
HP 9000 Networking

. Berkeley IPC Programmer's Guide

Fli;-HEWLETT
a:~ PACKARD

Edition 2
E0792

98194-60531
Printed in U.S.A. 07/92

Preface

This manual describes the Berkeley Software Distribution Interprocess
Communications (BSD IPC) set of programming development tools for interprocess
communication.

The Berkeley IPC Programmer's Guide is the primary reference manual for
programmers who write or maintain Berkeley IPC applications on HP 9000
computers. This manual should also be read by node managers before designing an
HP 9000 network so that they have a clear understanding of the features provided by
BSDIPC.

This manual is written for intermediate to advanced programmers and assumes that:

• Your node or system manager has brought up the network and has installed the HP
9000 product on your local host.

• You have asked your node manager for all the login names you may be associated
with.

• You have asked your node manager what other hosts or nodes your HP 9000
product can communicate with.

This manual is organized as follows:

Chapter 1, "BSD IPC Concepts," provides an overview of the Client-Server Model.

Chapter 2, "BSD IPC Using Internet Stream Sockets," describes the steps involved in
creating an Internet stream socket BSD IPC connection using the AF _INET address
family.

Chapter 3, "Advanced Topics for Stream Sockets," explains socket options,
synchronous I/O mUltiplexing with select, sending and receiving data asynchronously,
nonblocking 1/0, using shutdown, using read and write to make stream sockets
transparent, and sending and receiving out of band data.

Chapter 4, "BSD IPC Using Internet Datagram Sockets," describes the steps involved
in creating an Internet datagram socket BSD IPC connection.

3

Chapter 5, "Advanced Topics for Internet Datagram Sockets," includes information
about default socket address, synchronous I/O multiplexing with select and broadcast
addresses.

Chapter 6, "BSD IPC Using UNIX Domain Stream Sockets," describes the steps
involved in creating a UNIX Domain stream socket BSD IPC connection between
two processes executing on the same node.

Chapter 7, "BSD IPC Using UNIX Domain Datagram Sockets" describes the steps
required to exchange data between AF _ UNIX datagram sockets on the same node
without establishing a connection.

Chapter 8, "Programming Hints," contains information about troubleshooting, port
addresses, diagnostic utilities, Internet daemon, inetd, and system and library calls.

Appendix A, "Example Programs," contains sample programs found in the
/usr/netdemo/socket directory.

Appendix B, "Portability Issues," describes implementation differences between 4.3
BSD IPC and HP-UX IPC.

4

Contents

Chapter 1 BSO IPC Concepts
How You Can Use BSD IPC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 1-2

The Client-Server Model 0 • 0 0 0 0 0 0 0 1-3

Creating a Connection: the Client-Server Model 0 0 0 0 0 • 0 0 0 0 0 0 0 1-4

BSD IPC Library Routines 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 1-5·

Key Terms and Concepts 0 • 0 0 0 0 0 0 0 1-6

Communication Terms 0 • 0 0 0 • 0 0 0 1-6

Addressing Terms 0 • 0 0 0 0 0 0 0 1-6

Protocols 0 • 0 0 0 0 0 0 0 1-8

Using Socket Descriptors as File Descriptors 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 1-8

Chapter 2 BSO IPC Using Internet Stream Sockets
Preparing Address Variables 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 2-3

Declaring Socket Address Variables 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 2-4

Getting the Remote Host's Internet Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-5

Getting the Port Address for the Desired Service 0 0 0 0 0 • 0 0 0 0 0 0 0 2-6

Using a Wildcard Local Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 '0 • 2-7

Writing the Server Process 0... 0 0 0 0 0 0 0 • • • 0 0 0 0 0 • 0 0 0 0 0 0 • 2-8

Creating a Socket 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 2-8

Binding a Socket Address to the Server Process's Socket . 0 0 •• 0 0 • 2-9

Setting the Server Up to Wait for Connection Requests o. 0 0 0 0 0 • • 2-11

Accepting a Connection 0 0 0 • 0 0 0 0 0 0 0 • • • 0 0 0 • 0 • • 0 0 0 0 0 • 2-12

Writing the Client Process ... 0 0 0 0 0 0 ••• 0 0 0 0 • 0 0 0 • 0 0 0 0 •• 02-14

Creating a Socket ... 0 • 0 0 0 • • 0 • • • • 0 0 0 0 • 0 0 • • • • • 0 0 • • 2-14

Requesting a Connection o. 0 • • 0 • 0 • 0 0 • • • 0 0 0 0 • • 0 0 • 0 • 0 • 2-15

Sending and Receiving Data 0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 0 0 0 0 0 2-17

Sending Data . 0 0 0 0 0 0 • 0 0 0 • 0 • • • • 0 • • • 0 0 • 0 0 • • • • 0 0 0 0 2-18

Receiving Data 0 0 • 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 02-19

Flag Options .. 0 0 0 0 0 0 •••• 0 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 • 0 0 0 02-20

Closing a Socket 0 0 0 0 0 •• 0 •• 0 0 • 0 0 0 0 0 0 •• 0 •• 0 • 0 •• 0 • 0 02-21

Example Using Internet Stream Sockets . 0 0 0 0 0 • 0 0 • 0 0 0 0 ••• 0 • 02-22

5

Chapter 3 Advanced Topics for Stream Sockets
Socket Options ~ 3-1

Getting and Setting Socket Options 3-3
SO REUSEADDR 3-6
SO KEEP ALIVE 3-7
SO DONTROUTE 3-7
SO SNDBUF 3-8
SO RCVBUF 3-8
SO LINGER . 3-9
SO USELOOPBACK 3-10
SO OOBINLINE 3-10
SO SNDLOWAT 3-10
SO RCVLOWAT 3-11
SO SNDTIMEO 3-11
RCVTIMEO 3-11
SO TYPE 3-11
SO ERROR 3-11
SO BROADCAST 3-11

Synchronous I/O Multiplexing with Select 3-12
Sending and Receiving Data Asynchronously 3-14
N onblocking I/O 3-17
Using Shutdown . 3-18
Using Read and Write to Make Stream Sockets Transparent 3-19
Sending and Receiving Out-of-band Data 3-20

Chapter 4 BSD IPC Using Internet Datagram Sockets
Preparing Address Variables 4-3

Declaring Socket Address Variables 4-4
Getting the Remote Host's Network Address 4-5
Getting the Port Address for the Desired Service 4-6
Using a Wildcard Local Address 4-7

Writing the Server and Client Processes 4-7
Creating Sockets 4-7

Binding Socket Addresses to Datagram Sockets 4-9
Sending and Receiving Messages 4-11

Sending Messages 4-11
Receiving Messages 4-13
Flag Options 4-15

Closing a Socket 4-15
Example Using Datagram Sockets 4-16

6

Chapter 5 Advanced Topics for Internet Datagram Sockets
SO_BROADCAST Socket Option 5-1
Specifying a Default Socket Address 5-1
Synchronous I/O Multiplexing with Select 5-3
Sending and Receiving Data Asynchronously 5-4
N onblocking I/O 5-4
Using Broadcast Addresses 5-5

Chapter 6 BSD IPC Using UNIX Domain Stream Sockets
Preparing Address Variables 6-3

Declaring Socket Address Variables 6-3
Writing the Server Process 6-4

Creating a Socket 6-4
Binding a Socket Address to the Server Process's Socket 6-5
Setting the Server Up to Wait for Connection Requests 6-6
Accepting a Connection 6-7

Writing the Client Process 6-9
Creating a Socket 6-9
Requesting a Connection 6-10

Sending and Receiving Data 6-11
Sending Data 6-12
Receiving Data . 6-13
Flag Options 6-14

Closing a Socket 6-14
Example Using UNIX Domain Stream Sockets 6-15

Chapter 7 BSD IPC Using UNIX Domain Datagram Sockets
Preparing Address Variables 7-3

Declaring Socket Address Variables 7-3
Writing the Server and Client Processes 7-4

Creating Sockets 7-4
Binding Socket Addresses to UNIX Domain Datagram Sockets 7-5
Sending and Receiving Messages 7-6

Sending Messages 7-6
Receiving Messages 7-7
Closing a Socket 7-9
Example Using UNIX Domain Datagram Sockets 7-10

7

Chapter 8 Programming Hints
Troubleshooting . 8-2
Port Addresses 8-3
Using Diagnostic Utilities as Troubleshooting Tools 8-4
Adding a Server Process to the Internet Daemon 8-5
Summary Tables for System and Library Calls 8-10

Appendix A Example Programs

Appendix B Portability Issues
Porting Issues for IPC Functions and Library Calls B-2

Shutdown B-2
Address Conversion Functions for DEC VAX Hosts B-2
FIONREAD Return Values B-2
Listen's Backlog Parameter . B-3
Pending Connections B-3

Porting Issues for Other Functions and Library Calls Typically
Used by IPC B-3
Ioctl and Fcnd Calls B-3
Pty Location B-3
Utmp B-3
Library Equivalencies B-4
Signal Calls B-5
Sprintf Return Value B-5

Glossary

Index

8

Figures

Figure 1-1. Client-Server in a Pre-Connection State 1-4
Figure 1-2. Client-Server at Time of Connection Request 1-4
Figure 1-3. Client-Server When Connection Is Established 1-5
Figure 3-1. Data Stream with Out of Band Marker 3-20
Figure 3-2. Before Flushing Stream 3-23
Figure 3-3. After Flushing Stream 3-23

9

Tables

Table 2-1. Building a BSD IPC Connection Using Internet Stream
Sockets 2-2

Table 3-1. Summary Information for Changing Socket Buffer Size 3-9
Table 3-2. Summary of Linger Options on Close 3-10
Table 4-1. Setting Up for Data Transfer Using Datagram Sockets 4-2
Table 6-1. Building a BSD IPC Connection Using UNIX Domain

Stream Sockets 6-2
Table 7-1. Setting Up for Data Transfer Using AF_UNIX Datagram

Sockets 7-2
Table 8-1. BSD IPC System Calls 8-10
Table 8,.2. Other System Calls 8-12
Table 8-3. Library Calls 8-13
Table B-1. Definition of Library Equivalents B-4

10

eso IPC Concepts

Note The information contained in this manual applies to both the Series
300/400 and Series 600nOO/800 HP 9000 computer systems. Any
differences in installation, configuration, or operation are specifically
noted.

1

This manual describes HP's implementation of the 4.3 Berkeley Software Distribution
Interprocess Communication (BSD IPC) facilities. BSD IPC is a set of programming
development tools for interprocess communication. HP's implementation of BSD
IPC is a full set of sockets from the networking services originally developed by the
University of California at Berkeley (UCB).

Note BSD IPC is a program development tool. Before you attempt to use BSD
IPC, you may need to familiarize yourself with the C programming
language and the HP-UX operating system. You could implement a BSD
IPC application using FORTRAN or Pascal, but all library calls and
include files are implemented in C.

The BSD IPC facility allows you to create distributed applications that pass data
between programs (on the same computer or on separate computers on the network)
without requiring an understanding of the many layers of networking protocols. This
is accomplished by using a set of system calls. These system calls, when used in the
correct sequence, allow you to create communication endpoints called sockets and
transfer data between them.

This guide describes the steps involved in establishing and using BSD IPC
connections. It also describes the protocols you must use and how the BSD IPC
system calls interact. The details of each system call are described in the section 2
entries of the Networking Reference manual.

BSD IPC Concepts 1-1

To understand the general model for BSD !PC, you need to understand what is
meant by a socket, a socket descriptor and binding. Read the following definitions
before you read about the Client-Server model.

socket

socket descriptor

binding

Sockets are communication endpoints. A pair of
connected sockets provides an interface similar to that
of HP-UX pipes. A socket is identified by a socket
descriptor.

A socket descriptor is an HP-UX file descriptor that
references a socket instead of an ordinary file.
Therefore, it can be used for reading, writing, or most
standard file system calls after a BSD IPC connection is
established. All BSD IPC functions use socket
descriptors as arguments.

Before a socket can be accessed across the network, it
must be bound to an address. Binding makes the
socket accessible to other sockets on the network by
establishing its address. Binding is explained in more
detail throughout this chapter.

How You Can Use BSO IPC
The best example of how BSD IPC can be used is the ARP AlBerkeley Services. The
services use BSD IPC to communicate between remote hosts. Using the BSD IPC
facility, you can write your own distributed application programs to do a variety of
tasks.

For example, you can write distributed application programs to:

• Access a remote database.

• Access multiple computers at one time.

• Spread subtasks across several hosts.

1-2 esc IPC Concepts

The Client-Server Model
Typical BSD IPC applications consist of two separate application level processes; one
process (the client) requests a connection and the other process (the server) accepts
it.

The server process creates a socket, binds an address to it, and sets up a mechanism
(called a listen queue) for receiving connection requests. The client process creates a
socket and requests a connection to the server process. Once the server process
accepts a client process's request and establishes a connection, full-duplex (two-way)
communication can occur between the two sockets.

This set of conventions must be implemented by both processes. Depending upon the
needs of your application, your implementation of the model can be symmetric or
asymmetric. In a symmetrical application of the model, either process can be a server
or a client. In an asymmetrical application of the model, there is a clearly defined
server process and client process. An example of an asymmetrical application is the
ftp service.

BSC IPC Concepts 1-3

Creating a Connection: the Client·Server Model
The following figures illustrate conceptual views of the client-setver model at three
different stages of establishing a connection. The steps that have been accomplished
at each stage are listed below each figure.

Client
empty

• Clienl has crected 0 socket.

Server

• Server hos created a socket.

• Server hos bound on address to its
socket.

• Server has set up t:'le listen queue.

Figure 1-1. Client-Server in a Pre-Connection State

Client

• Client has made a connection
request.

Server

• Server hos received the request in the
listen queue.

Figure 1-2. Client-Server at Time. of Connection Request

1-4 esc IPC Concepts

Client Server

• Server has cccepted connection
request.

• Server has estoblished 0 connection
to client with a new server socket

thot has all the characteristics of

the original socket.

• Original server socket continues to
listen for more connection requests.

Figure 1-3. Client-Server When Connection Is Established

A detailed description of the Client-Server model is discussed in chapter 2, "BSD IPC
Using Internet Stream Sockets."

BSD IPC Library Routines
The library routines and system calls that you need to implement a BSD IPC
application are described throughout this chapter. In addition, a complete list of all
these routines and system calls is provided in the "Summary Tables for Library and
System Calls" section of chapter 8, "Programming Hints."

The library routines are in the common "c" library named libc.a. Therefore, there is
no need to specify any library name on the cc command line to use these library calls
-libc.a is used automatically.

SSC IPC Concepts 1-5

Key Terms and Concepts
The following list is meant to give you a basic understanding of the terms used to
describe BSD IPC. Many of the terms have more detailed explanations within this
manual in the places where the terms are used.

Communication Terms
packet

message

channel

peer

Addressing Terms
addressing

communication domain

address family

Internet address

1-6 esc IPC Concepts

A message or data unit that is transmitted between
communicating processes.

The data sent in one UDP packet.

Communication path created by establishing a
connection between sockets.

The remote process with which a process
communicates.

A means of labeling a socket so that it is
distinguishable from other sockets on a host.

A set of properties that describes the characteristics of
processes communicating through sockets. The
Internet (AF _ INET) address family domain is
supported. The UNIX Domain (AF _UNIX) address
family domain is also supported, for local
communication only.

The address format used to interpret addresses
specified in socket operations. The Internet address
family (AF _ INET) and the Berkeley UNIX Domain
address family (AF _ UNIX) are supported.

A four-byte address that identifies a node on the
network.

port

socket address

binding

association

An address within a host that is used to differentiate
between multiple sockets with the same Internet
address. You can use port address values 1024 through
65535. (Port addresses 1 through 1023 are reserved for
the super-user. Refer to page 8-3 for reserved ports.)

For the Internet address family (AF _INET), the socket
address consists of the Internet address, port address
and address family of a socket. The Internet and port
address combination allows the network to locate a
socket. For UNIX Domain (AF _UNIX), the socket
address is the directory pathname bound to the socket.

Associates a socket address with a socket. Once a
socket address is bound, other sockets can connect to
the socket and send data to or receive data from it.

A BSD IPC connection is defined by an association.
An AF _ INET association contains the (protocol, local
address, local port, remote address, remote port)-tuple.
An AF _ UNIX association contains the (protocol, local
address, peer address)-tuple. Associations must be
unique; duplicate associations on the same host cannot
exist. The tuple is created when the local and remote
socket addresses are bound and connected. This
means that the association is created in two steps, and
there is a chance that two potential associations could
be alike between steps. The host prevents duplicate
associations by checking for uniqueness of the tuple at
connection time, and reporting an error if the tuple is
not unique.

BSD IPC Concepts 1-7

Protocols
There are two Internet transport layer protocols that can be used with BSD IPC.
They are TCP, which implements stream sockets, and UDP, which implements
datagram sockets.

TCP

UDP

Provides the underlying communication support for
stream sockets. The Transmission Control Protocol
(TCP) is used to implement reliable, sequenced,
flow-controlled two-way communication based on byte
streams similar to pipes. Refer to the tcp(7p) entry in
the HP-UX Reference Manual for more information on
TCP.

Provides the underlying communication support for
datagram sockets. The User Datagram Protocol
(UDP) is an unreliable protocol. A process receiving
messages on a datagram socket could find messages are
duplicated, out-of-sequence, or missing. Messages
retain their record boundaries and are sent as
individually addressed packets. There is no concept of
a connection between the communicating sockets.
Refer to the udp(7p) entry in the HP-UX Reference
Manual for more information on UDP.

In addition, the UNIX Domain protocol may be used with AF _ UNIX sockets for
interprocess communication on the same node. Refer to the unix(7p) entry in the
HP-UX Reference Manual for more information on the UNIX Domain protocol.

Using Socket Descriptors as File Descriptors
A socket descriptor is a special kind of HP-UX file descriptor; it can be used as
though it were a file descriptor, but it references a socket instead of a file. System
calls that use file descriptors (e.g. read, write, select) can be used with socket
descriptors.

1-8 BSC IPC Concepts

BSO IPC Using Internet Stream
Sockets

2

This section describes the steps involved in creating an Internet stream socket BSD
IPC connection using the AF _INET address family. If you want to use datagram
sockets, skip to chapter 4, "BSD IPC Using Internet Datagram Sockets." If you want
to use UNIX Domain sockets, skip to chapter 6, "BSD IPC Using UNIX Domain
Stream Sockets."

As discussed in the "Protocols" section, Internet TCP stream sockets provide
bidirectional, reliable, sequenced and unduplicated flow of data without record
boundaries.

The following table lists the steps involved in creating and terminating a BSD IPC
connection using stream sockets. Each step is described in more detail in the sections
that follow the table.

BSD IPC Using Internet Stream Sockets 2-1

Table 2·1. Building a BSD IPC Connection Using Internet
Stream Sockets

Client Process System Call Server Process System Call
Activity Used Activity Used

create a socket socket() create a socket socket()

bind a socket bind() bind a socket bind()
address (optional) address

listen for incoming Zisten()
connection requests

request a connect- connect()
tion

accept connection accept()

send data write() or send()

receive data read() or recv()

send data write() or send()

receive data read () or recv ()

disconnect socket shutdown 0 or disconnect socket shutdownO or
(optional) close() (optional) close()

The following sections explain each of the activities mentioned in the previous table.
The description of each activity specifies a system call and includes:

• What happens when the system call is used.

• When to make the call.

• What the parameters do.

• How the call interacts with other BSD IPC system calls.

• Where to find details on the system call.

2-2 BSD IPe Using Internet Stream Sockets

The stream socket program examples are at the end of these descriptive sections.
You can refer to the example code as you work through the descriptions.

Preparing Address Variables
Before you begin to create a connection, establish the correct variables and collect
the information that you need to request a connection.

Your seIVer process needs to:

• Declare socket address variables.

• Assign a wildcard address.

• Get the port address of the service that you want to provide.

Your client process needs to:

• Declare socket address variables.

• Get the remote host's Internet address.

• Get the port address for the service that you want to use.

These activities are described next. Refer to the program example at the end of this
chapter to see how these activities work together.

BSO IPC Using Internet Stream Sockets 2-3

Declaring Socket Address Variables
You need to declare a variable of type struct sockaddr _in to use for socket addresses.

For example, the following declarations are used in the example client program:

struct sockaddr in myaddr; /* for local socket address */
struct sockaddr=in peeraddr; /* for peer socket address */

Sockaddr _in is a special case of sockaddr and is used with the AF _!NET addressing
domain. Both types are shown in this chapter, but sockaddr _in makes it easier to
manipulate the Internet and port addresses. Some of the BSD IPC system calls are
declared using a pointer to sockaddr, but you can also use a pointer to sockaddr _ in.

The sockaddr _in address structure consists of the following fields:

short sin Jamily

struct inaddr sin addr

Specifies the address family and should always be set to
AF !NET.

Specifies the port address. Assign this field when you
bind the port address for the socket or when you get a
port address for a specific service.

Specifies the Internet address. Assign this field when
you get the Internet address for the remote host.

The server process only needs an address for its own socket. Your client process may
not need an address for its local socket.

Refer to the inet(7f) entry in the HP-UX Reference Manual for more information on
sockaddr in.

2-4 BSD IPC Using Internet Stream Sockets

Getting the Remote Host's Internet Address
gethostbyname obtains the Internet address of the host and the length of that address
(as the size of struct in_addr) from jete/hosts.

gethostbyname and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <netdb.h>

struct hostent *gethostbyname(name)
char *name;

Parameter Description of Contents INPUT Value

name pointer to a valid host host name string
name
(null-terminated string)

FUNCTION RESULT: pointer to struct hostent containing Internet address
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM
CALL:

#include <netdb.h>
struct hostent *hp; /* pointer to host info for remote host */

peeraddr.sin_family = AF_INET;
hp = gethostbyname (argv [1]);
peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

The argv[lJ parameter is the host name specified in the client program command line.

Refer to the gethostent(3n) entry in the HP-UX Reference Manual for more
information on gethostbyname.

esc IPC Using Internet Stream Sockets 2-5

Getting the Port Address for the Desired Service
When a server process is preparing to offer a service, it must get the port address for
the service from fete/services so it can bind that address to its "listen" socket. If the
service is not already in /etc/services, you must add it.

When a client process needs to use a service that is offered by some server process, it
must request a connection to that server process's "listening" socket. The client
process must know the port address for that socket.

getservbyname obtains the port address of the specified service from fete/services.

getservbyname and its parameters are described in the following table.

INCLUDE FILES: #include <netdb.h>

SYSTEM CALL:

Parameter

name

proto

struct servent *getservbyname(name, proto)
char *name, *proto;

Description of Contents

pointer to a valid service
name

pointer to the protocol to
be used

INPUT Value

service name

"tcp" or 0 if TCP is the only protocol
for the service

FUNCTION RESULT: pointer to struct servent containing port address NULL
pointer (0) if failure occurs

EXAMPLE SYSTEM
CALL:

#include <netdb.h>
struct servent *sp; /* pointer to service info */

sp = getservbyname ("example", "tcp");
peeraddr.sin_port = sp->s_port;

2-6 BSD IPC Using Internet Stream Sockets

When to Get Server's Socket Address

Which Processes

server process

client process

When

before binding the listen socket

before client executes a connection
request

Refer to the getservent(3n) entry in the HP-UX Reference Manual for more
information on getservbyname.

Using a Wildcard Local Address
Wildcard addressing simplifies local address binding. When an address is assigned the
value of INADDR_ANY, the host interprets the address as any valid address. This is
useful for your server process when you are setting up the listen socket. It means that
the server process does not have to look up its own Internet address. When
INADDR_ANY is used as a host address, it also allows the server to listen to all
network connections on the host. When a specific address is used in the bind, the
server can only listen to that specific connection. Thus, INADDR_ANY is useful on
a system in which multiple LAN cards are available, and messages for a given socket
can come in on any of them.

For example, to bind a specific port address to a socket, but leave the local Internet
address unspecified, the following source code could be used:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF INET, SOCK STREAM, 0);
sin.sin_familY = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind (s, &sin, sizeof(sin));

BSO IPC Using Internet Stream Sockets 2-7

Writing the Server Process
This section discusses the calls your server process must make to connect with and
serve a client process.

Creating a Socket
The server process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket (af. type. protoco 1)
int af. type. protocol;

Parameter

af

Description of Contents

address family

INPUT Value

AFINET

type socket type SOCK STREAM

protocol underlying protocol to be
used

o (default) or value returned by
getprotobyname.

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket number (HP-UX file descriptor)
-1 if failure occurs

s = socket (AF_INET. SOCK_STREAM. 0);

The socket number returned is the socket descriptor for the newly created socket.
This number is an HP-UX file descriptor and can be used for reading, writing or any
standard file system calls after a BSD IPC connection is established. A socket
descriptor is treated like a file descriptor for an open file.

2-8 BSD IPC Using Internet Stream Sockets

When to Create Sockets

VVhichProcesses VVhen

server process before any other BSD IPC system calls

Refer to the socket(2) entry in the HP-UX Reference Manual for more information on
socket.

Binding a Socket Address to the Server Process's Socket
After your server process has created a socket, it must call bind to bind a socket
address. U ntiI an address is bound to the server socket, other processes have no way
to reference it.

The server process must bind a specific port address to this socket, which is used for
listening. Otherwise, a client process would not know what port to connect to for the
desired service.

Set up the address structure with a local address (as described in the "Preparing
Address Variables" section) before you make a bind call. Use a wildcard address so
your server process does not have to look up its own Internet address.

BSO IPC Using Internet Stream Sockets 2-9

bind and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

addr

addrlen

bind (s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;

Description of Contents

socket descriptor of local
socket

socket address

length of socket address

INPUT Value

socket descriptor of
socket to be bound

pointer to address to be bound to s

size of struct sockaddr in

FUNCTION RESULT: o if bind is successful
-1 if failure occurs

EXAMPLE SYSTEM
CALL:

struct sockaddr_in myaddr;

bind (1s, &myaddr, s;zeof(struct sockaddr_in});

When to Bind Socket Addresses

Which Processes

selVer process

When

after socket is created and before any
other BSD IPC system calls

Refer to the bind(2) entry in the HP-UX Reference Manual for more information on
bind.

2-10 BSD IPC Using Internet Stream Sockets

Setting the Server Up to Wait for Connection Requests
Once your server process has an address bound to it, it must call listen to set up a
queue that accepts incoming connection requests. The server process then monitors
the queue for requests (using select(2) or accept, which is described in "Accepting a
Connection"). The server process cannot respond to a connection request until it has
executed listen.

Listen and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

none

listen(s, backlog)
int s, back log;

Parameter Description of Contents INPUT Value

s socket descriptor of local server socket's descriptor
socket

backlog maximum number of size of queue (between 1 and 20)
connection requests in the
queue at any time

FUNCTION RESULT:

EXAMPLE SYSTEM CALL:

o if listen is successful
-1 if failure occurs

listen (ls, 5);

Backlog is the number of unaccepted incoming connections allowed at a given time.
Further incoming connection requests are rejected.

When to Set Server Up to Listen

Which Processes

server process

When

after socket is created and bound and
before the server can respond to
connection requests

Refer to the listen(2) entry in the HP-UX Reference Manual for more information on
listen.

BSO IPC Using Internet Stream Sockets 2-11

Accepting a Connection
The server process can accept any connection requests that enter its queue after it
executes listen. Accept creates a new socket for the connection and returns the socket
descriptor for the new socket. The new socket:

• Is created with the same properties as the old socket.

• Has the same bound port address as the old socket.

• Is connected to the client process' socket.

Accept blocks until there is a connection request from a client process in the queue,
unless you are using nonblocking I/O. (For information on nonblocking I/O, see the
"N onblocking I/O" section of chapter 3, "Advanced Topics for Stream Sockets.")

Accept and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

s = accept(ls,addr,addrlen)
int s;
int 1s;
struct sockaddr *addr;
int *addrlen;

2-12 eso IPC Using Internet Stream Sockets

Parameter Contents INPUT Value OUTPUT Value

s socket descriptor of socket descriptor of unchanged
local socket server socket

addr socket address pointer to address
structure where
address will be put

pointer to socket address
of client socket that
server's new socket is
connected to

addrlen length of address pointer to the size of pointer to the actual length
struct sockaddr in of address returned in addr

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket descriptor of new socket if accept is successful
-1 if failure occurs

struct sockaddr_in peeraddr;

addrlen = sizeof(sockaddr_in);
s = accept (1 s. &peeraddr. &addr 1 en) ;

There is no way for the server process to indicate which requests it can accept. It
must accept all requests or none. Your server process can keep track of which
process a connection request is from by examining the address returned by accept.
Once you have this address, you can use gethostbyaddr to get the host name. You can
close down the connection if you do not want the server process to communicate with
that particular client host or port.

When to Accept a Connection

Which Processes When

server process after executing the listen call

Refer to the accept(2) entry in the HP-UX Reference Manual for more information on
accept.

BSD IPC Using Internet Stream Sockets 2-13

Writing the Client Process
This section discusses the calls your client process must make to connect with and be
selVed by a selVer process.

Creating a Socket
The client process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket (af, type, protoco 1)
int af, type, protocol;

Parameter

af

Description of Contents

address family

INPUT Value

AF INET

type socket type SOCK STREAM

protocol underlying protocol to be
used

o (default) or value returned by
getprotobyname

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket number (HP -UX file descriptor)
-1 if failure occurs

s = socket (AF_INET, SOCK_STREAM, 0);

The socket number returned is the socket descriptor for the newly created socket.
This number is an HP-UX file descriptor and can be used for reading, writing or any
standard file system calls after a BSD IPC connection is established. A socket
descriptor is treated like a file descriptor for an open file.

2-14 BSD IPC Using Internet Stream Sockets

When to Create Sockets

Which Processes When

client process before requesting a connection

Refer to the socket(2) entry in the HP-UX Reference Manual for more information on
socket.

Requesting a Connection
Once the server process is listening for connection requests, the client process can
request a connection with the connect call.

Connect and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

addr

addrlen

connect(s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;

Description of Contents

socket descriptor of local
socket

pointer to the socket
address

length of address

INPUT Value

socket descriptor of socket
requesting a connection

pointer to the socket address of the
socket to which client wants to
connect

size of address structure pointed to
byaddr

BSD IPC USing Internet Stream Sockets 2-15

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if connect is successful
-1 if failure occurs

struct sockaddr_in peeraddr;

connect (s. &peeraddr. sizeof(struct sockaddr_in));

Connect initiates a connection and blocks if the connection is not ready, unless you
are using nonblocking I/O. (For information on nonblocking I/O, see the
"Nonblocking I/O" section of the "Advanced Topics for Stream Sockets" chapter.)
When the connection is ready, the client process completes its connect call and the
server process can complete its accept call.

Note The client process does not get feedback that the server process
has completed the accept call. As soon as the connect call returns,
the client process can send data. Local Internet and port addresses
are bound when connect is executed if you have not already bound
them yourself. These address values are chosen by the local host.

2-16 BSD IPC USing Internet Stream Sockets

When to Request a Connection

VVhichProcesses

client process

VVhen·

after socket is created and after server
socket has a listening socket

Refer to the connect(2) entry in the HP-UX Reference Manual for more information
on connect.

Sending and Receiving Data
After the connect and accept calls are successfully executed, the connection is
established and data can be sent and received between the two socket endpoints.
Because the stream socket descriptors correspond to HP -UX file descriptors, you can
use the read and write calls (in addition to recv and send) to pass data through a
socket-terminated channel.

If you are considering the use of the read and write system calls instead of the send
and recv calls described below, you should consider the following:

Advantage:

Disadvantage:

If you use read and write instead of send and recv, you
can use a socket for stdin or stdout.

If you use read and write instead of send and recv, you
cannot use the options specified with the send or recv
flags parameter.

See the table called "Other System Calls" listed in chapter 8 "Programming Hints"for
more information on which of these system calls are best for your application.

eso IPC Using Internet Stream Sockets 2-17

Sending Data
Send and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

count = send(s,msg, len, flags)
int s;
char *msg;
int len, flags;

Parameter Descri:etion of Contents INPUTVa)ue

s socket descriptor of local socket descriptor of socket sending
socket data

msg pointer to data buffer pointer to data to be sent

len size of data buffer size ofmsg

flags settings for optional flags OorMSG OOB

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

number of bytes actually sent
-1 if failure occurs

count = send (s,.buf, 10, 0);

Send blocks until the specified number of bytes have been queued to be sent, unless
you are using nonblocking I/O. (For information on nonblocking I/O, see the
"Nonblocking I/O" section of chapter 3, "Advanced Topics for Stream Sockets.")

When to Send Data

Which Processes When

server or client process after connection is established

Refer to the send(2) entry in the HP-UX Reference Manual for more information on
send.

2-18 BSD IPC Using Internet Stream Sockets

Receiving Data
Recv and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

buf

len

flags

count = recv(s,buf, len,flags)
int s;
char *buf;
int len, flags;

Description of Contents

socket descriptor of local
socket

pointer to data buffer

maximum number of bytes
that should be received

settings for optional flags

INPUT Value

socket descriptor of socket receiving
data

pointer to buffer that is to receive
data

size of data buffer

FUNCTION RESULT: number of bytes actually received
-1 if failure occurs

EXAMPLE SYSTEM
CALL:

count = recv(s, buf, 10, 0);

Recv blocks until there is at least 1 byte of data to be received, unless you are using
nonblocking I/O. (For information on nonblocking I/O, see the "Nonblocking I/O"
section of the "Advanced Topics for Stream Sockets" chapter.) The host does not
wait for len bytes to be available; if less than len bytes are available, that number of
bytes are received.

No more than len bytes of data are received. If there are more than len bytes of data
on the socket, the remaining bytes are received on the next recv.

BSO IPC Using Internet Stream Sockets 2-19

Flag Options
The flag options are:

• 0 for no options.

• MSG OOB for out of band data.

• MSG PEEK for a nondestructive read.

Use the MSG_OOB option if you want to receive out of band data. Refer to the
"Sending and Receiving Out of Band Data" section of chapter 3, "Advanced Topics
for Stream Sockets," for more information.

Use the MSG_PEEK option to preview incoming data. If this option is set on a recv,
any data returned remains in the socket buffer as though it had not been read yet.
The next recv returns the same data.

When to Receive Data

VVbichProcesses VVben

server or client process after connection is established

Refer to the recv(2) entry in the HP-UX Reference Manual for more information on
recv.

2-20 BSD IPC Using Internet Stream Sockets

Closing a Socket
In most applications, you do not have to worry about cleaning up your sockets. When
you exit your program and your process terminates, the sockets are closed for you.

If you need to close a socket while your program is still running, use the close system
call. For example, you may have a daemon process that uses fork to create the server
process. The daemon process creates the BSD IPC connection and then passes the
socket descriptor to the server. You then have more than one process with the same
socket descriptor. The daemon process should do a close of the socket descriptor to
avoid keeping the socket open once the server is through with it. Because the server
performs the work, the daemon does not use the socket after the fork.

Close decrements the file descriptor reference count. Once this occurs, the calling
process can no longer use that file descriptor.

When the last close is executed on a socket descriptor, any unsent data are sent
before the socket is closed. Any unreceived data are lost. This delay in closing the
socket can be controlled by the socket option SO_LINGER. Refer to the "Socket
Options" section of the "Advanced Topics for Stream Sockets" chapter for
information on the SO_LINGER option.

For syntax and details on close, refer to the close(2) entry in the HP-UX Reference
Manual.

Additional options for closing sockets are discussed in the "Using Shutdown" section
of the "Advanced Topics for Stream Sockets" chapter.

BSD IPC Using Internet Stream Sockets 2-21

Example Using Internet Stream Sockets

Note These programs are provided as examples only of stream socket usage and
are not Hewlett-Packard supported products.

These program examples demonstrate how to set up and use Internet stream sockets.
These sample programs can be found in the /usr/netdemo/socket directory. The client
program is intended to run in conjunction with the server program. The client
program requests a service called example from the server program.

The server process receives requests from the remote client process, handles the
request and returns the results to the client process. Note that the server:

• Uses the wildcard address for the listen socket.

• Uses the ntohs address conversion call to show how to port to a host that requires it.

• Uses the SO_LINGER option for a graceful disconnect. The SO_LINGER option
is discussed in the "Socket Options" section of the "Advanced Topics for Stream
Sockets" chapter.

The client process creates a connection, sends requests to the server process and
receives the results from the server process. Note that the client:

• Uses shutdown, which is discussed in the "Advanced Topics for Stream Sockets"
chapter, to indicate that it is done sending requests.

• Uses getsockname to see what socket address was assigned to the local socket by the
host.

• Uses the ntohs address conversion call to show how to port to a host that requires it.

Before you run the example programs, make the following entry in the two host's
/etc/services files:

examp le 22375/tcp

The source code for these two programs follows.

2-22 BSD IPC Using Internet Stream Sockets

1*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

S E R V . T C P

This is an example program that demonstrates the use of
stream sockets as a BSD IPC mechanism. This contains the server,
and is intended to operate in conjunction with the client
program found in client.tcp. Together, these two programs
demonstrate many of the features of sockets, as well as good
conventions for using these features.

This program provides a service called example. In order for
it to function, an entry for it needs to exist in the
/etc/services file. The port address for this service can be
any port number that is likely to be unused, such as 22375,
for example. The host on which the client will be running
must also have the same entry (same port number) in its
/etc/services file.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <netdb.h>

int s;
int ls;

struct hostent *hp;
struct servent *sp;

long timevar;
char *ct ime();

struct linger linger = {I,l};

/* connected socket descriptor */
/* listen socket descriptor */

/* pointer to host info for remote host */
/* pointer to service information */

/* contains time returned by time() */
/* declare time formatting routine */

/* allow a lingering, graceful close; */
/* used when setting SO_LINGER */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in peeraddr_in; /* for peer socket address */

BSD IPC Using Internet Stream Sockets 2-23

/*
*
*
*
*
*
*
*
*/

M A I N

This routine starts the server. It forks, leaving the child
to do all the work, so it does not have to be run in the
background. It sets up the listen socket, and for each incoming
connection, it forks a child process to process the data. It
will loop forever, until killed by a signal.

main(argc, argv)
int argc;
char *argv 0 ;
{

int addrlen;
/* clear out address structures */

memset ((char *)&myaddr in, 0, sizeof(struct sockaddr in));
memset ((char *)&peeraddr_in, 0, sizeof(struct sockaddr_in));

/* Set up address structure for the listen socket. */
mYaddr_in.sin_family = AF_INET;

/* The server should listen on the wildcard address,
* rather than its own Internet address. This is
* generally good practice for servers, because on
* systems which are connected to more than one
* network at once will be able to have one server
* listening on all networks at once. Even when the
* host is connected to only one network, this is good
* practice, because it makes the server program more
* portable.
*/

myaddr in.sin addr.s addr = INADDR ANY;
- /* Fi~d the information for the example server

* in order to get the needed port number.
*/

sp = getservbyname ("example", tcp);
if (sp == NULL) {

}

fprintf(stderr, %s: host not found
argv [0]) ;

exit(1) ;

/* Create the listen socket. */
ls = socket (AF INET, SOCK STREAM, 0);
if (ls == -1) {- -

}

perror(argv [0]);
fprintf(stderr, %s: unable to create socket\n , argv[O]);
exit (1);

2-24 BSD IPC Using Internet Stream Sockets

/* Bind the listen address to the socket. */
if (bind(ls, &myaddr in, sizeof(struct sockaddr in)) == -1) {

perror(argv[O]); -

}

fprintf(stderr, %s: unable to bind address\n , argv[O]);
exit(1) ;

/* Initiate the listen on the socket so remote users
* can connect. The listen backlog is set to 5. 20
* is the currently supported maximum.
*/

if (listen(ls, 5) == -1) {
perror(argv [0]) ;

}

fprintf(stderr, %s: unable to listen on socket\n , argv[O]);
exit (1);

/* Now, all the initialization of the server is
* complete, and any user errors will have already
* been detected. Now we can fork the daemon and
* return to the user. We need to do a setpgrp
* so that the daemon will no longer be associated
* with the user's control terminal. This is done
* before the fork, so that the child will not be
* a process group leader. Otherwise, if the child
* were to open a terminal, it would become associated
* with that terminal as its control terminal. It is
* always best for the parent to do the setpgrp.
*/

setpgrp();

switch (fork()) {
case -1: /* Unable to fork, for some reason. */

perror(argv[O]);
fprintf(stderr, %s: unable to fork daemon\n , argv[O]);
exit (1) ;

case 0: /* The child process (daemon) comes here. */
/* Close stdin and stderr so that they will not
* be kept open. Stdout is assumed to have been
* redirected to some logging file, or /dev/null.
* From now on, the daemon will not report any
* error messages. This daemon will loop forever,
* waiting for connections and forking a child
* server to handle each one.
*/

fclose(stdin);
fclose(stderr);

BSD IPC Using Internet Stream Sockets 2-25

}

/* Set SIGCLD to SIG IGN, in order to prevent
* the accumulation of zombies as each child
* terminates. This means the daemon does not
* have to make wait calls to clean them up.
*/

signal(SIGCLD, SIG_IGN);
for(;;) {

}

default:
exit(O);

}

/* Note that addrlen is passed as a pointer
* so that the accept call can return the
* size of the returned address.
*/

addrlen = sizeof(struct sockaddr in};
/* This call will block until a new
* connection arrives. Then, it will
* return the address of the connecting
* peer, and a new socket descriptor, s,
* for that connection.
*/

s = accept(ls, &peeraddr_in, &addrlen);
if (s == -1) exit(l);
switch (fork()) {
case -1: /* Can't fork, just continue. */

exit(l);
case 0: /* Child process comes here. */

server();
exit(0);

default: /* Daemon process comes here. */

}

/* The daemon needs to remember

close(s);

* to close the new accept socket
* after forking the child. This
* prevents the daemon from running
* out of file descriptors. It
* also means that when the server
* closes the socket, that it will
* allow the socket to be destroyed
* since it will be the last close.
*/

/* Parent process comes here. */

2-26 BSD IPC Using Internet Stream Sockets

/* Bind the listen address to the socket. */
if (bind(ls, &myaddr in, sizeof(struct sockaddr in)) -1) {

perror(argv[OJ); -

}

fprintf(stderr, %s: unable to bind address\n , argv[OJ);
exit(1);

/* Initiate the listen on the socket so remote users
* can connect. The listen backlog is set to 5. 20
* is the currently supported maximum.
*/

if (1 isten(ls, 5) == -1) {
perror(argv [OJ) ;

}

fprintf(stderr, %s: unable to listen on socket\n , argv[OJ);
exit(1);

/* Now, all the initialization of the server is
* complete, and any user errors will have already
* been detected. Now we can fork the daemon and
* return to the user. We need to do a setpgrp
* so that the daemon will no longer be associated
* with the user's control terminal. This is done
* before the fork, so that the child will not be
* a process group leader. Otherwise, if the child
* were to open a terminal, it would become associated
* with that terminal as its control terminal. It is
* always best for the parent to do the setpgrp.
*/

setpgrp();

switch (fork()) {
case -1: /* Unable to fork, for some reason. */

perror(a rgv [OJ) ;
fprintf(stderr, %s: unable to fork daemon\n , argv[OJ);
exit(1);

case 0: /* The child process (daemon) comes here. */
/* Close stdin and stderr so that they will not
* be kept open. Stdout is assumed to have been
* redirected to some logging file, or /dev/null.
* From now on, the daemon will not report any
* error messages. This daemon will loop forever,
* waiting for connections and forking a child
* server to handle each one.
*/

fclose(stdin);
fclose(stderr);

BSO IPC Using Internet Stream Sockets 2-25

}

/* Set SIGCLD to SIG_IGN, in order to prevent
* the accumulation of zombies as each child
* terminates. This means the daemon does not
* have to make wait calls to clean them up.
*/

signal(SIGCLD, SIG_IGN);
for(; ;) {

}

default:
exit(O);

}

/* Note that addrlen is passed as a pOinter
* so that the accept call can return the
* size of the returned address.
*/

addrlen = sizeof(struct sockaddr in);
/* This call will block until a new
* connection arrives. Then, it will
* return the address of the connecting
* peer, and a new socket descriptor, s,
* for that connection.
*/

s = accept(ls, &peeraddr_in, &addrlen);
if (s == -1) exit(l);
switch (fork()) {
case -1: /* Can't fork, just continue. */

exit(l);
case 0: /* Child process comes here. */

server();
exit(O);

default: /* Daemon process comes here. */

}

/* The daemon needs to remember

close(s);

* to close the new accept socket
* after forking the child. This
* prevents the daemon from running
* out of file descriptors. It
* also means that when the server
* closes the socket, that it will
* allow the socket to be destroyed
* since it will be the last close.
*/

/* Parent process comes here. */

2-26 BSD IPC Using Internet Stream Sockets

/*
*
*
*
*
*
*
*
*
*/

server()
{

S E R V E R

This is the actual server routine that the daemon forks to
handle each individual connection. Its purpose is to receive
the request packets from the remote client, process them,
and return the results to the client. It will also write some
logging information to stdout.

int reqcnt = 0;
char buf[10];

/* keeps count of number of requests */
/* This example uses 10 byte messages. */

char *inet ntoa();
char *host~ame;
int len, len1;

/* points to the remote host's name string */

/* Close the listen socket inherited from the daemon. */
close(ls);

/* Look up the host information for the remote host
* that we have connected with. Its Internet address
* was returned by the accept call, in the main
* daemon loop above.
*/

hp = gethostbyaddr ((char *) &peeraddr_in.sin_addr,
sizeof (struct in addr) ,
peeraddr_in.sin_f;mily);

if (hp == NULL) {
/* The information is unavailable for the remote
* host. Just format its Internet address to be
* printed out in the logging information. The
* address will be shown in Internet dot format
*/

hostname = inet ntoa(peeraddr in.sin addr);
} else { - --

hostname = hp->h_name; /* point to host's name */
}

/* Log a startup message. */
time (&timevar);

BSD IPC Using Internet Stream Sockets 2-27

/* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
* necessary, but the ntohs() call is included here so
* that this program could easily be ported to a host
* that does require it.
*/

printf("Startup from %s port %u at %s",
hostname, ntohs(peeraddr_in.sin_port), ctime(&timevar));

/* Set the socket for a lingering, graceful close.
* Since linger was set to 1 above, this will cause
* a final close of this socket to wait until all of the
* data sent on it has been received by the remote host.
*/

if (setsockopt(s, SOL_SOCKET, SO_LINGER, &linger,
sizeof(linger)) == -1) {

errout: printf("Connection with %s aborted on error\n", hostname);
exit(l);

/* Go into a loop, receiving requests from the remote
* client. After the client has sent the last request,
* it will do a shutdown for sending, which will cause
* an end-of-file condition to appear on this end of the
* connection. After all of the client's requests have
* been received, the next recv call will return zero
* bytes, signalling an end-of-file condition. This is
* how the server will know that no more requests will
* follow, and the loop will be exited.
*/

while (len = recv(s, buf, 10, 0)) {
if (len == -1) goto errout; /* error from recv */

/* The reason this while loop exists is that there
* is a remote possibility of the above recv returning
* less than 10 bytes. This is because a recv returns
* as soon as there is some data, and will not wait for
* all of the requested data to arrive. Since 10 bytes
* is relatively small compared to the allowed TCP
* packet sizes, a partial receive is unlikely. If
* this example had used 2048 bytes requests instead,
* a partial receive would be far more likely.
* This loop will keep receiving until all 10 bytes
* have been received, thus guaranteeing that the
* next recv at the top of the loop will start at
* the begining of the next request.
*/

2-28 eSD IPC Using Internet Stream Sockets

}

}

while (len < 10) {

}

len1 = recv(s, &buf[len] , 10-len, 0);
if (len1 == -1) goto errout;
len += len1;

/* Increment the request count. */
reqcnt++;

/* This sleep simulates the processing of the
* request that a real server might do.
*/

s leep(1) ;
/* Send a response back to the client. */

if (send(s, buf, 10, 0) != 10) goto errout;

/* The loop has terminated, because there are no
* more requests to be serviced. As mentioned above,
* this close will block until all of the sent replies
* have been received by the remote host. The reason
* for lingering on the close is so that the server will
* have a better idea of when the remote has picked up
* all of the data. This will allow the start and finish
* times printed in the log file to reflect more accurately
* the length of time this connection was used.
*/

c10se(s);

/* Log a finishing message. */
time (&t imevar) ;

/* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
* necessary, but the ntohs() call is included here so
* that this program could easily be ported to a host
* that does require it.
*/

printf("Completed %s port %u, %d requests, at %s\n" ,
hostname, ntohs(peeraddr_in.sin_port) , reqcnt, ctime(&timevar));

BSD IPC Using Internet Stream Sockets 2-29

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

C LIE NT. T C P

This is an example program that demonstrates the use of stream
sockets as a BSD IPC mechanism. This contains the client, and is
intended to operate in conjunction with the server program found
in serv.tcp. Together, these two programs demonstrate many of the
features of sockets, as well as good conventions for using these
features.

This program requests a service called example. In order for it
to function, an entry for it needs to exist in the /etc/services
file. The port address for this service can be any port number
that is likely to be unused, such as 22375, for example. The host
on which the server will be running must also have the same entry
(same port number) in its /etc/services file.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

int s; /* connected socket descriptor */

struct hostent *hp;
struct servent *sp;

/* pointer to host info for remote host */
/* pointer to service information */

long timevar;
char *ct ime() ;

/* contains time returned by time() */
/* declare time formatting routine */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in peeraddr_in; /* for peer socket address */

/*
*
*
*
*
*
*
*
*
*
*
*/

M A I N

This routine is the client which request service from the remote
example server. It creates a connection, sends a number of

requests, shuts down the connection in one direction to signal the
server about the end of data, and then receives all of the responses.
Status will be written to stdout.

The name of the system to which the requests will be sent is given
as a parameter to the command.

2-30 eso IPC Using Internet Stream Sockets

main(argc, argyl
int argc;
char *argv 0 ;
{

i nt addr 1 en, i, j;

/* This example uses 10 byte messages. */
char buf [10J ;

if (arge != 2) {

}

fprintf(stderr, Usage: %s <remote host>\n , argv[OJ);
exit (1);

/* clear out address structures */
memset ((char *)&myaddr in, 0, sizeof(struet sockaddr in));
memset ((char *)&peeraddr_in, 0, sizeof(struct sockaddr_in));

/* Set up the peer address to which we will connect. */
peeraddr in.sin family = AF INET;

7* Get the host information for the hostname that the
* user passed in.
*/

hp = gethostbyname (argv[1J);
/* argv[lJ is the host name. */

if (hp == NULL) {

}

fprintf(stderr, %s: %s not found in /ete/hosts\n ,
argv[OJ, argv[1J);

exit(1) ;

peeraddr_in.sin_addr.s_addr = ((struet in_addr *)(hp->h_addr))->s_addr;
/* Find the information for the example server
* in order to get the needed port number.
*/

sp = getservbyname ("example", tcp);
if (sp == NULL) {

}

fprintf(stderr, %s: example not found in /etc/services\n ,
argv [OJ);

exit(1);

/* Create the socket. */
s = socket (AF INET, SOCK STREAM, 0);
if (s == -1) {- -

}

perror(argv[OJ) ;
fprintf(stderr, %s: unable to create socket\n , argv[O]);
exit(1) ;

BSO IPC Using Internet Stream Sockets 2-31

/* Try to connect to the remote server at the address
* which was just built into peeraddr.
*/

if (connect(s; &peeraddr_in, sizeof(struct sockaddr_in)) == -1) {
perror(argv[O]) ;

}

fprintf(stderr, %s: unable to connect to remote\n , argv[O]);
exit(1) ;

/* Since the connect call assigns a random address
* to the local end of this connection, let's use
* getsockname to see what it assigned. Note that
* addrlen needs to be passed in as a pointer,
* because getsockname returns the actual length
* of the address.
*/

addrlen = sizeof(struct sockaddr in);
if (getsockname(s, &myaddr in, &~ddrlen) == -1) {

perror(argv[O]); -

}

fprintf(stderr, %s: unable to read socket address\n , argv[O]);
exit(1);

/* Print out a startup message for the user. */
time(&timevar);

/* The port number must be converted first to host byte
* order before printing. On most hosts, this is not
* necessary, but the ntohs() call is included here so
* that this program could easily be ported to a host
* that does require it.
*/

printf("Connected to %s on port %u at %s",
argv[l], ntohs(myaddr_in.sin_port), ctime(&timevar));

/* This sleep simulates any preliminary processing
* that a real client might do here.
*/

sleep(S);

2-32 eso IPC Using Internet Stream Sockets

/* Send out all the requests to the remote server.
* In this case, five are sent, but any random number
* could be used. Note that the first four bytes of
* buf are set up to contain the request number. This
* number will be returned in the reply from the server.
*/

/* CAUTION: If you increase the number of requests sent
* or the size of the requests, you should be
* aware that you could encounter a deadlock
* situation. Both the client's and server's
* sockets can only queue a limited amount of
* data on their receive queues.
*/

for (i=l; i<=5; i++) {
*buf = i;

}

if (send (s, buf, 10, 0) ! = 10) {

}

fprintf(stderr, %s: Connection aborted on error ,
argv [OJ) ;

fprintf(stderr, on send number %d\n , i);
exit(1) ;

/* Now, shutdown the connection for further sends.
* This will cause the server to receive an end-of-file
* condition after it has received all the requests that
* have just been sent, indicating that we will not be
* sending any further requests.
*/

if (shutdown(s, 1) == -1) {
perror(argv [OJ);

}

fprintf(stderr, %s: unable to shutdown socket\n , argv[OJ);
exit(1) ;

/* Now, start recelvlng all of the replys from the server.
* This loop will terminate when the recv returns zero,
* which is an end-of-file condition. This will happen
* after the server has sent all of its replies, and closed
* its end of the connection.
*/

while (i = recv(s, buf, 10, 0)) {
if (i == -1) {

errout: perror(argv[OJ);

}

fprintf(stderr, %s: error reading result\n , argv[OJ);
exit(l);

BSD IPC Using Internet Stream Sockets 2-33

}

}

/* The reason this while loop exists is that there
* is a remote possibility of the above recv returning
* less than 10 bytes. This is because a recv returns
* as soon as there is some data, and will not wait for
* all of the requested data to arrive. Since 10 bytes
* is relatively small compared to the allowed Tep
* packet sizes, a partial receive is unlikely. If
* this example had used 2048 bytes requests instead,
* a partial receive would be far more likely.
* This loop will keep receiving until all 10 bytes
* have been received, thus guaranteeing that the
* next recv at the top of the loop will start at
* the begining of the next reply.
*/

while (i < 10) {

}

j = recv(s, &buf[i], 10-i, 0);
if (j == -1) goto errout;
i += j;

/* Print out message indicating the identity of
* this reply.
*/

printf("Received result number %d\n", *(int *)buf);

/* Print message indicating completion of task. */

time(&timevar);
printf("All done at %s", ctime(&timevar));

2-34 BSC IPC Using Internet Stream Sockets

3

Advanced Topics for Stream Sockets

This chapter explains the following:

• Socket options.

• Synchronous I/O multiplexing with select.

• Sending and receiving data asynchronously.

• Nonblocking I/O.

• Using shutdown.

• Using read and write to make stream sockets transparent.

• Sending and receiving out-of-band data.

Socket Options
The operation of sockets is controlled by socket level options. The following options
are supported for Internet stream sockets:

• SO REUSEADDR.

• SO KEEP ALIVE.

• SO DONTROUTE.

• SO SNDBUF.

Advanced Topics for Stream Sockets 3-1

• SO RCVBUF.

• SO LINGER.

• SO USELOOPBACK.

• SO OOBINLINE.

• SO SNDLOWAT.

• SO RCVLOWAT.

• SO SNDTIMEO.

• SO RCVTIMEO.

• SO TYPE.

• SO ERROR.

All of these options may be used on either AF _ INET or AF _UNIX sockets; the
following, however, are really INET specific in their function and will not change
UNIX socket behavior.

• SO KEEP ALIVE.

• SO REUSEADDR.

• SO_DON1ROUTE.

• SO USELOOPBACK.

• SO _ OOBINLINE.

• SO SNDTIMEO.

• SO RCVTIMEO.

• SO_BROADCAST.

In addition, the SO_DEBUG option is supported for compatibility only; it has no
functionality.

The next section discusses how to set socket options and get the current value of a
socket option. Following those discussions is a description of each available option.
Refer to chapter 6 for a description of the SO_BROADCAST option.

3-2 Advanced Topics for Stream Sockets

Getting and Setting Socket Options
The socket options are defined in the sys/socket.h file. You can get the current status
of an option with the getsockopt call, and you can set the value of an option with the
setsockopt call.

Setsockopt and its parameters are described in the following table:

INCLUDE FILES: #include <sys/types.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

level

optname

optval

opden

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optva 1;
int opt len;

Descril:!tion of Contents

socket descriptor

protocol level

name of option

pointer to option input
value

length of optval

INPUT Value

socket descriptor for which options
are to be set

SOL SOCKET

supported option name

Must be at least size of (int). Holds
either value to be set or boolean flag

size of optval

FUNCTION RESULT: o if setsockopt is successful
-1 if failure occurs

EXAMPLE SYSTEM
CALL:

See the description of the
SO_REUSEADDR option for an example.

Refer to the getsockopt(2) entry in the HP-UX Reference Manual for more
information on setsockopt.

Advanced Topics for Stream Sockets 3-3

getsockopt and its parameters are described in the following table:

INCLUDE FILES: .

SYSTEM CALL:

Parameter Contents

#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optva 1 ;
i nt *opt len;

INPUT Value OUTPUT Value

s socket descriptor socket descriptor for unchanged

level

optname

optval

optlen

which option values
are to be returned

protocol level SOL SOCKET unchanged

name of option supported option unchanged
name

pointer to current pointer to buffer pointer to buffer that
value of option where option's contains current option

current value is to be value
returned

pointer to length of pointer to maximum pointer to actual size of
optval number of bytes to be optval returned

returned by optval

FUNCTION RESULT: o if the option is set

EXAMPLE SYSTEM
CALL:

If getsockopt fails for any reason, the function returns
-1, and the option is not returned. An error code is
stored in erma.

len = sizeof (optval))
getsockopt(s, SOL_SOCKET, SO_REUSEADDR, &optval, &len;)

optval may never be zero. It must always point to data sent with the socket option
and must always be at least the size of an integer.

3-4 Advanced Topics for Stream Sockets

The following socket options set socket parameter values. optval is an integer
containing the new value:

• SO SNDBUF.

• SO RCVBUF.

• SO SNDLOWAT.

• SO RCVLOWAT.

• SO SNDTIMEO.

• SO RCVTIMEO.

The following socket options toggle socket behavior. optval is an integer containing a
boolean flag for the behavior (1 = on, 0 = off):

• SO KEEP ALIVE.

• SO DEBUG.

• SO DONTROUTE.

• SO USELOOPBACK

• SO REUSEADDR.

• SO OOBINLINE.

The SO_LINGER option is a combination. It sets a linger value, and also toggles
linger behavior on and off. In previous releases SO_DONTLINGER was supported.
In the 8.0 release, toggling SO_LINGER off is equivalent in function. For
SO_LINGER, optval points to a struct linger, defined in /usr/include/sys/socket.h. The
linger structure contains an integer boolean flag to toggle behavior on/off, and an
integer linger value.

Refer to the getsockopt(2) entry in the HP-UX Reference Manual for more
information on getsockopt.

Advanced Topics for Stream Sockets 3-5

SO REUSEADDR
This option is AF _ INET socket-specific.

SO_REUSEADDR enables you to restart a daemon which was killed or terminated.

This option modifies the rules used by bind to validate local addresses, but it does not
violate the uniqueness requirements of an association. SO_REUSEADDR modifies
the bind rules only when a wildcard Internet Protocol (IP) address is used in
combination with a particular protocol port. The host still checks at connection time
to be sure any other sockets with the same local address and local port do not have
the same remote address and remote port. Connect fails if the uniqueness
requirement is violated.

The following example shows the SO _REUSEADDR option's use.

Suppose that a network daemon server is listening on a specific port: port 2000. If
you executed netstat an, part of the output would resemble:

Active connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 *.2000 * * LISTEN

Network Daemon Server Listening at Port 2000

When the network daemon accepts a connection request, the accepted socket will
bind to port 2000 and to the address where the daemon is running (e.g.
192.6.250.100).

If you then executed netstat an, the output would resemble:

Active connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 192.6.250.100.2000192.6.250.101.4000 ESTABLISHED

tcp 0 0 *.2000 * * LISTEN

New Connection Established, Daemon Server Still Listening

Here the network daemon has established a connection to the client
(192.6.250.101.4000) with a new server socket. The original network daemon
server continues to listen for more connection requests.

3-6 Advanced Topics for Stream Sockets

If the listening network daemon process is killed, attempts to restart the daemon fail
if SO _REUSEADDR is not set. The restart fails because the daemon attempts to
bind to port 2000 and a wildcard IP address (e.g. *.2000). The wildcard address
matches the address of the established connection (192.6.250. 100), so the bind
aborts to avoid duplicate socket naming.

When SO _ REUSEADDR is set, bind ignores the wildcard match, so the network
daemon can be restarted.

An example usage of this option is:

int optval = 1;
setsockopt (s, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));

bind (s, &sin, sizeof(sin));

SO KEEPALIVE
This option is AF _ INET socket-specific.

This option enables the periodic transmission of messages on a connected socket.
This occurs at the transport level and does not require any work in your application
programs.

If the peer socket does not respond to these messages, the connection is considered
broken. The next time one of your processes attempts to use a connection that is
considered broken, the process is notified (with a SIGPIPE signal if you are trying to
send, or an end-of-file condition if you are trying to receive) that the connection is
broken.

SO DONTROUTE
This option is AF _ INET socket-specific.

SO _ DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

Advanced Topics for Stream Sockets 3-7

SO SNDBUF
so _ SNDBUF changes the send socket buffer size. Increasing the send socket buffer
size allows a user to send more data before the user's application will block, waiting
for more buffer space.

Note Increasing buffer size to send larger portions of data before the
application blocks may increase throughput, but the best method
of tuning performance is to experiment with various buffer sizes.

You can increase a stream socket's buffer size at any time, but decrease it only prior
to establishing a connection.

The maximum buffer size for stream sockets is 58254 bytes.

Example:

int result;
int buffsize = 10,000;
result = setsockopt(s, SOL_SOCKET, SO_SNDBUF, &buffsize, sizeof(buffsize));

SO RCVBUF
so _ RCVBUF changes the receive socket buffer size.

You can increase a stream socket's buffer size at any time, but decrease it only prior
to establishing a connection.

The maximum buffer size for stream sockets is 58254 bytes.

Example:

int result;

int buffsize = 10,000;

result = setsockopt(s, SOL_SOCKET, SO_RCVBUF, &buffsize, sizeof(buffsize));

3-8 Advanced Topics for Stream Sockets

Table 3-1. Summary Information for Changing Socket Buffer Size

Socket Type
(Protocol)

stream (TCP)

SO LINGER

When Buffer Size
Increase Allowed

at any time

When Buffer Size
Decrease Allowed

only prior to estab­
lishing a connection

Maximum
ButTer Size

58254 bytes

SO LINGER controls the actions taken when a close is executed on a socket that has
unsent data.

This option can be cleared by toggling. The default is off.

The linger timeout interval is set with a parameter in the setsockopt call. The only
useful values are zero and nonzero:

• If 1_ onoff is zero, close returns immediately, but any unsent data is transmitted
(after close returns).

• If 1_ onoff is nonzero and I_linger is zero, close returns immediately, and any unsent
data is discarded.

• If 1_ onoff is nonzero and I_linger is nonzero, clsoe does not return until all unsent
data is transmitted (or the connection is closed by the remote system).

In the default case (SO_LINGER is off), close is not blocked. The socket itself,
however, goes through graceful disconnect, and no data is lost.

Example:

int result;
struct linger linger;
linger.l on off = 1; /*0 = off (1 linger ignored), nonzero = on */
linger. l=linger =1; /*0 = discard data, nonzero = wait for data sent *j
result = setsockopt(s, SOL_SOCKET, SO_LINGER, &linger, sizeof(linger));

Advanced Topics for Stream Sockets 3-9

Table 3-2. Summary of Linger Options on Close

Does Not
Socket Option Linger Graceful Hard Wait for Wait for
Option Set Interval Close Close Close Close

SO LINGER off don't care x x
SO-LINGER on zero x x
SO-LINGER on nonzero x x

SO USELOOPBACK
This option is not applicable to UNIX Domain sockets.

SO _ USELOOPBACK directs the network layer (IP) of networking code to use the
localloopback address when sending data from this socket. Use this option only when
all data sent will also be received locally.

SO OOBINLINE
This option is not applicable to UNIX Domain sockets.

This option enables receipt of out-of-band data inline. Normally, OOB data is
extracted from the data stream and must be read with the MSG _ OOB flag specified in
the recvO call. When SO _ OOBINLINE is specified, OOB data arriving at that socket
remains inline and can be read without MSG _ OOB specified.

In both cases, a normal read() or recv() which would read past the OOB mark will halt
at the mark, instead leaving the OOB byte the next byte to be read.

SO SNDLOWAT
This option allows the user to set or fetch the low water mark for the socket's send
socket buffer.

At present, this option is not used. It is supported in anticipation of future use.

3-10 Advanced Topics for Stream Sockets

SO RCVLOWAT
This option allows the user to set or fetch the low water mark for the socket's receive
socket buffer.

At present, this option is not used. It is supported in anticipation of future use.

SO SNDTIMEO
This option allows the user to set or fetch the timeout value for a socket's send socket
buffer.

At present, this option is not used. It is supported in anticipation of future use.

RCVTIMEO
This option allows the user to set or fetch the timeout value for the socket's receive
socket buffer.

At present, this option is not used. It is supported in anticipation of future use.

SO TYPE
This option is used to return the socket type (e.g., stream, datagram, etc.). Use this
option only with the getsockopt system call.

SO ERROR
This option is used to get and clear any error that has occurred on the socket. Use
this option only with thegetsockopt system call.

SO BROADCAST
This option is not supported for UNIX Domain sockets. Setting this option allows
the user to send datagrams to a broadcast address. A broadcast address is defined as
an Internet address whose local address portion is allls.

Advanced Topics for Stream Sockets 3-11

Synchronous I/O Multiplexing with Select
The select system call can be used with sockets to provide a synchronous multiplexing
mechanism. The system call has several parameters which govern its behavior. If you
specify a zero pointer for the timeout parameter, select will block until one or more of
the specified socket descriptors is ready. If timeout is a non-zero pointer, it specifies
a maximum interval to wait for the selection to complete.

A select of a socket descriptor for reading is useful on:

• A connected socket, because it determines when data have arrived and are ready to
be read without blocking; use the FIONREAD parameter to the ioctl system call to
determine exactly how much data are available.

• A listening socket, because it determines when you can accept a connection without
blocking.

• Any socket to detect if an error has occurred on the socket.

A select of a socket descriptor for writing is useful on:

• A connecting socket, because it determines when a connection is complete.

• A connected socket, because it determines when more data can be sent without
blocking. This implies that at least one byte can be sent; there is no way, however,
to determine exactly how many bytes can be sent.

• Any socket to detect if an error has occurred on the socket.

select for exceptional conditions will return true for Berkeley sockets if out-of-band
data is available to be read. Select will always return true for sockets which are no
longer capable of being used (e.g. if a close or shutdown system call has been
executed against them).

select is used in the same way as in other applications. Refer to the select(2) entry in
the HP-UX Reference Manual for information on how to use select. For an
asynchronous alternative to select, see the next section, "Sending and Receiving Data
Asynchronously."

3-12 Advanced Topics for Stream Sockets

Example:

The following example illustrates the select system call. Since it is possible for a
process to have more than 32 open file descriptors, the bit masks used by select are
interpreted as arrays of integers. The header file sys/types.h contains some useful
macros to be used with the select() system call, some of which are reproduced below.

1*
*
*
*
*
*
*
*
*

*/

These macros are used with select(). select() uses bit masks of file
descriptors in long integers. These macros manipulate such bit fields
(the file system macros use chars). FD SETSIZE may be defined by
the user. but must be = u.u_highestfd +-1. Since the absolute limit on
the number of per process open files is 2048. FD_SETSIZE must
be large enough to accommodate this many file descriptors.
Unless the user has this many files opened. FD_SETSIZE should be
redefined to a smaller number.

typedef long fd_mask
#define NFDBITS (sizeof (fd mask) * 8 /* 8 bits per byte
#define howmany (x.y) (((x)+((Y)-1»/(Y»
typedef struct fd_set {

fd mask fds bits [howmany (FD SETSIZE. NFDBITS)]; */
} fd-set; - -
#defi~e FD_SET(n.p) ((p)->fds_bits[(n)/NFDBITS] 1= (1 « ((n) % NFDBITS)))
#define FD CLR(n,p) ((p)->fds bits[(n)/NFDBITS] &= -(1 « ((n) % NFDBITS»)
#define FD=ISSET(n,p) ((p) ->fds_bits[(n)/NFDBITS] & (1 « ((n) % NFDBITS»)
#define FD_ZERO(p) memset((char *) (p). (char) 0, sizeof (*(p»)

do_select(s)
int s; /* socket to select on. initialized */
{

struct fd_set read_mask, write_mask;
int nfds;
int nfd;

1* bit masks */
/* number to select on */
/* number found */

for (;;) { /* for example ... */
FD ZERO(&read mask); /* select will overwrite on return */
FD-ZERO(&write mask);
FD-SET(s, &read mask); /* we care only about the socket */
FD=SET(s, &write_mask);
nfds = s+1; /* select descriptors 0 through s */
nfd = select(nfds, &read mask, &write mask. (int *) O.

(struct timeval *) 0);/* will block */
if (nfd == -1) {

perror(select: unexpected condition);
exit(1) ;

}
if (FD ISSET(s, &read mask»

- do_read(s); - /* something to read on socket s */
/* fall through as maybe more to do */

Advanced Topics for Stream Sockets 3-13

}
}

if (FD ISSET(s, &write mask))
- do_write{s);- /* space to write on socket s */

Sending and Receiving Data Asynchronously
Asynchronous sockets allow a user program to receive an SIGIO signal when the
state of the socket changes. This state change can occur, for example, when new data
arrives. Currently the user would have to issue a select system call in order to
determine if data were available. If other processing is required of the user program,
the need to call select can complicate an application by forcing the user to implement
some form of polling, whereby all sockets are checked periodically. Asynchronous
sockets allow the user to separate socket processing from other processing,
eliminating polling altogether. Select may still be required to determine exactly why
the signal is being delivered, or to which socket the signal applies.

Generation of the SIGIO signal is protocol dependent. It mimics the semantics of
select in the sense that the signal is generated whenever select returns true. It is
generally accepted that connectionless protocols deliver the signal whenever a new
packet arrives. For connection oriented protocols, the signal is also delivered when
connections are established or broken, as well as when additional outgoing buffer
space becomes available. Be warned that these assertions are guidelines only; any
signal handler should be robust enough to handle signals in unexpected situations.

The delivery of the SIGIO signal is dependent upon two things. First the socket state
must be set as asynchronous; this is done using the FIOASYNC flag of the ioctl
system call. Second, the process group (pgrp) associated with the socket must be set;
this is done using the SIOCSPGRP flag of ioctl. The sign value of the pgrp can lead
to various signals being delivered. Specifically, if the pgrp is negative, this implies that
a signal should be delivered to the process whose PID is the absolute value of the
pgrp. If the pgrp is positive, a signal should be delivered to the process group
identified by the absolute value of the pgrp.

Any application that chooses to use asynchronous sockets must explicitly activate the
described mechanism. The SIGIO signal is a "safe" signal in the sense that if a
process is unprepared to handle it, the default action is to ignore it. Thus any existing
applications are immune to spurious signal delivery.

Notification that out-of-band data has been received is also done asynchronously; see
the section "Sending and Receiving Out-of-band Data" in this chapter for more
details.

3-14 Advanced Topics for Stream Sockets

Examples:

The following example sets up an asynchronous SOCK_STREAM listen socket. This
is typical of an application that needs to be notified when connection requests arrive.

int ls;
int flag = 1;
int iohndlr();

signal (SIGIO, iohndlr);

/* SOCK STREAM listen socket initialized */
/* for 10ctl, to turn on async */
/* the function which handles the SIGIO */

/* set up the handler */

if (ioctl (ls, FIOASYNC, &flag) == -1) {
perror ("can't set async on socket");
exit(1) ;

}
flag = -getpid(); /* process group negative == deliver to process */
if (ioctl (ls, SIOCSPGRP, &flag) == -1) {

}

perror ("can't set pgrp");
exit(1) ;

/* signal can come any time now */

Advanced Topics for Stream Sockets 3-15

The following example illustrates the use of process group notification. Note that the
real utility of this feature is to allow multiple processes to receive the signal, which is
not illustrated here. For example, the socket could be of type SOCK _ DGRAM; a
signal here can be interpreted as the arrival of a service-request packet. Multiple
identical servers could be set up, and the first available one could receive and process
the packet.

int flag = 1; /* ioct 1 to turn on async * /
int iohndlr();
signal (SIGIO, iohndlr);

setpgrp () ; 1* set my processes' process group * /
if (ioctl (s, FIOASYNC, &flag) == -1) {

perror ("can't set async on socket");
exit(1) ;

}
flag = getpid(); /* process group + == deliver to every process in group */
if {ioctl (s, SIOCSPGRP, &flag) == -1) {

}

perror ("can't set pgrp");
exit(1);

1* signa 1 can come any time now * /

For more information, see Appendix A, which contains a complete program showing
the client and server code using asynchronous sockets.

3-16 Advanced Topics for Stream Sockets

Nonblocking I/O
Sockets are created in blocking mode I/O by default. You can specify that a socket be
put in nonblocking mode by using the ioctl system call with the FIOSNBIO request.

An example usage of this call is:

#include <sys/ioctl.h>

ioctl(s, FIOSNBIO, &arg);

arg is a pointer to int:

• When int equals 0, the socket is changed to blocking mode.

• When int equals 1, the socket is changed to nonblocking mode.

If a socket is in nonblocking mode, the following calls are affected:

accept

connect

recv

send

If no connection requests are present, accept returns
immediately with the EWOULDBLOCK error.

If the connection cannot be completed immediately,
connect returns with the EINPROGRESS error.

If no data are available to be received, recv returns the
value -1 and the EWOULDBLOCK error. This is also
true for read.

If there is no available buffer space for the data to be
transmitted, send returns the value -1 and the
EWOULDBLOCK error. This is also true for write.

The 0 _NDELAY flag for fcntl(2) is also supported. If you use this flag and there are
no data available to be received on a recv, recvfrom, recvmsg, or read call, the call
returns immediately with the value of o. If you use the 0 _NONBLOCK flag, the call
returns immediately with the value of -1 and the EAGAIN error. This is the same as
returning an end-of-file condition. This is also true for send, sendto, sendmsg, and
write if there is not enough buffer space to complete the send.

Note The 0 _NDELAY and 0 _NONBLOCK flags have precedence over the
FIOSNBIO flag. Setting both the 0 NDELAYand 0 NONBLOCK
flags is not allowed. - -

Advanced Topics for Stream Sockets 3-17

Using Shutdown
When your program is done reading or writing on a particular socket connection, you
can use shutdown to bring down a part of the connection. (See the example programs
for stream sockets.)

When one process uses shutdown on a socket descriptor, all other processes with the
same socket descriptor are affected. Shutdown causes all or part of a full-duplex
connection on the specified socket to be disabled. When shutdown is executed, the
specified socket is marked unable to send or receive, according to the value of how:

I! If how = 0, the specified socket ,can no longer receive data. The connection is not
completely down until both sides have done a shutdown or a close.

• If how = 1, shutdown starts a graceful disconnect by attempting to send any unsent
data before preventing further sending. Shutdown sends an end-of-file condition to
the peer, indicating that there are no more data to be sent.

Once both shutdown (s, 0) and shutdown (s, 1) have been executed on the same
socket descriptor, the only valid operation on the socket at this point is a close.

• If how = 2, the specified socket can no longer send or receive data. The only valid
operation on the socket is a close. This has the same effect as executing
shutdown(s, 0) and shutdown(s, 1) on the same socket descriptor.

If you use close on a socket, close pays attention to the SO _LINGER option, but
shutdown(s, 2) does not. With close, the socket descriptor is deallocated and the last
process using the socket destroys it.

3-18 Advanced Topics for Stream Sockets

Shutdown and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

none

shutdown(s,how}
int s, how;

Parameter Description of Contents INPUT Value

s socket descriptor socket descriptor of socket to be shut
down

how number that indicates the 0, i or 2
type of shutdown

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if shutdown is successful
-1 if failure occurs

shutdown (s, 1);

When to Shut Down a Socket

Which Processes

server or client process

When

(optionally) after the process has sent all
messages and wants to indicate that it is
done sending

Refer to the shutdown(2) entry in the HP-UX Reference Manual for more information
on shutdown.

Using Read and Write to Make Stream Sockets
Transparent
An example application of read and write with stream sockets is to fork a command
with a socket descriptor as stdout. The peer process can read input from the
command. The command can be any command and does not have to know that stdout
is a socket. It might use printf, which results in the use of write. Thus, the stream
sockets are transparent.

Advanced Topics for Stream Sockets 3-19

Sending and Receiving Out-of-band Data
This option is not supported for UNIX Domain (AF _ UNIX) sockets.

If an abnormal condition occurs when a process is in the middle of sending a long
stream of data, it is useful to be able to alert the other process with an urgent
message. The TCP stream socket implementation includes an out-of-band data
facility. Out-of-band data uses a logically independent transmission channel
associated with a pair of connected stream sockets. TCP supports the reliable
delivery of only one out-of-band message at a time. The message can be a maximum
of one byte long.

Out-of-band data arrive at the destination node in sequence and in stream, but are
delivered independently of normal data. If the receiver has enabled the signalling of
out-of-band data via the SIOCSPGRP socket ioctl (seesocket(7) in the HP-UX
Reference Manual), then a SIGURG is delivered when out-of-band data arrive. If the
receiver is selecting for exceptional conditions on the receiving socket, it will return
true to signal the arrival of out-of-band data. The receiving process can read the
out-of-band message and take the appropriate action based on the message contents.
A logical mark is placed in the normal data stream to indicate the point at which the
out-of-band data were sent, so that data before the message can be handled
differently (if necessary) from data following the message.

byte stream "~I--- data data

Figure 3-1. Data Stream with Out-of-Band Marker

For a program to know when out-of-band data are available to be received, you may
arrange the program to catch the SIGURG signal as follows:

struct sigvec vec;
int onurg();
int pid, s;

/*
** arrange for onurg() to be called when SIGURG is received:
*/
vec.sv_handler = onurg;
vec.sv_mask = 0;
vec.sv on stack = 0;
if (sigvector(SIGURG, &vec, (struct sigvec *) 0) < 0) {

perror("sigvector(SIGURG)");
}

3-20 Advanced Topics for Stream Sockets

Onurg() is a routine that handles out-of-band data in the client program.

In addition, the socket's process group must be set, as shown below. The kernel will
not send the signal to the process (or process group) unless this is done, even though
the signal handler has been enabled.

/*

1*

** arrange for the current process to receive SIGURG
** when the socket s has urgent data:
*/
pid = getpid();
if {ioctl(s, SIOCSPGRP, (char *) &pid) < 0) {

perror ("; oct l(S I OCSPGRP)") ;

** If a process needs to be notified, it should be
** pid = -getpgrp{);
*/

Refer to the socket(7) entry in the HP-UX Reference Manual for more details.

If the server process is sending data to the client process, and a problem occurs, the
server can send an out-of-band data byte by executing a send with the MSG _ OOB
flag set. This sends the out-of-band data and a SIGURG signal to the receiving
process.

send(sd, &msg, 1, MSG_008)

When a SIGURG signal is received, onurg is called. Onurg receives the out-of-band
data byte with the MSG _ OOB flag set on a recv call.

It is possible that the out-of-band byte has not arrived when the SIGURG signal
arrives. recv never blocks on a receive of out-of-band data, so the client may need to
repeat the recv call until the out-of-band byte arrives. Recv will return EINV AL if the
out-of-band data is not available.

Generally, out-of-band data byte is stored independently from normal data stream. If,
however, the OOB_INLINE socket option has been turned on for this socket, the
out-of-band data will remain inline and must be used without the MSG _ OOB flag set
on a recv () call.

You cannot read past the out-of-band pointer location in one recv call. If you request
more data than the amount queued on the socket before the out-of-band pointer,
then recv will return only the data up to the out-of-band pointer. However, once you
read past the out:-of-band pointer location with subsequent recv calls, the out-of-band
byte can no longer be read.

Advanced Topics for Stream Sockets 3-21

Usually the out-of-band data message indicates that all data currently in the stream
can be flushed. This involves moving the stream pointer with successive reev calls, to
the location of the out-of-band data pointer.

The ioetl request SIOCATMARK informs you, as you receive data from the stream,
when the stream pointer has reached the out-of-band pointer. If ioetl returns a 0, the
next reev provides data sent by the server prior to transmission of the out-of-band
data. Ioetl returns a 1 when the stream pointer reaches the out-of-band byte pointer.
The next reev provides data sent by the server after the out-of-band message.

The following code segment illustrates how the SIOCATMARK request can be used
in a SIGURG interrupt handler.

/* s is the socket with urgent data */

onurg()
{

int atmark;
char mark;
char flush [100];

while (1) {
/*
** check whether we have read the stream
** up to the OOB mark yet

+ */

}

/*

if (ioctl(s, SIOCATMARK, &atmark) < 0) {
/* if the ioctl failed */
perror(rr ioct HSIOCATMARK) rr);
return;

}
if (atmark) {

}
/*

/* we have read the stream up to the OOB mark */
break;

** read the stream data preceding the mark,
** only to throw it away
*/
if (read(s, flush, sizeof(flush)) <= 0) {

/* if the read failed */
return;

}

3-22 Advanced Topics for Stream Sockets

}

** receive the OOB byte
*/
recv(s, &mark, 1, MSG_OOB);

printf("received %c OOB\n", mark);
return;

stream pointer
oob pointer

data stream 1---- data data

Figure 3-2. Before Flushing Stream

byte stream ---- data data

Figure 3-3. After Flushing Stream

Note This completes the discussion of stream sockets. If you do not plan
to use datagram sockets, skip to the "Programming Hints" chapter.

Advanced Topics for Stream Sockets 3-23

BSD IPC Using Internet Datagram
Sockets

4

As discussed in the "Protocols" section of chapter 1, Internet UDP datagram sockets
provide bidirectional flow of data with record boundaries preserved. However, there
is no guarantee that messages are reliably delivered. If a message is delivered, there is
no guarantee that it is in sequence and unduplicated, but the data in the message are
guaranteed to be intact.

Datagram sockets allow you to send and receive messages without establishing a
connection. Each message includes a destination address. Processes involved in data
transfer are not required to have a client-server relationship; the processes can be
symmetrical.

Unlike stream sockets, datagram sockets allow you to send to many destinations from
one socket, and receive from many sources with one socket. There is no two-process
model, although a two-process model is the simplest case of a more general
multiprocess model. The terms server and client are used in this section only in the
application sense. There is no difference in the calls that must be made by the
processes involved in the data transfer.

For example, you might have a name server process that receives host names from
clients all over a network. That server process can send host name and Internet
address combinations back to the clients. This can all be done with one UDP socket.

eSD IPC USing Internet Datagram Sockets 4-1

The simplest two-process case is used in this chapter to describe BSD!PC using
datagram sockets.

The following table lists the steps required to exchange data between datagram
sockets. Each step is described in more detail in the sections that follow the table.

Table 4-1. Setting Up for Data Transfer Using Datagram Sockets

Client Process System Call Server Process System Call
Activity Used Activity Used

create a socket socket() create a socket socket()

bind a socket bind() bind a socket bind()
address address

send message sendto() or
sendmsg()

receive message recvfrom() or
recvmsg()

send message sendto() or
sendmsg()

receive message recvfromO or
recvmsg()

The following sections discuss each of the activities mentioned in the previous table.
The description of each activity specifies a system call and includes:

• what happens when the system call is used.

• when to make the system call.

• what the parameters do.

• how the call interacts with other BSD IPC system calls.

• where to find details on the system call.

The datagram socket program examples are at the end of these descriptive sections.
You can refer to them as you work through the descriptions.

4-2 eSD IPC Using Internet Datagram Sockets

Preparing Address Variables
Before your client process can make a request of the server process, you must
establish the correct variables and collect the information that you need about the
server process and the service provided.

The server process needs to:

• Declare socket address variables.

• Assign a wildcard address.

• Get the port address of the service that you want to provide.

The client process needs to:

• Declare socket address variables.

• Get the remote server's Internet address.

• Get the port address for the service that you want to use.

These activities are described next. In addition, refer to the program example at the
end of this chapter to see how these activities work together.

BSD IPC Using Internet Datagram Sockets 4-3

Declaring Socket Address Variables
You need to declare a variable of type struct sockaddr _in to use for the local socket
address for both processes.

For example, the following declarations are used in the example client program:

struct sockaddr in myaddr; /* for local socket address */
struct sockaddr=in servaddr; /* for server socket address */

Sockaddr _in is a special case of sockaddr and is used with the AF _!NET addressing
domain. Both types are shown in this chapter, but sockaddr _ in makes it easier to
manipulate the Internet and port addresses. Some of the BSD IPC system calls are
declared using a pointer to sockaddr, but you can also use a pointer to sockaddr _in.

The sockaddr _in address structure consists of the following fields:

short sin Jamily

struct in addr sin addr - -

Specifies the address family and should always be set to
AF_INET.

Specifies the port address. Assign this field when you
bind the port address for the socket or when you get a
port address for a specific service.

Specifies the Internet address. Assign this field when
you get the Internet address for the remote host.

The server process must bind the port address of the service to its own socket and
establish an address structure to store the clients' addresses when they are received
with recvfrom.

The client process does not have to bind a port address for its local socket; the host
binds one automatically if one is not already bound.

Refer to the inet(7F) entry in the HP-UX Reference Pages for more information on
sockaddr in.

4-4 BSD IPC Using Internet Datagram Sockets

Getting the Remote Host's Network Address
The client process can use gethostbyname to obtain the Internet address of the host
and the length of that address (as the size of struct inaddr) from fete/hosts, NIS, or
BIND.

Gethostbyname and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <netdb.h>

struct hostent *gethostbyname(name)
char *name;

Parameter Description of Contents INPUT Value

name pointer to a valid node host name
name (null-terminated
string)

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

#include <netdb.h>

pointer to struct hostent containing Internet address
NULL pointer (0) if failure occurs

struct hostent *hp; /* point to host info for name server host */

servaddr.sin family = AF INET;
hp = gethostbyname (argv[l]);
servaddr.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

The argv[l] parameter is the host name specified in the client program command line.

Refer to the gethostent(3N) entry in the HP-UX Reference Pages for more information
on gethostbyname.

BSD IPC Using Internet Datagram Sockets 4-5

Getting the Port Address for the Desired Service
When a client process needs to use a service that is offered by some server process, it
must send a message to the server's socket. The client process must know the port
address for that socket. If the service is not in /etc/services, you must add it.

Getservbyname obtains the port address of the specified service from /etc/services.

Getservbyname and its parameters are described in the following table.

INCLUDE FILES: #include <netdb.h>

SYSTEM CALL:

Parameter

name

proto

struct servent *getservbyname(name, proto)
char *name, *proto;

Description of Contents

pointer to a valid service
name

pointer to the protocol to
be used

INPUT Value

service name

"udp" or 0 if UDP is the only
protocol for the service

FUNCTION RESULT: pointer to struct servent containing port address
NULL pointer (0) if failure occurs

EXAMPLE SYSTEM
CALL:

i nc 1 ude <netdb. h>
struct servent *sp; /* pointer to service info */

sp = getservbyname ("example", "udp");
servaddr.sin_port = sp->s_port;

When to Get Server's Socket Address

Which Processes

server process

client process

When

before binding

before client requests the service from
the host

Refer to the getservent(3N) entry in the HP-UX Reference Pages for more information
on getservbyname.

4-6 BSD IPC Using Internet Datagram Sockets

Using a Wildcard Local Address
Wildcard addressing simplifies local address binding. When an address is assigned the
value of INADDR_ANY, the host interprets the address as any valid address.

This means that the server process can receive on a wildcard address and does not
have to look up its own Internet address. For example, to bind a specific port address
to a socket, but leave the local Internet address unspecified, the following source code
could be used:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF INET, SOCK DGRAM, 0);
sin.sin_familY = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
s;n.sin_port = MYPORT;
bind (s, &sin, s;zeof(sin));

Writing the Server and Client Processes
This section discusses the calls your server and client processes must make.

Creating Sockets
Both processes must call socket to create communication endpoints.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

eSD IPC USing Internet Datagram Sockets 4-7

Parameter

af

Description of Contents

address family

INPUT Value

AFINET

SOCK_DGRAM socket type type

protocol underlying protocol to be
used

o (default) or value returned by
getprotobyname

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket number (HP-UX file descriptor)
-1 if failure occurs

ls = socket (AF_INET, SOCK_DGRAM, 0);

The socket number returned is the socket descriptor for the newly created socket.
This number is an HP-UX file descriptor and can be used for reading, writing or any
standard file system calls. A socket descriptor is treated like a file descriptor for an
open file.

Note To use write(2) with a datagram socket, you must declare a default
address. Refer to the "Specifying a Default Socket Address"
section of the "Advanced Topics for Internet Datagram Sockets"
chapter for more information.

When to Create Sockets

Which Processes When

server or client process before any other BSD IPC system calls

Refer to the socket(2) entry in the HP-UX Reference Pages for more information on
socket.

4-8 BSD IPC Using Internet Datagram Sockets

Binding Socket Addresses to Datagram Sockets
After each process has created a socket, it must call bind to bind a socket address.
Until an address is bound, other processes have no way to reference it.

The server process must bind a specific port address to its socket. Otherwise, a client
process would not know what port to send requests to for the desired service.

The client process can let the local host bind its local port address. The client does
not need to know its own port address, and if the server process needs to send a reply
to the client's request, the server can find out the client's port address when it
receives with recvfrom.

Set up the address structure with a local address (as described in the "Preparing
Address Variables" section) before you make a bind call. Use the wildcard address so
your processes do not have to look up their own Internet addresses.

bind and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

addr

addrlen

bind (s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;

Description of Contents

socket descriptor of local
socket

socket address

length of socket address

INPUTVa)ue

socket descriptor of socket to be
bound

pointer to address to be bound to s

size of struct sockaddr _in_address

BSD IPC Using Internet Datagram Sockets 4-9

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if bind is successful
-1 if failure occurs

struct sockaddr_in myaddr;

bind (s. &myaddr. sizeof(struct sockaddr_in));

When to Bind Socket Addresses

Which Processes

client and server process

When

after socket is created and before any
other BSD IPC system calls

Refer to the bind(2) entry in the HP-UX Reference Pages for more information on
bind.

4-10 BSD IPC Using Internet Datagram Sockets

Sending and Receiving Messages
The sendto and recvfrom (or sendmsg and recvmsg) system calls are usually used to
transmit and receive messages. They are described in the next sections.

Sending Messages
Use sendto or sendmsg to send messages. sendmsg allows the send data to be gathered
from several buffers.

If you have declared a default address (as described in the "Advanced Topics for
Internet Datagram Sockets" chapter, "Specifying a Default Socket Address" section),
you can use send, sendto, or sendmsg to send messages. If you use sendto or sendmsg
in this special case, be sure you specify 0 as the address value, or an error will occur.

Send is described in the "Sending Data" section in the "BSD IPC Using Internet
Stream Sockets" chapter of this manual and in the send(2) entry in the HP-UX
Reference Pages.

Sendto and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

count = sendto(s,msg, len,flags,to,tolen)
int s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

BSD IPC Using Internet Datagram Sockets 4-11

Parameter Descri~tion of Contents INPUTVa)ue

s socket descriptor of local socket descriptor of socket sending
socket message

msg pointer to data buffer pointer to data to be sent

len size of data buffer size ofmsg

flags settings for optional flags o (no options are currently
supported)

to address of recipient pointer to the socket address that
socket message should be sent to

tolen size of to length of address structure that to
points to

FUNCTION RESULT: Number of bytes actually sent
-1 in the event of an error

EXAMPLE SYSTEM CALL:
count = sendto(s,argv[2] ,strlen(argv[2]),O,servaddr,sizeof(struct sockaddr_in));

The largest message size for this implementation is 9216 bytes.

You should not count on receiving error messages when using datagram sockets. The
protocol is unreliable, meaning that messages mayor may not reach their destination.
However, if a message reaches its destination, the contents of the message are
guaranteed to be intact.

If you need reliable message transfer, you must build it into your application programs
or res end a message if the expected response does not occur.

When to Send Data

Which Processes When

client or server process after sockets are bound

Refer to the send(2) entry in the HP-UX Reference Pages for more information on
sendto and sendmsg.

4-12 BSD IPC Using Internet Datagram Sockets

Receiving Messages
Use recvfrom or recvmsg to receive messages. recvmsg allows the read data to be
scattered into buffers.

Recv can also be used if you do not need to know what socket sent the message.
However, if you want to send a response to the message, you must know where it
came from. Except for the extra information returned by recvfrom and recvmsg, the
three calls are identical.

Recv is described in the "BSD IPC Using Internet Stream Sockets" chapter,
"Receiving Data" section, and in the recv(2) entry in the HP-UX Reference Pages.

Recvfrom and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

count = recvfrom(s,buf, len,flags,from,fromlen)
int s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromlen;

BSD IPC Using Internet Datagram Sockets 4-13

Parameter

s

buf

len

flags

from

fromlen

Contents INPUT Value OUTPUT Value

socket descriptor of socket descriptor of unchanged
local socket socket receiving

message

pointer to data
buffer

pointer to buffer that pointer to received data
is to receive data

maximum number size of data buffer
of bytes that should
be received

settings for optional 0 or MSG _PEEK
flags

address of socket
that sent message

pointer to the size
of from

pointer to address
structure, not used
for input

pointer to size of
from

unchanged

unchanged

pointer to socket address
of socket that sent the
message

pointer to the actual size
of address returned

FUNCfION RESULT: Number of bytes actually received
-1 if an error occurs

EXAMPLE SYSTEM CALL:

addrlen = sizeof(sockaddr_in);

count = recvfrom(s, buffer, BUFFERSIZE, 0, clientaddr, &addrlen};

recvfrom blocks until there is a message to be received.

No more than Zen bytes of data are returned. The entire message is read in one
recvfrom, recvmsg, recv or read operation. If the message is too long for the allocated
buffer, the excess data are discarded. Because only one message can be returned in a
recvfrom call, if a second message is in the queue, it is not affected. Therefore, the
best technique is to receive as much as possible on each call.

The host does not wait for Zen bytes to be available; if less than Zen bytes are available,
that number of bytes are returned. ..

4-14 SSO IPC USing Internet Datagram Sockets

Flag Options
The flag options are:

• 0 for no options.

• MSG PEEK for a nondestructive read.

Use the MSG _PEEK option to preview an incoming message. If this option is set on
a recvfrom, any message returned remains in the data buffer as though it had not been
read yet. The next recvfrom will return the same message.

When to Receive Data

Which Processes When

client or server process after sockets are bound

Refer to the recv(2) entry in the HP-UX Reference Pages for more information on
recvfrom and recvmsg.

Closing a Socket
In most applications, you do not have to worry about cleaning up your sockets. When
you exit your program and your process terminates, the sockets are closed for you.

If you need to close a socket while your program is still running, use the close HP-UX
file system call.

You may have more than one process with the same socket descriptor if the process
with the socket descriptor executes a fork. Close decrements the file descriptor count
and the calling process can no longer use that file descriptor.

When the last close is executed on a socket, any unsent messages are sent and the
socket is closed. Then the socket is destroyed and can no longer be used.

For syntax and details on close, refer to the close(2) entry in the HP-UX Reference
Manual.

BSD IPC Using Internet Datagram Sockets 4-15

Example Using Datagram Sockets

Note These programs are provided as examples only of datagram socket usage
and are not Hewlett-Packard supported products.

These program examples demonstrate how to set up and use datagram sockets. These
sample programs can be found in the /usr/netdemo/socket directory. The client
program is intended to run in conjunction with the server program.

This example implements a simple name server. The server process receives requests
from the client process. It determines the Internet address of the specified host and
sends that address to the client process. If the specified host's Internet address is
unknown, the server process returns an address of all 1s.

The client process requests the Internet address of a host and receives the results
from the server process.

Note Before you run the example programs, make the following entry in the two
hosts' /etc/services files:

example 22375/udp

The source code for these two programs follows.

4-16 eSD IPC Using Internet Datagram Sockets

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

S E R V . U D P

This is an example program that demonstrates the use of
datagram sockets as an BSD IPC mechanism. This contains the server,
and is intended to operate in conjunction with the client
program found in client.udp. Together, these two programs
demonstrate many of the features of sockets, as well as good
conventions for using these features. NOTE: This example
is valid only if the /etc/hosts file is being used to lookup host names.

This program provides a service called "example". It is an
example of a simple name server. In order for
it to function, an entry for it needs to exist in the
/etc/services file. The port address for this service can be
any port number that is likely to be unused, such as 22375,
for example. The host on which the client will be running
must also have the same entry (same port number) in its
/etc/services file.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

int s; /* socket descriptor */

#define BUFFERSIZE 1024 /* maximum size of packets to be received */
/* contains the number of bytes read */ int cc;

char buffer[BUFFERSIZE]; /* buffer for packets to be read into */

struct hostent *hp;
struct servent *sp;

/* pointer to host info for requested host */
/* pointer to service information */

struct sockaddr in myaddr in; /* for local socket address */
struct sockaddr=in clientaddr_in; /* for client's socket address */
struct in_addr reqaddr; /* for requested host's address */

#define ADDRNOTFOUND Oxffffffff /* return address for unfound host */

1*
*
*
*
*
*
*
*
*
*
*

M A I N

This routine starts the server. It forks, leaving the child
to do all the work, so it does not have to be run in the
background. It sets up the socket, and for each incoming
request, it returns an answer. Each request consists of a
host name for which the requester desires to know the
Internet address. The server will look up the name in its
/etc/hosts file, and return the Internet address to the
client. An Internet address value of all ones will be returned

eSD IPC Using Internet Datagram Sockets 4-17

*
*
*
*/

if the host name is not found. NOTE: This example is valid only
if the /etc/hosts file is being used to lookup host names.

main(argc, argv)
int·argc;
char *argv 0 ;
{

int addrlen;

/* clear out address structures */
memset «char *)&myaddr_in, 0, sizeof(struct sockaddr_in));
memset «char *)&clientaddr_in, 0, sizeof(struct sockaddr_in));

/* Set up address structure for the socket. */
myaddr_in.sin_family = AF_INET;

/* The server should receive on the wildcard address.
* rather than its own Internet address. This is
* generally good practice for servers, because on
* systems which are connected to more than one
* network at once will be able to have one server
* listening on all networks at once. Even when the
* host is connected to only one network, this is good
* practice, because it makes the server program more
* portable.
*/

myaddr_in.sin_addr.s_addr = INADDR_ANY;
/* Find the information for the "example" server
* in order to get the needed port number.
*/

sp = getservbyname ("example", "udp");
if (sp == NULL) {

}

printf("%s: host not found",
argv [0]) ;

exit (1);

/* Create the socket. */
s = socket (AF INET, SOCK DGRAM, 0);
if (s == -1) {- -

perror(argv[O]) ;
printf("%s: unable to create socket\n", argv[O]);
exit(1) ;

/* Bind the server's address to the socket. */
if (bind(s, &myaddr in, sizeof(struct sockaddr in)) == -1) {

perror(argv[O]); -

}

printf("%s: unable to bind address\n", argv[O]);
exit (1) ;

4-18 BSD IPC Using Internet Datagram Sockets

/* Now, all the initialization of the server is
* complete, and any user errors will have already
* been detected. Now we can fork the daemon and
* return to the user. We need to do a setpgrp
* so that the daemon will no longer be associated
* with the user's control terminal. This is done
* before the fork, so that the child will not be
* a process group leader. Otherwise, if the child
* were to open a terminal, it would become associated
* with that terminal as its control terminal. It is
* always best for the parent to do the setpgrp.
*/

setpgrp() ;

switch (fork()) {
case -1: /* Unable to fork, for some reason. */

perror(argv[O]);
printf("%s: unable to fork daemon\n", argv[O]);
exit(1) ;

case 0: /* The child process (daemon) comes here. */
/* Close stdin, stdout, and stderr so that they will
* not be kept open. From now on, the daemon will
* not report any error messages. This daemon
* will loop forever, waiting for requests and
* responding to them.
*/

fclose(stdin);
fclose(stdout);
fclose(stderr);

/* This will open the /etc/hosts file and keep
* it open. This will make accesses to it faster.
* If the host has been configured, however, to use the NIS
* server or the name server (BIND), then it is desirable
* not to call sethostent(l), because then a STREAM
* socket is used instead of datagrams for each call
* to gethosbyname().
*/

sethostent(l);
for(; ;) {

/* Note that addrlen is passed as a pointer
* so that the recvfrom call can return the
* size of the returned address.
*/

addrlen = sizeof(struct sockaddr_in);

/* This call will block until a new
* request arrives. Then, it will
* return the address of the client,
* and a buffer containing its request.
* BUFFERSIZE - 1 bytes are read so that

SSD IPC Using Internet Datagram Sockets 4-19

}

/*
*
*
*
*
*
*
*
*

}

default:
exit(O);

* room is left at the end of the buffer
* for a null character.
*/

cc = recvfrom(s, buffer, BUFFERSIZE - 1, 0,
&clientaddr_in, &addrlen);

if (cc == -1) exit(1);
/* Make sure the message received is
* null terminated.
*/

buffer [cc] =' \0' ;
/* Treat the message as a string containing
* a hostname. Search for the name in
* /etc/hosts.
*/

hp = gethostbyname (buffer);
if (hp == NULL) {

/* Name was not found. Return a
* special value signifying the
* error.
*/

reqaddr.s_addr = ADDRNOTFOUND;
} else {

}

/* Copy address of host into the
* return buffer.
*/

reqaddr.s_addr =
((struct in_addr *)(hp->h_addr))->s_addr;

/* Send the response back to the
* requesting client. The address
* is sent in network byte order. Note that
* all errors are ignored. The client
* will retry if it does not receive
* the response.
*/

sendto (s, &reqaddr, sizeof(struct in addr),
0, &clientaddr_in, addrlen);

/* Parent process comes here. */

C LIE NT. U 0 P

This is an example program that demonstrates the use of datagram
sockets as an BSD IPC mechanism. This contains the client, and is
intended to operate in conjunction with the server program found
in serv.udp. Together, these two programs demonstrate many of
the features of sockets, as well as good conventions for using
these features.

~20 SSD IPe Using Internet Datagram Sockets

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

This program requests a service called "example". In order for
it to function, an entry for it needs to exist in the
/etc/services file. The port address for this service can be
any port number that is likely to be unused, such as 22375, for
example. The host on which the server will be running must also
have the same entry (same port number) in its /etc/services file.

The "example" service is an example of a simple name server
application. The host that is to provide this service is
required to be in the /etc/hosts file. Also, the host providing
this service presumably knows the Internet addresses of many
hosts which the local host does not. Therefore, this program
will request the Internet address of a target host by name from
the serving host. The serving host will return the requested
Internet address as a response, and will return an address of
all ones if it does not recognize the host name.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>
#include <netdb.h>

extern int errno;

int s;

struct hostent *hp;
struct servent *sp;

/* socket descriptor */

/* pointer to host info for nameserver host */
/* pointer to service information */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in servaddr_in; /* for server socket address */
struct in_addr reqaddr; /* for returned Internet address */

#define ADDRNOTFOUND
#define RETRIES 5

/*
*
*

Oxffffffff /* value returned for unknown host */
/* number of times to retry before giving up */

HAN D L E R

*
*

This routine is the signal handler for the alarm signal.
It simply re-installs itself as the handler and returns.

*/
handler()
{

signal(SIGALRM, handler);
}

SSD IPC Using Internet Datagram Sockets 4-21

/*
*
*
*
*
*
*
*
*
*
*
*
*
*/

M A I N

This routine is the client which requests service from the remote
"example server". It will send a message to the remote nameserver
requesting the Internet address corresponding to a given hostname.
The server will look up the name, and return its Internet address.
The returned address will be written to stdout.

The name of the system to which the requests will be sent ;s given
as the first parameter to the command. The second parameter should
be the name of the target host for which the Internet address
is sought.

main(argc, argyl
int argc;
char *argv 0 ;
{

int i;
int retry = RETRIES;
char *inet_ntoa();

/* holds the retry count */

if (argc != 3) {

}

fprintf(stderr, "Usage: %s <nameserver> <target>\n", argv[O]);
exit(l);

/* clear out address structures */
memset ((char *)&myaddr in, 0, sizeof(struct sockaddr in));
memset ((char *)&servaddr_in, 0, sizeof(struct sockaddr_in));

/* Set up the server address. */
servaddr in.sin family = AF INET;

7* Get the host inf~rmation for the server's hostname that the
* user passed in.
*/

hp = gethostbyname (argv[l]);
if (hp == NULL) {

}

fprintf(stderr, "%s: %s not found in /etc/hosts\n",
argv[O] , argv[l]);

exit(l);

servaddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;
/* Find the information for the "example" server
* in order to get the needed port number.
*/

sp = getservbyname ("example", "udp");
if (sp == NULL) {

}

fprintf(stderr, "%s: example not found in /etc/services\n",
argv [0]) ;

exit(l);

4-22 BSD IPC Using Internet Datagram Sockets

/* Create the socket. */
s = socket (AF INET, SOCK DGRAM, 0);
if (s == -1) {- -

}

perror (a rgv [0]) ;
fprintf(stderr, "%s: unable to create socket\n", argv[O]);
exit(1) ;

/* Bind socket to some local address so that the
* server can send the reply back. A port number
* of zero will be used so that the system will
* assign any available port number. An address
* of INADDR ANY will be used so we do not have to
* look up the Internet address of the local host.
*/

myaddr_in.sin_family = AF_INET;
myaddr_in.sin_port = 0;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
if (bind(s, &myaddr_in, sizeof(struct sockaddr_in» == -1) {

perror(argv[O]) ;

}

fprintf(stderr, "%s: unable to bind socket\n", argv[O]);
exit(1);

/* Set up alarm signal handler. */
signal(SIGALRM, handler);

/* Send the request to the nameserver. */
again: if (sendto (s, argv[2] , strlen(argv[2]), 0, &servaddr_in,

}

sizeof(struct sockaddr in» == -1) {
perror(argv[O]); -
fprintf(stderr, "%s: unable to send request\n", argv[O]);
exit(1);

/* Set up a timeout so I don't hang in case the packet
* gets lost. After all, UDP does not guarantee
* delivery.
*/

alarm(S);
/* Wait for the reply to come in. We assume that
* no messages will come from any other source,
* so that we do not need to do a recvfrom nor
* check the responder's address.
*/

if (recv (s, &reqaddr, sizeof(struct in addr) , 0) == -1) {
if (errno == EINTR) { -

/* Alarm went off and aborted the receive.
* Need to retry the request if we have
* not already exceeded the retry limit.
*/

if (retry) {
goto again;

} else {
printf("Unable to get response from");

BSD IPC Using Internet Datagram Sockets 4-23

}

printf(" %s after %d attempts.\n",
argv[1], RETRIES);

exit(1) ;
}

} else {

}

perror(argv[O]) ;
fpr;ntf(stderr, "%s: unable to receive response\n",

argv [0]);
exit(1) ;

}
alarm(O);

/* Print out response. */
if (reqaddr.s_addr == ADDRNOTFOUND) {

printf("Host %s unknown by nameserver %s.\n", argv[2] ,
argv [1]) ;

exit(1);
} else {

}

printf("Address for %s is %s.\n", argv[2] ,
inet_ntoa(reqaddr));

4-24 BSD IPC Using Internet Datagram Sockets

Advanced Topics for Internet
Datagram Sockets

This chapter explains the following:

• SO_BROADCAST socket option.

• Specifying a default socket address.

• Synchronous I/O multiplexing with select.

• Sending and receiving data asynchronously.

• Nonblocking I/O.

• Using broadcast addresses.

SO_BROADCAST Socket Option
This option is AF _ INET socket-specific.

SO_BROADCASTADDR establishes permission to send broadcast datagrams from
the socket.

Specifying a Default Socket Address
It is possible (but not required) to specify a default address for a remote datagram
socket.

5

This allows you to send messages without specifying the remote address each time. In
fact, if you use sendto or sendmsg, an error occurs if you enter any value other than 0
for the socket address after the default address has been recorded. You can use send
or write instead of sendto or sendmsg once you have specified the default address.

Use recv for receiving messages. Although recvfrom can be used, it is not necessary,
because you already know that the message came from the default remote socket.

Advanced Topics for Internet Datagram Sockets 5-1

(Messages from sockets other than the default socket are discarded without notice.)
read (2) can also be used, but does not allow you to use the MSG _PEEK flag.

Specify the default address with the connect system call. connect recognizes two
special default addresses, INADDR_ANY and INADDR_BROADCAST. Using
INADDR_ANY connects your socket to the IP address of your local host's primary
LAN interface (for loopback connections). Using INADDR_BROADCAST
connects your socket to the subnet broadcast address for your primary LAN interface;
it allows you to send out broadcast packets that interface without specifying the
subnet broadcast address.

When a datagram socket descriptor is specified in a connect call, connect associates
the specified socket with a particular remote socket address. connect returns
immediately because it only records the peer's socket address. After connect records
the default address, any message sent from that socket is automatically addressed to
the peer process and only messages from that peer are delivered to the socket.

connect may be called any number of times to change the associated destination
address.

Note This call does not behave the same as a connect for stream sockets.
There is no connection, just a default destination. The remote host
that you specify as the default mayor may not use connect to
specify your local host as its default remote host. The default
remote host is not notified if your local socket is destroyed.

connect and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

connect(s, addr, addrlen)
int s;
struct sockaddr *addr;
int addrlen;

5-2 Advanced Topics for Internet Datagram Sockets

Parameter

s

addr

addrlen

Description of Contents

socket descriptor of local
socket

pointer to the socket
address

length of address

INPUTValne

socket descriptor of socket
requesting a default peer address

pointer to socket address of the
socket to be the peer

length of address pointed to by addr

FUNCTION RESULT: o if connect is successful
-1 if failure occurs

When to Specify a Default Socket Address

Which Processes When

client or server process after sockets are bound

Synchronous I/O Multiplexing with Select
The select system call can be used with sockets to provide a synchronous multiplexing
mechanism. The system call has several parameters which govern its behavior. If you
specify a zero pointer for the timeout parameter timont, select will block until one or
more of the specified socket descriptors is ready. If timont is a non-zero pointer, it
specifies a maximum interval to wait for the selection to complete.

select is useful for datagram socket descriptors to determine when data have arrived
and are ready to be read without blocking; use the FIONREAD parameter to the
ioctl system call to determine exactly how much data are available.

select for exceptional conditions will return true for Berkeley sockets if out-of-band
data is available. Select will always return true for sockets which are no longer
capable of being used (e.g. if a close or shutdown system call has been executed
against them).

select is used in the same way as in other applications. Refer to the select(2) entry in
the HP-UX Reference Manual for information on how to use select. For an example
of a select system call, refer to the "I/O Multiplexing with Select" section in chapter 4.

Advanced Topics for Internet Datagram Sockets 5-3

Sending and Receiving Data Asynchronously
Asynchronous sockets allow a user program to receive an SIGIO signal when the
state of the socket changes. This state change can occur, for example, when new data
arrive. More information on SIGIO can be found in the "Advanced Topics for
Internet Stream Sockets" chapter, "Sending and Receiving Data Asynchronously"
section of this manual.

Nonblocking I/O
Sockets are created in blocking mode I/O by default. You can specify that a socket
be put in nonblocking mode by using the ioctZ system call with the FIOSNBIO
request.

An example usage of this call is:

#include <sys/ioctl.h>

ioctl(s, FIOSNBIO, &arg);

arg is a pointer to int:

• When int equals 0, the socket is changed to blocking mode.

• When int equals 1, the socket is changed to nonblocking mode.

If a socket is in nonblocking mode, the following calls are affected:

recvfrom

sendto

If no messages are available to be received, recvfrom returns
the value -1 and the EWOULDBLOCK error. This is also
true for recv and read.

If there is no available message space for the message to be
transmitted, sendto returns the value -1 and the
EWOULDBLOCK error.

The 0 _NDELAY flag for JcntZ(2) is also supported. If you use this flag and there is
no message available to be received on a recv, recvfrom, or read call, the call returns
immediately with the value of o. If you use the 0 _NONBLOCK flag, the call returns
immediately with the value of -1 and the EAGAIN error. This is the same as
returning an end-of-file condition. This is also true for send, sendto, and write if there
is not enough buffer space to complete the send.

5-4 Advanced Topics for Internet Datagram Sockets

Note The O_NDELAY and O_NONBLOCK flags have precedence
over the FIOSNBIO flag. Setting both the 0_ DELAY and
o _NONBLOCK flags is not allowed.

Using Broadcast Addresses
In place of a unique Internet address or the wildcard address, you can also specify a
broadcast address. A broadcast address is an Internet address with a local address
portion of all Is.

If you use broadcast addressing, be careful not to overload your network.

Advanced Topics for Internet Datagram Sockets 5-5

eSD IPC Using UNIX Domain Stream
Sockets

This section describes the steps involved in creating a UNIX Domain stream socket
BSD IPC connection between two processes executing on the same node.

UNIX Domain (AF _ UNIX) stream sockets provide bidirectional, reliable,
unduplicated flow of data without record boundaries. They offer significant
performance increases when compared with the use of local Internet (AF _ INET)
sockets, due primarily to lower code execution overhead.

The following table lists the steps involved in creating and terminating a UNIX
Domain BSD IPC connection using stream sockets. Each step is described in more
detail in the sections that follow the table.

6

aso IPC Using UNIX Domain Stream Sockets 6-1

Table 6-1. Building a BSD IPC Connection Using UNIX
Domain Stream Sockets

Client Process System Call Server Process System Call
Activity Used Activity Used

create a socket socket() create a socket socket 0

bind a socket bind 0
address

listen for incoming listen 0
connection requests

request a connect- connect 0
tion

accept connection accept 0

send data write 0 or send 0

receive data read 0 or recv 0

send data write 0 or send 0

receive data read 0 or recv 0

disconnect socket shutdownO or disconnect socket shutdown() or
(optional) close 0 (optional) close 0

The following sections explain each of the activities mentioned in the previous table.
The description of each activity specifies a system call and includes:

• what happens when the system call is used.

• when to make the call.

• what the parameters do.

• how the call interacts with other BSD IPC system calls.

• where to find details on the system call.

The UNIX Domain stream socket program examples are at the end of these
descriptive sections. You can refer to the example code as you work through the
descriptions.

6-2 BSD IPC Using UNIX Domain Stream Sockets

Preparing Address Variables
Before you begin to create a connection, establish the correct variables and collect
the information that you need to request a connection.

Your server process needs to:

• Declare socket address variables.

• Get the pathname (character string) for the service you want to provide.

Your client process needs to:

• Declare socket address variables.

• Get the pathname (character string) for the service you want to use.

These activities are described next. Refer to the program example at the end of this
chapter to see how these activities work together.

Declaring Socket Address Variables
You need to declare a variable of type struct sockaddr _un to use for socket
addresses.

For example, the following declarations are used in the example client program:

struct sockaddr ...;.,un myaddr; 1* for loca 1 socket address * /
struct sockaddr _un peeraddr; /* for peer socket address */

Sockaddr _ un is a special case of sockaddr and is used with the AF _UNIX address
domain. The sockaddr _un address structure consists of the following fields:

short sun Jamily

u_char sunyath[92]

Specifies the address family and should
always be set to AF _UNIX

Specifies the pathname to which the socket
is bound or will be bound (e.g.
/tmp/mysocket).

The server process only needs an address for its own socket. Your client process will
not need an address for its own socket.

BSD IPC Using UNIX Domain Stream Sockets 6-3

Writing the Server Process
This section discusses the calls your server process must make to connect with and
serve a client process.

Creating a Socket
The server process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket (af, type, protoco 1)
int af, type, protocol;

Parameter Description of Contents INPUT Value

af address family AF UNIX

type socket type SOCK STREAM

protocol underlying protocol to be 0 (default)
used

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket number (HP -UX file descriptor)
-1 if failure occurs

s = socket (AF_UNIX, SOCK_STREAM, 0);

The socket number returned is the socket descriptor for the newly created socket.
This number is an HP -UX file descriptor and can be used for reading, writing or any
standard file system calls after a BSD IPC connection is established. A socket
descriptor is treated like a file descriptor for an open file.

6-4 eSD IPC Using UNIX Domain Stream Sockets

When to Create Sockets

Which Processes When

server process before any other BSD IPC system calls

Refer to the socket(2) entry in the HP-UX Reference Manual for more information on
socket.

Binding a Socket Address to the Server Process's Socket
After your server process has created a socket, it must call bind to bind a socket
address. Until an address is bound to the server socket, other processes have no way
to reference it.

The server process must bind a specific pathname to this socket, which is used for
listening. Otherwise, a client process would not know what pathname to connect to
for the desired service.

Set up the address structure with a local address (as described in the "Preparing
Address Variables" section) before you make a bind call. Bind and its parameters are
described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/un.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

addr

addrlen

bind (s, addr, addrlen)
int s;
struct sockaddr_un *addr:
i nt addr len;

Description of Contents

socket descriptor of local
socket

socket address

length of socket address

INPUT Value

socket descriptor of
socket to be bound

pointer to address to be bound to s

size of struct sockaddr un

BSD IPC Using UNIX Domain Stream Sockets 6-5

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if bind is successful
-1 if failure occurs

struct sockaddr_un myaddr;

bi nd (1 s, &myaddr, s i zeof (st ruct sockaddr _un)) ;

When to Bind Socket Addresses

Which Processes

server process

When

after socket is created and before any
other BSD IPC system calls

Refer to the bind(2) entry in the HP-UX Reference Manual for more information on
bind.

Setting the Server Up to Wait for Connection Requests
Once your server process has an address bound to it, it must call listen to set up a
queue that accepts incoming connection requests. The server process then monitors
the queue for requests (using select(2) or accept, which is described in "Accepting a
Connection"). The server process cannot respond to a connection request until it has
executed listen.

Listen and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

none

listen(s, backlog)
int s, backlog;

Parameter DeSCription of Contents INPUT Value

s socket descriptor of local server socket's descriptor
socket

backlog maximum number of size of queue (between 1 and 20)
connection requests in the
queue at any time

6-6 BSD IPC Using UNIX Domain Stream Sockets

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if listen is successful
-1 if failure occurs

1 i sten (1 s, 5);

Backlog is the number of unaccepted incoming connections allowed at a given time.
Further incoming connection requests are rejected.

When to Set Server Up to Listen

Which Processes

server process

When

after socket is created and bound and
before the server can respond to
connection requests

Refer to the listen(2) entry in the HP-UX Reference Manual for more information on
listen.

Accepting a Connection
The server process can accept any connection requests that enter its queue after it
executes listen. Accept creates a new socket for the connection and returns the socket
descriptor for the new socket. The new socket:

• Is created with the same properties as the old socket.

• Has the same bound pathname as the old socket.

• Is connected to the client process' socket.

Accept blocks until there is a connection request from a client process in the queue,
unless you are using nonblocking I/O. (For information on nonblocking I/O, see the
"Nonblocking I/O" section of the "Advanced Topics for Stream Sockets" chapter.)

Accept and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/un.h>
#include <sys/socket.h>

BSD IPC Using UNIX Domain Stream Sockets 6-7

SYS1EM CALL:

Parameter Contents

s = accept(ls,addr,addrlen)
int s;
int ls;
struct sockaddr_un *addr;
int *addrlen;

INPUT Value OUTPUT Value

s socket descriptor of socket descriptor of unchanged
local socket server socket

addr socket address pointer to address
structure where
address will be put

pointer to socket
address of client
socket that server's new
socket is
connected to

addrlen length of address pointer to the size of pointer to the actual length
struct sockaddr un of address returned in addr

FUNCTION RESULT:

EXAMPLE SYS1EM
CALL:

socket descriptor of new socket if accept is successful
-1 if failure occurs

struct sockaddr_un peeraddr;

addrlen = sizeof(sockaddr_un);
s = accept (ls, &peeraddr, &addrlen);

There is no way for the server process to indicate which requests it can accept. It
must accept all requests or none.

When to Accept a Connection

Which Processes When

server process after executing the listen call

Refer to the accept(2) entry in the HP-UX Reference Manual for more information on
accept.

6-8 aSD IPC Using UNIX Domain Stream Sockets

Writing the Client Process
This section discusses the calls your client process must make to connect with and be
sexved by a sexver process.

Creating a Socket
The client process must call socket to create a communication endpoint.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
i nt af, type, protoco 1 ;

Parameter Descri2tion of Contents INPUT Value

af address family AF UNIX

type socket type SOCK STREAM

protocol underlying protocol to be o (default)
used

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

socket number (HP-UX file descriptor)
-1 if failure occurs

s = socket (AF_UNIX, SOCK_STREAM, 0);

The socket number returned is the socket descriptor for the newly created socket.
This number is an HP -UX file descriptor and can be used for reading, writing or any
standard file system calls after a BSD IPC connection is established. A socket
descriptor is treated like a file descriptor for an open file.

BSD IPC Using UNIX Domain Stream Sockets 6-9

When to Create Sockets

Which Processes When

client process before requesting a connection

Refer to the socket(2) entry in the HP-UX Reference Manual for more information on
socket.

Requesting a Connection
Once the selVer process is listening for connection requests, the client process can
request a connection with the connect call.

Connect and its parameters are described in the following table.

INCLUDE FILES: #include <sys/types.h>
#include <sys/un.h>
#include <sys/socket.h>

SYSTEM CALL:

Parameter

s

addr

addrlen

connect(s, addr, addrlen)
int s;
struct sockaddr_un *addr;
int addr len;

Description of Contents

socket descriptor of local
socket

pointer to the socket
address

length of addr

INPUT Value

socket descriptor of socket
requesting a connection

pointer to the socket address of the
socket to which client wants to
connect

size of address structure pointed to
byaddr

FUNCTION RESULT: o if connect is successful
-1 if failure occurs

EXAMPLE SYSTEM
CALL:

struct sockaddr_un peeraddr;

connect (s, &peeraddr, s;zeof(struct sockaddr_un));

6-10 BSD IPC Using UNIX Domain Stream Sockets

connect initiates a connection. When the connection is ready, the client process
completes its connect call and the server process can complete its accept call.

Note The client process does not get feedback that the server process
has completed the accept call. As soon as the connect call returns,
the client process can send data.

When to Request a Connection

VVhichProcesses

client process

VVhen

after socket is created and after server
socket has a listening socket

Refer to the connect(2) entry in the HP-UX Reference Manual for more information
on connect.

Sending and Receiving Data
After the connect and accept calls are successfully executed, the connection is
established and data can be sent and received between the two socket endpoints.
Because the stream socket descriptors correspond to HP-UX file descriptors, you can
use the read and write calls (in addition to send and recv) to pass data through a
socket-terminated channel.

If you are considering the use of the read and write system calls instead of the send
and recv calls described below, you should consider the following:

Advantage:

Disadvantage:

If you use read and write instead of send and recv, you
can use a socket for stdin or stdout.

If you use read and write instead of send and recv, you
cannot use the options specified with the send or recv
flags parameter.

See the table called "Other System Calls," listed in the "Programming Hints" chapter
for more information on which of these system calls are best for your application.

BSD IPC Using UNIX Domain Stream Sockets 6-11

Sending Data
Send and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

count = send(s,msg, len,flags)
int s;
char *msg;
int len, flags;

Parameter Descri:etion of Contents INPUT Value

s socket descriptor of local socket descriptor of socket sending
socket data

msg pointer to data buffer pointer to data to be sent

len size of data buffer size ofmsg

flags settings for optional flags 0

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

number of bytes actually sent
-1 if failure occurs

count = send (s, buf, 10, 0);

Send blocks until the specified number of bytes have been queued to be sent, unless
you are using nonblocking I/O. (For information on nonblocking I/O, see the
"Nonblocking I/O" section of the "Advanced Topics for Stream Sockets" chapter.)

Which Processes

server or client
process

When to Send Data

When

after connection is established

Refer to the send(2) entry in the HP-UX Reference Manual for more information on
send.

6-12 eSD IPC Using UNIX Domain Stream Sockets

Receiving Data
recv and its parameters are described in the following table.

INCLUDE FILES: linclude <sys/types.h>
linclude <sys/socket.h>

SYSTEM CALL:

Parameter

s

buf

len

flags

count = recv(s,buf, len, flags)
int s;
char *buf;
int len, flags;

Description of Contents

socket descriptor of local
socket

pointer to data buffer

maximum number of bytes
that should be received

settings for optional flags

INPUT Value

socket descriptor of socket receiving
data

pointer to buffer that is to receive
data

size of data buffer

o
FUNCTION RESULT: number of bytes actually received

-1 if failure occurs

EXAMPLE SYSTEM
CALL:

eount = reeves, buf, 10, 0);

recv blocks until there is at least 1 byte of data to be received, unless you are using
nonblocking I/O. (For information on nonblocking I/O, see the "Nonblocking I/O"
section of the "Advanced Topics for Stream Sockets" chapter.) The host does not
wait for len bytes to be available; if less than Zen bytes are available, that number of
bytes are received.

No more than len bytes of data are received. If there are more than Zen bytes of data
on the socket, the remaining bytes are received on the next recv.

BSD IPC Using UNIX Domain Stream Sockets 6-13

Flag Options
There are no flag options for UNIX Domain (AF _UNIX) sockets. The only
supported value for this field is O.

When to Receive Data

Which Processes When

server or client process after connection is established

Refer to the recv(2) entry in the HP-UX Reference Manual for more information on
recv.

Closing a Socket
In most applications, you do not have to worry about cleaning up your sockets. When
you exit your program and your process terminates, the sockets are closed for you.

If you need to close a socket while your program is still running, use the close system
call. For example, you may have a daemon process that uses fork to create the server
process. The daemon process creates the BSD !PC connection and then passes the
socket descriptor to the server. You then have more than one process with the same
socket descriptor. The daemon process should do a close of the socket descriptor to
avoid keeping the socket open once the server is through with it. Because the server
performs the work, the daemon does not use the socket after the fork.

Close decrements the file descriptor reference count and the calling process can no
longer use that file descriptor.

When the last close is executed on a socket descriptor, any unsent data are sent
before the socket is closed. Any unreceived data are lost.

6-14 BSD IPC Using UNIX Domain Stream Sockets

Example Using UNIX Domain Stream Sockets

Note These programs are provided as examples only of UNIX Domain stream
socket usage and are not Hewlett-Packard supported products.

These programming examples demonstrate how to set up and use UNIX Domain
stream sockets. These sample programs can be found in the /usr/netdemo/a/ _unix
directory. The client program is intended to run in conjunction with the server
program.

This example shows how to create UNIX Domain stream sockets and how to set up
address structures for the sockets. In this example the client process sends 2000 bytes
of data to the server (five times). The server process can receive data from any other
process and will echo the data back to the sender.

/*
*
*
*
*
*
*
*
*

Sample Program: AF_UNIX stream sockets, server process

CATCH - RECEIVE DATA FROM THE PITCHER

Pitch and catch set up a simple unix domain stream socket
client-server connection. The client (pitch) then sends data to
server (catch), throughput is calculated, and the result is
printed to the client's stdout.

*/
#include <stdio.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SOCKNAME
#define BUFSIZE
int timeout(};

"/tmp/p n c"
32*1024:1-

int s; /* server socket */

char buffer[BUFSIZE];
struct bullet {

int bytes;
int throughput;
int magic;

} bullet = { 0, 0, 0 };

send data(fd, buf, buflen}
-char *buf;

sSD IPC Using UNIX Domain Stream Sockets 6-15

{

}

int cc;

while (buflen > 0) {

}

cc = send(fd, buf, buflen, 0);

if (cc == -1) {
perror("send") ;
exit(O);

}

buf += cc;
buflen -= cc;

recv data(fd, buf, buflen)
-char *buf;

{

}

int cc;

while (buflen > 0) {

}

cc = recv(fd, buf, buflen, 0);

if (cc == -1) {
perror("recv");
exit(O);

}

buf += cc;
buflen -= cc;

main(argc, argyl
int argc;
char *argv 0 ;

{
int bufsize, bytes, cc, i, total, pid, counter_pid;
float msec;
struct timeval tp1, tp2;
int ns, recvsize, secs, usec;
struct timezone tzp;
struct sockaddr_un sa;

/*
* The SIGPIPE signal will be received if the peer has gone away and an attempt
* is made to write data to the peer. Ignoring this signal causes
* the write operation to receive an EPIPE error. Thus, the user is
* informed about what happened.

*/
signal(SIGPIPE, SIG IGN);
signal(SIGCLD, SIG_IGN);

6-16 BSD IPC Using UNIX Domain Stream Sockets

/*

signal(SIGINT, timeout);

setbuf(stdout, 0);
setbuf(stderr, 0);
if (a rgc > 1) {

argv++;
counter pid = atoi(*argv++);

} else -
counter_pid = 0;

* Set up the socket variables - address family, socket name.
* They'll be used later to bind() the name to the server socket.
*/

/*

sa.sun family = AF UNIX;
strncpy(sa.sun_path, SOCK NAME ,

(sizeof(struct sockaddr_un) - sizeof(short»);

* Create the server socket
*/

/*

if ((s = socket(AF_UNIX, SOCK_STREAM, 0» == -1) {
perror("catch - socket failed");
exit(O);

}
bufsize = BUFSIZE;

* Use setsockopt() to change the socket buffer size to improve throughput
* for large data transfers
*/

1*

if ((setsockopt(s, SOL_SOCKET, SO_RCVBUF, &bufsize, s;zeof(bufsize»)
== -1) {

}

perror("catch - setsockopt failed");
exit(O);

* Bind the server socket to its name
*/

if ((bind(s, &sa, sizeof(struct sockaddr un») == -1) {
perror("catch - bind failed"); -
exit(O);

}
/*
* Call listen() to enable reception of connection requests
* (listen() will silently change the given backlog, 0, to be 1 instead)
*/

if ((listen(s, 0» == -1) {
perror("catch - listen failed");
exit(O);

}

next conn:
-i = sizeof(struct sockaddr_un);

/*
* Call accept() to accept the connection request. This call will block

BSD IPC Using UNIX Domain Stream Sockets 6-17

* until a connection request arrives.
*/

1*

*/
/*

if ((ns = accept(s, &sa, &i» == -1) {
if (errno == EINTR)

}

got a next_conn;
perror("catch - accept failed");
exit(O) ;

if ((pid = fork(» != 0) {
close(ns);
goto next conn;

}

close(s);

* Receive the bullet to synchronize with the other side
*/

recv_data(ns, &bullet, sizeof(struct bullet»~;

if (bullet.magic != 12345) {

}

printf("catch: bad magic %d\n", bullet.magic);
exit(O);

bytes = bullet.bytes;
recvsize = (bytes>BUFSIZE)?BUFSIZE:bytes;

1*
* Send the bullet back to complete synchronization
*/

/*

send_data(ns, &bullet, sizeof(struct bullet»;

cc = 0;
if (counter pid)

kill(counter_pid, SIGUSR1);
if (gettimeofday(&tpl, &tzp) == -1) {

perror("catch time of day fa; led");
exit(O);

}

* Receive data from the client
*/

/*

total = 0;
i = bytes;
wh i1 e (i > 0) {

}

ee = reevsize < i ? recvsize i;

recv_data(ns, buffer, ce);
total += cc;
i -= cc;

* Calculate throughput
*/

6-18 SSD IPC Using UNIX Domain Stream Sockets

/*

if (gettimeofday(&tp2, &tzp) == -1) {
perror("eateh time of day failed");
exit(O};

}
if (counter_pid)

kill(eounter_pid, SIGUSR2};
sees = tp2.tv_see - tp1.tv_sec;
usec = tp2.tv_usec - tp1.tv_usec;
if (usec < 0) {

secs ;
usec += 1000000;

}
msec = 1000*(float)secs;
msec += (float}usec/1000;
bullet.throughput = bytes/msec;

* Send back the bullet with throughput info, then close the
* server socket
*/

}

if ((cc = send(ns, &bullet, sizeof(struct bullet), O}} == -1} {
perror("catch - send end bullet failed"};
exit(O};

}
close(ns};

timeout(}
{

}

/*
*
*
*
*
*
*
*
*
*/

printf("alarm went off -- stopping the catch process\n" };
fprintf(stderr, "stopping the catch process\n");
unlink(SOCKNAME);
close(s);
exit(6};

Sample Program: AF_UNIX stream sockets, client process

PITCH - SEND DATA TO THE CATCHER

Pitch and catch set up a simple unix domain stream socket
client-server connection. The client (pitch) then sends data to
the server (catch), throughput is calculated, and the result is
printed to the client's stdout.

#include <stdio.h>
#include <time.h>
#inelude <netdb.h>
#inelude <signal.h>
#inelude <sys/types.h>
#inelude <sys/soeket.h>
#inelude <sys/un.h>

eSD IPC Using UNIX Domain Stream Sockets 6-19

#define SOCKNAME

#define BUFSIZE 32*1024-1
char buffer [BUFSIZE] ;

struct bu llet {
int bytes;
int throughput;
int magic;

} bullet = { 0, 0, 12345 };

send data(fd, buf, buflen)
-char *buf;

{

}

int cc;

while (buflen > 0) {

}

cc = send(fd, buf, buflen, 0);

if (cc == -1) {
perror("send");
exit(O};

}

buf += cc;
buflen -= cc;

recv data(fd, buf, buflen)
-char *buf;

{

}

int cc;

while (buflen > 0) {

}

cc = recv(fd, buf, buflen, 0);

if (cc == -1) {
perror("recv");
exit (0) ;

}
buf += cc;
buflen -= cc;

main(argc, argyl
int argc;
char *argv 0 ;

{

6-20 eso IPC Using UNIX Domain Stream Sockets

1*

int bufsize, bytes, cc, i, total, pid;
float msec;
struct timeval tp1, tp2;
int s, sendsize, secs, usec;
struct timezone tzp;
struct sockaddr_un sa;

* The SIGPIPE signal will be received if the peer has gone away and
* an attempt is made to write data to the peer. Ignoring the signal causes
* the write operation to receive an EPIPE error. Thus, the user is
* informed about what happened.

*/

signal(SIGPIPE, SIG_IGN);
setbuf(stdout, 0);
setbuf(stderr, 0);
if (argc < 2) {

/*

}

printf("usage: pitch Kbytes [pid]\n");
exit(O);

argv++;

* Set up the socket variables (address family; name of server socket)
* (they'll be used later for the connect() call)
*/

1*

sa.sun family = AF UNIX;
strncpy(sa.sun_path, SOCKNAME,

(sizeof(struct sockaddr un) - sizeof(short)));
bullet.bytes = bytes = 1024*atoi(*argv++);
if (argc > 2)

pid = atoi(*argv++);
else

pid = 0;
sendsize = (bytes < BUFSIZE) ? bytes BUFSIZE;

* Create the client socket
*/

1*

if ((s = socket(AF UNIX, SOCK STREAM, 0)) == -1) {
perror("pitch: socket failed");
exit(O);

}
bufsize = BUFSIZE;

* Change the default buffer size to improve throughput for
* large data transfers
*/

if ((setsockopt(s, SOL_SOCKET, SO_SNDBUF, &bufsize, sizeof(bufsize)))
== -1) {

}

perror{"pitch - setsockopt fa i led");
exit(O);

eSD IPC Using UNIX Domain Stream Sockets 6-21

/*
* Connect to the server
*/

if «connect(s, &sa, sizeof(struct sockaddr un») == - 1) {
perror("pitch - connect failed"); -
exit(O);

}
/*
* send and receive the bullet to synchronize both sides
*/

1*

send data(s, &bullet, sizeof(struct bullet»;
recv=data(s, &bullet, sizeof(struct bullet»;

cc = 0;
if (pid)

kill(pid,SIGUSR1);
if (gettimeofday(&tp1, &tzp) == -1) {

perror("pitch time of day fa iled");
exit(O);

}
i = bytes;
total = 0;

* Send the data
*/

1*

wh i 1 e (i > 0) {

}

cc = sendsize < i ? sendsize i;
send_data(s, buffer, ee);
i -= cc;
total += cc;

* Receive the bullet to calculate throughput
*/

/*

reev_data(s, &bullet, sizeof(struct bullet»;

if (gettimeofday(&tp2, &tzp) == -1) {
perror("pitch time of day failed");
exit(O);

}
if (pid)

kill(pid, SIGUSR2);

* Close the socket
*/

close(s);
sees = tp2.tv_sec - tp1.tv_sec;
usec = tp2.tv_usec - tp1.tv_usec;
if (usee < 0) {

secs;
usee += 1000000;

}
msec = 1000*(float)secs;

6-22 BSD IPC Using UNIX Domain Stream Sockets

}

msec += (float)usec/lOOO;
printf("PITCH: %d Kbytes/sec\n", (int) (bytes/msec));
printf{"CATCH: %d Kbytes/sec\n", bullet.throughput);
printf("AVG: %d Kbytes/sec\n", ((int)(bytes/msec)+bullet.throughput)/2);

BSO IPC Using UNIX Domain Stream Sockets 6-23

I

I

I

I

BSD IPC Using UNIX Domain
Datagram Sockets

7

This section describes communication between processes using UNIX Domain
datagram sockets. The UNIX Domain only allows communication between processes
executing on the same machine. In contrast to pipes, it does not require the
communicating processes to have common ancestry. For more information on the
UNIX Domain protocol, refer to the unix(7p) entry in the HP-UX Reference Pages.

UNIX domain (AF _UNIX) datagram sockets provide bidirectional, reliable,
unduplicated flow of data while preserving record boundaries. Domain sockets
significantly improve performance when compared to local IP loopback, due primarily
to the lower code execution overhead and the fact that data is looped back at the
protocol layer rather than at the driver layer.

AF _ UNIX datagram sockets allow you to send and receive messages without
establishing a connection. Each message includes a destination address. Processes
involved in data transfer are not required to have a client-server relationship; the
processes can be symmetrical.

AF _ UNIX datagram sockets allow you to send to many destinations from one socket,
and receive from many sources with one socket. There is no two-process model,
although a two-process model is the simplest case of a more general multi-process
model. The terms server and client are used in this section only in the application
sense. For example, you might have a server process that receives requests from
several clients on the same machine. This server process can send replies back to the
various clients. This can all be done with one AF _ UNIX datagram socket for the
server.

The simplest two-process model is used in this section to describe AF _ UNIX
datagram sockets.

eSD IPC Using UNIX Domain Datagram Sockets 7-1

The following table lists the steps required to exchange data between AF _ UNIX
datagram sockets.

Table 7-1. Setting Up for Data Transfer Using AF _UNIX Datagram Sockets

Client Process System Call Server Process System Call
Activity Used Activity Used

create a socket socket() create a socket socket()

bind a socket bind() bind a socket bind 0

send message sendtoO or
sendmsg()

receive message recvfrom() or
recvmsg()

send message sendto() or
sendmsg()

receive message recvfromO or
recvmsg()

The following sections discuss each of the activities mentioned in the table above. The
description of each activity specifies a system and includes:

• What happens when the system call is used.

• When to make the system call.

• What the parameters do.

• Where to find details on the system call.

The domain datagram sockets programming examples are at the end of these
descriptive sections. You can refer to them as you work through the descriptions.

7-2 BSD IPC Using UNIX Domain Datagram Sockets

Preparing Address Variables
Before your client process can make a request of the server process, you must
establish the correct variables and collect the information you need about the server
process.

Your server process needs to:

• Declare socket address variables.

• Get the pathname (character string) for the service you want to provide.

Your client process needs to :

• Declare socket address variables.

• Get the pathname (character string) for the service you want to use.

Next, we will describe these activities in detail. You can also refer to the program
example at the end of this chapter to see how it is done.

Declaring Socket Address Variables
You need to declare a variable of type struct sockaddr _ un to use for the socket
address for both processes.

For example, the following declarations are used in the example server program:

struct sockaddr _un servaddr; /* server socket address * /

Sockaddr _un is a special case of sockaddr and is used with AF _ UNIX address domain.
The sockaddr _un address structure is defined in sys/un.h and consists of the following
fields:

short sun_family

u _char sun -path[92]

Specifies the address family and should always be set to
AF UNIX

Specifies the pathname to which the socket is bound or
will be bound (eg : /tmp/myseIVer)

The server process only needs one address for its socket. Any process that knows the
address of the server process can then send messages to it. Thus, your client process
needs to know the address of the server socket. The client process will not need an
address for its own socket, unless other processes need to refer to the client process.

BSD IPC Using UNIX Domain Datagram Sockets 7-3

Writing the Server and Client Processes
This section discusses the calls your server and client processes must make.

Creating Sockets
Both processes must call socket to create communication endpoints.

Socket and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>

s = socket (af, type, protoco 1)

int af, type, protocol;

Parameter Descri)!tion INPUT Value

af address family AF UNIX

type socket type SOCK DGRAM

protocol underlying protocol to be o (default)
used

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

Which Process

server or client process

socket number (HP-UX file descriptor) if successful
-1 if socket call fails

#include <sys/type.h>
#include <sys/socket.h>

When to Create Sockets

When

before any other BSD IPC system calls

Refer to the socket(2) entry in the HP-UX Reference Pages for more information on
socket.

7-4 BSO IPC Using UNIX Domain Datagram Sockets

Binding Socket Addresses to UNIX Domain Datagram
Sockets
After your server process has created a socket, it must call bind to bind a socket
address. Until the server socket is bound to an address, other processes have no way
to reference it.

The server process must bind a specific pathname to its socket. Set up the address
structure with a local address (as described in the section on "Preparing Address
Variables") before the server makes a call to bind. You can also refer to the program
example at the end of this chapter to see how it is done.

The bind system call creates the inode file. If the inode file is not deallocated after
bound sockets are closed, the names will continue to exist and cause directories to fill
up with the unused files. To avoid directories filling up with these unused files, you
can remove the files by calling unlink or remove them manually with the rm command.

Bind and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

bind(s, addr, addrlen};
int s· ,
st ruct sockaddr _un * addr ;
int addrlen;

Parameter DeSCription INPUT Value

s socket descriptor of local
socket

socket descriptor of socket to be
bound

addr socket address pointer to address to be bound to s

size of struct sockaddr un address addrlen length of socket address

FUNCTION RESULT:

EXAMPLE SYSTEM
CALL:

o if bind is successful
-1 if bind fails

#include <sys/type.h>
#include <sys/socket.h>
#include <sys/un.h>
#define SOCKET_PATH /tmp/myserver
struct sockaddr _un servaddr;

BSD IPC Using UNIX Domain Datagram Sockets 7-5

servaddr.sun_family = AF_UNIX;
strcpy(servaddr.sun_path, SOCKET_PATH);
unlink(SOCKET_PATH);

bind(s, &servaddr, sizeof(struct sockaddr_un));

When to Bind Socket Addresses

Which Process

server

When

after socket is created and before any
other BSD IPC system calls

Refer to the bind(2) entry in the HP-UX Reference Pages for more information on
bind.

Sending and Receiving Messages
The sendto and recvfrom (or sendmsg and recvmsg) system calls are usually used to
transmit and receive messages with datagram sockets. They are described in the next
sections.

Sending Messages
Use sendto or sendmsg to send messages. sendmsg is similar to sendto, except sendmsg
allows the send data to be gathered from several buffers.

Sendto and its parameters are described in the following table.

INCLUDE FILES:

SYSTEM CALL:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

count = sendto(s, msg, len, flags, to, tolen)
int s;
char *msg;
int len, flags;
st ruct sockaddr _ un *to;
int to len;

7-6 BSD IPC Using UNIX Domain Datagram Sockets

Parameter Descri2tion INPUT Value

s socket descriptor of local socket descriptor of socket that is
socket sending the message

msg pointer to data buffer pointer to data to be sent

len size of data buffer size ofmsg

flags settings for optional flags o (no options are currently supported)

to address of recipient socket pointer to the socket address that
message should be sent to

tolen size of to length of address structure that to
points to

FUNCTION RESULT: number of bytes actually sent if sendto succeeds
-1 if sendto call fails

EXAMPLE SYSTEM
CALL:

Which Process

selVer or client process

struct sockaddr_un servaddr;

count = sendto(s. argv[2]. strlen(argv[2]). O. &servaddr.
s;zeof(struct sockaddr_un);

When to Send Data

When

after selVer has bound to an address

Refer to the send(2) entry in the HP-UX Reference Pages for more information on
sendto and sendmsg.

Receiving Messages
Use recvfrom or recvmsg to receive messages. recvmsg is similar to recvfrom, except
recvmsg allows the read data to be scattered into buffers.

Recv can also be used if you do not need to know what socket sent the message.
However, if you want to send a response to the message, you must know where it
came from. Except for the extra information returned by recvfrom, the two calls are
identical.

eSD IPC Using UNIX Domain Datagram Sockets 7-7

Recvfrom and its parameters are described in the following table.

INCLUDE FILES: . #include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

SYSTEM CALL: count = recvfrom(s, msg, len, flags, from, fromlen)

Parameter

s

msg

len

flags

from

fromlen

int s;
char *msg;
int len, flags;
struct sockaddr _un *from;
int *fromlen;

Description INPUT Value OUTPUT VALUE

socket descriptor of socket descriptor of unchanged
local socket socket receiving the

message

pointer to data
buffer

pointer to buffer that pointer to received data
is to receive data

maximum number size of data buffer
of bytes that should

unchanged

be received

settings for optional 0 (no options are unchanged
flags supported)

address of socket
that sent message

pointer to the size
of from

pointer to address pointer to socket address
structure, not used for of socket that sent the
input message

pointer to size of from pointer to the actual size
of address returned

FUNCTION RESULT: number of bytes actually received if recvfrom succeeds
-1 if recvfrom call fails

EXAMPLE SYSTEM
CALL:

struct sockaddr_un fromaddr;
int from len;

count = recvfrom(s, msg, s;zeof(msg), 0, &fromaddr, &fromlen);

Recvfrom blocks until there is a message to be received.

7-8 BSD IPC Using UNIX Domain Datagram Sockets

No more than len bytes of data are returned. The entire message is read in one
recvfrom, recvmsg, recv, or read operation. If the message is too long for the receive
buffer, the excess data are discarded. Because only one message can be returned in a
recvfrom call, if a second message is in the queue, it is not affected. Therefore, the
best technique is to receive as much as possible on each call.

Refer to the recv(2) entry in the HP-UX Reference Pages for more information on
recvfrom and recvmsg.

Closing a Socket
In most applications, you do not have to close the sockets. When you exit your
program and your process terminates, the sockets are closed for you.

If you need to close a socket while your program is still running, use the close system
call.

You may have more than one process with the same socket descriptor if the process
with the socket descriptor executes a fork. Close decrements the file descriptor count
and the calling process can no longer use that file descriptor.

When the last close is executed on a socket, any unsent messages are sent and the
socket is closed. Any unreceived data are lost.

aSD IPC USing UNIX Domain Datagram Sockets 7-9

Example Using UNIX Domain Datagram Sockets

Note These programs are provided as examples only of UNIX Domain
datagram socket usage and are not Hewlett-Packard supported products.

These programming examples demonstrate how to set up and use UNIX Domain
datagram sockets. These sample programs can be found in the /usr/netdemo/af_unix
directory. The client program is intended to run in conjunction with the server
program.

This example shows how to create UNIX Domain datagram sockets and how to set up
address structures for the sockets. In this example the client process sends 2000 bytes
of data to the server (five times). The server process can receive data from any other
process and will echo the data back to the sender.

The source code for these two programs follows.

/*
* AF_UNIX datagram server process
*
*
*
*
*
*

This is an example program that demonstrates the use of AF_UNIX
datagram sockets as a BSD IPC mechanism. This program contains the
server and is intended to operate in conjunction with the
client program.

*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/un.h>
#include <stdio.h>
#include <signal.h>
#include <netdb.h>

#define SOCKET PATH /tmp/myserver
#define bzero(ptr, len) memset((ptr), NULL, (len))

int timeout();

rna in ()
{

int sock;
int slen, rlen, expect;
unsigned char sdata[SOOO];
struct sockaddr_un servaddr;
struct sockaddr_un from;

/* address of server */

7-10 eSD IPC Using UNIX Domain Datagram Sockets

int fromlen;

/* Escape hatch so blocking calls don't wait forever

signal{SIGALRM,timeout);
alarm{{unsigned long) 120);

1* Create a UNIX datagram socket for server

if ({sock = socket{AF UNIX, SOCK DGRAM, 0» < 0) {
perror{"server: socket");
exit (l);

}

/* Set up address structure for server socket

bzero{&servaddr, sizeof(servaddr»;
servaddr.sun family = AF UNIX;
strcpy{servaddr.sun_path~ SOCKET_PATH);

if (bind{sock, &servaddr, sizeof{servaddr») < 0) {
close{sock);
perror("server: bind");
exit (2) ;

}

*/

*/

*/

/*
*
*

Receive data from anyone and echo back data to the sender
Note that from len is passed as a pointer so the recvfrom
call can return the size of the returned address.

*/
expect = 5 * 2000;
while (expect> 0) {

}
/*
*
*/

fromlen = sizeof(from);
rlen = recvfrom(sock, sdata, 2000, 0, &from, &fromlen);
if (rlen == -1) {

} else {

}

perror("server : recv\n");
exit(3) ;

expect -= rlen;
printf("server : recv'd %d bytes\n",rlen);
slen = sendto{sock, sdata, rlen, 0, &from, fromlen);
if (slen <0) {

}

perror ("server: sendto\n");
exit (4);

Use unlink to remove the file (inode) so that the name
will be available for the next run.

unlink{SOCKET PATH);
close{sock); -
printf{"Server done\n");

SSC IPC Using UNIX Domain Datagram Sockets 7-11

exit(O);
}

timeout()
{

/* escape hatch so blocking calls don't wait forever */

printf(alarm received stopping server\n);
fprintf(stderr, stopping the server process\n);
exit(S);

}

1*
AF_UNIX datagram client process *

*
*
*
*
*
*

This is an example program that demonstrates the use of AF_UNIX
datagram sockets as a BSD IPC mechanism. This contains the
client, and is intended to operate in conjunction with the
server program.

*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/un.h>
#include <stdio.h>
#include <signal.h>
#include <netdb.h>

#define SOCKET_PATH /tmp/myserver
#defineSOCKET_PATHCLNT /tmp/my_af_unix_client
#define bzero(ptr, len) memset((ptr), NULL, (len))
int timeout();

rna in()
{

int sock;
int j, slen, rlen;
unsigned char sdata[2000];
unsigned char rdata[2000];
struct sockaddr_un servaddr;
struct sockaddr_un clntaddr;
struct sockaddr_un from;
int fromlen;

/* send data */
/* receive data */
/* address of server */
/* address of client */

/* Stop the program if not done in 2 minutes */

signal(SIGALRM, timeout);
alarm((unsigned long) 120);

/* Fork the server process to receive data from client */

printf("Client : Forking server\n");
if (fork() == 0) {

execl("./server", server, 0);

7-12 eSD IPC Using UNIX Domain Datagram Sockets

}

/*

printf("Cannot exec ./server.\n");
exit(1);

Initialize the send data */

for (j = 0; j < sizeof(sdata); j++)
sdata[j] = (char) j;

1* Create a UNIX datagram socket for client

if ((sock = socket(AF UNIX, SOCK DGRAM, 0)) < 0) {
perror("c 1 ient: socket");-
exit(2);

}

*/

1*
*

Client will bind to an address so the server will get
an address in its recvfrom call and use it to

* send data back to the client.
*/

bzero(&clntaddr, sizeof(clntaddr));
clntaddr.sun family = AF UNIX;
strcpy(clntaddr.sun_path~ SOCKET_PATHCLNT);

if (bind(sock, &clntaddr, sizeof(clntaddr)) < 0) {
close(sock);
perror("client: bind");
exit(3);

}

/* Set up address structure for server socket */

bzero(&servaddr, sizeof(servaddr));
servaddr.sun family = AF UNIX;
strcpy(servaddr.sun_path~ SOCKET_PATH);

for (j = 0; j < S; j++) {
sleep(1);
slen = sendto(sock, sdata, 2000, 0,

(struct sockaddr *) &servaddr, sizeof(servaddr));
if (slen<O) {

}
else {

perror("client: sendto");
exit(4);

printf("client : sent %d bytes\n", slen);
fromlen = sizeof(from);
rlen = recvfrom(sock, rdata, 2000, 0, &from, &fromlen);
if (rlen == -1) {

} else

perror("c 1 ient: recvfrom\n");
exit(S);

BSD IPC Using UNIX DomainDatagram Sockets 7-13

}

printf("client : received %d bytes\n", rlen);
}

}
/*
*

Use unlink to remove the file (inode) so that the name
will be available for the next run.

*/
sleep(1) ;
unlink(SOCKET PATHCLNT);
close(sock); -
printf("Client done\n");
exit(O);

timeout ()
{

/* escape hatch so blocking calls don't wait forever */

}

printf(alarm went off stopping client\n);
fprintf(stderr, stopping the client process\n);
exit(6);

7-14 sSD IPC Using UNIX Domain Datagram Sockets

Programming Hints

This chapter contains information for:

• Troubleshooting.

• Port addresses.

• Using diagnostic utilities as troubleshooting tools.

• Adding a sexver process to the Internet daemon.

• Summary tables for system and library calls.

Note Refer to the "Portability Issues" appendix for information about
the differences between 4.3 BSD and the HP-UX implementation
ofBSDIPC.

8

Programming Hints 8-1

Troubleshooting
The first step to take is to avoid many problems by using good programming and
debugging techniques. Your programs should check for a returned error after each
system call and print any that occur. For example, the following program lines print
an error message for read:

cc=read(sock,buffer,lOOO);
if (cc<O) {

}

perror ("reading message")
exit(1)

Refer to the HP-UX Reference Manual for information about perror(3C). Also refer to
the HP-UX Reference Manual for information about errors returned by the BSD IPC
system calls such as read.

You can also compile your program with the debugging option (-g) and use one of the
debuggers (e.g. cdb or xdb) to help debug the programs.

8-2 Programming Hints

Port Addresses
The following port values are reserved for the super-user: 1 - 1023, 1260, 1536, 1542
and 4672. These ports are for:

1 - 1023

1260

1536

1542

4672

Port Addresses Used By

ARP A/Berkeley services

NS daemon rlbdaemon

NS daemon nftdaemon

NS service Remote Process Management
(Series 500 only)

NFS Services

It is possible that you could assign one of these ports and cause a service to fail. For
example, if the nftdaemon is not running, and you assign its port, when you try to start
the nftdaemon, it fails.

See the /etc/selVices file for the list of reserved ports.

Programming Hints 8-3

Using Diagnostic Utilities as Troubleshooting Tools
You can use the following diagnostic utilities to help debug your programs. It is
helpful if you have multiple access to the system so you can obtain information about
the program while it is running.

ping

netstat

Network Tracing

Network Event
Logging

Use ping to verify the physical connection with the
destination node.

Use netstat to display sockets and associations to help you
troubleshoot problems in your application programs. Use
netstat to determine if your program has successfully created
a connection. If you are using stream sockets (TCP
protocol), netstat can provide the TCP state of the
connection. To check the status of a connection at any
point in the program, use the sleep (seconds) statement in
your program to pause the program. While the program is
paused, execute netstat -a from another terminal.

Network Tracing can be used to trace packets. For the trace
information to be useful, you must have a working
knowledge of network protocols.

Network Event Logging is an error logging mechanism. Use
it in conjunction with other diagnostic tools.

These utilities are described in detail in the Installing and Administering LAN/9000
Software manual

8-4 Programming Hints

Adding a Server Process to the Internet Daemon
This section contains example BSD IPC programs that use the Internet daemon,
called inetd. For more information on inetd, refer to the Installing and Administering
ARPA Services manual and the inetd(lM) entry in the HP-UX Reference manual.

You can invoke the example server programs from inetd if you have super-user
capabilities and you make the following configuration modifications:

• Add the following lines to the jetc/inetd.conf file:

example stream tcp nowait root <path>/server.tcp server.tcp
example dgram udp wait root <path>/server.udp server.udp

where <path> is the path to the files on your host. (For detailed information on
this file, refer to the Installing and Administering ARPA Services manual or to the
inetd.conf(4) entry in the HP-UX Reference Pages.)

• Add the following lines to the jete/services file:

example 22375/tcp
example 22375/udp

• If inetd is already running, execute the following command so that inetd recognizes
the changes:

/etc/inetd -c

These example programs do the same thing as the previous example servers do, but
they are designed to be called from inetd. They do not have daemon loops or listen
for incoming connection requests, because inetd does that. The source code for the
two example servers follows.

Programming Hints 8-5

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

1*
*
*
*
*
*
*
*
*/

rna inO
{

S E R V E R . T C P

This is a variation of the example program called serv.tcp.
This one performs the same function, except that it is
designed to be called from /etc/inetd. Hence, this version
does not contain a daemon loop, and does not listen for incoming
connections on the socket. /etc/inetd does these functions. This
server simply assumes that the socket to receive the messages
from and send the responses to is file descriptor a when
the program is started. It also assumes that the client's
connection is already established to the socket. For the sake
of simplicity, the activity logging functions of serv.tcp
have also been removed.

M A I N

This is the actual server routine that the /etc/inetd forks to
handle each individual connection. Its purpose is to receive
the request packets from the remote client, process them,
and return the results to the client.

char buf [10] ;
int len, len1;

/* This example uses 10 byte messages. */

/* Go into a loop, receiving requests from the remote
* client. After the client has sent the last request,
* it will do a shutdown for sending, which will cause
* an end-of-file condition to appear on this end of the
* connection. After all of the client's requests have
* been received, the next recv call will return zero
* bytes, signalling an end-of-file condition. This is
* how the server will know that no more requests will
* follow, and the loop will be exited.
*/

while (len = recv(O, buf, 10, 0)) {
if (len == -1) {

}
exit (1); /* error from recv */

/* The reason this while loop exists is that there
* is a remote possibility of the above recv returning
* less than 10 bytes. This is because a recv returns
* as soon as there is some data, and will not wait for
* all of the requested data to arrive. Since 10 bytes
* ;s relatively small compared to the allowed TCP
* packet sizes, a partial receive is unlikely. If
* this example had used 2048 bytes requests instead,

8-6 Programming Hints

}

}

}

* a partial receive would be far more likely.
* This loop will keep receiving until all 10 bytes
* have been received, thus guaranteeing that the
* next recv at the top of the loop will start at the
* beginning of the next request.
*/

while (len < 10) {

}

len1 = recv(O, &buf[len], la-len, 0);
if (len1 == -1) {

exit (1);
}
len += len1;

/* This sleep simulates the processing of the
* request that a real server might do.
*/

sleep(l);
/* Send a response back to the client. */

if (send(O, buf, 10, 0) != 10) {
exit (1);

}

/* The loop has terminated, because there are no
* more requests to be serviced.

exit (0);

Programming Hints 8-7

/*
*
*
*
*
*
*
*
*
*
*
*
*
*/

S E R V E R . U 0 P

This is a variation of the example program called serv.udp.
This one performs the same function, except that it is
designed to be called from /etc/inetd. Hence, this version
does not contain a daemon loop, and does not wait for requests
to arrive on a socket. /etc/inetd does these functions. This
server simply assumes that the socket to receive the message
from and send the response to is file descriptor 0 when
the program is started. It also assumes that the client's
request is already ready to be received from the socket.

#include <sys/types.h>
#include <netinet/in.h>
#include ~stdio.h>
#include <netdb.h>

#define BUFFERSIZE 1024 /* maximum size of packets to be received */
/* contains the number of bytes read */ int cc;

char buffer[BUFFERSIZE]; /* buffer for packets to be read into */

struct hostent *hp; /* pointer to host info for requested host */

struct sockaddr_in clientaddr_in; /* for client's socket address */
struct in_addr reqaddr; /* for requested host's address */

#define ADDRNOTFOUND Oxffffffff /* return address for unfound host */

1*
*
*
*
*
*
*
*
*
*
*
*/

rna in()
{

M A I N

This routine receives the request and returns an answer.
Each request consists of a
host name for which the requester desires to know the
internet address. The server will look up the name in its
Jetc/hosts file, and return the internet address to the
client. An internet address value of all ones will be returned
if the host name is not found.

int addrlen;

/* clear out address structure */
memset ((char *)&clientaddr_in, 0, sizeof(struct sockaddr_in));

/* Note that addrlen is passed as a pointer

8-8 Programming Hints

}

* so that the recvfrom call can return the
* size of the returned address.
*/

addrlen = sizeof(struct sockaddr in);
/* This call will -
* return the address of the client,
* and a buffer containing its request.
* BUFFERSIZE - 1 bytes are read so that
* room is left at the end of the buffer
* for a null character.
*/

cc = recvfrom(O, buffer, BUFFERSIZE - I, 0 &clientaddr_in, &addrlen);
if (cc == -1) exit(I);

/* Make sure the message received in
* null terminated.
*/

buffer [cc] =' \0' ;
/* Treat the message as a string containing
* a hostname. Search for the name
* in /etc/hosts.
*/

hp = gethostbyname (buffer);
if (hp == NULL) {

/* Name was not found. Return a
* special value signifying the error.

1*
reqaddr.s addr = ADDRNOTFOUND;

} else { -

}

/* Copy address of host into the
* return buffer.

1*
reqaddr.s_addr =

((struct in_addr *)(hp->h_addr))->s_addr;

/* send the response back to the requesting client. The address
* is sent in network byte order. Note that
* all errors are ignored. The client
* will retry if it does not receive
* the response.

*/
sendto (0, &reqaddr, sizeof(struct in addr) , 0,

&clientaddr_in, addrlen);
exit(O);

Programming Hints 8-9

Summary Tables for System and Library Calls
The following table contains a summary of the BSD IPC system calls.

Table 8-1. BSD IPC System Calls

System Call Description

socket Creates a socket, or communication endpoint for the
calling process.

bind Assigns a socket address to the socket specified by
the calling process.

listen Sets up a queue for incoming connection requests.
(Stream sockets only.)

connect For stream sockets, requests and creates a
connection between the remote socket (specified by
address) and the socket (specified by descriptor) of
the calling process.

For datagram sockets, permanently specifies the
remote peer socket.

accept Receives a connection between the socket of the
calling process and the socket specified in the
associated connect call. (Stream sockets only.)

send, sendto, Sends data from the specified socket.
sendmsg

recv, recvfrom, Receives data at the specified socket.
recvmsg

shutdown Disconnects the specified socket.

getsockname Gets the socket address of the specified socket.

8-10 Programming Hints

Table 8-1. BSD IPC System Calls (can't)

System Call Description

getsockopt, Gets, or sets, the options associated with a socket.
setsockopt

getpeemame Gets the name of the peer socket connected to the
specified socket.

Programming Hints 8 .. 11

The following table contains a summary of the other system calls that can be used
with BSD IPC.

Table 8-2. Other System Calls

System Call Description

read Can be used to read data at stream or datagram sockets
just like recv or recvfrom, without the benefit of the recv
flags. Read offers implementation independence; the
descriptor can be for a file, a socket or any other object.

write Can be used to write data from stream sockets (and
datagram sockets if you declare a default remote socket
address) just like send. Write offers implementation
independence; the descriptor can be for a file, a socket or
any other object.

close Deallocates socket descriptors. The last close can be
used to destroy a socket. Close does a graceful
disconnect or a hard close, depending on the LINGER
option. Refer to the sections on "Closing a Socket."

select Can be used to improve efficiency for a process that
accesses multiple sockets or other I/O devices
simultaneously. Refer to the sections on "Synchronous
I/O Multiplexing with Select."

ioctl Can be used for finding the number of receivable bytes
with FIONREAD and for setting the nonblocking I/O
flag with FIOSBNBIO. Can also be used for setting a
socket to receive asynchronous signals with FIOASYNC.

Jentl Can be used for duplicating a socket descriptor and for
setting the O_NDELAY or O_NONBLOCKflag.

8-12 Programming Hints

BSD IPC attempts to isolate host-specific information from applications by providing
library calls that return the necessary information.

The following table contains a summary of the library calls used with BSD IPC. The
library calls are in the common "c" library named libc.a. Therefore, there is no need
to specify any library name on the cc command line to use these library calls -libc.a
is used automatically.

Table 8·3. Library Calls

Library Call Description

htonl convert values between host and network byte
htons order (for portability to DEC V AX hosts)
ntohl
ntohs

inet addr Internet address manipulation routines
inet=Znaof
inet makeaddr
inet=netof
inet network

setservent get or set service entry
endservent
getservbyname
getservbyport
getservent

setprotoent get or set protocol entry
endprotoent
getprotobyname
getprotobynumber
getprotoent

Programming Hints 8-13

Table 8-3. Library Calls (con't) .

Library Call Description

setnetent get or set network entry
endnetent
getnetbyaddr
getnetbyname
getnetent

sethostent get or set host entry
endhostent
gethostbyaddr
gethostbyname
gethostent

8-14 Programming Hints

Example Programs

These sample programs can be found in the /usr/netdemo/socket directory.

= /*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A S Y N C . S E R V

This program demonstrates the use of Asynchronous datagram
and stream sockets. It contains the server, and is
intended to operate in conjunction with the client program
found in async.clnt. Together, these programs
illustrate a very simple application of asynchronous
sockets, and therefore lack the robustness of typical
situations. A program capable of handling all SIGIO
interrupts requires substantial programmer investment, and is
beyond the scope of this example.

This program provides two services called "sigex_udp"
and "sigex_tcp", for datagram and streams, respectively. In
order for it to function, entries need to exist in the
/etc/services file. The port address for these services can be
any port numbers that are likely to be unused, such as 22373
and 22374, for example. The host on which the client will
be running must also have the same entries (same port numbers)
in its /etc/services file.

* Algorithm for Async.serv:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Set up:
Catch SIGIO signal
Address family
Local Internet address = wildcard

Datagram socket setup:
Get the port address of the desired service
Create the datagram socket
Bind socket and make it asynchronous (set_up_async())

Streams socket setup:
Get the port address of the desired service
Create the streams socket
Bind socket and make it asynchronous (set_up_async())
Create a listen queue for the socket

Loop Forever or Until SIGIO interrupt

A

Example Programs A-1

* Algorithm for Async.serv's interrupt handler
*

Set up:
Define Macros

*
*
*
*
*
*
*
*
*
*
*
*

Notify operator of interrupt
Set readmask for our datagram and streams sockets
Set select call timeout to zero

Select on datagram and streams sockets
If datagram socket selected

Read and print out data
Endif
If streams socket selected

Accept the connection request
Read and print out data

*
*
*

Exit
Endif

***/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <netdb.h>

int
int

ds;
ss;

/* datagram socket descriptor */
/* streams socket descriptor */

struct hostent *hp; /* ptr to host info for remote host */
struct servent *sp; /* ptr to service information */
struct sockaddr in myaddr; /* local socket address */
struct sockaddr=in peeraddr_in; /* remote socket address */

/**

* MAl N
*
***/
main(argc, argyl
int argc;
char *argv 0 ;
{

struct sigvec vec;
int io_handler(); /* SIGI0 interrupt handler */

A-2 Example Programs

/* Set up asynchronous notification of socket event */
vec.sv handler = (int *) io handler;
vec.sv-mask = 0; -
vec.sv-flags = 0;
if (sigvector(SIGIO, &vec, (struct sigvec *) 0) == -1)

perror(" sigvector(SIGIO) ");

/* Set the Address Family */
myaddr.sin_family = AF_INET;

/* Use a wildcard for the local Internet address */
myaddr.sin_addr.s_addr = INADDR_ANY;

/* Get the port address of my service & insert
* it in data struct.
*/

sp = getservbyname("sigex_udp", "udp");
if (sp == NULL) {

printf(" sigex udp service not found in /etc/services\n");
exit(1); -

}

/* Create the datagram socket */
ds = socket(myaddr.sin family, SOCK DGRAM, 0);
if (ds == -1) {- -

perror(argv[OJ);
printf("%s: unable to create datagram socket\n' , , argv[O]);
exit(1) ;

}

/* Make this socket asynchronous */
set_up_async(ds);

/* Get the streams socket port address information */
sp = getservbyname("sigex_tcp", "tcp");
if (sp == NUll) {

printf("%s: sigex tcp service not found in /etc/services\n");
exit(1); -

}
myaddr.sin_port = sp->s_port;

/* Create the stream socket */
ss = socket(myaddr.sin family, SOCK STREAM, 0);
if (ss == -1) {- -

perror(argv [OJ);
printf("%s: unable to create datagram socket\n", argv[O]);
exit (1) ;

}

/* Make this socket asynchronous */
set_up_async(ss);

Example Programs A-3

/* Create a listen queue for the stream socket */
/* Listen call doesn't apply to datagram sockets */
if (listen(ss, 5) == -1) {

}

/*

perror(argv[O]);
printf("%s: unable to listen \n", argv[O]);
exit(1);

* The following loop simulates any other processing
* that the server might do here. The SIGI0 interrupt
* will break this loop and execution will go to the
* interrupt handler.
*/

printf(" Server entering a tight loop ... \n\n");
for (; ;) {
}

} /* end main */

/***
* SET UP ASYNC(S)
* This routine will bind the sockets and activate asynchronous
* notification of a socket event.
**/
set_up_async(s)
int s;
{

int flag = 1;

/* Bind the listen address to the socket */
if (bind(s, &myaddr, sizeof(myaddr)) == -1) {

perror(" unable to bind address\n");
exit(1);

}

/* Set the socket state for Asynchronous */
if (ioctl(s, FI0ASYNC, &flag) == -1) {

}

perror(" can't set async on socket ");
exit(1);

/* Arrange for the current process to receive
* SlGI0 when the state of the socket changes.
* Process group negative == deliver to process.
*/

flag = -getpid();
if (ioctl(s, S10CSPGRP, &flag) -1) {

A-4 ExarnplePrograrns

perror("can't get the process group.");
}

} /* end set_up_async */

/**
* IO_HANDLER()
* Execution jumps here upon receipt of the SIGIO interrupt.
**/
io handler()
#include <sys/param.h> /* standard parameter definitions */
#include ys/types.h

/*
* These macros are used with select(). select() uses bit masks of file
* descriptors in long integers. These macros manipulate such bit fields
* (the file system macros use chars). FD SETSIZE may be defined by the user
* but must be = u.u highestfd + 1. Since-the absolute limit on the number
* of per process open files is 2048, FD SETSIZE must be defined to be
* large enough to accommodate this many-file descriptors. Unless the user
* has this many file opened, he should redefine FD SETSIZE to a smaller number.

*/ -

typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) * 8 /* 8 bits per byte */
#define howmany(x,y) (((x)+((y)-l))/(Y))
typedef struct fd_set {

fd_mask fds_bits[howmany (FD_SETSIZE, NFDBITS)];
fd set;

#define FD_SET(n,p)
#define FD_ClR(n,p)
#define FD_ISSET(n,p)
#define FD_ZERO(p)
#define DONT CARE
#define BUFlEN 100

((p)->fds_bits [(n)/NFDBITS] 1= (1 « ((n) % NFDBITS)))
((p)->fds_bits[(n)/NFDBITS] &= -(1 « ((n) % NFDBITS)))
((p)->fds bits[(n)/NFDBITS] & (1 «((n) % NFDBITS)))
memset((char *)(p), (char) 0, sizeof(*(p)))

{

(char *) 0

struct fd set readmask;
int n-;;mfds;
char buf[BUFLEN];
int count;
int s;
struct timeval {

unsigned long tv sec; /* seconds */
long tv_usec; - /* and microseconds */

} timeout;

memset (buf, 0, BUFLEN);

/* Notify operator of SIGIO interrupt */
printf(" SIGIO interrupt received!\n\n");

Example Programs A-5

/* setup the masks */
FO ZERO(&readmask);
FO-SET(ds, &readmask);
FO=SET(ss, &readmask);

/* set the timeout value */
timeout. tv_sec = 0;
timeout.tv_usec = 0;

/* select on socket descriptors */
if «numfds = select(ss + 1, &readmask, OONT_CARE,

OONT CARE, &timeout)) < 0) {
perror("select failed ");
exit(l);

if (numfds == 0) {

}

printf(" unexpected condition - investigate.\n");
exit(l);

if (FO ISSET(ds, &readmask)) {
- /* a packet has come in, read it */

count = recv(ds, buf, BUFLEN, 0);
buf[count] = '\0';
printf(" received a datagram packet of data: %s\n\n", buf);

}
if (FD ISSET(ss, &readmask)) {

- /* another program requests connection */

}

s = accept(ss, &peeraddr_in, sizeof(struct sockaddr_in));
if (s == -1) {

}

perror(" accept call failed ");
exit(l);

printf(" accepted a connection request\n");

/* Note that the following recv call will block
* until data becomes available. A real server
* would probably include code to handle the
* recv call asynchronously, thereby avoiding
* this blockQ */

count = recv (s, buf, BUFLEN, 0);
if (count = -1) {

}

perror(" receive error")
exit(l);

buf[count] = '\0';
printf(" received a streams packet of data: %s\n\n", buf);
exiteD);

} /* end io_handler */

A-6 ExannpleProgranns

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A S Y N C . C LN T

This is an example program that demonstrates the use
of Asynchronous datagram and stream sockets. This
contains the client, and is intended to operate in
conjunction with the server program found in async.serv.
Together, these programs illustrate a very simple
application of asynchronous sockets and therefore lacks
the robustness of typical situations. A program capable of
handling all SIGIO interrupts requires substantial
programmer investment and is beyond the scope of this
example.

This program provides two services called "sigex_udp"
and "sigex_tcp", for datagram and streams, respectively. In
order for it to function, entries need to exist in the
/etc/services file. The port address for these services can be
any port numbers that are likely to be unused, such as 22373
and 22374, for example. The host on which the client will
be running must also have the same entries (same port numbers)
in its /etc/services file.

* ALGORITHM for Async.clnt:
*
* Set up:
* Runstring
* Address Family
* Get the remote host's Internet address
* Datagram socket setup:
* Create the datagram socket
* Get the port address of desired service
* Send datagram data
* Sleep for 5 seconds
* Streams socket setup:
* Create the streams socket
* Get the port address of desired service
* Request a connection
* Send streams data
*
*
**/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

int
int

ds;
ss;

struct hostent *hp;

/* datagram socket descriptor */
/* streams socket descriptor */

/* pointer to host info for remote host */

struct servent *sp; /* pointer to service information */

struct sockaddr_in myaddr_in; /* for local socket address */
struct sockaddr_in peeraddr_in; /* for peer socket address */

/**

* M A I N
*
**/

main(argc, argv)
int argc;
char *argv [] ;
{

int addrlen;

if (argc != 4) {
fprintf(stderr,

"Usage: %s <remote host> <datagram data> <streams data> \n\n",
argv [0]) ;

exit(1) ;
}

/* Set up the peer address to which we will connect. */
peeraddr_in.sin_family = AF_INET;

/* Get the host information for the hostname that the
* user passed in.
*/

hp gethostbyname (argv[1]);
if (hp == NULL) {

}

fprintf(stderr, "%s: %s not found in /etc/hosts\n",
argv [0], argv [1]);

exit (1) ;

peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

/* Create the local datagram socket */
ds socket (AF INET, SOCK DGRAM, 0);
if (ds == -1) {- -

}

perror(a rgv [0]) ;
fprintf(stderr, "%s: unable to create datagram socket\n", argv[O]);
exit(1);

A-a Example Programs

/* Find the information for the "sigex_udp " server
* in order to get the needed port number.
*/

sp = getservbyname ("sigex_udp", "udp");
if (sp == NULL) {

fprintf(stderr, "%s: sigex_udp not found in /etc/services\n",
argv [0]) ;

exit(1) ;
}

/* Send data over the datagram socket. This will
* cause the server process to recieve a SIGIO
* interrupt. The server will use select to determine
* which of its sockets interrupted and then do the
* appropriate action.
*/

if (sendto(ds, argv[2], strlen(argv[2]), 0, &peeraddr_in,
sizeof(struct sockaddr in » == -1) {

fprintf(stderr, "%s: Datagram Sendto failed. argv[O]);
perror (a rgv [0]) ;
exit(1);

}
printf(" %s : Sent a datagram packet. \n", argv[O]);

/* This sleep simulates any processing that a real client
* might be do here.
*/

sleep(S);

/* Create the local streams socket. */
ss = socket (AF INET, SOCK STREAM, 0);
if (ss == -1) {- -

perror(argv [0]);
fprintf(stderr, "%s: unable to create socket\n", argv[O]);
exit(1);

}

/* Setup the address information for the remote
* streams socket.
*/

sp = getservbyname ("sigex_tcp", "tcp");
if (sp == NULL) {

fprintf(stderr, "%s: sigex_tcp not found in /etc/services\n",
argv [0]) ;

exit(1);
}

/* Try to connect to the remote server at the address
* which was just built into peeraddr.
* This will cause another SIGIO interrupt of the

Example Programs A-9

*
*
*
*/

server. When the server identifies the interrupting
socket (select(2)), it will accept the connection
request without blocking.

if (connect(ss, &peeraddr in, sizeof(struct sockaddr_in)) == -1) {
perror(argv[O]); -

}

fprintf(stderr, "%s: unable to connect to remote\n", argv[O]);
exit (1);

/* Send data to the server over the stream socket.
* This will cause yet another SIGIO interrupt of the
* server. In this case, the interrupt will be ignored
* because the server is already waiting for data
* (see async.serv).
*/

if (sendto(ss, argv[3] , strlen(argv[3]), 0, &peeraddr_in,

}

sizeof(struct sockaddr in)) == -1) {
fprintf(stderr, "%s: Streams Sendto failed. ", argv[O]);
perror(argv [0]) ;
exit(l);

printf(" %5 : Sent a streams packet. \n", argv[O]);

/* Print message indicating completion of task. */
printf("%s:Finished!\n", argv[O]);

} /* end main */

A-10 Example Programs

Portability Issues

This appendix describes implementation differences between 4.3 BSD IPC and
HP-UX IPC. It contains porting issues for:

• IPC functions and library calls.

• Other functions and library calls typically used by IPC programs.

Because HP-UX IPC is based on 4.3 BSD IPC (it is a subset of 4.3 BSD), programs
should port easily between HP-UX and 4.3 BSD systems. If you need to have
portable applications, keep the information described in this appendix in mind when
you write your IPC programs.

B

Portability Issues B-1

Porting Issues for IPC Functions and Library Calls
The following is a list of differences in IPC functions and library calls to watch out for
if you want to port your IPC applications between HP -UX and 4.3 BSD systems.

Shutdown
When shutdown has been used on a datagram socket on an HP -UX system, the local
port number bound to that socket remains unavailable for use until that socket has
been destroyed by close.

Some other systems free that port number for use immediately after the shutdown. In
general, sockets should be destroyed by close (or by terminating the process) when
they are no longer needed. This allows you to avoid unnecessary delay in deallocating
local port numbers.

Address Conversion Functions for DEC VAX Hosts
The functions htonl, htons, ntonl and ntons are not required on HP-UX systems.
They are included for porting to a DEC VAX host. You can use these functions in
your HP-UX programs for portability; they are defined as null macros on HP-UX
systems, and are found in netinetlin.h.

FIONREAD Return Values
For HP-UX systems, the FIONREAD ioetl request on a datagram socket returns a
number that may be larger than the number of bytes actually readable. Previously,
HP-UX systems returned the maximum number of bytes that a subsequent reev would
be able to return.

8-2 Portability Issues

Listen's Backlog Parameter
HP-UX treats the Zisten(2) backlog value as the actual size of the queue for pending
connections. Some implementations set their queue size to 3/2 * B + 1, where B is the
backlog value.

Pending Connections
There is no guarantee which pending connection on a listening socket is returned by
accept. HP-UX systems return the newest pending connection. Applications should
be written such that they do not depend upon connections being returned by accept
on a first-come, first-served basis.

Porting Issues for Other Functions and Library Calls
Typically Used by IPC
The following is a list of differences in functions and library calls to watch out for
when you port your IPC applications between HP-UX and 4.3 BSD systems.

loctl and Fcntl Calls
4.3 BSD terminal ioctZ calls are incompatible with the HP-UX implementation. These
calls are typically used in virtual terminal applications. The HP-UX implementation
uses UNIX System V compatible calls.

Pty Location
Look for the pty masters in /devlptymlptyp? and for the pty slaves in /devlpty/ttyp? An
alternative location to check is /dev.

Utmp
The 4.3 BSD /etc/utrnp file format is incompatible with the HP-UX implementation.
The HP -UX implementation uses UNIX System V compatible calls. Refer to the
utrnp(4) entry in the HP-UX Reference Manual for details.

Portability Issues 8-3

Library Equivalencies
Certain commonly used library calls in 4.3 BSD are not present in HP-UX systems,
but they do have HP-UX equivalents. To make code porting easier, use the following
equivalent library calls. You can do this by putting them in an include file, or by
adding the define statements (listed in the following table) to your code. .

Table B-1. Definition of Library Equivalents

4.2 BSD Library HP-UX Library

#define index(a,b) strchr(a,b)

#define rindex(a,b) strrchr(a,b)

#define bcmp(a,b,c) memcmp(a,b,c)

#define bcopy(a,b,c) memcpy(b,a,c)

#define bzero(a,b) memset(a,O,b)

#define getwd(a) getcwd(a,MAXP ATHLEN)

Note Include string.h before using strchr and strrchr. Include syslparam.h
before using getcwd.

8-4 Portability Issues

Signal Calls
Normal HP-UX signal calls are different from 4.3 BSD signals. See the sigvector(2)
entry in the HP-UX Reference Manual for information on signal implementation.
Note the following signal mapping.

Sprintf Return Value
For 4.3 BSD, sprintfreturns a pointer to a string. For HP-UX systems, sprintfreturns
a count of the number of characters in the buffer.

Portability Issues 8-5

Glossary

A

Address family: The address format used to interpret addresses specified in socket
operations. The internet address family (AF _ INET) is supported.

Address: An Interprocess Communication term that refers to the means of labeling
a socket so that it is distinguishable from other sockets, and routes to that socket are
able to be determined.

Advanced Research Projects Agency: A U.S. government research agency that
was instrumental in developing and using the original ARPA Services on the
ARPANET.

Alias: A term used to refer to alternate names for networks, hosts and protocols.
This is also an internetwork mailing term that refers an alternate name for a recipient
or list of recipients (a mailing list).

ARPA: See "Advanced Research Projects Agency."

ARP AlBerkeley Services: The set of services originally developed for use on the
ARPANET (Le., telnet(l)) or distributed with the Berkeley Software Distribution of
UNIX, version 4.2 (Le., rlogin(l)).

ARPANET: The Advanced Research Projects Agency Network.

Association: An Interprocess Communication connection (e.g., a socket) is defined
by an association. An association contains the (protocol, local address, local port,
remote address, remote port)-tuple. Associations must be unique; duplicate
associations on the same system may not exist.

Asynchronous Sockets: Sockets set up via ioctl with the FIOASYNC option to be
notified with a SIGIO signal whenever a change on the socket occurs. Primarily used
for sending and receiving data without blocking.

Glossary-1

B

Berkeley Software Distribution: A version of UNIX software released by the
University of California at Berkeley.

Binding: Establishing the address of a socket which allows other sockets to connect
to it or to send data to it.

BSD: See "Berkeley Software Distribution."

c
Channel: A communication path created by establishing a connection between
sockets.

Client: A process that is requesting some service from another process.

Client host: The host on which a client process is running.

Communication domain: A set of properties that describes the characteristics of
processes communicating through sockets. Only the Internet domain is supported.

Connection: A communications path to send and receive data. A connection is
uniquely identified by the pair of sockets at either end of the connection. See also,
" Association."

D

Daemon: A software process that runs continuously and provides services on
request.

DARPA: See "Defense Advanced Research Projects Agency."

Datagram sockets: A socket that maintains record boundaries and treats data as
individual messages rather than a stream of bytes. Messages may be sent to and
received from many other datagram sockets. Datagram sockets do not support the
concept of a connection. Messages could be lost or duplicated and may not arrive in
the same sequence sent. Datagram sockets use the User Datagram Protocol.

Glossary-2

Defense Advanced Research Projects Agency: The military arm of the Advanced
Research Projects Agency. DARPA is instrumental in defining standards for ARPA
services.

Domain: A set of allowable names or values. See also, "Communication domain."

F

File Transfer Protocol: The file transfer protocol that is traditionally used in
ARPA networks. The ftp command uses the FrP protocol.

Fonvarding: The process of forwarding a mail message to another destination (Le.,
another user name, host name or network).

4.2 BSD: See "Berkeley Software Distribution."

Frame: See "Packet."

FTP: See "File Transfer Protocol."

G

Gateway: A node that connects two or more networks together and routes packets
between those networks.

H

Host: A node that has primary functions other than switching data for the network.

International Standards Organization: Called "ISO," this organization created
a network model that identifies the seven commonly-used protocol levels for
networking.

Glossary-3

Internet: All ARPA networks that are registered with the Network Information
Center.

Internet address: A four-byte quantity that is distinct from a link-level address and
is the network address of a computer node. This address identifies both which
network is on the Internet and which host is on the network.

Internetwork: A term used to mean "among different physical networks."

Interprocess Communication: A facility that allows a process to communicate
with another process on the same host or on a remote host. IPC provides system calls
that access sockets. This facility is distinct from Bell System V IPC. See also,
"Sockets."

IPC: See "Interprocess Communication."

ISO: See "International Standards Organization."

L

Link-level address: A six-byte quantity that is distinct from the internet address
and is the unique address of the LAN interface card on each LAN.

M

Message: In IPC, the data sent in one UDP packet. When using sendmail a
message is the information unit transferred by mail.

N

N ode: A computer system that is attached to or is part of a computer network.

N ode manager: The person who is responsible for managing the networking
services on a specific node or host.

Glossary-4

o
Official host name: The first host name in each entry in the fete/hosts file. The
official host name cannot be an alias.

p

Packet: A data unit that is transmitted between processes. Also called a "frame."

Peer: An Interprocess Communication socket at the other end of a connection.

Port: An address within a host that is used to differentiate between multiple sockets
with the same internet address.

Protocol: A set of conventions for transferring information between computers on
a network (e.g., UDP or TCP).

R

Remote host: A computer that is accessible through the network or via a gateway.

Reserved port: A port number between 1 and 1023 that is only for super-user use.

s
Server: A process or host that performs operations that local or remote client hosts
request.

Service: A facility that uses Interprocess Communication to perform remote
functions for a user (e.g., rlogin(l) or telnet(l)).

Socket: Addressable entities that are at either end of an Interprocess
Communication connection. A socket is identified by a socket descriptor. A program
can write data to and read data from a socket, just as it writes and reads data to and
from files.

Glossary-5

Socket address: The internet address, port address and address family of a socket.
The port and internet address combination allows the network to locate a socket.

Socket descriptor: An HP-UX file descriptor accessed for reading, writing or any
standard file system calls after an Interprocess Communication connection is
established. All Interprocess Communication system calls use socket descriptors as
arguments.

Stream socket: A socket that, when connected to another stream socket, passes
data as a byte stream (with no record boundaries). Data is guaranteed to arrive in the
sequence sent. Stream sockets use the TCP protocol.

T

TCP: See "Transmission Control Protocol."

Telnet: A virtual terminal protocol traditionally used on ARPA networks that
allows a user to log into a remote host. The telnet command uses the Telnet protocol.

Transmission Control Protocol: A protocol that provides the underlying
communication support for AF _INET stream sockets. TCP is used to implement
reliable, sequenced, flow-controlled two-way communication based on a stream of
bytes similar to pipes.

u
UDP: See "User Datagram Protocol."

UNIX Domain Address: A character string containing the UNIX pathname to a
UNIX Domain socket.

UNIX Domain Protocol: A protocol providing fast communication between
processes executing on the same node and using the AF _ UNIX socket address family.

User Datagram Protocol: A protocol that provides the underlying communication
support for datagram sockets. UDP is an unreliable protocol. A process receiving
messages on a datagram socket could find that messages are duplicated,
out-of-sequence or missing. Messages retain their record boundaries and are sent as

Glossary-6

individually addressed packets. There is no concept of a connection between the
communicating sockets.

v
Virtual Terminal Protocol: A protocol that provides terminal access to interactive
services on remote hosts (e.g., telnet(l)).

Glossary-7

Index

A

accept
domain stream sockets, 6-2,

&-6,6-11
Internet stream sockets, 2-2,

2-11,2-17
nonblocking I/O, 3-17
pending connections, B-3
summary table, 8-10

Address conversion call, 2-22
Addressing domain, 2-4, 6-3,

7-3
AF_INET, 1-6-1-7,2-1,4-4
AF _ UNIX, 1-6-1-7, 6-1, 7-1
Asynchronous

B

examples, 3-15, A-1
sockets, 5-4

bcmp, B-4
bcopy, B-4
)ind

datagram sockets, 4-2, 4-9
domain datagram sockets, 7-2
domain stream sockets, 6-2 .
example usage, 3-6
Internet stream sockets, 2-2
summary table, 8-10

3inding, 1-2
3locking mode, 5-4
~roadcast address, 5-5
»zero, B-4

c
Client-sexver model, 1-3
close

domain stream sockets, 6-14
Internet datagram sockets, 4-15
Internet stream sockets, 2-21
summary table, 8-12
with shutdown, B-2
with SO_LINGER option, 3-18

connect
domain stream· sockets, 6-10
Internet stream sockets, 2-15
SO_REUSEADDR,3-6
specifying default socket address, 5-2
summary table, 8-10

D

datagram sockets, 1-8, 4-1, 4-16, 5-2
8-10 '

E
endhostent, 8-14
endnetent, 8-14
endprotoent, 8-13
endservent, 8-13

F

fcntl,3-17, 5-4, 8-12
FIOASYNC, 8-12
FIONREAD, 8-12, B-2

Index-1

FIOSNBIO, 3-17, 5-5

G

getcwd, B-4
gethostbyaddr, 2-13, 8-14
gethostbyent, 8-14
gethostbyname, 4-5,8-14
gethostent, 2-5, 4-5
getnetbyadd~8-14
getnetbyent, 8-14
getnetbyname, 8-14
getpeerbyname, 8-11
getprotobyent, 8-13
getprotobyname, 2-8, 4-8,

8-13
getprotobynumber,8-13
getservbyent, 8-13
getservbyname, 2-7, 4-6,

8-13
getservbyport, 8-13
getservent,4-6
getsockbyname, 8-10
getsockname, 2-22
getsockopt, 3-3, 8-11
getwd,B-4

H
htonl, 8-13, B-2
htons, 8-13, B-2

index, B-4
inet, 4-4
inet_addr, 8-13
inet _lnaof, 8-13
inet_makeaddr, 8-13
inet_ netof, 8-13
inet _network, 8-13
inetd,8-5

Index-2

Internet
address family, 1-6-1-7
sockets, 2-1

Internet address, 1-6
Internet daemon, 8-5 .
Interprocess cOmmunication

receiving messages, 7-7
accepting a connection, 2-12, 6-7
adding server process to the Internet

daemon,8-S
address conversion, B-2
address conversion call, 2-22
address family, 1-6, 2-4, 4-4
addressing, 1-6
addressing domain, 2-4, 4-4, 6-3, 7-3
AF_INET,2-4
association, 1-7
binding, 1-2, 1-7
binding a socket address to server

process's, 2-9, 6-5
binding a socket to UNIX domain

datagram sockets, 7-5
binding socket addresses to datagram

sockets, 4-9
BSD !PC, B-1, B-3-B-S
BSD !PC connections, 1-1, 2-1, 6-1
BSD !PC system calls, 8-10
BSD !PC using datagram sockets, 4-1
channel, 1-6
client, 1-3
client-server model, 1-3
closing a socket, 2-21, 4-15, 6-14, 7-9
communication domain, 1-6
creating a socket, 2-8, 2-14,6-4, 6-9,
creating sockets, 4-7
datagram sockets, 1-8, 4-1
declaring socket address variables, 2-3

4-4,6-3,7-3
example using stream sockets, 2-22
examples using datagram sockets, 4-H
FIONREAD, B-2
FIOSBNIO, 3-17
Flag Options, 2-20, 4-15, 6-14
getting and setting socket options, 3-3
getting the port address for the desirej

· selVer, 4-6
getting the remote host's

Internet address, 2-5
getting the remote host's

network address, 4-5
graceful close, 2-23
I/O multiplexing with select,

5-3
INADDR_ANY,4-7
incoming connection

requests, 8-10
Internet address, 1-6, 2-3,

4-1
ioctl, 3-22, B-2-B-3
library calls, 8-13, B-I-B-2,

B-4
library equivalencies, B-4
library routines, 1-5
LINGER options, 2-21
listen's backlog parameter,

B-3
message, 1-6
MSG OOB, 2-19,3-21
MSG-PEEK, 2-19, 4-15,
5-2-

nonblocking I/O, 2-16, 5-4
nondestructive read, 2-20
other system calls, 8-12
out of band data, 2-20
out-of-band data, 3-20
packet, 1-6
pathname, 6-3, 7-3
peer, 1-6
pending connections, B-3
port, 1-7
port address, 2-3, '4-3
portability issues, B-1
preparing address variables,

2-3,4-3,6-3,7-3
preview an incoming

message, 4-15
preview incoming data, 2-20
programming hints, 8-2
protocols, 1-8
pty location, B-3

receiving Data, 2-19, 6-13
receiving messa:ges, 4-13
requesting a connection, 2-15, 6-10
reselVed port addresses, 8-3
sending an.d receiving. data, 2-17, 6-11
sending and receiving messages, 4-11,

7-6
sending and receiving out-of-band data,

3-20
sending data, 2-18,6-12
sending messages, 4-11
selVer, 1-3
setting the selVer up to wait for

connection, 2-11, 6-6
signal calls, B-5
SIOCA1MARK, 3-22
SO DEBUG, 3-2
SO-DONTROUTE, 3-1,3-7
SO-KEEPALIVE, 3-1, 3-7
SO-LINGER, 3-9-3-10, 3-18
SO-RCVBUF,3-8
SO-REUSEADDR, 3-1, 3-6
SO-SNDBUF, 3-1,3-8
sockadd~2-4,4-4,6-3
sockaddr in,2-4,4-4,6-3
sockaddr-un, 7-3
socket address, 1-7,2-3,6-3
socket descriptor, 1-2, 1-8,2-8, 6-4
specifying a default socket address, 5-1
sprintf return value, B-5
stream sockets, 1-8
summary tables for system and library

calls, 8-10
TCP, 1-8
troubleshooting, 8-2
UDP,1-8
using a wildcard local address, 2-7, 4-7
using broadcast addresses, 5-5
using diagnostic utilities as

troubleshooting, 8-4
using read/write to make stream sockets

transparent, 3-19
using shutdown, 3-18
wildcard addressing, 2-3, 2-7, 4-7
writing the client process, 2-14,6-9

Index-3

writing the server and client
processes, 4-7

" writing the server process,
2-8,6-4

ioctl, 3-17, 5-4, 8-12
IPC connections, 1-1,2-1,

2-8,6-1,6-4

L
Library calls, B-1-B-2, B-4
LINGER, 2-21
listen

M

backlog parameter, B-3
domain stream sockets, 6-2,

6-6
Internet stream sockets,

2-2,2-11
summary table, 8-10

memcmp, B-4
memcpy, B-4
memset, B-4
MSG" OOB, 2-19
MSG=PEEK, 2-19, 6-13

N

netstat, 8-4
Network event logging, 8-4
Network tracing, 8-4
nftdaemon, 8-3
Nonblocking I/O, 2-16,

3-17,5-4
ntohl,8-13
ntohs, 2-22, 8-:13
ntonI, B-2
ntons, B-2

Index-4

o
o NDELAY, 3-17, 5-4,
S:12
o NONBLOCK, 3-17, 5~, 8-12
Out-of-band data, 3-20

p

Packet, 1~
Pathname, 6-5, 7-5
Peer, 1~
perror,8-2
ping, 8-4
Port, 1-7
Port address, 2-3, 2~, 2-9, 4-3, 4-9
pty, B-3

R
read, 5-4

domain stream sockets, 6-11
in nonblocking I/O, 3-17
Internet datagram sockets, 4-14
Internet stream sockets, 2-17
nonblocking I/O, 5-2
summary table, 8-12
using file descriptors, 1-8

recv
FIONREAD return values, B-2
Internet data~am sockets, 4-14
nonblocking I/O, 3-17,5-4
specifying default socket address, 5-1
summary table, 8-10, 8-12

recvfrom
domain datagram sockets, 7-2
domain stream sockets, 6-2, 6-11
Internet datagram sockets, 4-2, 4-9, 4-
Internet stream sockets, 2-2, 2-17
nonblocking 1/0,3-17,5-4
specifying default socket address, 5-1
summary table, 8-10, 8-12

rindex, B-4
rlbdaemon, 8-3

s

select, 2-11, 6-6, 8-12
send, 5-4

domain stream sockets, 6-2,
6-11

Internet datagram sockets,
4-11

Internet stream sockets,
2-2,2-17

nonblocking I/O, 3-17,5-1
summary table, 8-10

sendto
domain datagram sockets,

7-2, 7-6
Internet datagram sockets,

4-2,4-11
nonblocking 1/0,3-17,5-4
specifying default socket

address, 5-1
summary table,. 8-10

sethostent, 8-14
setnetent, 8-14
setprotoent, 8-13
setservent, 8-13
setsockopt, 3-3, 3-7, 8-11
shutdown, 2-22, 3-19, 8-10,

B-2 .
SIGCHLD, B-5
SIGCLD, B-5
SIGIO, 3-14, 5-4
signal, 3-20, B-5
sigvector, B-5
SO_DONTROUTE, 3-7
SO_KEEPALIVE, 3-7
SO_LINGER, 3-1, 3-9
SO _ RCVBUF, 3-8
SO_REUSEADDR, 3-7
SO_SNDBUF,3-8
socket, 2-2, 6-2

domain datagram sockets,
7-2

socket address, 4-3
socket descriptor, 1-2

Sockets, 1-2
sprintf, B-5
strchr, B-4
Stream sockets, 2-19, 6-13, 8-10
strrchr, B-4
Synchronous

see also: signals
see also: sockets

T

.TCP,1-8

u
UDP,1-8
UNIX Domain

address family, 1-6-1-7
datagram sockets, 7-1
stream sockets, 6-1

utmp, B-3

w
·Wildcard address, 2-22, 5-5

Internet datagram sockets, 4-3, 4-9
Internet stream sockets, 2-3, 2-7

write
domain stream sockets, 6-11
Internet datagram sockets, 4-8
Internet strea~ sockets, 2-17
nonblocking I/O, 3-17,5-4
specifying default socket address, 5-1
summary. table, 8-12

Index-S

Printing History

New editions are complete revisions of the manuaL Update packages, which are
issued between editions, contain additional and replacement pages to be merged into
the manual by the customer. The dates on the title page change only when a new
edition or a new update is published. No information is incorporated into a reprinting
unless it appears as a prior update; the edition does not change when an update is
incorporated.

Note that many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product changes.
Therefore, do not expect a one-to-one correspondence between product updates and
manual updates.

Edition 1

Edition 2

. February 1991

...... July 1992

.:.r.. PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA 07/92 English

Customer Order No. Manufacturing No.
98194-60531 98194-90031

Mfg. number is for HP internal use on

111

. 98194-90031

