SE 390: Series 300 HP-UX Internals

Introduction

Greeting & Introductions

Your Expectations

My Expectations
- This class must be SE-driven.
- This class must be praqtical.

- This class must keep evolving.

We are *very* interested in constructive criticism and suggestions.
As much as possible, put your comments in writing on the module
evaluations or the end-of-class evaluation.

Please work in pairs, and work on the same machine all week long.
- if you trash your disk, you need to fix it

- we will be doing detailed work, which goes
faster with two people

Overview of the Kernel - What's the Big Picture?
- What is it there for?

- What are the chief components?

SE 390: Series 300 HP-U'X-Internalé
Introduction

The "Big Picture" of the Kernel

- What is it there for?
- manage resources

- make life easier for the programmer

- What are the major components?
- process management
- memory management
- file system
- I/O‘system
- diskless nodes
- access to the systenm

~ fundamental kernel data structures and library routines

The $358 Onion

User Commands

Kernel

Dev. Drivers

Hardware

*Single—uéer AXE

HFP—UX — The Big Picture
_ _ System . user
memory Z{EX process process

AVAN
JAWA

O
OO0 =
O O

2393A

noooonooBoo
ool oononooon
Dpoonoonog

startup — starting Z&’s, enabl ing ()'s, mapping[]
shutdown — erasing Z&’s and C)’s; f]ushing[] to disk
I/0 - sending stuff between,[]and 78935, 2383

Memory Management — how we allocate and map

’

Process Management -— how we control() s
IPC - hou;()'s talk to each other
filesystem — how we use and map the 73835

SE 390: Series 300 HP-UX Internals
. Introduction

'Process Management
- Creation of processes.
- Deletion of processes.
- Inter-process communication.

- CPU Scheduling.

SE 390: Series 300 HP-UX Internals
Introduction

Memory Management
- Allocating memory.
-~ Freeing memory, voluntarily or otherwise.
- voluntarily
- pager

- swapper

Physical vs. virtual memory.

- Sharing of memory among many competing processes.

SE 390: Series 300 HP-UX Internals
Introduction

File System
- The Vnode layer.
- Caching.
- The HFS/Berkeley/McKusick filesystem.
- Examples:
- open(2)

- write(2)

SE 390: Series 300 HP-UX Internals
Introduction | »

I/0 System

Block devices.

Character devices.

Buffering.

Outline of driver structure.

Flow of control in the I/O system.

SE 390: Series 300 HP-UX Internals

Introduction

Diskless Nodes
- "Look Ma, no disk!"

Diskless protocol.

Vnode layer in the filesystem.

Sharing: pids, file locking, swap space.

SE 390: Series 300 HP-UX Internals

Introduction

Access to the Kernel

- System calls.

- front ends in libc

change modes with TRAP

trap handler calls syscall()

actual system call code is called indirectly

- The assembly-level debugger, adb(l).

- Calls

to nlist(3).

= YOU ARE ON YOUR OWN

- call nlist(3) to get address of.kernel symbol
- open /dev/kmem and seek to address

- read.information

= YOU ARE ON YOUR OWN -~ KERNEL DATA STRUCTURES
CHANGE FROM RELEASE TO RELEASE!

SE 390: Series 300 HP-UX Internals '
Introduction
Fundamental Kernal Data Structures And Library Routines
[Note that this is not meant to be complete.]

- Core map ("cmap") - has an entry for each "normal" page of physical
~memory. It is used by the pageout daemon.

- Resource maps - each of these is a list of {address,size} pairs
that keeps track of some kernel resource.

- swapmap - used to keep track of free swap space.
- Kernelmap - keeps track of space for page tables
- proc table - there's an entry in this for each process.
- text table - has an entry for each shared-text program.
- file table - an entry for each bpen file.
- inode table - used for inode caching.
- mount table - has an entry for each mounted volume.
- swap device table - has an entry for each device that is supposed

to have swap space on it.

- sleep()/wakeup() - used to wait for something to become available.
If a process needs some resource (like a driver or chunk of memory),
it will request it and then sleep on the address of that resource.
When whoever is using that resource is done, it will do a wakeup()
on the address of the resource, causing all processes that were
waiting to wake up. One of them will get the resource, and the
others will go back to sleep. :

- rmlnlt()/rmfree()/rmalloc() - used to allocate thlngs from the
resource maps mentioned above.

- spl?() - used to change processor level. If the kernel needs
to fool with a sensitive data structure, it will do an splé6()
to block out interrupts, fool with it, and then set the priority
back down with splO() or splx(old priority).

- copyin()/copyout() - used to move things between user space and
kernel space.

- fuword () /suword () /fubyte () /subyte() - used to fool with a single
byte or word in user space.

SE 390: Series 300 HP-UX Internals
Introduction
Glossary Of Terms
pte - page table entry
zombie - process that has exited, but hasn't been wait(2)ed for yet

kluster - group of adjacent pages that are put out to swap space
together

cluster - group of hardware pages that are grouped together for
efficiency. On the 300 this isn't done since the hardware
page size is 4K.

click - on the 300, a page

"push a page" - kick it out to swap space

poip - "page out in progress"

SE 390: Series 300 HP-UX Internals
Module Evaluation

INTRODUCTION

On a scale of 1-16, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 -'it was too hérd):
3. Usefulness/applicability/relevance of material presenﬁed:

4. Speed of presentation (1 - too slow, 10 - too fast):

5.. Ho& good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

- SE' 390: Series 300 HP-UX Internals

System Startup

The Big Picture

- How do we get from a doing-nothing system to a system running HP-UX?

The Little Pictures

What is the correspondence between things being accomplished and
things being printed on the console's screen?

Configuring the virtual-memory subsystem.

Allocating and initializing kernel data structures.

Preparing for I/O.

Kicking off the first three processes.

System Startup

set up mem. map
allocate RAM

inventory hardware

y

set up process @

start clock

y

init. root device
set up fs caching

& configure swapping]
r— A pageout
limited CSP 2 daemon
l become swapper i_

roundrobin init(im)
schedul ing

SE 390: Series 300 HP-UX Internals

System Startup

iternal Actions vs.. External Signs
- "booting /hp-ux"

set up kernel page table [s200/locore.s: start()]
get information from bootrom: processor type, amount of RAM,...
initialize the run queues [sys/kern_synch.c: rginit()]
allocate memory for DOS coprocessor [sZOO/machdep c: startup()]
allocate memory for the buffer cache, core map, inode table,
file table, callout table, and other structures
clear out memory and decide if we have enough to continue
initialize 68881
call device driver link routines (array of pointers to them
is set up in /etc/conf/conf.c)
look for ttys, init. console [s200io/kernel.c: tty init()]

- "Console is ITE"
"ITE + O ports"
"680x0 processor"
"MC68881 coprocessor"

enable parity detection [s200/machdep.c: parity init()]
look for I/0 cards

- "xooox at select code yy" - for each card found
"real mem = xoo000XxX"
"mem reserved for dos = xoorxxx"
"using xxx¢t buffers containing yyyyyy bytes of memory"

twiddle data structures to reflect process 0 [sys/init main.c]
start clock [szoo/clocks s startrtclock()]

initialize root device [s200/machdep.c: rootinit ()]

initialize diskless

- "Local link is xooooooox"
"Server link is yyyyyyyy"
"Swap site is nn"
"Root device major is xx, minor is yyyy [root site is xx]"

set up for inode hashing [sys/ufs inode.c: ihinit()]
set up for block hashing [sys/lnlt maln c: bhlnlt()]
initialize buffer cache [sys/init main.c: binit()]

- "Swap device table: (start and size...)" \ these are present
".... (line for each entry)" "/ only if local swap

configure swap devices [conf/swapconf.c: swapconf ()]
mount root filesystem

start up CPU roundrobin scheduling

start up paging subsystem

start up limited CSP

- "avail mem = xo0000x"
"lockable mem = xoooooex"
<copyright & restricted rights legend>

fork init =
become the swapper

<aﬁy further (normal)'messagés_will‘bé from init or its children>

SE 390: Series 300 HP-UX Internals

System Startﬁp

Btarting Up The Virtual Memory System

Set up the kernel page table such that
the kernel can fool with it.

Reserve memory for the DOS coprocessor if
dos_mem byte was specified.

Initialize kernel memory map.
See what swap devices are available.
Fork process 2 to be the pageout daemon.

Enter swap scheduling loop.

SE 390: Series 300 HP-UX Internals
SYstém Startup

Hlocating And Initializing Kernel Data Structures
- Figure out how much RAM we have, what model we are, etc.

- Allocate space for the buffer cache, proc table,
inode table, file table, callout table, and various
other things.

- Initialize queues and tables to be empty.

- Construct process 0 by hand - we are running as if
this was a single-tasking machine, so we just put
values into data structures to reflect what we're
doing. "It is often easier to obtain forgiveness
than permission." :

- Mount the root file system and get root inode.

SE 390: Series 300 HP-UX Internals
System Startup

#reparing For I/0.
- Call device driver initialization routines.
- See what cards are installed.

- Iook for a console.

~SE 390: Series-300 HP-UX Internals

. System Startup

FtartingiThe First Processes

Build process 0 by hand; it will become the swapper.

Start roundrobin scheduling. This isn't really a process, but
sort of acts like one. What we actually do is arrange for a routine
to be called every <timeslice> cpu ticks.

Fork process 2 to become the pageout daemon.

Fork process 1 to become init. We actually do some stuff to set
this up as a user process so that when /etc/init is exec(2)ed,
it is a normal user process. It is somewhat special, however,
because the kernel sort of looks out for it in a few areas (such
as not letting someone send SIGKILL to it, panic()ing if it
exit(2)s, etc).

Start CSP if we are in a diskless cluster.

SE 390: Series 300 HP-UX Internals

Module Evaluation

SYSTEM STARTUP

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard):
3. Usefulness/applicability/relevance of matérial presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the materialA(slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series. 300 HP-UX Internals

Process Management

The Big Picture

- How does HP-UX share system resources among competing processes?

The Little Picture(s)
- Process creation/deletion.
- Fork - duplicate current process.
- Exec - replace current program with another.
- Work done on behalf of processes (system calls, interrupt handling). -
- Context switching.
- Important data structures.
- Signals & IPC.
- Process states.

- Tunable parameters.

SE 390: Series 300 HP-UX Inte;hals

Process Management -

Focess Creation/Deletion:

- Created by fork(2).

most things are exactly duplicated

things like pid, ppid, etc. are different

stdio buffers are duplicated

vfork(2) is a fast version - it does NOT copy the stack
and data - it trusts the child to do an exec

- Deleted by exit(2) (voluntary), or most signals (invbluntary).
- Currently-running program replaced by exec(2).
- things like file descriptors are preserved

- things like "when this signal comes in, call this
routine" are NOT preserved

SE 390: Series 300 HP-UX Internals

Process Manégement

fhat Happens When Fork(2) Is Called
- If not vfork, get *swap* space.
- Get a PID.
- Be sure there is a proc table entry and we can have it.

- If vfork and process is plocked, get lockable memory for u area
and page tables. ~

- Copy proc table entry, changing fields where appropriate.
- Get page tables for the child.

- Copy u area, changing where appropfiate.

- Clear interval timers in the child.

- If vfork, give virtual memory to child.

- Attach to text segment.

- If fork, copy virtual memory.

- Put child on run queue.

- If vfork, wait for child to exit(2) or exec(2).

SE 390: Series 300 HP-UX Internals

Process Management

Jhat Happens When Exec(2) Is Called .

Check modes: execute bits, set[ug]id bits, etc.

Read in first few bytes to see what kind of file it is.

If it is non-shared, lump the data and text together as data.
If it is a "#!" script, loop to get the real executable file.

Be sure the file is as big as the header claims.

Be sure it's a normal S300 object file or an old S200 one.

Copy arguments to swap space (this is what the kernel parameter
argdevnblks is all about).

Be sure the file is big enough to have text, data, etc.

If it's the old object format, pad it to 1/2 MB boundaries and
move it up to start at 8K.

Be sure text isn't busy: ptrace(2), open for write, etc.
Be sure it's not too big - we can't exec a 16 GB file.
Get *swap* space.

Release any locked memory.

If we are a "vfork child", give memory back to the parent;
otherwise, release memory. : . '

Get virtual memory (actually just initialize page tables to
the appropriate thing - usually zero-fill-on-demand).

Read data (and‘text if non-shared) in. -
Attach to text, reading it in if necessary.
Set uid/gid.

Get proper sysent table (there's a "compatibility" set of system
calls for running old S200 executable files).

Copy arguments from swap space to stack.

Set registers (mostly clear them, but one is used to tell if we
have a floating point card and one is used to indicate processor

type) .
Reset caught signals - there's nothing to catch them anymore!

Close close-on-exec files.

SE 390: Series 300 HP-UX Internals

Process Managémént

iork Done by the System For the Processes

- System calls = similar to library functions, but differ in
important ways:

- run on the kernel stack
- have access to system data structures

- provide protected way of getting at shared resources

- Interrupt handling
- transparent to user

- run in supervisor mode

- Signal sending and receiving
- crude form of IPC
- can be controlled somewhat with sig*(2)

- makes use of fields in proc table entry

ontext

SE 390: Series 300 HP-UX Internals

' Process Management

Switching - Priorities

- p_cpu is decayed once per second, and all process priorities are
recalculated:

- p_Ccpu = p cpu*(2*load _ave)/(2*load ave + 1) + nice value
- p_usrpri is computed every four clock ticks for the current process

- p_usrpri = PUSER + p_cpu/4 + 2*nice value

If process has been rtprio()'ed, forget the 2nd part....

- When some process becomes more important than the current one,
a context switch is requested. The switch won't actually happen
until we are ready to go back into user mode.

ontext

' SE 390: Series 300 HP-UX Internals

Process Management

Switching - Mechanics

- Can only happen when

- process blocks by calling sleep() (in the kernel);

- process is about to return to user mode from kernel mode;
this could be a return from an interrupt or exception handler
or a system call. This case only happens when someone else
becomes more important to run and the system has noticed.

Save current context into u area, which is mapped into the top of
the process' address space.

Restore other process' context from its u area.

Resume execution.

Context Switching

Process A C D

B
Time I l | |
sys

. call

Y '
no

interrupt

“'lll"»%fs
ick

I :Loc. ~

T~ resume

SE 390: Series 300 HP-UX Internals

Process Management

/he Context of a Process ‘
- Stack, text, and.data areas.

- = Registers, stack pointer, program counter, etc.

Segment and page tables.

The u area - defined in /usr/include/sys/user.h.

- available when process is in memory - won't be paged out,
but can be swapped with the process

- has stuff like arguments to system calls, kernel stack, etc.

The proc table entry - defined in /usr/include/sys/proc.h

- stuff that needs tO‘always be available - priority, PID,
signal masks, etc.

SE 390: Series 300 HP-UX Internals

Process Manaéément

Signal Handling
- Signal sending
- crude form of IPC
- accomplished with kill(2)

- SIGUSR[12] are available for cooperating processes

- Signal receiving or "catching"
- can be controlled somewhat with sig*(2)

- can specify a procedure to call when a given
signal comes in

- can specify an alternate signal stack

- if a non-default handler is specified, it will be called
in such a way that it appears to be a normal procedure call

- SIGKILL (as in "kill -9") can NOT be caught or ignored

- special case for init(im) - kill(2) will refuse
to send SIGKILL to PID 1! |

SE 390: Series 300 HP-UX Internals

Process Management

Signal Implementation
- Signal sending
- set a bit in the proc table entry of the receiving process

- mark receiving process as runnable

- Signal receiving

- check to see if we have signal(s) pending whenever we're
about to return to user mode from kernel mode and whenever
we block in the kernel (by calling sleep()).

- if we do, handle them or core dump or exit or whatever....
- if we were in the middle of a system call, we may restart

it or we may return an error - depends on what user asked
for.

Process

SE 390: Seriés 300 HP-UX Internals

Process Management

States

- Running - we are the currently executing process.

Runnable - we are ready to run, and are waiting for the processor.

- in a run queue based on our priority

Sleeping - we are waiting for a resource.
- in a sleep queue

- Zombie - we've exited, but parent hasn't done a wait(2) on us yet.
All that's left is the proc table entry.

Pﬁocess'States

Runnable

I

—> | Sleeping

Zunable

SE 390: Series 300 HP-UX Internals

Process Management

Parameters

- érgdevnblk - liﬁits number of exec()s that can happen concurrently
- each exec takes about 12K of swap space for arguments

- maxuprc - number of processes a single user (UID) can have

- setting it high allows a single user to take lots of the
system's resources

setting it low can cause users to get angry

nproc - maximum number of processes on the system at any given time

- this is used to size a static array, the proc table

timeslice - length of timeslice for round-robin CPU scheduling
- normally 5 clock ticks, which is 100ms

- setting it too low makes us spend more of our
time switching, less of it working

- setting it too high means interactive response is bad

Physical Memory Utilization

highest address —Jpm

dynomic dota arec grows by calis
to brk(2), sbrk(2) or malioc(3)

oddress 0 —Pp=

System Overhead

Dynomic Data

Static Data

Code

size limited by maxssiz

-

daota oarec limited by moxdsiz
> or by the lowest aliocated
shared memory segment

<

jcode size limited by maxtsiz

sshored memory segments con be ottoched at
oddresses ronging from current top of data
(returned by sbrk(0)) to shmmoxaddr

Figure 2-10. User Process Logical Address Space

shmmaxaddr - highest oddress to
ottoch @ shared memory segments

The maximum amount of physical memory you can install on your Series 300 computer
is 712 Megabytes for Models 310 and 320. 4 Mbytes for the Model 318. 16 Mbytes for the
Model 319. 8 Mbytes for the Model 330. and 32 Mbytes for Model 350. The minimum
amount of RAM for a non-networked single-user Series 300 HP-UX system is 2 Mbytes.
The minimum amount of RAM for a Series 300 acting as the root server for an HP-UX
cluster is 3 Mbytes. As more users are added on a multi-user system. more memory may
be required for adequate performance. The computer's performance will also depend on
the applications you run and on the peripheral devices attached to the system.

System Management Concepts

61

SE 390: Series 300 HP-UX Internals
Module Evaluation

PROCESS MANAGEMENT

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard’:
3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast)i

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series 300 HP-UX Internals

Memory Management

The Big Picture

- How does HP-UX distribute and control physical and virtual memory?

The Little Picture(s)

Physical <-=--> Virtual memory.

Paging

Swapping

Important data structures.

Tunable parameters.

SE 390: Series 300 HP-UX Internals

virtual Memory
Why?

Memory Management

- allow all programs to think they are running by themselves

- allow for (fairly) efficient stretching of memory

How?

- Virtual

- Pageout

address translation

32 bit address

10 bits tell which segment table entry

10 more tell which page table entry (pte)

12 bits for offset into 4k page

pte has 20 bit physical address (of 4k page) and
has 12 bits left over for protection information,

flags, etc.

daemon kicks out pages if we're running short and

they aren't being referenced often enough.

- A process always has enough swap space to hold whatever it
is d01ng, it may or may not have enough physical pages for

everythlng

Virtual

32 bit virtual

RAddress Translation

address

190 bits

18 bits

12 bits

segment table

page | table

— 20 bite | 12 bite

4kb page

offset

into page

SE 390: Series 300 HP-UX Internals

 Memory Management

Zhe Paging Game

- A (somewhat) graceful way of stretching the amount of
available memory.

Inmplemented with a clock algorithm:
- "hand" goes around at a calculated rate, marking pages

- if a marked page is referenced, a "soft" page fault
occurs and the mark is erased

Speed of hand is calculated to keep overhead <= 10% of CPU time.

Pageout daemon is process 2; doesn't run at all if more than
"lotsfree" memory available.

SE 390: Series 300 HP-UX Internals
 Memory Management
#rocess 2: The Pageout Daemoﬁ
loop:

free pages that have been written out

sleep until somebody needs us and wakes us up

while (we haven't scanned too many pages) and (free mem < lotsfree) {
grab coremap entry for page

if it's free, locked, or a system page
goto skip
if reference bit is set
clear it
take page if process has too many
else {
if process isn't using many pages
goto skip
if page is dirty {

if we're pushing pages too fast
goto skip

if process is exiting or being swapped
goto skip .

free pages that have been written out

if we're out of swap headers
goto top :

lock page

adjust ptes, poip counts, etc.
"kluster" adjacent pages together
write page(s) out

goto skip
}

decrement count of pages process has in memory
free the page

}

<kip: check to make sure wheels aren't spinning; if they are,
wait until next clock tick

}
goto loop

Page Replacement

SE 390: Series 300 HP-UX Internals

Memory Management

f#hen To Do What

Available Memory

min (256K, 25% of user memory)

lotsfree
pageout daemon runs below here
min (200K, 12.5% of user memory)
desfree .
swapper will run below here
min (64K, desfree/2)
minfree

swapper will force active processes
out below here

e — e e ———— ey
s 1

SE 390: Series 300 HP-UX Internals .

~ Memory Management

Bwapping
- A cumbersome way of stretching the amount of available memory.
- Can consume lots of the system's resources.
- Kick out whole process at a time, not just part of it.

- Space is allocated in chunks of at least dmmin, but <= dmmax.

Only happens when we are really worried about the amount of
memory available.

SE 390: Series 300 HP-UX Internals

Memory Mahagement_
- Process 0: The Swapper

loop:
if (want kernelmap) or ((>= 2 runnable procs) and (very short of RAM))

goto hardswap
walk through proc table, switching on p_stat {

case runnable but swapped out:
if this guy is the highest priority we've seen so far

remember him

case sleeping or stopped:
if this guy is dead in the water
kick him out
} .

if nobody wants in
sleep until we're needed

if it's not critical to bring someone in
wait awhile
goto loop

irdswap:
‘ walk through proc table {(

if process isn't swappable or is a zombie
skip it

if process is currently ‘being swapped out or has shm locked
skip it

if (proc. is stopped) or (has slept ‘awhile at int'ible pri.)
if it has slept longer than anyone we've seen
remember it
else if (don't have sleeper yet) and (it's runnable or asleep)
see how it is
if it's one of the biggest we've seen
remember it

}

if we didn't find a long sleeper
pick "oldest" job (based on nice value and time since swapin)

if (found a sleeper) or (desperate and found *someone* to swap out) or
(someone needs in and someone else has been in for awhile) {
if we're desperate .
fake like we're still short on memory
try to swap this guy out (will usually succeed)
goto loop

}

wait awhile
goto loop

SE‘396: Series 300 HP-UX Internals

‘Memory Management

Important Data Structures

- Core map - used for paging. There's an entry in it for each page
of non-kernel memory.

- Swap map - used for mapping the swap space. Allocated in chunks
of dmmin <= size <= dmmax.

- Segment table - one for each process. Each table has 1024 entries,'
each of which points at a page table.

- Page table - 1024 entries, each of which points to a 4kb page.

Tunable

SE 390 Series 300 HP-UX Internals

Memory Management

Parameters

dos_mem byte - allocates memory for the DOS Coprocessor's use

maxdsiz - maximum size of the data segment for an executing process
maxssiz - maximum size of the stack segment for an executing process
maxtsiz - maximum size of the text segment for an executing process

minswapchunks - minimum amount of swap for a diskless node. It is
always allocated to the node.

maxswapchunks - maximum amount of swap space a node is allowed to
allocate.

unlockable mem - amount of RAM that can not be locked
dmmin - minimum size of chunk that can be allocated from swap area
dmmax - maximum size of chunk that can be allocated from swap area

dmtext - maximum amount of swap space that can be allocated for
text (code) in a single request

dmshm - maximum amount of swap space that can be allocated for
System V shared memory usage in a single request

SE 390: Series 300 HP-UX Internals .

Module Evaluation :

MEMORY MANAGEMENT

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard):
3. Usefulness/applicabilify/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series 300 HP-UX Internals

System Shutdown

The Big Picture

- How do we (gracefully) go from a running system to a halted one?

The Little Pictures

- What is the correspondence between things being accomplished and
things being printed on the console's screen? '

- Updating the file system.

Halting, gracefully or ungracefully.

Interpreting panic dumps.

SE 390: Series 300 HP-UX Internals

System'Shutdown

Internal Actions vs. External Signs

“"Shutdown at <time>"

mask signals (SIGINT, SIGQUIT, SIGHUP)

- "System going down ..."
"System shutdown time has arrived."

idle init process by sending it a signal
update file system

- "Syncing disks..."
close file systems
- " done"
mask interrupts
[dump stack and uts info]
[symbolic traceback if >= 6.0]

- "halted"

. SE 390: Series 300 HP-UX Internals .

System Shutdown

5p§ating the_File System

- Write back modified superblock and cylinder group
summary information.

- Write out inodes.

- Write out delayed-write blocks in the buffer cache.

SE 390: Series 300 HP-UX Internals

System Shutdown

Aalting the System
- Unmount‘all file systems after updating them.
- Print kernel stack to console if we're panicking.
- If we're panicking and running 6.0 or later, do symbolic traceback.

- If we're rebooting, copy boot code and jump to it.

Loop on a "stop" instruction, waiting for something to happen.

SE 390: Series 300 HP-UX Internals

System Shutdown

Interpreting Panic Dumps

First column consists of stack addresses.

Numbers in the other columns that are in the first one or
sandwiched by numbers in the first one are probably frame pointers.

Find first appropriate address (frame pointer).
Trace linked list of frame pointers.
Numbers just to the right of the frame pointers are return addresses.

Feed return addresses to adb(l) to see who called who.

SE 390: Series 300 HP-UX Internals

System Shutdown

(Hopefully un)Common Kinds éf Panics

- Parity error - sometimes this can be helped (concealed :-)) by
changing the kernel parameter parity option.

- Freeing free {inode,frag} - usually caused by mounting a corrupt
disk. Pay attention when the system tells you to fsck!

- {file,callout,text,...}: table is full - some kernel table is
full. These can often be fixed by adjusting a kernel parameter.

- Bus error - often indicates a hardware problem. If it happens to
a user, he is sent a signal. It should never happen in the kernel,
and if it does the system will panic. It could also come from a
kernel bug, but most of the ones we've seen have been due to
hardware problems.

Reading Series 300 Panic Dumps

When in the course of human events an HP-UX system can't figure out what's
'01ng on, it throws up its hands and decides to reboot and try again. When
his happens, it is known as a "panic", and the system tries to be helpful
by printing out the contents of the kernel stack as 1t dies. Here is part
of one:

97bdaa: 00051c90 000ffe0l f£fe79405 ££fe79401 00000000 00979018 000ec7fa 00Oec7fa
97bdca: 0006889a 00000000 0000e000 0006f66c 0097be26 00015314 000ec7fa 00000184
97bdea: 00000000 0000e000 00000000 00000000 03000000 00000000 00000000 00000000

The first column consists of stack addresses. The stack grows down in memory,
so the top line is the stuff that has been put on the stack most recently. The
trace goes from left to right, so the lowest address (most recently pushed) is
at the top left; the highest is at the bottom right.

The last eight columns are the actual contents of the stack. There are several

kinds of things on it:

arguments to functions

return addresses

frame p01nters

local varlables for functions

saved copies of reglsters that will be trashed in the called function
exceptlon information (stuff put there in case of divide by 0, etc)
junk

It would be nice if the last item didn't have to be there, but it does. This
is because not all code uses the conventions established by the HP-UX C
ompiler. This will be dealt with a bit later. ‘

The second item in the list above is a very important one - it is the key to
our ability to trace back through the dump. When a procedure is called, it
pushes the frame p01nter (reglster a6 on the 680x0) onto the stack and then
copies the stack pointer into the frame pointer. It then subtracts from the
stack pointer (remember that the stack grows down) to make room for local
variables. The fact that the old frame pointer is pushed each time a
procedure is called is what enables us to "walk" or "unwind" the stack.

Since the frame pointers are stack addresses, the basic idea is to look
through columns 2-9 for a number that either appears in column 1 or is
sandwiched by two numbers in column 1. An important thing to remember is that
the addresses may be misaligned by two bytes. An example may help here:

98c9da: 00234567 0098c9fa 00034562
98co9fa:

The "0098c9fa" was properly aligned, but if the line had read
98c9da: 06234567 8%ab0098 c9£fa0003

that would have been OK too. - Once the first address has been found, others
can be found by treating each one as a pointer; i.e., the frame pointers form
a linked list.

Surrounding each frame pointer is some interesting information. It is often
>ferred to as an "activation record". The first part of the record will be
rguments for the called procedure (keep in mind that these are treated as

local variables by the called procedure and thus may have been modified by

it). Next, a return address for the calllng procedure. Third, the saved
frame pointer. Next, space for local variables in the called procedure.

Last, space for reglsters that the called routlne wants to use.

Consider the following example.

'The lines of the dump have been split apart

and directional lines have been drawn to show the linked list structure.

init died
sleep

panic:
anic:

B7beda: 0007ff24

97be6a: 00000094

00000001

0l24a6aa

0000800a

00000000

0124a6aa

012§a6aa

‘0097be76

v

/

v
0097be8a
v

/

v
0097beb2
v

97be8a:

0001450a

0l24a6aa

\

97beaa: 0097bec2

00024186

\

v
0097beca
v

/

v
0097b£02
v

97beca:

000099f4

/
00000000

/
0009ce08

00016cc8

000££fcol

00010062

0125£280

0008ce08

££cb0405

/
0l24a6aa

0000000a

ffff7dfc

ffcb0401

000107ca

00000080

0000000a

0125£280

00000001

\

97beeca: ffff7dfc

0125babc

0000a830

00080221

00000003

00000000

\

v
0097bf4a
v

/

I
97bf0a: | 00000080
|

l
97bf2a:|0001dd7c
|

0097bf52

00989fe0

0007f8fc

00000003

ffff7dfc

0125babc

0125babc

00000003

00000002

0000000b

/
00000001

0000003c

0l124a6aa

01242000

0008022b

01242000

0000003c

0000ac8c

0097bf46

00000080

\---\ /

97bf4da:

97bféa:

97bf8a:

v A
0097bf66

00004904

00004ae4

00000000

0007febc

0097bfaa

00000004

ffff7dfc

00879018

00000000

-\

v
0097bf76
v

/

v
0097bf9e
v

0000ebdc

00000031

\

fEFfffa28 000lalb4 00000000 £E££7£98

The buck stops here - this address isn't

97bfaa:
97bfca:
97bfea:

00000005 00000001 00000001 00000020

00000031 00000040 00012016 0001al00

00000007
close to
000£f£fc0O1
ffcab004

££££7e00 £EE£7d£8 00000000 0001lacc 0080000f

\

v

00000040

/
ffcab004

ff££7e00 00000458 0097bfaa

AAAAAAANA

what's in the left column.

ffcb0405 ££fcb0401 00000700

ff£fffa28 000lalb4 00000000

fcbl

It is important to remember that much of this is dependent on routines using -

the normal calllng convention.

There will be exceptions to this.

If someone

cites a routine in assembly language and doesn't bother to save the frame

ointer, this will mess things up a bit.

The frame pointers will be good, but

one of the activation records will have a return address that doesn't maKe too-

- much sense, because there is not a matching frame polnter.

The same thing

will happen if an exception (such as a bus error) is encountered in kernel

mode.

‘but they don't necessarily mean the end of the hunt.

Note that either of these things can cause small glltches in the trace,v

A third oddity is introduced when a routine is called indirectly. Probably
the most common example of this is a kernel routine named syscall(); it calls
the actual code for a given system call by jumping indirectly. 1Indirect calls
don't automatically end the trace, but the one in syscall() often does. The
‘eason is that the stack that is dumped out is the *kernel* stack - we can't
ilk back into user land on the kernel stack. One thing that an indirect call
will always do is make things a bit less clear later on when we are trylng to
figure out who called whom.

Once the stack has been unwound, how do we find out what the numbers mean? The
easiest way is probably to use the assembly level debugger, adb(l). If adb(1l)
is run on the kernel that panicked (or one that is the same version and has
been configured IDENTICALLY), it will translate absolute addresses into
symbolic ones. By giving each address to adb(l) and doing a bit of
interpretation, a symbolic traceback can be constructed. It will usually have
things like boot() and panic() at the top and things like read() or setuid()

at the bottom. The important stuff will be in the middle.

To start, use a command something like this:
- $ adb /hp-ux

Once adb(l) has started up, you can get it to do things like tie absolute
addresses to known symbols or disassemble parts of the code. The fundamental
command we will use will be of this form:

<address>?<n>i as in 32cea?201i

The address is typically an absolute hexadecimal number, the question mark
says to print out what that address is, <n> is the number of times to do it,
and "i" tells it to interpret the stuff as instructions. It can safely be
aid that adb(l) is not one of the friendlier HP-UX utilities. For
astance: there is no prompt, and the commands (as seen above) are a bit
cryptic. ‘Note that to exit you have two choices: "$g" or the old standby,
CTRL-d. And now back to our story....

Since we know that the return address is just to the right in the printout
(was pushed just before the frame pointer), we can take this number and feed
it to adb(1l) to find out what routine made the call. In the 2nd example, the
return address was 00034562. To find out what routine that is in, we might
use this: '

3456221
To see a bit of context, we would do something like this:
345502201

There is a catch with this. This is because instructions will sometimes be
aligned on even byte (word) boundaries, not on 4 byte (longword) boundaries.
Thus, if you tell adb(1l) to start disassembling at an address that is halfway
through an instruction, you will get a bogus list of instructions. One way of
detecting this is to look and see if there is some kind of call instruction in
the disassembly listing - if there isn't, chances are *excellent* that the
disassembly is misaligned.

For an example, we'll look at the addresses in the stack tracing example
above. Just to the right of each frame pointer is the return address for that

11l. By feeding these to adb(l), we can figure out who called whom. What
Dollows is a logfile of a session with adb(l), with three things done to :it:
1) blank lines have been inserted for clarity; 2) most of the tries that
yielded misaligned results have been eliminated; 3) comments have been added;
they start with "#".

$ adb /hp-ux
executable file =
core file = core.
ready

27ca?i
Dlowait+0x22:

107af?10i
_biowait+0x7:

107b0?101
_biowait+0x8:

7062721
_owrite+0x92:
100502101 -
_bwrite+0x80:

1450a?i
_sbupdate+0x4C:
144£0?101
_sbupdate+0x32:

,6cc8?1
_update+0xD4:
16cb0?10i
_update+0xBC:

/hp-ux

addg.w- &0x8,%a7

bgt.w _bmap+0x523
eor.b %d4,%do

ori.b &OxXFFFFEC2D, %$al
mov %sr,???

fsun -(%a0)

movqg &0x0, %44

sub.w %a0,%d2

subg.w &0x2,%a6

eor.b %d4,%do

ori.w &0x1C50,7?7??

ori.b &O0x4EB9,%al
ori.b &O0x9EC,%do0
mov.l %d0,-0x4(%a6)
bra.b biowait+0x24

pea 0x94 .w
pea (%a5)
jsr sleep

addq.w &0x8,%a7
mov.l (%a5),%do
movg &0x2,%d1

mov. 1 %a5, (%a7)

jsr (%ao0)

addgq.w &0x4,%a7
btst &0x8,%d7
bne.b bwrite+0x9E

pea (%a5)
jsr . _biowait
mov.l %a5, (%a7)
jsr brelse

addg.w .&0x4,%a7
bra.b _bwrite+OxAE
mov.1l 0x34(%a5), (%a7)

mov.l %d0,-(%a7)
mov.l 0x22 (%a4),-(%a7)

pea (%ab)

jsr _bcopy

lea OxC(%a7) ,%a7
pea - (%a4)

jsr bwrite

mov.l 0x34(%a5), (%a7)
mov.1l 0x34 (%a5) ,%do
subg.l &Ox1,%do

addg.w &O0x4,%a7
clr.b 0xDO0(%a0)

mov.l -0x4 (%a6) ,%a0
mov.l _time,0x20(%a0)

=H= =i

=H= =

not looking good

should be a call to sleep
in here somewhere

try again!

now we're talking...
pop 8 bytes of args off stack

pea (%a4)

isr _sbupdate
addg.w &0x4,%a7
lea "0x18 (%a4) ,%a4 -

cmp.l %a4, &0x9CFES8
bes.w update+0x42

mov.l _inode,%a5
99f47?i)
_boot+0x8A: addg.w &0x4,%a7
99e6?2101
_boot+0x7C: beq.w _boot+0x90
pea 0x0.w
Isr _update # this is the one
addg.w &O0x4,%a7
bra.w _boot+0x9C
pea Oxl.w
jsr _update
addg.w &0x4,%a?7
pea _reboot_after panic+0x1EO
jsr _printf
ac8c?i .
_panic+0xC4: addg.w &0x8,%a7
ac7c?61i
_panic+0xB4: 2272 (68881)
pea 0x8 (%a6)
mov.l -0x4(%a6),-(%a7)
jsr _boot
addq.w &0x8,%a7
bra.w _panic+0xCé
e4?i
__2xit+0x1D8: addgq.w &0x4,%a7
4ad0?101 "
_exit+0x1C4: or.l %d4,%d6
cmp.w %d0, 0x2A (%a5)
bne.b _exit+0x1DA
pea _nsysent+0x88
jsr _panic -
addg.w &0x4,%a7
mov.w OxA(%a6),0x52(%a5)
mov.l = u+O0x84E, 0x9C(%a5)
mov.l _u+0x84A,('x98(%a5)
mov.l _u+0x846,0x94 (%a5)
490471 ,
_rexit+0x20: addq.w &O0x4,%a7
48f47101
_rexit+0x10:. andi.l &OXFF,%d0
. asl.l &0x8, %40
mov.l %d0,-(%a7)
jsr _exit
addg.w &O0x4,%a7
mov.l (%a7),%ab
unlk %a6
rts
link.w %a6, &0xXFFFFFFFO
movm.l &<%d7,%a4,%a5>, (%a7)
-0dc?i
_syscall+0x15E: - lea _u+0x78,%a0
ebc8?10i : _
_syscall+0x14A: sub.l %d2,%do0

-mov.b &0x1, (%a0)
~ lea _u+O0x9FA, %a0

clr.w (%a0)

mov.1l 0x4 (%a3) ,%a0 ‘
.jsr (%a0) : # note indirect call
lea u+0x78,%a0.

tst.b (%ao0)

beq.b syscall+0x186

lea . _u+O0x9FA, %a

$q

By looking at this bottom-up, we can see that the order of calls was like this:

syscall()

rexit()

exit()

panic()

boot ()

update()

sbupdate ()

bwrite()

biowait()

Note that we didn't see a "jsr _rexit" in syscall(); we just looked at where
we had been before.

What can we learn from all of this? That depends. It is conceivable that.
this kind of information could help track down a kernel bug. It is also
p0551ble that it could satisfy a customer's cur1051ty One nice thing to know
is that as of 6.0, the kernel will construct a sybolic traceback complete with
the arguments to the calls - this will be printed on the screen just below the
stack dump.

SE 399: Series 300 HP-UX Internals
Module Evaluatioﬁ '

-SYSTEM SHUTDOWN

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
_please write them in. Thank you!

1. Clarity of presentation:

;. Depth/complexity (1 - material was too easy, 10 - it was too hard):
3. Usefulness/applicability/relevance of material presented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be 5pecific):

General Comments:

SE 390: Series 300 HP-UX Internals
| Obscure Commands '
he Big Picture

~ What are some of the obscure but important commands and how
do they work?

‘The Little Pictures

Init(im).
- Config(1lm).
- Cluster(1m).

Mkfs(1m).

Getty (1m).

Iogin(l).

nit (im)

SE 390: Series 300 HP-UX Internals

Obscure Commands

PID 1; started by kernel after we're up and running.
Parent of all user processes.
Reads table to find out what it is supposed to do.

Is a state machine - when it is in state n, it decides what needs
to be happening by looking in /etc/inittab for entries with n listed
as the state. It starts up those commands, and if they are marked
"respawn" it keeps starting them up whenever they die.

When you launch a 2nd init(lm) or do a telinit(lm), it looks to see
what PID it is; if it is not 1, it will take the parameter from the
command line and send that as a signal to PID 1. Thus,

$ telinit 3 _
sends signal #3 to PID 1, which is the real init(im).

Init(1m) acts as a cleaner-upper - it arranges to catch SIGCHLD
whenever it fork/execs a new process. It also inherits children
when parents die without wait(2)ing for their children.

SE 390: Series 300 HP-UX Internals
' Obscure Commands

onfig(1m)
deal with arguments A
open files (default: conf.c, /etc/master, config.mk, mkdev)

read master file to get
1) list of devices, handlers, major & minor numbers, etc

2) aliases for the above (such as 7914 --> cs80)
3) tunable parameters and default values

while there's another line in the dfile {
case line of
"root" : recofd major and minor number
"swap" : add entry to swdevt[]

"swapsize" : set sizes for all swap entries so far
tunable parameter : record value

otherwise :
look it up in master list
be sure user specified minor# if not a card

_be sure it's a legal address
add to list of devices on the system

} R
set defaults for tunable parameters that weren't set
be sure all required devices are in list

write out the config file

"write out the makefile

* HPUX ID: @(#)dfile.full.lan 15.1 _ 86/12/09
* This is the configuration file for a full system, with LAN
* drivers

cs80

- amigo

tape

printer

stape

srm

ptymas

ptyslv

ieee802

ethernet

hpib

gpio

ciper

rije

* cards

98624

98625

98626

98628

98642

* Tunable parameters
num_lan cards 2

* HPUX iD: @(#)master

*

* The following devices are those that can be specified in the system
* description file. . The name specified must agree with the name shown,

% or with an alias.

5§

%*

* name handle
. _
- ¢s80 cs80
scsi scsi
flex mf
amigo amigo
rdu rdu
tape tp
printer 1p
stape stp
srm SIrmé29
plot.old pt

rje rje
ptymas ptym
ptyslv ptys
1lla lla
lanO1 1la
hpib hpib
gpio hpib
ciper ciper
nsdiag0 nsdiag0
snalink snalink
dos dos
vme vme
vme2 stealth
dskless dskless
rfa rfai
nfs nfsc.
ramdisc ram

" :

%*

* description file.

* or with an alias.

*

* name handle type

*

98624 ti9914 10
98625 simon 10
98626 sio626 10
98628 sio628 10
98642 sio642 10

*

*

* file.

*

* name handle
swapdev swap
swapdevl swapl
console - cons
ttyXX tty
tty sy

mem mm
swap swap
iomap iomap
graphics graphics
r8042 'r8042
hil hil
nimitz nimitz
ite ite200

mask

100
100
100
100
100

LrODDLDDODUODDHE

87/11/18

type

gHHHHWHHH@@W@HHHHPwawwN

WP
oo

block

-1
-1
-1
-1
L §

=

®

(@]

mask

3FB
3FB
1FA
3FB
3C
FA
DA
FA
1F2
F2

- 1FA

FC
1FD
1FD
OFD
FB
1FB
DA
EA
1Co
Fo
1F8
1C8
100
100
100
FB

char

mask
0
0
FD
FD
FD
32
30
F9
1F9
c8
EC
E4

100

block

char

4

47

6
11
45

The following cards are those that can be specified in the system
The name specified must agree with the name shown,

The following devices must not be specified in the system description
They are here to supply information to the config program.

* .
* The following

entries form the alias.table.

* field 1'-product #. field 2: driver name

*

[bunch of stuff
7935 cs80
ct cs80
7906 amigo
7925 amigo
9133V amigo
9895 amigo

int flex
fa flex
7971 tape
mt tape

7974 stape
7978 stape
1p printer
2225 printer
2227 printer

2934 printer
*

deleted here and follow1ng]

* Several printers listed below can also be
* supported on hpib and RS-232
*

2563 ciper

98629 srm
98641 rje
98643 . 1lla

*

* Plotters can also be supported on RS-232

*

plt hpib
7550 = hpib
1nthp1b 98624
+i9914 98624
simon 98625
08644 98626
sio626 98626
sio628 98628
sio642 98642
mux 98642
98577 vme2
stealth vme2
ieee802 1lla
ethernet lano0l
i$$

* The following
*

maxusers
timezone

dst

nproc
num_cnodes
dskless node
server node
ninode NINODE
nfile
argdevnblk
nbuf

dos_mem byte
ncallout
ntext
unlockable mem
nflocks

entries form the tunable parameter table.

MAXUSERS 8 0
TIMEZONE 420 0
DST 1 0
NPROC (20+8 *MAXUSERS+ (NGCSP)) 6
© NUM_CNODES 0 0
DSKLESS NODE 0 0
SERVER NODE 0 0
((NPROC+16+MAXUSERS) +32+ (2*NPTY) +SERVER NODE*18*NUM_CNODES)
NFILE (16*(NPROC+16+MAXUSERS)/10+32+(2*NPTY)) 14
ARGDEVNBLK 0
NBUF 0 o
DOS MEM BYTE . 0 0
NCATLOUT (16+NPROC+USING ARRAY SIZE+SERVING ARRAY SIZE) 6
NTEXT (40+MAXUSERS) 10
UNLOCKABLE MEM 102400 I

NFLOCKS -200 : - 2

npty NPTY 82 1

maxuprc MAXUPRC - 25 3

dmmin DMMIN 16 16

dmmax: DMMAX 512 256

dmtext DMTEXT 512 256

dmshm DMSHM 512 256
maxdsiz MAXDSIZ 0x01000000 0x00040000
maxssiz MAXSSIZ 0x00200000 0x00040000
maxtsiz MAXTSIZ 0x01000000 0x00040000
shmmaxaddr SHMMAXADDR 0x01000000 0x00040000
parlty optlon PARITY OPTION 2 0]
timeslice TIMESLICE 0 -1
acctsuspend ACCTSUSPEND 2 -100
acctresume ACCTRESUME 4 =100
ndilbuffers NDILBUFFERS 30 1
filesizelimit FILESIZELIMIT OX1fEELffff 0x00000010
dskless mbufs DSKLESS MBUFS (((SERVING ARRAY SIZE+(2*USING ARRAY SIZE))/32)+1
dskless cbufs DSKLESS_CBUFS (DSKLESS MBUFS*2) 6

using array size “USING_ARRAY SIZE (NPROC) 1

serving_array_size SERVING ARRAY SIZE (SERVER NODE*NUM CNODES*MAXUSERS+2*MAXU
dskless fsbufs DSKLESS_FSBUFS (SERVING ARRAY SIZE) 0
selftest period SELFTEST PERIOD 120 0

*

* The next two parameters, check alive period and retry alive period, should
* never be changed by a customer. Only a qualified Hewlett-Packard service

* engineer should change these parameters. Diskless node crashes could occur
* if either of these parameters is changed improperly!

*

check_alive period CHECK_ALIVE PERIOD 4 4
retry alive period RETRY_ALIVE PERIOD 21 21
maxswapchunks MAXSWAPCHUNKS 512~ 1

minswapchunks MINSWAPCHUNKS 4 1

num lan cards NUM IAN CARDS 2 0
netmemmax NETMEMMAX 250000 75000
netmemthresh NETMEMTHRESH 100000 -1
ngcsp NGCSP (8*%NUM_CNODES) 0
scroll_lines SCROLL_LINES 100 100

*

* Messages, Semaphores, and Shared Memory Constants

mesqg MESG

msgmap MSGMAP
nsgmax MSGMAX
msgmnb MSGMNB
msgmni MSGMNI
msgssz MSGSSZ
msgtgl MSGTQL
msgseg MSGSEG
sema SEMA

semmap SEMMAP
semmni SEMMNI
semmns SEMMNS
semmnu SEMMNU
semume SEMUME
semvmx SEMVMX

semaem SEMAEM -

shmem SHMEM

shmmax SHMMAX
shmmin SHMMIN
shmmni - SHMMNI
shmseg SHMSEG
shmbrk SHMBRK
shmall SHMALL
fpa .FPA

1
(MSGTQLA+2)
8192
16384

50

0x00600000
1

30

10

16

2048

1

x00200000

ONORRKFPOOCOMKEREPNNBORRKFEEOOWO

SE 390: Series 300 HP-UX Internals
Module Evaluation

COMMANDS

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10 -
being good, please rate the following. If you have particular comments,
please write them in. Thank you! .

1. Clarity of presentation:

2. Depth/complexity (1.- material was too easy, 10 - it was too hard):
3. Usefulness/applicability/relevance ofAmaterial presented:

4. Speed‘of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

SE 390: Series 300 HP-UX Internals

File System

The Big Picture

How does HP-UX organize disks and access files?

The Little Pictures
- The Vnode layer.
- Caching: buffers, inodes, and directory names.
- The HFS/Berkeley/McKusick filesystem.

- History and layout.

Allocation policies.

Locking.

- Recovering from messes.
- Examples:

- open(2)

- write(2)

File System

L&J\emcl }

f Vnod e
Ls._:.\/er
i 7
S S e
33’1‘:‘&{:53 i 1 H:S -;‘le; f',r: L
| Y-S 2 ; v s .
. Retess s\’?-m; | .
|

’ {
MNetweck | ‘ms:.}
{

TILESYS - | Q

O HP-UX File System Overview

O

Notes

The Big Picture

system call interface

!

file subsystem

!

buffer cache

!

character : block

device drivers

!

hardware control

s 10003 o 1987 Feweit-Pockors Compony

Page 1-3a

Module 10 50 iE L g

[0 HP-UX File System Overview

O

Notes

Kernel Structure Overview
Kerne! Space Space

..

u_ohel0!
Open u_ottel)

..

Page 1-5a

The Vnode Layer
- Why?

- How?

SE 390: Series 300 HP-UX Internals

File System

To allow the system to access files that are on a remote
machine, or that are on a disk that isn't HFS.

To be compatible with the industry

Most filesystem activity revolves around '"vnodes", which
are like inodes but are not implementation dependent.

The vnode layer is object-oriented in the sense that a
vnode carries around a list of operations that can be
done on it. If the system wants to read from a file
represented by (struct vnode *)vp, it will do something
like this (this is not actual code):
(Vp—>V_op->vn_read) (vp, rwflag, buf, size)
This will call a routine to read from the file, whether
the file is local, remote, on a PC, or whatever.

The function namei() has been replaced by lookupname(). It
returns a pointer to a locked vnode. This function is
called whenever the system needs to translate a pathname
like "/usr/mail/fred" to something that will let it get at
the stuff in the file. 1In the case of 5.5/namei(), this
was a pointer to an inode. Now it is a vnode pointer.

Caching

SE 390: Series 300 HP-UX Internals

File System

- The buffer cache - used to avoid reading things that were read

"recently" and to keep from having to write stuff out if it's just
going to get trashed shortly. Buffers are also available for use
as scratch space if drivers need to use them.

The inode cache - used to keep track of inodes so that we don't
always have to get them off of the disk. Pathname translation
boils down to accessing lots of inodes, so the less often we have
to get them from disk the better.

Directory name cache - used to keep us from having to always
translate pathnames. If we just accessed a particular path, we'll
keep the name around since there is a fair chance we'll want it
again.

SE 390: Series 300 HP-UX Internals

File System

The original UN*X file system

- Superblock (single copy on disc)

- I-nodes (grouped together)

- Data blocks (small size = 512 bytes)

- Advantages:
* handles large numbers of small files efficiently
* no alignment constraints on data transfers
* easy to implement

- Disadvantages:
* limited file I/O throughput
* lack of locality on disk
* lack of robustness

* designed for "small" systems/disks

SE 390: Series 300 HP-UX Internals

Picture of a Bell file system

Block

(BB)

File System
I I
Super | I-nodes | Data
Block | | Blocks
I I

(SB) (I-n) (DB

SE 390: Series 300 HP-UX Internals

File System

The Berkeley/McKusick file system (aka "HFS")
- retains advantages of the original Bell design
- includes remedies for most problem areas
* throughput: larger block size (4/8 Kbytes)

* locality: introduction of "cylinder groups"
(each resembles a Bell file system)

* robustness: superblock is replicated in each group
staged modifications to file system

* extensible: can access files of 4+ Gbytes
(theoretical maximum ~ 4 Tbytes)

parameterizes disk features
- HP-UX extensions:
* fs clean flag
- what s300 HP-UX does not include (as of now)
* partitions (aka "disk sections")
* long file names (coming soon to a filesystem near you :-))

* disk quotas

Module 1

Notes

O HP-UX File System Overview

HP-UX File System

0
CYLINDER
PRIAARY w1 | evunoe
GROUP :ng suPER :tuguﬂ'“ GROUP " WODES DATA
0 .(\:mm) swocx | moex #LoCK
CYUNDER | coomrser
GrOUP j—————> | sPER ool | moors DATA
1 BLOcK BLOCK
(OATA)
CYLINDER CGOFFsEY REDUNDANT| CYuNDER
GROUP « |smen crol® | nooes DATA
2 = | BLOCK BLOCK
(0AT)
CCOFFSET REDUNDANT| CYUNDER
. SUPER crowe | inopes DATA
. > | suock 80K
' (0aTa)
| R
CYLINDE CoofrsET REDUNDANT] CYUNDER
GROUP S :u;cul :gcup wODES DATA
x LOCK K
(0aTa)
310005 @ 18856 Hewiett—Pockord Compary

Page 1-162

SE 390: Series 300 HP-UX Internals

File System
Picture of a Berkeley file system
cylinder group O:

|
| BB | SB | SB | CGB | I-n | DB

cylinder group 1:

| | | | |
| DB | SB | €GB | I-n | DB

cylinder group 2:
| | I . I

| DB | sB | €B | I-n | DB
I | | | |

etc.

SE 390: Series 300 HP-UX Internals

File System

File Locking

Byte oriented - process can lock any part of a file.

For enforcement mode locking to work, the setgid bit MUST be on
and the group execute bit MUST be off.

Enforcement locking is provided in 6.0 - this is possible with a
stateful system like our Diskless system, but difficult/impossible
with a stateless system like NFS.

Does not work at all for device files. It would not be good to
lock /dev/dsk/* :-)

Implemented with a locklist that is kept in each inode. The list
has an entry for each lock, and is sorted by PID and starting offset
in the file. When a user wants to lock a chunk of a file, the
system will walk through the list and make sure that no other
process has a lock on a section that overlaps or includes the one
being requested.

There is code to check for deadlock. Suppose that process A is
waiting on something that process B has locked, and process B is
doing the same with process C. We do not want to let C wait on A!

SE 390: Series 300 HP-UX Internals

File System

Recovering From Messes
- fsck(lm) - this will fix most problems, but not all.

- fsdb(1lm) - this is capable of doing most anything in the hands
of a skilled operator, but they are rare :-)

- disked(1m) - roughly equivalent to fsdb(lm) in power, but has a
MUCH nicer user interface. Unfortunately, it's not supported.

SE 390: Series 300 HP-UX Internals
File System
An Example: fd = open("/usr/mail/fred", O_RDONLY)
- put "open" code on stack and trap to get into the kernel's syscall()
- allocate slots in system and user open file tables
- if there's not a user entry, user has exceeded limit of 60

- if there's not a system entry, will get a "tablefull"
message on the console

= look up the name and get a vnode pointer - this will involve
interaction with the remote server, local HFS filesystem, etc to
do the actual looking through directories

- check file permissions and accessability of filesystem

- if filesystem is mounted readonly, we can't let user write

SE 390: Series 300 HP-UX Internals
File System
Example 2: n = write(fd, buf, buflen):;
- Put "write" code on stack and trap to get to kernel's syscall().

- Generic write() will package up the parameters, do checking, etc
with the help of some other routines.

- The file structure "knows" what functions should be called to do
particular things to it, so the system jumps to the appropriate
one.

- Iock the inode.

- Call the driver (if it's a character device) or go through the
buffer cache or whatever is appropriate.

- Since we are writing, the system must check to see if there is
enough space in the block(s) that is/are presently allocated to the
file; if not, allocate more according to the rules mentioned
previously.

Update and unlock the inode.

@(#) SRevision: 56.1 § %/

NN

\&*************ﬂ-*********

Each disk drive contains some number of file systems.
A file system consists of a number of cylinder groups.
Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn
describes the cylinder groups. The super-block is critical
data and is replicated in each cylinder group to protect against
catastrophic loss. This is done at mkfs time and the critical
super-block data does not change, so the copies need not be
referenced further unless disaster strikes.

For file system fs, the offsets of the various blocks of interest
are given in the super block as:

[fs->fs_sblkno] Super-block
[fs->fs cblkno] Cylinder group block
[£s->fs_iblkno] Inode blocks
[fs->fs dblkno] Data blocks

The beginning of cylinder group cg in fs, is given by
the !''cgbase(fs, cg)'' macro.

The first boot and super blocks are given in absolute disk addresses.

#define BBSIZE 8192

#define SBSIZE 8192

$define BBLOCK ((daddr_t) (0))

$define SBLOCK ((daddr_t) (BBLOCK + BBSIZE / DEV_BSIZE))

~

LR BE N IR BE BN BE BE NE BE NS NE BE NE CBE B B

Addresses stored in inodes are capable of addressing fragments
of 'blocks'. File system blocks of at most size MAXBSIZE can
be optlonally broken into 2, 4, or 8 pieces, each of which is
addressible; these pieces may be DEV_BSIZE, or some multiple of
a DEV ' BSIZE unit.

Large flles consist of exclusively large data blocks. To avoid
undue wasted disk space, the last data block of a small file may be
allocated as only as many fragments of a large block as are
necessary. The file system format retains only a single pointer
to such a fragment, which is a piece of a single large block that
has been divided. The size of such a fragment is determinable from
information in the inode, using the ''blksize(fs, ip, 1lbn)'' macro.

The file system records Space availability at the fragment level;
to determine block availability, aligned fragments are examined.

%
~N

Cylinder group related limits.

For each cyllnder we keep track of the availability of blocks at different
rotational p051tlons, so that we can lay out the data to be plcked

up with minimum rotational latency. NRPOS is the number of rotational
positions which we distinguish. With NRPOS 8 the resolution of our
summary information is 2ms for a typical 3600 rpm drive.

%* % % % % % ¥ % ¥
~

#define NRPOS 8 /* number distinct rotational positions */

MAXIPG bounds the number of inodes per cylinder group, and
is needed only to keep the structure simpler by having the
only a single variable size element (the free bit map).

* % % % % %

N.B.: MAXIPG must be a multiple of INOPB(fs).

*
#define MAXIPG 2048 /* max number inodes/cyl group */

~

* % % % % o % % %+ %
~

MINBSIZE is the smallest allowable block size.

In order to insure that it is possible to create files of size
2732 with only two levels of indirection, MINBSIZE is set to 4096.
MINBSIZE must be big enough to hold a cylinder group block,

thus changes to (struct cg) must keep its size within MINBSIZE.
MAXCPG is limited only to dimension an array in (struct cg):

it can be made larger as long as that structures size remains
within the bounds dictated by MINBSIZE.

Note that super blocks are always of size MAXBSIZE,

and that MAXBSIZE must be >= MINBSIZE.

#define MINBSIZE 4096
#define MAXCPG 32 /* maximum fs cpg */

/* MAXFRAG is the maximum number of fragments per block */
#define MAXFRAG 8

#ifndef NBBY

#define NBBY 8 /* number of bits in a byte */
/* NOTE: this is also defined */
/* in param.h. So if NBBY gets */

/* changed, change it in */
/* param.h also */
#endif
/*
* The path name on which the file system is mounted is malntalned
* in fs fsmnt. MAXMNTLEN defines the amount of space allocated in
* the super block for this name.
* The limit on the amount of summary information per file system
* 1S«def1ned by MAXCSBUFS. It is currently parameterized for a
* maximum of two million cylinders.
*/

#define MAXMNTLEN 512
#define MAXCSBUFS 32

/*
* Per cylinder group information; summarized in blocks allocated
* from first cylinder group data blocks. These blocks have to be

read in from fs_csaddr (51ze fs_cssize) in addition to the
super block.

*
*
*
* N.B. sizeof(struct csum) must be a power of two in order for
* the ''fs cs'' macro to work (see below).

*

t

struct csum {

long cs_ndir; /* number of directories */
long cs_nbfree; /* number of free blocks */
long cs_nifree; /* number of free inodes */
long cs_nffree; /* number of free frags */
)i
/*
* Super block for a file system.
%*
f#define FS_MAGIC 0x011954
#define FS_CLEAN ox17
#define FS_OK 0x53
#define FS_NOTOK 0x31

struct f£s

/*

/*

/*

/*

/*

/*

/*
/*

/*
/*

/*

struct fs *fs link; /* linked list of file systems #*/

struct fs *fs rlink; /* used for incore super blocks */

daddr_t fs_sblkno; /* addr of super-block in filesys */

daddr_t fs_cblkno; /* offset of cyl-block in filesys */

daddr_t fs_iblkno; /* offset of inode-blocks in filesys */

daddr_t fs_dblkno; /* offset of first data after cg */

long fs_cgoffset; /* cylinder group offset in cylinder */

long fs_cgmask; /* used to calc mod fs ntrak */

time t fs_time; /* last time written */

long fs_size; /* number of blocks in fs */

long fs_dsize; /* number of data blocks in fs */ .

long fs_ncg; /* number of cylinder groups */

long fs bsize; /* size of basic blocks in fs */

long fs_fsize; /* size of frag blocks in fs */

long fs _frag; /* number of frags in a block in fs */
these are conflguratlon parameters */

long fs_minfree; /* minimum percentage of free blocks */

long fs_rotdelay; /* num of ms for optimal next block */

long fs_rps; /* disk revolutions per second #*/
these fields can be computed from the others */

long fs bmask, /* ''blkoff'' calc of blk offsets #*/

long fs_fmask: /* *'fragoff'' calc of frag offsets */

long fs_bshift; 't1]1blkno'' calc of logical blkno */

long fs_fshift; /* ''"numfrags'' calc number of frags */
these are configuration parameters */

long fs_maxcontig; /* max number of contiguous blks */

long fs_maxbpg; /* max number of blks per cyl group */
these fields can be computed from the others */

long fs_fragshift; /* block to frag shift #*/

long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */

long fs sbsize; /* actual size of super block */

long fs_csmask; /* csum block offset */

long fs_psshlft, /* csum block number */

. long fs_nlndlr, /* value of NINDIR */

long fs_inopb: /* value of INOPB */

-long fs_nspf; /* value of NSPF */

long fs_id[2]: /* file system id */

long fs_sparecon[4]; /* reserved for future constants */

sizes determined by number of cylinder groups and their sizes #/
daddr_t fs_csaddr; * blk addr of cyl grp summary area */
long fs css1ze, /* size of cyl grp summary area */
long s _cgsize; /* cylinder group size */

these fields should be derlved from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs ,_SpC; /* sectors per cylinder */

this comes from the disk driver partltlonlng */
long fs_ncyl:; /* cylinders in file system #*/
these fields can be computed from the others */

long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs fpg: /* blocks per group * fs frag #*/

this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */
these fields are cleared at mount time #*/

char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_ _fsmnt [MAXMNTLEN] ; /* name mounted on */

these fields retain the current block allocation info */

long fs_cgrotor; /* last cg searched */

struct csum *fs_csp[MAXCSBUFS]; /* list of fs cs 1nfo buffers */

long fs_cpc; * cyl per cycle in postbl */

short fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation */

long fs_magic;
char fs_fname[6]
char fs_fpack([6]
u_char fs_rotbl{1]
/* actually longer */
)i

/*

e wo “o

*

/* magic number */

/*
/*
/*

file system name */
file system pack name */
list of blocks for each rotation */

* Convert cylinder group to base address of its global summary info.

* N.B. This macro assumes that sizeof (struct csum) is a power of two.

*
#define fs_cs(fs, indx) \

fs_csp[(indx) >> (fs)=->fs_csshift][(indx) & ~(fs)->fs_csmask]

/

%* % % % & ¥ % % %
~N

MAXBPC bounds the size of the rotational layout tables and

is limited by the fact that the super block is of size SBSIZE.

The size of these tables is INVERSELY proportional to the block

size of the file system. It is aggravated by sector sizes that

are not powers of two, as this increases the number of cylinders
included before the rotational pattern repeats (fs_cpc) .

Its size is derived from the number of bytes remaining in (struct fs)

#define MAXBPC (SBSIZE - sizeof (struct fs))

/*
* Cylinder group block for a file system.
*/

#define CG_MAGIC 0x090255

struct cg {(

struct cg *cg_link:
struct cg *cg rlink;
time t cg_time;
long cg_cgx;
short cg _ncyl;
short cg_niblk;
long cg_ndblk;
struct csum cg cs;
long cg_rotor;
long cg_frotor;
long cg_ —irotor;
long cg frsum[MAXFRAG],
long cg_btot[MAXCPG];
short cg_b[MAXCPG] [NRPOS];
char cg 1used(MAXIPG/NBBY],
long cg_magic;
u char cg _free[l]:
/* actually longer */
}

linked list of cyl groups */

used for incore cyl groups */
time last written */
we are the cgx'th cylinder group */
number of cyl's this cg */
number of inode blocks this cg */
number of data blocks this cg */
cylinder summary information */
position of last used block */
position of last used frag */
position of last used inode */
counts of available frags */
block totals per cylinder */
positions of free blocks */
used inode map */
magic number */
free block map */

MAXBPG bounds the number of blocks of data per cylinder group,
and is limited by the fact that cylinder groups are at most one block.

by the number of remaining bits.

*
*
*
: Its size is derived from the size of blocks and the (struct cg) size,
*
d

(fragstoblks((fs), (NBBY * ((fs)->fs bsize - (sizeof (struct cg))))))

/*

* Turn file system block numbers into disk block addresses.
* This maps file system blocks to device size blocks.

*/

#define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb)
#define dbtofsb(fs, b) ((b) >> (fs)->fs fsbtodb)

/*

* Cylinder group macros to locate things in cylinder groups.

* They calc file system addresses of cylinder group data structures.

*/

f#define cgbase(fs, c) ((daddr_t) ((fs)->fs_fpg * (c)))

#define cgstart(fs, c) \

(cgbase(fs, c) + (fs)->fs cgoffset * ((c) & ~((fs)->fs_cgmask)))

f#define cgsblock(fs, ¢) (cgstart(fs, c) + (fs)->fs_sblkno) super blk */

*

#define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */

#define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
#define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1lst data */

/*

* Give cylinder group number for a file system block.
* Give cylinder group block number for a file system block.

*

#défine dtog(fs, d) ((Q) / (£s)->fs_£fpq)
#define dtogd(fs, d) ((d) % (fs)->fs_fpq)
/*

* Extract the bits for a block from a map.
* Compute the cylinder and rotational position of a cyl block addr.
*/
#define blkmap(fs, map, loc) \
(((map) [loc / NBBY] >> (loc % NBBY)) & (Oxff >> (NBBY - (fs)->fs frag)))
#define cbtocylno(fs, bno) \
((bno) * NSPF(fs) / (fs)->fs_spc)

#define cbtorpos(fs, bno) \
((bno) * NSPF(fs) % (fs)->fs _nsect * NRPOS / (fs)->fs nsect)

/*
* The follow1ng macros optimize certain frequently calculated
* guantities by using shifts and masks in place of divisions

* modulos and multiplications.
*

#define blkoff(fs, loc) /* calculates (loc % fs->fs bsize) */ \
((loc) & ~(fs)->fs_bmask)
#define fragoff(fs, loc) /* calculates (loc % fs->fs fsize) */ \
((loc) & ~(fs)->fs fmask)
#define lblkno(fs, loc) /* calculates (loc / fs->fs bsize) */ \
((loc) >> (fs)=->fs bshift)
#define numfrags(fs, loc) /* calculates (loc / fs->fs fsize) */ \
((loc) >> (fs)->fs_fshift)
#define blkroundup(fs, size) /* calculates roundup(size, fs->fs bsize) */ \

(((size) + (fs)=>fs | bsize - 1) & (fs)->fs_bmask)

#define fragroundup(fs, size) /* calculates roundup(size, fs->fs fsize) */ \
(((size) + (fs)->fs_fsize - 1) & (fs)->fs_fmask)

#define fragstoblks(fs, frags) /* calculates (frags / fs->fs _frag) */ \
((frags) >> (fs)->fs fragshift)

#define blkstofrags(fs, blks) /* calculates (blks * fs->fs _frag) */ \
((blks) << (fs)->fs_fragshift)

#define fragnum(fs, fsb) /* calculates (fsb % fs->fs frag) */ \
((fsb) & ((fs)->fs_frag - 1))
#define blknum(fs, £sb) /* calculates rounddown(fsb, fs->fs frag) */ \

((fsb) &~ ((fs)->fs frag - 1))

/*
* Determine the number of available frags given a
* percentage to hold in reserve
*
f§define freespace(fs, percentreserved) \
(blkstofrags((fs), (fs)->fs_ cstotal cs_nbfree) + \
(fs)->fs_cstotal.cs nffree - ((fs)->fs dsize * (percentreserved) / 100))

/*

* Determining the size of a file block in the file system.
*
#define blksize(fs, ip, 1lbn) \
(((1bn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \
? (fs)->fs bsize \
¢ (fragroundup(fs, blkoff(fs, (ip)->i_size))))
#define dblksize(fs, dip, 1lbn) \
(((1bn) >= NDADDR || (dip)=->di_size >= ((lbn) + 1) << (fs)->fs bshift) \
? (fs)->fs_bsize \
: (fragroundup(fs, blkoff(fs, (dip)->di_size))))

/* '
* Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
*/

f#define NSPB(fs) ((fs)=->fs nspf << (fs)->fs fragshift)

#define NSPF(fs) ((fs)=->fs nspf)

SWAPPING

SWAPPING

’Be-?occ 6. 0 -tke. Swap Spate u)as.‘

ma.o\a.aed ON ~rLo Ioco.l sysfen usm%
the Swap mop.

swapma.p
Swapmap 13 an | ﬂAouct Sizel

Accay of Address, Size Addc Size2

pairs whece e.ae,keutry ._{Mdcs S'zle

ole $ines an available

Oiete of Swap acea.

As Swap spate s cequired by a
pcoeess 1t 1s takea Prom the sSwapmap,

The ododcess, site oLa.to. 'S u.pda.ted

,se-suaa;ig

SWAPPING

P(ocess A requests 180 by*es Swa p

Updated swapmap

The lecation of the swap space |n wse
by process A 15 kept n the pec process
fegion table of the Proc‘ess's U area. .

When the pcoeess tecmmmates the swap |
spate will be returned +o the swapmayp.
An ottempt will be made +o eoalesce +he
released spate with an eyssting swapmap
entey.

SE-SWAP-2

SwAPPING

Y] 9460

Swap ma.p. eﬂtcy
Pro_cess B requests «200 By?es Swap
Upolated swapmap ' m
Process A tefMtAatés

Updated swap map | | 100
Jé1\ 760

T+ was net passible o coalesce +he
Qceea space. ., A new Acfay eatry was
cceated. . The Swap area has become
-Qraan\es‘ted. I{ these acreas still feee
when process B tecminates, the space
will be mecgeol back nte a Sm%'e
3wa.pmap 'e.lktry.

 Se-SWAP -3

OWAPPING

Aftec 4.0 celesase, systems whiek

% "ﬁq:.ve local swap dlevices buwild a,
Chunk map at beetup. Thus ineludles
standa lene systems, cect secver: anol
oistless nodes with loeal swap.

Eaeh chunk map Qn.‘try»
Corresponds to

DMMAY % 1624 bytes
of swap space,

{ Default DMMAY = 812)

[[T11E

A thurk map 13 net buwift on
o diseless nede with no leca| swap
olises,

SE-SWAP-4

«SwAPP:NG

I o System has multiple swap oleviges
G.OA'Fnaure.d iR the k!t!\ve(. | Chuak map
entcies for each of the devices s

m.‘tecleaved WA a4 Cictular -po.sk:oo\.

The laét entey -por eath 3Swap oleviae
may be less than DMMAY % /029,

Entcies Lo olises othec +han +he

O(e'acau/f swap_a(ev:ee on/y beecome valio
after swapon has been executed.

. SE-SWAP-§

SWAPPIN &

A” sy.é.‘rén&S‘, -l.-kos(+hat swa.f f(mofel,"
and those +hat Swap on lecal dises,
eceate a Chunk toble ond a Swapmap.

chtbl . swapmap

—ee——
|

(‘,k-tbl s d§meus:aued -pw

max.ensde swehunks enteies, It 1s used
to keep tcack of swap chunks allscated
?-prcm the e,ku.wk ma.p |

The swapmap IS used as In &X
Systems. |

| se-swnp-c, |

 SWAPPING

| lo..kn'\ap . - ek'tbl_~ Swapb\ap |
P-—-——-- .)
| 4
—— *
.
| ‘ L

As swop spate 13 cequired , a cequest s
—ade fr additiral swap 3pace.

An ;Ltcy m the chunk map 13 allecated,
An entey 1w the echunk table 13 mode te
Keep track of +he chunk of swap Spate

allecated. .

New entries n the swap map are cceateq
Fo Show <+he new available swap Spaee,

SE eSt»AP‘-'z

SWAPPTNG

D\SC‘JCSS Nede #2 ’-P{oot*Secver ?
Swapmap Chtbl ~ Chmap chth] Swapmap
:

— 4+ .

The chunk map 15 used teo manage the
\Joba! shaced swap spate on the Koot
Secvelr, N |

Thece 1s & Cnode Id ‘pttlo(in the Chunk
map eatey o recocd what enoole s usimg

each echunk of swap space.

‘wku a erode fauls , the ahkunk ma.p /3
searneyd fe chunks allbeared to tThe faled |

enode. Tiese chunks ace freed and fetucned
‘o pdo/ of available chunks,

SE-SWAP -8

, SWAPPING S
thmap ohtbl swapmap
C 1

A Kecnel daemen cuns every 30 seaonds
on evecy Cnade 7o theek foc thunks of swap
space that may be cetusned to the glebal

eol.

IS a;? ékusk of Swap I8 nct bema used, +he
ertire Qhunk will be n the Swapmap.

. The swap gaemon will set a cefecence bit
in the Chunk table entey doc Qny Chunk pot
being used. IE thus chunk 18 still unuseyl
+he next +ime the dlaemon tuns, the
Swagmap eatries will be removeo gnd the
cunk will be Sreed.

- Se-SwAP-9

SWAPPING

DMMAX

Must be same for all nodes swapping on
Root Server

Swap space partitioned in chunks of
DMMAX * 1024

DMMAX on Root Server used by all nodes
swapping on Server

- DMSHM and DMTEXT

Not forced to be same as Root Server
Not allowed to exceed DMMAX

SE-SWAP - 11

SWAPPING

maxswapchunks

Configurable kernel parameter

Number of DMMAX * 1024 chunks that
a node may allocate

Defaults to 512

May be used to restrict swap space
allowed to a node

SE-SWAP - 12

SWAPPING

minswapchunks

Configurable kernel parameter

Number of DMMAX * 1024 chunks
allocated to node at bootup

Node always retains this minimum
amount of swap

Defaults to 4

SE-SWAP - 13

Discless Network Protocol

Discless Network Protocol

m Better Performance than Existing Protocols
m Used only by Discless Kernel
s Communication on a Single LAN bn|y

m Does Not support Gateways Co

[
'

.
!
J

N ‘o © 1987 Hewlett-Packard Company

a Co-Exists with other Networking Services o

The S300 discless workstation implementation does not use any of the standard
.networklng protocols such as TCP/IP, LIA or UDP. The Discless protocol is a

secial HP proprletary protocol that has been des;gned for optimum performance
a dlscless envirorment.

'Thls protocol is only used by the HP-UX kernel in support of discless
workstations. At the 6.0 release, it supports communication between a root
server and its discless nodes over a single IAN only. Because this is not an
IP protocol, it is not supported across an IP gateway.

The discless protocol co-exists with the other HP supported networking
servxces. Both the server and discless nodes may use NS and ARPA/Berkeley
services to. communicate with systems outside the cluster as well as inside

the cluster. NFS may be used by both the server and discless nodes to access
files systems outsxde the cluster.

Allows Use of a Simple Protocol

m Messages rarely Lost in a LAN

m No need to copy Data between Buffers
m Certain Requests are ldempotent

m Preallocates space for Reply Message

m Not for General Purpose Communication

i
© 1987 Hewlett-Packard Company

Je e Jede dede e de

Because the discless protocol is limited to a 51ng1e IAN, certain assumptlons'
ay be made which allow for a simple protocol. These 1nc1ude~

Messages are rarely lost in a single IAN

Significant time is lost in copying data between network buffers and user
buffers. Therefore, the discless protocol coples directly from the LAN
card into the dlscless netbufs.

Certain requests are 1dempotent - this means that these regquests may be
re-executed with no change in effect. An example of such a reguest would be
a sync. Idempotent requests do not require acknowledgement.

Performance can be improved by preallocating space for the reply message
before the request is sent out.

Since this protocol is not designed for general purpose communication, it
may be tailored to the specific requirements of the cluster.

[et e

Kernel
T
Discless\l’ i
Message Buffers
Interface &
A~ T

N

4

Discless Protocol Layer

LAN Driver ISR

Discless Network Protocol

NH1IT.02

@) 1987

tlewlctt--Packard Company

%ok d ok dek Rk

This diagram shows how the discless message interface provides for
communication between the kernel and the Discless Protocol lLayer. The Discless
Protocol Layer interfaces directly with the ILAN hardware. The protocol and

uffer management are hidden from the kernel. ,

~ Inbound messages are passed to the Discless Protocol Layer by the
IAN Software ISR while Outbound messages are passed dlrectly to the IAN
Hardware ISR.

Discless Network Protocol
The Discless protocol is a Request/Reply protocol.
Non-ldempotent Request
Non-ldempotent requests mUst be executed only once:
so these requests must be acknowledged. An example

of such a request is a file open request.

Requestor Receiver
| (Server)

-——-request >

'<--

>

---—--acknowledge----

- The serving node will continue to transmlt the reply until
an acknowledge is received.

If the requestor does not receive the reply
within a timeout period, the request will be sent again. .
- The server will ignore duplicate requests. |

PROTOCOL - 4

Discless Network Protocol
Idempotent | Request

Requestor Receiver

>

request-

Com

reply

Idempotent requests are requests which produce the
same effect when executed multiple times - such as
a sync request. Such requests do not need to be
acknowledged.

If no reply is received by the requestor within a
timeout period, the request will be sent again.
Even if the request has already been executed, it
will be executed again.

PROTOCOL - 5

Discless Network Protocol

"Slow Réquests"

Some requests may take an indefinitely long time to
complete - such as a request to write to a file which
is locked.

Requestor Server

—-—==-request >

(timeout expires)
---duplicate request---=—---==>
<-"this is a slow request”--—---

(request is completed)

<==m-m=—-reply

- —-—-acknowledge ———->

When a duplicate request is received by the server
and the server has not been able to service the
request, the server will send an acknowledgement
to the requestor indicating this is a "slow
request". The requestor will then stop repeating
requests and wait for the reply.

PROTOCOL - &

e i e 8 e e ———— o v eoae o trmen. weh et b ewit e o e o ¢ e vee mee s - e et o themae smaimemm at e & ee e st e st mmn o e - ——te e oo e camen s m

Datagram Messages

m For Accessing Metwork with Minimal Overhead
m Datagrams not Queucd, Network Driver called directly
a Single Packet Request or Repiy

m No Acknowledaement or Reply Required

e i
© 1987 Hewlett-Packard Company

Datagram Messages

a Used fQ'r these Types of Messages A
Clocksync |
NAK's
I'm Alive

Broadcast Failure

m These messages use Statically ailocated mbufs

to Increase Probability of being Delivered

(@ 1987 Hewiett-Packard Company

| mbufs}

m For Discless Message Headers
m 128 Byte Buffers
~ m Allocated at Cluster Time
m Required for each Messagé
m Configured by dskless__mbufs

n dskless___mbufs = Number of pages of mbufs

@ 1987 Hewlett-Packard Company

%ok dededede de ok

mbufs are a linked list of 128 byte buffers allocated at cluster time. Pages
. of memory are allocated and "chopped" into 128 byte pieces which are linked
ogether.

The kernel parameter maxdlscless mbufs is a number of memory pages to be
£ed for mbufs - 32 mbufs per page of memory.

If a system has insufficient mbufs allocated, look for "Cannot allocate
message buffer" messages. The mbuf utilization may be checked using the M
screen of the 6.0 version of monitor.

cbufs

m For Discless Message Data

m 1024 Byte Buffers

a Allocated at Cluster Time

m Required if entire Message does not fit in an mbuf
m Configured by dskless_ cbufs

m dskless cbufs = Number of pages of cbufs |
-~ mlf entire Message does not fit in a cbuf, file system

Buffer is allocated | B

© 1987 Hewlett-Packard Company

kkkhkhdkkk

cbuf are a llnked list of 1024 byte buffers allocated at cluster time. -
Pages of memory. are allocated and "chopped" lnto 1024 byte pleces which are
llnked together.)

The kernel parameter maxdlscless _Cclusters determlnes the number of memory
ges to be allocated for cbufs - cbufs per page of memory. The
efault value of maxdiscless_clusters is ????

If the system runs out of the preallocated pool of cbufs, more pages of
memory will be taken from the page pocl and used for cbufs. Once these
buffers have been freed, the pages will be returned to the page pool. The
cbuf utilization may be checked using the M screen of the 6.0 version of
monitor.

Performance considerations:

If the root server system is going to be used as a server only, it is a
good idea to allocate more than sufficient memory to the discless protocol.
If the server is not being used as a workstation it does not make sense to
be dropping messages due to lack of protocol buffer resou

mbuf

mbuf

mbuf

cbuf

cbuf

Discless Outhing Messages

© b e - — o et e

‘XFHé System
| Buffer

©) 1987

Hewlett-Packard Company

ek dedededk gk

- Outgoing messages may be of varying sizes. A message may require only an
mbuf which means that the message is just a header with the information
encoded in fields of the header. Examples of this type of message are
‘end Alive requests, "I'm Alive" messages, etc.

%For longer messages, an cbuf is also used. The mbuf is still requ1red
build the header and the additional message data is stored in the cbuf.
The mbuf contains a pointer which points to the cbuf buffer.
Very long messages, such as file system buffer write requests, will require
more space than the mbuf and cbuf combined. For these requests, file
system buffers are allocated. The file system buffers may be either 4K bytes
or 8K bytes. The following combinations are possible for these long messages
mbuf + 4K File System Buffer = 128 + 4096
mbuf + 8K File System Buffer = 128 + 8192
mbuf + cbuf + 4K File System Buffer = 128 + 1024 + 4096

mbuf + cbuf + 8K File system Buffer = 128 + 1024 + 8192

Network Buffers

[P — . — e

m Prealiocated Pool of File System Buffers
m Available to Kernel under Interrupt

m Used to Receive Incoming Request Message

s Prevents having to Copy Data to a File System Buffer|

L N

NF111.02 - © 1987 Hewlett-Packard Company

e o de de e o vk ok

These is also a preallocated pool of Network Buffers dalled Netbufs.

Netbufs are a pool of file system buffers allocated at cluster time which
e avallable to the kernel to be used under interrupt when receiving a request.-
is is done so that when requests are received under interrupt, the kernel
pes not have to wait for a buffer to be allocated.

When a request is received, the message is copied directly from the hardware
buffer into a netbuf for processing. The use of netbufs prevents having to
copy the data into file system buffers. Since netbufs are preallocated file
system buffers they can be used directly by the file system by exchanging
pointers.

If a system is ocut of available netbufs at the time a request is received,
the request must be dropped. A NAK will be sent to the requesting node. You
may look at netbuf utilization by checklng the M screen of the 6.0 version of
monitor.

FSBUFS = This is the number of netbuf headers allocated

FSPAGES - This is the number of memory pages used for netbuf data
’ buffers allocated.

FSPAGES will probably be greated than FSBUFS because some messages will
require more than 4K for data space.

‘Discless Network Protocol
When Sending a Discless Request |

- mbuf, cbuf or file system buffer is
used to build the request message

- Buffer space for the reply message is
preallocated from the mbufs and
file system buffers

- The message is placed in the Discless
message queue. In the interest of
performance, the Discless protocol message
takes precedence over other protocols.

- When the message is sent out, data is

copied directly from the Discless buffers
into the hardware buffer.

PROTOCOL - 11

Discless Netwo‘rk Protocol

Requestor

l
|
\W)

Get Buffers for Request
Preallocate buffers for
reply

\/

Give Message to Discless
Message Layer

I
I
\/

Pass message off to
Protocol Layer by
placing on queue
(Using_Array)

\W}

Message is put on
Network

Server
/\
|
|

Request handled under
interrupt or given to

gcsp/ucsp/lcsp
/\
|
|
Request handled by Protocol
Layer
/ \
|
!
Request is received by

Discless Receive Routines
(Serving_Array)

/\

I

I

LAN H/W ISR

/\
|
I

PROTOCOL - 12

- Discless Network Protocol

All cluster nodes maintain a using_array and
a serving_array.

using_array Keeps track of
outstanding/active requests
made by the local node.

serving_array Keeps track of
received requests which
are being serviced.

Root Server Needs small using_array
Needs large serving_array

Discless Node Needs large using_array
Needs small serving_array

The sizes are determined by
using_array_size

serving_array_size

PROTOCOL - 13

KERNEL PARAMETERS
| New Configurable Kernel Parameters
For new libraries:

dskless - brings in libdskless.a
routines required to run discless
Discless protocol, Clock Sync,
Crash Recovery, CSP’s
Also lan, rdu, nsdiag

rfa - brings in librfa.a
NS and RFA routines

lla and/or lan01 .
brings in liblan.a
LAN drivers and 4.2
convergence networking code .

nfs - brings in libnfs.a
NFS routines

PROTOCOL - 14

Me VPO ~XV O bt

The Configurable Kernel Pieces

6.0 6.0
Configurable| Kernel
Device |<->| HP-UX
Drivers { (Base) | = o e-cmceccccee.-
NFS
Discless (1ibnfs.a)
Kernel L S >
Resident System -—=>
(1ibserver.a) Calls
UDP | --cccccccaa-- -
/ \ /\ |
I/ |__1 IND
| / 4.2
I/ Convergence
I/ Networking
I/
DM Layer csp’s | (1iblan.a)
_ recovery |
clocksync |
cluster |
mbufs |
|
Protocol = | ececsceccccnccccneac..
Layer LAN S/W ISR
/I\
| LAN H/W ISR

PROTOCOL -

15

RFA
Server

(1ibrfa.a)

KERNEL PARAMETERS

Drivers:
nsdiag

rdu
fpa

vme
stealth .

dos

scsi

- LAN diagnostics

- Driver used in remote
swapping

- Dragon floating point
accellerator support

- vme support
- vme backplane support

- DOS card support

- Small computer system
interface driver

PROTOCOL - 16

- Kernel Parameters

LAN:
num_lan_cards - Number of LAN cards
to be supported on system
default = 2
netmemmax - Since npowerup command
netmemthresh has been replaced by

ifconfig, these parameters
are used to allocate
sufficient memory buffers
for networking.

PROTOCOL - 17

KERNEL PARAMETERS

Discless:

num_cnodes

Limiter for discless resource allocation
Similar to maxusers. Does not limit the
number of cnodes supported by the server.

Used in sizing NINODE, NGCSP,
serving_array_size, num_retry_reply,
num_retry_request

dskless__node

Value should be set to 1 for discless
node and set to 0 for the root server.
Used in sizing the using_array.

server_node

Value should be set to 1 for root
server and set to 0 for a discless
node. Used in sizing the
serving_ array.

PROTOCOL - 18

KERNEL PARAMETERS

Discless:

using_array_size
Determines size of the using_array.
Default: NPROC

serving_array__Size
Determines size of the serving_array
Defaulit:

(server_node * num_cnodes * maxusers)+(2 * maxusers)
dskless_fsbufs

Determines the size of the pool of netbufs

Default = serving_array_size

PROTOCOL - 19

KERNEL PARAMETERS |

Discless:

dskless__mbufs
Numbers of mbufs to allocate at cluster time.
Default = |

(((serving__array_size + (2 * using_array_size))/32) + 1)

dskless_cbufs |
Number of cbufs to allocate at cluster time.

Default = dskless_mbufs * 2

- hgesp

Determines number of general CSP’s
that may run on a system

- Default = 4 * num_cnodes

PROTOCOL - 20

- KERNEL PARAMETERS
Discless:
maxswapchunks
Determines size of the Swap Space
Chunk Table. Default is 512.
minswapchunks

Size of Swap Area always allocated
to a node. Default is Default = 4 chunks.

PROTOCOL - 21

Kernel Parameters

Discless:

selftest_period

Period in seconds between executions
of kernel selftest routine. :

Default - 140 sec
Maximum - 300 sec

If set to 0, turns off selftest.

check__alive_period

Period in seconds between executions
of Check Alive routine.

Default - 10 sec

Minimum - 10 sec

PROTOCOL - 22

KERNEL PARAMETERS |

retry_alive_period
Number of times to retry Send Alive
messages to a site before executing
Cable Break detéection routine.

Default - 20 sec

Minimum - 10 sec

retryselftest_period

Selftest retry period if selftest
detects a failure.

Default - 4 sec

Maximum - 1/2 selftest_period

PROTOCOL - 23 -

~ SE 390: Series 300 HP-UX Internals
Module Evaluation

DISKLESS

On a scale of 1-10, 1 being bad, 5 being OK/don't care/irrelevant, 10
being good, please rate the following. If you have particular comments,
please write them in. Thank you!

1. Clarity of presentation:

2. Depth/complexity (1 - material was too easy, 10 - it was too hard):
3. Usefulness/applicability/relevance of material éresented:

4. Speed of presentation (1 - too slow, 10 - too fast):

5. How good was the material (slides, notes, etc)?

6. How good was the instructor?

Ways this could be improved (please be specific):

General Comments:

I/0 Section - Intro

I. Overview
A. What is a driver?
. Types of drivers?
}. How is the driver accessed?
¥. How a driver is configured into the kernel

II. Review a simple driver (RAM Disc driver)
A. What the Kernel does for you
B. What the driver does for you
1. Block device routines
2. Character device routines

III. Review a "real" driver (gpio card)
A. Walk thru an open call
B. Walk thru a read system call
1. not using DMA
2. using DMA

IV. RS-232 drivers
A. Use of buffers
B. What is "canonical processing?"

' Feb 09 13:13 1988 Overview (I/O) Page 1

Block Mode

Types of Drivers

- uses a buffer cache that is maintained by the File System

- usually associated with the File System, and deals w1th
blocks of data of the same size

- used with devices that have random access.

- ideal for using DMA type transfers

Character Mode - usually sequential devices (e.g. printers, terminals, tapes)

- deals with "variable" lengths of data
- Character Mode does not mean it deals only with "Characters"
- may use DMA transfers, or may be solely CPU (interrupt) transfers

Character Mode Drivers fall into three main types:

1)

2)

3)

Very similar to the Block Mode driver. For example, the CS80

driver uses much of the same code for its block & character mode
access. The driver uses a buffer header like the block mode

driver, and may actually "borrow" one from the buffer cache.

The buffer space is (usually) the user’s buffer, which is mapped
into the kernel space. This method does not require copying data
from users space to a kernel buffer. Used with drivers that perform
large transfers and DMA capable. _

Serial drivers use internal buffers (Clists/Cblocks) for holding
the data for transfer. They (can) perform processing of the data
using canonical processing (e.g. ERASE, KILL, etc.). Data is
transfered between these buffers and the user’s buffers. They
usually deal with small/slow transfers.

The third type contains internal buffers (like serial drivers) and
transfers the data between the user’s space and kernel space for
the I/O transfers. It will use the CPU (via interrupts) to
transfer the data. An example of this type of driver is the rje
driver. This type does not use DMA for transfers.

DIL added another type of driver, which is CPJ intensive. It uses the
JOMAP fac111ty to map the I/0 card into the users address space and
then copies data directly between the user’s buffer and the card.

Feb 09 13:13 1988 Overview (I/O) Page 2

How Drivers are Accessed

- I/0 to/from devices are accessed using the same semantics as
normal files in the file system. By using this method, a program
does not have to treat access to a file or a device any differently.

- All I/0 starts with accessing the File System (during the open).
The "open" system call accesses the file system and puts the device
file info into the file descriptor table. It also will perform
any necessary device dependent operations.

- I/0 Reads/Writes follow the same path as used to read and write
files in the upper levels of the kernel. This is also true for
Pipes (FIF0S), Directories, Networked Special Files, Symbolic
Links. At this point in the kernel, we diverge to the different
areas in the kernel (drivers for I/O).

Feb 09 13:13 1988 Overview (I/0) Page 3

what is a Driver?

Provides the window to interface to the outside world
Provides the hardware specific routines

Provides a common interface to the kernel

Feb 09 13:13 1988 Overview (I/0) Page 4

How A Driver Is Configured?

- /etc/master contains the information on drivers. There are two
types of "driver" entry. There is the upper-level (device) drivers
(e.g cs80, tty, etc) and the lower-level (interface or card) drivers"
(e.g. 98642). Some drivers may combine both, as in the gpio
driver.

- The driver information in /etc/master tells "config" what entries
to make in the conf.c file created. The following gives examples
of these entries.

*

* name handle type mask block char
*

cs80 - €s80 3 3FB 0 4
tape tp 1 FA -1 5
ramdisc ram 3 FB 4 20

*

* name handle type mask ‘block char
* . .

98624 . ti9914 10 100 -1 -1
98625 simon 10 100 -1 -1
08626 sio626 10 100 -1 -1
98628 sio628 10 100 -1 -1
98642 sio642 10 100 -1 -1

> ;

* name handle type mask block char

*
tty sy D FD -1 2

Feb 09 13:13 1988 Overview (I/0) Page 5

- A description of the fields are:

name - the name used in the "dfile" signifying the requested driver
handle - the "handle" actually used for the subroutine calls in the

kernel (e.g. for tty driver, the open routine would be sy_open)
type - 5-bit attribute flag indicating "type" of driver:

4 3210
l | \- character device
\--- block device
\=———— required driver
\ === specified only once
\—————=—- card

mask - 10-bit driver routine flag; tells config what routines to
include in conf.c for the driver
987 6543210
, | \- C_ALLCLOSES flag
\--- seltrue handler (always TRUE for select)
\—-——-- select handler
\=—————- ioctl handler
\=———————- write handler
\-=————————- read handler
\==—————————— close handler
\m———————————- open handler
\m—mm——— e ———— link routine (links interrupt handler -
found in all interface drivers)
\——— e size handler (in disc-type drivers)
block - major number for block device driver
char - major number for character device driver

The major (or driver) number indicates the array offset for the
routine entries in a device switch table.

Examples from conf.c for the routines "brought in" by the "type" &
"mask" values above are as follows:

extern cs80_open(), cs80_close(), cs80 read(), cs80 _write(),
cs80_ioctl(), cs80_size(), cs80_l1link(), cs80_strategy():

extern sy open(), sy close(), sy read(), sy write(), sy ioctl(),
sy _select();

extern ti9914_1ink():

Feb 09 13:13 1988 Overview (I/0) Page 6

Following are exerpts from the bdev/cdev switch tables. It is via

these two tables that the proper subroutine calls are made for the

apporpriate driver. By modifying /etc/master’s driver numbers, you
can change the "major" numbers for your drivers.

struct bdevsw bdevsw[] = { '
/* 0%/ cs80_open, cs80_close, cs80_strategy, cs80_size, C_ALLCLOSES,
/* 1*/ nodev, nodev, nodev, nodev, O,

0 00 oo

}:

struct cdevsw cdevsw[] = {

/* 2*/ sy open, sy close, sy read, sy write, sy ioctl, sy select,
C_ALLCLOSES,

/* 4*/ cs80_open, cs80_close, cs80_read, cs80_write, cs80_ioctl,
seltrue, C_ALLCLOSES,

/*43*/ nodev, nodev, nodev, nodev, nodev, nodev, O,

This structure is used during the startup to allow for linking of
"make_entry" routines for the drivers.

The make_entry() routine for each driver is called during startup

of the system. For each card found during bootup, the kernel calls
the make_entry routines. These routines check to see if the card

is theirs. If so, it may perform some initializations and it
reports finding the card. If not, the make entry() routine will
call the next make_entry() routine. There 1s always a dummy routine
at the end of the list that will report no driver found for the
card. ,

int (*driver_1ink[]) () =

{
cs80_1link,
amigo link,
scsi 1link,
graphics 1link,
srmé629_1ink,
rje link,
ptys link,
lla_link,
hpib 1link,
vme_link,
stealth link,
rfai_link,

Feb 09 13:13 1988 Overview (I/0) Page 7

ti9914 1ink,
simon_link,

sio626_1link,
sio628_link,
sio642 link,
ite200_link,
(int (*)())O

Feb 09 13:13 1988 Overview (I/0) Page 8

*Obx_m: @(#)dfile.full.lan 49.3 87/09/28
dfile.full.lan

*
*
* This is the configuration file for a full system, with LAN
*
*

DEVICE DRIVERS
* disc drivers
cs80
scsi
amigo
* tape drivers
tape
stape
* printer drivers
printer
ciper
* shared resource management driver
srm
* pseudo terminal drivers (needed for windows)
ptymas
ptyslv
* dil hpib driver (includes plotters)
hpib
* dil gpio driver
gpio

* note job entry

r

*(:) 98286 DOS Coprocessor driver (see dos_mem _byte parameter)
dos

* HP 98646 VME driver

vme

* HP 98577 VME expander

vme2

* If you want to run NFS, uncomment the following line.
*nfs

* lan drivers (formerly: ieee802 & ethernet drivers)
l1la

lan01

nsdiag0

* RFA server code

rfa

* CARDS

* HP-IB interface

98624

* high speed HP-IB interface

98625

* RS-232 serial interface

98626

* RS-232 datacomm interface

98628

* RS-232 multiplexer

9842

Feb 09 13:13 1988 Overview (I/0) Page 9

O

* Configuration information

*/
#define MAXUSERS 8
#define TIMEZONE 420
#define DST 1
#define NPROC (20+8*MAXUSERS+ (NGCSP))
#define NUM_CNODES 0
#define DSKLESS_NODE 0
#define SERVER_NODE 0
#define NINODE ((NPROC+16+MAXUSERS)+32+(2*NPTY)+SERVER NODE*18*NUM CNODES)
#define NFILE (16* (NPROC+16+MAXUSERS) /10+32+ (2*NPTY))
#define ARGDEVNBLK 0
#define NBUF 0
#define DOS _MEM BYTE 0
#define NCALLOUT (16+NPROC+USING_ARRAY_SIZE+SERVING_ARRAY_SIZE)
#define NTEXT (40+MAXUSERS)
#define UNLOCKABLE MEM 102400
#define NFLOCKS 200
#define NPTY 82
#define MAXUPRC 25
#define DMMIN 16
#dpfine DMMAX 512
ine DMTEXT 512
#ane DMSHM 512
i1ne MAXDSIZ Ox01000000
#define MAXSSIZ 0x00200000
#define MAXTSIZ 0x01000000
#define SHMMAXADDR 0x01000000
#define PARITY OPTION 2
#define TIMESLICE 0
#define ACCTSUSPEND 2
#define ACCTRESUME 4
#define NDILBUFFERS 30
#define FILESIZELIMIT OxX1fffffff
#define DSKLESS_MBUFS (((SERVING ARRAY SIZE+(2*USING_ARRAY SIZE))/32)+1)
#define DSKLESS_CBUFS (DSKLESS MBUFS*Z)
#define USING_ARRAY_SIZE (NPROC)
#define SERVING _ARRAY SIZE (SERVER NODE*NUM CNODES*MAXUSERS+2*MAXUSERS)
#define DSKLESS FSBUFS (SERVING ARRAY SIZE)
#define SELFTEST PERIOD 120
#define CHECK ALIVE PERIOD 4
#define RETRY_ALIVE_PERIOD 21
#define MAXSWAPCHUNKS 512
#define MINSWAPCHUNKS 4
#define NUM_LAN_CARDS 2
#define NETMEMMAX 250000
#define NETMEMTHRESH 100000
#define NGCSP (8*NUM_CNODES)
#define SCROLL_LINES 100
#C e MESG 1
e MSGMAP (MSGTQL+2)

ine

MSGMAX 8192

Feb 09 13:13 1988 Overview (I/0) Page 10

ﬂine MSGMNB 16384

ine MSGMNI 50

#define MSGSSZ 1

#define MSGTQL 40

#define MSGSEG 16384

#define SEMA 1

#define SEMMAP (SEMMNI+2)

#define SEMMNI 64

#define SEMMNS 128

#define SEMMNU 30

#define SEMUME 10

#define SEMVMX 32767

#define SEMAEM 16384

#define SHMEM 1

#define SHMMAX 0x00600000

#define SHMMIN 1

#define SHMMNI 30

#define SHMSEG 10

#define SHMBRK 16

#define SHMALL 2048

#define FPA 1

#include "/etc/conf/h/param.h"
#include "/etc/conf/h/systm.h"
#include "/etc/conf/h/tty.h"
#include "/etc/conf/h/space.h"
lude "/etc/conf/h/opt.h"
Olude "/etc/conf/h/conf.h"
#define ieee802 open lan_open
#define ieee802 close 1lan_close
#define ieee802 read lan_read
#define ieee802 write lan_write
#define ieee802 link lan_link
#define ieee802 select 1lan select
#define ethernet open lan_open
#define ethernet close lan close
#define ethernet read 1lan_read
#define ethernet write lan write
#define ethernet link lan_link
#define ethernet select lan select
#define hpib 1link gpio_link
#define 1lla 1ink lan 1ink
#define lan01_1link lan_link
extern nodev (), nulldev():

extern seltrue():

extern
extern
extern
extern
extarn

e rn
@n
e rn

cs80_open(), cs80_close(),
amigo_open(), amigo_close(),
swap__ strategy() ;

swapl strategy ()
scsi_open(), scsi_close(), scsi_read(), scsi_write(), scsi_ioctl(), scsi_
cons open(), cons close(), cons read(), cons wrlte(), cons_ioctl(), cons
tty open(), tty close(), tty_ read(), tty wrlte(), tty ioctl(), tty select
sy _open(), sy _close(), sy read(), sy write(), sy_ ioctI(), sy select():

cs80_read(), cs80 wrlte(), cs80 1octl(), cs80_
amlgo read(), amigo write(), amigo_ ioctl (),

Feb 09

Qe
rn
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extrern

€ rn
o
e rn
extern
extern

struct
/* 0%/
/* 1%/
/* 2%/
/* 3%/
/* 4*/
/* 5%/
/* 6%/
/* 7%/
}

ruct
o*/
1*/
2%/
3%/
4%/
5%/
6*/
7%/

% % % % % % ¥ ¥ %

*

e e e N /]

* ;
NN

13:13 1988 Overview (I/0) Page 11

mm_read(), mm wrlte(),

tp_open(), tp_close(), tp read(), tp_write(), tp ioctl():

lp open(), 1p close(), lp write(), 1lp_ioctl():

swap_read(), swap write()7

stp_ open(), stp close(), stp_ read(), stp wrlte(), stp_ 1octl(),
1omap open(), iomap_close(), iomap read(), iomap _write(), 1omap ioctl():
graphics _open(), graphics _close(), graphlcs read(), graphlcs wrlte(), gra
srm629 open(), srm629 close(), sSrm629 read(), srm629 write(), srm629 link
rje_ open(), rije_ close(), rje_read(), rje_write(), rje_ioctl(), rje 1link()
ptym_open(), ptym_close(), ptym_read(), ptym erte(), “ptym_ioctl(), ptym_
ptys open(), ptys close(), ptys_read(), ptys “write(), ptys ioctl(), ptys_
lla open(), lla close(), lla read(), lla wrlte(), lla 1octl(), lla select
lla _open(), lla close(), lla~ _read(), 1lla wrlte(), lla_ioctl(), 1lla_select
hplb open(), hplb close(), hplb read(), hplb wrlte(), “hpib ioctl ()7

hplb open(), hp1b close(), hp1b read(), hplb write(), hpib_ioctl(), hpib
r8042_open(), r8042_close(), r8042 ioctl():

hil open(), hil close(), hil read(), hil 1octl(), hil select():
nimitz _open(), nimitz _close(), nimitz read(), nimitz select();
ciper open(), ciper_ close(), ciper write(), ciper ioctl():
dos_open(), dos _close(), dos read(), dos write(), dos _ioctl():;
vme open(), vme close(), vme read(), vme wrlte(), vme 1oct1(),
stealth _open(), stealth close(), stealth ioctl(), stealth llnk(
nsdiag0_open(), nsdiag0_close(), nsdiag0 read(), nsdiag0_ ioctl(

vme_1link()
)i
)
rfai_link():

ti9914_1ink();

simon_Tink();

sio626_1ink();

510628 1ink():

sio642_1ink():

ite200_1l1ink():

bdevsw bdevsw[] = {

cs80_open, cs80_close, c¢s80_strategy, cs80_size, C_ALLCLOSES,
nodev, nodev, nodev, nodev, 0,

amigo_open, amigo_close, amigo_strategy, amigo_size, C_ALLCLOSES,
nodev, nodev, swap_strategy, 0, O,

nodev, nodev, nodev, nodev, 0,

nodev, nodev, swapl strategy, 0, O,

nodev, nodev, nodev, nodev, O,

scsi_open, scsi_close, scsi_strategy, scsi_size, C_ALLCLOSES,

cdevsw cdevsw[] = {

cons_open, cons_close, cons_read, cons_write, cons ioctl, cons_select, C
tty open, tty close, tty read, tty write, tty ioctI, tty select, C ALLCL
sy _open, sy . close, sy read, Sy write, sy _ ioctI, Sy select C ALLCLOSES
nulldev, nulldev, mm read, mm wrlte, nodev, seltrue, 0,

cs80_open, cs80 close, csBO read, cs80 _write, cs80 ioctl, seltrue, C_ALL
tp _open, tp_ close, tp read, tp_ wrlte tp ioctl, seltrue, 0,

nodev, nodev, nodev, nodev, nodev, nodev, o,

lp open, 1lp close, nodev, lp write, 1lp ioctl, seltrue, 0,

nulldev, nulldev, swap__ read, swap_’ write, nodev, nodev, O,

stp open, stp close, stp read stp wrlte, stp ioctl, seltrue, O,

1omap open, 1omap close, 1omap read, 1omap write, 1omap 1octl nodev, C_
amlgo open, amigo_close, amlgo read, amlgo “write, amigo ioctl, seltrue,

Feb 09

f Y/
Q
/*14*/
/*15%/
/*16%/
[*17%/
/*18%/
[*19%/
[*20%/
[*21%/
[*22%/
[*23%/
[*24%/
/*25%/
[*26%/
[*27%/
[*28%/
/*29%/
[*30%/
[*31%/
[*32%/
/*33%/
[*34%/
[*35%/
/*36%/
[*27%/

/ */
O
/ */
/*41%/
[*42%/
[*43%/
[*44%/
/*45%/
/*46%/
[*47%/
}i:

int
int

dev_t
/* The

13:13 1988 Overview (I/0) Page 12

graphics_open, graphics_close, graphics_read, graphlcs write, graphics_i
Srm629_ open, srmé629 close, srm629 read, srm629 _write, nodev, seltrue, 0,
nodev, nodev, nodev, nodev, nodev, nodev, 0,

rje_open, rje _close, rje read, rje write, rje_ioctl, seltrue, 0,

ptym open, ptym close, ptym read ptym write, ptym_ 1octl ptym_select, 0
ptys open, ptys close, ptys read, ptys write, ptys ioctl, ptys select, C
lla_open, 1lla close, lla read, lla wrlte, lla ioctl, 1lla select, C ALLCL
lla™ _open, lla™ _close, 1lla “read, lla wrlte, lla ioctl, lla select, C_ALLCL
nodev, nodev, nodev, nodev, nodev, “nodev, 0,

hplb open, hpib _close, hplb read, hpib write, hpib_ioctl, seltrue, C_ALL
hpib_open, hpib close, hpib read, hpib_ wrlte, hpib ioctl, seltrue, C_ALL
r8042 _open, r8042_close, nodev, nodev r8042 ioctl, nodev, 0,

hil _open, hil close, hll read, nodev, hil ioctl, hll select, O,

nimitz _open, nimitz close, nlmltz read, nodev, nodev, n1m1tz select o,
ciper_open, ciper_ close, nodev, c1per wrlte, c1per ioctl, seltrue, 0,
dos_open, dos close, dos read, dos write, dos_ ioctld, nodev, C_ALLCLOSES,
nodev, nodev, nodev, nodev, nodev, “nodev, O,

nodev, nodev, nodev, nodev, nodev, nodev, O,

nodev, nodev, nodev, nodev, nodev, nodev, O,

nodev, nodev, nodev, nodev, nodev, nodev, O,

vme_open, vme_close, vme read vme_write, vme_ioctl, nodev, O,

nodev, nodev, nodev, nodev, nodev, “nodev, O,

nodev, nodev, nodev, nodev, nodev, nodev, O,

nodev, nodev, nodev, nodev, nodev, nodev, O
nodev, nodev, nodev, nodev, nodev, nodev, O
nodev, nodev, nodev, nodev, nodev, nodev, 0
nodev, nodev, nodev, nodev, nodev, nodev, 0
nodev, nodev, nodev, nodev, nodev, nodev, O
nodev, nodev, nodev, nodev, nodev, nodev, 0
nodev, nodev, nodev, nodev, nodev, nodev, 0
nodev, nodev, nodev, nodev, nodev, nodev, 0
nodev, nodev, nodev, nodev, nodev, nodev, 0,

stealth_open, stealth close, nodev, nodev, stealth_ioctl, nodev, 0,
nodev, nodev, nodev, nodev, nodev, nodev, O,

nsdiag0_open, nsdiag0 close, nsdiag0_read, nodev, nsdiag0_ioctl, seltrue
scsi_open, scsi close, scsi _read, scsi wrlte, scsi_ioctl, seltrue, C_ALL

nblkdev
nchrdev

.
’
.
r

sizeof (bdevsw) / sizeof (bdevsw[O0]
sizeof (cdevsw) / sizeof (cdevsw[O0]

)
)
rootdev = makedev (-1, 0xFFFFFF) ;

following three variables are dependent upon bdevsw and cdevsw. If

either changes then these variables must be checked for correctness */

dev_t
int
int

swapdevl = makedev (5, 0x000000);
brmtdev = 6;
crmtdev = 45;

struct swdevt swdevt][]

{ makedev(-1,0xFFFFFF), 0, -1, 0 },
{ 0, 6, 0, O}

Feb 09 13:13 1988 Overview (I/0) Page

i‘:}; (*driver_link[]) () =

cs80_link,
amigo_link,
scsi_link,
graphics 1link,
srm629 1ink,
rje_link,
ptys_link,
lla_link,
hpib_1link,
vme_link,
stealth_link,
rfai_1link,
ti9914 link,
simon_Tink,
sio626_link,
sio628_link,
sio642_link,
ite200 1link,
(int (*)())0

Feb 09 13:13 1988 Overview (I/0) Page 14

#

HP-UX System Makefile
##

.SILENT

IDENT = -Dhp9000s200 -DKERNEL -Dhpux -DLOCKF -DHFS
REALTIME = =-DRTPRIO -DPROCESSLOCK

CC = /bin/cc +X
AS = /bin/as
LD = /bin/1ld

SHELL = /bin/sh

LIBSERVER = ‘if [-f /etc/conf/libserver.a]; then echo /etc/conf/libserver.a; f
LIBDSKLESS = ‘if [-f /etc/conf/libdskless.a]; then echo /etc/conf/libdskless.a
LIBLAN = ‘if [-f /etc/conf/liblan.a]; then echo /etc/conf/liblan.a; fi‘

LIBS = -1c

LIBS1 = /etc/conf/libkreq.a\
/etc/conf/libdreq.a\
/etc/conf/libsysV.a\
/etc/conf/libmin.a\
/etc/conf/libdevelop.a)\
/etc/conf/1libdil_srm.a\
$ (LIBNFS) \
$ (LIBSERVER) \
$ (LIBDSKLESS) \
$ (LIBLAN)

CFLAGS = -0 -Wc,-Nd3500,-Ns3500
COPTS = $(IDENT) $(REALTIME) -DWOPR

all: hp-ux

hp-ux: conf.o

rm —-f hp-ux

ar x f/etc/conf/libkreq.a locore.o vers.o name.o funcentry.o

@echo ’Loading hp-ux...’

$(LD) -m -n -o hp-ux -e _start -x \
locore.o vers.o conf.o name.o funcentry.o \
$(LIBS1) $(LIBS)

rm -f locore.o vers.o name.o funcentry.o

chmod 755 hp-ux

conf.o:
@echo ’‘Compiling conf.c ...’
$(CC) $(CFLAGS) $(COPTS) -c conf.c

Feb 09 13:06 1988 RAMdisk Page 1
RAMdisk Open

An open routine typically performs some driver specific operations. It may
be a driver that supports exclusive open (only one open at a time), so
returns an error for any additional opens. It may allocate buffer space (if
not already allocated). Also, it may perform card reset (e.g. the gpio
card) .

The RAM driver will allocate memory if it is the first open (that is, there
is presently no memory allocated for it). The open also ensures the
requested device is in the range (and size) of the driver. The information
on the device (drive number and size) is packed into the minor number. The
macros in ram.h are written to pull out the pertinent information. The
kernel provides similar type macros for extracting major, minor, selcode,
volume, & unit numbers from the "dev" value passed to the driver. The major
and minor number are packed into the 32bit value, with 8 bits for major
number and 24bits for the minor number.

/* max ram volumes cannot exceed 16 */
#define RAM MAXVOLS 16

/* io mapping minor number macros */
/* up to 1048575 - 256 byte sectors */

#dpfine RAM SIZE(x) ((x) & OxXfffff) /* XXX */
/' 16 disc allowed */

#®fine RAM DISC(x) (((x) >> 20) & Oxf) [* XXX */
#define RAM MINOR(x) ((x) & OXEfffff) [* XXX */

#define LOG2SECSIZE 8 /* (256 bytes) "sector" size (log2) of the ram discs */

struct ram descriptor ({

char *addr; /* "disc space" in RAM */
int size; /* size of RAM disc */
short opencount; /* number of opens */
short flag;

int rdilk; /* Stats for 1k reads */
int rd2k; /* Stats for 2k reads */
int rd3k; " /* Stats for 3k reads */
int rd4k; /* Stats for 4k reads * /
int rd5k; /* Stats for 5k reads */
int rdék; /* Stats for 6k reads */
int rd7k; /* Stats for 7k reads *x/
int rd8k; /* Stats for 8k reads * /
int rdother; /* Stats for other reads */
int wtlk; /* Stats for 1k writes */
int wt2k; /* Stats for 2k writes */
int wt3k; /* Stats for 3k writes */
int wtdk; /* Stats for 4k writes */
int wt5k; /* Stats for 5k writes */
int wték; /* Stats for 6k writes */
int wt7k; /* Stats for 7k writes */
int wt8k; /* Stats for 8k writes */

int wtother; /* Stats for other writes */

Feb 09 13:06 1988 RAMdisk Page 2

)Om_device [RAM_MAXVOLS] ;

Feb 09 13:06 1988 RAMdisk Page 3

/
** Open the ram device.
*/

ram_open(dev, flag)
dev_t dev;

int flag:;

{

register unsigned long size;
register struct ram_descriptor *ram_des ptr;

/* check if this is status open #*/
if (RAM_MINOR(dev) == 0)
“return(0);

/* check if this device is greater than max number of volumes */
if ((size = RAM DISC(dev)) > RAM_MAXVOLS)
return(EINVAL) ;

ram _des ptr = &ram device[size]:;

/* check the size of the ram disc less than 16 sectors */
if ((size = RAM _SIZE(dev)) < 16)
return (EINVAL) ;

/* check if already allocated */
if (ram _des ptr->addr != NULL) ({

/* then check if size changed, must be the same size */

if (ram_

/* bump
ram_des
} else {

des_ptr->size != size)
“return(EINVAL) ;

open count */

_ptr->opencount++;

/* allocate the memory for the ram disc */
1f ((ram_des_ptr->addr =

}

/* save

ram_des_

/* open
if (ram_

}

return(0) ;

(char *)sys memall(size<<LOG2SECSIZE))
return (ENOMEM) ;

size in 256 byte "sectors" */
ptr->size = size;

count should be zero */
des_ptr->opencount++) {
“panic("ram_open count wrong\n") ;

== NULL) ({

Feb 09 13:06 1988 RAMdisk Page 4

RAMdisk Read/Write routines

This is a "typical" read & write routine for drivers that have a block driver
as well, or that will use a common read/write "strategy" routine and buffer
headers. The physio() routine will take the information from the uio and

dev variables and construct a buf structure that contains the information
necessary for the strategy routine to perform the I/O. Physio() will break
up the transfers into small enough transfers for the strategy routine to
handle. The parameters to physio() are:

strategy address of the strategy() routine physio will call
bp pointer to a buf structure for physio to use; if

NULL, then physio will get one from the buffer cache
dev ' the packed device info obtained when device opened
rw either B_READ or B WRITE, indicating transfer type
mincnt address of mincnt() routine, a routine that

determines the max transfer size (usually the kernel
provided minphys() routine (xfer size = 64Kk)

uio uio structure containing info about the user and
the I/0 request (size & direction of transfer,
pointers to user’s buffers for the I/0, etc.)

In the RAM disk driver, the read & write routines have the physio() routine
reruest a buf structure from the file system’s buffers. It uses the

K gm 21’s minphys() routine, so strategy will break up the transfers to a
m(:)mum of 64k transfers.

ram_read(dev, uio)
dev_t dev;
struct uio #*uio;

{
}

ram write(dev, uio)
dev_t dev;
struct uio *uio;

{
)

return physio(ram_strategy, NULL, dev, B_READ, minphys, uio);

return physio(ram_strategy, NULL, dev, B WRITE, minphys, uio):;

Feb 09 13:06 1988 RAMdisk Page 5

RAMdisk Strategy

This routine will actually perform the "I/O" to the RAM disc. The buf
structure passed to the strategy routine contains the necessary information
for the transfer. This info is filled in by kernel routines. In the case
of a character device, physio() performs this task; for block devices, the
file system takes care of filling in the data.

ram_strategy (bp)
register struct buf *bp;
{
register block _d7;
register char *addr:
register struct ram_descriptor *ram_des_ptr;

/* check if this is a status request, return the ram_device structure */
if (RAM MINOR (bp->b_dev) == 0)
if ((bp->b_flags & B_PHYS) && /* must be char (raw) device */
(bp->b flags & B _READ) "&&
(bp—>b bcount == 51zeof(ram device))) {
bp->b_ resid = bp->b_bcount; /*normally done by bpcheck*/

/* return the “"ram device" structure to the caller */
bcopy (&ram_: device[0], bp->b un.b _addr,
s1zeof(ram_dev1ce)),
} else {
bp->b error
bp->b_flags

EIO;
B_ERROR;

goto done;

/* do the normal reads and writes to ram disc */
ram_des_ptr = &ram_device[RAM_ DISC(bp->b_dev)];

/* sanity check if we got the memory #*/

if ((addr = ram_des ptr->addr) == NULL) {
panic("no memory in ram _strategy\n");

}

/* make sure the request is within the domain of the "disc" */
if (bpcheck(bp, ram_des_ptr->size, LOG2SECSIZE, 0))
return:;

/* calculate addréss to do the transfer */
addr += bp->b_un2.b_sectno<<LOG2SECSIZE;

/* for debugging file system only */
block_d7 = bp->b_un2.b_sectno>>2;

Feb 09 13:06 1988 RAMdisk Page 6

if (bp->b_flags & B _READ) {
pbcopy(addr, bp->b un.b_addr, bp->b bcount);
switch (bp->b bcount/1024) {
case 1: ram_des_ptr->rdlk++;

: break;

case 2: ram _des_ptr->rd2k++;
break;

case 3: ram_des_ptr->rd3k++;
break;

case 4: ram_des_ptr->rd4k++;
break;

case 5: ram des ptr->rd5k++~
break;

case 6: ram des_ptr->rdék++;
break;

case 7: ram des ptr->rd7k++;
break;

case 8: ram_des_ptr->rd8k++;
break;

default: ram_des_ptr->rdother++;

}
} else { /* WRITE */
pbcopy (bp->b_un.b_addr, addr, bp->b_bcount);
. switch (bp—>b bcount/1024) {
case 1: ram des ptr->wtlk++;

break;

case 2: ram _des_ ptr->wt2k++;
break;

case 3: ram_des_ptr->wt3k++;
break;

case 4: ram_des_ ptr->wt4k++;
: break;

case 5: ram_des_ptr->wtSk++;
break:;

case 6: ram_des ptr->wték++;
break;

case 7: ram _des_ ptr->wt7k++;
break:;

case 8: ram_des ptr->wt8k++;
break;

default: ram_des_ptr->wtother++;

}
}

bp->b_resid -= bp->b_bcount;
blodone(bp),

done:

Feb 09 13:06 1988 RAMdisk Page 7

/M£his routine is put in here because I want it to be in the profiles */
just as well be used if profiling is not used */

/* bcopy could

asm(" global
asm("_pbcopy:
asm(" movm. 1l
asm(" exg
asm(" subqg.l
asm(" blt
asm(" ror.l
asm(" bra
asm("Llpcopyl:
asm(" mov.1l
asm("Llpcopy2:
asm(" dbra
asm(" swap
asm(" rol.w
asm("Llpcopy3:
asm(" mov.b
asm(" dbra

asm("Llpcopy4:
asm(" rts

_Pbcopy

4(%sp),%d0/%a0-%al

%d0, %al
&1, %40
Llpcopy4
&2,%d0
Llpcopy?2

(%al)+, (%a0)+
%d0, Llpcopyl
%d0

&2,%d0

(%al)+, (%a0)+
%d0,Llpcopy3

H e W H I H W

S ¥

e

physio enforces word alignment!

0 thru 256 Kbytes!!!
d0O = src; a0 = dst; al
d0 = cnt; al = src
make a counter

less or = zero?

move 4 bytes at a time

move large block

get remaining bytes
position to low bits

1 to 4 bytes last bytes

cnt

- W e W w W W W w W W e W =
- e M S = e = ® m m w = = =
Nt N St i N v it s N e et S?

N N e

e Ne Mo Ne N Ne Ne We Ne WE N WO N4 Vo W W we “wo

-

):

Feb 09 13:06 1988 RAMdisk Page 8

RAMdisk Ioctl

The ioctl routine:
executed via ioctl(2);
purpose: ~
handles commands passed to it via ioctl
implement the various ioctls by including statements of the
following form:
#define CMD task(t, n, arg)

where:
CMD command name
t arbitrary letter
n sequential number (unique for each ioctl define for a

given ioctl routine)
arg optional arg for command
"task" is one of the following (task is a macro defined in sys/ioctl.h
_Io no arg
_IOR user reads info from the driver into arg
_Iow user writes info to driver from data in (or pointed to by)
arg
_IOWR both _IOR and _ICW

There are two ioctl’s defined for the RAM disc driver. They are as follows:

/ ctl to deallocate ram volume */
ine RAM DEALLOCATE _IOW(R, 1, int)

/* ioctl to reset the access counter to ram volume */
#define RAM RESETCOUNTS _IOW(R, 2, int)

Feb 09 13:06 1988 RAMdisk Page 9

r™’ioctl (dev, cmd, addr, flag)

dev_t dev; :

int cmd;

caddr_t addr;

int flag;

{
reglster struct ram descrlptor *ram_des_ptr;
register volume;

/* check if dev is the status dev */
if (RAM_MINOR(dev) != 0)
return(EIO);

/* check if 0 - 15 disc volume */

volume = *(int *)addr;

if ((volume % RAM MAXVOLS) != volume)
return(EIO);

/* calculate which ram volume it is */
ram_des ptr = &ram_device[volume];

/* if not allocated, then return error */
if (ram_des_ptr->addr == NULL) ({
return (ENOMEM) ;

)
switch(cmd) ({

/* mark for memory release on last close */
case RAM DEALLOCATE:
ram des_ptr->flag = RAM_RETURN;
break;

/* clear out access counts */
case RAM RESETCOUNTS:

ram des ptr->rd8k = 0:;
ram des ptr->rd7k = 0;
ram_des_ptr->rdék = 0;
ram des ptr->rd5k = 0;
ram des ptr->rd4k = 0;
ram des _ptr->rd3k = 0;
ram des ptr->rd2k = 0;

ram _des_ptr->rdlk = 0;

ram des ptr->rdother = 0;
ram des ptr->wt8k = 0;
ram des ptr—>wt7k = 0;
ram des _ptr->wtsk = 0;
ram des _ptr->wtbk = 0;
ram des ptr->wtdk = 0;
ram des _ptr->wt3k = 0;
ram des ptr—>wt2k = 0;
ram_des_ptr->wtlk = 0;
ram des ptr ->wtother = 0;

break;
default:
return(EIO);

Feb 09 13:06 1988 RAMdisk Page 10

return(0) ;

Feb 09 13:06 1988 RAMdisk Page 11

RAMdisk Close

The close routine may typically perform some driver specific operations. It
may flush buffers if the device supports asyncronous I/0 (e.g. tty driver).
It will usually decrement an "open" counter and may release I/0 buffers,
etc. on close.

The RAM disk driver just decrements an open count and will release memory on
last close if the RAM RETURN flag has previously been set by an ioctl call.

#define RAM_RETURN 1

struct ram_descriptor {
char *addr;
int size;
short opencount;
short flag;
int rdlk;

e
.
.
.

} ram_device[RAM MAXVOLS]:

ram close(dev)

d t dev:;

{
register struct ram_descriptor *ram des_ptr;
register i;

/* check if this is status close */
if (RAM_MINOR(dev) != 0) {
ram _des_ptr = &ram_device[RAM DISC(dev)];

if (--ram_des_ptr->opencount < 0)
panlc("ram close count less than zero\n"):
}

/* free all ram volumes with flag set and open count = 0 */
/* RAM RETURN flag is set by an ioctl call *x/

ram des ptr = &ram device[0];

for (i = 0; i < RAM MAXVOLS; i++, ram_des_ptr++) {

if ((ram_ des _ptr->flag & RAM RETURN) == 0)
continue;

if (ram_des ptr—>opencount I= 0)
“continue;

/* release the system memory */

sys_memfree(ram_des_ptr->addr, ram_des_ptr->size<<LOG2SECSIZE):;

/* zero the whole entry */ :
bzero((char *)ram_des ptr, sizeof(struct ram descriptor));

Feb 09 13:06 1988 RAMdisk Page 12

kPUX_ID: @(#)ram.h 49.1 87/08/21 */
#include <sys/ioctl.h>

/* max ram volumes cannot exceed 16 */
#define RAM MAXVOLS 16

/* ioctl to deallocate ram volume */
#define RAM DEALLOCATE _IOW(R, 1, int)

/* ioctl to reset the access counter to ram volume */
#define RAM RESETCOUNTS _IOW(R, 2, int)

/* io mapping minor number macros */
/* up to 1048575 - 256 byte sectors */

#define RAM SIZE(x) ((x) & OXFffff) /* XXX %/
/* up 16 disc allowed */

#define RAM DISC(x) (((x) >> 20) & OXf) /* XXX */
#define RAM MINOR(x) ((x) & OXFEffEfff) /% XXX */

#define LOG2SECSIZE 8 /* (256 bytes) "sector" size (log2) of the ram discs */
#define RAM RETURN 1

s ct ram descriptor ({
char *addr;
int size;
short opencount;
short flag:

int rdlk:;
int rd2k;
int rd3k;
int rd4k;
int rds5k;
int rdék;
int rd7k;
int rdsk;
int rdother;
int wtilk;
int wt2k;
int wt3k;
int wtak;
int wt5k;
int wték;
int wt7k;
int wt8k;
int wtother;

} ram_device[RAM MAXVOLS];

Feb 09 13:06 1988 RAMdisk Page 13

QIPUX_ID: @ (#)ram disc.c 49.1 87/08/21 */

/**/

This driver allows you to create up to 16 "ram disc" volumes, doing a
"mkfs" on them and then "mount"ing them as a file system. Be careful to
not use up too much ram on the "disc". You still must have some left for

running normal processes.
System Software Operation
Fort Collins, Co 80526
Oct 14, 1986
Note:

There is a bug in 5.2 and earlier systems. The "special" dev is left

open if there is an error during a "mount" command. This will make it

impossible to deallocate a disc volume if a "mount" error occurs.

be carefull to do a "mkfs" on the disc volume before trying to mount it.

Revision History:
11-21-86 added the status request
12-09-86 changed the ramfree request

So

/**/

/*
* %
*

*kk ok STEPS TO ADD THE RAM DISC DRIVER TO YOUR KERNEL

—

Sem' 1) Login as "root"
cd /etc/conf

STEP 2) make a mod to the "/etc/master" file as follows:

% ok % % % % ok %

0
0

ra

No

ST

s

HPUX ID: @(#)master 10.3 85/11/14

The following devices are those that can be specified in the system
description file. The name specified must agree with the name shown,
or with an alias. '

name handle type mask block char

80 cs80 3 3FB 0 4

mdisc ram 3 FB 4 20

te: Major number 4 for block device and 20 for char (raw) device may

need to be different on your system. Reflect these different
numbers in the "mknod" command below.

EP 3) modify the "/etc/conf/dfile...your_favorite" with the addition
"ramdisc"

4) # ar -rv libmin.a ram _disc.o
0

5) # config dfile...your favorite

of

Feb 09 13:06 1988 RAMdisk Page 14

STEP 6)

STEP 7)

STEP 8)

STEP 9)

make -f config.mk

mv /hp-ux /SYSBCKUP
mv ./hp-ux /hp-ux

reboot
and login as "root"

/etc/mknod /dev/ram b 4 0xVSSSSS

/etc/mknod /dev/rram c 20 OxVSSSSS
Where V = volume number 0 - F
Where SSSSS = number of 256 byte sectors in volume (in hex).

(]

/etc/mknod /dev/raml28K
/etc/mknod /dev/rraml28K

/etc/mknod
/etc/mknod

/dev/ramlM
/dev/rramlM

/etc/mknod
/etc/mknod

/dev/ram2M
/dev/rram2M

/dev/ramiM
/dev/rramiM

/etc/mknod
/etc/mknod

/etc/mknod
/etc/mknod

/dev/ramAM
/dev/rramAM

Wt I W K WM

b
c
b
c
b
c
b
c

b
c

4
20

4
20

4
20

4
20

4
20

0x000200
0x000200

0x101000
0x101000

0x202000
0x202000

0x404000
0x404000

OxXAOAO0QO
OxAOA000

(block device)
(char device)
(0 - 15)

(block 128Kb ram volume)
(char 128Kb ram volume)

(block
(char

1Mb ram volume)
1Mb ram volume)

(block 2Mb ram volume)
(char 2Mb ram volume)

(block 4Mb ram volume)
(char 4Mb ram volume)

(block 10Mb ram volume)
(char 10Mb ram volume)

(Note: I don’t know if this works yet - don’t have this much mem)

STEP 10)# mkfs /dev/raml28K 128 8 8 8192 1024 32 0 60 8192
(mkfs for 128Kb volume)

STEP 11)

STEP 12)

mkfs /dev/ramlM 1024
mkfs /dev/ram2M 2048
mkfs /dev/ram4M 4096
mkdir /raml28K

mount /dev/raml28K /raml28K
mkdir /ramlM

mount /dev/ramlM /ramlM
mkdir /ram2M

mount /dev/ram2M /ram2M
mkdir /fram4M

mount /dev/ram4M /ram4M
To unmount volume

umount /dev/ramlM

To make the control /dev for "ramstat".
c 20 0x0

[etc/mknod /dev/ram

(make file system for 1Mb volume)
(make file system for 2Mb volume)
(make file system for 4Mb volume)

(mount 128K ram volume)

(mount 1Mb ram volume)

(mount 2Mb ram volume)

(mount 4Mb ram volume)

(status is raw dev only)

'Orelease memory of disc #1 (and destroying all files on volume)

ramstat -d 1 /dev/ram

Feb 09 13

dhkhkkhhkkk

#ifdef KE
#include
#include
#include
#include
#else

#include
#include
unsigned
#include
#include
#endif

={<00pen

*/
ram_open(
dev_t dev
int flag:;
{

r
r

/

i

/

i

:06 1988 RAMdisk Page 15

-or- 1if you use the above /dev/ram convention.
ramstat -4 1

status of all memory volumes
ramstat /dev/ram
ramstat

the access counters of a memory volume # 1.

ramstat -r 1 /dev/ram

ramstat -ril
**/

RNEL

", ./h/param.h"
"../h/errno.h"

" . /h/buf.h"
",./s200io/ram.h"

<sys/param.h>

<sys/errno.h>

minphys () /* XXX needed only with user version of buf.h */
<sys/buf.h>

"ram.h"

the ram device.

dev, flag)

.
’

egister unsigned long size;
egister struct ram_descriptor *ram_des ptr;

* check if status open */
f (RAM_MINOR(dev) == 0)
return(0) ;

* check if greater than max number of volumes */
f ((size = RAM_DISC(dev)) > RAM_MAXVOLS)
return (EINVAL) ;

ram_des ptr = &ram_device[size];

/

i

/

i

* check the size of the ram disc less than 16 sectors */
f ((size = RAM SIZE(dev)) < 16)
return (EINVAL) ;

* check if already allocated */
f (ram_des_ptr->addr != NULL) {

/* then check if size changed */
if (ram_des ptr->size != size)

Feb 09 13:06 1988 +RAMdisk Page 16

}

return (EINVAL) ;

/* bump open count */

ram_des_ptr->opencount++;
} else {

/* allocate the memory for the ram disc */

if ((ram_des_ptr->addr =
(char *)sys memall (size<<LOG2SECSIZE)) == NULL) {
return (ENOMEM) ;

)

/* save size in 256 byte "sectors" */
ram_des ptr->size = size;

/* open count should be zero */

if (ram_des_ptr->opencount++) {
panic("ram open count wrong\n");

}

return(0) ;

ram_close(dev)
dev_t dev;

{

/*

*/

)

register struct ram_descriptor #*ram des ptr;

register i;

/* check if status open */
if (RAM_MINOR(dev) != 0) {

}

ram _des ptr = &ram_device[RAM DISC(dev)]:;

if (--ram_des ptr->opencount < 0)
panic("ram_close count less than zero\n"):;

NOTE: 5.2 9000/300 and earlier systems may have a bug that the memory
cannot be released if there was ever a "mount" error because the open
count will never reach zero -- so be carefull to do a "mkfs" before

a "mount".

/* free all ram volumes with flag set and open count = 0 */
ram_des ptr = &ram_device[O0];

for (i

}

= 0; i < RAM MAXVOLS; i++, ram des ptr++) {

if ((ram _des ptr->flag & RAM RETURN) == 0)
continue;

if (ram_des_ptr->opencount != 0)
continue;

/* release the system memory */
sys_memfree(ram_des_ptr->addr, ram_des ptr->size<<LOG2SECSIZE) ;

/* zero the whole entry */
bzero((char *)ram _des ptr, sizeof(struct ram descriptor)):

réhgétrategy(bp)

Feb 09 13:06 1988 RAMdisk Page 17

r(:}gter struct buf #*bp;
U

register block d7;
register char *addr;
register struct ram_descriptor *ram_des_ptr;

[* check if status request, return the ram device structure */
if (RAM_MINOR(bp->b_dev) == 0) {
if ((bp->b_ flags & B _PHYS) && /* must be char (raw) device */
(bp->b_flags™ & B_READ) &&
(bp->b_bcount == sizeof (ram device))) {
bp->b_ resid = bp->b bcount; /#*normally done by bpcheck#*/

/* return the "ram device" structure to the caller */
becopy (&ram dev1ce[0], bp->b_un.b_addr,
sizeof (ram_device))7;
)} else {
bp->b_error
bp->b_ flags

EIO;
B_ERROR;

goto done;

/* do the normal reads and writes to ram disc */
ram_des ptr = &ram_device[RAM_DISC(bp->b_dev)];

/* sanity check if we got the memory */

if ((addr = ram des _ptr->addr) == NULL) {
panic("no memory in ram strategy\n");

}

/* make sure the request is within the domain of the "disc" */
if (bpcheck(bp, ram _des ptr->size, LOG2SECSIZE, 0))
return;

/* calculate address to do the transfer */
addr += bp->b_un2.b_sectno<<LOG2SECSIZE;

/* for debugging file system only */
block_d7 = bp->b_un2.b_sectno>>2;

if (bp->b_flags & B_READ) {
pbcopy(addr bp->b un.b_addr, bp->b_bcount);
switch (bp->b_bcount/1024) {
case 1: ram des_ptr->rdlk++;

break;

case 2: ram_des_ptr->rd2k++;
break;

case 3: ram des ptr->rd3k++;
break;

case 4: ram_des_ ptr->rd4k++;
break;

case 5: ram des ptr->rd5k++;
break;

case 6: ram _des_ptr->rdék++;
break:

case 7: ram _des_ ptr->rd7k++;
break;

Feb 09

13:06 1988 RAMdisk Page 18

case 8:

default:

ram_des_ ptr->rd8k++;
break;
ram_des_ptr->rdother++;

}
} else { /* WRITE */
pbcopy (bp->b_un.b_addr, addr, bp->b_bcount);

switch (
case 1:

case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:

default:

)
)

bp->b bcount/1024) {
ram _des ptr->wtlk++;
break;
ram _des ptr->wt2k++;
break:;
ram_des_ptr->wt3k++;
break;
ram_des ptr->wt4k++;
break;
ram_des_ptr->wtbSk++;
break;
ram _des_ptr->wték++;
break;
ram_des ptr->wt7k++;
break;
ram_des_ ptr->wt8k++;
break:;
ram_des_ptr->wtother++;

bp->b_resid -= bp->b_bcount;

biodone (bp) ;

/* this routine is put in here because I want it to be in the profiles */
/* bcopy could just as well be used if profiling is not used */

asm("

global _pbcopy

asm("_pbcopy:

asm("
asm("
asm(("
asm("
asm("
asm("

movm.l 4(%sp),$%

exqg %d0, %al
subg.1l &1,%d0
blt Llpcopy4
ror.1l &2,%d0
bra Llpcopy?2

asm("Llpcopyl:

asm("

mov.l (%al)+, (

asm("Llpcopy2:

asm("
asm("
asm("

dbra %$d0, Llpcopyl

swap %$do
rol.w &2,%d40

asm("Llpcopy3:

asm("
asm("

asm("

mov.b (%al)+, (

0 thru 256 Kbytes!!!

d0 = src; a0 = dst; al = cnt
d0 = cnt; al = src

make a counter

less or = zero?

do/%a0-%al

move 4 bytes at a time

M HHHH WK

%a0)+ move large block

get remaining bytes
position to low bits

HH

%a0)+ # 1 to 4 bytes last bytes

dbra %d0,Llpcopy3
asm("Llpcopy4:

rts

rﬁead (dev, uio)
dew’t dev;

physio enforces word alignmemt!

w @ m e e e @ @ W W w W w W W w ™
- E R = wm a m m w wm W W wm w w o= =
e’ e N’ e’ e N S N Nt N N i i N N S s i

~

Ne Ne Ne Ve NG NE N N WE WE Ne W N Ne Ns W Wo Wy

~-e

Feb 09 13:06 1988 RAMdisk Page 19

)

ct uio *uio;
i

return physio(ram_strategy, NULL, dev, B_READ, minphys, uio);

ram_write(dev, uio)
dev_t dev;
struct uio *uio;

{
}

return physio(ram_strategy, NULL, dev, B WRITE, minphys, uio);

ram_ioctl(dev, cmd, addr, flag)
dev t dev;

int cmd;

caddr_t addr;
int flag:;

{

register struct ram _descriptor *ram_des ptr;
register volume;

/* check if dev is the status dev */
if (RAM MINOR(dev) != 0)
“return(EIO);

/* check if 0 - 15 disc volume */

volume = *(int *)addr;

if ((volume % RAM MAXVOLS) != volume)
return(EIO);

/* calculate which ram volume it is */
ram_des ptr = &ram_device[volume];

/* if not allocated, then return error */
if (ram_des ptr—>addr == NULL) {
“return (ENOMEM) ;

}
switch(cmd) ({

/* mark for memory release on last close */
case RAM DEALLOCATE:
ram des _ptr->flag = RAM RETURN;
break;

/* clear out access counts #*/
case RAM RESETCOUNTS:

ram des ptr->rdsk = 0;
ram des ptr->rd7k = 0;
ram des ptr->rdék = 0;
ram des ptr->rd5k = 0;
ram des ptr->rd4k = 0;
ram_des ptr->rd3k = 0;
ram des ptr->rd2k = 0;
ram des ptr >rdlk = 0;

ram des ptr—>rdother = 0;
ram__ “des ptr->wt8k = 0;

Feb 09 13:06 1988 RAMdisk Page 20

ram_des

ram_des_ptr->wték

ram des

ram_des_ptr->wt4k
ram_des_ptr->wt3k

ram des

ptr->wt7k
tr->wt5k

ptr->wt2k

ram_des _ptr->wtlk =
ram_des_ptr->wtother =

break:;
default:

return(EIO);

return(0) ;

Feb 11 08:24 1988 Gpio Driver Page 1
Read System Call

The read(2) system call is a very short assembly language stub. It puts
into register d0 what the system call is (3 for read) and performs a trap O.
Upon return, it checks what the status is and jumps to an error routine if
a -1 is returned.

example call:
read (fd,buff,10):;
KLEENIX ID @(#)read.s 49.1 86/12/18
C library -- read

nread = read(file, buffer, count);

nread ==0 means eof; nread == -1 means error
set ‘READ, 3
global _read
global _ cerror

_read:

ifdef (‘PROFILE’, "
mov.l &p_ read, %a0

jsr mcount

")

movqg &READ, %d0

trap &0

bce.b noerror

jmp ___cerror
noerror:

rts

ifdef (‘PROFILE’,®
data
p_read: long 0
")

Feb 11 08:24 1988 Gpio Driver Page 2

Xsyscall (kernel)

Xsyscall is the code executed (in the kernel) due to receiving a trap 0. It
saves the registers and the pointer to the user’s stack onto the kernel
stack. Then we jump to the syscall (C) routine , the system call "gateway"
routine. Upon return from the system call, we restore the user’s stack
p01nter and other register values from kernel stack, and return from
execption. ,

HPUX ID: @(#)locore.s 49.3 87/10/01

#(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

#(c) Copyright 1979 The Regents of the University of Colorado,a body corporate
#(c) Copyright 1979, 1980, 1983 The Regents of the University of cCalifornia
#(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

#The contents of this software are proprietary and confidential to the Hewlett-
#Packard Company, and are limited in distribution to those with a direct need
#to know. Individuals having access to this software are responsible for main-
#taining the confidentiality of the content and for keeping the software secure
#when not in use. Transfer to any party is strictly forbidden other than as
#expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
#fer to or possession by any unauthorized party may be a criminal offense.

#

RESTRICTED RIGHTS LEGEND

#

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

#

HEWLETT-PACKARD COMPANY

3000 Hanover St.

Palo Alto, CA 94304

global _xsyscall, syscall

_xsyscall:
movm.1l %d0-%d7/%a0-%a7,-(%sp) #save all 16 registers
mov.l %usp, %ao0

mov.1l %a0,60(%sp) #save usr stack ptr
pass exception frame
jsr _syscall #C handler for syscalls
fall into xreturn code
xreturn:
mov.1l 60 (%sp) ,%ao0
mov.l %a0,%usp #restore usr stack ptr
movm.l (%sp)+,%d0-%d7/%a0-%a6 #restore all other registers
addg.l &4,%sp # and pop off sp
addgq.l &6,%sp #sp and alignment word

bclr &POP_STACK BIT, u+PCB_FLAGS
bne.b xreturnl
rte

Feb 11 08:24 1988 Gpio Driver Page 3

Feb 11 08:24 1988 Gpio Driver Page 4

Syscall Kernel Routine

The syscall routine is passed the address of the execption stack, the values
in the user’s registers at the time of the trap. The syscall routine
removes from the stack the system call number (3 for a read). This number
is used in a table lookup to determine what system routine to call and how
many parameters were put onto the user’s stack. These parameters are then
copied from the user’s stack into the process’s u_area. After setting up
the u_area with the system call information, we call the routine pointed to
by the system call number (the kernel read routine in this case).

Upon return from the read routine, syscall checks what the error value is in
the u_area.

If there was an error, the error value is put into register do
(on the exception stack).

If the read routine successfully completed (no interrupt), the return
value in the u_area is put into register dO (on the exception
stack).

If the call was interrupted (for any reason) and the system call is
set up for RESTART, then the PC in the exception stack is backed
up two instructions (back to the trap 0 statement in read(2)).

We _then update the u_area, and check the "runrun" flag to see if another
P} ss has a higher priority than we have. If there is, we let the system
s‘:}ch to that process. If not, then we return to xsyscall, then back to

" rland".

Feb 11 08:24 1988 Gpio Driver Page 5

Read Kernel Routine

The read kernel routine sets up a "uap" structure that will contain the
information necessary for the I/0. It contains the file descriptor, address
of the user’s buffer, and count (retrleved from the u_area). It takes this
information and puts it into an iovec structure, containing the buffer
location and count. The iovec struct is placed into a "uio" structure along
with the number of iovec structures (1 for a read, greater than 1 for

readv). Read then calls rwulo() with the "uio" structure and a flag
indicating “"read".

/* HPUX ID: @(#)sys_gen.c 49.1 87/08/21 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
f¢_ to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

/* Read system call. */
read ()
{
register struct a {
int fdes;
char *cbuf;
unsigned count;
} *uap = (struct a *)u.u ap,
struct uio auio;
struct iovec aiov;

aiov.iov_base = (caddr_t)uap->cbuf;
aiov.iov_ “len = uap->count;
auio.uio_iov = &aiov;

auio.uio iovent = 1;

rwuio(&auio, UIO_READ) ;

Feb 11 08:24 1988 Gpio Driver Page 6

Feb 11 08:24 1988 Gpio Driver Page 7

Rwuio Kernel Routine

The rwuio routine determines from the file descripter what file we are
dealing with. It ensures that we have permission to execute the request (we
have "read" permission on the file). It sets up some of the uio fields
(e.g. residual count = 0) and ensures that the iovectors are valid (non-
negative). We determine the total number of bytes requested (total of each
iovec count) and set the uio offset to the present file pointer offset.

Then we will call the routine "ufsrdwr" via a p01nter to the routine in the
file pointer structure (the routine is)filled in by the open system call).

Upon return we update the return value/ in the u_area (bytes transfered) and
the file pointer offset.

ALY
/* HPUX_ID: @(#)sys_gen.c 49.1 87/08/21 */

/* '

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate

(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologles. All nghts Reserved.

The contents of thls software are proprietary and confidential to the Hewlett—

Packard Company, and are limited in distribution to those with a direct need

to know. Individuals having access to this software are responsible for main-

t~—™ing the confidentiality of the content and for keeplng the software secure

W, . not in use. Transfer to any party is strictly forbidden other than as
essly permitted in writing by Hewlett-Packard Company. Unauthorized trans-

fer to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

rwuio(uio, rw)
register struct uio *uio;
enum uio_rw rw;

struct a {

int fdes;
}i
register struct file *fp;
register struct iovec *iov;
int i, count;

Feb 11 08:24 1988 Gpio Driver Page 8

GETF (fp, ((struct a *)u.u_ap)->fdes):

if ((fp->f_ flag&(rw==UIO READ ? FREAD : FWRITE)) == 0) ({
u.u_error = EBADF;
return;

)

uio->uio resid = 0:
uio->uio segflg 0;
iov = uio->uio_iov;
for (i = 0; i < uio->uio_iovent; i++) {
if (iov->iov_ len < 0) {
u.u_error = EINVAL;
return;
}
uio->uio_resid += iov->iov_len;
if (uio->uio_resid < 0) {
u.u_error = EINVAL;
return;

}
iov++;
}
count = uio->uio_resid;
uio->uio_offset = fp->f offset; .
if ((u.u procp->p flag&SOUSIG) == 0 && setjmp(&u.u_gsave)) {
if (ulo->u1o resid == count)
u.u_eosys = RESTARTSYS;
} else
u.u_error = (*fp->f ops->fo_rw) (fp, rw, uio);
u.u r.r vall = count - uio->uio res1d,

fp->f offset += u.u_r.r_vall;
u.u_ru.ru_ioch += u. u r.r vall; /* for System V accounting */

Feb 11 08:24 1988 Gpio Driver Page 9

Vno_rw Kernel Routine

The routine vno_rw is the vnode layer read/write routine. It sets up some
values from the uio and file pointer structures and calls VOP RDWR, a macro

routine which calls the proper vnode operation routine (in this case
ufs_rdwr).

/* HPUX ID: @(#)vfs_io.c 49.1 87/08/21 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
fer to or possession by any unauthorized party - may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

int

vno_rw(fp, rw, uiop)
struct file *fp;
enum uio rw rw;
struct uio *uiop;

register struct vnode *vp;
register int count;
register int error;:

vp = (struct vnode *)fp->f data;
/*
* Ir write make sure filesystem is writable
*/ -
if ((rw == UIO_WRITE) && (vp->v_vfsp->vfs flag & VFS_RDONLY))
return (EROFS) ;
count = uiop->uio_resid;
if (vp->v_type == VREG) {
error =

Feb 11 08:24 1988 Gpio Driver Page 10

VOP_RDWR(vp, uiop, rw,
((fp->f _flag & FAPPEND) != 07
IO_APPEND|IO_UNIT: IO_UNIT), fp->f_cred):

Feb 11 08:24 1988 Gpio Driver Page 11

} else {
error =
VOP_RDWR(vp, uiop, rw,
((fp->f_flag & FAPPEND) != 0?
I0_APPEND: 0), fp->f cred);

if (error)
return(error) ;
if (fp->f_flag & FAPPEND) ({
*

* The actual offset used for append is set by VOP_RDWR

* so compute actual starting location

*/

fp->f offset = uiop->uio_offset - (count - uiop->uio_resid);

return(0);

Feb 11 08:24 1988 Gpio Driver Page 12

Ufs_rdwr Kernel Routine

The ufs_rdwr routine is the read/write vnode operation routine. It is a
short routine that converts the vnode pointer into an inode pointer, and

(for a device file), calls the rwip routine (we are getting close to the
driver!)

/* HPUX_ID: @(#)ufs_vnops.c 49.7 87/10/16 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
fer to or possession by any unauthorized party may be a criminal offense. -

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

/* read or write a wvnode */
int
ufs_rdwr(vp, uiop, rw, ioflag, cred)
struct vnode *vp;
struct uio *uiop;
enum uio rw rw;
int ioflag:;
struct ucred *cred;

register struct inode *ip;

int error;
int type:;

ip = VTOI(vp):
type = ip->i_mode&IFMT;

Feb 11 08:24 1988 Gpio Driver Page 13

if (type == IFREG || type == IFIFO || type == IFNWK) {
/* don’t have file pointer */
ILOCK (ip) ;
if ((ioflag & IO APPEND) && (rw == UIO_WRITE)) {
/*

* in append mode start at end of file.
*/
uiop->uio_offset = ip->i_size;
}
error = rwip(ip, uiop, rw, ioflag);
TUNLOCK (ip) ;
} else {
error = rwip(ip, uiop, rw, ioflagqg);
}

return (error):;

Feb 11 08:24 1988 Gpio Driver Page 14

Rwip Kernel Routine

The rwip routine "distributes" the read/write request based on the type of
file. We will update the access time in the inode since this is a read
routine (if we perform a write, we update the "update" and "change" values
in the inode). Since this is a character device (type = IFCHAR), the
routine determines what the major number is (21 for gpio) from the dev
number (stored in the inode structure). We then perform a jump to the
"gpio.read" (actually hpib.read) through the cdev_sw[] table. Now we are
off and running to the driver!!

/* HPUX_ID: @(#)ufs_vnops.cC 49.7 87/10/16 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
fe- to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

int

rwip(ip, uio, rw, ioflag)
register struct inode *ip;
register struct uio *uio;
enum uio_rw rw;
int ioflag:

dev_t dev;

struct vnode *devvp;
struct buf *bp;

struct fs *fs;

daddr_t 1bn, bn;
register int n, on, type;
int size;

long bsize;

extern int mem_no;

Feb 11 08:24 1988 Gpio Driver Page 15

extern int ieee802 _no;
extern int ethernet _no;
int error = 0;

int total,

int syncio_flag;

1nt dirsz = 0;

dev = (dev_t)ip->i_rdev;

if (rw != UIO READ && rw != UIO_WRITE)
pan1c("rw1p"), -

if (rw == UIO_READ && uio->uio_resid == 0)
return (0);

type = ip->i_mode&IFMT;

/* uio offset can go negative for software drivers that open, read,

or write continuously, and never close */ ’

if ((uio->uio_offset < 0) || (uio->uio_offset + uio->uio_resid) < 0) {

if (type != IFCHR) :
return (EINVAL) ;

else {
if (major(dev) == ethernet no || major(dev) == ieee802 no)
/* kludge! how do we set f offset to 0 2?27 %/
uio->uio_offset = 0;
else {

if (major(dev) != mem_no)
return (EINVAL) ;

}

/* If the inode is remote, call the appropriate routine. Note,
* We could completely separate out all DUX code from this
* routine by having a separate vnode entry, but it would mean
* duplicating all the preliminary tests.
*/
if ((type != IFCHR && type != IFBLK) && remoteip(ip))
return (dux_rwip(ip, uio, rw, ioflag)):
if (rw == UIO_READ)
imark(ip, IACC):
switch (type) {
case IFIFO:
if (rw == UIO_READ)
error = fifo read(lp, uio) ;
else
error = fifo write(ip, uio):;
return(error) ;
break;
case IFCHR:
if (rw == UIO_READ) ({

error = (*cdevsw[major(dev)].d read) (dev, uio);
} else {

imark(ip, IUPD|ICHG) ;

error = (*cdevsw[major(dev)].d write) (dev, uio);

}

return (error):;
break;

case IFBLK:

Feb 11 08:24 1988 Gpio Driver Page 16

case IFREG:
case IFDIR:
case IFLNK:
case IFNWK:

.
3
.

Feb 11 08:24 1988 Gpio Driver Page 17

Hpib_read Driver Routine

This routine is much like the RAMdisk read routine. The main difference is
that we use a dil buffer instead of requesting one from the file systen.
This buffer is located off the user’s u_area, and was acquired when the user
opened the device. We return to "rwip" the return status of physio().

/* HPUX_ID: @(#)dil hpib.c 49.3 87/10/14 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
fer to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

hpib read(dev, uio)

dev_t dev;

struct uio *uio;

{
register struct buf *bp;
register struct dil_info *info;

bp = (struct buf *)u.u fp->f buf; /* get buffer */
info = (struct dil_info *) bp->dil_packet;
info->dil_procp = u.u_procp;

return(physio(hpib_strategy, bp, dev, B_READ,minphys,uio)):

Feb il 08:24 1988 Gpio Driver Page 18

Physio Kernel Routine

Back in the kernel again! The physio routine takes each vector from iovec
(buffer ptr/count) and breaks the routine into "mincnt" size chunks (64k if
mincnt is minphys). It converts the user’s addresses into physical memory
addresses, and locks down those pages. Then it will call the proper
strategy routine (in this case hpib_strategy) via the physstrat routine.
When physio is finished with a transfer, it releases the pages that were
locked. Physio also keeps track of how many bytes have actually been
transfered, updating the residual as it runs through the transfer.

While physio is using the buffer "bp", it marks the buffer "BUSY" so no one
else will try to use it. When physio finishes with the buffer, it marks the
buffer "unBUSY" and checks if someone wanted it (B WANTED bit set). 1If so,
physio calls wakeup to wake up all processes sleeping on the buffer (note:
this should not happen for this read call).

/* HPUX ID: @(#)Vvm_swp.cC 49.1 87/08/21 */

/%

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate

(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-

Pr"Trard Company, and are limited in distribution to those with a direct need
now. Individuals having access to this software are responsible for main-
ing the confidentiality of the content and for keeping the software secure

when not in use. Transfer to any party is strictly forbidden other than as

expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-

fer to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304

*/

/* :

* Raw I/0. The arguments are

* The strategy routine for the device

* A buffer, which will always be a special buffer

* header owned exclusively by the device for this purpose
* The device number

* Read/write flag

* Essentially all the work is computing physical addresses and

¥

-alidating them.
f the user has the proper access privilidges, the process is
arked ’‘delayed unlock’ and the pages involved in the I/0 are

Feb 11 08:24 1988 Gpio Driver Page 19

aulted and locked. After the completion of the I/0, the above pages
Qre unlocked. v

Feb 11 08:24 1988 Gpio Driver Page 20

;(:)io(strat bp, dev, rw, mincnt, uio)
int (*strat)(),
register struct buf *bp;
dev_t dev;
int rw;
unsigned (*mincnt) ():;
struct uio *uio;

register struct iovec *iov;
register int ccount npf;
char *base;

int s, error = 0;

register long *upte, *Kkpte;
int aa, i;

struct buf #*save bp = bp;

/* if caller did not have buf >> allocate one for him */
if (bp == NULL) {
s = splé6();
while (bswlist.av forw == NULL) ({
bswlist.b_flags |= B_WANTED;
sleep((caddr t) &bswlist, PRIBIO+1);
}
bp = bswlist.av forw;
bswlist.av_ forw = bp->av _forw;
splx(s);
bp->b_flags = 0;

nextiov:
iov = uio->uio_iov;
if (uio->uio_iovent == 0) {
error = 0;
goto physio_exit;

/* The uio data may be in kernel space, so don’t check access if so */
if (uio->uio_seg != UIOSEG_KERNEL &&
useracc(iov->iov base, (u_int)iov->iov_len,
rw==B_READ?B_WRITE:B READ) == NULL) {
error = EFAULT;
goto physio_exit;

}
s = spl6():;
while (bp->b_flags&B BUSY) {
bp->b_flags = B_WANTED;
sleep((caddr t)bp, PRIBIO+1);
}
splx(s);
bp->b_error = 0;
bp->b _Proc = u.u_procp;
base = iov->iov_base;
if (u.u _pcb. pcb flags & MULTIPLE MAP MASK) ({
if (((int)base & 0xf0000000) != 0xf0000000)
base = (caddr_t) ((int)base & OxOfffffff);

Feb 11 08:24 1988 Gpio Driver Page 21

Feb 11 08:24 1988 Gpio Driver Page 22

while (iov->iov_len > 0) {
bp->b_flags = B_BUSY | B _PHYS | rw;
bp->b dev = dev;
bp->b blkno = btodb(ulo->u10 offset) ;
bp->b offset = uio->uio offset,
bp->b_bcount = iov->iov_len;
(*mincnt) (bp) ;
ccount = bp->b bcount.
/* If the uio data is in kernel space, don’t go through the mapping */
if (uio->uio_seg == UIOSEG_KERNEL)
{ bp->b_un.b_addr = base;
goto do phy51o,
}
u.u_procp->p_flag |= SPHYSIO;
vslock (base, ccount) ;
/*
* Allocate kernel address space for mapping in the users buffer.

*/

/* calculate number of pages needed */
npf = btoc(ccount + ((int)base & CLOFSET)):;
/* allocate kernel pte’s */
while ((aa = rmalloc(kernelmap, npf)) == 0) {
kmapwnt++; /* should never happen */
printf ("oops - kernelmap should be bigger\n"):;
e sleep((caddr_t)kernelmap, PRIBIO+1);

}
/‘:)et address of pte’s for user’s buffer */
upte= (long *)vtopte(u.u_procp,btop(base)):;
/* calculate kernel logical address for reference thru ptes */
bp->b_un.b_addr = (caddr_t)kmxtob(aa) + ((int)base & CLOFSET) ;
/* copy user’s ptes into the kernel’s ptes */
for (kpte = (long *)&Sysmap[btop(bp->b un.b _addr)], i = npf; i>0
*kpte = *upte++;
((struct pte #*)kpte)->pg v = 1;
((struct pte *)kpte)->pg prot = PG _RW;

}
PURGE_TLB_SUPER;

Feb 11 08:24 1988 Gpio Driver Page 23 .

do_physio:
physstrat (bp, strat, PRIBIO);
if (uio->uio_seqg != UIOSEG _KERNEL) {
/* free the kernel logical address space */
rmfree (kernelmap, npf, aa):;
vsunlock (base, ccount, rw):;
u.u_procp~->p_ flag &= ~SPHYSIO;

}

(void) splé6():

if (bp->b_flags&B_WANTED)
wakeup((caddr t)bp):

splx(s):

ccount -= bp->b resid;
base += ccount;
iov->iov_len -= ccount;
uio->uio resid -= ccount;

uio->uio offset += ccount;
/* temp kludge for tape drives */
if (bp->b _resid || (bp->b_flags&B_ERROR))
break;
}
PURGE DCACHE;
bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS);
error = geterror(bp):
/* temp kludge for tape drives */
if (bp->b resid || error)
goto physio_exit;
uio->uio_iov++;
uio->uio iovecnt--;
goto nextiov;

physio_exit:
/* if we allocated buf for caller, then deallocate it */
if (save_bp == NULL) {
s = sp16(),
bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B UAREA|B_DIRTY)
bp—>av forw = bswlist.av_forw;
bswlist.av forw = bp;
if (bswlist.b flags & B_WANTED) {
bswlist.b_flags &= ~B _WANTED;
wakeup ((caddr_t) &bswlist);
wakeup((caddr_t)&proc[2]):;

}
splx(s):
}

return(error) ;

Feb 11 08:24 1988 Gpio Driver Page 24

#Oine NETMAXPHYS (8 * 1024)
#d€fine MAXPHYS (64 * 1024)

unsigned
minphys (bp)

struct buf *bp:;
{

if (my_site_status & CCT_SLWS) {
if (bp->b_bcount > NETMAXPHYS)
bp->b_bcount = NETMAXPHYS;
return;

}

if (bp->b_bcount > MAXPHYS)
bp->b_bcount = MAXPHYS;

Feb 11 08:24 1988 Gpio Driver Page 25

Hpib_ strategy Driver Routine

The hpib_ strategy is the common DIL strategy for both the gpio and hpib
drivers. It just sets up the buffer pointer (bp) for the transfer and
queues up the transfer with the enqueue() routine. The enqueue() routine
will just make a call to hpib_transfer() when it is queued.

/* HPUX_ID: @(#)dil hpib.c 49.3 87/10/14 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate
(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-
Packard Company, and are limited in distribution to those with a direct need
to know. Individuals having access to this software are responsible for main-
taining the confidentiality of the content and for keeping the software secure
when not in use. Transfer to any party is strictly forbidden other than as
expressly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
fer to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

hpib_strategy(bp, uio)
register struct buf *bp:;
struct uio *uio;
{
register struct iobuf *iob = bp->b queue;
register struct isc_table_type *sc = bp->b_sc;
register struct dil™ _info *info = (struct dil _info *) bp->dil_packet;

bp->b_flags (= B_DIL; /* mark the buffer */
bp->b_error = 0; /* clear errors */

/* set up any buffer stuff */
bp->b resid bp->b_bcount;
iob->b xaddr = bp—>b un.b addr;
iob->b_xcount = bp->b_bcount;

info->dil timeout _proc = hpib_transfer timeout:;
bp->b_. action = hplb transfer;
enqueue (iob, bp):;

Feb 11 08:24 1988 Gpio Driver Page 26

Feb 11 08:24 1988 Gpio Driver Page 27

Hpib_transfer Routine

The hpib_ transfer routine determines what action is to be taken. In this
case, we want to do a transfer. We enter into the Finite State Machine
(START FSM is a macro with assembly code that is to ensure that only one
process is in the FSM for a given select code at a time). When we are able
to perform our transfer, the routine determines what type of transfer can be
used. If we had asked for termination on pattern or the there is only 1
byte to transfer (two in word mode), we select MUST_INTR control. Otherwise
we will select MAX OVERLAP, which means DMA will be tried. We will then
call the driver routine for transfer (in this case gpio_driver).

/* HPUX ID: @(#)dil hpib.c 49.3 87/10/14 */

/*

(c) Copyright 1983, 1984, 1985, 1986, 1987 Hewlett-Packard Company.

(c) Copyright 1979 The Regents of the University of Colorado, a body corporate

(c) Copyright 1979, 1980, 1983 The Regents of the University of California

(c) Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

The contents of this software are proprietary and confidential to the Hewlett-

Packard Company, and are limited in distribution to those with a direct need

to know. Individuals having access to this software are responsible for main-

taining the confidentiality of the content and for keeping the software secure

w' ™ not in use. Transfer to any party is strictly forbidden other than as
essly permitted in writing by Hewlett-Packard Company. Unauthorized trans-
to or possession by any unauthorized party may be a criminal offense.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)
(3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
*/

enum dil_transfer_ state {get_dil_sc = 0,
check transfer,
re get dil sc,
do transfer,
end transfer,
tfr_ timedout,
tfr defaul};

hpib_transfer (bp)

register struct buf *bp;

{
register struct iobuf *iob = bp->b queue;
register struct dil info *info = (struct dil_info *) bp->dil_packet;
register struct isc_ “table _type *sc = bp->b_ scC;

Feb 11 08:24 1988 Gpio Driver Page 28

register unsigned char state = 0;
register enum transfer request type control;
register int x;

Feb 11 08:24 1988 Gpio Driver Page 29

state = iob->dil_state;

try
START FSM;
re_switch: -
switch ((enum dil_transfer_state)iob->b_state) ({
case do_transfer:
END_TIME
iob->b_state = (int)end transfer:;
DIL START _TIME (hpib_ transfer _timeout)
if (state & D RAW CHAN)
(*sc->1osw—>1od save_state) (sc);
else
(*sc->iosw->iod preamb) (bp, 0):
END_TIME
/* set the speed for the process */
if (state & (READ_PATTERN | USE_INTR)) {
control = MUST INTR;
sc->pattern = Iob->read_pattern;

}

else if (bp->b bcount == 1)
control = MUST INTR;
else if (dma here 1= 2)

control = MUST INTR;
else if (state & USE _DMA)
control = MAX __OVERLAP;
else
control = MAX OVERLAP;
/* set up transfer control info here */
sc->tfr control = state;
DIL START TIME(hplb transfer timeout)
(*sc—>1osw—>1od tfr) (control, bp, hpib_transfer):
break;

case tfr_ timedout:
escape (TIMED_OUT) ;
default:
panic("bad dil transfer state");

}
END_FSM;
recover {
ABORT_TIME;
iob->b_state = (int) tfr defaul;
if (escapecode == TIMED OUT)

bp->b_error = EIO;
(*sc->iosw->iod_abort_io) (bp):
HPIB status clear(bp);
iob->term reason = TR _ABNORMAL;
dil_drop_ selcode(bp) ;
gueuedone (bp) ;
dil_dequeue(bp) :

Feb 11 08:24 1988 Gpio Driver Page 30

Feb 11 08:24 1988 Gpio Driver Page 31

Gpio_driver routine

This routine determines what type of transfer to perform and then kicks of
the transfer. It will select INTR_TRANSFER if:

1) 1 byte transfer

2) 2 byte transfer in word mode

3) using READ PATTERN for termination

4) requested INTR XFER (via io)speed ctl

5) try dma routine failed
otherwise the transfer type is DMA_ TFR

I1f DMA_TFR
set transfer width to 8 or 16 bit
calls dma_build_chain to build a chain of DMA requests

DMA build chain routine

The routine will set up dma channel and card for dma transfer (and selects
transfer mode (8 or 16 bit).

It builds a chain of dma transactions for the transfer. These are usually
4k (1 page/chain or less), but will chain transactions for contiguous pages.

The information in the chain:
address of i/o card
interrupt level for DMA card (7 except for last 1ink, then i/o cards
IRL)

After building the chain, we then return to gpio_dma() routine.

Feb 11 08:24 1988 Gpio Driver Page 32

Gpio_dma Routine

This routine called the dma_build chain routine. When the chain is built,
it sets up where to go on completion of dma transaction. This is
gpio_do_isr(). We then call dma_start() to actually start the transfer.

Dma_start Routine

This routine sets up the first DMA transaction (first link in the chain) and
returns to the driver. The driver will sleep awaltlng completion of the
transfers. The DMA transfer is started by writing the address of the buffer
and the count into the DMA channel and arming the channel. :

When the channel transfers all the bytes for that link, it generates a level
7 interrupt. This interrupt jumps to very specific code which is all in

a mbly. The first thing this code checks is if the interrupt was caused

e in of the DMA channels. If so, then it updates the 1link to the next in
t.~ chain, arms the DMA channel, and returns. If it is the last link in the
chain, then it sets up interrupt level to that of the card, so that
following the last 1link, we enter the gpio card’s isr routine.

Feb 11 08:24 1988 Gpio Driver Page 33

Gpio_do_isr Routine

This routine will transfer the last byte (on read) from the gpio card. It
is also the routine used if the transfer type is not dma. It just executes
the transfer, then returns to the process that was interrupted. If it
transfered the last byte, then it will wake up the driver routine so that
the driver can complete the transaction and return to user code.

12/8/87
J. Tesler
FOIL 2 .

" A Brief History of File Tran‘sfers .
| The First Generation
Sneakernet

Carry the file from one machine to another on tape
(or punched cards)

HP Company Confidential

12/8/87
J. Tesler
FOIL 3

The Second Generation
Copynet

e Copy the file via a network (Ethernet, RS232,
telephone, etc...) from one machine to another

— uucp
« uucp remote! uucp/file Tuucp/file

— rCcp
e Tcp remote:file file

e Usually implemented as an application program.
Kernel does not know about remote files

‘HP Company Confidential

12/8/87
J. Tesler
FOIL 4

Problems with Second Generation- File Access

e Requires speCIaI mechamsms to access remote
files

— Not transparent

— Remote files are normally inaccessible to
programs and must be manually copied over
first

e Need to make a local copy of a file to use it
— Wastes local disc space

— Easy to forget about the copy and leave it
around

— Local copy can get out of date
e Not integrated with system

e Fither requires password every time a file is
copied or presents a large security hole

e Shared packages must be duphcated on aII
machines

— Wastes space

— Major system administration problems keeping
all copies up to date

HP Company Confidential

12/8/87
J. Tesler
FOIL 5

The Third Generation
Remote File Systems

e Three UNIX remote file systems at HP

— RFA (Remote File Access)
« Developed at Hewlett-Packard

— NFS (Network File System)
. Developed at SUN Microsystems

— RFS (Remote File System)
« Developed at AT&T

HP Company Confidential

12/8/87
J. Tesler
FOIL 6

Characteristics of a Remote File System

Provides access to file systems on a remote
machine in a manner identical to local file
systems

— Same commands
e vi /localfile
e vi /remote/remotefile

— Same system calls

— Applications need not know about the remote
file system (unless they want to)

Client-Server model

— Server performs actions dealing with remote
- files on behalf of the client

— Client does not make a local copy of the file
Integrated into the system |
Provides protection

— Control over which files are available over the
network

— Protect available files from unauthorized
access.

Implemented in the form of a remote mount

HP Company Confidential

‘Mounting a Complete Remote

Machine’s File System

Ethernet

Server
Client

N N
/N AT AR

lib - bin spool Is lib bin spool Is who fred ellr

myfile

HP Company Confidential

12/8/87
J. Tesler
FOIL 7

12/8/87
J. Tesler
FOIL 8

Mounting a Package from a
Remote Machine

Server Ciient

NN RN

lih bin spool Is , t] bin spoo! Is

17N |
/NNl

dates raisins prunes

Ethernet

|

HP Company Confidential

12/8/87
J. Tesler
FOIL & -

- Remote File Systems Solve
Second Generation Problems

e No special mechanisms to access remote files
— Transparent file access

— Any program that works on local files will
work on remote files

e No need to copy files locally
— No wasted disc space
- No left over copies
— Copies don't get out of date
o Fully integrated with system
e Password protection integrated in
e Provides mechanism for sharing packages

— No wasted disc space

— Simplifies system administration—no need to
keep copies up to date

HP Company Confidential

12/8/87
J. Tesler
FOIL 10

The Network File System (NFS)
Developed by SUN Microsystems -
The “Industry Standard” Remote File System
_Goals:

— Simple

— General purpose
Export/mount interface
Stateless System

Includes Yellow Pages to provide consistent
userids among machines

Available from HP in early '88 on 300s and 800s

HP Qompany Confidential

12/8/87
J. Tesier

FOIL 11~

“Export and Mount in NFS

Ethernet

Chent

/ VANAAN

Iit] bin spool Is lit] bin spool Is

N
/NN

dates raisins prunes

File /etc/exports: $ Is Jusr/lib/fruit

/er/lib/fruit dave # mount bill:/usr/lib/fruit
‘ Jusr/lib/fruit

$ Is /usr/lib/fruit
dates prunes raisins

HP Company Confidential

12/8/87
J. Tesler
FOIL 12

A Stateless System

The NFS server does not keep track of which
clients are accessing it

e Advantages:
— Easy to recover from client failure

— |If server or network fails temporarily, client
can continue once server is again available

e Disadvantages:

— Does not provide full UNIX semantics
- Synchronization not guaranteed in the event
of concurrent access
. Unlinked open files are no longer accessible

— But:
. Most programs run without any problems

HP Company Confidential

12/8/87
J. Tesler
FOIL 13

The Yellow Pages

The Yellow Pages (YP) is a rudimentary distributed
data base used primarily for sharing certain system
administration files such as the password file
among cooperating machines

NFS already provides sharing of files. Why do we
need the Yellow Pages toco?

e YP allows configuration of multiple servers,
eliminating reliance on a single point.

— Can still run if server fails

— Certain files needed at boot time before NFS
is up

e YP permits customization on .a machine by
machine basis, permitting local overrides. For
example, each machine can have its own
superuser password.

e Putting these capabilities in an application
program cuts down on the kernel size.

" HP Company Confidential

12/8/87
J. Tesler
FOIL 14

The Remote File System (RFS)

Developed by AT&T

The “System V.3 Standard”- Remote File System
Goal:

— Full UNIX semantics

Advertise/mount interface

— Advertise is symbolic; hides advertising
machine

Stateful system
User ID mapping
-Remote device access

HP is currently porting RFS

HP Company Confidential

12/8/87
J. Tesler
FOIL 15

Advertise and Mount in RFS

Ethemet

ANCAT N

i bin spool Is ht] bin spool Is

SN ,
N

dates raisins prunes

‘# adv FRUIT /usr/lib/fruit = $ Is /usr/lib/fruit
| dave |
mount -r FRUIT
Jusr/lib/fruit

$ Is /usr/lib/fruit
dates prunes raisins

e Advertised name is symbolic—Does not include
machine name

HP Company Confidential

12/8/87

J. Tesler
FOIL 16

A Stateful System

The RFS server keeps track of which clients are
accessing it |

e Advantages:

— Provides ful! UNIX semantics including
synchronization

e Disadvantages:
— Recovery from client failure more difficult

— Temporary loss of the server or the network
means loss of the file access
« Client must reopen the remote file once the
system is available

HP Company Confidential

12/8/87
J. Tesler
FOIL 17

User ID Mapping

RFS provides a facility for mapping userids (UIDs)
from one machine to another

e Sect up by system administrator

— Easy to configure defaults
~ « Trancparent mapping—each UID maps to
itself |
» Given UID mapping—all UIDs map to a
single remote UID

— Can override on a UID by UID basis

— Each machine can have a different mapping

HP Company Confidential

12/8/87
J. Tesler
FOIL 18

Why Three Remote File Systems)?'

HP will be providing three remote file systems, RFA,
NFS, and RFS. Why do we need them all?

e RFA is needed for backwards compatibility and
to talk to S500s |

e NFS is the current industry standard, and is
availabie from more vendors than any other
remote UNIX file system

e RFS is needed for AT&T System V.3 compatibility

HP Cornpahy Confidential

IZyejer
J. Tesler
FOIL 19

The ~' Fourth Generation
Distributed Systems
A Future Vision

¢ One system view
— The same file system seen from all sites
— File locations fully hidden
— Not a remote mount based model

e Other resources also distributed in a transparent
manner

— Transparent remote process execution
— Process migration

— Remote and local inter-process
communication treated identically

e Every machine feels like home

HP Company Confidential

12/8/87

J. Tesler

 The 'DisCIess 300s

Not a fourth generation system, but has some
aspects of it

Allows multiple Series 300s to share a Single set
of discs

All machinas in cluster see the same view of the
file system

Common logins and passwords automatically
provided

Not a remote file system
— Provides sharing within the cluster only

— Does not use a remote mount model—all
machines see the same file system

Only one logical machine to administer

HP Company Confidential

The Buffer Cache

Module 3 = = oo el

O The Buffer Cache

O Notes

Buffer

Cache

system call interface

!

file subsystem

!

butfer cache

!

character :

block

device drivers

!

hardware control

UFSS0010

- 1987 Mewett-Pockord Compony

Page 1-3a

Module 3 -7

O The Buffer Cache

O Notes

Buffer

device number
block number
amount of valid data in buffer
amount of real memory being

pointed to by this buffer
pointer to data area

pointers to buffers on hash
queue

pointers to buffers on free list

state of buffer header

-+ *b_back

<+ *av_back

Header

b_dev

b_blkno

b_bcount

b_bufsize Mi‘x;:z"s

*b_un — []

*b_forw |

*av_forw—T~

b_flags

= 1987 Rewieli-Pockors Compony

Page 1-5a

"Module 38 -

O

The Buffer Cache

[0 Notes

hash queve headers
blkno O I' -—
: 28 4 64 :
e mod 4 - - > > -« |
...... mod 4 1. .
blkno 2 98 50 0 |—
...... mod 4 ..
blkno 4 - 3 o 35 99
...... o 4
bfreelist|_

Buffer Header Usage

vs30020

= 1887 Rewieit-Pockord Compony

Page 1-72

O The Buffer Cache

O Notes

Buffer Management

*bfreelist® LRU AGE EMPTY
*bufhash® i | 1
—1 - m -
L 1 ‘
— e -
Z |
RGNS SRS, ,.." - -
1 o0
/ \ _-” __
_ 1 U
/ \ ml
S U W
pd

- Always on exactly one hashchain unless EMPTY
- Always on exactly one freelist unless BUSY

vis3002 1

Page 1-8a

-l

1887 Mewiett-Pocrorc Lompony

Module 3

[0 The Buffer Cache

O Notes

Reading and Writing Disks Blocks

first block
n cache?

issue READ
reqpest

second blocR
issue READ in cache
request "

‘ ssue ;synch
sleep on READ
request]

wakeup sleep on
Datalis in first request

locked puffer
waReup

Datalis in
release buffer locked| buffer
when done

elease butfe
when done

VTa30050 - 18E7 meweti~Pockors Compony

Page 1-11a

Module 3 il

O The Buffer Cache

O Notes

Major Routines

o Getting Buffers

bp = bread(dev,blkno,size)

© Releasing Buffers

brelselbp) - release it, no write
bwritelbp) = syncronous write

bdwrite(bp) - delayed write

bawritelbp) — asynchronous write

Page 1-13a

utsd0C22 - 1987 Maweil-Fockort Lompony

Module 3 i T e

O The Buffer Cache O Notes
ufs__blo.c bread(dev,blkno,size) ————= piowaitlbp)
[
1
getblkidev,blkno,size)
l [
getnewbufl notavail(bp)
|
brealioclbp,size)
ufs_mchdep.c allocbufltp,size)
s o 1087 Mewisit-Pockoro Compony

Page 1-15

Module 3~ = 1o o

O The Buffer Cache O Notes

Retrieval of a Buffer
Block NOT in Cache

© Remove first block from Fres List

L DS e I o (TN oy Y j'"

L bireslist { I 3] 6 J--ol 4 h . .l

2 bdiock not in hash queus - remove st block from free list

delay l
g I AT oy O ey B

M] [
writing
3 Free List empty
[-— bfresist
prroo i T Tewen=Toniors Comeony

Page 1-17a

O The Buffer Cache

Retrieval of a Buffer

Block IN Cache

..

bikno 4
mod 4

bfreelist

- foundbbckﬁobutwsy

I Ry L[% 5[4 Jlj .
bhoo 7| 7 I~ Hr
...... weoz | | ..
...... "‘m‘:“f"‘ _J-[3 4. [33]
biresist |- '
wis 0028 - 1987 tHewisti~Pochord Compony

Page 1-18a

Module 3 i T it

O The Buffer Cache

O Notes

Overlapping Buffers

old
buffer

disk r

32 133 {34 |35 |36 |37 | 38|39 41 |

new
buffer

If the "old buffer® is marked delayed
write , it must be written. The “old
buffer® must be marked INVAL .

Therefore, a disk block is mapped
into at most one buffer.

u1s0030

= 1987 Rewelt-Pockord Compony

Page 1-22a

Module 3 =

O The Buffer Cache

O Notes

allocbuf()

(8K
MAXBSIZE

7a\

CLBYTES CLBYTES

bufsize == 2k

If buffer size is shrinking:

© Take buffer header oft EMPTY queue.

© Put excess pages in it and release onto AGE queue.
if buffer size is growing:

© Get a buffer from NEWBUF.

© Transfer pages to new buffer.
If pages left over return to AGE.

If no pages left return to EMPTY.

©
°
© Repeat until enough pages are aliocated to new butfer.

V1830040

- 1887 Hewst-Pocxord Lompany

Page 1-24a

SE 390: Series 300 HP-UX Internals

Monday Afternoon Labs

0. Reboot the system and pay close attention to the messages that
are printed out. What't the last line printed by the kernel? What's
the first line printed by init(1m)?

1. Using the template provided (ppt.c), print out the values of at
least 10 kernel parameters. Verify 2-3 of them with adb(l), and the
rest with monitor(im).

2. Using ppt.c again, write a version of ps(1l) that skips most of
the garbage (gettys, daemons, etc).

3. Modify top.c so it will run on the 300.

4. Put the system under stress and experiment with nice values. How
much do they affect a process when the system is under 1) no stress;
2) moderate stress; 3) heavy stress?

5. Replace /etc/init with a program or script that 1) does something useful,
like invoke a shell; 2) moves the real init back into place so that you can
reboot and have a normal system.

N

SE 390: Series 300 HP-UX Internals

Tuesday Afternoon Labs

0. Set the sticky bit on a fairly large program and see how this affects
startup time.

1. cConfigure a new kernel and look at the conf.c that is generated. Which
parts of it came from /etc/master? Which from the dfile you provided?

2. Make the system panic and interpret the resulting stack trace.

3. Run a program that will force the system to page and/or swap, and
observe the results with monitor(lm).

4. Write a program that attaches to some shared memory and then starts
malloc(3)ing 1k chunks. How many can you get? What kernel parameter
could you change to fix the problem?

SE 390: Series 300 HP-UX Internals
Wednesday Afternoon Labs

0. Write a program to hunt for superblocks on a disk.

1. Write a program to figure out which files are in a particular cylinder
group on the disk.

2. Write a program that will "stat" a file without using the stat(2) call.
(Hint: in what place on the disk is most of the information for a file kept?
How can you get there given the file's pathname?)

3. Translate a pathname to an i-number ﬁsing adb(l), fsdb(im), disked(lm),
or a C program you write.

4. Have your partner mess up the disk using disked(lm). Then fix it using

fsck(1m), disked(im), or whatever you want (dd(1)ing from another disk is
strictly an option of last resort :-))

*kkkkk QR *hkkkk

Write a version of cat(l) that uses only the raw disk device.

