HP OSF /Motif
Programmer’s Guide

HP 9000 Series 300/800 Computers

HP Part Number 98794-90005

(ﬁp HEWLETT

PACKARD

Hewlett-Packard Company
1000 NE Circle Bivd., Corvallis OR 97330

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

© Copyright 1983 Hewlett-Packard Company.
Certification of conformance with the OSF/Motif user environment is pending.
OSF /Motif is a trademark of the Open Software Foundation, Inc.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company, except as provided
below. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B} of the Rights in Technical Data and
Software clause in DAR 7-104.9(a).

Copyright 1987, 1988, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Parts of this software and documentation are based in part on software and documentation developed and distributed by Massachusetts Institute
of Technology. Permission to use, copy, modify, and distribute only those parts provided by M.LT. for any purpose and without fee is hereby
granted, provided that the above copyright notices appear in all copies and that those copyright notices and this permission notice appear in
supporting documentation, and that the name of M.L.T. not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. Copies of M.I.T.'s documentation and software are available directly from M...T.

UNIX is a trademark of AT&T.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number changes
when extensive technical changes are incorporated.

September 1989........ Edition 1

Contents

1

11
1.2
13
14
1.5

2

2.1
2.11
2.1.2
213
2.14
2.15
2.1.6
2.1.7
22
23

3.1
32
33
3.4
3.5
351
3.52
353
3.6
3.7
3.8
381
382
383
3.9
391
392
3.10

Introduction ... S, 1-1
What’s in this GUIAE ..ot ectreceesesesas e sessesesastesesssuescene 1-1
The X WINAOW SYSEEIM ..cueerieniicririccecceseeseremenessasesetsisssiessssessssssensnssssnse 13
Widget Classes and Hierarchyocvcicsiscinienninnsncecssnensesessanes 1-3
Compiling Sample Programsceervenniennnessssseseseseeserssssssesessssese 19
Available Documentationcceceeeererecsreennscseeseseneneeses 1-10

Widgets, Gadgets, and Convenience Functionscccocoviiiinnnncincancennne. 2-1
WIAEELS ettt eaes 2-1

SHEll WIAEELS .vucecviieriecirsieinisiseeisiseseernsssessssessssssssessssssasssssssossessssasssnas 2-4
Display WIdgELs ...c.cvcvvevivevreverivirenieerveneiersnessesasesesense . 2-5
Container Widgetsceceveeeeerrerercnercrerenennsnnens . 2-11
Dialog WIdgets ..ot e rses 2-17
Dialog Widget DesCriptionscveeiienererrecricrninersissenersisessesesssssssssssseses 2-18
Convenience DIAlOZS oo ecsemseasessesetaessesasense 2-19
MENU WIAZEES ..ot tsteee s sestssasse s ssseasenraesesans 2-21
GAAGELS ettt s bbb e sae e s e e s asasbntens 2-22
Convenience FUNCHONS .o eaecseseeiesesessessesesssssnsnassssssossos 2-24

Using OSF/Motif Widgets in Programsccevveveerereienenererscsesesssssssses 3-1
Including Header FIles ... sesnisssansssnenns 3-6
Initializing the Xt INtHNSICS oo sereecseerseeseseonsasasaessnesssossaseres 3-6
Creating Argument Lists for Widgetsccccvererneeceerscenerescnessenecseene 3-8
Creating the WIAZEL ... cecenenaesssessescsensemesensescssssasnsesenne 3-9
Adding Callback Proceduresccvvcvninensrnerenesisrersesesesesnsscsssssssesssssssens 3-10

Writing a Callback Procedureoocceveinieneceencenene reveeeeraeanaens 3-11
Adding CallbacKs ..ot ceeeseeses e sae e sas s assesesnaeses 3-12
Setting Widgets’ Callback Resourcesccoveveeeeeeevenreenns cervereretsaeaes 3-13
Making the Widget VISIblecccocoiiiiinniinisisnsesesesssssnasnne 3-13
LAnKIng LIDIATICS c.vcivivevieieerecr ettt seessestsesnocsessasenensssssseosacssasanes 3-14
Creating Defaults FIles ... esetsesssemassssassessanaesessess 3-15
Application Defaults Filesovvcvcrneencecrncenecenennn. 3-16
User Defaults FIES ..ot iecsesetseeeesseseenenssssssssssssnns 3-16
Defaults File EXAMPIE .o ssssctsessssesssssssnssossassassssessnns 3-16
USING COLOT cneiriieiirieiieriernreireriseiireeiesetseetstssetstssotstsasesessessssesessiseressassssassessassssen 3-17
Visual Capabilities and AUIIDULES ...oecveriereererrienririreriesesneceessrenesasssens 3-17
Using the CapabilitIesccocceeieirriereinmieninieissisraeseisasnsssssesssesssssssossssessases 3-18
Advanced Programming TEChRIQUESccccoovrioiniiiininniescniinsans 3-19

Contents 1

3.10.1
3.10.2
3.11

3.111
3.11.2
3.113

4
4.1
4.2

5

51
5.2
53
54
5.4.1
542
543
544
5.4.5
5.4.6
5.4.7

6

6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
623
6.2.4
6.3
6.3.1
6.3.2
6.33
6.3.4
6.3.5
6.3.6
6.4
6.4.1

Setting Argument Valtiescciecicrnceeccerencereneesecseeeseeseresssees
Manipulating Created Widgets
An Advanced Sample Programcccoceeevvevvvereeerneennenens
Windows Used in XMIONLS ..ot reecseesessessosessinerseens
Widget Hierarchy ... ceesesesnnens
SOUICE COUE ..ttt ssessasssesebastosseesens
Shell WIAEELS ..ot tessesresessesessessessasessesessossossasessenen 4-1
Descriptions Of Shell WIAZCESovieviiccerreereinrecssieeieesesnesssssessesesessesnas 42
Shell Widget APPEATANCE ..c.cuuvecereevecrriieicrreiireceensesensesesesesseseasasesessessacssssesses 4-3
Dialog Widgets and FUNCLIONSc.ccocviieeenenieeceeeereseeseeesessnneseseersasassesens 5-1
Dialog Widgets and MENUSc.covevreriureeeriirie et rceessesessesessssessesecnssssans 5-1
A List of the Dialog WIAZELS ...ccvvierierreiesreesreisssnsesesssssessesesessssssssssssassssses 52
Convenience DIAIOZS ..ot restsessesesssssissssssssasessssessessssssssnns 5-2
Using Dialogs and Convenience FUNCHONSccvievneivcnneeinccaneencninecnnes 5-4
XMDIAIOGSHEll oottt esce st et asesnsens 5-5
XmBulletinBoardcovviivccriiecrseinessessasenes 5-6
XMCOMMANA ettt ns st cestesssessssassssssessassssasasssssans 5-7
XmFIleSelectionBOX ..o ssisessssssenss 5-11
XIMFOIM ittt s st aeesesass 5-14
XMMeESSAZEBOX .o s 5-18
XMSEIECHONBOX ..ovviiieirceiriecieienrreiceescis et seses st s sstecsssessseaserensens 5-20
MENUS ..ot 6-1
Overview Of the MEnu SYSICIT ..e.cuiveinieeereereretreeceeesescte e ssssenesessesesensessons 6-1
AN INEPOQUCHION ittt sraessesesesene e sesrecsesensnns 6-1
Convenience Functions and Widgets Used to Create Menus.oecueeee. 6-2
Introducing the Three Menu TYPES cccverrerecririeesiniensneeesenseesesesesssesens 6-3
Creating PoOpup Menu SYSICIMS ..ot scssesessssnsessesesessesenne 6-7
Popup MenuPane Convenience FUNCHONccreecencrcrrnennreeceseseeesceenens 6-7
Event Handlers for Popup Menu SYStems .. ccveecnenereecsencscnescsssseesceens 6-8
Procedure for Creating a POpup MEnu. ...cc.ccveinrcnenecneneiecceencnneecscaeesens 6-8
SAMPIE PrOZram ..coeveeieciieriinircertcece ettt isestetssresne s s e ssaesessssssssssnes 6-11
Creating a Pulldown Menu SYSIEM . .ouvicercirnenicncnrencnirasssnseesceessssssesssennes 6-14
MenuBar Create FUNCHON ..c.cocoiiriericcereceeinercescie et seeseseeesescaenens 6-14
Pulldown MenuPane Create FUNCHIOnccocovevevcvvenecrenieneeseseesesensssessanns 6-14
Creating a Help BUtton ...t sesaseseesesesesesenssens 6-15
Procedure for Creating a Pulldown Menuccevevenevennenisenssenseseseennennns 6-15
Interacting With Pulldown MeEnuscccccviccrniencnnenenesenisessnnesseese 6-16
SAMPIE PrOGIAML .o e resseseasseesensassssssssssesessssesssesssssassses 6-18
Creating SUDIMENUS .coveivrriieieeeiese s eesnesasssssisssassssstessssessassssssassssssassssssns 6-21
Procedure for Creating SUDMENUSc.ovvceeeieenecciieccesresecreeeeeececsseenees 6-22

2 Contents

6.4.2
6.43
6.5

6.5.1
6.5.2
6.53
6.5.4
6.6

6.7

6.7.1
6.7.2
6.7.3

7.1

71.1
7.1.2
72

721
722
723
73

73.1
732

8.1
811
812
813
82
821
822
823
8.2.4
83
8.4
8.4.1
842
8.5
8.6
8.7
8.7.1

Interacting With SUDMENUS oo reeerseesaeseses e sananaes 6-23

SAMPIE PrOGram ...ccvvvvverincencniniinneesisissessssssssssessenssssossesssssssssessssass 6-23
Creating Option Menu Systems ...c..ccovvveerererennes 6-27
Option MenuPane Create Functionnvecvicninne 6-27
Procedure for Creating an Option MENU. ...ccccvieeecrrercrrveersenseressrenssecoessrsssens 6-28
Interacting With Option Menuscccccveevvnrerennnnnes 6-29
Sample Program ... 6-30
Selecting A MeEnU CUTSOTccieriirercrereeeeeessseseesessesessasessassstsssessassesssnenseses 6-33
Creating Menus Without Using Convenience Functionsceecccecncncnee, 6-35
Functions for Creating MEnuSccvcvvveineineennenneciensssiesesesssssesssens 6-35
Parenting Relationships ..ot sssssesesssssesss 6-35
Sample Programceveerenenecninicerecorsesennencesns 6-39
Specialized WIEELSc.coooeviviireeiincce et eeseseessesesssesaseesesssssscsnenssesens 7-1
LISE WIAZEL oot ssessssssssssssensssssnssssssisersens 7-1
LiSt FUNCHOMS wovuiuerierieicinereceniriseerecinstseaeconsessessessesssassseesssssissescssssessssensenss 7-1
Using the List WIdgetcccrcovieniincneeecceenecnrecsesesssseenssessens 7-3
RoWCoIUMN WIAZEL ottt neesne e nesae s sesseses 7-14
ROWCOIUMN TYPES oveeriicnirieiieereeetirieeereseesessreresesesasesesessesessssssssesesssssses 7-14
RowWColUmN FUNCHONS ..ot iesssssssesessasssesssessssssseses 7-15
LAYOUL vttt esssessssssss e sene e sas s nsssassbassasassasons 7-15
TEXE WIAZCL et ebs bt s e ens s seastsas 7-19
TEXt FUNCLIONS vttt eesessns e sessssonsssinssssensassssssssasen 7-19
Using the Text Widget In a Programc.cccvmnecnoncnnisssasesessecsesens 7-20
Additional Functionality ..o snneesesseresscssesesssasesnses 8-1
COMPOUNT SITINES wovvvvecereereeceetrteree e ericeessaeisesessasassassersessasenssesssstassences 8-2
Components of a Compound SIriNg ... 8-3
Compound String FUNCHONS ..o sessesnss 8-4
A Sample Program ...t cetsiesescsisessssssssnssesssssssesssssns 8-16
Cut and Paste FUNCHONS ..ot snessnsssessssssessasaes 8-17
Clipboard Copy FUNCHONS ..oeuiiiiiieiieeeee et e seecicaee st ssesesenssssens 8-18
Clipboard Tnquire FUNCHONS .c.veivivcecierieineiserennenieesessecssesesneseusessensesessseness 8-25
Clipboard Retrieve FUNCHONS ...covviiiriiisieisieessssinsssensisssssenss 8-30
Miscellaneous Clipboard FUNCtionsccccvivciceiveecnieienensesissseneeenns 8-33
Dynamic Resource Defaulting ... 8-36
Key/Keyboard Grabbing ... iesssesessses 8-37
PaSSIVE GTaDS ..cevrivreiriircerericnetceesi et ses et senesaens 8-37
ACHVE GIaDS vttt es et ssenssssssssssnessnsssasens 8-38
LOCAlZALION ..ottt ea s s s naes 8-38
Pixmap Caching FUNCHONS .covvvenieieieeininncms i sassasenses 8-40
Resolution INdependence ... 8-42
The Resolution Independence Mechanismcccevecvineneccenneenesesecnnees 8-42

Contents 3

8.72 Setting the FONt UNIS ...oviccveiicieereercesesee e eseseseestsssssssssssensssessensesssnssnes 8-44

873 Converting Between Unit TYPEScvvecieencrineienninisieesissssensesessesenes 8-44
8.8 Interacting With the OSF/Motif Window Managerocccoveecveceereeecrrenens 8-45
8.8.1 Protocol Managementc.o.ccreerceeercisssensensssssesensssssaenes 8-45
8.82 Protocol Manager FUNCHONS ccovienriniereneeininessssssessssssssessssesssssssssnasns 8-47
883 ALOM MANAZEIMENE ..vcvrviereveerieiriririceeesee e sserseseessensarssssessssssssssssnssssssssssssses 8-50
8.9 OSF/Motif Version NUIMDETc.ccevinrereniesesneressasesssssssessasessescssessssonsassses 8-50
8.10 OSF/Motif Window Manager PreSEncemvrennsesereessesesacsenssesseses 8-51
9 Keyboard INterfaceciininnivininecniniicsiisesssesissssenes . 91
9.1 Keyboard FOCUS MOUCISccviiiieieiiirrcrnrmincscrninnssescssassssescsesesessesessssessssessases 9-1
9.2 Grouping Widgets Into Tab Groups ... 9-2
93 Traversal Within and Between Tab Groupscecceeveseseseeeeeceeeeranenens 9-3
9.4 Keyboard Input Processing to @ Widgetocvvvevemeeerseneenerserenene . 94
10 DEDUGZING ..ottt ettt e e s n st et estsnenenasns 10-1
10.1 DebugEIng TOOIS .oovvivecirniiierirrineiseserriseess e rese e iseasssssessassnsssisassossesssseessesassases 10-1
10.2 Segmentation Fault ... esens 10-1
10.2.1 C DEDUZLET vttt sttt ce et estto s teeesssessesesssssessssssaanen 10-2
10.2.2 A Trace ROUHNE oo sessssesessssssssesssssssesenss 10-6
103 OLREE EITOIS cniiiiereccreritieretiesie ettt st ssestsssesesasessesssesssesenessnsssnsassenssases 10-9
10.3.1 AN X TOOIKIE ETTOE ittt resssesesistses e s sesesessneses 10-9
10.3.2 NO ErrOr MESSAZC ..oveveviivreeinieniiennteeeiesictsieseresesesessemsessssentessacsesesencsessacnsneoss 10-16
11 GIOSSALY oottt ettt et sttt s s ettt smssesasbosesensonens 11-1

4 Contents

Introduction

1

The HP OSF /Motif Programmer’s Guide contains information that you will need to create
programs with the OSF/Motif widget set. Other manuals in the OSF/Motif
documentation set provide information on configuration, standards, and reference data.

1.1 What’s in this Guide

This guide contains the following chapters:

TABLE 1-1. Chapter Overview

Chapter Title Description
1 Introduction Provides introductory information on the
OSF/Motif system.
2 Widgets, Gadgets, and | Describes of each widget, gadget, and convenience

Convenience Functions

function in the OSF/Motif system.

3 Using OSF/Motif Describes how to program using the OSF/Motif
Widgets in Programs | widget set. Two sample programs are presented.
4 Shell Widgets Describes the various Shell widgets and how they
are used.
5 Dialog Widgets and Describes Dialog widgets and their associated
Functions convenience functions.
6 Menus Describes each of the various types of menus and
presents a sample program for each menu type.
7 Specialized Widgets Describes in detail three widgets that are

considered specialized: List, RowColumn, and
Text.

Introduction 1-1

TABLE 1-1. Chapter Overview (Continued)

Chapter Title Description
8 Additional Functionality | Describes a number of additional features of the
OSF/Motif system.
9 Keyboard Interface Describes how to use the keyboard for traversal

between widgets.

10 Debugging Describes basic debugging procedures for some
typical errors.

11 Glossary Defines a number of words and phrases commonly
used in the OSF/Motif system.

You should also be aware of these conventions:

« All OSF/Motif functions begin with “Xm.” For example, XmCreateForm is the
function to create a Form widget.

« All OSF/Motif widget resource names begin with “XmN.” For example,
XmNbottomShadowColor is a Manager resource that is used to specify the color to
use when drawing the bottom and right sides of a window’s border shadow. By
convention, the first letter after the “N” is lower case but the first letter of succeeding
new words in the resource name are capitalized, even though there are no spaces.

« All OSF/Motif widget class names begin with “xm.” For example, the class name for
the MainWindow widget is xmMainWindowWidgetClass. The first letters of
succeeding words are capitalized, even though there are no spaces.

o All Xt Intrinsics functions begin with “Xt.” For example,
XtCreateManagedWidget” is an Xt Intrinsics function that creates and manages a
widget.

« All Resource Manager functions (see Programming With Xlib) begin with “Xrm.” For
example, XrmInitialize is a function that initializes the Resource Manager.

« All other X Window System functions begin with “X.” For example,
XCreateWindow is a function that creates an unmapped window and sets its
attributes. Most of these functions are described in Programming With Xlib.

1-2 Introduction

1.2 The X Window System

The HP OSF/Motif widget set is based on the Xt Intrinsics, a set of functions and
procedures that provide quick and easy access to the lower levels of the X Window system.

Application

Motif Widgets

Xt Intrinsics

® Window System

0S and Networking

Hardware Platform

Figure 1-1. User Interface Development Model

You can see from figure 1-1 that the OSF/Motif widget set is layered on top of the Xt
Intrinsics, which in turn are layered on top of the X Window System, thus extending the
basic abstractions provided by X. The OSF/Motif widget set supports independent
development of new or extended widgets. The OSF/Motif widget set consists of a number
of different widgets, each of which.can be used independently or in combination to aid in
creating complex applications. Applications can be written faster and with fewer lines of
code using the OSF/Motif widgets; however, they will require more memory than similar
applications written without using these widgets.

This manual will explain the individual widgets and show you how to create and use these
widgets in your applications.

1.3 Widget Classes and Hierarchy

Every widget is dynamically allocated and contains state information. Every widget belongs
to one class, and each class has a structure that is statically allocated and initialized and
contains operations for that class. Figure 1-2 shows the basic widget classes.

Introduction 1-3

e TR

g HindowObj [XmGadget
E LR | SR
[|
Composite ¥mPrimitive
I
[1
Shell Constraint
1
XmManager

Figure 1-2. Basic widget Class Hierarchy

The basic class is the Core class. It contains resources that are inherited by all other
classes. Two classes are layered beneath the Core class, the Composite class and the
Primitive class. The Primitive class has no other classes beneath it, but the Composite
class has two — the Constraint class and the Shell class. Each lower class can inherit
some or all of the resources belonging to a higher class. For example, a Manager class
widget can inherit some or all of the resources belonging to the Constraint class, the
Composite class, and the Core class. You can find exactly what resources a given widget
has by examining its man page in the HP OSF/Motif Programmer’s Reference Manual.

This section has a number of hierarchy diagrams to help you understand how the widgets
relate to each other. Figure 1-2 shows the highest level of widget classes. You can see that
the Core class is composed of Object, RectObj, and WindowQObj. Core is the base class
for all other widget classes.

1-4 . Introduction

Figure 1-3 shows the subclasses of the Primitive class.

XmPrimitive

|

¥mLabel — ®¥mArrowButton
—1 ¥mCascadeButton —— XmList
- XmDrawnButton — XmScrol 1Bar

— ¥mPushButton —{ “mSeparator

— XmToggleButton — XmText

Figure 1-3. Primitive Class Widgets

Introduction 1-5

Figure 1-4 shows the subclasses of the Shell class.

Shell

OverrideShell

WMShell

VendorShell

ToplLevelShell

TransientShell

ApplicationShell

®mMenuShell

¥mDialogShell

Figure 1-4. Shell Widgets

1-6 Introduction

Figure 1-5 shows the Manager class widgets. Note from figure 1-2 that Manager is a
subclass of Composite and Constraint.

XmManager

l

¥mBulletinBoard

KmRowCo lumn

I~ ¥mCreateMenuBar

—XmCreateOptionMenu

1

¥mScrolledWindow

- XmCreateScrolledlList

— XmCreateScrol ledText

KmOrawingfrea

—XmCreatePopupMenu

— XmCreatePul ldowrMenu

— XmCreateRadi oBox AmMainHindow
¥mVPaned ®mF rame ¥mScale

Figure 1-5. Manager Widgets

Introduction 1-7

Figure 1-6 shows the Dialog widgets that are a subclass of Manager. Note that all of the
Dialog widgets are subclasses of BulletinBoard. Also, note the convenience functions that
are present. These are explained in detail in chapter 5, “Dialog Widgets and Functions.”

K¥mManager

®¥mBulletinBoard

. XmCreateBulletinBoardDialog

KmSe lectionBox

— ¥mCreatePromptDialog

— ¥mCreateSelectionDialog

]

KmMessageBox X¥mF orm

XmFileSelectionBox

¥mCommandBox

l— XmCreatefileSelectionDialog

1-8 Introduction

¥mCreateErrorBialog l‘ XmCreateFormDialog
¥mCreatelnformationDialog

¥mCreateMessageDialog

¥mCreateQuestionDialog

XmCreateWarningbialog

KmCreateWorkingDialog

Figure 1-6. Dialog Widgets

Figure 1-7 shows the Gadgets that are an integral part of the OSF/Motif toolkit.

XmGadget
KmLabe 1Gadget — ¥mfArrowButtonBadget
t—— XmCascadeButtonGadget L XmSeparatorGadget

S ¥mPushButtonGadget

L—] XmToggleButtonGadget

Figure 1-7. Gadgets

1.4 Compiling Sample Programs

There are a number of sample programs discussed throughout this manual. The source
code for most of these programs can be found in the directory /usr/contrib/Xm.
There is also a Makefile in this directory that you can use to compile and link the
programs. Follow this procedure to compile and link a program.

1. Copy the program source code file and the Makefile found in /usr/contrib/Xm
to your work directory. Do not attempt to compile the program in the
/usr/contrib/Xm directory.

2. Compile the program by executing the following command:

make <programname>

Introduction 1-9

3. There is a defaults file called XMdemos in the directory /usr/contrib/Xm that
you will need to move (or copy) to the directory /usr/1ib/X11/app-defaults
before you run the program. This defaults file contains defaults for most of the
sample programs presented in this guide.

1.5 Available Documentation

Use the following table to determine the document or documents you need to accomplish
specific tasks.

TABLE 1-2. Documentation Map

Task Document Title
Configure the X Window System A Beginner’s Guide to the X Window System

and Using the X Window Systermn

Learn how to start the X Window System |4 Beginner’s Guide to the X Window System
and Using the X Window System

Customize the X Window Environment | Using the X Window System

Find resource definitions and values HP OSF/Motif Programmer’s Reference Manual

Incorporate widgets into applications HP OSF [Motif Programmer’s Guide

Other sources of information are listed below:

o Xlib Programming Manual For Version 11 Release of the X Window System, by Adrian
Nye, published by O’Reilly and Associates, Newton, MA (1-800-338-NUTS).

o Xlib Reference Manual For Version 11 Release of the X Window Systent, by Adrian Nye,
published by O’Reilly and Associates, Newton, MA (1-800-338-NUTS).

o X Window System User’s Guide, by Tim O’Reilly, Valerie Quercia, and Linda Lamb,
published by O’Reilly and Associates, Newton, MA (1-800-338-NUTS).

o Introduction to the X Window System, by Oliver Jones, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

o X Window System, Version 11 Inter-Client Communications Conventions Manual, by
David S. H. Rosenthal, Sun MicroSystems, Mountain View, CA 94043

1-10 Introduction

Widgets, Gadgets, and
Convenience Functions 2

The HP OSF/Motif system has a variety of widgets and gadgets, each designed to
accomplish a specific set of tasks, either individually or in combination with others. There
are convenience functions that create certain widgets or sets of widgets for a specific
purpose. This chapter explains widgets, gadgets, and convenience functions.

2.1 Widgets

Widgets are used either individually or in combination to make the creation of complex
applications easier and faster. Some widgets display information, others are merely
containers for other widgets. Some widgets are restricted to displaying information and do
not react to keyboard or mouse input. Others change their display in response to input
and can invoke functions when instructed to do so. You can customize some aspects of a
widget, such as fonts, foreground and background colors, border widths and colors, and
sizes.

An instance of a widget class is composed of a data structure containing values and
procedures for that particular widget instance. There is also a class structure that contains
values and procedures applicable to all widgets of that class.

Widgets are grouped into several classes, depending on the function of the widget.
Logically, a widget class consists of the procedures and data associated with all widgets
belonging to that class. These procedures and data can be inherited by subclasses.
Physically, a widget class is a pointer to a structure. The contents of this structure are
constant for all widgets of the widget class. A widget instance is allocated and initialized by
XmCreate<widget name>, XmCreateWidget, or XmCreateManagedWidget. See
chapter 3, "Using OSF/Motif Widgets in Programs," for specific examples of creating
widgets.

This section provides an overview of the available widgets. The man pages in the HP
OSF /Motif Programmer’s Reference Manual contain detailed information for each of the
widgets. Figure 2-1 shows how widgets might be combined in an application.

Widgets, Gadgets, and Convenience Functions 2-1

Figure 2-1. Widget Application Screen

Several types of widgets are shown in figure 2-1. The large window is a MainWindow
widget within which are a MenuBar and some PushButtons, a RowColumn widget with a
number of PushButtonGadgets, and a vertical ScrollBar. The program that produces this
window is called xmfonts, and it is described in chapter 3.

NOTE

A complete list of resources for each widget can be found in the
appropriate man page in the HP OSF/Motif Programmer’s Reference
Manual.

The sections in this chapter divide the widgets into five categories as shown in table 2-1.

2-2 Widgets, Gadgets, and Convenience Functions

TABLE 2-1. Categories of Widgets

Class Name Widget Class
Shell Widgets
XmDialogShell xmDialogShellWidgetClass
XmMenuShell xmMenuShellWidgetclass
VendorShell VendorShellWidgetClass
Display Widgets
Core Core
XmPrimitive xmPrimitiveWidgetClass
XmArrowButton xmArrowButtonWidgetClass
XmDrawnButton xmDrawnButtonWidgetClass
XmLabel xmLabelWidgetClass
XmList xmListWidgetClass
XmPushButton xmPushButtonWidgetClass
XmScrollBar xmScrollBarWidgetClass
XmSeparator xmSeparatorWidgetClass
XmText xmTextWidgetClass
XmToggleButton xmToggleButtonWidgetClass
Container Widgets
XmManager xmManagerWidgetClass
XmDrawingArea xmDrawingAreaWidgetClass
XmFrame xmFrameWidgetClass
XmMainWindow xmMainWindowWidgetClass
XmPanedWindow xmPanedWindowWidgetclass
XmRowColumn xmRowColumnWidgetClass
XmScale xmScaleWidgetClass
XmScrolledWindow xmScrolledWindowWidgetClass
Dialog Widgets
XmBulletinBoard xmBulletinBoardWidgetClass
XmCommand xmCommandWidgetClass

XmPFileSelectionBox
XmForm

xmFileSelectionBoxWidgetClass
xmFormWidgetClass

XmMessageBox xmMessageBoxWidgetClass
XmSelectionBox xmSelectionBoxWidgetClass
Menu Widgets

XmCascadeButton xmCascadeButtonWidgetClass

XmCascadeButtonGadget

xmCascadeButtonGadgetClass

Widgets, Gadgets, and Convenience Functions 2-3

2.1.1 Shell Widgets

Shell widgets are top-level widgets that provide the necessary interface with the window
manager. Different Shell widget classes are provided for the various categories of top-level
widgets. The Xt Intrinsics provide some underlying shells and the OSF/Motif toolkit
provides the remaining shells. The Xt Intrinsics provide the following shell classes:

e Shell - This is the base class for shell widgets. It is a subclass of Composite and
provides resources for all other types of shells.

e OverrideShell - This class is used for shell windows that completely bypass the
window manager. It is a subclass of Shell.

» WMShell - This class contains resources that are necessary for the common window
manager protocol. It is a subclass of Shell.

e VendorShell - This class contains resources used by vendor-specific window
managers. It is a subclass of WMShell.

e TransientShell - This class is used for shell windows that can be manipulated by
the window manager but cannot be iconified. It is a subclass of VendorShell.

e TopLevelShell - This class is used for normal top-level windows. It is a subclass of
VendorShell.

e ApplicationShell - This class is used for an application’s top-level window. It is a
subclass of TopLevelShell.

The classes Shell, WMShell, and VendorShell are internal and cannot be
instantiated.

The OSF/Motif toolkit provides the following widgets:

XmDialogShell (xmDialogShellWidgetClass)

The DialogShell widget class is a subclass of TransientShell. Instances of this class are
used as the parents of modal and modeless Dialogs associated with other top-level
windows. DialogShell provides proper communication with the OSF/Motif Window
Manager in accordance with the Inter-Client Communications Conventions Manual
(ICCCM) for secondary top-level windows, such as Dialogs. See chapter 5, “Dialog
Widgets,” for more information about how this widget is used by the Dialog widgets.

XmMenuShell (xmMenuShellWidgetClass)

The MenuShell widget class is a subclass of OverrideShell. Instances of this class are used
as the parents of MenuPanes. See chapter 6, “Menus,” for the specifications of menu
widgets and menu shells.

2-4 Widgets, Gadgets, and Convenience Functions

VendorShell (xmVendorShellWidgetClass)
The VendorShell widget class is a subclass of WMShell. It provides the common state
information and services needed by the window-manager visible shells.

See chapter 4, “Shell Widgets,” for more information.

2.1.2 Display Widgets
The OSF/Motif system provides the following display widgets:

Core

The Core class is used as a supporting superclass for other widget classes. It provides
common resources that are needed by all widgets, including x and y location, height, width,
window border width, and so on.

XmPrimitive (xmPrimitiveWidgetClass)

The XmPrimitive class is also used as a supporting superclass for other widget classes. It
provides resources for border drawing and highlighting, traversal activation and
deactivation, and so on.

XmArrowButton (xmArrowButtonWidgetClass)

The ArrowButton widget consists of a directional arrow surrounded by a border shadow.
When the ArrowButton is selected, the shadow moves to give the appearance that the
ArrowButton has been pressed in. When the ArrowButton is unsclected, the shadow
moves to give the appearance that the ArrowButton is released, or “out.” The
ArrowButton has the same functionality as the PushButton. Figure 2-2 shows four
ArrowButtons arranged within a RowColumn widget.

Figure 2-2. ArrowButtons

Widgets, Gadgets, and Convenience Functions 2-5

The direction of the arrow is specified by setting the XmNarrowDirection resource to
the appropriate value. The spacing between the ArrowButtons in figure 2-2 was obtained
by setting the RowColumn resources XmNmarginWidth, XmNmarginHeight, and
XmNspacing to 20.

XmDrawnButton (xmDrawnButtonWidgetClass)

The DrawnButton widget consists of an empty widget window surrounded by a shadow
border. It provides the application developer with a graphics area that can have
PushButton input semantics.

Callback types are defined for widget exposure and resize to allow the application to
redraw or reposition its graphics. If the DrawnButton widget has a highlight and shadow
thickness, the application should take care not to draw in this area. This can be done by
creating the graphics context to be used for drawing in the widget with a clipping rectangle.
The clipping rectangle should take into account the size of the widget’s highlight thickness
and shadow.

XmLabel (xmLabelWidgetClass)

A Label consists of either text or graphics. It can be instantiated but it is also used as a
superclass for button widgets. Label’s text is a compound string and can be
multidirectional, multiline, multifont, or any combination of these. Label is considered
static because it does not accept any button or key input other than the “help” button on
the widget. The “help” callback is the only callback defined for Label.

XmList (xmListWidgetClass)

The List widget allows you to make a selection from a list of items. The application
defines an array of compound strings, each of which becomes an item in the list. You can
set the number of items in the list that are to be visible. You can also choose to have the
List appear with a ScrollBar so that you can scroll through the list of items. Items are
selected by moving the pointer to the desired item and pressing the mouse button or key
defined as “select.” The selected item is displayed in inverse colors.

2-6 Widgets, Gadgets, and Convenience Functions

Figure 2-3. List Widget

XmPushButton (xmPushButtonWidgetClass)

This widget consists of a text label or pixmap surrounded by a border shadow. You select
the button by moving the mouse cursor to the button and pressing mouse button 1. When
the mouse button is pressed, the widget and shadow colors will invert, giving the
appearance that the PushButton has been pressed in. When the mouse button is released,
the colors will revert to the original color scheme, giving the appearance that the
PushButton is “out.” PushButtons are used to invoke actions, such as run, cancel, stop,
and so on.

Widgets, Gadgets, and Convenience Functions 2-7

XmScrollBar (xmScrollBarWidgetClass)

The ScrollBar widget allows you to view data that is too large to be viewed in its entirety.
ScrollBars are combined with a widget that contains the data to be viewed. When you
interact with the ScrollBar, the data scrolls. The viewable portion of the data is called the
work area.

A ScrollBar consists of two arrows pointing in opposite directions at each end of a narrow
rectangle. The rectangle is called the scroll region. A smaller rectangle called a slider is
positioned within the scroll region. The slider is normally colored to contrast with that of
the scroll region. The ratio of the slider size to the scroll region size corresponds to the
relationship between the visible data and the total data. For example, if ten percent of the
data is visible in the work area, the slider takes up ten percent of the scroll region.

You may place the ScrollBar horizontally or vertically or both. Horizontal ScrollBars are
placed at the bottom edge of the work area and vertical ScrollBars are placed on the right
edge. The ScrollBar widget is shown in figure 2-4,

Vertical
ScrollBar

Horizontal ScrollBar

Figure 2-4. ScrollBars

XmSeparator (xmSeparatorWidgetClass)

Separator is a primitive widget to be used as an item separator placed between items in a
display. Several different line drawing styles are provided as well as horizontal or vertical
orientation,

The line drawing done within the Separator is automatically centered within the height of
the widget for a horizontal orientation, and centered within the width of the widget for a

2-8 Widgets, Gadgets, and Convenience Functions

vertical orientation.

The XmNseparatorType of XmNO_LINE is provided as an escape to the application
programmer who needs a different style of drawing. A pixmap the height of the widget can
be created and used as the background pixmap by building an argument list using the
XmNbackgroundPixmap argument type as defined by Core. Whenever the widget is
redrawn its background that contains the desired Separator drawing is displayed.

XmText (xmTextWidgetClass)

The Text widget provides a single or multiline text editor that has a user and programmer
interface that you can customize. It can be used for single-line string entry, forms entry
with verification procedures, multipage document viewing, and full-screen editing. See
chapter 7 for more information on the Text widget.

J|Here is some text entered as a test of the
Jlis not to be interpreted as intelligent or
Jigibberish, gibberish is what generally c¢
f[not appear to contradict that time-homnt

Here is some more text entered from the

Figure 2-5. Text Widget

XmToggleButton (xmToggleButtonWidgetClass)

This widget consists of a text or graphics label with an indicator (a square or diamond-
shaped box) placed to the left of the text or graphics. If the resource XmNborderWidth
is set to any value greater than zero, the ToggleButton will have a visible border, as shown
in figure 2-6.

Widgets, Gadgets, and Convenience Functions 2-9

Figure 2-6. ToggleButtons

You can have the ToggleButton appear with a three-dimensional shadow as shown in
figure 2-7. To do this, set the resource XmNshadowThickness to some value greater
than zero, instead of XmNborderWidth.

Figure 2-7, ToggleButtons

The indicator will change size to correspond to the font used for the text label. The overall
height and width of the ToggleButton can be changed when the Label resource
XmNrecomputeSize is set to False. If this resource is set to True, then only enough
space to draw the ToggleButton is allocated. The ToggleButtons in figure 2-7 were set to a
height of 50 pixels and a width of 200 pixels. One way to do this is by setting the applicable
resources in a defaults file, as shown below.

*XmToggleButton.recomputeSize: False
*XmToggleButton.height: 50
*XmToggleButton.width: 200

*XmToggleButton.shadowThickness: 2

2-10 Widgets, Gadgets, and Convenience Functions

Select the ToggleButton by moving the mouse cursor inside the rectangle and pressing
mouse button 1. The indicator is then filled with the selection color, indicating that the
ToggleButton is selected.

2.1.3 Container Widgets

Container widgets are Composite widgets that provide applications with general layout
functionality. Since they are Composite widgets, Container widgets can have children. All
of the container widgets are built from the Core, Composite, Constraint, and XmManager
widget classes. The OSF/Motif system provides the following container widgets:

XmManager (xmManagerWidgetClass)

The XmManager class is an OSF/Motif widget meta class and is therefore never
instantiated as a widget. Its sole purpose is to act as a supporting superclass for other
widget classes. It supports the visual resources, graphics contexts and traversal resources
necessary for the graphics and traversal mechanisms. XmManager is built from Core,
Composite, and Constraint.

XmDrawingArea (xmDrawingAreaWidgetClass)

The DrawingArea widget is an empty widget that is easily adaptable to a variety of
purposes. DrawingArea does no drawing and defines no behavior except for invoking
callbacks. Callbacks notify the application when graphics need to be drawn (exposure
events or widget resize), and when the widget receives input from the keyboard or mouse.
Applications are responsible for defining appearance and behavior as needed in response
to DrawingArea callbacks.

DrawingArea is a Composite widget and is a subclass of XmManager. It supports minimal -
geometry management for multiple widget or gadget children.

XmFrame (xmFrameWidgetClass)

The XmFrame widget is a manager that is used to enclose a single child within a border
drawn by the XmFrame widget. It is most often used to enclose other Managers when it is
desired to have the same border appearance for the XmManager and XmPrimitive widgets
it manages.

XmMainWindow (xmMainWindowWidgetClass)

The XmMainWindow widget provides a standard layout for the primary window of an
application. This layout includes a MenuBar, a CommandWindow, a work region, and
ScroliBars. Any or all of these areas are optional. The work region and ScrollBars in the
MainWindow behave exactly the same as their counterparts in the ScrolledWindow widget.
You can think of the MainWindow as an extended ScrolledWindow with an optional
MenuBar and an optional CommandWindow. :

Widgets, Gadgets, and Convenience Functions 2-11

In a fully loaded MainWindow, the MenuBar spans the top of the window horizontally.
The CommandWindow spans the MainWindow horizontally and is placed just below the
MenuBar. Any space below the CommandWindow is managed exactly the same as the
ScrolledWindow. To create a fully loaded MainWindow, you create a MenuBar, a
CommandWindow, two ScrollBars (one horizontal and one vertical), and a widget to use
as the work region. You then call XmMainWindowSetAreas with those widget ID’s.

XmRowColumn (xmRowColumnWidgetClass)

The RowColumn widget is a general purpose RowColumn manager capable of containing
any widget type as a child. It requires no special knowledge about how its children
function and provides nothing above and beyond support for several different layout styles.

Figure 2-8. RowColumn Widget

The type of layout performed is controlled by how the application has set the various
layout resources. It can be configured to lay out its children in either a row or a column
fashion. In addition, the application can specify whether the children should be packed
tightly together (not into organized rows and columns), or whether each child should be
placed in an identically sized box (thus producing a symmetrical look), or whether specific
layout should be done (the current x and y positions of the children control their location).

In addition, the application has control over both the spacing that occurs between each row
and column, and the margin spacing between the edges of the RowColumn widget and any
children that are placed against it.

The RowColumn widget has no three-dimensional visuals associated with it. If you want an
application to have a three-dimensional shadow placed around the RowColumn widget,
then you should create the RowColumn widget as a child of a Frame widget.

XmScale (xmScaleWidgetClass)

The Scale widget has two basic functions.
« It is used by an application to indicate a value from within a range of values.
« It allows the user to input or modify a value from the same range.

A Scale widget allows you to select a value from a range of displayed values by adjusting an
arrow to a position along a line. A Scale has an elongated rectangular region similar to that

2-12 Widgets, Gadgets, and Convenience Functions

of a ScrollBar. Inside this region is a slider that is used to indicate the current value along
the Scale. You can modify the value of the Scale by moving the slider within the
rectangular region of the Scale. A Scale can also include a set of labels and "tick marks"
located outside of the Scale region. These can be used to indicate the relative value at
various positions along the scale.

A Scale can be either input and output or output only. An input/output Scale is one whose
value can be set by the application and also modified by the user by using the slider. An
output-only Scale is one that is used strictly as an indicator of the current value of
something and cannot be modified interactively by the user. The Core resource
XmNsensitive is used to specify whether or not the user can interactively modify the
value of the Scale.

Figure 2-9. Scale Widget

Widgets, Gadgets, and Convenience Functions 2-13

XmScrolledWindow (xmScrolledWindowWidgetClass)

The ScrolledWindow widget combines one or more ScrollBar widgets and a viewing area
to implement a visible window onto some other (usually larger) data display. The visible
part of the window can be scrolled through the larger display by the use of ScrollBars.

To use the ScrolledWindow, an application first creates a ScrolledWindow widget, the
needed ScrollBar widgets, and a widget capable of displaying any desired data as the work
area of the ScrolledWindow. ScrolledWindow will position the work area widget and
display the ScrollBars if so requested. When the user performs some action on the
ScrollBar, the application will be notified through the normal ScrollBar callback interface.

The ScrolledWindow can be configured to operate in an automatic manner, so that it
performs all scrolling and display actions with no need for application program
involvement. It can also be configured to provide a minimal support framework in which
the application is responsible for processing all user input and making all visual changes to
the displayed data in response to that input.

When the ScrolledWindow is performing automatic scrolling it will create a clipping
window. Conceptually, this window becomes the viewport through which the user examines
the larger underlying data area. The application simply creates the desired data, then
makes that data the work area of the ScrolledWindow. When the user moves the slider to
change the displayed data, the workspace is moved under the viewing area so that a new
portion of the data becomes visible.

There are situations where it is impractical for an application to create a large data space
and simply display it through a small clipping window. An example of this is a text editor
— there would be an undesirable amount of overhead involved with creating a single data
area that consisted of a large file. The application should use the concept of a
ScrolledWindow (a small viewport onto some larger data), but it should be notified when
the user scrolls the viewport so it can bring in more data from storage and update the
display area. For this situation the ScrolledWindow can be configured so that it provides
only visual layout support. No clipping window is created and the application must
maintain the data displayed in the work area as well as respond to user input on the
ScrollBars. Figure 2-10 shows a ScrolledWindow with some text in it. Note that the scroll
bars indicate that scrolling is possible in either direction.

2-14 Widgets, Gadgets, and Convenience Functions

This is an example of some text th
Notice that the text does not wrap
until you press Return. Hereis a

of text. Here is another line of tex
yvet another line of text. Here is scC
text. Here is yet another line of te
time for all good men to come to t
country. The quick brown fox ju

A

Figure 2-10. ScrolledWindow Widget

Figure 2-11 shows the same window after partially scrolling down. Compare the positions
of the vertical scroll bar and the text with those of figure 2-10.

yet another line of text. Here is sc
text. Here is yet another line of te|
time for all good men to come to t |

country. The quick brown fox ju :
lazy dog. Now the same lineall i
THE QUICK BROWN FOX JUMP,
LAZY DOG. Four score and seve
our forefathers brought forth upon

Figure 2-11. ScrolledWindow After Scrolling

Widgets, Gadgets, and Convenience Functions 2-15

XmPanedWindow (xmPanedWindowWidgetClass)

The PanedWindow manager widget is a Composite widget that lays out children in a
vertically tiled format. Children appear from top-to-bottom, with the first child inserted
appearing at the top of the PanedWindow manager and the last child inserted appearing at
the bottom. The PanedWindow manager will grow to match the width of its widest child,
and all other children are forced to this width. The height of the PanedWindow manager
will be equal to the sum of the heights of all its children, the spacing between them, and
the size of the top and bottom margins.

The PanedWindow manager widget is also a constraint widget, which means that it creates
and manages a set of constraints for each child. It is possible to specify a minimum and
maximum size for each pane. The PanedWindow manager will not allow a pane to be
resized below its minimum size nor beyond its maximum size. Also, when the minimum
size of a pane is equal to its maximum size, then no control sash will be presented for that
pane or for the lowest pane. Figure 2-12 shows an example of a PanedWindow widget with
three ArrowButtons as its children

Figure 2-12. PanedWindow Widget

It is possible for you to adjust the size of the panes. To facilitate this adjustment, a pane
control sash is created for most children. The sash appears as a square box positioned on
the bottom of the pane that it controls (see figure 2-12). You can adjust the size of a pane

2-16 Widgets, Gadgets, and Convenience Functions

by using the mouse. Position the pointer inside the sash and a crosshair appears. Press
and hold mouse button 1 and the pointer changes to an arrow pointing up and down.
Continue holding mouse button 1 down while you move the pointer to achieve the desired
size of the pane. Release mouse button 1 and the panes will be resized. Figure 2-13 shows
the PanedWindow after a pane has been resized.

Figure 2-13. PanedWindow Widget After Pane Resizing

2.1.4 Dialog Widgets

Dialog widgets are container widgets that provide applications with layout functionality
typically used for popup “dialogs.” These widgets are used for interaction tasks such as
displaying messages, setting properties, and providing selection from a list of items. Dialog
widgets are thus used primarily as an interface between the user and the application. A
Dialog widget will normally ask a question or present the user with some information that
requires a response. In some cases the application will be suspended until the user
provides the response.

A Dialog is a collection of widgets, including a DialogShell, a BulletinBoard (or subclass of
BulletinBoard or some other container widget), plus various children of the BulletinBoard,
such as Label, PushButton and Text widgets. All of the dialog widgets are built from the

Widgets, Gadgets, and Convenience Functions 2-17

Core, Composite, Constraint, and Manager widget classes.

The collection of widgets that compose a Dialog can be built from scratch by building up
the necessary argument lists and creating each individual widget in the Dialog, For
common interaction tasks, convenience functions are defined that create the collection of
widgets that comprise a particular Dialog. The collections of widgets created by Dialog
convenience functions are referred to as Convenience Dialogs.

Convenience Dialogs are either modal or modeless. A modal dialog stops the work
session and solicits input from the user. A modeless dialog solicits input from the user, but
doesn’t interrupt interaction with any application.

Each dialog has one or more convenience functions that create any of the subwidgets in
that dialog. For example, MessageBox has several convenience functions:

o XmCreateMessageDialog.

e XmCreateErrorDialog.

o XmCreateInformationDialog.
o XmCreateQuestionDialog.

e XmCreateWarningDialog.

o XmCreateWorkingDialog.

Each of these convenience functions create a DialogShell and a MessageBox. Refer to
chapter 5, “Dialog Widgets and Functions,” and the individual man pages for more
information.

2.1.5 Dialog Widget Descriptions

The following list gives an overview of the Dialog widget set. See the next section for an
overview of the convenience dialogs.

XmBulletinBoard (xmBulletinBoardWidgetClass)

The BulletinBoard widget is a composite widget that provides simple geometry
management for children widgets. It does not force positioning on its children, but can be
set to reject geometry requests that would result in overlapping children. BulletinBoard is
the base widget for most dialog widgets, but is also used as a general container widget.

2-18 . Widgets, Gadgets, and Convenience Functions

XmCommand (xmCommandWidgetClass)

The Command widget is a subclass of SelectionBox that includes a command history
region and a command input region. Command also provides a command history
mechanism.

XmFileSelectionBox (xmFileSelectionBoxWidgetclass)

The FileSelectionBox widget is a subclass of SelectionBox and BulletinBoard used to get a
selection from a list of alternatives. FileSelectionBox includes an editable text field for the
directory mask, a scrolling list of filenames. and an editable text field for the selected file.
Four buttons are available: “OK,” “Filter,” “Cancel,” and “Help” by default.

XmForm (xmFormWidgetClass)

The Form widget is a constraint-based manager that provides a layout language used to
establish spatial relationships between its children. It maintains these relationships when
the Form is resized, new children are added to the Form, or its children are resized,
unmanaged, remanaged, or destroyed. Since it is a subclass of BulletinBoard, Form
includes the base level of dialog support. Form can also be used as a general container
widget.

XmMessageBox (xmMessageBoxWidgetClass)

The MessageBox widget is a subclass of BulletinBoard used to give information to the
user. MessageBox includes a symbol and a message. Three buttons are available: “OK,”
“Cancel,” and “Help” by default.

XmSelectionBox (xmSelectionBoxWidgetClass)

The SelectionBox widget is a subclass of BulletinBoard used to get a selection from a list

of alternatives. SelectionBox includes a message, an editable text field, and a scrolling list
of choices. Four buttons are available: “OK,” “Cancel,” “Apply,” and “Help” by default.

2.1.6 Convenience Dialogs

Convenience Dialogs are collections of widgets that can be created by using convenience
functions. Each convenience dialog instantiates a dialog widget as a child of a DialogShell.
This section lists the Convenience Dialogs.

BulletinBoardDialog

The BulletinBoardDialog convenience function instantiates a BulletinBoard and a
DialogShell. The BulletinBoardDialog is used for interactions not supported by the
standard dialog set. Necessary dialog components are added as children of the
BulletinBoard.

Widgets, Gadgets, and Convenience Functions 2-19

ErrorDialog

The ErrorDialog convenience function instantiates a MessageBox and a DialogShell. The
ErrorDialog is used to warn the user of an invalid or potentially dangerous condition.
ErrorDialog includes a symbol and a message. Three buttons are available: “OK,”
“Cancel,” and “Help” by default. The default ErrorDialog symbol is a hexagon with a
hand inside.

FileSelectionDialog

The FileSelectionDialog convenience function instantiates a FileSelectionBox and a
DialogShell. The FileSelectionDialog is used to select a file. FileSelectionDialog includes
an editable text field for the directory mask, a scrolling list of filenames, and an editable
text field for the selected file. Four buttons are available: “OK,” “Filter,” “Cancel,” and
“Help” by default.

FormDialog o

The FormDialog convenience function instantiates a Form and a DialogShell. The
FormDialog is used for interactions not supported by the standard dialog set. Necessary
dialog components are added as children of the Form.

InformationDialog

The InformationDialog convenience function instantiates a MessageBox and a DialogShell.
The InformationDialog is used to give information to the user, such as the status of an
action. InformationDialog includes a symbol and a message. Three buttons are available:
“OK,” “Cancel,” and “Help” by default. The default InformationDialog symbol is a
square icon with an “i” in the center.

MessageDialog

The MessageDialog convenience function instantiates a MessageBox and a DialogShell.
The MessageDialog is used to give information to the user. MessageDialog may include a
symbol and a message. There is no symbol by default. Three buttons are available: “OK,”
“Cancel,” and “Help” by default.

PromptDialog

The PromptDialog convenience function instantiates a SelectionBox and a DialogShell.
The PromptDialog is used to prompt the user for text input. PromptDialog includes a
message and a text input region. Four buttons are available: “OK,” “Apply,” “Cancel,”
and “Help” by default.

2-20 Widgets, Gadgets, and Convenience Functions

QuestionDialog

The QuestionDialog convenience function instantiates a MessageBox and a DialogShell.
The Question Dialog is used to get the answer to a question from the user.
QuestionDialog includes a symbol and a message. Three buttons are available: “OK,”
“Cancel,” and “Help” by default. A “?” is the default QuestionDialog symbol.

SelectionDialog

The SelectionDialog convenience function instantiates a SelectionBox and a DialogShell.
The SelectionDialog is used to get a selection from a list of alternatives. SelectionDialog
includes a message, an editable text field, and a scrolling list of choices. Four buttons are
available: “OK,” “Apply,” “Cancel,” and “Help” by default.

WarningDialog

The WarningDialog convenience function instantiates a MessageBox and a DialogShell.
The WarningDialog is used to warn the user of the consequences of an action, and give the
user a choice of resolutions. WarningDialog includes a symbol and a message. Three
buttons are available: “OK,” “Cancel,” and “Help” by default. A “!” is the default
WarningDialog symbol.

Working Dialog

The WorkingDialog convenience function instantiates a MessageBox and a DialogShell.
The WorkingDialog is used to inform the user that there is a time consuming operation in
progress and give the user the ability to cancel the operation. WorkingDialog includes a
symbol and a message. Three buttons are available: “OK,” “Cancel,” and “Help” by
default. The WorkingDialog symbol is a square icon with an hourglass in the center.

2.1.7 Menu Widgets

The RowColumn widget is the basis for most of the menu system components. It has a
built-in ability to behave like a RowColumn manager, a RadioBox, a MenuBar, a Pulldown
MenuPane, a Popup MenuPane, and an Option menu. Convenience functions have been
provided to easily create these special versions of the RowColumn widget.

The OSF/Motif menu system is composed of the following widgets and convenience
functions:

o XmRowColumn (Widget)

o MenuBar (Convenience Function)

» OptionMenu (Convenience Function)

+ Pulldown Menupane (Convenience Function)

» Popup Menupane (Convenience Function)

Widgets, Gadgets, and Convenience Functions 2-21

o XmMenuShell (Widget)

¢ XmCascadeButton (Widget)

e XmSeparator (Widget and Gadget)

o XmLabel (Widget and Gadget)

o XmToggleButton (Widget and Gadget)
¢ XmPushButton (Widget and Gadget)

Applications are not required to use all of these components to use the menu system.

2.2 Gadgets

Gadgets provide essentially the same functionality as the equivalent primitive widgets. The
primary motivation behind providing a set of gadgets is to improve performance, both in
execution time and data space. This applies to both the application and server processes
and minimizes the amount of lost functionality. The performance difference between
widgets and gadgets is dramatic, so it is highly recommended that applications use gadgets
whenever possible.

Gadgets can be thought of as 2 windowless widget. This means that they do not have
windows, translations, actions, or popup children. Also, gadgets do not have any of the
visual resources found in the XmPrimitive class for primitive widgets. These visuals are
referenced by a gadget from its parent.

Examples of display gadgets include buttons, labels and separators. All of these gadgets
are built from the classes of Object, RectObj, and XmGadget. The table below shows the
gadgets and their class names.

TABLE 2-2, Gadgets

Gadget Name Gadget Class
Object Object
RectObj Rect
XmGadget xmGadgetClass
XmArrowButtonGadget | xmArrowButtonGadgetClass
XmLabelGadget xmLabelGadgetClass
XmPushButtonGadget xmPushButtonGadgetClass
XmSeparatorGadget xmSeparatorGadgetClass
XmToggleButtonGadget | xmToggleButtonGadgetClass

2-22 Widgets, Gadgets, and Convenience Functions

The following list provides an overview of the set of display gadgets.

Object (Object)
The Object class is an Xt Intrinsics meta class and is therefore never instantiated. It is
used as a supporting superclass to provide common resources to other classes.

RectObj (Rect)
The RectObj class is an Xt Intrinsics meta class and is therefore never instantiated. It is
used as a supporting superclass to provide common resources to other classes.

XmGadget (xmGadgetClass)
XmGadget is an OSF/Motif meta class and is therefore never instantiated. It is used as a
supporting superclass to provide common resources to other gadget classes.

XmArrowButtonGadget (xmArrowButtonGadgetClass)
ArrowButtonGadget has the same functionality as PushButtonGadget but displays a
directional arrow within itself.

XmLabelGadget (xmLabelGadgetClass)

A LabelGadget consists of either text or graphics. It can be instantiated but it is also used
as a superclass for button widgets. The LabelGadget’s text is a compound string and can
be multidirectional, multiline, multifont, or any combination of these. LabelGadget is
considered static because it does not accept any button or key input other than the “help”
button on the widget. The “help” callback is the only callback defined for LabelGadget.

XmPushButtonGadget (xmPushButtonGadgetClass)

PushButtonGadgets are used to issue commands within an application. PushButtonGadget
displays a label with a border-shadowing graphic. When the pushbutton is selected, the
shadow moves to give the appearance that the push button has been pressed in. When the
pushbutton is unselected, the shadow moves to give the appearance that the pushbutton is
“out.”

XmSeparatorGadget (xmSeparatorGadgetClass)
SeparatorGadget is used to provide a visual separation between groups of widgets. It can
draw horizontal and vertical lines in several different styles.

XmToggleButtonGadget (xmToggleButtonGadgetClass)

XmToggleButtonGadget consists of a text or graphics button face with an indicator (a
square or diamond-shaped box) placed to the left of the text or graphics. You select the
ToggleButtonGadget by placing the mouse cursor inside the rectangle and pressing mouse
button 1. The indicator is then filled with the selection color, indicating that the
ToggleButtonGadget is selected. ToggleButtonGadgets are used for setting nontransitory
data within an application.

Widgets, Gadgets, and Convenience Functions 2-23

2.3 Convenience Functions

Convenience functions are functions that enable you to create certain widgets or gadgets,
or groups of widgets or gadgets, by making just one function call. A Convenience function
creates a predetermined set of widgets and returns the parent widget’s ID. Convenience
functions are of the form

XmCreate<widgetname>

for widgets and gadgets other than Dialog widgets. For Dialogs, convenience functions are
referred to as Convenience Dialogs, and are of the form

<DialogWidgetName>Dialog

It is very easy to use a convenience function to create a widget. For example, you can use
the following code segment to create a Label widget:

Widget XmCreateLabel (parentname,arglist,argcount)

Widget parent;
String name;
Arglist arglist;
Cardinal argcount;

parent Specifies the parent widget for the Label.

name Specifies the resource name for the Label. This name is used for retrieving
resources, and therefore it should not be the same as any widget that is a child of
the same parent, unless identical resource values are to be used for the child
widgets.

arglist Specifies the argument list used to override the default values for the Label’s
resources.

argcount Specifies the number of arguments in the arglist.

The XmCreate<widgetname> functions create unmanaged widgets. Your application
must manage the set of widgets before they will be displayed. You can manage each
widget separately or as a group. Use this code segment to create and manage each widget
separately:

Widget w;

2-24 Widgets, Gadgets, and Convenience Functions

w = XmCreate<widgetname>(parent, name, arglist, argcount);
XtManageChild(w);

Use this code segment to create and manage widgets with the same parent as a group:

int child_count = 0;
Widget w[1l0];

w[child count++] = XmCreate<widgetname) (parent, name, arglist,
argcount)

w[child count++] = XmCreate<widgetname) (parent, name, arglist,
argcount)

w[child_count++]
argcount)

I

XmCreate<widgetname) (parent, name, arglist,

XtManageChildren(w, child count);

Widgets, Gadgets, and Convenience Functions 2 -25

Using OSF/Motif Widgets in Programs

3

This chapter explains how to write applications that use the OSF/Motif widgets.

Writing widget programs involves nine steps:

TABLE 3-1. Steps in Writing Widget Programs

Step Description Related Functions
1 [Include required header files. #include <Xm/Xm.h>
#include <Xm/widget.h>
2 |Initialize Xt Intrinsics. XtInitialize(. . .)
3 | Add additional top-level windows. | XtAppCreateShell(. . .)
Do steps 4 through 6 for each
widget.
4 | Set up argument lists for widget. XtSetArg(. . .)
5 (Create the widget. XtCreateManagedWidget(.)or
XmCreatewidget
followed by XtManageChild(widget).
Add callback routines. XtAddCallback(. . .)
7 |Realize widgets and loop. XtRealizeWidget (parent)
XtMainLoop()
8 |Link relevant libraries. cc +Nd2000 +Ns2000 -oapplication \
application.c -1Xm -1Xt -1X11 -1PW
9 |Create defaults files. /usr/1lib/X11/app-defaults/class

SHOME/.Xdefaults

Sections 3.1 through 3.8 of this chapter describe each of the steps except step 3. That step
is covered in section 3.11. The sample code segments of each section build a simple widget
program (called xmbutton) that implements a PushButton widget. The widget tree
diagram, the program, the defaults file, and a picture of the output are listed on the
following pages.

Using OSF/Motif Widgets in Programs 3-1

Program xmbutton Widget Tree Diagram
The following diagram shows the xmbutton widget tree.

Top Level
Shell

PushButton

Figure 3-1. xmbutton Widget Tree

Program Listing xmbutton.c
The source code for xmbutton.c is listed below. You can also find it in the directory
Jusr [contrib /[Xm.

***¥file: xmbutton.c

ek

**%*project: OSF/Motif widgets example programs

ok

***description: This program creates a PushButton widget.
Fedek

*kk

*%%(c) Copyright 1989 by Open Software Foundation, Inc.

Fkk All Rights Reserved.
kK

**%(c) Copyright 1989 by Hewlett-Packard Company.

*¥kk

/* include files */
#include <X11/Intrinsic.h>

#include <Xm/Xm.h>
#include <Xm/PushB.h>

3-2 Using OSF/Motif Widgets in Programs

/* functions defined in this program */

void main();

void activateCB(); /* Callback for the PushButton */
/* global variables */

char *btn_text;/* button label pointer for compound string */

**main - main logic for xmbutton program
*/

void main (argc,argv)

unsigned int arge;

char **argv,

{

Widget toplevel; /* Shell widget */
Widget button; /* PushButton widget */
Arg args[10]; /* arg list */
register int n; /* arg count */

/% 1initialize toolkit *
toplevel = XtInitialize ("main", "XMdemos", NULL, NULL,
&arge, argv);

/* create compound string for the button text %/
btn_text = XmStringCreateLtoR("Push Here",
XmSTRING_DEFAULT_ CHARSET);

/* set up arglist */

n = 0;

XtSetArg (args[n], XmNlabelType, XmSTRING); n++;

XtSetArg (args{n], XmNlabelString, btn_text); n++;

XtSetArg (args[n], XmNwidth, 250); nt++;

XtSetArg (args[n], XmNheight, 150); n++;

/* create button */

button = XtCreateManagedWidget ("button", xmPushButtonWidgetClass,
toplevel, args, n);

/* add callback */

XtAddCallback (button, XmNactivateCallback, activateCB, NULL);

/* realize widgets */

Using OSF/Motif Widgets in Programs 3-3

XtRealizeWidget (toplevel);
/* process events %/
XtMainLoop ();

*%activateCB - callback for button

*/

void activateCB (w, client_data, call_data)

Widgetw;/* widget id*/

caddr_tclient_data;/* data from application */

caddr_tcall_data;/* data from widget class */

{

/* print message, free compound string memory,
and terminate program */

printf ("PushButton selected.\n");

XtFree(btn_text);

exit (0);

)

Defaulits File XMdemos Partial Listing

NOTE
All the example programs in this manual use the same defaults file
XMdemos. This file contains default specifications for general
appearance and behavior, plus, in some cases, program unique
specifications.

1
'XMdemos app-defaults file for OSF/Motif demo programs
1

!general appearance and behavior defaults

!

*foreground: white
*fontList: vr-20
*allowShellResize: true

*borderWidth: 0

*highlightThickness: 2

3-4 Using OSF/Motif Widgets in Programs

*keyboardFocusPolicy: explicit
*menuAccelerator: <Key>KP_F2

Figure 3-2. Sample Program xmbutton Screen Display

Section 3.9 describes the use of color in screen design and section 3.10 introduces some
advanced programming techniques. Section 3.11 presents a more involved sample
program.

NOTE

This chapter assumes you have a working knowledge of the C
programming language. You should be particularly familiar with
pointers and structures. If you are not, be sure to study a book on
programming with C. Books on the topic are widely available in
computer bookstores.

The following sections describe the process for writing widget programs summarized in
table 3-1. Following these steps will help you start writing programs that use the
OSF/Motif widgets.

Using OSF/Motif Widgets in Programs 3-5

3.1 Including Header Files

Special variables and types of variables used by OSF/Motif programs are defined in
header files. Include the appropriate files at the beginning of your program. The man
page for each widget specifies the header files that are needed.

Usually this section in your program will look like this:

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/widget.h>

The order in which you place the header files is very important. Generally speaking, you
should follow this format:

1. General header files, such as <stdio.h>.

2. OSF/Motif widget header files, beginning with <Xm.h> and including a header file
for each widget class you are using in your program. The order of the widget class
headers is not critical.

3. For each widget class you are using in your program, replace widget (shown in the
#include statement above) with the name of the widget class.

The man page for each widget shows the exact spelling of all header files you need. The
include files for all widgets are found in the directory /usr/include/Xm. For the
PushButton widget in the sample program xmbutton, the header file name is PushB. h.
Put a #include statement in your program for each type of widget you use. You need to
include a header file only once, even if you use a given widget twice in your program.
Don’t forget to include any other header files (such as <stdio.h>) that your program
may need.

Intrinsic.h defines the Xt structures and variables. Variables common to all
OSF/Motif widgets are defined in Xm. h.

3.2 Initializing the Xt Intrinsics

You must initialize the XtIntrinsics before making any other calls to XtIntrinsics functions.
The function XtInitialize establishes the connection to the display server, parses the
command line that invoked the application, loads the resource database, and creates a
“shell widget” to serve as the parent of your application widgets.

By passing the command line that invoked your application to XtInitialize, the
function can parse the line to allow users to specify certain resources (such as fonts and

3-6 Using OSF/Motif Widgets in Programs

colors) for your application at run time. XtInitialize scans the command line and
removes those options. The rest of your application sees only the remaining options.

The call to XtInitialize used by the sample program xmbutton is:
toplevel = XtInitialize("main", XMdemos, NULL, NULL, &argc, argv);

This line names the application shell “main,” the application class “XMdemos,” passes no
additional options, and passes the command line that invoked the application. The first
two parameters are used in setting up defaults files. Defaults files are explained in section
3.8, “Creating Defaults Files,” later in this chapter.

The syntax of the Xt Initialize function appears below. Note that it returns a value of
type Widget; therefore, the variable toplevel in xmbutton must be defined as type
Widget.

Widget XtInitialize(shell name, application _class, options, num_options, argc,
argv)

String shell_name;
String application_class ;
XrmOptionDescRec options|[];
Cardinal num_options ;
Cardinal *arge;
String argv[];
shell_name Specifies the name of the application shell widget instance, which usually

is something generic like “main.” This name is used by the Xt Intrinsics
to search for resources that belong specifically to this shell widget.

application_class Specifies the class name of this application, which usually is the generic
name for all instances of this application. By convention, the class name
is formed by reversing the case of the application’s first letter. The class
name is used to locate the files used to initialize the resource database.
For example, the sample program “xmbutton’ has a class name of
“XMdemos.”

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand.

num_options Specifies the number of entries in options list.
argc Specifies a pointer to the number of command line parameters.
argy Specifies the command line parameters.

There is an alternate function that you can use to initialize the Xt Intrinsics that is not as
convenient as XtInitialize; however, it is more flexible because it lets you decide the
type of shell you want to use. The function XtToolkitInitialize just initializes the

Using OSF/Motif Widgets in Programs 3-7

toolkit. It does not open the display or create an application shell. You must do this
yourself using XtOpenDisplay and XtAppCreateShell, The advanced sample
program presented in section 3.11 initializes the toolkit in this manner.

3.3 Creating Argument Lists for Widgets

The steps in sections 3.3 through 3.6 must be performed for each widget you wish to
create.

Widgets accept argument lists (pairs of resource names and values) that control their
appearance and functionality. The list of resources acceptable for a widget comprises not
only resources unique to the widget, but also those resources inherited from other widgets.
The resources for a given widget are shown in the man page for the widget.

The simplest way to set an element of an argument list is by using the XtSetArg macro.
Other methods are described later in section 3.10, “Advanced Programming Techniques.”

The program segment below declares an array args of up to 10 arguments. The size of
the array is not important just so long as the number of elements allocated is not less than
the number of elements used. The first argument specifies the label for the PushButton.
The label is actually a pointer to a compound string that was created by a call to
XmStringCreateLtoR earlier in the program. See chapter 8 for more information
about compound strings. The last two arguments specify that the widget will have a width
of 250 pixels and a height of 150 pixels. The third argument specifies the string to display
in the PushButton.

Arg args[10];

XtSetArg(args[0], XmNlabelString, btn_text);
XtSetArg(args[1l], XmNwidth, 250);
XtSetArg(args[2], XmNheight, 150);

An alternate method for XtSetArg uses a counter, n, rather than a hard-coded index.
This method, shown below, makes it easier to add and delete argument assignments. It is
the method used in the sample program xmbutton.

Arg args[10];

Cardinal n=0;

XtSetArg(args[0], XmNlabelString, btn_text); n++;
XtSetArg(args[n], XmNwidth, 250); nt++;
XtSetArg(args[n], XmNheight, 150); nt++;

The variable n contains the number of resources set. It can be passed to the widget create
function (explained in section 3.5) as the argument list count.

3-8 Using OSF/Motif Widgets in Programs

CAUTION

Do not increment the counter from inside the call to XtSetArg.
As currently implemented, XtSetArg is a macro that dereferences
the first argument twice. This means that if you increment the
counter from inside the call, it would actually be incremented twice
for the one call.

The syntax for using XtSetArg is as follows:

XtSetArg(arg, name, value)
Arg arg,
String name;
XtArgVal value;

arg Specifies the name-value pair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in an XtArgVal, otherwise

the address.

3.4 Creating the Widget

Now that you have established an argument list for the widget, you can create the widget
instance. The call to XtCreateManagedWidget below comes from the sample
program xmbutton.

button = XtCreateManagedWidget ("button", xmpushButtonWidgetClass,
toplevel, args, n);

This call names the newly created widget “button” and defines it to be a PushButton
widget (from the class xmPushButtonWidgetClass). The class name
“XmPushButton” or the name “button” can be used in defaults files (discussed in section
3.8) to refer to this widget. The PushButton’s parent is “toplevel,” the toplevel shell widget
returned by XtInitialize. The argument list and number of arguments complete the
call. This call will create the widget and notify its parent so that the parent can control its
specific layout.

There is another way to create widgets, one that does not automatically manage them.
Instead, you manage them when you want them to be displayed. Each widget has a “create
function” associated with it. A create function creates the widget it is associated with but
does not manage it. You You manage the widget with XtManageChild. The advanced

Using OSF/Motif Widgets in Programs 3-9

program in section 3.11 uses this method of creating widgets.

Widgets form a hierarchical structure called a widget tree. The widget tree for the
program xmbutton is shown in figure 3-1. The widget returned by XtInitialize is the
invisible parent for the toplevel application widget, in this case button. Usually there are
several levels of widgets. Widgets at the higher levels are layout widgets (also called
manager widgets) that control and coordinate the primitive widgets located at the leaves of
the widget tree. The more advanced sample program later in this chapter illustrates
multiple levels of widgets.

The syntax for XtCreateManagedWidget is described below.

Widget XtCreateManagedWidget (name, widget class, parent, args, num_args)

String name;
WidgetClass widget class;
Widget parent
Arglist args ;

Cardinal num_args ,

name Specifies the resource name for the created widget. This name is used
for retrieving resources and should not be the same as any other widget
that is a child of the same parent if unique values are necessary.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget.

args Specifies the argament list to override the resource defaults.

num_args Specifies the number of arguments in args. The number of arguments in

an argument list can be automatically computed by using the XtNumber
macro if the list is statically defined.

3.5 Adding Callback Procedures

Callbacks are one of the key features of the OSF/Motif widget set. They allow you to
write procedures that will be executed when certain events occur within a widget. These
events include mouse button presses, keyboard selections, and cursor movements.
Callback procedures are the main mechanism your application uses to actually get things
done.

You need to complete three steps to add callbacks:

1. Write the callback procedures.

3-10 Using OSF/Motif Widgets in Programs

2. Create an appropriate callback list.
3. Set the widget’s callback argument.

Each of these steps is described in the following sections.

3.5.1 Writing a Callback Procedure

Callback procedures return no values, but have three arguments:
o The widget for which the callback is registered.
« Data passed to the callback procedure by the application.
« Data passed to the callback procedure by the widget.

In the sample program xmbutton, the callback procedure prints a message to the
standard output device (usually the terminal window from which the application was
invoked), frees the memory space used by btn_text (the PushButton label), and ends
the program using the system exit call.

void activateCB(w, client_data, call_data)

Widget w; /* widget id */

caddr_t client_data; /* data from application */
caddr_t call_data; /* data from widget class */
{

/* print message and terminate program */
fprint("PushButton selected.\n")
XtFree(btn_text);
exit(0);

)

The variable type caddr_t is defined by the Xt Intrinsics as a pointer to an area of
memory. The call_data argument is used only by a few widgets. The man page for
each widget specifies whether it passes any data to its callbacks.

The general syntax of a callback procedure is described below:
void CallbackProc(w, client_data, call_data)
Widget w;
caddr_t client_data,
caddr_t call data;
w Specifies the widget for which this callback is invoked.

client_data Specifies the data that the widget should pass back to the client when the
widget invokes the client’s callback. This is a way for the client
registering the callback to also define client-specific data to be passed to
the client: a pointer to additional information about the widget, a reason

Using OSF/Motif Widgets in Programs 3-11

for invoking the callback, and so on. It is perfectly normal to have
client_data be NULL if all necessary information is in the widget.

call_data Specifies any callback-specific data the widget wants to pass to the client.
It is widget-specific and is usually set to NULL. It will be defined in the
widget’s man page if it is used.

3.5.2 Adding Callbacks

A callback contains information about the callback routine associated with a particular
user action.

The sample program xmbutton creates a callback by calling the procedure
XtAddCallback.

XtAddCallback (button, XmNactivate, activateCB, NULL);
The general syntax of XtAddCallback is described below:

void XtAddCallback(w, callback _name, callback, client_data)
Widget w;
String callback_name
XtCallbackProc callback;
caddr_t client_data;

w Specifies the widget to add the callback to.

callback_name Specifies the callback list within the widget to append to.

callback Specifies the callback procedure to add.

client_data Specifies the client data to be passed to the callback when it is invoked by
XtCallCallbacks. The client_data parameter is often NULL.

To add more callbacks, just make another call to XtAddCallback. In this way you can

cause a user event to trigger many callback routines.

You can add a /ist of callbacks by using the function XtAddCallbacks.

The general syntax of XtAddCallbacks is described below:

void XtAddCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name ;
XtCallbackList callbacks;

3-12 Using OSF/Motif Widgets in Programs

w Specifies the widget to add the callbacks to.
callback_name Specifies the callback list within the widget to append to.

callbacks Specifies the null-terminated list of callback procedures and
corresponding client data to add.

3.5.3 Setting Widgets’ Callback Resources

Many widgets define one or more callback resources. Set the value of the resource to the
name of the callback list.

The callback resources for any particular widget are listed in the man page for that widget.
The PushButton widget used in the sample program xmbutton supports three different
kinds of callbacks. Each callback could be set up by specifying the callback list as the value
of the appropriate resource.

« Callback(s) invoked when the PushButton widget is activated (argument
XmNactivateCallback). This is the callback you use in xmbutton.

« Callback(s) invoked when the PushButton widget is armed (argument
XmNarmCallback).

« Callback(s) invoked when the PushButton widget is disarmed (argument
XmNdisarmCallback).

The translation table for this widget has been set such that an activate action occurs
whenever the pointer is within the widget and the user presses mouse button 1. An
activate action then causes the widget to invoke each of the callback routines on the
callback list pointed to by its XmNactivateCallback argument. These routines are
invoked in the order in which they appear in the callback list. In the case of the sample
program xmbutton, only the routine activateCB is executed.

3.6 Making the Widget Visible

All widgets are now created and linked together into a widget tree.

XtRealizeWidget displays on the screen the widget that is passed to it and the children
of that widget.

The final step in the program is to call the Xt Intrinsics routine that causes the application
to enter a loop, awaiting action by the user.

Sample code for this section is:

Using OSF/Motif Widgets in Programs 3-13

XtRealizeWidget(toplevel);
XtMainLoop();

The above two statements from the sample program xmbut ton display the push button
widget and cause the program to enter a loop, waiting for user input. The main role of
your application is the setting of widget arguments and the writing of callback procedures.
Your application passes control to the Xt Intrinsics and the OSF/Motif widgets once the
XtMainLoop function is called.

The syntax for XtRealizeWidget is shown below.

void XtRealizeWidget(w)
Widgetw;

w , Specifies the widget.

3.7 Linking Libraries

When linking the program, be sure to include three libraries:
o 1ibXm. a, which contains the OSF/Motif widgets.
e 1ibXt. a, which contains the Xt Intrinsics.

e 1ibX11. a, which contains the underlying Xlib library.

NOTE

The XmFileSelectionBox widget requires the 1ibPW. a library.
This can be included after 1ibX11. a.

See section 1.5 of chapter 1 for information on compiling the programs in this chapter.
The order in which you place the libraries is very important. The order shown above is
correct, so be sure that you use the same order when linking in libraries.

3-14 Using OSF/Motif Widgets in Programs

3.8 Creating Defaults Files

Up to now, all widget resources have been set by the application using widget argument
lists. An additional method for specifying resources is through a set of ASCII files that you
can set up for your user. You may also want your user to set up these files to customize
the application to individual requirements or preferences.

When writing a program, consider the following factors in deciding whether to specify an
argument in a defaults file or in the program itself.

« Using a defaults file provides additional flexibility. Any user can override settings to
reflect personal preferences, and a systems administrator can modify the application
defaults file for system-wide customization.

« Specifying settings in the program gives the programmer greater control. They cannot
be overridden.

« Using defaults files can speed application development. To change a resource value in
a defaults file, simply edit the file (using any ASCII editor) and rerun the program. No
recompilation or relinking is necessary.

o Using defaults files can simplify your program. Resources in defaults files are
specified as strings. When resources are set in your program, they may have to be in
some internal format that takes several calls to compute. ’

« Specifying options in your program may provide more efficient operation for the
computer. The process of reading defaults files and interpreting their contents adds
processing overhead.

Two files can be used for customization:

« A file located centrally in the directory /usr/1ib/X11/app-defaults supplies
defaults for an entire class of applications executing anywhere on the computer system.
For example, the file Mwm provides default information for the OSF/Motif Window
manager.

o Afile (.Xdefaults,usually pronounced “dot Xdefaults”) in each user’s home
directory can supply default values to all applications started by the user. The file
XMdemos discussed earlier provides default information for the sample programs
described throughout this manual.

All files are of the same format and there is a hierarchy that is observed by the system as
described earlier. Chapter 5, “Customizing Your Local X Environment" in the manual
Using the X Window System contains a detailed discussion of defaults files.

Using OSF/Motif Widgets in Programs 3-15

3.8.1 Application Defaults Files

These files are designed to be created by the applications developer or systems
administrator. They are located in the directory /usr/1ib/X11/app-defaults on
the machine where the application resides. Application programs specify the file that
contains the application defaults when they call XtInitialize. The
application_class argument to that function specifies the name of the application
defaults file. Several applications can point to the same file.

The call below (taken from the sample program xmbutton) will cause the Xt Intrinsics to
look for the file /usr/1ib/X11/app-defaults/XMdemos for default information.

toplevel = XtInitialize("main", "XMdemos", NULL, NULL, &argc, argv

The following sample defaults file sets the foreground color to white and background color
to black.

*background: black
*foreground: white

3.8.2 User Defaults Files

Each user can create a . Xdefaults file in his or her home directory to specify resource
defaults for applications run by that user. User defaults override application and system
defaults and allow different users running the same program to specify personal display
preferences, such as color and font selection.

The sample file below changes the background color to blue.

*background: blue

3.8.3 Defaults File Example

The example below illustrates the interaction of the defaults files with each other and with
arguments specified in programs.

Suppose a computer contains the program xmbutton as well as the application and user
defaults files described above.

To determine the color of the background, the Xt Intrinsics will do the following:

1. Look for the system defaults and initialize the background color to white. (These
defaults are compiled into the widgets.)

2. Look for the application defaults file /usr/1ib/X11/app-defaults /XMdemos
and set the color to black.

3. Look for the user defaults file .Xdefaults and set the background color to blue.

3-16 Using OSF/Motif Widgets in Programs

4. If the program sets the background argument (XmNbackground), this will override
any defaults that may have been set.

3.9 Using Color

The OSF/Motif widgets have been designed to support both color and monochrome
systems in a consistent and attractive manner. This is accomplished by incorporating into
each widget a variety of visual attributes. Through proper use of these attributes, the
widgets will present a dramatic three-dimensional appearance, giving you the distinct
impression that you are directly manipulating the components. This section will describe
these color attributes and show you how to use them.

3.9.1 Visual Capabilities and Attributes

The OSF/Motif widgets visual capabilities are based on specialized border and
background drawing. The border drawing consists of a band around the widget. The band
contains two regions:

o The top and left shadow.
» The bottom and right shadow.

The background drawing within the widget is referred to as background. Figure 3-3
illustrates the drawing areas.

Top and Left
Shadow

i

Bottom and

Right Shadow

Figure 3-3. Widget Drawing Areas

Using OSF/Motif Widgets in Programs 3-17

Each area can be drawn from either a color or a pixmap. The top and left shadow is drawn
using these Primitive widget resources:

o XmNtopShadowColor
o XmNtopShadowPixmap
The background is drawn using these Primitive widget resources:
e XmNbackground
e XmNbackgroundPixmap
The bottom and right shadow is drawn using these widget resources:
o XmNbottomShadowColor
¢ XmNbottomShadowPixmap

All the widgets support the visual attributes for setting the background as described. In
general, only primitive widgets support the border drawing. To use the border drawing for
manager widgets, a special manager widget, XmFr ame, is available. This widget will
maintain the geometry of a single child and perform the border and background drawing,

3.9.2 Using the Capabilities

When planning the three-dimensional appearance of your program’s windows, consider the
following guidelines:

e Any selectable area should appear to be raised.

« Non-selectable areas should appear to be flat. This can be accomplished by setting
XmNshadowThickness to 0.

To give the impression that the widget is raised above its parent, set these resources to the
value shown:

e Set XmNtopShadowColor to a light color.
e Set XmNbackground to a medium color.
« Setthe XmNbottomShadowColor to a dark color,

The foreground, background, and both top and bottom shadow resources are dynamically
defaulted. This means that if you do not specify any color for these resources, colors are
automatically generated. A black and white color scheme is generated on a monochrome
system, while on a color system a set of four colors is generated that displays the correct
shading to achieve the three-dimensional appearance. If you specify only a background
color, the foreground and both shadow colors are generated (based on the background
color) to achieve the three-dimensional appearance. This color generation works best with
non-saturated colors, that is, using pure red, green, or blue will give poor results. Also,

3-18 Using OSF/Motif Widgets in Programs

colors are only generated at the time of the widget’s creation. Changing the background
color by using XtSetValues will nof cause the other colors to be regenerated.

Reversing the top shadow and bottom shadow colors will give the appearance that the
widget is set into its parent. Several of the primitive widgets (buttons, toggles, and arrows,
for example) automatically reverse their shadowing when selected to achieve the effect of
being pressed. They return to their original shadowing when released.

Use coordinated colors such as light blue for the top shadow color, sky blue for the
background color, and navy blue for the bottom shadow color to enhance the three-
dimensional appearance. Using dissimilar colors loses the effect.

The three-dimensional appearance is more difficult to achieve on monochrome systems.
The built-in defaults for all the widgets have been set up for monochrome systems and
provide the desired effect. The top shadow is drawn with a 50 percent pixmap, the
background is solid white, and the bottom shadow is solid black. This appearance can be
further enhanced by setting the background of a manager containing a set of raised
children to a pixmap of 25 percent black and 75 percent white.

3.10 Advanced Programming Techniques

The sample program xmbutton described in earlicr sections of this chapter illustrated the
writing of a very simple widget program. The Xt Intrinsics provide additional mechanisms
for programmers.

3.10.1 Setting Argument Values

Section 3.3 described the use of XtSetArg for setting the values of widget arguments.
This section describes three additional methods. The code segments show how the earlier
sample program could have been rewritten to use the new methods.

Assigning Argument Values
Each element of the type Ar g structure can be assigned individually.

XmString btn_text;
Arg args[10];

btn_text = XmStringCreateLtoR ("Push Here",
XmSTRING_DEFAULT_CHARSET) ;

args[0].name = XmNwidth;

args[0].value = (XtArgVal) 250;

args[l].name = XmNheight;

args[l].value = (XtArgVal) 150;

Using OSF/Motif Widgets in Programs 3-19

args([2].name = XmNlabelString;
args[2].value = (XtArgVal) btn_text;

Be sure to keep name-value pairs synchronized. Note that all argument values have been
cast to type XtArgVal.

Static Initializing

Initializing argument lists at compile time makes it easy to add and delete argument
settings in your program. It avoids the need to hard-code the maximum number of
arguments when declaring your argument list. These settings are frozen at compile time,
however. While the example below shows only a single argument list being created, you
can create any number of lists (be sure to declare each list as type Arg). Note that you
cannot use static initializing to initialize a compound string, You can combine static
initializing with run-time assignments to accomplish this, as shown in the next section.

static Arg args{] = {
{XmNwidth, (XtArgVal) 250},

{XmNheight, (XtArgVal) 150},

)

Note that the values of each argument have been cast to variable type XtArgVal. When
the create widget function is invoked, passing it XtNumber (args) will compute the
number of elements in the argument list.

button = XtCreateManagedWidget("button", zmPushButtonWidgetClass,
toplevel, args, XtNumber(args));

NOTE

Use the macro XtNumber only if you are declaring the argument
list of indefinite size as shown above (args{]). XtNumber will
return the number of elements that have actually been allocated in
program memory.

Combining Static Initialization with Run-Time Assignments

The final method for creating argument lists initializes a list at compile time (described in
“Static Initializing” above) and then modifies the values of the settings using regular
assignment statements. The XtNumber macro can be used to count the number of
arguments, since the argument list is declared with no definite number of arguments. The
values can be changed through assignments at run time, but the size of the argument list

3-20 Using OSF/Motif Widgets in Programs

(the number of arguments that can be specified) is frozen at compile time and cannot be
extended.

The example below initializes an argument list of three elements. The last is initialized to
NULL so it can be given a value later. The value for argument XmNheight is changed in
the program from its initialized value of 150 to a run-time value of 250.

XmString btn_text;

static Arg args[] = {
{XmNwidth, (XtArgVal) 500}, /* item O %/
{XmNheight, (XtArgVal) 150}, /* item 1 */
{XmNlabelString, (XtArgVal) NULL}, /* item 2 */
}s

btn_text = XmStringCreateLtoR ("Push Here",
XmSTRING_DEFAULT_CHARSET) ;

args([l].value = (XtArgVal) 250;
args[2].value (XtArgVal) btn_string;

3.10.2 Manipulating Created Widgets

Widget programs to this point have set up argument lists and callbacks for widgets prior to
the widgets’ creation. You can also modify widgets after they have been created. Such
modification usually occurs in callback routines and is illustrated in the sample program
xmfonts discussed later in this chapter.

Retrieving and Modifying Arguments
XtGetValues will return the current value of specified arguments for a created widget.
XtSetValues will change the value of specified arguments.

Adding Callbacks and Translations
XtAddCallback will add a callback routine to a widget’s callback list after the widget
has been created.

Each widget has a translation table that ties user actions (for example, button presses and
keyboard presses) to widget actions. Your application can modify the translation table for
any widget. This process is described in any manual on the Xt Intrinsics.

Using OSF/Motif Widgets in Programs 3-21

Separating Widget Creation and Management

By using XtCreateManagedWidget, the sample program automatically adds the newly
created widget to its parent’s set of managed children. To optimize programs that add a
number of widgets to a single parent, you may want to create the widgets using
XtCreateWidget calls and then add the entire list of children to its parent with a single
XtManageChildren call. In this way, the parent widget performs its geometry
processing of its children only once. This will increase the performance of applications
that have a large number of child widgets under a single parent.

Usually, the function XtRealizeWidget will display a widget and all of its children.
Using the function XtSetMappedWhenManaged allows you to turn off automatic
mapping (displaying) of particular widgets. Your application can then use XtMapWidget
to display the widget.

The function XtDestroyWidget will destroy a created widget and its children. The
destroyed widget is automatically removed from its parent’s list of children.

3.11 An Advanced Sample Program

The program presented in this section, xmfonts, displays each available font (fonts are
found in the directory /usr/1ib/X11/fonts) as a pushbutton. The source code and
the application defaults file for this sample program are listed later in this section. They
are located on your system in /usr/contrib/Xm/xmfonts.c and
/usr/contrib/Xm/XMdemos.

You can change the background and foreground colors and other visual attributes by
changing the parameters in the app-defaults file XMdemos. Remember that XMdemos is
used as a defaults file for all the example programs in this manual. If you change any of
the general defaults at the top of the file, other programs will be affected.

When you run the program, you will see the window shown in figure 3-4.

3-22 Using OSF/Motif Widgets in Programs

Figure 3-4. Program xmfonts Main Window

Move the pointer to the PushButton representing the font you want to see displayed and
press mouse button 1. Text in the selected font is displayed in a separate popup window
(see figure 3-6). This window can be removed by pressing the close PushButton or left on
the screen to be compared with other text windows that you might select. You can
continue this procedure for as long as you desire. Each time the mouse button is pressed,
the selected font will be displayed in a separate popup window. When you want to exit the
program, move the cursor to the Exit button in the MenuBar, then drag the pointer down
until the Quit button appears. Clicking mouse button 1 on the Quit button will terminate
the program.

3.11.1 Windows Used in xmfonts

There are three independent windows displayed in this program (see figure 3-4, figure 3-5,
and figure 3-6):

Using OSF/Motif Widgets in Programs 3-23

Main Window

The main window is the window in which the PushButtons are displayed (see figure 3-4). It
is a combination of an application shell, a MainWindow widget, a RowColumn widget, and
a number of PushButtonGadgets. The MainWindow widget was chosen because it has
MenuBar capability and is a convenient envelope for many applications. Although
MainWindow can have three areas (see chapter 2), only two of the areas are needed here,
the MenuBar and work region. In this case the MenuBar is the parent of a Pulldown
menu for the exit function and a CascadeButton for the “Help” function. The work region
consists of a RowColumn widget and a vertical ScrollBar. A number of
PushButtonGadgets, one for each font, are placed within the RowColumn widget. These
are used instead of PushButtons to improve program performance. To see the difference
for yourself, run the program as it exists. Use the ScroliBar to view buttons not displayed.
Then change the code in the file xmfonts.c (be sure to move this file to your work directory
first) so that the line that now reads

button

XmCreatePushButtonGadget(row_column, name, args, n);
becomes
button = XmCreatePushButton(row_column, name, args, n);

Then recompile the program and run it again. You should see considerable difference in
the operation of the program, particularly when scrolling through the buttons.

Help Window
The “Help” window is a popup window that is a MessageBox (see figure 3-5).

Figure 3-5. Program xmfonts Help Display Window

3-24 Using OSF/Motif Widgets in Programs

Font Display Window
The window that displays the selected font is also a popup window that is a MessageBox
Dialog (see figure 3-6).

Figure 3-6. Program xmfonts Font Display Window

You can have as many text display windows as you want. You can remove them all by
simply exiting the program as explained above, or you can remove each window
individually by moving the pointer to the close button on the window and pressing mouse
button 1.

3.11.2 Widget Hierarchy

This program produces three separate windows. One contains all the PushButtonGadgets
and its shell is created using XtToolkitInitialize, XtOpenDisplay, and finally
XtAppCreateshell. Note the difference between this program and xmbutton. Since
XtInitialize opens the display and creates a shell in addition to initializing the toolkit,
xmbutton did not need to use the functions XtOpenDisplay and
XtAppCreateShell. The other two windows are the “Help” window and the window
that displays text in the selected font. Both of these windows are MessageBoxDialogs
created by the function XmCreateMessageDialog. This function creates a
MessageBox widget and a DialogShell widget. The widget tree for xmfonts is shown in
figure 3-7.

Using OSF/Motif Widgets in Programs 3-25

Application Shell

Mainkindow

MenuBar RowCo lumn
CascadeButton Pulldown CascadeButton PushButtonGadgets
Help MenuPane Exit One Per Font
PushButton
Quit
MessageBoxDialog MessageBoxDialog

3-26 Using OSF/Motif Widgets in Programs

Help Display

Font Display

Figure 3-7. xmlonts Widgcet Tree

3.11.3 Source Code

The source code for xmfonts and the default file XMdemos are listed in the following
sections.

The Program

K e e e e
Fokk

*%% file:xmfonts.c

*hE

*%% project:0SF/Motif widgets example programs

Fkk

%% description: This program creates a button for every font in
LR /usr/1lib/X11/fonts. When a button is selected,
Fkk a text sample is displayed using the font.

*kK

Fkk

*%% (c) Copyright 1989 by Open Software Foundation, Inc.
*xF All Rights Reserved.

*%% (c) Copyright 1989 by Hewlett-Packard Company.

*%% defaults: xfonts.c depends on these defaults:

*foreground: white
*fontList: vr-20
*allowShellResize: true
*borderWidth: 0
*highlightThickness: 2
*traversalOn: true
*keyboardFocusPolicy: explicit
*menuAccelerator: <Key>KP_F2

xmfonts*XmScrolledWindow.height: 432
xmfonts*XmScrolledWindow.width: 690
xmfonts*menu_bar*background: #58f

*% Include Files

Using OSF/Motif Widgets in Programs 3-27

*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#ifdef BSD

#include <sys/dir.h>
f#else

#include <dirent.h>
f#fendif

#include <X1l/Intrinsic.h>
#include <X1l/IntrinsicP.h>
#include <X11/CoreP.h>
#include <X11/Shell.h>
#include <Xm/Xm.h>
#include <Xm/BulletinB.h>
#include <Xm/CascadeB.h>
#include <Xm/Frame.h>
#include <Xm/Label.h>
#include <Xm/MainW.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#finclude <Xm/PushBG.h>
#include <Xm/RowColumn.h
#include <Xm/ScrollBar.h>
#include <¥m/ScrolledW.h>

/* ...
*% Forward Declarations

*/

void main (); /% main logic for application¥*/

Widget CreateApplication (); /* create main window¥*/
Widget CreateFontSample (); /* create font display window*/

Widget CreateHelp (); /* create Help window*/

void SelectFontCB (); /* callback for font buttons*/
void CloseCB (); /* callback for close button*/
void HelpCB (); /* callback for Help button*/
void QuitCB (); /% callback for quit button¥*/

/>'< ...

3-28 Using OSF/Motif Widgets in Programs

*% Global Variables

*/

f##define MAX ARGS 20
j#define FONT DIR NAME "/usr/lib/X1l/fonts"
f#define TITLE_STRING "X Font Sampler”

static XmStringCharSetcharset =
(XmStringCharSet) XmSTRING_DEFAULT_CHARSET;

*% main- main logic for application
*/

void main (argc,argv)

unsigned int argc;

char **argv;

{

Display *display; /* Display */
Widget app_shell; * ApplicationShell */
Widget main_window; /* MainWindow */

/* Initialize toolkit and open the display.

*/

XtToolkitInitialize();

display = XtOpenDisplay (NULL, NULL, argv{0], "XMdemos", NULL, O,
&arge, argv);

if (!display) {
XtWarning ("xfonts: Can’'t open display, exiting...");
exit (0);

}

/* Create application shell.

*/

app_shell = XtAppCreateShell (argv[0], "XMdemos",
applicationShellWidgetClass, display, NULL, 0);

/* Create and realize main application window.
*/

main_window = CreateApplication (app_shell);
XtRealizeWidget (app_shell);

Using OSF/Motif Widgets in Programs 3-29

/* Get and dispatch events.
*/
XtMainLoop ();

/* ...
*% (CreateApplication- create main window

*/

Widget CreateApplication (parent)

Widget parent; /* parent widget*/

{

Widget main_window; /* MainWindow*/

Widget menu_bar; /* MenuBar¥*/

Widget menu_pane; /* MenuPane*/

Widget cascade; /* CascadeButton¥*/
Widget frame; /% Frame¥*/

Widget swindow; /* ScrolledWindowx/
Widget row_column; /* RowColumn¥/

Widget button; /% PushButtonGadget*/
Widget hsb, vsb; /* ScrollBars*/

Arg args[MAX_ARGS]; /* arg list¥*/

register intn; /* arg count#*/

DIR *dirp; * directory pointer¥/

#ifdef BSD

struct direct *item; /* entry in directory¥*/
ffelse

struct dirent *item; /% entry in directory*/
#fendif
char name[15]; /* mname string¥x/
int len; /* string length¥*/

XmString label_string;

/* Create MainWindow.
n=0;
main window = XmCreateMainWindow (parent, "mainl", args, n);

XtMaEageChild (main_window) ;

/* Create MenuBar in MainWindow.

3-30 Using OSF/Motif Widgets in Programs

*/

n=0;

menu_bar = XmCreateMenuBar (main_window, "menu_bar", args, n);
XtManageChild (menu_bar);

/* Create "Exit" PulldownMenu.

*/

n = 0;

menu_pane = XmCreatePulldownMenu (menu_bar, "menu_ pane",
args, n);

n=0;

button = XmCreatePushButton (menu_pane, "Quit", args, n);
XtManageChild (button);

XtAddCallback (button, XmNactivateCallback, QuitCB, NULL);

n=0;

XtSetArg (args[n], XmNsubMenuld, menu_pane); n++;

cascade = XmCreateCascadeButton (menu bar, "Exit", args, n);
XtManageChild (cascade);

/* Create "Help" button.

*/

n=0;

cascade = XmCreateCascadeButton (menu bar, "Help", args, n);
XtManageChild (cascade);

XtAddCallback (cascade, XmNactivateCallback, HelpCB, NULL);

n=0;
XtSetArg (args[n], XmNmenuHelpWidget, cascade); nt++;
XtSetValues (menu_bar, args, n);

/* Create Frame MainWindow and ScrolledWindow in Frame.
*/

n = 0;
XtSetArg (args[n], XmNmarginWidth, 2); nt++;

XtSetArg (args[n], XmNmarginHeight, 2); nt+;

XtSetArg (args[n], XmNshadowThickness, 1); n++;
XtSetArg (args[n], XmNshadowType, XmSHADOW_OUT); nt++;
frame = XmCreateFrame (main_window, "frame", args, n);

XtManageChild (frame);

n=0;

Using OSF/Motif Widgets in Programs 3-31

XtSetArg (args[n], XmNscrollBarDisplayPolicy,

XmAS_NEEDED); nt+;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
swindow = XmCreateScrolledWindow (frame, "swindow", args, n);
XtManageChild (swindow);

/% Create RowColumn in ScrolledWindow to manage buttons.
*/

n = 0;

XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
XtSetArg (args[n], XmNnumColumns, 5); n++;

row_column = XmCreateRowColumn (swindow, "row_column", args, n);
XtManageChild (row_column);

/% Set MainWindow areas and add tab groups
*/
XmMainWindowSetAreas (main_window, menu_bar, NULL, NULL, NULL,
frame) ;
n=0;
XtSetArg (args[n], XmNhorizontalScrollBar, &hsb); nt++;
XtSetArg (args[n], XmNverticalScrollBar, &vsb); n++;
XtGetValues (main_window, args, n);
XmAddTabGroup (row_column);
if (hsb)
XmAddTabGroup (hsb);
if (vsb)
XmAddTabGroup (vsb);

/* Create a PushButton widget for each font.

/* open the font directory */

dirp = opendir (FONT_DIR NAME);

/* read one entry each time through the loop */

for (item = readdir (dirp); item != NULL; item = readdir (dirp))
{

len = (strlen (item -> d _name));
/* discard entries that don’t end in ".xxx" %/

if ((len < 5) || (item -> d_name[len-4] != ’'.')) continue;

/* copy the name (except extension) from the entry ¥/
strncpy (name, item -> d_name, len-4);
name[len-4] = ' '

/* create PushButton in RowCol */
n=0;

3-32 Using OSF/Motif Widgets in Programs

label string = XmStringCreateLtoR(name, charset);
XtSetArg (args[n], XmNlabelString, label_string); n++;
button = XmCreatePushButtonGadget (row_column, name, args, n);
XtManageChild (button);
XtAddCallback (button, XmNarmCallback, SelectFontCB, NULL);
XmStringFree (label_string);

}

/ *Return MainWindow.
*/

return (main_window);

Y T L T T T Lt T TR
*% CreateFontSample- create font display window

*/

Widget CreateFontSample (parent)

Widget parent; /% parent widget */
{

Widget message box; * MessageBox Dialog */
Widget button;

Arg args[MAX ARGS]; /* arg list */
register intn; /* arg count */
char *name = NULL, * font name */
XFontStruct *font = NULL; /% font pointer */
XmFontList fontlist = NULL; /* fontlist pointer %/
static char message[BUFSIZ]; /% text sample */

XmString name_string = NULL;
XmString message_string = NULL;
XmString button_string = NULL;

/* Get font name.

*/

n = 0;

XtSetArg (args[n], XmNlabelString, &name_string); ni+;
XtGetValues (parent, args, n);

XmStringGetLtoR (name_string, charset, &name);

/* Load font and generate message to display.

*/

Using OSF/Motif Widgets in Programs 3-33

if (name)

font = XLoadQueryFont (XtDisplay (XtParent (parent)), name);
if (!'font)

sprintf (message, "Unable to load font: %s\0", name);
else
{

fontlist = XmFontListCreate (font, charset);

sprintf (message, " This is font %s.\n\

The quick brown fox jumps over the lazy dog.\0", name);
)
message_string = XmStringCreateLtoR (message, charset);
button_string = XmStringCreateLtoR ("Close", charset);

/* Create MessageBox dialog.

*/

n = 0;

if (fontlist)

{

XtSetArg (args[n], XmNlabelFontList, fontlist); n++;

)

XtSetArg (args[n], XmNdialogTitle, name_string); n++;

XtSetArg (args[n], XmNokLabelString, button_string); nt++;

XtSetArg (args[n], XmNmessageString, message_string); nt++;

message _box = XmCreateMessageDialog (XtParent (XtParent(parent)),
"fontbox", args, n);

button = XmMessageBoxGetChild (message_box,
XmDIALOG_CANCEL_BUTTON) ;

XtUnmanageChild (button);

button = XmMessageBoxGetChild (message box,
XmDIALOG_HELP_BUTTON) ;

XtUnmanageChild (button);

/* Free strings and return MessageBox.

*/

if (fontlist) XtFree (fontlist);

if (name_string) XtFree (name_string);

if (message_string) XtFree (message_string);
if (button_string) XtFree (button_string);
return (message_box);

3-34 Using OSF/Motif Widgets in Programs

*% CreateHelp- create Help window

*/

Widget CreateHelp (parent)

Widget parent; /* parent widget */
{

Widget button;

Widget message_box; /% Message Dialog */
Arg args[MAX_ARGS]; /* arg list */
register intn; /* arg count */
static char message[BUFSIZ]; /* Help text */

XmString title_string = NULL;
XmString message_string = NULL;
XmString button_string = NULL;

/* Generate message to display.

*/

sprintf (message, "\

These are buttons for the fonts in the X11 font directory. \n\
The button label is the name of the font. When you select \n\

a button, a small window will display a sample of the font. \n\n\
Press the ’'close’ button to close a font window. \n\

Select 'quit’ from the 'exit’ menu to exit this application.\0");
message_string = XmStringCreateLtoR (message, charset);
button_string = XmStringCreateLtoR ("Close", charset);
title_string = XmStringCreateLtoR ("xmfonts help", charset);

/* Create MessageBox dialog.

*/

n=0;

XtSetArg (args[n], XmNdialogTitle, title_string); nt++;

XtSetArg (args[n], XmNokLabelString, button_string); n++;
XtSetArg (args[n], XmNmessageString, message_string); nt++;
message_box = XmCreateMessageDialog (parent, "helpbox", args, n);

button = XmMessageBoxGetChild (message_box,
XmDIALOG_CANCEL_BUTTON) ;

XtUnmanageChild (button);

button = XmMessageBoxGetChild (message box,
XmDIALOG_HELP_BUTTON) ;

XtUnmanageChild (button);

Using OSF/Motif Widgets in Programs 3-35

/* Free strings and return MessageBox.

*/

if (title_string) XtFree (title_string);

if (message_string) XtFree (message_string);
if (button_string) XtFree (button_string);
return (message_box);

/* ---
*% SelectFontCB- callback for font buttons

*/

void SelectFontCB (w, client_data, call_data)

Widget w; /* widget id */

caddr_t client_data; /* data from application %/

caddr_t call_data; /% data from widget class */

{

Widget message_box;

/* Create font sample window.
*/

message_box = CreateFontSample (w);

/% Display font sample window.
*/

XtManageChild (message box);

}

/* ...
*% CloseCB- callback for close button

*/

void CloseCB (w, client_data, call_data)

Widget w; /* widget id */
caddr_t client_data; /% font pointer */
caddr_t call data; /* data from widget class */

{

XFontStruct *font= (XFontStruct *) client_data;
Widget message_box= XtParent (w);

Widget shell= XtParent (message_box);

3-36 Using OSF/Motif Widgets in Programs

/* TFree font.
*/
if (font) XFreeFont (XtDisplay (w), font);

/* Unmanage and destroy widgets.
*/

XtUnmanageChild (message box);
XtDestroyWidget (shell);

2
*% HelpCB- callback for Help button

*/

void HelpCB (w, client_data, call_data)

Widget w; /* widget id */

caddr_t client_data; /* data from application */

caddr_t call_data; /% data from widget class */

{

Widget message_box; /* MessageBox */

/* Create Help window.
*/

message _box = CreateHelp (w);

/* Display Help window.

%/
XtManageChild (message box);

e
*% QuitCB- callback for quit button

*/

void QuitCB (w, client_data, call_data)

Widget w; /% widget id */

caddr_t client_data; * data from application %/

caddr_t call_data; /* data from widget class */

{

Using OSF/Motif Widgets in Programs 3-37

/* Terminate the application.
*/

exit (0);

}

The Defaults File
This file should be placed in the directory /fusr/1ib/X11/app-defaults as a part of
XMdemos.

!

1XMdemos app-defaults file for OSF/Motif demo programs
!

!general appearance and behavior defaults

!

*foreground: white
*fontList: vr-20
*allowShellResize: true
*borderWidth: 0
*highlightThickness: 2
*traversalOn: true
*keyboardFocusPolicy: explicit
*menuAccelerator: <Key>KP_F?2

!
xmfonts*XmScrolledWindow.height: 432
xmfonts*XmScrolledWindow.width: 690

xmfonts*menu_bar*background: #58¢f
!

3-38 Using OSF/Motif Widgets in Programs

Shell Widgets

4

Shell widgets are used to provide communication between the widgets in an application
and the window manager. An application’s widgets are arranged in a hierarchy, with
upper-level widgets acting as the parents of lower- level widgets. Widgets at the top of the
hierarchy do not have normal parent widgets, but have a Shell as the parent. Different
Shell widgets are provided for the various categories of top-level widgets, including Dialogs
and MenuPanes. Figure 4-1 shows the hierarchy of the Shell widgets. Keep in mind that
Shell is a subclass of Composite (see figure 1-4 in chapter 1).

Shell
(Private)
OverrideShell HWMShell
(Publie) (Private)
VendorShell
(Private)
ToplevelShell TransientShell
(Public) (Public)
ApplicationShell
(Public)
MenuShell DialogShell -
(Publice) (Semi-Public)

Figure 4-1. Shell Widget Hierarchy

Shell Widgets 4-1

The classes Shell, WmShell, and VendorShell are private and should not be instantiated.
The other Shell classes are for public use, although a DialogShell is normally created by a
convenience function as part of a set rather than by itself. Each of the Shell classes has a
man page (man pages can be found in the HP OSF/Motif Programmer’s Reference Manual)
that has information on the resources belonging to the specific Shell widget.

4.1 Descriptions of Shell Widgets

The Shell widgets shown in figure 4-1 are of two types: Private and Public. This means
that the Public widgets are those that you should instantiate, either individually or, as in the
case of DialogShell, as part of a set. The Private widgets are those that you should not
instantiate. These widgets typically just supply resources to Shell widgets that are lower in
the hierarchy. Keep in mind the hierarchy diagram of figure 4-1 as you study the
definitions of the Shell widgets.

o Shell - Shell is the “base” class for all shell widgets. It provides the fields needed by all
the Shell widgets. Shell is a subclass of Composite (see figure 1-2).

e OverrideShell - OverrideShell is used for shell windows that bypass the window
manager. Popup menus are one example of where an OverrideShell might be used.

» WMShell - WMShell contains fields that are needed by the common window manager
protocol. -

o VendorShell - VendorShell contains fields that are used by vendor-specific window
managers.

o TopLevelShell - TopLevelShell is used for normal top-level windows. It is not the root
shell used by an application, rather it is normally used to create “peer” top-level
windows in situations where an application needs more than one set of windows. The
root shell is normally the ApplicationShell.

o ApplicationShell - ApplicationShell is an application’s top-level or root window. This
is the shell that is created by XtInitialize. An application should not have more
than one ApplicationShell. Subsequent top-level shells should be of class
TopLevelShell and are created by XtAppCreateShell. These top-level shells can
be considered the root of a second widget tree for the application.

« MenuShell - MenuShell is used as the parent of Popup and Pulldown MenuPanes. It is
a subclass of OverrideShell.

« DialogShell - DialogShell is the parent of Dialogs. Although it can be instantiated by
itself, it is normally instantiated as part of a set by one of the convenience dialogs. For
example, XmCreateErrorDialog creates a DialogShell and a MessageBox as its
child. See chapter 5, “Dialog Widgets and Functions,” for more information.

4-2 Shell Widgets

4.2 Shell Widget Appearance

Most Shell widgets are invisible, however the type of Shell class can have an impact on how
its children are displayed. For example, children of a TransientShell (typically Dialogs) by
default have no buttons on the window manager frame that surrounds the window. Also,
as long as the transient window is visible, it will remain above the window from which it is
transient.

Shell Widgets 4-3

Dialog Widgets and Functions 5

Dialog widgets are container widgets that provide a means of communicating between the
user of an application and the application itself. A Dialog widget will normally ask a
question or present some information to the user. In some cases, the application is
suspended until the user provides a response.

This chapter explains the Dialog widgets that are available and how they can be used in
your application.

5.1 Dialog Widgets and Menus

There are two types of Dialog widgets: single-reply and multiple-reply. A single-reply
Dialog widget consists of a single question, and a single reply is expected. A multiple-
reply Dialog widget consists of a number of questions that require a number of responses.
Generally speaking, a single-reply Dialog widget is modal in nature. This means that a
reply is required before the application can continue. A multiple-reply Dialog widget is
usually modeless. It does not require a reply and does not stop the progress of the
application.

There are many similarities between Dialog widgets and menus, and it may be somewhat
confusing to understand when to use a Dialog widget and when to use a menu. You should
understand the differences between dialog widgets and menus in order to make this
determination.

A menu is short-lived. It exists only while a selection is being made, then it disappears. A
Dialog widget stays visible until it is told to disappear.

A menu is usually modal. Until the user of the application makes some selection on the
menu, interaction with any other part of the application is not possible. Since multiple-
reply Dialog widgets are modeless, interaction with other parts of the application is
possible. Thus, if a modeless state is required, a multiple-reply or modeless single-reply
Dialog widget should be used instead of a menu. A menu is faster when there is a need to
identify current settings or make a single selection. When multiple selections are needed, a
menu disappears after each selection and has to be displayed over and over, so in this case
a Dialog widget would be better suited.

Dialog Widgets and Functions 5-1

5.2 A List of the Dialog Widgets

The following list identifies the Dialog widgets by name and provides a brief description of
each widget’s function. Each widget will be described in more detail in later sections of
this chapter. Additional information can be found in the man page for the respective
widget. Man pages are contained in the HP OSF/Motif Programmer’s Reference Manual.

« XmDialogShell. This widget is used as the parent for all Dialogs. It is
automatically created by Dialog “convenience functions” (described in a later section).

o XmBulletinBoard. Thisis a composite widget that provides simple geometry
management for its child widgets. It is the base widget for most Dialog widgets, but is
also used as a container widget.

o XmCommand. This widget is a subclass of the XmSelectionBox widget. It includes
a command line input text field, a command line prompt, and a command history
region.

o XmFileSelectionBox. This widget is used to traverse through file system
directories. You can view the files in the directories and then select a single file on
which you intend to perform some action.

o XmForm. The Form widget is a constraint-based Manager widget that establishes and
maintains spatial relationships between its children. These relationships are maintained
even though the Form or any of its children are resized, unmanaged, remanaged, or
destroyed.

o XmMessageBox. This widget is used to pass information to the user of an application.
It contains up to three standard PushButtons (“OK,” “Cancel,” and “Help” by default),
a message symbol, and the message itself.

e XmSelectionBox. This widget provides the capability of selecting a single item from
a list of items.

5.3 Convenience Dialogs

We have used the term “Dialog widget” to describe a particular type of widget. When
used by itself, the word “Dialog” takes on a special meaning. A “Dialog” is a collection of
widgets that are used for a specific purpose. A Dialog normally consists of a DialogShell,
some BulletinBoard resources, and various other widgets such as Label, PushButton, and
Text. The collection of widgets that forms a Dialog can be built from “scratch” using ‘
argument lists and creating each individual widget of the Dialog. However, there is an
easier, more convenient method to create the Dialog. Functions (called, appropriately,

5-2 Dialog Widgets and Functions

“Dialog convenience functions”) exist that create the collection of widgets that make up
the Dialog in one step. The Dialogs that are created by these convenience functions are
referred to as “convenience Dialogs.” The following table identifies the convenience
dialogs that are available.

TABLE 5-1. Convenience Dialogs

Convenience Dialog Definition Convenience Function

BulletinBoardDialog | Used for interactions that are not XmCreateBulletinBoardDialog
supported by the standard dialog
set.

ErrorDialog This Dialog instantiates a XmCreateErrorDialog
MessageBox and a DialogShell. It
uses a message and a symbol
(circle with backslash) to warn the
user that an error has occurred.

FileSelectionDialog This Dialog instantiates a XmCreateFileSelectionDialog.
FileSelectionBox and a
DialogShell.

FormDialog This Dialog instantiates a Form XmCreateFormDialog.
and a DialogShell.

InformationDialog This Dialog instantiates a XmCreatelnformationDialog.

MessageBox and a DialogShell.
This Dialog provides information
to the user and it has a symbol
that consists of a large lower-case
letter “i” that is positioned on the
left side of the MessageBox.

PromptDialog This Dialog instantiates a XmCreatePromptDialog.
SelectionBox and a DialogShell.
It is used to prompt the user for
input.

Dialog Widgets and Functions 5-3

TABLE 5-1. Convenience Dialogs (Continued)

Convenience Dialog Definition Convenience Function

QuestionDialog This Dialog instantiates a XmCreateQuestionDialog.
MessageBox and a DialogShell. It
is used to get an answer from the
user. It has a symbol that consists
of a large question mark that is
positioned on the left side of the
MessageBox.

SelectionDialog This Dialog instantiates a XmCreateSelectionDialog.
SelectionBox and a DialogShell.

WarningDialog This Dialog instantiates a XmCreateWarningDialog.
MessageBox and a DialogShell. It
is used to warn the user of some
potential danger. It has a symbol
that consists of a large
exclamation point contained
within a triangle. The symbol is
positioned on the left side of the
MessageBox.

WorkingDialog This Dialog instantiates a XmCreateWorkingDialog.
MessageBox and a DialogShell. It
is used to inform the user that a
potentially time-consuming
operation is in progress. It has a
symbol that is an hourglass
positioned on the left side of the
MessageBox.

5.4 Using Dialogs and Convenience Functions

Now that you have an idea of what Dialogs and convenience dialogs are available, you can
learn how and when to use them in an application. This section explains each dialog and
its associated convenience functions. Code segments are included to help you understand
how to use them in your own applications. Don’t forget that more detailed information on
these widgets can be found in the respective man pages in the HP OSF/Motif
Programmer’s Reference Manual.

5-4 Dialog Widgets and Functions

5.4.1 XmbDialogShell

XmDialogShell is the Shell parent widget for all Dialogs. It provides the necessary
communication with the window manager to allow the Dialogs to be managed and
unmanaged. XmDialogShell is automatically created by the Dialog convenience functions
and is used as the parent widget for XmBulletinBoard or any subclass of
XmBulletinBoard. It can also be directly instantiated by using either of the two create
functions that are available:

Widget XtCreatePopupShell (name, xmDialogShellWidgetClass, parent,
arglist,argcount)

Widget XmCreateDialogShell (parent, name, arglist, argcount)

Both of these create functions create an instance of a DialogShell and return the
associated widget ID. The following code segment shows you how to create
XmDialogShell using XtCreatePopupShell:

Arg args;

int n;

Widget dialog_shell;
Widget parent_shell;

n=20;
dialog_shell = XtCreatePopupShell ("dialog_shell",
xmDialogShellWidgetClass, parent_shell, args, n);

The next code segment shows you how to create XmDialogShell using
XmCreateDialogShell:

Arg args;

int n;

Widget dialog_shell;
Widget parent_shell;

n = 0;
dialog shell = XmCreateDialogShell (parent_shell, "dialog_shell”,
args, n);

Remember that XmDialogShell is automatically created for you when you create any of
the convenience Dialogs. You do not need to use either of the functions described above
when you create a convenience Dialog. Also, note that XmDialogShell should be popped
up by using XtManageChild on its Dialog child. If the child is created using
XtCreateManagedWidget, it will try to popup the shell before it has been realized. This
will result in an error.

Dialog Widgets and Functions 5-5

5.4.2 XmBulletinBoard

XmBulletinBoard is a composite widget that can be instantiated alone. Its main
purpose with Dialog widgets, however, is as a superclass widget that supplies resources to
the subclass Dialog widgets. All of the other Dialog widgets except XmDialogShell are
built in part from XmBulletinBoard. Refer to the XmBulletinBoard man page in
the HP OSF/Motif Programmer’s Reference Manual for a description of the
XmBulletinBoard resources.

XmBulletinBoard can be directly instantiated by using cither of the two create
functions that are available:

Widget XtCreateWidget (name, xmBulletinBoardWidgetClass, parent,
arglist,argcount)

Widget XmCreateBulletinBoard (parent, name, arglist, argcount)

Both of these create functions create an instance of a BulletinBoard and return the
associated widget ID. The following code segment shows you how to create an instance of
XmBulletinBoard using XmCreateWidget:

Arg args;

int n;

Widget bboard;
Widget parent_shell;

n=0;

bboard = XtCreateWidget ("bboard", xmBulletinBoardWidgetClass,
parent_shell, args, n);

XtManageChild (bboard);

The next code segment shows you how to create an instance of XmBulletinBoard using
XmCreateBulletinBoard:

Arg args;

int n;

Widget bboard;
Widget parent_shell;

5-6 Dialog Widgets and Functions

n = 0;
bboard = XmCreateBulletinBoard (parent_shell, "bboard", args, n);
XtManageChild (bboard);

Remember that you do not need to use either of the create functions described above if
you are creating convenience Dialogs.

5.4.3 XmCommand

XmCommand allows you to choose one selection from a list of selections. It is very much
like the XmSelectionBox widget except that it has the capability to record selections in
a “history region.” The history region is accessible so that choices can be made from it as
well as entering a choice from the keyboard. Figure 5-1 shows an example of a Command
widget.

Figure 5-1. XmCommand Widget

The history region is displayed in the top box and the current selection is displayed in the
command line box at the bottom. The history region will scroll automatically as the need
arises. In figure 5-2 for example, more entries have been placed in the history region,
causing the vertical ScrollBar to appear.

Dialog Widgets and Functions 5-7

Figure 5-2. XmCommand Widget with Scrolled History Region

XmCommand can be directly instantiated by using either of the two create functions that
are available:

Widget XtCreateWidget (name, xmCommandWidgetClass, parent,
arglist,argcount)

Widget XmCreateCommand (parent, name, arglist, argcount)

Both of these create functions create an instance of a Command widget and return the
associated widget ID. The following code segment shows you how to create an instance of
XmCommand using XmCreateWidget:

Arg args;

int n;

Widget command;
Widget parent_shell;

5-8 Dialog Widgets and Functions

n=0;

command = XtCreateWidget ("command", xmCommandWidgetClass,
parent_shell, args, n);

XtManageChild (command);

The next code segment shows you how to create an instance of XmCommand using
XmCreateCommand:

Arg args;

int n;

Widget command;
Widget parent_shell;

n=20;
command = XmCreateCommand (parent_shell, “command", args, n);
XtManageChild (command);

There are several other functions associated with XmCommand that perform certain
operations to the command area string or the history region string. These functions are
explained in the following list:

o XmCommandAppendValue.
void XmCommandAppendValue (widget, command)
Widget widget;
XmString command;

This function appends the passed, null-terminated command string to the end of the
string that is currently displayed in the command line.

Dialog Widgets and Functions 5-9

Figure 5-3. Results of XmCommand Append Value Operation

The code segment to accomplish this is shown below.
XmString str;
Widget w;
str = XmStringCreateLtoR ("addValue", XmSTRING_DEFAULT_CHARSET) ;
XmCommandAppendValue (w, str);
« XmCommandSetValue.
void XmCommandSetValue (widget, command)
Widget widget;
XmString command;

This function replaces the string that is currently displayed in the command line with
the passed, null-terminated string.

o« XmCommandError.
void XmCommandError (widget, error)

5-10 Dialog Widgets and Functions

Widget widget;
XmString error;

This function displays an error message in the history region.
¢« XmCommandGetChild.

void XmCommandGetChild (widget, child)

Widget widget;

uns char child;

This function returns the widget ID of the given child. The function takes these child
types:

e XmDIALOG_PROMPT_LABEL.

o XmDIALOG_COMMAND TEXT.

e XmDIALOG_HISTORY LIST.

5.4.4 XmFileSelectionBox

XmFileSelectionBox is a widget very similar to XmSelectionBox. The difference
is that XmFileSelectionBox is used to traverse through directories, viewing the names
of the files and finally selecting a file on which to perform some action. One thing to
remember about this widget: You must link in the library PW (-IPW) in order for
FileSelectionBox to work properly. Figure 5-4 shows an example of a FileSelectionBox.

Dialog Widgets and Functions 5-11

Figure 5-4. XmFileSelectionBox

XmFileSelectionBox can be directly instantiated by using either of the two create
functions that are available:

Widget XtCreateWidget (name, xmFileSelectionBoxWidgetClass, parent,
arglist,argcount)

Widget XmCreateFileSelectionBox (parent, name, arglist, argcount)

Both of these create functions create an instance of FileSelectionBox widget and return the
associated widget ID. The following code segment shows you how to create an instance of
XmFileSelectionBox using XmCreateWidget:

Arg args,;

int mn;

Widget fselbox;
Widget parent_shell;

5-12 Dialog Widgets and Functions

n=0;

fselbox = XtCreateWidget ("fselbox", xmFileSelectionBoxWidgetClass,
parent_shell, args, n);

XtManageChild (fselbox);

The next code segment shows you how to create an instance of XmFileSelectionBox
using XmCreateFileSelectionBox:

Arg args;

int n;

Widget fselbox;
Widget parent_shell;

n = 0;
fselbox = XmCreateFileSelectionBox (parent_shell, "fselbox", args, n);
XtManageChild (fselbox);

In the example shown in figure 5-4, the “File Filter” is an asterisk, indicating that all files
in the directory should be listed. Here, all files in the directory
/users/dlm/compile/osf/dana are listed. The Selection window at the bottom of
the XmFileSelectionBox specifies the directory. Once a file has been selected, you
can press the “OK” button and, depending on what the application has in the callback
associated with this button, perform some action on the selected file. Note that you can
select a file as many times as desired. The operation on that file is not performed until
you select the “OK” PushButton.

You can change the File Filter by moving the pointer into the File Filter window and
clicking mouse button 1. This “activates” the window and it is highlighted. You can then
enter the desired filter by typing it in from the keyboard. When you have finished entering
the new filter, move the pointer into the “Filter” button at the bottom of the main window
and click mouse button 1. The files that meet the criteria established in the File filter
window are then displayed in the “Files” window. Figure 5-5 shows the results of such an
operation. Here we have changed the File Filter from “*” to “x*” and the files that meet
that criteria are listed.

Dialog Widgets and Functions 5-13

Figure 5-5. XmFilcSelectionBox With New File Filter

5.4.5 XmForm

The Form widget is a container widget that has no input characteristics of its own.
Constraints are placed on the Form widget’s children. These constraints define
attachments for each of the four sides of each child, and the attachments determine the
layout of the Form widget when any resizing occurs. The child widgets’ attachments can be
to the Form widget, to another child of the Form widget, to a relative position within the
Form widget, or to the initial position of the child.

XmForm can be directly instantiated by using either of the two create functions that are
available:

Widget XtCreateWidget (name, xmFormWidgetClass, parent,
arglist, argcount)
Widget XmCreateForm (parent, name, arglist, argcount)

Both of these create functions create an instance of the Form widget and return the
associated widget ID. The following code segment shows you how to create an instance of
XmForm using XmCreateWidget:

5-14 Dialog Widgets and Functions

Arg args,

int n;

Widget form;
Widget parent_shell;

n= 0;

form = XtCreateWidget ("form", xmFormWidgetClass, parent_shell,
args, n);

XtManageChild (form);

The next code segment shows you how to create an instance of XmForm using
XmCreateForm:

Arg args,

int n;

Widget form;
Widget parent_shell;

n = 0;
form = XmCreateForm (parent_shell, "form", args, n);
XtManageChild (form);

You can create a Form Dialog by using the convenience function
XmFormCreateDialog. This function creates and returns a Form widget as a child of a
DialogShell widget.

Arg args,

int n;

Widget form;
Widget parent_shell;

n=20;

form = XmCreateFormDialog (parent_shell, "form", args, n);
XtManageChild (form);

Figure 5-6 shows an example of a Form widget.

Dialog Widgets and Functions 5-15

Figure 5-6. Form Widget with ArrowButtons

There are three ArrowButton widgets positioned within the Form widget. The
ArrowButton on the left is set so that its left side position is offset an amount equal to ten
percent of the Form widget’s width, its right side position is offset 30 percent of the Form
widget’s width, and the top is set to a fixed offset of 20 pixels from the top of the Form
widget. When the Form widget is resized, the spatial relationships between the Form
widget and its children remain the same. This fixed relationship is shown in figure 5-7.

5-16 Dialog Widgets and Functions

Figure 5-7. Form Widget after Resizing

The code segment that positions the ArrowButton on the left is shown below.

Widget arrowl;
int n;

n=0;

XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); ni+;

XtSetArg (args[n], XmNleftPosition, 10); n++;

XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;

XtSetArg (args[n], XmNrightPosition, 30); nt++;

XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;

XtSetArg (args[n], XmNtopOffset, 20); nt+;

arrowl = XtCreateManagedWidget("arrowl", xmArrowButtonWidgetClass,
form, args, n);

Note that the position of the top side of the ArrowButton is a constant value (20 pixels in
this case), regardless of any resizing operations that may occur. This is because the
XmNtopAttachment resource is set to XmATTACH_FORM as opposed to
XmATTACH_POSITION.

Dialog Widgets and Functions 5-17

5.4.6 XmMessageBox

A MessageBox is used just as its name implies, to pass messages to the user of an
application. MessageBox is a subclass of BulletinBoard and inherits a large number of the
BulletinBoard resources. Convenience Dialogs based on MessageBox are provided for
several user-interaction functions: providing information, asking questions, and notifying
the user if errors occur. Figure 5-8 shows some examples of the MessageBox.

Figure 5-8. MessageBox Examples

XmMessageBox can be directly instantiated by using either of the two create functions
that are available:

Widget XtCreateWidget (name, xmMessageBoxWidgetClass, parent,
arglist, argcount)

Widget XmCreateMessageBox (parent, name, arglist, argcount)

Both of these create functions create an instance of the MessageBox widget and return the
associated widget ID. The following code segment shows you how to create an instance of
XmMessageBox using XmCreateWidget:

Arg args;

int n;

Widget msgbox;
Widget parent_shell;

5-18 Dialog Widgets and Functions

n = 0;

msgbox = XtCreateWidget ("msgbox", xmMessageBoxWidgetClass,
parent_shell, args, n);

XtManageChild (msgbox);

The next code segment shows you how to create an instance of XmMessageBox using
XmCreateMessageBox:

Arg args;

int n;

Widget msgbox;
Widget parent_shell;

n = 0;
msgbox = XmCreateMessageBox (parent_shell, "msgbox", args, n);
XtManageChild (msgbox);

You can create a MessageBox Dialog by using the convenience function
XmMessageCreateDialog. This function creates and returns a MessageBox widget as
a child of a DialogShell widget.

Arg args;

int n;

Widget msgbox;
Widget parent_shell;

n = 0;
msghox = XmCreateMessageDialog (parent_shell, "msgbox", args, n);
XtManageChild (msgbox);

A MessageBox can contain a message symbol, a message, and up to three standard
PushButtons (the default buttons are “OK,” “Cancel,” and “Help”). The symbol (if any)
appears in the upper left part of the MessageBox (see figure 5-8), the message appears in
the top and center-to right side, and the buttons appear along the bottom edge.

The defaults for the button labels and the message symbols can be changed. The button
labels can be changed by setting a resource in the program or in a defaults file. For
example, if you wanted to change the “OK” label to “Close,” you could use this code
segment:

n=0;

XtSetArg (args[n], XmNokLabelString, XmStringCreateLtoR ("Close",

XmSTRING_DEFAULT_CHARSET)); n++;
messageD = XmCreateMessageDialog (parent, "fontbox", args, n);

XmStringCreateLtoR is a compound string function. See chapter 8, “Additional
Functionality,” for more information on this function and compound strings in general.

Dialog Widgets and Functions 5-19

You can make the same change by using the following statement in a defaults file:
*msgbox.okLabelString: Close

Note that the above statement applies only to the MessageBox widget whose name is
“msgbox” as specified in the XmCreateMessageDialog or XmCreateMessageBox.

The message label can be changed in the same manner as the button. Use the resource
XmNmessageString instead of XmNokLabelString.

There are several other convenience dialogs that allow you to create special versions of
MessageBox. These convenience dialogs are XmCreateErrorDialog,
XmCreateInformationDialog, XmCreateQuestionDialog,
XmCreateWarningDialog, and XmCreateWorkingDialog. You use these
functions to create the appropriate dialogs in exactly the same manner as described earlier
for the XmMessageBoxDialog.

5.4.7 XmSelectionBox

SelectionBox is a general dialog widget that allows you to select an item from a list of
items. SelectionBox can contain a label, a list of items from which to choose, a selection
text edit window that allows you to enter a selection directly, and three PushButtons
(“OK,” “Cancel,” and “Help”). An example of a SelectionBox widget is shown in figure
5-9.

Figure 5-9. SelectionBox Widget

5-20 Dialog Widgets and Functions

The user can select an item from the SelectionBox in either of two ways:

e By scrolling through the list of items and selecting one. The item you select will be
displayed in the SelectionBox text edit window.

« By entering the item name directly into the text edit window.

You may select a new item as many times as you desire since no action is taken until you
move the pointer to the “OK” button and click mouse button.1.

XmSelectionBox can be directly instantiated by using either of the two create functions
that are available:

Widget XtCreateWidget (name, xmSelectionBoxWidgetClass, parent,
arglist,argcount)

Widget XmCreateSelectionBox (parent, name, arglist, argcount)

Both of these create functions create an instance of the SelectionBox widget and return the
associated widget ID. The following code segment shows you how to create an instance of
XmSelectionBox using XmCreateWidget:

Arg args;

int n;

Widget selectbox;
Widget parent_shell;

n=20;

selectbox = XtCreateWidget ("selectbox", xmSelectionBoxWidgetClass,
parent_shell, args, n);

XtManageChild (selectbox);

The next code segment shows you how to create an instance of XmSelectionBox using
XmCreateSelectionBox:

Arg args;

int n;

Widget selectbox;
Widget parent_shell;

n = 0;
selectbox = XmCreateSelectionBox (parent_shell, "selectbox",
args, n);

XtManageChild (selectbox);

You can create a SelectionBox Dialog by using the convenience function
XmSelectionBoxCreateDialog. This function creates and returns a SelectionBox
widget as a child of a DialogShell widget.

Dialog Widgets and Functions 5-21

Arg args;

int n;

Widget selectbox;
Widget parent;

n=20;
selectbox = XmCreateSelectionBoxDialog (parent, "selectbox", args,
XtManageChild (selectbox);

The defaults for the button labels and the list and text window labels can be changed. The
button labels can be changed by setting a resource in the program or in a defaults file. For
example, if you wanted to change the “OK” label to “Close,” you could use this code
segment:

n = 0;

XtSetArg (args[n], XmNokLabelString, XmStringCreateLtoR ("Close",
XmSTRING_DEFAULT_CHARSET)); nt++;

selectbox = XmCreateSelectionBoxDialog (parent, "selectbox", args,

The following code segment shows how to set the list items that appear in the list window.

XmString item([5];

item[0] = XmStringCreateLtoR ("one", XmSTRING_DEFAULT_ CHARSET) ;
item{1l] = XmStringCreateLtoR ("two", XmSTRING _DEFAULT CHARSET);
item[2] = XmStringCreateLtoR ("three", XmSTRING_DEFAULT_CHARSET);
item{3] = NULL

n = 0;

XtSetArg (args[n], XmNlistItems, item); n++;
XtSetArg (args[n], XmNlistItemCount, 3); n++;

An array of type XmString is defined to hold the list items. Since only three of the five
entries in the array are used, the fourth is set to NULL to identify the end of the list. Each
entry is set manually, and then the argument list is set in the normal manner.

5-22 Dialog Widgets and Functions

Menus 6

The menu system provides three types of menus — Popup, Pulldown, and Option menus.
This chapter describes how to implement and use these menus. The chapter includes:

¢ An overview of the menu system.
e Guidelines for creating and interacting with each menu type.

e A description of the mouse and keyboard interfaces for each menu type.

6.1 Overview of the Menu System

6.1.1 An Introduction

There are three types of menu systems:
e Popup menu systems.
¢ Pulldown menu systems.
e Option menu systems.

The term "menu system" refers to a combination of various widgets that create the visual
and interactive behavior of a menu. For example, a Pulldown menu system
characteristically consists of a MenuBar containing a number of CascadeButtons; the
CascadeButtons are used to post various Pulldown MenuPanes which, in turn, contain
various buttons.

The major widget components of menu systems are RowColumn widgets that are
configured to behave as:

o Popup MenuPanes.
¢ Pulldown MenuPanes.
e MenuBars.

« Option menus.

Menus 6-1

For example, a Popup MenuPane is a RowColumn widget created to behave as a Popup
MenuPane; likewise, a MenuBar is a type of RowColumn widget.

The menu system provides the ability to manually create the major menu widgets by
creating RowColumn widgets of the appropriate types. For example, a Popup MenuPane
can be created by creating a MenuShell widget and a child RowColumn widget of type
XmMENU_POPUP. However, a set of convenience functions is provided that automatically
create RowColumn widgets of the appropriate type and, when necessary, a parent
MenuShell. (Popup and Pulldown MenuPanes require MenuShell parents; MenuBars and
Option menus do not have MenuShell parents.) For example, the
XmCreatePopupMenu convenience function creates a RowColumn widget configured to
act as a Popup MenuPane and automatically creates its parent MenuShell.

Most of the instructions and examples in this chapter use the convenience functions.
Creating menus by separately creating MenuShells and RowColumn widgets is discussed at
the end of the chapter.

6.1.2 Convenience Functions and Widgets Used to Create Menus

A menu is constructed from combinations of widgets created explicitly or by using
convenience functions.

The following convenience functions create RowColumn widgets that act as MenuPanes.
MenuPanes are "transient” features in an application —they are not displayed until they are
posted by a particular event, and they are unposted at the conclusion of some other event.

+ XmCreatePopupMenu convenience function. This function automatically creates a
Popup MenuPane and its required parent MenuShell.

« XmCreatePulldownMenu convenience function. This function automatically creates a
Pulldown MenuPane and its required parent MenuShell.

The following convenience functions create RowColumn widgets configured to act as other
components of menu systems. These are nontransient features of an application.

o XmCreateMenuBar convenience function. This function automatically creates a
MenuBar. Menubars are typically used as the basis for building Pulldown menu
systems. A MenuBar is the top-level component of a Pulldown menu system.

+ XmCreateOptionMenu convenience function. This function automatically creates an
Option menu.

In addition to the RowColumn widgets created by convenience functions, the following
widgets and gadgets are used in menu systems:

o XmCascadeButton and XmCascadeButtonGadget. CascadeButtons are used as the
visual means to display Pulldown menus, Option menus, and submenus.

6-2 Menus

e XmSeparator and XmSeparatorGadget. The Separator widget is used to separate
unrelated buttons or groups of buttons within a MenuPane.

» XmLabel and XmLabelGadget. The Label widget is used to provide a title for a
MenuPane.

e XmPushButton and XmPushButtonGadget. PushButtons provide the means for
selecting an item from a menu.

+ XmToggleButton and XmToggleButtonGadget. ToggleButtons provide a way to set
nontransitory states using menus.

« XmRowColumn. The RowColumn widget is a general-purpose RowColumn manager.
Popup MenuPanes, Pulldown MenuPanes, MenuBars, and Option menus are types of
RowColumn widgets. When menu RowColumn widgets are created without using
convenience functions, the resource XmNrowColumnType specifies the type of
MenuPane created.

o XmMenuShell. The MenuShell widget is a shell widget designed to contain a Popup or
Pulldown MenuPane as its child. The convenience functions that create Popup and
Pulldown menus automatically create their parent MenuShell.

Note that the menu system does not implement Popup MenuPanes, Pulldown MenuPanes,
Option menus, and MenuBars as separate widget classes. For example, no PopupMenu
widget class exists; rather, a convenience function exists for creating the appropriately
configured RowColumn widget.

6.1.3 Introducing the Three Menu Types

Popup Menu System

A Popup menu system consists of a single Popup MenuPane containing a combination of
Label, PushButton, ToggleButton, and Separator widgets or gadgets. In addition, the
MenuPane can contain CascadeButtons or CascadeButtonGadgets that are used to access
Pulldown MenuPanes that function as submenus of the Popup MenuPane.

Figure 6-1 shows the top level of a Popup menu system.

Menus 6-3

Figure 6-1. Top Level of a Popup Menu System

The CascadeButtons have arrows that indicate the presence of submenus. Moving the
pointer to the “First Submenu” button displays its submenu.

Figure 6-2. Submenu of a Popup Menu System

The submenu contains two PushButtons and one CascadeButton. Moving the pointer to
the “Third Submenu” button displays its submenu.

6-4 Menus

Figure 6-3. Popup Menu System With Two Cascading Submenus

Pulldown Menu System

A Pulldown menu system typically consists of a MenuBar, a set of CascadeButtons
parented from the MenuBar, and a Pulldown MenuPane attached to each CascadeButton.
The CascadeButtons are displayed within the MenuBar and provide the means for
displaying the MenuPanes. In addition, the menu system may include Label, PushButton,
ToggleButton, and Separator widgets or gadgets.

Figure 6-4 shows a MenuBar, which is the top level of a Pulldown menu system.

Figure 6-4. Menu Bar of a Pulldown Menu System

Moving the pointer to “Right Menu” and pressing mouse button 1 displays its Pulldown
MenuPane.

Menus 6-5

Figure 6-5. Displaying a Pulldown MenuPane
Option Menu System
Visually, an Option menu is composed of three areas:
e A descriptive LabelGadget. Typically, the label describes the types of options available.

e A Pulldown MenuPane containing PushButtons or PushButtonGadgets. The buttons
represent the available options.

A selection area consisting of a CascadeButtonGadget that contains a label string. The
label string reflects the most recent option chosen from the Pulldown MenuPane.

The top level of an Option menu system shows the descriptive label and selection area.

Figure 6-6. Top Level of an Option Menu System

Pressing mouse button 1 while the pointer is in the selection area displays the Pulldown
MenuPane containing the options.

6-6 Menus

Figure 6-7. The Pulldown MenuPane in an Option Menu System

6.2 Creating Popup Menu Systems

The top level of a Popup menu system is a Popup MenuPane. Popup MenuPanes are
implemented as XmRowColumn widgets configured to operate as a Popup MenuPanes.
The Popup MenuPane may contain CascadeButtons or CascadeButtonGadgets, which are
used to access Pulldown MenuPanes that act as submenus of the Popup MenuPane.
(Submenus are discussed later in this chapter.)

A Popup MenuPane displays a three-dimensional shadow around the edge of the
MenuPane unless the feature has been disabled by the application.

The Popup MenuPane must be the child of a MenuShell widget. If the Popup MenuPane
is created using the convenience function, a MenuShell is automatically created as the real
parent of the MenuPane. If the Popup MenuPane is created without using the
convenience function, the MenuShell widget must be created first.

6.2.1 Popup MenuPane Convenience Function

A Popup MenuPane is created using the convenience function:

Widget XmCreatePopupMenu(parent, name, arglist, argcount)
XmCreatePopupMenu creates a Popup MenuPanc and a parent MenuShell, and returns
the widget ID for the MenuPane. The Popup MenuPane is created as a RowColumn

widget with the XmNrowColumnType resource set to XmMENU_POPUP. This resource
cannot be changed by the application.

Menus 6-7

6.2.2 Event Handlers for Popup Menu Systems

Popup menu systems require an event handler procedure that is called when a specified
event (usually, a ButtonPress) occurs in the widget(s) to which the Popup menu system is
attached. Usually, this is the parent specified by the XmCreatePopupMenu function
and the parent’s descendents. The event handler procedure should test that the proper
mouse button has been pressed and then displays the Popup MenuPane.

The XtAddEventHandler function registers the event handler procedure with the
dispatch mechanism. It has the syntax:

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widgetw; :
EventMask event_mask;
Boolean nonmaskable ;
XtEventHandler proc;
caddr_t client_data;

w Specifies the widget to add the callback to.
event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable

events.
proc Specifies the client event handler procedure.
client_data Specifies additional data to be passed to the client’s event handler.

For example, the line.
XtAddEventHandler(rc, ButtonPressMask, False, PostIlt, popup);

registers the procedure PostlIt for the event ButtonPress within the widget rc and
all of r¢’s descendents.

6.2.3 Procedure for Creating a Popup Menu.

The following steps create a Popup menu. Following each step is a code segment that
accomplishes the task.

1. Usethe XmCreatePopupMenu convenience function to automatically create the
Popup MenuPane and its required parent MenuShell. Register the event handler.
The following lines creates a Popup MenuPane as a child of widget forml.

6-8 Menus

popup = XmCreatePopupMenu(forml, "popup", NULL, 0);
XtAddEventHandler(forml, ButtonPressMask, False, PostIlt,
popup) ;
2. Create the contents of the MenuPane. The following segment creates a title
(LabelGadget), SeparatorGadget, and three PushButtonGadgets.

XtSetArg(args[0], XmNlabelString, XmStringCreate ("Menu
Title", XmSTRING_DEFAULT_ CHARSET));
item[0] = XmCreateLabelGadget(popup, "title", args, 1);

item[1l] = XmCreateSeparatorGadget(popup, "separator",
NULL, 0);

item[2] = XmCreatePushButtonGadget(popup, "buttonl",
NULL, 0);

item[3] = XmCreatePushButtonGadget(popup, "button2",
NULL, 0);

item[4] = XmCreatePushButtonGadget(popup, "button3",
NULL, 0);

XtManageChildren(item, 5);

The following illustration shows the parenting relationships to use when creating a Popup
menu system using converience functions.

Parent Widget
]
Popup MenuPane

|
Label

Separator

PushButton

PushButton

PushButton

Figure 6-8. Creating a Popup Menu System With Convenience Functions

Mouse button 3 is the default primary means of interacting with a Popup menu.

Menus 6-9

A Popup MenuPane is not visible until it is displayed by the user. The Popup menu system
is normally associated with a particular widget and all of that widget’s descendents. The
Popup MenuPane is posted (displayed) by moving the pointer into the associated widget or
one of its descendents and then pressing mouse button 3. If the Popup menu system
includes any Pulldown MenuPane submenus, they are not displayed until the pointer is
moved into the associated CascadeButton widget or gadget.

The application is responsible for posting the Popup MenuPane by using
XtManageChild to display the MenuPane. This is usually done in the event handler
added to the Popup MenuPane’s parent. All visible MenuPanes (the Popup MenuPane
and any displayed submenus) are automatically unposted when the user has completed
interacting with the menu.

Once a MenuPane has been posted, menu items are armed when the pointer enters them
and disarmed when it leaves. If the pointer is moved into a CascadeButton or
CascadeButtonGadget, the associated submenu is posted. Releasing mouse button 3 while
a menu item is armed activates the menu item. If the pointer is not within a menu item
when mouse button 3 is released, then all visible MenuPanes are unposted.

Ordinarily, a Popup menu is positioned to the right and benecath the pointer. However, if
this placement causes a portion of the MenuPane to be inaccessible, the menu may be
automatically repositioned to force the Popup MenuPane on the screen.

The mouse button used to interact with Popup menus can be changed using the
RowColumn resource XmNwhichButton.

The Keyboard Interface

Keyboard traversal is activated and deactivated by the user. When a user is interacting
with the menu using the mouse, traversal is enabled by releasing the mouse button while
the pointer is within any CascadeButton or CascadeButtonGadget; releasing the mouse
button posts the associated submenu and enables traversal for all the MenuPanes in the
Popup menu system. When traversal is enabled:

o The directional keys traverse the menu hierarchy.
o The [Return|key selects the currently-armed menu item.
o The key unposts all the MenuPanes in the Popup menu system.

¢ Pressing a mnemonic for a menu item in the most recently posted MenuPane selects
that item.

o Pressing an accelerator for a menu item selects that item.
« Pressing mouse button 3 disables traversal and reenables interactive operation.

An accelerator can be associated with a Popup menu. The default accelerator is Function
Key 4 ([f4]). When [f4]is pressed while the pointer is located within the associated widget

6-10 Menus

or one of its children, the first MenuPane in the Popup menu hierarchy is posted and
traversal is enabled. The user interacts with the menu as described previously for
keyboard traversal.

Use the resource XmNmenuAccelerator to change the accelerator.

6.2.4 Sample Program

This sample program creates a Popup menu system. The menu can be posted using the
mouse or by using the accelerator P. Items can be selected using the mouse or by
using the underlined mnemonics.

The source code for this program is located on your system in
/usr/contrib/Xm/xmpopup. c.

/* Popup Menu Example */

#include <Xm/Xm.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/CascadeBG.h>
#include <Xm/SeparatoG.h>
#include <Xm/RowColumn. h>

JFFkdkskdok%k Callback for the Pushbuttons ¥ssksokststikitirkikk /

void ButtonCB (w, client_data, call_data)

Widget w; /* widget id*x/
caddr_t client_data;/* data from application */
caddr_t call_data;/* data from widget class */

{
/* print message and terminate program */
printf ("Button %s selected.\n", client_data);

}

JFFFkRRkRrRk Event Handler for Popup Menu #ksstssitstdtdksk /

PostIt (w, popup, event)
Widget w;

Widget popup;
XButtonEvent * event;

{

Menus 6-11

if (event->button != Button3)
return;
XmMenuPosition(popup, event);
XtManageChild(popup);
}

JFRknhnkkookkMain Logic for Program vkt /

void main (argc, argv)

int argc;

char **argv;

{
Widget toplevel, popup, rc;
Widget buttons[2], popupBtn[5];
Arg args[5];

/* Initialize toolkit */

toplevel = XtInitialize (argv[0], "PopupMenu", NULL, O,
&argc, argv);

/* Create RowColumn in toplevel with two PushButtonGadgets */

XtSetArg(args[0], XmNwidth, 150);
XtSetArg(args([1l], XmNheight, 125);
XtSetArg(args[2], XmNresizeWidth, False);
XtSetArg(args[3], XmNresizeHeight, False);
XtSetArg(args[4], XmNadjustLast, False);

rc = XmCreateRowColumn(toplevel, "rc", args, 5);
XtManageChild(rc);

buttons[0] = XmCreatePushButtonGadget (rc, "buttonA",
NULL, 0);

XtAddCallback(buttons[0], XmNactivateCallback, ButtonCB,
"A") ;

buttons{l] = XmCreatePushButtonGadget (rc, "buttonB",
NULL, 0);

XtAddCallback(buttons[1l], XmNactivateCallback, ButtonCB,
"B");

XtManageChildren (buttons, 2);

6-12 Menus

/~k

/*

/*

Create popup menu with accelerator CTRL P */
XtSetArg(args[0], XmNmenuAccelerator, "Ctrl <Key> p");
popup = XmCreatePopupMenu(rc, "popup", args, 1);
XtAddEventHandler(rc, ButtonPressMask, False, PostIt, popup);
Create title for the popup menu and a separator */
XtSetArg(args[0], XmNlabelString,

XmStringCreate("Menu Title", XmSTRING_DEFAULT_ CHARSET));
popupBtn[0] = XmCreateLabelGadget(popup, "Title", args, 1);

popupBtn{l] = XmCreateSeparatorGadget(popup, "separator",
NULL, 0);

Create three PushButtonGadgets in the popup menu */

XtSetArg(args{0], XmNmnemonic, '1');

popupBtn[2] = XmCreatePushButtonGadget(popup, "buttonl",
args, 1);

XtAddCallback(popupBtn[2], XmNactivateCallback, ButtonCB,
lllll);

XtSetArg(args[0], XmNmnemonic, '2');

popupBtn{3] = XmCreatePushButtonGadget(popup, "button2",
args, 1);

XtAddCallback(popupBtn{3], XmNactivateCallback, ButtonCB,
II2|I);

XtSetArg(args[0], XmNmnemonic, '3');
popupBtn({4] = XmCreatePushButtonGadget (popup, "button3",

args, 1);
XtAddCallback (popupBtn[4], XmNactivateCallback, ButtonCB,
ll3");

XtManageChildren (popupBtn, 5);
Get and dispatch events *
XtRealizeWidget(toplevel);

XtMainLoop();

Menus 6-13

6.3 Creating a Pulldown Menu System

The basis of a Pulldown menu system is a MenuBar containing a set of CascadeButtons.
(CascadeButtonGadgets are not allowed as the children of a MenuBar.) The
CascadeButtons are used to display Pulldown MenuPanes. One of the CascadeButtons
(typically, the one that is used to display help information) may be treated specially. This
button is always positioned at the lower right corner of the MenuBar.

Two convenience functions, XmCreateMenuBar and XmCreatePulldownMenu,
create the appropriate RowColumn widgets.

In addition to their use in Pulldown menu systems, Pulldown MenuPanes are used to
create submenus in both Popup and Pulldown menu systems. Submenus are discussed in
the next section.

6.3.1 MenuBar Create Function

A MenuBar is created using the convenience function:

Widget XmCreateMenuBar(parent, name, arglist, argcount)

XmCreateMenuBar creates a MenuBar as a RowColumn widget with the
XmNrowColumnType resource set to XmMENU_BAR. This resource cannot be changed
by the application. No MenuShell is created for MenuBar.

The MenuBar displays a three-dimensional shadow around its edge unless this feature has
been disabled by the application.

6.3.2 Pulldown MenuPane Create Function
A Pulldown MenuPane is created using the convenience function:
Widget XmCreatePulldownMenu(parent, name, arglist, argcount)

To create a Pulldown MenuPane that is displayed using a CascadeButton in a MenuBar,
specify the MenuBar as the parent in the XmCreatePulldownMenu function.

XmCreatePulldownMenu creates a Pulldown MenuPane and a parent MenuShell, and
returns the widget ID for the MenuPane. The Pulldown MenuPane is created as a
RowColumn widget with the XmNrowColumnType resource set to
XmMENU_PULLDOWN. This resource cannot be changed by the application.

6-14 Menus

6.3.3 Creating a Help Button

The MenuBar resource XmNmenuHelpWidget specifies a CascadeButton that will be
positioned at the lower right corner of the MenuBar. Typically, this CascadeButton is used
to display help information. The Pulldown menu sample program creates a help button.

6.3.4 Procedure for Creating a Pulldown Menu

The following steps create a Pulldown menu. Following each step is a code segment that
accomplishes the task.

L

Use the XmCreateMenuBar convenience function to create the MenuBar. The
following lines create the MenuBar as the child of widget form1.

menubar = XmCreateMenuBar(forml, "menubar", NULL, 0);
XtManageChild(menubar);

Create one or more Pulldown MenuPanes as submenus (children) of the MenuBar.

pulldownl = XmCreatePulldownMenu(menubar, "pulldownl",

NULL, 0);
pulldown2 = XmCreatePulldownMenu(menubar, "pulldown2",
NULL, 0);

Create a CascadeButton widget for each Pulldown MenuPane. The CascadeButtons
and MenuPanes must have the same parent (in this case, menubar). Use the
resource XmNsubMenulId to attach each CascadeButton to its MenuPane.

XtSetArg(args([0], XmNsubMenuld, pulldownl)ﬁ
cascade[0] = XmCreateCascadeButton(menubar, "cascadel",
args, 1);

XtSetArg(args{0], XmNsubMenuld, pulldown2);

cascade[l] = XmCreateCascadeButton(menubar, "cascade2",
args, 1);

XtManageChildren(cascade, 2);

Create one or more buttons in each Pulldown MenuPane. The following lines create
two PushButtonGadgets in each MenuPane.

pbuttonl[0] = XmCreatePushButtonGadget(pulldownl,
"buttonla", NULL, 0);

pbuttonl[l] = XmCreatePushButtonGadget(pulldownl,
"buttonlb", NULL, 0);

XtManageChildren(pbuttonl, 2);

pbutton2[0] = XmCreatePushButtonGadget(pulldown2,
"button2a", NULL, 0);

Menus 6-15

pbutton2{1l] = XmCreatePushButtonGadget(pulldown2,
"button2b", NULL, 0);
XtManageChildren(pbutton2, 2);

The following illustration shows the parenting relationships and attachments (dashed lines)
to use when creating a Pulldown menu system using convenience functions. The system
includes a CascadeButton MenuPane designated as a help menu.

Parent Hidget

MenuBar
CascadeButton! CascadeButton2 CascadeButton (Help)
X
{ Pulldown MenuPanel -—“-{;' Pul ldown MenuPane2
PushButton PushButton
PushButton PushButton
PushButton PushButton

Figure 6-9. Creating a Pulldown Menu System With Convenience Functions

6.3.5 Interacting With Pulldown Menus

Mouse Input
Mouse button 1 is the default primary means of interacting with a Pulldown menu.

Pressing mouse button 1 while the pointer is positioned in a CascadeButton in the
MenuBar “arms” and highlights the CascadeButton. If the CascadeButton has an
associated Pulldown MenuPane, the MenuPanc is posted. At this point, the pointer can

be:

6-16 Menus

e Moved down into the Pulldown MenuPane. Menu items are “armed” when the pointer
enters them and “disarmed” when it leaves. If the pointer is moved into a
CascadeButton widget or gadget, the associated submenu is posted. Releasing mouse
button 1 while an item is “armed” activates the menu item.

e Moved to a different CascadeButton within the MenuBar. This unposts the current
Pulldown MenuPane and posts the MenuPane attached to the other CascadeButton.

Releasing mouse button 1 while the pointer is outside the menu hierarchy unposts all
visible submenus and disarms the MenuBar.

The mouse button used to interact with Pulldown menus can be changed using the
RowColumn resource XmNwhichButton for the MenuBar.

The Keyboard Interface
Keyboard traversal is activated and deactivated by the user. When a user is interacting
with the menu using the mouse, traversal is enabled by either of the following:

» Releasing the mouse button while the pointer is within any CascadeButton widget or
gadget. Releasing the mouse button posts the associated submenu and enables
traversal for all the MenuPanes in the Pulldown menu system.

o Pressing Functon Key 10 ([F10]). This highlights the first CascadeButton in the
MenuBar and enables traversal. The left and right arrow keys traverse to other
CascadeButtons in the MenuBar. Pressing the down arrow key, the up arrow key, or
the Return key posts the Pulldown MenuPane associated with the highlighted
CascadeButton.

When traversal is enabled,
o The directional keys traverse the menu hierarchy.
e The key selects the currently armed menu item. -

o The key unposts all the submenus and disarms the CascadeButton in the
MenuBar.

o Pressing a mnemonic for a menu item in the most recently posted MenuPane selects
that item.

 Pressing an accelerator for a menu item selects that item.
» Pressing mouse button 1 disables traversal and recnables interactive operation.

Mnemonics can be used to post the Pulldown MenuPanes. The mnemonics are resources
of the CascadeButtons in the MenuBar. To use a mnemonic associated with a MenuBar
CascadeButton, preface it with the "Meta" modifier key.

Traversal is enabled when a menu is posted using a mnemonic. The user interacts with the
menu as described previously for keyboard traversal.

Menus 6-17

6.3.6 Sample Program

The following sample program creates a Pulldown menu system consisting of a MenuBar
containing three CascadeButtons. One CascadeButton is designated as a help button; the
other two are attached to Pulldown MenuPanes.

All the CascadeButtons and PushButtons have mnemonics.

The source code for this program is located on your system in
/usr/contrib/Xm/xmpulldown.c.

/* Pulldown Menu Example */

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
##include <Xm/PushBG.h>
#include <Xm/Form.h>
#finclude <Xm/CascadeB.h>

/¥****Callback for the pushbuttons in the pulldown menu¥¥**¥¥¥¥¥/

void ButtonCB (w, client_data, call_data)

Widget w; /* widget id*/
caddr_t client_data;/* data from application */
caddr_t call_data;/* data from widget class */

{
/* print message and terminate program */
printf ("Button %s selected.\n", client_data);

}

/**m*****%************Main Logic*******************************/

void main (argc, argv)
unsigned int argc;
char **argv;

{

Widget toplevel, form, menubar;
Widget menubarBtn{3], pulldowns[2];
Widget buttonsl[3], buttons2[3];
Arg args [4];

6-18 Menus

/* Initialize toolkit and create form and menubar */

toplevel = XtInitialize (argv{0], "PulldownMenu", NULL, O,
&arge, argv);

XtSetArg(args[0]}, XmNwidth, 250);

XtSetArg(args(1l], XmNheight, 125);

form = XmCreateForm(toplevel, "form", (ArglList) args, 2);
XtManageChild(form) ;

XtSetArg(args[0], XmNtopAttachment, XmATTACH_FORM) ;
XtSetArg(args[l], XmNrightAttachment, XmATTACH_FORM);
XtSetArg(args[2], XmNleftAttachment, XmATTACH_FORM) ;
menubar = XmCreateMenuBar(form, "menubar", args, 4);
XtManageChild(menubar) ;

/* Create help button in menubar */
XtSetArg(args[0], XmNlabelString, XmStringCreate("Help",

XmSTRING_DEFAULT_CHARSET)) ;
XtSetArg(args([1l], XmNmnemonic, 'H’');

menubarBtn[0] = XmCreateCascadeButton(menubar, "help",
args, 2);

XtAddCallback(menubarBtn[0], XmNactivateCallback, ButtonCB,
"Helpll) ;

XtSetArg(args[0], XmNmenuHelpWidget, (XtArgVal)menubarBtn[O0]);
XtSetValues (menubar, args, 1);

/% Create 2 Pulldown MenuPanes and 2 cascade buttons in menubar */

pulldowns[0] = XmCreatePulldownMenu(menubar, "pulldownl",
NULL, 0);

XtSetArg(args[0], XmNsubMenuld, pulldowns[O0]);
XtSetArg(args([l], XmNlabelString, XmStringCreate("Left Menu",
XmSTRING_DEFAULT CHARSET));
XtSetArg(args[2], XmNmnemonic, 'L’);
menubarBtn[l] = XmCreateCascadeButton(menubar, "buttonl”,
args, 3);

pulldowns[l] = XmCreatePulldownMenu(menubar, "pulldown2",

Menus 6-19

NULL, 0);

XtSetArg(args[0], XmNsubMenuld, pulldowns[1]);
XtSetArg(args[l], XmNlabelString, XmStringCreate
("Right Menu", XmSTRING_DEFAULT_CHARSET));
XtSetArg(args([2], XmNmnemonic, ’'R’');
menubarBtn[2] = XmCreateCascadeButton(menubar, "button2",
args, 3);
XtManageChildren(menubarBtn, 3);

XtSetArg(args[0], XmNlabelString, XmStringCreate("First",
XmSTRING_DEFAULT CHARSET));
XtSetArg(args[l], XmNmnemonic, 'F’);
buttonsl[0] = XmCreatePushButtonGadget(pulldowns[0],
"buttonla", args, 2);
XtAddCallback(buttonsl[0], XmNactivateCallback, ButtonCB,
"Left-First");

XtSetArg(args([0], XmNlabelString, XmStringCreate("Second",
XmSTRING_DEFAULT CHARSET));
XtSetArg(args{l], XmNmnemonic, 'S’);
buttonsl{1l] = XmCreatePushButtonGadget(pulldowns([0],
"buttonlb", args, 2);
XtAddCallback(buttonsl[1l], XmNactivateCallback, ButtonCB,
"Left-Second");

XtSetArg(args[0], XmNlabelString, XmStringCreate("Third",
XmSTRING_DEFAULT CHARSET));

XtSetArg(args(1l], XmNmnemonic, 'T’);

buttonsl[2] = XmCreatePushButtonGadget(pulldowns[O0],
"buttonle", args, 2);

XtAddCallback(buttonsl[2], XmNactivateCallback, ButtonCB,
"Left-Third");

XtManageChildren(buttonsl, 3);

XtSetArg(args[0], XmNlabelString, XmStringCreate("First",
XmSTRING_DEFAULT_ CHARSET)) ;
XtSetArg(args[1l], XmNmnemonic, 'F’);
buttons2{0] = XmCreatePushButtonGadget(pulldowns[1l],
"button2a", args, 2);
XtAddCallback(buttons2[0], XmNactivateCallback, ButtonCB,

6-20 Menus

"Right-First");

XtSetArg(args[0], XmNlabelString, XmStringCreate("Second",
XmSTRING_DEFAULT CHARSET)) ;
XtSetArg(args[l], XmNmnemonic, ’'S’');
buttons2[1l] = XmCreatePushButtonGadget(pulldowns|[1],
"button2b", args, 2);
XtAddCallback(buttons2[1l], XmNactivateCallback, ButtonCB,
"Right-Second");

XtSetArg(args[0], XmNlabelString, XmStringCreate("Third",
XmSTRING_DEFAULT CHARSET));

XtSetArg(args{l], XmNmnemonic, 'T');

buttons2[2] = XmCreatePushButtonGadget(pulldowns([1],
"button2c", args, 2);

XtAddCallback(buttons2[2], XmNactivateCallback, ButtonCB,
"Right-Third");

XtManageChildren(buttons2, 3);

/* Get and dispatch events %/
XtRealizeWidget(toplevel);

XtMainLoop();

6.4 Creating Submenus

Submenus are implemented using Pulldown MenuPanes attached to CascadeButton
widgets or gadgets. The submenu and the CascadeButton to which it is attached are
children of the MenuPane (Popup or Pulldown) from which the submenu cascades.

The MenuShell of the submenu is created automatically if the submenu is created using
XmCreatePulldownMenu convenience function:

Widget CreatePulldownMenu(parent, name, arglist, argcount) ;

The submenu’s MenuShell is created as the child of the parent’s MenuShell.

Menus 6-21

6.4.1 Procedure for Creating Submenus

The following steps create a submenu of a Popup menu, and then create a submenu of that
submenu. Following each step is a code segment that accomplishes the task.

1. Create the Popup MenuPane. The following line creates the Popup MenuPane as a
child of widget form1.

popup = XmCreatePopupMenu(forml, "popup", NULL, 0);

2. To create a submenu, create a Pulldown MenuPane and CascadeButtonGadget as
the children of the Popup MenuPane. Use the resource XmNsubMenuld to attach
the CascadeButtonGadget to the MenuPane.

submenul = XmCreatePulldownMenu(popup, "submenul”,
NULL, 0);

XtSetArg(args[0], XmNsubMenuID, submenul);

cascadel = XmCreateCascadeButtonGadget(popup, "cascadel",
args, 1);

XtManageChild(cascadel);

3. To create a submenu of submenul, create a Pulldown MenuPane and
CascadeButtonGadget as children of submenul.

submenu3 = XmCreatePulldownMenu(submenul,
"submenu3", NULL, 0);

XtSetArg(args{0], XmNsubMenulD, submenu3);

cascade3 = XmCreateCascadeButtonGadget(submenul,
"cascade3", args, 1);

XtManageChild(cascade3);

The following illustration shows the parenting relationships and attachments (dashed lines)
to use when creating submenus in a Popup menu system using convenience functions. This
system contains two submenus beneath the top level Popup MenuPane. The first submenu
contains two PushButtons and one CascadeButtonGadget (CascadeButton3). The
CascadeButtonGadget is used to access the submenu (Pulldown MenuPane3) that
cascades from the first submenu.

6-22 Menus

Parent Widget

Popup MenuPane

Pulldown MenuPanel <—p CascadeButton! ["' Pulldown MenuPane2
CascadeButton2 I
I PushButton
Pulldown MenuPane3

PushButton

PushButton

PushButton PushButton

PushButton —> CascadeButton3

Figure 6-10. Creating Submenus With Convenience Functions

6.4.2 Interacting With Submenus

The means of interacting with submenus is explained in previous sections of this chapter,
"Interacting with Popup Menus" and "Interacting With Pulldown Menus."

6.4.3 Sample Program

The following program creates the popup menu system (with submenus) that is illustrated
in figure 6-10. The source code for this program is located on your system in
/usr/contrib/Xm/xmsubmenus.c.

/* Popup Menu with Submenus Example */

#include <Xm/Xm.h>
#include <Xm/PushBG.h>
#include <Xm/CascadeBG.h>
#finclude <Xm/RowColumn.h>

Menus 6-23

/xxEIXF*I**% Callback for the Pushbuttons Fksorsksksiorkikkkiitiist /

void ButtonCB (w, client_data, call_data)

Widget w; /* widget id¥/
caddr_t client_data;/* data from application */
caddr_t call_data;/* data from widget class %/

{

/* print message and terminate program */
printf ("Button %s selected.\n", client_data);

)

J¥skkkkkkkxkk Event Handler for Popup Menu #stsstikbskstsktdst /

PostIt (w, popup, event)
Widget w;

Widget popup;
XButtonEvent * event;

{

if (event->button != Button3)
return;

XmMenuPosition(popup, event);

XtManageChild(popup) ;

/******************Maj_n LOgiC for Program ********************/

void main (argec, argv)
int argc;

char *¥*argv;

{ .
Widget toplevel, popup, rc;

Widget submenul, submenu2, submenu3, buttons[2];

Widget popupBtn[2], sublBtn[3], sub2Btn[2], sub3Btn[2];
Arg args[5];

/% Initialize toolkit */
toplevel = XtInitialize (argv({0], "PopupMenu", NULL, O,

&argc, argv);

/* Create RowColumn in toplevel with two pushbuttons */

6-24 Menus

/-k

XtSetArg(args(0], XmNwidth, 400);
XtSetArg(args{1l], XmNheight, 125);
XtSetArg(args([2], XmNresizeWidth, False);
XtSetArg(args{3], XmNresizeHeight, False);
XtSetArg(args[4], XmNadjustLast, False);

rc = XmCreateRowColumn(toplevel, "rc", args, 5);
XtManageChild(re);

buttons[0] = XmCreatePushButtonGadget(rc, "buttonl", NULL, 0);
XtAddCallback(buttons[0], XmNactivateCallback, ButtonCB, "1");

buttons{l] = XmCreatePushButtonGadget(rc, "button2", NULL, 0);
XtAddCallback(buttons[1l], XmNactivateCallback, ButtonCB, "2");
XtManageChildren(buttons, 2);

Create popup menu */

popup = XmCreatePopupMenu(rc, "popup", NULL, 0);
XtAddEventHandler(rc, ButtonPressMask, False, Postlt, popup);

Create two submenus and CascadeButtons in the popup menu */

submenul = (Widget)XmCreatePulldownMenu(popup, "submenul",
NULL, 0);

XtSetArg(args[0], XmNsubMenuld, submenul);

XtSetArg(args{1l], XmNlabelString, XmStringCreate
("First Submenu", XmSTRING_DEFAULT_ CHARSET));

popupBtn[0] = XmCreateCascadeButtonGadget(popup, "cbuttonl”,
args, 2);

submenu?2 = (Widget)XmCreatePulldownMenu(popup, "submenu2",
NULL, 0);

XtSetArg(args[0], XmNsubMenuld, submenu?2);

XtSetArg(args{1l], XmNlabelString, XmStringCreate
("Second Submenu", XmSTRING_DEFAULT_ CHARSET));

popupBtn[1l] = XmCreateCascadeButtonGadget(popup, "cbutton2",
args, 2);

XtManageChildren(popupBtn, 2);

Create pushbuttons in submenul and submenu2. */

Menus 6-25

/*

/*

/*

sublBtn{0] = XmCreatePushButtonGadget(submenul, "buttonla",
NULL, 0);
XtAddCallback(sublBtn[0], XmNactivateCallback, ButtonCB, "la");

sublBtn[l] = XmCreatePushButtonGadget(submenul, "buttonlb",
NULL, 0);
XtAddCallback(sublBtn[1l], XmNactivateCallback, ButtonCB, "1b");
sub2Btn[0] = XmCreatePushButtonGadget(submenu2, "button2a",
NULL, 0);
XtAddCallback(sub2Btn[0], XmNactivateCallback, ButtonCB, "2a");
sub2Btn[1l] = XmCreatePushButtonGadget(submenu2, "button2b",
NULL, 0);

XtAddCallback(sub2Btn[1l], XmNactivateCallback, ButtonCB, "2b");
XtManageChildren(sub2Btn, 2);

Create a submenu of submenu 1 */

submenu3 = (Widget)XmCreatePulldownMenu(submenul, "submenu3",
NULL, 0);

XtSetArg(args[0], XmNsubMenuld, submenu3);

XtSetArg(args[1l], XmNlabelString, XmStringCreate
("To Third Submenu", XmSTRING_DEFAULT_CHARSET));

sublBtn{2] = XmCreateCascadeButtonGadget(submenul, "cbutton3",
args, 2);

XtManageChildren(sublBtn, 3);

Create pushbuttons in submenu 3 */

sub3Btn[0] = XmCreatePushButtonGadget(submenu3, "button3a",
NULL, 0);

XtAddCallback(sub3Btn[0], XmNactivateCallback, ButtonCB, "3a");

sub3Btn[l] = XmCreatePushButtonGadget(submenu3, "button3b", NULL
0);

XtAddCallback(sub3Btn[1l], XmNactivateCallback, ButtonCB, "3b");

XtManageChildren(sub3Btn, 2);

Get and dispatch events */

XtRealizeWidget(toplevel);

6-26 Menus

XtMainLoop();

6.5 Creating Option Menu Systems

The basis of an Option menu system is the following;

e An Option menu. An Option menu is created by the convenience function
XmCreateOptionMenu. Itis a specialized RowColumn manager composed of two
“internal” gadgets:

o A selection area. The selection area is a specialized CascadeButtonGadget. It
provides the means for displaying an associated Pulldown MenuPane, and it
displays the labelString of the last item selected from the Pulldown
MenuPane. The XmNmenuHistory resource defines the initial item displayed.
(The default is the first item in the Pulldown MenuPane.)

e Alabel. The label is a specialized LabelGadget, and is displayed to the left of the
selection area.

o A Pulldown MenuPane attached to the Option menu. The Pulldown MenuPane
contains a PushButton or PushButtonGadget for each available option.

The Option menu typically does not display any three-dimensional visuals around itself or
its internal label. The internal CascadeButtonGadget has a three-dimensional shadow.
This can be changed by the application using the standard visual-related resources.

6.5.1 Option MenuPane Create Function
An Option menu can be created using this convenience function:
Widget XmCreateOptionMenu(parent, name, arglist, argcount)

XmCreateOptionMenu automatically creates an Option menu and two "internal”
gadgets—a CascadeButtonGadget (sclection area) and LabelGadget (label area). The
function returns the widget ID of the Option menu. The Option menu is created as a
RowColumn widget with the XmNrowColumnType resource set to XmMENU_OPTION.

The two internal gadgets can be accessed separately using the following functions:

e Widget XmOptionLabelGadget (option_menu) returns the ID of the
LabelGadget.

e Widget XmOptionButtonGadget (option_menu) returns the ID of the
CascadeButtonGadget.

Menus 6-27

These functions allow the application to have more control over the visuals associated with
the label and selection areas.

6.5.2 Procedure for Creating an Option Menu.

The following steps create an Option menu. Following each step is a code segment that
accomplishes the task.

1.

Create the Pulldown MenuPane that will contain the selection items.

optionsubmenu = XmCreatePulldownMenu(forml,
"optionsubmenu", NULL, 0);

Create the selection items for the Pulldown MenuPane.

option[0] = XmCreatePushButtonGadget(optionsubmenu,
"optionl", NULL, 0);

option[l} = XmCreatePushButtonGadget(optionsubmenu,
"option2", NULL, 0);

XtManageChildren(option, 2);

Use the XmCreateOptionMenu convenience function to create the Option menu
and attach it to the Pulldown MenuPane. Also specify a string for the Label area.

string = XmStringCreate("Options:",
XmSTRING_DEFAULT_CHARSET) ;

XtSetArg(args[0], XmNlabelString, string);

XtSetArg(args[l], XmNsubMenuld, optionsubmenu);

option_menu = XmCreateOptionMenu(forml, "option_menu",
args, 2);

XmStringFree(string);

XtManageChild(option_menu);

The components of the Option menu system must be created in the order shown above.
(You cannot use XtSetValues to specify the Option menu’s submenu.)

The following illustration shows the parenting relationships and attachments (dashed lines)
used to create Option menu systems using convenience functions. Each Pulldown
MenuPane contains three options from which to choose.

6-28 Menus

Parent Hidget

Pulldown MenuPanel <« » OptionMenul » Pulldoun MenuPane2
OptiorMenu2 4.|.
PushButton PushButton
PushButton PushButton
PushButton PushButton

Figure 6-11. Creating Option Menu Systems Using Convenience Functions

6.5.3 Interacting With Option Menus

Mouse Input

The Pulldown MenuPane is posted by moving the mouse pointer over the selection area
and pressing mouse button 1. The Pulldown MenuPane is positioned so that the last
selected item is directly over the selection area; the MenuPane is not repositioned if a
portion is inaccessible.

Menu items are armed when the pointer enters them and disarmed when it leaves.
Releasing mouse button 1 while a menu item is armed selects the menu item and changes
the label in the selection area.

The mouse button used to interact with Option menus can be changed using the
RowColumn resource XmNwhichButton.

The Keyboard Interface
A mnemonic can be associated with the Option menu. Typing the mnemonic posts the
Pulldown MenuPane and enables traversal.

When traversal is enabled,
o The directional keys traverse the menu hierarchy.

e The key selects the currently armed menu item.

Menus 6-29

e The key unposts the Pulldown MenuPane.
« Pressing the mouse button disables traversal and reenables interactive operation.

o Pressing a mnemonic or accelerator for a menu item selects that item.

6.5.4 Sample Program

The following sample program contains two option menus with three options each. The
Pulldown MenuPanes can be posted using the mouse or by using the mnemonics F and S.
When a MenuPane has been posted using a mnemonic, a mnemonic can then be used to
select an option.

The source code for this program is located on your system in
/usr/contrib/Xm/xmoption.c.

/* Option Menu Example */
#include <Xm/Xm.h>
#include <Xm/PushBG.h>

#include <Xm/CascadeBG.h>
#include <Xm/RowColumn,h>

Jx%kkkkkiksk Callback for the Pushbuttons skttt /

void ButtonCB (w, client_data, call_data)

Widget w; /* widget id*/
caddr_t client_data;/* data from application %/
caddr_t call_data;/* data from widget class */

{
/* print message and terminate program */
printf ("Option %s selected.\n", client_data);

[k sedlekiiok ik kst kMain Logic for Program stk /

void main (argc, argv)
int argc;
char **argv;
{
Widget toplevel, pulldownl, pulldown2, rc;

6-30 Menus

/*

/*

Widget option_menus[2], optionsl[3], option32[3]{7
Arg args[6];

Initialize toolkit */
toplevel = XtInitialize (argv{0], "OptionMenu", NULL,
0, &argc, argv);

Create RowColumn in toplevel */

XtSetArg(args{0}, XmNwidth, 375);
XtSetArg(args[1l], XmNheight, 75);
XtSetArg(args[2], XmNresizeWidth, False);
XtSetArg(args[3], XmNresizeHeight, False);
XtSetArg(args[4], XmNnumColumns, 2);
XtSetArg(args[5], XmNpacking, XmPACK_COLUMN) ;

rc = XmCreateRowColumn(toplevel, "rc", args, 6);
XtManageChild(rc);

Create two pulldown menus in rc */

pulldownl = (Widget)XmCreatePulldownMenu(rc, "pulldownl",
NULL, 0);

XtSetArg(args[0], XmNlabelString, XmStringCreate("A-option",
XmSTRING_DEFAULT_CHARSET)) ;
XtSetArg(args[l], XmNmnemonic, 'A');
optionsl[0] = XmCreatePushButtonGadget(pulldownl, "optionla",
args, 2);
XtAddCallback(optionsl[0], XmNactivateCallback, ButtonCB, "1lA");

XtSetArg(args[0], XmNlabelString, XmStringCreate("B-option",
XmSTRING_DEFAULT_ CHARSET));
XtSetArg(args[l], XmNmnemonic, 'B');
optionsl[l] = XmCreatePushButtonGadget(pulldownl, "optionlb”,
args, 2);
XtAddCallback(optionsl[1], XmNactivateCallback, ButtonCB, "1B");

XtSetArg(args[0], XmNlabelString, XmStringCreate("C-option",
XmSTRING_DEFAULT CHARSET));
XtSetArg(args[1l], XmNmnemonic, 'C’');
optionsl[2] = XmCreatePushButtonGadget(pulldownl, "optionlc",
args, 2);
XtAddCallback(optionsl{2], XmNactivateCallback, ButtonCB, "1C");

Menus 6-31

XtManageChildren(optionsl, 3);

pulldown?2 = (Widget)XmCreatePulldownMenu(rc, "pulldown2",
NULL, 0);

XtSetArg(args[0], XmNlabelString, XmStringCreate("A-option",
XmSTRING_DEFAULT_CHARSET)) ;
XtSetArg(args[1l], XmNmnemonic, 'A’);
options2[0] = XmCreatePushButtonGadget(pulldown2, "option2a",
args, 2);
XtAddCallback(options2[0], XmNactivateCallback,
ButtonCB, "2A");

XtSetArg(args[0], XmNlabelString, XmStringCreate("B-option",
XmSTRING_DEFAULT_CHARSET)) ;
XtSetArg(args{l], XmNmnemonic, 'B’');
options2[1l] = XmCreatePushButtonGadget(pulldown2, "option2b",
args, 2);
XtAddCallback(options2[1l], XmNactivateCallback,
ButtonCB, "2B");

XtSetArg(args[0], XmNlabelString, XmStringCreate("C-option",
XmSTRING_DEFAULT_CHARSET)) ;

XtSetArg(args[l], XmNmnemonic, 'C’');

options2[2] = XmCreatePushButtonGadget(pulldown2, "option2c",
args, 2);

XtAddCallback(options2[2], XmNactivateCallback,
ButtonCB, "2C");

XtManageChildren(options2, 3);

/* Create option menus and attach the two pulldown menus */

XtSetArg(args[0], XmNlabelString, XmStringCreate
("First Option Set:", XmSTRING_DEFAULT_CHARSET));
XtSetArg(args[l], XmNmnemonic, 'F’');
XtSetArg(args([2], XmNsubMenuld, pulldownl);
XtSetArg(args[3], XmNmenuHistory, optionsl[2]);
option_menus[0] = XmCreateOptionMenu(rc, "option_menul",
args, 4); :

XtSetArg(args[0], XmNlabelString, XmStringCreate
("Second Option Set:", XmSTRING_DEFAULT CHARSET));

6-32 Menus

XtSetArg(args[1l], XmNmnemonic, ’'S’);

XtSetArg(args[2], XmNsubMenuld, pulldown2);

XtSetArg(args[3], XmNmenuHistory, options2[0]);

option menus{l] = XmCreateOptionMenu(rc, "option_menu2",
args, 4);

XtManageChildren(option_menus, 2);

/* Get and dispatch events */
XtRealizeWidget(toplevel);

XtMainLoop() ;

6.6 Selecting A Menu Cursor

An application can select a specific menu cursor that is used whenever a menu is displayed.
This feature provides consistent appcarance within menus that belong to the same
application. The default menu cursor is arrow.

The menu cursor can be specified at the application start-up time by the resource
XmNmenuCursor. This resource is not associated with a particular widget, and can only
be set at application start-up time. The resource can be set two ways:

» By setting a resource in a defaults file. For example,
*menuCursor: star
sets star as the menu cursor.,

o By using the -xrm command line argument. For example, the following command
line specifies a clock as the menu cursor for the application named “myprog™

myprog -xrm "*menuCursor: clock"”
The cursor can be specified programmatically using the XmSetMenuCursor function:

void XmSetMenuCursor (display, cursorld)
Display *display;
Cursor cursorld;

Menus 6-33

display

cursorld

Specifies the menu cursor.

Specifies the display for which the cursor is used.

After the function is executed, any menu displayed by the application on the specified
display uses the menu cursor identified in the variable cursorld. This allows the
application to use different menu cursors on different displays.

The function XmGetMenuCursor returns the cursor ID of the current menu cursor for a

specified display:

Cursor XmGetMenuCursor (display)
Display *display;

display

Specifies the display.

If the application has not created any menus, no cursor is defined and the function returns

the value “None.”

The following list shows the valid cursor names.

arrow
bogosity
bottom_tee

clock

crosshair
double_arrow

fleur

hand2

left_ptr

Il_angle

mouse
question_arrow
rightbutton
sb_h_double_arrow
sb_v_double_arrow
spraycan
top_left_arrow
top_tee

watch

6-34 Menus

based_arrow_down
bottom_left_corner
box_spiral
coffee_mug
diamond_cross
draft_large

gobbler

heart

left_side

Ir_angle

pencil

right_ptr

rtl_logo
sb_left_arrow
shuttle

star
top_left_corner
trek

xterm

based_arrow_up
bottom_right_corner
centr_ptr

cross

dot

draflt_small
gumby

icon

left_tee

man

pirate

right_side
sailboat
sb_right_arrow
sizing

larget
top_right_corner
ul_angle

boat
bottom_side
circle
Cross_reverse
dotbox
exchange
hand1
iron_cross
leftbutton
middlebutton
plus
right_tee
sb_down_arrow
sb_up_arrow
spider

tcross
top_side
umbrella

6.7 Creating Menus Without Using Convenience
Functions

Applications that use the menu system convenience functions do not need to explicitly
create MenuShell widgets; the XmCreatePopupMenu and XmCreatePulldownMenu
functions create a Popup or Pulldown MenuPane and the parent MenuShell.

If an application requires access to individual MenuShells in an application, the
MenuShells and MenuPanes can be created by using the standard X Toolkit create
routines or by using the create functions for MenuShells and RowColumn Widgets.

6.7.1 Functions for Creating Menus
Three functions are used in creating menu systems.
« The MenuShell specific create function:
Widget XmCreateMenuShell (parent, name, arglist, argcount)
creates an instance of a MenuShell widget and returns the associated widget ID.
« The X Toolkit function:
Widget XtCreatePopupShell(name, widget class, parent, args, num_args)
can be used to create a MenuShell for a Popup or Pulldown MenuPane.
» The RowColumn specific create function:
Widget XmCreateRowColumn (parent, name, arglist, argcount)

creates an instance of a RowColumn widget and returns the associated widget ID.

6.7.2 Parenting Relationships

The parenting relationships required to create a menu system without using convenience
functions depend on the type of menu system being built:

« If the MenuShell is for a Popup MenuPane, the MenuShell must be the parent of the
Popup MenuPane (see figure 6-12).

o If the MenuShell is for a MenuPane that is pulled down from a MenuBar, the
MenuShell must be created as a child of the MenuBar (see figure 6-13).

o If the MenuShell is for a submenu MenuPane that is pulled down from a Popup or
another Pulldown MenuPane, the MenuShell must be created as a child of the Popup
or Pulldown MenuPane’s parent MenuShell (see figure 6-14).

Menus 6-35

« If the MenuShell is for a Pulldown MenuPane in an Option menu, the MenuShell must
have the same parent as the Option menu (see figure 6-15).

Parent Widget
[
MenuShell
|
Popup MenuPane

|
Label

Separator

PushButton

PushButton

PushButton

Figure 6-12. Creating a Popup Menu System Without Using Convenience Functions

6-36 Menus

Parent Hidget

MenuBar

CascadeButtonl
4

CascadeButton2
A

CascadeButton (Help)

MenuShelll

MenuShell2

———Tb- Pulldown MenuPanel

-———-]b- Pulldown MenuPane2

PushButton PushButton
PushButton PushButton
PushButton PushButton

Figure 6-13. Creating a Pulldown Menu System Without Using Convenience Functions

Menus 6-37

Parent Widget

MenuShell

MenuShelll

Popup

MenuPane

MenuShell2

» CascadeButtonl

>

Pul ldown MenuPane2

CascadeButton2

MenuShe 113

v
Pulldown MenuPane!

Pulldown MenuPane3 ‘r

PushButton

PushButton

PushButton

PushButton

—

CascadeButton3

PushButton

PushButton

Figure 6-14. Creating Submenus Without Using Convenience Functions

6-38 Menus

Parent Hidget

MenuShelll s OptionMenul MenuShell2

OptionMenud 4_|—
> Pulldown

Pulldown MenuPanel <+ MenuPane2

PushButton PushButton
PushButton PushButton
PushButton PushButton

Figure 6-15. Creating an Option Menu System Without Using Convenience Functions

6.7.3 Sample Program

The following program creates a Popup menu system without using the convenience
functions. Figure 6-14 illustrates the menu system created by this program.

The source code for this program is located on your system in
/usr/contrib/Xm/xmmenushel.c.

/* Popup Menu and Submenus created with MenuShells */
#include <Xm/Xm.h>

#include <Xm/MenuShell.h>

#include <Xm/PushBG.h>

#include <Xm/CascadeBG.h>

#include <Xm/RowColumn.h>

JxkkkkRkkktk Callback for the Pushbuttons wsskkksbkttikkkktsiisk /

void ButtonCB (w, client data, call_data)

Menus 6-39

Widget w; /* widget id*/
caddr_t client_data;/* data from application */
caddr_t call _data;/* data from widget class %/
{
/* print message and terminate program */
printf ("Button %s selected.\n", client_data);

)

/************** Event Handler for Popup Menu *****************/

PostIt (w, popup, event)
Widget w;

Widget popup;
XButtonEvent * event;

{

if (event->button != Button3)
return;

XmMenuPosition(popup, event);

XtManageChild(popup) ;

/***********************Main Logic for Program **************/

void main (arge, argv)
int argc;
char **argv;
{
Widget toplevel, rc, buttons|2];
Widget popupshell, mshelll, mshell2, mshell3;
Widget popup, submenul, submenu?, submenu3;
Widget popupBtn[2], sublBtn[3], sub2Btn[2], sub3Btn[2}];
Arg args[5];

/% Initialize toolkit */

toplevel = XtInitialize (argv[0], "PopupMenu", NULL, O,
&arge, argv);

/* Create RowColumn in toplevel with two pushbuttons */

6-40 Menus

/*

/*

XtSetArg(args[0], XmNwidth, 150);
XtSetArg(args[1l], XmNheight, 50);
XtSetArg(args([2], XmNresizeWidth, False);
XtSetArg(args[3], XmNresizeHeight, False);
XtSetArg(args[4], XmNadjustLast, False);

rc = XmCreateRowColumn(toplevel, "rc", args, 5);
XtManageChild(rc);

buttons[0] = XmCreatePushButtonGadget(rc, "buttonl", NULL, 0);
XtAddCallback(buttons[0], XmNactivateCallback, ButtonCB, "1");

buttons{l] = XmCreatePushButtonGadget(rc, "button2", NULL, 0);
XtAddCallback(buttons[1l], XmNactivateCallback, ButtonCB, "2");
XtManageChildren(buttons, 2);

Create MenuShell for a Popup MenuPane */

XtSetArg(args[0], XmNheight, 100);
XtSetArg(args([1l], XmNwidth, 100);
popupshell = XmCreateMenuShell(rc, "popupshell", args, 2);

Create RowColumn Widget configured as Popup MenuPane */

XtSetArg(args[0], XmNrowColumnType, XmMENU_POPUP);
popup = XmCreateRowColumn (popupshell, "popup", args, 1);
XtAddEventHandler (rc, ButtonPressMask, False, PostIt, popup);

Create MenuShells and Pulldown MenuPanes for two submenus */

XtSetArg(args[0], XmNheight, 100);
XtSetArg(args([l], XmNwidth, 100);
mshelll = XmCreateMenuShell (popupshell, "mshelll", args, 2);

XtSetArg(args[0], XmNrowColumnType, XmMENU_ PULLDOWN) ;
submenul = XmCreateRowColumn (mshelll, "submenul", args, 1);

XtSetArg(args{[0], XmNheight, 100);

XtSetArg(args([1l], XmNwidth, 100);
mshell2 = XmCreateMenuShell (popupshell, "mshell2", args, 2);

XtSetArg(args[0], XmNrowColumnType, XmMENU_PULLDOWN) ;
submenu?2 = XmCreateRowColumn (mshell2, "submenu2", args, 1);

Menus 6-41

/* Create two Cascade Buttons in the Popup MenuPane */

XtSetArg(args[0], XmNsubMenuld, submenul);

XtSetArg(args[l], XmNlabelString, XmStringCreate
("First Submenu", XmSTRING_DEFAULT CHARSET));

popupBtn[0] = XmCreateCascadeButtonGadget(popup, "cbuttonl",
args, 2);

XtSetArg(args[0], XmNsubMenuld, submenu2);

XtSetArg(args[1l], XmNlabelString, XmStringCreate
("Second Submenu", XmSTRING DEFAULT CHARSET));

popupBtn[l]} = XmCreateCascadeButtonGadget(popup, "cbutton2",
args, 2);

XtManageChildren (popupBtn, 2);

/* Create pushbuttons in MenuPanes submenul and submenu2 */

sublBtn[0] = XmCreatePushButtonGadget(submenul, "buttonla",
NULL, 0);

XtAddCallback(sublBtn[0], XmNactivateCallback, ButtonCB, "la");

sublBtn[l] = XmCreatePushButtonGadget(submenul, "buttonlb",
NULL, 0);

XtAddCallback(sublBtn[1l], XmNactivateCallback, ButtonCB, "1b");

sub2Btn[0] = XmCreatePushButtonGadget(submenu2, "button2a",
NULL, 0);

XtAddCallback(sub2Btn[0], XmNactivateCallback, ButtonCB, "2a");
sub2Btn|[l] = XmCreatePushButtonGadget(submenu2, "button2b",
NULL, 0);

XtAddCallback(sub2Btn[l), XmNactivateCallback, ButtonCB, "2b");
XtManageChildren (sub2Btn, 2);

/* Create a MenuShell for the submenu of submenul */
XtSetArg(args{0], XmNheight, 100);
XtSetArg(args{1l], XmNwidth, 100);
mshell3 = XmCreateMenuShell (mshelll, "mshell3", args, 2);

/* Create the MenuPane for the submenu of submenul */

6-42 Menus

/*

/*

/'k

XtSetArg(args([0], XmNrowColumnType, XmMENU_ PULLDOWN) ;
submenu3 = XmCreateRowColumn (mshell3, "submenu3", args, 1);

Create the Cascade Button in submenul for accessing submenu3 %/

XtSetArg(args[0], XmNsubMenuld, submenu3);

XtSetArg(args([1l], XmNlabelString, XmStringCreate
("To Third Submenu", XmSTRING_DEFAULT_ CHARSET));

sublBtn[2] = XmCreateCascadeButtonGadget(submenul, "cbutton3",
args, 2);

XtManageChildren(sublBtn, 3);

Create pushbuttons in submenu */

sub3Btn[0] = XmCreatePushButtonGadget(submenu3, "button3a",
NULL, 0);

XtAddCallback(sub3Btn[0], XmNactivateCallback, ButtonCB, "3a");

sub3Btn[l] = XmCreatePushButtonGadget(submenu3, "button3b",
NULL, 0);

XtAddCallback(sub3Btn[l], XmNactivateCallback, ButtonCB, "3b");

XtManageChildren (sub3Btn, 2);

Get and dispatch events */

XtRealizeWidget(toplevel);

XtMainLoop();

Menus 6-43

Specialized Widgets 7

There are several widgets in the OSF/Motif widget set that fall into the category of
“specialized widgets.” This is because these widgets are somewhat more complex to use
and accomplish more complex feats than the “normal” widget. There are four widgets that
fall into this category:

e Form

o List

e RowColumn
o Text

The Form widget is explained in chapter 5, “Dialog Widgets.” The others are explained in
this chapter.

7.1 List Widget

The List widget allows you to make a selection from a list of items. The application
defines an array of compound strings, each of which becomes an item in the list. You can
set the number of items in the list that are to be visible. You can also choose to have the
List appear with a ScrollBar so that you can scroll through the list of items. Items are
selected by moving the pointer to the desired item and pressing the mouse button or key
defined as “select.” The selected item is displayed in inverse color.

7.1.1 List Functions

There are a number of functions associated with the List widget that are available to
perform a variety of tasks. These functions are listed below and each has its own man page
in the HP OSF /Motif Programmer’s Reference Manual.

Specialized Widgets 7-1

TABLE 7-1. List Widget Functions

XmListDeselectAllItems

XmListSelectItem

XmListSetHorizPos

XmListSetItem
XmListSetPos

XmListSetBottomIltem

XmListSetBottomPos

XmListSelectPos

XmListDeselectPos

XmListItemExists

Function Description
XtCreateWidget Basic widget create function.
XmCreateList Specific create function for XmList.
XmCreateScrolledList Create function for ScrolledList.
XmListAddItem Add an item (possibly selected) to the list.
XmListAddItemUnselected | Add anitem (unselected) to the list.
XmListDeleteltem Delete item from the list.
XmListDeletePos The item at the specified position is deleted.
XmListDeselectItem If the specified item is currently selected, it is

unhighlighted and removed from the selected list.
All the currently selected items in the list are
unhighlighted and removed from the selection list.
The item is highlighted and added to the current
sclect list.

If the horizontal ScrollBar is visible, the XmNvalue
resource of the ScrollBar is set to the specified
position and the visible portion of the List is
updated.

Make the specified item the first in the list.

Make the item at the specified position the first
visible position.

Make the specified item the last visible item in the
list.

Make the item in the specified position the last
visible position.

The item in the specified position is highlighted and
added to the current selected list.

Delete the item at the specified position from the
selected list and unhighlight it.

The function returns True if the specified item exists.

The use of many of these functions will be described in the sections that follow. Actual
code segments accompanied by illustrations show the results of certain programming

actions.

7-2 Specialized Widgets

7.1.2 Using the List Widget

Figure 7-1 shows an example of a list widget. You have scen other examples in earlier
chapters of this manual. For example, the lists displayed in the FileSelectionBox and
SelectionBox widgets are actually List widgets.

New Item ist

Figure 7-1. List Widget

The program that produces the List widget shown above can be found in the file
/usr/contrib/Xm/xmlist.c. You can compile and link this program using the
procedure described in chapter 1. Segments of this program are used in this section to
describe how to accomplish certain functions associated with the list widget.

In figure 7-1, the two lines that appear in inverse color indicate items that have been
selected by the application. Any number of items can be selected. This is accomplished as
shown in the following code segment.

Specialized Widgets 7-3

Arg Args[20];

static char *CharSelectedItems{2] = {
"New Item List",
"New Policy"};

f#fdefine NUM_SELECTED_ITEMS 2

int i;

XmStringCharSet c¢s = "ISOLatinl";
XmString SelectedItems|[NUM_SELECTED_ITEMS];

/* Create compound strings for selected items */
for (i = 0; i < NUM_SELECTED_ITEMS; i++)
SelectedItems([i] =
(XmString) XmStringCreateLtoR(CharSelectedItems([i],cs);

/* Set the resource values */
i= 0;
XtSetArg(args{n], XmNselectedItems, (XtArgVal) SelectedItems); i++;
XtSetArg(args([n], XmNselectedCount,

(XtArgVal) NUM_SELECTED ITEMS); i++;

As you can see, you can include as many items as you want in the selected list.

In figure 7-2 you can see that one of the items in the list is “Five Visible.” To select this
item, move the pointer into the window and position it anywhere on the “Five Visible” line.
Clicking mouse button 1 selects the item and it is highlighted, as shown in figure 7-2.

7-4 Specialized Widgets

1 i Deselect Top Item
I Deselect Bottom X
| 1Desélect ALl
1'IMake Sth Item Top
|| Makelst Top =
| | Make Sth Item Bottor
| Make Last Bottom
AutoSelect ON'
utoSelect OFF‘

Figure 7-2. List Widget Before Selection Action

When you “double click” on mouse button 1, the action is performed. In this case, now
only five items are displayed in the list, as shown in figure 7-3.

| |[New Ttem List_

11 New.Selected Items

£ Maxxmum VlSlble
'

: ,Nqsw.lljo“li‘cby ', 5

Figure 7-3. List Widget After Sclecting “Five Visible”

Note the ScrollBar in the figure 7-3. There are the same number of items in the list as

Specialized Widgets 7-5

before, but now only five of them are visible at any given time.

Callback

The callback procedure that is executed when a double click occurs performs the necessary
steps to accomplish the task given by the selected item in the list. In the above situation,
the task was to make “Five Visible.” The code segments to accomplish this are shown
below.

/* Add the callback */
XtAddCallback(outer_box, XmNdefaultActionCallback,
DoubleClickProc, NULL);

/***7‘:7':7‘»‘ B R o R e o e e L e S R S S S S P S e S e P S L S S 2 e e

*

* DoubleClickProc is the XmDEFAULT ACTION callback. It functions
* a big case statement, comparing the item that was double-clicked
* to the items in the list. When it finds a match, it takes the

* appropriate action.

*

B o kB AR R R R L R R LT T
void DoubleClickProc(w,closure,call _data)
Widget w;
caddr_t closure, call_data;

int j;

XmListCallbackStruct *cb = (XmListCallbackStruct *)call_data;
int i=0;

unsigned char k;

DumpListCBStruct(call_data);

if (XmStringCompare(cb->item,ListItems[0}))

/* Set a new item list */

{
XtSetArg(Args[i], XmNitems, (XtArgVal) NewListItems); i++;
XtSetArg(Args[i], XmNitemCount, (XtArgVal) NUM NEW_LIST_ITEMS)
i++;

)

if (XmStringCompare(cb->item,NewListItems[0]))
/* Set the original Item List */

{
XtSetArg(Args[i], XmNitems, (XtArgVal) ListItems); i++;

7-6 Specialized Widgets

XtSetArg(Args[i], XmNitemCount, (XtArgVal) NUM_LIST ITEMS);
i4+;

)

if (XmStringCompare(cb->item,ListItems[1]))

/% Set a new Selected Item List %/

{

XtSetArg(Args[i], XmNselectedItems, (XtArgVal) SelectedIltems);
i++;

XtSetArg(Args[i], XmNselectedItemCount,

(XtArgVal) NUM_SELECTED ITEMS); i++;
)

if (XmStringCompare(chb->item,ListItems[2]))

/%* Make all items visible by getting the current item */

{

XtSetArg(Args([0], XmNitemCount, &j);

XtGetValues(w, Args, 1);

XtSetArg(Args[i], XmNvisibleItemCount, (XtArgVal) j); i++;
}

if (XmStringCompare(cb->item,ListItems([3]))

/* Make five items visible */

{

XtSetArg(Args[i], XmNvisibleIltemCount, (XtArgVal) 5); i++;
}

if (XmStringCompare(cb->item,ListItems[4]))
* Set a new selection policy *
{
XtSetArg(Args[0], XmNselectionPolicy, &k);
XtGetValues(w, Args, 1);
if (k == XmSINGLE_SELECT)
k = XmMULTIPLE_ SELECT;
else
if (k == XmMULTIPLE_SELECT)
k = XmBROWSE_ SELECT;
else
if (k == XmBROWSE_SELECT)
k = XmEXTENDED_ SELECT;
else
if (k == XmEXTENDED SELECT)
k = XmSINGLE_ SELECT;

Specialized Widgets 7-7

XtSetArg(Args[i], XmNselectionPolicy, (XtArgVal)k); i++;
)

if (XmStringCompare(cb->item,ListItems[5]))

/* Increase the spacing between items */

{

-Spacing += 2;

XtSetArg(Args([i], XmNlistSpacing, (XtArgVal)Spacing); i++;
)

if (XmStringCompare(cb->item,ListItems[6]))
/* Change the font the items are displayed in */
{
if (curfont == fontl)
curfont = font2;
else
if (curfont == font2)
curfont = font3;
else
curfont = fontl;
XtSetArg(Args[i], XmNfontList, (XtArgVal) curfont); i++;

}

if (XmStringCompare(cb->item,ListItems[21]))
/* Set automatic selection ON */

{
XtSetArg(Args{i], XmNautomaticSelection, (XtArgVal) TRUE);

i++;
}

if (XmStringCompare(cb->item,ListItems[22]))
/% Set automatic selection OFF %/
{
XtSetArg(Args[i], XmNautomaticSelection, (XtArgVal) FALSE);
i4+;
)
eSSkl ek deded
%
* If we have set any arguments, do the SetValues and return.
%

*kkk

7-8 Specialized Widgets

XtSetValues(w,Args,i);
return;

}

if (XmStringCompare(cb->item,ListItems[7]))

/* Add an item at the first position in the list */
{

XmListAddItem(w,FirstItem,1);

)

if (XmStringCompare(cb->item,ListItems[8]))

/* Add an item at the last position in the list */
{

XmListAddItem(w,LastItem,0);

)

if (XmStringCompare(cb->item,ListItems([9]))

/* Add an item at the fifth position in the list */
{

XmListAddItem(w,MiddleItem,5);

)

if (XmStringCompare(cb->item,ListItems[10]))

* Delete the ’'Middle Item’ list element */
{

XmListDeleteItem(w, MiddleItem);

)

if (XmStringCompare(cb->item,ListItems[11]))
/* Delete the last item */

{

XmListDeletePos(w,0);

)

if (XmStringCompare(cb->item,ListItems[12]))
/* Select the first item */

{
XmListSelectPos(w,1,TRUE) ;

}
if (XmStringCompare(cb->item,ListItems{13]))

/* Select the last item */
{

Specialized Widgets 7-9

XmListSelectPos(w,0,TRUE) ;
)

if (XmStringCompare(cb->item,ListItems[14]))
/* Deselect the first item */

{
XmListDeselectPos(w,1);

)

if (XmStringCompare(cb->item,ListItems[15]))
/* Deselect the last item */

{
XmListDeselectPos(w,0);

)

if (XmStringCompare(cb->item,ListItems[16]))
/* Deselect all selected items %/

{
XmListDeselectAllItems(w) ;

)

if (XmStringCompare(cb->item,ListItems[17]))
* Make the fifth item the top */

{
XmListSetPos(w,5);

)

if (XmStringCompare(cb->item,ListItems[18]))
/* Make the first item the top */

{
XmListSetPos(w,1);

}

if (XmStringCompare(cb->item,ListItems[19]))
/* Make the fifth item bottom %/

{
XmListSetBottomPos(w,5);

)

if (XmStringCompare(cb->item,ListItems[20]))
/* Make the last item the bottom */

{
XmListSetBottomPos(w,0);

7-10 Specialized Widgets

)

if (XmStringCompare(cb->item,ListItems[23]))
/* End the program. */
{
exit(0);
)

This callback is the heart of the program. Basically, it compares the current
selected item in the callback structure (see the List man page for a description of this
structure) to the the original list of items. When a match is found, the necessary action is
taken. For example, if “Five Visible” is selected, the resource XmNvisibleItemCount is
reset to 5 and XtSetValues is called. Note the use of the functions presented in the table at
the beginning of this chapter. For example, if “Add Item at Top” is selected, the function
XmListAddItem is called with the position value set to 1. If “Add Item at End” is
selected, XmListAddItem is called with the position value set to 0. You can get an idea
of how other list functions are used by examining the rest of the callback code segment.

Selection Policies
The List widget has four sclection policies that can be set programmatically. The policies
are defined below.

« Single Selection. This policy allows you to move the pointer to the list item you want
and when you click mouse button 1, that item is highlighted. No highlighting or
selection occurs while you are moving the pointer, and only one item can be selected at
a time.

« Multiple Selection. This policy allows you to select more than one item on the list.
Selection and highlighting occur only after you click mouse button 1, but you can select
as many items as you want. You can deselect any sclected item by clicking mouse
button 1 when the pointer is on that item.

« Extended selection. This policy allows you to select more than one item on the list
without clicking mouse button 1 for each itern. When you press and hold mouse button
one on an item and then drag the pointer up or down from that point, all items
between the initial item and the pointer are highlighted. Relasing mouse button 1
stops the selection proces and those items sclected remain highlighted.

« Browse sclection. When you press and hold mouse button 1 on an item, that item is
selected and highlighted. Dragging the pointer up or down from that point causes each
succeeding item to be selected and highlighted while the preceding item is unselected
and unhighlighted. When you release the mouse button, the item on which the pointer
rests is selected and highlighted.

Specialized Widgets 7-11

The policy selections can be changed in the sample program by double clicking on the
“New Policy” item.

New It.e ,is
7 Selec tems:

(Select Top»Item

1 elect Bottom Item

iNiake Sth Item Top
{|Make lst Top i

{/Make 5th Item Bottom
| | Make Last Bottom

|
|1 AutoSelect. OFF :
.'Qult :

Figure 7-4. List Widget Multiple Selection

Figures 7-2 and 7-3 show single selection, figure 7-4 shows multiple selection, and figure
7-5 shows extended selection.

7-12 Specialized Widgets

: Select Top Item

1| | Select Bottom Item

: ;Deselept Top: Item
Deselect Bottom:

1| Deselect AllL.

| Make Sth’ Item OF

|| Make 1st Top -

{ I Make Sth Item’ Bottom
|| Make Last Bottom

1 lAutoSelect ON

Figure 7-5. List Widgct Extended Selection

The code segments shown in the Callback section provide an example of how selection
policy can be changed programmatically. The appropriate segment from that section is
shown below.

if (XmStringCompare(cb->item,ListItems[4]))
/* New Selection policy */
{
XtSetArg(myArgs[0], XmNselectionPolicy, &k);
XtGetValues(w, Args, 1);
if (k == XmSINGLE_SELECT)
k = XmMULTIPLE_SELECT;
else
if (k == XmMULTIPLE_SELECT)
k = XmBROWSE_SELECT;
else

Specialized Widgets 7-13

if (k == XmBROWSE_SELECT)
k = XmEXTENDED_SELECT;
else
if (k == XmEXTENDED_SELECT)
k = XmSINGLE_SELECT;
/* Set the new values into the widget */
XtSetArg(Args[i], XmNselectionPolicy, (XtArgVal)k);

The variable k is defined as an unsigned char to match the type of the resource
XmNselectionPolicy. The argument array is set up with a call to XtSetArg, and the
current selection policy is obtained by the call to XtGetValues. The selection policy is
then changed and the new selection policy is reset into the widget with a call to
XtSetArg,.

7.2 RowColumn Widget

The RowColumn widget is a general purpose RowColumn manager capable of containing
any widget type as a child. It requires no special knowledge about how its children
function, and provides nothing above and beyond support for several different layout styles.

The RowColumn widget has no three-dimensional visuals associated with it. If an
application wishes to have a three-dimensional shadow placed around the RowColumn
widget, it should create the RowColumn as a child of a Frame widget.

7.2.1 RowColumn Types

The OSF/Motif system provides several types of RowColumn widgets. The widget type is
specified using the XmNrowColumnType resource. The possible settings for this resource
are as follows:

e XmWORK _AREA. The XmWORK_AREA type provides the generahzed
RowColumn manager. It is the default type when the widget is created using the
XmCreateRowColumn function or the XtCreateWidget X-toolkit function.

« Four settings for creating OSF/Motil menus.
« XmMENU_POPUP
« XmMENU_BAR
« XmMENU _PULLDOWN
« XmMENU_OPTION

7-14 Specialized Widgets

The specific create functions for Popup MenuPanes, MenuBars, Pulldown MenuPanes,
and Option menus create RowColumn widgets set to these types.

The various types of menus are covered in chapter 6. The rest of this section deals only
with the XmWORK_AREA type.

7.2.2 RowColumn Functions
The following functions create RowColumn widgets of default type XmWORK_AREA:

Widget XtCreateWidget (name, xmRowColumnWidgetClass, parent,
arglist, argcount)

Widget XmCreateRowColumn (parent, name, arglist, argcount)
Both create functions create an instance of a RowColumn widget and return the associated

widget ID. XtCreateWidget () is the standard X Toolkit create function.
XmCreateRowColumn() is the RowColumn specific create function.

7.2.3 Layout

RowColumn provides a variety of resources that determine the type of layout performed.
For example, resources control these attributes:

« Sizing. The size of the widget can be set explicitly (by resource settings), or the size can
be set automatically according to requirements of the children and their specified
layout.

« Orientation. RowColumn can be configured to lay out its children in a column fashion
(vertical) or a row [ashion (horizontal).

» Packing. The children can be packed together tightly (not in an organized grid of rows
and columns); or, all children can be placed in identically sized boxes, thus producing a
symmetrical-looking arrangement of the children. Another alternative allows the
application to specify the exact x and y positions of the children.

« Spacing between children. The application can control the spacing between the rows
and columns.

» Margin spacing. Resources set the spacing between the edges of the RowColumn
widget and the children placed along the edge.

Specialized Widgets 7-15

Sizing

When XmNresizeHeight and/or XmNresizeWidth are set to True, RowColumn will
request new dimensions from its parent, if necessary. The resources should be set to False
if the application wants to control the dimensions.

When the XmNpacking resource is set to XmPACK_NONE, the RowColumn widget
expands, if necessary, to enclose its children.

Orientation

The orientation is set using the XmNorientation resource. There are two possible settings:

o XmVERTICAL (default). This specifies a “‘column-major” orientation. In a column
major orientation, children are laid out in columns from top to bottom.

« XmHORIZONTAL. This specifies a “row-major” orientation. In a row major
orientation, children are laid out in rows, from left to right.

Child #1 > Child #4
Child #2 Child #5
Child #3 - Child #6

Figure 7-6. Column-Major Orientation (XmVERTICAL)

Child #1 —» Child #2
|
v
Child #3 — Child #4
|
\d
Child #5 > Child #6

Figure 7-7. Row-Major Orientation (XmHORIZONTAL)

7-16 Specialized Widgets

Packing
The XmNpacking resource determines how the items in a RowColumn widget are packed
together. There are three possible settings:

o XmPACK TIGHT (default). The layout depends on the orientation:

o For Xm_ VERTICAL orientation, items are placed one after another in a given
column until there is no room left for another item. Wrapping then occurs to the
next column and continues until all the children have been placed. The boxes in a
given column are set to the same width, based on the widest box in that column,
Thus, the items are stacked vertically but may be staggered horizontally.

 Button———c|

Figure 7-8. XmRowColumn Widget

¢ For Xm_HORIZONTAL orientation, items are placed one after another in a given
row until there in no room left for another item. Wrapping then occurs to the next
row and continues until all the children have been placed. Boxes in a given row are
set to the same height, based on the highest box in that row. Thus, the items are
layered horizontally but may be staggered vertically.

Button £ o SR
- Ling==-2 Button B Bytt

Figure 7-9. XmPACK TIGHT with XmHORIZONTAL Orientation

e XmPACK_COLUMN. In PACK_COLUMN packing, children are placed in identically
sized boxes so that the layout becomes a grid. The height of the boxes is the height of
the highest child; similarly, the width of the boxes is the width of the widest child.

The XmNnumColumns resource specifies how many columns (for XmVERTICAL
orientation) or rows (for XmHORIZONTAL orientation) are built. There is no
automatic wrapping when a column or row is too long to fit.

Specialized Widgets 7-17

o Put‘,‘ta_n—-'

Figure 7-10. XmPACK COLUMN With XmVERTICAL Orientation and
XmNnumColumns = 3

- Button-A-

 Line—-=2 Button—B |

'j”fﬁuttoh’,-:‘-"—tfﬁ Button--'"l]_ '

Button--—--- F

Figure 7-11. XmPACK_COLUMN With XmHORIZONTAL Orientation and
XmNnumColumns = 3

o XmPACK NONE. When there is no packing, children are positioned according to the
x and y positions specified by their resources. If necessary, the RowColumn widget will
attempt to become large enough to enclose all its children.

Spacing Between Children
The XmNspacing resource specifies the horizontal and vertical spacing, in pixels, between
items within the RowColumn widget. The default is one pixel.

Margin Spacings

The XmNmarginHeight and XmNmarginWidth resources specify the size of the margins
between the edge of the RowColumn widget and the children along the edge.

7-18 Specialized Widgets

marginHeight

marginWidth marginkidth

marginHeight
Figure 7-12. XmNmarginHeight and XmNmarginWidth

7.3 Text Widget

The Text widget can be used as a single line or a multiline text editor. You can interact
with the Text widget programmatically or by user action. You can use the Text widget for
single-line entry, form entry, or full-window editing,.

7.3.1 Text Functions

There are a number of functions associated with the Text widget that are available to
perform a variety of tasks. These [unctions are listed below, and each function has its own
man page in the HP OSF/Motif Programmer’s Reference Manual,

Specialized Widgets . 7-19

TABLE 7-2. Text Widget Functions

Function Description
XtCreateWidget Basic widget create function.
XmCreateText Specific create function for XmText.
XmCreateScrolledText Create function for ScrolledText.
XmTextClearSelection | Clears the primary selection.
XmTextGetSelection Retrieves the value of the primary selection.
XmTextSetSelection Sets the primary selection of text in the widget.
XmTextGetString Accesses the string value of the Text widget.
XmTextSetString Sets the string value of the Text widget.
XmTextGetMaxLength Finds the maximum allowable length of the text string.
XmTextSetMaxLength Sets the maximum allowable length of the text string.
XmTextGetEditable Finds the value of the edit permission state.
XmTextSetEditable Sets the value of the edit permission state.
XmTextReplace Replaces part of a string.

The use of some of these functions will be described in the sections that follow. Actual
code segments accompanied by illustrations show the results of programming actions.

7.3.2 Using the Text Widget In a Program

Figure 7-13 shows an example of a Text widget.

Here is some text entered as a test of the
is not to be interpreted as intelligent or
gibberish, gibberish is what generally cs
not appear to contradict that time-hont

{|Here is some more text entered from the

l

7-20 Specialized Widgets

Figure 7-13. Text Widget

You have seen other examples in earlier chapters of this manual. The FileSelectionBox
“Selection” window is a Text widget, as is the same window in the SelectionBox widget.

The program that generated the window shown in figure 7-13 is called xmeditor and it
can be found in the directory /usr/contrib/Xm. This program demonstrates how you
can use the Text widget in concert with other widgets. You can create a new file, edit an
old file, cut and paste text, and so on.

The File Menu
If you move the pointer so that it covers the “File” button in the MenuBar and then click
mouse button 1, a menu will appear as shown in [igure 7-14.

ntradict that:tim

 bre text ente

Figure 7-14. Text Demonstration File Menu

If you select “Open,” a FileSelectionBox will appear. You can select a file from this as
described in chapter 5. The other menu choices are self-explanatory.

The Edit Menu

The “Edit” menu allows you to use some of the “cut and paste” features of the OSF/Motif
system within the Text widget. Move the pointer to “Edit” and click mouse button 1 to see
the “Edit” menu.

Specialized Widgets ™ 7-21

Figure 7-15. Text Demonstration Edit Menu

Accelerators and Mnemonics

Both the “Edit” and “File” menus contain mnemonics. Mnemonics are indicated by
underlined characters in the menus. You can use them instead of the mouse button to
make the selection you want. For example, to choose “File” using its mnemonic, move the
pointer into the xmeditor window and press the Meta key and [f]. This will cause the
Pulldown menu to appear. You can traverse the Pulldown menu by using the [1] and
keys, or use the mouse to move the pointer. You can select from the Pulldown menu by
using its mnemonics as well. All you need to do is press the key that corresponds to the
underlined letter in the menu. Don’t worry about upper or lower case as these are not
case-sensitive. For example, suppose you want to open a file. All you need to do is press
[o]. You only need to use the Mcta key when accessing a Pulldown menu from the
MenuBar.

The “Edit” menu also has “accelerators” in addition to the mnemonics. Accelerators are
keys or combinations of keys that perform a specific function within an application. For
example, “Cut” has a mnemonic of “t” and an accelerator of [Shift][Del]. Pressing either
or execute the “Cut” function of the menu. Note that accelerators are not part
of the menu and will execute regardless of whether or not the menu is visible.

Primary and Secondary Selections

The Text widget has two types of sclections, primary and secondary. The primary selection
is identified by highlighting the text in inverse video and the secondary selection is
identified by underlining the text. You can cut out text that is the primary selection and
paste it in at some other point in the Text window. You can cither copy a secondary
selection or copy and delete it. Both of these selections will be described in more detail in
later sections of this chapter.

7-22 Specialized Widgets

Cutting Text

To remove (or “cut”) text, you move the insert cursor to the starting point of the text you
wish to remove. You can then perform any of the following actions to select the text
(primary selection) to be removed:

NOTE

To position the insert cursor, move the pointer into the text window
and to the desired point on a text line, then click mouse button 1.

« If you want just a single word removed, position the insert cursor before the first letter
of the word and then “double click” mouse button 1. The word is highlighted.

« If you want the entire line of text to be removed, “triple click” mouse button 1. The
entire line of text is highlighted. Note that the entire line is highlighted regardless of
the initial position of the insert cursor on the linc.

« If you want all of the text to be removed, “quadruple click” mouse button 1. All of the
text is highlighted. Note that the all of the text is highlighted regardless of the initial
position of the insert cursor on the line.

« If you want more than one line (or more than one word) of text to be removed, you can
drag the insert cursor to select the desired text. Begin by moving the pointer to the
starting point in the text window and pressing and holding mouse button 1. This
positions the insert cursor at that point. Now drag the insert cursor along the line (or
lines) of text that you want to remove. When you reach the end of the text that you
want removed, release mouse button 1 and that text is highlighted. See figure 7-16.

Another way to do this is by pressing and holding or until the text
you want to delete is highlighted.

« If you want to add text to the current primary selection, move the pointer to the
position in the text that corresponds to the last character you want to add, and press
mouse button 1. You can add text in front of or after the current primary
selection.

Specialized Widgets 7-23

Here is some text entered as a test of th

flis not to be BTN ERRUUIITTNT or
Jlgibberish, gibberish is what generally ¢
4lnot appear to contradict that time-hon

NHere is some more text entered from the

Figure 7-16. Sclecting Text for Removal

Now that you have selected the text to be removed, move the pointer to the “Edit” button
in the MenuBar and press mouse button 1. The menu shown in figure 7-15 appears.
Move the pointer to “Cut” and release mouse button 1. The text you selected disappears.

The source code to accomplish this is taken [rom xmeditor.c. First, in the procedure
MenuCB, which is the callback from PushButtons in the Pulldown menu, the case called
“MENU_CUT” is executed.

case MENU CUT:
{
/* needed to get the event time */
XmAnyCallbackStruct * cb = (XmAnyCallbackStruct *) call_data;

/% call routine to copy selection to clipboard */
CopyFileToClipboard(cbh->event->xbutton. time);

/* call routine to delete primary selection */
DeletePrimarySelection();

)
break;

The procedure CopyFileToClipboard copies the text you selected to the clipboard for
safekeeping, then that text is deleted by the procedure DeletePrimarySelection.
You can “paste” the text that was cut by using the method in the procedure
PasteFromClipboard, which is discussed later in this chapter. Note that if you select
“Clear” from the menu instead of “Cut,” the text is not copied to the clipboard before
being deleted. This means that using “Clear” docs not allow a subsequent paste of the

7-24 Specialized Widgets

deleted text.

The procedure CopyFileToClipboard uses several of the Cut and Paste functions
described in chapter 8. Keep in mind that copying to the clipboard is just a temporary
measure. You can then subsequently use other Cut and Paste functions to retrieve the
data.

*% CopyFileToClipboard

*% Copy the present file to the clipboard.
*/

void CopyFileToClipboard(time)

Time time;

{

char *selected_string XmTextGetSelection (text);

unsigned long item_id = O; /% clipboard item id */
int data_id = 0; /% clipboard data id */
int status = 0; /* clipboard status %/

XmString clip_label;

/* using the clipboard facilities, copy the selected text */
/* to the clipboard */
if (selected string != NULL) ({
clip_label = XmStringCreateLtoR ("XM_EDITOR", charset);
/* start copy to clipboard, and continue till
a successful start copy is made */
status = 0;
while (status != ClipboardSuccess)
status = XmClipboardStartCopy (XtDisplay(text),
XtWindow(text), clip_label, time, text, NULL, &item_id);

/* move the data to the clipboard, and
continue till a successful copy is made */
status = 0;
while (status != ClipboardSuccess)
status = XmClipboardCopy (XtDisplay(text), XtWindow(text),
item_id, "STRING", selected_string,
(long)strlen(selected string)+l, 0, &data_id);

/* end the copy to the clipboard and continue till

a successful end copy is made */
status = 0;

Specialized Widgets 7-25

while (status != ClipboardSuccess)
status = XmClipboardEndCopy (XtDisplay(text), XtWindow(text),
item_id);

/% allow pasting when an item is successfully copied */
/* to the clipboard */
XtSetSensitive(paste_button, True);

}
)

The function XmTextGetSelection is used to sct the variable selected_stringto
point to the primary selection in the Text widget. The primary selection in this case is the
three words that are highlighted in inverse video shown in figure 7-16. Note that the
primary selection always appears in inverse video.

In the code segment shown above the actual copy-to-clipboard process involves three
steps:

1. Prepare the clipboard for copying by executing XmClipboardStartCopy. This
procedure must return a success before copying can occur. The variable
clip_label is set to the string XM_EDITOR to identify the data item for possible
use in a clipboard viewer. The variable item_id specifies is set to an arbitrary
identification number assigned to this data item. This will be used in the calls to
XmClipboardCopy and XmClipboardEndCopy.

2. Copy the data by using XmClipboardCopy. The copying done by this function is
not actually to the clipboard but to a buffer. Copying to the clipboard occurs when
the XmClipboardEndCopy function is exccuted.

3. The XmClipboardEndCopy function locks the clipboard to prevent access by
other applications while performing the copy, copies the data to the clipboard, and
then unlocks the clipboard.

Pasting Text

To paste the text you just removed, move the insert cursor to the position where you want
the text to be inserted. Move the pointer to the “Edit” button in the MenuBar and press
and hold mouse button 1. Move the pointer to “Paste” and release mouse button 1. The
text you deleted is restored (pasted) into the new position. See figure 7-17.

7-26 Specialized Widgets

[|Here is some text entered as a test of th
Jlis not to be or even readable. When o
dlgibberish, gibberish is what generally ¢
JInot appear to contradict that time-hon

Here is some more text entered from the

llinterpreted as intelligent]

Figure 7-17. Pasting Text

The code to accomplish this begins with that part of the procedure MenuCB dealing with a
paste operation.

case MENU_PASTE:

/* call the routine that pastes the
text at the cursor position *
PasteltemFromClipboard();

break;

When you select “Paste” from the menu, PasteItemFromClipboard is called.

/'>'c ...

*% PasteltemFromClipboard

*% paste item from the clipboard to the current

*% cursor location

*/

void PasteltemFromClipboard()

{
/* retrieve the current data from the clipboard
and paste it at the current cursor position */

int status = 0; /* clipboard status */
char *buffer; /* temporary text buffer */
int length; /* length of buffer */
int outlength = 0; /% length of bytes copied */
int private_id = 0; /% id of item on clipboard */
XmTextPosition cursorPos; /* text cursor position */
register int ac; /* arg count */

Specialized Widgets 7-27

}

Arg al[1l0]; /* arg list */

/% find the length of the paste item and
continue till the length is found */
while (status != ClipboardSuccess) {
status = XmClipboardInquireLength(XtDisplay(text), XtWindow(text
"STRING", &length);
if (status == ClipboardNoData) ({
length = 0;
break;
)
}

if (length == 0) {
fprintf(stderr, "Warning: paste failed, no items to paste.\n");
return;

}

/% malloc to necessary space */
buffer = XtMalloc(length);

status = XmClipboardRetrieve (XtDisplay(text), XtWindow(text),
"STRING", buffer, length, &outlength, &private_id);

* Dialogs need to be added to indicate errors in pasting */

if (status != ClipboardSuccess) {

fprintf(stderr, "Warning: paste failed, status = %d\n", status);
return;

)

/* get cursor position for pasting */
XtSetArg(al[0], XmNcursorPosition, &cursorPos);
XtGetValues(text, al, 1);

/* add new text */
XmTextReplace(text, cursorPos, cursorPos, buffer);

The length of the data stored under the format name “STRING” is found by using the
procedure XmClipboardInquireLength. If this procedure is successful, then space is
allocated for that length by XtMalloc and XmClipboardRetrieve is called to retrieve
the text from the clipboard. Then the current cursor position in the Text widget is found
through XtGetValues and the text is actually pasted by the function XmTextReplace

7-28 Spccialized Widgels

Cutting and Pasting Using Secondary Selection

The cut and paste procedure discussed above using the primary selection requires two
steps. You can accomplish the same thing in one step by using the secondary selection
feature of the Text widget. Position the insert cursor at the starting point that you wish the
text be copied to. Move the Pointer to the first character of the text you want to delete and
copy, press and hold mouse button 3, and drag the pointer until you reach the end of
the text you want to delete and copy. Release the key and mouse button 3 and the
text is deleted from its original position and copied to its new position.

Copying Text

To copy text, you move the insert cursor to the starting point of the text you want to copy
and select the text in the same manner as for cutting text. When you have the text
selected, move the pointer to the “Edit” button in the MenuBar and press and hold mouse
button 1. When the menu appears, drag the pointer to “Copy” and release mouse button
1. You won’t see any change in the xmeditor window, but the text has been copied to
the clipboard. In this case, the case called MENU_COPY is executed.

case MENU_COPY:
{
/* needed to get the event time *
XmAnyCallbackStruct * cb = (XmAnyCallbackStruct *) call_data;

/* call routine to copy selection to clipboard */
CopyFileToClipboard(cb->event->xbutton.time);

}

break;

The only difference between this case and MENU__CUT is that the delete procedure
DeletePrimarySelection is not called. The data is copied to the clipboard as before
and can be pasted anywhere in the text.

Copying Text Using Secondary Selection

You can also copy text using the secondary selection method. This is a feature of the Text
widget rather than the xmeditor program. For example, perform the following steps to

copy the words “Here is some more text" from the last line of the visible text to a new line.

1. Move the insert cursor at the point you want the copied text to appear. In this case,
move the pointer to the start of the second line after the last visible line in the Text
window and click mouse button 1. The insert cursor should then appear.

2. Move the pointer (not the insert cursor) to the first position in the last visible line of
text. Press and hold mouse button 3 and drag the pointer along the line of text. The
text is underlined as you drag the pointer. Be careful not to move the pointer up or
down as that will cause other areas of the text to be selected and underlined. You

Specialized Widgets 7-29

can continue to select as long as you hold mouse button 3 down. When you are

satisfied with the text you have selected, release mouse button 3 and the copy is done
automatically,

Figures 7-18 and 7-19 show the secondary selection and the results of the copy action.
Note that the insert cursor is positioned at the end of the newly copied text.

{lHere is some text entered as a test of th
{lis not to be interpreted as intelligent or
Nlgibberish, gibberish is what generally ¢
{|lnot appear to contradict that time-hon

NHere is some more text entered from the

Figure 7-18. Sccondary Selection

IHere is some text entered as a test of th
|lis not to be interpreted as intelligent or
Nlgibberish, gibberish is what generally ¢
dlnot appear to contradict that time-hon

{|Here is some more text entered from th

{|Here is some more text]

Figure 7-19. Secondary Selection Copy Result

7-30 Specialized Widgets

Additional Functionality 8

The OSF/Motif library provides additional functionality that you can use to perform
certain tasks. The following list provides an overview of this functionality. Subsequent
sections of this chapter describe each topic in detail.

e Compound Strings. A compound string is designed to allow any message or text to be
displayed without having to resort to “hard-coding” certain attributes that are language
dependent. The three main attributes involved are direction, character set, and text.
The OSF/Motif library provides a number of functions that allow you to create and
manipulate compound strings.

« Cut and Paste functions. The OSF/Motif library has a “clipboard” that is used to hold
data that is being transferred between applications. It also provides a set of “Cut and
Paste” functions that allow you to modify the type and value of the data.

« Dynamic Resource Defaulting. This feature incorporates a processing function into a
widget’s resource definitions. This function is used to calculate a default resource
value when the widget is created, thus overriding any static default value.

« Keyboard “Grabbing.” Grabbing refers to an action in which an application or window
isolates an input device (the keyboard in this case) from other applications or windows,
thus preventing the other applications or windows from using the device.

o Localization. You can use localized defaults files in the OSF/Motif system by
specifying the location of these files within certain environment variables.
XtInitialize determines the proper path to the localized defaults variables.

o Pixmap Naming and Caching. The OSF/Motif library provides functions that allow
you to associate any image with a unique name. With this association, the functions
can generate pixmaps through references to a .Xdefaults file and through an argument
list for all widgets with pixmap resources.

Resolution Independence. Resolution independence is a feature that allows your
application to create and display images that are the same physical size regardless of
the resolution of the display.

Interacting with the OSF/Motif Window Manager. There are a number of functions
you can use when interacting with the OSF/Motif Window Manager. A sample
program is available that demonstrates how to use some of these functions.

Additional Functionality 8-1

« OSF/Motif Version and Window Manager Presence. There are functions that provide
information on the current version of the OSF/Motif system and whether or not the
OSF/Motif Window manager is running.

8.1 Compound Strings

A compound string is designed to allow any message or text to be displayed without having
to resort to “hard-coding” certain attributes that are language dependent. The three main
attributes involved are character set, direction, and the text of the message. For example,
suppose you have a message to display in English and Arabic. This can easily be done with
a compound string because you specify not only the text of the message, but character-set
and direction as well.

o Character set. The mapping between the string of bytes that make up the text and the
font in which the text will be displayed.

o Direction. The relationship between the logical order (keystroke entry) and the display
order of the characters in a string. In English, the display order is left to right; as
characters are typed, they are displayed from left to right. In Arabic, direction is right
to left; as characters are typed, they are displayed from right to left.

o Text. This is simply the text of the message or string you wish to display.

In addition, you specify a font list from which to select the fonts used to display the
message. The font list contains character set references that are matched with an X font.
To display a compound string, the widget uses the character set specified in the compound
string and searches the font list for a matching character set. Note that the font list is a
widget resource.

The OSF/Motif library provides a set of compound string functions that enable the
creation and manipulation of compound strings and font lists. This chapter discusses the
compound string functions you can use to

e Create compound strings.
¢ Compare and manipulate compound strings.

o Create a font list and font list entries.

8-2 Additional Functionality

8.1.1 Components of a Compound String

A compound string is a stream of data that is made up of “tag-length-value” (TLV)
segments. Each TLV segment represcnts an attribute of the compound string, Within a
TLV segment, the fields are

+ Tag. A one-byte ficld that identifies the type of Value that follows.
« Length. A two-byte field that specifies the length of the data in the Value field.

» Value. The value of the segment. The length of this field is the number of bytes
specified in the Length field.

For example, for a TLV segment that identifies the character set to be used, the Tag field
identifies the segment as a character-set segment, the Length field sets the length of the
segment, and the Value field contains the character-set identifier.

A compound string always begins with a Tag field set to Ox7f and a Length field set to the
length of the segments that follow. Subsequent TLV segments then define the remainder
of the compound string. The Value field of each of the TLV segments contains the
information about the attributes of the compound string. These attributes are described
below.

o A character set identifier. This is a sequence of bytes that identifies the desired
character set. This information is used by the OSF/Motif library to match a font with a
compound string segment. All text between two character set identifiers are
interpreted to be in the first set. It is an error for a text component to precede the first
character set identifier.

The character set identifier has persistence, that is, any specified character set is used
for all subsequent text segments until a new character set is encountered.

There are times when an application must create a string without knowing what
character sets will be available at the time the string is to be displayed. The OSF/Motif
library provides a special character set identifier that will match any available font.

This universal character set is specified by the XmSTRING _DEFAULT_CHARSET
identifier. If this identifier is used as the character set when a compound string is
created, it will match the first font in the fontlist used to display the string, regardless of
the character set associated with that particular font. By using the universal character
set, an application can construct its strings so that they will be displayed in any font
desired by the user, no matter what character set is associated with that font.

The universal character set can also be associated with a font in a font list. When used
with a font, that font will match any string, no matter what the character set of the
string. An application can thus construct a multiple-font fontlist and specify a default
font to be used when no other font is matched.

Additional Functionality 8-3

e A Direction. This can have three values: left-to-right, right-to-left, and revert. Like the
character set identifier, it has persistence. The default direction is left-to-right; that is,
text components preceding the first direction component will be assigned a direction of
left-to-right.

o Text. This is the actual character data. There are no semantics for any bytes.
Specifically this means that characters like \n do not have any meaning. As a
convenience there is a function, “XmStringCreateLtoR,” which does impose this single
semantic.

A separator. This is a tag with no value. It is simply a marker that allows an array of
compound string segments to be presented as a single entity.

The following is a set of useful definitions for compound strings:

typedef unsigned char XmStringDirection /* an enumerated type ¥,
The set of possible values for this type are

XmSTRING_DIRECTION L _TO R

XmSTRING_DIRECTION R_TO L

typedef char * XmStringCharSet /* octet chars, null terminated */
typedef char * XmString /* opaque to users */

typedef unsigned char XmStringComponentType /* component tag types

The set of currently possible values for this type are defined as follows:

#define XmSTRING_COMPONENT UNKNOWN O

j#fdefine XmSTRING_COMPONENT CHARSET 1

#define XmSTRING_COMPONENT TEXT 2

#define XmSTRING_COMPONENT DIRECTION 3

#define XmSTRING_COMPONENT SEPARATOR 4

jfdefine XmSTRING_COMPONENT END 126 /* no more components */
jidefine XmSTRING_COMPONENT RESERVED 127 /* 0-127 reserved for 0S]
ffdefine XmSTRING DEFAULT CHARSET (-1) * The universal character set

8.1.2 Compound String Functions

There are a number of functions associated with compound strings that you can use. The
tables on the following pages list these functions along with a brief description of what
each can do. Subsequent sections describe the functions in more detail. There is a short
sample program at the end of the list of functions that shows how to use some of them.

8-4 Additional Functionality

TABLE 8-1. Compound String Functions

Function Name

Description

XmFontListAdd
XmFontListCreate
XmFontListFree
XmStringBaseline

XmStringByteCompare
XmStringCompare
XmStringConcat
XmStringCopy
XmStringCreate
XmStringCreateLtoR
XmStringDirectionCreate
XmStringDraw
XmStringDrawlmage

XmStringDrawUnderline

XmStringEmpty
XmStringExtent

XmStringFree
XmStringFreeContext
XmStringGetLtoR

XmStringGetNextComponent

Add an entry to an existing fontlist.

Create a new fontlist.

Recover memory used by a fontlist.

Returns the number of pixels between the top of the
character box and the baseline of the first line of text
in the specified compound string,.

Returns True or False as the result of a byte-by-byte
comparison of two specified compound strings.
Returns True if two compound strings have the same
text components, directions, and separators.
Appends one compound string to another.

Returns a copy of the specified compound string.
Creates a compound string.

Creates a compound string in a left-to-right direction.
Creates a compound string with just one component,
the specified direction.

Draws a compound string in an X window.

This function is identical to XmStringDraw except
that it also paints both the foreground and
background bits of each character.

Identical to XmStringDraw except that if the
specified substring is matched in the main string,
then the substring is underlined.

Returns True if all text segments are empty.
Determines the height and width (in pixels) of the
smallest rectangle that will enclose the specified
compound string.

Frees the memory used by a compound string.

Frees a previously established context.

Returns True if a segment can be found in the input
compound string that matches the specified character
set identificr.

Returns the next component.

Additional Functionality 8-5

TABLE 8-1. Compound String Functions (Continued)

Function Name Description
XmStringGetNextSegment Returns the bytes in the next segment.
XmStringHeight Returns the height (in pixels) of the sum of all the

line heights of the specified compound string.
XmStringInitContext Specifies a context used to read the contents of a
compound string segment by segment.
XmStringLength Returns the length of the specified compound string.
XmStringLineCount Returns the number of lines of text in the specified
compound string.
XmStringNConcat Appends a specified number of bytes from one
compound string to another.
XmStringNCopy Returns a copy of a specified portion of a
compound string.
XmStringPeekNextComponent | Returns the type of the next component.
XmStringSegmentCreate Creates a compound string segment.
XmStringSeparatorCreate Creates a compound string with only a separator.
XmStringWidth Returns the width (in pixels) of the longest
sequence of text components in the specified
compound string.

XmFontListAdd
This function adds an entry to an existing font list.

XmFontList XmFontListAdd(oldlist, font, charset)
XmFontList oldlist,
XFontStruct *fon;
XmStringCharSet charsel;

oldlist Specifies a pointer to the font list to which an entry
will be added.

font Specifies a pointer to the font structure to be added
to the list. ’

charset Specifies the character set identifier for the font
being added to the list. This can be
XmSTRING_DEFAULT_ CHARSET.

XmFontListAdd creates a new font list consisting of the contents of ol/dlist and the new

8-6 Additional Functionality

font list element being added. Note that this function de-allocates the oldlist after
extracting the required information; oldlist should not be referenced thereafter. The code
segment below shows you how this function is used.

XmFontList fontlistl, fontlist2;
XmFontStruct *fontl, *font2;

fontlistl = XmFontListCreate(fontl, "chsetl”);
fontlist2 = XmFontListAdd(fontlistl, font2, "chset2");

The variables “chsetl” and “chset2” are sct in an apps-default file. This is shown in the
sample program at the end of this section.

XmFontListCreate
This function creates a new font list. Sce the code segment above for an example of how
to use this function.

XmFontList XmFontListCreate(font, charset)
XFontStruct *font
XmStringCharSet charset;

font Specifies a pointer to a font structure for which the new font list is
generated.
charset Specifies the character set identifier for the font. This can be

XmSTRING_DEFAULT CHARSET.

The function XmFontListCreate creates a new font list with a single element specified
by the provided font and character sct. It also allocates the space for the font list.

XmFontListFree
This function frees the memory used by a font list.

void XmFontListFree (/ist)
XmFontList list;

list Specifies the font list to be {reed.

Additional Functionality 8-7

XmStringBaseline
This function returns the number of pixels between the top of the character box and the
baseline of the first line of text in the specified compound string,

Dimension XmStringBaseline (fontlist, string)
XmFontList fontlist;
XmString string

XmStringByteCompare
This function determines whether or not two compound strings are identical.

Boolean XmStringByteCompare (s],s2)
XmStringsl, s2;

This function returns True if the comparison shows the two specified compound strings to
be identical and False if they are not.

It is important to note that when a compound string is placed in a widget it is converted
into an internal form to allow faster processing. Part of the conversion process strips out
unnecessary or redundant information. The result is that if an application subsequently
executes a call to XtGetValues to retrieve a compound string from a widget (specifically
XmLabel and all of its subclasses), no guarantee can be made that the compound string
returned will be the same byte-for-byte as the original string in the widget.

XmStringCompare
This function determines whether or not two compound strings are "semantically" (but not
necessarily byte-for-byte) cquivalent.

Boolean XmStringCompare (s/, s2)
XmStringsl, s2;

This function returns True if the two compound strings are semantically equivalent and
False otherwise. “Semantically equivalent” means that the strings have the same text
components, directions, and separators. If character sets are specified, they must be equal
as well. .

XmStringConcat
This function appends a copy of one compound string to another compound string,

XmString XmStringConcat (s/, s2)
XmStringsl, s2;

XmStringConcat appends s2 to the end of s7 and returns the resulting compound string.
The original strings are preserved. The space for the resulting compound string is

8-8 Additional Functionality

allocated within the function. After using this function, you should free this space by
calling XtFree.

XmStringCopy
This function creates a copy of a compound string.

XmString XmStringCopy (sl)
XmStringsl;

This function returns a copy of s1. The space for the resulting compound string is
allocated within the function. The application is responsible for managing the the
allocated space. The memory can be recovered by calling XtFree.

XmStringCreate
This function creates a compound string.

XmString XmStringCreate (lext, charset)
char *fext;
XmStringChaxSet charset;

text Specifies a pointer to a null terminated string.

charset Specifies the character set identifier to be associated with the

given text. This can be XmSTRING_DEFAULT _CHARSET.

This function creates a compound string with two components: a character set and text.

XmStringCreateltoR
This function creates a compound string with a default direction of left-to-right.

XmString XmStringCreateLtoR (lext, charset)
char *text;
XmStringCharSet charset;

text Specifies a pointer to a null terminated string.

charset Specifies the character set identifier to be associated with the
given text. This can be XmSTRING_DEFAULT_CHARSET.

This function is similar to XmStringCreate except that it scans the text for newline
characters in the text. When one is found, the text up to that point is put into a segment
followed by a separator component. No final scparator component is appended to the end
of the compound string. The direction is defaulted to left-to-right. Finally, note that this
function assumes that the encoding is single octet rather than double orquadruple octet

Additional Functionality 8-9

per character of text.

XmStringDirectionCreate
This function creates a compound string with a single component, a direction with the
specified value.

XmString XmStringDirectionCreate (direction)
XmStringDirection direction;

direction Specifies the value of the directional component.

XmStringDraw
This function is used to draw a compound string in an X window.

void XmStringDraw (d, w, fontlist, string gc, x, y, width, alignment, layout_direction, clip);
Display *d;
Window w;
XmFontList fontlist;
XmString string
GC gc;
Positionuxy;
Dimension width;
Byte alignment;
Byte layout direction;
XRectangle *clip;

The x and y parameters identify the top left coordinate of the rectangle that contains the
displayed compound string. The layout_direction parameter controls the direction in which
the segments of the compound string are laid out. It also is used to determine the meaning
of the alignment parameter. The c/ip parameter allows the application to restrict the area
into which the compound string will be drawn. If it is NULL, no clipping is done.

XmStringDrawimage
This function is identical to XmS tringDraw except that it paints both the foreground and
background bits of each character (cquivalent to XDrawImageString).

void XmStringDrawlmage (d, w, fontlist, string gc, x, y, width,
alignment, layout_direction, clip);
Display *d;
Window w;
XmFontList fontlist;
XmString string
GC gc;
Positionuxy;

8-10 Additional Functionality

Dimension width;
Byte alignment;
Byte layout_direction;
XRectangle *clip;

XmStringDrawUnderline

This function is equivalent to XmS tringDraw with the addition that if the substring
identified by underline can be matched in string, then the substring will be underlined.
Once a match has occurred no further matches or underlining will be done.

void XmStringDrawUnderline (disp, d, fontlist, string, gc, x, y, widlth,
alignment, layout_direction, clip, underline);
Display *“disp;
Drawable d;
XmFontList fontlist;
XmString string;
GC gc;
Positionuxy;
Dimension width;
Byte alignment;
Byte layout_direction;
XRectangle *clip;
XmString underline;

XmStringEmpty
This function determines whether or not a compound string is empty.

Boolean XmStringEmpty (s])
XmStringsl;

This function returns True or False depending on whether or not any non-zero text
components exist in the provided compound string. It returns True if all text segments are
empty or if the specified string parameter is NULL, and False otherwise.

XmStringExtent
This function determines the width and height (in pixels) of the smallest rectangle that will
enclose the specified compound string,

void XmStringExtent (fontlist, string width, height)
XmFontList fontlist;
XmString string
Dimension *width, *height;

Additional Functionality 8-11

XmStringFree
This function frees the memory used by a compound string,.

void XmStringFree (string)
XmString string

string Specifies the compound string to be freed.

XmStringFreeContext
This function instructs the intrinsics that the context is no longer needed and will not be
used without reinitialization.

void XmStringFreeContext (context)
XmStringContext context;

XmStringGetLtoR
This function returns True if a segment can be found in the input compound string that
matches the given character set identificr.

Boolean XmStringGetLtoR (string charset, text)
XmString string
XmStringCharSet charset;
char **text;
On return, text will have a null-terminated octet sequence containing the matched segment.

XmStringGetNextComponent
This function returns the type and value of the next component in the compound string
identified by the specificd context.

XmStringComponentType XmStringGetNextComponent (context,
text, charset, direction, unknown_tag, unknown_length, unknown_value)
XmStringContext *context;
char **text;

XmStringCharSet *charset;
XmStringDirection *direction;
XmStringComponentType *unknown _tag
short *unknown_length

char **unknown_value;

This is a low-level component fetch function. Components are returned one at a time.
Only some output parameters will be valid on return, and this can be determined by
examining the return status. In the case of text, charset, or direction components, only one
output parameter is valid. If the return status indicates that an unknown component was
encountered, the tag, length and value are returned. This function will allocate the space
necessary to hold returned values; frecing this space is the caller’s responsibility.

8-12 Additional Functionality

XmStringGetNextSegment
This function returns the bytes in the next segment of the specified compound string.

Boolean XmStringGetNextSegment (context, text, charsei, direction, separator)
XmStringContext *confext;
char **text;
XmStringCharSet *charset;
XmStringDirection *direction;
Boolean *separator;

The text, character set, and direction of the fetched segment are returned. The separator
parameter indicates whether or not the next component of the compound string is a
separator. True or False is returned to indicate whether or not a valid segment was
successfully parsed.

XmStringHeight
This function returns the height in pixels of the sum of all the line heights of the given
compound string.

Dimension XmStringHeight (fontlist, string)
XmFontList fontlist;
XmString string

Separator components delimit lines.

XmStringlnitContext
This function establishes the context for a subsequent segment-by-segment read of the
specified compound string.
Boolean XmStringlInitContext (context, string)
XmStringContext *context;
XmStrin g string;

In order to allow applications to read the contents of a compound string segment-by-
segment some "context” necds to be maintained. This function establishes the context for
such a read. A True or False value is returned to indicate whether or not the input string
was able to be parsed.

XmStringlLength
This function obtains the length of a compound string.

int XmStringLength (s7)
XmStringsl;

This function returns the number of bytes in s1, including the string header (0x7£) and all
tags, direction indicators, and separators. Zero is returned if the compound string has an

Additional Functionality 8-13

invalid structure.

XmStringLineCount
This function returns the number of lines of text in the specified compound string.
int XmStringLineCount (string)

XmString string

XmStringNConcat
This function appends a specified number of bytes from one compound string to another.

XmString XmStringNConcat (s1, s2, num_bytes)
XmStringsl, s2;
int num_bytes;

XmStringNConcat appends nwm_bytes bytes from s2 to 51, including tags, directional
indicators, and separators. It then returns the resulting compound string. If num_bytes is
less than the length of 52, the resulting string will not be a valid compound string the
original strings are preserved. The space for the resulting compound string is allocated
within the function. The application is responsible for managing the allocated space. The
memory can be recovered by calling XtFree.

XmStringNCopy

This function copies a specified portion of a given compound string,

XmStringNCopy (s, mun_bytes)
XmStringsl;
int num_bytes;

This function creates a copy of s7 which contains num_bytes bytes from s1, including tags,
directional indicators, and separators. It then returns the resulting copy. If num_bytes is
less than the length of s1, the resulting string will not be a valid compound string and the
original string is preserved. For this reason, you should normally use XmStringCopy.
The space for the resulting compound string is allocated within the function. The
application is responsible for managing the allocated space. The memory can be recovered
by calling XtFree.

XmStringPeekNextComponent
This function examincs the next component that would be fetched by

XmStringGetNextComponent and returns the component type.

XmStringComponentType XmStringPeekNextComponent (context)
XmStringContext *context;

8-14 Additional Functionality

XmStringSegmentCreate

This is a high-level function that assembles a compound string consisting of a character set
identifier, a direction component, a text component, and, optionally, a separator
component. If separator is False, then the compound string does not have a separator
component at the end. If it is True, the compound string has a separator component
immediately following the text component.

XmString XmStringSegmentCreate (text, charset, direction, separator)
char *text;
XmStringCharSet charset;
XmStringDirection direction;
Boolean separator;

text Specifies a pointer to a null-terminated string.

charset Specifies the character set identifier to be associated with
the text. This can be XmSTRING_DEFAULT CHARSET.

direction Specifies the direction of the text.

separator Specifies if a separator should be added to the compound string segment being
constructed.

XmStringSeparatorCreate
This function creates a compound string with a single component, a separator.

XmString XmStringSeparatorCreate (separator)
Boolean separator;

XmStringWidth

This function returns the width in pixels of the longest sequence of text components in the
provided compound string. Separator components are used to delimit sequences of text
components.

Dimension XmStringWidth (fontlist, string)
XmFontList fontlist;
XmString string;

Additional Functionality 8-15

8.1.3 A Sample Program

The sample program shown below illustratecs how you can use the compound string
functions in applications. This program creates a PushButton, the label for which is “Hello
World.” Each word in the label appears in a different font as specified in the apps-defaults
file for the program.

Program Listing

#include <X11/X1lib.h>
f#finclude <Xt/Intrinsic.h>
#include <Xt/Shell.h>
#include <Xm/Xm.h>
#include <Xm/PushB.h>

Widget toplevel,pbutton;
Arg myArgs([10];

void main(arge, argv)

{

unsigned int argc;
char **argv;

int i;

XmString sl,s2,string,ButtonText;
char *wordl="Hello ",*word2="World";
char *appname = "labO";

char *appclass = "LABO";

toplevel = XtlInitialize(appname, appclass, NULL, NULL, &argc, arg

sl=XmStringSegmentCreate(wordl, "chsetl", XmSTRING_DIRECTION_L T(
False);

s2=XmStringSegmentCreate(word2, "chset2", XmSTRING_DIRECTION_L T¢(
True) ;

string=XmStringConcat(sl,s2);

i=0;

XtSetArg(myArgs[i], XmNlabelString, string); i++;
pbutton = XmCreatePushButton(toplevel, "x01l" ,myArgs,i);
XtManageChild(pbutton);

XtRealizeWidget(toplevel);

XtMainLoop();

8-16 . Additional Functionality

Defaults File

!

! Apps default file LABO for compound string function sample program
!

!

*foreground: Yellow

*background: SlateBlue

*FontList: hp8.8xl6b=chsetl, hp8.8xlé=chset?2

Note that fontlists can be specified in a defaults file by setting the fontlist resource to a
string of the form fontname = character set. The widget will build a fontlist
consisting of the specified font and character set. If the character set is omitted, the
character set will default to XmSTRING_DEFAULT_CHARSET.

Strings can be specified by setting the string resource to the desired text. For example,
oklabel.labelString: OK sets a label’s text to “OK.” Specifying a string in a
defaults file is the same as creating the string using XmStringCreateLtoR with the
default character set XmSTRING_DEFAULT CHARSET.

8.2 Cut and Paste Functions

The OSF/Motif clipboard is used to hold data that is to be transferred between
applications. The OSF/Motif library provides the functions necessary to modify the type
and value of the data that is to be transferred via the clipboard. These functions are
known as “cut and paste” functions. An application can interface to the OSF/Motif
clipboard through calls to the cut and paste functions.

A brief description of each function is listed in table 8-2. Detailed information on each
function is presented in the sections that follow.

Additional Functionality 8-17

TABLE 8-2. Cut and Paste Functions

Function Name

Description

XmClipboardStartCopy

XmClipboardCopy
XmClipboardCopyByName
XmClipboardCancelCopy
XmClipboardUndoCopy
XmClipboardEndCopy

Set up storage and.data structures for
clipboard copying,.

Copy a data item to the clipboard.

Copy a data item passed by name.

Cancel a copy to clipboard.

Delete the last item placed on the clipboard.
Ends copy to clipboard.

XmClipboardInquireCount
XmClipboardInquireFormat
XmClipboardInquireLength
XmClipboardInquirePendinglItems

Return the number of data item formats.
Return a specified format name.

Return the length of the stored data.
Return a list of data id/private id pairs.

XmClipboardStartRetrieve
XmClipboardRetrieve
XmClipboardEndRetrieve

Start copy from clipboard.
Retrieve a data item from the clipboard.
Ends copy from clipboard.

XmClipboardLock
XmClipboardRegisterFormat
XmClipboardUnlock
XmClipboardWithdrawFormat

Lock the clipboard.

Registers a new format.

Unlock the clipboard.

Indicates the application no longer wants to
supply a data item.

8.2.1 Clipboard Copy Functions

XmClipboardStartCopy

This function sets up storage and data structures to receive clipboard data.

int XmClipboardStartCopy (display, window, clip_label, timestamp , widget ,

callback , item_id)
Display *display;
Window window ;
XmString clip_label ;
Time timestamp;
Widget widget ;
VoidProc callback ;
long *item _id;

display

Specifies a pointer to the Display structure that was returned in a

previous call to XOpenDisplay or XtInitialize.

8-18 Additional Functionality

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

clip_label Specifies the label to be associated with the data item. This argument is
used to identify the data item, for example, in a clipboard viewer. An
example of a label is the name of the application that places the data in
the clipboard.

timestamp The time of the cvent that triggered the copy.

widget Specifies the ID of the widget that will receive messages requesting data
previously passed by name. This argument must be present in order to
pass data by name. Any valid widget ID in your application can be used
for this purpose and all the message handling is taken care of by the cut
and paste functions.

callback Specifies the address of the callback function that is called when the
clipboard needs data that was originally passed by name. This is also the
callback to receive the DELETE message for items that were originally
passed by name. This argument must be present in order to pass data by
name.

item_id Specifies the number assigned to this data item. The application uses this
number in calls to XmClipboardCopy, XmClipboardEndCopy, and
XmClipboardCancelCopy.

The XmClipboardStartCopy function scts up storage and data structures to receive
clipboard data. An application calls XmClipboardStartCopy during a cut or copy
operation. The data item that these structures receive then becomes the next-paste item in
the clipboard.

Copying a large picce of data to the clipboard can take time. It is possible that, once
copied, no application will ever request that data. The OSF/Motif library provides a
mechanism so that an application does not need to actually pass data to the clipboard until
the data has been requested by some application. Instead, the application passes format
and length information in XmClipboardCopy to the clipboard functions, along with a
widget ID and a callback function address that is passed in XmClipboardStartCopy..
The widget ID is needed for communications between the clipboard functions in the
application that owns the data and the clipboard functions in the application that requests
the data. Your callback functions are responsible for copying the actual data to the
clipboard (via XmClipboardCopyByName). The callback function is also called if the
data item is removed from the clipboard, and the actual data is therefore no longer
needed.

Additional Functionality 8-19

For more information on passing data by name, see XmClipboardCopy, and
XmClipboardCopyByName.

The widget and callback arguments must be present in order to pass data by name. The
callback format is as follows:

function name (widget, data_id, private, reason)
Widget *widget;
int *data_id;
int “*private ;
int *reason ;

widget Specifies the ID of the widget passed to XmClipboardStartCopy.

data_id Specifies the identifying number returned by XmClipboardCopy, which
identifies the pass-by-name data.

private Specifies the private information passed to XmClipboardCopy.

reason Specifics the reason, which is either XmCRCLIPBOARD DATA_DELETE

or XmCRCLIPBOARD DATA REQUEST.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

XmClipboardCopy
This function copies a data item to temporary clipboard storage.

int XmClipboardCopy (display, window, item _id, format_name , buffer, length,
private_id , data_id)

Display *display ;

Window window ;

longitem id;

char *format name

char *buffer;

unsigned longlength;

int private_id

int +*data_id;

8-20 Additional Functionality

display

window

item_id
format_name
buffer

length

private_id

data_id

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

Specifies the number assigned to this data item. This number was
returned by a previous call to XmClipboardStartCopy.

Specifies the name of the format in which the data item is stored on the
clipboard. Format is referred to as “target” in the Inter-Client
Communication Conventions manual.

Specifies the buffer from which the clipboard copies the data.
Specifies the length of the data being copied to the clipboard.

Specifies the private data that the application wants to store with the data
item.

Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This argument is required only
for data that is passed by name.

The XmClipboardCopy function copics a data item to temporary clipboard storage.

The data item is moved from temporary storage to the clipboard data structure when a call
to XmClipboardEndCopy is made. Additional calls to XmClipboardCopy before a
call to XmClipboardEndCopy add additional data item formats to the same data item or
append data to an existing format.

If the buffer argument is NULL, the data is considered passed by name. If data passed by
name is later needed by another application, the application that owns the data receives a
callback with a request for the data. The application that owns the data must then transfer
the data to the clipboard with the XmClipboardCopyByName function. When a data
item that was passed by name is deleted from the clipboard, the application that owns the
data receives a callback that states that the data is no longer needed.

For information on the callback function, sec the callback argument description for
XmClipboardStartCopy.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

Additional Functionality 8-21

ClipboardLocked The function failed because the clipboard was locked by

another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

XmClipboardCopybyName
This function copies a data item to the clipboard.

int XmClipboardCopyByName (display, window , data_id, buffer, length ,

private_id)

Display *display;
Window window ;

int data _id;

char *buffer;
unsigned longlength ;
int private_id ;

display

window

data_id

buffer
length

private_id

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This number was assigned by
XmClipboardCopy to the data item.

Specifies the buffer from which the clipboard copies the data.
Specifies the number of bytes in the data item.

Specifics the private data that the application wants to store with the data
item.

The XmClipboardCopyByName function copies the actual data for a data item that was
previously passed by name to the clipboard. Data is considered to be passed by name
when a call to XmClipboardCopy is made with the buffer parameter is set to NULL.
Additional calls to XmClipboardCopyByName append new data to the existing data.
The clipboard should be locked before making such calls by using XmClipboardLock
to insure the integrity of the clipboard data.

This function can return one of the following status return constants:

8-22 Additional Functionality

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

XmClipboardCancelCopy
This function cancels any copy to the clipboard that is in progress and frees any temporary
storage in use.

void XmClipboardCancelCopy (display, window, item id)
Display *display;
Window window ;
longitem_id ;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call to XmClipboardStartCopy.

The XmClipboardCancelCopy function cancels any copy-to-clipboard that is in
progress and frees any temporary storage in use. When a copy is performed,
XmClipboardStartCopy allocates temporary storage for the clipboard data.
XmClipboardCopy places the data in the temporary storage. XmClipboardEndCopy
copies the data to the clipboard data structurc and frees the temporary data storage.

XmClipboardCancelCopy also frees up temporary storage. If
XmClipboardCancelCopy is called, then XmClipboardEndCopy does not have to be
called. A call to XmClipboardCancelCopy is valid only after a call to
XmClipboardStartCopy and before a call to XmClipboardEndCopy.

Additional Functionality 8-23

XmClipboardUndoCopy
This function deletes the last item placed on the clipboard.

int XmClipboardUndoCopy (display, window)
Display *display;
Window window ;

display Specifics a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

The XmClipboardUndoCopy function deletes the last item placed on the clipboard if
the item was placed there by an application with the passed display and window arguments.
Any data item deleted from the clipboard by the original call to XmClipboardCopy is
restored. If the display or window IDs do not match the last copied item, no action is
taken and this function has no effect.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
opcration.

XmClipboardEndCopy
This function has several uses: to lock the clipboard, to place data in the clipboard data
structure, and to unlock the clipboard.

int XmClipboardEndCopy (display, window, item_id)
Display *display;
Window window ;
longitem id

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specilies the window 1D that relates the application window to the
clipboard. The same application instance should pass the same window

8-24 Additional Functionality

ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

item_id Specifies the number assigned to this data item. This number was
returned by a previous call to XmClipboardStartCopy.

The XmClipboardEndCopy function locks the clipboard from access by other
applications, places data in the clipboard data structure, and unlocks the clipboard. Data
items copied to the clipboard by XmClipboardCopy are not actually entered in the
clipboard data structure until the call to XmClipboardEndCopy. It also frees the
temporary storage that was allocated by XmClipboardStartCopy.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
il the user wants o keep trying or to give up on the
operation.

8.2.2 Clipboard Inquire Functions

XmClipboardinquireCount
This function returns the maximum length for all data item formats.

int XmClipboardInquireCount (display, window, count,
max_format_name_length)

Display *display;

Window window;

int *count;

int *max_format_name_length;

display Specifies a pointer to the Display structure that was
returned in a previous call to XOpenDisplay or
XtInitialize.

window Specifies the window ID that relates the application

window to the clipboard. The same application instance
should pass the same window ID to each of the
clipboard functions that it calls. Note that this window
must be associated with a widget.

Additional Functionality 8-25

count Returns the number of data item formats available for
the next-paste item in the clipboard. If no formats are
available, this argument equals zero. The count includes
the formats that were passed by name.

max_format_name_length Specifies the maximum length of all format names for
the next-paste item in the clipboard.

The XmClipboardInquireCount function returns the number of data item formats
available for the next-paste item in the clipboard. This function also returns the maximum
name Iength for all formats in which the next-paste item is stored.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

ClipBoardNoData The function could not find data on the clipboard that
corresponds to the format requested. This could occur
because the clipboard is empty, there is no data on the
clipboard in the format requested, or the data requested
was passcd by name and is no longer available.

XmClipboardinquireFormat
This function obtains the format name for the next paste data item in the clipboard.

int XmClipboardInquireFormat (display, window, index, format_name_buf,
buffer len, copied_len)

Display *display;

Window window ;

int index;

char *format name_buf,

unsigned long buffer len;

unsigned long *copied len;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

8-26 Additional Functionality

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

index Specifies which of the ordered format names to be obtained. If this index
i is greater than the number of formats for the data item,
XmClipboardInquireFormat returns a zero in the copied _len
argument.

format_name_buf Specifies the bulfer that receives the format name.
buffer len Specifies the number of bytes in the format name buffer.

copied_len Specifies the number of bytes in the string copied to the buffer. If this
argument equals zero, there is no nth format for the next-paste item.

The XmClipboardInquireFormat function returns a specified format name for the
next-paste item in the clipboard. If the name must be truncated, the function returns a
warning status. This function can rcturn one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

ClipboardTruncate The data rcturned is truncated because the user did not
provide a buffer that was large enough to hold the data.

ClipBoardNoData The function could not find data on the clipboard that
corresponds to the format requested. This could occur
because the clipboard is empty, there is no data on the
clipboard in the format requested, or the data requested
was passcd by name and is no longer available.

Additional Functionality 8-27

XmClipboardinquireLength
This function obtains the length of the data stored under a specified format.

int XmClipboardInquireLength (display, window, format name, length)
Display *display;
Window window ;
char *format_name
unsigned long *length;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that rclates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

format name Specifies the name of the format for the next-paste item.

length Specifies the length of the next data item in the specified format. This
argument equals zero if no data is found for the specified format, or if
there is no item on the clipboard.

The XmClipboardInquireLength function rcturns the length of the data stored
under a specified format name for the clipboard data item. This is accomplished by
passing a pointer to the length in the length parameter in the function.

If no data is found for the specified format, or if there is no item on the clipboard,
XmClipboardInquireLength rcturns a valuc of zero.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The [unction failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

8-28 Additional Functionality

ClipBoardNoData The function could not find data on the clipboard that

corresponds to the format requested. This could occur
because the clipboard is empty, there is no data on the
clipboard in the format requested, or the data requested
was passed by name and is no longer available.

XmClipboardinquirePendingltems
This function obtains a format name’s list of data id or private id pairs.

int XmClipboardInquirePendingltems (display, window, format_name,

item_list, count)

Display *display;

Window window ;

char *format_name ;
XmClipboardPendinglList *ifem list;
unsigned long *count;

display

window

format_name

item_list

item_count

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

Specifies a string that contains the name of the format for which the list
of data id/private id pairs is to be obtained.

Specifies the address of the array of data id/private id pairs for the
specified format name. This argument is a type
XmClipboardPendingList. The application is responsible for
freeing the memory provided by this function for storing the list.

Specilies the number of items returned in the list. If there is no data for
the specified format name, or if there is no item on the clipboard, this
argument equals zcro.

The XmClipboardInquirePendingIltems [unction returns a list of data id /private id
pairs for a specified format name. For the purposes of this function, a data item is
considered pending if the application originally passed it by name, the application has not
yet copied the data, and the item has not been deleted from the clipboard.

The application is responsible for frecing the memory provided by this function to store

the list.

This function is used by an application when exiting to determine if the data that it passed
by name should be sent to the clipboard.

Additional Functionality 8-29

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

8.2.3 Clipboard Retrieve Functions

XmClipboardStartRetrieve
This function begins copying data incrementally from the clipboard.

int XmClipboardStartRetrieve (display, window, timestamp);
Display *display;
Window window,
Time timestamp;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

timestamp The time of the event that triggered the copy.

This routine tells the cut and paste routines that the application is ready to start copying an
item from the clipboard. The clipboard will be locked by this routine and will stay locked
until XmClipboardEndRetrieve is called. Between an
XmClipboardStartRetrieve and an XmClipboardEndRetrieve, multiple calls
to XmClipboardRetrieve with the same format name will result in data being
incrementally copied from the clipboard until the data in that format has all been copied.
The return value ClipboardTruncate from calls to XmClipboardRetrieve
indicates that more data remains to be copied in the given format. It is recommended that
any calls to the “inquire” functions that the application needs to make to effect the copy
from the clipboard be made between the call to XmClipboardStartRetrieve and the
first call to XmClipboardRetrieve. That way, the application does not need to call
XmClipboardLock and XmClipboardUnlock. Applications do not need to use
XmClipboardStartRetrieve and XmClipboardEndRetrieve, in which case
XmClipboardRetrieve works as it did before.

8-30 Additional Functionality

XmClipboardRetrieve
This function obtains the current next paste data item from clipboard storage.

int XmClipboardRetrieve (display, window, format_name, buffer, length,
num_bytes , private_id)

Display *display;

Window window ;

char *format name ;

char *buffer;

unsigned longlength

unsigned long *mtm_bytes ;

int *private_id;
display Specifies a pointer to the Display structure that was returned in a

previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
"~ clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

format_name Specifies the name of a format in which the data is stored on the

clipboard.
buffer Specifies the buffer to which the application wants the clipboard to copy
the data.
length Specifies the length of the application buffer.
num_bytes Specifies the number of bytes of data copied into the application buffer.
private_id Specifies the private data storcd with the data item by the application that

placed the data item on the clipboard. If the application did not store
private data with the data item, this argument returns zero.

The XmClipboardRetrieve function retrieves the current data item from clipboard
storage.

XmClipboardRetrieve returns a warning under the following circumstances:
« The data needs to be truncated because the buffer length is too short.
« The clipboard is locked.
« There is no data on the clipboard.

This function returns one of the following status return constants:

Additional Functionality 8-31

ClipboardSuccess The [unction is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

ClipboardTruncate The data returned is truncated because the user did not
provide a buffer that was large enough to hold the data.

ClipboardNoData The function could not find data on the clipboard
corresponding to the format requested. This could occur
because (1) the clipboard is empty; (2) there is data on the
clipboard but not in the requested format; and (3) the data
in the requested format was passed by name and is no
longer available.

XmClipboardEndRetrieve
This function suspends copying data incrementally from the clipboard.

int XmClipboardEndRetrieve (display, window);
Display *display;
Window window;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that rclates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

XmClipboardEndRetrieve tells the cut and paste routines the application is through
copying an item to the clipboard. Until XmClipboardEndRetrieve is called, data
items can be retrieved incrementally from the clipboard by calling
XmClipboardRetrieve. If the application calls XmClipboardStartRetrieve, it
has to call XmClipboardEndRetrieve, If data is not being copied incrementally,
XmClipboardStartRetrieve and XmClipboardEndRetrieve do not need to be
called. ;

8-32 Additional Functionality

8.2.4 Miscellaneous Clipboard Functions

XmClipboardLock
This function locks the clipboard from access by other applications.

int XmClipboardLock (display, window)
Display *display;
Window window ;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls.

The XmClipboardLock function locks the clipboard from access by another application
until you call XmClipboardUnlock. All clipboard functions lock and unlock the
clipboard to prevent simultaneous access. The XmClipboardLock and
XmClipboardUnlock functions allow the application to keep the clipboard data from
changing between calls to the inquire functions and other clipboard functions. The
application does not need to lock the clipboard between calls to
XmClipboardStartCopy and XmClipboardEndCopy, but it should do so before
multiple calls to XmClipboardCopyByName.

If the clipboard is already locked by another application, XmClipboardLock returns an
error status.

Multiple calls to XmClipboardLock by the same application increase the lock level.

This function can return one of the following status rcturn constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

Additional Functionality 8-33

XmClipboardRegisterFormat
This function registers a new format.

int ClipboardRegisterFormat (display, format_name, format_length)
Display *display;
char *format_name;
unsigned long format length;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

format_name Specifies the string name for the new format.
format length Specifies the format length in bits (8, 16, or 32).

Each format stored on the clipboard should have a length associated with it and known to
the cut and paste routines. All of the formats specified by the Inter-Client Communication
Conventions manual are pre-registered (formats are referred to as “targets” in the
ICCCM). Any other format that the application wants to use must be registered via this
routine. Failure to register the length of the data will result in applications not being
compatible across platforms having different byte swapping orders.

XmClipboardUnlock
This function unlocks the clipboard.

int XmClipboardUnlock (display, window, remove_all_locks)
Display *display;
Window window ;
Boolean remove_all locks ;

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window 1D that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

remove_all_locks Specifies a boolean value that, when True, indicates that all nested locks
should be removed. If False, indicates that only one level of lock should
be removed.

The XmClipboardUnlock function unlocks the clipboard, enabling it to be accessed by
other applications.

If multiple calls to XmClipboardLock have occurred, then the same number of calls to
XmClipboardUnlock is necessary to unlock the clipboard, unless the remove_all_locks
argument is True.

8-34 Additional Functionality

The application should lock the clipboard before making multiple calls to
XmClipboardCopyByName and should unlock the clipboard after completion.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

XmClipboardWithdrawFormat
This function indicates that the application is no longer willing to supply a data item to the
clipboard.

int XmClipboardWithdrawFormat (display, window, data_id)
Display *display;
Window window ;
intdata_id,
display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtInitialize.

window Specifies the window ID that relates the application window to the
clipboard. The same application instance should pass the same window
ID to each of the clipboard functions that it calls. Note that this window
must be associated with a widget.

data _id Specifies an identifying number assigned to the data item that uniquely
identifies the data item and the format. This was assigned to the item
when it was originally passed by XmClipboardCopy.

The XmClipboardWithdrawFormat function indicates that the application will no
longer supply a data item to the clipboard that the application had previously passed by
name.

This function can return one of the following status return constants:

ClipboardSuccess The function is successful.

Additional Functionality 8-35

ClipboardLocked The function failed because the clipboard was locked by
another application. The application can continue to call
the function again with the same parameters until the lock
goes away. This gives the application the opportunity to ask
if the user wants to keep trying or to give up on the
operation.

8.3 Dynamic Resource Defaulting

Dynamic resource defaulting is a mechanism that incorporates a processing function into a
widget’s resource definitions. The widget can use this mechanism to calculate a default
resource value when it (the widget) is created, instead of having the resource default be
static. The widget set uses this capability to determine much of its visual resource defaults
at run time. This allows the widget to make more sensible choices for color and pixmap
defaults.

Al of the color resources and pixmap resources that represent visual data are dynamically
defaulted. This includes the resources XmNforeground, XmNbackground,
XmNbackgroundPixmap, XmNtopShadowColor, XmNtopShadowPixmap,
XmNbottomShadowColor, XmNbottomShadowPixmap, XmNhighlightColor,
and XmNhighlightPixmap.

Color and pixmap data are sct as shown below.
e Set to black and white if a monochrome system is used.
» If a color system is used:
e A “default” color scheme, or
e A color scheme based on the background resource, XmNbackground.

Part of the design for the widget set and window manager includes an algorithmic
approach for generating color schemes. This means that by specifying the background
color, the foreground and two shadowing colors are calculated.

8-36 Additional Functionality

8.4 Key/Keyboard Grabbing

The OSF/Motif library provides several routines for redirecting keyboard events within a
widget hierarchy. These routines are front-ends to the Xlib routines that provide
key/keyboard grabbing,

The client should use these routines rather than the raw Xlib routines so that the intrinsics
can be aware of grabs and process them in correct priority relative to the intrinsics focus
and modal cascade management. Grabs will have priority over the focus redirection but
will be overridden by the modal cascade in the case of contention.

8.4.1 Passive Grabs

XtGrabKey and XtUngrabKey allow the client to redirect the specified keyevent (as
described by keysym modifiers) to the root widget of a hierarchy. The root widget is the
widget parameter to the XtGrabKey call and all keyevents that would have been
dispatched to other subwindows will get dispatched to it. Note that the use of
owner_events = True is not meaningful for XtGrabKey since all widgets in the
hierarchy belong to the grabbing client. In addition, the pointer_mode and
keyboard_mode fields are currently forced to GrabModeAsync in order to avoid
deadlock conditions.

void XtGrabKey (widget, keysym, modifiers, owner_events, pointer_mode, keyboard_mode)
Widget widget;
Keycode keycode;
unsigned int modifiers;
Boolean owner_events;
int pointer_mode;
int keyboard_mode;

XtGrabkey establishes a passive grab on the specificd keys, such that when the specified
key/modifier combination is presscd, the keyboard is grabbed. If owner events is false,
then all key events will be dispatched to the grab widget.

void XtUngrabKey (widget, keysym, modifiers)
Widget widget;
Keycode keycode;
unsigned int modifiers;

XtUngrabKey cancels the passive grab on the key combination on the specified widget. A
modifier of AnyModifier is equivalent to issuing the request for all possible modifier
combinations. A keysym of AnyKey is cquivalent to issuing the request for all possible
non-modificr key codes. This call has no cffect on an active grab.

Additional Functionality 8-37

8.4.2 Active Grabs

int XtGrabKeyboard (widget, owner_events, pointer_ntode, keyboard_mode,time)
Widget widget;
Boolean owner_events;
int pointer_mode;
int keyboard_mode;
Time time;

XtGrabKeyboard actively grabs control of the main keyboard. If the grab is successful, it
returns the constant GrabSuccess. Further key events are reported to the grab widget.

void XtUngrabKeyboard (widge, time)
Widget widget;
Time time;

XtUngrabKeyboard releases any active grab on the keyboard.

8.5 Localization

The R3 version of the Xt Intrinsics do not support localization of resource files. While the
X Consortium is planning to support localization in the R4 version of the Xt Intrinsics, the
OSF/Motif Intrinsics have interim support that is compatible with both X/Open and the
OSF/Motif Resource Manager (MRM).

You can specify a language by using the LANG environment variable (see the man page
Environ(5) for information on this variable). Elements of this variable are then used to
establish a path to the proper resource files. The following substitutions are used in
building the path:

» %N is replaced by class_name of the application.

e %L is replaced by the value of LANG environment variable.

e %l is replaced by the language part of LANG environment variable.
o %t is replaced by the territory part of LANG environment variable.
o %c is replaced by the codesct part of LANG cnvironment variable.

e %% is replaced by %.

If the LANG environment variable is not defined, or if one of its parts is missing, then a %
element that references it is replaced by NULL.

The paths contain a series of elements separated by colons. Each element denotes a file
name, and the file names are looked up left to right until one of them succeeds. Before

8-38 Additional Functionality

doing the lookup, substitutions are performed.

NOTE

We are using the X/Open convention of collapsing multiple
adjoining slashes in a filename into one slash.

The XtInitalize function loads the resource database by merging in resources from
these sources:

o Application-specific class resource file on the local host.

« Application-specific user resource file on the local host.

« Resource property on the server or user preference resource file on the local host.
o Per-host user environment resource [ilc on the local host.

o The application command line (argv).

To load the application-specific class resource file, XtInitialize performs the
appropriate substitutions on this path:

/usr/1ib/X11/%1L./app-defaults/%N: /usr/1ib/X11/app-defaults /%N

If the LANG environment variable is not defined (or the first path lookup using LANG
fails), then the lookup will default to the current non-language specific location
(fusr/1lib/X11/app_defaults/%N).

To load the user’s application resource file, XtInitialize performs the following steps:
1. Use XAPPLRESLANGPATH to look up the file.

2. If that fails, or if XAPPLPRESLANGPATH is not defined, and if XAPPLRESDIR is
defined, use the following as the path:

XAPPLRESDIRZ%L/%N:XAPPLRESDIR /%N
else use:
$HOME /%L /%N:$HOME /%N

Note that if the XAPPLRESTANGPATH lookup is not successful and LANG is not defined,
the lookup is then equivalent to that used by the R3 specification of XtInitialize
(actually described under XtDisplayInitialize).

Additional Functionality 8-39

8.6 Pixmap Caching Functions

The pixmap caching functions provide the application and widget writer with a means of
associating an image with a name. Given this association, these functions can generate
pixmaps through references to a .Xdefaults [ile (by name) and through an argument list
(by pixmap), for all widgets that have pixmap rcsources. A cache of all pixmaps is
automatically maintained. This improves performance and decreases server data space
when requesting identical pixmaps.

The pixmap caching provides four functions by which the application or widget writer can
install images, uninstall images, create pixmaps, and destroy pixmaps.

Boolean XmInstalllmage (image, image_name)
XImage *image;
char *image name;

image Points to the image structure to be installed. The installation process
does not make a local copy of the image, therefore the application should
not destroy the image until it is installed from the caching functions.

image_name Specifes a string that the application uses to name the image. After
installation, this name can be used in a . Xdefaults file for referencing
the image. A local copy of the name is created by the image caching
functions.

XmInstallImage is used to give o the caching routines an image that can later be used
to generate a pixmap. Part of the installation process is to extend the resource converter
used to reference these images. The resource converter can access the image name so that
the image can be referenced in a .Xdcfaults file. Since an image can be referenced by a
widget through its pixmap resources, it is up to the application to ensure that the image is
installed before the widget is created. image is a pointer to the image structure to be
installed. The installation process docs not make a local copy of the image. Therefore, the
application should not destroy the image until it is uninstalled from the caching functions.
image_name is a string the application uses to name the image. After installation this
name can be used in a .Xdefaults for referencing the image. A local copy of the name is
created by the image caching functions.

The image caching functions provide a set of cight preinstalled images. These names can
be used within a Xdefaults file [or generating pixmaps for the resource they are provided
for.

8-40. Additional Functionality

TABLE 8-3. Preinstalled Images

Image Name Description

background A tile of solid background

25 foreground | A tile of 25% foreground, 75% background
50_foreground | A tile of 50% foreground, 50% background
75 _foreground | A tile of 75% foreground, 25% background

horizontal A tile of horizontal lines of the two colors
vertical A tile of vertical lines of the two colors
slant_right A tile of slanting lines of the two colors
slant_left A tile of slanting lines of the two colors

Boolean XmUninstallImage (image)
XmImage *image;

image Points to the image structure given to the XmInstallImage routine.

XmUninstalllmage provides the mechanism by which an image can be removed from the
caching routines. image is a pointer to the image given to the XmInstallImage ()
routine.

An application or widget makes a call to extract a pixmap when the images have been
installed or to access a set of the predefined images. When an application or widget is
finished with a pixmap, it can call a function to destroy the pixmap. These functions are
defined as follows.

Pixmap XmGetPixmap (screen, image_name, foreground, background)
Screen *screen;
char *image name;
Pixel foreground,
Pixel background,

screen Specifies the display screen on which the pixmap is to be drawn and is
used to ensure that the pixmap matches the visual required for the
screen.

image_name Specifics the name of the image to be used to generate the pixmap.

foreground Combines the image with the foreground color to create the pixmap if the

image referenced is a bit-per-pixel image.

background Combines the image with the background color to create the pixmap if
the image referenced is a bit-per-pixel image.

XmGetPixmap uses the parameter data to perform a lookup in the pixmap cache to see if
a pixmap has already been gencrated that matches the data for the specified screen. If one

Additional Functionality 8-41

is found, a reference count is incremented and the pixmap is returned. If one is not found,
the image corresponding to image_name is used to generate a pixmap which is then cached
and returned. screen contains the display screen on which the pixmap is to be drawn and is
used to ensure the pixmap matches the visual required for the screen. image_name is the
name of the image to be used to generate the pixmap. If a “bit-per-pixel” image is being
accessed, foreground and background are combined with the image to create the pixmap.

Boolean XmDestroyPixmap (screen, pixmap)
Screen *screen,
Pixmap pixmap;

screen Specifies the display screen for which the pixmap was requested.
pixmap Specifes the pixmap to be destroyed.

XmDestroyPixmap is used to remove pixmaps that are no longer needed. A pixmap will
only be completely freed when there is no further references to it.

8.7 Resolution Independence

The OSF/Motif library provides a mechanism built into the widgets called “resolution
independence.” Resolution independence allows applications to create and display images
that are the same physical size regardless of the resolution of the display. This frees the
application developer from the task of ensuring that an application can be used on a wide
range of systems.

The resolution independence mechanism provides resource data to the widgets in various
unit types, including millimeters, inches, points, and font units. All widget resources
connected with size, position, thickness, padding, and spacing can be set using the above
unit types. The application or user of the application can provide resolution independent
data through .Xdefaults and app-dclaults files, command line arguments, or arg lists.

8.7.1 The Resolution Independence Mechanism

The units a widget uses is defined by the resource XmNunitType, which can be found in
the base classes of XmPrimitive, XmGadget, and XmManager. Since all widgets are built
from these base classes, it follows that all widgets support resolution independence. There
are five values XmNunitType can have:

o XmPIXELS - All values provided to the widget are treated as normal pixel values. This
is the default value for the resource.

» Xm100TH_MILLIMETERS - All values provided to the widget are treated as 1/100 of a
millimeter.

8-42 Additional Functionality

o Xm1O000TH_INCHES - All values provided to the widget are treated as 1/1000 of an
inch.

o Xm100TH_POINTS - All values provided to the widget are treated as 1/100 of a point.
A point is a unit typically used in text processing applications and is defined as 1/72 of
an inch.

o XmlOOTH_FONT_UNITS - All values provided to the widget are treated as 1/100 of a
font unit. The value to be used for the font unit is determined in one of two ways. The
resource XmNfont can be used in a dcfaults file or on the command line. The
standard command line options of -fn and - font can also be used. The font unit
value is taken as the QUAD_WIDTH property of the font. The function
XmSetFontUnits allows applications to specify the font unit values. This function is
defined later in this section.

There are two reasons for the unit types to be fractional.

« It allows all calculations to be done in integer representation. This ensures maximum
performance for type conversions.

« There is no way to supply a floating point number to a widget through an argument list.
This is because the value field in the argument list is of type char *. When a floating
point value is forced into a char * variable, the fractional part is truncated.

When a widget is created and its unit type is something other than pixels, it converts the
data specified by the application or the user into pixel values, taking into account the
resolution of the screen. These converted pixel values are then placed into the internal
data space of the widget, and the widget operates as it would normally. The same process
occurs when the application issues an XtSetValues () to a widget. The new values are
converted from unit type to pixels and placed back into the widget.

When the application issues an XtGetValues () to a widget, the pixel values are taken
out of the widget, converted back to the unit type, and inserted into the argument list to be
returned.

The conversion and storing of unit type values to pixel values can cause some rounding
errors. Therefore, when an application issues an XtGetValues (), it should not expect
exactly the same data to be returned as was originally specified. This rounding error will
only occur once and will not get progressively worse. For example, if a widget’s width is set
to 1000/1000 inches (1 inch), XtGetValues () may return 993/1000 inches. If this value
is then used to set the width of a second widget and the application calls XtGetValues ()
on the second widget, 993/1000 inches will be returned.

Additional Functionality 8-43

8.7.2 Setting the Font Units

Applications may want to specily resolution independent data based on a global font size.
The widget set provides an external function to use to initialize the font unit values. This
function needs to be called before any widgets with resolution independent data are
created.

XmSetFontUnits (display, font_unit_value)
Display * display;
int font_unit_value;

The parameters for this function are described below.
display Defines the display for which this font unit value is to be applied.

font_unit_value Specifies the value to be used in the conversion calculations. The font unit
value is normally taken as the QUAD_WIDTH property of the font. However, the
application can specify any integer value.

8.7.3 Converting Between Unit Types

The widgets use a general conversion function to convert between pixels and other unit
types. This function can convert values between any of the defined unit types, and is
available to the application for its use.

int XmConvertUnits (widgel, orientation, from_unit_type, from_value,
fo_unit type)

Widget * widgel;

int orientation;

int from_unit_type;

int from:value;

int to_unit _type;

XmConvertUnits uses the parameter data to convert the value and return it as the
return value from the function. The parameters for this function are as follows:

widget Specifies the widget for which the data is to be converted.

orientation Specifies whether the converter should use the horizontal screen resolution or
vertical screen resolution when performing the conversions. orientation can have
values of XmHORIZONTAL or XmVERTICAL.

from_unit_type Specifies the current unit type of the supplied value.
from_value Specifies the value to be converted.

to_unit _type Specifies the unit type into which the value should be converted.

8-44 Additional Functionality

8.8 Interacting With the OSF/Motif Window Manager

This section explains the procedures an application can use to interact with the
WM_PROTOCOLS and system menu facilities provided by the OSF/Motif Window
Manager (MWM). You should be familiar with the concepts presented in the Inter-Client
Communications Conventions manual (ICCCM).

Many of the proposed Inter-Client Communications Conventions (ICCC) are not currently
supported by the X Consortium libraries (Xlib and Xt), because the the conventions were
not official when the R3 version of the X Window System was introduced. The X
Consortium has indicated its intent to add support for the ICCC in the next X11 release
(R4). The OSF/Motif library supports a minimal set of inter-client (mainly application-
to-window manager) communication services and provides them as a layer above existing
intrinsics facilities.

8.8.1 Protocol Management

The Protocol management functions are a sct of general purpose routines for interacting
with properties that contain atom arrays, clicnt messages, and associated callbacks. They
are used to support the existing entries for the WM_PROTOQCOLS and
_MOTIF_WM_MESSAGES propertics. See Programming With the Xt Intrinsics for more
information.

NOTE

In the following discussion, the names of atoms or properties are in
upper case and are obtained by “interning” the strings with the
server. Use XmInternAtom to convert these strings to a 32-bit tag,
The following code segment shows how to obtain the

_MOTIF WM_MESSAGES atom.

Atom motif wm_messages;
motif wm messages = XmInternAtom(display,
"_MOTIF WM _MESSAGES", true);

Alternatively, you could use XA MOTIF_WM_MESSAGES (defined in
<X11/MwmUtil.h>) as the second argument to XmInternAtom.

A protocol is a 32-bit tag that is used by clients to communicate with the window manager.
This tag is either an X Atom or an arbitrary long integer variable whose value is shared by
the parties to the protocol communication. The client indicates interest in certain

Additional Functionality 8-45

communications protocols by adding these tags to a tag array that is the value of a special
property on its top-level window. For pre-defined ICCC protocols, this property is
WM_PROTOCOLS. For the OSF/Motif Window Manager, this property is
_MOTIF_WM_MESSAGES. The window manager sends a protocol message (when
appropriate) in the form of a client message event with the message_type field of the
ClientMessage structure set to the property and the data.l[0] field set to the protocol.
The client can associate a callback list with the protocol that is invoked when the client
message event is received.

Each shell can have one protocol manager per property associated with it and the protocol
manager can have multiple protocols registered. Each protocol is identified by its tag
(WM_SAVE_YOURSELF, for example) The protocols can have any number of client
callbacks associated with them, in addition to pre-hook and post-hook callbacks (usually
registered by the widget set) for each protocol.

« Tracks the state of the protocols whether or not they are active.
o Tracks the state of the Shell and creates and updates the protocol property accordingly.

» Processes the client messages reccived and invokes the appropriate callbacks.

MOTIF_WM_MESSAGES
The client uses the _MOTIF_WM_MESSAGES property to indicate to MWM which
messages (sent by MWM when an . send _msg function is invoked from the MWM
system menu) it is currently handling. A client can add £. send_msg entries to the menu
by using the . mwmrc file or by using the XmNmwmMenu resource of VendorShell. This
resource is a string that is parsed by MWM to determine what to display in the system
menu and and how to react to an item’s selection. When the action associated with an
item is f. send_msg, MWM sends the client a message if the specified protocol is active.
The protocol is the integ,er argument to the £.send msg action. A menu protocol is
active if the protocol is in the MOTIF_WM MES‘?AGES property and the

_MOTIF_WM_MESSAGES atom is in the WM _PROTOCOLS property. Otherwise, the
protocol is inactive and the menu label will be “grayed out.”

WM_PROTOCOLS

There is a corresponding macro provided for cach of the general protocol manager
routines to simplify their use. The only difference between them is that the general
routines are passed a protocol property in all calls while the macros always force this
property to WM_PROTOCOLS. Thesc macros are uscful if you want to interact with
ICCC protocols such as WM_DELETE_WINDOW or WM_SAVE_YOURSELF.

Note that if you are using the protocol manager for the system menu, the property should
be the atom corresponding to MOTIF. WM_MESSAGES.

8-46 Additional Functionality

8.8.2 Protocol Manager Functions

The following sections list the Protocol Manager functions. There is a sample program,
xmprotocol, in the directory /usr/contrib/Xm that adds or deactivates entries to
the system menu. You can use the methods presented in that program to get an idea of
how to use the functions discussed in this section.

Note that the statement

#include <X11l/Protocols.h>

must be present in any program using these functions,

The functions that have the letters “WM?” arc the macros referred to earlier. Each
function has a corresponding macro. For example, XmAddProtocols has a
corresponding macro XmAddWMProtocols. The macro simply calls XmAddProtocols
with the property parameter set to XA WM_PROTOCOL.

Add and Remove Functions

void XmAddWMProtocols (shell, protocols, num_protocols)
Widget shell;

Atom *protocols;

Cardinal num_protocols;

void XmAddProtocols (shell, property, protocols, num_protocols)
Widget shell;

Atom property;

Atom *protocols;

Cardinal num_protocols;

This routine adds the protocols to the Protocol manager corresponding to the specified
property and allocate the internal tables. The protocols are initialized to active.

void XmRemoveWMProtocols (shell, protocols, num_protocols)
Widget shell;

Atom ‘*protocol;

Cardinal num_protocols;

void XmRemoveProtocols (shell, property, protocols, niumn_protocols)
Widget shell;

Atom property;

Atom *protocols;

Cardinal num_protocols;

This routine removes the protocols from the Protocol manager and deallocates the internal

Additional Functionality 8-47

tables. It also updates the handlers and the property if any of the protocols are active and
the shell referenced in the shiell parameter is realized.

Protocol State

It is sometimes useful to allow a protocol’s state information (callback lists for example) to
persist, even though the clicnt may choose to temporarily resign from the interaction. The
main use of this capability is to gray out £. send_msg labels in the system menu. This is
supported by allowing a protocol to be in one of two states, active or inactive. If the
protocol is active and the shell is realized, then the property contains the protocol atom. If
the protocol is inactive, then the atom is not present in the property.

void XmActivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

void XmActivateProtocol (shell, property, protocol)
Widget shell;

Atom property;

Atom protocol;

If the protocol is inactive, this routine updates the handlers and adds the protocol to the
property if the shell is realized.

void XmDeactivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

void XmDeactivateProtocol (shell, property, protocol)
Atom property;
Cardinal num_protocols;

If the protocol is inactive, this routine updates the handlers and the property if the shell is
realized.

Protocol Callbacks

When a client message associated with a protocol is received by the protocol manager, it
checks to see if the protocol is active. IT it is, then any callbacks associated with the
protocol are called. There are three callback lists that can be associated with a protocol.
One is for client use and is accessed by XmAddProtocolCallbacks and
XmRemoveProtocolCallbacks. The other two (the pre- and post- hook callbacks)
are intended for toolkit use and are accessed by the XmSetProtocolHooks routine.
The hook routines are called belore and after the client callbacks (if any) are called. The
protocol callbacks have a reason ficld of XmCR_PROTOCOLS and a type of
XmAnyCallbackStruct.

8-48 Additional Functionality

void XmAddWMProtocolCallbacks (shell, protocol, callback, closure)
Widget shell;

Atom protocol;

XtCallbackProc callback;

caddr_t closure;

void XmAddProtocolCallbacks (shell, property, protocol, callback, closure)
Widget shell;

Atom property;

Atom profocol;

XtCallbackProc callback;

caddr_t closure;

This routine checks to see if the protocol is registered and if not, it calls
XmAddProtocols. It then adds the callbacks to the internal list. These callbacks are
called when the corresponding client message is recieved.

void XmRemoveWMProtocolCallbacks (shell, protocol, callback, closure)
Widget shell;

Atom protocol;

XtCallbackProc callback;

caddr_t closure;

void XmRemoveProtocolCallbacks (shell, property, protocol, callback, closure)
Widget shell;

Atom property;

Atom protocol;

XtCallbackProc callback;

caddr_t closure;

This routine removes the callback from the internal list.

void XmSetWMProtocolHooks (shell, protocol, prehook, pre_closure, posthook, post_closure)
Widget shell;

XtCallbackProc prehook, posthook;

caddr_t pre_closure, post_closure;

void XmSetProtocolHooks (shell, protocol, property, prehook, pre_closure, posthook, post_closure)
Widget shell;

Atom property;

XtCallbackProc prehook, posthook;

caddr_t pre_closure, post_closure;

This routine is used by toolkit widgets that want to have “before and after” actions
executed when a protocol message is recieved from the window manager. Since there is no

Additional Functionality 8-49

guaranteed ordering in execution of event handlers or callback lists, this allows the shell to
control the flow while leaving the protocol manager structures private. Call_data will
contain the same pointer as that passed to the client callbacks.

8.8.3 Atom Management

The atom management routines mirror the Xlib interfaces for atom management, but
provide client side caching. When (and where) caching is provided in Xlib, the routines
will become pseudonyms for the Xlib routines. Note that the statement

#include <X11l/AtomMgr.h>

must be present in any program using these functions,

Atom XmInternAtom (display, name, only if exists)
Display *display;
String name;
Boolean only if exists;

String XmGetAtomName (display, atom)
Display *display;
Aton atom;

8.9 OSF/Motif Version Number

The OSF/Motif library provides a macro, XmVersion, that returns the current
OSF/Motif version. Essentially, the macro multiplies the version number of the library by
1000 and adds the revision number. For example, in the first release of OSF/Motif
Version 1.0, the macro would return 1000.

Additionally, a global variable, XmUseVersion is provided. The value of this variable is
set to reflect the value returned by XmVersion as soon as the first widget is created (the
setting takes place during the class initialization procedure of the widget). In the future, an
application may be able to set this variable to specify the kind of behavior the widget
library should provide.

8-50 Additional Functionality

8.10 OSF/Motif Window Manager Presence

Very often the need arises to be able to determine whether the OSF/Motif Window
Manager (MWM) is running on a given display. The OSF/Motif function
XmIsMotifWMRunning can provide this information.

#include <X11/Shell.h>
Boolean XmIsMotifWMRunning (shell)

Widget shell;

shell specifies the shell whose screen should be tested for MWM's presence. The function
returns True if MWM is running, False if it is not.

Additional Functionality 8-51

Keyboard Interface 9

The keyboard interface allows the user to interact with an application using the keyboard
in place of, or as a supplement to, the mouse. This capability is necessary in a variety of
situations, such as mouseless systems or applications that don’t want to force the user to
switch back and forth between the keyboard and mouse.

The keyboard interface involves two major components:
o Keyboard focus and traversal from widget to widget.

« Keyboard input processing to an individual widget.

9.1 Keyboard Focus Models

Traversal provides the means of moving the “keyboard focus” within an application. The
keyboard focus indicates which widget is currently active. When a particular widget has
keyboard focus, all keyboard input dirccted at the application goes to that widget,
regardless of the location of the pointer.

The OSF/Motif system supports two focus models:

« The “pointer driven” focus modcl. In the “pointer driven” model, a widget receives
keyboard input only when the cursor is positioned within the widget’s bounding
rectangle; moving the cursor out of the widget causes it to lose focus.

o The “click-to-type” focus model. In the “click-to-type” model, when the window
manager passes the focus to the topmost shell widget, the topmost shell widget
redirects the focus to one of its descendents. The user can move the focus to another
descendent of the topmost shell widget either by pressing the arrow or tab keys, or by
clicking mouse button 1 in a widget. Clicking mouse button 1 in a widget may cause
that widget to ask for and receive the input focus. When a descendent has focus, it
continues to receive all keyboard input until either of the following occur:

« The user requests that the focus be moved to another descendent of the topmost
shell widget.

« The window manager takes the focus away from the topmost shell widget.

Keyboard Interface 9-1

An application sets the desired model by means of the XmNkeyboardFocusPolicy
resource, which is exported by the VendorShell widget class. The specified focus model is
active for the complete widget hierarchy built from the topmost shell widget.

The functionality described in the rest of this chapter applies only to the “click-to-type”
focus model. The OSF/Motif menu system provides its own type of keyboard traversal.
This is explained in chapter 6, “Menus.”

Only Primitive widgets and gadgets can have the keyboard focus, since these are the only
widgets with which the user interacts; other widgets are merely containers. In this
discussion, gadgets are considered comparable to Primitive widgets.

Each Primitive widget has a boolean resource, XmNtraversalOn, that specifies whether or
not the widget will accept the focus. The default is False, which denies focus. The
resource must be set to True in order for the widget to accept the focus.

When a widget has accepted the keyboard focus, a highlight is drawn around the widget.

9.2 Grouping Widgets Into Tab Groups

The OSF/Motif system uses the concept of “tab groups” to group Primitive widgets. Any
Manager or Primitive widget can be defined as a tab group. If a Manager widget is in a tab
group, its Primitive children are part of the tab group.

Two functions manage the addition and deletion of tab groups for an application.

XmAddTabGroup adds the specified tab group to the list of tab groups associated with a
particular widget hierarchy.

XmAddTabGroup (tab_group)
Widget tab_group

tab grou Specifies the Manager or Primitive widget that defines a tab group.
_group p 2 g group

XmRemoveTabGroup removes the tab group from the list of tab groups associated with a
particular widget hierarchy.

XmRemoveTabGroup (fab_group)
Widget tab_group,

tab_group Specifies the Manager or Primitive widget that defines a tab group.

9-2 Keyboard Interface

9.3 Traversal Within and Between Tab Groups

Traversal involves two types of focus changes—changing the focus to a different widget
within a particular tab group and changing the focus to another tab group.

Movement among the Primitive widgets within a tab group is controlled by the order in
which the widgets were created. The following keys change the focus to another widget in
the same tab group:

e The down arrow key moves the focus to the next widget for which the XmNtraversalOn
resource has been set to True. When the focus reaches the end of the tab group, it
wraps to the beginning. The right arrow key has the same effect unless its behavior is
defined by the particular widget. For example, a text widget configured for single-line
edit defines the behavior of the right arrow key; therefore, that key does not change the
focus.

o The up arrow key moves the focus to the previous widget. When the focus reaches the
beginning of the tab group, it wraps to the end. The left arrow key has the same effect
unless its behavior is defined by the particular widget.

o The home key moves the focus to the first Primitive widget in the tab group.

Movement between tab groups is controlled by the order in which the application has
registered the tab groups.

o The tab key or function key 6 ([f6]) moves the focus to the first widget in the next tab
group. When the focus reaches the end of the tab group list, the focus wraps to the
beginning of the list.

. moves the focus to the first widget in the previous tab group. When the
focus reaches the beginning of the tab group list, it wraps to the end of the list.

Clicking mouse button 1 within certain widgets (typically, text widgets) moves the focus to
the indicated widget. The focus remains there until either the widget hierarchy loses the
focus, or until the user moves the focus to another widget. A widget must have its
XmNtraversalOn resource set to True in order to get focus this way.

Certain widgets must be placed within their own tab group; that is, the widget cannot be
included in a tab group containing other widgets.

o Each List widget and the ScrollBar widget must be registered as its own tab group,
since they define special behavior for the arrow keys.

« Each multiline text widget must be registered as its own tab group, since it defines
special behavior for both the arrow keys and the Tab keys. [f6] must be used to switch
to another tab group. Single-line text widgets do not have this requirement.

Keyboard Interface 9-3

« The Option menu widget must be registered as its own tab group because it consists of
two internal Primitive widgets.

9.4 Keyboard Input Processing to a Widget

Keyboard input into a widget that has focus is handled by definitions of the widget’s
default translations for keyboard input. Refer to the HP OSF/Motif Programmer’s
Reference Manual for the default translations.

9-4 Keyboard Interface

Debugging 1 0

No matter how careful you are, sooner or later you will need to debug a program. Because
of the underlying Xt Intrinsics functions, this can be somewhat confusing. This chapter
discusses some basic tools to use when debugging OSF/Motif programs.

10.1 Debugging Tools

The HP-UX system provides several very useful debugging tools to help you debug
programs. These tools are adb, cdb, {db, pdb, and xdb. The HP 9000 Series 800
computers use xdb, while all of them can be used on the HP 9000 Series 300 computers.
The cdb, fdb, and pdb debuggers are for C, Fortran, and Pascal, respectively. The
commands used in these debuggers are very similar. There are man pages for adb, cdb,
and xdb in section 1 of the HP-UX Reference Vol 1: Sections 1, IM, and 9. There are also
descriptions of adb and cdb in the Programming Environment HP-UX Concepts and
Tutorials manual. Discussion and examples of debugging procedures in this chapter will
use cdb. The procedures shown can be followed for the other debuggers, although the
exact commands may differ somewhat. You should refer to the man page for the debugger
you intend to use.

The next sections describe what to do when certain faults or error conditions occur. The
examples given should provide you with an understanding of the basic procedures involved
in debugging.

10.2 Segmentation Fault

In many cases the OSF/Motif system will provide an error message or a warning that will
provide a clue as to the cause of the problem. Unfortunately, that does not always happen.
For example, a program can abort with only the message “Segmentation Fault (core
dumped).” This is not very informative, and in this case you must resort to debugging. We
will discuss two methods to accomplish this.

Debugging 10-1

10.2.1 C Debugger

The C Debugger (cdb for short) is the most suitable tool to use in this case, however it is
somewhat complex. If you are not familiar with cdb, see the section on it in the
Programming Environment HP-UX Concepts and Tutorials manual.

Take a look at the following program:

#include <stdio.h>
#include <X11/X1ib.h>
#include <X11/X.h>
#include <X1l/Intrinsic.h>
#include <X11/Core.h>
#include <X11/Shell.h>
#include <Xm/Xm.h>
#include <Xm/List.h>

Widget toplevel;
Widget outer_box;

Arg myArgs[20];
void SelectProc(w,closure,call_data)
Widget w;

caddr_t closure, call_data;

{
printf("Single Selection.0);
}
void main(arge, argv)
unsigned int argc;
char *¥*argv;
int 1i;
toplevel = XtInitialize(argv[0], "DBtest", NULL, O, &argc, argv)

i=0;

XtSetArg(myArgs[i], XmNselectedItemCount, (XtArgVal) 10); i++;
XtSetArg(myArgs[i], XmNvisibleItemCount, (XtArgVal) 5); i++;

XtAddCallback(outer_box, XmNsingleSelectionCallback, SelectProc)

10-2 Debugging

outer_box = XmCreateScrolledList(toplevel, "ListWidget",
myArgs, 1i);

XtManageChild(outer_box);
XtRealizeWidget(toplevel);

XtMainLoop();
}

This is a simple program that is supposed to create a ScrolledList widget. Unfortunately,
there is a bug within the program that will cause a “segmentation fault.” The debugging
process using cdb is described below.

First, the program must be compiled with the “-g” option to the “cc” command. The C
Debugger will not work unless this is done. When you have the program properly
compiled (we’ll assume you've named it showdebug), run the program under cdb by
using the command cdb showdebug. You'll see a window like that shown in figure 10-1.

Figure 10-1. Running a Program With cdb

Debugging 10-3

At this point the program is not actually running. The upper part of the window has a “>”
pointing to the first executable instruction in the program. The lower window is the
window in which you’ll enter commands. To actually start the program, simply type “r”

(for run) and press . You'll see the message “segmentation violation (no ignore)...”
in the lower window. This is shown in figure 10-2.

Lines ‘unknoun

Figure 10-2. Results of cdb Trace

Now type “t” (for trace) and press |Return]. What you see in the lower window is a trace of
events that occurred, as shown in figure 10-3. This tells you that program main called
XtAddCallback at line 37 and XtAddCallback called XtFree which then called
itself. Notice that the upper window simply says “no source.” Now type “3E” in the lower
window (the “3E” stands for “enter the third function listed”) and press[Return]. The
source code for main appears in the upper window with a “>” pointing to line 37, the
offending line, as shown in figure 10-3.

10-4 Debugging

ﬁyffeFFe70 ghowdebud.‘

Figure 10-3. Entering a Function From cdb

You can see that the problem came about as a result of the call to XtAddCallback at
line 37 of program main. But what is there about this line that causes the abort? In
figure 10-3, notice the values for the parameters of XtAddCallback. The value of the
first parameter is 0, yet line 37 of main shows that this parameter is supposed to be the
value in outer_box, a widget id. If you type “*outer_box” in the lower window, you will see
that its value is indeed 0, meaning that it did not really exist. Why doesn't it exist? If you
look back at the program, youwll see that line 37 of main, which is the call to
XtAddCallback, is placed before the line which creates the widget outer_box. In
effect, the program is trying to add a callback to a widget at a time when that widget does
not exist. The cure is to simply move the line that calls XtAddCallback to a point after
the widget outer_box has been created.

This example should give you an idea of the power of cdb. You should become familiar
with c¢db (or one of the other debuggers), as it is an indispensable tool for debugging
widget programs.

Debugging 10-5

10.2.2 A Trace Routine

You can include a built-in trace routine in your program to help isolate bugs. This routine
will not allow you to perform the sophisticated maneuvers that you can with cdb, but it can
point you in the right direction. A later section shows how to use cdb “breakpoints” that
halt the program execution at points you specify.

The trace routine consists of a procedure to get command line options and, if the proper
option is set, turn tracing on. If tracing is on, certain actions, such as printing variable
values, is taken at various points in the program. The following program is our
showdebug program from the previous section, but now it includes the trace features.
We'll call this program tracebug.

#include <stdio.h>
#include <X11/X1ib.h>
#include <X11/X.h>
#include <X11/Intrinsic.h>
f#include <X11/Core.h>
f#finclude <X11/Shell.h>
#include <Xm/Xm.h>
#finclude <Xm/List.h>

f#define TRACE(string, var) if (trace) (printf(string, var);)

Widget toplevel;
Widget outer_box;

Arg myArgs[20];

static void GetOptions(arge, argv, trace)

int arge;
char *kargv;
Boolean *trace;

register int i;

for (i = 1; i < arge; i++) |

if (argv[i][0] == '-' && argv[i][l] == 'Vv')
*trace = True;

else {
fprintf(stderr, "\nusage: %s [-v]\n", "tracebug.c");
fprintf(stderr, "The -v option enables trace output.\n\n");
exit(l);

}

10-6 Debugging

}

void SelectProc(w,closure,call_data)
Widget w;
caddr_t closure, call_data;

{

printf("Single Selection.\n");

)

void main(argc, argv)
unsigned int argc;
char **argv;

int 1i;
Boolean trace = False;

toplevel = XtInitialize(argv([0], "DBtest", NULL, 0, &argc, argv);
GetOptions(arge, argv, &trace);

TRACE("First trace: toplevel = %d \n.", toplevel);

i=0;

XtSetArg(myArgs[i], XmNselectedItemCount, (XtArgVal) 10); it++;

XtSetArg(myArgs[i], XmNvisibleItemCount, (XtArgVal) 5); i++;

TRACE("Second trace: i = %d \n.", 1);

XtAddCallback(outer box, XmNsingleSelectionCallback,
SelectProc);

outer_box = XmCreateScrolledList(toplevel, "ListWidget",
myArgs, 1i);

TRACE("Created outer_box: outer_box = %d.\n", outer_box);

XtManageChild(outer_box);

XtRealizeWidget(toplevel);
XtMainLoop();

)

The key to the trace process is the function GetOptions. This function parses the
command line that executed the program. If an option “-v” is present, tracing is turned on;

Debugging 10-7

otherwise, it is off. Note that the macro TRACE is defined to have two arguments and
provides the means to print messages and variable values. There are three TRACE
statements in the program. These can be placed anywhere you need some information.
You could just as easily put in “printf” statements that would accomplish the same thing,
but they would always be exccuted.

It is not necessary to compile the program with the “-g” option, although to do so will
cause no harm. Run the program with the “-v”” option set to turn tracing on. The
command to do this is tracebug -v. The program prints the information specified at
each TRACE occurrence, up to the time it aborts. As you can see from figure 10-4, this
process is not as informative as cdb.

Figure 10-4. Trace Process Output

You know that the Segmentation Fault occurred somewhere between the last TRACE to be
printed and the first one not to be printed (which, in this case, is the only one not to be
printed). To further isolate the problem, you would have to insert more TRACE statements
and recompile the program,

Notice that the first TRACE statement prints the value of the widget toplevel. Since
toplevel is defined to be type Widget, it is actually a pointer to a structure. Printing this
value does not really tell us much, except that it is not NULL. Be wary of printing

10-8 Debugging

information from variables that are pointers.

One word of caution when using this process: Be sure that the call to GetOptions occurs
after the initialization takes place. We used XtInitialize in this program and the call
to GetOptions occurs after it is called. The reason for this is that very often some
command line parameters used by XtInitialize are present and would not be
recognized by GetOptions and could cause an early exit from the program via the
“usage” path of GetOptions.

10.3 Other Errors

In some cases you will see some kind of error or warning message that attempts to convey
the cause of the problem. In other cases you may not see any error message at all, yet the
program does not run.

10.3.1 An X Toolkit Error

Sometimes the system will detect an error and output a message to that effect before
aborting the program. For example, the program in this section is supposed to create a
window that displays four ArrowButton widgets. Unfortunately, the program has several
bugs, the first of which causes the error message

X Toolkit Error: XtCreateWidget requires non-NULL parent

to appear, after which the program terminates.
The program source code is shown below.

#finclude <stdio.h>
#finclude <X11/Intrinsic.h>
{#finclude <X11/Shell.h>
{#finclude <Xm/Xm.h>
#include <Xm/RowColumn.h>
#finclude <Xm/ArrowB.h>
#include <Xm/Frame.h>

{fdefine TRACE(string, var) if (trace) {printf(string, var);)

static void GetOptions(argc, argv, trace)

int argce;
char *¥argv;
Boolean *trace;

Debugging 10-9

register int 1i;

for (i = 1; 1 < arge; i++) {

if (argv[i][0] == '-' && argv[i][1l] == 'v')
*trace = True;
else {

fprintf(stderr, "Osage: ¥%s [-v]0, "debugdemo.c");
fprintf(stderr, "The -v option enables trace output.0);
exit(1l);

}

)

void main (argc,argv)

unsigned intargc;

char *kargv;

{
Widgetapp_shell;/* ApplicationShell */
Widgetframel;/* Frame¥*/
Widgetframe2;/* Frame*/
Widgetrow_column;/* RowColumn */
Widgetabl;/* ArrowButton*/
Widgetab2;/* ArrowButton¥/
Widgetab3;/* ArrowButton¥*/
Widgetab4; /* ArrowButton¥/

Display*display;

Arg al[l0];/* arg list*/
register intac;/* arg count¥®/
register inti;/* counter¥*/
Boolean trace = False;

/* Initialize toolkit and open display.

*/

XtToolkitInitialize ();

display = XtOpenDisplay (NULL, NULL, argv[0], "XMdemos",
NULL, O, &argc, argv);

if (!display)

{

XtWarning ("debugdemo: can’t open display, exiting...");

10-10 Debugging

exit (0);

/* Create ApplicationShell.

*/

app_shell = XtAppCreateShell (argv[0], "XMdemos",
applicationShellWidgetClass, display, NULL, 0);

GetOptions(arge, argv, &trace);

/* Create RowColumn and ArrowButtons

*/

ac = 0;

XtSetArg (al[ac], XmNshadowThickness, 3); ac++;
framel = XmCreateFrame (app_shell, "frame”, al, ac);
XtManageChild (framel);

ac = 0;

XtSetArg (allac], XmNpacking, XmPACK_COLUMN); ac++;

XtSetArg (allac], XmNnumColumns, 2); ac++;

XtSetArg (al[ac], XmNspacing, 20); ac++;

XtSetArg (alfac], XmNmarginHeight, 20); ac++;

XtSetArg (allac], XmNmarginWidth, 20); ac++;

row_column = XmCreateRowColumn (frame2, "row_column", al, ac);
XtManageChild (row_column);

ac = 0;

XtSetArg (allac], XmNarrowDirection, XmARROW UP); ac++;
abl = XmCreateArrowButton (row_column, "abl", al, ac);

XtManageChild (abl);

ac = 0;

XtSetArg (all[ac], XmNarrowDirection, XmARROW_DOWN); ac++;
ab2 = XmCreateArrowButton (row_column, "abl", al, ac);
XtManageChild (ab2);

ac = 0;

XtSetArg (allac], XmNarrowDirection, XmARROW_RIGHT); ac++;
ab3 = XmCreateArrowButton (row_column, "abl", al, ac);

Debugging 10-11

XtManageChild (ab3);

ac = 0;
XtSetArg (allac], XmNarrowDirection, XmARROW_LEFT); ac++;
ab4 = XmCreateArrowButton (row_column, "abl", al, ac);

XtManageChild (ab4);

XtMainLoop();
}

When you have the program properly compiled (we’ll assume you’ve named this one
debugdemo), run it and you'll see that it docs indeed come to an abnormal termination
with the X Toolkit error message shown earlier. What exactly does the error message
mean? First of all, there is no call to XtCreateWidget in the program, so where does it
come from? Recall from earlier chapters that convenience functions such as
XmCreateFrame, XmCreateRowColumn, and XmCreateArrowButton create
unmanaged widgets. They do so by calling XtCreateWidget, so our problem must be
involved with creating a widget, but which one? You can use cdb or the trace routine to
find out.

Using cdb

You can set “breakpoints” anywhere in the program from cdb. A breakpoint is simply a
point you specify at which execution of the program is temporarily halted. You resume
execution of the program at any time. While the program is halted you can examine the
value of program variables or execute certain breakpoint commands. To set breakpoints in
the program, you must first run the program under cdb by using the command

cdb debugdemo

You'll see a window like that shown in figure 10-5.

10-12 Debugging

KﬁDPenDisplag
0

Figure 10-5. Running debugdemo With cdb

As you know from previous experience with cdb, the program debugdemo is not yet
running because you have not entered “r” in the lower window. Before you do so, you
must decide where to set the breakpoints. You know that the problem causing the X
Toolkit error is associated with the creation of some widget, so placing breakpoints at
those lines seems like a reasonable start. Notice that in the upper window of figure 10-5
there is an indicator (a “>”) to the left of line 47. Since you want a breakpoint set at a line
that creates a widget, you need (o move the indicator. Enter “w” (for “window”) and press
to move the indicator in the upper window. The indicator is now at line 61, which is
still not at a line that creates a widget. Enter “w” and press again. You should see
the window in figure 10-6.

Debugging 10-13

Figure 10-6. Using the cdb Window Command

Line 74 is immediately after a statement that creates a widget, so to set a breakpoint there,
move the indicator to that line by entering “74” and pressing . You could have
specified “74” earlier instead of using the “w” command if you had known the line
number. Now with the indicator on line 74, enter “b” and press . You should see
the window shown in figure 10-7.

10-14 Debugging

Figure 10-7. Sectting a Breakpoint in cdb

An asterisk appears next to the indicator, indicating that this line is a breakpoint. Using
this procedure, set breakpoints at the line following each widget creation. One thing to
remember about a breakpoint is that it must be placed on a line that contains an
executable statement. When you have completed sctting the breakpoints, run debugdemo
by entering “r” and pressing |Return]. The program should stop at the first breakpoint (line
74). 1If it does, the widget £ramel was created without error, thus eliminating it as the
source of the problem. Continuc the program by entering “c” and pressing . The
error message appears instead of the program halting at the second breakpoint. This
indicates that the problem is occurring when the RowColumn widget is being created at
line 83. The error message mentions that “X{CreateWidget requires non-NULL parent,”
implying that the parent specified in the XtCreateRowColumn function call is NULL. If
you examine line 83, you’ll see that the parent specified is a widget called frame?2. Since
frame? is about to be a parent, it should have been created previously. Looking back to
line 74, the widget created there is called framel. Since no other widgets have been
created, frame?2 appears to be a typographical error and should be framel instead.
Make this change and recompile the program.

Debugging 10-15

Using the Trace Routine

Notice that we’ve included the trace routine in the program. You could insert TRACE
statements at the same places in the program that you set breakpoints. The TRACE
statements could be something like that shown below:

TRACE("First trace: framel = %d \n", framel);

Subsequent statements should have the appropriate widget name instead of framel. By
running the program with the -v option, you enable the trace action. The trace printouts
that result provide you the clues needed to solve the problem.

10.3.2 No Error Message

After you recompile the program after changing frame?2 to framel, run it again. This
time nothing seems to happen. You see no error messages, yet no window is displayed on
the screen. The program seems to be “hung.” By setting breakpoints or placing TRACE
statements in the program, you can follow its progress. For example, if you place
breakpoints after each widget creation statement and the run the program, you’'ll see that it
runs fine until some point after the creation of the fourth ArrowButton, ab4. There are
only two statements following the creation of ab4, XtManageChild (ab4) and
XtMainLoop (). Didn’t chapter 3 mention something about “making the widget visible?"
Right! We inadvertently left out the call to XtRealizeWidget. Add the statement

XtRealizeWidget();

to the program just before the call to XtMainLoop and recompile the program. Then run
it and you should see the window shown in figure 10-8.

10-16 Debugging

Figure 10-8. Program dcbugdemo Window

We've explained a few of the potential problems that you might encounter. Obviously, we
cannot treat every possible error condition. Tf you follow the ideas explained here, you
should have little difficulty in debugging.

Debugging 10-17

Glossary | 11

accelerator
A keyboard key or keys used to cause some action to occur. For example, the
keys could be used to post a menu instead of a mouse button action.

atom
A 32-bit number that represents a string value.

callback
A procedure that is called if and when certain specified conditions are met. This
is accomplished by specifying the procedure in a callback list. Individual widgets
can define callback lists as required.

child widget
A child widget is a subwidget of a composite widget. The composite widget is
referred to as the parent of the child widget. The parent controls where the child
is placed and when it is mapped. If the parent is destroyed, the child is
automatically destroyed.

class
The general group that a widget belongs to.

Composite widget class
This class provides the resources and functionality that allows subclass widgets to
manage the layout and children.

Composite Manager
A composite manager is a manager widget with special knowledge about the
handling of one or more particular widgets. For example, a TitleBar and
ScrollBar can be registered with a Panel widget, and the Panel widget will position
the TitleBar and ScrollBar widgets correctly. Normally, a Manager widget has no
knowledge about its children.

constraint
Resources that certain manager widgets can impose on their children are called
Constraint resources. For example, if a PanedWindow widget wants its children to
be a certain size, it can specify the size by using the resources XtNmin and
XtNmax. The man pages will specify those manager widgets that have Constraint
resources.

Glossary 11-1

convenience dialog
A widget or collection of widgets created by a Dialog convenience function.

convenience function
A convenience function is a function that creates certain combinations of widgets,
including the necessary Shell widget.

Core
Core is the basic class from which all widgets are built. It acts as a superclass for
other widget classes and provides resources that are required by all widgets.

Dialog
A collection of widgets, including a DialogShell, a BulletinBoard (or a subclass of
BulletinBoard or some other container widget), plus various children of
BulletinBoard such as Label, PushButton, and Text widgets. Dialogs are used as
an interface between the application and its user.

double click
A method of selection in which a mouse button is pressed and released twice in
rapid succession.

drag
A type of interaction in which a mouse button is pressed and held. The mouse is
moved so that the pointer is “dragged” to the desired point and the button is then
released to complete the action.

grab
A procedure by which a window will act upon a key or button event that occurs for
it or any of its descendents. This precludes the necessity of setting up translations
for all windows.

instantiate :
To represent an abstraction by a concrete instance. To instantiate a widget means
that a widget class creates an instance of that class.

intern

The procedure used to define an atom.

manager class
A class that provides the resources and functionality to implement certain
features, such as keyboard interface and traversal mechanism. It is built from
core, composite, and constraint classes.

meta class
A meta class is a set of structures and functionality that a widget uses to export
that functionality to subclass widgets. Each instance of a widget subclass will have
the features common to that widget class and will export these features to child
widgets of that class. Included in this class are Core, Composite, Constraint,

11-2 Glossary

Primitive, Button, Manager, MenuMgr, and MenuPane. A meta class widget is
never instantiated.

modal Dialog
A Dialog that interrupts the work session to solicit input from the user.

modeless Dialog
A Dialog that solicits input from the user but does not interrupt the work session.

persistence
Persistence means that a specified character set is used for all subsequent text
segments in a compound string until a new character set is encountered.

popup
A type of widget that appears as the result of some user action (usually clicking a
mouse button) and then disappears when the action is completed.

post
The action required to make a Popup or Pulldown menu appear. This action is
normally a click or button press on one of the mouse buttons.

property
Public information (that is, information that is available to any client) associated
with a window.

protocol
A mutually agreed-upon mechanism for communicating between clients to
accomplish certain actions.

scroll region
The rectangular portion of a ScrollBar that contains the two arrows and the slider.

subclass
A class of widgets that inherits resources from a higher class.

translations

Action procedures that are invoked for an cvent or sequence of events.
Primitive

The Primitive class provides the resources and functionality for the low-level

widgets that are managed by the manager class. Primitive class widgets cannot
have normal child widgets but they can have popup child widgets.

widget
A widget is a graphic device capable of receiving input from the keyboard and the
mouse and communicating with an application or another widget by means of a
callback. Every widget is a member of only one class and always has a window
associated with it.

Glossary 11-3

widget instance
The creation of a widget so that it is seen on the display. Note that some widgets
(meta class, for example) cannot be instantiated.

widget tree
A widget tree is a hierarchy of widgets within a specific program. Examples of
widget trees can be found in chapter 3. The shell widget is the root of the widget
tree. Widgets with no children of any kind are leaves of the tree.

11-4 Glossary

Index

A

Accelerator, 11-1, 6-10, 6-17, 6-30, 7-22

Accepting focus, 9-2
Active grab, 8-38
Adding callbacks, 3-10, 3-12

Advanced program, font selection, 3-22
Advanced programming techniques, 3-19

Application defaults files, 3-16
ApplicationShell, 2-4, 4-2

Argument lists for widgets, 3-8
Argument values, setting, 3-19

Arguments, retrieving and modifying, 3-21

ArrowButton, 2-5
ArrowButton widgets, 5-16
ArrowButtonGadget, 2-23
Atom, 11-1

Available documentation, 1-10

B

Border drawing, 3-17
Breakpoints, 10-12
BulletinBoard, 2-18
BulletinBoardDialog, 2-19, 5-3

C

C Debugger, 10-2
Callback, 11-1

add, 3-1,3-21

adding, 3-10, 3-12

list, 3-11, 3-12

resources, 3-13

writing procedure, 3-11
Callback structure, list, 7-11
Categories of widgets, 2-2
cdb, 10-2, 10-12

Character set, 8-2
identifier, 8-3
universal, 8-3

Child widget, 11-1

Class, 11-1
meta, 11-2
widget, 1-3, 2-1
widget structure, 2-1

Click-to-type focus, 9-1

Clipboard, 8-17

Color, 3-17

Color Defaults, 3-18

Command, 2-19

Command history region, 5-7

CommandWindow, 2-11

Compiling
-g option, 10-3
sample programs, 1-9

Composite, 1-4, 2-11, 2-18
widget, 2-16

Composite manager widget, 11-1

Composite widget class, 11-1
Compound strings, 8-1
character set, 8-2
character set identifier, 8-3
components, 8-3
definition, 8-2
direction, 8-2, 8-4
functions, 8-4
separator, 8-4
tag-length-value, 8-3
text, 8-2, 8-4
universal character set, 8-3
Constraint, 1-4, 11-1, 2-11, 2-16
Constraints, 5-14
Container widgets, 2-2, 2-11

Convenience dialogs, 2-18, 2-19, 5-2

Convenience function, 11-2

Index 1

Convenience functions, 2-1, 2-18, 2-24, 6-2
Conventions, ICCC, 8-45
Converting between types, 8-44
Coordinated colors for three-dimensional
look, 3-19
Copying text, 7-29
Core, 1-4, 11-2,2-5, 2-11
Create
defaults files, 3-1
widget, 2-1, 2-24, 3-1, 3-9
Creating, submenus, 6-21
Cursor, for menus, 6-33
Cut and paste, 7-29
Cut and paste functions, 8-1, 8-17
Cutting text, 7-23

D

Debugging, 10-1
Debugging, a trace routine, 10-6
Default, dynamic, 8-36
Defaulting, dynamic, 8-1
Defaults file

example, 3-16

XMdemos, 3-4
Defaults files, 3-15

app-defaults, 3-15, 3-16

application, 3-16

create, 3-1

localization, 8-1, 8-38

user, 3-16

Xdefaults, 3-15, 3-16
Dialog, 11-2

widgets, 2-2
Dialog convenience functions, 5-2
Dialog convenience functions, using, 5-4
Dialog, definition, 2-17
Dialog functions, 5-1
Dialog widgets, 1-8, 2-17, 5-1
Dialogs, using, 5-4
DialogShell, 2-4, 4-2
Direction, compound string, 8-2, 8-4
Display widgets, 2-2, 2-5

2 Index

Documentation, 1-10

Double click, 11-2, 7-5

Drag, 11-2

DrawingArea, 2-11

DrawnButton, 2-6

Dynamic resource defaulting, 8-1, 8-36

E

Efficient operation, 3-15
Error, 10-9
ErrorDialog, 2-20, 5-3
Errors, 10-9

Event handlers, 6-8

F

FileSelectionBox, 2-19
FileSelectionDialog, 2-20, 5-3
Focus, 9-1
accepting, 9-2
click-to-type, 9-1
pointer driven, 9-1
Font units, setting, 8-44
Form, 2-19, 7-1
FormDialog, 2-20, 5-3
Frame, 2-11, 2-12
Functions
compound string, 8-4
cut and paste, 8-1, 8-17
List widget, 7-1
pixmap caching, 8-40
RowColumn, 7-15
Text widget, 7-19

G

Gadgcts, 2-22
Glossary, 11-1
Grab, 11-2
Grabbing, 8-1, 8-37
active, 8-38
passive, 8-37

H

Header files, 3-1

including, 3-6
Help button in Menubar, 6-15
Hierarchy, 3-25
Hierarchy, widget, 1-3
History region, Command, 5-7

ICCC conventions, 8-45
Including header files, 3-1, 3-6
InformationDialog, 2-20, 5-3
Initializing Xt Intrinsics, 3-6
Instance, 11-4, 2-1
Instantiate, 11-2

Interacting with MWM, 8-1
Intern, 11-2

K

Keyboard grabbing, 8-1, 8-37
Keyboard interface, 9-1
option menus, 6-29
popup menus, 6-10
pulldown menus, 6-17

L

Label, 2-6
Label, for option menus, 6-27
Label string, 6-6
LabelGadget, 2-23
Libraries, 3-1
Linking libraries, 3-1, 3-14
List, 2-6, 7-1
callback structure, 7-11
functions, 7-1
selection policies, 7-11
using, 7-3

Localization of defaults file, 8-1, 8-38

M

MainWindow, 2-11, 3-24

Manager, 1-4, 1-7, 11-2

Menu cursor, 6-33

Menu system, 6-1

Menu widgets, 2-2, 2-21

MenuBar, 2-11, 3-23, 6-5

MenuPanes, 6-2

Menus, 6-1

MenuShell, 2-4, 4-2, 6-7
creating, 6-35

MessageBox, 2-19, 3-24, 5-18
examples, 5-18

MessageDialog, 2-20, 3-25

Meta class, 11-2

Mnemonic, 6-10, 6-17, 6-29, 7-22

Modal dialog widget, 5-1

Modeless dialog widget, 5-1

Modifying arguments, 3-21

0

Object, 1-4, 2-22,2-23
Option menu, 2-21, 6-6, 6-27
creating, 6-27
interacting with, 6-29
system, 6-27
OSF/Motif
version, 8-2
version number, 8-50
window manager, 8-1, 8-2, 8-51
OSF/Motif Window Manager, 8-45
OverrideShell, 2-4, 4-2

P

PancdWindow, 2-16
Passive grabbing, 8-37
Persistence, 11-3
Pixmap
caching, 8-1, 8-40
naming, 8-1, 8-40

Index 3

Pixmap caching functions, 8-40

Pointer driven focus, 9-1

Popup, 11-3

Popup menu, system, 6-7

Popup menu system, 6-3

Popup MenuPane, 2-21, 6-7, 6-10
convenience function, 6-7

Popup window, 3-23

Post, 11-3

Primary selection, 7-22, 7-26

Primitive, 1-4, 1-5, 11-3, 2-5, 2-8

Private Shell, 4-2

Programming, advanced, 3-19

PromptDialog, 2-20, 5-3

Property, 11-3

Protocol, 11-3, 8-45
management, 8-45

Public shell, 4-2

Pulldown menu system, 6-5, 6-14

Pulldown MenuPane, 2-21
convenience function, 6-14

Pulldown menus, interacting with, 6-16

PushButton, 2-7

PushButtonGadget, 2-23, 3-24

Q

QuestionDialog, 2-21, 5-4

R

RadioBox, 2-21
Realize widget, 3-1
Rect, 2-22
RectObj, 1-4, 2-23
Resolution independence, 8-1, 8-42
Resources
callback, 3-13
specifying, 3-15
Retrieving arguments, 3-21
RowColumn, 2-12, 2-21, 3-24, 7-1, 7-14
types, 7-14
functions, 7-15

4 Index

layout, 7-15

margin spacing, 7-18
orientation, 7-15, 7-16
packing, 7-15, 7-17

sizing, 7-15

spacing, 7-15, 7-18

spacing between children, 2-6

S

Sample program
compiling, 1-9
font selection, 3-22
simple, 3-2
Scale, 2-12
ScrollBar, 2-8, 2-11
ScrolledWindow, 2-11, 2-14
Secondary selection, 7-22
copying text, 7-29
Cut and Paste, 7-29
Sclection
primary, 7-22, 7-26
sccondary, 7-22
Selection area, 6-6
Sclection area, for option menus, 6-27
Selection policies, List, 7-11
SelectionBox, 2-19, 5-20
SelectionDialog, 2-21, 5-4
Separator, 2-8
Separator, compound string, 8-4
SeparatorGadget, 2-23
Setting argument values, 3-19
Setting font units, 8-44
Shadows, 3-17
Shell, 1-4, 1-6, 3-6, 4-2
appearance, 4-3
class, 4-2
private, 4-2
public, 4-2
widgets, 2-2, 4-1
Shell widgets, 2-4
Source code, xmfonts.c, 3-27
Specialized widgets, 7-1

Subclass, 11-3
Submenus, 6-4
creating, 6-21

T

Tab groups, 9-2
Tab groups, traversal, 9-3
Tag-length-value, 8-3
Text, 2-9, 7-1
compound string, 8-4
functions, 7-19
primary selection, 7-22
secondary selection, 7-22
widget, 7-19
Three-dimensional appearance, 3-17, 3-18
ToggleButton, 2-9
ToggleButtonGadget, 2-23
TopLevelShell, 2-4, 4-2
Trace routine, 10-6
TransientShell, 2-4
Translation, 11-3
Traversal, 6-29, 9-1
between tab groups, 9-3
with popup menus, 6-10
with pulldown menus, 6-17
within tab groups, 9-3
Tree, widget, 3-25

U

Universal character set, 8-3
Unmanaged widget, 2-24

Using dialog convenience functions, 5-4
Using dialogs, 5-4

Using Text widget, 7-20

Using the List widget, 7-3

Using Widgets, 3-1

V'

VendorShell, 2-4, 2-5, 4-2
Version number, OSF/Motif, 8-50
Visual attributes, 3-17

w

WarningDialog, 2-21, 5-4
Widget, 1-3, 11-3, 2-1
child, 11-1
class structure, 2-1
classes, 1-3, 2-1
composite, 11-1, 2-16
composite manager, 11-1
constraint, 2-16
container, 2-11
create, 2-1, 2-24, 3-1, 3-9
definition, 2-1
dialog, 2-17
display, 2-5
drawing areas, 3-17
hierarchy, 1-3, 3-25, 4-1
instance, 11-4, 2-1
making visible, 3-13
manager, 11-2
primitive, 11-3, 2-8
realize, 3-1
RowColumn, 7-14
shell, 2-4
simple program, 3-2
specialized, 7-1
Text, 7-19
tree, 11-4, 3-2, 3-10, 3-25
unmanaged, 2-24
using List, 7-3
using Text, 7-20
Widgets
argument lists, 3-8
categories, 2-2
shell, 4-1
using, 3-1
Widgets, dialog, 5-1

Index 5

and menus, 5-1
multiple-reply, 5-1
Single-reply, 5-1
Window manager presence, 8-51
WindowObyj, 1-4
WMSkhell, 2-4, 4-2
Work region, 2-11
WorkingDialog, 2-21, 5-4

X

X Toolkit error, 10-9
XmAddTabGroup, 9-2
XmArrowButton, 2-5

arrow direction, 2-6
XmArrowButtonGadget, 2-23
XmBulletinBoard, 2-18, 5-2, 5-6
XmCascadeButton, 2-21
XmClipboardCancelCopy, 8-17, 8-23
XmClipboardCopy, 8-17, 8-20
XmClipboardCopyByName, 8-17, 8-22
XmClipboardEndCopy, 8-17, 8-24
XmClipboardEndRetrieve, 8-17, 8-32
XmClipboardInquireCount, 8-17, 8-25
XmClipboardInquireFormat, 8-17, 8-26
XmClipboardInquireLength, 8-17, 8-28
XmClipboardInquirePendingltems, 8-17,

8-29

XmClipboardLock, 8-17, 8-33
XmClipboardRegisterFormat, 8-17, 8-34
XmClipboardRetrieve, 8-17, 8-31
XmClipboardStartCopy, 8-17, 8-18
XmClipboardStartRetrieve, 8-17, 8-30
XmClipboardUndoCopy, 8-17, 8-24
XmClipboardUnlock, 8-17, 8-34
XmClipboardWithdrawFormat, 8-17, 8-35
XmCommand, 2-19, 5-2, 5-7
XmCommandAppendValue, 5-9, 5-10
XmCommandError, 5-10
XmCommandGetChild, 5-11
XmCommandSetValue, 5-10
XmConvertUnits, 8-44
XmCreateBulletinBoard, 5-6

6 Index

XmCreateBulletinBoardDialog, 5-3
XmCreateCommand, 5-8, 5-9
XmCreateDialogShell, 5-5
XmCreateErrorDialog, 2-18, 4-2, 5-3, 5-20
XmCreateFileSelectionBox, 5-12
XmCreateFileSelectionDialog, 5-3
XmCreateForm, 5-14
XmCreateFormDialog, 5-3
XmCreatelnformationDialog, 2-18, 5-3,
5-20
XmCreateLabel, 2-24
XmCreateList, 7-1
XmCreateMenuBar, 6-2, 6-14
XmCreateMessageBox, 5-18
XmCreateMessageDialog, 2-18, 5-19
XmCreateOptionMenu, 6-2, 6-27
XmCreatePopupMenu, 6-2, 6-7
XmCreatePromptDialog, 5-3
XmCreatePulldownMenu, 6-2, 6-14, 6-21
XmCreatePushButton, 8-16
XmCreateQuestionDialog, 2-18, 5-4, 5-20
XmCreateRowColumn, 7-15
XmCreateScrolledList, 7-1
XmCreateScrolledText, 7-19
XmCreateSelectionBox, 5-21
XmCreateSelectionBoxDialog, 5-21
XmCreateSclectionDialog, 5-4
XmCreateText, 7-19
XmCrcatcWarningDialog, 2-18, 5-4, 5-20
XmCreateWorkingDialog, 2-18, 5-4, 5-20
XmDestroyPixmap, 8-42
XmDialogShell, 2-4, 5-2, 5-5, 5-6
XmDrawingArea, 2-11
XmDrawnButton, 2-6
XmFileSelectionBox, 2-19, 5-2, 5-11, 5-12
XmFontListAdd, 8-4, 8-6
XmFontListCreate, 8-4, 8-7
XmPFontListFree, 8-4, 8-7
xmfonts, 3-22
XmForm, 2-19, 5-2, 5-14
XmFormCreateDialog, 5-15
XmFrame, 2-11
XmGadget, 2-22, 2-23

XmGetMenuCursor, 6-34
XmGetPixmap, 8-41
XmInstalllmage, 8-40
XmIsMotif WMRunning, 8-51
XmLabel, 2-6
XmLabelGadget, 2-23

XmList, 2-6

XmListAddItem, 7-1, 7-11
XmListAddItemUnselected, 7-1
XmListDeleteltem, 7-1
XmListDeletePos, 7-1
XmListDeselectAllltems, 7-1
XmListDeselectItem, 7-1
XmListDeselectPos, 7-1
XmListItemExists, 7-1
XmListSelectItem, 7-1
XmListSelectPos, 7-1
XmListSetBottomItem, 7-1
XmListSetBottomPos, 7-1
XmListSetHorizPos, 7-1
XmListSetItem, 7-1
XmListSetPos, 7-1
XmMainWindow, 2-11
XmMainWindowSetAreas, 2-12
XmManager, 2-11
XmMenuShell, 2-4, 2-21, 6-3
XmMessageBox, 2-19, 5-2, 5-18
XmNmenuAccelerator, 6-11
XmNmenuCursor, 6-33
XmNmenuHelpWidget, 6-15
XmNmenuHistory, 6-27
XmNrowColumnType, 6-7, 6-14
XmNSeparator, 2-8
XmNsubMenuld, 6-15, 6-22

XmNwhichButton, 6-10, 6-17, 6-29

XmOptionButtonWidget, 6-27
XmOptionLabelWidget, 6-27
XmPanedWindow, 2-16
XmPrimitive, 2-5
XmPushButton, 2-7, 2-21
XmPushButtonGadget, 2-23
XmRemoveTabGroup, 9-2
XmRowColumn, 2-12, 6-3

XmScale, 2-12

XmScrollBar, 2-8
XmScrolledWindow, 2-14
XmSclectionBox, 2-19, 5-2, 5-7, 5-20
XmSeparator, 2-21
XmSeparatorGadget, 2-23
XmSetMenuCursor, 6-33
XmStringBaseline, 8-4, 8-8
XmStringByteCompare, 8-4, 8-8
XmStringCompare, 8-4, 8-8
XmStringConcat, 8-4, 8-8
XmStringCopy, 8-4, 8-9
XmStringCreate, 8-4, 8-9
XmStringCreateLtoR, 5-10, 5-19, 8-4, 8-9
XmStringDirectionCreate, 8-4, 8-10
XmStringDraw, 8-4, 8-10
XmStringDrawlmage, 8-4, 8-10
XmStringDrawUnderline, 8-4, 8-11
XmStringEmpty, 8-4, 8-11
XmStringExtent, 8-4, 8-11
XmStringFree, 8-4, 8-12
XmStringFreeContext, 8-4, 8-12
XmStringGetLtoR, 8-4, 8-12
XmStringGetNextComponent, 8-4, 8-12
XmStringGetNextSegment, 8-4, 8-13
XmStringHeight, 8-13
XmStringHeight , 8-4
XmStringInitContext, 8-6, 8-13
XmStringLength, 8-6, 8-13
XmStringLineCount, 8-6, 8-14
XmStringNConcat, 8-6, 8-14
XmStringNCopy, 8-6, 8-14
XmStringPeekNextComponent, 8-6, 8-14
XmStringSegmentCreate, 8-6, 8-15, 8-16
XmStringSeparatorCreate, 8-6, 8-15
XmStringWidth, 8-6, 8-15

XmText, 2-9

XmTextClearSelection, 7-19
XmTextGetEditable, 7-19
XmTextGetMaxLength, 7-19
XmTextGetSelection, 7-19
XmTextGetString, 7-19
XmTextReplace, 7-19

Index 7

XmTextSetEditable, 7-19
XmTextSetMaxLength, 7-19
XmTextSetSelection, 7-19
XmTextSetString, 7-19
XmToggleButton, 2-9, 2-21
XmToggleButtonGadget, 2-23
XmUninstalllmage, 8-41 -
XmVersion, 8-50
Xt Intrinsics, 1-3
initializing, 3-1, 3-6
XtAddCallback, 3-12, 3-21, 7-6
Defined, 3-12
XtAddCallbacks, 3-12
Defined, 3-12
XtAddEventHandler, 6-8
XtAppCreateShell, 3-8, 3-25, 4-2
XtArgVal, 3-20
XtCallbackProc, 3-11
XtCreateManagedWidget, 3-9, 3-10, 3-22,
5-5, 5-17
XtCreatePopupShell, 5-5
XtCreateWidget, 3-22, 5-6, 5-8, 5-12, 5-14,
5-18, 5-21, 7-1, 7-15, 7-19
XtGetValues, 3-21
XtGrabKey, 8-37
XtGrabKeyboard, 8-38
XtInitialize, 3-6, 3-7, 3-10, 3-25, 4-2, 8-16
Defined, 3-7
XtMainLoop, 3-13, 8-16
XtManageChild, 3-9, 5-5, 8-16
XtManageChildren, 3-22
XtNumber, 3-10, 3-20
XtOpenDisplay, 3-8, 3-25
XtRealizeWidget, 3-13, 8-16
Defined, 3-14
XtSetArg, 3-8, 5-17, 8-16
XtSetValues, 3-21
XtToolkitInitialize, 3-7, 3-25
XtUngrabKey, 8-37

8 Index

‘HP Part Number
98794-90005

Microfiche No. 98794-99005
Printed in U.S.A. E0989

()

HEWLETT
PACKARD

98794 -90k0k

For Internal Use Only

TN AT

