implementations of UNIX. Don't depend on the system initializing
your local variables; it is not good programming practice in general and it
makes for nonportable code.

Conversions between unsigned char or unsigned short and int

All HP- UX C implementations, when used in compatibility mode, are unsigned
preserving. That is, in conversions of unsigned char or unsigned short to
int, the conversion process first converts the number to an unsigned into
This contrasts to some C implementations that are value preserving (that is,
uns igned char terms are first converted to char and then to int before they
are used in an expression).

Consider the following program:

maine)
{

}

int i = -1;
unsigned char uc = 2;
unsigned int ui = 2;

if (uc > i)
printf("Value preserving\n");

else
printf("Unsigned preserving\n");

if (ui < i)
printf("Unsigned comparisons performed\n");

On HP-UX systems in compatibility mode, the program will print:

Unsigned preserving
Unsigned comparisons performed

5·20 Porting C Programs

In contrast, ANSI C specifies value preserving; so in ANSI mode, all HP- UX
C compilers are value preserving. The same program, when compiled in ANSI
mode, will print:

Value preserving
Unsigned.comparisons performed

This is covered in more detail in the section "Silent Changes for ANSI C", later
in this chapter.

Temporary Files (STMPDIR)

All HP -UX C compilers produce a number of intermediate temporary files
for their private use during the compilation process. These files are normally
invisible to you since they are created and removed automatically. If, however,
your system is tightly constrained for file space these files, which are usually
generated on /tmp or /usr/tmp, may exceed space requirements. By assigning
another directory to the TMPDIR environment variable you can redirect these
temporary files. See the cc manual page for details.

Compile Line Options

There are some minor differences in HP- UX C compiler options. You may
have to modify makefiles if they use any of the options listed in Table 5-2.
Be aware that the purpose of the table below is only to point out differences
between implementations. Therefore, you should see cc(1) for more details
on using these options, or refer to the HP C/HP- UX Reference Manual (for
Series 700/800 information) and the C Programnter~s Guide (for Series 300/400
information).

Porting C Programs 5·21

5

Table 5·2. Differences in C Compile Line Options

Option Effect Difference

+a Do not assemble with prefix file. Series 700/800 only.

+bfpa Floating-point option. Series 300/400 only.

+DA1. 0 Optimize for Series 800 architecture and Series 700/800 only.
instruction set. Or, use DASxx where Sxx is
a Series 800 system model number.

+DA1.1 Optimize for Series 700 architecture and Series 700/800 only.
instruction set. Or, use DA7xx where txx is
a Series 700 system model number.

+dfname Specifies the profile database to use with Series 700/800 only.

5
profile-based optimization and the +P
command line option.

+DS1.0 Optimize for Series 800 instruction Series 700/800 only.
scheduling. Or, use DSSxx where Sxx is a
Series 800 system model number.

+DS1.1 Optimize for Series 700 instruction Series 700/800 only.
scheduling. Or, use DS7xx where txx is a
Series 700 system model number.

+e Enables extensions and an HPUX_SOURCE System-dependent options.
name space when compiling in ANSI C
mode.

+f Same as +r except promotions do not occur Series 700/800 only.
for parameters and values returned from
functions.

+ESlit Places string literals and constants into the Series 700/800 only.
$LIT subspace.

+ESsfc Replaces millicode calls with inline code Series 700/800 only.
when performing simple function pointer
comparisons.

+ffpa Floating-point option. Series 300/400 only.

5·22 Porting C Programs

Table 5·2. Differences in C Compile Line Options (continued)

Option Effect Difference

+FPfiags Initializes the flags that specify how Series 700/800 only.
floating-point exceptions should be trapped.

+I Instructs the compiler to prepare object Series 700/800 only.
code for profiling.

+L Enable listing facility and listing pragmas. Series 700/800 only.

+Lp Same as +L but includes post-processed Series 700/800 only.
source file.

+M Floating point option. Series 300/400 only.

+m Cause identifier maps to be printed. Series 700/800 only.

+N Adjusts size of internal compiler tables. Series 300/400 only.
5

-N Create non-shareable executeable. Such executables cannot be
executed by exec on Series
700/800.

+Oopt Specify optimization level. Semantics differ.

+Obbnum Specify maximum basic blocks allowed in Series 700/800 only.
procedure optimized at level 2.

+0 Print code offsets in hexadecimal at end of Series 700/800 only.
listing.

+P Directs the compiler to use profile Series 700/800 only.
information to guide code generation and
profile-based optimization.

+pgmname Used with profile-based optimization and Series 700/800 only.
the +P command line option.

+Rn Allow only the first n register variables to Series 700/800 only.
actually have register storage class.

+r Inhibit automatic promotion to float or Series 700/800 only.
double when evaluating expressions and
passing arguments in compatibility mode.

Porting C Programs 5·23

5

Table 5·2. Differences in C Compile Line Options (continued)

Option Effect Difference

+unumber Pointers use 2-byte addressing. Series 700/800 only.

-w Pass options to subprocesses. System-dependent options.

+wn Specify level of warning messages. Series 700/800 only.

+opt Shorthand for some -w options. System-dependent options.

-z Allow dereferencing of null pointers. Not supported on Series
300/400. Is the default on
Series 700/800.

-z Allow run-time detection of null pointers. Series 700/800 only.

Input/Output

Since the C language definition provides no I/O capability, it depends on
library routines supplied by the host system. Data files produced by using
the HP-UX calls write(2) or fwrite(3) should not be expected to be portable
between different system implementations. Byte ordering and structure packing
rules will make the bits in the file system-dependent, even though identical
routines are used. When in doubt, move data files using ASCII representations
(as from printf(3)), or write translation utilities that deal with the byte
ordering and alignment differences.

5·24 Porting C Programs

Checking for Standards Compliance
As discussed in Chapter 2, writing programs that comply with industry
standards helps to ensure that your code will be portable.

In order to check for standards compliance to a particular standard, you can
use the lint program with one of the following -D options:

• -D_XOPEN_SOURCE
• -D_POSIX_SOURCE

For example, the command

lint -D_POSIX_SOURCE file.c

checks the source file file. c for compliance with the POSIX standard.

If you have the HP Advise product, you can also check for C standard
compliance using the apex command.

Porting C Programs 5·25

5

Porting between K&R C and ANSI C
This section describes porting C programs compliant with the Kernighan &
Ritchie language definition to ANSI C compliance. Specifically, it discusses:

• Compile line options.

• ANSI C name spaces.

• Differences that may cause porting problems.

Compile Line Options

By default, HP C compilers use compatibility mode; that is, HP C compilers
use the language definition from Kernighan & Ritchie's The C Programming
Language, First Edition, as well as selected BSD extensions. To compile using

5 ANSI C mode, specify the -Aa compile line option. (-Ae is the compile line
option for compiling in compatibility mode.)

The lint program can be used to find non-standard language features within a
program. It can also produce huge amounts of other information as well. Once
you find non-standard features, you can then go into the source program and
fix them.

On Series 700/800, you can also specify the +wl option for ee. This option
is especially useful in that it generates warning messages only for the use of
non-standard features, unlike lint, which generates messages for other things
as well.

How Name Spaces Work for
ANSI C and Other Standards

The ANSI C standard specifies exactly which names are reserved by the
implementation (compiler, libraries, and header files). These reserved names
are given a special name space by the ANSI C implementation. The intention
is to make it easier to port programs from one implementation to another
without unexpected collisions in names. For example, since the ANSI C
standard does not reserve the keyword open, an ANSI C program may define
and use a function named open without colliding with an open system call on
any other operating system.

5-26 Porting C Programs

HP Header File and Library Implementation of Name Space

The HP header files and libraries have been designed to support four different
name spaces, as shown in Figure 5-1.

ANSI C

POSIX

XOPEN

HP-UX

8
Figure 5-1. ANSI C Name Spaces

is the set of names defined in the ANSI C standard.

is the set of names defined in the POSIX 1003.1 standard. These
names are a superset of those used by ANSI C.

is the set of names defined by the XOPEN standard. These names
are a superset of those used by POSIX.

is all names defined in the header files. These names are a
superset of XOPEN.

The HP library implementation has been designed with the assumption that
many existing programs will use more routines than those specified by the
ANSI C standard. If a program calls, but does not define a routine that is
not in the ANSI C name space (e.g. open), then the library will resolve that
reference. This allows a clean name space and backward compatibility.

Porting C Programs 5-27

5

5

The HP header file implementation uses a set of predefined names to select
the name space. In compatibility mode the default is the HP-UX name
space. Compatibility mode means that virtually all programs that compiled
and executed under previous releases of the HP C language on HP-UX will
continue to work as expected. Table 5-3 provides information on how to select
a name space from a command line or from within a program using the defined
libraries in ANSI mode.

Table 5·3. Selecting a Name Space in ANSI Mode

When using the Use conunand line or #define in
mune space ... option ... source program

HP-UX -D_HPUX_SOURCE #define _HPUX_SOURCE

XOPEN -D_XOPEN_SOURCE #define _XOPEN_SOURCE

POSIX -D_POSIX_SOURCE #define _POSIX_SOURCE

ANSI C default default

Ir.. ANSI ~Gdc, th<3 d<3fa;u.lt is ANSI C i'taill€: opaL€:. The by 11lUulb

_POSIX_SOURCE, _XOPEN_SOURCE or _HPUX_SOURCE may be used to select other
name spaces. The _HPUX_SOURCE symbol may need to be defined to make
existing programs compile in ANSI mode. For example,

#include <sys/types.h>
#include <sys/socket.h>

will result in the following compile-time error in the ANSI mode on Series
300/400 because socket. h uses the symbol u_short which is only defined in
the HP -UX name space section of types. h:

"/usr/include/sys/socket.h", line 79: syntax error:
u_short sa_family;

5-28 Porting C Programs

On Series 700/800, the following error message is produced:

"/usr/include/sys/socket.h", line 79: error 1000:
Unexpected symbol: "u_short".

This error may be fixed by adding -D_HPUX_SOURCE to the command line when
cOlnpiling.

Silent Changes for ANSI C

This section describes the situations that occur when ANSI C mode silently has
different behavior frOln compatibility mode. Many of these silent behaviors
can be detected by running lint, as described at the start of this section. The
following list provides SOllle of these silent behaviors.

Note The following list does not document all differences between
HP C and ANSI C. For a more detailed description of
differences between K&R C and ANSI C, refer to one of the
following books:

• A Book on C, 2nd ed., Kelley and Pohl,
Benjamin/ Cummings .

• The C Programming Language, 2nd ed., Kernighan and
Ritchie, Prentice Hall .

• On Series 300/400, a bit-field declared without the signed or unsigned
keywords will be signed in ANSI mode and unsigned in compatibility mode.
On Series 700/800, bit-fields are signed in both compatibility and ANSI
mode.

• Trigraphs are new in ANSI C. A trigraph is a three character sequence that
is replaced by a corresponding single character. For example, ??= is replaced
by #. For more information on trigraphs on Series 300/400, read C: A
Reference Manual. On Series 700/800, refer to the HP CjHP- UX Reference
Manual.

Porting C Programs 5·29

5

5

• Promotion rules for uns igned char and uns igned short have changed.
Compatibility mode rules specify that when an unsigned char or unsigned
short is used with an integer, the result is unsigned. ANSI-mode rules
specify that the result is signed. The following program example illustrates
a case where these rules are different.

main(){

}

unsigned short us = 1;
int i = -2;
if (i > us)

printf("compatibility mode\n"); 1* promoted to unsigned int *1
else

printf("ANSI mode\n"); 1* promoted to int *1

• In general, promotion rules for resultant expression types have changed.

Figure 5-2 shows promotion rules under compatibility mode. The resultant
type is the lowest common parent in the tree for the operands. For example,
if two operands in an expression are of type char and short, the resultant
expression type is int; if the expression contains three operands of type
short, int, and uns igned char, the expression type is unsigned int".

double

I
unsigned int or long

~I~
int

~
unsigned

char
char short

unsigned
short

Figure 5·2. Compatibility Mode Promotion Rules

Figure 5-3 shows the promotion rules under ANSI mode. For example, an
expression involving long and unsigned int operands results in an unsigned
long result.

5·30 Porting C Programs

lonq double
-I

double

1
float

I
unsigned long

A
long unsigned int

'\./
int

~~
short char unsigned unsigned

short char

Figure 5·3. ANSI Mode Promotion Rules

In expressions involving shift operators «< and »), the resulting expression
has the same type as the promoted left operand .

• Floating-point expressions with float operands will automatically be
computed as float precision in ANSI mode.

In compatibility mode, floats are always computed in double precision. On
the Series 700/800, using the +f option will keep floats as floats rather
than promoting them to doubles. Or, +r can be used.

Keeping floats as floats using ANSI mode or the above options in
compatibility mode) will result in faster running programs .

• Initialization rules are different in some cases when braces are omitted in an
initialization of an aggregate or union object.

Porting C Programs 5·31

5

• U nsuffixed integer constants may have different types. In compatibility
mode, un suffixed constants have type into In ANSI mode, un suffixed
constants less than or equal to 2147483647 have type into Constants larger
than 2147483647 have type unsigned. For example:

-2147483648

has type unsigned in ANSI mode and int in compatibility mode. The above
constant is unsigned in the ANSI mode because 2147483648 is unsigned,
and the - is a unary operator.

• Empty tag declarations in a block scope create a new struct instance in
ANSI mode. The term block scopes refers to identifiers declared inside
a block or list of parameter declarations in a function definition, having
meaning from their point of declaration to the end of the block. In ANSI
mode, it is possible to create recursive structures within an inner block. For

5 example,

struct x { int i; };
{ 1* inner scope *1

struct x;

}

struct y { struct x *xptr; };
struct x { struct y *yptr; };

In ANSI mode, the inner struct x; declaration creates a new version of
the structure which may then be referred to by struct y. In compatibility
mode, the struct x; declaration refers to the outer structure and the
program is incorrect. For more information, read the section "Structure Type
Reference" in the chapter "Types" in C: A Reference Manual.

• On Series 700/800, variable shifts «< or ») where the right operand has a
value greater than 31 or less than 0 will no longer always have a result of O.
For example,

unsigned int i,j = Oxffffffff, k = 32;
i = j »k; 1* i gets the value 0 in compatibility mode, *1

1* Oxffffffff(-1) in ANSI mode. *1

5-32 Porting C Programs

Porting between HP C and Domain/C
All HP- UX and DOlnain computers have ANSI C compilers. Strictly
standard-compliant programs are highly portable between all these
architectures.

The following Domain/C extensions are not supported on HP-UX in
compatibility mode and in most cases, are not supported in ANSI mode either:

• Reference variables.

• The following preprocessor directives: #attribute, #options, #section,
#module, #debug, #eject, #list, #nolist,and #systype.

• std_$call.

• __ attribute modifier and __ options specifier.

• systype predefined macro.

• _BFMT __ COFF predefined macro.

• _ISP __ M68K predefined macro.

• _ISP __ A88K predefined macro.

• _ISP __ PA_RISC predefined macro.

• Partial specification of struct and union members.

Function prototypes, struct and union initialization, and the predefined
names __ DATE __ and __ TIME __ , all of which are ANSI C features, are
supported on HP-UX in ANSI mode.

Compile line options are different between HP- UX C and Domain/C. Check the
respective cc(1) page for complete descriptions.

There are other differences between HP- UX C and Domain/C:

• Alignnlent: All Domain workstations have hardware or software assists to
handle misaligned data. Programs that rely on these features will not run on
the Series 800.

• Floating-point exceptions: All Domain workstations, by default, enable
invalid operation, divide by zero, and overflow exception traps. Programs
that rely on fault detection, for instance, to enter a fault handler or to
terminate execution on encountering a fault, will ordinarily generate useless

Porting C Programs 5·33

5

output on HP-UX. However~ the PA1.l math library for the Series 700/800
provides a function fpsetdefaults(3M), which enables these traps and
therefore allows such programs to run as expected. For more information, see
the HP- UX Floating-Point Guide.

• struct layout and alignment~ especially bit-field~ is different.

• float data type: Domain/C optimizes a statement all of whose atoms are
float or floating-point constants~ to be evaluated in float rather than
double.

• register declarations: Domain/C completely ignores register declarations~
except to ensure that language constraints are not violated.

• Include file search rules are different.

• Programs that rely on undefined behaviors, for instance, the order of
5 expression evaluation and the application of unsequenced side-effects~ will

probably execute differently.

5-34 Porting C Programs

Porting between HP C and VMS C
The C language itself is easy to port from VMS to HP- UX for two main
reasons:

• There is a high degree of compatibility between HP C and other common
industry implementations of C as well as within the HP-UX family.

• The C language itself does not consider file manipulation or input/output to
be part of the core language. These issues are handled via libraries. Thus, C
avoids some of the thorniest issues of portability.

In most cases, HP C (in compatibility mode) is a superset of VMS C.
Therefore, porting from VMS to HP -UX is easier than porting in the other
direction. The next several subsections describe features of C that can cause
problems in porting.

Core Language Features

• Basic data types in VMS have the same general sizes as their counterparts
on HP- UX. In particular, all integral and fioating- point types have the same
number of bits. structs and unions do not necessarily have the same size
because of different alignment rules.

• Basic data types are aligned on arbitrary byte boundaries in VMS C.
HP- UX counterparts generally have more restrictive alignments, as shown in
Table 5-l.

• Type char is signed by default on both VMS and HP-UX.

• The uns igned adjective is recognized by both systems and is usable on char,
short, int, and long. It can also be used alone to refer to unsigned into

• Both VMS and HP-UX support void and enum data types although the
allowable uses of enum vary between the two systems. HP- UX is generally
less restrictive.

• The Vl\1S C storage class specifiers globaldef, globalref, and global value
have no direct counterparts on HP- UX or other implementations of UNIX.
On HP-UX, variables are either local or global, based strictly on scope or
static class specifiers.

Porting C Programs 5-35

5

5

• The VMS C class modifiers readonly and noshare have no direct
counterparts on HP- UX.

• structs are packed differently on the two systems. All elements are byte
aligned in VMS whereas they are aligned more restrictively on the different
HP- UX architectures based upon their type. Organization of fields within the
struct differs as well.

• Bit-fields within structs are more general on HP- UX than on VMS. VMS
requires that they be of type int or unsigned whereas they may be any
integral type on HP- UX.

• Assignment of one struct to another is supported on both systems.
However, VMS permits assignment of structs provided the types of both
sides have the same size. HP-UX is more restrictive because it requires that
the two sides be of the same type.

• VMS C stores floating-point data in memory using a proprietary scheme.
Floats are stored in F _floating format. Doubles are stored either in
D_floating format or G_floating format. D_floating format is the
default. HP-UX uses IEEE standard formats which are not compatible
with VMS types but which are compatible with most other industry
implementations of UNIX.

• VMS C converts floats to doubles by padding the mantissa with Os. HP-UX
uses IEEE formats for floating-point data and therefore must do a conversion
by means of floating-point hardware or by use oflibrary functions. When
doubles are converted to floats in VMS C, the mantissa is rounded toward
zero, then truncated. HP- UX uses either floating point hardware or library
calls for these conversions.

The VMS D_floating format can hide programming errors. In particular,
you might not immediately notice that mismatches exist between formal and
actual function arguments if one is declared float and the counterpart is
declared double because the only difference in the internal representation is
the length of the mantissa.

5-36 Porting C Programs

• Due to the different internal representations of floating-point data, the range
and precision of floating-point numbers differs on the two systems according
to the following tables:

Table 5-4. VMS C Floating-Point Types

Format Approximate Range of Ixl Approximat.e Precision

F_floating O.29E-38 to 1.7E38 7 decimal digits

D_floating O.29E-38 to 1.7E38 16 decimal digits

G_floating O.56E-308 to O.99E308 15 decimal digits

Table 5-5. HP-UX C Floating-Point Types

Format. Approximat.e Range of Ixl Approximat.e Precision

float 1.17E-38 to 3.40E38 7 decimal digits

double 2.2E-308 to 1.8E308 16 decimal digits

long double 3.36E-4932 to 1.19E4932 31 decimal digits

• VMS C identifiers are significant to the 31st character. HP- UX C identifiers
are significant to 25.5 characters.

• register declarations are handled differently in VMS. The register
reserved word is regarded by the compiler to be a strong hint to assign
a dedicated register for the variable. On Series 300/400, the register
declaration causes an integral or pointer type to be assigned a dedica.ted
register to the limits of the system, unless optimization at level +02
or greater is requested, in which case the compiler ignores register
declarations. Series 700/800 treats register declarations as hints to the
compiler.

• If a variable is declared to be register in VMS and the & address operator
is used in conjunction with that variable, no error is reported. Instead, the
VMS compiler converts the class of that va.riable to auto. HP- UX compilers
will report an error.

Porting C Programs 5-37

5

• Type conversions on both systems follow the usual progression found on
implementations of UNIX.

• Character constants (not to be confused with string constants) are different
on VMS. Each character constant can contain up to four ASCII characters.
If it contains fewer, as is the normal case, it is padded on the left by NULLs.
However, only the low order byte is printed when the fec descriptor is used
with printf. Multicharacter character constants are treated as an overflow
condition on Series 300/400 if the numerical value exceeds 127 (the overflow
is silent). In compatibility mode, Series 700/800 detects all multicharacter
character constants as error conditions and reports them at compile time.

• String constants can have a maximum length of 65535 characters in VMS.
They are essentially unlimited on HP-UX.

• VMS provides an alternative means of identifying a function as being the
5 main program by the use of the adjective main program that is placed on the

function definition. This extension is not supported on HP-UX. Both systems
support the special meaning of mainO, however.

• VMS implicity initializes pointers to O. HP- UX makes no implicit
initialization of pointers unless they are static, so dereferencing an
uninitialized pointer is an undefined operation on HP-UX.

• VMS permits combining type specifiers with typedef names. So, for
example:

typedef long t;
unsigned t x;

is permitted on VMS. This is permitted only in compatibility mode on Series
300/400; it is not allowed in ANSI C mode on any HP-UX system. To
accomplish this on Series 700/800, change the typedef to include the type
specifier:

typedef unsigned long t;
t x;

Or use a #def ine:

#define t long
unsigned t x;

5-38 Porting C Programs

Preprocessor Features

• VMS supports an unlimited nesting of #includes. HP- UX in compatibility
mode guarantees 35 levels of nesting. HP-UX in ANSI mode guarantees 57
levels of nesting.

• The algorithms for searching for #includes differs on the two systems. VMS
has two variables, VAXC$INCLUDE and C$INCLUDE which control the order
of searching. HP -UX follows the usual order of searching found on most
implementations of UNIX.

• #dictionary and #module are recognized in VMS but not on HP- UX.

• The following symbols are predefined in VMS but not on HP-UX: vms,
vax, vaxc, vaxllc, vrns_version, CC$gfloat, VMS, VAX, VAXC, VAX11C, and
VMS_VERSION.

• The following symbols are predefined on all HP-UX systems but not in VMS:

__ hp9000s300 on Series 300/400
__ hp9000s700 on Series 700
__ hp9000s800 on Series 700/800
__ hppa on Series 700/800
__ hpux and __ unix on all systems

• HP-UX preprocessors do not include white space in the replacement text of a
macro. The VMS preprocessor does include the trailing white space. If your
HP C program depends on the inclusion of the white space, you can place
white space around the macro invocation.

Compiler Environment

• In VMS, files with a suffix of . C are assumed to be C source files, .OBJ
suffixes imply object files, and . EXE suffixes imply executable files. HP-UX
uses the nornlal conventions on UNIX that . c implies a C source file, .0

implies an object file, and a. out is the default executable file (but there is no
other convention for executable files).

• varargs is supported on VMS and all HP- UX implementations. See
vprintj(3S) and varargs(5) for a description and examples.

• curses is supported on VMS and all HP-UX implementations. See
curses(3X) for a description.

Porting C Programs 5·39

5

• VMS supports VAXC$ERRNO and errno as two system variables to return error
conditions. HP- UX supports errno although there may be differences in the
error codes or conditions.

• VMS supplies getchar and putchar as functions only, not as macros.
HP- UX supplies them as macros and also supplies the functions fgetc and
fputc which are the function versions.

• Major differences exist between the file systems of the two operating systems.
One of these is that the VMS directory SYS$LIBRARY contains many standard
definition files for macros. The HP-UX directory /usr/include has a rough
correspondence but the contents differ greatly.

• A VMS user must explicitly link the RTL libraries
SYS$LIBRARY:VAXCURSE.OLB, SYS$LIBRARY:VAXCRTLG.OLB or
SYS$LIBRARY:VAXCRTL.OLB to perform C input/output operations. The

5 HP-UX input/output utilities are included in /lib/libc, which is linked
automatically by cc without being specified by the user.

• Certain standard functions may have different interfaces on the two systems.
For example, strcpyO copies one string to another but the resulting
destination may not be NULL terminated on VMS whereas it always will be
on HP-UX.

• The commonly used HP-UX names end, edata and etext are not available
on VMS.

5-40 Porting C Programs

Calling Other Languages
It is possible to ca.ll a routine written in another language from a C progranl,
but you should have a good reason for doing so. Using more than one language
in a program that you plan to port to another system will complicate the
process. In any case, make sure that the program is thoroughly tested in any
new environment.

If you do call another language from C, you will have the other language's
anomalies to consider plus possible differences in parameter passing. Since all
HP-UX system routines are C programs, calling programs written in other
languages should be an uncommon event. If you choose to do so, remember
that C passes all parameters by value except arrays and structures. The
ramifications of this depend on the language of the called function, as shown in
Table 5-6.

Porting C Programs 5-41

5

Table 5·6. C Interfacing Compatibility

C HP-UX Pascal FORTRAN

char none byte

unsigned char char character (could reside on an odd
boundary and cause a memory fault)

char * (string) none none

unsigned char * PAC+chr(O) (PAC = packed Array of char+char(O)
(string) array[1 .. n] of char)

short (int) -32768 .. 32767 (shortint on Series integer*2
700/800)

unsigned short (int) BITt6 on Series 700/BOO; none on none
Series 300/400 (0 .. 65535 will generate

5
a 16-bit value only if in a packed
structure)

int integer integer (*4)

long (int) integer integer (*4)

unsigned (int) none none

float real real (*4)

double longreal real*8

long double1 none real*16

type* (pointer) A var , pass by reference, or use anyvar none

bar (address) addr(var) (requires $SYSPROG$) none

*var (deref) var A none

struct record (cannot always be done; C and structure
Pascal use different packing
algori thms)

union record case of .,. union

1 long double is available only in ANSI mode.

5·42 Porting C Programs

Calling FORTRAN

You can compile FORTRAN functions separately by putting the functions you
want into a file and compiling it with the -c option to produce a .0 file. Then,
include the name of this .0 file on the cc command line that compiles your C
program. The C program can refer to the FORTRAN functions by the names
they are declared by in the FORTRAN source.

Remember that in FORTRAN, parameters are usually passed by reference
(except CHARACTER parameters on Series 700/800, which are passed by
descriptor), so actual parameters in a call from C must be pointers or variable
names preceded by the address-of operator (&).

The following program uses a FORTRAN block data subprogram to initialize a
common area and a FORTRAN function to access that area:

double precision function get_element(i,j)
double precision array
common /a/array(1000,10)
get_element = array(i,j)
end

block data one
double precision array
common /a/array(1000,10)

C Note how easily large array initialization is done.
data array /1000*1.0,1000*2.0,1000*3.0,1000*4.0,1000*5.0,

* 1000*6.0,1000*7.0,1000*8.0,1000*9.0,1000*10.0/
end

Porting C Programs 5·43

5

5

The FORTRAN function and block data subprogram contained in file xx. fare
compiled using f77 -c xx. f.

The C main program is contained in file x. c:

maine)
{

int i;

extern double get_element(int *, int *);

for (i=l; i <= 10; i++)
printf(" el ement = 1.f\n", get_element(&i,&i));

}

The C main program is compiled using cc -Aa x. c xx. o.

Another area for potential problems is passing arrays to FORTRAN
subprograms. An important difference between FORTRAN and C is that
FORTRAN stores arrays in column-major order whereas C stores them in
row-major order (like Pascal).

For example, the following shows sample C code:

int i,j;
int array [10] [20];

for (i=O; i<10; i++) {
for (j=O; j<20; j++)

array [i] [j] =0;
}

Here is similar code for FO RTRAN :

integer array (10,20)

do J=1,20

1* Here the 2nd dimension
varies most rapidly *1

do I=1,10 !Here the first dimension varies most rapidly
array(I,J)=O

end do
end do

5-44 Porting C Programs

Therefore, when passing arrays from FORTRAN to C, a C procedure should
vary the first array index the fastest. This is shown in the following example in
which a FORTRAN program calls a C procedure:

integer array (10,20)

do j=1,20
do i=1, 10

array(i,j)=O
end do

end do
call cproc (array)

cproc (array)
int array [] [] ;

for (j=1; j<20; j++) {
for (i=1; i<20; i++)

array [i] [j] = ...
}

/* Note that this is the reverse from
how you would normally access the
array in C as shown above */

There are other considerations as well when passing arrays to FORTRAN
subprograms. For details, see HP- UX Assembler Reference and Supporting
Documents (for Series 300/400), or HP C Programmer's Guide (for Series
700/800).

It should be noted that a FORTRAN main should not be linked with cc.

Porting C Programs 5·45

5

5

Calling Pascal

Pascal gives you the choice of passing parameters by value or by reference (var
parameters). C passes all parameters (other than arrays and structures) by
value, but allows passing pointers to simulate pass by reference. If the Pascal
function does not use var parameters, then you may pass values just as you
would to a C function. Actual parameters in the call from the C program
corresponding to formal var parameters in the definition of the Pascal function
should be pointers.

Arrays correlate fairly well between C and Pascal because elements of a
multidinlensional array are stored in row-major order in both languages.
That is, elements are stored by rows; the rightmost subscript varies fastest as
elements are accessed in storage order.

Note that C has no special type for boolean or logical expressions. Instead,
any integer can be used with a zero value representing false, and non-zero
representing true. Also, C performs all integer math in full precision (32-bit);
the result is then truncated to the appropriate destination size.

The basic method for calling Pascal functions on the Series 300/400 is to put
the Pascal function into a module that exports the function, compile that file
using pc -c, and then link it with your main C program by including the
name of the Pascal .0 file on the cc command line.

To call Pascal procedures from C on the Series 700/800, a program may
first have to call the Pascal procedure U_INIT _ TRAPS. See the HP Pascal
Programmer's Guide for details about the TRY/RECOVER mechanism.

As true of FORTRAN mains, a Pascal main should not be linked with cc.

To call Pascal procedures from C or FORTRAN on the Series 300/400, the user
must first call the procedure asm_initproc to initialize the heap, initialize the
escape (TRY/RECOVER) mechanism, and set up the standard files input, output,
and stderr. At the end, a call to asm_wrapup should be made. To work
correctly, asm_initproc must be called with the value 0 or 1 (0 = buffered
input; 1 = unbuffered input) as a parameter by reference (Le., a pointer to 0).
Without this parameter, asm_initproc generates a memory fault. An example
is shown below.

5-46 Porting C Programs

The Series 300/400 C program shown below calls two Pascal integer functions:

maine) 1* The C main program *1
{

}

int noe = 1;
int *c, *a_cfunc(), *a_dfunc();
int *noecho = &noe;

asm_initproc(noecho); 1* Pascal initialization *1
c = a_cfunc();
printf ("Y.d\n" ,c) ;
c = a_dfunc 0 ;
printf ("y'd\n" ,c) ;
asm_wrapup(); 1* Pascal closure *1

Porting C Programs 5-47

5

5

The following source is the Pascal module:

module a;
export
funct ion cfunc
function dfunc

implement

integer;
integer;

function cfunc : integer;
var x integer;

begin
x := MAXINT;
cfunc := x;

end;

function dfunc : integer;
var x integer;

begin
x := MININT;
dfunc := x;

end;
end.

The command line for producing the Pascal relocatable object is

$ pc -c pfunc.p

5·48 Porting C Programs

On Series 300/400, the command line for compiling the C main program and
linking the Pascal module is

$ cc x.c pfunc.o -lpc

or, on Series 700/800, it is

$ cc x.c pfunc.o -lcl

The following output results:

2147483647

on Series 300/400 and

2147483647
-2147483648

on Series 700/800.

Porting C Programs 5-49

5

6
Porting FORTRAN Programs

Prior to the HP- UX 9.0 release, there were many differences between the
FORTRAN compilers on the Series 300/400/700 and 800. With the HP-UX
9.0 release, the compilers have been merged. As a result, the only renlaining
differences are due to the differences between the 11otorola-based and
PA-RISC-based architectures. You may experience some problems recompiling
Series 800 programs using 9.0 due to minor differences.

The HP- UX FORTRAN compiler implements the full ANSI FORTRAN 77
language and MIL-STD-1753 standard as well as HP's extensions. In addition,
many common extensions found in other non-HP- UX implementations have
been added, particularly those from FORTRAN 7x on HP 1000 systems and
VAXTM VMS FORTRAN. This chapter describes:

• general considerations for writing portable FORTRAN programs

• porting between Series 300/400 and Series 700/800

• porting FORTRAN programs between HP- UX and VMS

• calling other languages

Note Refer to the FORTRAN/gOOD Programmer's Guide for
additional portability information.

Porting FORTRAN Programs 6-1

6

6

General Portability Considerations
Although FORTRAN on HP 9000 computers follows all the relevant standards,
there are some extended features that may not port easily from one system to
another. This section summarizes general considerations you should be aware
of when porting FORTRAN programs to and from HP- UX systems across
various other vendors implementations. Some of the information in this section
will also be useful for porting FO RTRAN programs between Series 300/400
and Series 700/800, the entire focus of the next section.

Data Type Sizes and Alignment

Table 6-1 shows the sizes and alignments of the FORTRAN data types on
Series 300/400 and 700/800 computers.

6·2 Porting FORTRAN Programs

Table 6-1. FORTRAN Data Types

Type Size Alignment Alignment
(bytes) (300/400)1 (700/800)1

CHARACTER 1 I-byte I-byte

Hollerith2 1 I-byte I-byte

BYTE,LOGICAL*1 2,3 1 I-byte I-byte

LOGICAL*22 ,3 2 2-byte 2-byte

INTEGER*22 ,3 2 2-byte 2-byte

LOGICAL*43 4 4-byte (2-byte within record) 4-byte

INTEGER, INTEGER*43 4 4-byte (2-byte within record) 4-byte

REAL, REAL*43 4 4-byte (2-byte within record) 4-byte

REAL*162 ,3 16 4-byte (2-byte within record) 8-byte

DOUBLE 8 4-byte (2-byte within record) 8-byte
PRECISION,REAL*83

COMPLEX*83 8 4-byte (2-byte within record) 8-byte

DOUBLE COMPLEX, 16 4-byte (2-byte within record) 8-byte
COMPLEX*162,3

RECORD 4-byte (2-byte within array or Aligned on most
another record; alignment restrictive field.
alterable using $NOSTANDARD
ALIGNMENT)

1 2-byte alignment for items 4 bytes and larger when $HP1000 ALIGlDIENT 01 is specified on all Series.
Note that this alignment causes slower execution due to use of halfword load/store instructions.

2 This type is an extension to the ANSI FORTRAN 77 standard.

3 ANSI does not support a length descriptor *n.

If the +A compile line option is specified~ then any non-character data types
larger than two bytes are aligned on a 2-byte boundary instead of on 4-byte
boundaries, for all HP 9000 implementations. This allows you to align data
using alignment rules from previous releases of FORTRAN. The $HP1000
ALIGNMENT ON directive performs the same function as the +A option.

Porting FORTRAN Programs 6-3

6

6

Accessing Unaligned Data

The Series 700/800 like all PA-RISC processors requires data to be accessed
from locations that are aligned on multiples of the data size. The FORTRAN
compiler provides an option to access data frOln misaligned addresses using
code sequences that load and store data in smaller pieces, but this option will
increase code size and reduce performance. A bus error handling routine is also
available to handle misaligned accesses but can reduce performance severely if
used heavily.

Here are your specific alternatives for avoiding bus errors:

1. Change your code to eliminate misaligned data, if possible. This is the only
way to get maximum performance, but it Inay be difficult or impossible
to do. The more of this you can do, the less you'll need the next two
alternatives.

2. To allow 2-byte alignment of 4- and 8-byte items in FORTRAN, use +A. It
allows 4- and 8-byte items to be aligned on 2-byte boundaries, so it will load
and store real*8, real*4, and integer*4 items 2 bytes at a time.

To allow 4-byte alignment of 8-byte items, use +A3. The +A3 option
generates better code than +A. It allows 8-byte items to be aligned on 4-byte
boundaries, so it will load and store real*8 numbers 4 bytes at a time.

Refer to the FORTRA1V/9000 Programmer's Reference (Series 700/800) for
more information.

3. Finally, you can use allow_unaligned_data_access 0 to avoid alignment
errors. allow_unaligned_data_accessO sets up a signal handler for
the SIGBUS signal. When the SIGBUS signal occurs, the signal handler
extracts the unaligned data from memory byte by byte.

To implement, just add a call to allow_unaligned_data_access () within
your main program before the first access to unaligned data occurs. Then
link with -lhppa. Any alignment bus errors that occur are trapped and
emulated by a routine in the libhppa. a library in a manner that will be
transparent to you. The performance degradation will be significant, but if
it only occurs in a few places in your program it shouldn't be a big concern.

You can declare a named common block as follows:

6·4 Porting FORTRAN Programs

integer icnt
common lunaligned_access_countl icnt

Then you can print out the integer at the end of your program to see the
extent of your trapping problem. Estimate about 0.1 msec (.0001 sec) per
trap on a 720 to see if the trap handler is costing you a significant amount
of time.

Whether you use alternative 2 or 3 above depends on your specific code.

The +A options cost significantly less per access than the handler, but they cost
you on every access, whether your data is aligned or not, and they can make
your code quite a bit bigger. You should use them selectively if you can isolate
the routines in your program that may be exposed to misaligned pointers.

There is a performance degradation associated with 3 since each
unaligned access has to trap to a library routine. You can use the
unaligned_access_count variable to check the number of unaligned accesses
in your program. If the number is fairly large, you should probably use 2. If
you only occasionally use a misaligned pointer, it is probably better just use
the allo1i1_unaligned_data_access handler. There is a stiff penalty per bus
error, but it doesn't cause your program to fail and it won't cost you anything
when you operate on aligned data.

The following is a an example of its use within a FORTRAN program:

Porting FORTRAN Programs 6-5

6

program ftest
integer icnt
common /unaligned_access_count/ icnt
integer i1(10000) , i2(10000)

call veccpy(i1(1), i2(1), 1000)
call veccpy(i1(5000) , i2(5000) , 1000)
print *,icnt
end

subroutine veccpy(x, y, n)
integer n
real*8 x(n), yen)
do ii=1,n

y(ii) = xCii)
end do
end

6 To compile and link this program, enter

f77 filename. f -lhppa

This enables you to link the program with allow_unaligned_data_access ()
and the int unaligned_access_count that reside in /usr/lib/libhppa. a.

Note tha.t there is a performance degradation associated with using this library
since ea.ch unaligned access has to trap to a library routine. You can use the
unaligned_access_count variable to check the number of unaligned accesses
in your program. If the number is fairly large, you should probably use the
compiler option instead.

Symbolic Names

All HP-UX FORTRAN implementations allow symbolic names to be at least
255 characters long, all of which are significant.

6-6 Porting FORTRAN Programs

Lowercase Letters

HP-UX FORTRAN programs can be written using lowercase letters, which is
nonstandard. The FORTRAN compilers treat lowercase letters as uppercase.
For example, the following symbol names are equivalent:

symbol_name
Symbol_Name
SYMBOL_NAME

Although other FORTRAN compilers typically allow lowercase letters, a few
may not; you should be aware of this when porting code to other systems.

Error Conditions

Compile-time error messages are the same between the systems. All systems
provide plain text error messages.

Run-time errors are similar across systems. In most cases, they are reported
with the same text and number on all HP- UX systems. Some exceptions
may be seen when arithmetic overflow/underflow conditions occur. On Series
300/400, the various floating-point options can cause different arithmetic error 6
conditions than on the Series 700/800.

The order in which statements must appear in a FORTRAN program is less
restrictive in HP- UX FORTRAN than in the ANSI standard. In many cases,
duplicate declarations are allowed, although the result may be undefined if they
are conflicting. A warning message, array redeclaration, will be issued.

If you will be porting to a non- HP system, then avoid using language
extensions. Inserting the directive

$OPTION ANSI ON

at the beginning of your source will cause the compiler to list a warning for
each use of a feature that is not a part of the ANSI 77 standard. The same
effect can be accomplished by specifying -a on the command line.

Note Lower case letters are not supported in ANSI FORTRAN 77.
If $OPTION ANSI ON is specified, the compiler emits a non-fatal
warning once for each function in which they occur.

Porting FORTRAN Programs 6· 7

6

Character Constants

Character constants are limited to 9000 characters in length. If a longer
constant is required, it can be constructed by use of the / / concatenation
operator. Such concatenated strings have no length restrictions.

Holleriths

Hollerith strings are limited to 2000 characters in length. To construct larger
Hollerith strings at run time, you can concatenate them with the / / operator.

Array Dimension Limits

\Vhile ANSI requires that FORTRAN implementations support at least 7 array
dimensions, HP-UX FORTRAN permits up to 20.

Logicals

Internal representation of logical . TRUE. values varies across platforms as
shown in Table 6-2.

Table 6·2. Representations of . TRUE.

Logical Type HP-UX Domain VMS

LOGICAL*l OxOl OxFF OxFF
LOGICAL*2 OxOOOl OxFFFF OxFFFF
LOGICAL*4 OxOOOOOOOOl OxFFFFFFFF OxFFFFFFFF

6·8 Porting FORTRAN Programs

In addition, the way a compiler determines whether an expression has a . TRUE.

or . FALSE. value varies across platforms. Table 6-3 summarizes how various
conlpilers determine whether an expression evaluates to . TRUE .. Table 6-3
also shows the type of operator used by the compiler in logical expressions. A
logical operator always returns . TRUE. or . FALSE. ; a bitwise operator returns a
bitwise combination of the operands.

Table 6-3. Compiler Tests for . TRUE.

Logical Type HP-UX Domain VMS

LOGICAL*l
LOGICAL*2
LOGICAL*4
Operators

Note

Recursion

!= 0 < 0 8& OxOl

!= 0 < 0 8& OxOOOl
!= 0 < 0 8& OxOOOOOOOl

Logical Logical Bitwise

Prior to 9.0, the Series 800 FORTRAN compiler used different
internal representations and tests for. TRUE than shown above.

The $HP9000_800 LOGICALS directive tells the compiler to use
the same representation and test for . TRUE. as was used by
the pre-9.0 Series 800 compiler. The +800 compile line option
turns on that alternative logical mode, as well as turn on other
pre-9.0 Series 800 compatibility features.

Other vendors' logical modes can be enabled with other flags.
For VAX logicals, use $NOSTANDARD LOGICALS, +E2, or +e. For
Domain logicals use $APOLLO LOGICALS or +apollo.

One major feature of HP's version of FORTRAN is that it supports recursion.
This means that variable storage for subroutines and functions is dynamic.
Thus, variables in subprograms do not retain their values between invocations,
unless they are in common blocks or are saved with the SAVE statement or the
-K compile line option.

Porting FORTRAN Programs 6·9

6

6

Data File Compatibility

Because all HP- UX FORTRAN implementations use similar run-time I/O
libraries and data types are compatible on all HP-UX systems, unformatted
data files created on one system can be read on any other, if no records
or structures are used. If records and structures are used, they can be
accessed properly only if the appropriate data alignment directive is specified:
$HP9000_300 ALIGNMENT, $HP9000_800 ALIGNMENT, or $NOSTANDARD ALIGNMENT

(the last directive is on the Series 300/400 only). The ability to read
unformatted data files across systems is very useful since unformatted I/O is
typically the fastest data storage and retrieval mode available.

For example, the following writer program creates an unformatted data file
testdata. This data file can be transported to any HP-UX system and when
read, will give the same results.

6-10 Porting FORTRAN Programs

program testwriter
character*l a
integer*2 b
logical*2 c
integer*4 d, ii
logical*4 e
real f
double precision g
complex h
double complex i

open (3,file='testdata',form='unformatted')
do 10 ii = 1,5

a = char(ii+33)
b =
c =
d =
e =
f =

ii
(mod(ii,2)

ii
(mod(ii,2)

ii
g = ii

.eq.

.eq.

h = cmplx(ii,ii+1)
i = dcmplx(ii,ii+1)

0)

0)

write(3) a,g,b,g,c,g,d,g,e,g,f,g,h,i
10 continue

end

Porting FORTRAN Programs 6·11

6

6

Here is the reader program:

program testreader
character*1 a
integer*2 b
logical*2 c
integer*4 d, ii
logical*4 e
real f
double precision g,g1,g2,g3,g4,g5
complex h
double complex i

open (3,file='testdata' ,form='unformatted')
do 10 ii = 1,5
read(3) a,g1,b,g2,c,g3,d,g4,e,g5,f,g,h,i

print *,a,b,c,d,e,f,g,g1,g2,g3,g4,g5,h,i
10 continue

end

The output of the testreader program will be the same on all HP-UX
systems.

6-12 Porting FORTRAN Programs

If you use records and structures, rather than lists of variables as in the above
example, then you must use an alignment directive to force the same alignment
on different systems. For example, the following program writes unformatted
records using Series 700/800 alignment on the Series 300/400. All record fields
are aligned on "natural" boundaries (that is, address MOD size of field = 0):

$hp9000_BOO alignment

program recwriter
structure /stuff/

byte b1, b2, b3
integer i
logical*1 0

character*4 c4
real*B r

end structure

record /stuff/ r

open (3,file='testdata',form='unformatted')
do i=1,5

write (3) r
end do
end

assign the fields of record r
write the record unformatted

Porting FORTRAN Programs 6·13

6

6

The program to read the records back in is shown below. Notice that the
$hp9000_BOO alignment directive must be included on the Series 300/400 in
the reading program to ensure that the records are read with the proper data
alignment.

$hp9000_BOO alignment

program recreader
structure /stuff/

byte bi, b2, b3
integer i
logical*i 0

character*4 c4
real*B r

end structure

record /stuff/ r

open (3,file='testdata',form='unformatted')
do i=i,5

read (3) r read the record unformatted
do whatever with the record

end do
end

For details on the use of the alignment directives and compile line options, refer
to the FORTRAN documentation for your system.

Formatted data files created on any HP- UX system are also readable on all
HP- UX systems in the same manner.

Parameter Passing

By default, HP-UX FORTRAN parameters are passed by reference. That is,
the address of the actual parameter is passed to the called procedure. The
procedure then dereferences the address to access the actual parameter.

For character strings, HP- UX FORTRAN passes the string length as a
"hidden" parameter at the end of the parameter list. The string is passed by

6-14 Porting FORTRAN Programs

reference, and the string length parameter is hidden in the sense that the
programmer does not have to specify it.

Note Code compiled on Series 800 prior to 9.0 passes character
strings by descriptor.

You can change the parameter passing mode by using one of the nonstandard
built-in parameter passing functions described below. These are useful for
calling routines written in other languages which have different parameter
passing conventions. You can use the built-in functions in a parameter list
(for example, CALL SUBR(y'VAL(actuaLarg))) or in the ALIAS directive. If
specified in both places, the parameter list in the CALL or function reference
takes precedence over the $ALIAS specification.

The $ALIAS directive is supported on all HP-UX implementations. You can
specify the parameter passing modes in the optional argument list portion of
the directive (for example, (y'VAL, Y.REF, y'VAL)). On the Series 700/800,
the directive also supports the C, Pascal, and COBOL language keywords to
specifically set the parameter passing mode for that particular language. See
the HP9000 FORTRAN Programmer's Reference for details on the $ALIAS 6
directive.

Porting FORTRAN Programs 6-15

6

The built-in parameter passing functions are:

YeVAL

YeREF

YeDESCR

specifies that the value of the actual argument is to be passed
to the called procedure. This can be used with all types of
arguments on the Series 700/800. However, when used with
actual argunlents of a procedure, it has no effect; that is, a
pointer to the procedure is still passed unless pre-g.O Series 800
argument passing is in effect by using +800 or $HP9000_800
ON. In this case, YeVAL disables the pre-g.O Series 800 style of
passing the address of a pointer to the procedure for this
argument. YeVAL can only be used with scalar arguments of 4
bytes or less on the Series 300/400.

specifies that the address of the actual argument is to be
passed to the called procedure. This is the compiler default,
except for character arguments. For character arguments, this
disables the passing of the hidden length parameter.

specifies that a descriptor is passed for this argument. HP- UX
descriptors consist of the address of the object followed by the
length of the object. For actual arguments of a procedure, a
descriptor does not contain the length, but contains another
level of indirection for the procedure name: instead of a pointer
to the procedure is passed. For character strings and procedure
name arguments, YeDESCR corresponds to the pre-g.O Series 800
convention for passing these types of arguments. YeDESCR is not
supported on the Series 300/400.

6-16 Porting FORTRAN Programs

Common Region Names

ANSI FORTRAN 77 prohibits the use of the same name for a common region
and a subprogram. However, some implementations do permit this overlapping
as an extension. Programs that use the same name for a common region and
a subprogram will not run correctly on any Series unless the RENAME_ COMMON
directive is specified. This applies to intrinsic function names also.

Note When using the RENAME_COMMON directive, the compiler changes
the external name of the common region. Programs which
interface to other languages and which depend on common
regions for communication will not work unless the $ALIAS
directive is also used to modify the external name.

Vector Instruction Set Subroutines

Listed below are Vector Instruction Set (VIS) subroutines that are
supported on HP- UX. On all HP- UX implementations, they are found in
/usr/lib/libvis. a, which you must link explicitly with the -lvis option to
the linker or the FORTRAN compiler. These routines may not be available on 6
other vendors FORTRANs.

DVABS DVNRM VADD VNRM
DVADD DVPIV VDIV VPIV
DVDIV DVSAD VDOT VSAD
DVDOT DVSDV VMAB VSDV
DVMAB DVSMY VMAX VSMY
DVMAX DVSSB VMIB VSSB
DVMIB DVSUB VMIN VSUB
DVMIN DVSUM VMOV VSUM
DVMOV DVSWP VMPY VSWP
DVMPY VABS

Porting FORTRAN Programs 6·17

6

Compile Line Options

The HP- UX FORTRAN compilers support different compile line options.
Table 6-4 shows the options that differ on the systems. Options that are
the same on both systems are not listed here. See your system's FORTRAN
documentation and J77(1) for details on compile line options.

6·18 Porting FORTRAN Programs

Table 6·4. Differences in FORTRAN Compiler Command Lines

Option Effect Difference

+A Force 2-byte data alignment All Series support +A, +A3, and
+A8; Series 300/400 only also
supports +AN.

+bfpa Floating-point option Series 300/400 only.

+DA1. 0 Optimize for Series 800 architecture Series 700/800 only.
and instruction set. Or, use OA8xx
where 8xx is a Series 800 system
model number.

+OA1.1 Optimize for Series 700 and some Series 700/800 only.
Series 800 architectures and
instruction sets. Or, use OA7xx where
7 xx is a Series 700 system model
number.

+OS1.0 Optimize for Series 800 instruction Series 700/800 only.
scheduling. Or, use OS8xx where 8xx
is a Series 800 system model number. 6

+OS1.1 Optimize for Series 700 and some Series 700/800 only.
Series 800 instruction schedulings.
Or, use DS7 xx where 7 xx is a Series
700 system model number.

+ffpa Floating-point option Series 300/400 only.

+FPstring Initializes the flags that specify how Series 700/800 only.
floating-point exceptions should be
trapped.

+1 Instructs the compiler to prepare Series 700/800 only.
object code for profiling.

+M Floating-point option Series 300/400 only.

+On Specify optimization level Semantics differ between
systems. Refer to /77(1) for
specific differences.

Porting FORTRAN Programs 6·19

Table 6·4.
Differences in FORTRAN Compiler Command Lines (continued)

Option Effect Difference

+P Directs the compiler to use profile Series 700/800 only.
information to guide code generation
and profile-based optimization.

+Pl, +P2 Invoke specific optimizer phase Series 300/400 only.

+T Procedure traceback Series 700/800 only.

Note The +On option replaces -01 and -02 on the Series 800.

Compiler Directives

Most compiler directives are portable across the HP- UX FORTRAN
implementations; if not, the directive is ignored and a warning message is

6 issued.

Since compiler directives themselves are non-standard, it is recommended that
if you need to use them, you place them in a directives file and use the +Q

compile-line option. The +Q compile-line option causes the compiler to look
for compiler directives in the file specified before compiling the FORTRAN
program. In this way, the compiler directives are not included in the source file.

Directives Only on Series 300/400

The INL INE directive is the only one excl usi vely on Series 300/400.

6·20 Porting FORTRAN Programs

Directives Only on Series 700/800

CHECK_OVERFLOW
CODE_OFFSETS
INIT

OPTIMIZE

LIST_CODE
LOCALITY

ASSEMBLY
SEGMENT

CHECK_FORMAL_PARM
CHECK_ACTUAL_PARM

When you use OPTIMIZE on Series 300/400, the command line nlust also specify
-0, +01, +02 or +03.

On Series 300/400, the SAVE_LOCALS directive causes saved variables to be
initialized to zero; it does not initialize variables on Series 700/800.

Temporary Files (STMPDIR)

Series 300/400 compilers produce a number of intermediate temporary files
usually on /tmp or /usr/tmp, for their private use during the compilation
process. These files are normally invisible to you because they are created and
removed automatically. If, however, your system is tightly constrained for
file space, the requirements for these files may exceed the space available. By
assigning another directory name to the TMPDIR environment variable you can
redirect these temporary files. See 177(1) for details.

The Series 700/800 compiler does not create temporary files, so TMPDIR is
ignored, except for . F files where a temporary file is created for the output
from cpp.

lintfor: Extended Syntax Checker

All HP- UX implementations provide the lintfor syntax checker which can be
used to find some nonportable constructs. This command does a static analysis
of a source program to find nonstandard or dubious programming. lintfor
does not produce object code; it only does a syntax check. For details on the
use of lintfor, see FORTRAN/BODO Programmer's Guide.

Porting FORTRAN Programs 6·21

6

6

ratfor Support

HP- UX supports ratfor, a "rational" FORTRAN dialect preprocessor.
ratfor translates a superset of FORTRAN, adding certain control constructs
patterned after statements found in the C language to the standard FORTRAN
source code. Since ratfor source code is widespread throughout the industry,
HP- UX provides this preprocessor on all implementations. However, it is
unlikely that rewriting existing FORTRAN into ratfor will be to your
advantage.

ASA Carriage Control

Another FORTRAN utility that is useful is asa, a filter that interprets ASA
carriage control characters. These carriage control characters will merely be
printed as opposed to being used for carriage control on HP-UX unless asa is
used during the execution of the FORTRAN program.

For example, consider the following FORTRAN program:

program testasa
C Unit 6 is preconnected to stdout on HP-UX.
C Note that some terminals may disregard printer
C control characters.

write(6,100)
write(6,200)
write(6,300)
write(6,400)
write(6,500)

100 format(" A blank line should precede this line.")
200 format("OThis line should be double spaced.")
300 format("lThis line should come out on a new page.")
400 format(" This is a ")
500 format("+

end
concatenated line.")

6-22 Porting FORTRAN Programs

After compiling, if this program is executed without asa using the command

a.out I lp

the output to the printer will be

A blank line should precede this line.
OThis line should be double spaced.
lThis line should come out on a new page.
This is a
+ concatenated line.

On the other hand, if asa is included in the pipe as a filter as in the following
command:

a.out I asa I lp

the output to the printer will be

A blank line should precede this line

This line should be double spaced.
{new page here}
This line should come out on a new page.
This is a concatenated line.

Checking for Standards Compliance

If you have the HP Advise product, you can also check for FORTRAN
standard compliance using the apex command.

Porting FORTRAN Programs 6-23

6

Porting FORTRAN Programs between Series 300/400 and
Series 700/800
The FORTRAN compiler has an option, +800, which allows you to compile in a
compatible mode with the pre-9.0 Series 800 FORTRAN cOlnpiler. Due to the
performance penalty incurred, using +800 is only recommended for

• Compiling prior Series 800 FORTRAN code that depends on features of the
earlier implementation such as its logical representation or argument passing
conventions, or,

• Linking with objects compiled with the pre-9.0 Series 800 FORTRAN
compiler; for example, you may need to link with a third party library that
has not been recompiled for 9.0.

If you do not specify +800, by default your code will be compatible with all
previous pre-9.0 FORTRAN code from the Series 700 and Series 300/400. (The
remainder of this chapter assumes you are using this default mode.) When
porting from a Series 300/400 to Series 700/800, you should use this default
mode. If you move programs to the Series 700 from the pre-9.0 Series 800,
no re-compilation is required. However, to take advantage of new hardware

6 instructions on the Series 700, you must recompile. If you do recompile, you
should use the +800 option only if one or both of the situations listed in the
above paragraph exist.

For the most part, Series 700/800 FORTRAN is identical to Series 300/400
with these notable exceptions:

• The Series 700/800 has different alignment rules than the Series 300/400.

• There are architectural differences that may be exposed if you use inherently
unportable practices.

• There are differences in arithmetic due to the different processors.

• There are some language feature differences.

• There are development environment differences. These do not affect program
portability, per se, but may require changes in makefiles or development
scripts.

The following sections elaborate on these differences.

6-24 Porting FORTRAN Programs

Data Alignment

The Series 700/800 processor generally requires that data be aligned on
boundaries equivalent to their size, whereas the Motorola architecture of the
Series 300/400 has less restrictive alignment. (For details on data types and
alignments, see Table 6-1.) There are two scenarios in which this difference
may cause portability problems in FORTRAN programs:

• Using EQUIVALENCE or COMMON statements in a way that allows references
to a variable that may be incompatible with the type of that variable, or
making assumptions about the way data is laid out in a common block .

• Using COMMON to access a C structure from a FORTRAN routine (or vice
versa).

The EQUIVALENCE statement can cause portability problems due to different
architectures' varying requirements for data alignment. In short, EQUIVALENCE
makes it possible to request that data be arranged in a manner incompatible
with the processor architecture. For example, the following code example
compiles and runs correctly on the Series 300/400, but fails to corn pile on the
Series 700/800.

program equivl
real*4 a(100)
real*8 x,y
equivalence (a(l), x) (a(2), y)

end

Attempting to compile this on the Series 700/800 produces the following error
message because of the differing alignment requirements for real*8 variables;
the program tries to align an 8-byte datum on a 4-byte boundary:

Declaration error on/above line 6 of equivl.f; for x;
bad alignment forced by equivalence

The COMMON statement can cause similar problems when used to simulate C
structures in FORTRAN. If FORTRAN and C arrange the data differently,
then you will have problems when passing the common block to a C function
which expects a pointer to a structure. This should not be a problem when
porting from the Series 300/400 to the Series 700/800, although if you are
using that common block/structure to create binary data files, those files may

Porting FORTRAN Programs 6·25

6

not be cOlnpatible between the two systems. Refer to Chapter 5 on porting C
programs for details.

When investigating alignment problems, it is occasionally useful to find out
exactly how the compiler is aligning a datum. The following C program can
be linked with your FORTRAN program and then called with the datum of
interest.

printaddr(name, datum)
char *name;
char *datum;
{

printf("y's: OxY.8.8x, (Y.d)\n", name, datum, (int)datum Y. 4);
}

You can then call this function from FORTRAN like this:

program align
integer*4 i4(10), j4(10)
integer*2 i2(50)
common i2

6 equivalence (i2(1), i4(1))
equivalence (i2(22), j4(1))
call printaddr(' i4(1)' / Ichar(O) , i4(1))
call printaddr('j4(1) '//char(O) , j4(1))
end

The Series 700/800 FORTRAN compiler has a number of directives that alter
the way the compiler aligns data, and consequently, the instructions used
to access that data. A complete discussion of these directives is beyond the
scope of this guide, but be warned that the directives that invoke non-native
alignments may cause performance degradation due to sub-optimal data
accesses. (For instance, having to access a 4-byte value as two 2-byte values
because it's not aligned to a 4-byte boundary.)

6-26 Porting FORTRAN Programs

Implementation Differences

There are a few differences between FORTRAN on the Series 300/400 and on
the Series 700/800 that will only be a problem if your program uses inherently
unportable techniques:

• A variable declared as a formal argument in a program unit and used
following an ENTRY statement, but not listed as a formal argument in the
ENTRY, behaves differently on the two systems.

• The value of an uninitialized local variable may be different on the Series
700/800 than it is on the Series 300/400.

• As discussed in Chapter 3, the execution stack on the Series 700/800 grows
towards higher addresses while on the Series 300/400, it grows towards lower
addresses. If you directly manipulate the stack, the same code will not work
for both architectures.

• FORTRAN intrinsic routines are in different libraries on Series 700/800
than on Series 300/400. Also, the symbol in the library corresponding to
a particular FORTRAN intrinsic may not have the same name. If your
program makes assumptions about library internals, it will probably have to
be altered to run on the Series 700/800.

Arithmetic Differences

Because the Series 700/800 have different math hardware than the Series
300/400, there are some inevitable differences in the results of some arithmetic
operations:

• The Series 700/800 and the Series 300/400 implen1ent full IEEE
arithmetic. However, the Series 300/400 uses 80-bit internal representations
of floating-point numbers while the Series 700/800 is limited to 64.
Consequently, there may be some loss of precision on the Series 700/800.

• A few equations yield different results on the two machines:

Porting FORTRAN Programs 6·27

6

Equation Result on Series 300/400 Result on Series 700/800

SQRT(x), x < 0

o

o
o

1

+INF

Not a number

• Floating-point overflow and some underflows on the Series 300/400 produce
the error message Floating exception - core dumped, but on the Series
700/800, overflow produces a result of INF, while underflow produces O. O.
The Series 700/800 can trap for overflow or other conditions if the +T
option is used. See the FORTRAN/9000 Programmer's Reference for more
information.

• It is much more difficult for a user program to do math exception handling
on the Series 700/800 than on the Series 300/400. A discussion of the
differences is beyond the scope of this document. (See the ON statement in
the FORTRAN/9000 Programmer's Reference for more information.)

6 Language Feature Differences

Some FO RTRAN language features available on the Series 300/400 are either
unavailable or work differently on the Series 700/800.

• The $NOSTANDARD ALIGNMENT directive is not supported on the Series
700/800.

• The ISHFTC intrinsic will not handle arguments that are out of range.

• The constant MAXINT may be used as an upper loop bound on the Series
300/400, but not on the Series 700/800.

Development Environment Differences

There are some differences in the comlnands used to compile and link a
FORTRAN program on the two systems. There are also some primarily
cosmetic differences (for example, compiler error and warning messages may be
worded differently). Such differences may require changes in your makefiles or
development scripts. See the FORTRAN/9000 Programmer's Reference for
details on the different options.

6-28 Porting FORTRAN Programs

Porting between HP-UX FORTRAN and VMS FORTRAN
Because VMS FORTRAN has been a popular progranlming environment
fbr many years, many programs have been written in VMS FORTRAN.
Although most of these programs use extensions specific to this environment,
Hewlett-Packard Company realizes that these programs represent a substantial
software investment. Consequently, an effort has been made to understand the
differences between VAX VMS FORTRAN and HP-UX FORTRAN and to
provide mechanisms to make porting of these programs easier.

As is the case with most FORTRAN implementations, the most difficult
areas of compatibility are in the areas of operating system interfaces, file
manipulation, and input/output. To some extent, there are differences in
extended language feature sets and compiler options as well.

Both the VMS and the HP- UX compilers support the full ANSI FORTRAN 77
standard and MIL-STD-1753 extensions. However, the VAX VMS compiler has
evolved from ANSI FORTRAN 66, an earlier standard. It therefore supports
many language features that predate the current standard. It also supports a
rich set of extensions peculiar to the VMS environment. This section primarily
describes the differences between the extensions to the FORTRAN 77 standard.

FORTRAN Applications without VMS System or Run-Time Library
Calls

If there are no VMS system or run-time library calls, and the application is
written completely in FORTRAN, using only FORTRAN I/O facilities, then
the language comparison below can be consulted for the differences between the
FORTRAN s on these systems. In general, differences between the HP- UX and
VMS operating systems will not arise in this case.

When using only FORTRAN-defined I/O, one important issue remains. If
you have a VMS FORTRAN application that writes unformatted (binary)
data in a file that will be read by a different FORTRAN program, then you
should port both the writer and reader programs to HP -UX. If the writer
program runs on VMS, and the data file is moved to HP-UX over a local area
network or by magnetic tape, the HP- UX reader will not be able to correctly
read the file. Both the format of the file (for example, the file header and the
record headers and trailers) and the byte representations of the data, will be
different between VMS and HP-UX, even though FORTRAN I/O facilities were

Porting FORTRAN Programs 6-29

6

6

used exclusively. The simplest way to move data is to convert it toASCII
to solve the bit representation problem, and then move it using a common
format. Large arrays of bytes (like graphics pixel maps) can probably be moved
without conversion to ASCII, if a common file format can be agreed upon.
However, some translation will be required to make the resulting file readable
as an unformatted FORTRAN file on HP- UX. In this case, consider writing the
necessary conversion program to move the data to FORTRAN the first time.

The difference in hardware that exists between the VAX architecture and
most other computer architectures may cause problems since FORTRAN's
EQUIVALENCE statement and bit operations allow system-dependent coding. An
application that depends on the bit representations of numbers instead of their
values can compile with no errors and still produce unexpected results when
run.

For example, the following program produces different results when run on
VMS and HP-UX.

c
c
c

A program that compiles and produces different results
on a VAX system than on an HP system

program machdep
integer*2 i(4)
integer*4 j(2),sum
equivalence (i,j)
do 10,ii=1,4

i(ii) = ii
10 continue

sum = 0
do 20,ii=1,2

sum = sum + j(ii)
20 continue

print *,sum
end

This example depends on the byte ordering of integers. It prints 262150 on an
HP -UX system and 393220 on a VAX system.

6-30 Porting FORTRAN Programs

FORTRAN Applications with VMS System or Run-Time Library Calls

To check for VMS system calls or VMS run-time library calls, search the
source code for $ using the HP- UX command grep or the VMS DeL
command search. VMS system call names start with SYS$ (like SYS$Q10W
and SYS$ASS1GN) and run-time library routine names start with various
prefixes including L1B$, STR$, and SMG$. HP-UX FORTRAN compilers accept
procedure names with the $ character so problems do not become evident until
the linker fails to resolve the references to these VMS routines.

Note VMS system calls can also be abbreviated as starting simply
with $, instead of SYS$. SO, for example, SYS$ASS1GN, can be
written as $ASS1GN.

Once you have located VMS system or run-time library calls, you can do any of
the following:

• Write emulation or onionskin routines in e or FORTRAN that use HP- UX
system and library calls. If you use emulation or onionskin routines written
in e (the easiest way to get to the HP- UX routines), you'll probably need
to change the VMS names since HP-UX e compilers will not accept the 6
$ character in names. (Or alternatively, use $AL1AS.) A programmer
undertaking this task will need to be quite familiar with Sections 2 and 3 of
the HP-UX Reference in addition to being knowledgeable about VMS and
the application program.

• Modify the source to use HP-UX routines directly. (You should note that
there is very little chance that this is as simple as finding the HP- UX routine
that exactly matches the functionality of the VMS one.)

• Use a third party product to assist you with the VMS to HP- UX port.

An example is a program that needs to read input from a graphical input
device without waiting for a standard terminating character. FORTRAN's
READ statement will not suffice here. The VMS solution uses SYS$ASS1GN to
allocate a channel number and then uses SYS$Q10W to perform low level reads
and writes to the device. Similar functionality on HP- UX can be obtained
by using open(2) to return a file descriptor instead of SYS$ASS1GN's channel
number and by using ioctl (2), read(2), and TJri te (2) to set up character
I/O and perform the i/O operations.

Porting FORTRAN Programs 6·31

6

Graphics and Windows

FORTRAN does not define any graphics functionality. The most common
graphics applications will either include a "graphics driver" written in
FO RTRAN that sends Tektronix ™ (or some other vendor) escape sequences
over RS-232, or it will reference an object code library for a proprietary
graphics display system. In the case of the RS-232 type driver, the code
will usually port directly and can be used to drive the same type of display
connected to your HP-UX system with RS-232.

If the application uses a proprietary display or you wish to use HP's family of
graphical devices, you will need to convert the graphics calls into HP's Starbase
library calls. For all but the simplest graphics needs, this will probably involve
some redesign of the graphics part of the application. In some cases, a nearly
one-to-one translation of graphics calls may suffice.

HP -UX and VMS (along with several other vendors' systems) now share a
common windowing system based on the X11 Window System from MIT. This
brings higher compatibility for windowing and simple graphics functionality
to these systems. However, since the X library interface uses a C language
definition, it requires data types and calling conventions not normally found in
FORTRAN 77 but available as extensions in VMS FORTRAN. Consequently,
an X application written in VMS FORTRAN will not compile and run on all
HP- UX implementations. HP provides some FORTRAN bindings for X that
will make this task easier, but source modifications will be necessary.

Comparisons of Core Language Features

The next several subsections list VAX VMS implementation features. Each
item is also supported on HP- UX, unless otherwise stated. Also, unless
otherwise stated, each HP- UX feature is supported on all implementations.

Character Sets

• Lower case ASCII letters are converted into their upper case counterparts
except within Hollerith or quoted strings. This is the default for VMS and
HP- UX. HP- UX FORTRAN also provides the +U compile line option for
making lower case and upper case ASCII characters distinct.

6·32 Porting FORTRAN Programs

• TAB characters have the same behavior on VMS and HP- UX
implementations between columns 1-72.

• Quotation marks ("), underscore (_), exclamation point (!), dollar sign ($),
ampersand (&), and percent sign (Y.) are supported.

• CONTROL-L within source code produces a new page in the source listing.

• Left and right angle brackets « and» are used only to delimit variable
expressions within formats. This is also supported on HP-UX.

• The VMS FORTRAN Radix-50 character set is not supported on HP-UX.

Control Statements

• The DO ... WHILE control construct is supported.

• The DO ... END DO control construct is supported.

• Forcing FORTRAN 66 semantics on DO loop evaluation by requiring a
minimum of 1 iteration of the loop can be enabled via a compiler option.

• Jumps into IF blocks or ELSE blocks are allowed.

• Extended-range DO loops are permitted. That is, jumps out of a DO loop to 6
other executable code are allowed as long as control eventually returns back
to within the DO loop by means of an unconditional GOTO .

Data Types and Constant Syntaxes

• The BYTE data type is supported.

• The LOGICAL*l, LOGICAL*2, LOGICAL*4 data types are supported.

• The INTEGER*2 and INTEGER*4 data types are supported.

• The REAL*4, REAL*8, COMPLEX*8 and COMPLEX*16 data types are supported.

• REAL*16 is supported.

• The DOUBLE COMPLEX data type (synonym for COMPLEX*16) is supported.

• Octal constants of the form 0' ddd' or 'ddd' 0 are supported.

• Hexadecimal constants of the form Z'ddd' or 'ddd'X are supported.

• Octal and hexadecimal constants are considered to be "typeless" and may be
used anywhere a decimal constant may be used.

Porting FORTRAN Programs 6-33

• Hollerith is supported. It is also supported on all HP- UX implementations
but in different ways. On Series 300/400 HP-UX compilers, Hollerith is
treated internally as a synonym for a quoted character constant. On Series
700/800, Hollerith constants are considered "typeless" and may be used
anywhere a decimal constant may be used.

Note For pre-9.0 FORTRAN on Series 700/800, Hollerith constants
were treated as integers.

• Character constants have a maximum length of 2000 characters on VMS.
Refer to "Character Constants" earlier in this chapter for HP- UX limits.

• RECORD and STRUCT data types are supported. They are also supported on
HP- UX. Default alignment differs from VMS. On the Series 300/400 only, use
the $NOSTANDARD ALIGNMENT directive to force VMS alignment.

• VMS FORTRAN octal constants of the form "ddd are not supported on
HP-UX.

• VMS FORTRAN REAL*8 (D_floating) and COMPLEX*16 (D_floating) are
6 not supported on HP- UX.

General Statement Syntax and Source Program Format

• An exclamation point can be used for end-of-line comments.

• D is recognized in column 1 for debug lines.

• INCLUDE filename is allowed for including source statements.

Note This statement should not be confused with the $INCLUDE
compiler directive.

• On VMS, sequence numbering is allowed in columns 73-80. VMS ignores
sequence numbers. HP-UX ignores anything in columns> 72.

• Continuation lines are different on HP-UX than VMS. On HP- UX, 99
continuation lines are allowed.

• An initial tab followed by a non-zero digit is interpreted as a continuation
line.

6-34 Porting FORTRAN Programs

• Up to 132 columns can be made significant under a VMS compiler option;
this is not supported on HP- UX unless the +es option is used.

Note Do not compile code which has sequence numbers with +es;
errors will result.

• DATA statement location is handled differently on HP- UX than VMS. DATA
statements can be interspersed with executable statements on all Series
provided the -K or +e compile line option is specified.

• Alternate forms of data type length specification are allowed, for example:

INTEGER FOO*4

• Variables may be initialized when they are declared, for example:

INTEGER IARRAY(3) /4,5,6/

• DATA statements may be used for initialization of common block variables
outside of BLOCK DATA subprograms.

• Octal, hexadecimal and Hollerith constants are allowed within DATA
statements.

• Octal, decimal, hexadecimal, and Hollerith constants may be used within
DATA statements to initialize CHARACTER*l variables.

• Two arithmetic operators may be consecutive if the second is a unary
operator. Be aware that precedence may be changed; for example:

I = IA + -3

• INCLUDE library_module for including selected library routines is supported
on VMS but not on HP-UX.

Input/Output Statements

• DECODE and ENCODE are supported.

• N amelist-directed 110 is supported.

• List-directed internal I/O is supported.

Porting FORTRAN Programs 6·35

6

• Files opened for DIRECT access can have sequential I/O operations
performed.

• The TYPE statement is supported.

• An optional comma (,) is allowed to precede the iolist within a WRITE
statement; for example:

WRITE(6, 100) , A, B

is equivalent to

WRITE(6, 100) A, B

• The RECL= I/O specifier for an OPEN statement will be converted to INTEGER
if it is not already.

• The UNIT= and REC= I/O specifiers will be converted to INTEGER if they are
not already.

• Full variable-format expression support is provided on VMS; on HP-UX,
it is supported on all implementations, if the +e or +E6 compiler option is
specified.

6 • The RECL= I/O specifier counts words on VMS, but bytes on HP- UX.

• Unlike VMS, the FILE= I/O specifier must be CHARACTER on HP- UX.

• The ACCESS=' APPEND' specifier for the OPEN statement is supported.

• The MAXREC=n specifier for the OPEN statement is supported.

• Auto-opening of files is supported.

• 0 and Z field descriptors are supported.

• The $ edit descriptor is supported.

• VMS permits the H field descriptor to be used with READ as well as WRITE; it
can be used only with WRITE on HP-UX.

• Unlike on VMS, on Series 700/800, the nH descriptor is treated as nX when
used with READ.

• The Q edit descriptor is supported.

• Default field descriptors are supported.

6-36 Porting FORTRAN Programs

• $ and ASCII NUL carriage control characters are supported; they are not
supported on HP- UX.

• The ACCEPT statement is supported.

• DEFINE and FIND are supported on VMS but not on HP-UX.

• DELETE, REWRITE, and UNLOCK statements are supported on VMS; on HP- UX,
they are only supported on Series 700/800.

• Key-field and key-of-reference specifiers are supported on VMS and on
HP-UX on Series 700/800 only.

• The V11S concept of indexed file access is supported on Series 700/800 only,
provided you also install an appropriate 3rd party ISAM product.

• The HP- UX FORTRAN compiler emits warning messages for unsupported
VMS keywords and I/O specifiers.

• The following VMS keywords are supported only on Series 700/800, while
Series 300/400 gives a nonfatal warning and ignores the keyword clause:

KEY
KEYED
KEYID
RECORDTYPE
SHARED

• HP-UX implementations give a nonfatal warning and ignore the keyword
clause for the following VMS keywords:

ASSOCIATEVARIABLE DISP NOSPANBLOCKS
BLOCKSIZE DISPOSE ORGANIZATION
BUFFERCOUNT EXTENDSIZE RECORDSIZE
CARRIAGECONTROL INITIALSIZE USEROPEN
DEFAULTFILE

• A comma (,) can be used to separate numeric input data to avoid having to
blank fill (Le. short field termination).

• Extraneous parentheses are permitted around I/O lists for READ and WRITE
statements on VMS and all HP-UX Series; for example:

WRITE (6, 100) (A, B, C)

Porting FORTRAN Programs 6-37

6

6

Intrinsic Functions

• VMS FORTRAN SIZEOF is supported on HP-UX with the +e or +El compile
line option or the $NOSTANDARD SYSTEM directive.

• MIL-STD-1753 intrinsics ISHFT, ISHFTC, IBITS, BTEST, IBSET, and IBCLR
are supported.

• The MIL-STD-1753 subroutine MVBITS is supported.

• Transcendental intrinsics that take arguments in degrees are:

ACOSD
ASIND
ATAN2D

ATAND
COSD
DACOSD

DASIND
DATAN2D
DATAND

DCOSD
DSIND
DTAND

SIND
TAND

• The following VMS-specific intrinsics are supported on HP- UX:

AIMAXO CDSQRT IIBSET IISHFTC INOT JIOR
AIMINO DFLOAT IIDIM IISIGN JIABS JISHFT
AJMAXO DFLOTI IIDNNT IIXOR JIAND JISHFTC
BITEST DFLOTJ IIEOR IMAXO JIBITS JISIGN
BJTEST DREAL IIFIX IMAXl JIDIM JIXOR
CDABS IIABS lINT IMINO JIDNNT JMAXO
CDEXP IIAND IIOR IMINl JIEOR JMAXl
CDLOG IIBITS IISHFT ININT JINT JMINO

JMINl
JMOD
JNINT
JNOT
ZEXT

• The following VMS-specific intrinsics to support the REAL*16 data type are
supported on HP- UX:

IIQNINT QASIND QCOSH QLOG QSIGN
IJQNINT QASINH QDIM QLOG10 QSIN
IQINT QATAN QEXP QMAXl QSIND
IQNINT QATAN2 QEXT QMINl QSINH
QABS QATAN2D QEXTD QMOD QSQRT
QACOS QATAND QFLOAT QNINT QTAN
QACOSD QATANH QFLOTI QNUM QTAND
QACOSH QCOS QFLOTJ QPROD QTANH
QASIN QCOSD QINT SNGLQ

• VMS system subroutines (DATE, EXIT, IDATE, TIME, SECNDS, RAN) are
supported with the +e or +El compile line option or the $NOSTANDARD SYSTEM

6-38 Porting FORTRAN Programs

directive. These routines are not compatible with HP- UX system functions of
the same name. VMS FORTRAN ERRSNS is not supported on HP- UX.

Specification Statements

• IMPLICIT NONE turns off default type rules for variables.

• The following limited number of intrinsic functions are allowed to be used
within the PARAMETER statement to define constants:

ABS CONJG
CHAR DIM
CMPLX DPROD

lAND
ICHAR
IEOR

IMAG
lOR
ISHFT

LGE
LGT
LLE

LLT
MAX
MIN

In this context, arguments to these functions must be constants.

MOD
NINT
NOT

• There is support for the alternate form of the PARAMETER statement with
different semantic connotations. For example:

PARAMETER ISTART = 3

• Symbolic constants may be used in run-time formats.

• The VIRTUAL statement is supported.

• Multidimensional arrays may be specified with only one subscript within
EQUIVALENCE statements.

• The VOLATILE statement is supported.

• On VMS but not on HP- UX, symbolic constants may themselves be used to
define COMPLEX symbolic constants within a PARAMETER statement.

• The NOF77 interpretation of the EXTERNAL statement (non-ANSI semantics) is
supported on VMS but no on HP-UX.

Porting FORTRAN Programs 6·39

6

Subprograms

• ENTRY points in a CHARACTER function must all be of type CHARACTER, but
can have different length specifications, as for example:

CHARACTER*10 FUNCTION CHARFUNC(A)

CHARACTER*5 CHFUNC

ENTRY CHFUNC() ! Not ANSI but allowed on HP-UX and VMS.

END

• Octal or hexadecimal or Hollerith constants are treated as typeless constants
when passed as actual arguments; the corresponding formal parameter can
be of any type as long as the length of the formal is explicit (that is, not
CHARACTER* (*)) and the length of the constant actually matches the length
of the formal type.

• Y.loc is recognized as a built-in function to compute the internal address of a
datum.

6 • Y.val, Y.ref, and Y.descr are supported within actual argument lists. The
$alias compiler directive provides the same functionality and it is supported
on all HP- UX implementations.

• Implementations recognize the alternate syntax for specifying the type of
functions within a function declaration; for example:

INTEGER FUNCTION FOD*2(X, Y)

• Calls to subprograms can have "missing" actual arguments whose positions
are indicated by a comma (,). The compiler implicitly assumes that the
actual argument value is 0 and it is passed by value. For example:

x = FOD(,Y)

is equivalent to

x = FOO(Y.VAL(O) , y)

• &label can be used in place of *label when specifying alternate returns.

• The controlling expression for an alternate return will be converted to
INTEGER if necessary.

6·40 Porting FORTRAN Programs

Symbolic Names

• Regarding symbolic names maximum length, VMS allows 31 characters
within symbolic names, all significant. All HP- UX implementations allow at
least 255 characters within symbolic names, all significant.

• Underscores (_) and dollar signs ($) in names are allowed.

Type Coercions

• Arithmetic operations involving both COMPLEX*8 and REAL*8 elements
are computed using COMPLEX*16 arithmetic on all VMS and HP- UX
implementations.

• The numeric operand of a computed GOTO statement will be converted to an
INTEGER, if it is not already, on all VMS and HP-UX implementations.

• Character substring specifiers may be non-integer. They are implicitly
converted to integer by truncation.

• Unlike on VMS, non-integer array bound and subscript expressions will be
converted to INTEGER by truncation on all HP- UX implementations.

• Character constants can be used in a numeric context; they are interpreted 6
as Hollerith. Character constants and Hollerith are synonymous.

• On VMS, logical operands can be used like numeric operands, and vice versa.
Logical operands can appear in arithmetic expressions and numeric operands
can appear in logical expressions on all HP- UX implementations.

Miscellaneous

• .XOR. and .NEQV. are functionally equivalent operators.

• Null strings are allowed in character assignments. For example:

c = ";
• VMS represents . FALSE. by 0 and . TRUE. by -1. Logical representation on

HP- UX is O=FALSE and l=TRUE by default. All Series can specify the +E2
command line option or the $NOSTANDARD LOGICALS directive to cause the
compiler to generate the VMS representations for logicals.

Porting FORTRAN Programs 6-41

6

Data Representations in Memory

The internal allocation of memory for variable storage is primarily of interest in
situations where:

• Large amounts of local data are required .

• When equivalencing the same storage locations with different data types.

Large Amounts of Local Data

You should have few problems porting programs that require large local data
storage on to HP- UX. On HP-UX, data storage is limited only by the system
limits for the maximum run-time stack size and maximum process size. These
limits are pre-set to large default values and are further configurable by your
system administrator. See the How HP- UX Works: Concepts for the System
Administmtor (all Series) for further details.

Equivalencing of Data

A problem with memory allocation usually involves equivalencing of data. In
general, VMS data types take the same number of 8-bit bytes as their HP-UX
counterparts. The internal representations of logical, integer, floating-point,
Hollerith and character data types are not necessarily the same, however, and
programs that depend on them must be modified.

Another problem with equivalenced data is that the alignment restrictions
on the various data types differs between VMS and HP- UX and between
the various HP-UX architectures. VAX VMS will permit a datum to begin
on an arbitrary byte boundary, whereas HP- UX systems generally require
that multibyte data types be aligned in memory on specific boundaries. See
Table 6-1 for specific alignment requirements for the different architectures
on HP- UX. The FORTRAN compilers on HP-UX normally allocate data
storage to conform to alignment restrictions automatically. When using the
EQUIVALENCE statement to force the overlay of different data types, however,
the compilers do not have the freedom to allocate memory according to their
own alignment rules. If an EQUIVALENCE class forces an illegal alignment,
HP- UX compilers will report an error at compile time and refuse to generate
further code.

6·42 Porting FORTRAN Programs

Multibyte data types require a minimum of 2-byte alignment on HP- UX. For
performance reasons, 4- or 8-byte data types are normally further restricted to
4- or 8-byte alignment. If it is necessary to use the minimum 2-byte alignment
because of EQUIVALENCE statement structure, both Series 300/400 and Series
700/800 have a +A compile line option. In addition, all Series have an HP1000
ALIGNMENT ON inline compiler option that will cause data storage to use the
minimum 2-byte alignment for multibyte data types. There are performance
penalties when these options are in effect: memory references to minimally
aligned data can slow 0-20% on a Series 300/400 and 0-200% on a Series
700/800 when these options are used. Program units that share common areas,
or that make subroutine or function calls between them, should be compiled
consistently with respect to the alignment options.

For example, the following program will not compile on either the Series
300/400 or the Series 700/800 without special alignment instructions:

program bench
integer*2 i2, j2
real*8 a(1024), b(1024), c(1024)
common i2, a, b
integer*2 jarray(10)
equivalence (jarray(l), i2), (jarray(2) , a(l))
end

If +A or $HP1000 ALIGNMENT ON is specified on all Series, the above program
will compile and produce the same results.

VMS-style records are supported on Series 300/400 and 700/800 FORTRAN.
This makes interlanguage communication easier. If VMS alignment of structure
members is required on Series 300/400, specify the $NOSTANDARD ALIGNMENT
option. This option has no effect on the byte ordering of data within structure
fields. See Table 6-1 for specific alignment requirements for Series 300/400 and
700/800.

Porting FORTRAN Programs 6-43

6

The Effects of Recursion on Local Variable Storage

Recursion, or the ability of a subprogram to call itself directly or indirectly,
is a powerful programming tool that has been implemented in all HP- UX
FORTRAN compilers. It is an extension to ANSI FORTRAN and it is not
available on VMS. Under normal circumstances, a non-recursive VMS program
should see no effect from the recursive capabilities of an HP-UX compiler.
There are, however, some attributes of the implementations of recursion that
may give you a surprise if your program depends on non-ANSI features.

Inherent in a compiler supporting recursion is the introduction of a run-time
stack which contains activation records for each invocation of a subprogram.
During the execution of your program, an activation record is constructed on
the run-time stack when a subprogram is entered and it is destroyed when the
subprogram is exited. During the activation of this subprogram, all local data
is normally stored within this record. The compiler allocates a location for
each local variable within the activation record relative to the beginning of the
record. All operations that relate to that variable will use this relative address
even though the actual address of the beginning of the activation record is
not known until run time and in fact, depending on the order of subprograms

6 being executed, the location of various activation records for the same function
may vary in absolute location on the stack as the program executes. Since the
locations of the activation records themselves may vary, so may the locations of
the local data storage within them.

Many non-recursive implementations of FORTRAN do not use a relative
addressing scheme; rather, they simply assign a permanent absolute address
for a datum that is to be used throughout the execution of the program. The
effect is as though the variable had been designated as a SAVE variable; once
a value has been assigned to the variable, it remains with that variable until
another assignment. Neither ANSI nor HP- UX supports this behavior except
for variables that are explicitly saved or in common. If a subprogram has an
uninitialized variable on an HP- UX FORTRAN implementation, the initial
value is random. It will in general not be the value left when the subprogram
was last executed and exited. The effect to the program may be unpredictable.

Some older programs have been written with the assumption that an
uninitialized local variable is implicitly initialized to 0 as execution begins.
Such initialization is not supported by ANSI or HP- UX. Your program should
not rely on this behavior since it will invariably become a subtle defect

6·44 Porting FORTRAN Programs

sometime during the life of the program. You can overcome this problem by
using $INIT ON on Series 700/800. ANSI also does not support the implicit
initialization of a common region; however, HP- UX, as a feature of its
implementation, does initialize common regions to 0 unless otherwise initialized
via DATA statements.

In most cases, programs that rely on the above assumptions do so
unintentionally, since they seem to work correctly on the system where
they were developed. It is only when they are ported and the assumptions
fail that it is apparent that something is wrong. The usual indications of a
problem involving these assumptions is that the problem program appears to
be nondeterministic. That is, it seems to give different results (or errors) at
different times for the same data or it suddenly crashes on data that works on
the original architecture.

Finding bugs of this type is a tough problem as are most errors of omission.
On HP- UX, there are some tools that may be useful. First, the -K compiler
option causes static memory allocation for local variables. This has the
effect of making all local variables SAVE variables and it forces an implicit
initialization of these variables to O. If the program behaves differently with -K
than without it, chances are good that somewhere there is at least one variable
that's improperly initialized. Specifying -K during compilation typically has
a small effect on program performance (0 to 5% degradation). Since data
is statically stored using this option, your program will have a larger disk
image as well. Also, the global optimizer (enabled when -0 is specified on the
command line) will print a warning on stderr for most uninitialized variables.
Finally, you can use the cross referencing option to help look for uninitialized
variables.

Resolving System Name Conflicts

Occasionally, when porting a program from the non-HP- UX environment, a
user-defined subroutine or function name will conflict with a system routine
name or a library function name. The result may be inexplicable behavior or a
program crash. If you suspect a problem in this area, you can specify the -U
compiler option on all HP-UX FORTRAN implementations. This option forces
the compiler to generate external names in upper case, regardless of how they
are declared. Since most system routine names and library names contain at
least one lower case letter, name conflicts can often be avoided. In cases where

Porting FORTRAN Programs 6·45

6

6

this does not work, you may have to rename the routine that is causing the
system name conflict. You can also use the +ppu compiler option.

File Names

VMS expects file names with suffixes (e.g., FOR015.DAT), while HP-UX does
not (e.g., for015).

VMS file names are always upper case; HP- UX file names, on the contrary are
usually lower case.

Predefined and Preconnected Files

VMS predefines several logical file names that the operating system has
associated with particular file specifications. HP-UX, since it supports
FORTRAN as one of many different languages each having different
input/output characteristics, generally does not support predefined logical file
names. One exception on HP-UX is /dev/null, which is the "NULL" device or
bit bucket. Other exceptions are /dev/tty and /dev/umem.

HP- UX FORTRAN, on the other hand, uses a concept of preconnected files for
common input/output tasks. There is a rough correspondence between the
predefined logical file names on VMS and the preconnected files available on
HP- UX that you should consider.

HP- UX and other implementations of UNIX have a vastly different view of files
from VMS. It is beyond the scope of this manual to discuss these differences;
you should review the HP- UX Reference Section 9 and the Shells: User's
Guide (the Bourne command interpreter section) to get an overview of file
concepts. Only topics of concern with the preconnected files are discussed here.

Three files of special interest on HP- UX FORTRAN are standard input
(stdin), standard output (stdout) and standard error (stderr). By default
stdin is the input device normally associated with your keyboard. By default,
stdout is connected to your output device (CRT). stderr is similar to stdout
except that it is normally used to report error messages rather than normal
output. Unlike stdout, however, stderr is normally unbuffered so that in the
event of an unanticipated halt of a program, error messages will be printed. It
is normally associated with the same output device as stdout. All three of

6-46 Porting FORTRAN Programs

these files can be easily redirected from or to other files or pipes by means of
HP-UX shell commands.

ANSI requires that all files be opened before they are accessed. As an
extension to the standard, HP- UX FORTRAN compilers allow auto-opening of
files as does VMS. You can read or write to a file that has not been opened
with the OPEN statement. See the FORTRAN documentation for your system
for details on the name of the connected file. As a convenience to you, HP- UX
FORTRAN opens files automatically by associating unit 5 with stdin, unit 6
with stdout and unit 7 with stderr. Thus, for example, the following program
will execute correctly on HP-UX.

program iotest
C Note that no files have been opened by the program itself.

write(6,100)
100 format(' Hello world')

C PRINT statement output goes to stdout.
print *,' HP-UX'
end

Closing the preconnected files stdin, stdout, or stderr has no effect.
However, it is allowable to reopen units 5, 6, or 7 to other files if you desire. If 6
so, the preconnections are closed in accordance with ANSI.

In the following example, unit 6 is used for stdout and a user-defined file.

program redirect6
open (6,file='fred')
write(6,*) 'file call to file fred'
close(6)
write(6,*) 'file call to stdout'
end

The output to file fred in the current directory is

file call to file fred

The output to stdout (normally your CRT) is

file call to stdout

Porting FORTRAN Programs 6-47

6

Table 6-5 shows the rough correspondence with VMS predefined logical file
names.

Table 6-5. VMS Predefined File Names

VMS HP-UX

SYS$COMMAND stdin

SYS$DISK (no default correspondence)

SYS$ERROR stderr

SYS$INPUT stdin

SYS$NODE (no default correspondence)

SYS$OUTPUT stdout

SYS$LOGIN (no default correspondence)

SYS$SCRATCH (no default correspondence) On Series 700/800,
/usr/tmp is used for scratch files. On Series
300/400, current directory or the value of $TMPDIR
is used unless an absolute path name is included.

6-48 Porting FORTRAN Programs

Calling Other Languages
Most of the comments made in Chapter 5 about C calls to other languages also
apply to FORTRAN except that FORTRAN frequently needs to call system
routines which are written in C (see Table 6-6).

Table 6-6. FORTRAN Interfacing Compatibility

FORTRAN Pascal

CHARACTER char

Hollerith (synonymous with
CHARA CTER) 1

BYTE, LOGICAL*11,2 -128 .. 127 or boolean

LOGICAL*21,2 -32768 .. 32767 on Series
300/400; bit16 on
Series 700/800

INTEGER*21 ,2 -32768 .. 32767 on Series
300/400; shortint on
Series 700/800.

LOGICAL,LOGICAL*42 integer

INTEGER,INTEGER*42 integer

REAL,REAL*42 ,3 real

DOUBLE PRECISION, REAL*a2 longreal

REAL*161,2 none

COMPLEX*a2 record

DOUBLE COMPLEX, COMPLEX*161,2 record

RECORD1 record

1 Extension to ANSI 77 standard.

2 The length descriptor, *n, is not ANSI 77 standard.

3 Pointer variables are of type INTEGER*4.

You can create arrays for any of the primary data types.

C

unsigned char

char

short

short

long or int

long or int

float

double

long double

struct

struct

struct

Porting FORTRAN Programs 6-49

6

In addition to the basic types, many programs must communicate with C
"strings". These are emulated in FORTRAN as an array of characters the
last element of which has value 0 (CHARCO)). Note that HP Pascal "strings"
(as opposed to packed arrays of characters) can be simulated also by an
array of characters, but the characters will be offset in the array due to the
length field at the front (refer to the HP Pascal Reference for details). When
communication with FORTRAN is desired, you may want to use Pascal packed
arrays of characters rather than strings.

Although the syntaJC for FORTRAN RECORDs differs from C structs, default
packing and alignment rules are similar between the two languages.

Another problem in interfacing FORTRAN with C or Pascal can occur
because FORTRAN uses a column-major storage representation for its
multi-dimensional arrays. C and Pascal use a row-major ordering. Thus for
proper accessing, the order of the subscripts must be reversed (in both the
declaration and usage-thus, we end up with the transpose of a matrix).

The FORTRAN $OPTION SHORT directive instructs the compiler to use
INTEGER*2 and LOGICAL*2 as the defaults (when *n is not specified). This can
cause communication problems when two subroutines both specify INTEGER,

I 6 but one has this option enabled. To get around this problem, explicitly declare
I the length at all times. But keep in mind that doing so is non-standard, as is

using the $OPTION SHORT directive.

Calling C

Since all the HP- UX system calls and subroutines are accessed as C functions,
you may want to call a C function from a FORTRAN program. There are
some basic obstacles to doing so. The major problem is that C and FORTRAN
pass parameters differently-C by value and FORTRAN by reference. You can
use the $ALIAS directive to change FORTRAN's parameter passing mechanism
or the name of the external C routine as searched for by the linker Id. The
$ALIAS directive is supported on all HP- UX FORTRAN implementations. Here
is an example of its use:

6-50 Porting FORTRAN Programs

PROGRAM TESTALARM
$ALIAS IALARM = 'alarm'(y'val)

C set a 10 minute alarm
I = IALARM(60*10)

C reset alarms, get time remaining on last alarm
I = IALARM(O)

C allow any possible non-zero "time remaining" seconds count
IF ((I .LT. 1) .OR. (I .GT. 600)) STOP 'TESTALARM FAILED'
STOP 'TESTALARM passed'
END

Series 700/800 provides a special library of FORTRAN routines that interface
to HP-UX system calls. The library is named /usr/lib/libcl. a and is linked
automatically when you compile a FORTRAN program.

Note these items:

Logicals

Files

Characters

C uses integers for logical types. A FORTRAN 2-byte LOGICAL
is equivalent to a C short; a 4-byte LOGICAL is equivalent to
a long or into In C and FORTRAN, zero is false and any
non-zero value is true.

File units and pointers can be passed from FORTRAN to C via
the FNUM and FSTREAM intrinsics. A file created by a program
written in either language can be used by a program of the
other language if the file is declared and opened in the latter
program.

Without the use of the $ALIAS directive, passing character
data from FORTRAN to C is tricky because these languages
represent character strings in completely different ways. By
specifying Y.ref as a parameter passing descriptor, however,
the compiler is directed to use pass by reference addressing,
which is equivalent to passing the address of the beginning of
the character variable. Within C, this is understood to be a
char pointer. Remember that FORTRAN character strings, by
default, do not contain a terminating NUL character as in C.

The technique shown in the following example works on all HP-UX systems.
However, some other FORTRAN 77 compilers may not understand aliasing.

Porting FORTRAN Programs 6·51

6

6

The example shows passing a character string from a FORTRAN program to a
C function. The function returns the number of characters in the string before
a space. Otherwise, it returns the maximum string length.

/* C program */
#define MSLEN 300

sizer(x) char *x;
{

}

register int i;

for (i=O; i <MSLEN; i++)
if (x[i] == , ,) return(i);

return(MSLEN);

C fortran program
$alias sizer='sizer'(y'ref)

program test
character*300 x
integer sizer
external sizer
integer i
data x/"abcdefghi klmnop"/

i = sizer(x)
print *,i
end

The commands to compile and link these two files are:

cc -c chcount.c
f77 main.f chcount.o

The resulting object file would be left in a. out.

It is possible to mix C and FORTRAN I/O via the FORTRAN FNUM and
FSTREAM intrinsics. FSTREAM returns the C FILE* stream pointer corresponding
to a FORTRAN I/O unit. FNUM returns the system file descriptor for an I/O
unit. Here is an example:

6·52 Porting FORTRAN Programs

PROGRAM FNUM_TEST
$ALIAS IWRITE='write' (Y.val ,Y.ref ,Y.val)

CHARACTER*l A(10)
INTEGER I, STATUS

DO 10 J=l, 10
A(J)="X"

10 CONTINUE
OPEN(l,FILE='filel',STATUS='UNKNOWN')
I=FNUM(l)
STATUS=IWRITE(I,A,10)
CLOSE (1, STATUS = 'KEEP')

OPEN (l,FILE='filel', STATUS='UNKNOWN')
READ (1,4) (A(J), J=1,10)

4 FORMAT (10Al)
DO 12 J=1,10

12
IF (A(J) .NE. 'X') STOP 'FNUM_TEST FAILED'

CONTINUE
IF (STATUS .EQ. 10) STOP 'FNUM_TEST passed'
END

Another area for potential problems is passing arrays to C subprograms. An
important difference between FORTRAN and C is that FORTRAN stores
arrays in column-major order whereas C stores them in row-major order (like
Pascal). Refer to "Calling FORTRAN" in Chapter 5 "Porting C Programs" for
exalnples.

Calling Pascal

Listed below are some of the differences between Pascal and FORTRAN that
may cause problems when calling Pascal from FORTRAN.

Logicals

FORTRAN has the LOGICAL type for representing boolean values. On Series
300/400, FORTRAN and Pascal share a common definition of true and false:
zero is false, and any non-zero value is true. A FORTRAN LOGICAL is the same

Porting FORTRAN Programs 6·53

6

6

as an unpacked Pascal BOOLEAN. The FORTRAN LOGICAL*l and LOGICAL*4
types do not have an equivalent in Pascal.

Arrays

FORTRAN stores arrays in column-major order; Pascal stores them in
row-major order.

Files

A FORTRAN unit cannot be passed to a Pascal routine to perform
input/output on the associated file. Nor can a Pascal file variable be used by a
FORTRAN routine. However, a file created by either language can be used by
the other if the file is opened and accessed by the method appropriate to that
language.

Of course, files can be accessed from either language through the use of HP-UX
input/output subroutines and intrinsics. (For more information, refer to the
appropriate system reference manual.)

Parameter PaSSing Methods

By default, FORTRAN passes parameters by reference. Therefore, all
parameters in a Pascal routine called from FORTRAN and all those in the
external declaration of a FORTRAN routine called from Pascal must be VAR
parameters. If necessary, you can force FORTRAN to pass by value with the
Y,VAL built-in function or with the $ALIAS directive.

Complex Numbers

Pascal has no COMPLEX numbers. However, they can be represented in Pascal
by the following record structure:

TYPE complex : RECORD
real_part,
imaginary_part: REAL

END;

Similarly, a FORTRAN DOUBLE COMPLEX number can be represented by the
above record structure with the real and imaginary parts being of Pascal type
LONGREAL.

6-54 Porting FORTRAN Programs

Hollerith and Character

The FORTRAN Hollerith and character data types are equivalent to the Pascal
PACKED ARRAY OF CHAR.

Passing String Parameters

Pascal has several different ways of passing strings, none of which is compatible
with Series 700/800 FORTRAN.

Porting FORTRAN Programs 6-55

6

Porting Pascal Programs

HP- UX systems support a version of Pascal known as Hewlett-Packard
Standard Pascal (HP Pascal). HP Pascal is a superset of ANSI Pascal, and

7

it implements many advanced features. A few of the features differ between
the Series 300/400 and 700/800. There are also differences between HP Pascal
and the Pascal Workstation; one notable difference is calling conventions. This
chapter describes:

• general portability considerations to keep in mind when porting HP Pascal
programs

• porting between HP Pascal and the Pascal Workstation

• porting between HP Pascal and VMS Pascal

• calling other languages

Porting Pascal Programs 7·1

7

7

General Portability Considerations
If you plan only to run your programs on HP computers, it will not take much
work to port them and the extra features will make your programming much
easier. However, if you port those progranls to another vendor's computer,
the effort to do so will be proportional to the us'e of nonstandard HP Pascal
extensions. Even if the system you are moving the programs to has extensions,
it is doubtful they have the same form as HP Pascal's extensions.

To help you determine which features are nonstandard in an HP Pascal source
file, HP Pascal provides the $ANSI ON directive. To use it, simply include the
following line at the start of the source file:

$ANSI ON$

When you compile the source file using the - L compile line option, the Pascal
compiler generates a listing file that shows where nonstandard features are
used.

Using the $ANSI ON directive and the -L option helps ensure that you use only
ANSI Standard Pascal features or that you will at least be aware of where you
are using nonstandard features.

The rest of this section summarizes some of the HP Pascal language features,
both standard and nonstandard, that may cause problems when porting
HP Pascal to or from other systems.

Data Type Sizes and Alignments

Table 7-1 shows the sizes and alignments of the Pascal data types on HP -UX
architectures. Note that packing significantly affects data type aligments and
sizes. For more specific information, see the appropriate language reference or
the HP Pascal/HP- [TX Programmer's Guide.

7 -2 Porting Pascal Programs

Table 7-1. HP Pascal Data Types

Type Size Alignment Alignment
(bytes) (300/400) (700/800)

char 1 I-byte I-byte

boolean 1 I-byte I-byte

shortint 2 Not supported 2-byte

subrange of integer 21 2-byte 2-byte
2 -32768 AND :::; 32767

subrange of integer 4 4-byte 4-byte
< -32768 OR > 32767

integer 4 4-byte 4-byte

longint 8 Not supported 4-byte

enumeration 21 2-byte 2-byte or 4-byte,
based on declared
range

subrange of enumeration 21 same as host 2-byte or 4-byte,
enumeration type based on declared

range

real 4 4-byte 4-byte

longreal 8 4-byte 8-byte 7

pointer 4 4-byte 4-byte

sort (32 bit) 4 Not supported 4

sort (16 bit) 2 Not supported 2

bit52 8 Not supported 2

$exthaddr$ pointer 8 Not supported 2

set Varies Varies Varies

1 On Series 700/800, 1, 2, or 4 bytes can be allocated, depending on the declared range.

Porting Pascal Programs 7-3

If the +A compile line option is specified, then any data types larger than two
bytes are aligned on a 2-byte boundary on Series 300/400 computers.

Control Constructs

• The TRY/RECOVER construct is supported on all HP- UX implementations.
Escape codes for errors differ significantly between the implementations.

• The MARK/RELEASE procedures are supported on all HP- UX implementations.
There are minor differences in behavior but code is essentially portable.

Input/Output

• Series 300/400 and 700/800 differ in the way they allow association with
an HP- UX file descriptor in the reset 0 procedure. The association is not
shnilar in the associateO procedure.

• Series 700/800 uses the options string parameter on reset(), rewrite(),
openO, and appendO procedures. Series 300/400 ignores this parameter.

• By default, stdout is buffered on the Series 700/800. It can be changed to
unbuffered via an option.

• Series 300/400 requires declaration of stderr after declaring it as a program
parameter; Series 700/800 does not.

• Series 700/800 implements the fnurn function; Series 300/400 does not.

7 • Series 300/400 and 700/800 differ in how they handle eof, get, and put with
direct access files.

• The close (file Var) procedure has different default behavior on each system.

Modules

• Modules are supported on all HP- UX implementations but some syntactic
and semantic differences exist. For example, Series 700/800 requires that
CONST, TYPE, and VAR declarations precede routine declarations within the
EXPORT section whereas Series 300/400 permits them to be intermixed.

• Series 300/400 permits separate compilation only within modules. Series
700/800 can compile outside modules with the use of $SUBPROGRAM$,
$GLOBAL$, and $EXTERNAL$.

7 -4 Porting Pascal Programs

Assignment to Procedure Variables

Assignment to a procedure variable has a different syntax on each of the two
architectures.

Maximum String Size

On the Series 300/400, the maximum string size is 255 characters by default,
but by specifying $LONGSTRINGS$, it can be virtually unlimited. Series 700/800
strings are essentially unlimited.

Packed Arrays and anyvar Parameters

On the Series 300/400, elements of packed arrays can be passed as anyv"ar
parameters only if the ALLOW_PACKED compiler option has been used.

Structured Constants

All HP-UX implementations support structured constants but different
restrictions may apply. Series 300/400 restricts their use to within the CONST
section and it does not do full type checking on variant record structured
constants.

longreal Precision

A small difference in precision exists between the implementations of longreal.

globalanyptr and localanyptr

Only Series 700/800 implements globalanyptr and localanyptr. All HP-UX
implementations have anyptr, although minor differences exist.

anyvar Value Checking

anyvar is supported on all HP-UX implementations. Series 300/400 does not
perform any checks to see if anyvar values are legitimate. Series 700/800
passes size information with anyvar parameters.

Porting Pascal Programs 7·5

7

7

Miscellaneous

• Series 700/800 supports readonly parameters; Series 300/400 does not.

• Series 300/400 allows using a file variable as a parameter to the sizeof
function; Series 700/800 does not.

• Series 300/400 allows you to get the address of a constant with the addr
function; Series 700/800 does not.

• Only Series 700/800 supports crunched arrays and records.

• Series 700/800 does not fully support packed array [0 . . anything] of char.

• Slight semantic differences exist between Series 300/400 and 700/800
program parameters.

• Series 700/800 has the following built in functions not available on Series
300/400:

susizeof
statement_number
haveextension
haveoptvarparam

• The assert procedure is defined on Series 700/800 but not on Series
300/400.

• Series 700/800 requires $STANDARD_LEVEL ' HP _MODCAL' $ before importing an
argument.

• Series 700/800 does not allow a label on the statement following a recover
statement.

• Series 700/800 allows lobound subrange expressions to start with" (".

• Series 700/800 scans source that has been conditionally compiled out. This
allows NLS characters in conditionally compiled sections of the source.

• To convert a pointer to an integer with ord(pointerType) , you must compile
with $STANDARD_LEVEL , EXT_MODCAL'$ on Series 700/800.

• Arguments for the + operator with strings differ on the two implementations.
For instance, chrO cannot be used with + on Series 700/800.

7 -6 Porting Pascal Programs

• On Series 300/400, waddress does not accept NIL or a NIL-valued pointer.

• For some operations, packed array of char does not require a lower bound
of 1 on Series 300/400.

• The two implementations generate different listings.

• Series 300/400 evaluates a procedure alias before addr (alias) is performed;
Series 700/800 does not.

Compile Line Options

Table 7-2 summarizes the differences in compile line options between Series
300/400 and Series 700/800. See pc(l) for details.

Porting Pascal Programs 7·7

7

Table 7-2. Differences in Pascal Compiler Command Lines

Option Effect Difference

+A use 2-byte alignment rules Series 300/400 only

+bfpa Affects floating-point Series 300/400 only
operations

+c convert MPE file names to Series 700/800 only
HP-UX names

+DA1. 0 Optimize for Series 800 Series 700/800 only
architecture and instruction
set. Or, use DA8xx where 8xx is
a Series 800 system model
number.

+DA1.1 Optimize for Series 700 Series 700/800 only
architecture and instruction
set. Or, use DA7xx where txx is
a Series 700 system model
number.

+DS1. 0 Optimize for Series 800 Series 700/800 only
instruction scheduling. Or, use
DS8xx where 8xx is a Series 800
system model number.

7
+DS1.1 Optimize for Series 700 Series 700/800 only

instruction scheduling. Or, use
DS7 xx where 7 xx is a Series 700
system model number.

+ffpa Affects floating-point Series 300/400 only
operations

+1 Allows production of dynamic Series 300/400 only
load libraries

-L produce a program listing Series 300/400 goes to a file specified by
$LIST fi1ename$

7 -8 Porting Pascal Programs

Table 7-2.
Differences in Pascal Compiler Command Lines (continued)

Option Effect Difference

+M library calls for floating point Series 300/400 only

+N turn off notes Series 700/800 only

+0 optimization Series 700/800 only

-0 optimize Series 700/800 only

+S use 4-byte alignment rules Series 300/400 only

-S produce assembly output Series 700/800 only

-T same as $T ABLES ON$ Series 300/400 only

+u same as $ALLOW_PACKED ON$ Series 300/400 only

-y prepare object for static Series 700/800 only
analysis

+z and +Z produce PIC object for shared Series 700/800 only
libraries

Inline Compiler Options (Directives)

HP-UX Pascal compilers support different (although intersecting) sets of
compiler options. Additionally~ some common options have different semantics,
and a slightly different syntax. For portable code, keep compiler options to
a minimum. Especially avoid ones that affect the semantics of the language
or enable system level programming extensions, like $SYSPROG$ on the Series
300/400.

The following items show options that have semantic differences on one or nlore
of the HP- UX implementations:

ALIGNMENT Series 700/800 only. Changes storage alignment
for types other than strings and file types.

Series 300/400 only. Allows ANYVAR parameter
passing of fields in packed records and arrays, and
SIZEOF using packed fields and arrays.

Porting Pascal Programs 7-9

7

7

ANSI

ASSERT_HALT

ASSUME

BUILDINT

CODE

CONVERT_MPE_NAME

COPYRIGHT

COPYRIGHT_DATE

DEBUG

EXTERNAL

Available on all HP-UX implementations. Series
300/400 requires that it be at the top of the file.

Series 700/800 only. Causes the program to halt
if the assert function fails.

Series 700/800 only. Sets optimizer assumptions.

Series 700/800 only. Causes the compiler to build
an intrinsic file rather than an object code file.

Series 700/800 only. Sets level of type checking
of actual parameters for separately compiled
functions or procedures.

Series 700/800 only. Sets level of type checking
of formal parameters for separately compiled
functions or procedures.

Available on all HP- UX implementations. Selects
whether a code file is generated. Series 300/400
disallows this directive within a procedure body.

Available on all HP- UX implementations.
Causes PC offsets to be included in the listing.
Series 300/400 disallows this directive within a
proced ure body.

Series 700/800 only. Same effect as +C option.

Series 700/800 only. Causes a copyright string to
be placed into object code.

Series 700/800 only. Sets the copyright year and
causes it and the copyright string to be placed
into object code.

Series 300/400 only. Causes line number
debugging information to be included in the
object code.

Series 700/800 only. Used in conjunction with
the GLOBAL option, enables you to compile one
program as two or more compilation units.

7 -10 Porting Pascal Programs

EXTNADDR

GLOBAL

GPROF

HEAP_COMPACT

HEAP_DISPOSE

HP_DESTINATION
'ARCHITECTURE

HP_DESTINATION
'SCHEDULER

IF,ELSE,ENDIF

INLINE

KEEPASMB

LINENUM

LINES

Series 700/800 only. Specifies long pointer
accessing.

Series 300/400 only. Controls generation of code
for floating-point hardware.

Series 700/800 only. Used in conjunction with the
EXTERNAL option, GLOBAL enables you to compile
one program as two or more compilation units.

Series 700/800 only. Generates code for profiling.

Series 700/800 only. When this and
HEAP _DISPOSE are on, free space in the heap is
concatenated.

Series 700/800 only. Disposed space in the heap
is freed for new uses by new.

Series 700/800 only. Generates object code for a
particular version of of the PA-RISC architecture.

Series 700/800 only. Performs instruction
scheduling tuned for a particular implementation
of the PA-RISC architecture.

Available on all HP-UX implementations.
Controls conditional compilation. Essentially, the
semantics are the same, but each implementation
has minor differences in semantics. Refer to the
appropriate language reference for details.

Series 700/800 only. Causes a procedure call to
be replaced by inline code.

Series 700/800 only. Causes the compiler to
preserve an assembly file for the source file.

Series 300/400 only. Sets listing line number.

Available on all HP-UX implementations.
Specifies number of lines per page on a listing.
Default values are 60 for Series 300/400 and 59
for Series 700/800.

Porting Pascal Programs 7 ·11

7

7

LIST_CODE

LISTINTR

LITERAL_ALIAS

LOCALITY

LONGSTRINGS

MLIBRARY

NOTES

OPTIMIZE

OS

RANGE

S300_EXTNAMES

SAVE_CONST

SEARCH

Series 700/800 only. When LIST is also on, a
mnemonic listing of object code is produced.

Series 700/800 only. List an intrinsic file to a
specified file.

Series 700/800 only. Changes the semantics for
the -ALIAS option.

Series 700/800 only. Causes a locality name to
be written to the object file for performance
enhancement.

Series 300/400 only. Extends the maximum
length of strings from 255 characters to virtually
any length.

Series 700/800 only. Specifies alternate file into
which the module export text is to be written.

Series 700/800 only. Causes helpful compiler
notes to be printed on the program listing.

Series 700/800 only. Sets level of optimization.

Series 700/800 only. Specifies the run-time
operating system under which this program is to
be run.

Available on all HP-UX implementations. Minor
differences exist between the implementations on
what items are checked. Refer to the appropriate
language reference for details.

Series 700/800 only. Changes external names to a
form consistent with Series 300/400 conventions.

Series 300/400 only. Controls scope of structured
constants.

Available on all HP-UX implementations. Series
700/800 has two ways to create the list of files
(one of which is the same as Series 700/800, the
other uses MLIBRARY).

7 -12 Porting Pascal Programs

SKIP_TEXT

STANDARD_LEVEL

STATEMENT_NUMBER

SUBPROGRAM

SYMDEBUG

SYSINTR

TABLES

TITLE

UNDERSCORE

UPPERCASE

VERSION

Series 300/400 only. Changes number of external
files that can be searched. The default is 9.

Series 700/800 only. Generates PIC object code
that you can use to create libraries.

Series 700/800 only. Causes the compiler to
ignore source code.

This is implemented on all HP- UX
implementations. Series 700/800 allows the
EXT _MODCAL extension level beyond HP _MODCAL.

Series 700/800 only. When enabled, the compiler
generates a special instruction to identify a code
sequence with its corresponding Pascal statement.

Series 700/800 only. Separate compilation facility.
Use modules instead on Series 300/400.

Series 700/800 only. Emits debugger information
for xdb.

Series 700/800 only. Specifies the intrinsic file
to be searched for information on intrinsic
procedures and functions.

Available on all HP- UX implementations. Series
300/400 forbids its use within a procedure body,
whereas Series 700/800 permits it anywhere.

Series 700/800 only. Specifies the title to appear
on the program listing.

Series 300/400 only. Causes ALIAS parameters to
have an underscore added as a prefix.

Series 700/800 only. All external names are
shifted to uppercase ASCII.

Series 700/800 only. Specifies a version stamp to
be placed in the object file.

Porting Pascal Programs 7·13

7

7

XREF Available on all HP- UX implementations. On
Series 300/400; it provides an improper subset of
information from the Series 700/800.

Porting between HP-UX Pascal and the Pascal
Workstation
This section will be helpful if you need to port programs between the Series
300/400 Pascal Workstation and Series 300/400 HP-UX Pascal. It focuses
on conversions of Pascal programs, but also comments on assembly language
translation. Some of the information may not apply to Series 700/800 porting.
The material presented deals with commonly encountered porting problems.

Because the Series 300/400 HP-UX Pascal compiler was developed from the
Series 200/300 HP Pascal Workstation, the two implementations are very
similar. However, some differences still exist when porting between the two
systems. If your programs to be ported use operating system-dependent
features like low-level I/O functions, then you may have a significant porting
job.

Note The following does not cover the few differences between
Series 200/300 and Series 300/400 Pascal Workstations. The
differences that exist are documented in the Pascal Workstation
documentation set.

Module Names

Module names on HP- UX Pascal can be up to 12 characters, while on the
Pascal Workstation they can be up to 15.

7-14 Porting Pascal Programs

Real Data Type

Real variables are 32 bits on HP-UX Pascal and 64 bits on the Pascal
Workstation. longreals are 64 bits on both implementations.

Input

Although standard Pascal specifies unbuffered input on the HP- UX Pascal
implementation, on the Pascal Workstation input is buffered by default. To
override this, add the following statement to the beginning of your program:

rewrite(input," ,'unbuffered');

lastpos

lastpos is not implemented on the Pascal Workstation.

linepos

linepos is not implemented on the Pascal Workstation.

Absolute Addressing

Absolute addressing of variables, available through $SYSPROG$, have little
meaning on a system which uses virtual memory. Instead, the user will need to
use system names. For example, to simulate the Pascal Workstation function
IORESULT, the user may declare:

VAR
ioresult['asm_ioresult']: integer;

This declaration gives the user access to the ioresul t variable. Note, however,
that the above declaration also gives the user a compiler warning namely
symbol already declared regarding asm_ioresul t.

Accessing absolute addresses (such as on the Model 236 graphics display) will
result in a system error namely segmentation violation. To gain access to
such memory, the user must follow the techniques described in the HP- UX
Refer'ence under Section 7: graphics(7).

Porting Pascal Programs 7 -15

7

File Naming

File names in programs on the Pascal Workstation are of the form:

VOL: FILENAME

With HP- UX Pascal, file naming must follow the HP-UX path naming
conventions. This occurs in $INCLUDE$, $SEARCH$, RESET, REWRITE, OPEN, and
APPEND statements. Since a user may execute a program from any directory,
it is safest to use full path names, rather than relative paths. The following
special Pascal Workstation names should translate as follows:

• CONSOLE: Should use the predefined file variable output or the name
/ dev /tty in a rewrite statement.

• PRINTER: Should use /dev/rlp (/dev/lp is usually locked from user access).
Note that this bypasses the spooler, and could intermix with someone else's
output.

• SYSTERM: Simulating this capability first requires a system call to turn off
echoing, and then the statement reset (input , " ,'unbuffered').

$SEARCH$ File Names

$SEARCH$ file names on the Pascal Workstation must refer to either simple
relocatable (.0) or archived (. a) format object files. Libraries will be
maintained by the archiver (ar), and the compiler will need a directory in

7 the archive file. This is accomplished by running the program ar -ts on the
archive which creates an entry (in the archive file). This entry can be u~ed
(by the compiler and loader) to randomly access the entry points stored in the
library.

Terminal I/O

Pascal on the Pascal Workstation is defined to have unbuffered terminal I/O.
However, the HP-UX system buffers input based on a "line" (a string of
characters, terminated by a newline). To overcome this system buffering of
input into lines, the user must specify:

rewrite(input,",'unbuffered');

7 -16 Porting Pascal Programs

Heap Management

The Pascal Workstation gives you two choices for dynamic memory
management. The normal mode uses MARK/RELEASE to form a simple scheme.
For more general cases, $HEAP_DISPOSE$ is needed, which will then allow the
DISPOSE statement to return memory to the system.

Using HP-UX Pascal, the user has three choices of memory managers: HEAP1,
HEAP2, or MALLOC. HEAP1 and HEAP2 are Pascal memory managers, while
MALLOC is the system library (C) memory manager.

HEAP1 provides for a simple scheme where DISPOSE returns memory to the
Pascal free list, while a RELEASE returns everything above the memory pointer
to the HP-UX memory system. This memory then becomes available to any
other heap manager. However, this version does not allow any RELEASE to be
done after any calls to MALLOC. This does not sound like much of a restriction,
but consider that any system calls that you make that need memory are likely
to get them via MALLOC.

HEAP2 is more flexible, and allows for coexistence with MALLOC calls. This is
accomplished at the cost of additional overhead in both space (8 extra bytes
are allocated forward and backward pointers) and time (a RELEASE must
traverse the linked list disposing of each block).

The last scheme uses calls to the system library procedure MALLOC to allocate
memory. This is a "do-it-yourself' memory allocation scheme, and it requires
using $sysprog$ and anyptrs. However, since this method uses MALLOC, it is
compatible with allocation by system intrinsics and C.

The HP-UX IOCTL System Call

The following program shows how to use the HP- UX system call IOCTL to
modify terminal characteristics. It does unbuffered, non-echoed terminal input.
IOCTL turns off echoing, sets the minimum length line to 1 character, and sets
the line timeout to 0.1 seconds.

Porting Pascal Programs 7 ·17

7

7

$sysprog$
program termtest(input,output);

{ control code constants for the IOCTL intrinsic }
const O_RDOBLY 0;

type

{

TCGETA 21505;
TCSETAF 21508;

{simulate a C unsigned short int for bit manipulations}
unsigned_short = packed array[O .. 15] of boolean;

{simulate a C string}
cstring = packed array[1 .. 81] of char;

{simulate the C struct "termio" from /usr/include/termio.h}
termio = packed record

c_iflag unsigned_short;
c_oflag unsigned_short;
c_cflag unsigned_short;
c_Iflag unsigned_short;

c_Iine : char; c_Iine==c_cc[-l]}
{ note that C packs this struct tighter

than Pascal can. Thus ve viII include
the c_Iine field as part of the c_cc
array }

c_cc array[-l .. 7] of char;
end;

var fildes,result
old_state,nev_state
device ,buffer

integer;
termio;
cstring;

{here are the EXTERBAL/$ALIAS definitions for the system intrinsics}

function $alias '_open'$ openx(var path cst ring
flag integer integer;

external;

function $alias '_read'$ readx(fildes integer
var buffer cstring

num integer integer;
external;

procedure $alias '_ioctl'$ ioctl(fildes
control

var terminfo

integer ;
integer ;
termio);

external;

7 -18 Porting Pascal Programs

begin
device:='/dev/tty '+chr(O)j
fildes:=openx(device,O_RDOBLY)j

{ get the current terminal setup}
ioctl(fildes,TCGETA,old_state)j
new_state:=old_statej

{ set the min~um number of chars for a read to 1 }
new_state.c_cc[4] :=chr(1)j

{ set the t~eout after the first char to .1 seconds}
new_state.c_cc[5] :=chr(1)j

{ turn off echoing }
new_state.c_lflag[12]:=falsej

{ turn off canonical input (i.e. erase, kill, etc.) }
new_state.c_lflag[14]:=falsej

{ load this "new" terminal setup }
ioctl(fildes,TCSETAF,new_state)j
prompt('enter your name: ')j

repeat
{ now read a single character }

result:=readx(fildes,buffer,1)j
{ now echo the successor of the char }

if buffer[O]=chr(255) then write(chr(O»
else write(succ(buffer[O]»j

{ stop on -n }
until buffer[O]=chr(4)j
ioctl(fildes,TCSETAF,old_state)j

end.

Porting Pascal Programs 7 ·19

7

17

Library Differences

The Pascal Workstation and HP- UX Pascal use different libraries. This manual
will not discuss the differences in detail; for such information, refer to the
manuals containing the information on the libraries.

For Pascal Workstation library information, see the Pascal Procedure Library
manual.

For HP- UX Pascal library information, you will find relevant material
contained in several HP- UX manuals:

• General information on the I/O library is documented in Programming on
HP-UX.

• For graphics information, see the applicable graphics manuals.
• The system library is documented in Section 3 of the HP- UX Reference.

Pascal Workstation Libraries

On the Pascal Workstation, there are three primary libraries used by almost
everyone:

• The DGL graphics library. This provides a high level (Pascal) interface to
device-independent graphics. DGL on the Pascal Workstation is a functional
copy of the HP 1000 FORTRAN DGL library. The interface has been
changed to provide more relevant names for the procedures as well as a
Pascal interface.

• The I/O library. This provides various levels of access to the I/O cards
on the Series 300/400 system. These include HP-IB, GPIO, and a serial
interface library.

• The INTERFACE library. This is a permanently loaded library (via
ini tlib), which contains much of the operating system software (disk
drivers, keyboard, etc.).

HP-UX Libraries

HP- UX libraries have similar capabilities as those on the Pascal Workstation,
as described below.

7 -20 Porting Pascal Programs

The DGL Graphics Library. On HP- UX, the original HP1000 FORTRAN DGL
library was ported creating these differences from the Pascal Workstation:

• The original procedure names were retained.
• Parameters are all passed by reference (var).
• Strings are FORTRAN character arrays (with a separate length parameter).
• Integers are 16 bit integers.

Two header files are provided. They should be included
in each program needing access to DGL. The first header,
/usr/lib/graphics/pascal/pdgll.h, provides the type definitions
needed for interfacing to DGL. This includes int and string132. The second
header, /usr/lib/graphics/pascal/pdg12 .h, provides the declarations for
all the EXTERNAL DGL procedures. It includes $ALIAS$ statements for each
procedure, such that the name from the Pascal Workstation can still be used.

Since all parameters are passed by reference, all constants must first be
assigned to dummy variables. All integers must either be declared as int or
assigned to a dummy into Finally, Pascal strings must be assigned to variables
of type string132. This is a packed array [1 .. 132] of char, so direct
assignments can be made for string literals, or the procedure STRMOVE can be
used to convert from Pascal string variables.

STAR BASE Library. Another graphics library is STARBASE. This package is
intended to be an extension of the HP Graphics Peripheral Interface Standard,
which is an extension of the ANSI standard Virtual Device Metafile and
Virtual Device Interface. These (and thus STARBASE) form the basis of the
Graphics Kernel System. This is a higher level ANSI standard (2D) graphics
package.

The STARBASE library provides a high-performance interface to graphics
hardware and other selected graphics peripherals. It provides support
unavailable in DGL, with access to more device features. STARBASE is
available on the 4.0 and subsequent releases of HP- UX.

SYSTEM Library. The SYS TEM library on HP -UX consists of a number of
library files. These reside in the directories /lib and /usr/lib, as well as in
the kernel itself. The capabilities provided exceed those available on the Pascal
Workstation in many cases, but in others, they fall short. Two sections of
the HP- UX Reference describe these capabilities in concise form. Section 2
describes the system intrinsics, which are the operating system calls. Section

Porting Pascal Programs 7 ·21

7

7

3 describes the system libraries, which are the libraries for C, math, standard
I/O, and various specialized libraries. The HP- UX Reference describes these
capabilities via a C language interface (due to the fact that most of them are
written in C). Pascal interfacing to any of these functions is usually fairly
straightforward, with the main effort involved a result of replacing the header
files that are needed.

Compiler Option Differences

The compiler options available on HP-UX Series 300/400 Pascal, with the
exceptions below, are a subset of the ones available on the Pascal Workstation
implementation. The following options are available only on the Pascal
Workstation.

CAL LABS

COPYRIGHT

DEF

HEAP_DISPOSE

IOCHECK

REF

STACKCHECK

SWITCH_STRPOS

UCSD

Switches absolute jumps on and off.

Includes copyright information.

Changes size and location of compiler's . DEF file.

Controls garbage collection.

Controls error checking on system I/O routine calls.

Changes size and location of compiler's . REF file.

Controls stack overflow checking.

Switches order of parameters for the STRPOS function.

Allows use of UCSD Pascal extensions. UCSD extensions
are not and will not be implemented on HP- UX. There
are simple fixes for most of these capabilities. Most
notably, the UCSD string functions are supported
through Pascal string functions. Also, to allow case
statements to "fall through," an OTHERWISE clause is
needed.

In addition, the compiler option PARTIAL_EVAL is implemented differently on
the two systems. The default on the Pascal Workstation is OFF, but the default
on HP-UX Series 300/400 Pascal is ON. This was done to make HP-UX Series
300/400 Pascal compatible with previous HP-UX Pascal implementations. Note
that this is different from early releases of Series 300/400 HP -UX Pascal.

7 ·22 Porting Pascal Programs

Assembly Language Conversion

The conversion of assembly language routines from the Pascal Workstation
to HP- UX is fairly straightforward. An HP- UX command exists on the
Series 300/400 called atrans which translates a Pascal Workstation assembly
language source file into an HP-UX assembly language source file using the
assembly syntax available since release 5.15. On HP-UX, the external names
are referenced via 32 bit addresses, so the code size may grow. Also, many
of the assembler directives will not port directly to HP- UX, but some of the
important ones have replacements.

The following are points to be aware of when converting:

• Absolute displacements off the program counter cannot be guaranteed to
translate correctly. Any line referencing the program counter will be flagged
by a warning message.

• The HP-UX assembler restricts expressions involving forward references for
which atrans makes no check. Such references may involve only a single
symbol, a symbol plus or minus an absolute expression, or the subtraction of
two symbols.

• The character <0 is not accepted as a valid identifier character on the HP- UX
assembler. It is translated to A and a warning is issued.

• Lines containing the following pseudo-ops have no parallel on the HP- UX
assembler and are translated as comment lines: decimal, end, lIen, list,
Iprint, nolist, noobj, nosyms, page, spc, sprint, and ttl.

• Lines containing the mname, include, and src pseudo-ops are translated as
comment lines, and a warning is printed.

• The following pseudo-ops require manual intervention to translate: com,
lmode, ~rg, rorg, rmode, smode, and start. Each line containing these
pseudo-ops will cause a message to be printed stating that an error will be
generated by the HP-UX assembler.

• When specifying certain addressing modes, the Pascal Workstation assembler
allows some operands to appear out of order, whereas the HP-UX assembler
does not. atrans does not rearrange these into proper order.

Porting Pascal Programs 7-23

7

7

Porting between HP Pascal and VMS Pascal
To provide some information to help evaluate the task of porting from VMS
Pascal to HP Pascal, the following comparison between the two languages is
included. The listing is by no means complete.

Lexical Elements

ASCII Character Set

Both languages use the same character set. HP Pascal may have extensions for
Native Language Support.

Special Symbols

The following VMS Pascal symbols are not recognized by HP Pascal:

• Exponentiation (**)
• Type case operator (: :)

Reserved words

The following VMS Pascal reserved words are not recognized by HP Pascal:

y'DESCR REM
y'DICTIONARY VARYING
Y.IMMED VALUE
Y.REF
y'STDESCR

The following HP Pascal reserved words are not recognized by VMS Pascal:

export
implement
import
nil

Directives

The following is the syntax of VMS Pascal directives:

Y.<directive> ...

7 ·24 Porting Pascal Programs

The following is the syntax of HP Pascal directives:

$<directive> ... $

HP Pascal does not support VMS Pascal EXTERN or FORTRAN directives.

Identifiers

VMS Pascal allows a $; HP Pascal does not.

Predefined Identifiers:

The following VMS Pascal identifiers are not recognized by HP Pascal:

ADD_INTERLOCKED FIND_MEMBER SNGL
ADDRESS FIND_NONMEMBER STATUS
ARGUMENT IADDRESS STATUS V
ARGUMENT_LIST_LENGTH INDEX SUBSTR
BIN INT TIME
BITNEXT LINELEMIT TRUNCATE
BYTE_OFFSET LOCATE UAND
CARD LOWER UDEC
CLEAR_INTERLOCKED MAX UFB
CLOCK MIN UNDEFINED
CREATE_DIRECTORY OCT UNLOCK
DATE ODD UNOT
DELETE_FILE PRESENT UNIGNED
DBLE QUAD UOR
DELETE QUADRUPLE UPPER
ESTABLISH READV URUND
EXPO RENAME_FILE UTRUNC
EXTEND RESETKREVERT UXOR
FIND SET_INTERLOCKED WRITEV
FIND_FIRST_BIT_CLEAR SINGLE XOR
FIND_FIRST_BIT_SET SIZE ZERO
FINDK

Porting Pascal Programs 7·25

7

7

Compilation Unit Structure

Syntax for module declarations differs.

Declarations

The following differences exist:

• HP Pascal restricts types of constant expressions in constant definitions.

• HP Pascal does not support VMS Pascal attribute lists.

• HP Pascal does not support initialization of variables within the variable
declaration.

Data Types

Unsigned integers are not supported in HP Pascal.

VMS PASCAL D_floating, G_floating, double, and quadruple real numbers
are not supported by HP Pascal.

VARYING of CHAR is not supported in HP Pascal.

Expressions

HP Pascal does not support the same set of compile-time expressions as VMS
PASCAL.

Operators

The syntax of type casts is different.

Statements

Statements are compatible.

7 ·26 Porting Pascal Programs

User Declared Routines

HP Pascal allows redeclaration of forward procedure or function parameters
when the routine is defined.

For example:

procedure p (var argl,arg3:integer); forward;

procedure p (var argl,arg3:integer);
var

begin

end; {procedure p}

Declarations of formal parameters differ. In particular, HP Pascal does not
support:

• a value-section for default values for formals.

• a foreign section.

• varying conformant arrays.

Functions

For some provided functions such as open and close, the types and value of
arguments differ.

Porting Pascal Programs 7-27

7

7

Calling Other Languages
Pascal has seven basic types, along with pointers, records, and subranges. The
user may also create arrays of each of these. Pascal can pass its parameters by
value or by reference. Compatibility of these types with the other languages is
shown in Table 7-3.

7 -28 Porting Pascal Programs

Table 7-3. Pascal Inter-Language Compatibility

Pascal C FORTRAN

boolean unsigned char logical*l (logical*2 and
unsigned logical*4 will not work)

char char character*l

integer long; int integer (*4)

-32768 .. 32767 short integer (*2)(extension to ANSI
(shortint on standard FORTRAN 77)
S700/800)

real float real (*4)

longreal double double precision

enumerated type enum use integer*2 (extension to ANSI
standard FORTRAN 77)

subrange (32 bit) use long; int use integer*4

subrange (16 bit); use short use integer*2 (extension to ANSI
S300 / 400 only standard FORTRAN 77)

set none none

record struct (the fields must record
align)

- type (pointer) type * none
&var

var- (dereferencing) *var none

sort (16 bit); unsigned short none
S700/800 only

sort (32 bit); unsigned short none
S700/800 only

Take care when using packed records in Pascal because the compiler packs
the data into the smallest required space. Thus, fields may not align on byte
boundaries. This makes it difficult to access the data from C and FORTRAN.

Porting Pascal Programs 7-29

7

7

If Pascal routines are to be called from FORTRAN, make sure to declare all
parameters as VAR parameters.

To call an external (FORTRAN, C, or assembler) procedure on Series 300/400
computers, the user must declare a Pascal interface to it, and then define it
as EXTERNAL. Pascal will then add an underscore (_) prefix to the name; this
is the name that the loader will look for. If the user wishes to use a different
name (in the Pascal code), or if the routine is an assembler routine (the
assembler does not have a _ prefix on its external names), then the $ALIAS$

directive is needed in the interface declaration. C and FORTRAN also use
a _ prefix, so names will match properly.

A similar situation exists on Series 700/800 except that the underscore is
neither added nor required for external names.

Refer to the HP Pascal/HP- UX Programmer's Guide for more information on
calling other languages.

Calling C

HP- UX system calls and subroutines are actually C functions, so if your
program calls such routines, you must know how to call C functions. This
section contains a list of relevant issues and some examples of calling a C
function from a Pascal program .

• C does not have subroutines; it has functions that mayor may not return
a result. The default type of the returned value is integer, but other types
may also be returned. Since the C function will not be defined in the same
source file as your Pascal program, you will have to declare the C function as
an external Pascal function within the source file. It is important for you to
make the external declaration correspond to the definition of the C function .

• Pascal gives you the choice of passing parameters by value or by reference.
C passes all parameters by value, but you can emulate passing by reference
by declaring a formal parameter as a pointer. This relationship is important
to understand when writing the external function declaration through which
Pascal "sees" the C function. If the C function you are calling has a formal
parameter declared as a pointer, then in your Pascal external declaration of
the function, the formal parameter should be a var parameter. All C formal
parameters that are not declared as pointers should have corresponding
Pascal non-var actual parameters. See the example below for clarification.

7 -30 Porting Pascal Programs

• Records and structs can be easily passed between C and Pascal as long as
the Pascal records are unpacked. Packed records introduce system dependent
problems that are not discussed here.

• Both C and Pascal store arrays in row-major order so they may be passed
successfully. When passing character arrays (which are actually pointers to
chars), make sure that they are terminated with chr(O). Always be sure
to debug the interface between the two languages. Do not assume that it
works just because the function works when called by a program in the same
language.

• On Series 300/400, if you want to refer to an external function by a name
other than the one it is defined under, use the alias directive to set the
name.

This example shows how to call a user-defined C function from a Pascal
program. First is shown the Pascal source:

{ SHORT PROGRAM TO CALL C FUNCTION }
program call_c(input,output);

const str_length = 50;

type mystring = packed array[1 .. str_lengthJ of char;

var x real;
s mystring;

{ DECLARE THE C FUNCTION AS AN
EXTERNAL PASCAL FUNCTION }

function c_sub (var strng : mystring): real; external;

begin
s:= 'abc';
s[4J:= chr(O); {PUT NULL AT END}
x:= c_sub(s); {CALL THE FUNCTION}
writeln(x)

end.

Here is the C source:

Porting Pascal Programs 7-31

7

7

#include <stdio.h>
1* C FUNCTION TO PRINT A STRING

AND RETURN A REAL VALUE. *1
float c_sub(str)

{

}

char *str;

printf(lI\n y's",str);
return(1.211);

The commands for compiling and linking these two source files is:

cc -c c_sub.c
pc call_c.p c_sub.o

Execu ting the file named a. out will produce:

abc 1.211000E+OO

The following page has an example that calls the HP-UX system function
truncate from a Pascal program. The alias directive is used to rename the
external symbol truncate to chop within the program. Note particularly the
section that inserts a null (chr(O)) into the character array at the end of the
file name. This is necessary because C expects all strings to be terminated by a
null.

7 -32 Porting Pascal Programs

program chopfile(input,output);
{ PROGRAM TO TRUNCATE A FILE TO A GIVEN LENGTH }
const str_length = 50;

type mystring=packed array[1 .. str_length] of char;

var fname: mystring;
lngth, dummy, i : integer;

function $alias 'truncate'$ chop(var path: mystring;
length: integer); integer; external;

begin
writeln('Enter name of file to be chopped: ');
readln(fname);

{ PUT NULL IN FIRST SPACE }
i:= 1;
while (fname[i] <> ' ') do

i:= i + 1;
fname[i]:= chr(O);

writeln('Enter new length: ');
readln(lngth);

{ CALL THE SYSTEM FUNCTION
WITH ITS ALIASED NAME }

dummy:= chop(fname,lngth);

if dummy <> 0 then
writeln('CALL FAILED')

end. { CHOPFILE }

Use the following commands to compile and run this program:

pc chopfile.p
a.out

Porting Pascal Programs 7·33

7

Calling FORTRAN

Listed below are differences between FO RTRAN and Pascal that may cause
problems when calling FORTRAN from Pascal. For more information on
interlanguage calling conventions on Series 300 / 400~ refer to the book HP- U}(
Assembler Reference and Supporting Documents (Series 300/400).

Booleans

FORTRAN has the LOGICAL type for representing boolean values. On Series
300 / 400~ FORTRAN and Pascal share a common definition of true and false:
Zero is false and any non-zero value is true. A FORTRAN LOGICAL, which is
2 bytes in size, is the same as an unpacked Pascal BOOLEAN. The FORTRAN
LOGICAL* 1 and LOGICAL*4 types do not have an equivalent in Pascal.

Arrays

Pascal stores arrays in row-major order; FORTRAN stores them in
column-major order.

Files

A FORTRAN unit cannot be passed to a Pascal routine to perform
input/output on the associated file. Nor can a Pascal file variable be used by a
FORTRAN routine. However, a file created by either language can be used by
the other if the file is opened and accessed by the method appropriate to that

7 language.

Of course, files can be accessed from either language through the use of HP- UX
input / output subroutines and intrinsics. (For more information, refer to the
appropriate system reference manual.)

Parameter Passing Methods

By default, FORTRAN passes parameters by reference. Therefore, all
parameters in a Pascal routine called from FORTRAN and all those in the
external declaration of a FORTRAN routine called from Pascal must be VAR
parameters. If necessary, you can force a FORTRAN function to pass by value
with the '/.VAL intrinsic function or the $ALIAS directive.

7 -34 Porting Pascal Programs

Complex Numbers

Pascal has no COMPLEX numbers. However, they can be represented in Pascal
by the following record structure:

TYPE complex : RECORD
real_part,
imaginary_part: REAL

END;

Similarly, a FORTRAN DOUBLE COMPLEX number can be represented by the
above record structure with the real and imaginary parts being of Pascal type
LONGREAL.

COMPLEX*16, however, cannot be represented in Pascal because Pascal does not
support 16-byte real values.

Hollerith and Character

The FORTRAN Hollerith and character data types are equivalent to the Pascal
PACKED ARRAY OF CHAR.

Porting Pascal Programs 7·35

7

Index

A

absolute addressing, 2-4
absolu te addressing on the Pascal

\iVorkstation, 7-15
ACCEPT statement in FORTRAN, 6-37
access, 4-6
accessing memory, 3-5
accessing unaligned data, 5-6, 6-4
ACCESS= I/O specifier in FORTRAN,

6-36
acct(2) system call, 3-11
acosh(3M) BSD4.3 library call, 4-4
Ada, 1-3
address 0, reading and writing, 5-19
address space differences, 3-3
addr function differences in Pascal, 7-6,

7-7
adjtime(2) BSD4.3 system call, 4-3
alarm, 4-6
alarm(2) system call, 3-12
ALIAS directive in FORTRAN, 6-14,

6-17, 6-50
ALIAS directive in Pascal, 7-30, 7-34
alignment, 3-3
alignment, checking with lint, 5-8
alignment, data, 2-6
ALIGNMENT directive in Pascal, 7-9
alignment in FORTRAN, 6-2
alignment of data types in Pascal, 7-2,

7-3, 7-29
alignmen ts in C, 5-2
alloca(3) BSD4.3 library call, 4-3

ALLOW_PACKED directive in Pascal, 7-9
allow_unaligned_data_access(),5-6,

6-4
alphasort(3) BSD4.3 library call, 4-3
ANSI 770X3.97-1983, 2-9
ANSI C, 5-1, 5-26

definition, 2-8
enforcing, 2-3
mode, 2-3

ANSI C differences from HP C, 5-29
ANSI C name spaces, 5-26, 5-27
ANSI C++ standards, 2-9
ANSI directive in Pascal, 7-2, 7-10
ANSI FORTRAN 77 definition, 2-8
ANSI FORTRAN 77, enforcing, 2-3,

6-7
ANSI mode, 2-8
ANSI Pascal, 7-1
ANSI Pascal definition, 2-9
ANSI Pascal, enforcing, 2-3
ANSI X3.159-1989, 2-8
ANSI X3.9-1978, 2-8
anyptr in Pascal, 7-5
anyvar and packed arrays in Pascal,

7-5
anyvar value checking in Pascal, 7-5
-A option, 7-11
a. out differences across HP-UX, 3-9
apex command, 5-25
append in Pascal, 7-4
architecture differences, 3-2, 6-1

Index-1

Index

Index

arithmetic operators in FORTRAN,
6-35

array dimension limits in FORTRAN,
6-8

arrays in C, 6-50
arrays in FORTRAN, 6-50
arrays, passing between Pascal and

FORTRAN, 6-54, 7-34
ASA carriage control filter, 6-22
asinh(3M) BSD4.3 library call, 4-4
asm_initproc, 5-46
asm_wrapup, 5-46
ASSEMBLY directive in FORTRAN, 6-21
assembly language, 2-4, 3-3
assembly language conversion from

Pascal Workstation to HP-UX,
7-23

ASSERT_HALT directive in Pascal, 7-10
assert procedure in Pascal, 7-6
associate in Pascal, 7-4
ASSUME directive in Pascal, 7-10
atanh(3M) BSD4.3 library call, 4-4
auto-opening of files in FORTRAN,

6-36
auto variables in C, 5-20

B

Berkeley Software Distribution (BSD)
extensions, 2-3

_BFMT __ COFF predefined macro, 5-33
+bfpa option, general, 3-17
/bin/ quota BSD4.3 command, 4-7
bit-field declared with signed or

uns igned keyword, 5-29
bit-fields, checking alignment, 5-9
bit-fields in C, 5-16, 5-36
bit numbering, 3-5
bitwise operators in FORTRAN, 6-9
blclose(3) library call, 3-12
blget(3) library call, 3-12
blmode(3) library call, 3-12

Index-2

block data subprograms, 6-35
block scope in ANSI C structures, 5-32
blread(3) library call, 3-12
blset(3) library call, 3-12
boolean data type in Pascal, 7-3, 7-29
boolean Pascal values in FORTRAN,

7-34
BSD4.3

applications, 4-7
bibliography tools, 4-7
header files, 4-7
libc library, 4-2
libm library, 4-4
libmp library, 4-5
libU77 library, 4-6
relationship to HP-UX, 2-7

BUILDINT directive in Pascal, 7-10
bus error handling in C, 5-6
bus error handling in FORTRAN, 6-4
BYTE data type in FORTRAN, 6-3, 6-49
byteorder(3N) BSD4.3 library call, 4-3
byte ordering, 3-3

c
C

-Aa option, 2-3, 5-1, 5-26
-Ac option, 2-3, 5-26
ANSI C differences, 5-29
+a option, 5-21
arrays, 6-50
-As option, 2-3
+bfpa option, 3-17, 5-21
bit-fields, 5-16, 5-36
calling C from FORTRAN, 6-50
calling C from Pascal, 7-30
calls to FORTRAN, 5-43
calls to Pascal, 5-46
casting pointer types, 5-10
char data type, 5-14
compatibility mode, 5-1
compile line options, 5-21, 5-26

+DA option, 5-21
data alignment, 5-10
data alignment pragma, 5-4
data types, 5-3
data types, comparison to Pascal and

FORTRAN, 5-41
data type sizes and alignments, 5-2
+df option, 5-21
-D_HPUX_SOURCE, 5-28
division by zero, 5-17
-D_POSIX_SOURCE, 5-28
+ds option, 5-21
-D_XOPEN_SOURCE, 5-28
enum bit-fields, 5-17
+e option, 5-21
+ESli t option, 5-21
+ESsfc option, 5-21
expression evaluation, 5-19
+ffpa option, 5-21
+f option, 5-21, 5-31
+FP option, 5-23
identifiers, 5-14
#include files, 5-13
input/output routines, 5-24
int data type, 5-20
integer overflow, 5-18
+1 option, 5-23
LOGICAL FORTRAN type, 6-51
+L option, 5-23
+Lp option, 5-23
+m option, 5-23
+M option, 5-23
+N option, 5-23
- N option, 5-23
null pointers, 5-19
+02 option, 3-10, 5-37
+03 option, 3-10
+Obb option, 5-23
+0 option, 5-23
+0 option, 5-23
-0 option, 3-10

+opt option, 5-24
+pgm option, 5-23
+P option, 5-23
porting to Domain/C, 5-33
porting to/from VMS, 5-35
predefined symbols, 5-12, 5-15
preprocessor (cpp), 5-12
register storage class, 5-14, 5-37
+r option, 5-23, 5-31
+R option, 5-23
shift operators «<, »), 5-15
sizeof operator, 5-15
strings and FORTRAN, 6-49
structure assignment, 5-18
structure-valued functions, 5-18
temporary files, 5-21
TMPDIR variable, 5-21
typedef keyword, 5-11
unsigned char converted to int,

5-20
unsigned char data type, 5-14
unsigned short converted to int,

5-20
+u option, 5-24
+u option and alignment pragmas,

5-5
variable initialization, 5-20
VMS C. See VMS C
+w1 option, 5-26
+w option, 5-24
-\t1 option, 5-24
-z option, 5-19, 5-24
-z option, 5-24

C++,3-10
cabs(3M) BSD4.3 library call, 4-4
cachectl(3) library call, 3-12
CALLABS directive on the Pascal

Workstation, 7-22
call by reference in FORTRAN, 6-50,

6-54
call by value in C, 6-50

Index-3

Index

Index

casting pointer types in C, 5-10
cbrt(3M) BSD4.3 library call, 4-4
cfront, 3-10
character constants in FORTRAN, 6-8
character constants in VMS C, 5-38
CHARACTER data type in FORTRAN,

6-3, 6-49
char data type in C, 5-3, 5-14, 5-35
char data type in Pascal, 7-3, 7-29
chdir, 4-6
CHECK_ACTUAL_PARM directive in

FORTRAN, 6-21
CHECK_ACTUAL_PARM directive in Pascal,

7-10
CHECK_FORMAL_PARM directive in

FORTRAN, 6-21
CHECK_FORMAL_PARM directive in Pascal,

7-10
CHECK_OVERFLOW directive in FORTRAN,

6-21
chmod, 4-6
clock(3C) library call, 3-12
closelog(3) BSD4.3 library call, 4-3
close procedure in Pascal, 7-4
COBOL, 1-3
CODE directive in Pascal, 7-10
CODE_OFFSETS directive in FORTRAN,

6-21
CODE_OFFSETS directive in Pascal, 7-10
code size limitations, 3-6
columns significant in FORTRAN, 6-35
comments (!) in FORTRAN, 6-34
COMMON on Series 700/800, 6-25
common region names in FORTRAN,

6-17
comp(3) BSD4.3 library call, 4-3
compatibility libraries, 2-7
compatibility mode, 2-8
compatibility mode, C, 2-3, 5-1, 5-26
compile line options. See specific options

under each language

Index-4

compile line options for optimization,
3-10

compile line options, general, 2-4
compile line options in C, 5-21, 5-26
compile line options in FORTRAN,

6-18
compile line options in Pascal, 7-7
compiler directives, general, 2-4
compiler directives in FORTRAN, 6-20
COMPLEX data type in FORTRAN, 6-3,

6-49
COMPLEX FORTRAN numbers in Pascal,

6-54, 7-35
conditional compilation, 2-6
conditional compilation in C, 5-12
CONSOLE: on the Pascal Workstation,

7-16
context, determining at run time, 3-8
continuation lines in FORTRAN, 6-34
CONTROL-L in source files, 6-33
control statements in VMS FORTRAN,

6-33
CONVERT _MPE_NAME directive in Pascal,

7-10
co-processors, 3-2
COPYRIGHT_DATE directive in Pascal,

7-10
COPYRIGHT directive in Pascal, 7-10
COPYRIGHT directive on the Pascal

Workstation, 7-22
copysign(3M) BSD4.3 library call, 4-4
cpp preprocessor, 5-12
crtO(3) library call, 3-12
crtO.o and hardware flags, 3-16
crunched arrays and records in Pascal,

7-6
ctime (time), 4-6
curses(3X), 5-39
cvtnum, 3-12

D

+DA option, general, 3-2
data alignment, 2-6
data file compatibility in FORTRAN,

6-10
data representation in memory for

FORTRAN, 6-42
data size limitations, 3-6
DATA statement location in FORTRAN,

6-35
data type alignment, ensuring without

pragmas in C~ 5-9
data type alignment in C, 5-10
data type alignment in FORTRAN,

6-18, 6-30, 6-34, 6-43
data type alignment in Pascal, 7-2, 7-3,

7-7, 7-29
data type alignment pragma in C, 5-4
data types in C, 5-2
data types in FORTRAN, 6-2, 6-49
data types in Pascal, 7-2
__ DATE __ predefined names, 5-33
DEBUG directive in Pascal, 7-10
debug lines in FORTRAN, 6-34
DECODE statement in FORTRAN, 6-35
DEF directive on the Pascal '''orkstation,

7-22
DEFINE statement in VMS FORTRAN,

6-37
DELETE statement in VMS FORTRAN,

6-37
dereferencing null pointers in C, 5-19
dereferencing pointers, 5-5
%descr in FORTRAN, 6-14
determining model number, 3-2
D_floating VMS format, 5-37,6-34
DGL graphics library

HP-UX, 7-21
Pascal Workstation, 7-20

dial(3) library call, 3-12
DIRECT access in FORTRAN, 6-36

division by zero in C, 5-17
DO-END DO loops in FORTRAN, 6-33
Domain/C, 5-33
Domain FO RTRAN representation of

. TRUE., 6-8
DOMAIN_NATURAL, 5-4
Domain natural alignment in C, 5-4
DOMAIN_WORD, 5-4
Domain word alignment in C, 5-4
DOUBLE COMPLEX data type III

FORTRAN, 6-3,6-49
double data type in C, 5-3
double expressions in C, 5-31
DOUBLE PRECISION data type III

FO RTRAN, 6-49
DO-WHILE loops in FORTRAN, 6-33
drem(3M) BSD4.3 library call, 4-4
+DS option, general, 3-2
dtime (etime), 4-6

E

edit descriptors in FORTRAN, 6-36
ENCODE statement in FORTRAN, 6-35
end(3) library call, 3-12
end padding of structures, 5-9
endttyent(3) BSD4.3 library call, 4-3
ENTRY statement in Series 700/800, 6-28
enum bit-fields in C, 5-17
enum data type in C, 5-3, 5-35
enumeration data type in Pascal, 7-3,

7-29
enumeration subrange data type in

Pascal, 7-3, 7-29
EQUIVALENCE on Series 700/800, 6-25
EQUIVALENCE statement and VMS

FORTRAN, 6-42
errlist(3) BSD4.3 library call, 4-3
error conditions in FORTRAN, 6-7
/ etc/renice BSD4.3 command, 4-7
/ etc/timed BSD4.3 command, 4-7
etime, 4-6

Index-5

Index

Index

exec(2) system call, 3-11
execution stack, 3-6
expm1 (3M) BSD4.3 library call, 4-4
expression evaluation in C, 5-19
extended-range DO loops in FORTRAN,

6-33
EXTERNAL directive in Pascal, 7-10
EXTNADDR directive in Pascal, 7-11

F

falloe (malloe) , 4-6
fdate, 4-6
F _floating VMS format, 5-37
+ffpa option, general, 3-17
fgetc (gete), 4-6
field descriptors in FORTRAN, 6-36
file incompatibility, 2-5
FILE= I/O specifier in FORTRAN, 6-36
file names on the Pascal Workstation,

7-16
file names predefined in VMS FORTRAN,

6-48
file variables and the s izeof function

in Pascal, 7-6
FIND statement in VMS FORTRAN,

6-37
finger BSD4.3 command, 4-7
finite(3M) BSD4.3 library call, 4-4
FIPS 160, 2-8
FIPS PUB 69-1, 2-8
flag_6888i flag, 3-16
flag_fpa flag, 3-16
flag_soft flag, 3-16
flint. See lintfor
float data type in C, 5-3
float expressions in C, 5-31
FLOAT_HDW directive in Pascal, 7-11
floating-point

conversion from float to int, 5-18
fuzziness, 2-5
Pascal library calls, 7-7

Index-6

Series 300/400 compile line options,
3-17

Series 700/800, 3-18
types for C, 5-37
VMS formats in memory, 5-36

floating-point co-processors, 3-2, 3-14
floating-point exceptions, 5-17, 5-18
floating-point support, differences across

HP-UX, 3-14
flock(2) BSD4.3 system call, 4-3
fmin(3M) BSD4.3 library call, 4-5
fmout(3M) BSD4.3 library call, 4-5
fnurn function in Pascal, 7-4
FNUM intrinsic, 6-51, 6-52
fork, 4-6
format for object file, 3-9
FORTRAN

+800 option, 6-9, 6-24
ACCEPT statement, 6-37
ACCESS= I/O specifier, 6-36
ALIAS directive, 6-14,6-17, 6-50
alignment, 6-2
ANSI 77 standard, enforcing, 6-7
+A option, 6-3, 6-4-5, 6-18, 6-42
-a option, 2-3, 6-7
$APOLLO LOGICALS directive, 6-9
+apollo option, 6-9
arithmetic differences for Series

700/800, 6-27
arithmetic operators, 6-35
array dimension limits, 6-8
arrays, 6-50
arrays, relationship to Pascal arrays,

7-34
ASA carriage control, 6-22
-As option, 2-3
ASSEMBLY directive, 6-21
auto-opening files, 6-36
+bfpa option, 3-17, 6-18
bitwise operators, 6-9

BLOCK DATA and DATA statements,
6-35

BYTE data type, 6-3, 6-49
calling from C, 5-43
calling from Pascal, 7-34
calls to C, 6-50
calls to Pascal, 6-53
character constants, 6-8
CHARACTER data type, 6-3, 6-49
CHECK_ACTUAL_PARM directive, 6-21
CHECK_FORMAL_PARM directive, 6-21
CHECK_OVERFLOW directive, 6-21
CODE_OFFSETS directive, 6-21
columns, 6-35
comments (! end-of-line), 6-34
COMMON on Series 700/800, 6-25
common region names, 6-17
compile line options, 6-18
compiler directives, 6-20
COMPLEX data type, 6-3, 6-49
COMPLEX numbers in Pascal, 6-54
continuation lines, 6-34
CONTROL-L in source files, 6-33
+DA option, 6-18
data alignment, 6-18
DATA and BLOCK DATA statements,

6-35
data file compatibility, 6-10
DATA statement location, 6-3.5
data type alignment, 6-3, 6-18
data type length specifier, 6-35
data types, 6-49
data type sizes, 6-2
debug lines, 6-34
DECODE statement, 6-35
direct-access files, 6-36
DO-END DO loops, 6-33
DOUBLE COMPLEX data type, 6-3, 6-49
DOUBLE PRECISION data type, 6-49
DO-WHILE loops, 6-33
+DS option, 6-18

+El option, 6-38
+E2 option, 6-9, 6-41
+E6 option, 6-36
edit descriptors, 6-36
ENCODE statement, 6-35
ENTRY statement on Series 700/800,

6-28
+e option, 6-9, 6-35, 6-36, 6-38
EQUIVALENCE on Series 700/800, 6-25
EQUIVALENCE statement, 6-43
error conditions, 6-7
extended-range DO loops, 6-33
+ffpa option, 6-18
field descriptors, 6-36
FILE= I/O specifier, 6-36
FORTRAN 66 DO loop semantics,

6-33
+FP option, 6-18
hexadecimal constants, 6-33, 6-35
Holleriths, 6-3, 6-8, 6-49
HP1000 ALIGNMENT directive, 6-3,

6-43
$HP9000_300 ALIGNMENT directive,

6-10
$HP9000_800 ALIGNMENT directive,

6-10
HP9000_800 LOGICALS directive, 6-9
identifiers, 6-6, 6-41
IF-ELSE blocks, jumping into, 6-33
initializing variables, 6-35
INLINE directive, 6-20
INTEGER*2 data type, 6-50
INTEGER data type, 6-3, 6-49
+ I option, 6-18
I/O with C, 6-52
ISHFTC intrinsic on Series 700/800,

6-28
-K option, 6-9, 6-35, 6-45
libel. a, 6-51
lintfor syntax checker, 6-21
LIST_CODE directive, 6-21

Index-7

Index

Index

list-directed internal I/O, 6-35
LOCALITY directive, 6-21
LOGICAL data type, 6-3, 6-49
logical operators, 6-9
logical represeritation, 6-8, 6-41
logical value representation in Pascal,

6-53
LOGICAL values in C, 6-51
MAXREC= I/O specifier, 6-36
mixing C and FORTRAN 1/0,6-52
+M option, 6-18
namelist-directed I/O, 6-35
namelists on Series 700/800, 6-28
$NOSTANDARD ALIGNMENT directive,

6-3, 6-10, 6-34, 6-43
$NOSTANDARD ALIGNMENT on Series

700/800, 6-28
$NOSTANDARD LOGICALS directive,

6-9
+01 option, 6-21
+02 option, 3-10, 6-21
+03 option, 3-10, 6-21
octal constants, 6-33, 6-34, 6-35
+0 option, 6-18
-0 option, 3-10, 6-21, 6-45
OPTIMIZE directive, 6-21
optimizer phase/level, 6-20
OPTION SHORT directive, 6-50
+Pl option, 6-20
+P2 option, 6-20
parameter passing, 6-14, 6-50
parameters from Pascal, 7-34
Pascal array differences, 6-54
Pascal packed array of char, 6-55
passing parameters with Pascal, 6-54
passing strings to Pascal, 6-55
+P option, 6-20
+ppu option, 6-46
problems with C struct, 6-50
problems with Pascal record, 6-50
procedure traceback, 6-20

Index-8

+Q option, 6-20
ratfor preprocessor, 6-22
REAL*16 data type, 6-3, 6-49
REAL data type, 6-3, 6-49
REC= I/O specifier, 6-36
RECL= I/O specifier, 6-36
RECORD data type, 6-3, 6-34, 6-49
recursion, 6-9
RENAME_ COMMON directive, 6-17
run-time error messages, 6-7
SAVE_LOCALS directive, 6-21
SEGMENT directive, 6-21
Series 700/800 FORTRAN, 6-24
short integers, 6-50
static analysis, 6-21
stream files from C, 6-51, 6-52
strings as parameters, 6-51
structure alignment, 6-10
STRUCTURE data type, 6-34
symbolic names, 6-6, 6-41
system calls, 6-51
TAB character, 6-33, 6-34
TMPDIR environment variable, 6-21
+T option, 6-20, 6-28
. TRUE. representation, 6-8, 6-41
type coercions, 6-41
TYPE statement, 6-36
+U77 option, 4-6
UNIT= I/O specifier, 6-36
+U option, 6-32
-U option, 6-45
using Pascal files, 6-54, 7-34
variable-format expressions, 6-36
Vector Instruction Set, 6-17
VMS FORTRAN, 6-29. See also VMS

FORTRAN
. XOR. and . NEQV ., 6-41

FORTRAN 66 DO loop semantics, 6-33
FORTRAN 77, 2-8
fputc (putc) , 4-6
frame. h BSD4.3 header file, 4-7

free (maUoe), 4-6
frtO. ° and hardware flags, 3-16
fseek, 4-6
fstat (stat), 4-6
FSTREAM intrinsic, 6-51, 6-52
fteU (fseek) , 4-6
ftime(3C) BSD4.3 library call, 4-3
fwri te(3) library call, 5-24

G
gcd(3M) BSD4.3 library call, 4-5
gerror (perror), 4-6
getarg, 4-6
gete, 4-6
getcontext(1) user command, 3-8
getcontext(2) system call, 3-8
getcwd, 4-6
getdisk(3) BSD4.3 library call, 4-3
getdtablesize(2) BSD4.3 system call,

4-3
getenv, 4-6
getgid (getuid), 4-6
gethostid(2) BSD4.3 system call, 4-3
getlog, 4-6
getpagesize(2) BSD4.3 system call,

4-3
getpgrp(2) BSD4.3 system call, 4-2
getpid, 4-6
getpriority(2) BSD4.3 system call,

4-3
getrusage(2) BSD4.3 system call, 4-3
gettimeofday(2) system call, 3-11
getttyent (3) BSD4.3 library call, 4-3
getttynam(3) BSD4.3 library call, 4-3
getuid, 4-6
getwd(3) BSD4.3 library call, 4-2
G_floating VMS format, 5-37
globalanyptr in Pascal, 7-5
globaldef, 5-35
GLOBAL directive in Pascal, 7-11
global optimization, 3-10

globalref, 5-35
globalvalue, 5-35
global variables, 3-9
gmtime (time), 4-6
gpio_get_status(3) library call, 3-12
gpio_set_ctl(3) library call, 3-12
GPROF directive in Pascal, 7-11
graphics library, STARBASE, 7-21

H

hardware flags, 3-16
hardware for floating-point math, 3-14
haveextension Pascal function, 7-6
haveoptvarparam Pascal function, 7-6
header files, BSD4.3, 4-7
HEAP _COMPACT directive in Pascal, 7-11
HEAP _DISPOSE directive in Pascal, 7-11
HEAP _DISPOSE directive on the Pascal

Workstation, 7-22
heap management on the Pascal

Workstation, 7-17
hexadecimal constants in FO RTRAN ,

6-33, 6-35
Holleriths, 6-3, 6-8, 6-34, 6-49, 6-55
Holleriths, in Pascal, 7-35
hostnm, 4-6
HP1000 ALIGNMENT directive In

FORTRAN, 6-3,6-43
__ hp9000s300 symbol, 5-12, 5-15, 5-39
__ hp9000s700 symbol, 5-12, 5-15, 5-39
__ hp9000s800 symbol, 5-12, 5-15, 5-39
HP 98248A floating-point card, 3-15,

3-16, 3-17
HP 98248B floating-point card, 3-15,

3-16, 3-17
HP 98635A floating-point card, 3-16
HP _ALIGN pragma in C, 5-4, 5-5
HP_DESTINATION 'ARCHITECTURE, 7-11
HP_DESTINATION 'SCHEDULER, 7-11
hpib_abort(3) library call, 3-13
hpib_address_ctl(3) library call, 3-13

Index-9

Index

Index

hpib_atn_ctl, 3-13
hpib_bus_status(3) library call, 3-13
hpib_card_ppoll_resp(3) library call,

3-13
hpib_eoi_ctl(3) library call, 3-13
hpib_io(3) library call, 3-13
hpib_parity_ctl(3) library call, 3-13
hpib_pass_ctl(3) library call, 3-13
hpib_rqst_srvce(3) library call, 3-13
hpib_send_cmnd(3) library call, 3-13
hpib_spoll(3) library call, 3-13
hpib_status_wai t(3) library call, 3-13
hpib_wait_on_ppoll(3) library call,

3-13
__ hppa, 5-39
hppac(3) library call, 3-13
HP Pascal, 7-1
__ hppa symbol, 5-15
HP-UX 9.0 release, 6-1
HP-UX name space in C, 5-27
HPUX_NATURAL, 5-4
HPUX_NATURAL_S500, 5-4
HP-UX standards, 2-7
__ hpux symbol, 5-15, 5-39
HPUX_ WORD, 5-4

iargc (getarg), 4-6
idate, 4-6
identifiers in C, 5-14, 5-37
identifiers in FORTRAN, 6-6, 6-41
identifying system at run time, 3-7
ierrno (perror), 4-6
#ifdef, 5-12
IF-ELSE blocks in FORTRAN, jumping

into, 6-33
IF-ELSE-ENDIF directive in Pascal, 7-11
include files, 2-6
#include files and portability, 5-13
INCLUDE statement in VMS FORTRAN,

6-35

Index-10

indexed file access in VMS FORTRAN,
6-37

infnan(3M) BSD4.3 library call, 4-4
initialized data, 3-9
_INITIALIZER, 3-13
initializing variables in FORTRAN,

6-35
initstate(3) BSD4.3 library call, 4-3
INLINE directive in FORTRAN, 6-20
INLINE directive in Pascal, 7-11
input on the Pascal Workstation, 7-15
input/output in C, 5-24
input,joutput operations, 2-5
insque(3) BSD4.3 library call, 4-3
int constants in C, 5-31
int data type in C, 5-3
INTEGER*2 in FORTRAN, 6-50
integer constants in C, 5-31
INTEGER data type in FORTRAN, 6-3,

6-49
integer data type in Pascal, 7-3, 7-29
integer overflow in C, 5-18
integer subrange data type in Pascal,

7-3, 7-29
internal padding of structures, 5-8
invert(3M) BSD4.3 library call, 4-5
iO_burst(3) library call, 3-13
IOCHECK directive on the Pascal

Workstation, 7-22
IOCTL system call from Pascal, 7-17
io_dma_ctl(3) library call, 3-13
io_get_ term_reason(3) library call,

3-13
I/O in Pascal, 7-4
io_lock(3) library call, 3-13
io_on_interrupt(3) library call, 3-13
io_reset(3) library call, 3-13
io_speed_ctl(3) library call, 3-13
io_timeout_ctl(3) library call, 3-13
io_unlock(3) library call, 3-13
is_6S010_present, 3-16

is_6888i_present, 3-16
is_98248A_present, 3-16
is_98635A_present, 3-16
isatty (ttynam), 4-6
ISHFTC intrinsic on Series 700/800, 6-28
is_hw_present(3) library call, 3-13
ISO 7185-1983, 2-9
ISO 9899

1990, 2-8
isolating system-dependent code, 2-6
itime (idate), 4-6
i tom(3M) BSD4.3 library call, 4-5

K

KEEPASMB directive in Pascal, 7-11
Kernighan & Ritchie, 2-3, 5-1
key-field specifiers in VMS FORTRAN,

6-37
key-of-reference specifiers in VMS

FORTRAN, 6-37
kill, 4-6
killpg(2) BSD4.3 system call, 4-2
K&R C, 2-3

porting to ANSI C, 5-26

L

language differences across HP-UX,
3-10

language semantics, 2-4
lastlog.h BSD4.3 header file, 4-7
lastpos on the Pascal Workstation,

7-15
ld differences across HP-UX, 3-9
least-significant byte address, 3-5
length specifier in FORTRAN, 6-35
letter case in FORTRAN, 6-7
libBSD library, 4-2
libe, 2-7
libe BSD4.3 routines, 4-2
libel.a, 6-17,6-51
/lib/ ertO. 0 and hardware flags, 3-16

libF77, 6-27
libFext, 6-27
/lib/frtO.o and hardware flags, 3-16
libm BSD4.3, 4-4
libmp BSD4.3, 4-5
libraries, differences across HP-UX,

3-11-14
libU77 BSD4.3, 4-6
libvis. a, 6-17
LINENUM directive in Pascal, 7-11
linepos on the Pascal Workstation,

7-15
LINES directive in Pascal, 7-11
link, 4-6
linker differences across HP-UX, 3-9
lint, 5-13, 5-26
lint, checking alignment with, 5-8
lint, checking for standards compliance,

5-25
lint C program syntax checker, 2-3
lintfor FORTRAN syntax checker,

2-3, 6-21
LIST_CODE directive in FORTRAN,

6-21
LIST_CODE directive in Pascal, 7-12
list-directed internal I/O in FORTRAN,

6-35
LISTINTR directive in Pascal, 7-12
LITERAL_ALIAS directive in Pascal, 7-12
lobound subrange expressions in Pascal,

7-6
loc, 4-6
loealanyptr in Pascal, 7-5
LOCALITY directive in FORTRAN, 6-21
LOCALITY directive in Pascal, 7-12
loglp(3M) BSD4.3 library call, 4-4
logb(3M) BSD4.3 library call, 4-4
LOGICAL data type in FORTRAN, 6-3,

6-49
logical operators in FORTRAN, 6-9

Index-11

Index

Index

logical value representation III

FORTRAN, 6-8, 6-41
long data type in C, 5-3
long double data type in C, 5-3
longint data type in Pascal, 7-3, 7-29
longreal data type in Pascal, 7-:3, 7-5,

7-29
LONGSTRINGS directive in Pascal, 7-12
lowercase letters in FORTRAN, 6-7
lpd BSD4.3 command, 4-7
lpr BSD4.3 command, 4-7
lstat (stat), 4-6
!time (time), 4-6

M

madd(3M) BSD4.3 library call, 4-5
mal/oc, 4-6
MARK/RELEASE in Pascal, 7-4
maximum address space, 3-6
MAXREC= I/O specifier in FORTRAN,

6-36
MC68010 processor, 3-16
MC68040 processor, 3-15
MC680xO processor, 3-15
MC6888x math co-processor, 3-15, 3-16
mcmp(3M) BSD4.3 library call, 4-5
mdiv(3M) BSD4.3 library call, 4-5
memory organization differences, 3-5
microprocessors, 3-2
MIL-STD-1753, 2-8
m_in(3M) BSD4.3 library call, 4-5
min(3M) BSD4.3 library call, 4-5
MLIBRARY directive in Pascal, 7-12
Model 425S processor and floating-point,

3-15
model number, determining, 3-2
module names on the Pascal Workstation,

7-14
modules in Pascal, 7-4
moncontrol(3) BSD4.3 library call, 4-3
monstartup(3) BSD4.3 library call, 4-3

Index-12

+M option, general, 3-17
most-significant byte address, 3-5
Motorola floating-point co-processors,

3-2, 3-14
Motorola processors, 3-2, 3-9, 6-1
m_out(3M) BSD4.3 library call, 4-5
mout(3M) BSD4.3 library call, 4-5
MOVE16, 3-15
move(3M) BSD4.3 library call, 4-5
mp.h BSD4.3 header file, 4-7
ms and me macros from BSD4.3, 4-7
msqrt(3M) BSD4.3 library call, 4-5
msub(3M) BSD4.3 library call, 4-5
mUlt(3M) BSD4.3 library call, 4-5
multiple standards & HP-UX, 2-7

N

namelist-directed I/O in FORTRAN,
6-35

name space, ANSI C, 5-26
NATURAL, 5-4
natural alignment in C, 5-4
. NEQV. in FORTRAN, 6-41
network(3N) BSD4.3 library call, 4-3
NLS characters in Pascal source files,

7-6
nm differences across HP-UX, 3-9
non-standard language features, 2-2
NOPADDING, 5-4
noshare VMS C class modifier, 5-36
$NOSTANDARD ALIGNMENT directive in

FORTRAN, 6-3, 6-34, 6-43
$NOSTANDARD ALIGNMENT on Series

700/800, 6-28
NOTES directive in Pascal, 7-12
ns(3N) BSD4.3 library call, 4-3
ntohl(3N) BSD4.3 library call, 4-3
ntohs(3N) BSD4.3 library call, 4-3
null pointers in C, accessing, 5-19

o
object file, 3-9
octal constants in FORTRAN, 6-33,

6-34, 6-35
omin(3M) BSD4.3 library call, 4-5
omout(3M) BSD4.3 library call, 4-5
open in Pascal, 7-4
optimization differences across HP-UX

3-10 '
optimization directives, 3-10
optimization in Pascal, 7-7
OPTIMIZE directive in FORTRAN 6-21
OPTIMIZE directive in Pascal, 7-12
optimizer phase/level in FORTRAN,

6-20
OPTION SHORT directive in FORTRAN,

6-50
OS directive in Pascal, 7-12

p

packed array of char in Pascal, 7-6, 7-7
packed arrays and anyvar in Pascal,

7-5
packed records in Pascal, 7-29
padding bytes in C structures, 5-9
parameter lists, 3-6
parameter passing, 3-6
parameter passing in C, 5-13
parameter passing in FORTRAN, 6-14,

6-50
PA-RISC architecture, 3-2, 6-1
PARTIAL_EVAL directive in Pascal, 7-22
P ARTIAL_EVAL directive on the Pascal

Workstation, 7-22
Pascal

addr function differences, 7-6, 7-7
ALIAS directive, 7-30, 7-34
ALIGNMENT directive, 7-9
ALLOW_PACKED directive, 7-9
ANSI directive, 7-2, 7-10
anyptr, 7-5

anyvar and packed array parameters,
7-5

anyvar value checking, 7-5
+A option, 7-3,7-7
-A option, 2-3
append, 7-4
arrays, relationship to FORTRAN

arrays, 7-34
ASSERT_HALT directive, 7-10
assert procedure, 7-6
associate, 7-4
ASSUME directive, 7-10
+bfpa option, 7-7
boolean data type, 7-3, 7-29
BUILDINT directive, 7-10
calling from C, 5-46
calling Pascal from FORTRAN, 6-53
calls to C, 7-30
calls to FORTRAN, 7-34
calls to other languages, 7-28
char data type, 7-3, 7-29
CHECK_ACTUAL_PARM directive, 7-10
CHECK_FORMAL_PARM directive, 7-10
close procedure, 7-4
CODE directive, 7-10
CODE_OFFSETS directive, 7-10
compile line options, 7-7
COMPLEX FORTRAN numbers, 7-35
control constructs, 7-4
CONVERT_MPE_NAME directive, 7-10
+C option, 7-7
COPYRIGHT_DATE directive, 7-10
COPYRIGHT directive, 7-10
crunched arrays and records, 7-6
+DA option, 7-7
data type alignment, 7-2, 7-3, 7-7,

7-29
data types, 7-2
DEBUG directive, 7-10
direct access file differences, 7-4
directives, 7-9-14

Index-13

Index

Index

+DS option, 7-7
enumeration data type, 7-3, 7-29
enumeration subrange data type,

7-3, 7-29
EXNADDR directive, 7-11
EXTERNAL directive, 7-10
+ffpa option, 2-5, 7-7
file handling with FORTRAN, 7-34
file variables and the sizeof function,

7-6
FLOAT_HDW directive, 7-11
fnum, 7-4
FORTRAN array differences, 6-54
globalanyptr, 7-5
GLOBAL directive, 7-11
GPROF directive, 7-11
haveextension function, 7-6
haveoptvarparam function, 7-6
HEAP _COMPACT directive, 7-11
HEAP_DISPOSE directive, 7-11
HP_DESTINATION 'ARCHITECTURE,

7-11
HP_DESTINATION 'SCHEDULER, 7-11
IF-ELSE-ENDIF directive, 7-11
inline compiler options. See Pascal,

directives
INLINE directive, 7-11
integer data type, 7-3, 7-29
integer subrange data type, 7-3,

7-29
I/O, 7-4
IOCTL, 7-17
KEEPASMB directive, 7-11
library information, 7-20
LINENUM directive, 7-11
LINES directive, 7-11
LIST_CODE directive, 7-12
LISTINTR directive, 7-12
LITERAL_ALIAS directive, 7-12
lobound subrange expressions, 7-6
loca1anyptr, 7-5

Index-14

LOCALITY directive, 7-12
longint data type, 7-3, 7-29
longrea1 data type, 7-3, 7-5, 7-29
LONGSTRINGS directive, 7-12
+1 option, 7-7
-L option, 7-2, 7-7
MARK/RELEASE, 7-4
MLIBRARY directive, 7-12
modules, 7-4
+M option, 7-9
NLS characters in source files, 7-6
nonstandard features, locating, 7-2
+N option, 7-9
NOTES directive, 7-12
+0 option, 7-9
-0 option, 2-5, 3-10, 7-9
open, 7-4
optimization, 7-7
OPTIMIZE directive, 7-12
options. See Pascal, directives
OS directive, 7-12
packed array and anyvar parameters,

7-5
packed array of char, 7-6, 7-7
packed array of char in FORTRAN,

6-55
packed records, 7-29
parameter passing with FORTRAN,

7-34
PARTIAL_EVAL directive, 7-22
Pascal Workstation. See Pascal

Workstation
passing parameters with FORTRAN,

6-54
plus (+) and strings, 7-6
pointer data type, 7-3, 7-29
porting to Pascal Workstation, 7-14
porting to VMS Pascal, 7-24
procedure variables, assignment to,

7-5
program listings, 7-7

program parameter differences, 7-6,
7-7

program structure, 7-4
RANGE directive, 7-12
readonly parameters, 7-6
real data type, 7-3, 7-29
recover statement, 7-6
representation of boolean in other

languages, 7-34
representation of FORTRAN logical

type, 6-53
reset, 7-4
rewrite, 7-4
S300_EXTNAMES directive, 7-12
SAVE_CONST directive, 7-12
SEARCH directive, 7-12
SEARCH_SIZE directive, 7-13
set data type, 7-3, 7-29
SHLIB_CODE directive, 7-13
shortint data type, 7-3, 7-29
sizeof function, 7-6
SKIP _ TEXT directive, 7-13
+S option, 7-9
-S option, 7-9
STANDARD_LEVEL directive, 7-6, 7-13
STATEMENT_NUMBER directive, 7-13
statement_number function, 7-6
stderr, 7-4
stdout, 7-4
strings, maximum length, 7-5
structured constants, 7-5
SUBPROGRAM directive, 7-13
susizeof function, 7-6
SYMDEBUG directive, 7-13
SYSINTR directive, 7-13
TABLES directive, 7-13
TITLE directive, 7-13
-T option, 7-9
TRY!RECOVER, 7-4
UNDERSCORE directive, 7-13
+U option, 7-9

UPPERCASE directive, 7-13
using FORTRAN files, 6-54
VERSION directive, 7-13
waddress, 7-7
XREF directive, 7-14
-y option, 7-9
+z option, 7-9
+Z option, 7-9

Pascal Workstation
absolute addressing, 7-15
assembly language conversion, 7-23
CALLABS directive, 7-22
compiler option differences, 7-22
CONSOLE:, 7-16
COPYRIGHT directive, 7-22
DEF directive, 7-22
file naming, 7-16
graphics, 7-20
HEAP _DISPOSE directive, 7-22
heap management, 7-17
input, 7-15
IOCHECK directive, 7-22
lastpos, 7-15
library information, 7-20
linepos, 7-15
module names, 7-14
PARTIAL_EVAL directive, 7-22
porting to HP-UX Pascal, 7-14
PRINTER:, 7-16
real data type, 7-15
REF directive, 7-22
$SEARCH$ file names, 7-16
STACKCHECK directive, 7-22
SWITCH_STRPOS directive, 7-22
SYSTERM:, 7-16
terminal I/O, 7-16
UCSD directive, 7-22

pass by descriptor in FORTRAN, 6-14
passing variable number of arguments,

3-6
pee. h BSD4.3 header file, 4-7

Index-15

Index

Index

performance and alignment pragmas in
C,5-5

perror, 4-6
plus (+) and Pascal strings, 7-6
pointer casting in C, 5-10
pointer C data type, 5-3
pointer data type in Pascal, 7-3, 7-29
POP, 5-4
portability, defined, 1-1
POSIX, 2-7, 2-8
POSIX name space in C, 5-27
pow(3M) BSD4.3 library call, 4-5
#pragma HP_ALIGN, 5-4
#pragma HP_ALIGN NATURAL, 5-17
preconnected and predefined files in

VMS FORTRAN, 6-46
predefined symbols in C, 5-12, 5-15
preprocessor directives from Domain/C,

5-33
PRINTER: on the Pascal Workstation,

7-16
procedure traceback in FORTRAN,

6-20
procedure variables in Pascal, 7-5
processor, determining at run time, 3-9
processors, 3-2, 3-9
program listings in Pascal, 7-7
program parameter differences in Pascal,

7-7
psignal(3) BSD4.3 library call, 4-3
ptrace(2) system call, 3-11
PUSH, 5-4
putc, 4-6

Q

qsort, 4-6
quota BSD4.3 command, 4-7

R

Radix-50 character set, 6-33
random(3) BSD4.3 library call, 4-3

Index-16

RANGE directive in Pascal, 7-12
ratfor preprocessor, 6-22
reader program in FORTRAN, 6-12
readonly parameters in Pascal, 7-6
readonly VMS C class modifier, 5-36
REAL*16 data type in FORTRAN, 6-3,

6-49
REAL data type in FORTRAN, 6-3,6-49
real data type in Pascal, 7-3, 7-29
real data type on the Pascal

Workstation, 7-15
reboot(2) system call, 3-11
REC= I/O specifier in FORTRAN, 6-36
RECL= I/O specifier in FORTRAN, 6-36
re_comp(3) BSD4.3 library call, 4-3
RECORD data type in FORTRAN, 6-3,

6-34, 6-49
recover statement

Pascal, 7-6
recursion in FORTRAN, 6-9
re_exec(3) BSD4.3 library call, 4-3
REF directive on the Pascal Workstation,

7-22
register storage class in C, 5-14, 5-37
release of HP-UX, determining at run .

time, 3-7
remque(3) BSD4.3 library call, 4-3
rename, 4-6
RENAME_COMMON directive in FORTRAN,

6-17
renice BSD4.3 command, 4-7
reset in Pascal, 7-4
rewrite in Pascal, 7-4
REWRITE statement in VMS FORTRAN,

6-37
rint(3M) BSD4.3 library call, 4-4
rpow(3M) BSD4.3 library call, 4-5
rtprio(2) system call, 3-11
run-time error. messages in FORTRAN,

6-7

s
S300_EXTNAMES directive in Pascal, 7-12
SAVE_CONST directive in Pascal, 7-12
SAVE_LOCALS directive in FO RTRAN ,

6-21
SAVE statement in FORTRAN recursion,

6-9
scalb(3M) BSD4.3 library call, 4-4
sdiv(3M) BSD4.3 library call, 4-5
SEARCH directive in Pascal, 7-12
$SEARCH$ file names on the Pascal

\\Torkstation, 7-16
SEARCH_SIZE directive in Pascal, 7-13
SEGMENT directive in FORTRAN, 6-21
segment violation, 5-19
select(2) system call, 3-11
sequence numbering in FORTRAN,

6-34
Series 300/400

alignment in C, 5-4
floating-point operations, 3-14-17
processors, 3-9, 3-14-17

Series 300/400/700/800 differences, 3-1
Series 300 processors and floating-point,

3-15
Series 500 alignment in C, 5-4
Series 700/800

floating-point support, 3-18
Series 700/800 alignment in C, 5-4
Series 700/800 C interface library for

FORTRAN, 6-51
Series 700/800 FORTRAN, 6-24
setbuffer(3S) BSD4.3 library call, 4-3
set data type in Pascal, 7-3, 7-29
setegid(3) BSD4.3 library call, 4-3
seteuid(3) BSD4.3 library call, 4-3
sethostid(2) BSD4.3 system call, 4-3
setkey(3) BSD4.3 library call, 4-3
setlinebuf(3S) BSD4.3 library call,

4-3
setpgrp(2) BSD4.3 system call, 4-2

setpriori ty(2) BSD4.3 system call,
4-3

setpwfile(3) BSD4.3 library call, 4-3
setregid(2) BSD4.3 system call, 4-3
setreuid(2) BSD4.3 system call, 4-3
setrgid(3) BSD4.3 library call, 4-3
setruid(3) BSD4.3 library call, 4-3
setstate(3) BSD4.3 library call, 4-3
setttyent(3) BSD4.3 library call, 4-3
shared libraries, differences across HP-

UX,3-11
shared memory, 3-4, 3-6
shift operators in C «<, »), 5-15, 5-31
shl_definesyrn(3) library call, 3-13
shl_findsyrn(3) library call, 3-13
shl_get(3) library call, 3-13
shl_gethandle(3) library call, 3-14
shl_getsyrnbols(3) library call, 3-14
SHLIB_CODE directive in Pascal, 7-13
shl_load(3) library call, 3-14
shrnat(2) system call, 3-4
shrnctl(2) system call, 3-11
shrnop(2) system call, 3-12
short data type in C, 5-3
shortint data type in Pascal, 7-3, 7-29
short integers in FORTRAN, 6":50
SIGFPE signal, 5-17,5-18
siginterrupt(3) BSD4.3 library call,

4-3
signal, 4-6
signal(2) BSD4.3 system call, 4-2
signal(2) system call, 3-12
signal system call, 5-17, 5-18
signed types in ANSI C, 5-29
SIGSEGV signal, 5-19
sigspace(2) system call, 3-12
sigstack(2) system call, 3-12
sigsuspend(2) system call, 3-12
sigvec(2) BSD4.3 system call, 4-2
size limitations, 3-6
sizeof function in Pascal, 7-6

Index-17

Index

Index

sizeof operator in C, 5-15
SKIP _TEXT directive in Pascal, 7-13
sleep, 4-6
-s option to lint, 5-8
space allocation for object file, 3-9
srandom(3) BSD4.3 library call, 4-3
stack, 3-6
STACKCHECK directive on the Pascal

Workstation, 7-22
standard language features, using, 2-2
STANDARD_LEVEL directive in Pascal,

7-6, 7-13
standards

C,2-8
C++,2-9
enforcing with compile line options,

2-3
FORTRAN, 2-8
HP-UX, 2-7
Pascal, 2-9
UNIX, 2-7

STARBASE library, 7-21
stat, 4-6
STATEMENT_NUMBER directive in Pascal,

7-13
statement_number Pascal function, 7-6
stdarg, 5-14
stderr in Pascal, 7-4
string constants in VMS C, 5-38
strings, maximum length of Pascal, 7-5
strings, passing as parameters in

FORTRAN, 6-51
struct. h BSD4.3 header file, 4-7
struct in C, 5-3
structure assignment in C, 5-18
STRUCTURE data type in FORTRAN,

6-34
structured constants in Pascal, 7-5
structured programming, 2-3
structures in ANSI C, 5-32
structures in FORTRAN, 6-10

Index-18

structures in VMS C, 5-36
structure-value functions in C, 5-18
SUBPROGRAM directive in Pascal, 7-13
subroutine libraries, differences across

HP-UX,3-11-14
susizeof Pascal function, 7-6
SWITCH_STRPOS directive on the Pascal

Workstation, 7-22
symbolic names in FORTRAN, 6-6,

6-41
symbol name conflicts with VMS

FORTRAN, 6-45
SYMDEBUG directive in Pascal, 7-13
symlnk, 4-6
SYS$COMMAND predefined VMS file, 6-48
sysconf (2) system call, 3-7, 3-9
SYS$DISK predefined VMS file, 6-48
SYS$ERROR predefined VMS file, 6-48
SYS$INPUT predefined VMS file, 6-48
SYSINTR directive in Pascal, 7-13
SYS$LIBRARY on VMS, 5-40
SYS$LOGIN predefined VMS file, 6-48
SYS$NODE predefined VMS file, 6-48
SYS$OUTPUT predefined VMS file, 6-48
SYS$SCRATCH predefined VMS file, 6-48
SYS$ system calls in VMS FORTRAN,

6-31
system, 4-6
system architecture differences, 3-2
system calls, calling from FORTRAN,

6-51
system calls, differences across HP-UX,

3-11-12
system-dependent code, 2-6
system-dependent features, 2-2
system information, identifying at run

time, 3-7
SYSTEM library, 7-21
SYSTERM: on the Pascal Workstation,

7-16

T

TAB character in FORTRAN, 6-34
TAB character in VMS FORTRAN,

6-33
TABLES directive in Pascal, 7-13
talk BSD4.3 command, 4-7
tclose (topen) , 4-6
temporary files in C, 5-21
temporary files in FORTRAN, 6-21
terminal characteristics, modifying from

Pascal, 7-17
terminal I/O on the Pascal Workstation,

7-16
time, 4-6
timed BSD4.3 command, 4-7
__ TIME __ predefined names, 5-33
TITLE directive in Pascal, 7-13
TMPDIR environment variable and C,

5-21
TMPDIR environment variable and

FORTRAN, 6-21
_tolower(3) library call, 3-14
topen, 4-6
_toupper(3) library call, 3-14
tread (topen), 4-6

. trewin (topen) , 4-6
trigraphs in ANSI C, 5-29
. TRUE. representation in FO RTRAN ,

6-8
TRY/RECOVER, 5-46
TRY/RECOVER in Pascal, 7-4
tskipf (topen) , 4-6
tstate (topen) , 4-6
ttyent. h BSD4.3 header file, 4-7
ttynam, 4-6
twrite (topen) , 4-6
type casting pointers in C, 5-10
type coercions in FORTRAN, 6-41
typedef & alignment information, 5-5
typedef keyword in C, 5-11
typedef keyword in VMS C, 5-38

type incompatibilities in C, 5-11
type promotion rules in ANSI C

expressions, 5-30
TYPE statement in FORTRAN, 6-36

U

ualarm(3) BSD4.3 library call, 4-3
UCSD directive on the Pascal Workstation,

7-22
U_INIT_TRAPS Pascal procedure, 5-46
unaligned data, accessing, 5-6, 6-4
uname(l) user command, 3-8
uname(2) system call, 3-2, 3-7-9
UNDERSCORE directive in Pascal, 7-13
undial(3) library call, 3-12
union in C, 5-3
UNIT= I/O specifier in FORTRAN, 6-36
__ unix, 5-39
UNIX standards, 2-7
__ unix symbol, 5-15
UNIX System V.3, 2-7
unlink, 4-6
UNLOCK statement in VMS FORTRAN,

6-37
unsigned char, 5-30
unsigned char conversion to int, 5-20,

5-30
unsigned char data type in C, 5-14
unsigned C modifier, 5-35
unsigned preserving, 5-20
unsigned short, 5-30
unsigned short conversion to int,

5-20, 5-30
unsigned types in ANSI C, 5-29
unstructured programming, 2-3
UPPERCASE directive in Pascal, 7-13
usleep(3) BSD4.3 library call, 4-3
/usr/bin/finger BSD4.3 command,

4-7
/usr /bin/talk BSD4.3 command, 4-7

Index .. 19

Index

Index

/usr/bin/uudeeode BSD4.3 command,
4-7

/usr/bin/uueneode BSD4.3 command,
4-7

/usr / include/frame. h BSD4.3 header
file, 4-7

/usr/inelude/lastlog.h BSD4.3
header file, 4-7

/usr/inelude/mp.h BSD4.3 header file,
4-7

/usr/inelude/pee.h BSD4.3 header
file, 4-7

/usr/inelude/struet.h BSD4.3 header
file, 4-7

/usr/inelude/ttyent.h BSD4.3 header
file, 4-7

/usr/inelude/vfont.h BSD4.3 header
file, 4-7

/usr/lib/libel.a, 6-17, 6-51
/usr/lib/libvis.a, 6-17
utimes(2) BSD4.3 system call, 4-3
uueneode and uudeeode BSD4.3

command, 4-7

V

valloc(3C) BSD4.3 library call, 4-3
value preserving, 5-20
varargs, 5-14, 5-39
variable argument lists, 5-14
variable-format expressions III

FORTRAN, 6-36
variable initialization in C, 5-20
variable number of arguments, 3-6
variable shifts in ANSI C, 5-32
Vector Instruction Set in FORTRAN,

6-17
VERSION directive in Pascal, 7-13
vfont. h BSD4.3 header file, 4-7
vhangup(2) BSD4.3 system call, 4-3
VIS, 6-17
vlimit(3C) BSD4.3 library call, 4-3

Index-20

VMSC
char, 5-35
character constants, 5-38
compiler environment, 5-39
data types and alignments, 5-35
D_floating format, 5-37
enum, 5-35
F _floating format, 5-37
floating-point formats in memory,

5-36
floating-point types, 5-37
G_floating format, 5-37
globaldef, 5-35
globalref, 5-35
global value , 5-35
identifiers, 5-37
main program modifier, 5-38
noshare, 5-36
overview, 5-35
preprocessor features, 5-39
readonly, 5-36
string constants, 5-38
structure alignment, 5-36
SYS$LIBRARY, 5-40
typedef keyword, 5-38
uninitialized pointers, 5-38
unsigned, 5-35
varargs(5), 5-39
void, 5-35

VMS FORTRAN
ACCEPT statement, 6-37
ACCESS= I/O specifier, 6-36
applications without lib calls, 6-29
arithmetic operators, 6-35
auto-opening files, 6-36
BLOCK DATA and DATA statements,

6-35
character sets, 6-32
columns, 6-35
comments (! end-of-line), 6-34
continuation lines, 6-34

CONTROL-L in souree files, 6-33
eontrol statements, 6-33
data alignment, 6-30
DATA and BLOCK DATA statements,

6-35
data representation, 6-42
DATA statement loeation, 6-3.5
data type alignment, 6-34, 6-43
data type length speeifier, 6-35
data types, syntaxes, 6-33
debug lines, 6-34
DECODE statement, 6-35
DEFINE statement, 6-37
DELETE statement, 6-37
D_floating format, 6-34
direet-aecess files, 6-36
DO-END DO loops, 6-33
DO-WHILE loops, 6-33
edit deseriptors, 6-36
ENCODE statement, 6-35
EQUIVALENCE of data, 6-30
EQUIVALENCE statement, 6-42
extended-range DO loops, 6-33
field deseriptors, 6-36
FILE= I/O speeifier, 6-36
FIND statement, 6-37
FORTRAN 66 DO loop semanties,

6-33
graphies, 6-32
hexadecimal constants, 6-33, 6-35
identifiers, 6~41
IF-ELSE blocks, jumping into, 6-33
INCLUDE statement, 6-35
indexed file access, 6-37
initializing variables, 6-35
intrinsie fundions, 6-38
I/O statements, 6-35
key-field specifiers, 6-37
key-of-reference speeifiers, 6-37
list-direded internal I/O, 6-3.5
loeal variable storage, 6-44

logieal representation, 6-41
MAXREC= I/O speeifier, 6-36
namelist-directed I/O, 6-35
odal eonstants, 6-33, 6-34, 6-35
partially supported keywords, 6-37
preeonnected and predefined files,

6-46
predefined filenames, 6-48
program format, 6-34
Radix-50 eharaeter set, 6-33
REC= I/O specifier, 6-36
RECL= I/O speeifier, 6-36
recursion effects, 6-44
REWRITE statement, 6-37
run-time library ealls, 6-31
sequenee numbering, 6-34
speeial eharaders, 6-33
speeifieation statements, 6-39
statement syntax, 6-34
subprograms, 6-40
symbolic names, 6-41
SYS$COMMAND file, 6-48
SYS$DISK file, 6-48
SYS$ERROR file, 6-48
SYS$INPUT file, 6-48
SYS$LOGIN file, 6-48
SYS$NODE file, 6-48
SYS$OUTPUT file, 6-48
SYS$SCRATCH file, 6-48
system name conflicts, 6-45
system subroutines, 6-39
system (SYS$) calls, 6-31
TAB ehara.der, 6-33
. TRUE. representa.tion, 6-8, 6-41
type coercions, 6-41
TYPE statement, 6-36
UNIT= I/O speeifier, 6-36
UNLOCK statement, 6-37
unsupported keywords, 6-37
variable-format expressions, 6-36
XII Windows, 6-32

Index-21

Index

· Index

.XOR. and .NEQV., 6-41
VMS Pascal

porting to HP-UX Pascal, 7-24
void data type in C, 5-35
vprintf(3) library call, 5-14
vtimes(3C) BSD4.3 library call, 4-3

w
waddress in Pascal, 7-7
wait, 4-6
word size, 3-3

Index-22

write(2) system call, 5-24
writer program in FORTRAN, 6-10

X

X3.159-1989, 5-15
xdb, 5-13
X/OPEN, 2-7
XOPEN name space in C, 5-27
.XOR. in FORTRAN, 6-41
XREF directive in Pascal, 7-14

Reorder No. or
Manual Part No.
B2355-90025

Flio- HEWLETT~
~~PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA 08/92

Manufacturing
Part No.
B2355-90625

B2355-90625

