
HP AdvanceNet

HP 9000 Series 300/400 and 600/700/800
Computers

NetlPC Programmer's Guide

r/in- HEWLETT
~aI PACKARD

Edition 1
E0291

98194-60527
Printed in U.S.A. 0291

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

Copyright 1991, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Hewlett-Packard Co.
19420 Homestead Rd.
Cupertino, CA 95014 U.S.A.

MS®-DOS is a U.S. registered trademark of Microsoft Corporation.

Printing History

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The dates on the title page change
only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition
does not change when an update is incorporated.

Note that many product updates and fIXes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

Edition 1 . February 1991

4

List of Effective Pages

The List of Effective Pages gives the date of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition is indicated by printing the date the changes
were made on the bottom of the page. Changes are marked with a vertical bar
in the margin. If an update is incorporated when an edition is reprinted, these
bars are removed but the dates remain. No information is incorporated into a
reprinting unless it appears as a prior update.

Pages Effective Date

All February 1991

5

6

Documentation Map

The following documentation map lists the manuals containing information
related to the product described in this manual. You may need information
from one or all of these manuals.

NS/l 000 User/Programmer Reference Manual

Net/PC 3000/V Programmer's Reference Manual

Net/PC 3000/XL Programmer's Reference Manual

HP 9000 Using Network Services

HP-UX Reference Manual

PORT/HP-UX Migration Analysis Utility Manual

HP FORTRAN 77IHP-UX Reference Manual

HP C Reference Manual

HP C/HP-UX Reference Manual Supplement

HP Pascal Reference Manual

FORTRAN 77 Reference Manual

Pascal/l000 Reference Manual

HP FORTRAN 77/HP-UX Migration Guide

HP Pascal/HP-UX Migration Guide

7

Preface

AdvanceNet is the collective name for Hewlett-Packard's data
communications and data management products. Network Interprocess
Communication (NetlPC) is a programmatic service provided by the
AdvanceNet HP 9000 product.

9

Purpose
This manual explains how to write a NetlPC program to run on an HP 9000
computer. If a feature is unique to either the Series 300/400 or Series
600/700/800, this is indicated by prefacing the information with the statement
Series 600/700/800 Only or Series 300/400 Only.

10

Audience
The NetlPC Programmer's Guide is the primary reference manual for
programmers who write or maintain NetIPC applications on HP 9000
computers. This manual should also be read by Node Managers before
designing an HP 9000 network so that they have a clear understanding of the
fea tures provided by N etIPC.

11

Assumptions
This manual is written for application programmers who should be familiar
with the HP-UX operating system and either the C, Pascal or Fortran
programming language. For those operations that deal with the HP 1000, PC,
HP 3000, or HP 3000 Series 900, a working knowledge of the RTE-A,
MS-DOS, MPE-V, or MPE-XL operating systems and programming
environments is also assumed.

12

Organization
Chapter 1, "NetlPC Concepts," explains how NetlPC establishes and
terminates connections between processes to exchange data. This chapter
also introduces the NetIPC calls that perform these tasks.

Chapter 2, "Cross-System NetlPC," describes special programming
considerations you should be aware of when writing an HP 9000 N etIPC
program that will communicate with a peer NetlPC process at an HP 1000
A-Series, HP 3000, or HP 3000 Series 900.

Chapter 3, "NetlPC Calls," provides a detailed description of each NetIPC
call in alphabetical order. This chapter also explains the structure and
function of several parameters that are common to multiple NetIPC calls.

Appendix A, "Sample NetlPC Programs," presents NetlPC sample programs
in C and FORTRAN.

Appendix B, "Error Messages," lists and describes the error messages that can
be produced by NetlPC.

Appendix C, "System Calls and NetlPC Sockets," lists and describes the
HP-UX system calls that operate on NS sockets.

Appendix D, "LAN/9000 Series 600/800 Migration," compares the NS/9000
Series 600/800 and HP 9000 Series 600/800 products to the NS/lOOO and
NS/9000 products.

Appendix E, "Porting NetlPC Programs," summarizes the differences and
provides information to help you port NetIPC programs between an HP 1000
and an HP 9000 Series 600/800 computer.

13

Contents

Chapter 1 NetlPC Concepts
Chapter Overview 1-3
Sockets 1-4
Connections 1-5

Descriptors 1-6
Socket Ownership 1-7

Establishing a VC Connection .. 1-8
1. Creating a Call Socket 1-9
2. Naming a Call Socket 1-10
3. Finding A Call Socket Name . 1-11
4. Requesting a Connection . 1-12
5. Receiving a Connection 1-13
6. Checking the Status of a Connection 1-14

Connection Establishment Summary 1-15
Sending and Receiving Data 1-17

Stream Mode 1-17
Interpreting Data Received 1-18

Synchronous and Asynchronous Socket Modes 1-19
Altering the Synchronous Time-out 1-20
Read and Write Thresholds 1-20
Signals 1-22

Shutting Down a Connection 1-23
Summary of NetlPC Calls 1-24

Chapter 2 Cross-System NetiPC
Chapter Overview 2-2
Software Revision Codes 2-3
Local and Remote NetlPC Calls 2-4

Local N etlPC Calls 2-4
Remote N etlPC Calls 2-7

HP 9000 to HP 1000 N etlPC 2-8
NetlPC Error Codes 2-10

HP 9000 to HP 3000 NetlPC 2-11
N etlPC Error Codes 2-14

HP 9000 to PC NetlPC 2-15
NetlPC Error Codes 2-17

Process Scheduling 2-18
Remote HP 9000 Process 2-18
Remote HP 1000 Process 2-18
Remote HP 3000 Process 2-19
Remote PC NetlPC Process 2-19

Chapter 3 NetlPC Calls
Programming Languages 3-2
Include Files and Libraries 3-3
HP 1000 to Series 600/800 Migration 3-4
N etlPC Common Parameters 3-5

Flags Parameter 3-5
Using Flags in a C Program 3-6
Using Flags in a Pascal Program 3-7
Using Flags in a FORTRAN Program 3-7

Opt Parameter 3-8
Using Opt in a C Program 3-9
Using Opt in a Pascal Program 3-10
Using Opt in a FORTRAN Program 3-11
Opt Parameter Structure 3-11

Data Parameter 3-13
Result Parameter 3-15

Using Result in a C Program 3-15
Using Result in a Pascal Program 3-15
Using Result in a FORTRAN Program 3-15

Socket Name Parameter 3-16
Node Name Parameter 3-16

Syntax Conventions 3-17
NetlPC Reference Pages 3-18

addoptO 3-19
initoptO 3-23
ipcconnectO 3-27
ipccontrolO 3-31
ipccreateO 3-36
ipcdestO 3-39
ipcerrmsgO 3-42

16

ipcerrstrO 0 3-44
ipcgetnodenameO 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-46
ipc1ookupO o. 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 3-47
ipcnameO 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 3-51
ipcnameraseO 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 • • 0 0 0 0 0 0 0 0 0 • 0 0 0 • 3-54
ipcrecvO 0 0 • 0 0 • 0 0 ~ 0 0 0 • 0 • 0 • • 0 • 0 • 0 0 • 0 0 0 0 0 0 • 0 0 3-56
ipcrecvcnO o. 0 0 0·. 0 0 0 0 0 0 0 •• 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 0 3-64
ipcselectO o. 0 0 0 0 0 • 0 0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 3-68
ipcsendO 0 •• 0 • 0 0 0 • 0 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 3-76
ipcsetnodenameO 0 0 0 0 0 0 0 0 0 • 0 0 0 • • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 3-80
ipcshutdownO 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-81
optoverheadO 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 3-84
readoptO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3-86

Appendix A Sample NetiPC Programs
HP 9000 to HP 9000 Examples 0 0 0 • 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A-2
Cross-System NetIPC Examples o. 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 A-3
Make File for Sample Programs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 A-4
Example 1: Server in Coo 0 • 0 0 0 0 0 A-5
Example 2: Client in Coo 0 0 0 0 0 0 • 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 • • 0 • A-9
Example 3: Server in FORTRAN . 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 o. A-II
Example 4: Client in FORTRAN 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 A-15
Example 5: Cross-System Server in Co. 0 0 0 0 0 0 0 0 • 0 0 • • 0 0 0 0 A-20
Example 6: Cross-System Client in C . 0 • 0 0 • 0 0 • 0 0 0 0 • • 0 0 0 0 A-28
Example 7: Cross-System Server in FORTRAN 0 0 0 0 0 0 0 0 0 0 • 0 A-3I
Example 8: Cross-System Client in FORTRAN o. 0 0 0 0 0 0 0 0 0 • 0 A-39
Example 9: Cross-System Server in PASCAL 0 0 • 0 0 0 0 0 0 0 0 0 0 0 A-43
Example 10: Cross-System Client in PASCAL 0 0 0 • 0 0 0 • 0 0 0 0 0 A-56

Appendix B Error Messages

Appendix C System Calls and NetlPC Sockets

Appendix D LAN/9000 Series 600/800 Migration
LAN/9000 Series 600/800 for DS/1000-IV Users 0 0 0 0 0 0 0 0 0 • 0 0 0 D-2

Migration Analysis Utility 0 0 0 0 0 00 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 D-2
Feature Comparison 0 0 0 • 0 0 0 0 • 0 • 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 D-2
Interprocess Communication o. 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • D-3

NS/1000 to LAN/9000 Series 600/800 Migration . 0 ••••••• 0 0 •• D-8

17

NS/9000 to LAN/9000 Series 6001800 Migration
Interprocess Communication

Appendix E Porting NetlPC Programs
LAN/9000 Series 6001800 and NS/1000

Path Report and Destination Descriptors
Socket Ownership
Socket Shut Down
Signals
TCP Checksum
Remote Process Scheduling .

Remote NS/1 000 Process
Remote LAN/9000 Series 600/800 Process

Case Sensitivity
NetIPC Calls

Unique NetIPC Calls
Common N etIPC Calls
Call Comparison

Index

18

D-I0
D-ll

E-3
E-3
E-3
E-4
E-4
E-5
E-5
E-5
E-6
E-6
E-6
E-7
E-7
E-7

Figures

Figure 1-1. ipccreateO (Server) 1-9
Figure 1-2. ipcnameO (Server) 1-10
Figure 1-3. ipclookupO (Client) 1-11
Figure 1-4. ipcconnectO (Client) 1-12
Figure 1-5. ipcrecvcnO (Server) 1-13
Figure 1-6. ipcrecvO (Client) 1-14
Figure 1-7. Establishing Connection with ipclookup Call 1-15
Figure 1-8. Establishing Connection with ipcdest Call 1-16
Figure 3-1. Opt Parameter Structure 3-12
Figure 3-2. OPTARGUMENT Structure 3-12
Figure 3-3. Vectored Data 3-14

1Q

Tables

Table 1-L Descriptor Type and Definitions 1-7
Table 2-1. NetlPC Calls Affecting the Local Process 2-5
Table 2-2. NetlPC Calls Affecting the Remote Process 2-7
Table 2-3. Calls That Mfect HP 9000 to HP 3000 NetlPC-con't 2-10
Table 3-1. Special NetlPC Calls 3-9
Table C-1. System Calls and NetlPC Sockets C-2
Table D-1. DS/1000-N vs. LAN & NS/9000 Series 800 D-2
Table D-2. PTOP Calls vs. NetlPC Calls D-4
Table D-3. NS/1000 vs. LAN & NS/9000 Series 800 D-9
Table D-4. NS/9000 vs. NS & LAN/9000 Series 800 D-10
Table £-1. Identical NetlPC Calls £-7
Table £-2. NS/1000 and LAN/9000 Series 800 Call Comparison £-8

~n

Syntax Conventions

nonitalics
Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces, and ellipses must
also be entered exactly as shown. For example:

EXIT;

italics

Words in syntax statements that are in italics denote a parameter that must be
replaced by a user-supplied variable. For example:

CLOSE filename

[]
An element inside brackets in a syntax statement is optional. Several
elements stacked inside brackets indicates the user may select anyone or none
of these elements. For example:

{ }

[A]
[B] User may select A or B or C or none.
[C]

When several elements are stacked within braces in a syntax statement, the
user must select one of those elements. For example:

{A}
{B} User must select A or Bar C.
{C}

21

A horizontal ellipsis in a syntax statement indicates that a previous element
may be repeated. For example:

[, itemname] ... ;

In addition, vertical and horizontal ellipses may be used in examples to indi
cate that portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that
the delimiter must be supplied whenever (a) that parameter is included or (b)
that parameter is omitted and any other parameter that follows is included.
For example:

itema[ritemb] [litemc]

means that the following are allowed:

itema
itema,itemb
itema,itemb,itemc
itema"itemc

When necessary for clarity, the symbol A may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[modifier] A (variable)

underlining

Brackets, braces, or ellipses appearing in syntax or format statements which
must be entered as shown will be underlined. For example:

LET var[lsubscriptl] = value

22

Output and input/output parameters are underlined. A notation in the
description of each parameter distinguishes input/output from output
parameters. For example:

CREATE (parml,parm2,f7ags,error)

[Key Cap]

A string in bold font enclosed by brackets may be used to indicate a key on
the terminal's keyboard. For example, [Enter] indicates the carriage return
key.

[CTRL]-char
Control characters are indicated by [CTRL] followed by the character. For
example, [CTRL]-V means the user presses the control key and the Y key
simultaneously.

23

1

NetlPC Concepts

Note The information contained in this manual applies to both the
Series 300/400 and Series 6OOnOO/800 HP 9000 computer systems.
Any differences in installation, configuration, or operation are
specifically noted.

Network Interprocess Communication (NetlPC) is a service that enables
processes on the same or different nodes to communicate using a series of
programmatic calls. Processes that use NetlPC calls gain access to the
communication services provided by the network protocols utilized by the HP
9000 networking products. NetlPC does not encompass a protocol of its own,
but acts as a generic interface to these protocols.

A NetlPC process running on an HP 9000 computer can communicate with a
peer process at:

• Another HP 9000 computer (Series 6OOnOO/800 or 300/4(0).

• An HP 1000 A-Series computer.

• An HP 3000 computer (MPE-V or Series 900).

• A PC on an HP OfficeS hare Network.

NetlPC communication between processes running on computers of different
types (between an HP 9000 and an HP 3000, for example) is referred to as
cross-system NetlPC.

NetlPC Concepts 1-1

Note NetlPC communication between an HP 9000 Series 600/700/800
and HP 9000 Series 300/400 is not considered cross-system NetlPC
because both systems are HP 9000s.

HP 9000 NetlPC for the Series 300/400 and Series 600/700/800 is
not compatible with Berkeley IPC (also known as "Berkeley
Sockets" or "BSD IPC") or the interprocess communication
service that is part of the NS/9000 Series SOO product.

The "Cross-System NetlPC" chapter describes special programming
considerations you should be aware of when writing an HP 9000 N etIPC
program that will communicate with a peer NetlPC process at a different type
of computer system. For information about writing a NetlPC program to run
on an HP 1000 A-Series, PC, HP 3000, or HP 3000 Series 900, you must refer
to the following manuals:

• NS/1000 User/Programmer Reference Manual.

• Net/PC 3000/V Programmer's Reference Manual.

• Net/PC 3000/XL Programmer's Reference Manual.

• PC Net/PC/RPM Programmer's Reference Guide.

1-2 NetlPC Concepts

Chapter Overview
The information presented in this chapter is organized into the following
major sections:

• Sockets. Describes the fundamental building block of interprocess
communication, the socket.

• Connections. Defines key terms used to describe NetIPC connections.

• Establishing a VC Connection. Explains how to use NetIPC calls to
establish a virtual circuit (VC) connection.

• Connection Establishment Summary. Describes the sequences of NetIPC
calls used to establish a virtual circuit connection.

• Sending and Receiving Data. Describes the different modes of data
exchange provided by NetIPC and explains how to use NetIPC calls to send
and receive data.

• Shutting Down a Connection. Explains how to use NetIPC calls to close a
virtual circuit connection.

• Summary of NetIPC Calls. Presents a brief description of each of the HP
9000 NetIPC calls.

NetlPC Concepts 1-3

Sockets
NetlPC processes communicate with each other by means of sockets. A
socket is an endpoint through which connections can be established, and data
can be sent and received. Processes communicate through sockets via NetlPC
calls. The Transport Layer's Transmission Control Protocol (TCP) regulates
the transmission of data to and from sockets. Although data must pass
through the control of lower-level protocols and, if necessary, through
intervening nodes, these details are transparent to NetlPC processes when
they send and receive data.

1-4 NetlPC Concepts

Connections
Before two processes can communicate, one side (the passive side or the
server) must create a call socket by calling i pccreate. The process which
creates the call socket may name the socket by calling i pcname. This allows
the other side (the active side or client) to obtain address information
regarding the server by calling i pc lookup. Alternatively, the client may
obtain address information regarding the server by calling i pcdest.

The routines i pcname, i pc lookup, and i pcnamerase allow sockets to be
referred to by ASCII names rather than protocol addresses. When i pcname
is called, the ASCII name and information identifying the call socket being
named are recorded in a table. When i pcl ookup is called, the nodename is
examined first. If the nodename parameter specifies the local node, then the
name table on that local node is searched for the specified socket name. If
the node name refers to a remote node, then

1. the address of that remote node is determined,

2. a request is sent to that node,

3. the name table on that remote is searched, and

4. the result of that search is returned in a reply message to the local node
indicating i pc lookup is complete.

An alternative to i pc lookup is i pcdest which allows you to specify a
protocol address, also known as a port, rather than a socket name. The
network address of the node specified by the nodename is obtained and stored
along with the protocol address, and i pcdest is complete.

Both i pc lookup and i pcdest return a destination descriptor. A destination
descriptor is an integer which indexes a data structure just as a file descriptor
is an integer which indexes a file. A destination descriptor contains address
information which identifies a node on the network and a call socket at that
node. The information in a destination descriptor is the same address
information passed to the BSD IPC networking routine "connect."

Once a client process has obtained a destination descriptor, it may initiate a
virtual circuit connection by calling i pcconnect. A virtual circuit is a
connection using a reliable transport protocol, in this case TCP, which

NetlPC Concepts 1-5

guarantees that data are not corrupted, lost, duplicated, or received out of
order.

Descriptors
N etIPC processes acting as clients reference destination descriptors and
virtual circuit socket descriptors. NetlPC processes acting as servers
reference virtual circuit socket descriptors and call socket descriptors. A
single process can act as both a client and a server.

• Call Socket Descriptor. A call socket descriptor references a data structure
created by calling i pccreate which allows server processes to create
virtual circuit connections. The NetlPC routine i pccreate is equivalent to
the BSD networking routines "socket," "bind," and "listen."

• Destination Descriptor. A destination descriptor references a data
structure that contains address information about a destination call socket.
A destination descriptor must be obtained before a process can connect to
the destination call socket. A process obtains a destination descriptor by
invoking i pc lookup () or i pcdest ().

• VC Socket Descriptor. A VC socket descriptor refers to a VC socket. A
VC socket is the endpoint of a virtual circuit connection betwen two
processes. VC socket descriptors are returned by i pcrecvn () and
i pcconnect ().

Socket descriptors are allocated from the same space as file descriptors. A
process may have a maximum of 1024 socket and file descriptors. Therefore,
sockets are accessible through the standard HP-UX file system calls such as
read(), write{), ioctl (), fcntl (), select{), stat{), dup{), writev{)
and readv (). For more information on using these calls with NetIPC
sockets, refer to Appendix C of this manual.

1-6 NetlPC Concepts

Table 1-1. Descriptor Type and Definitions

Descriptor Parameter Description Returned as
Type Name Output From

call socket calldesc Refers to a call socket. ipccreate()
descriptor A call socket is used by

server processes to build
a VC socket.

destination destdesc Refers to descriptor ipclookup()
descriptor referencing address ipcdest()

information used to
direct requests to a
certain call socket at a
certain node.

VC socket vcdesc Refers to a VC socket. ipcconnect()
descriptor A VC socket is the ipcrecvcn()

endpoint of a virtual
circuit connection
between two processes.

Socket Ownership
When a NetIPC process creates a call socket by calling i pccreate (), or
creates a VC socket by calling i pcconnect () or i pcrecvcn (), it is said to
own the socket.

A process can also become an owner of a socket by inheriting a socket
descriptor. NetIPC descriptors (call socket, VC socket, and destination), like
file descriptors, are copied to the child process when a process forks. As a
result, more than one process can have a descriptor for the same socket. Any
process that has a descriptor is considered to be an owner of that descriptor.
As a programmer, you are responsible for regulating the use of shared
descriptors.

A process may have access to a maximum of 1024 descriptors at one time.
This limit includes file descriptors as well as socket descriptors.

NetlPC Concepts 1-7

Establishing a VC Connection
Establishing a connection between two processes requires that one process
create a call socket which the other process can connect to. The process
which creates the call socket is often referred to as the passive side or the
server. The process which initiates the connection is often referred to as the
active side or client. The typical use of the client-server model involves a
server process which creates a call socket, receives a connection, and forks a
child to handle that connection while the server listens for another connection.

As a programmer, you are responsible for synchronizing your NetlPC
programs so that the NetlPC calls are executed in the manner illustrated by
the following drawings and text.

Although only two processes are shown in this example, this is not meant to
imply that communication cannot exist between more than two processes.
Either or both of the processes shown can establish virtual circuit connections
with other processes. Secondary or auxiliary connections can also be set up
between the same two processes.

N etlPC does not provide a call to schedule a remote process. Remote HP
9000 processes must be manually started or can be scheduled by user-written
daemons. You can start the daemon at system start up by invoking the
daemon from the /ete/netl inkre file.

For information about scheduling remote programs on other HP computers,
refer to the "Cross-System NetlPC" chapter.

1-8 NetlPC Concepts

1. Creating a Call Socket
Before communication can begin, the server process must create a call socket
by calling i pccreate. The i pccreate routine creates a call socket and
returns a call socket descriptor in its ca 77 desc parameter. The call socket
descriptor is used in subsequent NetIPC calls.

Server

Call
Socket

Descriptor

Figure 1-1. ipccreateO (Server)

NetiPC Concepts 1-9

2. Naming a Call Socket
After the server creates the socket, it may optionally name that socket.
Naming the socket allows client processes to make a connection if they know
the socket name, but not the protocol specific address. Alternatively, the
server could create a call socket at a specific protocol address. In that case
the client process would need to know the protocol address instead of the
socket name. Socket names are considered an advantage over protocol
addresses because when a server names a socket, that socket is guaranteed to
get a unique protocol address. Several users or programs can operate using
named sockets without danger of accidentally using a common protocol
address.

The server process names a call socket by calling i pename. The socket name
is then recorded in the local socket registry name table. Remember that the
server process must name the socket before the client process calls
i pel ookup.

Server

Socket Registry

·NAME·

Figure 1-2. ipcnameO (Server)

1-10 NetlPC Concepts

3. Finding A Call Socket Name
The client process must get address information regarding the server process
by calling either i pcl ookup or i pcdest. If the server process named the call
socket, then the client process must call i pc lookup. If the server process
created the call socket at a specific protocol address, then the client process
must call i pcdest.

Both i pc lookup and i pcdest return a destination descriptor to the user.
The destination descriptor identifies a data structure which contains address
information about the server's call socket.

It may be difficult to ensure that a socket name is placed in the socket registry
prior to being "looked up" by another process. Several ways to avoid this
timing problem are outlined in the discussion of i pc 100 kup () in the "NetIPC
Calls" chapter.

Client

Socket Registry

"NAME"

Server

Figure 1-3. ipclookupO (Client)

NetlPC Concepts 1-11

4. Requesting a Connection
The client process specifies the destination descriptor returned by i pel ookup
or i pedest when it calls i peeonneet. The routine i peeonneet will create a
virtual circuit socket and initiate, but not complete, a connect. The virtual
circuit socket (vc socket) is returned to the user in the vcdesc parameter.
The vc socket may not be used to send or receive data until the connection
has been completed. The client process must call i pereev to determine when
the connection is complete.

Client

VC
Socket

Socket Registry

"NAME"

Server

Call
Socket

Descriptor

Figure 1-4. ipcconnectQ (Client)

1-12 NetlPC Concepts

5. Receiving a Connection
The server process receives a connection by calling i pcrecvcn. The routine
i pcrecvcn references the call socket descriptor and returns a virtual circuit
socket descriptor to the user. The vc socket descriptor can be used to send
and receive data. Note that the connection is automatically accepted on the
server's behalf when the connection is initially requested by the client process.
The client process can determine that the connection is "established" before
the server calls i pcrecvcn. Any data which the client sends before the server
calls i pcrecvcn is queued. If the client expects data from the server, it may
timeout waiting for data even though the server has not done an i pcrecvcn.
After the server calls i pcrecvcn, it can call i pcrecv to read data sent by the
client.

Client

Destination
Descriptor

VC
Socket

Descriptor

Socket Registry

"NAME"

Figure 1-5" ipcrecvcnO (Server)

Server

Call
Socket

Descriptor

VC
Socket

NetlPC Concepts 1-13

6. Checking the Status of a Connection
Mter the client calls i pcconnect, it must call i pcrecv to determine when
the connection is completed.

Client Server

Socket Registry

"NAME"

VIRTUAL CIRCUIT CONNECTION

Figure 1-6. ipcrecvO (Client)

Note When the client considers the connection established, it may be
different from when the server considers the connection
established as described above. Once the connection is
established, data transfer can begin using the vc socket descriptors
and the i pcsend and i pcrecv commands. Refer to the "NetlPC
Calls" chapter for a detailed description of i pc send and i pcrecv.

1-14 NetlPC Concepts

Connection Establishment Summary
Figures 1-7 and 1-8 illustrate the two alternate sequences of NetlPC calls that
are used to establish a virtual circuit connection. Figure 1-7 summarizes the
information presented in Figures 1-2 through 1-6.

Client

ipclookup()

ipcconnectO

ipcrevcO

1. "Look up' name

2. Request connection

3. Check status of
connection

Server

ipccreate(}

ipcnameO

ipcrecvcnO

1. Create call socket

2. Name call socket

3. Receive connection
request

Figure 1-7. Establishing Connection with ipclookup Call

NetlPC Concepts 1-15

Figure 1-8 summarizes a different way to establish a virtual circuit connection
using i pcdest.

Client

ipcdestO

ipcconnectO

ipcrecv()

1. ipcdest to well-known

address

2. Request connection

3. Check status of

connection

Server

ipccreateO

ipcrecvcnO

1. Create call socket with

well-known address

2. Receive connection

request

Figure 1-8. Establishing Connection with ipcdest Call

In both figures on the client side (that is, at the client's node), steps 2 and 3
are the same. i pc lookup and i pcname reference a destination call socket by
name whereas i pcdest references the destination call socket by its
well-known address. Note that the advantage of using i pc lookup is that
names might be easier to remember and use. With i pcdest, the address must
'be unique and other processes must cooperate and not use that same address.

1-16 NetlPC Concepts

Sending and Receiving Data
Once a virtual circuit connection is established, processes can send and receive
data using the NetlPC calls i pcsend () and i pcrecv (). i pcsend () is used
to send data on an established connection. i pcrecv () is used to receive data
on an established connection. (Note that i pcrecv () has a dual function: to
establish a virtual circuit connection and to receive data on a previously
established connection.)

Stream Mode
All data transfers between NetlPC processes are in stream mode. Stream
mode adheres to the Transport Layer's Transmission Control Protocol (TCP).
In stream mode, data is transmitted in a stream of bytes; there are no
end-of-message markers. This means that the data received by an individual
i pcrecv () request may not be equivalent to a message sent by an individual
i pcsend () call. In fact, the data received may contain part of a message or
multiple messages sent by multiple i pcsend () calls. Although no attempt is
made to preserve boundaries between data sent at different times, the data
received will always be in the correct order (in the order that the messages
were sent).

You may specify the maximum number of bytes that you are willing to receive
through a parameter of the i pcrecv () call. When the call completes, this
parameter will contain the number of bytes actually received. The amount of
data received will never be more than the amount that was requested, but it
may be less. Whether or not an i pcrecv () call will receive less data than it
requested is determined by the NSF _DATA_WAIT bit of the f1 ags parameter.
If the NSF _DATA_WAIT bit is set, ipcrecv() will never receive less than the
requested amount; if the NSF _DATA_WAIT bit is not set, i pcrecv () may
receive less data than was requested.

NetiPC Concepts 1-17

Caution The NetlPC NSF DATA WAIT flag can cause a program to block
for an extreme period of time (for example, eight minutes for 8
bytes). It is recommended that NetlPC programs not use
NSF DATA WAIT but loop until all data is received instead.
Refer to the "Receiving Data" section of the "NetIPC Calls"
chapter for the specific loop information.

If an i pcrecv () call requests more data than is queued on a VC socket, one
of the following situations will result:

• If the VC socket is in synchronous mode, the calling process will suspend
until enough data is queued to satisfy the i pcrecv () request. If enough
data does not arrive within the synchronous time-out period to satisfy the
request, a "time out" error (error code 59) will be returned.

• If the VC socket is in asynchronous mode, a "would block" error (error
code 56) will be returned.

For more information on receiving data, refer to the discussion of i pcrecv ()
in the "NetIPC Calls" chapter.

Interpreting Data Received
As stated in the previous discussion of stream modes, the data received by an
i pcrecv () call may contain part of a message or multiple messages sent by
multiple ipcsend(} calls. In addition, if the NSF _DATA_WAIT bit of the flags
parameter is not set, the receiving process may receive less data than it
requested.

If an application does not need to receive data in the form of individual
messages, it can simply process the data on the receiving side. However, if an
application is concerned about messages, the programmer must devise a
scheme to allow the receiving side to determine what the messages are and
whether all of the expected messages have been received.

If the messages are of a known length, the receiving process can execute a
loop which calls i pcrecv () with a maximum number of bytes equal to the
length of the portion of the message not yet received. Since i pcrecv ()
returns the actual number of bytes received in its d7 en parameter, the loop

1-18 NetlPC Concepts

can continue to execute until all of the bytes of the message have been
received as indicated by this parameter.

If the length of the messages are not known, the sending side may send the
length of the message as the first part of each message. In this scenario, the
receiving side must execute two i pcrecv() loops for each message: the first
to receive the length; the second to receive the data.

Synchronous and Asynchronous Socket Modes
When a send operation is performed on a socket, data is moved out of process
space into an outbound transmission buffer. Similarly, when a receive
operation is performed on a socket, data is moved from an inbound
transmission buffer into process space. Sometimes a send or receive request
cannot be immediately satisfied. In the case of ipcsend(), an empty
transmission buffer may not be available; an i pcrecv () request may not be
satisfiable because data-filled transmission buffers are not queued on the
referenced socket. When either of these situations occur, NetlPC must
decide whether to fail the request or suspend the process until the request can
be satisfied. This decision is based upon whether the socket being
manipulated is in synchronous or asynchronous mode.

Sockets are automatically placed in synchronous mode when they are created.
When a socket is in synchronous mode, send and receive requests that
reference it cause the the calling process to be suspended if the requests
cannot be immediately satisfied. A process that has been suspended will
remain suspended until the request is satisfied, a synchronous time-out occurs,
a signal arrives, or an error is detected. Each synchronous socket has a timer
associated with it that can be modified with an i pccont ro 1 () call. This timer
determines how long a NetlPC call will block on the socket while waiting for
its request to be satisfied. A NetIPC call will not block forever unless the
synchronous time-out value is set to zero with an i pccont ro 1 () call.

Three NetlPC calls, i pcsend (), i pcrecv () and i pcrecvcn (), support
asynchronous as well as synchronous I/O. (The i pcconnect () call is by
definition an asynchronous call; the remaining NetIPC calls do not support
asynchronous I/O.) Sockets can be placed in asynchronous mode by calling
ipccontrol () and specifying NSC_NBIO_ENABLE (code 1) in the request
parameter. Send and receive requests directed against a socket in this mode
do not cause the calling process to be suspended if the requests cannot be
immediately satisfied. Instead, an NSR _WOULD_BLOCK (code 56) error is

NetlPC Concepts 1-19

returned and the process is free to perform other tasks before retrying the
request.

Refer to the discussion of i pcrecvcn () in the "NetlPC Calls" chapter for
information about how this call functions in synchronous and asynchronous
mode.

Altering the Synchronous Time-out

If the NetlPC calls i pc send (), i pcrecv (), and i pcrecvcn () are used
synchronously, it may be necessary to alter the synchronous time-out value by
calling i pccont ro 1 (). The default synchronous time-out is 60 seconds. The
synchronous time-out determines:

• How long i pc send () will suspend the calling program if it cannot
immediately obtain the buffer space needed to accommodate its data or if
the process on the receiving end cannot receive the data being sent to it.

• How long i pcrecv () will suspend the calling program if its request for data
cannot be satisfied or if a "successful" connection status cannot be obtained.

• How long i pcrecvcn () will suspend the calling program while waiting for
a connection request.

For information on changing the synchronous time-out for specific calls, refer
to the call descriptions in the "NetIPC Calls" chapter.

Read and Write Thresholds
For efficiency, a process using asynchronous sockets must be able to
determine whether a VC socket can satisfy an i pc send () or i pcrecv () call
before the request is issued. The i pcse 1 ect () ca 11 addresses th is
problem by providing socket status information. Included in this information
is whether or not:

• A VC socket is readable.

• A VC socket is writable.

The i pcse 1 ect () call determines whether or not a VC socket is readable by
examining the socket's read threshold. A VC socket is considered readable if
it can immediately satisfy an i pcrecv () request for a number of bytes greater
than or equal to its read threshold. The read threshold is used by

1-20 NetiPC Concepts

i pcse 1 ect () to check if there are at least that many bytes in the system
ready for reading.

Similarly, i pcse 1 ect () determines whether or not a VC socket is writable by
examining the socket's write threshold. A VC socket is considered writable if
it can immediately satisfy an i pc send () request for a number of bytes greater
than or equal to its write threshold. The write threshold is used by
i pcse 1 ect () to check if there are at least that many bytes in the system to be
used as a buffer space for writing. If i pcse 1 ect indicates that a socket is
writable, the subsequent write may still fail due to lack of memory available.
System memory may be consumed between the i pcse 1 ect and the
subsequent i pcsend.

The i pcse 1 ect () call will not return accurate status information unless a
socket's read and write thresholds are set to the correct number of bytes.
(These thresholds are initially set to one byte. You can alter this value by
calling i pccont ro 1 (). Refer to the discussion of this call for more
information.) The number of bytes that you expect to send or receive on a
socket should determine the correct read and write threshold settings. As a
general rule, you should set a socket's read threshold to the same number of
bytes as the length of the data you expect to receive on that socket. Similarly,
you should set a socket's write threshold to the same number of bytes you
expect to send on that socket. Consider the following example: Process B will
always issue i pc send () calls with 64 bytes of data on VC socket x.
Therefore, socket X's write threshold should also be 64 bytes. Similarly, if
Process B expects to issue 64-byte i pcrecv () requests on socket X, socket
X's read threshold should be set to 64 bytes as well.

If you expect to receive variable length data on a particular VC socket, the
socket's read threshold should be set to the length of the shortest amount of
data you expect to receive. If you expect to send variable length data on a
particular VC socket, the socket's write threshold should be set to the length
of the longest amount of data you expect to send.

Note The read and write thresholds are used exclusively by the
i pcse 1 ect () call. They have no effect on other NetIPC calls.

For more information about using sockets in asynchronous mode, refer to the
discussions of i pcse 1 ect (), i pccont ro 1 (), i pc send (), i pcrecv (), and
i pcrecvcn ().

NetiPC Concepts 1-21

Signals
Signals will interrupt NetlPC calls that would otherwise suspend. NetlPC calls
that are interrupted by signals are not restartable.

NetIPC calls behave the same way as interruptable HP-UX system calls with
the following exception: When a NetlPC call is interrupted by a signal and
the sc _ syscall_ action field is set to S I G _RETURN, the following occurs:

1. the NetlPC call aborts,

2. the interrupted call's result parameter is set to
NSR_SIGNAL_INDICATION, and

3. the interrupted program continues past the previously blocked NetlPC call.

When an HP-UX system call is interrupted, the errno variable is set to
EINTR. This does not occur when the call is a NetlPC call. Instead, the
interrupted call's result parameter is set to NSR_ SIGNAL _ I NO I CAT ION.

NetIPC has also defined values to be returned to the sc_syscall field. These
values are defined in the HP-UX include file
/usr/include/sys/syscall.h.

For more information on signals, refer to signal (2) and s i gvector (2)
described in the HP-UX Reference Manual.

1-22 NetlPC Concepts

Shutting Down a Connection
Processes should close virtual circuit connections they no longer need by
calling i pcshutdown () to release the VC socket descriptor that references
the connection.

Note The i pcshutdown () call can also be used to release call socket
descriptors and destination descriptors. Refer to the discussion of
i pcshutdown () in the "NetlPC Calls" chapter for more
information on releasing these types of descriptors.

Because i pcshutdown () takes effect very quickly, any data that is in transit
on the connection, including any data that has already been queued on the
destination VC socket, may be destroyed before its intended recipient is able
to receive it. To ensure that no data is lost during connection shutdown,
specify the NSF _GRACEFUL_RELEASE flag.

When a NetlPC process releases a VC socket descriptor that is shared by
other processes (i.e., other processes have copies of that descriptor), the
descriptors owned by the other processes are not affected. The
i pcshutdown () call does not operate on the VC socket referenced by a VC
socket descriptor unless the descriptor is the only descriptor for that socket.
A VC socket is destroyed along with its VC socket descriptor only when the
descriptor being released is the sole descriptor for that socket.

NetiPC Concepts 1-23

Summary of NetlPC Calls
The following is a summary of all the HP 9000 NetlPC calls.

Call

ipcconnect()

ipccontrol()

ipccreate()

ipcdest()

ipcerrmsg()

ipcerrstr()

ipcgetnodename()

ipclookup()

ipcname()

1-24 NetlPC Concepts

Description

Requests a virtual circuit to another program and
returns a VC socket descriptor which identifies a VC
socket endpoint at the calling program.

Performs special operations on sockets such as
enabling synchronous and asynchronous mode,
changing the synchronous timeouts, and setting read
and write thresholds.

Creates a call socket for the calling program.

Returns a destination descriptor that the calling
process can use to establish a connection to another
process.

Returns an error message for a particular N etIPC
error number.

Provides text describing NetlPC error numbers.

Returns the NetIPC node name belonging to the
local host.

Searches the socket registry for a socket name and
returns a destination descriptor that the calling
process can use to establish a connection to another
process.

Associates a name with a call socket descriptor or
destination descriptor and stores it in the socket
registry.

ipcnamerase()

ipcrecv()

ipcrecvcn()

ipcselect()

ipcsend()

ipcsetnodename()

ipcshutdown()

Removes a name associated with a call socket
descriptor or destination descriptor from the socket
registry.

Checks the status of a connection or receives data
on a previously established connection.

Receives a connection request from another
program and returns a VC socket descriptor that
describes a VC socket endpoint at the calling
program.

Enables a program to detect and/or wait for the
occurrence of any of several events across multiple
call or VC sockets.

Note that if i pcse 1 ect indicates that a socket is
writable, the subsequent write may still fail due to
lack of memory available. System memory may be
consumed between the i pcse 1 ect and the
subsequent ipcsend.

Sends data to another program on a virtual circuit.

Defines the NetlPC node name for the local host.

Releases a descriptor. Also releases the socket
referenced by the descriptor if the descriptor is the
only descriptor that references that socket.

NetiPC Concepts 1-25

2

Cross-System Netl PC

N etIPC communication between processes running on computers of different
types is referred to as cross-system NetIPC. This chapter describes the special
programming considerations that you should be aware of when writing an HP
9000 NetIPC program that will communicate with a peer NetIPC process at
an HP 1000 A-Series computer, an HP 3000 (MPE-V or Series 900)
computer, or a PC.

N etIPC communication between an HP 9000 Series 600/700/800 and HP 9000
Series 300/400 is not considered cross-system NetIPC because both systems
are HP 9000s.

Cross-System NetlPC 2-1

Chapter Overview
Before reading this chapter, you must have a good understanding of the
NetIPC concepts and calls. Read the "NetIPC Concepts" chapter and review
the "NetIPC Calls" chapter before proceeding.

This chapter does not explain how to write a NetIPC program to run on an
HP 1000 A-Series, PC, HP 3000 or HP 3000 Series 900 computer. For this
information, refer to the following manuals:

• NS/l 000 User/Programmer Reference Manual.

• Net/PC3000/V Programmer's Reference Manual.

• NetIPC3000/XL Programmer's Reference Manual.

• PC Net/PC/RPM Programmer's Reference Guide.

The remainder of the material presented in this chapter is organized into the
following major sections:

• Software Revision Codes. Lists the software revision codes associated with
the NetIPC software that provides the cross-system functionality described
in this chapter.

• Local and Remote NetIPC Calls. Divides NetIPC calls into two categories,
local and remote, and describes how these calls are used in cross-system
programs.

• HP 9000 to HP 1000 NetIPC. Describes differences between the HP 9000
and HP 1000 NetIPC implementations.

• HP 9000 to HP 3000 NetIPC. Describes differences between the HP 9000
and HP 3000 NetIPC implementations.

• HP 9000 to PC NetIPC. Describes differences between the HP 9000 and
PC NetIPC implementations.

• Process Scheduling. Describes how to schedule a peer NetIPC process at
an HP 9000, HP 3000 and HP 1000 system.

2-2 Cross-System NetiPC

Software Revision Codes
In order for cross-system NetIPC to function properly, the HP 9000, HP 1000
and HP 3000 NetIPC software revision codes must be as follows:

• LAN/9000 Series 600/800 software revision code 1.1 or later for Series
600/800 to HP 1000 A-Series NetIPC.

• LAN/9000 Series 600/800 software revision code 2.1 or later for Series
600/800 to HP 3000 NetIPC.

• NS-ARP A Services software revision code 6.2 or later for the Series
300/400.

• NS/1000 software revision code 5.0 or later for the HP 1000 A-Series.

• ThinLAN 3000N Link revision code V-Delta-l MIT or later (used with
IEEE 802.3 LAN only) for the HP 3000 MPE-V.

• ThinLAN 3000/XL Link revision code 1.2 or greater for the HP 3000 Series
900.

• PC revision B.OO.01.

Cross-System NetiPC 2-3

Local and Remote NetlPC Calls
N etlPC calls can be separated into two categories: local and remote.

Local NetlPC Calls
Local NetIPC calls are used to set up or prepare the local node for
interprocess communication with the remote node. The resulting impact of
the local call is only to the local node; no information is passed to the remote
node.

Because local NetIPC calls do not affect the peer process, there are no
cross-system programming considerations associated with these calls. Table
2-1 lists the HP 1000, HP 9000, HP 3000 and PC NetIPC calls that only affect
the local process. (An asterisk indicates that a particular call is not
implemented.)

2-4 Cross-System NetlPC

Table 2-1. NetlPC Calls Affecting the Local Process

HP 1000 HP 9000 HP 3000 PC

Addopt addopt{) ADDOPT AddOpt
Adrof * * *
InitOpt initopt{) INITOPT InitOpt
* * IPCCHECK *
IPCControl ipccontrol{) IPCCONTROL IPCControl
IPCCreate ipccreate{) IPCCREATE IPCCreate
* ipcerrmsg{) IPCERRMSG *
* ipcerrstr{) * *
* ipcgetnodename() * *
IPCGet * IPCGET *
IPCGive * IPCGIVE *
IPCName ipcname() IPCNAME *
IPCNamerase ipcnamerase() IPCNAMERASE *
IPCSelect ipcselect{) * *
* ipcsetnodename() * *
* optoverhead() OPTOVERHEAD OptOverhead
Readopt readopt() READOPT ReadOpt

(NetlPC 3000N
only)

* * * ConvertNetworkLong
* * * ConvertNetworkShor1
* * * IPCWait

Although the calls listed in Table 2-1 do not affect cross-system
communication, keep in mind that you may need to design NetlPC programs
for different system types differently. This is because NetlPC calls, even those
with the same name, differ from system type to system type. The following are
some local call differences to be aware of:

• Maximum number of sockets. The maximum number of socket descriptors
owned by an HP 9000 process at any given time is 2048 (including file
descriptors); the HP 1000 maximum is 32; the HP 3000 maximum is 64; the
PC maximum is 21. This number includes call socket, virtual circuit socket,
and open file descriptors.

Cross-System NetiPC 2-5

• ipccontrolO parameters. The i pccontro 1 () call supports a different set
of request codes on different system types. Refer to the NetIPC
documentation for a particular system (this manual for the HP 9000) for a
full description of the request codes available on that system.

• Destination descriptors. On the HP 1000, destination descriptors are
called path report descriptors. Both types of descriptors are used in the
same way. They contain addressing information that is used by a NetIPC
process to direct requests to a certain call socket at a certain node.

• Manipulation of descriptors. The HP 9000 and HP 1000 implementations
of NetIPC allow you to manipulate call socket and destination descriptors
with the i pcname () and i pcnamerase () calls; the HP 3000 only allows
you to manipulate call sockets with these calls. When you use the IPCGive
and IPCGet calls on the HP1000, you can manipulate call socket and
destination descriptors; the HP 3000 only allows you to manipulate call and
VC sockets with these calls.

• Asynchronous I/O. The HP 9000 and HP 1000 NetIPC implementations
utilize the NetIPC i pcse 1 ect () call to perform asynchronous I/O; the HP
3000 NetIPC implementation utilizes the MPE intrinsics IOWAIT and
IODONTWAIT. PC NetIPC uses I PCWa it.

• Call sockets. On the PC, call sockets are called source sockets and call
socket descriptors are called source socket descriptors. Both sets of terms
are used in the same way.

Note There are many additional differences between local NetIPC calls
for the HP 9000, HP 1000, HP 3000, and PC. Refer to the NetIPC
documentation for each system for more information.

2-6 Cross-System NetlPC

Remote NetlPC Calls
Unlike local NetlPC calls, remote NetlPC calls affect the peer process at the
remote node. Because remote NetlPC calls affect the peer process, there may
be cross-system programming considerations associated with these calls.

Table 2-2 lists the HP 9000, HP 1000, HP 3000, and PC NetlPC calls that
affect the remote process.

Table 2-2. NetlPC Calls Affecting the Remote Process

HP 1000 HP 9000 HP 3000 PC

IPCConnect ipcconnect() IPCCONNECT IPCConnect
IPCDest ipcdest() IPCDEST IPCDest
IPCLookUP ipclookup() IPCLOOKUP not implemented
IPCRecv ipcrecv() IPCRECV IPCRecv
IPCRecvCn ipcrecvcn() IPCRECVCN IPCRecvCn
IPCSend ipcsend() IPCSEND IPCSend
IPCShutDown ipcshutdown() IPCSHUTDOWN IPCShutdown

The remainder of this chapter describes cross-system programming
considerations for the remote NetIPC calls as they relate to the following
cross-system pairs:

• HP 9000 to HP 1000 A-Series communication.

• HP 9000 to HP 3000 (MPE-V and Series 900) communication.

• HP 9000 to PC communication.

Cross-System NetiPC 2-7

HP 9000 to HP 1000 NetlPC
When writing an HP 9000 NetIPC program that will communicate with an HP
1000 N etIPC peer process, you must be aware of certain differences in the HP
9000 and HP 1000 NetIPC implementations. These differences, and the
NetlPC calls that are affected, are listed in Table 2-3.

Table 2-3. Calls That Affect HP 9000 to HP 1000 NetlPC

NetlPC Call Cross-System Considerations

ipcconnect() Checksumming - When an i pcconnect () call is
executed on an HP 9000 node, then TCP
checksumming is always enabled for the HP
9OOO-to-HP 1000 connection.

Send and Receive sizes - The HP 1000 send and
receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system.

ipcdest() TCP Protocol Address - The HP 1000 and HP 9000
implementations of i pccreate () support different
ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The i pcdest () call uses the TCP
protocol address specified in i pccreate () on the
remote process.

ipclookup() No differences that affect cross-system operations.

2-8 Cross-System NetiPC

Table 2-3. Calls That Affect HP 9000 to HP 1000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcrecv() Receive size - The HP 1000 receive size range is 1 to
8,000 bytes. The HP 9000 receive size range is 1 to
32,767 bytes. Although the range sizes that can be
specified in the dl en parameter are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

ipcrecvcn() Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 1000 connection.

Send and Receive sizes - The HP 1000 send and
receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system.

ipcsend() Send size - The HP 1000 send size range is 1 to
8,000 bytes. The HP 9000 send size range is 1 to
32,767 bytes. Although the range sizes that can be
specified in the dl en parameter are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

Cross-System NetlPC 2-9

Table 2-3. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcshutdown{) Socket Shut Down - The shutdown procedure for
both HP 1000 and HP 9000 processes is the same,
except that a "graceful release" flag is provided on
the HP 9000. If the graceful release flag (f7 ags bit
17) is set on the HP 9000, the HP 1000 will respond
as though it were a normal shutdown. The HP 9000
also supports "shared sockets"; the HP 1000 does
not.

Shared sockets are destroyed only when the
descriptor being released is the sole descriptor for
that socket. Therefore, the HP 9000 process may
take longer to close the connection than expected.

Note There are many additional differences between remote NetlPC
calls for the HP 9000 and HP 1000 systems. However, these
differences should not affect the cross-system communication
capabilities of your program because they affect the local node
only. Refer to Appendix E, "Porting NetlPC Programs," for a
summary of the differences between the HP 9000 and HP 1000
NetlPC implementations.

NetlPC Error Codes
NetlPC calls with the same names on HP 9000 and HP 1000 systems may
return different error codes. Refer to the system's corresponding NetlPC
documentation for a complete list of the error codes that are applicable to
that NetlPC implementation.

2-10 Cross-System NetlPC

HP 9000 to HP 3000 NetlPC
When writing an HP 9000 NetIPC program that will communicate with an HP
3000 (MPE-V or Series 900) NetIPC peer process, you must be aware of
certain differences in the HP 9000 and HP 3000 NetIPC implementations.
These differences, and the NetIPC calls that are affected, are listed in Table
2-4.

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetiPC

NetlPC Call Cross-System Considerations

ipcconnect() Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 3000 connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system. Note that the default send and
receive sizes differ on the HP 9000 and the HP
3000. On the HP 9000, the default send and receive
size is 100 bytes. On the HP 3000, the default send
and receive size is less than or equal to 1024 bytes.

Cross-System NetlPC 2-11

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcdest() TCP Protocol Address - The HP 9000 and HP 3000
implementations of i pccreate () support different
ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The i pcdest () call uses the TCP
protocol address specified in i pccreate () on the
remote process.

ipclookup() No differences that affect cross-system operations.

ipcrecv() Receive size - The HP 9000 receive size range is 1 to
32,767 bytes. The HP 3000 receive size range is 1 to
30,000 bytes. Although the ranges are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

ipcrecvcn() Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 3000 connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system. Note that the default send and
receive sizes differ on the HP 9000 and HP 3000.
On the HP 9000, the default send and receive size is
100 bytes. On the HP 3000, the default send and
receive size is less than or equal to 1024 bytes.

2-12 Cross-System NetiPC

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcsend() Send size - The HP 9000 send size range is 1 to
32,767 bytes. The HP 3000 send size range is 1 to
30,000 bytes. Although the ranges are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

Urgent Data - The HP 3000 supports an "urgent
data" option in the op t parameter. If this bit is set
by the HP 3000 program, it will be ignored by the
receiving process on the HP 9000.

ipcshutdown() Socket Shut Down - The shutdown procedure for
HP 9000 and HP 3000 processes is the same. The
HP 9000 supports "shared sockets"; the HP 3000
does not. Shared sockets are not destroyed until
only one socket descriptor exists (the last socket
descriptor). Therefore, an HP 9000 process may
take longer to close the connection than expected.

Note There are many additional differences between remote NetIPC
calls for the HP 9000 and HP 3000 systems. However, these
differences should not affect the cross-system communication
capabilities of your program because they affect the local node
only. Refer to the system's corresponding NetlPC documentation
to determine all of the differences between NetlPC on the HP
9000 and HP 3000 systems.

Cross-System NetiPC 2-13

NetlPC Error Codes
NetIPC calls with the same names on HP 9000 and HP 3000 systems may
return different error codes. Refer to the system's corresponding NetIPC
documentation for a complete list of the error codes that are applicable to
that NetIPC implementation.

2-14 Cross-System NetiPC

HP 9000 to PC NetlPC
When writing an HP 9000 NetlPC program that will communicate with a PC
NetlPC peer process, you must be aware of certain differences in the HP 9000
and PC NetlPC implementations. These differences, and the NetlPC calls
that are affected, are listed in Table 2-5.

Table 2-5. Calls That Affect HP 9000 to PC NetlPC

NetlPC Call Cross-System Considerations

IPCConnect Checksumming - With PC NetIPC, the TCP
checksum option cannot be turned on. On the HP
9000, the TCP checksum is always on. Therefore,
the checksum is in effect on both sides of the
connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although
the ranges are different, cross-system communication
is not affected. Just be sure to specify a buffer size
within the correct range for the respective system;
otherwise, an error will occur. For example, if a PC
sends a 60,000 byte buffer, the HP 9000 process may
get all the data by posting two i pcrecv functions of
30,000 bytes until all the data has been received.

IPCCreate TCP Protocol Address - The HP 9000 and PC
IPCDest implementations of I PCCreate support different

ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The IPCDest call uses the TCP
protocol address specified in I PCCreate on the
remote process.

Cross-System NetlPC 2-15

Table 2-5. Calls That Affect HP 9000 to PC NetIPC-con't

NetIPC· Call Cross-System Considerations

IPCRecv Receive size - The HP 9000 enables you to specify
the maximum receive size of the data buffer with the
dlen parameter through an option array. PC N etlPC
has no option array defined for I PCConnect. This
does not affect cross-system communication. The
maximum receive size of the data in the buffer on
the HP 9000 will determine the receive size buffer
on the PC.

IPCRecvCn Checksumming - With PC NetlPC, the TCP
checksum option cannot be turned on. On the HP
9000, the TCP checksum is always on. Therefore,
the checksum is in effect on both sides of the
connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although
the ranges are different, cross-system communication
is not affected. Just be sure to specify a buffer size
within the correct range for the respective system.

IPCSend Send size - The HP 9000 enables you to specify the
maximum send size of the data buffer with the dlen
parameter through an option array. PC NetlPC has
no option array defined for I PCConnect. This does
not affect cross-system communication. The
maximum send size of the data in the buffer on the
HP 9000 will determine the send size buffer on the
PC.

2-16 Cross-System NetlPC

Note There are many additional differences between remote NetlPC
calls for the HP 9000 and PC NetlPC systems. However, these
differences should not affect the cross-system communication
capabilities of your program because they affect the local node
only. Refer to the system's corresponding NetlPC documentation
to determine all of the differences between NetlPC on the HP
9000 and PC N etlPC systems.

NetlPC Error Codes
NetlPC calls with the same names on HP 9000 and PC NetlPC systems may
return different error codes. Refer to the system's corresponding NetlPC
documentation for a complete list of the error codes that are applicable to
that NetlPC implementation.

Cross-System NetlPC 2-17

Process Scheduling
NetlPC does not include a call to schedule a peer process. In programs
communicating between multiple HP 3000s or multiple HP 1000s, you can use
the Remote Process Management (RPM) call RPMCREATE to programmatically
schedule program execution. RPM between HP 9000s and HP 1000s or HP
3000s is not currently supported by Hewlett-Packard.

The following sections describe how to start a process at a remote HP 9000,
HP 1000 and HP 3000 system.

Remote HP 9000 Process
Remote HP 9000 processes can be started manually or can be scheduled by
daemons.

To manually start up a NetlPC program, simply logon to the HP 9000 system
and run the N etlPC program.

To start a NetIPC process from a daemon, start the daemon at system start up
by invoking it from the jete/net 1 i nkre file.

Remote HP 1000 Process
A remote HP 1000 NetlPC process must be ready to execute by being an
RTE type 6 file. HP 1000 processes can be started manually or can be started
at system start up.

To manually start up a NetlPC program, simply logon to the HP 1000 system
and run the NetIPC program with the RTE XQ (run program without wait)
command.

To have the NetIPC program execute at system start up, put the RTE XQ
command in the WELCOME file. Refer to the RTE-A User's Manual for a
description of the XQ command.

2-18 Cross-System NetlPC

Remote HP 3000 Process
HP 3000 processes can be started manually or can be started by a job file.

To manually start up an HP 3000 NetlPC program, log on to the HP 3000 and
run the NetlPC program (with the RUN command).

You can schedule the program to start at a particular time by writing a job file
to execute the program, and then including time and date parameters in the
: STREAM command that executes the job file.

Remote PC NetlPC Process
To manually start up a PC NetlPC program, enter the NetlPC program name
at the MS®-DOS prompt.

To execute from within MS-Windows, copy the NetlPC program files to your
windows directory and double click with the mouse on the executable file.

Cross-System NetiPC 2-19

3

NetlPC Calls

This chapter is a reference source for programmers who code applications that
utilize NetlPC calls. It is assumed that the reader has read and understands
the concepts presented in the "NetlPC Concepts" chapter.

The information contained in this chapter is organized as follows:

• Programming Languages. Identifies the programming languages in which
NetlPC programs may be written.

• Include Files and Libraries. Describes the NetlPC include file that may be
used with NetlPC programs written in C and explains how to link and
compile NetlPC programs written in each of the supported programming
languages.

• HP 1000 to Series 600/800 Migration. Lists reference sources for
programmers who will be migrating HP 1000 NetlPC programs to the HP
9000 Series 600/800 programming environment.

• NetIPC Common Parameters. Describes parameters that are common to
most of the NetlPC calls and explains how to use those parameters in each
of the supported programming languages.

• Syntax Conventions. Explains the syntax conventions used on the NetlPC
reference pages.

• NetIPC Reference Pages. Provides reference pages, in alphabetical order,
for each of the N etlPC calls.

NetiPC Calls 3-1

Programming Languages
NetlPC programs may be written in C, Pascal or FORTRAN. For detailed
information about programming languages, refer to the appropriate language
reference manual. Programming reference manual titles and part numbers are
listed in the preface of this manual.

3-2 NetlPC Calls

Include Files and Libraries
A C include file, /usr/i ncl ude/sys/ns_ i pc. h, is provided with the NetlPC
software and should be included in all NetlPC programs that are written in
the C programming language. This include file contains constant definitions
for socket types, protocol types, flags parameter bits, ipccontrol () request
codes, opt parameter option codes, and NetlPC error codes. It also contains
the type declaration ns _ i nt _ t that can be used to describe many of the
N etlPC call parameters.

Note If you wish to use Pascal or FORTRAN, you must translate the
include file /usr/i ncl ude/sys/ns i pc. h into these
programming languages. -

A NetlPC library, /usr/l i bill i b-ns i pc.l n is also provided with the
NetlPC software for use with the lint program. For example:

1 i nt programname -1 ns i pc

For more information on 1 i nt, refer to the HP-UX Reference Manual.

NetiPC Calls 3-3

HP 1000 to Series 600/800 Migration
NetIPC programs written in Pascal and FORTRAN for the HP 1000
environment may be transported to HP 9000 Series 600/800 nodes. Refer to
the migration manuals listed in the preface of this manual for information on
migrating HP 1000 Pascal and FORTRAN programs to the HP 9000 Series
600/800 environment.

If you plan to transport HP 1000 NetIPC programs to the Series 600/800,
refer to Appendix E of this manual for HP 1000 to Series 600/800 NetIPC
porting information. Refer to Appendix D of this manual for general NS/1000
and DS/1000-IV to LAN/9000 Series 600/800 migration information.

3-4 NetlPC Calls

NetlPC Common Parameters
The f1 ags, opt, dat a, resu 1 t, socketname, and nodename parameters are
common to many NetIPC calls.

The opt parameter provides functionality for NetIPC calls and usually has
associated data. The f7 ags parameter enables or disables certain functions
for NetIPC calls. The resu 1 t parameter returns error codes for NetIPC calls.
The socketname and nodename parameters identify sockets and nodes,
respectively.

The following paragraphs provide detailed information regarding the meaning,
use and structure of each of these parameters.

Flags Parameter
The f1 ags parameter is a 32-bit integer that represents various options. By
setting bits in the f1 ags parameter, you can invoke various services in
ipcrecv(), ipcsend(), ipccontrol () and ipcdest() cans.

The NetIPC calls i pcconnect (), i pccrea te (), i pc 100 kup (),
i pcrecvcn () and i pcshutdown () also include a f1 ags parameter, but in
these calls the parameter is reserved for future use. The f1 ags parameter
must II initialized to zero before it is used in these calls. The parameter must
also b cleared after it is used in these calls if it is to be in a subsequent call
that re uires that the f1 ags parameter be initialized to zero. This precaution
should be taken because NetIPC calls that do not use the f1 ags parameter
on input may return non-zero values to the parameter on output.

The following paragraphs explain how the f1 ags parameter is declared and
manipulated in the C, Pascal, and FORTRAN programming languages.

NetiPC Calls 3-5

Note NetlPC calls assume that the bits in the f1 ags parameter are
numbered from left to right with the most significant bit
considered to be bit zero and the least significant bit considered to
be bit 3l.
MSB
o 1 2 3 4 5 ... 31 Pascal, C, and NetlPC
MSB
31 30 29 28... 0 FORTRAN

The remaining examples in this chapter assume the most
significant bit is o.

Using Flags in a C Program

The C include file /usr/i ncl ude/sys/ns i pc. h includes constant
definitions that should be used when setting bits in the f7 ags parameter.
(Refer to the explanations of the ipcsend(), ipcrecv(), ipccontrol (),
and i pcdest () call descriptions later in this chapter for the constants that
can be used with these calls.)

The f7ags parameter should be declared as type ns_int_t, which is defined
in the C include file /usr/i ncl ude/sys/ns_ i pc. h. A flags option is set by
assigning one of the constants defined for the particular call to the f1 ags
parameter. In the following example, the f7 ags parameter used in an
ipcrecv() call is assigned the constant NSF_PREVIEW. (NSF_PREVIEW sets
bit 30 of the f7 ags parameter.)

fl ags = NSF _PREVI EW;

In the next example, the NSF_PREVIEW and NSF _DATA_WAIT options are
selected by using the bitwise inclusive OR (D operator. (NSF _DATA_WAIT sets
bit 20 of the f7 ags parameter.)

fl ags = NSF_PREVIEW I NSF _DATA_WAIT;

3-6 NetlPC Calls

Using Flags in a Pascal Program
In Pascal, the f1 ags parameter may be represented as an array of bits:

TYPE flags_type = packed array [0 .. 31] of boolean;

VAR flags: flags_type;

fl ag s [0] refers to the high order bit in the boolean array; fl ag s [31]
refers to the low order bit. To set a bit in the array, assign the value TRUE to
the desired bit. For example,

fl ags [21] : = TRUE;

would set bit 21 of the f1 ags array. A clear bit would be assigned the value
FALSE. If you do not want to set any of the bits in the f1 ags array, but you
want to be certain that all of the bits are clear, you may make f7 ags type
INTEGER and assign it the value zero.

Using Flags in a FORTRAN Program
In FORTRAN, the f1 ags parameter must be declared as INTEGER*4 (32-bit
integer). The simplest way to set a bit in this parameter is to use the
FORTRAN library function i bset (a, b). The f1 ags parameter is passed in
the first argument (a) and the bit position to be set is passed in the second
argument (b).

The i bset function assumes that bits are numbered from right to left, with
the most significant bit considered to be bit 31 and least significant bit
considered to be bit o. NetIPC calls assume that bits are numbered in the
opposite direction (i.e., the most significant bit is 0, the least significant bit is
31). Therefore, to set the proper bit in the f1 ags parameter using i bset,
you must subtract the f7 ags value from 31.

In the following example, bit 21 is set in the f7 ags parameter:

INTEGER*4 fl ags
C The fl ags val ue is subtracted from 31 so that the proper
C bit is set. This maps ibset' s bit numbering convention into
C NetIPC's.

flags = ibset(flags,(31-21))

NetlPC Calls 3-7

Multiple bits can be set by repeating the i bset function.

Opt Parameter
The opt parameter allows you to request optional services when invoking
certain NetlPC calls. It enables calls that include the opt parameter to accept
an arbitrary number of arguments that are either protocol or operating system
specific.

Because the opt parameter has a complex structure, NetlPC provides a
special set of calls that allow you to manipulate the parameter. Table 3-1
summarizes the opt parameter calls. Before you can invoke a NetIPC call
that includes an opt parameter, you must prepare the parameter by using the
following opt parameter calls:

• First, in i topt () must be called to initialize the opt parameter. This call
allows you to specify how many arguments will be placed in the parameter.

• Next, addopt () must be called to add an argument and its associated data
to the opt parameter. (An addopt () call can add only one argument at a
time, so you must call it multiple times if you want to add multiple
arguments to the opt parameter.)

If the opt parameter is not used in a certain call (no options are defined for
that call or you do not choose to select an option), you must assign a value of
zero (0) to the opt parameter or pass the constant NSO_NULL in its place.

In addition to in i topt () and addopt (), two optional opt parameter calls
are provided: readopt () and optoverhead (). The readopt () call allows
you to obtain option code and argument data associated with a certain opt
parameter. The optoverhead () call may be used to determine the number
of bytes needed for the opt parameter, excluding the data area. To determine
the length of the entire opt parameter, you must add the result of the
optoverhead () call to the length of the data to be placed in it and then
allocate memory for the parameter by calling rna 11 oc (). (rna 11 oc () is
documented in the HP-UX Reference Manual.)

The following formula can also be used to determine the opt parameter
length before coding your application.

tota 1_1 ength _of _opt = 4 + 8 * OPTNUMARGUMENTS + DATA;

3-8 NetiPC Calls

In this formula, OPTNUMARGUMENTS contains the number of arguments that
will be placed in the parameter and OAT A contains the length in bytes of the
data associated with all of the arguments.

Table 3-1. Special NetlPC Calls

Call Description

addopt() Adds an argument and its associated data to an opt
parameter.

initopt() Initializes an opt parameter so that arguments can
be added.

optoverhead() Returns the amount of space needed for the opt
parameter in bytes, not including the data portion of
the parameter.

readopt() Obtains the option code and argument data
associated with an opt parameter argument.

A complete description of each opt call, including programmatic examples of
the in i topt () and addopt () calls, is provided in "Special NetIPC Calls"
later in this chapter.

The following paragraphs explain how the opt parameter is declared and
manipulated in the C, Pascal, and FORTRAN programming languages.

Using Opt in a C Program

The C include file /usr/i nc 1 ude/sys/ns_ i pc. h includes constant
definitions that should be used when placing options in the opt parameter.
(Refer to the explanations of the NetIPC calls that utilize the opt parameter
for a description of the constants that can be used.)

NetiPC Calls 3-9

The opt parameter should be declared as an array of short (16-bit) integers.
For example:

short i nt opt [opt 1 ength] ;

When declared as a array of short integers, the opt parameter can be passed
directly to the in i topt () call. For example,

initopt (opt, optnumarguments, error);

Alternatively, you can declare the opt parameter as a pointer to a short
(16-bit) integer. For example:

short i nt *opt;

However, if you use *opt, you must allocate space for the structure before
passing it to in i topt (). This can be done by using optoverhead () and the
rna 11 oc () call as described in the HP-UX Reference Manual. For example:

datal ength = 20;
opt1ength = optoverhead (number entries, error);
opt = (short*) ma110c (datalengfh + optlength);

Note The opt data structure must be aligned on a short (16-bit)
boundary.

Using Opt in a Pascal Program

In Pascal, the opt parameter should be declared as a a packed array of bytes.
For example:

TYPE
byte =0 •. 255;
opt_array = packed array [0 .. opt 1 ength] of byte;

VAR
opt: opt_array;

3-10 NetlPC Calls

Using Opt in a FORTRAN Program
In FORTRAN, the opt parameter should be declared as an array of short
(16-bit) integers. For example:

SHORT INTEGER opt (opt 1 ength)

Opt Parameter Structure

Note The following description is provided for information only. The
special opt parameter calls are provided to mask this information
from the user. It is not necessary to understand the opt parameter
structure in order to use it.

The following diagrams are provided to illustrate the general form of the opt
parameter after it has been initialized with the special NetIPC call
in i topt (). In Figure 3-1, OPTLENGTH represents the length of the opt
parameter from the first byte of OPTNUMARGUMENTS to the end of the data
segment:

OPTLENGTH = 8 * OPTNUMARGUMENTS + DATA

OPTNUMARGUMENTS represents the number of arguments or entries placed in
the parameter; OPTARGUMENTS is an area containing the arguments
themselves; and DATA is where the data associated with the arguments is
stored.

NetiPC Calls 3-11

Byte

o
1
2

~------------~

OPTLENGTH

3 OPTNUMARGUMENTS
4

OPTARGUMENTS
n

n + 1
DATA

z
~------------~

Figure 3-1. Opt Parameter Structure

Figure 3-2 illustrates the structure of an opt parameter argument.
OPTIONCODE is the option code associated with the argument being added;
OFFSET is a byte offset into the opt record where any data associated with the
argument is located; and DATALENGTH is the length of the data associated with
the argument. This information is added to the opt parameter with the
special NetIPC call addopt(). (An example of adding an argument to the
opt parameter is provided in the discussion of addopt () later in this chapter.)

Byte

0
OPTIONCODE

2
OFFSET

3

4 DATALENGTH
5

6 <RESERVED>
7

Figure 3-2. OPTARGUMENT Structure

3-12 NetiPC Calls

Data Parameter
The data parameters present in ipesend(), ipereev() and ipeeontrol ()
may reference data vectors or data buffers.

Unlike a data buffer, which is a structure containing actual data, a data vector
is a structure that can describe several data objects. The description of each
object consists of a byte address and a length. The byte address describes
where the object is located and the length indicates how much data the object
contains. Any kind of data object (arrays, portions of arrays, records, simple
variables, etc.) can be described by a data vector.

When a data vector is used to identify data to be sent, it describes where the
data is located. This is referred to as a gathered write. When a data vector is
used to identify data to be received, it describes where the data is to be
placed. This is referred to as a scattered read.

Using data vectors may be more efficient than using data buffers in certain
circumstances. For example, a process that sends data from several different
buffers must call i pes end () several times, or copy the data into a packing
buffer prior to sending it, if its dat a parameter is a data buffer. However, if
its data parameter is a data vector, the process may describe all of the buffers
in the data parameter and transfer it using one ipesend() call.

Note Since the data location descriptors contain machine-specific
information, code using the vectored option may not be portable
to other machines.

NetlPC Calls 3-13

Figure 3-3 is an example of a data vector and the data objects that it
represents. The data vector describes the characters "HERE IS THE DATA."

DATA VECTOR

16000

8

16223

5

17542

4

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

16000

16222

17540

DATA OBJECTS

16002 16004

16224 16225

17542 17544

Figure 3-3. Vectored Data

16006

16228

17546

When a data parameter refers to a data vector, the length of the data
parameter (usually called dl en) refers to the length of the stmcture containing
the vector.

For example, if an i pcsend () call were to reference the data vector in Figure
3-3 above, its dl en parameter would be 24 bytes. (Each byte address and
length totals 4 bytes; each pointer to a data object is also 4 bytes long. There
are three sets of byte addresses, lengths and pointers. Therefore, 8 * 3 = 24.)

Each length in a data vector must be greater than or equal to zero. The
format for vectors, and the maximum number of vectors that may be specified,
are defined in /usr / inc 1 ude/ sys/u i o. h .

3-14 NetlPC Calls

Result Parameter
Every NetIPC call has a result parameter. When a NetIPC call encounters
an error, an error code is returned via this parameter.

Using Result in a C Program
Because the resu 1 t parameter is provided for error return, you should
declare NetIPC calls to be type vo i d in C programs. In addition, a C include
file called /usr/i ncl ude/sys/ns_ i pc. h is provided which contains constant
definitions that can be used to refer to errors in your C programs. For
example, the following C program fragment checks for the error
NSR_REMOTE_ABORT (code 64) after an i pcshutdown () call:

ipcshutdown(descriptor, &flags, opt, &result);
if (result == NSR_REMOTE_ABORT)

goto return_error;

The re s u 1 t parameter should be declared as a pointer to type n s _ i n t _ t,
which is defined in the C include file / us r / inc 1 ude/ sys/ n s _ i pc. h.

Note Passing an invalid or out-of-bounds pointer to the actual resu 1 t
argument in a NetIPC call will cause the program to core dump
due to a memory faultlbus error. A pointer is, in general,
considered "bad" if it points outside of the user's memory space.

Using Result in a Pascal Program
In Pascal, the result parameter should be declared as type INTEGER.

Using Result in a FORTRAN Program

In FORTRAN, the result parameter should be declared as type INTEGER*4.

NetlPC Calls 3-15

Socket Name Parameter
The NetlPC calls i pcname (), i pcnamerase (), i pc lookup () and
i pcdest () require the use of names to identify either sockets or nodes. A
socket name (the socketname parameter) may be a maximum of 16
characters long and may consist of any ASCII character. Upper and lower
case characters are not considered distinct (for example, the socket names
"john" and "JOHN" are equivalent).

Node Name Parameter
A node name (the nodenameparameter) refers to a node and has a
hierarchical structure as follows:

node[.domain[.organization]]

The domai nand organi zat ion may be useful for grouping nodes and
collections of nodes, but they currently have no special meaning regarding the
structure of the network within the LAN product and are optional. They will
default to the local domain and organization if they are omitted. When all
three parts of the node name are specified, it is called a fully-qualified node
name.

Each node, domain, and organization name is a maximum of 16 characters
long, and a period (.) separates each name. The maximum total length of a
fully-qualified node name is 50 characters. All alphanumeric characters are
allowed, including the underscore (_) and dash (-) characters, but the first
character of each parameter must be alphabetic. Upper and lower case
characters are not considered distinct. For example: ANIMAL. Del. IND would
indicate node ANIMAL in the DCL lab (domain) of the IND division
(organization).

3-16 NetlPC Calls

Syntax Conventions
Most of the syntax conventions used in this chapter are described on the
"Syntax Conventions" page at the beginning of this manual. The following
syntax conventions are used in addition to those listed on the "Syntax
Conventions" page:

• Constant names defined in the C include file
/usr/i ncl ude/sys/ns_ i pc. h are included in the parameter descriptions
for calls that can use them.

• A section titled "Programming Considerations" is included at the end of
each NetIPC call reference page. This section consists of a table that lists
the type definitions and passing modes that must be used for each call
parameter. This table includes information for the C, Pascal, and
FORTRAN programming languages.

NetlPC Calls 3-17

NetlPC Reference Pages
The following reference pages provide syntax and usage information for each
of the NetIPC calls. The reference pages are organized alphabetically by
N etIPC call name.

Note Standard HP-UX "manual reference page" versions of the
following NetIPC reference pages are also provided on-line and in
the LAN Reference Pages manual (for the Series 600/8(0) and the
Network SenJices Reference Pages manual (for the Series 300).

3-18 NetlPC Calls

addopt()
Adds an argument and its associated data to the opt parameter.

Syntax

addopt(opt,argnum,optioncode,data7ength,data,resu7t)

Parameters

opt

argnum

optioncode

data7ength

data

resu7t

The opt parameter to which you want to add an
argument. Refer to "NetIPC Common Parameters"
for information on the structure and use of this
parameter.

The number of the argument to be added. The first
argument is number zero.

The option code or constant definition (C programs
only) for the argument to added. These codes are
described in each N etIPC call opt parameter
description.

The length in bytes of the data to be included. This
information is provided in each NetIPC call opt
parameter description.

An array containing the data associated with the
argument.

The error code returned; zero or NSR _NO_ERROR if
no error.

NetlPC Calls 3-19

Description
The addopt () call adds an argument and its associated data to an option
buffer. The parameter must be initialized by in i topt () before arguments
can be added.

The following C program fragment illustrates the use of in i topt () and
addopt () to initialize and add two arguments to the option parameter of an
i pcconnect () call. In this example, the opt parameter is used to specify a
maximum send size and maximum receive size of 1 ()()() bytes. (Maximum send
size indicates the maximum number of bytes that you expect to send with a
single i pcsend () ; addopt () call and maximum receive size indicates the
maximum number of bytes you expect to receive with a single i pcrecv ()
call.) The opt parameter is assumed to be previously defined as an array of
short integers.

Note In the following example, it is assumed that the opt and dat a
parameters were previously declared as arrays of short (16-bit)
integers. Refer to "Opt Parameter Structure" earlier in this
chapter for more information about the opt parameter.

3-20 NetlPC Calls

addopt Example
/* initopt initializes the opt parameter to contain two */
1* arguments -- one for the maximum send size and one for */
/* the maximum receive size. */

optnumarguments = 2;
initopt (opt, optnumarguments, &error);

/* perform error checking here */

/* addopt is called to add the maximum send size. The data */
/* parameter contains the value 1000. The data parameter */
/* was previously declared as an array of short integers. Note*/
/* that the first argument is number zero. */

argnum = 0;
optioncode = NSO_MAX_SEND_SIZE;
data length = 2;
data [0] = 1000;
addopt (opt, argnum, optioncode, datalength, data, &error);

/* addopt is called once more to add the maximum receive size */

/* Note that the data and datalength parameters are unchanged.*/

argnum = 1; optioncode = NSO_MAX_RECV_SIZE;
addopt (opt, argnum, optioncode, datalength, data, &error);

/* perform error checking here */
/* ipcconnect can now be called with the opt parameter. */

NetlPC Calls 3-21

Programming Considerations
The following is a list of the type definitions and passing modes for the
addopt () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

opt short int array of bytes array of integers
opt [] by reference by reference

argnum short int int16* integer
argnum by value by value

optioncode short int int16* integer
optioncode by value by value

datalength short int int16* integer
datalength by value by value

data short int data[] int16* array of integers
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-22 NetlPC Calls

initopt()
Initializes the opt parameter so that arguments can be added.

Syntax

initopt(opt,optnumarguments, result)

Parameters

opt

optnumarguments

result

The opt parameter to be initialized. Refer to
"NetlPC Common Parameters" for information on
the structure and use of this parameter.

The number of arguments that will be placed in the
opt parameter. If this parameter is zero, the opt
parameter will be initialized to contain zero
arguments.

The error code returned; zero or NSR_NO_ERROR if
no error.

The initopt() call must be used to initialize the opt parameter prior to
adding arguments to it with addopt (). The optnumarguments parameter
specifies how many arguments can be placed in the opt parameter. For
example, if zero is specified, no arguments can be added to the opt
parameter; if three is specified, three arguments must be added.

In the following C program fragment, the same opt parameter is prepared for
use in two different i pcconnect () calls. The first call will request a
connection with the default maximum send and receive sizes (100 bytes), so its
option parameter is initialized to contain zero arguments. The second
i pcconnect () call will request a connection with a maximum send and
receive size of 1000 bytes. Thus, its option parameter must be initialized to
contain two arguments, the first to contain the maximum send size, and the
second to contain the maximum receive size.

NetiPC Calls 3-23

Note In the following example, it is assumed that the opt and data
parameters have been previously declared as arrays of short
(16-bit) integers. Refer to the section titled "Opt Parameter"
earlier in this chapter for more information about the opt
parameter.

/* initopt initializes the opt parameter to be used in an */
/* ipcconnect call to contain zero entries. This will cause */
/* the maximum send and receive sizes to default to 100 bytes.*/

optnumarguments = 0;

initopt (opt, optnumarguments, &error);

/* perform error checking here */

/*initopt reinitializes the opt parameter to be used in another*/
/*ipcconnect call. This call specifies the maximum */
/*send and receive sizes, so it must be initialized to contain*/
/*two arguments. */

optnumarguments = 2;
initopt (opt, optnumarguments, &error);

/* perform error checking here */

3-24 NetlPC Calls

/*The addopt call is used to add the maximum send size argument*/
/*as the first argument to the opt parameter. The maximum*/
/*send size has an option code of 3. The data parameter has been */
/*previously declared as an array of short integers and contains*/
/*the value 1000. Note that the first argument is number zero.*/

argnum = 0;
optioncode = NSO_MAX_SEND_SIZE;
data length = 2;
data [0] = 1000;

addopt (opt, argunm, optioncode, datalength, data, &error);

/* perform error checking here */

/*addopt is used again to add the maximum receive size as the*/
/*second argument to the opt parameter. The maximum receive */
/*size has an option code of 4. The data parameter contains */
/* the value 1000. */

argnum = 1;
optioncode = NSO_MAX_RECV_SIZE;

addopt (opt, argnum, optioncode, datalength, data, &error);

/* perform error checking here */
/* ipcconnect can now be called using the opt parameter. */

NetlPC Calls 3-25

Programming Considerations
The following is a list of the type definitions and passing modes for the
in i topt () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

opt short int opt[] array of bytes array of integers
by reference by reference

optnumarguments short int int16* integer
optnumarguments by value by value

e"or short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-26 NetlPC Calls

ipcconnect()
Requests a connection to another process.

Syntax

ipcconnect(cal ldesc,destdesc,flags,opt,vcdesc, resul t)

Parameters

calldesc

destdesc

flags

opt

Call socket descriptor. Refers to a call socket
owned by the calling process. This parameter is
optional; -1 or NS_NULL-DESC is allowed.

Destination descriptor. Refers to a structure that
indicates the location of the destination call socket
(this is the call socket to which the connection
request will be sent). A destination descriptor can
be obtained by calling ipclookup() or ipcdest().

This parameter must be 0 or a pointer to o. All
other values are reserved for future use. (Refer to
"Flags Parameter" for more information on the
structure of this parameter.)

Refer to "Opt Parameter" for information on the
structure and use of this parameter. The following
options are defined for this call:

• optioncode = NSO_MAX_SEND_SIZE (code 3),
datalength = 2. A two-byte integer that
specifies the maximum number of bytes expected
to be sent with a single i pcsend () call on this
connection. 32,767 bytes can be specified.

NetlPC Calls 3-27

vcdesc

resu7t

Description

Default: The TCP default is 100 bytes. If this
option is not specified, i pcsend () will return an
error if a call attempts to send greater than 100
bytes.

• optioncode = NSO_MAX_RECV_SIZE (code 4),
data 1 ength = 2. A two-byte integer that
specifies the maximum number of bytes expected
to be received with a single i pcrecv () call on
this connection. 32,767 bytes can be specified.
Default: The TCP default is 100 bytes. If this
option is not specified, i pcrecv () will return an
error if a call attempts to receive greater than
100 bytes.

VC socket descriptor. Refers to a VC socket that is
the endpoint of the virtual circuit connection at this
node. May be used in subsequent NetIPC calls to
reference the connection.

The error code returned; zero or NSR_NO_ERROR if
no error.

The i pcconnect () call is used to initiate a virtual circuit on which data may
be sent and received. i pcconnect () reports only whether a virtual circuit
has been initiated, not whether it was successfully established. A successful
return only indicates that a connection request was sent without error. If the
connection is successfully initiated, i pcconnect () will return a VC socket
descriptor in its vcdesc parameter. This VC socket descriptor refers to a VC
socket that is the endpoint of the virtual circuit at the local node.

Actively establishing a virtual circuit with NetIPC calls is a three-step process:

• First, i pcconnect () is called to request a connection on the client.

• Second, i pcrecvcn () is called to receive the connection request on the
server.

3-28 NetiPC Calls

• Third, i pcrecv () is called to find out if the virtual circuit connection
initiated with i pcconnect () can be successfully established by the client.

i pcconnect () 's opt parameter specifies the maximum number of bytes
expected to be sent and received on the connection. The default for both
sending and receiving is 100 bytes. This information is passed to the
underlying protocol. When TCP is the underlying protocol it will be used to
limit the number of bytes which can be queued on a socket.

Note When a process calls i pc connect (), TCP checksumming for the
connection that will be established is automatically enabled. TCP
checksum is performed in addition to data link checksum.

NetiPC Calls 3-29

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcconnect () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

calldesc ns int t calldesc integer integer*4
by value by value

destdesc ns int t integer integer*4
destdesc by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] packed array of array of 16-bit
bytes integers
by reference by reference

vcdesc ns int t *vcdesc integer integer * 4
by reference by reference

result ns int t *result integer integer*4
by reference by reference

Cross-System Considerations

Checksumming - When the i pcconnect () call is executed on the HP 9000
node, checksumming is enabled for the HP 9OOO-to-HP 1000 connection, HP
9OOO-to-HP 3000 connection, or HP 9OOO-to-PC connection.

Send and Receive sizes - The HP 1000 send and receive size range is 1 to
8,000 bytes; the HP 9000 send and receive size range is 1 to 32,767 bytes; the
HP 3000 send and receive size range is 1 to 30,000 bytes; and the PC range is
1 to 65,535 bytes. Although the ranges are different, specify a buffer size
within the correct range for the respective system.

3-30 NetlPC Calls

ipccontrol()
Performs special operations on sockets.

Syntax

ipccontrol(deseriptor,request,wrtdata,w7en,readdata,r7en,
f7ags,resu7t) --

Parameters

descriptor

request

The descriptor that refers to the socket to be
manipulated. The descriptor is either the vedese
parameter returned from the i pcconnect or
i pcrecvcn calls or the call descriptor returned from
i pccreate. If request is set to
NSC_GET_NODE_NAME, you must specify
NS_NULL_DESC or -1 in this parameter.

Request code. Defines which operation is to be
performed. May be one of the following:

• NSC_NBIO_ENABLE (code 1). Place the socket
referenced in the descriptor parameter in
asynchronous mode. (Refer to "Synchronous
and Asynchronous Socket Modes" in the
"NetlPC Concepts" chapter for more
information on asynchronous I/O.)

• NSC_NBIO_DISABLE (code 2). Place the socket
referenced in the descriptor parameter in
synchronous mode. (Refer to "Synchronous and
Asynchronous Socket Modes" in the "NetlPC
Concepts" chapter for information on
synchronous I/O.)

NetlPC Calls 3-31

3-32 NetiPC Calls

• NSC_TIMEOUT_RESET (code 3). Change the
referenced socket's synchronous time-out. The
default time-out value is 60 seconds. The
time-out value is given in tenths of seconds.
(For example, a value of 1200 would indicate 120
seconds.) The new time-out value is treated as a
16-bit signed integer and must be placed in the
first two bytes of the wrtdata parameter. The
time-out value must be in the range of zero to
32767. Negative values have no meaning and
will result in error. A value of zero sets the
time-out to infinity. The time-out will not be
reset if the referenced socket is switched to
asynchronous mode and then back to
synchronous mode.

• NSC_TIMEOUT_GET (code 4). Return the
synchronous time-out value for the socket
referenced in the deseri ptor parameter. The
time-out value is treated as a 16-bit signed
integer and is returned in the readdata
parameter.

• NSC_RECV_THRESH_RESET (code 1(00). Change
the read threshold of the VC socket referenced
in deseri ptor parameter. (Read thresholds are
one byte by default.) The deseri ptor
parameter must reference a VC socket
descriptor. The new read threshold value must
be placed in the first two bytes of the wrtdata
parameter. Refer to "Asynchronous and
Synchronous Socket Modes" in the "N etIPC
Concepts" chapter for more information on read
thresholds.

• NSC_SEND_THRESH_RESET (code 1001). Change
the write threshold of the VC socket referenced
in the deseri ptor parameter. (Write
thresholds are one byte by default.) The

wrtdata

w7en

readdata

descri ptor parameter must reference a VC
socket descriptor. The new write threshold
value must be placed in the first two bytes of the
wrtdata parameter. Refer to "Asynchronous
and Synchronous Socket Modes" in the "NetlPC
Concepts" chapter for more information on
write thresholds.

• NSC_RECV_THRESH_GET (code 1(02). Return
the current write threshold for the VC socket
referenced in the descriptor parameter. The
descriptor parameter must reference a VC
socket descriptor. The write threshold is treated
as a 16-bit signed integer and is returned in the
readdata parameter.

• NSC_SEND_THRESH_GET (code 1(03). Return
the current read threshold for the VC socket
referenced in the descriptor parameter. The
descri ptor parameter must reference a VC
socket descriptor. The read threshold is treated
as a 16-bit signed integer and is returned in the
readdata parameter.

• NSC_GET_NODE_NAME (code 9008). Return the
fully-qualified local node name. The node name
is returned in the readdata parameter.

A data buffer or data vector used to pass time-out
and threshold information. (Refer to "Data
Parameter" for information on the structure of this
parameter.)

Length in bytes of the wrtdata data buffer.

A data buffer or data vector used to contain any
data returned by the call. (Refer to "Data
Parameter" for information on the structure of this
parameter.)

NetiPC Calls 3-33

rlen
(input/output)

flags

result

Description

The length in bytes of the readdata data buffer.
On output, this parameter will contain the total
number of bytes returned to the process.

Refer to "Flags Parameter" for more information on
the structure and use of this parameter. This
parameter must be zero or a pointer to zero. All
other values are reserved for future use.

The error code returned; zero or NSR _NO_ERROR if
no error.

The i pccontro 1 () call is used to manipulate sockets in special ways. The
type of request is specified by placing a certain request code in the request
parameter. Although all of the request types require the descriptor,
request and resu 1 t parameters, some of the parameters are meaningless for
certain requests. If NSC_TIMEOUT_RESET, NSC_RECV_THRESH_RESET or
NSC_SEND_THRESH_RESET is specified, the wrtdata and wlen parameters are
used. If NSC TIMEOUT GET, NSC RECV THRESH GET,
NSC_SEND_THRESH_GET or NSC_GET_NODE_NAME is specified, the readdata
and r 1 en parameters are used.

Sockets with Multiple Descriptors

Because the i pccont ro 1 () requests operate on sockets, all processes that
own descriptors to a particular socket will be affected by i pccontro 1 ()
operations performed on that socket.

For example, one process can change a socket's read or write threshold,
synchronous time-out interval or synchronous/asynchronous mode while
another process is reading, writing or selecting on that socket. Exactly when
the process that is sharing the socket will be affected by these operations
cannot be reliably predicted. Reads, writes and selects in progress may
complete using either previous, new or a combination of the previous and new
values.

3-34 NetiPC Calls

Programming Considerations
When using the NSC_TIMEOUT_RESET or NSC_RECV_THRESH_RESET request,
you must be sure to place the time-out value or write threshold value in the
rust two bytes of the wrtdata parameter. The following C program fragment
demonstrates how this can be achieved:

char wrtdata[128]
(short)&wrtdata = 600;
ipccontrol(descriptor,NSC TIMEOUT RESET,&wrtdata,2,0,0,&flags,&
result); --

The following is a list of the type definitions and passing modes for the
ipccontrol () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

descriptor ns int t integer integer*4
descriptor by value by value

request ns_int_t request integer integer *4
by value by value

wrtdata char *wrtdata packed array of array of
characters characters
by reference by reference

wlen ns int t wlen integer integer*4
by value by value

readdata char *readdata packed array of array of
characters characters
by reference by reference

rlen ns int t *rlen integer integer*4
by reference by reference

flags boolean array integer*4
by reference by reference

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-35

ipccreate()
Creates a call socket.

Syntax

ipccreate(socketkind,protoco7,f7ags,opt,ca77desc,resu7t)

Parameters

socketkind

protoco7

f7ags

opt

3-36 NetlPC Calls

Indicates the type of socket to be created. Must be
NS CALL or 3 to indicate a call socket. Other values
are reserved for future use.

Indicates the protocol module that the calling
process wishes to access. If specified, can be
NSP TCP or 4 to indicate Transmission Control
Protocol (TCP). If zero (0) is specified, TCP will
always be chosen for call sockets. Other values are
reserved for future use.

This parameter is reserved for future use. All bits
must be clear (not set). (Refer to "Flags
Parameter" section of this chapter for more
information on the structure of this parameter.)

Refer to the "Opt Parameter" section of this
chapter for more information on the structure and
use of this parameter. The following options are
defined for this call:

• optioncode = NSO_MAX_CONN_REQ_BACK(code
6), data7ength = 2. A two-byte integer that
specifies the maximum number of unreceived
connection requests that may be queued to a call
socket. If this value is not specified, the default

calldesc

result

Description

maximum will be used. Default: One request.
Range: 1-20. (NOTE: A queue limit of one may
be too few if many processes attempt to initiate
connections to the call socket simultaneously. If
this occurs, some connection requests may be
automatically rejected.)

• optioncode = NSO_PROTOCOL_ADDRESS (code
128), data length = 2. A two-byte integer that
specifies a TCP protocol address to be used by
the newly-created call socket. If this option is
not specified, or if zero is specified, NetlPC will
dynamically allocate an address. You must be
have superuser capability to request protocol
addresses less than 1024. Recommended Range
For Cross-System Applications: 30767 to 32767.

Call socket descriptor. Refers to the newly-created
call socket.

The returned error code; zero or NSR_NO_ERROR if
no error.

i pccreate () is used to create a call socket which will be used by subsequent
N etlPC calls to establish a virtual circuit connection between two or more
processes. When invoked successfully, i pccreate () returns a call socket
descriptor that refers to the newly-created call socket. A process may own a
maximum of 2048 descriptors. i pccreate () will return an error if a process
attempts to exceed this limit. This limit includes files as well as socket
descriptors and destination descriptors. These descriptors may reference
sockets and/or files inherited by or otherwise opened by the process.

The NSO_PROTOCOL_ADDRESS option (code 128) can be used to create a call
socket with a specific protocol address. If this protocol address is known to
the process's peer, the peer process can call i pcdest () with this address (in
i pcdest () 's protoaddr parameter) so that it may obtain a destination
descriptor that references this call socket. Refer to the section titled

NetlPC Calls 3-37

"Connection Establishment Summary" in the "NetlPC Concepts" chapter for
more information.

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pccreate () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socketkind ns int t integer integer *4
socketkind by value by value

protocol ns_int_t protocol integer integer *4
by value by value

flags ns_int_t *flags boolean array integer *4
by reference by reference

opt short int opt[] packed array of array of integers
bytes by reference
by reference

calldesc ns int t integer integer *4
*calldesc by reference by reference

result ns int t *result integer integer *4
by reference by reference

Cross-System Considerations
TCP Protocol Address - The HP 9000, HP 1000, HP 3000, and PC
implementations of i pccreate () support different ranges of permitted TCP
protocol addresses that can be specified in the opt parameter. All systems
should specify a TCP protocol address within the range 30767 to 32767
decimal for cross-system use.

3-38 NetlPC Calls

ipcdest()
Creates a destination descriptor.

Syntax

ipcdest{socketkind,nodename,node7en,protoco7,protoaddr,
proto7en,f7ags,opt,destdesc,resu7t)

Parameters

socketkind

nodename

node7en

protoco 7

Defines the type of socket. Must be NS _CALL or 3
to specify a call socket. Other values are reserved
for future use.

The ASCII-coded name that identifies the node
where the call socket that uses protoaddr resides.

Default: You may omit the organization,
organization and domain, or all parts of the node
name. When organization or organization and
domain are omitted, they will default to the local
organization and/or domain. If the node 7 en
parameter is set to zero, nodename is ignored and
the node name defaults to the local node.

The length in bytes of nodename. If this parameter
is set to zero (0), the nodename parameter is
ignored and the node name defaults to the local
node. A fully-qualified node name may be 50 bytes
long.

Defines the Transport Layer protocol to be used.
Must be NSP Tep or 4 to indicate the Transmission
Control Protocol (TCP). Other values are reserved
for future use.

NetlPC Calls 3-39

protoaddr

proto len

flags

opt

destdesc

result

Description

A data buffer containing the TCP protocol address
specified in the remote process's i pccreate () call.

The length in bytes of the protocol address. TCP
protocol addresses are two bytes long.

This parameter is reserved for future use. Refer to
the "Flags Parameter" section of this chapter for
information on the structure of this parameter.

No options are defined for this call. Refer to the
"Opt Parameter" section of this chapter for
information on the structure and use of this
parameter.

Destination descriptor. Describes the destination
call socket. May be used in a subsequent
i pcconnect () call to establish a connection to
another process.

The error code returned; zero or NSR_NO_ERROR if
no error.

The i pcdest () call creates a destination descriptor that the calling process
can use to establish a connection to another process.

This call is similar in function to i pc lookup () because it returns a destination
descriptor. However, because i pcdest () allows you to specify a protocol
address, it allows you to obtain a destination descriptor for a call socket with a
particular protocol address. A call socket can be created with a particular
protocol address by using the i pccreate () call with the
NSO _PROTOCOL_ADDRESS option.

The i pcdest () call does not verify that the remote endpoint described by the
input parameters exists. This evaluation is delayed until the destination
descriptor is used in a subsequent i pcconnect () call.

3-40 NetiPC Calls

Refer to Chapter One for more information on using; pcdest () to establish
a connection.

Programming Considerations
The following is a list of the type definitions and passing modes for the
; pcdest () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socketkind ns int t integer integer * 4
socket "kind by value by value

nodename char *nodename packed array of array of
characters characters
by reference by reference

nodelen ns int t nodelen integer integer * 4
by value by value

protocol ns_int_t protocol integer integer*4
by value by value

protoaddr short int packed array of array of integers
protoaddr int16 by reference

by reference

protolen ns_int_t protolen integer integer*4
by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] packed array of array of integers
bytes by reference
by reference

destdesc ns int t integer integer*4
*destdesc by reference by reference

result ns int t *result integer integer*4
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetiPC Calls 3-41

ipcerrmsg()
Provides text describing NetIPC error.

Syntax

ipcerrmsg (error, buffer, len, result)

Parameters

error

buffer

len

result

Description

The number of the NetIPC error being described.

The data buffer that will hold the description.

A pointer to the buffer length. On output, it will
contain the length of the description.

The error code returned; zero or NSR_NO_ERROR

ipcerrmsg copies an error message for a NetIPC error into a supplied buffer.
It will copy len-! bytes into the buffer. The result will be NULL terminated.
If the error number passed in is not a recognized NetlPC error number, then
NSR _ ERRNUM (value 85) is returned.

ipcerrmsg() Example

#define BUFLEN 80
char buffer [BUFLEN];
ipcsend (,&result)
if (result != NSR_NO_ERROR)
ipcerrmsg (result,buffer,BUFLEN,result2);
printf ("NetIPC error %od = %os\n", result, buffer);

3-42 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcerrmsg () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

error short int *error int16* integer
by reference by reference

buffer char *buffer packed array of array of characters
character by by reference
reference

len ns int t len integer integer *4
by value by value

result ns int t *result integer integer *4
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetiPC Calls 3-43

ipcerrstr()
Provides text describing NetlPC error numbers.

Syntax

I i pcerrstr (error)

Parameters

error

Description

The error code returned from a N etlPC system call;
zero or NSR NO ERROR if no error.

ipcerrstr takes a NetlPC error number as input and returns a pointer to a
NULL terminated string describing the error.

ipcerrstr{) Example

ipcsend (,&result);
printf ("NetIPC error rod = ros\n", result, ipcerrstr

(result»;

3-44 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcerrstr() call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetlPC Calls 3-45

ipcgetnodename()
Obtains NetlPC node name of current host.

Syntax

ipcgetnodename (nodename,size,result)

Parameters

nodename

size

result

Description

The pointer to the character array in which the
ASCII -coded N etlPC node name is to be returned.

The length in bytes of the nodename array on input
and the length of the returned N etlPC node name
on output.

The error code returned; zero or NSR_NO_ERROR if
no error.

The i pcgetnodename () call is used to obtain the NetlPC node name for the
current processor as set by setnodename(2). The name is returned in the
array to which the nodename parameter points.

3-46 NetlPC Calls

ipclookup{)
Obtains a destination descriptor.

Syntax

ipclookup(socketname,n7en,nodename,node7en,f7ags,
destdesc,protoco7,socketkind,resu7t)

Parameters

socketname

n7en

nodename

node7en

The name of the call socket to be "looked up."
Upper and lower case characters are not considered
distinct. Refer to "Socket Name Parameter" for a
detailed discussion of naming.

The length of the socket name in characters.
Maximum length is 16 characters.

The ASCII -coded name that identifies the node
where the socket specified in the socketname
parameter resides. (Refer to "Node N arne
Parameter" for the syntax of this parameter.)

Default: You may omit the organization,
organization and domain, or all parts of the node
name. When organization or organization and
domain are omitted, they will default to the local
organization and/or domain. If node 7 en is set to
zero, nodename is ignored and the node name
defaults to the local node.

The length in bytes of the nodename parameter. If
zero (0) is specified, NetIPC will search the local
node's socket registry. (See the nodename
parameter above for more information.)

NetiPC Calls 3-47

flags

destdesc

protocol

socketkind

result

Description

This parameter is reserved for future use. All bits
must be clear (not set). (Refer to the "Flags
Parameter" section of this chapter for more
information on the structure of this parameter.)

Destination descriptor. Refers to the descriptor
which indicates the location of the named call
socket. May be used in subsequent i pcconnect
and i pcname NetIPC calls.

This parameter is reserved for future use. Zero (0)
is always returned to this parameter.

Identifies the socket's type. Will always'be 3 to
indicate a call socket.

The error code returned; zero or NSR _NO_ERROR if
no error.

The i pc lookup () call is used to obtain a destination descriptor for a named
call socket. When supplied with valid socket and node names, it looks up the
call socket in the socket registry at the node specified in the nodename
parameter and returns a destination descriptor that can be used by subsequent
N etlPC calls to locate the call socket. A destination descriptor is required by
the i pcconnect call to provide the information necessary to direct a
connection request to the proper node and call socket and thus initiate a
connection.

Timing Problems
When a process attempts to look up a socket name in the appropriate socket
registry, the name must be there or a NSR _NAME _NOT _ FOUND (code 37) error
will be returned to the calling process. When two processes are running
concurrently, it may be difficult to ensure that a socket name is placed in the
socket registry prior to being "looked up" by another process.

3-48 NetlPC Calls

In order to avoid a timing problem:

• The process that calls i pc lookup () can test for a NSR _NAME _NOT_FOUND
(code 37) error in the call's resu 7 t parameter. If this error is returned, the
process can try again by entering a loop and repeating the i pc 1 00 ku p ()
call for a specified number of times.

• The process could also call sleep () to suspend execution for an interval
and then repeat the i pc lookup () call. (Refer to the HP-UX Reference
Manual for more information on sleep(3c)).

• The process that calls i pcname () can name its call socket and then
schedule the process that calls i pc 100 ku p ().

Note On the Series 600/800 only, i pc lookup () implementations
between HP-UX software versions 1.0 and later software versions
are incompatible. If you must use NetlPC to communicate
between HP-UX software versions 1.0 and later software versions,
utilize the ipcdest() system call, not ipclookup().

NetlPC Calls 3-49

Programming Considerations
The following is a list of the type definitions and passing modes for the
ipclookup() call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socketname ns int t packed array of array of
socketname characters characters

by reference by reference

nlen ns int t nlen integer integer*4f
by value by value

nodename char *nodename packed array of array of
characters characters
by reference by reference

nodelen ns int t node len integer integer*4
by value by value

flags ns int t *tlags boolean array integer*4
by reference by reference

destdesc ns int t integer integer*4
*destdesc by reference by reference

protocol ns int t * protocol integer integer*4
by reference by reference

socketkind ns int t integer integer*4
*socketkind by reference by reference

result ns int t *result integer integer*4
by reference by reference

3-50 NetlPC Calls

ipcname()
Associates a name with a call socket or destination descriptor.

Syntax

ipenarne(descriptor,socketname,nlen, result)

Parameters

descriptor

socket name
(input/output)

nlen

result

Description

The descriptor that references the call socket to be
named. May be a call socket descriptor or a
destination descriptor.

The ASCII -coded name to be associated with the
descriptor. Upper and lower case characters are
considered equivalent. NetIPC can also return a
randomly-generated name in this parameter (see
n 1 en). Refer to "Socket Name Parameter" for a
detailed discussion of naming.

The length in characters of socketname. Maximum
length is 16 characters. If zero is specified, NetIPC
will return a random, eight-byte name in the
socketname parameter. The eight-byte length is
not returned in the n 1 en parameter.

The error code returned; zero or NSR_NO_ERROR if
no error.

i pen arne () associates a name with a call socket and adds this information to
the local node's socket registry.

NetlPC Calls 3-51

The name a process associates with a call socket must be known to its peer
process so that the peer process may look up the name with an i pc lookup ()
call. This may be accomplished by hard-coding the name into both processes
or by passing the name from one process to another.

The name associated with a call socket can be user-defined or randomly
generated by NetlPC and must be unique to your node (i.e., it cannot be
simultaneously associated with two descriptors.) For example, if a call socket is
assigned the name "Liz" with a call to i pcname (), a subsequent call with
"Liz" will result in an error. You can ensure that the name you assign to a
call socket is unique by using the random name generating feature of
i pcname (). A name can be reused only if it is not currently being used, but a
call socket may be listed under multiple names.

Under most circumstances, i pcname() should be called with a name and the
call socket descriptor that refers to a call socket owned by the calling process.
If the call completes successfully, the call socket will be listed in the socket
registry at the local node. i pc lookup () can be called from another process
to "look up" the socket name in the local node's socket registry.

i pcname () always enters its listings into the local node's socket registry.
i pc lookup (), by contrast, can look up socket names at both the local node
and at a remote node. Because "long distance" look-ups take longer than
local look-ups, it may be helpful to use i pcname () to name destination
descriptors. When a process names a destination descriptor, the name of the
descriptor is placed in the local socket registry (the socket registry at the node
where the calling process resides). This allows other processes to look up the
name in the local socket registry rather than calling i pc lookup () to look up
the name in a socket registry at a remote node.

Using i pcname () to name a destination descriptor is less reliable than looking
up the socket name at the remote node because destination descriptors, like
telephone numbers, can become outdated. As a precaution, you should
periodically refresh locally stored destination descriptors.

Note You cannot use i pcname () to name VC sockets.

3-52 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
; pcname () call parameters in C, Pascal, and FORTRAN.

Parameter

descriptor

socketname

nlen

result

C

ns int t
descriptor

char *socketname

ns int t nlen

ns int t *result

PASCAL

integer
by value

packed array of
characters
by reference

integer
by value

integer
by reference

FORTRAN

integer*4
by value

array of
characters
by reference

integer *4
by value

integer*4
by reference

NetlPC Calls 3-53

ipcnamerase()
Deletes a name associated with a call socket or destination call socket.

Syntax

ipcnamerase(socketname,n7en,result)

Parameters

socketname

nlen

result

Description

The ASCII -coded name that was previously
associated with a call socket descriptor or destination
descriptor via i pcname (). Upper and lower case
characters are considered equivalent. Refer to
"Socket Name Parameter" for a detailed description
of naming.

The length in bytes of the specified name.
Maximum length is 16 bytes.

The error code returned; zero or NSR_NO_ERROR if
no error.

i pcnamerase () can be called to remove listings from the local node's socket
registry. Only the owner of a call socket or destination call socket may
remove the socket's name from the local socket registry. (Refer to "Socket
Ownership" in the "NetlPC Concepts" chapter for the definition of a socket
owner.) A process that attempts to erase the name of a socket it does not own
will receive an NSR_NO_OWNERSHIP (code 38) error.

If a call socket descriptor or destination descriptor is destroyed via
i pcshutdown (), or if its sole owner terminates, then any listings for it that
exist at the local socket registry are automatically purged.

3-54 NetlPC Calls

When multiple processes have descriptors for the same socket, the first
i pcnamerase () call will succeed, but subsequent calls will fail.

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcnamerase () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socketname char *socketname packed array of array of
characters characters
by reference by reference

nlen ns int t nlen integer integer*4
by value by value

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-55

ipcrecv()
Checks the status of a connection or receives data on an established
connection.

Syntax

ipcrecv(vcdesc,data,d7en,f7ags,opt,resu7t)

Parameters

vcdesc

data

d7en
(input/output)

3-56 NetiPC Calls

VC socket descriptor. Refers to a VC socket that:
(1) is the endpoint of a virtual circuit connection
that has not yet been established, or (2) is the
endpoint of an established virtual circuit on which
data will be received.

A data buffer that will hold the received data, or a
data vector describing the location where the data is
to be placed. Refer to "Data Parameter" for
information on the structure and use of this
parameter.

If the dat a parameter is a data buffer, d7 en is the
maximum number of bytes you are willing to receive.
If the NSF _DATA_WAIT flag is set, the amount of
data should be 75% if the maximum amount
receivable. If the data parameter is a data vector,
d 7 en refers to the length of the data vector in bytes.
As a return parameter, d7 en indicates how many
bytes were actually received. If i pcrecv () is used
to check the status of a connection (not to receive
data), the d 7 en parameter is meaningless on input
and a value of zero (0) is returned on output.

flags
(input/output)

Refer to the "Hags Parameter" section of this
chapter for more information on the structure and
use of this parameter. Although f7 ags may be set
on the first i pcrecv () call, they won't take effect
until subsequent i pcrecv () calls over the
established connection. The following bits are
defined for this call:

• bit 20 - NSF_DATA_ WAIT (input). When
this bit is set, i pcrecv () will never successfully
complete receiving less data than it requested in
the d 7 en parameter. If this bit is not set,
i pcrecv () may complete receiving less data
than it requested in d 1 en. Refer to the
discussion below for more information on this
bit. This bit is only meaningful when i pcrecv ()
is issued against an established connection.

• bit 26 - NSF_MORE_DATA (output). When
set, this bit indicates that the data received was
not delimited by an end-of-message marker.
Since user processes always employ stream
mode, this bit will always be set. (The
Transmission Control Protocol decides how
much data to transmit, but it does not delimit the
data transmitted in the form of an individual
message.)

• bit 30 - NSF_PREVIEW (input). When set,
this bit allows you to preview the data queued on
the connection. Data is placed in the d a t a
parameter but not dequeued from the
connection. Because the data is not dequeued,
the next i pcrecv () call will read the same data.
This bit is only valid when i pcrecv () is issued
against an established connection.

NetiPC Calls 3-57

opt

result

Description

• bit 31 - NSF_VECTORED (input). When set,
this bit indicates that the data parameter is a
data vector and not a data buffer. This bit is
only valid when i pcrecv () is issued against an
established connection.

An array of options and associated information.
Refer to "NetIPC Common Parameters" for
information on the structure and use of this
parameter. The following option is defined for this
call:

• optioncode = NSO_DATA_OFFSET (code 8),
datalength = 2. A two-byte integer that
defines a byte offset from the beginning of a
data buffer where NetIPC is to begin placing the
data. This option is valid only if the data
parameter is a data buffer and not a data vector.

The error code returned; zero or NSR_NO_ERROR if
no error.

i pcrecv () has two functions:

• Check the status of a connection that was initiated with i pcconnect ().

• Receive data on a previously established virtual circuit connection.

Checking the Status of a Connection

When i pcrecv () is called to check the status of a connection, a zero
returned in the resu 1 t parameter indicates that the call was successful and
that a virtual circuit connection has been established. If a non-zero value is
returned in the resu 1 t parameter, the call was not successful.

3-58 NetiPC Calls

An i pcrecv () call can be unsuccessful for the following reasons:

• NSR _ SOCKET _ TIMEOUT Error Received. The synchronous timer expired
before a "successful" connection status could be obtained. The connection
is still pending and i pcrecv () should be called again.

• NSR _WOULD_BLOCK Error Received. The VC socket referenced by
i pcrecv () is in asynchronous mode and the call could not be satisfied. A
connection is still pending and i pcrecv () should be called again. You can
perform an exception select on the referenced socket to determine if a
successful status can be obtained prior to calling i pcrecv (). (Refer to the
discussion of i pcse 1 ect () later in this chapter for more information.)

• NSR _ SIGNAL _ I ND I CAT I ON Error Received. A signal indication was
received. For more information on signals, refer to the discussion of signals
in the "NetlPC Concepts" chapter. Signals are also described in the HP-UX
Reference Manual.

• Other Errors. If i pcrecv () was unsuccessful for a reason other than
those listed above, the referenced VC socket should be shut down by calling
i pcshutdown ().

Receiving Data

When i pcrecv () is called to receive data queued on a previously established
virtual circuit connection, several different alternatives are available:

• Normal reading. Data is dequeued from the connection and placed into
the user's buffer.

• Preview reading. This alternative is specified by setting the NS F PREY lEW
bit (bit 30) of the f7 ags parameter. When this bit is set, data is placed in
the process's buffer, but not dequeued from the connection. Consequently,
the next i pcrecv () call will read the same data. Because NSF PREY I EW
enables a process to determine what a data buffer contains before actually
reading it, it is especially useful to set this bit when the receiving process
must assemble messages from the byte streams that it receives. For
example, if the sending process places the length of its "message" in the
first two bytes of its send buffer, the receiving process can use
NSF _PREVI EW to extract the length information from the data received.
When the buffer is received again with a subsequent i pcrecv () call, the
receiving process can specify this length information in the d 1 en parameter
and thus reassemble the "message."

NetlPC Calls 3-59

• Vectored or "scattered" reading. The calling process may pass a data vector
argument that describes one or more locations. Received data will be
placed into these locations. This alternative can be used with both the
normal and preview reads described above and is specified by setting the
NSF_VECTORED bit (bit 31) of the f7 ags parameter. For vectored reads, an
i ovec structure contains the data vector. An i ovec structure can be
defined in Cas:

struct i ovec {
char *iov base;
unsigned Tov len;

}; -

and the normal type for the data argument can be replaced by s t ruct
i ovec *data. Each i avec entry specifies the base address and length of an
area in memory where the data should be placed.

The i pcrecv () call functions differently depending on whether the socket
referenced is in synchronous or asynchronous mode, and whether or not the
NSF _DATA_WAIT bit (bit 20) is set in the fl ags parameter.

Caution The NetlPC NSF _DATA_WAIT flag can cause a program to block
for an extreme period of time (for example, eight minutes for 8
bytes). It is recommended that NetlPC programs implement a
loop instead. Refer to the next paragraph for more specific
loop information.

A loop such as the following, instead of the NetlPC NSF _DATA_WAIT flag,
should be implemented to prevent a NetlPC program to block for a long
period of time:

/* loop to receive 1000 bytes */
char data_array[1000];
char *copy_data_to;
int bytes_needed = 1000;
int bytes_received = 0;

/* stuff missing; eg ipccreate or ipcconnect, etc*/
copy_data_to = data_array;

3-60 NetiPC Calls

while (bytes_received < bytes_needed) {

}

byte_count = bytes_needed - bytes_received;
/* NOTE: NSF DATA WAIT not set */
ipcrecv{ •••• ~ start, byte count, •••);
bytes_received += byte_count;
copy_data_to += byte_count;

The following paragraphs describe how the i pcrecv () call functions
depending on whether or not the socket referenced is in synchronous or
asynchronous mode, and whether or not the NS F _ DATA _ WA I T flag is set.
(When a socket is created, it is placed in synchronous mode by default. You
can place a socket in asynchronous mode by calling i pccont ro 1 (). Refer to
the discussion of i pccontro 1 () earlier in this chapter for more information.)

Note The "amount requested" by an i pcrecv () call refers to the
number of bytes specified by the d 7 en parameter or the amount
specified in the data vector if the NSF _VECTORED flag is set.

• Synchronous I/O, NSF _DATA_WAIT set. If the socket referenced by
i pcrecv () is in synchronous mode and the NSF _DATA_WAIT bit (bit 20) is
set, the calling process will block until (1) the amount of data queued on the
connection is greater than or equal to the amount requested, (2) the call
times out, or (3) a signal is received. If the data queued on the connection
is less than d7 en bytes, i pcrecv () will suspend the calling process and the
synchronous timer will be set. If the timer expires before enough data
arrives to satisfy the request, the calling process will resume and an
NSR_ SOCKET_TIMEOUT error (code 59) will be returned indicating that a
time-out occurred. (The synchronous time-out can be adjusted by calling
i pccont ro 1 (). Refer to the discussion of i pccont ro 1 () for more
information.)

• Synchronous I/O, NSF _DATA_WAIT not set. If the socket referenced by
i pcrecv () is in synchronous mode and the NSF _DATA_WAIT bit (bit 20) is
not set, the the calling process will block until (1) some amount of data is
queued on the connection (the amount of data queued mayor may not be
the amount requested, and may be as little as one byte), (2) the call times
out, (3) a signal is received, or (4) the connection goes down. If no data is
queued on the connection within the synchronous time-out period, the
calling process will resume and an NSR_ SOCKET_TIMEOUT error (code 59)

NetlPC Calls 3-61

will be returned indicating that a time-out occurred.

• Asynchronous I/O, NSF _DATA_WAIT set. If the socket referenced by
i pcrecv () is in asynchronous mode and the NSF DATA WAIT bit is set, an
NSR_WOULD_BLOCK (code 56) error is returned tothe calling process if the
amount of data queued on the connection is less than the amount
requested. The calling process is not suspended awaiting the arrival of data.
You can perform a read select on the referenced socket by invoking
i pcse 1 ect (). i pcse 1 ect () determines whether or not a socket is
readable prior to calling i pcrecv () to receive data. (Refer to the
discussion of i pcse 1 ect () later in this chapter or more information.)

• Asynchronous I/O, NSF _DATA_WAIT not set. If the socket referenced by
i pcrecv () is in asynchronous mode and the NSF _DATA_WAIT bit is not
set, as little as one byte of data will satisfy the i pcrecv () request.
However, ifno data is queued to the connection, an NSR_WOULD_BLOCK
error is returned.

For a detailed discussion of asynchronous and synchronous I/O, refer to
"Synchronous and Asynchronous Socket Modes" in the "NetlPC Concepts"
chapter.

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcrecv () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

vcdesc ns int t vcdesc integer integer*4
by value by value

data char *data packed array of array of
characters characters
by reference by reference

dlen ns int t *dlen integer integer*4
by reference by reference

flags ns int t *flags boolean array integer*4
by reference by reference

3-62 NetiPC Calls

opt short int opt[]

result ns int t *result

array of bytes
by reference

integer
by reference

Cross-System Considerations

array of integers
by reference

integer*4
by reference

Receive size - The HP 1000 receive size range is 1 to 8,000 bytes, the HP 3000
is 1 to 30,000 bytes, and the HP 9000 is 1 to 32,767 bytes. The maximum
receive size of the data buffer determines the receive size buffer on the PC.

NetlPC Calls 3-63

ipcrecvcn()
Receives a connection request on a call socket.

Syntax

ipcrecvcn(ca77desc,vcdesc,f7ags,opt,resu7t)

Parameters

ca77desc

vcdesc

f7ags

opt

3-64 NetlPC Calls

Socket descriptor. Refers to a call socket owned by
the calling process.

VC socket descriptor. Refers to a VC socket that is
the endpoint of the newly-established virtual circuit
connection.

Refer to "NetlPC Common Parameters" for more
information on the structure of this parameter. No
flags are defined for this call.

Refer to "NetlPC Common Parameters" for
information on the structure and use of this
parameter. The following options are defined for
this call:

• optioncode = NSO_MAX_SEND_SIZE (code 3),
dat a 7 ength = 2. A two-byte integer that
specifies the maximum number of bytes you
expect to send with a single call to i pcsend ()
on this connection. Default: TCP default is 100
bytes. If this option is not specified, i pcsend ()
will return an error if a call attempts to send
greater than 100 bytes.

result

Description

• optioncode = NSO_MAX_RECV_SIZE (code 4),
data 7 ength = 2. A two-byte integer that
specifies the maximum number of bytes you
expect to receive with a single call to ; pcrecv ()
on this connection. Delault: TCP default is 100
bytes. If this option is not specified, ; pcrecv ()
will return an error if a call attempts to receive
greater than 100 bytes.

The error code returned; zero or NSR_NO_ERROR if
no error.

When; pcrecvcn () is invoked successfully against a call socket that has
queued connection requests, it returns a VC socket descriptor to the calling
process. This VC socket descriptor can be used to specify the virtual circuit
connection a process intends to send on, receive on, or shut down with
subsequent NetlPC calls.

Synchronous vs. Asynchronous I/O
; pcrecvcn () functions differently depending on whether the call socket
referenced is in synchronous or asynchronous mode. (When a socket is
created, it is placed in synchronous mode by default. You can place a socket
in asynchronous mode by calling; pccontro 1 (). Refer to the discussion of
i pccontro 1 () earlier in this chapter for more information.) The following
paragraphs describe these differences:

• Synchronous I/O. i pcrecvcn () will block when invoked against a call
socket that has no queued connection requests if the socket is in
synchronous mode. The calling process will resume execution when a
connection request arrives, or after the synchronous time-out interval
has expired. An ; pcrecvcn () call will not block forever unless the
synchronous time-out interval has been set to zero with an
i pccont ro 1 () call.

• Asynchronolls I/O. i pcrecvcn () will never block against sockets in
asynchronous mode. When i pcrecvcn () is invoked against an
asynchronous call socket that has no queued connection requests, a

NetlPC Calls 3-65

NSR_WOULD_BLOCK (code 56) is returned to the calling process. When
i pcrecvcn () is used in this way, the calling process does not wait to
receive a connection request. In order to determine when connection
requests are present, a process can perform an exception select on the
referenced call socket by calling i pcse 1 ect (). (Refer to the
discussion of i pcse 1 ect () for more information.)

For a detailed discussion of synchronous and asynchronous I/O, refer to
"Synchronous and Asynchronous Socket Modes" in the "NetlPC Concepts"
chapter.

Note When a process calls ipcrecvcn (), TCP checksumming for the
connection that will be established is automatically enabled. TCP
checksum is performed in addition to data link checksum.

3-66 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcrecvcn () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

calldesc ns int t calldesc integer integer*4
by value by value

vcdesc ns int t vcdesc integer integer *4
by reference by reference

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] packed array of array of integers
bytes by reference
by reference

result ns int t *result integer integer *4
by reference by reference

Cross-System Considerations

Checksumming - When the i pcrecvcn () call is executed on the HP 9000
node, then checksumming is always enabled for the HP 9OOO-to-HP 1000
connection, HP 9OOO-to-3000 connection, or HP 9OOO-to-PC connection.

Send and Receive sizes - The HP 1000 send and receive size range is 1 to
8,000 bytes; the HP 9000 send and receive size range is 1 to 32,767 bytes; the
HP 3000 send and receive size range is 1 to 30,000 bytes; and the PC range is
1 to 65,535 bytes. Although the ranges are different, specify a buffer size
within the correct range for the respective system.

NetiPC Calls 3-67

ipcselect()
Determines the status of a call socket or VC socket.

Syntax

ipcselect(sdbound,readmap,writemap,exceptionmap,timeout,
result}

Parameters

sdbound
(input/output)

readmap
(input/output)

3-68 NetlPC Calls

Specifies the upper ordinal bound on the range of
descriptors specified in the readmap, wri t emap and
except i onmap parameters. An i pcse 1 ect () call
will be most efficient if this parameter is set to the
maximum ordinal value of the sockets specified in
these parameters. Because a NetlPC process may
have concurrent access to a maximum of 2048
descriptors (descriptors 0 through 2047), sdbound
may be given a maximum value of 2047. As an
output parameter, sdbound contains the upper
ordinal boundary of all of the descriptors that met
the select criteria.

A bit map indexed with NetlPC socket descriptors.
On input, this parameter specifies the socket
descriptors to be examined for readability. If zero is
passed, no sockets will be examined. On output,
readmap describes all readable sockets.

writemap
(input/output)

exceptionmap
(input/output)

timeout

result

Description

A bit map indexed with NetlPC socket descriptors.
On input, this parameter specifies the socket
descriptors to be examined for write ability. If zero is
passed, no sockets will be examined. On output,
writemap describes all writeable sockets.

A bit map indexed with NetlPC socket descriptors.
On input, this parameter specifies the socket
descriptors to be examined for exceptions. If zero is
passed, no sockets will be examined. On output,
exceptionmap describes all of the sockets that are
exceptions.

The number of tenths of seconds the calling process
will wait for some event to occur which would cause
i pcse 1 ect ()'s report to change. This timeout is
put into effect only when none of the sockets
referenced can immediately satisfy the select criteria
(Le., none are readable, write able or exceptional).
Valid values are zero, -1, or any positive integer. If
timeout is set to zero, the call will not return until
some event occurs. NOTE: Do not set timeout to
-1 if no bits are set in any of the bit maps as
ipse 1 ect () will block indefinitely.

The error code returned; zero or NSR_NO_ERROR if
no error.

i pcse 1 ect () permits a process to detect, and/or wait for, the occurrence of
any of several events across any of several sockets. Compared to the
telephone system, invoking i pcse 1 ect () is analogous to performing powerful
"switchboard-like" operations because it enables a process to act as a
"switchboard operator" by monitoring the sockets, or "telephones," that it
owns. A process should call i pcse 1 ect () with map elements set for
descriptors that it owns. If a process attempts to perform a select on a closed
or invalid descriptor, an error will be returned. Performing a select on a
destination descriptor is meaningless.

NetlPC Calls 3-69

i pcse 1 ect () reports three types of information:

• Whether any of the referenced VC sockets are readable. A VC socket is
considered readable if it can immediately satisfy an i pcrecv () request for
a number of bytes greater than or equal to its read threshold. Each VC
socket has an associated read threshold which, when the socket is first
created, is set to one byte. This value can be modified by calling
i pccont ro 1 (). (For more information on setting read thresholds, refer to
"Synchronous and Asynchronous Socket Modes" in the "NetlPC
Concepts" chapter.) Read selecting on call sockets has no meaning.
Although doing so will not produce an error, this practice should be avoided.

• Whether any of the referenced call or VC sockets are write able. A VC
socket is considered write able if it can immediately accommodate an
i pcsend () request that involves a number of bytes greater than or equal to
the socket's write threshold. Each VC socket has an associated write
threshold which, when the socket is first created, is set to one byte. This
value may be modified by calling i pccont ro 1 (). (For more information
on setting write thresholds, refer to "Synchronous and Asynchronous
Socket Modes" in the "NetIPC Concepts" chapter.)

• Whether any of the referenced call or VC sockets are exceptional. A VC
socket is considered exceptional if it has a problem associated with it (for
example, the connection it references was aborted). A call socket is
considered exceptional if it has a connection request queued on it or if it
can no longer be supported by NetIPC.

When a socket is shared (i.e., more than one process has a descriptor for the
same socket), an ipcsend() call may return an NSR_WOULD_BLOCK error
(code 56) even if a previous i pcse 1 ect () call indicated that the socket was
writeable. For example, this would occur if another process (with a descriptor
for the same socket) called i pc send () after the original process called
i pcse 1 ect () and before it called i pcsend ().

The following are examples of read selecting, write selecting, and exception
selecting using i pcse 1 ect ().

3-70 NetlPC Calls

Examples

Detecting Connection Requests

By setting bits in the except i onmap parameter, a process can determine if
incoming connection requests are queued to certain call sockets. Consider the
following example: Process A must determine whether certain call sockets
have received connection requests. To do this, Process A calls
i pcse 1 ect ()with the except i onmap map elements set to correspond to
these sockets. Assuming that the time-out interval is long enough (set by the
timeout parameter), ipcselectO will complete after at least one connection
request has arrived and has been queued on one of the sockets specified in
except i onmap. When the call completes, only those elements that
correspond to sockets that have queued connection requests remain set; the
other elements will have been cleared.

Performing a Read Select

By setting elements in the readmap parameter, a process can determine
whether certain VC sockets are readable. Consider the following example:
Process A must determine which of its VC sockets have data queued to them.
To do this Process A performs a read select on those sockets by setting
elements in the readmap parameter to correspond with the desired VC
sockets. Upon completion of the call, only the elements that represent
readable sockets will remain set; the other elements will have been cleared.
Process A can call i pcse 1 ect () with a zero-length time-out to determine the
status of a socket immediately, or with a non-zero timeout if it is willing to
wait for some data to arrive.

Performing a Write Select

By setting bits in the writemap parameter, a process can determine whether
certain VC sockets are writeable. Consider the following example: Process A
must determine which of its VC sockets can accommodate a new i pcsend ()
request, and which of its call sockets can accommodate a new
i pcconnect () ; i pcse 1 ect () request. To do this, it can perform a write
select on these sockets by setting elements in the writemap parameter to
correspond with the desired VC and call sockets. Upon completion of the
call, only the elements that represent write able sockets will remain set; the
other elements will have been cleared. Process A can call i pcse 1 ect () with
a zero-length timeout to determine the status of a socket immediately, or with

NetlPC Calls 3-71

a non-zero timeout if it is willing to wait before sending data on the
connection.

Exception Selecting

By setting bits in the except i onmap parameter, a process can determine
whether certain connections have been aborted. VC sockets that reference
aborted connections will always exception select as "true" (their elements will
be set when the call completes). Exception selecting on VC sockets can also
be useful when the connection associated with the socket is not fully
established. Consider the following example: Process B has successfully
created a VC socket descriptor via a call to i pcconnect (), but will not know
whether or not the connection was established until it calls i pcrecv (). If
Process B calls i pcrecv () before the connection is established, or before it
becomes known that a connection cannot be established, it will block (if the
VC socket is in synchronous mode), or return an NSR_WOULD_BLOCK error (if
the VC socket is in asynchronous mode). Process B can avoid blocking or
polling by performing an exception select on the new VC socket. The socket
will select as true if the connection has been established (a call to i pcrecv ()
will be successful) or if there is a problem associated with it (a call to
i pcrecv () will be unsuccessful.)

Programming Considerations
The following paragraphs explain how the readmap, wri temap and
except i onmap parameters are declared and manipulated in the C, Pascal, and
FORTRAN programming languages.

C Programming Language

In the C programming language, the readmap, wri temap and except i onmap
parameters can be declared as integer arrays. For example:

int read map [64];
intwrite_map [64];
int exception_map [64];

This statement defines 2048 bits which can be set to correspond to specific call
or VC socket descriptors. The following algorithm can be used to set bits in
the array. (The socket descriptor is represented by the variable vcdesc.)

3-72 NetlPC Calls

read_map [vcdesc/32] 1= ((unsigned int) Ox80000000 » (vcdesc %
32»;

The next algorithm can be used after an i pcse 1 ect () call completes to
check whether or not a certain bit is set:

read_map [vcdesc/32] & ((unsigned int) Ox80000000 » (vcdesc %
32»;

Pascal Programming Language

In Pascal, the readmap, wri temap and except i onmap parameters can be
declared to be type map_type. This type is defined as follows:

TYPE
map_type = packed array [0 .• 2047] of boolean;

VAR
read_map: map_type;

To set a bit in any of these parameters to correspond to a specific call socket
or VC socket, use the appropriate call desc or vcdesc value as a subscript
and assign the value TRUE. For example:

:= TRUE; read map [vcdesc]
write map [ca11desc]
except ion_map [vcdesc]

:= TRUE;
:= TRUE;

FORTRAN Programming Language

In FORTRAN, the readmap, wri temap and except i onmap parameters may
be declared as arrays of 64 32-bit integers (INTEGER*4). For example:

INTEGER*4 read_map(64), write_map(64), exception_map(64)

The first element of the array, readmap (1), contains map bits 0 through 31;
the second element of the array, re admap (2), contains bits 32 through 63, etc.

When setting a bit in the array, you must first determine whether your ,Vcdesc
or ca7 7desc parameter is greater than, less than, or equal to 31. If it is less
than or equal to 31, you must set a bit in the first element of the array; if it is
is greater than 31, you must set a bit in the second element of the array, and
so on.

NetlPC Calls 3-73

The simplest way to set a bit in one of these parameters is to use the
FORTRAN library function ibset(a,b). The readmap, writemap or
except i onmap parameter is passed in the first argument (a) and the bit
position you want to set is passed in the second argument (b).

The i bset function assumes that bits are numbered from right to left, with
the most significant bit considered to be bit 31 and least significant bit
considered to be bit o. NetlPC calls assume that bits are numbered in the
opposite direction (i.e., the most significant bit is 0, the least significant bit is
31). Therefore, to set the proper bit using i bset, you must subtract the
descriptor value from 31.

In the following example, the vcdesc parameter is greater than 31 so the
corresponding bit is set in the second element of the readmap parameter.
Note that the vcdesc value must be subtracted from 63 so that the proper bit
is set. This maps i bset's bit numbering convention (which is from right to
left) into NetlPC's (which is from left to right).

read_map = ibset (read_map(2), (63-vcdesc»

In the next example, vcdesc is equal to 31 so the corresponding bit is set in
the first element of the readmap parameter. Note that the vcdesc value
must be subtracted from 31 so that the proper bit is set. Again, this maps
i bset's bit numbering convention (which is from right to left) into NetIPC's
(which is from left to right).

read_map = ibset (read_map(l), (31-vcdesc»

3-74 NetlPC Calls

The following is a list of the type definitions and passing modes for the
i pcse 1 ect () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

sdbound ns int t *sdbound integer integer*4
by reference by reference

readmap int readmap[64] packed array of array of
boolean integer*4
by reference by reference

writemap int writemap[64] packed array of array of
boolean integer*4
by reference by reference

exceptionmap int packed array of array of
exceptionmap[64] boolean integer*4

by reference by reference

timeout ns int t timeout integer integer*4
by value by reference

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-75

ipcsend()
Sends data on a virtual circuit connection.

Syntax

ipcsend(vcdesc,data,dlen,flags,opt,result)

Parameters

vcdesc

data

dlen

flags

3-76 NetiPC Calls

VC socket descriptor. Refers to the VC socket
endpoint of the connection through which the data
will be sent. A VC socket descriptor can be
obtained by calling i pcconnect () and
i pcrecvcn ().

A buffer that will hold the data to be sent, or a data
vector describing where the data to be sent is
located. Refer to "Data Parameter" for more
information on the structure and use of this
parameter.

If data is a data buffer, dl en is the length in bytes
of the data in the buffer. If data is a data vector,
dl en is the length in bytes of the data vector.

Refer to "Data Parameter" for more information on
the structure and use of this parameter. The
following bits are defined for this call:

• bi t 26 NSF _MORE_DATA (input). When this bit
is set, TCP may delay sending data. Refer to the
"Description" below for more information.

opt

resu7t

Description

• bit31 NSF_VECTORED (input). Indicates that
the data parameter refers to a data vector and
not to a data buffer.

An array of options and associated information.
Refer to "NetIPC Common Parameters" for more
information on the structure and use of this
parameter. The following option is defined for this
call:

• optioncode = NSO_DATA_OFFSET (code 8),
data7ength = 2). A two-byte integer that
indicates a byte offset from the beginning of the
data buffer where the data to be sent actually
begins. Only valid if the data parameter is a data
buffer.

The error code returned; zero or NSR_NO_ERROR if
no error.

The i pc send () call is used to send data on an established connection. The
data may be sent as a single contiguous buffer or as a scattered data vector. If
the data is vectored, NetIPC will gather all the referenced data before sending
it. For vectored writes, an i ovec structure contains the data vector. An
i avec structure can be defined in Cas:

struct iovec {
char
unsigned

} ;

*iov_base;
iov_len;

and the normal type for the data argument can be replaced by struct i ovec
*data. Each i ovec entry specifies the base address and length of an area in
memory where the data should be placed.

If the NSF _MORE_DATA bit (bit 26) of the f7 ags parameter is set, the
Transmission Control Protocol (TCP) may not immediately transmit the data
indicated by the data parameter. Instead, it may wait until it has received an

NetiPC Calls 3-77

amount of data that can be transmitted with the greatest efficiency. Several
transmissions of small amounts of data consume more resources than one
large transmission. If NSF _MORE_DATA is not set, TCP will attempt to transmit
the data immediately, regardless of efficiency considerations. If your process
will be sending large amounts of data, HP recommends that you set
NSF _MORE_DATA. If NSF _MORE_DATA is set and you submit only a small
amount of data (less than a few hundred bytes), then TCP may hold onto the
data for a considerable period of time before transmitting it.

Synchronous vs. Asynchronous I/O
i pcsend () functions differently depending on whether the VC socket
referenced is in synchronous or asynchronous mode. The following
paragraphs describe these differences:

• Synchronous I/O. Send requests issued against VC sockets in synchronous
mode may block. i pcsend () will block if it can not immediately obtain the
buffer space needed to accommodate the data. The call will resume after
the required buffer space becomes available, or if the synchronous timer
expires. Timeouts usually occur when the process on the receiving end of
the connection stops receiving the data sent to it. (The length of the
synchronous time-out interval can be adjusted via i pccont ro 1 (). Refer to
the discussion of this call for more information.)

• Asynchronous I/O. Send requests issued against sockets in asynchronous
mode will never block. If the buffer space needed to acco~modate the data
is not immediately available, a NSR_WOULD_BLOCK error (code 56) is
returned. After receiving this error, the process can try the call again later,
or determine when the socket is writeable by calling i pcse 1 ect (). (Refer
to the discussion of i pcse 1 ect () for more information on write able
sockets.)

For a detailed discussion of synchronous and asynchronous I/O, refer to
"Synchronous and Asynchronous Socket Modes" in the "NetlPC Concepts"
chapter.

3-78 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pes end () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

vcdesc ns int t vcdesc integer integer*4
by value by value

data char *data packed array of array of
characters characters
by reference by reference

dlen ns int t dlen integer integer*4
by value by value

flags ns_int_t *flags boolean array integer *4
by reference by reference

opt short int opt[] array of bytes array of integers
by reference by reference

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-79

ipcsetnodename ()
Sets the NetlPC node name of the host CPU.

Syntax

ipcsetnodename() (nodename,namelen, result)

Parameters

nodename

namelen

result

Description

The ASCII-coded name that is assigned to this host.
Default: You may omit the organization or the
organization and domain and this field will default to
the organization and/or domain previously set by
setnodename.

The length in bytes of the nodename parameter.

The error code returned; zero or NSR_NO _ERROR if
no error.

The i pcsetnodename () call sets the NetlPC node name of the host
processor to the node name value.

Super-user capability is required to use this call.

3-80 NetlPC Calls

ipcshutdown ()
Releases a descriptor.

Syntax

ipcshutdown(descriptor,flags,opt,result)

Parameters

descriptor

flags

opt

result

Description

The descriptor to be released. May be a call socket
descriptor, VC socket descriptor, or destination
descriptor.

Must be 0 or NSF _GRACEFUL_RELEASE. If this flag
is set, the underlying network protocol will continue
to transmit data after the calling process exits.
(Refer to "Flags Parameter" for more information
on the structure of this parameter.)

Refer to "Opt Parameter" for more information on
the structure and use of this parameter. No options
are defined for this call. May be 0 or a pointer to an
empty NetlPC option buffer.

The error code returned; zero or NSR_NO_ERROR if
no error.

The i pcshutdown () call is used to release a descriptor. The descriptor
referenced may be a call socket descriptor, VC socket descriptor, or
destination descriptor. How i pcshutdown () functions depends on which
type of descriptor is being used. If the descriptor is a:

NetiPC Calls 3-81

• Call socket descriptor, the descriptor is released along with any names
associated with it. The process that released the call socket descriptor may
no longer use it, and all connection requests queued to that descriptor are
aborted. The call socket referenced by the descriptor is destroyed along
with the descriptor and names only if the descriptor being released is the
last descriptor for that socket. If another process, or processes, have a
descriptor for the same socket, these duplicate descriptors are not affected.
Since system resources are used when a call socket is created, you may want
to release your call socket descriptors when they are no longer needed. A
call socket descriptor is needed as long as a process is expecting to receive a
connection request on that socket. After the connection request is received
via i pcrecvcn (), and as long as no other connection requests are expected
for that call socket descriptor, the descriptor can be released. Similarly, a
process that requests a connection can release its call socket descriptors any
time after its call to i pcconnect (), as long as it is not expecting to receive
a connection request on that descriptor. Using i pcshutdown () to release
a call socket descriptor does not affect any VC sockets.

• Destination descriptor, the descriptor is released along with any names
associated with it in the local socket registry. The process that released the
destination descriptor may no longer use it. The addressing information
stored in conjunction with the descriptor is destroyed along with the
descriptor only if the descriptor being released is the sole descriptor for that
information. If another process, or processes, have a descriptor for the
same information, these duplicate descriptors, and any names associated
with the descriptors, are not affected. Because destination descriptors also
require system resources, you may want to release them when they are no
longer needed.

• VC socket descriptor, the VC socket descriptor is released and the
referenced connection is aborted and is no longer available for sending or
receiving data. The VC socket descriptor is released along with the
descriptor only if the descriptor being released is the last descriptor for that
socket. If another process, or processes, have a descriptor for the same VC
socket, these duplicate descriptors are not affected. Because
i pcshutdown () takes effect very quickly, all of the data that is in transit on
the connection, including any data that has already been queued on the
destination VC socket, may be destroyed when the connection is shut down.
Shutting down a VC socket does not affect any call sockets.

All of the data that is in transit on a VC socket, including any data that has
already been queued on the destination VC socket, may be destroyed when
the connection is shut down unless the NSF _GRACEFUL_RELEASE flag is set. If

3-82 NetlPC Calls

a process sends important data to its peer process just prior to shutting that
process down, it is recommended that the calling process receive a
confirmation from the peer process before calling ipcshutdown or exiting, or
use the NSF _GRACEFUL_RELEASE flag to ensure that the data was received.

For more information on i pcshutdown (), refer to "Shutting Down a
Connection" in the "NetIPC Concepts" chapter.

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcshutdown () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

descriptor ns int t integer integer*4
descriptor by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] array of bytes array of integers
by reference by reference

result ns int t *result integer integer*4
by reference by reference

Cross-System Considerations
Socket Shut Down - The shutdown procedure for the HP 1000, HP 9000 and
HP 3000 processes is identical except for shared sockets on HP 9000 and the
"graceful release" flag on the HP 3000 and 9000. Shared sockets are
destroyed only when the descriptor being released is the sole descriptor for
that socket. Therefore, the HP 9000 process may take longer to close the
connection than expected. If the graceful release flag is set on the HP 3000,
the HP 9000 will respond as though it were a normal shutdown request.

NetlPC Calls 3-83

optoverhead ()
Returns the number of bytes needed for the opt parameter in a subsequent
NetIPC call, not including the data portion of the parameter.

Syntax

opt7ength optoverhead{eventua7entries,resu7t)

Parameters

opt7ength

eventua7entries

resu7t

Description

The number of bytes required for the opt
parameter, not including the data portion of the
parameter.

The number of option entries that will be placed in
the opt parameter.

The error code returned; zero or NSR_NO_ERROR if
no error.

The optoverhead () call returns the number of bytes needed for the opt
parameter, excluding the data area.

3-84 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
optoverhead () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

optlength short int int16* integer
(returned value) (returned value) (returned value)

eventua len tries short int int16* integer
(returned value) by value by value

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetlPC Calls 3-85

readopt()
Obtains the option code and argument data associated with an opt parameter
argument.

Syntax

readopt(opt,argnum,optioncode,data7ength,data,resu7t)

Parameters

opt

argnum

optioncode

data7ength
(input/output)

data

3-86 NetlPC Calls

The opt parameter to be read. Refer to "N etlPC
Common Parameters" for information on the
structure and use of this parameter.

The number of the argument to be obtained. The
first argument is number zero.

The option code or constant definition (C programs
only) associated with the argument. These codes are
described in each N etlPC call opt parameter
description.

The length of the array into which the argument
should be read. If the array is not large enough to
accommodate the argument data, an error will be
returned. On output, this parameter contains the
length of the data actually read. (The length of the
data associated with a particular option code is
provided in each N etlPC call opt parameter
description.)

An array which will contain the data read from the
argument.

result The error code returned; zero or NSR_ NO_ERROR if
no error.

Programming Considerations
The following is a list of the type definitions and passing modes for the
readopt () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

opt short int opt[] array of bytes array of integers
by reference by reference

argnum short int argnum int16* integer
by value by value

optioncode short int int16* integer
*optioncode by reference by reference

data length short int int16* integer
*datalength by reference by reference

data short int data[] array of int16* array of integers
by reference by reference

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetiPC Calls 3-87

Sample NetlPC Programs

The following are NetlPC program examples. This appendix is organized in
two sections: HP 9000 to HP 9000 examples and cross-system NetlPC
examples.

A

Sample NetiPC Programs A-1

HP 9000 to HP 9000 Examples
The following program examples were developed for HP 9000 to HP 9000
communication:

• Example 1: Server Program in C.

• Example 2: Client Program in C.

• Example 3: Server Program in FORTRAN.

• Example 4: Client Program in FORTRAN.

These programs are included in /usr/netdemo/ns i pc.

A-2 Sample NetlPC Programs

Cross-System NetlPC Examples
The following programs were tested with equivalent client/server programs
running on the HP 1000 and HP 3000 (MPE-V and MPE-XL). HP 1000 and
HP 3000 NetIPC program examples are contained in the NetIPC
documentation provided for those systems.

• Example 5: Cross-System Server in C.

• Example 6: Cross-System Client in C.

• Example 7: Cross-System Server in FORTRAN.

• Example 8: Cross-System Client in FORTRAN.

• Example 9: Cross-System Server in PASCAL.

• Example 10: Cross-System Client in PASCAL.

Sample NetiPC Programs A-3

Make File for Sample Programs
I!/bin/sh
1--1
1 1
1 Make file for building the sample NetIPC tests. #
1 #

#--# #

Compile NetIPC sample programs(2) in C.

all: req_c serv_c req_f serv_f

serv_c : serv.c
cc -0 serv_c serv.c - lnsipc

req_c : req.c
cc -0 req_c req.c - lnsipc

serv_f : serv.f
fc -0 serv_f serv.f - lnsipc

req_f : reg.f
fc -0 req_f req.f - lnsipc

A-4 Sample NetiPC Programs

Example 1: Server in C
/*
* This is a server program which executes in background on an
* 840 machine. It creates a call socket and names it ABCDEFGH
* The server waits indefinitely for a connection request. After
* a request is received and connection established by the
* ipcrecvcn() call, the server forks a child to handle all data
* exchange with the requester. The server then loops back to wait
* for new connection requests.
*
* The child receives and logs all messages sent by the requester.
* When a shut down message is received, it sends the shut down
* message back to the requester. The next ipcrecv() call will
* return a 64 error, signifying that the requester has disconnected.
* The child process then calls ipcshutdown() and terminates.
*
* Although the program executes in background, you do not have to
* invoke it with a &. It automatically puts itself in the background.
* This server program is the peer program to the requester
* program written in C (Example 2) and FORTRAN (Example 4).
*/

#inc1ude <stdio.h>
#inc1ude <sys/types.h>
#inc1ude <sys/ns_ipc.h>
#inc1ude <sys/time.h>
#inc1ude <sys/fcnt1.h>
#inc1ude <signa1.h>
#inc1ude <errno.h>
#inc1ude <sys/uio.h>
#inc1ude <string.h>

#define MSG_SIZE 20

ns int t result;
short -opt [100] ;
short opterr;
ns int t flags;
char 10gbuf[100];
char *sd msg I want to shut down.
char *10gfi1e = .7ipc. log;
int 10gf;

main (argc, argv)
int argc;
char **argv;
{

ns int t vc desc, call desc;
char - *socketname;
short short_timeout;

Sample NetlPC Programs A-S

init_10gging ();

/* forks in order to get into the background and detaches
* process from tty

*/

if (fork())
exit (0);

setpgrp ();

/* ignore signals */

signa1(SIGCLO, SIG_IGN);

/* create call socket */

flags = 0;
initopt (opt, 0, &opterr); /* initialize opt to zero opt */
ipccreate (NS_CALL, NSP_TCP, &f1ags, opt, &ca11_desc, &resu1t);

sprintf (logbuf, ipccreate: %d\n ,result);
log (logbuf);
if (result) goto fatal_error;

/* name the call socket */

socket name = ABCDEFGH ;
ipcname (ca11_desc, socket name , 8, &resu1t);
sprintf (logbuf, ipcname %s: %d\n , socketname, result);
log (logbuf);
if (result) goto fatal_error;

/* set call socket timeout to infinite, then wait for
connection requests */

flags = 0;
short timeout = 0;
ipccontro1 (cal1_desc, NSC_TIMEOUT_RESET, &short_timeout, 2, 0, 0,

&f1ags, &result);
sprintf (logbuf, ipccontro1 NSC_TIMEOUT_RESET: %d\n , result);
log (logbuf);
if (result) goto fatal_error;

whi le (! result)
{
flags = 0;
ipcrecvcn (ca11_desc, &vc_desc, &flags, opt, &resu1t);
sprintf (logbuf, ipcrecvcn: %d\n , result);
log (logbuf);
if (result) goto fatal_error;

A-6 Sample NetiPC Programs

}

/* fork a child and pass it the newly established
connection */

if (!fork())
{ 1* child */

}

rec data (vc desc);
if (!result TI result == NSR_REMOTE_ABORT)

exit (0);
else
exit (result);

/* parent */
flags = 0;
ipcshutdown (vc_desc, &flags, opt, &result);

fatal error: sprintf (logbuf, fatal_error: %d\n , result);
-log (logbuf);
exit (result);

}

rec_data (vc_desc)
ns int t vc_desc;
{- -

char buf[MSG_SIZE + 1] ;
ns_int_t msg_len;
int shut_down = 0;

for(; ;)
{
flags = 0;
msg len = MSG SIZE;
ipcrecv (vc desc, buf, &msg len, &flags, opt, &result);
sprintf (logbuf, ipcrecv: %d\n , result);
log (logbuf);
if (result) goto return_error;

if(!strncmp(buf, sd_msg, MSG_SIZE))
{
sprintf(logbuf, Shutdown msg received\n);
log(logbuf);
flags = 0;
msg len = MSG SIZE;
ipcsend (vc_desc, buf, msg_len, &flags, opt, &result);
sprintf (logbuf, ipcsend: %d\n , result);
log (logbuf);

}
else
{
buf [MSG SIZE]
sprintf(logbuf,
log(logbuf);

(char) 0;
Received: %s\n , buf);

Sample NetiPC Programs A-7

}
}

return_error: flags = 0;

}

ipcshutdown (vc_desc, &flags, opt, &result);
sprintf (logbuf, ipcshutdown: %d\n , result);
log (logbuf);
return (result);

init logging()
{ -

}

int flags;

flags = O_CREAT I O_WRONLY 10_APPEND;
logf = open (logfile, flags, 0777);
if (logf < 0) {

}

printf ("Couldn't open log file\n");
exit (-1);

log ("ipcserver starts\n");

log (buf)
char *buf;
{

int pid = getpid();
char *ctime(), *time_str;
struct timeval tv;
struct timezone tz;
char time [25] ;
char 10cal_buffer[160];

gettimeofday (&tv, &tz);
time str = ctime (&(tv.tv sec»;
bcopy (time_str, time, 24);
time [24] = 0;

sprintf (local_buffer, %s: {%d}: %s\n , time, pid, buf);
write (logf, local_buffer, strlen(local_buffer»;

}

bcopy (from_str, to_str, len)
char *from str;
char *to_str;
int len;
{
whi le (len--)
*to_str++ = *from_str++;

}

A-8 Sample NetlPC Programs

Example 2: Client in C
/* This program initiates a connection to a remote socket ABCDEFGH,
* then sends some messages to the server. When this program is ready
* to quit, it will send a shut-down message to the server. After
* the server has acknowledged the shut-down message, the shut-down
* operation is performed.
*/

#include <stdio.h>
#include <sys/ns_ipc.h>
#include <string.h>

main (argc, argv)
int argc;
char **argv;
{
ns_int_t vc_desc, dest_desc;
ns_int_t protocol, sock_kind;
ns_int_t result;
short opt[lOO];

short opterr;
ns_int t flags;
char -*progname;
char *nodename;
char *socketname;
char buf[64];
static char shut down[] = I want to shut down.
static char msg[-] = Message from request;
ns_int_t readlen;
short timeout, datalen;

j* the first argument after the program name indicates the
node on which ABCDEFGH resides */

progname = *argv++;
nodename = *argv;

/* obtain destination descriptor to socket ABCDEFGH on
the remote node that is passed as an argument to the
program */

socketname = ABCDEFGH
flags = 0;
ipclookup (socketname, 8, nodename, strlen(nodename), &flags,

&dest_desc, &protocol, &sock_kind, &result);
printf ("{%s} ipclookup: %d\n", progname, result);
if (result) goto fatal_error;

/* initialize opt structure */

Sample NetiPC Programs A-9

initopt (opt, 0, &opterr); /* initialize opt to zero opt */
ipcconnect (-1, dest_desc, &flags, opt, &vc_desc, &result);
printf ("{%s} ipcconnect: %d\n", progname, result);
if (result) goto fatal_error;

/* release destination descriptor since it's not needed
any more */

ipcshutdown (dest_desc, &flags, opt, &result);
printf ("{%s} ipcshutdown: %d\n", progname, result);
if (result) goto fatal_error;

/* confirm connection */

flags = 0;
ipcrecv (vc_desc, buf, &readlen, &flags, opt, &result);
printf ("{%s} ipcrecv connection: %d\n", progname, result);
if (result) goto fatal_error;

flags = 0;
printf("{%s} Sending requester's message\n", progname);
ipcsend (vc_desc, msg, 20, &flags, opt, &result);
if (result) goto fatal_error;

flags = 0;
printf("{%s} Sending shutdown message\n", progname);
ipcsend (vc_desc, shut_down, 20, &flags, opt, &result);
if (result) goto fatal_error;

flags = NSF_DATA_WAIT;
readlen = 20;
printf("{%s} Waiting to receive shutdown acknowledgement\n", progname);
ipcrecv (vc_desc, buf, &readlen, &flags, opt, &result);
printf ("{%s} ipcrecv: %s\n", progname, buf);
if (result) goto fatal_error;

if (strncmp (buf, shut_down, 20))
{
printf ("strcmp failed %s, %s\n", buf, shut_down);
goto return error;

} -

flags = 0;
ipcshutdown (vc_desc, &flags, opt, &result);
printf ("{%s} ipcshutdown: %d\n", progname, result);

return_error: exit(O);

fatal_error: printf ("{%s} fatal error: %d\n", progname, result);
exit (result);

}

A-10 Sample NetiPC Programs

Example 3: Server in FORTRAN
PROGRAM serf

C
C NAME: serf
C SOURCE: 91790-18237
C RELOC: 91790-16237
C PGMR: ZL
C Modified by KC for the 840

C This program is the peer process to requester. It uses sockets in
C synchronous mode to establish a connection and receive a message
C from requester.

C Since FORTRAN values are passed by value by default, the ALIAS
C statements below are used to indicate which values of the IPC calls
C should be passed by reference instead.

$ALIAS ipcconect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS signal (%val,%val)

PARAMETER (SIGCLD=1, SIG IGN=1, NSC TIMEOUT RESET=3)
CHARACTER*20 receive buffer, shut d~wn message
CHARACTER*8 socket_name --

INTEGER*2 option(2), result, timeout

C INTEGER SIGCLD, SIG_IGN, request, NSC_TIMEOUT_RESET, fork
INTEGER request, fork

INTEGER socket_kind, protocol_kind, call_socket_descriptor,
>error_return, name_length, VC_socket_descriptor,
>message_buffer_length, flags_array

DATA shut_down_message/'! want to shut down.'j

C Fork Process to get into background and detach from controlling tty
C and ignore SIGCLD (dealth of child process).

Sample NetlPC Programs A-11

if (fork() .NE. O} STOP
ca 11 setpgrp()
call signal(SIGCLD, SIG_IGN}

C The INITOPT call initializes the option parameter used by the
C IPCCREATE, IPCRECVCN, IPCRECV and IPCSHUTDOWN calls. By setting
C the opt_num_arguments parameter to zero, the option parameter is
C initialized to contain zero entries. (An example of adding entrie
C to an option parameter is included in the discussion of ADDOPT in
C this section.
C

opt_num_arguments = 0
CALL INITOPT(option,opt_num_arguments,result)

here = 1
IF(result.NE.O) GO TO 99

C socket_kind is set to 3 and protocol_kind is set to 4 to
C specify a call socket and the TCP protocol for the following
C IPCCREATE call.

socket kind = 3
protocol_kind = 4

C The flags parameter is not used in this program, so flags_array
C is made a double integer and assigned the value zero to ensure
C that all the bits are clear.

flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be used in the following
C IPCNAME call.

CALL IPCCREATE(socket_kind,protocol_kind,flags_array,option,
>call_socket_descriptor,error_return)

here = 2
IF(error_return.NE.O) GO TO 99

flags_array = 0

C IPCNAME is called to assign a name to the newly-created call
C socket. This name is known to the requester.

socket_name = 'ABCDEFGH'
name_length = 8

CALL IPCNAME(call socket descriptor,socket name, name length,
>error_return) - - --

here = 3
IF(error_return.NE.O) GO TO 99

C Set call VC socket to infinite.

A-12 Sample NetlPC Programs

flags_array = 0
timeout = 0
request = NSC_TIMEOUT_RESET

CALL IPCCONTROL(call_socket_descriptor, request, timeout,
>2, 0, 0, flags_array, error_return)

here = 4
IF (error_return .NE. 0) GO TO 99

flags_array = 0

C The following IPCRECVCN call will receive the connection request
C sent by requester and return a VC socket descriptor. Once this call
C has completed successfully, you may optionally release the call
C socket descriptor by calling IPCSHUTDOWN in order to return resources
C to the system. Doing so will not affect the newly-created
C VC socket descriptor.

CALL IPCRECVCN(call_socket_descriptor,VC_socket_descriptor,
>f lags_array, opt ion, error_return)

here = 5
IF(error_return.NE.O) GO TO 99

C IPCRECV is called to receive a message from requester.

10 flags array = 0
message_buffer_length = 20

CALL IPCRECV(VC_socket_descriptor,receive_buffer,
>message_buffer_length,flags_array,option,error_return)

C If error code 64 is received, requester has shut down the connection
C at its node. The error processing code at statement 99
C will call IPCSHUTDOWN to shut down the server's VC socket descriptor.

here = 6
IF(error_return.NE.O) GO TO 99

C The receive buffer is compared to the shut down message.
C If the shut down message is received, server sends a shut
C down message back to requester so that requester will know that its
C data has been received.

IF(receive_buffer .EQ. shut_down_message) THEN
flags_array = 0
CALL IPCSEND(VC_socket_descriptor,shut_down_message,

> message_buffer_length, flags_array,opt ion, error_return)
here = 7
IF(error_return.NE.O) THEN

GO TO 99
ELSE

GO TO 10

Sample NetiPC Programs A-13

ENDIF
ELSE

C If the shut down message was not received, ipc1 will simply rece
C the data and print it. It then returns to the previous IPCRECV ca
C to receive subsequent data until either the shut down message
C is received or an error occurs.

C WRITE(6,'(5A4)')(receive buffer(index),index = 1,5)
WRITE(6,*) receive_buffer
GO TO 10

ENDIF

99 IF(error_return.EQ.64) THEN
flags array = 0
CALL IPCSHUTDOWN (VC_socket_descriptor,flags_array,option,

> error return)
IF(error_return.NE.O) GO TO 99

ELSE
WRITE(6,'("error return error code: ",14)') error return
WRITE(6, , ("result error code: ",14)'T result -
WRITE(6,'("Program server at location: _",14)') here

ENDIF

100 STOP

END

A-14 Sample NetiPC Programs

Example 4: Client in FORTRAN
PROGRAM reqf (location)

c
C NAME: reqf
C SOURCE: 91790-18238
C RELOC: 91790-16238
C PGMR: ZL
C Modified by KC to run on a 840
C

C This program is the peer process to server. It uses sockets
C in synchronous mode and sends a message to server.

$ALIAS ipcconnect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val.%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)

PARAMETER (NSF_DATA_WAIT = 4000B)

CHARACTER*20 receive buffer, send_buffer, shut_dawn_message
CHARACTER*50 location
CHARACTER*8 socket name
CHARACTER*20 data_buffer

INTEGER*2 option(2), result, num_arg,
>opt_num_arguments, counter

INTEGER*4 socket_kind, protocol_kind, call_socket_descriptor,
>error_return, name_length, VC_socket_descriptor,
>message_buffer_length, location_length, data_length,
>path_report~descriptor, protocol_returned, flags_array

DATA send_buffer/'Here is the message.'/
DATA shut_down_message/'I want to shut down. '/

C INITOPT is called to initialize the option parameter used in the
C IPCCREATE, IPCLOOKUP, IPCCONNECT, IPCRECV, IPCSEND and
C IPCSHUTDOWN calls. By sett ing opt_num_arguments to zero, the

Sample NetlPC Programs A-15

C option parameter is initialized to contain zero entries.
C (An example of adding options to an option parameter is included
C in the discussion of ADDOPT in this section.

DO i = 1,50
IF (location(i:i}.EQ.") THEN

location_length = i-I
GO TO 125

ENDIF
END DO

125 CONTINUE
IF (location length .EQ. 0) THEN

WRITE(S, *) 'reqf : usage reqf nodename'
STOP

ENDIF

opt_num_arguments = 0
CALL INITOPT(option,opt_num_arguments,result)

here = 1
IF(result.NE.O) GO TO 99

C socket_kind is set to 3 and protocol_kind is set to 4 to specify
C a call socket and the TCP protocol for the following IPCCREATE
C calL

socket_kind = 3
protocol kind = 4

C The flags_array parameter is not used in this program so flags_array
C is made a double integer and assigned the value zero to ensure tha
C all the bits are clear.

flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be used in the following
C IPCCONNECT call.

CALL IPCCREATE(socket_kind,protocol_kind,flags_array,option,
>call_socket_descriptor,error_return)

here = 2
IF(error_return.NE.O) GO TO 99

C The location parameter indicates the node name of the node where
C ipc2 resides and location_length indicates the length of this
C name in bytes. Note that the organization and domain are defaulted.

socket_name = 'ABCDEFGH'
name_length = 8

C IPCLOOKUP searches the socket registry at nodel for server's
C socket name. This call returns a path_report_descriptor that is
C used in the following IPCCONNECT call to request a connection

A-16 Sample NetlPC Programs

C with server. Because it is possible for IPCLOOKUP to search for
C the socket name before server places it in its node's socket
C registry, server will try to look up the name several times before
C aborting.

counter = 0
flags_array = 0

21 CALL IPCLOOKUP(socket_name,name_length, location, location_length,
>flags_array,path_report_descriptor, protocol_returned, socket_kind,
>error_return)

counter = counter + 1
here = 4

IF (error return.EQ.O) GO TO 28
IF (error-return.NE.37) GO TO 99
IF (counter.LE.10) THEN

GO TO 21
ELSE

GO TO 99
ENDIF

flags_array = 0

C The call_socket_descriptor returned by IPCCREATE and the
C path_report_descriptor returned by IPCLOOKUP are used in
C IPCCONNECT to request a connection with server. The
C VC_socket_descriptor returned by IPCCONNECT is used in subsequent
C calls to reference the connection. Once this call has completed
C successfully, you may optionally release the call socket descriptor
C by calling IPCSHUTDOWN in order to return resources to the system.
C Doing so will not affect the newly-created VC socket descriptor.

28 CALL IPCCONNECT(call_socket_descriptor,path_report_descriptor,
>f lags_array , opt ion ,VC_socket_descriptor , error_return)

here = 5
IF(error_return.NE.O) GO TO 99

flags_array = 0
data_length = 20

C IPCRECV is called to determine if the connection has been
C established.

CALL IPCRECV(VC_socket_descriptor ,data_buffer ,data_length,
>flags_array,option,error_return)

here = 6
IF(error_return.NE.O) GO TO 99

flags array = 0
message_buffer_length = 20

Sample NetlPC Programs A-17

C Data is sent to server on the newly established connection.

CALL IPCSEND(VC_socket_descriptor,send_buffer,
>message_buffer_length, flags_array, option, error_return)

here = 7
IF(error_return.NE.O) GO TO 99

flags_array = 0

C After the data is sent, requester initiates the shut down dialogue
C by sending a shut down message to server.

CALL IPCSEND(VC_socket_descriptor,shut_down_message,
>message_buffer_length,flags_array,option,error_return)

here = 8
IF(error_return.NE.O) GO TO 99

C After it receives the shut down message, server will send its
C own shut down message to requester. IPCRECV is called to receive
C this data.

flags_array = 0

30 CALL IPCRECV(VC_socket_descriptor,receive_buffer,
>message_buffer_length, flags_array,option,error_return)

here = 9
IF(error_return.NE.O) GO TO 99

C If the receive_buffer contains the shut down message, requester will
C call IPCSHUTDOWN to shut down its VC socket descriptor and termina
C the connection.

IF(receive_buffer.EQ.shut_down_message) THEN

flags_array = a

CALL IPCSHUTDOWN (VC_socket_descriptor,flags_array,option,
>error_return)

here = 10
IF(error_return.NE.O) GO TO 99

GO TO 100

C Since the only data requester receives from server is a shut down messag
C it should never branch to the following ELSE statement. If this
C process were the recipient of several IPCSEND calls, it should
C call IPCRECV again.

ELSE

C WRITE(6, '(10A2)')(receive buffer(index),index=1,10)
WRITE(6, *) receiver_buffer

A-18 Sample NetiPC Programs

GO TO 30

ENDIF

99 WRITE (6, '("result error code: - ,14)') result
WRITE (6, '(error return error code: ",14) ') error return
WRITE (6, '("Program requester at location: _",14)')-here

100 STOP

END

Sample NetlPC Programs A-19

Example 5: Cross-System Server in C
/* NETIPC C-SERVER EXAMPLE
*
* This program similates a local database system which waits
* for remote information requests. It will looks for a reqular
* 80 column text file called 'datafile' for information. 'datafile'
* must conform with the following format: The first 20 chars
* store a person's name, and the rest of the line stores the
* information of that person.
*
* The program creates a call socket at TCP port 31767, then waits
* indefinitely for connection requests. It calls ipcselect() to
* test whether the call socket has a connection pending, and calls
* ipcrecvcn to accept the connection. After a connection is
* established, the client will send in a person's name, with which
* the server will search the database file for information for that
* person. If found, the information will be returned. This process
* continues until the virtual socket becomes exceptional; in which
* case, ipcshutdown is called to shutdown that particular socket.
*/

#include <stdio.h>
#include <string.h>
#include <sys/ns_ipc.h>

#define BUFFERLEN20
#define INFOBUFLEN60
#define CALL SOCKET3
#define INFINITE_SELECT 1
#define MAX_SOCKETS60
#define MAX BACKLOGS
#define TCP=PORT31767

int call sd;
int call-sd mask[2];
int rmap[2]~ xmap[2];
int curr_rmap[2] , curr_wmap[2] , curr_xmap[2];
short offset;
short control_value;
ns int t result;
FILE -*datafile;
short opt [40] ;
short opt_data;
short opterr;
short timeout;
ns int t flags;
short - opt_num_arguments;
ns_int_t sbound
int soc_count;

A-20 Sample NetlPC Programs

extern void addopt();
extern void initopt();
extern void ipccontrol();
extern void ipccreate();
extern void ipcrecvcn();
extern void ipcrecv();
extern void ipcselect();
extern void ipcsend();
extern void ipcshutdown();

void Error Routine();
void HandleNewRequest();
void Initialize_Option();
void ProcessRead();
int ReadData ();
void SetUp 0 ;
void ShutdownVC();

/***/
maine)
{
int i;

SetUp() ;

/* loop forever to serve clients. If any new client requests
* service, the exception map will be set on the call socket.
* If a client asks for information, the read map will be set
* on the vc socket for that client. When the server detects
* an exceptional condition on an existing vc socket, it means
* that the corresponding client has shutdown. In which case,
* both rmap and xmap are adjusted for the next ipcselect() call.
*
* If any other error situation occurs, both the name of the
* previous ipc call and the error code is printed and the
* process is terminated by an exit() call.
*/
curr_rmap[O] = curr_rmap[l] = 0;
curr_xmap[O] = curr_xmap[l] = 0;

for(; ;)
{
for (i = 0; i < 2; i++)
{
curr _rmap [i] rmap [i] ;
curr_xmap[i] = xmap[i];

}

timeout = -1;
sdbound = MAX_SOCKETS;

ipcselect(&sbound, curr_rmap, curr_wmap, curr_xmap,
timeout, &result);

if (result)
{

Sample NetlPC Programs A-21

Error_Routine("ipcselect", result, call_sd);
}

/* Check for read condition.
*/

if ((curr_rmap[O]) II (curr_rmap[1])
{
for (offset = 0; offset < sbound; offset++)
{
if (curr_rmap[offset/32] &

((unsigned int)Ox80000000 »(offset %32)))
ProcessRead(offset);

}
}

/* Check for new connection request. The bit in curr_xmap
* for the call socket is clear, so that the call socket
* will not be interpreted as a vc shutdown.
*/

if (curr_xmap[call_sd/32] &
((unsigned int)Ox80000000 » (call_sd % 32))

{
HandleNewRequest();

}

curr_xmap[O] &= call_sd_mask[O];
curr_xmap[l] &= call_sd_mask[l];

/* Check for vc shutdown.
*/

if ((curr_xmap[O]) II (curr_xmap[l])
{
for (offset = 0; offset < sbound; offset++)
{

}

if (curr_xmap[offset/32] &
((unsigned int)Ox80000000 »(offset %32)))

ShutdownVC(offset);

}
}

}

/**/
void Error Routine(where, what, sd)
char *whe~e;
int what;
int sd;
{

}

printf("Server: Error occured in %s call.\n", where);
printf("Server: The error code is: %5d. The local descriptor is:\
%d \n" r what, sd);
exitO;

A-22 Sample NetiPC Programs

/***/

void HandleNewRequest()
{

}

/* Establish a connection for a new client. Adjust the xmap
* and the rmap parameters of the ipcselect() call to reflect
* the new connection.
*/

Initialize_Option(opt);
flags = 0;

ipcrecvcn(call_sd. &vc_sd. &flags. opt. &result);
if (result)
{
Error Routine(ipcrecvcn. result. call_sd);

} -

/* set rmap and xmap for the new socket for subsequent ipcselect()
* call.

*/

*/
rmap[vc_sd/32] 1= ((unsigned int) Ox80000000 » (vc_sd %32»;
xmap[vc_sd/32] 1= ((unsigned int) Ox80000000 » (vc_sd %32»;

/* Set the timeout to infinity with ipccontrol for later calls

flags = 0;
control value = 0;
ipccontrol(vc_sd. NSC_TIMEOUT_RESET. &control_value. 2. 0.0.

&flags. &result);
if (result)
{
Error Routine(ipccontrol. result. call_sd);

} -

{

1*
* Check if we have reached the maximum number of sockets.
* If so. disallow any new requests by clearing the exception
* map for the call socket.
*/

if (++soc_count >= MAX_SOCKETS

xmap[O] = call sd mask[O];
xmap [1] = ca 1 (sd = mask [1] ;

}

1***/

void Initialize_Option()
{

int opt_num_arguments;
short opt_err;

Sample NetlPC Programs A-23

}

opt_num_arguments = 0;
initopt(opt, opt_num_arguments, &opt_err);

if (opt_err)
{
Error Routine(initopt, opt_err, 0);

} -

/**/

void ProcessRead(offset)
short offset;
{

int buffer len;
char client buf[BUFFERLEN + 1];
char data_buf[INFOBUFLEN];
int vc_sd;

/* The client with socket discriptor 'offset' has sent in a name.
* The server will recieve that name and search for the information
* in the database file. If found, the information will be sent
* back to the client, otherwise, a 'not found' message will be
* sent.
*/

Initialize_Option(opt);
vc_sd = offset;
buffer_len = BUFFERLEN;
flags = 0;
ipcrecv(vc_sd, client_buf, &buffer_len, &flags, opt, &result);

if (result)
{

Error_Routine(ipcrecv, result, vc_sd);
}

client buf[BUFFERLEN] = 0;
if (!ReadData(client_buf, data_buf))

{
printf("Server: %s not in file. \n", c 1 ient_buf);

sprintf(data_buf, SERVER did not find the requested name \
inthedatafile.\n);

}

}

buffer_len = INFOBUFLEN;
flags = 0;
ipcsend(vc_sd, data_buf, buffer_len, &flags, opt, &result);

if (result)
{
Error Routine ("ipcsend", result, vc_sd);

} -

/**/

A-24 Sample NetiPC Programs

int ReadData (client buf, output_buf)
char *client buf; -
char *output=buf;
{
chart_buf [80] ;

/* Sequentially read the database file until the name is found
* or EOF is reached. Return 1 if the name is located, 0
* otherwise.
*/

rewind(datafile);
for(; ;)
{
if (fgets(t_buf, 80, datafile))
{
if (!strncmp(client_buf, t_buf, BUFFERLEN))
{
strncpy(output_buf, &(t_buf[BUFFERLEN]),

INFOBUFLEN);
printf("Server: %s information found.\n",
client buf);

return(!) ;
}

}
else
{
return(O);

}
}

}

/**/

vo i d SetUp ()
{
/* Open the database file for reading.
*/

if ((datafile = fopen("datafile". r)) == NULL)
{
Error_Routine(fopen, 0, 0);

}

/* Set up the opt array for the two parms we will use
*/

opt num arguments = 2;
initopt(opt, opt_num_arguments, &opterr);

if (opterr)
{
Error Routine(initopt, opterr, call_sd);

} -

/* Set Tep port address

Sample NetlPC Programs A-25

*/
opt_data = TCP_PORT;
addopt(opt, 0, NSO_PROTOCOL_ADDRESS, 2, &opt_data, &opterr);
if (opterr)
{

Error Routine(addopt, opterr, call_sd);
} -

/* Set maximum number of connection requested can be pend at
* one time.
*/

opt_data = MAX_BACKLOG;
addopt(opt, 1, NSO_MAX_CONN_REQ_BACK, 2, &opt_data, &opterr);
if (opterr)
{
Error Routine(addopt, opterr, call_sd);

} -

/* Create new call socket.
*/

flags = 0;
ipccreate(NS_CALL, NSP_TCP, &flags, opt, &call_sd, &result);
if (result)
{
Error Routine(ipccreate, result, call_sd);

} -

/* Set the time out value for subsequent ipcrecvcn() call to
* infinity. The program will suspend indefinitely on an
* ipcrecvcn() call.
*/

flags = 0;
control_value = 0;
timeout = 0;
ipccontrol(call_sd, NSC_TIMEOUT_RESET, &timeout, 2, 0, 0,

&flags, &result);
if (result)
{
Error Routine(ipccontrol, result, call_sd);

} -

/* Update soc count to the number of socket descriptor used so
* far. Set the xmap bit for the newly created call socket for
* the next ipcselect() call. Save the one's compliment of xmap
* for clearing the xmap bit for this call socket later.
*/

soc count++;
xmap [call_sd/32] 1= (((unsigned int) Ox80000000) » (call_sd % 32);
call_sd_mask[O] = ~xmap[O];

A-26 Sample NetiPC Programs

ca ll_sd_mask [1] = -xmap [1] ;
}

/**/

void ShutdownVC(offset)
short offset;
{

flags = 0;
Initialize_Option(opt);
vc sd = offset;
ipcshutdown(vc_sd. &flags. opt. &result);
soc count--;
if T offset < 32)
{

rmap[offset/32] &= -«unsigned int) Ox80000000 » (offset % 32»;
xmap[offset/32] &= -«unsigned int) Ox80000000 » (offset % 32));

}
xmap[call sd/32] 1= «unsigned int) Ox80000000 » (call_sd % 32));

} -

Sample NetiPC Programs A-27

Example 6: Cross-System Client in C
/* NETIPC C-REQUESTER EXAMPLE
*
* This program initiates a connection to a remote well known
* socket at TCP port 31767. After the connection is established,
* The program will prompt the user to input a person's name from
* the terminal. The name will be sent to the server process. In
* return, the server will send back the associate information about
* that person if it exists in the database file. This process
* repeats until the user inputs an 'EaT' message. In which case,
* the program calls ipcshutdown() to terminate the process.
*
*/

#include <stdio.h>
#include <string.h>
#include <sys/ns_ipc.h>
#define OPT_SIZE 40
#define NAMELEN 20
#define BUFLEN 80

rna in ()
{
ns_int_t vc_desc, dest_desc;
ns_int_t result;
short opt[OPT_SIZE];

short opterr;
ns_int_t flags;
char nodename[NAMELEN];
char namebuf[BUFLEN];
char readbuf[BUFLEN];
ns_int_t readlen;
short timeout;
static char EOTbuf[] EDT
short TCP_port;
int i;
int shutdown = 0;

/* Obtain the nodename from the user in which the well know
* port 31767 is located.

*/

pr i ntf ("C 1 i ent: Enter the remote node name:) ;
gets(nodename);

initopt (opt, 0, &opterr);
flags = NSF_DUP_DEST;

TCP_port = 31767;
ipcdest (NS_CALL, nodename, strlen(nodename), NSP_TCP,

A-28 Sample NetlPC Programs

&TCP_port, 2, &flags, opt, &dest_desc, &result);
if (result) goto fatal_error;

/* initialize connection request to server */

ipcconnect (-1, dest_desc, &flags, opt, &vc_desc, &result);
if (result) goto fatal_error;

/* release destination descriptor since it's not needed
any more */

ipcshutdown (dest_desc, &flags, opt, &result);
if (result) goto fatal_error;

/* set vc socket timeout to infinite, then confirm connection *j

timeout = 0;
ipccontrol (vc_desc, NSC_TIMEOUT_RESET, timeout, 2, readbuf,

& readlen, &flags, &result);
if (result) goto fatal_error;

ipcrecv (vc_desc, readbuf, &readlen, &flags, opt, &result);
if (result) goto fatal_error;

while(!shutdown)
{
/* get name from standard input */

printf ("Client: Enter name for data retrieval:);
gets (namebuf);

for (i = strlen(namebuf); < NAMELEN; i++)
{
namebuf[i] = ' ';

}

namebuf[NAMELEN] = (char) 0;
if (!strncmp(namebuf, EOTbuf, NAMELEN))
{

}

flags = 0;
ipcshutdown (vc_desc, &flags, opt, &result);
shutdown = 1;
exit(O);

flags = 0;
ipcsend (vc_desc, namebuf, 20, &flags, opt, &result);
if (result) goto return_error;

flags = 0;
read len = 60;
ipcrecv (vc_desc, readbuf, &readlen, &flags, opt, &result);

Sample NetlPC Programs A-29

}

readbuf[readlen] = (char) 0;
printf ("Client data is: %s\n", readbuf);
if (result) goto fatal_error;

return_error: exit(O);

fatal_error: printf ("Client: fatal error: %d\n", result);
exit (result);

}

A-30 Sample NetlPC Programs

Example 7: Cross-System Server in
FORTRAN
Header File

$ALIAS ipcconnect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup {%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref}
$ALIAS ipcname {%val,%ref,%val,%ref}
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS istrlen = 'strlen' (%ref)
$ALIAS OPEN = 'open' (%ref,%val)

COMMONS File

Integer*4 MAX_DESC

Integer*2 here, active_VC, option(14}, result

Inter*4 call_socket_des, VC_socket_descriptor, flags_array,
> error return, VC DES
Integer*4 sdbound, current rmap(2), readmap(2), writemap(2),

> exceptionmap(2)-
LOGICAL bit_test

corrmon MAX_DESC

corrmon here, active_VC, option, result

common call_socket_des, VC_socket_descriptor, flags_array,
> error_return, VC_DES

common sdbound, current_rmap, readmap, writemap,
> exceptionmap

program server

Include header

C This program is the peer process to requester. It uses sockets in
C synchronous mode to received a connection and message

Sample NetiPC Programs A-31

Imp 1 ic it none

Integer*2 SIGCLD, SIG IGN
Integer*2 Itime, readdata, backlog, address, opt num arguments
Integer*2 opt_num, opt_code, len, OPEN, of lag - -
Integer*2 TCP, MAX_BACKLOG, SYNCH_TIMEOUT, CALL_SOCKET, INFINITE

Integer*4 socket_kind, protocol_kind, timeout, request, rlen,
> wln, fork, filenum, oldnum

Character filename*16

Include cOlT111ons

PARAMETER (SIGCLD = 1, SIG IGN = 1)
PARAMETER (filename = 'datafile' // char(O))
PARAMETER (oflag = 0) ! read only

DATA MAX BACKLOG/5/, SYNCH_TIMEOUT/3/, TCP/4/, CALL_SOCKET/3/,
> INFINITE/O/

MAX_DESC = 63

if(fork() .ne. 0) stop
call setpgrp
call signal (SIGCLD, SIG_IGN)

C Open database file 'datafile' needed to service clients.

filenum = OPEN (filename, of lag)
call FSET (5, filenum, oldnum)

C Initialize options to contain 2 parameters.

opt_num_arguments = 2
call in itopt(option ,opt_num_arguments , result)
here = 1
IF(result.NE.O) call CLEANUP

C The Addopt was added to the Server to assign a TCP address
C during the Ipccreate call. '128' is the option code equivalent
C to the predefined constant 'NSO_PROTOCOL_ADDRESS' in C

opt_num = a
opt_code = 128
len = 2
Address = 31767
call addopt(option, opt_num, opt_code, len, Address,result)
here = 2
If(result .ne. 0) call CLEANUP

C Set max backlog of pending connection request to 10

opt_num = 1
opt_code = 6

A-32 Sample NetiPC Programs

len = 2
backlog = MAX BACKLOG
call addopt(option,opt_num, opt_code, len, backlog, result)
here = 3
IF(result .NE. 0) call CLEANUP

C socket_kind is set to 3 and protocol_kind is set to 4 to
C specify a call Socket and the TCP protocol for the following
C IPCCREATE call.
C The flags parameter is not used in this program, so flags_array
C is made a double integer and assigned the value zero to ensure
C that all the bits are clear.

socket_kind = CAll_SOCKET
protocol_kind = TCP
flags_array = 0

C A call Socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be referenced by sub-
C sequent IPC calls.

call ipccreate(socket_kind,protocol_kind,flags_array,option,
>call_socket_des,error_return)
here = 4
IF(error_return.NE.O) call CLEANUP

C IPCCONTROl is used to set synchronous timeout to infinity.

flags_array = 0
wln = 2
request = SYNCH_TIMEOUT
It ime = INFINITE
call ipccontrol(call_socket_des,request.Itime,wln,readdata,rlen.

>flags_array,error_return)
Here = 5
IF (error_return .NE. 0) call CLEANUP

C check call Socket descriptors to check which ones are exceptional
C (connection request pending) and which ones are readable.

timeout = -1 ! infinity timeout
sdbound = MAX DESC
writemap(1) =-0
writemap(2) = 0
exceptionmap(l) 0
exceptionmap(2) 0
current_rmap(l) 0
current_rmap(2) 0
active_VC = 1

C First time through, set bit mask to recieve connection(s) on
C newly allocated call socket.

call bit_set(exceptionmap, call_socket_des)

Sample NetiPC Programs A-33

DO WHILE (.TRUE.)
call ipcselect(sdbound, readmap, writemap, exceptionmap,

> timeout, error_return)
here = 7
IF (error return .NE. 0) call CLEANUP
IF «readmap(l) .NE. 0) .OR. (readmap(2) .NE. 0)) call get_data
IF «exceptionmap(l) .NE. 0) .OR.

> (exceptionmap(2) .NE. 0)) THEN
call process_xmap

ENDIF
sdbound = MAX DESC
writemap(1) =-0
writemap(2) = 0
readmap(l) = current_rmap(l)
readmap(2) = current_rmap(2)
exceptionmap(l) = current_rmap{l)
exceptionmap(2) = current_rmap(2)
IF (active VC .LT. MAX DESC)

> call bit_set (except1onmap, call_socket_des)
END DO
END

subroutine process_xmap

CC
C
C Subroutine process_xmap receives new connections
C or shutsdown aborted VC connections.
C
CC

Include header

Implicit none

Integer*2 opt_num_arguments

Include cOlTlTlons

C Reset the opt array to 0 so IPCRecvCn and IPCShutdown don't yell at us.

flags_array = 0
opt_num_arguments = 0
CALL INITOPT(option,opt_num_arguments,result)

C get a new VC_socket_descriptor for the new connection.
C Set appropriate bit of readmap used later by IPCS£LECT.

IF (bit_test (except ionmap, call_socket_des)) THEN
call IPCRECVCN(call_socket_des,VC_socket_descriptor,

> flags_array,option,error_return)
here = 8
IF (error_return .NE. 0) call CLEANUP

A-34 Sample NetiPC Programs

call bit_set (current_rmap , VC_socket_descriptor)
END IF

C Check to see if VC sockets are exceptional conditions (aborted).
C If so, shutdown socket and clear update readmap mask for next
C IPCSELECT call.

VC DES = 0
call bit clear(exceptionmap, call socket des)
DO WHILE-{(exceptionmap(l) .NE. 0) .OR. (exceptionmap(2) .NE. 0))
IF(bit_test(exceptionmap, VC_DES)) THEN

flags array = 0
call IPCSHUTDOWN(VC DES, flags array, option, error_return)
IF (result .NE. 0) call CLEANUP
active VC = active VC - 1

call bit_clear(exceptionmap, VC_DES)
call bit_clear(current_rmap, VC_DES)

END IF
VC_DES = VC_DES + 1

END DO

END

CCC
C
C Subroutine recv_data receives data from VC
C
CCC

subroutine get_data

Include header

Implicit none

Integer*2 index

Integer*4 message_buffer_length

Character name_requested*20, name*20, eof_message*60,
> send_buffer*60

Inc lude COIT1l10nS

Data eaf_message/'does not appear in datafile'/

C IPCRECV is called to receive a request from client (requester).
C First, received the name of item needed.

VC DES = 0
DO-WHILE «readmap(1) .NE. 0) .OR. (readmap(2) .NE. 0))
IF(bit_test(readmap, VC_DES)) THEN

flags_array = 0
message_buffer_length = 20

Sample NetiPC Programs A-35

VC socket descriptor = VC DES
CALL IPCRECV(VC_socket_descriptor,name_requested,

> message_buffer_length,flags_array,option,error_return)
here = 9
IF (result .NE. 0) call CLEANUP
call bit_clear(readmap, VC_DES)

END IF
VC_DES = VC_DES + 1

END DO

C
C
C
C
C
C
C
C

The data file (datafile) is read to locate the corresponding entry.
If found, return the information. Otherwise, notify the client.

*
*
*

An EOF record must exists at the end of 'datafile' to
terminate the sequential search. Otherwise the program
will hang when the name is not found

*
*
*

message buffer length = 60
REWIND (5) -

DO WHILE (.TRUE.)
read(S, '(A20, A60)', end = 98) name, send_buffer
IF (name_requested .EQ. name) THEN

flags array = 0
CALL IPCSEND(VC_socket_descriptor,send_buffer,

> message_buffer_length,flags_array,option,error_return)
here = 10
IF(error_return.NE.O) call CLEANUP
RETURN

END IF
END DO
STOP

98 message buffer length = 60
CALL IPCSEND(VC_socket_descriptor,eof_message,

> message_buffer_length,flags_array,option,error_return)
here = 11
IF (error_return .NE. 0) call CLEANUP
RETURN
END

CCC
C
C Routine cleanup
C
CCCCCCCCCcccccccecccccceccecceecccceeccecececceecceeceeccc

subroutine cleanup

Imp 1 i c-i t none

A-36 Sample NetlPC Programs

Include cOlllnons

WRITE(6,'("error return error code: ",14)') error return
WRITE(6, '("result error code: ",14)') result -
WRITE(6, '("Program server at l~cation: _",14)') here
STOP
END

CCCccccccecceeeceeccceecceecccccceccceeecccceCCCCCCCCCccceece
C
C routine bit_set
C
cecccecceeccceccceCCCCCCCCCccccccecccccccccceccccceecccccce

subroutine bit_set(map, bit}

Implicit none

integer*4 map(2), bit
integer*4 offset, MAX_DESC

cOlllnon MAX_DESC

offset = 31
IF (bit .LE. offset) THEN
map(l) ibset(map(l), (offset - bit»

ELSE
map(2) = ibset(map(2), (MAX_DESC - bit»

END IF
RETURN
END

ccecccccceccccccccccccccccccccecccccccccccceccccccc
e
C routine bit clear
C
cceccceccccceeccecccecceecccccccececccceecceccccccc

subroutine bit_clear(map, bit)

Implicit none

integer*4 map(2), bit
integer*4 offset, MAX_DESe
cOlllnon MAX_DESC

offset = 31
IF (bit .LE. offset) THEN
map(l} ibclr(map(l), (offset - bit})

ELSE
map(2) = ibclr(map(2), (MAX_DESC - bit»

END IF
RETURN
END

Sample NetiPC Programs A-37

CC
C
C routine bit_test
C
CC

logical function bit_test(map, bit)

integer*4 map(2), bit
integer*4 offset, MAX_DESC

cOlllTlon MAX_DESC

offset = 31
IF (bit .LE. offset) THEN

IF (btest(map(l), (offset - bit») THEN
bit_test = .TRUE.

ELSE
bit_test = .FALSE.

ENDIF
ELSE

IF (btest(map(2), (MAX_DESC - bit») THEN
bit_test = .TRUE.

ELSE
bit_test = .FALSE.

ENDIF
ENDIF
END

A-38 Sample NetiPC Programs

Example 8: Cross-System Client in
FORTRAN

PROGRAM client

C This program is the peer process to server. It uses sockets
C in synchronous mode and sends a message to server.

$ALIAS ipcconnect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)

implicit none

INTEGER*2 option(14), result, opt_num_arguments, counter,
> protocol_addr

INT£GER*4 socket_kind, protocol_kind, call_socket_descriptor,
>error_return, VC_socket_descriptor, protocol_length,
>message_buffer_length, location_length, data_length,
>path_report_descriptor, protocol_returned, flags_array,
>request, vlen, pl

INTEGER*2 here, I, J, p2, timeout

CHARACTER BLANK*l, EOT*3
CHARACTER receive buffer*60, send buffer*20
CHARACTER location*50, socket_nam~*8

DATA EOT/'EOT'/, BLANK/' '/

C INITOPT is called to initialize the option parameter used in the
C IPCCREAT£, IPCDEST, IPCCONNECT, IPCRECV, IPCSEND and
C IPCSHUTDOWN calls. By setting opt_num_arguments to zero, the
C option parameter is initialized to contain zero entries.

Sample NetlPC Programs A-39

CALL INITOPT(option,opt_num_arguments,resu1t)
here = 1
IF(resu1t.NE.O) GO TO 99

C socket_kind is set to 3 and protocol_kind is set to 4 to specify
C a call socket· and the TCP protocol for the following IPCCREATE
C ca 11.
C The flags_array parameter is not used in this program so flags_array
C is made a double integer and assigned the value zero to ensure that
C all the bits are clear.

socket_kind = 3
protocol_kind = 4
flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the ca1l_socket_descriptor parameter will be used in the following
C IPCCONNECT call.

CALL IPCCREATE(socket_kind,protoco1_kind,f1ags_array,option,
>ca11_socket_descriptor,error_return)
here = 2
IF(error_return.NE.O) GO TO 99

write(6,*) 'Client: Enter the remote node name:'
read (5, '(A50)') location
DO i = 1,50

IF (location(i:i).EQ.") THEN
location_length = i-I
GO TO 10

ENDIF
END DO

10 CONTINUE

flags_array = 0
protocol_addr = 31767
protocol_length = 2

20 call ipcdest(socket_kind, location, location_length,
> protocol kind, protocol addr, protocol length,
> flags_array, option, path_report_descr1ptor,
> error_return)
here = 3
IF (error_return .NE. 0) GO TO 99

counter = counter + 1
here = 4

IF (error return.EQ.O) GO TO 30
IF (error-return.NE.37) GO TO 99
IF (counter.LE.10) THEN

GO TO 20
ELSE

A-40 Sample NetlPC Programs

GO TO 99
ENOIF

C The call_socket_descriptor returned by IPCCREATE and the
C path_report_descriptor returned by IPCOEST are used in
C IPCCONNECT to request a connection with server. The
C VC_socket_descriptor returned by IPCCONNECT is used in subsequent
C calls to reference the connection. Once this call has completed
C successfully, you may optionally release the call socket descriptor
C by calling IPCSHUTDOWN in order to return resources to the system.
C Doing so will not affect the newly-created VC socket descriptor.

30 CALL IPCCONNECT(cal l_socket_descriptor, path_report_descript or,
>flags_array, opt ion ,VC_socket_descriptor, error_return)

here = 5
IF(error_return.NE.O) GO TO 99

flags_array = 0
request = 3 ! timeout
timeout = 0 ! infinite
vlen = 2

CALL IPCCONTROL (VC_socket_descriptor, request, timeout, vlen, pi,
> p2, flags_array, error_return)
here = 9
IF (error_return .NE. 0) GO TO 99

C IPCRECV is called to determine if the connection has been
C established.

flags_array = 0
data_length = 60

CALL IPCRECV(VC_socket_descriptor,receive_buffer,data_length,
>flags_array,option,error_return)
here = 6
IF(error_return.NE.O) GO TO 99

C Loop forever till user types in 'EOT' in response.
C Client will then terminate itself and let the networking code
C clean up which will notify server via the exceptional condition
C on the appropriate VC socket.

DO WHILE (.TRUE.)
40 write(6,*) 'Client: Enter name for data retrieval:'

read (5, '(A20)') send buffer
IF (send buffer .EQ. EDT) STOP
IF (send-buffer .EQ. BLANK) THEN

writ~(6,*) 'Type EOT to terminate.'

Sample NetlPC Programs A-41

go to 40
END IF

C Data is sent to server on the newly established connection.

flags_array = a
message_buffer_length = 20

CALL IPCSEND(VC socket descriptor,send buffer,
> message_buffer_length,flags_array,option,error_return)

here = 7
IF(error_return.NE.O) GO TO 99

C receives data from server

message_buffer_length = 60

CALL IPCRECV(VC socket descriptor,receive buffer,
> message_buffer_length, flags_array,opt10n,error_return)

here = 8
IF (error return .NE. 0) go to 99
write(6, '(A20, $)') send buffer
write(6, '(A60)') receive=buffer

END DO

99 WRITE; (6, '("result error code: - ,14)') result
WRIT~ (6, '(error return error code: ",14)') error return
WRITE (6, '("Progr~m requester at location: _",I4)')-here

100 STOP

END

A-42 Sample NetiPC Programs

Example 9: Cross-System Server in
PASCAL
PROGRAM server(input, output);

{--}
{ }
{ SERVER: IPCSelect Server Sample Program }
{ Revision: <870610.1338> }
{--}
{
{
{--}
{ COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
{ All rights reserved. No part of this program may be photocopied,
{ reproduced or translated into another programming language without
{ the prior written consent of the Hewlett-Packard Company.
{--}
{
{--}
{ Name Server
{ Source 91790-18###
{ Reloc: 91790-16###
{ Prgmr: «lms»
{ Date: <870610.1338>
{--}
{
{
{ PURPOSE:
{ To show the operation of the IpcSelect() call.
{
{ REVISION HISTORY
{}
LABEL

99;

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE_BACKLOG = 6;
CHANGE_TIMEOUT = 3;
FOREVER = TRUE;
INFINITE_SELECT = -1;
INFOBUFlEN = 60;
INTl6_LEN = 2;
LENGTH_OF_DATA = 20;
MAX_BACKLOG = 5;
MAX_BUFF_SIZE = 1000;
MAX_ReV_SIZE = 4;
MAX_SEND_SIZE = 3;

Sample NetiPC Programs A-43

MAX_SOCKETS = 32;
PROTO_ADDR = 128;
TCP = 4;
ZERO = 0;

TYPE

BitMapType = RECORD
CASE Integer OF
1: (bits PACKED ARRAY[0 .. 63] OF Boolean);
2: (longint Packed Array[I .. 2] OF Integer);
3: (ints ARRAY[1 .. 4] OF ShortInt);
END;

byte = 0 .. 255;
byte_array_type = packed array [1 .. 40] of byte;
buffer_type = packed array [1 .. BUFFERLEN] of char;
InfoBufType = packed array [1 .. INFOBUFLEN] of char;
name_of_call_array_type = packed array [1 .. 10] of char;
name_array_type = packed array [1 .. 7] of char;

VAR
ca ll_name
ca ll_sd
control_value
curr_rmap
curr_wmap
curr_xmap
dummy_parm
dummy_len
error_return
flags_array
map_offset
opt_data
opt_num_arguments
option
protocol_kind
rmap
sbound
short error
socket_kind
timeout
timeout_len
vc_count
xmap

$TITLE 'IPC Procedures', PAGE $
PROCEDURE ADDOPT

(VAR opt
argnum
optcode
data_len

VAR data

byte_array_type;
ShortInt;
ShortInt;
ShortInt;
ShortInt;

A-44 Sample NetlPC Programs

name_of_call_array_type;
integer;
ShortInt;
BitMapType;
BitMapType;
BitMapType;
Integer;
Integer;
Integer;
integer;
ShortInt;
ShortInt;
ShortInt;
byte_array_type;
Integer;
BitMapType;
Integer;
ShortInt;
Integer;
Integer;
Integer;
Integer;
BitMapType;

VAR error
EXTERNAL;

PROCEDURE INITOPT
(VAR opt

num_args
VAR error
EXTERNAL;

PROCEDURE READOPT
(VAR opt

argnum
VAR optcode
VAR data_len
VAR data
VAR error
EXTERNAL;

ShortInt) ;

byte_array_type;
ShortInt;
ShortInt);

byte_array_type;
ShortInt;
ShortInt;
ShortInt;
Integer;
ShortInt);

PROCEDURE IPCControl
(socket integer;

request integer;
VAR wrtdata ShortInt;

wrtlen Integer;
VAR data Integer;
VAR datalen Integer;
VAR flags Integer;
VAR result Integer);
EXTERNAL;

PROCEDURE IPCCREATE
(socket

protocol
VAR fiags
VAR opt
VAR csd
VAR result
EXTERNAL;

PROCEDURE IPCNAME
(descriptor

VAR name
nlen

VAR result
EXTERNAL;

PROCEDURE IPCRECVCN

integer;
integer;
integer;
byte_array_type;
integer;
integer);

integer;
name_array_type;
integer;
integer);

(csd integer;
VAR vcsd integer;
VAR flags integer;
VAR opt byte array type;
VAR result integer);-

EXTERNAL;

Sample NetlPC Programs A-45

PROCEDURE IPCRECV
(csd : integer;

VAR data buffer_type;
VAR dlen : integer;
VAR flags : integer;
VAR opt byte_array_type;
VAR result: integer);
EXTERNAL;

PROCEDURE IPCSelect
(VAR sbound Integer;

VAR rmap BitMapType;
VAR wmap BitMapType;
VAR xmap BitMapType;

timeout: Integer;
VAR result: Integer);
EXTERNAL;

PROCEDURE IPCSEND
(vcsd integer;

VAR data InfoBufType;
dlen

VAR flags
VAR opt
VAR result
EXTERNAL;

integer;
integer;
byte_array_type;
integer);

PROCEDURE IPCSHUTDOWN
(vcsd integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

$ TITLE 'Internal Procedures', PAGE $

PROCEDURE Error Routine
(VAR where -name_of_call_array_type;

what integer;
sd : integer);

FORWARD;

PROCEDURE HandleNewRequest;
FORWARD;
{ A new client wants to talk to us, complete the vc establishment}

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

FORWARD;

PROCEDURE ProcessRead
(map_offset ShortInt);
FORWARD;
{ Process the read that is waiting on a particluar vc }

A-46 Sample NetlPC Programs

PROCEDURE ReadData
(VAR c 1 ient_buf

VAR output_buf
FORWARD;

Buffer_Type;
InfoBufType);

{ Read the data from the file, prepare for the IPCSend call. }

PROCEDURE SetUp;
FORWARD;
{ Create a call socket using a well-known address}

PROCEDURE ShutdownVC
(map_offset : ShortInt);
FORWARD;
{ Shut down a vc that the client no longer needs}

$ TITLE 'Error_Routine', PAGE $
PROCEDURE Error Routine

(VAR where -name_of_call_array_type;
what : integer;
sd : integer);

BEGIN {Error_Routine}

writeln('Server: Error occurred in " where,' call.');
writeln('Server: The error code is: " what:5,

The local descriptor is: " sd:4);

GO TO 99;

END; { Error_Routine}

$ TITLE 'HandleNewRequest', PAGE $
PROCEDURE HandleNewRequest;
{ A new client wants to talk to us, complete the vc establishment}
VAR

result : Integer;
vc_sd : Integer;

BEGIN {HandleNewRequest}

Initialize_Option(option);

{ Accept the connection for this new vc. }
IPCRecvCn(call_sd, vc_sd, flags_array, option, result);
IF result <> ZERO THEN

BEGIN { error on ipcrecvcn }
call name := 'IPCRECVCN ';
Error Routine(call name,result, vc sd);
END; - { error-on ipcrecvcn } -

{ Increment the total number of active vcs for the server}
vc_count := vc_count + 1;

Sample NetiPC Programs A-47

{ Now set the read and exception maps for this new vc }
rmap.bits[vc_sd] := TRUE;
xmap.bits[vc_sd] := TRUE;

{ Set the timeout to infinity with IPCControl for later calls}
flags_array := 0;
control_value := 0;
timeout_len := 2;

IPCControl(vc_sd, CHANGE_TIMEOUT, control_value, timeout_len,
dummy_parm, dummy_len, flags_array, error_return);

IF error_return <> ZERO THEN
BEGIN

{}

call name := 'IPCCONTROL';
Error_Routine(cal l_name, error_return , vc_sd);
END;

{ Check if we have reached the maximum number of sockets.
{ If so, disallow any new requests by clearing the exception
{ map for the call socket.
{}
IF vc count = MAX SOCKETS -1 THEN

BEGIN {rea~hed socket limit}

xmap.bits[call_sd] := FALSE;
END; { reached socket limit}

END; { HandleNewRequest }

$ TITLE 'Initialize_Option " PAGE $

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

VAR
opt_num_arguments ShortInt;
result ShortInt;

BEGIN

opt_num_arguments := 0;
INITOPT(opt_parameter,opt_num_arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }
call name := 'INITOPT ;
Error Routine(call name, result, 0);
END; - { error on initopt }

END; {Initialize_Option}

$ TITLE 'ProcessRead', PAGE $
PROCEDURE ProcessRead

(map_offset ShortInt);

A-48 Sample NetlPC Programs

{ Process the read that is waiting on a particluar vc }
VAR

buffer_len
client_buf
data_buf
result
vc_sd

Integer;
Buffer_type;
InfoBufType;
Integer;
Integer;

BEGIN {ProcessRead }
{ There is a pending read on a vc. Do an IPCRecv on the vc }
flags array := 0;
Initialize_Option(option);

vc_sd := map_offset;

{ Get the name this client wants data for}
buffer_len := BUFFERLEN;

IPCRecv(vc sd, client buf, buffer len,
flags_array, option~ result); -

IF result <> ZERO THEN
BEGIN { error on ipcrecv }
call name := 'IPCRECV ';
Error Routine(call name,result,vc sd);
END; - { error-on ipcrecv} -

{ Get the data we need from the file to send to the client}
ReadData(client_buf, data_buf);
buffer_len := INFOBUFLEN;

IPCSend(vc sd, data buf, buffer_len, flags_array,
option, result);-

IF result <> ZERO THEN
BEGIN { error on ipcsend }
call name := 'IPCSEND ';
Error Routine(call name,result,vc sd);
END; - { error-on ipcsend} -

END; { ProcessRead }

$ TITLE 'ReadData', PAGE $
PROCEDURE ReadData
(VAR client buf : Buffer_Type;

VAR output=buf : InfoBufType);
{ Read the data from the file, prepare for the IPCSend call. }

CONST

VAR

LAST REC = 4;

current_rec
datafile
info_buf

ShortInt;
TEXT;
InfoBufType;

Sample NetiPC Programs A-49

infofile
found
name_buf

Buffer_Type;
Boolean;
Buffer_Type;

BEGIN { ReadData }

{}
{ Open the file named datafile. Search until the last record
{ is found, or we match the user name the client wants.
{ If there is a match, retreive the remaining data from the
{ file, and prepare to send it back.
{
{ If there is no match, return name not found to the client.
{}

found := FALSE;
current_rec := 1;
infofile := 'datafile';

RESET(datafile, infofile);

WHILE (NOT found) AND (current rec <= LAST_REC) DO
BEGIN {search the file} -

{}

READLN(datafile, name_buf, info_buf);

IF client buf = name buf THEN
BEGIN - {found a match }
{}
{ We found the name the client requested in the file.
{ Set the flag to fallout of the while loop, and
{ get the buffer to be sent to the client.
{}
writeln('Server: " client_buf, , information found.');

found := TRUE;
output_buf := info_buf;

END; { found a match}

{ increment to test the next record in the file}
current_rec := current_rec +1;

END; { search the file}

{ We've fallen out of the WHILE loop because there is a match,
{ or we reached the end of the file. Find out which one it is.
{}

IF NOT found THEN
BEGIN { didn't find the requested name}

A-50 Sample NetiPC Programs

{}
{ We didn't find the data in the file. Put an error
{ message in the data buffer.
{}
writeln ('Server: " client_buf, ' not in file.');

output_buf :=
'SERVER did not find the requested name in the datafile.

END; { didn't find the requested name}

END; { ReadData }

$ TITLE 'SetUp', PAGE $
PROCEDURE SetUp;
{ Create a call socket using a well-known address}

BEGIN {SetUp }

{ Set up the opt array for the two parms we will use}
opt_num_arguments := 2;
InitOpt(option, opt_num_arguments, short_error);
IF short error <> ZERO THEN

BEGIN- {error on initopt }
call_name := 'InitOpt';
error return := short error;
Error-Routine(call n~me,error return,call sd);
END; - {error on-initopt } - -

{ Now add the option for the well-known address for the IPCCreate Call}
opt_data := 31767;
AddOpt(option, 0, PROTO_ADDR, INTI6_LEN, opt_data, short_error);
IF short error <> ZERO THEN

BEGIN- {error on AddOpt }
call_name := 'AddOpt';
error return := short error;
Error-Routine(call name,error return,call sd);
END; - {error on-AddOpt} - -

{ Change the backlog queue to the maximum}
opt data := MAX BACKLOG;
AddOpt(option,-I, CHANGE_BACKLOG, INTI6_LEN, opt_data, short_error);
IF short error <> ZERO THEN

BEGIN- {error on AddOpt }
call_name := 'AddOpt';
error return := short error;
Error-Routine(call name,error return,call sd);
END; - {error on-AddOpt} - -

{ Prepare to create a call socket}
socket_kind := CALL_SOCKET;
protocol kind := TCP;

Sample NetiPC Programs A-51

{ clear the flags array}
flags_array := 0;

{}
{A call socket is created by calling IPCCREATE. The value returned
{in the call_sd parameter will be used in the following calls.
{}

IPCCREATE(socket_kind, protocol_kind, flags_array, option,
call_sd, error_return);

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCCREATE ';
Error_Routine(call_name,error_return,call_sd);
END;

Set the call_sd timeout to infinity with IPCControl for later calls}
flags_array := 0;
control_value := 0;
timeout_len := 2;

IPCControl(call_sd, CHANGE_TIMEOUT, control_value, timeout len,
dummy_parm, dummy_len, flags_array, error_return); -

IF error return <> ZERO THEN
BEGIN
call name := 'IPCCONTROL';
Error_Routine(call_name,error_return,call_sd);
END;

{ Now set IPCSelect's bit map for the call socket}
xmap.bits[call_sd] := TRUE;

END; { SetUp }

$ TITLE 'ShutdownVC', PAGE $
PROCEDURE ShutdownVC

(map_offset : ShortInt);
{ Shut down a vc that the client no longer needs}

VAR
resu It
vc sd

BEGIN {ShutdownVC }
{}

Integer;
Integer;

{ The client shut down the vc, or it has gone down due to a
{ Networking problem. Either way, merely accept the shutdown.
{}
flags array := 0;
Initi~lize_Option(option);

A-52 Sample NetiPC Programs

IPCShutdown(vc_sd, flags_array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

{ Decrement the number of active vcs }
vc_count := vc_count -1;

{ Clear the read map and exception map bits for this vc }
rmap.bits[map offset] FALSE;
xmap.bits[map=offset] := FALSE;

{}
{ Always set the exception map for the call socket. That way
{ we'll be sure to re-enable new requests if we were at the
{ limit before this vc was shut down.
{}
xmap.bits[call_sd] := TRUE;

END; { ShutdownVC }

$TITLE 'Server MAIN', PAGE $
BEGIN { Server }

{ Create a call socket with a well known address for the clients to use. }
SetUp;

{}
{ Loop forever waiting to serve clients. If any new clients request
{ service, the exception map will be set on the call socket. If
{ a client asks for information, the read map will be set on the
{ vc socket for that client. When the client has received the data,
{ it will shut down the vc, and the vc socket will have the exception
{ map set. Handle each one of these cases in this loop.
{
{ If any other situations occur, exit out of the loop, and let the
{ NS clean up routines de-allocate the sockets for this server.
{}

WHILE FOREVER = TRUE DO
BEGIN {Forever Do }

{}
{ Set the bit masks to check for all the vcs that we own.
{ The rmap & xmap variables are maintained by ProcessNewRequest
{ and ShutdownVC.
{}
curr_rmap := rmap;
curr_xmap := xmap;

sbound := MAX_SOCKETS;
timeout := INFINITE_SELECT;

{}
{ Do an exceptional select on the call socket, and on all vcs

Sample NetlPC Programs A-53

{ we own. Do a read select on all the vc sockets.
{}

IPCSelect(sbound, curr_rmap, curr_wmap, curr_xmap,
timeout, error_return);

IF error return <> ZERO THEN
BEGIN- { Select Error}
call name := 'IPCSELECT ';
Error Routine(call name,error return,call sd);
END; - { Select Error} - -

{ See if there are any clients requesting information}
IF (rmap.longint[l] <> 0) OR (rmap.longint[2] <> 0) THEN

BEGIN {Process read on VC sockets }

{ We have someone to service. Find out who it is. }
FOR map_offset := 1 TO MAX_SOCKETS DO

BEGIN { check all vcs }

IF curr_rmap.bits[map_offset] = TRUE THEN
BEGIN {have read on a vc }

{}
{ We know the client who needs service,
{ Do an IPCRecv, get the necessary data,
{ and do an IPCSend to send it back.
{}
ProcessRead(map_offset);

{ have read on a vc }
{ check all vcs }

END;
END;

END; { Process read on VC sockets }

{ See if any clients have sent a message to the call socket}
IF curr_xmap.bits[call_sd] = TRUE THEN

{}

BEGIN { new request on the call socket}

n
{ We have a new client, go do an IPCRecvCn, and set the
{ bit masks to accept reads and exceptions on the new vc.
n
HandleNewRequest;

{ Clear the call socket xmap bit to simplify the test for the ves }
curr_xmap.bits[call_sd] := FALSE;

END; { new request on the call socket}

{ If we get an exception on a vc socket, shut it down. The client
{ knows to shut down a socket once it has received the data it needs.
{}
IF (curr_xmap.longint[l] <> 0) OR (curr_xmap.longint[2] <> 0) THEN

BEGIN { cheek for errors on vc sockets }

A-54 Sample NetiPC Programs

99:

{}

{ One vc had an exception, find out which one}
FOR map_offset := 1 TO MAX_SOCKETS DO

BEGIN { check all vcs }

IF curr_xmap.bits[map_offset] = TRUE THEN
BEGIN {shut down the vc }

{}
{ Do an IPCShutdown on the vc, and clear
{ its bit in both the read and exception maps.
{}

ShutdownVC{ map_offset);

{ shut down the vc }
{ check all vcs }

END;
END;

END; { check for errors on vc sockets }

END; { Forever Do }

{ We have some problem, the NS cleanup routine will shut down
{ All the sockets we own once the program has terminated.
{}

END. {Server}

Sample NetlPC Programs A-55

Example 10: Cross-System Client in
PASCAL
PROGRAM Client(input, output);

{--}
{ }
{ Client: IPCSelect Client Sample Program }
{ Revision: <870610.1327> }
{--}
{
{
{--}
{ COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
{ All rights reserved. No part of this program may be photocopied,
{ reproduced or translated into another programming language without
{ the prior written consent of the Hewlett-Packard Company.
{--}
{
{--}
{ Reloc: 91790-16###
{ Prgmr: «lms»
{ Date: <870610.1327>
{--}
{
{
{ PURPOSE:
{ To show the operation of the IpcSelect() call.
{
{ REVISION HISTORY
{}
LABEL

89,
99;

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE_TIMEOUT = 3;
FOREVER = TRUE;
INFINITE_SELECT = -1;
INFOBUFLEN = 60;
INn6_LEN = 2;
LENGTH_OF_DATA = 20;
MAX_BUFF_SIZE = 1000;
MAX_RCV_SIZE = 4;
MAX_SEND_SIZE = 3;
MAX_SOCKETS = 32;
INTEGER_LEN = 2;

A-56 Sample NetlPC Programs

TCP = 4;
ZERO = 0;

TYPE

BitMapType = RECORD
CASE Integer OF
1: (bits
2: (longint
3: (ints
END;

byte = O .. 255;

PACKED ARRAY[1 .. 32] OF Boolean);
Integer);
ARRAY[1 .. 2] OF ShortInt);

byte_array_type = packed array [1 .. 8] of byte;
buffer type = packed array [1 .. BUFFERLEN] of char;
InfoBufType = packed array [1 .. INFOBUFLEN] of char;
name of call array type = packed array [1 .. 10] of char;
name=ar~ay_type = packed array [1 .. 7] of char;

VAR
buffer len
ca ll_name
ca ll_sd
control_value
data_buf
dUlT1l1y_len
dUlT1l1y_parm
error_return
flags_array
node_name
node_name_len
opt_data
opt_num_arguments
option
proto_addr
protocol_kind
req_name_len
requested_name
short_error
socket_kind
temp_position
timeout
timeout_len
vc_sd

$TITLE 'IPC Procedures', PAGE $
PROCEDURE ADDOPT

(VAR opt
argnum
optcode
data_len

VAR data
VAR error
EXTERNAL;

byte_array_type;
ShortInt;
ShortInt;
ShortInt;
ShortInt;
ShortInt) ;

Integer;
name_of_call_array_type;
integer;
ShortInt;
InfoBufType;
Integer;
Integer;
Integer;
integer;
Buffer_Type;
Integer;
ShortInt;
ShortInt;
byte_array_type;
ShortInt;
Integer;
Integer;
Buffer_Type;
ShortInt;
Integer;
ShortInt;
Integer;
Integer;
Integer;

Sample NetiPC Programs A-57

PROCEDURE INITOPT
(VAR opt

num_args
VAR error
EXTERNAL;

byte_array_type;
ShortInt;
ShortInt) ;

PROCEDURE IPCConnect
(call_sd Integer;

pathdesc Integer;
VAR flags Integer;
VAR opt Byte_array_type;
VAR vc_sd Integer;
VAR error Integer);
EXTERNAL;

PROCEDURE IPCControl
(socket integer;

request integer;
VAR wrtdata ShortInt;

wrtlen Integer;
VAR data Integer;
VAR datalen Integer;
VAR flags Integer;
VAR result Integer);
EXTERNAL;

PROCEDURE IPCCREATE
(socket

protocol
VAR flags
VAR opt
VAR csd
VAR result
EXTERNAL;

PROCEDURE IPCNAME
(descriptor

VAR name
nlen

VAR result
EXTERNAL;

PROCEDURE IPCDEST
(sock_kind

VAR node_name
name_len
protocol

VAR protoaddr
proto_len

VAR flags
VAR opt
VAR pathdesc
VAR result

EXTERNAL;

integer;
integer;
integer;
byte_array_type;
integer;
integer) ;

integer;
name_array_type;
integer;
integer);

Integer;
Buffer_Type;
Integer;
Integer;
ShortInt;
Integer;
integer;
byte_array_type;
Integer;
Integer);

A-58 Sample NetiPC Programs

PROCEDURE IPCRECVCN
(csd integer;

VAR vcsd integer;
VAR flags integer;
VAR opt byte array type;
VAR result integer);-

EXTERNAL;

PROCEDURE IPCRECV
(csd : integer;

VAR data InfoBufType;
VAR dlen : integer;
VAR flags : integer;
VAR opt byte_array_type;
VAR result: integer);
EXTERNAL;

PROCEDURE IPCSelect
(VAR sbound Integer;

VAR rmap BitMapType;
VAR wmap BitMapType;
VAR xmap BitMapType;

timeout: Integer;
VAR result: Integer);
EXTERNAL;

PROCEDURE IPCSEND
(vcsd integer;

VAR data buffer_type;
dlen integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

PROCEDURE IPCSHUTDOWN
(vcsd integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

$ TITLE 'Internal Procedures', PAGE $

PROCEDURE Get Len
(VAR buffer Buffer_Type;

VAR current_pos ShortInt;
VAR length Integer);

FORWARD;
{ Get the length of a string. Return the next post ion }

PROCEDURE Error Routine
(VAR where -name_of_call_array_type;

what : integer;

Sample NetlPC Programs A-59

sd : integer);
FORWARD;

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

FORWARD;

PROCEDURE SetUp;
FORWARD;
{ Create a call socket, connect to server using IPCDest }

PROCEDURE ShutdownSockets;
FORWARD;
{ Shut down the call and vc sockets}

$ TITLE 'Error_Routine', PAGE $
PROCEDURE Error_Routine

(VAR where name_of_call_array_type;
what : integer;
sd : integer);

BEGIN { Error_Routine}

writeln('Client: Error occurred in " where,' call.');
writeln('Client: The error code is: " what:5,

'. The local descriptor is: " sd:4);

GOTO 89;

END; { Error_Routine}

$ TITLE 'GetLen',
PROCEDURE GetLen
(VAR buffer

PAGE $

Buffer_Type;
ShortInt;
Integer);

VAR current_pos
VAR length

{ Get the length of a string. Return the next post ion }

VAR
ShortInt;

BEGIN { GetLen }
{}
{ Find the first blank in the string. Return the difference
{ between the blank position, and the initial value of current_pos
{}

WHILE buffer[current_pos] <> ' , DO
current_pos := current_pos + 1;

A-60 Sample NetiPC Programs

{ set the length value for the caller}
length := current_pos - orig_pos;

{ increment beyond the space, for the next time}
current_pos := current_pos + 1;

END; { Get Len }
$ TITLE 'Initialize_Option', PAGE $

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

VAR
opt_num_arguments : ShortInt;
result : ShortInt;

BEGIN {Initialize_Option}

opt_num_arguments := 0;
INITOPT(opt_parameter,opt_num_arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }
call name := 'INITOPT ;
Erro~ Routine(call name, result, 0);
END; - { error on initopt }

END; {Initialize_Option}

$ TITLE 'SetUp', PAGE $
PROCEDURE SetUp;
{ Create a call socket using a well-known address}

VAR
pathdesc : Integer;

BEGIN {SetUp }

{ Prepare to create a call socket}
socket_kind := CALL_SOCKET;
protocol kind := TCP;

{ clear the flags and option arrays
flags array := 0;
Initi~lize_Option(option);

{}
{A call socket is created by calling IPCCREATE. The value returned
{in the call sd parameter will be used in the following calls.
{} -

IPCCREATE(socket_kind, protocol_kind, flags_array, option,
call_sd, error_return);

Sample NetiPC Programs A-61

IF error_return <> ZERO THEN
BEGIN

{}

call name := 'IPCCREATE ';
Error_Routine(cal l_name, error_return , call_sd);
END;

{ The server is waiting on a well-known address. Get the path
{ descriptor for the socket from the remote node.
{}
proto_addr := 31767;
flags_array := 0;

IPCDest(socket_kind, node_name, node_name_len, protocol_kind,
proto addr, INTEGER LEN, flags array, option,
pathd~sc, error_return); -

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCDEST
Error_Routine(cal l_name , error_return , pathdesc);
END;

flags_array := 0;

{ Now connect to the server }
IPCConnect(call_sd, pathdesc, flags_array, option,

vc_sd, error_return);
IF error_return <> ZERO THEN

BEGIN
call name := 'IPCCONNECT';
Error_Routine(cal l_name , error_return , pathdesc);
END;

Set the timeout to infinity with IPCControl for later calls}
flags_array := 0;
control_value := 0;
timeout_len := 2;

IPCControl(vc_sd, CHANGE_TIMEOUT, control_value, timeout_len,
dummy_parm, dummy_len, flags_array, error_return);

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCCONTROL';
Error_Routine(cal l_name , error_return , vc_sd);
END;

flags array := 0;
Initialize_Option(option);

{}
{ Verify the server received the connect req. Wait for the
{ server to do an IPCRecvCn.
{}

A-62 Sample NetlPC Programs

IPCRecv(vc_sd, data_buf, buffer_len, flags_array,
option, error_return);

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCRECV ;
Error_Routine(call_name,error_return, vc_sd);
END;

END; { SetUp}

$ TITLE 'ShutdownSockets', PAGE $
PROCEDURE ShutdownSockets;

VAR
result Integer;

BEGIN {ShutdownSockets}
{}
{ We are terminating this program. Clean up the allocated
{ sockets.
{}
flags array := 0;
Initialize_Option(option);

IPCShutdown(vc sd, flags array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

IPCShutdown(call_sd, flags_array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

END; { ShutdownSockets }

$TITLE 'Client MAIN', PAGE $
BEGIN { Client}

node_name_len := 0;
requested_name := ";

{ Ask the user for the NS node name of the remote node }
Prompt ('Client: Enter the remote node name: ');
Readln(node_name);

temp_position := 1;
GetLen(node_name, temp_position, node_name_len);

{ Create a call socket and connect to the server}
SetUp;

WHILE requested_name <> 'EaT' DO
BEGIN {loop for name }

{ Ask the user for a name to be retrieved }
Prompt ('Client: Enter name for data retrieval: ');
Readln(requested_name);

Sample NetiPC Programs A-63

req_name_len := BUFFERLEN;
flags_array := 0;

IF requested_name <> 'EDT' THEN
BEGIN { continue processing}

{ Ask for the name the user requested }
IPCSend(vc_sd, requested_name, req_name_len, flags_array, option,

error_return);

{ Block waiting for the response back from the server. }
buffer_len := INFOBUFLEN;
flags_array := 0;

IPCRecv(vc sd, data buf, buffer_len, flags_array, option,
error=return);

IF error return <> ZERO THEN
BEGIN - {error on initopt }
call name := 'IPCRECV ';
Error Routine(call name, error return, vc_sd);
END; - { error on initopt }-

{ Print out the data received}
Writeln('Client data is: " data_buf);

END;
END;

89:

{ continue processing}
{ loop for name }

{ Clean up the call and vc sockets}
ShutDownSockets;

99:

END. {Client}

A-64 Sample NetlPC Programs

B

Error Messages

This appendix lists and describes the messages that can be returned to the
resu 7 t and error parameters of NetlPC calls. The ASCII message associated
with each code can be used in C programs. These constants are listed in the
NS include file /usr/i ncl ude/sys/ns_ ipc. h.

0 MESSAGE NSR NO ERROR

CAUSE The call was successful.

ACTION No action is necessary.

3 MESSAGE NSR BOUNDS VIO - -

CAUSE Parameter bounds violation.

ACTION An address references memory to which the user
does not have access rights.

4 MESSAGE NSR NETWORK DOWN - -

CAUSE The network is down. The system is not initialized
for networked operation.

ACTION Use i fconfi 9 1 anO to see if the "down" flag is
displayed. If not, this may be an internal error.
Consult your Network Manager.

Error Messages B-1

5 MESSAGE NSR SOCK KIND - -

CAUSE Illegal socket kind. The calling process attempted
to create a kind of socket that the system does not
support.

ACTION Check the socketki nd parameter to make sure it
matches one of the socket kind supported by the
system.

6 MESSAGE NSR PROTOCOL

CAUSE Illegal protocol. The protocol referenced is not
supported by the system.

ACTION One or more of the following actions may be taken:
(1) Check the protoco 7 parameter to make sure it
matches one of the protocol types supported by the
system; (2) make sure the system supports the
referenced protocol; (3) consider defaulting the
protocol argument to zero, thus letting the system
decide which protocols are best.

7 MESSAGE NSR FLAGS

CAUSE Illegal flags. A fl ag s bit was set that is not
supported.

ACTION Check the f7 ags parameter to make sure that the
correct bits are set. Some calls may return
information through the f7 ags parameter and the
bits returned may not be valid input on subsequent
calls.

8-2 Error Messages

8 MESSAGE NSR OPT OPTION

CAUSE

ACTION

Illegal option. An illegal option was specified in
the opt parameter.

Check the opt parameter to make sure that it was
correctly initialized with in i topt () and that all
options added with addopt () are defined for the
system and system call.

10 MESSAGE NSR KIND AND PROTOCOL

CAUSE

ACTION

- - -

Protocol type mismatch. A protocol and a socket
kind type were specified that are not supported
together.

One or more of the following actions may be taken:
(1) Check the socketki nd and protoco 7
parameters for the correct values; (2) default the
protocol value to zero, thus letting the system
decide which protocols best support the referenced
socket kind.

Error Messages B-3

11 MESSAGE NSR NO MEMORY

CAUSE No memory. The system does not have enough
memory available to support the request. This
error can occur when you attempt to issue an
i pccreate (), i pcconnect (), i pcrecvcn (),
ipclookup(), or ipcdest() call.

ACTION One or more of the following actions may be taken:
(1) release some of the sockets or destination
descriptors that are not currently being used; (2) if
applicable, reduce the service requirements for the
socket being created (eg., by requesting smaller
message sizes); (3) determine if some of the other
programs running on the system can release some
of their networking resources.

14 MESSAGE NSR ADDR OPT - -

CAUSE This error is returned to i pcdest () if an invalid
value is specified in the proto 7 en parameter. The
proto 7 en parameter indicates the length of a
protocol address.

ACTION Check the length specified in the proto 7 en
parameter. For TCP protocol addresses, the
protocol parameter must be 2.

15 MESSAGE NSR NO FILE AVAIL

CAUSE No file table entries are available. Close
unnecessary open files and retry.

ACTION If the error persists, reconfigure a larger File Table.

8-4 Error Messages

18 MESSAGE NSR OPT SYNTAX

CAUSE An error was detected in the option array syntax.

ACTION Check the option array for valid fields.

21 MESSAGE NSR DUP OPTION

CAUSE Duplicate option. At least one of the options in
the opt parameter was specified twice.

ACTION Check arguments input to addopt () when
initializing the opt parameter.

24 MESSAGE NSR_MAX_CONNECTQ

CAUSE Connection queued option error. An error was
detected in the arguments regarding the maximum
number of connections queued option in the opt
parameter.

ACTION Check the addopt () call that was used to put the
NSO _MAX_CONN _REQ option argument in the opt
parameter. Must be less than or equal to 20.

28 MESSAGE NSR NLEN

CAUSE Illegal name length. The name length was either
too large or too small.

ACTION Compare the name length to the acceptable range
for this parameter.

Error Messages 8-5

29 MESSAGE NSR DESC

CAUSE

ACTION

Illegal descriptor. The referenced descriptor is
outside of the acceptable range for socket
descriptors. The descriptor might have been a disc
file descriptor or a closed socket descriptor.

Determine why the value was not within the
acceptable range. One possible reason is that the
call to allocate the descriptor failed. Also check for
socket descriptors that had been already closed.

30 MESSAGE NSR CANT NAME VC

CAUSE

ACTION

- - -

Cannot name VC socket. The calling process tried
to name a VC socket using ipcname().

i pcname () cannot be invoked against VC sockets.

31 MESSAGE NSR DUP NAME

CAUSE

ACTION

8-6 Error Messages

Duplicate name. The name that i pcname () tried
to assign to a socket was already in use.

One of the following actions may be taken: (1)
Pick another name; (2) wait and try again; (3) if
several copies of the same process are funning,
make sure that each process has some way of
generating a unique name. i pcname () has a
random name generation facility that could be
used, or the calling process could wait and try again
later.

36 MESSAGE

CAUSE

ACTION

37 MESSAGE

CAUSE

ACTION

NSR NAME TABLE FULL - - -

Name table full. A process attempted to bind a
name to a socket via i pename () when the system
had no free name records. A name record must be
allocated for each name that is bound to a socket.
When the system runs out of name records, all
succeeding i pename () requests are rejected.

Release some of the names that are bound to
sockets. This may be done using ipenamerase().
Because name records are system-wide resources
shared by all NetlPC programs, the name records
released by one program may be allocated for use
by another.

NSR NAME NOT FOUND

Name not found. A process attempted to obtain a
destination descriptor using i pc lookup (), but the
name specified in the call was not registered in the
referenced socket registry.

One or more of the following actions may be taken:
(1) Make sure that the name specified in the
i pc lookup () call was the one that was intended;
(2) consider that the failure could have been due to
a race condition (the i pel ookup () caller could
have executed its call before the i pen arne () caller
executed its call).

Error Messages 8-7

38 MESSAGE

CAUSE

ACTION

39 MESSAGE

CAUSE

ACTION

40 MESSAGE

CAUSE

ACTION

8-8 Error Messages

NSR NO OWNERSHIP

No ownership. The caller invoked
i pcnamerase () specifying a valid name but one
bound to a socket that the it does not own. Only
the owner of a call socket may purge its name.

Check that the name specified is the one the caller
intended to use.

NSR NODE NAME SYNTAX - - -

Illegal node name. The caller invoked
ipclookup(), ipcdest(),or ipcsetnodename()
passing it a node name having an illegal syntax (for
example, too many levels of hierarchy or too many
characters in one of the name parts).

Verify that the name passed was the intended one
or verify that the length specified for the passed
name was correct.

NSR NO NODE

Unknown node. The caller invoked i pc lookup ()
or i pcdest () with the name of a node that was
unknown to the local node. A local node resolves
a node name by using the PROBE protocol.

One or more of the following actions can be taken:
(1) Verify that the name specified was the intended
one; (2) check to see if the node is down; (3) verify
that the nodename command was executed to
assign the node name or (4) if the node exists on a
remote network, verify that a proxy server exists on
the local network and that it has an entry
configured for the remote node. If the remote
node is non-HP-UX, check that IEEE 802.3 is
turned on locally (use the lanconfig command).

43 MESSAGE NSR CANT CONTACT SERVER - - -

CAUSE Could not send an i pc lookup () request. Problem
may be due to lack of kernal memory or the system
may be heavily loaded.

ACTION Try again.

44 MESSAGE NSR NO REG RESPONSE

CAUSE No socket registry response. A name look up
query was sent to the remote socket reg~stry
referenced in an ipclookup() call, but the registry
never responded. The node upon which the socket
registry resides might be down, unreachable, or the
system may be heavily loaded and not responding.

ACTION If the node crashed, is temporarily unreachable or
heavily loaded, the caller may wait and try again
later. If the remote node is non-HP-UX, use
lanconfig to verify that IEEE 802.3 is turned on
locally.

45 MESSAGE NSR SIGNAL INDICATION - -

CAUSE System call aborted due to signal.

ACTION Retry if appropriate.

Error Messages 8-9

46 MESSAGE NSR PATH REPORT

CAUSE Could not interpret path. The address information
referenced by the specified destination descriptor
contained uninterpretable information. When this
error occurs, it may be indicative of a system
software error. It may also indicate that the
destination descriptor was somehow corrupted
between the time it was generated and the time it
was interpreted.

ACTION Assuming the problem is due to corruption of the
destination descriptor and not a system software
error, try shutting down the referenced destination
descriptor and then performing another
i pel 00 k u p () . If the same error is returned when
the new destination descriptor is used, this error
requires HP notification.

47 MESSAGE NSR BAD REG MSG

CAUSE Received corrupted message from socket registry.

ACTION Retry. If the problem persists, this error requires
HP notification.

50 MESSAGE NSR OLEN

CAUSE Bad length. The data length specified was either
too long or too short.

ACTION One or more of the following actions may be taken:
(1) Verify that the data length specified was the
data length intended; (2) Verify that the size
specified was not larger or smaller than maximum
or minimum permissible receive size of the socket

8-10 Error Messages

51 MESSAGE NSR DEST

CAUSE Not a destination descriptor. The descriptor
specified in the parameter reserved for destination
descriptors did not describe a destination descriptor.

ACTION (1) Verify that the descriptor was the one intended;
(2) Verify that you meant to execute an
ipcdest() or ipclookup() call.

52 MESSAGE NSR PROTOCOL MISMATCH - -

CAUSE Protocol mismatch. The call socket referenced in
an ipccreate() or ipcdest() call is not bound
to any of the protocols that the destination
descriptor references (i.e., there is no way to use
the protocol referenced by the call socket to access
the socket referenced by the destination descriptor).

ACTION One of the following actions may be taken: (1) Do
not specify a particular protocol when creating the
call socket. Instead, use the default protocol value
of zero in i pccreate () 's protoco 7 parameter;
(2) create a new call socket and bind it to a
different protocol and try again.

53 MESSAGE NSR SOCKET MISMATCH - -

CAUSE Socket type mismatch. The destination descriptor
specified in an i pcconnect () call does not
reference a remote call socket. This error occurs
when the remote socket is supported by a system
that supports socket kinds other than those
supported on the local system.

ACTION None, unless the remote application that the
calling process wants to connect to can be modified
to use call sockets.

Error Messages 8-11

54 MESSAGE NSR NOT CALL SOCKET - - -

CAUSE Not a call socket descriptor.

ACTION (1) Verify it is the one intended; (2) Verify the
original i pccreate () call.

56 MESSAGE NSR WOULD BLOCK - -

CAUSE Would block error. The calling process issued a
request that could not be immediately satisfied
against a socket that was in asynchronous mode.

ACTION This is an informational message so no action is
necessary. For more information on asynchronous
I/O, refer to the "NetlPC Concepts" chapter.

59 MESSAGE NSR SOCKET TIMEOUT - -

CAUSE Timed out. The calling process's request timed out.
The request was an ipcselect() call or a NetlPC
call issued against a socket that was in synchronous
mode (the default mode for NetlPC sockets).
Time out errors that occur on calls issued against
VC sockets do not concern the protocol or
connection they reference; protocols use their own
timers to determine if a connection is not
functioning reasonably. Possible scenarios in which
this error could occur include: (1) An i pcsend ()
call could not obtain the buffer space needed to
accommodate its data within the synchronous
time-out interval; (2) an i pcrecv () call's request
for data could not be satisfied within the
synchronous time-out interval; (3) a connection
request was not received by an i pcrecvcn () call
within the synchronous time-out interval; (4) a
process attempted to send or receive data before a
virtual circuit connection was established.

ACTION Check your programs to make sure that the event

8-12 Error Messages

the socket is expecting will indeed occur. In
scenarios 1 through 3 above, you should also
consider modifying the socket's associated time out
interval. Refer to the discussion of i pccont ro 1 ()
in the "NetIPC Calls" chapter for information on
adjusting the synchronous time-out. If scenario 4
has occurred, make sure your programs are
synchronized as shown in the "NetIPC Concepts"
chapter.

60 MESSAGE NSR NO DESC AVAIL

CAUSE

ACTION

The file descriptor limit was exceeded. The calling
process attempted to gain access to a new socket
descriptor or destination descriptor even though it
already owned the maximum permissible number of
descriptors (60).

The process must release one of the socket
descriptors or destination descriptors that it owns
and then retry the request.

Error Messages 8-13

62 MESSAGE NSR CNCT PENDING

CAUSE i pcrecv () expected. An attempt was made to
manipulate a VC socket whose corresponding
connection had been initiated with i pcconnect ()
but whose successful establishment had not been
completed via i pcrecv (). A user cannot send or
receive on a VC socket that was created with
i pc connect () without first having called
i pcrecv () to complete the establishment
sequence.

ACTION Call i pcrecv () to verify that the connection
referenced by the VC socket came up before trying
to send or receive again.

64 MESSAGE NSR REMOTE ABORT

CAUSE Connection aborted. The connection underlying a
VC socket has been aborted either by the protocol
handler running on the local node because it was
unable to contact its peer protocol handler at the
remote end of the connection, or by the protocol
handler on the node at the other end of the
connection. This error may be returned when (1)
the remote node is down, (2) some network links
are malfunctioning, (3) the network is extremely
congested, (4) the user of the connection told the
remote protocol handler to abort the connection,
or (5) the remote process aborted. This error can
be used to detect that the remote peer has
completed transmission and has shut down the
connection.

ACTION Consult your Network Manager for assistance in
diagnosing the problem.

8-14 Error Messages

65 MESSAGE

CAUSE

ACTION

66 MESSAGE

CAUSE

ACTION

NSR LOCAL ABORT - -

Connection aborted. The connection underlying a
VC socket has been aborted by the protocol
handler running on the local node because it was
unable to contact its peer protocol handler at the
remote end of the connection. This error may be
returned when (1) the remote node goes down, (2)
some network links are malfunctioning, (3) the
network is extremely congested, (4) or the
connection could not be established because there
is not a common encapsulation method.

Consult your Network Manager for assistance in
diagnosing the problem. Use the lanconfig
command to verify that the local and remote nodes
have a common encapsulation method (IEEE or
Ethernet).

NSR NOT CONNECTION

Not a VC socket. The descriptor specified in the
parameter reserved for VC socket descriptors did
not describe a VC socket.

One or more of the following actions may be taken:
(1) Verify that the descriptor specified was the one
that the calling process intended to specify; (2)
verify that the original call to create the VC socket
succeeded; (3) do not use Berkeley sockets with
N etlPC calls.

Error Messages 8-15

74 MESSAGE NSR_REQUEST

CAUSE Illegal request. The request code passed in an
i pccontro 1 () request was not valid. Or, the
request is not valid for the kind of socket.

ACTION One or more of the following actions may be taken:
(1) Verify that the request code specified was the
intended one; (2) verify that the request code is
supported on the local system (consult the "NetIPC
Concepts" chapter); (3) Verify that the request is
meaningful for the kind of socket.

76 MESSAGE NSR TIMEOUT VALUE - -

CAUSE Illegal time out value. The i pccont ra 1 () or
i pcse 1 ect () request invoked by the calling
process specified a time out value that was invalid.

ACTION One or more of the following actions may be taken:
(1) Verify that the time out value specified was the
intended value; (2) consult the "NetIPC Concepts"
chapter to~ make sure the value is acceptable.

99 MESSAGE NSR VECT COUNT - -

CAUSE Bad vector data length. The calling process
specified a data vector argument that contained a
negative length field.

ACTION Recheck the initialization of the data vector.

8-16 Error Messages

100 MESSAGE NSR TOO MANY VEeTS - - -

CAUSE Too many vectored data descriptors.

ACTION Recode your program so that the number of
vectored data descriptors is within acceptable
limits. Refer to the "NetIPC Concepts" chapter
for information on data vectors.

106 MESSAGE NSR DUP ADDRESS

CAUSE Address in use. The caller process requested that
its call socket descriptor be bound to a particular
protocol address, but the address was already
bound to another call socket descriptor.

ACTION One or more of the following actions may be taken:
(1) Verify that the address specified was the
intended one; or (2) check to make sure there are
not duplicate copies of the program running.

109 MESSAGE NSR REMOTE RELEASED - -

CAUSE The remote endpoint of the connection has been
released. You can continue to send on the local
endpoint, but data will not be received.

ACTION This is an informational message only. No action is
required.

Error Messages 8-17

116 MESSAGE NSR DEST UNREACHABLE - -

CAUSE No usable paths. The local node's protocol
software cannot connect to the remote node
described by the destination referenced by a passed
destination descriptor. This could occur because
the local node does not know where the remote
node's network is, or because the remote node
does not support the same protocols as the local
node.

ACTION Obtain a new destination descriptor using
i pc lookup (). If this is not successful, ask the
System Manager to verify that the correct routing
information is configured locally so that the remote
network can be reached. Also, determine which
protocols are supported by the remote node.

118 MESSAGE NSR VERSION

CAUSE Version number mismatch.

ACTION Make sure that all processes are running on nodes
with the same version of the LAN software.

124 MESSAGE NSR OPT ENTRY NUM - -

CAUSE Bad entry number specified.

ACTION Check syntax of opt structure.

125 MESSAGE NSR OPT DATA LEN - - -

CAUSE Bad option data length. The data length specified
in the addopt () or readopt () call was invalid.

ACTION Verify that the value passed was the intended value.

8-18 Error Messages

126 MESSAGE NSR OPT TOTAL

CAUSE

ACTION

Bad option total. in i topt () was invoked
specifying that the number of eventual entries to
be placed into the opt parameter would be either
fewer than zero or greater than the maximum
possible number of opt entries.

One or more of the following actions may be taken:
(1) Verify that the value passed for the eventual
number of entries argument was the intended
value; (2) recalculate the number of entries that
will actually be needed.

127 MESSAGE NSR OPT CANTREAD

CAUSE

ACTION

Cannot read option. The opt entry specified in the
readopt () call was not initialized.

One or more of the following actions may be taken:
(1) Verify that the opt parameter was properly
initialized with in i topt (); (2) verify that the
referenced entry was set up properly with
addopt ().

Error Messages 8-19

1002 MESSAGE NSR THRESH VALUE

CAUSE

ACTION

- -

Bad threshold value. This error is returned for one
of the following reasons: (1) an illegal read
threshold was specified, or (2) an illegal write
threshold was specified.

Verify that the value passed was the intended value
and that it was not negative or zero or greater than
the socket's maximum receive size specified when
the socket was created.

2003 MESSAGE NSR NOT ALLOWED

CAUSE

ACTION

User not a super user. The caller attempted to use
functionality restricted to super users.

This is an informational message only. No action is
required.

2004 MESSAGE NSR MSGSIZE

CAUSE

ACTION

8-20 Error Messages

The message size being used is too large for the
protocol. This error if a process requests a
maximum send or receive size larger than the
maximum allowed or if a process attempts to send
or receive more than the number of bytes set in the
i pcconnect () or i pcrecv () call.

Make sure your i pcconnect () or i pcrecv () call
does not attempt to set the maximum send and
receive sizes to larger than 32,767 bytes. Also,
make sure your process does not attempt to send
or receive more bytes than specified by the
i pcconnect () call or i pcrecv () call for that
connection.

2005 MESSAGE NSR ADDR NOT AVAIL

CAUSE

ACTION

- - -

Tries to connect to an unavailable protocol address.

(1) Verify the destination descriptor was the one
intended to use, or, (2) Verify the protocol address
is correct and available for connection.

Error Messages 8-21

C

System Calls and NetlPC Sockets

NetlPC processes make use of sockets via the NetlPC calls to establish
connections and exchange data. The Transport Layer's Transmission Control
Protocol (TCP) regulates the transmission of data to and from sockets.
N etlPC processes reference sockets with socket descriptors. Socket
descriptors are returned to processes when certain NetlPC calls are invoked.
Socket descriptors are allocated from the same space as file descriptors.
Therefore, sockets are accessible through the standard HP-UX file system
calls.

Table C-l describes HP-UX system calls that operate on NetlPC sockets.
The NetlPC calls are described in the "NetlPC Calls" chapter. HP-UX
system calls are described in the HP-UX Reference Manual.

System Calls and NetiPC Sockets C-1

Table C-1. System Calls and NetlPC Sockets

HP-UX Call Description

acct() The ac _ i 0 field in accounting file records will be updated.

close() When close () is used on a NetIPC socket, it does not
guarantee that any data buffered will actually be sent.

dup() Supported as described in the HP-UX Reference Manual.

exec () Sockets remain open over exec () and/or execve ().
execve()

fchown() Not supported for NetIPC sockets.

fork() Socket descriptors are inherited by the child process.
Refer to the "NetIPC Concepts" chapter for more
information on shared socket descriptors.

fstat() The s tat structure is undefined.

read () Supported as described in the HP-UX Reference Manual
for VC sockets only.

select() Read and write thresholds for sockets are supported.
Read, write and exception conditions for sockets are
defined in the "NetIPC Calls" chapter.

ulimit() No limits are currently supported for NetIPC usage.

write() Supported for VC sockets only.

C-2 System Calls and NetlPC Sockets

D

LAN/9000 Series 600/800 Migration

This appendix provides an introduction to LAN/9000 Series 600/800 for users
who are current DS/l000-IV, NS/l000 or NS/9000 Series 200 or 500
customers. Because it addresses three different audiences, this appendix is
organized into three different sections:

• LAN/9000 Series 600/800 for DS/IOOO-IV Users. This section compares
DS/lOOO-IV and LAN/9000 Series 600/800.

• NS/IOOO to LAN/9000 Series 600/800 Migration. This section compares
NS/lOOO and LAN/9000 Series 600/800. For information on porting
NS/lOOO applications to LAN/9000 Series 600/800, see the "Porting NetIPC
Programs" appendix.

• NS/9000 to LAN/9000 Series 600/800 Migration. This section compares the
NS/9000 product provided on the HP 9000 Series 200 and 500 to LAN/9000
Series 600/800.

Note For information on migrating from DS/l000-IV, NS/l000 or
NS/9000 to NS/9000 Series 600/800, refer to the Using Network
Services (NS)/9000 Series 600/800 manual.

LAN/9000 Series 600/800 Migration 0-1

LAN/9000 Series 600/800 for OS/1000-IV
Users
LAN/9000 Series 600/800 and DS/1000-IV do not share any common user
services. As a result, programs written using DS/1000-IV calls are not
transportable to LAN/9000 Series 600/800 systems.

Migration Analysis Utility
In order to help customers migrate from DS/1000-IV to LAN/9000 Series
600/800, Hewlett-Packard has developed a utility that reads R TE program
source files and flags DS/1 000-IV calls. This program can be used as an aid in
determining the difficulty of converting a program to use LAN/9000 Series
600/800 calls and in locating calls that must be modified.

For more information about this utility, refer to the PORT/HP-UX Migration
Analysis Utility Manual (92561-90002).

Feature Comparison
Table D-1 maps the DS/1000-IV services to LAN/9000 Series 600/800 and
NS/9000 Series 600/800 services with similar functionality. There is no
one-to-one correspondence between DS/IOOO-IV and LAN/9000 Series 600/800
or NS/9000 Series 600/800 services.

Table 0-1. OS/1 OOO-IV vs. LAN & NS/9000 Series 800

Similar LAN & NS/9000
OS/1 OOO-IV Service Series 800 Service

Program-to-Program Network Interprocess
Communication (PTOP) Communication (NetlPC)

REMAT Network File Transfer (NFT)

RMOTE Network File Transfer (NFT)

0-2 LAN/9000 Series 600/800 Migration

Note Network File Transfer are services provided by NS/9000 Series
600/800. Refer to the Using Network Services (NS)/9000 Series
600/800 manual for a detailed comparison of DS/1000-IV and
NS/9OOO Series 600/800 product features.

DS/looo-IV and LAN/9OOO Series 600/800 share two similar services: PTOP
and NetIPC. The following paragraphs compare these services.

Interprocess Communication
The DS/looo-N service Program-to-Program Communication (PTOP) allows
a master program to exchange information with and control the execution of
a slave program. PTOP calls are divided into two categories, master calls and
slave calls. The master and the slave programs may be located at the local
node, or one may be at the local node and the other may be at a remote node.
DS/1ooo-N PTOP programs can communicate with other PTOP programs on
remote DS/1 000-IV or DS/3ooo nodes.

LAN/9OOO Series 600/800 provides a service similar to PTOP called Network
Interprocess Communication (NetIPC) which is documented in this manual.
NetIPC allows two or more peer processes to exchange information; one
program does not control the execution of another. Because NetIPC operates
in a peer-to-peer rather than master-to-slave fashion, any NetIPC process can
use any of the NetIPC calls. As a result, the form of interprocess
communication offered by NetIPC is more flexible than that provided by
PTOP. NetIPC peer processes may be located on the same or different nodes.

NetIPC processes establish connections with other processes via sockets. A
NetIPC process can engage in a dialogue that references certain sockets in
order to create a connection with another NetIPC process. Several NetIPC
calls are provided to allow processes to engage in this dialogue. Once a
connection, called a virtual circuit, is established, the processes may exchange
data. A LAN/9OOO Series 600/800 N etIPC process can communicate with
other N etIPC processes on remote LAN /9000 Series 600/800 and NS/1000
nodes only.

Unlike PTOP, NetIPC does not provide a call to schedule a remote process.
Remote processes must be manually started or can be daemons that are
started at system start up.

LAN/9000 Series 600/800 Migration 0-3

Table D-2 maps the DS/1000-N PTOP calls to similar LAN/9000 Series
600/800 NetIPC calls. Most of the NetIPC calls have no PTOP equivalents;
therefore, they are not listed in the table. These calls are not similar to any
PTOP calls because they are primarily used to create and establish virtual
circuit connections. The NetIPC calls that have no PTOP equivalents include
ipcconnect(), ipccreate(), ipcdest(), ipclookup(), ipcname(),
ipcnamerase(), ipcrecvcn(), ipcselect(), addopt(), initopt(), and
readopt ().

Table 0-2. PTOP Calls vs. NetlPC Calls

PTOP NetlPC
Call Call Comparison

POPEN No similar Series 600/800 NetIPC does not provide a
NetIPC call. call to schedule a peer process.

PREAD ipcrecv() PREAD allows a PTOP master program to
receive data contained in the buffer
parameter of a slave program's ACEPT call.
The master program must call PREAD
before the slave program can transmit data
via an ACEPT call. i pcrecv () allows a
NetIPC process to receive data queued on
a virtual circuit connection. The data
becomes queued on this connection when
another NetIPC process calls i pc send ().

PWRIT ipcsend() PWRIT allows a PTOP master program to
transfer data contained in its buffer
parameter to the buffer parameter of a
slave program's GET call. i pcsend ()
allows a NetIPC process to send data on a
virtual circuit connection. The data
becomes queued on this connection and
may be dequeued by another N etIPC
process when that process calls ipcrecv ().

D-4 LAN/9000 Series 600/800 Migration

Table 0-2. PTOP Calls vs. NetlPC Calls-con't

PTOP NetlPC
Call Call Comparison

PCONT ipcsend() PCONT allows a PTOP master program to
transfer data contained in its tag
parameter to the tag parameter of a slave
program's GET call.

PCLOS ipcshutdown() PCLOS allows a PTOP master program to
terminate a slave program. If the slave
program resides on an HP 1000 node,
PC LOS also terminates logical
communication with that node.
i pcshutdown () may be used to abort a
virtual circuit connection. This terminates
logical communication with a peer process
over that connection. i pcshutdown () can
not be used to terminate a peer process;
NetlPC does not provide a call with this
functionality.

PNRPY ipccontrol() PNRPY allows a PTOP master program to
issue PWRIT, PCONT and PCLOS requests
asynchronously. Master programs that use
this call will not be suspended when they
issue requests to send data to, or to
terminate, slave programs. The NetlPC
call i pccont ro 1 () may be used to enable
asynchronous I/O between N etlPC
processes. Unlike PNRPY, ipccontrol ()
allows processes to both send and receive
data asynchronously by placing the sockets
shared by the processes in asynchronous
mode.

LAN/9000 Series 600/800 Migration 0-5

Table 0-2. PTOP Calls vs. NetlPC Calls-con't

PTOP NetlPC
Call Call Comparison

GET ipcrecv() The main function of the PTOP slave call
GET is to receive master program requests
(PWRIT, PREAD, etc.) However, the tag and
buffer parameters of the GET call can be
used to receive data sent by the master
program. The NetlPC call ipcrecv() is
similar to GET only in that it allows a
process to receive data. (Refer to the
discussion of PREAD above for more
information on i pcrecv ().)

ACEPT i pcrecv () and The PTOP slave call ACEPT allows PTOP
ipcsend() slave programs to receive data from, and

send data back, to PTOP master programs.
When a master program sends data via a
call to PWRIT, the buffer parameter of the
AC E PT call can be used to receive the data.
When a master program requests data via a
call to PREAD, the ACEPT's buffer
parameter contains the data that will be
transmitted to the master program. The
AC E PT call also contains a tag parameter
that can be used to send data to the master
program. The ACEPT call's data
acceptance and transmission functions are
similar to i pcrecv () and i pcsend (),
respectively. (Refer to the discussion of
PWRIT and PREAD above for more
information on these NetlPC calls.)

0-6 LAN/9000 Series 600/800 Migration

Table 0-2. PTOP Calls vs. NetlPC Calls-con't

PTOP NetlPC
Call Call Comparison

REJCT ipcsend() The main function of the PTOP slave call
REJCT is to reject a master request. REJCT
also contains a tag field that can be used to
transmit data back to the master program.
This secondary feature of REJCT is similar
to the NetlPC call i pcrecv (). (Refer to
the discussion of PREAD above for more
information on ipcrecv().)

FINIS ipcshutdown() The PTO P slave call FIN I S is similar to
the PTOP master call PCLOS in that it
terminates communication between two
programs. The N etlPC call
i pcshutdown () terminates logical
communication over a certain connection.

LAN/9000 Series 600/800 Migration D-7

NS/1000 to LAN/9000 Series 600/800
Migration
NS/1000 and LAN/9000 Series 600/800 share the same HP AdvanceNet NS
user service N etIPC. NS/1000 and NS/9000 Series 600/800 also share the
same HP AdvanceNet NS user service Network File Transfer (NFl}

Refer to Appendix E, "Porting NetIPC Programs," in this manual for
information regarding transporting NS/1000 NetIPC programs to the
LAN/9000 Series 600/800 programming environment. Refer to the Using
Network Services (NS)/9000 Series 600/800 manual for a detailed comparison
of the NS/1000 and NS/9000 Series 600/800 Nfl implementations.

As shown in the previous section, "LAN/9000 Series 600/800 for DS/1000-IV
Users," NS/1000's DS/1000-IV Compatible Services (Remote File Access,
Distributed Executive, Program-to-Program Communication, REMAT,
RMOTE and Remote File Access) are not supported on LAN/9000 Series
600/800 nodes.

In order to help customers migrate from DS/1000-IV to LAN/9QOO Series
600/800, Hewlett-Packard has developed a utility that reads RTE program
source files and flags DS/1000-IV calls. This program can be used as an aid in
determining the difficulty of converting a program to use LAN/9000 Series
600/800 calls and in locating calls that must be modified. For more
information about this utility, refer to the PORT/HP-UX Migration Analysis
Utility Manual (92561-90002).

Table D-3 maps the NS/1000 services to the same or similar LAN/9000 Series
600/800 and NS/9000 Series 600/800 services.

0-8 LAN/9000 Series 600/800 Migration

Table 0-3. NS/1000 vs. LAN & NS/9000 Series 800

NS/1 000 Service
LAN or NS/9000 Series 800

Service

Network File Transfer (NFT)* Network File Transfer (NFT) *

Network Interprocess Network Interprocess
Communication (NetIPC)* Communication (NetIPC)*

Program-to-Program Network Interprocess
Communication (PTOP) Communication (NetIPC)

REMAT Network File Transfer (NFT)

RMOTE Network File Transfer (NFT)

*Indicates compatible HP AdvanceNet NS user services.

Note Network File Transfer is a service provided by the NS/9000 Series
600/800 product. Refer to the Using Network SelVices (NS)/9000
Series 600/800 manual for a detailed comparison of the NS/1000
and NS/9000 Series 600/800 user services.

LAN/9000 Series 600/800 Migration 0-9

NS/9000 to LAN/9000 Series 600/800
Migration
LAN/9000 Series 600/800 and the NS/9000 product for the HP 9000 Series
200 and 500 do not share any common services. NS/9000 Series 500
Interprocess Communication ("IPC") and NS/9000 Series 600/800 Network
Interprocess Communication (NetIPC) are not compatible services.

NS/9000 Series 600/800 and NS/9000 Series 200 and 500, however, do share
the Network File Transfer (NFf). Refer to the Using Network SelVices
manual for a detailed comparison of the Series 600/800 and NS/9000 user
services.

Table D-4 maps the NS/9000 Series 200 and 500 services to the same or
similar NS/9000 Series 600/800 and LAN/9000 Series 600/800 services.

Table 0-4. NS/9000 vs. NS & LAN/9000 Series 800

NS/9000 Series 200 & NS & LAN/9000
500 Service Series 800 Service

Network File Transfer (NFf)* Network File Transfer (NFf) *

Interprocess Communication Network Interprocess
(IPC) (Series 500 only) Communication (NetIPC)

*Indicates implementation of compatible user service.

The following paragraphs provide a comparison of the NS/9000 Series 600/800
N etlPC service and the NS/9000 Series 500 IPC service.

0-10 LAN/9000 Series 600/800 Migration

Interprocess Communication
NS/9000 Series 500 Interprocess Communication ("IPC") and LAN/9000
Series 600/800 Network Interprocess Communication (NetlPC) are not
compatible services. However, because the services are somewhat similar, it
may be useful to convert an NS/9000 IPC program to use LAN/9000 Series
600/800 N etlPC calls.

Features common to both NS/9000 Series 500 IPC and LAN/9000 Series
600/800 NetlPC include the following:

• Processes communicate with each other by means of sockets. Before a
connection can be established between two processes, each process must
create a socket. Onthe Series 500, this socket is called a source socket; on
the Series 600/800, it is called a call socket.

• Source (or call) sockets may be named. A process can gain access to
another process's socket by referencing the socket's name. When the name
of a socket that belongs to another process is referenced in a "look up" call
(u i pc lookup () for the Series 500, i pc lookup () for the Series 600/800),
the calling process receives a destination descriptor.

• Processes use destination descriptors in "connection request" calls
(u i pcconnect () for the Series 500, i pcconnect () for the Series
600/800). The connection request call returns a VC socket which is the
endpoint of a virtual circuit connection.

• Communication between processes takes place over a virtual circuit
connection.

• Connections can be set to synchronous or asynchronous communications
mode. The default mode is synchronous, which is blocking mode. The
communications mode can be reset to asynchronous using a "control" call
(ui pccontrol () for the Series 500, i pccontrol () for the Series 600/800).

LAN/9000 Series 600/800 Migration 0-11

Porting NetlPC Programs

This appendix summarizes differences and provides information to help you
successfully port NetIPC programs between HP 1000 A-Series and HP 9000
Series 600/800 systems. Refer to the NS/l 000 User/Programmer Reference
Manual for NetIPC programming information for HP 1000 A-Series systems.

E

This appendix does not compare the programming language implementations
at the different systems. For this information, you should refer to the
following language reference manuals:

SYSTEM

HP 9000
Series
600/800

HP 1000
A-Series

LANGUAGE REFERENCE MANUALS

HP FORTRAN 77/HP-UX Reference Manual (92430-90005)

HP C Reference Manual (92434-90001)

HP C/HP-UX Reference Manual Supplement (92434-90004)

HP Pascal Reference Manual (31502-90001)

FORTRAN 77 Reference Manual (92836-90001)

Pascal/l000 Reference Manual (92833-90005)

In addition, the following manuals contain information that is useful to
programmers porting FORTRAN 77 and Pascal programs from the HP 1000
to the HP 9000 Series 600/800:

• HP FORTRAN 77/HP-UX Migration Guide (92430-90003).

• HP Pascal/HP-UX Migration Guide (92431-90004).

Porting NetiPC Programs E-1

When you are porting NetIPC programs, the following strategy may help:

1. Make sure that the NetIPC programs are executing correctly between
homogeneous systems. That is, the programs should work between HP
1000 A-Series systems first.

2. Port the programs using the language reference manuals. Check carefully
for compiler differences such as data types and lengths.

3. Check the differences between NetlPC calls documented in this appendix.
Check all the parameters; some are not implemented or have different
values.

4. If your ported programs still do not work, consider both programming
language and NetlPC differences.

E-2 Porting NetiPC Programs

LAN/9000 Series 600/800 and NS/1000
This section describes the differences between the LAN/9000 Series 600/800
and NS/1000 NetIPC implementations.

Path Report and Destination Descriptors
In NS/1000 NetIPC, the descriptor returned by the socket registry software is
called a path report descriptor, in LAN/9000 Series 600/800, this descriptor is
called a destination descriptor. Although path report descriptors and
destination descriptors have slightly different meanings, their function is the
same: both contain addressing information that is used by a NetIPC process to
direct requests to a certain call socket at a certain node.

Socket Ownership
An LAN/9000 Series 600/800 NetIPC process may own a maximum of 1024
descriptors. This limit includes call socket, VC socket, and destination
descriptors as well as HP-UX file descriptors and NetIPC and/or file
descriptors inherited or otherwise opened by the process.

An NS/1000 NetIPC process may own a maximum of 32 socket descriptors.
This limit includes call socket, VC socket, and path report descriptors.

NS/1000 and LAN/9000 Series 600/800 NetIPC process creates a call socket
by calling I PCCreate; they create a VC socket by calling I PCConnect or
I PCRecvCn. An NS/1000 NetIPC process may also gain access to a socket by
calling I PCG; vee Sockets are given away with the I PCG; ve call.

The I PCG; ve and I PCGet calls are not part of the LAN/9000 Series 600/800
NetIPC implementation. Instead, LAN/9000 Series 600/800 processes can
also acquire access to sockets owned by other NetIPC processes by utilizing
socket "sharing." On HP 9000 Series 600/800 systems, NetIPC socket
descriptors (call socket, VC socket, and destination), like HP -UX file
descriptors, are copied to the "child" process when a process forks. As a
result, more than one process can own a descriptor for the same socket.
Programmers are responsible for regulating the use of shared sockets on
LAN/9000 Series 600/800 systems. An NS/1000 NetIPC process creates a call
socket by calling I PCCreate or I PCGet; it creates a VC socket by calling
I PCConnect or I PCRecvCn. An NS/1000 NetIPC process may also gain

Porting NetiPC Programs E-3

access to a socket by calling I PCG i vee Sockets are given away with the
I peG i ve call.

Socket Shut Down
The I PCShutDown call is used in both NS/1000 and LAN/9000 Series 600/800
NetlPC to release a descriptor and any resources associated with it. The shut
down procedure for both NS/1000 and LAN/9000 Series 600/800 processes is
identical with the following exception: the operation of the LAN/9000 Series
600/800 implementation of I PCShutDown is affected by socket sharing. The
LAN/9000 Series 600/800 supports NSF _GRACEFUL_RELEASE.

When a LAN/9000 Series 600/800 NetlPC process "shuts down" a VC socket
descriptor that is shared by other processes, the descriptors owned by the
other processes are not affected. The I PCShutDown call does not operate on
the VC socket referred to by a VC socket descriptor unless the descriptor is
the last descriptor for that socket. A VC socket is destroyed along with its VC
socket descriptor only when the descriptor being released is the sole descriptor
for that socket.

When shutting down a shared call socket descriptor, the call socket referred to
by the descriptor is destroyed along with the descriptor and names associated
with the descriptor only if the descriptor being released is the last descriptor for
that socket. If another process, or processes, have descriptors for the same
socket, these duplicate descriptors, and any names associated with the
descriptors, are not affected.

When shutting down a shared destination descriptor, the addressing
information stored in conjunction with the descriptor is destroyed along with
the descriptor only if the descriptor being released is the sole descriptor for that
information. If another process, or processes, have descriptors for the same
information, these duplicate descriptors, and any names associated with the
descriptors, are not affected.

Signals
Unlike NS/1000 NetlPC calls, LAN/9000 Series 600/800 NetlPC calls that
would normally block may be interrupted by HP-UX signals. NetlPC calls
that are interrupted by signals are optionally restartable. When a call is
restarted after a signal, any time-outs (including the synchronous time-out)
will be reset. As a result, signals that continuously interrupt/restart a N etlPC

E-4 Porting NetlPC Programs

call at an interval shorter than the socket time-out will effectively void the
time-out. Signals are explained in detail in the HP-UX Reference Manual.

TCP Checksum
The NS/1000 I PCConnect and I PCRecvCn calls include a "checksumming" bit
in their f7 ags parameters. When set, this bit causes TCP to enable
checksumming.

Unlike NS/1000 NetIPC, the LAN/9000 Series 600/800 IPCConnect and
I PCRecvCn calls do not include "checksumming" bits. When an NS/9000
Series 600/800 NetIPC process calls I PCConnect or I PCRecvCn, TCP
checksumming is automatically enabled.

TCP checksumming will always be performed if one or both NetlPC processes
are LAN/9000 Series 600/800 processes. If both processes are NS/lOOO
NetIPC processes, TCP checksumming will be performed only if one or both
processes call I PCConnect or I PCRecvCn with the "checksumming" bit set.

Remote Process Scheduling
NetIPC itself does not include a call to schedule a remote process. The
method used to schedule a remote NetIPC process depends on the types of
systems involved. For example, an NS/1000 NetIPC process written to
schedule an NS/1 000 peer process must be modified to utilize another
scheduling method when it is ported to a LAN/9000 Series 600/800 system.

Remote NS/1000 Process
In order to schedule a remote NS/1 000 N etIPC process from an NS/1 000
node, you can use one of the following methods: the Remote Process
Management (RPM) call RPMCreate, the Program-to-Program
communication (PTOP) POPEN call, one of the DEXEC scheduling calls, the
REMA T QU command, or the TELNET virtual terminal service.

You cannot use any of these services to schedule a remote NS/1000 process
from a LAN/9000 Series 600/800 node because these services are only
NS/lOOO services. The "Process Scheduling" section in the "Cross-System
NetIPC" chapter describes ways to schedule an NS/1000 NetIPC process from
a LAN/9000 Series 600/800 node.

Porting NetiPC Programs E-5

Remote LAN/9000 Series 600/800 Process
Remote LAN/9000 Series 600/800 processes can be manually started or can be
scheduled by user-written daemons that are started at system start up. The
"Process Scheduling" section in "Cross-System NetlPC" chapter describes
ways to schedule a LAN/9000 Series 600/800 NetlPC process from an NS/lOOO
node.

Case Sensitivity
Because the HP-UX operating system is case-sensitive, LAN/9000 Series
600/800 NetlPC call names must be typed using lower case characters. For
example, the NetlPC call I PCConnect must be typed as i pcconnect on
LAN/9000 Series 600/800 systems.

NS/1000 NetlPC call names are not case sensitive and may be typed using
lower case or upper case characters, or a combination of both upper and
lower case characters.

NetlPC Calls
For the purposes of the following discussion, the NS/1000 and LAN/9000
Series 600/800 NetlPC calls are divided into four categories:

• Calls that are unique to NS/1000 NetIPC.

• Calls that are unique to LAN/9000 NetIPC.

• Calls that are common to both NS/1000 and LAN/9000 Series 600/800
N etIPC and are implemented identically on each system.

• Calls that are common to both NS/l000 and LAN/9000 Series 600/800
NetIPC but are implemented differently on each system.

E-6 Porting NetlPC Programs

Unique NetlPC Calls
The following calls are provided as part of the NS/1000 NetlPC
implementation only:

• AdrOf. This call obtains the byte address of any byte within a data object.

• I PCGet. This call allows a process to obtain ownership of a call socket, path
report or VC socket descriptor that was given away by another process with
an I PCG i ve call.

• I PCG; ve. This call allows a process to "give up" a call socket, VC socket or
path report descriptor so that another process may obtain it.

The LAN/9000 Series 600/800 NetlPC implementation includes one call that
is not provided by NS/1 000 N etlPC:

• OptOverHead. This call is used to determine the number of bytes needed
for the opt parameter.

Common NetlPC Calls
The following NetlPC calls are common to both the NS/1000 and LAN/9000
Series 600/800 NetlPC and are implemented identically.

Table E-1. Identical NetlPC Calls

AddOpt

IPCDest

IPCSend

Call Comparison

InitOpt

IPCLookUp

ReadOpt

Table E-2lists the differences between the NetlPC calls that are common to
both the NS/lOOO and LAN/9000 Series 600/800 NetlPC implementations but
that are implemented differently.

Porting NetlPC Programs E-7

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison

NetlPC Call Differences Between Implementation

IPCConnect The NS/1000 implementation of I PCConnect defines a
f7 ags parameter bit that is not defined by the LAN/9000
Series 600/800 implementation of the call:
"checksumming" (bit 21). All LAN/9000 Series 600/800
I PCConnect f7 ags parameter bits must be clear (not
set). NS/1000 NetlPC processes can enable TCP
checksumming by setting the "checksumming" bit. If this
bit is not set, TCP checksum will not be performed for
the connection unless the process's peer process calls
I PCRecvCn with that call's "checksumming" bit set, or the
peer process is a LAN/9000 Series 600/800 NetlPC
process. TCP checksumming is always enabled when the
LAN/9000 Series 600/800 implementation of I PCConnect
is called.

Refer to "TCP Checksum" earlier in this appendix for
more information.

The LAN/9000 Series 600/800 implementation of
I PCConnect allows a value of -1 to be assigned to the
call's calldesc parameter. This value causes a call socket
to be created and then destroyed after the call completes
successfully. The NS/1000 implementation of
I PCConnect does not allow this value.

The NS/1000 and LAN/9000 Series 600/800
implementations of I PCConnect implement different
maximum send and receive sizes. The NS/lOOO maximum
send and receive sizes are 8,000 bytes; the NS/9000 Series
600/800 maximum send and receive sizes are 32,000 bytes.
The default size on both implementations is 100 bytes.

E-8 Porting NetlPC Programs

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCControl I PCCont ro 1 includes four request codes that are not
provided by the NS/1000 implementation of the call: 4,
1002,1003 and 9008. When request code 9008 is
specified, the LAN/9000 Series 600/800 implementation
of I PCCont ro 1 allows a value of -1 in the call's
descri ptor parameter; this is also not part of the
NS/lOOO implementation of the call. Refer to the
"NetIPC Calls" chapter in this manual for a description
of these request codes.

Unlike the NS/1000 implementation of IPCControl, the
operation of the LAN/9000 Series 600/800 IPCControl
call is affected by socket sharing. Refer to "Socket
Ownership" earlier in this appendix for more information
about socket sharing. Refer to the "NetIPC Calls"
chapter in this manual for a complete description of how
socket sharing affects the I PCCont ro 1 call.

IPCCreate The NS/1000 and LAN/9000 Series 600/800
implementations of I PCCreate support different ranges
of permitted TCP protocol addresses that can be specified
in the opt parameter. However, both implementations
recommend that users specify TCP addresses in the range
30767 to 32767 decimal.

The NS/1000 and LAN/9000 Series 600/800
implementations of I PCCreate also support different
maximum connection request backlog defaults and ranges.
The NS/1000 implementation has a default of three
connection requests and an allowable range of zero to
five; the LAN/9000 Series 600/800 implementation has a
connection request default of one and an allowable range
of 1 to 20.

IPCName The LAN/9000 Series 600/800 implementation of
I PCName allows for the naming of destination (also
known as path) descriptors. The NS/1 000 implementation
of the call does not.

Porting NetlPC Programs E-9

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCNamErase Unlike the NS/1000 implementation of I PCNamErase, the
operation of the LAN/9000 Series 600/800
implementation of I PCNamErase is affected by socket
sharing. Refer to "Socket Ownership" earlier in this
appendix for more information about socket sharing.

Unlike the LAN/9000 Series 600/800 implementation of
I PCNamErase, the operation of the NS/1000
implementation of the call does not allow for erasing
names assigned to path report (also known as destination)
descriptors.

IPCRecv The LAN/9000 Series 600/800 implementation of
I PCRecv defines bit 26 of the call's f7 ags parameter as
"more data." This bit is not implemented on NS/1000.
When this bit is set on a LAN/9000 Series 600/800, it
indicates that non-delimited data was received.

IPCRecvCn The NS/1000 implementation of I PCRecv includes a
f7 ags parameter bit that is not defined by the LAN/9000
Series 600/800 implementation of the call:
"checksumming" (bit 21). All LAN/9000 Series 600/800
I PCRecvCn f7 ags parameter bits must be clear (not set).
NS/1000 NetIPC processes can enable TCP
checksumming by setting the "checksumming" bit. If this
bit is not set, TCP checksum will not be performed for
the connection unless the process's peer process called
I PCConnect with that call's "checksumming" bit set, or
the peer process is a LAN/9000 Series 600/800 NetIPC
process. TCP checksumming is always enabled when the
LAN/9000 Series 600/800 implementation of I PCRecvCn
is called.

Refer to "TCP Checksum" earlier in this appendix for
more information.

E-10 Porting NetiPC Programs

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCSelect The LAN/9000 Series 600/800 implementation of
I PCSe 1 ect allows the sdbound parameter to have a
maximum value of 60. The NSI1000 implementation has
an upper limit of 32.

IPCShutDown Unlike the NSI1000 of I PCShutDown, the operation of
the LAN/9000 Series 600/800 implementation of
I PCShutDown is affected by socket sharing. Refer to
"Socket Ownership" earlier in this appendix for more
information. The HP 9000 supports
NSF GRACEFUL RELEASE. - -

Porting NetiPC Programs E-11

Index

/etc/netlinkrc, 1-8, 2-18
/usr/include/sys/ns _ipc.h, 3-3,

3-6
constant definitions, 3-17,

B-1
with flags parameter, 3-6
with opt parameter, 3-9
with result parameter, 3-15

/usr/include/sys/syscall.h, 1-22
/usr/include/sys/uio.h, 3-14

A

ac io field, C-2
acetO, C-2
ACEPT, D-4, D-6
addoptO, 3-19, 3-22

problem resolution, B-5,
B-18

PTOP equivalents, D-4
with initoptO, 3-23
with opt parameter, 3-8-3-9,

3-12
argnum parameter

addoptO,3-19
adoptO, 3-22
readoptO, 3-86--3-87

Asynchronous I/O, 2-6
ipcrecvcnO,3-65
ipcsendO, 3-78

NSF _DATA_WAIT bit setting,
3-62

socket modes, 1-19,3-78
Asynchronous mode, 1-19

B
Berkeley IPC, 1-2
bitwise inclusive operator, 3-6
buffer parameter, 3-42

c
C programming language, 3-72
Call comparison, E-7
Call socket, D-ll, E-3

creating, 1-8, 3-36
descriptor, 1-7, 3-82
naming, 1-8
read selecting, 3-70
writemap parameter, 3-71

calldesc parameter, 1-7, 3-67
ipcconnectO, 3-27
ipccreateO, 3-37
ipcrecvcnO,3-64
ipcselect, 3-73

Case sensitivity, E-6
Checking the status of a

connection, 1-8, 3-58
Checksumming, E-5

ipcconnect, 2-8
ipcconnectO, 2-11, 3-30, E-8

ipcrecvcnO, 2-9, 2-12,3-67,
E-I0

closeO, C-2
Common NetIPC calls

addoptO, E-7
initoptO, E-7
ipcdestO, E-7
ipc1ookupO, E-7
ipcsendO, E-7
readopt, E-7

Communication between
processes, 1-1

Connection
status, 3-56

detecting request, 3-71
establishment, 1-3, 1-15
requesting, 3-36

Core dump, 3-15
Cross-system NetIPC, 1-1,

2-1

D

DATA, 3-9, 3-11, 3-56
Data buffer, 3-13

ipccontrolO, 3-33
ipcdestO, 3-40
ipcrecvO, 3-56

Data link checksum, 3-29,
3-66

data parameter, 3-13
addoptO, 3-5, 3-19
ipcrecvO, 3-57
ipcsendO, 3-76
readoptO, 3-86

Data vector, 3-13
ipccontrolO, 3-33
ipccrecvO, 3-56

DATALENGTH, 3-12
datalength parameter

addoptO, 3-19
readoptO, 3-86

Index-2

descriptor parameter, 3-31, E-9
ipccontrolO, 3-32
ipcnameO,3-51
ipcshutdownO, 3-81

destdesc parameter, 1-7
ipcconnectO, 3-27
ipcdestO, 3-40
ipc1ookupO, 3-48

Destination descriptor, 1-7, 2-6,
3-82

interprocess communication, D-ll
LAN/9000 Series 600/800, E-3
manipulation of, 2-6

dlen parameter, 3-14, 3-62
ipcrecvO, 1-18, 3-56
ipcsendO, 3-76

domain, 3-16
dupO, 1-6, C-2

E

EINTR, 1-22
errno variable, 1-22
Error code, 3-3, 3-34
error parameter, B-1

addoptO, 3-19
initoptO, 3-23
ipcerrmsgO, 3-42
ipcerrstrO, 3-44
readoptO, 3-87

Establishing a VC connection,
1-3-1-4

eventualentries parameter, 3-84
Exception selecting, 3-72
exceptionmap parameter, 3-69,

3-71-3-75
Exchange data, 1-4
execO, C-2
execveO, C-2

F

fehownO, C-2
fentIO,1-6
FINIS, D-7
flags parameter, 3-3,

3-5-3-6, 3-67, B-2
FORTRAN program, 3-7
ipcconnectO, 3-27, E-8
ipccontrolO, 3-31
ipccreateO, 3-36
ipcdestO, 3-40
ipclookupO, 3-48
ipcrecvO, 3-57, E-10
ipcrecvcnO, 3-64, E-10
ipcsendO, 3-76
ipcshutdownO,3-81
NSF DATA WAIT, 1-17
Pascal program, 3-7 .
TCP checksum, E-5

forkO, C-2
FORTRAN library function

ibset, 3-74
FORTRAN programming

language, 3-73
fstatO, C-2
Fully-qualified node name,

3-16

G
Gathered write, 3-13
GET, D-4, D-6

H

HP 1000 to Series
600/800 Migration, 3-1, 3-4

HP 9000 NetlPC
compatibility with Berkeley
IPC, 1-2

HP 9000 to HP 1000 NetlPC, 2-8
HP 9000 to HP 3000 NetlPC,

2-11
HP 9000 to PC NetIPC, 2-15

ibset function, 3-7, 3-74
Inbound transmission buffer, 1-19
Include files and libraries, 3-1, 3-3
initoptO, 3-11, 3-23, D-4

addoptO, 3-20
opt parameter, 3-8

Integer arrays, 3-72
INTEGER type, 3-15
Interpreting data received, 1-18
Interprocess communication, 1-2,

D-3, D-I0
ioctIO,I-6
IODONTWAIT, 2-6
iovec structure, 3-60, 3-77
IOWAIT intrinsic, 2-6
ipcconnectO, 1-24, 3-23

addoptO, 3-20
asynchronous call, 1-19
call comparison, E-8
checksumming, E-5
creating a call socket, 1-7
cross system considerations,

2-8,2-11
flags parameter, 3-5
interprocess communication,

D-4, E-3, E-6
ipcdestO, 3-40
ipclookupO, 3-48
ipcrecvO, 3-58
ipcselectO, 3-71
ipcsendO, 3-76
ipcshutdownO, 3-82
problem resolution, B-4, B-l1,

B-14, B-20
VC socket descriptor, 1-7

ipccontrolO, 3-31, 3-65
cross system considerations,

D-5, E-9
data parameter, 3-6, 3-13
flags parameter, 3-5
I/O mode, 1-19
ipcrecvcnO, 3-65
ipcselectO, 3-70
ipcsendO, 3-78
problem resolution, B-13,

B-16
request codes, 2-6, 3-3

ipccreateO, 1-7, 1-24, 3-36
call comparisons, E-9
cross system considerations,

2-8,2-12
flags parameter, 3-5
interprocess communication,

D-4, E-3
ipcdestO, 3-40
problem resolution, B-4,

B-11
ipcdestO, 1-24, 3-39

cross system, 2-8, 2-12
flags parameter, 3-5
interprocess communication,

D-4
ipcconnectO, 3-27
ipccreateO, 3-37
problem resolution, B-4,

B-8, B-ll
socket name parameter, 3-16

ipcerrmsgO, 3-42
ipcerrstrO, 3-44-3-45
ipcgetO, E-3
ipcgetnodenameO, 3-46
ipcgiveO, E-3
ipc1ookupO, 1-24, 3-47

cross system, 2-8, 2-12
flags parameter, 3-5
interprocess communication,

D-4, D-ll
ipcconnectO, 3-27

ipcdestO, 3-40
ipcnameO,3-52
problem resolution, B-4, B-7,

B-9, B-11, B-18
socket name parameter, 3-16

ipcnameO, 1-24, 3-51
call comparison., E-9
interprocess communication, D-4
ipclookupO, 3-48
ipcnameraseO,3-54
local calls, 2-6
problem resolution, B-6-B-7
socket name parameter, 3-16

ipcnameraseO, 1-25, 3-54-3-55
call comparison, E-I0
cross-system usage, 2-6
interprocess communication, D-4
problem resolution, B-7-B-8
socket name parameter, 3-16

ipcrecvO, 1-20, 1-25, 3-56
addoptO, 3-20
call comparison, E-10
cross system, 2-12
data parameter, 3-13
flags parameter, 3-5
functions, 3-58
interprocess communication,

D-4, D-6
ipcconnectO,3-29
ipcrecvcnO, 3-65
ipcselectO, 3-70, 3-72
problem resolution, B-12,

B-14, B-20
socket modes, 1-19
stream mode, 1-17

ipcrecvcnO, 1-25, 3-64-3-65
call comparison, E-I0
cross system considerations, ~

2-9,2-12 ,
flags parameter, 3-5
interprocess communication, D-4
ipcconnectO, 3-28
ipcsendO, 3-76

ipcshutdownO, 3-82
problem resolution, B-4,

B-12
socket mode I/O, 1-19
socket ownership, E-3
TCP checksum, E-5, E-8
VC socket, 1-7

ipcselectO, 1-25, 3-68, 3-71
asynchronous I/O, 2-6, 3-66,

3-78
call comparison, E-ll
interprocess communication,

D-4
ipcrecvO, 3-62
problem resolution, B-12,

B-16
socket status, 1-20

ipcsendO, 1-25, 3-76
addoptO, 3-20
cross system considerations,

2-9,2-13
data parameter, 3-13
flags parameter, 3-5
interprocess communication,

D-4, D-6-D-7
ipcconnectO, 3-27
ipcrecvcn(), 3-64
ipcselectO, 3-70
problem resolution, B-12
socket modes, 1-19
stream mode, 1-17
TCP default, 3-64

ipcsetnodenameO, 3-80
ipcshutdownO, 1-23, 1-25,

3-81
cross system considerations,

2-10,2-13, E-4, E-11
flags parameter, 3-5
interprocess communication,

D-5, D-7
ipcnameraseO, 3-54
ipcrecvO, 3-59
result parameter, 3-15

L

LAN/9000
Series 600/800 Migration, D-l

LAN/9000 Series 600/800, E-3
DS/1 000-IV Users, D-2

len parameter, 3-42
Local NetlPC calls, 2-2, 2-4
Looking up a call socket name,

1-8
Lower-level protocol, 1-4

M

mallocO, 3-8, 3-10
map_type, 3-73
Master calls, D-3

N
name1en parameter, 3-80
NetiPC

calls, 1-4, 1-22, 1-24, 3-1, E-6
common parameters, 3-1, 3-5
communication between

processes, 1-1
error codes, 2-10, 2-14, 2-17
network protocols, 1-1
reference pages, 3-1, 3-18
sockets, C-l

Network file transfer, D-2,
D-8-D-I0

Network Interprocess
Communication, D-2-D-3,
D-9-D-I0

see NetlPC
NFS DATA WAIT, 1-17
NFS=VECTORED, 3-60
nlen parameter

ipclookupO, 3-47
ipcnameO, 3-51
ipcnameraseO, 3-54

node, 3-16
nodelen parameter

ipcdestO, 3-39, 3-41
ipclookupO, 3-47

nodename parameter, 3-16
flags parameter, 3-5
getnodenameO, 3-46
ipcdestO, 3-39
ipclookupO,3-47
setnodenameO, 3-80

Normal reading, 3-59
NS/1000, E-3
NS/1000 to LAN/9000

Series 600/800 migration,
D-8

NS/9000 to LAN/9000
Series 600/800 Migration,

D-10
NS CALL, 3-36, 3-39
NS-DATA OFFSET, 3-58
ns Tnt t,3-3

- flags parameter, 3-6
ipcconnectO,3-30
ipccontrolO, 3-35
ipcdestO, 3-41
ipclookupO, 3-50
ipcnameO, 3-53
result parameter, 3-15

ns int wlen, 3-35
NS NULL DESC, 3-31
NSC GET-NODE NAME,

3-31,3-34 -
NSC NBIO DISABLE, 3-31
NSC-NBIO-ENABLE,

1-i9, 3-31-
NSC RECV THRESH

GET, 3-33=3-34 -
NSC RECV THRESH

RESET, 3-32, 3-34-3-35
NSC SEND THRESH

GET, 3-33=3-34 -
NSC SEND THRESH

RESET, 3=32, 3-34 -

Index-6

NSC TIMEOUT GET, 3-32,
3-34 -

NSC TIMEOUT RESET, 3-32,
3-34-3-35 -

NSF DATA WAIT, 1-18,3-6,
3-57,3-60-3-61

NSF MORE DATA, 3-57,
3-76-3-77 -

NSF PREVIEW, 3-6, 3-57, 3-59
NSF=VECTORED, 3-58, 3-61,

3-77
NSO DATA OFFSET, 3-77
NSO-MAX CONN REQ, B-5
NSO-MAX-CONN-REQ

BACK, 3-36 - -
NSO MAX RECV SIZE, 3-28,

3-65 - -
NSO MAX SEND SIZE, 3-27,

3-64 - -
NSO NULL, 3-8
NSO-PROTOCOL ADDRESS,

3-37 -
NSP TCP, 3-36, 3-39
NSR-ADDR NOT AVAIL,

B-ii - -
NSR ADDR OPT, B-4
NSR-BAD REG MSG, B-10
NSR-BOUNDS VIO, B-1
NSR-CANT CONTACT

SERVER,B-9 -
NSR CANT NAME VC, B-6
NSR-CNCT-PENDING, B-14
NSR-DESC~B-6
NSR-DEST, B-11
NSR=DEST_UNREACHABLE,

B-18
NSR DLEN, B-10
NSR-DUP ADDRESS, B-17
NSR-DUP-NAME, B-6
NSR-DUP-OPTION, B-5
NSR-FLAGS, B-2
NSR=KIND _AND_PROTOCOL,

B-3

NSR LOCAL ABORT,
B-15 -

NSR MAX
C6NNECrQ,B-5

NSR MSGSIZE, B-20
NSR -NAME NOT

FOUND, 3=-48-3-49, B-7
NSR NAME TABLE

FULL, B-7- -
NSR NETWORK

DOWN, B-1 -
NSR NLEN, B-5
NSR=NO_DESC_AVAIL,

B-13
NSR NO ERROR

addoptO,3-19
ipcconnectO, 3-28
ipccontrolO, 3-34
ipcdestO, 3-40
ipclookupO, 3-48
ipcnameraseO, 3-54
ipcrecvO, 3-58
ipcrecvcnO,3-65
ipcselectO, 3-69
ipcsendO, 3-77
optoverheadO, 3-84
problem resolution, B-1
readoptO, 3-87

NSR_NO _FILE_AVAIL,
B-4

NSR NO MEMORY, B-4
NSR-NO-NODE, B-8
NSR -NO-OWNERSHIP,

3-54, B-8
NSR NO REG

RESPONSE, B-9
NSR NODE NAME
S~TPU(,B-8 -

NSR NOT ALLOWED,
B-20 -

NSR NOT CALL
SOCKET, B-12 -

NSR NOT CONNECTION, B-15
NSR-OPT-CANTREAD, B-19
NSR-OPT-DATA LEN, B-18
NSR-OPT-ENTRY NUM, B-18
NSR-OPT-OPTION, B-3
NSR-OPT-SYNTPU(, B-5
NSR-OPT-TOTAL, B-19
NSR-PAru REPORT, B-10
NSR -PROTOCOL, B-2
NSR-PROTOCOL MISMATCH,

B-11 -
NSR_REMOTE_ABORT, 3-15,

B-14
NSR REMOTE RELEASED,

B-17 -
NSR REQUEST, B-16
NSR-SIGNAL INDICATION,

1-iz, 3-59, B-9
NSR SOCK KIND, B-2
NSR-SOCKET MISMATCH, B-11
NSR=SOCKET=TIMEOUT, 3-59,

3-61, B-12
NSR THRESH VALUE, B-20
NSR-TIMEOUT VALUE, B-16
NSR-TOO MANY VECTS, B-17
NSR-VEcT COUNT, B-16
NSR-VERSfoN, B-18
NSR-WOULD BLOCK

o

ipcrecvO, 3-59, 3-62
ipcrecvcn(), 3-66
ipcselectO, 3-70
ipcsendO, 3-78
problem resolution, B-12
socket modes , 1-19

opt parameter, 3-5, 3-8, 3-20, 3-23
addoptO, 3-19
C program, 3-9
call comparison, E-9

cross system considerations,
2-8,2-13

FORTRAN program, 3-11
initoptO, 3-23
ipcconnectO, 3-27
ipccreateO, 3-36
ipcdestO, 3-40
ipcrecvO, 3-58
ipcrecvcnO, 3-64
ipcsendO, 3-77
ipcshutdownO, 3-81
option codes, 3-3
optoverhead call, E-7
Pascal program, 3-10
problem resolution, B-3,

B-5, B-18
readoptO, 3-86
structure, 3-11

OPTARGUMENTS, 3-11
OPTIONCODE, 3-12, 3-22,

3-28,3-36
optioncode parameter, 3-19,

3-86--3-87
OPTLENGTH, 3-11
optlength parameter, 3-10,

3-84--3-85
OPTNUMARGUMENTS,

3-9,3-11
optnumarguments

parameter, 3-23, 3-26
optoverheadO, 3-8-3-10,

3-84
organization, 3-16
Outbound transmission

buffer, 1-19

p

Packed array of bytes, 3-10
Pascal programming

language, 3-73

Index-8

Path report descriptor, 2-6, E-3
PCLOS, D-5, D-7
PCONT, D-5
Peer process, D-3
PNRPY, D-5
POPEN, D-4, E-5
Porting N etIPC programs, E-1
PREAD, D-4, D-6
Preview reading, 3-59
Process scheduling, 2-2, 2-18
Program-to-Program

communication, D-2-D-3, D-9,
E-5

Programming languages, 3-1-3-2
flags parameter usage, 3-5
FORTRAN, 3-3
Pascal, 3-3

protoaddr parameter, 3-37,
3-40-3-41

protocol parameter
ipccreateO, 3-36
ipcdestO, 3-39
ipc1ookupO, 3-48
problem resolution, B-2-B-3, B-11

Protocol types, 3-3
proto len parameter, 3-40-3-41
PWRIT, D-4--D-5

R

Read and write thresholds, 1-20
Read select, 3-71
Read threshold, 1-20-1-21, 3-70
readO, 1-6, C-2
Readable VC socket, 1-20
readdata parameter, 3-31-3-34
readmap parameter, 3-68,

3-71-3-75
readoptO, 3-9, 3-86 ~

interprocess communication, D-4
problem resolution, B-18

readvO,1-6

Receive size, 3-30, 3-67
Receiving a connection

request, 1-8
Receiving data, 1-17,3-59
REJCf, D-7
REMAT, D-2, D-9, E-5
Remote HP 1000 process,

2-18
Remote HP 3000 process,

2-19
Remote HP 9000 process,

2-18
Remote LAN/9000

Series 600/800 process, E-6
Remote NetlPC calls, 2-2,

2-4,2-7
Remote NS/1000 process,

E-5
Remote Process

Management, E-5
Remote process scheduling,

E-5
Request codes, 3-3
request parameter, 1-19, 3-34
Requesting a connection,

1-8,3-28, 3-31
result parameter, 3-5, 3-15

C program, 3-15
destO,3-40
FORTRAN program, 3-15
initoptO, 3-46
interrupt signal, 1-22
ipcconnectO, 3-28
ipccontrolO, 3-34
ipccreateO,3-37
ipcerrmsgO, 3-42
ipc1ookupO, 3-48
ipcnameO, 3-51
ipcnameraseO, 3-54
ipcrecvO, 3-58
ipcrecvcnO, 3-65
ipcselectO, 3-69
ipcsendO, 3-77

ipcshutdownO, 3-81
optoverheadO,3-84
Pascal program, 3-15
problem resolution, B-1
setnodenameO, 3-80

rlen parameter, 3-31, 3-34--3-35
RMOTE, D-2, D-9
rpmcreateO, E-5
RTE

5

flags, D-2, D-8
source files, D-2, D-8

sc _ syscall, 1-22
sc _ syscall_ action, 1-22
Scattered read, 3-13, 3-60
sdbound parameter, 3-68, 3-75,

E-11
selectO, 1-6, C-2
Send size, 3-30, 3-67
Sending and receiving data, 1-3,

1-17
setnodenameO, 3-46
SHORT INTEGER, 3-11
Shutting down a connection, 1-3,

1-23
SIG RETURN, 1-22
Signals, 1-22, E-4
size parameter, 3-46
Slave calls, D-3
sleepO, 3-49
Socket, 1-3-1-4

maximum number, 2-5
descriptor, 3-37
multiple descriptors, 3-34
ownership, 1-7, E-3
registry, 3-82
sharing, E-3, E-10
shutdown, 2-10,2-13,3-83, E-4
status information, 1-20
types, 3-3

Index-9

socketkind parameter, 3-50,
B-3

ipccreateO, 3-36
ipcdestO, 3-39
ipclookupO, 3-48
problem resolution, B-2

socketname parameter, 3-5,
3-16

ipclookupO, 3-47
ipcnameO,3-51
ipcnameraseO, 3-54

Software revision codes,
2-2-2-3

Source socket, D-11
statO, 1-6
Stream mode, 1-17
Summary of N etIPC calls,

1-3
Synchronous

I/O, 3-61, 3-65, 3-78
mode, 1-18-1-19
time-out, 1-20
timer, 3-59
vs. Asynchronous I/O, 3-78

Syntax conventions, 3-1, 3-17
System calls, C-1

T

tag parameter, D-5
TCP, 3-57, C-1

checksum, 3-29, 3-66, E-5,
E-8, E-10

NSF MORE DATA,
3-76-3-77 -

protocol address, 2-12,
3-37-3-38

TELNET Virtual terminal
service, E-5

timeout parameter, 3-69,
3-71, 3-75

Timer, 1-19

Index-10

Timing problems, 3-48
Transmission buffer, 1-19
Transmission control protocol,

1-4, 3-36, 3-39

u
uipclookupO, D-11
ulimitO, C-2
Unique NetlPC calls, E-7

AdrOf, E-7
IPCGet, E-7
IPCGive, E-7
OptOverHead, E-7

Upper ordinal bound, 3-68
Urgent data option, 2-13
User-written daemons, 1-8
Using flags in a C program, 3-6

v
VC connection

interprocess communication, D-4
ipcrecvO, 3-56, 3-59
ipcrecvcn(), 3-64-3-65

VC socket, 3-71, E-3
exceptional, 3-70
interprocess communication, D-11
ipcnameO, 3-52
ipcrecvcnO, 3-59, 3-64
ipcselectO, 3-71
ipcsendO, 3-78
NSC RECV THRESH

RESET, 3-32 -
NSR WOULD BLOCK, 3-59
readable,3-70 -
writeable, 3-70

VC socket descriptor, 1-7
ipcrecvcnO,3-65
ipcselectO, 3-72
ipcshutdownO, 3-82

vcdesc parameter, 1-7

ipcconnectO, 3-27-3-28
ipcrecvO, 3-56
ipcrecvcnO, 3-64
ipcselectO, 3-72-3-73
ipcsendO, 3-74, 3-76

Vectored reading, 3-60
Virtual circuit connection,

D-11

w
wlen, 3-31, 3-34
Writable VC socket, 1-20
Write select, 3-71
Write threshold, 1-21, 3-32,

3-70
writeO, 1-6, C-2
writemap parameter, 3-69,

3-71-3-75
wrtdata parameter, 3-31-3-35

