HP Series 200 Computers | () i

Pascal
System Designer’s Guide

CALL Sert_arra
PRINT FNSum_arra
END

SUB Build_arrav
PoX(*) 15 the

m~COmXm

OP & =
FOR loorp:=1 TO tor DO alrphal
WRITELN('TyprPe uppercase char
READ(Kev) s WRITELN 3

ﬁﬁ HEWLETT

PACKARD

Warranty Statement

Hewlett-Packard makes no expressed or implied warranty
of any kind, including, but not limited to, the implied
warranties of merchantability and fitness for a particular
purpose, with regard to the program material contained
herein. Hewlett-Packard shall not be liable for incidental
or consequential damages in connection with, or arising
out of, the furnishing, performance or use of this program
material.

HP warrants that its software and firmware designated by
HP for use with a CPU will execute its programming
instructions when properly installed on that CPU. HP does
not warrant that the operation of the CPU, software, or
firmware will be uninterrupted or error free.

Use of this manual is restricted to this product only.
Resale of the programs listed in their present form or with
alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in paragraph (b)(3)(B)
of the Rights in Technical Data and Software clause in
DAR 7-104.9(a).

N\

Pascal 2.0

System Designers’ Guide
for HP Series 200 Computers

Manual Part No. 09826-90074
Microfiche No. 09826-99074

© Copyright Hewlett-Packard Company, 1983
This document refers to proprietary computer software which is protected by copyright.
Allrights are reserved. Copying or other reproduction of this program except for archival
purposes is prohibited without the prior written consent of Hewlett-Packard Company.

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorporated

at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.

March 1983...First Edition

SDG-ii

Table of Contents

Chapter 1
Introduction
System Internals Documentation.
Fair Warning.
How to use this Documentation......... e
Differences between Releases 1.0 and 2.0.......
System Distribution. e
The CTABLE Program. e e e e
File System. e
Object Code Incompatibility. e
10 Drivers.
New Peripheral SUppOrt
Miscellaneous e e
Software Tools Used for System Generation...................
Assembler and Librarian. e
Pascal Compiler. e
Memory Allocation of Variables..........

Chapter 2
Peripheral Configuration
Introduction.
Def initions. ... e
Principles of Auto-Configuration. i,
Alternate Directory Access Methods. i
Selecting the Primary DAM. e
Comparison of LIF and Workstation DAMs
File Interchange between WS1.0 and LIF........
Supported Mass Storage Products. e
BASIC and Pascal File Interchange.........
Library Management
The Sustem LIBRARY e e
The INTERFACE File. e
The I0 File. . ..
The GRAPHICS File. e e
Adding Modules to the System LIBRARY.........
Notes and Possible Problems. i
INITLIB and Memory-Resident Modules.......
Notes on Various Modules. i e e e

Chapter 3
Modifying the Configuration
Introduction. e
General ProCEeSS e e
Commentary on the CTABLE Program. @ i,
Modifying Module OPTIONS. e e
Module CTR. e
Module BRSTUFF
Module SCANSTUFRF . . .
Discussion of the Main Body of CTABLE.
An Example Configuration. i i e

SDG-iii

Mass Storage SetuUp. e 38

Editing CTABLE 39
Compiling and Running CTABLE i, 4]
Verifying the New Configuration. 4]
Making the New Configuration Permanent....... 42
Hard Disc Partitioning. e e 43
SUMMATY .« o o e e 44
Chapter 4
SRM Set-Up
OV eV BW . . o 45
Booting. . .. 45
The System Volume. 45
SRM Initialization. 47
Chapter 5
Programming with Files
File Naming Conventions 61
File Specifications and File Names........« i, 6l
Syntax of a File Specification....... 61
Syntax of a Volume Identifier...... 62
Syntax of a Path Name. 63
Syntax of File Names. 64
File Types Derived From File Names.......... 64
File Names (LIF Directory) e 65
File Names (WORKSTATION 1.0 Directory) 66
File Names (SHARED RESOURCE MANAGER)........... 66
File Size Specification. 66
0P At L ONS . . L e 67
Pascal Primitive File Operations. i 67
File PoSition. 69
The Buffer Variable. B9
File States. 69
Creating New Files e 70
Disposing of Files. 72
Opening Existing Files. 72
Sequential File Operations. 73
Direct Access (Random Access) Files... 75
Textfile Input and Qutput e 76
Declaring a TEXT File. e 76
Representations of a TEXT File. 77
Formatted Input and Qutput. 78
Reading a STRING or PAC from a Textfile. 79
The Third Parameter. 80
SRM Concurrent File ACCESS. 81
SRM Access Rights 83
Debugging Programs Which use Files. 84
Chapter 6
The Booting Process
Introduct ion 85
Concepts of Linking and Loading......... 85
Overview of the Booting Process. i 87

How the Boot Files are Chosen. i . 88

Memory Map Development 89
Summary of the Booting Process. 100
The Pascal Kernel. 101
Refresher on Pascal Modules. 101
Modules in the Kernel. 103
Digression on a Trick. 105
Chapter 7
The File System
Introduction. 107
Representation of File Variables......... 108
High-Level File Operations. i, 109
The Access Methods 110
The Unit Table. 113
The Transfer Methods s 113
The Directory Access Methods. e 114
How the Access Method is Selected.................. 115
Fields of an FIB. 118
The Unitable. 126
The Fields of a Unit Entry....... 127
Chapter 8
File Support
Introduction. 133
Error Reporting by the File IO Subsystems.......... 142
File System EXpPorts. 144
Chapter 9
DAM’s
Reference Specification for DAM s 221
The Golden Rule for DAMs 222
Calling DAM s. . . . 222
The LIF Directory Access Method. 231
Implementation of LIFMODULE. s 233
LIF Directory File Names. i, 234
Routines within Procedure LIFDAM. 235
Details on Various DAM Requests............. 240
Chapter 10
File Operations
Introduction. 247
Filepack Examples. 248
Writing your Own Command Interpreter. 275
The Standard Command Interpreter........., 275
Creating a New Command Interpreter................ 276
Structure of the Command Interpreter...... i, .. 277
Sample Command Interpreter. 278

SDG-v

Chapter 11
CPU Interrupt Handling

Introduction. 281
Hooking in Your Own ISR. 286
A Cautionary Note. 287
Restrictions on Interrupt Service Routines.............. 288
Error Conditions "Thrown Away" 288
The "ISR in an ISR" Mistake. 288

Chapter 12
The Keyboa:d

Introduction. . . . o 291
Summary of Keyboard Capabilities........ 291
Keyboard Access with the File System.. 293
Echoing Read. 293
Non-Echoing Read. 294
The BeePer . . oo e 295
Easy-to-Use EXteNnsSioNs 295
Avoiding "Hanging Reads" 295
Timing with the System Clock. 296
Using the System Clock and Calender....... 296
Remapping the Keyboard. e 297
Here is What You Want to Know. i 298
KBDHOOK Status Byte. e 299
The Large Keyboard. e 300
The Small Keyboard. 301
An Example Keyboard Program. 303
Commentary on the Example. 306
Gritty Details of the Keyboard.. e 307
About the Electronics. e 307
Keyboard Microcomputer. 307
CLoCK . 307
Non-Detachable Keyboard Scanning.......... i 307
Detachable Keyboard Scanning. i 308
Circuits Common to both Keyboards........... 309
The Rotary Pulse Generator (Knob).......... 309
The Beeper. . . . e 309
Protocol for Keyboard Handling..... i 310
CommUNIiCAtion AdAresSes . . . i v e e 310
Interrupting the 68000. i 310
Sending a Command to the 8041 e 311
"Black Box" Description of Functions........., 311
Keyboard Command Processing.t 318
Processing an 8041 Service Request i, 320
Knob and Timer Details. e 321
The Keyboard at Power-up and Reset......... i 322
Pascal Interface to the Keyboard............ i i 323

SDG-vi

Chapter 13
Alpha and Graphics Displays

TntrodUCtion . . o o 325
Display Capabilities. 326
0836 ALDNA. 326
0836 Graphics. 326
0826 ALDNA. .. o o 327
0826 Graphics 327
G816 ALDPNA. . 328
9816 GraphicCs. 328
Alpha Screen Driver Considerations......... 329
Controlling Character Attributes........... i 329
The 6845 CRT Controller. e e 330
Registers 10 and 11 e 330
Registers 12 and 13. 331
Registers 14 and 15, e 332
Graphics Screen Driver Considerations.......... i 333
Pascal Access to the CRT e e 334
File System Operations. e e 334
SCrolling. . .o 335
Lower-Level Access to the CRT. i i 335
CUPrSOr MOt ioN. . . o 335
Interrogating the Dimensions of the CRT......... 336
Writing Directly to Screen Locations........... i 336
Fiddling with the Typeahead Buffer....... 336
Turning the Screens On and Off 337
Dumping the Alpha or Graphic Screens.......... 337
Chapter 14
The MISCINFO File
IntrodUCtion . . . o e 339
The Listing. e e 340
Chapter 15
Internal Disc Drives
Floppy Control Board. e 345
Theory of Operation. e e 345
Status and Control Registers. i 348
On-Board RAM (256 byte buffer) e 351
Commands and Status. i e e 352
Type I Command FLlags e e e 352
Type II Command Flags e e i e 353
Type III Command Flags. i e e e e e 354
Type IV Command Flags.t e e e e 354
Type I Commands ot e e e 355
Type I Commands 356
Type III Commands o e 357
Type IV Commands e e e 358
Status Information. e e 358
Programming Considerations. i 360

SDG-vii

Chapter 16
The Power-Fail Option

Introduction. 361
Features 361
Power-Fail Behavior. 361
Real-Time Clock. 362
Non-Volatile RAM. e 362
Interface to the 68000 363
Commands to the Battery. e 364
Pascal Programming Interface. 367

Chapter 17
Object Code Format

Introduction. 369
Purposes of the Object Code Format. 369
Definitions.......... . e 369

Structure of a Library File. 370
Library Directory 370
Module Directory 371

General Value or Address Record (GVR), 373
Flags . .. o 374
Reference Pointer 375
How a GVR is evaluated. 376
EXT Table (External Symbol Table)...... 376
DEF Table (Definition Symbol Table)..... 377
Define Source. e 378
TEXT Record. e 378
REF Tables. e 378
Miscellaneous Notes. 379

Chapter 18
The Boot ROMs

Introduction. 381

BVRIVIOW . . . o 382

Boot Formats e 383
ROM Headers 383
Boot Disc Formats. 387
LIF System File Format. e e 388
SDF Boot Area Format. e 391
UNIX (R) Boot Area Format. e 392
ROM/EPROM Pseudo-Disc Format. e 392
SRM System Files. 393

Default Mass Storage. 394

CPU Board PROM. .. . 398

Machine Configuration. 400
QY SFLAG e 401
SY S LAGZ . . . ot 402
BAT TERY . . 402
CRTID, CRT Presence, Graphics Presence......... 403
Keyboard. . . . 406
NDRIVES . . . 406
BOOT ROM Configuration and Revision...... oo, 406

SDG-viii

CPU State at Load. e 408

Read Interface and Secondary Loading......... 409
Flexible Disc Drivers. e 415
System Switching. 422

REQ _BOOT . . . 422

REQ _REBOOT 423

BOOT . . o 423
CRTINIT . . e e e 425
CRTCLEAR/CRTMSG e e et e e e e e e e e e 426
NMI _DECODE 428
CRASH . . 429
Character Table. 429
High RAM Map 430
Low ROM Map - Exception Vectors.t 433
Using Boot ROM Routines from Pascal..................., 435
Creating a Bootable System. 437

Guidelines for System Creation.. i, 437

Rules for Using the Boot Command................ 438

An Example. 439
Trap / Exception Vectors used in Pascal............... i .. 440

Chapter 19

Device 1/0
Introduction. 441
The Hardware View. 441
The Programmer View. 442
General ArchitectUre. 444

Main Data Structures............. 447

ISC_TABLE NV 447

Driver Read/Write. 450

Buffer Control Block........ 452
Driver Structure. 454
High Level Routines. s 457
Execution Walkthrough. 458

Power-Up . .. 458

Stop Key . o 459

Program Compilation and Execution............. 459
Low Level Dravers. 461

HP = I B . 461

GP IO . L 462

DM 462

Data Comm. 463
I70 Examples. 465

Using Special Buffers. 465
Remote Console Driver........... 466
Removal of Drivers. 493
Addition of a Driver. 494
Modification of a Driver. 498
End-of-Transfer Procedures. 499
Interrupt Service Routine Procedures................. .. 502

HP-IB Interrupts. 503

GPIO Interrupts. 509

Serial Interrupts........ T 514

SDG-ix

Chapter 20

The DIO Bus
INtrodUuCtion . . o o e 523
Db et AVES . . o 523
Designer’'s Responsibilities........ 523
Signal Terminology e 524
System Elements e 524
Bus Timing Background. e 526
Memo Y MaD 528
Series 200 Memory Map. 528
REGiSt OIS . . 531
Data TransSfers e 534
Data Transfer Signals. 534
Data Transfer OvervView. e e 535
Read Cycle Description. e e 535
Write Cycle Description. 538
Read-Modify-Write. e 541
Enable DTACK Timing. ot i e eeeeee 541
Direct Memory ACCESS . . .o ittt e e e 544
DMA Signals . .. 544
DMA DV VI W . . . e 544
DMA Output Cycle Description. e 545
DMA Input Cycle Description. it 547
DMA Speed Considerations. e e 549
Terminating DMA Transfers e e e 550
Bus Error Operation. e 551
The Bus Error Signal. e e 551
BUS TAMEOULS . . ottt e e 551
Interrupt Operation. i e e 553
Interrupt Signals. e 553
Interrupt Description. 554
Utility Signals. e 555
SigNAl s . .. e e e e 555
Reset Operations. e 555
Function Code Signals. e 556
Electrical Specifications.t e 557
Power Distribution and Grounding. vttt 557
Power Supply ToLlerances.t e e e 557
Power Requirements of Cards.......... ..t 558
On-Card Fuse Specifications. iy 560
Signal Loading.o e 560
Mechanical Specifications. i e 562
Specifications for Cards.......t 562
Card Cage Specifications. i 564
I/0 Card Coverplate. e e 565
Minimizing Electromagnetic Noise........ iy 565
PC-Board Layout RUles........ .. i i e e 566
Pin ASSignmeNnt S . . oot 566
Operation in the Bus ExXpander.............. i . 568
Features of the Bus EXpPander............ ittt 568
Operating Limitations With the Expander............... 568
DESigNn SUMMAIY . . ottt e e e e 569

SDG-x

I/0 Card Design Guidelines...............ooooornn e 569

I/0 Card Design EXample.oiirrrnnan e 569
Design QUalifiCation.ooouimrin e 575
Safety Compliance.ovouovmn e PP 575
Hardware Qualification.o 576
Software QUAlification.o enru ot 577

SDG-xi

Chapter 1
Introduction

System Internals Documentation
You are reading the System Designers’ Guide to the HP Series 200 Computers. It is one part of
the System Internals Documentation.
The Internals documentation includes:
¢ The System Designers’ Guide
® Pascal 2.0 Source Code Listings (Volume I)
® Pascal 2.0 Source Code Listings (Volume II)

The source listings provide you with examples of the actual code used in the creation of the
Pascal 2.0 Language System.

The System Designers' Guide is a collection of engineering notes and reference-specifications
describing the software interface to the hardware systems supported by Pascal 2.0. Inside you
will find detailed information covering a broad range of topics -- to quote one of the designers,
"Enough information to make you dangerous."

SDG |

Fair Warning

If you use the information in this document, you are writing hardware and operating-system
dependent programs which will, by definition, be hard to transport to other computers or
operating systems. The decision to do so, and the consequences, are your responsibility. Here are
some suggestions and observations which may help protect your investment in HP products.

Sometimes the competitive need to innovate will force system designers into really unpleasant
decisions which may invalidate code customers have written. Technologies are changing more
rapidly and radically than ever before; no one is wise enough to foresee or design for every
eventuality, and really big steps like transparent remote file access (the Shared Resource
Manager) are bound to create transportability problems.

Even if your application is written in "vanilla" Pascal and has essentially no system dependencies,
you might have to recompile it to move to a new release. (We try hard to avoid this!) But there is
an HP Pascal language standard; we do our very best to stick to it in letter and in spirit.

If your application accesses modules of the OS and fiddles with system variables or calls system
routines, there is more danger of creating a serious problem sometime in the future. However,
the module interfacing techniques used to build this system give considerable protection as long
as the program in question runs only under this operating system. So long as we aren’t forced to
change a module’s interface, your code should upgrade freely; even if we must change an
interface, you probably need only recompile. This is in sharp contrast to systems written in
assembly language, which are often dependent on addresses which change from release to release.

If you write an assembly language routine which accesses system variables, using hard-coded
displacements into the global area or some equally rigid arrangement, it is likely to create a
hassle someday. We encourage programmers -- our own included -- to approach assembly
language this way:

1. Write the whole application in Pascal first. Use system programming extensions if need be.
Don’t worry about speed, most people are amazed by the computational performance of the
68000.

2. If some part of the application is too slow, think carefully about the options to improve it.
For instance, suppose the program repeatedly reads a voltmeter and seems to take longer
than can be tolerated. If you are using the highest level of the IO Library, you’re driving a
luxury car. It is very easy, but it wallows around the curves. You might process the
voltmeter readings as fixed-point numbers (scaled integers) instead of floating point, and do
character 10 directly by calling a lower level of the IO Library, thus avoiding some
overhead.

Going to a lower level entry into the system is an option which doesn’t exist with most
interpreted systems. The advantage of this route is that by directly importing the
lower-level modules, you let the Compiler take care of resolving the interfaces. If things
move around, you need only recompile to adapt.

3. If you decide you must write assembly code, design your routines so that they operate only
on parameters passed in, without side effects on variables in other modules. It is often wise
to use the information in the Assembler chapter of the Pascal Language System User’s
Manual to make your assembly code look like code generated by the Compiler.

This warning is not intended to give you a warm, fuzzy feeling; it is intended to be fair. We have
had enough requests for this information to believe that meets a need. But before diving in, be
sure you can afford the swim.

SDG 2

How to use this Documentation

This documentation consists of three books: the one you are reading, a volume of system listings
written in HP’s system programming dialect of Pascal, and a volume of assembly language code
which also includes a cross-reference of the Pascal portions.

Be aware that these source listings are proprietary material and are protected by copyright. They
are provided for reference purposes only.

These listings are NOT complete -~ they cover those parts of the system which we wanted to
make accessible to customers, and suppress other parts. What is presented in detail is: IO drivers
and underlying software support architecture; interrupt handling; object code format and the
process of linking and loading programs; memory maps and development of the execution
environment.

Other levels of the system are documented only at their interfaces. For instance, the file support
level (routines called by the compiler) is documented by specifying the procedures which can be
called, and what the stack should look like upon entry. This should simplify interfacing other
compilers to the OS.

Low-level manipulations of files are performed by calls to "Directory Access Methods" (DAM’s)
and "Access Methods" (AM’s). The architecture of this level is discussed, and there are detailed
examples showing how to program the most important operations.

The purpose of this document is to tell you how to write programs which "get inside" the
machine and make it do some very specialized things. The document is not primarily a hardware
guide, although there is a goodly amount of material on the hardware. A typical reason for using
the information published here might be to write and install a device driver for a non-HP IO
interface card.

We did not concentrate on documenting the Series 200 family at the lowest (hardware) level
primarily because we felt that most customers would be best served by building on the software
base we have created. We believe you will be better off, for instance, using our disc drivers than
trying to write your own. OQurs were written by experts, and they protect you from ruining
expensive disc drives. Moreover, we have provided a uniform interfacing structure. If new mass
storage products are added and you are using the Pascal support structures, your programs should
be able to use the new products right away. Another example is the HP-IB interface. It can be
made to do some simple things fairly readily, but to explain all its idiosyncrasies and strange
states would take more doing than seems justified by the requests we have had for information.

To use this material successfully, you must be a good Pascal programmer, acquainted with the
concepts of system programming, and familiar with OS design principles in general. You should

have read and understood the contents of

® Pascal Language System User's Manual (concentrate on modules, system programming
language extensions)

® Pascal Procedure Library User's Guide (know the concepts of physical device 10)

® MC68000 User's Manual (know your computer)

Generally, this documentation has been written in a style that requires you to read it rather
than just use it for reference.

SDG 3

Differences between Releases 1.0 and 2.0

This material describes the internal organization and specifications of release 2.0 of the Pascal
language system for HP Series 200 desktop computers.
There are very substantial differences between the internal structures of the 1.0 and 2.0 releases,
so this material is not a good guide to the innards of Pascal 1.0; to use it that way would be very
misleading. Don’t try.
The main differences between the releases are:

® Organization of Discs on which the System is Distributed

® Peripheral Configuration (CTABLE Program)

® File System

® Object Code Incompatibility

® 10 Drivers

® New Peripheral Support

® Miscellaneous

Each of these issues is discussed in the following sections.

SDG 4

System Distribution

The Pascal 1.0 software was distributed on a set of four discs. The system library file contained
the entire complement of IO, Graphics and OS interface modules. The system as booted up by the
user contained IO driver software for all supported peripheral devices.

Pascal 2.0 is distributed on six discs. The system library file is almost empty, and the IO, Graphics
and OS interface modules are supplied on a separate disc. The user can put just the ones he wants
into his system library. The system as supplied contains IO driver software for the most common
peripherals but not for all; this was done to conserve memory for the average user, since Pascal
2.0 supports many more peripheral devices. The less commonly needed drivers are supplied on a
separate disc.

Consequently, before compiling or running programs which do device IO or graphics, the
required modules should be added to the system library. Similarly, to configure a system to use
certain peripherals, the Librarian must be used to install the required driver software.

Documentation is provided which explains how and when to install optional software into the
system library and the Operating System.

The CTABLE Program

Pascal 2.0 scans interfaces for various peripherals and automatically configures itself. This is a
considerable improvement over the 1.0 release. Auto-configuration is discussed in the next
chapter.

In this regard, the most important change is that HP’s Logical Interchange Format (LIF)
directory structure is now the primary disc organization for Pascal 2.0, as opposed to the
directory structure used by Pascal 1.0. This does not mean that Pascal 1.0 discs are inaccessible,
or even that you need to convert them. Pascal 2.0 can be configured to used either directory
format. See the next chapter for details.

File System

The Pascal 1.0 file system was only able to cleanly handle a single directory organization. We
provided a library of routines to access Logical Interchange Format (LIF) discs, but they were not
integrated into the file system.

As will be explained, the LIF library is not present in the system you just received; it is no longer
necessary. The Lfiler (LIF Filer) is also unnecessary and has gone away, since the standard system
Filer can now do the job. The 2.0 Filer is a completely new program, although its surface
behavior is like the 1.0 Filer.

The 2.0 file system is completely reorganized. It has been broken into levels called File Support
(FS), Directory Access Method (DAM), Access Method (AM) and Transfer Method (TM). This new
organization allows the system to handle any number of different directory formats, and
separates out the processing of each type of file structure which is supported. In fact, a customer
can invent a new directory format or file type and bind it into the system so it can be used by
all programs.

SDG 5

The Directory Access Methods now supported are: Workstation 1.0 compatible (same format as
Pascal 1.0), HP Logical Interchange Format, and Shared Resource Manager hierarchical
directories. All these directory organizations are available through normal Pascal file operations.
Old files (generated under Pascal 1.0) are all still fully useable. However, the new system can
generate files and discs which cannot be properly interpreted by the old file system. In particular
the 1.0 system could generate and process directories having either 77 or 233 entries; 2.0 can
generate directories with an arbitrary number of entries.

The names of system files have been changed. This was necesary because they were longer than
allowed for the LIF directory format. We wanted customers to be able to run completely under
LIF if they wish, for compatibility with BASIC. The name changes are:

Pascal 1.0 file names Pascal 2.0 file names
SYSTEM. LINKER ==)> LIBRARIAN
SYSTEM.EDITOR ==> EDITOR
SYSTEM.FILER ==> FILER
SYSTEM.COMPILER ==)> COMPILER
SYSTEM.ASSMBLER ==)> ASSEMBLER
SYSTEM. LIBRARY ==)> LIBRARY
SYSTEM.TABLE ==) TABLE
SYSTEM.INITLIB ==) INITLIB
SYSTEM .MISCINFO ==) MISCINFO
SYSTEM.STARTUP ==> STARTUP

Object Code Incompatibility
Note

Because of the many file system changes, object code compiled
under Pascal 1.0 will not run under release 2.0, and in fact
can’t even be loaded.

It is also incompatible in the other direction. This means programs need to be recompiled to be
run under Pascal 2.0. The requirement of recompilation was unavoidable in order to cleanly
support remote file access (Shared Resource Manager).

If Pascal 2.01is configured to use the Workstation 1.0 directory organization as the primary

directory type, recompilation should be all that’s necessary. If you want to use LIF directories, in
some cases file names used by a program may have to be shortened.

SDG 6

10 Drivers
Some reorganization has occurred in the drivers themselves, necessitated by the new concept of
Transfer Method. In release 1.0, some drivers were not properly part of the IO Library -- there
existed some short-circuit paths. This has been corrected, and the structure of all drivers
regularized. Also, new drivers have been added to support new peripherals.
New Peripheral Support
The following peripherals are supported by Pascal 2.0.

® The CS-80 discs (7908 family) are supported, including the streaming backup tape drive.

e The Shared Resource Manager is fully supported.

e The 8920x and 9121 flexible disc drives are supported.

e Several new versions of the 9134 micro~Winchester disc are supported. They look like one
big medium instead of four smaller ones.

Certain more obscure features are supported, too. For instance, the 2.0 system can be fairly easily
tailored by the customer to run from a terminal instead of the built-in CRT and keyboard.

Miscellaneous
Supervisor vs. User State

Pascal 1.0 ran all programs in the 68000’s "supervisor mode". User programs now run in "user
mode", using the USP (User Stack Pointer). Interrupts run in "supervisor mode", using the SSP.
This would affect programs which were written to call routines in the Boot ROM. Since the Boot
ROM entry points were not documented in the 1.0 system, few if any customer programs will be
affected.

Global Space

Up to 65k bytes of global space is now available. This change involved a redefinition of the use
of register A5, which now points to an address 32k bytes BELOW the start of globals rather than
above the first global variable. Consequently, routines in the Boot ROM cannot any longer be
called directly; a small interfacing routine is now required to set up the registers and fool the
TRY-RECOVER mechanism. If you don’t understand that, it isn’t important at this time.

SDG 7

Software Tools Used for System Generation

Before wading into the deep water, some mention should be made of the software tools used to
generate Pascal 2.0.

Assembler and Librarian

The Assembler and Librarian supplied with your system are the same ones we ourselves used to
generate the system. At the end of the section of this document describing the Boot ROM:s is an
example using the Assembler and Librarian to create a bootable disc.

Pascal Compiler

The Compiler supplied with your system is not the same one we used; but we believe it will be
able to do everything you will need to do.

The Compiler we used differs from the one you received in that it supports a few language
extensions which are enabled by the directive $MODCALS. "Modcal" is the name of a system
programming language used within Hewlett-Packard.

Most of the Modcal features can be enabled in your Compiler by the directive $SYSPROGS.
These system programming features are described in the Pascal Language System User's Manual
Compiler chapter.

The remaining Modcal features (not enabled by $SYSPROGS) are used rarely or not at all in the
Pascal 2.0 system. We don’t want to use them, if it can be avoided, because some of these features
are experimental or architecture-dependent and may not survive the tests of time, acceptance
and standardization.

In addition to information about $SYSPROGS extensions, the Pascal Language System User's
Manual also discusses how Pascal uses the stack for parameter passing and access to non-local
variables. This is useful information if you want to call an assembly language routine. The User’s
Manual chapter on the Assembler has examples.

SDG 8

Memory Allocation of Variables
In a system programming context, sometimes it is useful to know how the Compiler will allocate
space for variables in memory. The 68000 processor is sensitive to the address alignment of

variables in some cases. Here are the rules the Compiler follows in laying out variables.

® Arrays: Alignment is always 2 (that is, arrays are aligned to even addresses -- word
boundaries).

e Records: A record which is part of a packed structure is itself not packable; within the
containing structure, the record’s alignment will be 1 (any byte boundary) if the entire
record fits in a single byte; otherwise alignment will be 2. If the fields of the record are
themselves packed, its alignment will be 2.

® Sets: Sets are not packable. Alignment is 2.

e Pointers: Not packable, alignment is 2.

® Chars: Packable, alignment is 1. Packed size is § bits.

¢ Booleans: Packable, alignment is 1. Packed size is 1 bit.

® Enumerated scalars needing less than 17 bits: Packable, alignment is 2. Unpacked size is 16
bits, packed size is number of bits needed.

e Scalars needing 17 or more bits: Packable, alignment is 2. The packed field must be
accessible in one long (32 bit) move. This may force the packed field to be aligned on an
even byte boundary. Unpacked size is 4 bytes.

® Integers: Integers get 32 bits and are not packable. Alignment is 2.

The Compiler directive $STABLESS causes the Compiler to print out a description of the space
allocated for types and variables in a program. Use it if in doubt.

When writing system code, it is usually perfectly reasonable to enable SDEBUGS and use the
Debugger to step through your stuff. However, this won’t work well for interrupt routines!
Likewise SRANGE ONS$ and $STACKCHECK ON€§ are generally reasonable during debugging.

In fact, it may be undesirable to ever disable stack overflow checks.

You will almost surely want to specify SIOCHECK OFF$ in system code.

SDG 9

SDG 10

Chapter 2
Peripheral Configuration

Introduction

When Pascal 2.0 boots up, it determines what peripheral devices (local and remote mass storage
devices, printers) are connected to the computer, and makes them accessible to the File System.
This service is called "configuration", and is performed by a program called TABLE which
executes while the system is booting.

Pascal 2.0 is self-configuring, which means no special action is required for the system to
recognize most peripherals. In other words, this section explains a subject which most users need
not worry about.

Note

Pascal 1.0 users should read this section because Pascal 2.0
will, unless told otherwise, pick the wrong disc directory
organization for your existing discs. This is discussed later
under the subheading: Alternate Directory Access Methods.

Overriding the automatically produced configuration, although not normally necessary or
desirable, is explained in the next section.

Definitions

® Peripheral: an 10 device such as a printer or disc. Devices such as plotters and digitizing
tablets are also peripherals, but they are accessed through the IO library rather than the
Pascal file system. For the present discussion we use the term to refer only to devices
accessible through File System operations.

® Interface: the electronic circuitry which connects the computer’s high-speed internal bus to
lower speed physical peripheral devices. Interfaces are either built-in, like the standard
HP-IB (IEEE-488) port at the back of your computer, or plug into the IO backplane. Most
of the peripherals supported by the Series 200 Computers are designed to connect through
an HP-IB interface.

® Select code: a number between 0 and 31, the "address” or name by which an interface is
identified and referenced. When a peripheral operation is performed, it takes place through
an interface which is said to be "on a select code". Most interface cards which plug into the
10 backplane have switches which can be set to indicate the select code to which the
interface will respond. The built-in interfaces have fixed select codes.

SDG 11

¢ Bus address: when several peripherals are connected to the same HP-IB interface, a bus
address is required (in addition to the select code) to designate the particular peripheral
referenced by an IO transaction.

® Device specifier: by convention in the Pascal, BASIC and HPL systems, when select code and
bus address are used together to address a peripheral they are concatenated into a single
number. Thus the device at address 1 on select code seven is referenced as "701", which 1s
derived by multiplying the select code by 100 and adding the address. NOTE: some HP
products contain, within a single package, several peripheral devices which must be
addressed separately.

® Boot device: the peripheral where the Boot ROM found and loaded the Pascal operating
system. The newer Boot ROMs have a complicated search pattern which allows booting
from just about any drive in any HP mass storage product, including the Shared Resource
Manager.

® Volume: a volume is 4 named mass storage medium or a named, unblocked file device such
as a printer. The name of a mass storage volume is found in its directory; the name of an
unblocked device is found in its Unit Table entry. There may be several volumes on one
physical storage medium. The volume may be mounted (in a disc drive) or not.

@ Unit Table: the Pascal system provides for up to 50 units, designated #1 through #50. They
are represented by a 50-entry array called the Unit Table or "Unitable". Each entry fully
specifies the association of one logical unit to a physical peripheral, with such information
as the device specifier and driver procedures to be used for IO operations to the unit.

® Unit: an entry in the Unit Table.

® System volume or System unit: the Pascal system distinguishes one mass storage unit to be
used for special purposes. This "system volume" is where the date and any AUTOSTART
file are found at boot time, where the system looks first for special files such as the
Compiler and Editor, where Workfiles are stored, and where an intermediate file is stored
during interpretation of a Stream (command) file.

® Directory Access Method or DAM: each mass storage unit has a directory describing the
files it contains, the type of each file and so forth. Many different directory organizations
are used within HP, and data on a disc can’t be interpreted properly unless it is accessed
using the correct Directory Access Method. Pascal 2.0 supports three DAMs: the
"Workstation" format compatible with Pascal 1.0 systems; HP’s "Logical Interchange
Format" or LIF directory; and the Shared Resource Manager’s hierarchical directory.

The purpose of the Corfiguration Process is to fill in entries of the Unit Table so it correctly
associates logical units with peripheral devices and the software required to drive those devices.

SDG 12

Principles of Auto-Configuration

The approach to auto-configuration is straightforward. First, interface select codes 7, 8, and 14
are scanned; on each select code, if an HP-IB interface is present then bus addresses 0 to 7 are
interrogated for peripheral devices. (Select code 7 is the built-in HP-IB port. Most HP
peripherals identify themselves when asked politely.)

In the Unit Table, certain unit numbers are preferentially auto-configured to particular devices.
If an interesting peripheral is found, it is assigned to its preferred unit number. Hard discs are a
special case. Auto-configuration assumes at most one hard disc will be present, and if a hard disc
is found, it is partitioned into several volumes which are assigned consecutive unit numbers
beginning with #11. The size of each volume and the number of volumes depends on the type of
disc.

Even though the Pascal workstation by default partitions its hard discs into multiple logical
volumes, currently no other mainframes or operating systems do. Because of this there is an
exception to the automatic partitioning: if the first directory exists, but one or more of the
remaining directories do not, then auto~configuration will treat the disc as a single volume. This
allows direct interchange of data with other systems via hard discs, notably, interchange with HP
BASIC. BASIC always initializes discs so that there is a single volume on the medium.

Auto-configuration observes the rule that the device from which the system booted should be
accessible, even if its preferred unit assignment would have otherwise been overridden by a
higher~-priority preference for some other peripheral.

Finally -- the System Unit is chosen according to the rule that it should be the unit from which
Pascal booted, unless the boot device is some variety of 5.25-inch or 3.5-inch medium; in that
case, it is selected from among the mass storage units by a scheme which prefers bigger, faster
discs if they are present. The precise pecking order is: hard disc, 9885 drive 0, 9895 drive O,
Shared Resource Manager, 5.25-inch built-in disc drive 1, 5.25-inch built-in disc drive 0.

Note

The "left" and '"right" drives: in the 9826 and 9836
mainframes, the right-hand or only drive is drive zero; the
other is drive one. But for peripherals with two identical
drives in an external package, the left-hand drive is drive
zero! This applies to the 8290x series, the 9895, and the 9121.

SDG 13

The resulting configuration is covered by the following table:

Unit Nominal assignment
1 CONSOLE: the CRT (built-in display)
2 SYSTERM: the keyboard
3 right-hand minifloppy (drive 0)
or 8290x minifloppy {drive 0)
or 9121 microfloppy (drive 0)
4 left-hand minifloppy (drive 1)
or 8290x minifloppy (drive 1)
or 9121 microfloppy (drive 1)
5 Shared Resource Manager (remote mass storage)
6 PRINTER: the system printer
7 09895 floppy disc (drive 0)
8 9895 floppy disc (drive 1)
9 9885 floppy disc (drive 0)
10 0885 floppy disc (drive 1)
11-40 hard discs
41 tape backup device in CS/80 (7908-family) discs
43 same device as unit #3, but alternate DAM
44 same device as unit #4, but alternate DAM
45 SRM system volume if appropriate
47 same device as unit #7, but alternate DAM
48 same device as unit #8, but alternate DAM
49 same device as unit #9, but alternate DAM
50 same device as unit #10, but alternate DAM

Units #1 through #6 are assignments which are not intended to be changed, regardless of the
rest of the unit assignments. Even if you ultimately generate a non-standard configuration, you
ought to leave these assignments alone. (Actually even these units can be reassigned, but lots of
programs are written to depend on the standard assignments.)

The purpose of units #43, #44, #47, #48, #49 and #50 is explained in the next section. The
hard disc units are discussed in more detail later.

SDG 14

Alternate Directory Access Methods

The files on a disc are found and accessed by means of a directory which describes where the
files are located, how big they are, what types of data they contain, and so forth. The directory is
of course stored on the disc itself. There are many reasonable ways to organize discs, depending
on one’s purposes; these alternative organizations are called "Directory Access Methods”, or
DAMs. A disc can be read or written by the File System only if the correct DAM is used.

Pascal 2.0 supports three disc organizations: the Pascal 1.0 "Workstation" format, HP’s Logical
Interchange Format (LIF) and the Shared Resource Manager’s hierarchical directory structure.
The DAM used for each logical IO unit is selected by the TABLE configuration program
executed at boot time. (To be more precise, the SRM DAM is supported in the SRM itself; what
Pascal supports is the communication of DAM requests to the SRM.)

Of these three DAMs, the SRM method can only be used with remote mass storage over an SRM
hookup. The other two methods can be used with any local mass storage device.
Auto-configuring selects one as the "primary" DAM, the other as “secondary". (Sometimes the
word "alternate" is used instead of "secondary") The primary DAM is the one used for units #1
through #40 (except #S5, auto-configured as the SRM unit). The secondary DAM, used by units
#43, #47, #48, #49 and #50, is available to allow discs in the secondary format to be used by
Pascal programs and the Filer utility.

The secondary DAM is in no way restricted from normal use by the File System; discs in the
secondary DAM units are directly readable and writeable by Pascal programs.

If Pascal 2.0 is booted up just as shipped, the primary DAM will be LIF. In this case, Pascal 1.0
discs must be accessed through the alternate DAM units. To make the Pascal 1.0 format the
primary DAM, do the following:

1. Boot up the original system as supplied.

2. Use the Filer’s "F" (Filecopy) command to copy SYSVOL:CTABLE1.0 to BOOT:TABLE

3. Turn power off and reboot the computer.

To return to using LIF as the primary DAM, use the Filer to copy CONFIG:CTABLEZ2.0 to
BOOT: TABLE.

SDG 15§

Selecting the Primary DAM

If you are a new user and have no existing discs in the Workstation directory format, we
recommend that you use the system as supplied, with LIF the primary DAM. LIF is an HP
corporate standard for information interchange among computer systems.

If you have discs generated by Pascal 1.0 you may change the primary DAM as just described, or
access them through the limited number of alternate DAM units, or transfer your files to new
LIF volumes. The choice is primarily one of convenience, although in the long run there may be
some advantages to LIF. Since Pascal programs which ran under the 1.0 release must be
recompiled to run under Pascal 2.0, you may choose to convert your discs as well.

The boot disc must have a LIF directory unless the boot device is a Shared Resource Manager.

Comparison of LIF and Workstation DAMs

In both DAMs, all the space allocated to a single file is contiguous. Consequently, if the free disc
space is fragmented, either DAM may be unable to create a new file of a specified size even
though there is enough total free space on the disc.

In either DAM, it may not be possible to extend (append to) an existing file even if the disc
volume has some free space. A file in either DAM can only be extended if there happens to be
free space immediately following the file. Appending to files was not allowed at all in the Pascal
1.0 release.

The case of letters is significant in LIF file identifiers; the file called ’Charlie’ is not the same as
‘charlie’. Case is not significant under the Workstation DAM (more precisely, file names are
automatically converted to upper case in Workstation disc directories). The same comments apply
to volume names in the two DAMs.

Workstation DAM file names may be up to 15 characters long. LIF names are restricted to 10
characters. In many cases this difference need not need not be a problem. Most file names used
by the Pascal system end in a five-character suffix such as “CODE’ ; hence the useful part of
such names is 10 or fewer characters. The LIF DAM implementation encodes recognized
standard suffixes into the "tail" of a LIF file name, so that 9 characters are available for the
significant part of the name. This encoding is transparent, as is the decoding back into the full
suffix when necessary. It is done using the programming technique called "mirrors".

SDG 16

File Interchange between WS 1.0 and LIF

Exchanging files between Workstation 1.0 volumes and LIF volumes is possible.
The general process is as follows:
1. Invoke the Filer by typing: F while at the Command prompt level.

2. Put the source disc in a drive configured for its type of DAM, and the destination disc in a
drive configured for its DAM.

3. Use the Filer’s F (Filecopy) command to move files from one disc to the other. The Filer

commands will work with either DAM.

Note that the alternate-DAM units allow either DAM to be used in the same drive. For instance,
you can transfer a file from #43 to #3, both of which are assigned to the right-hand minifloppy
drive in a 9836 or 9826. Example Filer command:

F #43 .CHARLIE.TEXT,#3:$

The Filer will tell you to when to swap discs.

Remember: the name of a file in a Workstation disc may be too long for LIF; you may have to
invent a shorter name.

By the way, it’s a good idea to develop the habit of using uppercase letters in the names of LIF
files. LIF file name suffixes must be uppercasel

Note

Directories created by the Pascal 1.0 Workstation have either
77 or 233 entries, whereas WS1.0 directories created by Pascal
2.0 have a variable number of entries specified by the user.
Thus you can use Pascal 2.0 to create WS1.0-format discs
which aren’t readable by the Pascal 1.0 system, whereas all 1.0
directories are readable by 2.0.

SDG 17

Supported Mass Storage Products

There are two general types of discs supported by Pascal 2.0; "flexible" discs (floppy discs) and
"hard" discs (fixed discs).

The flexible disc drive products supported by Pascal 2.0 are:

® Built-in minifloppy drives (9826 and 9836)

e 8290x 5.25" minifloppy drives

® 9121 3.5" microfloppy drive

o 9885 8"single-sided disc

e 9895 8"single or double~sided disc

The following table shows which hard disc products can be used with the Pascal 2.0 system. The
table also shows that more than one logical unit will be allocated to each disc when the system
auto-configures itself. In these cases the disc has been partitioned into several non-overlapping
volumes, and the table indicates the size of each volume in sectors. A sector is 256 bytes.

If an application requires larger volumes, it will be necessary to override the automatic
configuration parameters as described later in this chapter.

product
identifier

9134A/9135A
9134A/9135A

(opt. 10)
9134B/91358B
9134C/9135C

7908
791
7912

volumes
assigned space per volume in sectors

11-14 4500 (looks like 4 drives)
{looks like 1 drive w/4 vols)

11-14 4712

11-19 4185 except #19 = 4340 sectors

11-24 4052 except #24 = 4054 sectors

11-26 4025 except #26 = 4375 sectors

11-37 4032 except #37 = 4992 sectors

11-40 8512 except #40 = 9408 sectors

SDG 18

BASIC and Pascal File Interchange

You may wish to exchange data between the BASIC and Pascal environments. There are a few
rules you should follow.

1. Pascal and BASIC treat LIF directories on flexible discs similarly. ASCII text files are
intended to be read by both systems.

2. It was mentioned earlier that Pascal compresses the suffix of user file names in order to
effectively allow longer file names. BASIC doesn’t know about compressed names, so the
BASIC program needs to invert the compression algorithm. This is very easy, and is
described in the chapter, "Programming with Files". Essentially, Pascal chops off the dot
and the suffix, then appends the first letter of the suffix and enough trailing underscores
("™ to make a 10-character name. Thus XXX.TEXT becomes XXXT which is the
name BASIC will see.

3. BASIC can’t deal with more than one LIF directory on a disc medium; Pascal, unless told
otherwise, wants to divide large discs into several volumes each with its own directory.

If a disc is initialized by BASIC, Pascal and BASIC will both see the disc as one very large
volume. Pascal’s preference to partition the disc is overridden by what BASIC actually did.

If a disc is initialized by Pascal and partitioned into multiple volumes, BASIC will only see the
first volume and will not be able to access any part of the disc beyond the first volume. Pascal

will see all the volumes.

See the next chapter for information on forcing Pascal to treat a partitionable disc as a single
volume.

SDG 19

Library Management

A library is a file produced by a language processor such as a Compiler or Assembler, or by the
Librarian. Libraries contain zero or more modules of machine code ready to link or relocate. The
concept of a code module is discussed extensively in the Pascal Language System User's Manual
in the chapters which describe the Compiler and Librarian.

This presentation assumes you are familiar with that material and discusses management of two
system libraries of particular importance, called LIBRARY and INITLIB.

When a code file is loaded into memory (to be run or to be kept resident via the P command), it
usually contains "unsatisfied references" to code and data objects not included in the file itself.
The linking loader follows a predetermined search pattern in looking for these objects. First it
looks in the modules currently resident in memory, most recently loaded modules first. Then it
looks in the system LIBRARY file.

If any objects a program needs cannot be found by this search, the missing items will be listed on
the CRT with a message that "The above external references were unsatisfied."

LIBRARY usually resides on your system volume, although the Command Interpreter’s "What"
command can be used to specify otherwise. The one provided on your SYSVOL disc is a very
minimal library; additional modules for Graphics and Device 10 are supplied on the LIB disc, and
should be added to your system LIBRARY before you try to compile or run most Graphics or
IO-oriented applications. This section tells how to add stuff to your system LIBRARY.

The INITLIB file contains modules which are automatically made resident when the computer is
"booted up", primarily software required to run the File System and peripheral devices such as
printers and disc drives; the system LIBRARY file contains modules which are used more
occasionally and therefore are loaded on demand.

INITLIB lives on the BOOT disc (where else?). As supplied with your system, it contains software
support for the most commonly used peripheral devices. The disc called CONFIG contains several
more libraries which you must add to your INITLIB if you plan to use certain less common
peripherals. This section also tells you how to add stuff to INITLIB.

SDG 20

The System LIBRARY

As supplied on your original discs, the system LIBRARY contains just four modules:

RND Random number generator.

HPM Heap management (new/dispose).

UIo Unit IO (UCSD Pascal compatible low-level IO0).
LOCKMODULE Interlock code for multiple access to shared files.

("UCSD Pascal" is a trademark of the Regents of the University of California.)

The LIB disc contains three more library files with modules you can add to LIBRARY if they are
needed. Almost all the procedures in these modules are described in the Pascal Procedure Library
User's Manual. They are not in the standard LIBRARY so the SYSVOL disc doesn’t get
unnecessarily crowded, and also to simplify future enhancements. These files are called
INTERFACE, 10 and GRAPHICS.

The INTERFACE File

The modules in this file contain no object code at all, only interface specifications for the
Compiler to read when the modules are IMPORTed. The actual object code is always found in
memory by the linking loader; it is part of the Operating System kernel or INITLIB. To use these
modules successfully you need information found later in this manual

For reference, the modules in INTERFACE are:

ASM KBD
SYSGLOBALS INITKBD
MINI KEYS
BOOTDAMMODULE KEYSINIT
LOADER CRT
INITLOAD INITCRT
ISR BAT

MISC INITBAT
FS CLOCK
INITUNITS INITCLOCK
LDR CI
SETUPSYS CMD

SDG 21

The 10 File

This file contains almost the entire Pascal Device IO library; the only parts not in this file are
always resident, loaded from INITLIB. The modules of the IO library which are always resident
and therefore not in this file are:

IODECLARATIONS
I0COMASM
IOLIBRARY_KERNE
GENERAL_O

The modules in IO are:

GENERAL_1 HPIB_0 SERIAL_O
GENERAL_2 HPIB_1 SERIAL_3
GENERAL_3 HPIB_2
GENERAL_4 HPIB_3

The Pascal Procedure Library User's Manual is the reference document for the IO library, and
details what modules are needed i:i order to provide various 10 capabilities. Here are some useful
hints:

® GENERAL_1, GENERAL_2, GENERAL_3 and HPIB_1 cover most of the commonly used IO
facilities. These modules are also required by the Graphics library.

® GENERAL_4 adds the "Transfer" capability (buffered, overlapped transfers of blocks of data).
© HPIB_0, HPIB_2 and HPIB_4 provide various levels of HP-IB (IEEE-488) capability.

e SERIAL_0, SERIAL_3 provide IO through the 98628 "smart" data communications card, the
98626 "dumb" RS-232 card and the "DATA COMMUNICATIONS" port on the back of the
9816 mainframe.

The GRAPHICS File

This file is the Device-independent Graphics Library, or "DGL". The capabilities provided are a
compatible subset of the capabilities found in the HP-1000 series minicomputer DGL
implementation. DGL is also described in the Pascal Procedure Library User's Manual.

The modules in GRAPHICS are:

DGL_TYPES
DGL_VAR
DGL_ARAS
DGL_RAS
DGL_MAIN
DGL_LIB
DLG_INQ

SDG 22

Adding Modules to the System LIBRARY

Adding files to LIBRARY is a straightforward exercise in using the Librarian -- see the relevant
chapter of the Pascal 2.0 Language System User's Manual if you don’t know how. Actually, one
never "adds" files to a library; instead, a new library is created which includes copies of modules
from other libraries.

Specify LIBRARY. as your first input file. Be sure to type the dot after the name, since this name
doesn’t end in the usual .CODE suffix. Copy all the original modules using the A command. Then
insert the LIB disc in a drive and specify whichever additional library you want as the new input
file (for instance, LIB:10.). Again, be sure to include a dot after the name of any library file
that doesn’t have the .CODE suffix.

You may transfer particular modules, or all of them. You can add modules from as many files as
necessary. The order of modules in LIBRARY is unimportant.

When you have all the modules you want, keep the output file with the K command then Quit
the Librarian.

Then use the Filer to delete the current LIBRARY file, and rename the one you created. For
instance, if you specified that the new library being created was to be called MYLIB, the resulting
file would be MYLIB.CODE; with the Filer’s F (Filecopy) command, copy MYLIB.CODE to LIBRARY
on your system volume.

(Note: if you had specified to the Librarian that the new file name should be MYLIB. with a
period after the name, the appending of the .CODE suffix would have been suppressed. Thus in
fact you could have specified that the new output file be called LIBRARY and avoided the file
copy step. But that is a risky practice; you should be sure you have what you want before
destroying the old library.)

Notes and Possible Problems

The disc to which the output file is being written must never be removed during the process of
making the new library. If your computer doesn’t have at least two mass storage volumes
available, you will have to create a memory-resident volume using the Command Interpreter’s M
command and temporarily hold the output file there in memory.

The amount of memory that must be available to make a new LIBRARY using a single disc and a
memory-resident volume depends on how much stuff will be put in the new library; but if you
were to add both I0 and GRAPHICS to the original LIBRARY you would need to allocate about
300 blocks of 512 bytes to the memory volume (153,600 bytes).

If you add enough modules to the output file (beyond those in I0 and GRAPHICS), the Librarian
may eventually report the error, "file header full". If this happens to you, start over and use the H
command to specify a larger library header before specifying the output file. A header
specification of 58 is usually big enough for most situations.

Even if you are using the INTERFACE file, there is probably still no point in adding it to the
system LIBRARY. The reason is that, since it contains no actual code, it is only used at compile
time. You can use the Compiler’s $SSEARCH directive to tell the Compiler where to look for
modules in the INTERFACE library.

The section, Setting Up the Shared Resource Manager gives a very detailed cookbook example of
using the Librarian with a memory-resident volume. You might wish to look at that if you run
into problems.

SDG 23

INITLIB and Memory-Resident Modules

As mentioned previously, the INITLIB supplied on your original BOOT disc contains a reasonably
complete set of peripheral driver software. You may wish to install other drivers, which are
supplied on the CONFIG disc; or to conserve memory you may wish to remove items you don’t
need.

Unlike the system LIBRARY, modules in INITLIB are somewhat order sensitive -- certain
modules, if present, must precede others in INITLIB. The list which follows shows all the modules
supplied with Pascal 2.0.If you add or delete INITLIB modules, all the modules which are
present in the resulting INITLIB should appear in the order listed.

The "Recommendation" column advises you about the importance of each module. Items marked
"Required" are essentially required in INITLIB. It is sometimes possible to remove these items, but
the system is likely to be crippled.

The notation "Almost" means "almost required" -- we don’t recommend removing these unless
you have determined for sure they aren’t needed, because they are part of the normal
functioning of the system.

Items marked "Development" are usually needed in a software development environment but
may not be required for a particular application. Items marked "Optional" are optional unless
required by a particular system configuration.

Module Where found Recommendation
KERNEL BOOT:INITLIB Required
KBD BOOT: INITLIB Required
KEYS BOOT:INITLIB Required
CRT BOOT:INITLIB Required
BAT BOOT:INITLIB Required
CLOCK BOOT:INITLIB Required
DEBUGGER BOOT:INITLIB Optional
PRINTER BOOT:INITLIB Development
DISCHPIB BOOT:INITLIB Development
AMIGO BOOT: INITLIB Optional
IODECLARATIONS BOQOT:INITLIB Required
HPIB BOOT:INITLIB Almost

DMA BOOT:INITLIB Development
REALS BOOT:INITLIB Development
ASC_AM BOOT:INITLIB Development
WS1.0_DAM BOOT:INITLIB Development
TEXT_AM BOOT: INITLIB Almost
CONVERT_TEXT BOOT:INITLIB Almost
LIF_DAM BOOT:INITLIB Almost

CS30 CONFIG:CS80 Optional
DISC_INTF CONFIG:DISC_INTF Optional
DATA_COMM CONFIG:DATA_COMM Optional
GPIO CONFIG:GPIO Optional
RS232 CONFIG:RS232 Optional
SRM CONFIG:SRM Optional
F9885 CONFIG:F9885 Optional
LAST BOOT : LAST Required

SDG 24

If you try to make a Boot disc with an INITLIB containing everything in this list, it won’t all fit
on a 5.25-inch flexible disc! However, very few applications really require all these drivers. For
instance, it is unlikely you will need the F9885 module, since the 9885 is an obsolete disc which
is almost never used with the Series 200 family. Likewise it is unusual to need both RS-232 and
DATA_COMM, which drive two different serial interface cards, or AMIGO and CS/80 which drive
hard discs from two different families.

In the unlikely event that all the stuff you really need won’t fit on your Boot disc, there are still
two ways to make it available.

If your computer has a Revision 3.0 or later Boot ROM (but not the one called 3.0L, which is
used with low-cost versions of the 9816 computer), it is capable of booting from external mass
storage devices, so you can make a "total" INITLIB, store it on a larger disc, and should have no
problems. If your computer has an earlier Boot ROM or no external mass storage, you can put
the modules you need (which are not labeled "optional” in the list above) on your boot disc and
use the Librarian to put the optional modules together in a secondary library on another disc.
Then after booting up, simply EXECUTE the secondary library as if it were a program. The
additional modules will install themselves.

A very detailed example of how to add modules to INITLIB is provided later. It shows all the
steps required to install Shared Resource Management software in your Workstation and set up
the central SRM.

Here is information on what additional modules (beyond those in the originally supplied
INITLIB) you must install if your workstation uses various peripheral devices or interface cards.
98620 Direct Memory Access Interface

The driver for this interface is module DMA, which is present in the original INITLIB. The
interface is used in conjunction with other cards.

98622 GPIGC (16-bit parallel} Interface

To drive this interface, add module GPIO.

98625 High-speed Disc Interface

This is a form of HP-IB interface, but it is only for use with discs and, oddly enough, printers.
Add module DISC_INTF to drive this card. Also requires module DMA (already present in supplied
INITLIB). See the comments below about module DISC_INTF.

98626 serial RS-232 Interface

To drive this interface, install module RS232.

98628 Data Communication Interface

To drive this interface, install module DATA_COMM.

98629 Shared Resource Management Interface

Very detailed instructions on how to install the SRM software are given later as an example. To
use the SRM, add modules DATA_COMM and SRM.

SDG 25

External Disc Drives of the Command Set 80 Family
These are disc models 7908, 7911, 7912.

Add module CS80. Note that DISCHPIB must also be present. If your machine has a
direct-memory access interface (98620), module DMA must be present to use it. This is not
required for CS/ 80 discs but improves performance somewhat.

External Disc Drives of the Amigo Family

These are models 8290x (5.25" flexible disc), 912x (3.5" micro-Floppy), 913x (Winchester-type
fixed disc) and 9895 (8" flexible disc).

The required modules are AMIGO and DISCHPIB. Both of these are already present in the supplied
INITLIB. In addition, performance of the 913x series discs is substantially improved by a 98620
DMA interface and module DMA (already present).

9885 8-inch Flexible Disc Drive

This disc requires you to install module F9885. Makes use of module DMA (already in original
INITLIB), as well as the 98620 DMA interface and 98622 16-bit parallel interface. Note that
module GPIO is not required even though it is the module which "normally" drives the 98622
card.

Printers

Module PRINTER (already present in supplied INITLIB) is required to drive all printers, regardless
of the type of interface being used. Additionally module HPIB (already present) is required for
HP-IB printers.

Serial printers can be used with the 98626 Serial Interface card if module RS232 is added to
INITLIB and the TABLE configuration program is modified to specify the select code of the serial
interface.

Module DATA_COMM can be used with the 98628 Data Communication interface to drive a serial
printer; again the printer select code specified in the TABLE configuration program must be
altered. You may also need to modify the value of local_printer_timeout in CTABLE, because
many serial printers have a large internal buffer which gets filled and takes a long time to be
dumped onto the paper. see the description of how to modify CTABLE.

Graphics Devices
To talk to HP plotters, via HP-IB, requires module HPIB (already present in the supplied

INITLIB). In addition, the Graphics library requires other modules to be in the system LIBRARY
rather than INITLIB -~ see the discussion of the system LIBRARY above.

SDG 26

Notes on Various Modules

e KERNEL is the "core" of the system, containing the Linking Loader and basic File System
support. It needs to be there.

e KBD, KEYS, CRT, BAT and CLOCK are responsible for the keyboard, foreign character set,
display, battery backup and clock. They are broken out into several small modules so they
may be replaced individually if desired. They (or some code with equivalent function) must
be present.

® DEBUGGER is the interactive debugging tool. It is usually resident, but is a good candidate
for removal from completed applications because it is a particularly dangerous thing to put
in the hands of non-programmers.

e PRINTER is required to drive all printers, regardless of the type of interface electronics
being used. It supports serial as well as HP-IB printers; a serial interface driver must be
present in INITLIB, and the TABLE configuration program must be adjusted to select that
driver. To use serial printers, you raay have to modify local_printer_ timeout in the
CTABLE program. See the material on modifying CTABLE.

e DISCHPIB, AMIGO, CS80 are all related. To use any external disc drive connected via
HP-IB you must have:

DISCHPIB and AMIGO for disc models:

9895 (8" flexible disc)
912x% (3.5" micro-Floppy disc)
913x ("Winchester" type fixed disc)

8290x (5.25" flexible disc)

DISCHPIB and CS80 for fixed discs of the Command-Set 80 series, models: 7908, 7911,
and 7912.

e DISC_INTF is required to use the 98625 high-speed disc interface card. DMA is also
required for this card. The 98625 is primarily used for achieving maximum performance
from the CS/80 discs. The performance improvement with these discs is negligible for most
purposes, and only shows up in the transfer of very large blocks of data. It might be useful
in data logging applications. In addition the 98625 can be used for HP-IB printers,
although it seems a silly thing to do, and it can be used with the 9895, 9121, 9133 and
9134 discs. With these discs there will be no performance improvement over the standard
HP-IB interface with DMA.

Do not use the 98625 with the 8290x or 9135 discs; it won’t work!

® JODECLARATIONS is the lowest level of device IO support. Although it is possible to
construct loadable systems without this module, no normal File System IO would work.

e HPIB is the lowest level support for the Hewlett-Packard Interface Bus, which is HP’s
implementation of the IEEE-488 Standard. Most HP peripherals use HPIB, so there isn’t
much point in ever removing this module.

® DMA is the module which runs the 98620 Direct Memory Access interface card. DMA

provides very high speed data transfers. It is required for the 98625 interface card and
highly recommended with the CS/80 and 91 3x families of discs.

SDG 27

® REALS is the floating-point mathematics support package.

ASC_AM is the Access Method responsible for blocking and unblocking text files with the
LIF-ASCII structure. LIF stands for Logical Interchange Format, a common file
interchange structure supported by most HP computers. Since this is one of the formats
used by the BASIC language system, it is a good thing to have around. It is also the format
used by the SRM for spooled printer files.

WS1.0__DAM is the Directory Access Method used by the Pascal 1.0 system, a predecessor
to the one you are using. This module lets the system read and write discs in that format.
This DAM can be removed if you have no need to read or write discs compatible with the
Pascal 1.0 system.

TEXT__AM is the Access Method used to block and unblock text files created with the
.TEXT suffix. These are the files normally created by the Editor (unless the user specifies
otherwise). The .TEXT file structure is compatible with text files generated by UCSD Pascal
systems.

CONVERT__TEXT is a module used by the Compiler and other subsystems to convert
among the various representations of text files. It should be present in INITLIB.

LIF__DAM 1is the Directory Access Method required to read and write HP Logical
Interchange Format disc directories. LIF is the primary directory organization used with
Pascal 2.0, and so this module is normally present. If you configure your system to use
WS1.0 as the primary directory method, you may remove LIF__ DAM.

e DATA COMM is the module required to drive 98628 and 98629 interface cards.

® GPIO is the module required to drive the 98622 16-bit parallel interface card.

RS232 is the module required to drive the 98626 serial RS-232 interface card, and the
built-in serial interface in a model 9816 computer.

SRM is required to drive the 98629 Shared Resource Management interface. Module
DATA COMM is also required.

® 9885 is required for model 9885 flexible disc drives. These discs also require module DMA,

and the 98620 and 98622 interface cards. Module GPIO is not required for the 9885 even
though a GPIO card is used.

© L AST is required in every case, and must be the last module in INITLIB. The purpose of this

module is to actually start the system running after the contents of INITLIB have been
loaded and installed in memory. LAST principally does two things: load and execute the 10
configuration program TABLE; :nd load and execute a program called STARTUP, which is
usually the Command Interpreter but may be a user program.

SDG 28

Chapter 3
Modifying the Configuration

Introduction

The work of configuring the system to recognize peripheral devices is performed by a program
called TABLE, which is executed during the boot-up process. The information in this section
explains how TABLE works, and how to modify it to achieve special effects. See Chapter 4 for
details on configuring SRM systems.

General process

The Pascal source of TABLE is provided on the SYSVOL disc distributed with every copy of the
system, called CTABLE . TEXT. Once you have decided how you wish to modify CTABLE, make
your modifications to a copy. Compile this modified program, yielding an object code file (e.g.
MYTABLE . CODE).

Now you can simply execute MYTABLE to see if the results are correct. In fact, the system can
be reconfigured any time by executing a version of TABLE. The program does its work by
assigning new values into fields of the system data structure called the "Unitable". Another
section of this document gives a detailed explanation of the meaning of the various Unitable
entries.

When you are quite sure the new table is correct, use the Filer to copy the compiled code to your
BOOT disc. The name of the copy should be TABLE (not TABLE.CODE) in order to be recognized
during boot-up. Be careful here! If there is no backup copy of the BOOT disc with the original
TABLE, and there is something wrong with the modified TABLE, you may not even be able to
run your system to restore the original TABLE.

Depending on the size of INITLIB, there may not be much room on the BOOT disc. You may
need to Krunch it with the Filer to make space. The modified TABLE can also be made
considerably smaller by linking it to itself, which combines all the internal modules into a single
module, and gets rid of module interface specifications and internal reference information.
"Linking to itself" is a slightly misleading phrase, in that a new file is created with the modules
internally linked into a single module.

SDG 29

To link MYTABLE . CODE to itself, use the following steps:
¢ Invoke the Librarian using the L command.
e Use the "I" command to specify the input file.

® Use the "H" command to specify a 1-block header (you specify one; the Librarian forces it
to the minimum of eighteen).

® Use the "O" command to specify the output file name.

® Use the "L" command to change from Copy to Linking mode.
® Use the "D" command to remove DEF information.

¢ Use the "A" command to transfer all modules.

® Use the "L" command to finish linking.

® Use the "K" command to keep the output.

® Use the "Q" command to quit.

Here is the summary of commands to link MYTABLE.CODE to itself:

keystrokes meaning

L I MYTABLE invoke Librarian, name input file

H 1 1-block header

0 TABLE name output file

LDALKRQ link: no DEFs; all modules; finish;
keep; quit

You may need to precede the file names by the volumes where they are found. Note that the
result of this operation is a file called TABLE.CODE; what you want on the boot volume is a file
called TABLE with no suffix. Use the Filer to change the name after the Librarian creates the
file.

SDG 30

Commentary on the CTABLE Program
CTABLE is a long program; for ease of study, here is a summary of its structure. You will
probably want to print out the code and examine it in detail.
program ctable;
module options;
Contains declarations which MAY BE EDITED to override
many of the system defaults.
module ctr; DON'T MODIFY THIS MODULE.
Exports the table entry assignment routines, which contain

information highly specific to HP peripheral devices.

module brstuff; DON'T MODIFY THIS MODULE .
Figures out which device was the boot device.

module scanstuff; DON'T MODIFY THIS MODULE.
Contains code which asks each device to identify itself.

begin

EDIT THE MAIN PROGRAM ONLY if the desired result cannot be
obtained by modifying the declarations in module OPTIONS.

scan for devices on various HP-IB addresses.
determine the nature of the boot device.
search for "complementary" CS/80 devices.
create temporary unit table.
make assignments to fields of temporary table.
optional "manual" assignments to override automatic defaults.
copy temporary to actual system unit table.
set prefix of Shared Resource Manager system volume.
remove extraneous hard disc entries if necessary
(if the hard disc was initialized to have only a single
volume on the medium)
assign system unit.

set prefix of default volume on SRM.

end.

SDG 31

Modifying Module OPTIONS

This module consists only of declarations of exported types and constants. The constants are
examined during execution of the main program.

const system_unit = 0;

If this constant is non-zero, it indicates which of the 50 volumes will be the system volume.
When it is zero, the program makes its own choice according to the algorithm described
previously.

type lms_dam_type = (LIF,UCSD);
const primary_lms_dam = LIF;

Selects the primary Directory Access Method for local mass storage devices. LIF is HP’s Logical
Interchange Format directory; UCSD is the format used in the Pascal 1.0 workstation release. As
the name indicates, this directory structure is compatible with the organization used by the
"UCSD Portable Pascal" system ("UCSD Pascal" is a trademark of the Regents of the University
of California).

CTABLE expects remote mass storage devices to use the Shared Resource Manager’s hierarchical
directory organization.

type dav = record
sc,ba,du,dv: shortint;
end:

const
hp8290x_default_dav = dav[sc:7, ba:0, du:0, dv:-1 1;
hp9895_default_dav = dav[sc:7, ba:0, du:0, dv:-1 1;
hp9885_default_dav = dav[sc:12, ba:-1, du:0, dv:-1];
harddisc_default_letter = 'H';
harddisc_default_dav = dav[sc¢:7, ba:3, du:0, dv:-1];
local_printer_default_dav = dav[sc:7, ba:1, du:-1, dv:-1 1;
SRM_default_dav = dav[sc:21, ba:0, du:8, dv:-1];

The device address vector, or DAV, is the data type which describes how a peripheral device is
addressed. These constants set up the addressing which is normally used to talk to some standard
peripheral devices. Some of the information will be overridden if the peripheral is found at a
different address.

® sc is the interface select code. Select code 7 corresponds to the built-in HP-IB port at the
rear of 9836 family computers. The 9885 disc is connected using a 16-bit parallel
interface on select code 12, and a DMA card. The SRM interface is normally set to select
code 21.

® ha is the HP-IB bus address of the peripheral. Usually an 8290x is addressed as device 0; so
isa 9895. The 9134 family of hard discs are expected on bus address 3, and printers on bus
address 1.

For the SRM only, ba indicates the node number of the SRM interface in a cluster (as
opposed to the node number of the Workstation itself).

e du selects the drive unit in a multi-drive controller. For instance, a 9895 may have drives 0
and 1. For the SRM only, du indicates the unit number within the SRM.

SDG 32

® dv selects a particular volume in a multi-volume member of the 7908 (CS/80) disc family.

e H is the letter designating the default hard disc. This letter stands for a 9134
micro-Winchester disc drive.

The following statement, found in module OPTIONS, governs the byte transfer timeout used by
the local printer driver. The timeout, expressed in milliseconds, specifies the maximum time
allowed for each byte handshake to complete. A value of zero is a special case, specifying an
infinite timeout.

const local_printer_timeout = 12000; {milliseconds}

The policy of enforcing a timeout on each individual byte works quite well with most HP-IB
printers, since they tend not to hold off bus handshakes much longer than the time it takes them
to print a single character. However, with printers on other interfaces (notably serial interfaces)
we have a different matter. Some serial printers will "buffer up" bytes at high speed until their
internal buffer is full, but then will not allow any more tranfers until their internal buffer is
almost empty. Thus, depending upon the printer’s internal buffer size, the maxmimum time
between two bytes being transferred may be the time it takes to print hundreds or even
thousands of characters! For these printers, you might consider a timeout of several minutes, or
even an infinite timeout.

In general, most HP-IB printers accept hundreds of bytes per second, so you might think that the
default 12 second timeout is excessive. We were forced to use this large a number since some
low-cost HP-IB printers take 8-10 seconds to execute a full-page formfeed. If you are using a
faster printer, you might consider reducing the timeout to 2-3 seconds, so that a real timeout
condition will be detected more quickly.

const sysunit_list_length = 9;
type sysunit_list_type = array [1..sysunit_list_length] of unitnum;
const sysunit_list =

sysunit_list_type [11,9,7,45,4,44,3,43,3];

This list governs the selection of a system unit during boot-up. The anticipated significance of
the unit numbers is:

Unit # Default
11 The first volume of a hard disc.
A 9885 (drive zero).
7 A 9895 (drive zero).
45 The Shared Resource Manager.
4 Flexible disc drive one of mainframe or external
‘flexible disc peripheral (primary DAM).
44 Drive one flexible disc, secondary DAM,.
3 Flexible disc drive zero, primary DAM.
43 Flexible disc drive zero, secondary DAM.
3 Whatever is in unit #3, no directory recognized.

The last choice is provided only for the obscure case where all the other alternatives fail; it
leaves the system volume as #3: even though no logical volume was successfully accessed there.
Note that the right-hand internal minifloppy drive is drive zero, and the left-hand drive is

SDG 33

drive one. This is opposite the normal practice, eg for a 9895, 8290x or 9121 drive zero is the
left-hand drive!

const sc_list_length = 3;
type sc_list_type = array [1. . sc_list_length] of byte;
const sc_list = sc_list_type [7,8,14];

This list governs the select codes which are searched for HP-IB interfaces with recognizable,
responding devices. 7 is the select code for the built-in HP-IB port. 8 is a select code usually used
for a second HP-IB interface. 14 is the select code usually used for the 98625A high-speed disc
interface card.

The select codes are searched in the order they appear in the list (7 first). On each select code,
addresses 0,1, .. 7 are polled for devices. In the case of multiple devices contending for an
assignment class, say multiple local hard discs, generally the last one polled will be the one
assigned.

1000000 ;
30;

const minimum_volume_size
max imum_nhumber_vols

These constants govern the partitioning of a hard disc into non-overlapping volumes. No volume
will be smaller than one million bytes, and no device is ever partitioned into more than 30
volumes. NB: maximum__number__vols MUST be no greater than 30!l

type multi_volume_option_type = (single_volume ,multi_volume,
auto_volume);
const multi_volume_option = auto_volume;

This option controls the partitioning of hard discs into more than one volume. The Pascal system
is the only one which will partition discs into multiple volumes; BASIC is unable to do so.

When multi_volume_option = auto_volume, CTABLE looks at any hard disc attached to the
system and tries to determine the structure of the disc. If ALL the directories of the
multi-volume partitioning are found, CTABLE will set up the unit table correspondingly. If the
first volume is found but one or more other volume directories are absent, CTABLE treats the
disc as having a single volume, and marks empty those unit table entries which would otherwise
have been used to partition the disc. The result is that if the disc was initialized by BASIC, Pascal
and BASIC will both treat it as having a single large volume; but if the disc was initialized by
Pascal, Pascal will see multiple volumes and BASIC will see only the first one. BASIC will only be
able to access the amount of space allocated to that first volume, and the rest of the disc will be
1naccessible to BASIC.

When multi_volume_option = single_volume, Pascal will not partition the disc; it will treat
it as a single volume. You should use this selection when the hard disc is accessed by both BASIC
and Pascal. This option makes the entire disc available to both languages, albeit with only a
single directory.

When multi_volume_option = multi_volume, Pascal will set up the unit table to partition the
disc regardless cf the existing directory structure on the disc.

SDG 34

Module CTR

This module should not be modified.

Built into it is a lot of knowledge about the supported HP mass storage products, and provides a
general structure into which can be inserted information about new peripherals they are
introduced.

Each peripheral is assigned a letter designator; these are listed in CTR’s export section. In
addition there is descriptive information about the size of each type of device, expressed in bytes
per track and tracks per medium. The routines in CTR avoid partitioning other than on track
boundaries to avoid very inefficient disc access patterns.

Most of the procedures exported from CTR are given a name prefixed with "TEA_". These are
the Table Entry Assignment routines. There are TEA routines for all the supported mass
storage products. Some TEA _ routines are appropriate for an entire family of related
mass-storage products.

Utility routines

CREATE _TEMP_UNITABLE allocates in the heap a temporary structure like the real system
Unitable. CTABLE makes its assignments to this temporary structure, then uses
ASSIGN _TEMP__UNITABLE to copy the final result into the actual system table. NB:
ASSIGN_TEMP__UNITABLE will not overwrite any RAM volumes which have been created in
the system Unitable. This feature is provided so that if you execute a CTABLE while the system
is running, you won’t lose files in memory.

SYSUNIT__OK checks to see if a particular unit is blocked, online and has a directory; if so, it is
a legal candidate for the system unit.

If you have read the description of the fields of a Unitable entry, you will be aware that two of
them are procedure variables which must be initialized to the names of the DAM (Directory
Access Method) and TM (Transfer Method or driver) appropriate to the volume and physical
device. DAMs and TMs are not part of CTABLE and so would ordinarily be supplied by the
linking loader when CTABLE is loaded.

However, there is no guarantee that the DAMs and TMs for a device are present, since they may
have been removed from INITLIB or never even installed. Consequently, CTABLE has been
programmed to examine the symbol tables kept in memory by the linking loader. If a driver’s
name is found, it can be used; otherwise, the program avoids references to absent drivers. The
routine which searches for link symbols at run-time is called VALUE and is exported from
module CTR.

SDG 35

Module BRSTUFF

This module should not be modified.

It exports two routines. INTERNAL MINI _PRESENT determines if there are any 5.25-inch
minifloppy drives in the mainframe. GET__BOOTDEVICE _PARMS determines what type of
device was used for booting and returns the DAV (device address vector) for that device.

Module SCANSTUFF
This module shouldn’t be modified.

Its purpose is to inquire from certain disc drives about their size and identification. To do this,
the VALUE routine (see module CTR) is used to find routines which are present only if the
driver modules supporting these discs are installed.

Discussion of the Main Body of CTABLE

A lot of details of the behavior of CTABLE can be modified by changing declarations such as
the select-code list from the OPTIONS module. If you want to force some particular assignment,
this may be achieved by modifications to the code in the body of CTABLE.

After some initializations, CTABILE scans the select codes listed in OPTIONS. For each select
code, and for bus addresses O through 7, the program inquires if a device is present. A letter
designating the device is returned.

The information about the boot device is extracted. This may be used later in selecting the
system unit.

If there are any CS/80 disc drives (7908 family) present, they may have associated
“complementary devices", which is a fancy name for the streaming backup tapes. These are also
searched out.

Then a temporary Unittable is created in the heap. The assignments made as CTABLE executes
will be made to this temporary table, and only at the end will the real system Unitable be
updated.

Next, certain standard assignments are made. It is wise not to change these assignments, since
programs tend to depend on them. Unit #1 is the CRT, and #2 is the keyboard. #3 and #4 will
be 5.25-inch flexible disc drives, or 9121 3.5-inch microfloppy drives. If both internal drive(s)
and an external flexible disc drive are present, the internal drive(s) will be used for #3 and #4
unless the external disc was the boot device. This policy gives preference to the
higher-performance internal disc drives.

If an SRM interface is present, it is assigned to #35. It may also be assigned to #45 later in the
program.’

If a 9895 is present, it will be assigned to units #7 and #8. Note that the 9895 should be set to
bus address 0, while a 9134 should be set to address 3.

(This is not a requirement; merely a habit which avoids troublesome conflicts. In the Pascal 1.0

system, 989 $’s were set to bus address zero and 9134’s were set to bus address 3. While this is still
OK, it’s not necessary since Pascal 2.0 scans to locate devices.)

SDG 36

If a 9885 is present, it gets units #9 and #10.

CTABLE can only deal with a single local hard disc, which is found during the HP-IB scanning
process. The last one found is retained in the variable HARDDISC LETTER, and now comes
into play in the local hard disc assignment section of the program.

This code is surrounded by conditional compilation directives, because you may wish to not
compile it and instead force particular assignments.

CTABLE will normally break a hard disc into more than one volume. As things are arranged
(see OPTIONS), no volume will be less than one million bytes and no disc will be divided into
more than 30 volumes. The units assigned to these volumes are #11, #12, .. through #40,
depending on the number required for the disc. Later, however, volume #11 may be altered to
span the entire disc medium and the other entries "zapped" into oblivion. This happens if the disc
looks like it was initialized by BASIC, which can only deal with a single volume on a disc. See
the discussion of multi_volume_option above.

If a CS/80 backup tape is present, it is assigned to #41.

Next, the alternate~DAM entries are assigned. This allows most discs to be used regardless of the
resident directory type.

Units #43 and #44 are alternates for units #3 and #4. Unit #45 is not really an alternate; it is
another SRM volume, and may be assigned as the system volume later. If this happens, the OS
will have two units on the SRM: one for system files, work files, stream files etc, and another for
the "default" working directory. This avoids any possible need to prefix the SRM away from the
system volume.

Units #47 and #48 are alternates for units #7, #8 (9895 drive). #49, #50 are alternates for #9,
#10(9885 drive).

We are now about 1250 lines into the CTABLE program, and we come to the templates for
"manually” specifying mass storage table entry assignments. These templates are surrounded by
conditional compilation directives which cause them to be skipped. To make them effective, one
must reverse the sense of the compilation test from $if false$ to $if true$.

There are templates for the following devices: 8290x; 9895; 9134 A, Band C; 9121; and CS/80
disc types 7908, 7911, and 7912. Each template gives the opportunity to specify DAM, select
code, bus address, drive unit, offset in bytes from front of volume to directory, drive letter type,
and size of volume. For multiple-volume drives, the templates include a for-loop which
calculates how to break up the disc space in the preferred fashion.

Next, the temporary Unitable is copied into the system’s Unitable (except that RAM volume
entries are not overwritten).

Then the SRM unit entries are prefixed to the appropriate directories. Each workstation in an
SRM cluster has an identification number called its "node number”, and it is strongly
recommended that the cluster be configured so that every workstation’s node number is unique.
CTABLE tries to prefix #45 to a directory called /WORKSTATIONS/SYSTEMnn, where nn is the
node number. If no such directory exists, it tries to use directory /WORKSTATIONS/SYSTEM (with
no node number). If that doesn’t exist either, #45 is "zapped", ie assigned a dummy entry.

This is a rather key mechanism. It allows the workstations in a cluster to have unique
configurations. For the normal functioning of the Pascal system, a system volume is required to
hold the system library and various system files. If all workstations shared the same system
volume, file name collisions would be a real nuisance. CTABLE supports this partitioning, and so

SDG 37

does the overall booting process, allowing for instance a different INITLIB, AUTOSTART and
TABLE for each workstation.

The system unit must now be selected. This is done according to the priorities set in the list
SYSUNIT _LIST exported from OPTIONS.

Finally, if the system unit is #45 (SRM), unit #35 is also an SRM volume. In that case, #5 is
prefixed back to the root SRM directory #35:/ so the root is the initial default volume for the
system right after it boots up.

An Example Configuration

This section provides a simple example of how to create your own custom configuration.

One such system where the default auto-configuration may not provide the configuration you
want is where you have a Model 26 or 36 (with internal disc drives) and you also want to be able
to access an HP 9121 3.5-inch disc. Auto-configuration normally does not assign table entries
for both internal drives and external 3.5 or 5.25-inch drives. There aren’t enough table entries
for both. However, for this system, we will assume there isn’t an HP 9885 8-inch flexible disc
drive present. This allows entries 9 & 10 to be assigned instead for the external 9121 drives. The
actual changes to the configuration program are described below under "Editing CTABLE".

In the example, we assume you have a minimum system: namely, one internal drive, minimum
RAM, and the six system discs supplied. In general, this configuration requires the most moving
of files, swapping of discs, and reloading of subsystems. If you have a larger mass storage device,
you can probably eliminate much of the file copying and swapping of discs. If you work
exclusively with a slower mass storage device, but have extra RAM, you may elect to P-load such
things as the FILER, EDITOR, and COMPILER.

Mass Storage Setup

To compile CTABLE, you must have the source file (CTABLE.TEXT) and a code file containing
the text it imports (INTERFACE) online. Also, you must have mass storage space available for
the Compiler to generate various temporary files and the resulting code file (CTABLE.CODE).

CTABLE imports text from several system modules. This text is contained on the LIB: disc in the
file INTERFACE. There are several ways to make the import text accessible to the compiler.

® Use the LIBRARIAN to copy the modules in INTERFACE into LIBRARY. The compiler
will automatically search LIBRARY if it is online. If you often import system modules, you
might want to use this method.

® Insert the compiler directive $SEARCH in the source text of CTABLE, specifying where to
find the file containing the import text (INTERFACE). If you prefer not to have
INTERFACE in LIBRARY, you might want to use this method.

e Temporarily redefine the system library file to be INTERFACE instead of LIBRARY.

SDG 38

A
A

For the example, the third method was chosen since it makes the fewest permanent changes. The
SYSVOL.: disc 1s used as the working volume.

1. Insert the ACCESS: disc and load the Filer by typing: F.
2. Set the default prefix to our working volume. Press P and type:
SYSVOL:

3. Copy the file INTERFACE from the LIB: disc to our working disc. Insert the LIB: disc, press
F (for Filecopy) and type:

LIB:INTERFACE,$ [enter]
4. Swap discs as directed by the Filer.
5. Copy the source for CTABLE from the CONFIG: disc to our working disc giving the
destination file a new name since we are going to modify it. Insert the CONFIG: disc, press
F and type:
CONFIG:CTABLE.TEXT NEWCTABLE .TEXT [enter]
6. Swap discs as directed by the Filer.

7. Exit the FILER by typing Q

8. Redefine the system library by using the command interpreter’s What command. Press W
(for What), B (for liBrary) and type:

INTERFACE. [enter]
Notice the period.

9. Exit the What command by typing Q

Editing CTABLE

Insert the ACCESS: disc and run the Editor by typing E. After the Editor is running, insert the
SYSVOL.: disc and answer the Editor’s "File ?' prompt by typing:

NEWCTABLE [enter]
Recall that you are going to access an HP 9121 by assigning entries for them at units #9 and
#10. There are several ways to accomplish this, but the method used here is via the supplied
“templates". They are the most straight-forward and the easiest to understand.
The templates are found toward the end of the file, after the comment:

{templates for "manually" specifying mass storage table entry assignemnts}

You may quickly locate this section by using the Editor’s Find command. Press F (for Find) and
type:

/templates/

SDG 39

The cursor will then be at the start of the templates. Normally, you would scroll down to locate
the desired template. For this case, however, the desired template 1s the first one. It looks like
this:

$if false$ { HP8290X }
tea_HP8290X(3, primary_dam, {sc} 7, {ba} 0, {du} 0);
tea_HP8290X(4, primary_dam, {sc} 7, {ba} 0, {du} 1);
end

The $if false$ and end Compiler directives cause the Compiler to unconditionally skip over
the text between. Thus the "tea" procedure calls have no effect. You will want to change the "$if
false$" to "$if true$". The "tea" procedures themselves, are defined in the module "ctr". They
actually perform the Table Entry Assignments. The reason that you use the "tea" procedures for
the HP8290X drives, is that the HP 9121 drives behave just like the HP 8290X drives. You
might note that you would also use the HP8290X "tea" procedures for the 5.25-inch drive in the
HP 9135 and the 3.5-inch drive in the HP 9133.

The first parameter in the "tea" procedures specifies the unit number you wish to assign. It must
be in the range from ! thru 50. The second parameter specifies the Directory Access Method, or
DAM. The DAM specifier is of emumerated type "ds_type". Exported from module "ctr"|
ds__ type is shown here.

type
ds_type = {Directory access method Specifier for local mass storage}
(primary_dam, {either LIF or UCSD, as specified in options}
secondary_dam, {the one not selected as primary}
LIF_dam, {LIF, regardless of primary/secondary choice}
UCSD_dam); {UCSD, regardless of primary/secondary choice}

A "tea" procedure has parameters only for those items which are applicable to the device.
Furthermore, all parameters are range-checked by the "tea" procedure. While the
range~-checking cannot guarantee the correctness of your parameters, it can nearly guarantee
that your parameters won’t ruin the system.

The remaining parameters for all the local mass storage "tea" procedures are device~-specific.
Most devices will need addressing information such as select code (sc), HP-IB bus address (ba), and
disc unit number {du). Parameter descriptions for partitioning hard discs are presented at the end
of this example.

Assign entries for two drives on select code 7 (the internal HP-IB) and bus address 2. Logical
units 9 & 10 will be used for access via the primary diectory access method; logical units 49 &
50 will be used for access via the secondary access method. Our modified template looks like this:

$if true$ { HPB290X }
tea_HP8290X(9, primary_dam, {sc} 7, {ba} 2, {du} 0);
tea_HP8290X (10, primary_dam, {sc¢} 7, {(ba} 2, {du} 1);
tea_HP8290X (49, secondary_dam, {sc} 7, {ba} 2, {du} 0);
tea_HPB290X (50, secondary_dam, {sc} 7, {ba} 2, {du} 1);
end

You may leave the templates where they are, or you may move them. However, all "tea"
procedure calls must take place between these two statements:

SDG 40

{ Create a temporary table & fill it with dummy entries }
create_temp_unitable;
and:
{ assign the new unitable and unitclear all units }

assign_temp_unitable;

You may assign and re-assign logical units as many times as desired between the two statements
above. When the same logical unit is assigned multiple times, the last assignment performed will
be the one that remains in effect.

In the example, if you do not move the templates, logical units #9, #10, #49, and #50 are
initially assigned for the HP 9885. However, because the modified templates follow the original
assignments, the templates override them.

Quit editing, Save the file, and Exit the Editor by typing Q Sand E.

Compiling and Running CTABLE

1. Load the Compiler by inserting the CMPASM: disc and typing C. Insert the SYSVOL.: disc
and answer the Compiler’s "Compile what text ?" prompt with:

NEWCTABLE [enter]
2. Answer the "Printer listing ?"' prompt with:

Y for a listing. N for no listing. E for an "errors only" listing (if you have a printer). L for a
listing file.

3. Press [enter] to say that the default output file name of "SYSVOL.:NEWCTABLE.CODE"
is fine.

If you followed the example, you shouldn’t have any compilation errors.

4. Press R or RUN to execute the new CTABLE.

Verifying the New Configuration
Generally, the Filer provides the quickest way to verify your configuration. The Volumes
command provides a quick sweep of all units. The List command provides a way to test
individual units.
Remember that the Volumes command shows only those units which are on-line and which have
valid directories. It won’t show units with media containing either no directory or the wrong
type of directory.
If the first attempt to List a unit fails, the Filer displays:

Please mount unit #9

'C' coninues, <sh_exc> aborts

SDG 41

Type C. The Filer will then give the reason for failure. A key result is "no directory on volume",
which means that the device and medium are accessible, but no directory was found. Other
results such as "device absent or unaccessible”, "medium absent", or "device not ready" mean that
the attempt to read from the device failed.
If you find get "device absent or unaccessible", there may be several possible reasons. A good trick
at this point is to eXecute ACCESS:MEDIAINIT on the unit number of interest. For those device
types MEDIAINIT recognizes, it will print out the expected device type, plus the addressing
information. This is an excellent way to verify the expected configuration, even if the device
itself is unaccessible. Don’t worry about specifying a device that you really don’t want to
initialize; MEDIAINIT always prompts for your confirmation before it begins initializing.
Making the New Configuration Permanent
Once you are satisfied with your new configuration and wish to make it permanent, copy the
code file to your BOOT: disc. First, however, you should link the code file to itself, in order to
conserve disc space.
To link the code file to itself:

1. Invoke the Librarian by inserting the ACCESS: disc and pressing L.

2. Insert the SYSVOL.: disc, press I (for Input) and type:

NEWCTABLE [enter]
3. Press 0 (for Output) and type:
NEWCTABLE [enter]

4. Press L (for Link).

5. Press D (to remove the file’s Def table).

6. Press A (to link All the modules).

7. Press L (to finish Linking).

8. Press K (to Keep the file).

9. Press Q (for Quit).

Now you are ready to perform the final operations.
To Install the Now TABL<
1. Insert the ACCESS: disc and type F (for Filer).
2. Remove the original TABLE file. Insert the BOOT: disc, press R (for Remove) and type:

BOOT:TABLE [enter]

SDG 42

3. Krunch the BOOT: disc, since your new TABLE file may be larger than the old one. Press K
(for Krunch) and type:

BOOT: [enter]
4. Respond to Crunch directory BOOT: ? (Y/N) with Y.

5. Now copy the new code file from SYSVOL: to BOOT;, giving it the required name. Insert
the SYSVOL.: disc, press F (for Filecopy) and type:

NEWCTABLE . CODE ,BOOT: TABLE [enter]
6. Swap discs as directed by the Filer.

7. Save your new source file on the CONFIG: disc too. Insert the SYSVOL: disc, press F and
type:

NEWCTABLE . TEXT ,CONFIG:$ [enter]
8. Swap discs as directed by the IFILER.

9. Clean up the SYSVOL: disc by removing all the files you put there. Use wildcards to save
typing. Insert the SYSVOL.: disc, press R, ? and [enter].

10. Respond N to the prompt to remove LIBRARY, and respond Y to the prompts to remove
INTERFACE, NEWCTABLETEXT, and NEWCTABLE.CODE. Respond Y to the
confirmation prompt.

11. Exit the FILER by typing Q

Hard Disc Partitioning

For devices which are partitioned into multiple logical volumes, there are "tea" procedure
parameters for logical volume offsets and volume sizes in bytes. In that case, the template will
contain a FOR loop, to assign consecutive logical unit entries to the same device, each entry
corresponding to a different portion of the medium. The standard way to partition a device with
T tracks into N volumes is to allocate T DIV N tracks to each entry, and then add the remaining
T MOD N tracks, if any, to the last entry.

While it is suggested that you use the standard partitioning method, there is nothing that forces
you to do so. If you like, you may remove the FOR statement, duplicate the "tea" procedure call
N times, and specify arbitrary volume offsets and sizes of your choosing for each logical volume.
The "tea" procedure checks to ensure that your logical volumes each lie inside the media
boundaries. Unfortunately, the "tea" procedure can’t check to see if any of them overlap!

In those templates capable of partitioning media, you will find the following line:

{ mp := block_boundaries(mp); {override track boundary partitioning}
This allows you to use the standard partitioning method, except that the partitioning will occur
on §12-byte block boundaries; not necessarily on track boundaries. The "{" character at the
beginning of the line makes the line a comment. You invoke the line by deleting the "{"

character. Depending upon the media parameters and the number of logical volumes, this may or
may not make a difference in how your media actually gets partitioned. This feature is provided

SDG 43

solely for compatibility with discs used with Pascal 1.0. If you don’t need it for this reason, don’t
use 1t!

All parameters in the templates have typical values for your convenience.

If you get a "value range error" when you execute CTABLE, it probably means that one or more
of your parameters is out of range. Don’t worry about your system configuration; the ->ld
configuration will still be in effect. You can immediately go back to the Editor to try to
determine the problem with your new CTABLE.

To find where the value range error occurred, usually the quickest way is to examine the "tea"
procedure calls you just modified, and then examine the "tea" procedure itself to see what range
it checks the parameters for. However, unless you are a certified wizard, don’t modify the "tea"
procedure itself!

If you still can’t find the source of the error, you can re~compile CTABLE with $debug on$. Get
a listing from the Compiler too. Then execute CTABLE again. When it terminates with the error
again, use the queue (Q) command in the debugger to determine the line numbers of the
statements leading up to the error. Also, when you examine the queue, you may need to trace
back several line numbers to actually locate the offending statement.

Summary
CTABLE is provided to automatically configure the Pascal workstation to a wide variety of
peripheral devices. The automatic configuration can be overridden by modifying CTABLE and

substituting the result for the TABLE program on the boot disc or in the boot volume of the
SRM.

SDG 44

Chapter 4
SRM Set-Up

Overview

The Shared Resource Manager (SRM) may be the only mass storage for a machine with no local
disc drives. This chapter explains how to set up Pascal 2.0 workstations in an SRM cluster. If you
are not using an SRM system, you may wish to skip this chapter.

The person who will be System Manager for the SRM cluster is the one who should perform the
process described in the next few pages.

In order for your system to work happily with the SRM, every Workstation in the SRM cluster
must have a unique node number. See the information supplied with the SRM to learn about
node numbers.

Booting

If your computer, when turned on with no ROM system installed in the backplane and no discs
in the drives, does not identify itself on the CRT as "Bootrom 3.0" or a later version, then your
computer must be booted from the internal 5.25-inch flexible disc drive; the SRM can only be
~used after booting is complete. If your computer IS equipped with a version 3.0 (but NOT 3.0L,
which is used with low-cost versions of the 9816 computer) or later Boot ROM, it is possible to
boot directly from the SRM.

Boot files on the SRM are found in a directory called SYSTEMS under the the root directory;
they have names like SYSTEM__P. This too is explained in the SRM literature.

The System Volume

To allow each Workstation in a cluster to boot up a unique system and have its own system
volume, a private directory is established for each node number.

Strictly speaking, this is not always necessary; if a workstation has local high-performance mass
storage, it may be desirable to use that as the system volume, and in fact the automatic
configuration process will preferentially select high- performance mass storage as the system
volume if it is present. However, it doesn’t hurt anything to set up unique directories for each
workstation, and the following discussion explains how to do so as if everyone would wish to. If
you first set things up as explained below, you then have the option to copy frequently used files
such as the Editor and Compiler from the SRM onto a volume of local high-performance mass
storage. Then when you boot the system those files will be found locally and accessed with
correspondingly greater speed.

In the SRM’s root directory there should be another directory called /WORKSTATIONS. Under
this there should be a directory called SYSTEM, and for each node number "nn" there should also
be a directory called SYSTEMnn. For instance, if there are three Workstations on nodes 13, 14
and 13, then in the root there should be:

SDG 45

/WORKSTATIONS/SYSTEM

/WORKSTATIONS/SYSTEM13
/WORKSTATIONS/SYSTEM14
/WORKSTATIONS/SYSTEM15

Under /WORKSTATIONS/SYSTEM should be copies of all the system files, such as the
Compiler, Filer, and Editor. These files will normally not be used.

Under the private directory for each node should be accessible all the files normally used by the
Workstation. For files which don’t change, such as the Compiler, it is sufficient to simply have a
duplicate link to the original file in /WORKSTATIONS/SY.TEM -- there is no need to actually
copy such invariant files. The Filer’s Duplicate command can b~ used for this purpose.

Also in a node’s private system directory can be the files which "personalize" a Workstation: the
system LIBRARY, INITLIB which controls what drivers and DAMs are available, an
AUTOSTART file, and so forth.

Once this setup is created, booting is a smooth and automatic process. The particular system to be
booted is selected by name at power-up. Thereafter, the Workstation looks for necessary files in
the directory with its node number. If a required file can’t be found, default is taken to
/WORKSTATIONS/SYSTEM, and if something crucial is still missing, the boot may fail. (It will
complain on the console.)

If you boot from the SRM, your system volume will be unit #45 (prefixed to your private
directory /WORKSTATIONS/SYSTEMnn) and your default volume will be #5 (another SRM
volume, prefixed to the SRM root directory).

If you booted from local mass storage rather than the SRM, your system files will probably have
been found on that local mass storage. The SRM is still available through units #5 and #45.

One more thing: in order to run properly, there must be one more special directory called
TEMP__FILES under WORKSTATIONS. All temporary files are created in this directory, and
are removed when no longer needed. If you don’t create this directory, the first workstation to
need it will do so. Should the create fail, an error is reported. Consequently the directory
WORKSTATIONS should not be write-protected unless directory TEMP_ FILES has already
been created.

Most users will also want a private directory for their default volume. Typically one creates a
directory called USERS under the root, and within USERS a private directory for each
individual. After booting, use the Filer to set the current working directory for your unit #35 to
your private directory. This keeps the root directory from getting cluttered. Your own private
AUTOSTART stream file is very nice for this purpose.

SDG 46

SRM Initialization

This section tells what to do the first time you set up the first Pascal workstation with the SRM
software. It should NOT be repeated for every workstation you set up! Once this procedure is
complete, the SRM will be accessible any time you boot up your workstation.

It is assumed that your SRM hardware has been installed and tested as prescribed in the SRM
literature. There are four parameters which are set when the SRM configuration is initially
created. Appropriate values for these parameters when using Pascal workstations with the SRM
are:

I0OBUFFERS: At least five per workstation in the cluster;
(e.g. 40 buffers for 8 workstations).

DISC BUFFERS: Fifty is a good choice.
TASKS: Two is enough.

FILES: Allow for ten or twelve open files per workstation
in the cluster; one hundred is a nice round number.

For the following procedures you will need:

® The wiring chart and node number assignments which were prepared when designing your
SRM installation.

® The six original Pascal system discs:

BOOT: Must be installed at powerup time.

SYSVOL: Contains (part of) the system library.

ACCESS: Contains Filer, Editor, disc initialization
utility etc.

CMPASM: Contains the Pascal Compiler and Assembler.

CONFIG: Contains optional resident software which
may be installed in the boot files.

LIB: Contains optional software such as Graphics

and device I0 which may be installed in the
sytem library.

These discs may be supplied in several different formats, depending on what mainframe

computer and mass storage options you ordered. Most likely the discs you have are 5.25"
flexible diskettes.

® A local mass storage device which can read these six discs.

¢ Two blank magnetic discs like the six originals.

SDG 47

Installing the SRM software is not a hard or complicated operation, but it is important that the
steps outlined be followed in exact detail. Since you are less likely to make mistakes if you
understand what’s going on, here is an outline of what you will do.

1.

Determine how much memory your computer has. In the process which follows, it is helpful
to have two disc drives instead of just one; or to have a fixed disc such as the HP 9134.If
your computer doesn’t have additional mass storage, then it MUST have at least 512K bytes
of read/write memory, which will be used as mass storage.

. Boot up your computer using the original supplied BOOT disc. If you will be using some

read/write memory as mass storage, it is particularly important that you use the original
disc or an exact copy; if things have been added to the BOOT disc, there may not be enough
memory available.

. Use the MEDIAINIT program to initialize the blank discs. This must be done before a

directory can be written on the disc. Then use the Filer program to make an empty
directory on one disc, and a copy of BOOT on the other.

. If you have "enough" memory and don’t have two disc drives or a hard disc, reserve some

memory to use as a pseudo-disc. This is called "making a RAM volume".

. This sounds tricky but isn’t. On the BOOT disc is a file called INITLIB (Initial Library)

which contains, among other things, the software which enables your computer to "talk" to
peripheral devices. Such software is generically called "drivers". We will use the
LIBRARIAN to create a new INITLIB file containing the stuff in the original INITLIB and
the drivers required to talk to the SRM. The SRM drivers are on the CONFIG disc.

. Use the Filer to replace INITLIB on the BOOT disc with the new one.

. Reboot the computer using the new BOOT disc. At this point the computer is able to talk to

the SRM.

. Create the required directories on the SRM, then transfer the various system files such as

the Compiler out to the SRM.

. Reboot. You’re in business. Other machines on the cluster can use copies of the BOOT disc

yowve just prepared. If you wish to include still more drivers in the INITLIB of some
systems, see the section "How to add driver modules to INITLIB".

OK, here we go.

SDG 48

Determine available memory

Here is what to do if you don’t know how much memory is in your computer. If the machine is
on, turn it off, along with any disc drives to which it is connected. Open the doors of the built-in
flexible disc drives if there are any. If already connected to the SRM, remove the cable
connected to the 98629A Resource Management interface in the back. Now turn the computer
on. After going through self -test, the CRT will display the amount of available memory.

If you have at least 524000 bytes, there is "enough" memory to proceed with only one disc drive.
Otherwise you must have a second disc drive to proceed. If you have a second disc drive, use it
even if you have "enough" memory.

You should also note what Boot ROM revision is installed in your computer. If when powered up
as just described, the Boot ROM identifies itself on your CRT as "Boot ROM 3.0" or a later
revision (but NOT 3.0L, which is used with low-cost versions of the 9816 computer), your
computer is capable of booting directly from the SRM.

Reconnect the SRM cable. Turn on any peripherals connected to your computer.

Boot-up Using the Original BOOT Disc

Turn off the computer, then follow the normal sequence described in the Pascal Language
System User’s Manual to boot up. This basically involves inserting the BOOT disc into the
right-hand flexible disc drive (the only one on a 9826) and turning on the power. However, if
you have never booted up the Pascal system before, you should read the first few chapters of the
User’s Manual now!

Note that the "right-hand flexible disc drive" is an imprecise term; what is really meant is "drive
number zero". Drive zero is the right-hand drive in a 9836, or the only drive in a 9826. But if
your system uses an 8290x series disc or a 912x series disc, drive zero is the left-hand drive.

After booting, you will be at the "Command" level; at the top of the screen you should see a line

beginning with the word "Command:" and the cursor will be blinking at the right end of this
line.

Prepare the Blank Discs

A disc must be initialized before data can be stored on it; this process, also sometimes called
"formatting", stores on the disc information identifying the areas where data may later be
written. Initialization is discussed in the Pascal Language System User’s Manual, under "Backing
Up Your System Discs".

You need to initialize both the blank discs you will be using.

Remove the BOOT disc (or SYSVOL if, during booting, the computer asked you to insert it) and
put the disc labeled ACCESS in the right-hand disc drive. Then type:

[execute] MEDIAINIT [enter]
Here [execute] means press the key labeled "EXECUTE", or "EXEC" for a 9816. [enter] is of
course the "ENTER" key. Be sure to type the word MEDIAINIT in capitals! The program will be
loaded and start running, and ask:

Volume id?

SDG 49

You answer:
#3 [enter]

If the disc has been used previously and already has a directory on it, MEDIAINIT will tell you
the name of the existing directory. Then you will see:

WARNING: the initialization will also destroy:
#43 <no dir>
Are you sure you want to proceed?
Don’t worry about this. Answer yes by typing:
Y
The next prompt is:
Interleave factor [1..15] (default is 1)?

The particular default interleave factor will vary with the type of disc drive you are using. In
any case accept the default by pressing:

[enter]

The program will now initialize the disc and inform you when it is done. To restart the program
you need only put in another blank disc and press U (for User restart).

Finally you should use the Filer to put directories on the discs just initialized. Actually,
MEDIAINIT puts a directory on each, but it is always called "V 3" or whatever is the number of
the disc drive used during initialization. So we will put some more useful names.
Put the ACCESS disc in the same drive you loaded MEDIAINIT from, and press the F key while
at the Command prompt level. When the Filer has loaded, it will show its own prompt at the top
of the CRT, beginning with the word "Filer:" .
Use the Zero command by pressing the Z key. The Filer responds

Zero directory (NOT valid for SRM type units)

Zero what volume?
You answer:

43 [enter]
It asks:

Destroy V3: ? (Y/N)

Answer:

Y

SDG 50

It asks:
Number of directory entries (80) 7

Tell the Filer that 80 directory entries is fine by pressing:
[enter]

It asks:
Number of bytes (270336) ?

or some other number which is the size of the disc medium. You answer:
[enter]

It asks:
New directory name?

You answer:
NEWLIB [enter]

Actually you could pick some other name; 6 or less characters, capital letters recommended. The
Filer responds:

NEWLIB: <correct ? (Y/N)
You answer yes:

Y
The disc spins, then the Filer replies:

Volume NEWLIB zeroed
It is wise to label the disc you have just made. Write the name on a label before applying the
label to the disc; sharp instruments are likely to damage the disc. Don’t touch the exposed surface
of the magnetic medium under any circumstances!
It is not necessary to put a directory on the second disc; we will get one out there by copying the
BOOT disc verbatim. Note however that the BOOT disc has 8 directory entries instead of 80.
This disc will be quite full but have only a few files; there is no need to waste space with unused

directory entries.

While still in the Filer program, insert the original BOOT disc in the drive you have been using
and type F for the Filecopy command. The Filer responds:

Filecopy what file?
You answer:

#3,#3 [enter]

SDG 51

The Filer will read the contents of the disc (which may take a few moments) and then prompt:
Please mount DESTINATION in unit 43
'C’ continues, <sh-exec> aborts

Replace BOOT with the second blank disc and press the C key. The Filer will tell you when the

copy is complete.

Now exit the Filer and return to the Command prompt by typing Q

If necessary, make a RAM volume

If you determined that you have "enough" memory and must use some memory for mass storage,
the following steps are necessary. At the Command prompt level, press:

M
The computer responds:
X¥% CREATING A MEMORY VOLUME XXX
What unit number?
You answer:
#50 [enter]
It asks:
How many 512 byte BLOCKS?
You answer:
520 [enter]
It asks:
How many entries in directory?
You answer:
8 [enter]
It finishes:
#50: (RAM:) zeroed

This has reserved 266,240 (520*%512) bytes of memory to use as a mass storage device. It is like
having a disc drive with a disc named "RAM" inserted in it.

SDG 52

Make a new INITLIB

Now we will make a new Initial Library which includes the drivers required for the SRM.

Insert the ACCESS disc into the drive you have been using and press L to load the Librarian.
When you see the Librarian’s prompt line at t%:e top of the CRT, use the O (Output) command to
specify the name of the file the Librarian will be creating.

If you are using a memory volume, type the sequence:

0 RAM:INITNEW [enter]

If you are not using a memory volume, you have an auxiliary disc drive. Put disc NEWLIB in
that drive and type:

0 NEWLIB:INITNEW [enter]

If you use an auxialliary drive, you must not remove the NEWLIB disc until the end of this step,
after you have exited from the Librarian.

Next tell the Librarian to take input from the INITLIB file on the BOOT disc. Remove ACCESS
from the drive and insert the BOOT disc copy you made earlier. Then use the I command as
follows: .

I BOOT:INITLIB. [enter]
Be sure to type the period after the word INITLIB in this command. The Librarian will respond
by showing INITLIB as the name of the input file. Near the bottom of the CRT you will see a

line which says:

M input Module: KERNEL

SDG 53

Press the T key to transfer this module to the output file. After a few moments, the name of a
new module (KBD) will appear. Each time a new module name appears, press T to move it to the
output file. You should continue copying modules until the name LAST appears; DON'T COPY
MODULE LAST vet. Here is the list of modules you will transfer before you get to LAST:

KERNEL

KBD

KEYS

CRT

BAT

CLOCK
DEBUGGER
PRINTER
DISCHPIB
AMIGO
IODECLARATIONS
HPIB

DMA

REALS
ASC_AM
WS1.0_DAM
TEXT_AM
CONVERT_TEXT
LIF_DAM

Now vou must get the required SRM drivers from the CONFIG disc and include them in the
output file. First close the input file by typing:

I Tanter]
Then remove BOOT and insert CONFIG into the drive, and type:

I CONFIG:DATA_COMM. [enter]

Don’t forget the period after the name. When the module name DATA__ COMM show up near
the bottom of the screen, type:

A

This tells the Librarian to transfer all the modules in the file. Then use the I command again to
pick up the SRM input file, again being sure to type the period after the file name:

I CONFIG:SRM. [enter]
Again transfer all by typing:
A
Now you will swap discs again. Type:
I [enter]
before removing the CONFIG disc, then put in BOOT once more. Again type:
I BOOT:INITLIB [enter]

SDG 54

When module KERNEL shows up near the bottom of the screen, select module LAST instead by
typing:

M LAST [enter]
then transfer it by typing:
T

You now have all the modules in your new library. "Keep" it and then quit the Librarian by
typing:

KQ

Now we will use the Filer to save a spare copy of the library just created on NEWLIB (the
second disc you initialized in step C). Insert disc ACCESS and press F to call up the Filer.

If you are using a memory volume, insert NEWLIB (the second disc which was initialized in step
C) in the drive and type:

F RAM:INITNEW.CODE NEWLIB:$ [enter]
to copy the file onto the disc. This makes a permanent copy of the results of step E.
If you are not using a memory volume, you may still wish to make a backup copy of the new
library.
Replace INITLIB on the New BOOT Disc
If you didn’t use the Filer at the end of the last step, load it now by inserting ACCESS and
pressing F. Then put in the BOOT disc copy made in the previous step. Press R for the Remove
command:

Remove what file?
Answer with:

BOOT:INITLIB [enter]
Again, use capital letters! Note also that there is no period after the file name this time. Then
pack all the remaining files on the disc to make the maximum amount of room for the new
INITLIB: press the K key. The Filer answer:

Crunch what directory?
You answer:

BOOT: [enter]
Don’t fail to type the colon after the volume name! The Filer will then say

Crunch directory BOOT ? (Y/N)

Answer:

SDG 55

Y
It says:
Crunch of directory BOOT in progress

DO NOT DISTURBI!
Crunch completed

If you interfere with the disc before the Crunch operation completes, you will ruin the data on
the disc. You will certainly have to recopy it from the original BOOT and you may have to
re-initialize it.

Now when the Crunch is finished, you can move the INITNEW library file created in step E
onto the new BOOT disc. At the same time, we will rename it INITLIB.

What you should do next depends on whether you’re using a RAM volume or not. If you sent
your INITNEW library to a memory volume in step E, follow the next paragraph; otherwise skip
ahead to "If you are not using a memory volume".
If you are using a memory volume, then:
Insert the BOOT disc copy you have been working with and press F for the Filecopy command.
Filecopy what file ?
Answer:
RAM: INITNEW.CODE,BOQOT:INITLIB [enter]

The Filer will tell you when the file has been copied.

If you are not using a memory volume:
Insert disc NEWLIB and press F for the Filecopy command.
Filecopy what file?
Answer:
NEWLIB:INITNEW.CODE ,BOOT:INITLIB [enter]
The Filer will suck up INITNEW.CODE and then ask you to:
Please mount DESTINATION volume BOOT
"C’ continues, <sh-exc> aborts
You should remove the NEWLIB disc and insert the BOOT copy you have been working with.
Then press C. The Filer will write out the new file.
Depending on how much memory is available in your machine, the Filer may ask you to swap
the NEWLIB and BOOT discs several times. Follow its instruction precisely. It will tell you the

name of the disc to insert each time.

SDG 56

When it finishes, you have a BOOT disc which contains the SRM drivers.

Each Pascal workstation in the cluster must boot using an INITLIB which has the SRM driver
software installed. You may wish to make copies of the disc you’ve just created for each
workstation. The disc can be copied using the Filer sequence F#3,#3 [enter] just as we did in step
C when copying the original BOOT disc.

Reboot using new disc

Presumably your SRM controller has already been installed according to the supplied
instructions; the shared disc has been initialized, and the SRM root directory exists. If your SRM
has a printer, you should have also configured a spooling directory. At this point you are ready to

begin talking to the SRM. Use the new BOOT disc you have just created. Turn off your
computer, insert the new BOOT disc, and reboot.

Create the Directories and Files Required on SRM

Insert the ACCESS disc in drive #3 and press F to execute the Filer. When the Filer prompt
appears, press V to list the volumes on-line.

If the SRM is not recognized by your system, you should recheck the SRM installation and verify
that the interface in the computer you are using is recognized by the SRM. Also verify that the
98629 interface card is set to select code 21 (unless someone has altered the default select code
provided by the IO configuration program TABLE). See the "System Manual for Shared Resource
Management", HP part number 09826-90080.

Now create the required directories. If the SRM has already been running with some other
systems connected, such as 9845 or 9836 BASIC, some of these directories may already exist. To
see the directories which already exist, enter the following Filer commands:

L#5:/ [enter]

In following the steps below, obviously you should skip the steps which create directories which
already exist on your SRM.

To create directory WORKSTATIONS, use the following Filer sequence:
M
The Filer responds:
Make file or directory (F/D) ?
You want to make a directory:
D
The Filer responds:
Make directory (valid only for SRM type units)
Make what directory?
You answer:

SDG §7

#5: /WORKSTATIONS [enter]

Be sure to type this name in capital letters! If the root directory was protected with one or more
passwords, at this point the Filer would report: ’Error: invalid password’. In that case, you need to
find out the required passwords from whoever initialized the SRM disc or installed the
passwords. To create this directory, you need Write access rights in the root directory, and
possibly Manager rights if they were specified. For instance, if the password for Write access is
PLEASE, you would specify #5/<PLEASE>/WORKSTATIONS in the step above.
Alternatively, you might use the main volume password by specifying
#5<VOL__PASS>/WORKSTATIONS . The Filer should reply:

Directory is 'WORKSTATIONS' correct ? (Y/N)
You answer:
Y
The directory is created, then the Filer announces:
Directory WORKSTATIONS made

If the computers in the SRM cluster have a Boot ROM which is able to boot from the SRM (Boot
ROM 3.0 or later revision not 3.0L, which is used with low-cost versions of the 9816 computer),
you will also want to create a directory called SYSTEMS in the root. Repeat the steps just given,
but instead specify that you want to create directory #5:/SYSTEMS .

Next, create directory SYSTEM under WORKSTATIONS. This is where the master copy of all
system programs such as the Compiler will be stored. To reduce the amount of typing involved,
we will make the current working directory for unit #5 be the newly created WORKSTATIONS
directory. Type P for the Prefix command. The Filer responds:

Prefix to what directory ?
Answer:

#5: /WORKSTATIONS [enter]
The Filer will respond:

Prefix is WORKSTATIONS:

Now if you don’t specify a unit number in Filer operations, the system will assume you are
referring to directory WORKSTATIONS. To create SYSTEM, the sequence is

M

Make file or directory (F/D) ? D

Make what directory? SYSTEM

Directory is 'SYSTEM’ correct? (Y/N) Y
Directory SYSTEM made

Also under WORKSTATIONS create directories called SYSTEMnn, where nn is the node number
for each workstation in the cluster. You can see why we said each node number should be
unique! For example, create SYSTEMOS for the workstation at node 5. Note that two digits are
required if the first digit is zero.

SDG 58

Finally, under WORKSTATIONS you should create a directory called TEMP_FILES. This is
only necessary if you plan to write-protect WORKSTATIONS.

You are now at the last stage! It is time to move the required files out into the new directories.
First prefix the current working directory to #5:/WORKSTATIONS/SYSTEM using the Filer

sequence:
P#5: /WORKSTATIONS/SYSTEM [enter]

Then insert the BOOT disc in the drive you have been using and copy all the files on it into the
cuirent working directory. Use F (the Filer’s Filecopy command).

F
Filecopy what file?

You answer:
BOOT:=,$ [enter]

The Filer will copy the files one after another. Then repeat the operation for each of the
following discs:

SYSvOL:
CMPASM:
ACCESS:
LIB:

CONFIG:

After this is done, the SYSTEM directory contains the entire Pascal 2.0 Workstation software.

Now you need to make these files available in the private SYSTEMnn directory of each
workstation. For each such system directory, use the Filer’s Duplicate Link command (D):

Duplicate link (valid only for SRM type units)
Duplicate or Move ? (D/M)

You want to duplicate links rather than move the files ; this will allow each directory to "see"
the files. Press the D key. The Filer will ask:

Dup_link what file?
Answer:
?,#5: /WORKSTATIONS/SYSTEMnn/$ [enter]

The questionmark causes the Filer to ask if you want each file transferred. Answer "Y" for every
file except AUTOSTART and SYSTEM__P. Of course you should substitute a two-digit node
number for nn each time. The Dup_ link operation is very fast. It reports each file as the links
are made.

The last detail is optional. If any of the workstations in the SRM cluster have Boot ROM
revisions 3.0 or later (but NOT 3.0L, which is used with low-cost versions of the 9816 computer)
and will be expected to boot from the SRM instead of using local mass storage, you need to put a

SDG 59

copy of the boot image file in directory SYSTEMS under the root (ie in /SYSTEMS, not in
/WORKSTATIONS/SYSTEM). The boot image file is on the BOOT disc, but a copy was already
made in the paragraphs above. The Dup_ link command can move the file to a different
directory. Type D, then

Duplicate link (valid only for SRM type units)
Duplicate or Move ? (D/M) M

Dup_link what file?

5: /WORKSTATIONS/SYSTEM/SYSTEM_P , #5: /SYSTEMS/$ [enter]

That concludes the required SRM software setup. Now any workstation using the BOOT disc you
have created will be able to access the SRM via logical units #5 and #45. If a workstation has
high performance local mass storage such as a fixed disc, that workstation’s system volume will
be on the local mass storage; otherwise the SRM directory #45./WORKSTATIONS/SYSTEMnn
will the the system volume.

It is advisable to also create a private working SRM directory for each user, in addition to the
SYSTEMnn directories for each workstation. Typically a user will then use unit #45 for his
system volume and #§ will be prefixed to his working directory. A good way to set this up is to
create:

/USERS

in the root directory, and then

/USERS/CHARLIE
/USERS/SUE

and so forth for each user.

SDG 60

Chapter 5
Programming with Files

File Naming Conventions

The definition of HP Pascal tries to minimize the pain of moving Pascal programs from one
operating system to another by requiring the use of string values to specify the names of files
and certain other information such as passwords and access rights.

In Pascal 2.0, the allowable syntax of a file name depends on the type of directory in which the
file resides. The underlying file support is structured to allow programs to work properly
regardless of the directory organization(s) being used, but the syntax of file names is defined by
the directory.

File Specifications and File Names

There is a difference between a file SPECIFICATION and a file NAME. A file name is a
character string which is the external identifier by which a file is designated in a disc directory.
A file specification is a character string which consists of the file name and several other
optional items: volume name, path name, passwords and size specifier. Not all these items are
allowed by every Directory Access Method or under all circumstances; for instance, path name
and passwords are only used with the Shared Resource Manager’s hierarchical directory
organization.

Syntax of a File Specification
The syntax of a legal file specification is given by:

[volumeid] [pathname] filename [sizespec]

filespec

volumeid

In this notation, items between braces "[" and "]" are optional; quoted items appear literally. The
definition just given means that a filespec may appear in one of two forms. The first form
consists of an optional volumeid followed by a colon, then an optional pathid, then a filename
which is not optional, then an optional sizespec. The second form consists just of a volumeid.

SDG 61

Syntax of a Volume Identifier

The volumeid selects one of up to 50 logical units known to the file system. If no volumeid is
present, the volume used is the "default volume" selected by the Filer’s Prefix command.
Otherwise the volume is specified in one of two ways:

volumeid ::= "#" integer [password]

name [password]

In the first case, the integer is a two-digit number from one to fifty; for example, #23: is a
volume id. In the second case, the name is a sequence of characters. The length of the name and
allowable characters depend on the particular directory organization used by the logical unit.
For mass storage devices, the volume name is actually stored on the disc itself so it can be
identified whenever it is inserted into a drive. For devices which have no directory, such as
printers, the volume name is an arbitrary one supplied by the TABLE configuration program at
boot-up time.

Example volumeids of the second form are MYSYS: and PRINTER: Volumeids may be 6
characters long in LIF directories, 7 characters long in Workstation 1.0 (UCSD-compatible)
directories, and 16 characters long in SRM directories. Use only upper-case letters and digits for
volume names.

A LIF volumeid of all blanks (6 ASCII spaces) will not be recognized.

In the case of a logical unit connected to a Shared Resource Manager, the volumeid takes a
special meaning. The notation #5: refers to the current working directory of volume number
five; the notation #5:/ refers to the root directory of the SRM to which volume number five is
connected. The current working directory for any SRM volume is selected by the Filer’s Prefix
command.

On the other hand, if the logical unit does not have a hierarchical directory, then the two
volumeid notations have the same meaning. This is the case for all local mass storage devices.

SDG 62

Syntax of a Path Name

Directory path names are only allowed when specifying files on SRM logical units. The syntax of
pathnames is:

pathname ["/*] { directoryname [password] "/" }

password ::= "<" word ">"

directoryname ::= filename

The use of curly braces "{" and "}" indicates that the stuff between them may occur zero or more
times. As you can see, there are two special directory names allowed with the SRM. The name "."
(a single period) refers to the current directory somewhere along a path to a file of an SRM
logical unit. The name "." refers to the parent of the current directory. Other file names
occuring in a path name are directories along the path to the one which contains the file being

specified.
Passwords are sequences of up to 16 characters, which govern the access rights to a file or
directory. They are given to a file either at creation time, or by use of the Filer’s Access

command.

Note that a pathname doesn’t appear by itself; it appears as part of a file specification, with the
file name after the path name.

Examples of path names are:

/ Denotes the root directory.
/. <PASS1>/ Denotes root, using password "PASS1".
JUSERS/ROGER/ Denotes directory ROGER in USERS,

which is in root directory.
HERE/THERE/ Denotes directory THERE, found in HERE
.. /THERE<PASS2>/ Directory THERE, found in the parent of

the current working directory.

A path name together with a volumeid might appear as:
#5: /WORKSTATIONS/SYSTEM13/

Occasionally there is need for a volume password, which is a case not covered by the above
syntax. You may use either of the following forms:

#5<volpassword>:/dirnamel/dirname2/filename

#5.<volpassword>/dirnamel/dirname2/filename

That is, the volume password may either immediately precede or follow the colon separator.

SDG 63

Syntax of File Names
A file name is just a sequence of characters. The Directory Access Methods allow all printable
characters. However, the following characters have significance either in Filer commands or in
the overall specification of files under various Directory Access Methods (such as path name in
hierarchical directories), and therefore should be avoided in file names:

® sharp '#’

® asterisk ¥’

® comma)

® colon ™

® equals =

@ question mark '?

left bracket
e right bracket ’J
@ dollar sign’$’
© Jess than <
® greater than >’
Control characters (ordinal less than 32) and blanks are removed altogether by the File System
before the name is ever presented to any Directory Access Method.
File Types Derived From File Narres
The type of a file is determined when it is created, and is derived from a suffix (the last

characters of the file name). Once the file type is determined, a type code is recorded in the
directory, and changing the file name won’t change its type.

Suffix File type
.ASC LIF ASCII text file
.TEXT WS 1.0 / UCSD compatible text file
.CODE Pascal 2.0 object code
.BAD File covering bad area of disc
.SYSTM Boot image file
<nohe> "Data" file (assumed FILE OF <TYPE>

SDG 64

File Names (LIF Directory)

The LIF Directory Access Method (DAM) generally allows any ASCII character to be used in a
file name. This is contrary to the HP LIF Standard, which states that file names must be
composed only of upper-case letters, digits, and the underscore ’__’ character. Note that
uppercase and lowercase letters are distinct. File names stored in LIF directories are always
exactly 10 characters; they may be blank-padded by the DAM if necessary.

The LIF DAM recognizes only UPPERCASE suffixes.

The 10-character file name length would be a very severe restriction when four or five
characters are required for a suffix. To ease this problem, the LIF DAM performs a
transformation on the file name which compresses the suffix if one is present. The
transformation occurs automatically when a LIF directory entry is made, and it is reversed
automatically before the file name is ever presented to any program or to the user.

This "black magic" is usually completely transparent to the Pascal user, although its effects may
be seen when a LIF directory is examined from the BASIC language system. It sounds
complicated and dangerous, but in practice it is very smooth. Most people would never notice it
if they weren’t told.

Here is how LIF DAM changes a name before putting it into the directory:

® Look for a standard suffix. If there is none, the file is a data file and the name is used
unchanged unless it is too long. If it is longer than 10 characters an error is generated.

e If a suffix is found, it is removed from the name but the dot ’’ delimiter is left. If the
resulting name is longer than 10 characters, an error is generated.

® If the trimmed name is not too long, the dot is replaced by the first letter of the suffix (e.g.
A’ for . ASQC).

® If the name is now less than 10 characters long, it is extended by appending underscores ’_
to 10 characters.

Using this algorithm, we would have the following examples:

"A.ASC’ ==) "AA ’

"charlie’ ==)> "charlie

"123456789 . TEXT' ==> '123456789T’

"GollyGeeeT’ ==)> rejected because it would be

confused with transformation of
"GollyGeee TEXT’
The reverse transformation is fairly obvious:
e If the 10th character is a blank, do nothing; otherwise,
@ Remove all trailing underscores.

e Compare the last non-underscore to the first letter of each valid suffix. If a match is found,
remove that letter from the file name and append a dot ’’ followed by the full suffix.

® If no suffix match is found, use the original file name.

SDG 65

File Names (WORKSTATION 1.0 Directory)

The Workstation 1.0 DAM allows file names of up to 15 characters including the suffix. Any
lower~-case letters are transformed to upper-case, so that ’a.text’ and ’A.TEXT’ denote the same
file.

File Names (SHARED RESOURCE MANAGER)

The SRM itself allows almost any file name. Names shorter than 16 characters are padded with
trailing blanks. Two names are reserved: all blanks, and all nulls (ASCII zero). The Pascal 2.0
system removes blanks and control characters from the file name.

The Pascal 2.0 SRM Directory Method takes the "<" character to denote the beginning of a

password. All characters up to the next ">" character are part of the password, so that
<<<<<<<<> is a (poorly chosen) password. Passwords may be up to 16 characters long.

File Size Specification
The last, optional part of a file specification is the file size specifier. If present, its syntax is:
sizespec ::= "[" integer "]"
v = n [*] "
This specification only takes effect if a new file is being created; otherwise it is ignored (e.g.
RESET).

In the first form, the integer gives the number of 512-byte blocks to be allocated to the file. For
instance, [100] would cause allocation of §1,200 bytes.

The second form: [*] specifies that the file is to be allocated either (half of the largest free
space) or (the second largest free space), whichever is larger.

If no size specifier is present when space for a new file is being allocated, the largest free area is
assigned to the file.

For files stored in the SRM, the first extent allocated to the file will be contiguous and of the
size specified if possible.

SDG 66

Operations

This section describes how to program using the Pascal file operations. It discusses the creation
and disposition of files and the basic operations on file data.

Pascal Primitive File Operations
® Opening and closing files:

REWRITE Open file for writing.

RESET Open file for reading.

OPEN Open file for random (direct) access.
APPEND Open file to extend (append new data).
CLOSE Close file and optionally discard it.

® Sequential file operations:

READ Read next component.

WRITE Write next component.

GET Invalidate current file component.
PUT Place current file component.
<file>™ Validate and access file buffer.
EQF Predicate - test end-of-file.

® Direct access operations:

SEEK Position to specified file component.
READDIR Read specified file component.

WRITEDIR Write specified file component.

POSITION Returns current component number.

MAXPQOS Returns highest allowable component number.

¢ Operations on textfiles:

READ Input data editing.

READLN Pass end-of-line.

WRITE Qutput data editing.

WRITELN Output end-of-line.

PROMPT Output data editing.
OVERPRINT Write over current line.

ECLN Predicate - test end-of-line.
PAGE Write form-feed.

SDG 67

Grouping the operations functionally, produces:

e The following operations put the file into WRITE Mode:

REWRITE

OPEN

APPEND

SEEK

PUT

WRITE

WRITEDIR

WRITELN {see the section on TEXT files}

F~ {if the file is already in WRITE Mode}

e The following operations put the file into READ Mode:

RESET

GET

READ

READDIR

READLN {see the section on TEXT files}

® The following operations put the file in LOOKAHEAD Mode:

F~ {unless the file was in WRITE Mode}

EOF {unless the file is open for random access}

EOLN {see the section on TEXT files}

READs {of multi-character objects from TEXT files, such
as strings, PACs, integers, reals, cnhumerated types,
and booleans.}

SDG 68

File Position

In order to understand the three modes a file can be in, we need to take some time to discuss the
file pointer and the file buffer, F*.

Associated with each open file is file pointer. This pointer can be though of as a marker
indicating how much the file has been read or written. The file pointer starts at the beginning of
the file when the file is opened with RESET, REWRITE, or OPEN. The file pointer is set to the
end of the file if the file is opened with AKPPEND. The file element pointed at by the file
pointer is called the current component. Each time you read from a file, the current component
is fetched. Each time you write to a file, the new information becomes the current component.

The components of a file are numbered sequentially from 1 to N, where N is the number of
components in the file. The file position 1s a number from 1 to N+1 which vsually corresponds to
the position of the file pointer.

The Buffer Variable

Each file has associated with it a special variable called the buffer variable or the file window.
This is a variable of the same type as the components of the file. It is referred to as F~ where F
is the file identifier. For example, if F is a FILE OF INTEGER, then F” is an integer variable.
The buffer variable is usually associated with the current component of the file.

File States

Every file which is open is in one of three states or modes at any given time depending on what
was the most recent operation on that file. The file state has to do with whether you are reading
or writing the file and whether you have referenced the buffer variable, F~. The three state are
WRITE Mode, READ Mode, and LOOKAHEAD Mode.

If the file is in WRITE Mode, F~ has no special meaning other than as a variable, and
referencing it causes no I/O to take place. This is the mode in which you normally assign to F*,
e,

F~ =
in preparation for a PUT statement. If you assign from F”, ie.,
= F™
in this mode you will get unpredictable results.

The READ Mode is also called the LAZY I/0O state, because in this mode the buffer varible
refers to the current componint of the file, but the file system does not fill it until the first time
it is referenced. In this mode you normally assign from F” in order to read the next component
of the file.

If the file is in READ Mode, referenceing F”~ causes the current component to be fetched from
the file and placed in the buffer variable. When this is done, the buffer variable is full and the
file goes into the LOOKAHEAD Mode. Once the file is in the LOOKAHEAD Mode, F~ may be
referenced as many more time as desired but no more I/O will be done.

The LOOKAHEAD Mode is so called because we have peeked at the current component without
having advanced completely past it. In actuality, the current component has been read into F*

SDG 69

and the file pointer has advanced to the following component. However, the file system pretends
that the current component hasn’t been fetched yet. In this state the POSITION function returns
a value corresponding to the component in the file buffer, which is 1 less than that
correcponding to the true file pointer. Also, in this state, READ(F, V) will assign the value of F*
to V instead of reading the next component of the file. On the other hand, if a write were done
in this state, it would write the component at the true file pointer, and the POSITION functiuon
would appear to advance by 2 instead of 1!

Creating New Files

A file is initially created by the REWRITE, OPEN, or APPEND operations. However, OPEN and
APPEND are usually applied to existing files. These standard procedures each may take one, two
or three parameters:

REWRITE (filevar)
REWRITE (filevar,name)
REWRITE (filevar ,name, thirdparam)

Here "filevar" is the name of a Pascal file variable; "name" is a string which i1s the system
identification of the file; and "thirdparam" is an optional string which is used with Shared
Resource Manager files to control shared access to the file (see subheadings "Third Parameter to
Reset, Rewrite, Open", "Concurrent File Access” and "Access Rights" below). The name string
may include information about the file size, and an SRM pathname to the relevant directory.

When a new file is first created, it is considered "temporary", and it will remain so until it is
CLOSEd with a specification that it be LOCKed into the disc directory. Such temporary files
don’t conflict with other files of the same name. A new file created by REWRITE, OPEN, or
APPEND will be thrown away when the program terminates unless the program takes explicit
action.

The allowable file name syntax depends on the Directory Access Method (DAM) being used; this
subject is discussed under "File Naming Conventions", below. However, all file names may have
appended to them a specification of the size of the file, which the DAM may use at file creation
time to allocate space. The size specification may take the following forms.

® No size specification. The file will be allocated the largest available block of space for
contigous-file DAMs (LIF and Workstation 1.0 directory organizations), or an
indeterminate amount of space for the SRM. Example: CHARLIE . TEXT

e [X] on end of file name. The file will be allocated the greater of (second largest free block,
half of largest free block) for contiguous-file DAMSs, or an indeterminate amount of space
for the SRM. Example: SUSANNAH[X]

© [nnn] on end of file name, where "nnn" is a positive integer. The file will be allocated nnn
blocks of 512 bytes each for contiguous-file DAMSs, or an indeterminate amount by the
SRM. Example: EXACTLY[1000] which gets 512,000 bytes.

It is permissible to create anonymous files by specifying no file name, for example: REWRITE(F).
Note however that there is no way to request a specific file size for an anonymous file;
REWRITE(F, '{500] ") is not acceptable because there is no file name preceding the size specifier.

The REWRITE, OPEN, and APPEND primitives do not necessarily create a new file. Whether
they do depends on whether a file already exists with the given name, and whether the file
variable is already associated with some physical file by virtue of a previous opening operation.

SDG 70

REWRITE(F) (with optional 2nd and 3rd parameters)

If F was already open at the time of REWRITE and no filename is specified, the same physical
file is referenced. If a filename is specified, the current file is closed and the physical file
specified by the second parameter is referenced. This implicit CLOSE is actually a
CLOSE(F, 'NORMAL') -~ see below -- and so the file will not necessarily be saved. The file is
positioned to its beginning, and any data it contained is discarded. Thus one way to overwrite the
content of an existing file is to open it for reading via RESET, then REWRITE it.

If the file variable F is not already associated with a physical file (that is, F is not presently
open), a new file is created and opened for writing. If a file name and size are specified, they will
be applied. The new file created is temporary until it is CLOSEd, and in fact is distinct from any
existing file of the same name!

APPEND(F) (with optional parameters)

If F was already open at the time of APPEND and no filename is specified, the same physical
file is referenced. If a filename is specified, the current file is closed and the physical file
specified by the second parameter is referenced. This implicit CLOSE is actually a
CLOSE(F, 'NORMAL') -~ see below -~ and so the file will not necessarily be saved. If F was open
and no filename is given, then APPEND positions to the end of the file and re-opens it for
writing. Any data written will get tacked on to the file; the original content remains valid.

If F is not already open and no file name is given, a new temporary file is created and the
behavior is like REWRITE.

If F is not open and a file name is given, APPEND searches for an existing file of that name. If
one is found, position to the end and prepare for writing; if none is found, create a new
temporary file.

Restrictions on APPEND

APPENDing to text files is not allowed in the Pascal 2.0 implementation. It only works for data
files (file of <type>).

If the file is in a volume with a WS 1.0 directory organization, it may not be possible to
APPEND. For this directory type, APPEND is only allowed if there happens to be free space on
the disc immediately following the current end of the file.

If the file is in a volume with a LIF directory, it may not be possible to APPEND. Space for the
file is initially allocated as requested (see File Size Specification, below). When the file is closed,
its logical end of file and physical end of space are both recorded. Subsequent APPENDing will
always be allowed until the physical space is exhausted; after that, APPENDing will only work if
there happens to be free space on the disc after the current end of file.

OPEN(F) (with optional parameters)

Opens a file for random (direct) access, allowing both reading and writing. The file is positioned
to its beginning.

If F was already open at the time of REWRITE and no filename is specified, the same physical
file is referenced. If a filename is specified, the current file is closed and the physical file

SDG 71

srecified by the second parameter is referenced. This implicit CLOSE
CLOSE(F, 'NORMAL’) -- see below -- and so the file will not necessarily be saved.

If F is not open and no file name is given, a new temporary one is created. If a file name is given

matching an existing file, that file is used; otherwise a new file is created.

Disposing of Files

A program terminates the association between a file variable and a physical file with the CLOSE
standard procedure. The call may specify that the file is to be purged (deleted from the

directory), locked (made permanent), or purged only if it is a temporary file.

CLOSE(F, 'SAVE")
CLOSE(F, 'LOCK")

CLOSE(F)
CLOSE (F, 'NORMAL")

CLOSE (F, 'PURGE ")

CLOSE(F, 'CRUNCH")

Opening Existing Files

To open an existing file, you must give a file name parameter to the OPEN, APPEND or RESET

standard procedures.

RESET(F, filename’)

Opens an existing file for reading, and positions F to the beginning. If F was already open and no
file name is specified, the file to be read is the one which was open. Otherwise, the file system
searches for an existing file of the specified name and reports an error if none is found.

Both do the same thing; the file is
made permanent in the volume
directory. Does nothing if file is
anonymous .

Both do the same thing. If the file
is already permanent, it remains in
the directory. If it is temporary,
it is removed.

The file is removed from the directory
whether or not it was permanent.

The end-of-file marker is set at the
current file position; data beyond
this position is lost.

RESET(F) with no file name specifier will fail unless F is already open.

OPEN(F, filename’)

APPEND(F, filename’)

OPEN and APPEND search for the named file, and if one is found, the association will be with
that physical file. But note that if no file is found, a new temporary one will be created; see

comments about file creation, above.

Note that OPEN(F) and APPEND(F) without a file name will create new files unless F was

already open.

SDG 72

actually a

REWRITE(F, filename’)

When REWRITE specifies the name of a file which already exists, a new temporary file is
created. All output data goes to this new file instead of the old one. At the time the file is closed,
the old one is purged and the temporary file is renamed. This prevents destruction of the old file
in case the program terminates prematurely.

To get rid of the old file first, open it with RESET and then do a CLOSE(F, 'PURGE').
Sequential File Operations

In Pascal there are two classes of file: TEXT and DATA. Files of type TEXT are so declared in
the Pascal program:

var F: text;

Text files are best thought of as lines of characters, separated by end-of -line designators of some
sort. They are intended to represent human-legible text material such as documents.

Data files are files of some component type. They are ordered sequences of variables, all of the
same type. The type may be a predeclared type like INTEGER, or some user-declared type:

type
rec = record
name: string[50];
socialsecurity: integer;
end;
var
ss: file of rec;

A file of char is not the same thing as a text file, because no lines are distinguished in the file of
char.

This section is about data files; the discussion of text files is below. In the discussion, F denotes a
file variable; T is the type of its components; and V, V1, V2 .. are variables of type T.

READ(F,V)

If F is open for reading (by RESET or OPEN), then this standard procedure will store into
variable V the current component of F and advance to the next component. Note that
READ(F,V1,V2,V3) is equivalent to three READs in a row.

WRITE(F,V)

If Fis open for writing (by REWRITE, APPEND or OPEN) then the value of V is written as the

current component of F and F i1s advanced to the next component. WRITE(F,V1 V2,V3) is
allowed.

SDG 73

F/\

The file variable name can be referenced as a pointer. It points to the "current" component of
the file; that is, if F is a file of T, then F”™ is a variable of type T.F" is called the "buffer
variable" of F. (This logical buffer is distinct from the physical device buffer!)

Note that for files being read, F” is always valid unless end-of -file has been reached. This means
that whenever a reference is made to F*, the file system will ensure that the current component
has been fetched from mass storage and is available in the buffer variable.

HP Pascal specifies the use of "lazy evaluation", which simply means that the buffer variable is
not filled until the program references it.

PUT(F)

PUT and WRITE are related operations. To output data using PUT, first store into the buffer
variable the value to be written, then call PUT:

F~ 1=V, PUT(F);
This sequence is equivalent to WRITE(F,V).
Note that it isn’t enough to just store into F”™: you must also PUT the value. For instance:
F* = V1, F~ 1= V2; PUT(F)
will store into the file the single value V2. Also, if you fail to PUT the last component before
closing the file, the last component will be lost.
GET(F)

This is the complementary operation to PUT, used for input. It throws away the current
component value and advances the file to the next component. The sequence:

V = F~;, GET(F);

is like READ(F,V). Note that since F~ is always valid unless end-of -file has been reached, the
first component of F is available immediately after F is opened; there is no initial GET:

RESET(F, 'CHARLIE'); {open file for reading}

V i= F™ {take 1st component}
GET(F) ; {advance to 2nd component}
EOF(F)

This predicate returns true if the file is positioned and end-of -file, else false. At end-of -file, the
content of F” is undefined and any attempt to READ(F,.) will cause an error.

EOF is true if F is not currently open, or if it is open for write only.

SDG 74

Direct Access (Random Access) Files

Files of DATA (not TEXT) may be accessed directly, that is, a program can specify that it wants
to read or write the n-th record in the file without scanning through the records in sequence. A
file must be opened with the OPEN standard procedure to allow direct access.

The components of a direct access file are numbered sequentially, with the first being number
one. (Note that there is no acknowleged standard in this area; for instance, UCSD Pascal numbers
the first component of a direct access file as record zero. All HP Pascal implementations work as
described herein.)

When a file is OPENed, it is positioned at the first component. If sequential 10 operations are
performed, the file components will be accessed in ascending order. There are several ways to
randomly access the n-th record.

READDIR(F,N,V)

The read-direct standard procedure positions F to component N of the file, and then reads the
value into variable V. Subsequent READ calls would receive records N+1, N+2 and so on.
READDIR(FN,V1,V2V3) is equivalent to the sequence:

READDIR(F N, V1)
READ (F,V2) ;
READ (F,V3);

WRITEDIR(F,N,V)

The write~direct standard procedure positions F to component N of the file, and then writes
value V. Subsequent WRITEs will place values in components N+1, N+2 and so on.
WRITEDIR(F,N,V1,V2V3) is equivalent to:

WRITEDIR(F,N,V1);
WRITE(F,V2);
WRITE(F,V3);

SEEK(F,N)

As with the other direct-access procedures, file F must be OPENed (for both read and write).
SEEK positions F so that the next call to GET or PUT will fetch or place component N.

OPEN(F, 'CHARLIE');
SEEK(F,100);
GET(F);

V100 := F™;

This definition is certainly counter-intuitive in that the program must not do an initial GET
after opening the file, but must after SEEKing.

SDG 735

SEEK works most smoothly (in the most natural fashion) if used with READ and WRITE:

SEEK(F N} ;
READ(F,V);

POSITION(F)

This function returns an integer value which is the number of the next component which will be
read or written. If the buffer variable F~ is full, POSITION returns the number of that
component.

MAXPOS(F)

This function returns an integer value which is the number of the last component which has
ever been written into the file. Note that the component must have been written; merely
SEEKing out to some far component is not enough to cause the maximum position limit to be
extended.

Textfile Input and Output

A TEXTFILE is composed of variable-length lines of characters. It differs from FILE OF CHAR
in that the lines are separated by end-of -line marks. Pascal 2.0 supports three different text file
representations. Text files are the basis of human-legible input and output (as it says in the
Pascal standard). This means that they are used for "formatted" IO such as printouts.

Declaring a TEXT File

A text file must normally be declared in the following way:
VAR F. TEXT;

All text files must be declared except the two standard files INPUT (corresponding to keyboard)
and OUTPUT (which sends its output to the CRT). These two files, if used, must be listed in the
main program header:

PROGRAM X (INPUT,OUTPUT);
However, they must NOT also be declared in the body of the program.

In addition, there are two other "standard" system files which may be used, called KEYBOARD
and LISTING. If these two files are used, they must appear both in the program heading and in a
VAR declaration, as follows:

PROGRAM X (INPUT,QUTPUT,KEYBOARD,LISTING);
VAR

KEYBOARD, LISTING: TEXT;
BEGIN

END.

SDG 76

Don’t worry about why INPUT and OUTPUT must not be declared yet KEYBOARD and
LISTING must be; that’s how it 1s. Note also that the four standard files are automatically
opened by the Operating System before the program runs -- they do not generally appear in
RESET or REWRITE statements, although they may be closed and re-opened if necessary.

KEYBOARD and INPUT both take characters from the keyboard; the difference is that
characters read from INPUT are echoed to the CRT, while those read from KEYBOARD are not.
The file LISTING is opened to PRINTER:LISTING.ASC which is the standard system printer.
(Note that since PRINTER: is normally an unblocked volume, the file name part of the specifier
is ignored. On the other hand, if PRINTER: is a mass storage volume, the file name is significant.
It’s a good habit to include a file name even when going to unblocked volumes.)

Representations of a TEXT File

The way lines of characters will be represented in a text file is determined when the file is
originally created.

If the file name given in the REWRITE which creates the file ends in the suffix .ASC, the file
representation used is LIF (Logical Interchange Format) ASCIL In this representation, each line is
preceded by a signed 16-bit length field telling how many characters are in the line. In this
representation, there is no restriction on what characters may appear in the line.

If the creation file name ends in the suffix .TEXT, the representation used is known as
"Workstation 1.0 format". This format is compatible with the UCSD Pascal P-system textfile
representation ("UCSD Pascal" is a trademark of the Regents of the University of California),
and may be used as an non-HP interchange format. For instance, text files produced by the
HP-87 P-system implementation can be read in this format. (In fact, Pascal 2.0 can both read
and write HP-87 P~-system discs if the directory offset field in the appropriate Unit table entry
is correct).

The WS1.0 format precedes lines with a leading-blank compression indication, and terminates
each line with an ASCII carriage-return character. Leading blank compression occurs when a
line is written, and the compressed blanks are expanded when the line is read. When using this
format, don’t write the characters NUL (zero), CR (13) or DLE (16). Moreover, note that TABs
(9) are not expanded! Generally it is wise to avoid writing any characters with ordinal value less
than 32 into WS 1.0 textfiles.

If the textfile is created anonymously (no file name given) or with any other suffix, the "data
file" representation is chosen. In this case, a carriage return denotes end-of-line, and all other
characters are passed through uninterpreted.

Note

The representation of a text file is not a function of the
directory format being used. An ASCII file may be present in
a WS1.0 directory, or a WS1.0 text file in a LIF directory.

The LIF ASCII representation can only be used if the LIF ASCII Access Method module is
installed in your system’s INITLIB boot file. The WS 1.0 format can only be used if the UCSD
Access Method module is installed in INITLIB.

SDG 77

If the required Access Method is not installed, the system will choose the "data file"
representation regardless of file name suffix.

Formatted Input and Output

The use of WRITE, WRITELN, READ, and READLN to write formatted output to text files is
described in many Pascal reference documents and will not be repeated here, except to take note
of the behavior when reading and writing character strings.

HP Pascal supports two forms of character string, generically referred to as PAC (for Packed
Array of Char) and STRING. A PAC is a variable whose type specification is of the form:

TYPE T = PACKED ARRAY [1..N] OF CHAR;

Where N is some integer constant. The lower bound of a PAC must be one in HP Pascal, although
Pascal 2.0 allows any arbitrary lower bound if the $UCSD$ Compiler compatibility mode is
enabled.

When a string literal value is assigned to a PAC, if the string is shorter than the declared length
then the string is blank-padded to the declared length. Thus if a 5-character literal is assigned
to a 10-character PAC, the last § characters of the PAC will get blanks. This same behavior
occurs on input of a PAC value (see below).

When a PAC is written to a text file, all N characters are put out unless a shorter field
specification is given in the WRITE statement:

TYPE
PAC = PACKED ARRAY [1..10] OF CHAR;
VAR
S: PAC;
S := ’abcde’; {PAD W.TH 5 TRAILING BLANKS}
WRITE(F,S); {WRITE 10 CHARACTERS}
WRITE(F,S:5); {WRITE FIRST 5 CHARS}
WRITE(F,S:15); {WRITE 5 BLANKS, THEN ALL 10 CHARS OF PAC}

A STRING is a variable whose type specification is of the general form:
TYPE S = STRING [N];

Where N is a constant between 1| and 25§ giving the maximum allowable length of the string.
STRINGs differ from PACs in having an implicit variable length. Usually the length of a string
is the length of the last string value assigned to it, although string length can be explicitly
manipulated by the standard procedure SETSTRLEN.

When a STRING variable is read from a text file, its length is set to the length of the incoming

string (see below). When written, a STRING takes the number of characters specified by its
current length.

SDG 78

Reading a STRING or PAC from a Textfile

When a string is read from a textfile, its length is usually determined by an end-of -line marker.
If the incoming line length is less than or equal to the string length, then if the receiving
variable is a PAC it is padded with trailing blanks as necessary to fill it completely; if it is a
STRING, its length is set to indicate how many characters were read.

If the entire string is filled before end-of -line is reached, the read operation ceases. No error is
reported, and the next character read will be the one following the last one read.

When reading strings, an end-of-line must be explictly passed by READLN. If you repeatedly
read into a string while positioned at an end-of-line marker, you will keep getting back an
empty STRING or a PAC of all blanks. The approved way to read long lines into short strings is:

WHILE NOT EQF(F) DO
BEGIN
REPEAT
READ(F , S} ;
... {process the piece of string}
UNTIL EOLN(F);
READLN(F) ;

END;

You should be aware of one other fact about end-of -line handling in READs: reading strings or
PACs is the only situation in which end-of -line is not automatically "swallowed". The Standard
states that when EOLN(F) is true, the value of F~ is a blank. When reading a number, for
instance, end-of -line is not treated differently from any other blank in the character stream of
the input text file.

SDG 79

The Third Parameter

The optional third parameter to the standard file opening procedures is used at the time of file
creation to control concurrent access to files and to specify file access rights via passwords. This
parameter is a character string whose syntax conforms to the following definition:

thirdparam ::= [concurrencyword]
: [passwordlist]
concurrencyword ":" passwordlist

"

concurrencyword ::= "SHARED'
: "EXCLUSIVE"
"LOCKABLE"

passwordlist ::= capability ["," capability]
capability ::= password ":" accessrightlist
accessrightlist ::= accessright { "," accessright }

"READ"

co= "WRITE"

::= "PURGELINK"
c:= "CREATELINK"
co= "“SEARCH"

co= "MANAGER"
) IIALL"

accessright

Note that in the passwords themselves, upper and lower case letters are distinct. Examples of
third parameter strings:

"SHARED'’

"EXCLUSIVE ;MYSECRET :MA:JAGER’
"LOCKABLE ;R:READ ,W:WRITE"
"Charley:ALL’

SDG 80

SRM Concurrent File Access

Three modes of access to shared files are allowed:

¢ EXCLUSIVE: No concurrency. Only one workstation may open the file at a time. This is the
default for all files opened on the SRM.

¢ SHARED: No controls. The file may be opened by any number of workstations for both
reading and writing. This is particularly dangerous for multiple writers since, for
performance reasons, some local buffering is done in each workstation. Different buffers
may overlap parts of the same file, and may not contain identical datal Shared file users
will not be aware of changes in actual end-of ~-file induced by the actions of other users.

Shared files are primarily intended to be used by multiple readers.

¢ LOCKABLE: This mode provides strict concurrency interlocking by means of file operations
LOCK, WAITFORLOCK, and UNLOCK. The file must be locked to perform any operation
on it; only one reader/writer may access the file at a time. A series of operations or a single
operation be be performed while it is locked. The initial lock obtains the necessary physical
file status information from the SRM, and unlocking updates all the status information on
the SRM as well as flushing buffers. Thus when the file is unlocked, its contents are always
complete and consistent.

Note

Shared access is allowed concurrently with lockable access and
may circumvent the integrity provided by the locking
mechanism.

The wuser-callable routines which support locking are provided in the library module
LOCKMODULE, which is in the standard system LIBRARY. To use them, the program must
IMPORT LOCKMODULE. The specifications for these routines are:

¢ FUNCTION LOCK (ANYVAR FFILE) BOOLEAN; This function returns true if the lock
succeeded, or false if the lock failed because the file was already locked. Other 1O errors
such as file not open generate an error which may be trapped using TRY/RECOVER (see
System Programming Language Extensions).

¢ PROCEDURE WAITFORLOCK (ANYVAR F.FILE), This procedure sends the SRM a
request to lock the file, and then waits until it is confirmed.

¢ PROCEDURE UNLOCK (ANYVAR FFILE), This procedure releases the file so another
workstation can lock it.

SDG 81

The file locking capabilities are primarily intended for data files (Pascal file of <type>) which
are opened for random access using the standard procedure OPEN. Suppose F is a file which is
not already open. The cases are:

e OPEN (F, 'filename’) The existing file is opened for exclusive access. The open will fail if
the file is already open by some other workstation. This is the default.

® OPEN (F, 'filename’', 'EXCLUSIVE') The existing file is opened for exclusive access. The
open will fail if the file is already open by some other workstation.

® OPEN (F, ’filename', 'SHARED’') The file is opened for shared access. Any number of
workstations may have the file open SHARED at the same time. They may read or write
-~ there is no synchronization.

® OPEN (F, ’'filename', 'LOCKABLE') The file is opened in such a way that no access is
permitted unless the file is first put in the locked state. Any number of workstations may
have a file open LOCKABLE at a time, but only one workstation may have the file locked.

REWRITE, to a file which is already open within the program performing the REWRITE, simply
repositions the file to its beginning and sets it up for writing.

If REWRITE specifies the name of a file which does not exist, a new file of that name is created
and used.

If a physical filename is given and a file of that name exists, the existing file is opened with
whatever concurrency specification (shared, exclusive) was given in the REWRITE. If no physical
file exists, one of the given name is created and opened with the requested concurrency
specification. This action is in addition to the creation of the temporary file, and helps prevent
interference by other workstations.

Surprising effects may occur if two workstations REWRITE the same physical file concurrently.
The one closed last will remain in the SRM directory.

Note that REWRITE(F, ' LOCKABLE') is probably not a sensible operation. However, it does not
generate an error.

SDG 82

SRM Access Rights

Passwords can be used to restrict the types of access allowed to a file (on the SRM a directory is
also a file). They can be set by the Filer’s Access command, or at the time a file is created.
Passwords can control the following six types of access:

¢ READ

e WRITE

¢ SEARCH

e CREATELINK

¢ PURGELINK

® MANAGER

e ALL

Any access rights for which no password is specified belong to the set of public capabilities
which are granted to any workstation opening the file without specifying passwords.

The word ALL denotes the six access types collectively. When an ALL password exists, there are
no public capabilities. The ALL password allows any file operation to be performed.

SEARCH capability is required on all directories along the pathname to a given file.
RESET requires READ access to the file.

Both READ and WRITE capability are required if the file is opened by calls to OPEN or
APPEND.

To REWRITE an existing file, any passwords in the file specification (second parameter to
REWRITE) are used only to purge the old file. However, one of the three capabilities READ,
WRITE, MANAGER must also be granted to open the old file before purging it. The new file
created by REWRITE will have the passwords specified in the third parameter; until this new
file is closed, any operations may be performed on it.

WRITE capability on the directory in which it resides is required to CLOSE 'PURGE’ a file, in
addition to the SEARCH capability needed to open the file and PURGELINK capability on the
file.

To CLOSE 'LOCK’ a file, WRITE capability is required for the directory, in addition to the
SEARCH capability needed to open the file.

If a password with MANAGER capability is used to open a file, any file operations may be
performed, since the manager password would allow the access types to be changed. For example,

REWRITE(F, FILE1', A:ALL’) Gives no public capabilities.
REWRITE(F, FILE! ', ’M:MANAGER') All capabilities except MANAGER are public. This allows

any file operations to be performed, but the manager password 'M’ is required to change or set
passwords.

SDG 83

Debugging Programs Which use Files

The file system uses the TRY-RECOVER and ESCAPE mechanism in its normal internal
operations. For instance, when opening a file several escapes may occur internal to the FS or
driver calls. These "errors" don’t get back out to the user program.

But if the Debugger is used on such a program and error trapping is enabled, the Debugger will
stop the computer on each internal escape. This can be very confusing to a user! The clue that
this is happening is that the line number displayed by the Debugger in the lower right corner of
the screen doesn’t change during the FS call.

The most common escape codes generated in this fashion are -10, 2080 and -26. You can
suppress the Debugger’s activity on these codes with the Debugger command:

ETN -26,2080,-10

SDG 84

Chapter 6
The Booting Process

Introduction

Pascal 2.0 is a single-task system in which user programs and code modules, as well as most
system capabilities appear as extensions to the Operating System kernel. This section describes
the components of the system and gives a high-~level view of how they fit together. The system
booting process is also described.

You cannot make the best use of this material unless you have used and become familiar with
the Pascal system. The Compiler reference material in your Pascal Language System User’s
Manual is practically required reading, with special attention to the discussions of:

¢ The Pascal MODULE construct

® System Programming Language Extensions

® How Pascal Programs Use the Stack

Concepts of Linking and Loading

All object code files produced by the Compiler, Assembler, or Librarian are called "libraries". A
library contains a directory, describing one or more modules of object code. In the context of
libraries, the word "module" denotes any of the following:

® The output of one invocation of the Assembler.

® A unit of object code produced by compiling one Pascal MODULE.

® A program (something with a start-address).

¢ A linked combination of any of the above, produced by the Librarian.

Note that if you compile a program containing two Pascal MODULEs, the result will be a library
containing three distinct object code medules.

The format of object code modules is described elsewhere; for now you need to bear in mind
certain facts. Modules in this system are always relocatable, never absolute. Each module consists
of a global data segment, and one or more code segments. Both code and data are relocated
(assigned final locations in memory) when the module is loaded. Normally code is emitted so that
its relocation base is zero, which simply means that if the code were loaded, unchanged, starting
at byte zero of memory, it would run properly.

Code is never loaded at address zero; in fact, there is ROM at address zero in the 9836. 1t is
possible to use the Librarian to change the relocation base of a module to any address desired;
this technique can be used to produce the logical equivalent of an absolute code module.

SDG 85

However, this is not done, with a single exeception described later. Instead, the linking loader
which is always resident in the system performs all relocation as needed.

Not only are modules relocatable, they are also normally unlinked. This means that as a module
resides on mass storage, it contains references to addresses EXTernal to itself which must be
satisfied (filled in with final values) at load time. Even a "linked" module, which has been passed
through the linking process of the Librarian, may still contain unsatisfied references which were
not filled in by the linking operation.

All such references must be completed before the object code can execute properly; final linking
is performed by the linking loader. To satisfy external references, the loader follows a specific
search pattern. First it searches other modules in the library being loaded. Then it checks
modules which have previously been loaded. Last, it looks in the system LIBRARY file. If, to load
module "A", the loader finds that "B" in the system library is also required, the "B" will also be
loaded automatically.

How is the linking loader able to link a newly loaded module to others which have been
previously loaded and reside in memory? Tables are kept of all the symbols defined in all the
modules which are loaded. Every such symbol (corresponding for instance to the name of a
module, an exported procedure or a program start address) has a value known to the loader for as
long as the module defining the symbol remains resident. The linking loader can even hook up a
new module to a module which is currently executing! This is "dynamic linking" is in fact the
"induction rule" by which the system constructs itself at boot time.

By the way -- the tables in memory are searched in the order, most-recently-loaded first. This
means a module may override other, previously loaded symbols.

SDG 86

Overview of the Booting Process

The booting operation occurs in several phases, which will be described briefly at first, then
again in more detail.

When the computer is first turned on, it is under control of the "Boot ROM". This read-only
memory resides at address zero, and its first few bytes contain the address of the first executable
instruction of the Boot ROM itself together with an initial stack pointer value. The 68000
always powers up by setting its Program Counter (PC) and Stack Pointer (SP) registers to the
values found in this ROM. Actually there are several versions of the Boot ROM; as of this
writing, version 3.0 is the latest. Versions 3.0 and later identify themselves to the user when the
machine is turned on.

The code in the ROM executes a certain amount of self -test programming, then looks around for
an operating system. For 3.0 and later versions, the search pattern is a subject in its own right!
Later versions of the Boot ROM are large programs which can boot from almost any HP mass
storage product. First the Boot ROM tries to find a "soft" (RAM resident) system on various mass
storage devices such as the built-in mini floppy drive or a Shared Resource Manager. Failing
that, it looks for a hard (ROM resident) system such as BASIC or HPL. If several candidates are
found, the operator is given the option to pick one.

The Pascal "soft" system supplied to you is the file BOOT:SYSTEM_P, that is, on the volume called
BOOT: it is the file called SYSTEM__P. This is an absolute load-image of the bare minimum core
of the OS, containing the linking loader and some support routines. There are no mass storage
drivers, the ones in the Boot ROM being used for the nonce. The absolute load-~image of the
loader was created by us using the B (Boot) command of the Librarian.

In this system there is no "kernel" in the closed, absolute sense of an operating system such as
UNIX. Rather, the system has an "open" design which allows modules of code providing new
capabilities to be added to the system -- while it is running. The linking loader is a sort of
“induction rule" which allows the system to grow gracefully. Still, we do use the word "kernel" in
this document, meaning roughly the set of modules providing a minimum environment.

The loader begins execution by completing construction of the operating system. This is done by
loading the "initialization library" INITLIB from the mass storage where BOOT was found.
During this process you will see the message,

Loading 'INITLIB’

on the CRT. As modules are loaded, they are bound into the OS by the dynamic linking process
mentioned above. INITLIB contains such useful items as the Debugger, IO drivers and the
floating-point arithmetic package. You can use the Librarian to examine for yourself the
contents of INITLIB. The modules are loaded in order of appearance in the library. Several are
programs -- they have a start address. After the loading is complete, each program is executed
once. Programs in INITLIB are referred to as "installation code"; their purpose is to properly
initialize variables or steal storage which will be used by the INITLIB modules.

By the way, you can delete certain modules to make INITLIB smaller, or add modules of your
own. You mustn’t change the order of the ones supplied, nor link them together (which would
result in the loss of the start addresses of installation code. More information on this subject can
be found under the heading, "Library Management". Once INITLIB is loaded and the installation
code executed, the IO driver subsystem has found and identified all the interface cards, although
no examination has been made of peripheral devices.

The last piece of installation code in INITLIB is a program called LAST, which loads and
executes two programs called STARTUP and TABLE. STARTUP is loaded before TABLE if it resides

SDG 87

on the boot device; otherwise STARTUP is loaded from the system volume after TABLE
executes.

TABLE configures the OS so that the fifty "logical units" of the Pascal file environment are
correctly related to the "physical units" attached to the 10 interface cards. The general subject of
peripheral configuration is covered in a previous chapter.

The logical units, designated #1: through #50; are examined in detail in the File System
discussion. Essentially they are represented as an array of records called the "Unitable". Each
Unitable entry tells such information as the name of the unit and what Directory Access Method
(DAM) and Transfer Method (TM) must be used when accessing files on the unit.

To properly initialize the Unitable, the loader now executes the program called TABLE. This
configuration program is user alterable; in fact it must be altered and recompiled if you wish to
create a non-standard peripheral configuration. It also selects the system volume. You will see
the messages,

Loading 'STARTUP’
Loading 'TABLE'

displayed on the CRT at this time.

After TABLE executes, a complete environment exists in which any Pascal program is
executable. The loader executes the previously loaded STARTUP program. This could be any
Pascal program at all, for instance one you write. The one we supply is referred to as the
Command Interpreter; it displays the outer~level Command prompt, loads or executes modules at
your command, and traps and reports errors. Our Command Interpreter never stops, but if you
supply your own STARTUP program and it ever terminates, the system will display the message:

SYSTEM FINISHED, RESET TO RESTART

How the Boot Files are Chosen

Various products are derived from the Pascal kernel, and these derivative products sometimes
need to be able to load "their own" specialized versions of INITLIB, TABLE and STARTUP
without interfering with the normal Pascal system. This is particularly true in the Shared
Resource Manager environment, where there may be many applications present in a node’s
directory. Many of these applications may look like stand-alone, bootable systems.

So the kernel needs to be able to chose different libraries. It does so based on the name of the file
being booted.

If the file name is SYSTEM_P then the standard Pascal system files INITLIB, TABLE and STARTUP
are chosen.

If the file name is SYSTEM_xxx where xxx is some three-character suffix, the chosen file names
are INITxxx, STARTxxx and TABLExxx.

If the file narne is SYSxxxxxxx the chosen file names are INITxxxxxxx, STARTxxxxxxx and
TABLExxxxxxx. The seven-character suffix is only useful when booting from the Shared
Resource Manager, since normal boot discs are in LIF format and only allow 10 character file
names.

SDG 88

Memory Map Development

To understand booting in more detail, you need to visualize the memory map of the computer as
it develops from power-up through the entire booting process.

The 68000 processor has 23 word-address lines called BA1 through BA23. For byte operations,
two control lines BUDS (byte upper data strobe) and BLDS (byte lower data strobe) indicate
which byte(s) of the word are affected. Thus there is a 24 bit address or 16 megabyte address
space. On the other hand, the CPU uses 32 bits to store a physical address; the upper byte is
ignored.

An address in the highest 32k bytes of address space is often expressed as a negative number
because of the 68000’s short addressing mode. With this mode, a signed 16~bit number is sign-
extended to 32 bits, specifying an address in either the lowest 32k bytes (positive number) or the
highest 32k (negative number). The Pascal system conventionally leaves the upper byte of
addresses set to $FF, so that the decimal integer equivalent of the address of high memory is the
value -1 rather than 2**24-1. When writing addresses in hexadecimal, the leading $FF will be
dropped in this text.

In the 9836, the available 16 megabytes are partitioned into areas for ROM, IO interfaces, and
RAM. The allowable boundaries of these areas are as follows:

$FFFFFF -----------mmmm - high memory

RAM up to 8388608 bytes

|
|
I
| (in principle)
I
|
|

$800000
$7FFFFF | |
| I/0 | memory-mapped I0 interfaces
$400000 | I
$3FFFFF | |
| LANGUAGE I
i SYSTEM | onh 16k byte boundaries
| ROMS |
$020000 | |
| I
! I
| BOOT ROM |
$000000 -=-----------m--a- low memory

RAM boards are installed from the high end of memory, downward. The Boot ROM checks for
the presence of RAM in descending addresses from S$FFFFFF. 9836’ have 64k of "floating"
RAM mounted on the CPU board. It is called floating RAM because its address is not determined
by hardware switches; instead, a special latching circuit causes it to respond to the block of
addresses immediately below the lowest~addressed RAM board in the backplane. (If the RAM

SDG 89

board switches are not set contiguously, the floating RAM fills in the first "hole” in the address
space as scanned downward from $FFFFFF)

The 9836 is built so that accesses to non-present RAM will cause a Bus Error exception. The
floating RAM is simply latched to respond to the first address for which a bus error occurs; the
Boot ROM is guaranteed to cause such an error during its search for the end of real memory.

It is not possible to change the address of the floating RAM block after power-up. It is possible
to have non-contiguous RAM blocks, by incorrectly setting the switches on the memory boards.
The Boot ROM will not "find" memory which is not contiguous with address $FFFFFF, so if you
were to set a machine up that way, the stray blocks would have to be accessed by tricks with
pointers or address registers.

The Boot ROM resides at address $000000. There are at least four versions of Boot ROM used in
various releases of the 9816, 9826, and 9836 hardware. Pascal 2.0 is designed to run with all of
them, but some versions of the Boot ROM are limited as to what devices they can boot from. The
sizes of the Boot ROMs range from 16k to 48k. Another section of this manual describes the
Boot ROMs in detail, including such information as what device drivers and useful support
routines they contain.

Operating system ROMs may be located on 16k byte boundaries beginning with address
$020000 and continuing up to $3FC000. Such ROMs have special headers which are recognized
by the Boot ROM during its search for an operating system. The section of this document
describing the Boot ROM tells what ROM headers look like. Accesses to non-present ROM
locations do not cause Bus Error exceptions.

The 68000 is built so that when interrupts or exceptions occur, the processor saves (some of) its
state and does a kind of forced subroutine call to one of several routines whose addresses are
found in locations right above address $000000. Refer to the CPU manual for the precise
correspondence between these "interrupt vector" locations and the various interrupt priority
levels and exception conditions. NB: interrupt code runs in Supervisor mode, while programs run
in User mode, so different stacks are involved.

9836 family Boot ROMs contain fixed addresses for the exception vectors; they point into high
memory right below $FFFFFF. The exact layout of the area below BFFFFFF is shown in the
discussion of the Boot ROM; it is a mirror reflection of the ROM interrupt vectors themselves,
allowing 6 bytes —-- enough for a long JMP instruction -- for each vector.

For instance, at address $00000C (vector 3) the vector content is SFFFFF4, so when an Address
Error exception takes place, the CPU will call whatever routine is at $FFFFF4. The Boot ROM
initializes the RAM vector area with JMP instructions leading to an error reporting routine
within the Boot ROM itself. Operating systems which subsequently run will change these values
as needed.

Below the RAM vectors there is some more memory which is used (and reserved permanently) by
the Boot ROM. Below that is some memory which is used during the Boot load but may be used
for data after booting.

Version 3.0 of the Boot ROM used more memory than previous versions. It not only takes more
space at the upper end of memory, it also may steal a little at the bottom of physical memory.
This only happens when booting from certain specialized devices such as the Shared Resource
Manager.

To find out how much space was taken at the bottom of memory, examine the integer addressed
20 bytes beyond the location addressed by the four-byte pointer stored in absolute location
$FFFED4 (-300). Got that?

SDG 90

type
lrec = packed record
filler: packed array [0..19] of char;
memused: integer;
end;
var
thing [-300]: “lrec;

bottombytesstolen := thing”™.memused;

But you should only do this if the machine has the Version 3.0 Boot ROM. See the chapter on the
Boot ROM for how to determine whether to do this. In the memory maps which follow, we will
indicate stolen space even though its size may be zero!

So at the point when the Boot ROM is about to find and load a system, the available memory for
the system to use is from the near the bottom of physical memory as determined by the RAM
board switches and floating RAM, up to a limit determined by the Boot ROM.

$FFFFFF -=memmmmcm oo high memory
| PERMANENTLY I
| RESERVED BY |

$FFFDBC I BOOT ROM |

(-580) --mmmemeeeeeeeeo

RESERVED BY :
BOOT ROM user RAM boards
DURING LOAD :

| [
| |
| | :
$FFFBOO | | <-- highest code load location for
I |
| |

(-1280) -- -- Boot ROMs prior to version 3.0
$FFFoA4 <-- highest code load location for
(-1628) —---mmmeemmmeeeao Boot ROM version 3.0

| |

| AVAILABLE TO |

| SYSTEM |

| |

[[floating RAM
$7?°727? | |

| MAYBE STOLEN |

| BY BOOT ROM |

vacant address space

$800000

If the Boot ROM finds a "soft" system somewhere (in our case Pascal), it now loads that system
into RAM. The soft system load is an absolute load; that is, the boot file consists of one or more
segments of code which are placed at specific locations in memory -- the particular load
addresses are specified in the file itself.

This absolute image is NOT a standard Pascal object code file; it is in a different, much simpler,
format. Boot files are generated from linked, relocatable object code by the Librarian’s B (Boot)

SDG 91

command. The loader in the Boot ROM is really dumb, so there can be no unsatisfied externals in
a boot file. It must be complete and ready to go. It is the responsibility of the programmer
generating the boot file to decide where in free RAM the system being loaded must be placed.
Usually the boot file consists of a single segment which is placed so that it just snuggles up to
address SFFFACO.

The Boot Rom runs in 68000 Supervisor mode; most of Pascal runs in User mode. Generally we
will use the name "SP" to designate the User mode stack register, and "SSP" for the Supervisor
stack register,

The Pascal kernel (the linking loader and minimal other support) is placed in this fashion.
Execution begins in LOADER, which will use drivers in the Boot ROM to load INITLIB.
LOADER calls a small assembly language entry point (POWERUP) containing code for interrupt
and trap handling, as well as TRY-RECOVER and non-local GOTO processing. POWERUP
performs these actions:

® Sets up a minimal Pascal execution environment consisting of a stack pointer (A7, also
called SSP register), stack frame base (A6,also called SF), global variable base pointer (AS),
and heap pointer.

® 3ets the TRY-RECOVER chain and list of open files to empty.

¢ Sets some (not alll) of the RAM vectors to point to exception handlers within POWERUP.

SDG 92

At the moment POWERUP returns to LOADER, the memory map looks like this:

$FFFFFF ------mmmmmemm o high memory
| RAM VECTORS | (correctly initialized)
| RESERVED |
| FOR USE BY |
| BOOT ROM |
$FFFoA4 | |
| LOADER |
| CODE | <--- address of POWERUP code
$7??2?7? mememmmmmmmmmmem {mmm SSP base of supervisor stack
| 5000 bytes | (grows downward)
| SUPR. STACK |
I I
------------------ <m-- base of all global vars;

| | also A6=stack frame pointer

------------------ <--- don't know where this is yet
| I
I |
| : |
| FREE SPACE | <--- A5 = 32768 less than base
| : | of all global vars
I |
$727277? | |
------------------ (== heap pointer (grows upward)
| MAYBE STOLEN | (=lowest useable mem)
| BY BOOT ROM |
------------------ {-=- bottom of real RAM

In this structure, if any interrupts occur they will happen "on-top-of" the supervisor stack.

This arrangement may seem a little odd to you. Normally when Pascal code executes, the stack
grows downward through free space and the heap grows upward; if they collide, a "stack
overflow" error has occurred. Rest assured that the user stack pointer will be moved down below
the global variables and all will be well. But while the loader is executing, the stack is in this
funny place and it must never be allowed to get so big that it writes over the global variable
area.

You may also be wondering why AS points 32768 bytes below the base of the global variable
area. All globals are addressed using the mode "displacement(A 5)". Register AS will never move
while Pascal code is running. To allow for full 64k of global space accessible by a 16 bit
displacement, the range of displacements used must be -32768..32767; so the base of the global
area is exactly 32766(A3).

(This is a departure from the earlier Pascal 1.0 release, in which A5 addresses the beginning --
highest address -~ of the global area. The 1.0 system could allow a maximum of only 32k bytes
of global area; since the space "above" A5 was occupied by the system stack, only negative
displacements from AS were useable. Unfortunately some of the code in the Boot ROM and the
BASIC language ROMs assumes the convention of the 1.0 system, so in Pascal 2.0 ROM code
must be accessed through the special interfacing routine ROMCALL.)

SDG 93

Later we will go through a more detailed commentary on the kernel’s modular structure. For
now it is useful to know that certain kinds of initialization occur which have the effect of
consuming some heap space to store system tables and variables including:

® Access method and file suffix tables
® Device driver tables
® The Unitable array

Also, the loader is initialized. This involves finding two pieces of information: how big is the
global variable area of the loader itself, and where is the SYSDEFS table.

The loader will allocate space for global variables of new modules, as they are loaded, by
extending the limit of the global area downward toward the heap. It must know where to start,
ie, how much space is already taken up by the loader’s globals?

SYSDEFS is a trick played on the loader. Earlier it was mentioned that as modules are loaded,
the loader will keep their symbol tables around so other things can be linked to them later. But
the loader itself is not loaded by the loader; it is loaded by the Boot ROM. So we must fake up an
area of memory which "looks like" tables built by the loader, to describe the kernel itself. This is
called SYSDEFS and is part of the absolute kernel image.

SDG 94

Now we are about to load INITLIB, and the memory map looks like this:

$FFFFFF

| RESERVED

| FOR USE BY

I BOOT ROM
$FFF9A4 !

| LOADER
| CODE

3000 bytes

SUP. STACK

I

| VARIOUS
| SYSTEM

| TABLES

I

| MAYBE STOLEN
| BY BOOT ROM

The stack frame pointer (A6) got moved into the system stack area as a side effect of the normal
Pascal procedure entry mechanism. It always points to the base of the stack frame for the

currently executing procedure.

Now the loader loads INITLIB. All the modules are loaded. The code for each module is placed in
the system’s heap, that is, above the system tables. The globals for each module are added to the

(mmm
(mm =

(mm

{mmm

high memory

address of POWERUP code
base of system stack

A6 = current stack frame
SSP = top of system stack
(grows downward)

base of all global vars

last global variable
user stack base will be here

A5 = global base - 32768

heap pointer

accessed through pointers in
global area

bottom of useable memory

bottom of ream RAM

system global area, which is growing down toward the heap.

Modules in INITLIB should have no external references which cannot be satisfied by linking
either to the kernel itself, or to other modules in INITLIB. This restriction is made because the
system has not yet located the system LIBRARY, which could otherwise be used to satisfy

external references.

SDG 95

When INITLIB is completely loaded, all the programs it contained (modules with start addresses)
are executed in turn. This gives the various subsystems such as IO drivers an opportunity to
install their names (addresses) in system tables, to steal heap space, and so forth. Installation code
runs not on the system stack, but in its "proper" stack area below the global variable area. This
moving of the stack pointer will occur any time a program is executed from now on.

SDG 96

After the running of installation code is finished, the system memory map looks like this:

$FFFFFF ------------em-m o high memory
| RAM VECTORS |
| RESERVED |
| FOR USE BY |
| BOOT ROM |
$FFF9A4 | |
| LOADER |
| CODE | <--- address of POWERUP code
$?27?7?77 ---mmmmmmmeemom---
(=== base of supervisor stack

(grows downward)

5000 bytes (=== A6 = current stack frame
<=--- current SSP
| | <--- base of all global vars
| LOADER GLOBALS |
| INITLIB |
| GLOBALS |
------------------ (=== last global variable
] | <--- user stack base will be here
I |
| : | <--- AS = global base - 32768
| FREE SPACE | (value unchanged)
I : I
[!
| | <--- heap pointer
HEAP SPACE such things as workspace

|

STOLEN BY | required by file system
|
|

INSTALLATION access methods
ROUTINES

| INITLIB | includes loader symbol tables
| CODE | for each module
| MODULES |
| | accessed through pointers in
] VARIOUS | global area
| SYSTEM |
| TABLES |
I I

------------------ === bottom of useable memory
| MAYBE STOLEN |
| BY BOOT ROM |

The pattern from here on should be clear. During loading operations, the loader runs its stack in
the small "system stack" area. It pushes code onto the heap, and allocates space for module globals

SDG 97

downward. When a program is to run, the user mode stack pointer for the program is set up just
below the last global variable.

If a module or program is loaded permanently, the limits of the heap and global area are
permanently extended. Running a program which has been permanently loaded is particularly
easy since its code and global areas already exist. One need only switch the stack pointer to the
user stack area. If the module is to be loaded, executed, then removed to run another program,
the heap and global areas can be cut back after the program completes by the amount they were
extended.

The maximum allowable global area reaches from 32767(AS5) to =32768(A5). System globals are
mingled with program globals, and the sum can’t exceed 64k bytes.

To complete the Pascal boot process, it remains to loas’ the the Command Interpreter program
STARTUP and the IO configuration program TABLE, and to execute them. If STARTUP is
found on the boot volume, it is loaded before table; otherwise STARTUP is loaded from the
system volume after TABLE executes. This sequence is caused by the last module of installation
code in INITLIB, a short program called LAST. The space consumed by TABLE is reclaimed
before STARTUP runs. Exactly how TABLE does its job is discussed elsewhere.

It has already been mentioned that STARTUP can be any program. The standard Command
Interpreter (CI) supplied with Pascal pulls one last trick. It begins execution in the usual way, but
the first thing it does is to switch to the Supervisor Stack register SSP, so it runs in the small
stack area above the global variables. This is done because the CI must be able to call the loader
to load programs. The loader would be unable to allocate global space for an incoming program
if the CI's stack were in the way. So the system stack area was made big enough to safely run not
only the kernel but also the Command Interpreter. By the way -- the little routine called LAST
at the end of INITLIB also does this, and for the same reasons!

A good way to think about all this is to consider that each module or program which is loaded is
bound into (becomes an extension of) the kernel.

This interpretation seems especially appropriate if one considers the capability to permanently
load programs or modules using the CIs "P" command. Permanently loaded modules, whether
from INITLIB or loaded by the CI, can significantly extend the capabilities of the system. For
instance, a new IO driver, or a directory access method of your own invention can easily be
added to the system and then accessed freely by other programs. As we will see in discussing the
File and IO subsystems, these new capabilities can be made part of the normal access paths of
Pascal programs.

One last picture: here is what memory might look like after a number of modules have been
permanently loaded and while a program is running.

SDG 98

$FFFFFF ------mmmmmmmmm o high memory

| RAM VECTORS |

| RESERVED FOR |
$FFFSA4 | USE BY BOOT ROM|

| LOADER CODE | <--- address of POWERUP code
$7722727 cmmmmmmmmmmmmomn

| | <--- base of supervisor stack (grows downward)

| | <--- base of system/CI stack

| 5000 bytes | <~-- A6 = current stack frame

[| <--- CI’'s current stack pointer

| | <--- base of all global vars

| KERNEL GLOBALS |

] INITLIB |

| GLOBALS |

| CI GLOBALS |

| GLOBALS FOR |

| P-LOADED |

|[MODULES/PROGRAMS| <--- A5 (global base -32768)

__________________ (value unchanged)
| GLOBALS FOR |
| PROGRAM WHICH |

| IS RUNNING |

------------------ <--- last global variable

| PROGRAM | <--- user program’s stack base

| STACK | <--- A6 (top stack frame)

------------------ <--- SP (top of user stack)

| : I

| FREE SPACE |

I : I

------------------ <--- heap pointer

| USER HEAP |

| P-LOADED | either programs or simple

| MODULES] modules may be here
HEAP SPACE such things as workspace

I I
| STOLEN BY | required by file system
| I
I I

INSTALLATION access methods
ROUTINES
| INITLIB CODE | includes loader symbol tables
| MODULES | for each module
| VARIOUS SYSTEM | accessed through pointers in
$7772727 | TABLES | global area

------------------ <--- bottom of useable memory
| MAYBE STOLEN |
| BY BOOT ROM | <--~ bottom of real RAM

SDG 99

Summary of the Booting Process

The purpose of the booting process is to construct a complete operating environment from the
absolute memory image kernel and the contents of the relocatable library INITLIB. When this
process is complete, programs can be loaded and executed by the Command Interpreter.

To load a program, its code is put into system heap space (growing the heap upward) and its
global area is appended to the system global area (growing downward). The CI and Loader
execute out of a special "system stack" area, while a running program bases its stack just below
the last global variable.

The system now presents the operator with a simple structure in which subsystems are just
programs to be loaded and executed:

Memory resident portions Loadable subsystems

kernel
file system
debugger (optional)
user-code from INITLIB
command interpreter ----------- > Editor
Compiler
Assembler
File manager
Librarian
any executable program

Of course, the Command Interpreter provides a little creature comfort by allowing
single-keystroke commands to load the main subsystems, and by providing some automatic flow
of control for the process of editing, compiling and running a program. Workfiles are also
artifacts of the Command Interpreter.

SDG 100

The Pascal Kernel

The word "kernel" is used advisedly. The Pascal system has no kernel in the closed sense of
operating systems such as UNIX, because Pascal has been designed in an open, dynamically
extensible way. Pascal boots in a linking loader, which is always resident thereafter. This loader is
a sort of "induction rule", by means of which modules of code can be successively added to the
system -- while it is running -~ to give it more capabilities. As used here the word "kernel"
roughly means a reasonable set of useful modules such as the File System, Directory Access
Methods and so forth.

The "important" code in the kernel is mostly concerned with two matters: file support and the
loading/linking of object code. However, there are a lot of miscellaneous details which

complicate the picture. The purpose of this section is to give a good overview, particularly of the
file system, so that you can more easily make sense of the code listings themselves.

Refresher on Pascal Modules

If you are quite familiar with Pascal modules, you may wish to skip this section, which describes
the relationship of the declared components of a module to entities in its object code form.

SDG 101

A sample module:

module Charlie;
import Sue;

export
const
lo =0; hi=100;
type
int = -32768..32767;
index = lo..hi;
arrae = array [index] of int;
var

head,tail: index;
list: arrae;
procedure addtolist (k:int):
procedure takefromlist (var k:int);
implement
var
lastvalue: int;

procedure hiddenproc;
begin

body of hiddenproc omitted for clarity
end;

procedure addtolist (k:int);
begin

end;

procedure takefromlist (var k:int):
begin

end;
end {of module charlie};

Module Charlie exports the identifiers lo, hi, int, index, arrae, head, tail, list, addtolist and
takefromlist. It is declared to be dependent on things imported from module Sue.

When Charlie is compiled, the Compiler will find Sue somewhere and read its export text, so that
references to objects of Sue’s can be verified syntactically. Similarly, the final object code for
Charlie will contain Charlie’s export text (with the reference to Sue).

The things declared after the keyword "implement" are said to be "hidden". This means that
procedure hiddenproc and variable lastvalue are not visible to an importer of Charlie; only code
within the implement part of Charlie itself can access or change the hidden things. The Compiler
is responsible for enforcing this secrecy.

In the final object code there will be DEFined the following load-time symbols, said to be the

load-time symbol table for the module. Notice that almost all the original Pascal identifiers,
expecially names of constants, types and variables, are unknown to the loader.

SDG 102

CHARLIE
CHARLIE_CHARLIE
CHARLIE_ADDTOLIST
CHARLIE_TAKEFROMLIST

CHARLIE is the symbol used to access any global variables of the module. When the loader
allocates space for the module’s globals, by extending the system global area downward,
CHARLIE will be assigned the address of the first even byte above the allocated global area. The
variables of the module are below the symbol CHARLIE. To assign the value zero to the int
variable called head, we might write in assembly language,

MOVE .W #0,CHARLIE-2(A5)

The move is word-wide (W) because the Compiler was smart enough to use a single word to
represent a 16 bit subrange. Register A5 always points 32768 bytes below the the top end of all
the globals ever allocated in the system, and CHARLIE is given by the loader a value equal to
the distance from where AS points to the high end of Charlie’s global area. The offset -2
indicates that head is two bytes below the top end of Charlie’s globals.

CHARLIE__CHARLIE is the address of the module initialization body, a subroutine generated
automatically by the Compiler. Every compiled module gets one of these. Often it does nothing,
but in two circumstances it is vital. If the module contains any file variables hidden in its
implement part, they must be initialized to the "closed" state before use by the file system. If the
module imports other modules, their initialization bodies must in turn be called.

The whole chain of initializations is started by the main program, which automatically calls the
initialization bodies of any modules it imports. They go on to initialize whatever modules they
import. Note that initialization bodies are cleverly coded so that only the first call has any
effect. This is necessary because a module might be imported several times. This trick is
accomplished by taking advantage of the fact that a module’s global area is set to all zero’s once,
when it is loaded.

CHARLIE_ _ADDTOLIST and CHARLIE_TAKEFROMLIST are exported procedures. These
symbols get the module-relative address of the corresponding Pascal procedures. That is, the
value of CHARLIE__ADDTOLIST is the distance from the first instruction of the module’s code
segment to the first instruction of procedure addtolist. No symbol is DEFined for a hidden
procedure.

Modules in the Kernel

The kernel is written as a set of (mostly) Pascal modules. In the usual style of modules, some of
them are dependent on (IMPORT) others. The result is a sort of "directed graph" of dependencies.
Not all these modules need be in a Pascal system; they are the ones required to give "complete"
support to a Pascal program. By removing modules from INITLIB, a rather smaller kernel can be
generated. The smallest possible kernel, consisting of only the linking loader, is about 20k bytes
in size.

Recall that in this system, it is possible to write assembly language modules which "look like"
compiled modules in that they include interface specification -- EXPORT text —- recognizable
by the compiler. The module ASM in the list below is such a case, while POWERUP is assembly
code which has NO export text. All the other modules listed below are written in Pascal.
Actually there are also some very specialized assembly language routines which are not defined
as Pascal modules but rather are accessed as EXTERNAL procedures. (These specialized modules
are not included in the list below.)

SDG 103

SYSGLOBALS

ASM

INITLOAD

LOADER

ISR

KBD

MISC

MINI

INITUNITS

FS

SETUPSYS

Declares constants, variables, and types used
throughout the system.

Various high-speed functions such as moving bytes
around. Includes the entry point ASM_POWERUP referred
to in the boot process, which contains code to handle
non-local GOTOs and RECOVER clauses.

Entry point into system. Calls POWERUP to get dirty
work of machine initialization done.

Defines directory of a code module, and internal
symbol table structures. Manages global and code
space. Links and loads object code.

Sets up and manipulates interrupt service routines.

Code to handle the keyboard, character set mapping,
typeahead buffer, CRT, system clock, battery backup,
and powerfail. Actually this is 5 modules linked
together for compactness.

Error messages, directory access method for volumes
with no directory, access method for unbuffered
transfers, access method for data files {general
purpose buffering), access method for serial devices
(text). Fills in Access Method, Suffix and Eft tables
(explained below). Defines the generalized file
catalogue entry type.

Driver for built-in minifloppies; calls code in Boot
ROM.

Generates the initial I0 Unitable setup.

File system functions which are called by the Compiler
to implement Pascal file I0. More of this in INITLIB.

Calls initialization routines for modules POWERUP,
MISC, INITUNITS, LDR, FS.

The dependencies of these modules on each other is shown using the convention that A < B C
means Pascal module A directly imports modules B and C; or if A is in assembly language 1t
somehow accesses things exported from B and C.

SYSGLOBALS < nothing
POWERUP < SYSGLOBALS
ASM < SYSGLOBALS
L.OADER < SYSGLOBALS ASM
ISR < SYSGLOBALS ASM
MINI < SYSGLOBALS ASM
BOOTDAMMODULE
< SYSGLOBALS ASM MINI
INITLOAD < SYSGLOBALS ASM BOOTDAMMODULE LOADER

SDG 104

Everything else also uses SYSGLOBALS and ASM. Moreover,

KBD < ISR

MISC < KBD

FS < KBD MISC

INITUNITS < KBD MINI FS

LDR < KBD MISC FS LOADER

SETUPSYS <« KBD MISC FS LOADER LDR INITUNITS

Digression on a Trick

All of these modules provide functionality which can be called from user programs by importing
the required modules. This seems like a good moment to explain a subtle point in that regard.

When a module is loaded, the loader keeps its load-time symbol table around. The loader tables
can be used to find the value of (address of) exported procedures, global variable areas, and so
forth. This was alluded to in the explanation of the booting process, when we noted that the
structure called SYSDEFS provides the loader tables for the absolute memory-image kernel.
Thus the loader can link a piece of compiled code to things in the kernel.

However, in order to IMPORT a module, the Compiler must be able to find that module’s
interface text in the unlinked object code of the module. The loader doesn’t store interface text
in memory, just symbol values, because the interface text is only useful during compilation, not
during linking or loading. Also it would consume a lot of RAM.

The kernel is supplied in a linked, absolute form. So where is its interface specification, that it
may be imported? We trick the system by putting the interface specification in modules
corresponding to the kernel modules listed above. These modules are dummies; there is no code,
since the code by definition is always resident in memory and available to the linking loader.
The dummy modules are found in the INTERFACE file on the LIB disc.

SDG 105

SDG 106

Chapter 7
The File System

Introduction

The purpose of the file system is to provide user programs with a clearly defined set of file
operations. These operations must behave uniformly over a variety of device types, directory
structures, and file structures. For instance, a program must be able to access or generate a text
file properly under any of the following representations:

® An unblocked stream of bytes, eg from the keyboard or going out to a printer.

o A sequence of bytes in a disc file, with ends of lines denoted by <carriage return>
characters.

@ A file in the WS1.0 text file format, which includes leading blank compression and peculiar
blocking characteristics.

® An ASCII file as specified by HP’s Logical Interchange Format (LIF) standard, where lines
are represented by a 16-bit length field followed by data.

The file system also supports several disc file directory formats, and more can be added by the
user without regenerating the kernel. The directory organizations in the 2.0 system are:

¢ WS 1.0 Compatible with Pascal 1.0 file system.
e LIF HP’s Logical Interchange Format for data exchange; supports contiguous files.

® SRM (Shared Resource Manager) Remote file service with hierarchical directories and
non-contiguous files.

¢ Unblocked For devices without directories (like printers).

¢ Boot Only used during boot process; won’t work after.

Finally, the file system isolates the definition of the directory and data transfer operations from
the details of the physical driver routines which control operation of peripheral devices.

It was a challenge to unify all these features and at the same time allow flexibility for future
extensions such as the addition of new IO device drivers or directory methods without the
necessity of regenerating the kernel. The scope and uniformity of the file system is the most
important difference between the 1.0 and 2.0 versions of Pascal, and is the reason object code is
incompatible between these systems.

Note that in this system there is a sharp distinction between file IO and device 10. File 1O 1s
provided by the standard statements of Pascal such as RESET, REWRITE, GET and PUT. Device
IO is provided by modules in INITLIB (or IO on the LIB: disc). The reason for this distinction is
that there are many disorderly details of the control of physical IO which do not properly belong

SDG 107

in a language definition, aren’t interesting to most applications, and vary significantly from one
computer family to another. However, the file system uses the physical IO system to actually
perform operations to the physical devices.

Representation of iile Variables

A File Information Block (FIB) is the data structure which represents a Pascal file variable. It
consists of three main parts: the file description, the file window (current record), and the

physical buffer. Sometimes the window and physical buffer are not present.

FIB’s are Pascal RECORDs -- complicated objects -- whose full description is exported from
module SYSGLOBALS. Three particularly important fields of an FIB record are:

® fkind The file type.

@ am The Access Method used by the file.

e funit The number of the logical unit on which the file resides.
Access Methods and logical units will be described momentarily.

Files are considered to have a type. There are presently seven recognized types of file, with
placeholders for nine more types in the future. The seven filekinds now are:

¢ untypedfile Used for directory entries
¢ badfile Bad blocks on disc

® codefile Object code

o textfile WS1.0 format text

e asciifile HP LIF ASCII strings

¢ datafile Pascal "file of x"

sysfile System boot file

SDG 108

High-Level File Operations

The highest, most unified level of the file system is called File Support (FS). This level consists of
the routines called by the Pascal Compiler as it translates program statements. The calls to the
FS level are calls to these procedures which are exported from modules FS and MFS ("More FS"):

fbufferref make sure file window F~ is valid
fblockio UCSD block read/write

fcloseit close file

feof end of file?

feoln end of text line?

fget Pascal GET

fgotoxy position logical cursor

fhpopen open a file

fhpreset reset file

fmaxpos where is end of file?

foverprint reprint same line

fpage emit formfeed

fposition what record are we at?

fput Pascal PUT

fread read a record

freadbool - read a boolean value

freadchar read one char

freadenum read enumerated scalar by name
freadint read one integer

freadpaoc read packed array of char from text
freadreal read real number (%% in INITLIB %X)
freadstr read a string

freadln flush out end-of-line

fseek position to record randomly

fwrite write a record

fwritebool write a boolean value

fwritechar write one char

fwriteenum write name of enumerated scalar
fwriteint write one integer

fwriteln write end of line

fwritepaoc write packed array of char to text
fwritereal write real number (XX in INITLIB XX)
fwritestr write a string

fwriteword write a 16-bit integer

Each of these routines requires a FIB as one parameter. See chapter 8 for details concerning
these operations.

SDG 109

The Access Methods

The Access Methods are called by File Support to implement buffering or packing of data into
(unpacking of data from) the format of physical records on the disc storage medium. For
instance, an AM receives the data produced by formatted Pascal write statements to a text file
variable and generates the LIF representation of text lines as ASCII strings. Generally speaking,
there is an AM for each filekind (type of file).

The things an AM can do are enumerated by a scalar type, amrequesttype, declared in module
SYSGLOBALS. Note that not every AM is expected to be able to do all of these.

readbytes

writebytes

flush

writeeol :

readtoeol These are the components of the
clearunit scalar type "amrequesttype".
setcursor :

getcursor

startread

startwrite

unitstatus

Each FIB has exactly one AM associated with it, in the form of a "procedure variable". (See the
System Programming Language Extensions for details on procedure variables. Stated simply, a
procedure variable is a variable whose value is the name of a procedure which may be called. A
procedure value is the same concept provided by QUOTE in Lisp -~ it suppresses evaluation of
the procedure.

Use of procedure variables confers a special flexibility on the file system, because their values
(names of particular procedures) need not be filled in until run-time. In fact, the procedures can
be ones which didn’t even exist at the time the kernel was built, as long as they have appropriate
parameter lists and supply the required functionality. This is one of the ways modules in
INITLIB can dramatically extend the capabilities of the kernel.

Formally, an AM is a procedure with the following parameter list:
type amtype = procedure (fp:fibp;
request:amrequesttype;

anyvar buffer:window;
bufsize,position:integer);

Where an fibp is a pointer to an FIB, and a window is an array of bytes. There are several AM’s
supplied with the system; you could add more if you wanted to.

¢ unbufferedam Expects to do a transfer directly to the device, using the Transfer Method
for the unit. Used for unblocked devices and for UCSD "untyped file" construct. Find it in
module MISC.

¢ standardam General purpose buffering, used for Pascal data files (file of x). In MISC.

e textam UCSD text file format (skip page 0, leading blank compression, nulls at end of page).

In UCSD__am.

SDG 110

® asciiam HP LIF ASCII text files (16~bit length plus data for each line). In ASCIIMODULE.

e SRMam Shared Resource Manager stream-of-bytes structure; similar to UNIX files. In
SRMAM.

® serialtextam Converts the ASCII carriage return character to textfile EOLN conditions for
input serial devices such as the keyboard.

Some rules and facts about AM behavior: If a physical buffer is allocated by the Compiler to the
FIB (which is the case for all files except the UCSD untyped file) then the AM must be able to
transfer any number of bytes to or from the buffer starting at any arbitrary memory address
(even or odd). The AM also must check for exceeding logical end of file. If the transfer is an
output which would exceed the physical end-of-file, the AM should call the DAM to try to
stretch the file to the required size. If the stretch fails, the AM must indicate an IO error by
setting IORESULT.

SDG 111

The following picture shows how the File Support level routines are structured to translate
operations down into AM calls. The picture shows, among other things, that in HP Pascal the
READ and WRITE operations are more primitive than GET and PUT, since FGET and FPUT
are implemented as calls to FREAD and FWRITE.

| fread/fwrite char freadln |
| integer fwriteln |
| string fpage |
| real fposition |
| . etc. ... etc. |
I I
{ INPUT) (OUTPUT)
I |
/ I\ [
[| I [
v | v |
______________ | e | e e —————————
| PREDICATES | | | SEQUENTIAL RECORD] | | RANDOM RECORD |
-------------- | R L iy | | POSITIONING |
| feof | | i fget [I e L LT
| feoln | [| fput [| | fseek |
.............. | e ———— | e mmm————————
I I I I
[/ \ | / \
I I | | I I
vV v v vV Vv v
| SEQUENTIAL RECORD | | SEQUENTIAL RECORD]| | SEQUENTIAL BINARY]
| fbufferref | | fread | | freadbytes |
| (make f~ valid) <-|---|-- fwrite | | fwritebytes]
I I I
\ | /
¥
| ___________________
| | RANDOM BLOCK |
I ___________________
I | fblockio |
1 pupupup SRR
| I
I /
[/
|
v

f ACCESS |
| METHOD |

SDG 112

The Unit Table

The "Unitable" [sic] is an array of up to 50 so-called logical units. A logical unit number
corresponds to the pound-sign notation used in file names, eg #31: . The purpose of the table is
to describe the physical characteristics of each device accessible through the file system.
Information in a unit entry includes: (among other things)

e dam: Procedure variable naming the Directory Access Method to be used for this unit.

® tm: Procedure variable naming the Transfer Method (physical driver) to be used for this
unit.

® sc: Select code; where to find interface card.
® ba: HPIB address or SRM node address.
® uisinteractive: Indicates whether user can edit input.
¢ uisblkd: True for discs, false for byte stream devices like printers.
¢ uvid: Name of the volume if known.
¢ umediavalid: Medium has had files opened on it, and has not been changed since.
¢ uisfixed: The medium is not removeable
® ureportchanges: If false, suppresses messages when drive door opened. (Filer uses this.)
Types unitentry and unitabletype are declared in module SYSGLOBALS. The actual unit table

itself resides in OS heap where it is allocated early in the kernel boot process. It is accessed
through a pointer called unitable, also in SYSGLOBALS.

The Transfer Methods

Transfer methods are also called "low-level access methods” or "drivers"; they are the routines
called by AMs and DAMs to do physical input or output. A TM procedure variable is associated
not with a FIB but with a particular logical unit (a Unitable entry). The TM uses the
information in the unit entry to decide what device to operate on and how to handle the device.

Most TM’s ultimately do their work by calling routines available through the Pascal device 10
library. It turns out that the types of TM request are described by the same scalar type as the
Access Method requests, and a TM procedure has the same parameter list form as an AM
procedure.

The various TM’s are best located by referencing the TEA _ procedure bodies in program
CTABLE.

TMs are only required to be able to transfer to or from a disc starting on sector (256 byte)
boundaries. The driver may also require that the buffer memory address start on a word
boundary, and that the buffer length be an even number of bytes; some older HP disc drives
require this. TM’s may round an odd number of bytes up to the next even number.

SDG 113

The driver should check that physical end-of -file (PEOF) is not violated. Drivers for unblocked
devices like printers will ignore this.

The driver should set umediavalid in the unit entry to false if it detects that the disc drive door
has been opened, and it may refuse to read or write to a unit if umediavalid is false and
ureportchange is true.
The Directory Access Methods
The association of an FIB with a physical file is made by a DAM, which encapsulates the
organization and basic operations on a mass storage file directory. The DAM requests, listed in
the scalar "damrequesttype", are:

® openvolume

® getvolumename, setvolumename

® gsetvolumedate, setvolumedate

® changename

® purgename

e createfile, openfile, closefile, purgefile, stretchit

¢ makedirectory, opendirectory, closedirectory, duplicatelink, openparentdir, catpasswords,
setpasswords, lockfile, unlockfile

® crunch
@ catalog

e setunitprefix

A DAM is a procedure with the following parameter list:

type dam = procedure (anyvar f:fib;
unum:unitnum,
request:damrequesttype);

Where unum is an index into the Unitable. Notice that DAMs want an FIB, whereas AMs want a
pointer to an FIB. Probably the reasons for this are historic, since passing a pointer by value is
the same as passing by reference the thing to which 1t points.

As with TMs, each logical unit entry has an associated DAM. Any one unit can support only one
directory type, which is established by the TABLE program during boot-up or whenever TABLE
is explicitly executed by the user.

SDG 114

How the Access Method is Selected

The Pascal standard procedures RESET, REWRITE, and OPEN are calls at the File Support level,
generated by the Compiler. At the time a file is opened, the physical name (title) is examined by
file support. First it must be determined what logical unit is being selected. The logical unit is
designated by one of these notations:

e ":"or no volume name -- The current "default volume" is used.

® "X' or "X:" -~ Shorthand for the system volume.
® #31: -- The pound-sign notation gives unit number directly.
@ volname: -- The Unitable must have a volume with the given name.

The funit field of the FIB is set to reflect the unit selected.

If the file already exists, its type (which determines the appropriate AM) will be found in the
directory in which it resides. Otherwise the file type and hence the AM must be determined by
examining the suffix part of the file name, as follows.

The file name is examined for the presence of a suffix (a period followed by five or fewer
characters). The recognized suffixes are:

' .BAD’ A file covering a bad block of disc.
"LTEXTS UCSD format text file.

' .CODE’ Object code file.

" .ASC’ LIF ASCII text file.

' SYSTM' Boot file.

(no suffix) Pascal "file of x".

SDG 115

Three variables ~-- suffixtable, amtable and efttable -- declared in SYSGLOBALS and
initialized in MISC, are involved in the AM selection process.

type
filekind = (X known types X)
(untypedfile,badfile,codefile, textfile,asciifile,
datafile,sysfile,
(X room for expansion X)
fkind7,fkind8,fkind9, fkind10,fkind11, fkindl2,
fkind13,fkind14 lastfkind);

suffixtype = string[5];
amtype = procedure (... access method procedure var type)

amtabletype = array [filekind] of amtype;
suftabletype = array [filekind] of suffixtype;
efttabletype array [filekind] of shortint;

suftableptrtype = “suftabletype;
amtableptrtype = “amtabletype;
efttableptrtype = “efttabletype;

var
amtable: amtableptrtype;
suffixtable: suftableptrtype;
efttable: efttableptrtype;

The suffixtable is searched for whatever suffix was stripped off the file name. If a match is
found, the index of the matching suffixtable entry is the filekind for the file, otherwise filekind
= datafile. The type is stored in the fkind field of the FIB.

If the file is anonymous (the opening operation specified no external name) it is always treated as
a data file. Anonymous files declared as TEXT type in the program are given type file of char.
The outcome of this is that the FIB is assigned a filekind value, which ultimately specifies the
Access Method.

The file opening routine now calls the Directory Access Method designated in the Unitable,
passing in the FIB. The DAM looks at the FIB and fkind, and selects the AM as follows:

if not uisblkd then (¥serial deviceX)
if not fistextvar then am := tm (Xnon-TEXT fileX)
else am := serialtextamhook
else (%blocked deviceX)
if not fbuffered then am := amtable™[untypedfile]

else
if-not fistextvar then am := amtable™[datafile]
else am .= amtable™[filekind];

SDG 116

Each DAM gets to make its own choices in selecting AM for a file type; as things happen, all our
standard DAM’s make the same choices, but that is a fact rather than a regulation. Here is a
table summarizing the choices.

fkind = unblocked blocked
file of <type> tm amtable™[datafile]
TEXT serialamtexthook amtable™[fkind]
file; tm amtable™{untypedfile]

The "file;" entry corresponds to the UCSD untyped file, which may only be used for block IO
operations.

We have not mentioned the External File Type table. Most file systems can keep a designation of
file type in the directory on disc. The eftable array can optionally be used to indicate what this
external file type as a short integer. It is not a perfectly general mechanism, since the same file
type might require different type designators under different DAM’. The DAM may have to
perform a translation if this facility is used.

With this overview, we are now ready to discuss the data structures of the file system in more
detail.

("UCSD Pascal" is a trademark of the Regents of the University of California.)

SDG 117

Fields of an FIB

Refer to the declaration of type FIB exported from module SYSGLOBALS. An FIB is a Pascal
record having the following fields.

FWINDOW: WINDOWP,

The "window" of a file F is the object pointed at by F~. It is treated by the file system as an
array of bytes, big enough to hold exactly one component of the type of the file. The window is
sometimes called the "buffer variable” (as distinct from the file’s buffer).

FWINDOW does not point into the file’s physical buffer; rather, the data is moved between the
buffer and the window, whose address doesn’t change while the file is open. The reason for this
technique is that all physical buffers are 512 or 1024 bytes long, and logical records may be
broken across physical record boundaries.

FWINDOW is nil for files declared with no type under the Pascal Compiler’s UCSD compatiblity
mode. Such files can only be used for block IO transfers.

This field is initialized by procedure FINITB in module FS; FINITB is called by code emitted by
the Compiler. Note that under certain circumstances FWINDOW may be used in ways unrelated
to the above description. Particularly in implementing DAMs, FWINDOW may be used with an
untyped FIB to access various types of data involved in handling directory entries. User-level
programs never see this.

FLISTPTR: FIBP,
All files which are in stack frames or global data areas (ie anywhere but in the heap) are linked
together as they are opened via the FLISTPTR field. The list is used to find and close open files

when exiting a program or procedure due to error, non-local GOTO, or normal exit.

FLISTPTR is initialized by code generated by the Compiler.

FRECSIZE: INTEGER;

This is the size of a logical record, that is, sizeof(x) in "file of x". The value is zero for
UCSD-compatible untyped files. Note that if FRECSIZE = 0 the Compiler has allocated a FIB of
the variant with FBUFFERED = false; no physical buffer and no file window.

Initialized by FINITB in module FS, according to a parameter passed by the Compiler.

FKIND: FILEKIND;
Indicates the type of the file (untypedfile, badfile, codefile, textfile, asciifile, datafile, sysfile, etc).

FKIND is initialized when the file is opened; see the detailed discussion above ("How the Access
Method for an FIB is Selected").

SDG 118

FISTEXTVAR: BOOLEAN;
Indicates that the file was declared as type TEXT as opposed to "file of char". In some Pascals the
two are equivalent, but in HP Pascal implementations only things declared as TEXT may be used

with formatted reads and writes.

Initialized by FINITB according to a parameter passed by the Compiler.

FBUFFERED: BOOLEAN;,

Indicates whother the 512 byte physical buffer is present in the FIB. It is used by the DAM to
help select the correct Access Method. The AM could use FBUFFERED to determine whether
the Compiler allocated a physical buffer, however, proper selection of the AM by the DAM
usually insures that the buffer is there when it is needed.

Initialized by FINITB according to a parameter passed by the Compiler.

FANONYMOUS: BOOLEAN;

A file is anonymous if 1t was opened without a physical file name, eg REWRITE(F) as opposed to
REWRITE(F’CHARLIE’). Anonymous files will not be LOCKed when closed, since they have no
valid name. The DAM is responsible for generating a random file name if the directory
structure can’t support nameless temporary files.

Initialized by the FS-level calls FHPRESET and FHPOPEN.

FISNEW: BOOLEAN;,
True if the physical file was created at this association of FIB to physical file.

Initialized by the DAM in the createnew operation.

FREADABLE, FWRITEABLE: BOOLEAN;

Initialized, maintained and referenced by the File Support level, based on the particular opening
operation OPEN, RESET, APPEND or REWRITE. The Compiler passes the access rights to
FOPEN. If not (FREADABLE OR FWRITEABLE) then the file is closed.

FREADMODE, FBUFVALID: BOOLEAN,;

In vanilla Pascal, as long as a file is open its window variable must be valid. This causes serious
problems for interactive files such as the keyboard, because it means at least one character must
be input just to open the file.

HP Pascal solves this problem with so-called "lazy 10", which means that the window isn’t made
valid until it is referenced by some programmatic operation. The validation of the window is
automatic, caused by Compiler-emitted calls to an FS routine called FBUFFERREF. The
programmer never sees it, and programs written assuming "eager"IO (buffer always valid) will
therefore execute properly.

SDG 119

FREADMODE and FBUFVALID are state variables used to control refilling of the window.
They are referenced only at the FS level. The four states and their interpretations are:

FREADMODE FBUFVALID STATENAME --------- MEANING -------------

false false Write A GET must be done before F~ can
be filled with the current
component.

false true Illegal TSK |

true false Lazy F* will be filled if it is
referenced

true true LookAhead F” has already been filled

FEOLN: BOOLEAN;

Indicates end-of -line condition. Either file is at its logical end, or the AM has determined that a
complete line has been processed.

FEOLN must always indicate whether the most recently read "character" was actually an EOL
marker. This requires special handling by text AMs which don’t use a visible character to denote
end-of -line.

FEOF: BOOLEAN;

The current file position is past the logical end of file. FEOF is valid only in LookAhead state.
Initialized, maintained and referenced by FS level.

FMODIFIED: BOOLEAN;

True if some attribute of the file has changed which will require the DAM to access the
directory upon file closure. Usually this means the logical end of file has changed.

Initialized by FS routines to false for an old (existing) file and true for a new file. FMODIFIED is
set true by FS or the DAM when physical or logical end of file positions change.
FBUFCHANGED: BOOLEAN,;

This flag may be used by the AM in any way it wants. Usually it indicates that the physical
buffer has been written into and needs to be flushed out to the disc before the file is closed.

Initialized to false by the FS.

FPOS: INTEGER;

This field serves two purposes: indicating the requested size when creating a new file, and
indicating the current byte position in the file once open.

When creating a new file, three cases are distinguished:

SDG 120

N>0 Requests BLOCKS*X512 bytes, where '[<BLOCKS>]'
was appended to the file name.

N =20 Means no size was specified. Some DAM’'s will
interpret this as a hint to take the largest space
available on the disc.

N <0 Means '[X]' was appended to the file name. Some
DAM’'s will take this as a hint to use the second
largest available space, or half the largest space.

The DAM will probably ignore the above conventions when opening an existing file, but the FS
may request the DAM to "stretch" the file later.

When OPENing or RESETing a file, the value of FPOS is set to zero; when opening for APPEND,
FPOS is set to the file’s logical end-of ~file position. Also affected by SEEK, which does no IO but
merely changes FPOS.

The AM must update FPOS after every transfer. When closing a file with the 'CRUNCH’ option,
the logical end-of-file position recorded permanently in the directory will be the most recent
value of FPOS. This can cause truncation of a file.

When the DAM is asked to stretch a file (extend its physical end-of-file), FPOS is used
temporarily to indicate what is the desired new physical eof. The DAM should try to allocate at
least this much, but in any case it should grab a reasonably large piece.

FLEOF: INTEGER;
Logical end-of-file position. Initialized by the DAM to zero for a new file, or the size of an
existing file in bytes. Set by FS to zero on a REWRITE operation; and by AM to the maximum of

its initial value and any file positions obtained by writing to the file. Used by the DAM upon file
closure to determine the new permanent file size.

FPEOF: INTEGER,

Physical end-of-file position. Initialized and maintained by the DAM to reflect the actual size
of the file in bytes. Usually this is the number of bytes allocated to the file on the disc.

The Transfer Method looks at FPEOF to determine whether a transfer is legal.

The Access Method looks at it to determine whether FLEOF can safely be advanced. If the
desired FLEOF exceeds FPEOF, the AM must call the DAM to stretch the file. If FPEOF is still
to small after calling for a stretch, the AM sets IORESULT to IEOF.

FLASTPOS: INTEGER;,

Previous file position. May be used by the AM in any way it wants. Usually indicates the

correspondence between the physical buffer and the file. FLASTPOS is initialized to minus one
by FS.

SDG 121

FREPTCNT: INTEGER;

A general purpose counter. May be used by the AM in any way it wants. Used to implement
blank compression in some text file access methods. Initialized to zero by FS.

AM:; AMTYPE;

The procedure variable indicating the Access Method to be used with the file. It is initialized by
the DAM, as described in more detail above ("How the Access Method for an FIB Is Selected").

NB: The Command Interpreter changes the AM of the system’s standard files INPUT and
KEYBOARD to accomplish streaming (interpretation of text file as keyboard input).

FSTARTADDRESS: INTEGER;
Execution address in boot file.

The extension word is a kludge in the definition of Logical Interchange directories; it is an
integer associated with each directory entry, which can be used in a way determined by the file
type (another 16-bit integer in the directory entry).

The LIF DAM uses the extension word in the following way: if the file type is data, the
extension indicated the logical end of file within the allocated physical space for the file. If the
file a Boot file type, the extension word is taken to be the start address for the system being
loaded by the Boot ROM.

FVID; VID;

A string of up to 16 characters, giving the name of the volume on which the file resides. The file
system uses this to choose which Unitable entry, hence which DAM, to use in opening the file.
See the description above.

The DAM should verm{fy that the volume name is correct when the file is opened (that i1s, the
name on the volume label matches the name in the Unitable). After file opening, the DAM can
use FVID as it wishes, but usually it is used to verify the volume name on closing the file. This is
appropriate since not all HP discs can sense when the door has been opened and the medium
changed.

The SRM DAM uses FVID to store the master volume password for the SRM if the user ever has
occasion to offer it up.

FTID: TID;

A string of up to 16 characters, giving the name of the file. It is initialized by combined efforts
of FS and the DAM. FS strips out volume specifier and size specifier; the DAM removes
pathnames and passwords.

FTID is used by the Command Interpreter to identify permanently loaded files; when asked to

execute a program, the stripped FTID is compared to those in memory. This means you can’t
execute from the disc any file whose FTID matches one which has been P-loaded.

SDG 122

PATHID: INTEGER;

Path identification token. May be used by the DAM in any way it pleases. The Shared Resource
Manager DAM uses it to identify the directory which is the immediate parent of the current
file. (Note that any open file or directory on the SRM is identified by a unique integer. If a given
file is opened twice, there will be two distinct integers referring to it. The SRM itself remembers
the logical mapping from these integer IDs onto physical files.)

PATHID is initialized to minus one by FS.

FILEID: INTEGER,

File identification token. Initialized by the DAM to whatever is appropriate for the TM. Used by
the TM (driver) to locate the physical file associated with the FIB.

For most mass storage drivers, it is the byte offset from the beginning of the volume to the start
of the file. In this case, the TM adds FILEID to UNITABLENFUNITLBYTEOFFSET and divides
by 256 to compute the disc sector. To access a byte within the file, must also add in POSITION
for the offset within the file.

Set to zero for "volume transfer" operations.

FUNIT: UNITNUM;

Unit number (index into the Unitable) for the logical unit on which the file resides. FS sets this
up according to the volume name, as described earlier. Knowing the unit number, the FS can
select the proper DAM, which then picks the right AM.

Also used by the TM to find the hardware description of the device, for example the interface
select code or HPIB address.

FBUSY: BOOLEAN;,

Set true by the TM checking a unitstatus request if an overlapped IO operation is in progress.

Those are all the fields which are present in every FIB. The following fields may also be present
(FIB is a variant record).

FTITLE: FID,

A string of up to 120 characters. This is the "original" file name, with volume name and size
specification removed. It is used by the DAM to extract the file name and other information

such as path name and passwords.

This field is invalidated as soon as the file is opened, since the variant is overlaid by FBUFFER.

SDG 123

FBUFFER: PACKED ARRAY [0.511] OF CHAR,;
Allocated by the Compiler for all files except UCSD untyped files. If present, as indicated by
FBUFFERED, the area may be used in any way the AM wants. Usually it buffers one disc block

(2 sectors of 256 bytes) of data, since most drivers can only start reads or writes on sector
boundaries.

FEFT: SHORTINT,

This is the external file type. Would normally be set to EFTABLE"[FKIND].

FANONCTR: SHORTINT;

Anonymous file counter. Some DAMs must invent a unique name for temporary, new or
anonymous files.

FOPTSTRING: STRING255PTR;

This points to a string containing the optional third parameter to OPEN, REWRITE, APPEND.
Be careful how you use this -- the scope in which the actual string was declared could go away
on youl

FEOT: EOTPROC;

This is a procedure variable which will be called by the driver (TM) at the end of an overlapped
IO transfer. Presently the only interfaces which can specify that the IO transfer be overlapped

are the UCSD UNITIO operations. The procedure whose name they store here does nothing. This
field is a hook for future use.

FFPW: PASSTYPE;

File password. This is set up by the SRM DAM when parsing file names.

FPURGEOLDLINK: BOOLEAN;

This field is assigned a value by the caller of the SRM DAM with a request to duplicate a file
link. If it is true, the file’s link into its old directory will be purged at the same time.

FOVERWRITTEN: BOOLEAN,;

SRM DAM sets this field up for the OVERWRITEFILE and CREATEFILE requests. It is used to
decide what to do when processing the CLOSEFILE request.

FLOCKABLE: BOOLEAN;

Set up by SRM DAM on OPENFILE, CREATEFILE, OVERWRITEFILE requests; it is true if the
optional third parameter contained 'LOCKABLE’. The default is false. It is used in conjunction
with FLOCKED by routines in module LOCKMODULE as well as by SRM DAM.

SDG 124

FLOCKED: BOOLEAN,;

FLOCKED 1is the state variable which controls a workstation’s access to files opened
LOCKABLE. No file operations are allowed for a lockable file unless FLOCKED is true (which is
also the default value even for non-SRM files).

This field is set by SRM DAM on OPENFILE requests and is changed by calls to LOCK,
WAITFORLOCK and UNLOCK in LOCKMODULE. When the file is locked, the FIB’s
workstation=-local copy of all file state information is updated with information from the SRM.
When the file is unlocked, the SRM is updated and the physical buffer associated with the FIB is
flushed. This mechanism assures that at critical times the SRM’s state and the FIB’s state are in
agreement.

FEXTRA: ARRAY [0.5] OF INTEGER,;

Space set aside for future expansion.

FEXTRA2: SHORTINT,
Space set aside for future expansion.
FBO, FB1, FB2, FB3: BOOLEAN,

Space set aside for future expansion.

SDG 125

The Unitable

Refer to the Unitable and related types exported from module SYSGLOBALS. Fields of the
Unitable are initialized by execution of the TABLE configuration program at bootup time.

Pascal file IO is directed to files which reside on so-called "logical units". The logical unit is a
number between one and fifty, called the unit number, which is an index into an array called
the Unitable. The Unitable was mentioned briefly in the File System overview, above. That
information is now repeated in more detail.

The logical units of file IO are to be distinguished from interface "select codes”. A select code 1sa
number from zero to 31 from which can be calculated the memory-mapped address of a
peripheral’s interface circuitry. Be warned that the address calculation is not entirely
straightforward. Device 10 is discussed elsewhere.

The logical unit on which a file resides is determined from the "volume name" portion of the file
name specification. These forms of volume name are recognized:

® <no volume name> If there is no colon in the file specification, or if there are no characters
preceding the colon, the volume name is taken to be the current default volume. Otherwise
the character sequence preceding the colon is stripped out and becomes the volume name.
This yields one of the next two cases ...

® X or X: Either of these is a synonym for the system volume.

® #cynit number> If a notation like #31:is found at the beginning of the file specification,
the integer unit number is used directly to index into the Unitable. The volume name for
the file is taken to be the volume label found on the addressed unit.

® <volume name> If a notation like MYVOL: is found at the beginning of the file
specification, the name is extracted and the Unitable entries are searched for a volume of
that name. If it is found, the unit number is established; otherwise IORESULT is set to
INOUNIT, which is reported as "volume not found".

e <filename> The volume is the default volume.

® X<filename> The volume is the system volume.

e X <fjilename> The volume is the system volume.

A unit number for the FIB is thus established when the file is opened. The unit entry is accessed
by the AM and TM, and usually again when the file is closed.

const
maxunit = 50;

type
unitnum = 0. .maxunit; (¥zero indicates "no unit"X)
unitentry =

packed record

....... fields of entry are enumerated in
discussion below.

end;

SDG 126

unitabletype = array [unitnum] of unitentry;
unitableptr = “unitabletype;

var
unitable: unitableptr;

When we speak of the "nth" unit entry, we really mean "unitable”[n]"'. The table is allocated out
of system heap very early in kernal execution, by module INITUNITS which is in INITLIB. NB:
unitable”[0] is used to hold the DAM procedure which will be associated with RAM volumes.

The Fields of a Unit Entry
DAM: DAMTYPE;

This is the procedure variable specifying the Directory Access Method for the volume or device.
Initialized during the boot process, usually by execution of the TABLE configuration program
just before the Command Interpreter starts.

TM:. AMTYPE,;

A procedure variable specifying the TM (driver) for the physical device accessed through this
unit. Initialized during the boot process, usually by execution of TABLE.

SC: BYTE;

The "select code" for the device interface card. All IO is memory-mapped. Knowing the select
code, one can calculate the address in memory of the interface circuitry.

There are 64 possible interface card address areas, each a block of 65k bytes, allocated above
$400000 in the 68000’s address space. The calculation of an interface address as a function of
select code is not straightforward for reasons having to do with compatibility with previous
generations of desktop machines (the 9825, 9835 and 9845). This matter is discussed under
Device IO.

I have been asked (too often) how we decide what compatibility to try to preserve and what we
are willing to discard. The only honest answer is that compatibility decisions are made in an
evolutionary process. Each decision is constrained by previous ones, and it is hard to create an
elegant balance among history, innovation and progress. Decisions can be justified
instantaneously, but the overall result may be baffling.

BA: BYTE;

"Bus address". Intended to record the HPIB address of the device. Could be used for other
purposes by non-HPIB drivers.

This should tell you that several Unitable entries may have the same interface select code, while
differing in the value of BA.

SDG 127

DU: BYTE;

“Disc Unit". Selects one disc unit among sevéral being managed by one controller addressed
through one select code. For instance, in a 9836 the right minifloppy drive is unit zero and the
left is unit one.

This should also tell you that several Unitable entries may have the same select code and HPIB
address. The 9134 micro- Winchester disc, for example, looks like four separate units all having
the same select code and bus address; they are distinguished only by the value of DU.

DV: BYTE;

"Disc volume". In the new Command-Set 80 family of disc drives, the protocol allows still
further partitioning of a particular disc unit into "volumes". These are NOT the same as Pascal
volumes !l For such discs, in the future DV will specify the disc volume of interest.

Initialized by TABLE.

BYTEOFFSET: INTEGER;

Gives the byte offset from the start of the disc medium to the start of the volume. This is mainly
intended to allow creation of multiple directories on a single physical volume, and typically one
finds a volume directory at the start of the volume. In this usage, a volume is a single contiguous
area of disc, in which reside a directory and files; the files are accessed relative to the start of
volume, rather than start of disc.

A different mechanism is used for hierarchical directories. In fact, the Shared Resource Manager
keeps track itself of directory locations; a user "finds" them by name instead of by address.

BYTEOFFSET is initialized by the TABLE program.

DEVID: INTEGER,

"Device ID". This is a misnomer. It is a driver-dependent field currently used in two ways. For
CS-80 disc drivers DEVID contains the actual product number of the device, as returned by the
"describe" disc command. For local printers, contains the printer byte timeout in milliseconds, as
specified by the option in CTABLE.

UVID: VID;

The unit’s volume id, a string of up to 16 characters. If the unit is a blocked mass storage (disc)
device, UVID gives the name read from the physical volume label; it will change if the disc
medium is changed. If the unit is a byte stream device (printer, CRT, keyboard, etc) which has no
volume label, the UVID is put in by TABLE and never changes. Thus PRINTER is the UVID for
the system print device.

DVRTEMP: INTEGER;

Most transfer methods need some working space to maintain state information. This state
information must be maintained with the unit entry rather than the driver module, since the
same driver may service several units.

SDG 128

DVRTEMP is a general-purpose variable with which drivers can work their will. For CS-80 and
Amigo drivers: while busy, DVRTEMP points to the background temporary space in use. While
not busy, contains the IORESULT of the last operation if performed in overlapped mode. For
local printers, this field contains the most recent character output, so it can be sent out again if a
printer timeout occurs.

LETTER: CHAR;

An archaeological oddity. For a while, within HP there was a plan to identify each type of disc
device by a letter, eg "F" for a 9885 floppy disc. Somewhere the plan got lost, because various
divisions do their own thing now; anyway, there are too many kinds of disc.

The 9836 tries to follow and extend the same letters used in the older 9835/9845 computers.
This letter is in fact examined by the device drivers. For instance, the same driver runs all the
Amigo discs; it tells them apart by their distinguishing letters in the unit entry.

LETTER DISC SELECTED
F 9885 8" single-sided floppy
G Shared Resource Manager
H 9895 8" double-sided floppy

and 9134 micro-Winchester drive
any printer -
streaming backup tape in CS-80 drives
internal 5.25" minifloppy
8290x family 5.25" minifloppy
and 5.25" minifloppy packaged with 9135 Winchester
and 3.25" microfloppy
CS-80 family mass storage devices
RAM (memory-resident) volume
9134A or 9135A micro-Winchester disc
(single volume 5 megabyte version)
\Y 9134B or 9135B micro-Winchester disc
(reserved for 10 megabyte version)
W 9134C or 9135C micro-Winchester disc
(reserved for 15 megabyte version)
#255 no device flag

2 X4y

C oo

There are several important uses for the drive letter:

1. MEDIAINIT uses it to know which medium initialization routine to reference, since there
is no TM request to initialize disc media.

2. When the same driver is used to support more than one version of device, the letter tells the
driver what to do.

3. A letter is returned by CTABLE’s scanning procedures to indicate device type during the
boot-up process.

4, A letter is returned by CTABLE’s get_bootdevice_parms routine to indicate device
parameters.

5. The letter R is noted by CTABLE to avoid overwriting existing RAM volumes. This is
relevant if CTABLE is executed by a user command after the system is "up".

SDG 129

OFFLINE: BOCOLEAN;

Indicates a blocked device which is absent or malfunctioning, used by drivers to avoid
time-consuming attempts at IO -- particularly attempts to find volume directories -- on down
devices. This field is (and probably should be) ignored by drivers for byte-stream devices, because
an unblocked device doesn’t have to be accessible to determine its volume name.

OFFLINE is initialized to false at TABLE execution and by the I (Initialize) command invoked
from the main menu. In both instances, a unitclear is performed on all 50 units, and OFFLINE is
set true for each blocked unit returning a non-zero IORESULT.

UISINTERACTIVE: BOOLEAN,;

Indicates an input device which echoes its data, such as the standard keyboard/CRT or a
terminal. This field is usually initialized by TABLE at boot time.

It is referenced by KILLCHAR in module FS. (KILLCHAR assists in editing input data.

It is referenced by STREAMING in the Command Interpreter to decide whether to
"pseudo-echo" the stream file to the screen.

It is referenced by FEOF to decide whether to read ! character ahead. For instance, unit #1
{CONSOLE: echoing standard input file INPUT) has uisinteractive true, while unit #2
(SYSTERM: non-echoing standard input file KEYBOARD) doesn't. Thus the predicate
EOF(KEYBOARD) will force a one-character LookAhead while EOF(INPUT) won’t.

UMEDIAVALID: BOOLEAN;

Indicates that open files on the medium in this unit are still valid. The TM (driver) will refuse to
read or write to a unit if this flag is false and UREPORTCHANGE is true.

Initialized to false at bootup. Set false by the Command Interpreter whenever recovering from a
fatal user program error, and by the I (Initialize) command from the main menu.

Set to false by the DAM or TM whenever there is reason to believe that a removeable medium
has been changed (door open bit). Set to true by the DAM whenever it successfully opens or
creates any file on the current directory.

If this flag is false when a DAM successfully opens or creates a file, the DAM must find and
destroy any temporary (improperly closed) files on the volume. This operation may be thought of
as cleaning up the directory of a disc which was removed from the drive while file operations
were active.

UISFIXED: BOOLEAN,;
If false, the medium is removeable and the driver probably ought to pay attention to whether
the disc drive door has been opened. (The driver will generate an ESCAPE(-10) with IORESULT

set to ZMEDIUMCHANGED (50).) This is used by the Filer to avoid silly messages instructing
the operator to swap discs when the medium is not removeable.

SDG 130

UREPORTCHANGES: BOOLEAN;

If false, the driver ignores UMEDIAVALID. This is used by the Filer to avoid error messages in
file copying sequences which require discs to be swapped in the same drive. It may also be used
by DAMs to suppress error reports in some circumstances.

UUPPERCASE: BOOLEAN;,

Some directory methods want volume names to have no lower- case letters. This flag tells the
file specifier scanning routines what to do.

PAD: 0.1,

This bit is presently unused.

UISBLKD: BOOLEAN,;
This variant tag field indicates that the device probably has the following characteristics:

@ A directory.

¢ Randomly accessible.

® Can only read or write starting at sector (256 byte) boundaries.
Not all these characteristics need to hold perfectly. For example, no directory may have yet been
created on a blocked device. Some devices, such as the streaming backup tape in a 7908 disc
drive are only "pseudo-random", and there may be a severe performance or reliability penalty
for using such a device as if it were a disc. Likewise, the streaming backup tape works in 1024

byte blocks, so the TM must simulate the behavior of smaller blocks.

UISBLKD is initialized at bootup, usually by TABLE.

SDG 131

UMAXBYTES: INTEGER;

The size in bytes of the volume. If there is only one volume on the disc drive, UMAXBYTES will
be the same as the medium size; if there are multiple volumes, each is sized separately.

For most units, this field is constant, having been set up by TABLE. However, for devices
supporting removeable media of differing sizes, life is more complex.

® 9885s and 9895s. The 9895 supports both double and single~sided discs. Double-sided discs
are always expected to have 150 useable tracks. Single-sided discs are a mess. Depending
upon the initializing host computer and the condition of the medium (spared tracks), a
single-sided disc may have 61 to 67 tracks, or 73 tracks!

For this reason, UMAXBYTES is normally NOT referenced directly; instead the integer
function UEOVBYTES is called passing the unit number. For everything except 98835s and
9895s UMAXBYTES is returned. For 9885s and 9895s, UEOVBYTES actually attempts to
access the tracks at the end of the medium to determine exact size. For these two drive
types, UMAXBYTES contains the maximum possible medium size in bytes.

® For the streaming backup tape in CS-80 disc drives, attempting to access the device
through the file system is VERY inefficient and not recommended except for backup
operations. However, at unitclear and medium-change times the CS-80 driver does put the
correct value (17 Mbytes or 67 Mbytes) into UMAXBYTES.

SDG 132

Chapter 8
File Support

Introduction

This chapter covers the File Support calls issued by a Compiler to perform file operations. A
simple example program is presented, and the calls it issues are discussed. The purpose is to give a
better understanding of how program IO actually takes place.

The program creates a file of integers, locks the file, re~opens it for direct access, and reads it in
the order opposite to the way it was written using the Pascal READDIR standard procedure.
Finally the file is purged.

What follows is a listing and disassembly of the program. After the disassembly is a commentary
on the code emitted by the Compiler, which is exactly what one should write to call the File
Support level routines from an assembly language program or any other environment.

Since the program was compiled with $DEBUG ONS$, there is a TRAP #0 instruction followed
by a 16-bit line number before the first instruction of each Pascal line.

1:D 0 $debug on$ (XShow line numbersX)
2:8

3:D 0 program filedemo {output);
4:D 1 type

5:D 1 ifile = file of integer;
6:D 1 var

7:D -666 1 f: ifile;

8:0D -678 1 i,j,k: integer;

9:C 1 begin

10:S

11%C 1 rewrite(f, INTFILE');
12%C 1 for i := 1 to 100 do
13%C 2 write(f, (101-1i));
14%C 1 close(f, LOCK');

15:8

16XC 1 open(f, INTFILE’);

17%C 1 for i := 100 downto 1 do
18:C 2 begin

19%C 2 readdir(f,i k),
20%C 2 writeln(output, 'Record #',1i:3," = ' k:3);
21:C 2 end:
22:S
23%C 1 close(f, PURGE');
24%C 1 end.

No errors.

SDG 133

The Librarian provided the following disassembly.

MODULE
NOTICE:

DEF table of

EXT table of

FILEDEMO
(none)

Created 9-Aug-82

Produced by Pascal Compiler of 26-Jul-82

Revision number 2

Directory size 180 bytes
Module size 2560 bytes
Execution address Rbase+14
Code base 0
Global base 0
EXT block 4 Size

DEF block 2 Size

No EXPORT text
There are

1 TEXT records

DEFINE SOURCE of 'FILEDEMO':

FILEDEMO
FILEDEMO_FILEDEMO
FILEDEMO__BASE

FS_FCLOSEIT
FS_FHPOPEN
FS_FINITB
FS_FREAD
FS_FSEEK
FS_FWRITE
FS_FWRITEINT
FS_FWRITELN
FS_FWRITEPAOC
SYSGLOBALS

TEXT RECORD #
TEXT start block
REF start block
LOAD address

000B
0946
494C
4544
454D
4F20
0A00

NOoOoooOoYbNO

"FILEDEMO " :

"FILEDEMO ' :

Rba

dc.
dc.
dc.
dc.
dc.
dc.
dc.

3
se

b A 3

1 of

1
2374
18764
17732
1774
20256
2560

Size 474 byte
Size 682 byte
136 bytes
62 bytes
Gbase
Rbase+14
Rbase
'FILEDEMO’
Size 474 bytes
Size 156 bytes
or dc¢.b 0,11
or dc.b 9,70
or dc.b 73,76
or dc.b 69,68
or dc.b 69,77
or de.b 79,32
or dc.b 10,0

SDG 134

S
S

or
or
or
or
or
or
or

dec.
dc.
de.
dc.
dc.
dc.
dc.

Y
IL
"ED’
EM’
P

O U U 0TCUTUTUTU

----------------------- FILEDEMO_F ILEDEMO

32

38
42

48

52
56
60
64
68
72

78
82
84
86
90
94
98
102
106
108
112
114
118
122

128
132
134
136

144
146
150
154
158

164
168
170

000B
FD66
0001
0188
0172
0000

FFEA

000C
FDSA
FD5A
000D
FD66

FDSA
FD56
FD56
0000
FFEA
0000
FDSA
000E
FD66
0122
0000

FFEA

link a6, #0

pea Gbase-666(ab5)
pea Gbase-4(a5)
move.l #4 -(sp)

jsr FS_FINITB

lea Gbase-666(ab5),al
move .l SYSGLOBALS-6(a5),4(a0)

move.l a0, SYSGLOBALS-6(a5)

trap #0,#11 COMPILED LINE NUMBER 11
pea Gbase-666(a5)

move.w #1,-(sp)

pea Rbase+458

pea Rbase+440

jsr FS_FHPOPEN

tst.l SYSGLOBALS-22(a5)

beq.s Rbase+86

trap #3

trap #0 ,#12 COMPILED LINE NUMBER 12
clr.1l Gbase-678(a5)

adda.l #1 Gbase-678(a5)

trap #0 ,#13 COMPILED LINE NUMBER 13
pea Gbase-666(a5)

moveq #101,d0

sub.l Gbase-678(a5),d0

trapv

move.l d0,Gbase-682(a5)

pea Gbase-682(a5)

jsr FS_FWRITE

tst.1l SYSGLOBALS-22(ab5)
beq.s Rbase+136

trap #3

cmpi.l #100,Gbase-678(ab)

blt.s Rbase+94

trap #0 #14 COMPILED LINE NUMBER 14
pea Gbase-666(a5)

pea Rbase+446

jsr FS_FCLOSEIT

tst.l SYSGLOBALS-22(a5)

beg.s Rbase+172
trap #3

SDG 135

172
176
180
184
188
192

198
202
204
206
210

218
222
226
230
232
236

242
246
248
250
254

260
264
266
268
272
276
278
282
286
290

296
300
302
304
306
310
314

320
324

4E40
486D
3F3C
487A
487A
4EB9
0000
4AAD
6702
4E43
4E40
2B7C
0065
53AD
4E40
486D
2F17
2F2D
4EB9
0000
4AAD
6702
4E43
486D
4EB9
0000
4AAD
6702
4E43
4E40
2F2D
2F17
487A
3F3C
3F3C
4EB9
0000
4AAD
6702
4E43
2F17
2F2D
3F3C
4EB9
0000
4AAD
6702

0010
FD66
0002
0110
00FA
0000

FFEA

0011
0000
FDSA
FDSA
0013
FD66

FDSA
0000

FFEA
FD62
0000
FFEA
0014
FFA6
00BA
0008
FFFF
0000

FFEA

FD5A
0003
0000

FFEA

trap #0 #16 COMPILED LINE NUMBER 16
pea Gbase-666(a5)

move.w #2 -(sp)

pea Rbase+458

pea Rbase+440

jsr FS_FHPOPEN

tst.1l SYSGLOBALS-22(a5)

beq.s Rbase+206

trap #3

trap #0,#17 COMPILED LINE NUMBER 17
move.l #101 Gbase-678(ab)

subg.l #1 Gbase-678(a5)

trap #0,#19 COMPILED LINE NUMBER 19
pea Gbase-666(ab5)

move.l (sp),-(sp)

move.l Gbase-678(a5),-(sp)

jsr FS_FSEEK

tst.l SYSGLOBALS-22(a5)
beq.s Rbase+250

trap #3

pea Gbase-670(a5)

jsr FS_FREAD

tst.l SYSGLOBALS-22(a5)

beq.s Rbase+268

trap #3

trap #0,#20 COMPILED LINE NUMBER 20
move.l SYSGLOBALS-90(a5),-(sp)

move.l (sp), -(sp)

pea Rbase+466

move.w #8, -(sp)

move.w #-1, -(sp)

jsr FS_FWRITEPAOQC

tst.1l SYSGLOBALS-22(ab)
beq.s Rbase+304

trap #3

move.l (sp),-(sp)

move.l Gbase-678(ab),-(sp)
move.w #3,-(sp)

jsr FS_FWRITEINT

tst.1l SYSGLOBALS-22(ab)
beq.s Rbase+328

SDG 136

326
328
330
334
338
342

348
3562
354
356
358
362
366

372
376
378
380

386
390
392
394

402
406
410
414
418

424
428
430
432
436
438

4E43
2F17
487A
3F3C
3F3C
4EB9
0000
4AAD
6702
4E43
2F17
2F2D
3F3C
4EB9
0000
4AAD
6702
4E43
4EB9
0000
4AAD
6702
4E43
0CAD
0001
6E00
4E40
486D
487A
4EB9
0000
4AAD
6702
4E43
4E40
4ESE
4E75

006E
0003
FFFF
0000

FFEA

FD62
0003
0000

FFEA

0000

FFEA

0000
FD5A
FF46
0017
FD66
0024
0000

FFEA

0018

trap #3

move.l (sp),-(sp)
pea Rbase+442
move.w #3, -(sp)
move.w #-1,-(sp)
jsr FS_FWRITEPAQOC

tst.l SYSGLOBALS-22(a5)
beq.s Rbase+356

trap #3

move.l (sp),-{sp)
move.l Gbase-670(a5),-(sp)
move.w #3,-(sp)

jsr FS_FWRITEINT

tst.1l SYSGLOBALS-22(a5)
beq.s Rbase+380

trap #3

jsr FS_FWRITELN

tst.l SYSGLOBALS-22(a5)
beqg.s Rbase+394

trap #3

cmpi.l #),Gbase-678(a5)

bgt Rbase+218
trap #0,4#23

pea Gbase-666(a5)
pea Rbase+452

jsr FS_FCLOSEIT

COMPILED LINE NUMBER 23

tst.l SYSGLOBALS-22(a5)
beq.s Rbase+432

trap #3

trap #0,6#24

unlk a6
rts

SDG 137

COMPILED LINE NUMBER 24

440 0000 dc.w 0 or dc.b 0,0 or dc.b ’

442 203D dc.w 8253 or dc.b 32,61 or dc.b ' =
444 2000 dc.w 8192 or dc.b 32,0 or de.b ' '
446 044C de.w 1100 or dc.b 4,76 or de.b ' L’
448 4F43 dc.w 20291 or dc.b 79,67 or de.b '0C’
450 4B00 dc.w 19200 or dc.b 75,0 or dc.b 'K’
452 0550 dc.w 1360 or dc.b 5,80 or de¢.b ' P’
454 5552 dec.w 21842 or dc.b 85,82 or dc.b 'UR'
456 4745 dc.w 18245 or dc.b 71,69 or dec.b 'GE’
458 0749 dc.w 1865 or de¢.b 7,73 or de.b 7 I’
460 4E54 dec.w 20052 or dc.b 78,84 or dc.b 'NT’
462 4649 de.w 17993 or dc.b 70,73 or dc.b 'FI’
464 4C45 dc.w 19525 or dc.b 76,69 or dc.b 'LE’
466 5265 dc.w 21093 or dc.b 82,101 or dc.b 'Re’
468 636F dc.w 25455 or dc.b 99,111 or dc.b 'co’
470 7264 dc.w 29284 or dc.b 114,100 or dc.b 'rd’
472 2023 dc.w 8227 or dc.b 32,35 or dc.b ' #’

In the following commentary, the notation [nn] refers to Pascal source line number nn; the
notation @nn refers to byte offset nn from the beginning of the relocatable text segment. (Byte
offsets are the left-hand column of numbers in the disassembly.) The symbol "Gbase" is the
relocated base of the global variable area for this program; "Rbase" is the relocated base address
where the program’s code is ultimately loaded.

@18

Before the first line of user code, the Compiler emits a call to FS__FINITB, which initializes the
FIB properly. This must take place before any other operations using the FIB. The file has been
allocated 666 bytes of global area as follows: 4 bytes at Gbase-4 for the window variable (size of
an integer, which is the file type); 662 bytes for the FIB itself, including a S12-byte physical
buffer at the end of the FIB.

Since global areas "grow downward" but variable fields "grow upward", Gbase-666(A35) is the
address of the first byte of the FIB while Gbase-4(A5) is the address of the file window variable.
The call pushes the address of the FIB, the address of the window, and the size of a record, then
calls FS__FINITB.

Then (@38) the FIB is pushed onto a linked list (a stack) of active files. This will enable the
system to find and close any open files if the program aborts; it is an optional but highly
recommended step. The pointer to the head of the file chain is at SYSGLOBALS-6(AS) ; it now
points to our FIB, and the second field of the FIB, FLISTPTR, is set to point to the next item in
the chain.

SDG 138

1:D 0 $debug on$ (XShow line numbersX)
2:5

3:D 0 program filedemo (output);
4:D 1 type

5:D 1 ifile = file of integer;
6:D 1 var

7:D -666 1 f: ifile;

8:D -678 1 i,j.k: integer;

9:C 1 begin

10:S

11%C 1 rewrite(f, INTFILE');
12%C 1 for i := 1 to 100 do
13%C 2 write(f, (101-1i));
14%C 1 close(f, LOCK');

15:S

16%C 1 open(f, INTFILE’);

17%C 1 for i := 100 downto 1 do
18:C 2 begin

19%C 2 readdir(f, i, k);
20%C 2 writeln(output, 'Record #',i:3, = ' k:3);
21:C 2 end;
22:8
23%C 1 close(f, PURGE');
24%C 1 end.

No errors.
{11] @56

This is the call to REWRITE, which opens the file for output. The address of the FIB is pushed,
then a literal value one (1) indicating write-only access, then the address of the string containing
the file name, then the address of a null string corresponding to the absent optional 3rd
parameter of the REWRITE statement. The routine called is FS_ HPOPEN, which performs all
the legal file opening operations.

There are four types of access, exported from module FS:

type faccess = (readonly, writeonly, readwrite, append);
As with all Pascal enumerated scalars, the ordinal values corresponding to these types are 0, 1, 2,

Note that the representation of a string has a leading byte telling the length; length = O is
perfectly legal.

@78
The Compiler checks the system variable IORESULT, because the program was compiled with

the default SIOCHECKS ONS. The IORESULT variable is found at SYSGLOBALS-22(A5) . If it
is zero, the operation was successful; otherwise a TRAP #3 is executed.

SDG 139

[13] @102
To write the value (101-1) the Compiler emits:
® Push address of FIB.

® Compute (101-1) and store in a variable. The variable is global Gbase-678(A 5) because this
i1s the main program; in a procedure some local cell would have been used.

@ Push address of local variable.
® Call FS_ FWRITE.
FWRITE only needs the address of the value to be written; the size of the component was stored
in the FIB by the call to FINITB. After the write, IORESULT is checked again.
[14] @146
Close the file with LOCK. The sequence is:
® Push address of FIB.
® Push address of string 'LOCK’ telling what to do.

e Call FS_ FCLOSEIT.

[16] @172

Open the file for direct access by the Pascal standard procedure OPEN. This translates into
another call on FS_ HPOPEN:

@ Push FIB address.
e Push literal 2, indicating faccess = readwrite.
e Push address of string containing file name.

® Call FS__HPOPEN.

[19] @226
The standard procedure READDIR is translated by the Compiler into a SEEK followed by a
READ. The original call was READDIR(F LK) meaning read the value of K from the Ith
component of file F:

o Push FIB address for call to READ.

® Push another copy of it for call to SEEK.

® Push the value of the record number (value of I).

® Call FS_ FSEEK.

SDG 140

e (Optionally) test IORESULT.
® Push address of variable K which will be read.
® Call FS_ FREAD.

® Check IORESULT.

[20] @268-402

These calls are generated by the Pascal WRITELN to standard file OUTPUT. Output is a file like
any other file, which is to say it has a physical buffer and a window variable. However, the
Compiler happens to know that there is a pointer to the FIB for OUTPUT at address
SYSGLOBALS-90(A 5); the value of this pointer is the address of the FIB.

The single write statement will translate into a sequence of calls on the appropriate output
editing routines to format the data. The FIB pointer is pushed once (@272) and then duplicated
on top of the stack as needed for each FS call which will be emitted.

The general form of argument list for textfile input and output routines is: FIB address, value or
address of object being read/written, one or two integers for formatting field width
specification, and a call to the appropriate routine. For instance, to write a quoted literal the
Compiler generates:

e Push FIB address.

® Push address of packed array of characters stored in the constant pool (some Rbase-relative
value).

® Push the length of the packed array of characters.
® Push the desired field width (-1 means use actual length of the array).

e Call FS_ WRITEPAOC (Write-Packed-Array-of -Char)

[23] @406

Closing the file with 'PURGE’ is just like any other closing operation; a string is passed to
indicate the disposition.

Only one aspect of file handling was not demonstrated by this example, which is the removal of
the FIB from the chain of active FIB’s. For global files this is not necessary, since the chain is
marked empty just before a program starts running. The Compiler will emit code at block exit to
remove from the chain any files whose scope is local to some procedure block. The routine called
by the Compiler for this purpose is ASM_CLOSEFILES, which is found in the assembly
language module POWERUP.

There is also an automatic removal process which occurs for non-local GOTOs and during
TRY-RECOVER processing if it deletes a procedure frame from the stack. ASM__ CLOSEFILES
is again used.

Files allocated in the heap are not automatically closed, but they are closed if the space in which

they reside is DISPOSEd.

SDG 141

Error Reporting by the File IO Subsystems

There is a single, simple error reporting mechanism used for errors of file I0. Exported from
module SYSGLOBALS is a variable called SYSIORESULT, also accessible as the "system
function" IORESULT, which is translated by the Compiler into a direct access to the system
variable.

All Pascal statements which translate into FS-level calls (such as READ, WRITE, GET, RESET)
are handled specially by the Compiler. When the directive $SIOCHECKS ONS is active (which is
the default case), code is emitted after every FS-level call to verify that IORESULT is zero. If it
is nonzero, an automatic call ESCAPE(-10) is generated, which will be reported as an IO error
unless it is trapped by TRY-RECOVER somewhere.

The FS, AMs, DAMs, and TMs are all compiled with $IOCHECKS OFF$, and must explicitly
check for ioresults where appropriate. If you write an AM, a DAM, or a TM you will need to do
likewise.

The values of IORESULT are also exported from SYSGLOBALS. They are repeated here for easy
reference. Note that they are divided into two mutually exclusive groups: those beginning with
'z’ are reserved for low-level drivers, while those beginning with ’i’ are reserved for the higher
level routines.

SDG 142

CWoONOhOUOL_WwhN —O

P PP LELRRDEERWWWWRNNWWWWRWNRONRONRNRONRNRNDRNDRN — — — — — — — —
\Dm\la\(ﬂbMN—'O\Om\lO\(.ﬂ-hWN-—‘O\Om\lc\(ﬂth—'O\Om\la\(ﬂwa—'

50
51
52

inoerror
zbadblock
ibadunit
zbadmode
ztimeout
ilostunit
ilostfile
ibadtitle
inoroom
inounit
inofile
idupfile
inotclosed
inotopen
ibadformat
znosuchblk
znodevice
zinitfail
zprotected
zstrangei
zbadhardware
zcatchall
zbaddma
inotvalidsize
inotreadable
inotwriteable
inotdirect
idirfull
istrovfl
ibadclose
jieof
zuninitialized
znoblock
znotready
znomedium
inodirectory
ibadfiletype
ibadvalue
icantstretch
ibadrequest
inotlockable
ifilelocked
ifileunlocked
idirnotempty
itoomanyopen
inoaccess
ibadpass
ifilenotdir
inotondir
ineedtempdir

iSRMcatchall
zmediumchanged
endioerrs

no error occurred on last I0 call.

CRC error (failed disc sector after retries).

illegal unit number (1..50 are legal).

T™ doesn’t know how to do requested transfer.

device not responding.

volume name on unit doesn’t match Unitable.

file was purged while open to another FIB.

illegal syntax for file name in this DAM.

no file space; can't create or extend file.

named volume not found.

named file not found.

DAM doesn’'t allow two files with same name.

tried to open an already open file.

tried to close an already closed file.

bad input data to formatted numeric read.

attempt to read or write past volume limits.

device offline.

initialization of medium failed.

the medium is write-protected.

unexpected interrupt.

hardware or medium failed.

ouch -- some kind of driver problem.

DMA interface card failed.

specified file size incompatible w/file type.

file not opened for reading.

file not opened for writing.

file not opened for random access.

directory is full.

string bound violation in STRWRITE/STRREAD.

bad file disposition parameter to CLOSE.

tried to read past logical end of file.

tried to use an uninitialized disc medium.

block not found on medium {usually bad disc).

device not ready.

no storage medium mounted in drive.

no directory/not readable by this DAM.

file type designator not recognized by AM.

some parameter illegal or out of range.

file cannot be extended.

DAM or AM can’'t perform requested service.

file not opened "lockable".

file already in locked state.

attempted I0 on lockable but unlocked file.

tried to remove non-empty SRM directory.

SRM: too many open files on device.

password required for this access.

invalid password offered to SRM.

the file is not a directory.

operation not allowed/supported on directory

couldn't create /WORKSTATIONS/TEMP_FILES,
needed for temporary files on SRM.

unrecognized SRM error (shouldn’'t happen)

drive door opened: medium may have been changed.

placeholder for end of list.

SDG 143

The remainder of this chapter describes procedures and functions which are exported from the
modules FS and MFS. These routines are normally called by compiler generated code to perform
file operations (e.g. read(textfile, size,color ,description);) and some string operations
(e.g. strread strwrite). Thus, these routines constitute the highest level of the workstation’s file
system support and are dependent on lower level support including the Directory Access

File System Exports

Methods, the Access Methods, and the Transfer Methods (drivers).

For each routine described, the following information will be given.

The Pascal declaration of the routine.

Purpose:

Parameters:

Stack:

Action:

Errors:

A brief description of what the routine is used
for.

A description of the parameters to the routine.

An illustration of the stack immediately after the
routine is called (i.e. just after the jsr
instruction). This may be useful if these routines
are to be called by code written in assembly
language. Parameters should be pushed as
illustrated before the return address. The return
address is normally pushed by a jsr intruction.
Where a symbol similiar to this

appears, it indicates that the parameter on the
stack occupies only the most significant byte of
the stack word.

A brief description of the logic in the routine.
In some cases this may be greatly abbreviated.

A summary of the expected error conditions
encountered by the routine.

SDG 144

The following routines are explained.

doprefix
fanonfile

fblockio
fobufferref

fclose
fcloseit

feof
feoln

fget
fgetxy
fgotoxy

fhpopen
fhpreset

findvolume
finitb
fixname

fmaketype
fmaxpos

foverfile
foverprint

fpage
fposition
fput

fread
freadbool
freadbytes
freadchar
freadenum
freadint
freadln
freadpaoc
freadreal
freadstr
freadstrbool
freadstrchar
freadstrenum
FREADSTRINT
freadstrpaoc
freadstrreal
freadstrstr
freadstrword
freadword

[function]
[function]

[function]
[function]

[function]

[function]

[function]

[MFS]

[assembly]

[MFS]

SDG 145

fseek
fstripname

fwrite
fwritebool
fwritebytes
fwritechar
fwriteenum
fwriteint
fwriteln
fwritepaoc
fwritereal
fwritestr
fwritestrbool
fwritestrchar
fwritestrenum
FWRITESTRINT
fwritestrpaoc
fwritestrreal
fwritestrstr
fwritestrword
fwriteword

scantitle

Zapspaces

[MFS]

[assembly]

[MFS]

[function]

SDG 146

procedure doprefix (var dirname o fid;

var kvid oovid;
var kunit . integer;
findunit . boolean);
Purpose: To set the default (prefix) directory of a unit.
Also returns the volume id and unit number of
the unit.
Parameters: dirname volume id and path name.
kvid volume id returned.
kunit unit number returned.
findunit if true, directory must be present

or return ioresult of inounit.

Stack:
------------------------------ <- sp + 18
| ptr to dirname |
------------------------------ <- sp + 14
| ptr to kvid |
------------------------------ <- sp + 10
| ptr to kunit |
------------------------------ <- sp + 6
| findunit (/7771171171171
------------------------------ <- sp + 4
| return address] A
------------------------------ <- stack pointer
Action: Call scantitle with dirname.
Then call findvolume.
If the unit is found and has a directory, call its
DAM with a setunitprefix request and return the
uvid and unit number.
If the unit had no directory (specified as #nn) and
findunit is false set kvid to #nn and return.
Otherwise, set ioresult to indicate error condition.
Errors: Scantitle failed, set ioresult to ibadtitle.

Findunit true but no unit or directory found, set
ioresult to inounit.

Findunit false and no directory or unit found but
pathname followed colon, set ioresult to ibadtitle.
The DAM request may fail and set ioresult.

SDG 147

procedure fanonfile (anyvar f . fib;

Purpose:

Parameters:

Stack:

Action:

To o
(in

f
name

kind
size

| st

Set
Call
Set
Set
Set

If f
Set
Set
Set
Set
Set
Set
Set
Set

Call
get

Call
If i
true
requ
Set

var name o string;
kind . filekind;
size : integer);

pen an anonymous file in a given directory
name) .

the FIB.

this should include volume id but no
filename is needed.

the file kind to be created.

the size of the file to be created.

--------------------------- <- sp + 20
r to f |
-------------------------- <- sp + 16
rmax (name) |/////1/11111/]
-------------------------- <- sp + 14
r to name |
-------------------------- <- sp + 10
nd |
-------------------------- <- sp + 8
ze |
-------------------------- <- sp + 4
turn address |

-------------------------- <- stack pointer

fanonymous to true.
scantitle to extract fvid and ftitle from name.
fkind to kind.
fpos to size.
foptstring to addr(nullstring) (a dummy value).

pos > 0 then set fpos to fposXfblksize.
feft to efttable™[fkind];

fisnew to true.

freptent to 0.

fbufchanged to false.

flastpos to -1.

fstartaddress to 0.

pathid to -1.

fnosrmtemp to true.

findvolume with fvid and false (no verify) to
unit.
the DAM with a createfile request.
oresult is not inocerror, call findvolume with
(do verify) and call DAM with createfile
est again.
fmodified to true.

SDG 148

Set up file state as follows.

fpos 0

fbufvalid false
feof true

f readmode false
freadable false
fwriteable true

fleof 0

fmodified true

Errors: If name is too long or scantitle fails, set

ioresult to ibadtitle.

If findvolume returns unit 0, set ioresult to
inounit.

The DAM may set ioresult.

SDG 149

function fblockio (var f o fib;

var buf . window;
nblocks,
rblock : integer;
doread . boolean): integer;
Purpose: To read or write blocks of data on block boundaries.

The read or write may be relative to current file
position or from a specified position.
Blocksize is fblksize = 512 bytes.

Parameters: f the FIB.
buf the data buffer.
nblocks the number of blocks to be read/written.
rblock the starting file position (in blocks)
(rblock < 0 indicates current file
position).
doread true if reading, false if writing.

Stack:
------------------------------ <- sp + 26
| function result |
------------------------------ <- sp + 22
| ptr to f |
------------------------------ <- sp + 18
| ptr to buf i
------------------------------ <- sp + 14
| nblocks |
------------------------------ <- sp + 10
| rblock |
------------------------------ <- sp + 6
| doread [/7771171111711
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer

Action: Calculate starting position as follows.

If rblock >= 0 then set fpos to rblockXfblksize.
If rblock < 0 then set fpos to fpos + (-fpos) mod
fblksize (i.e. round fpos to block boundary).

Calculate number of bytes to be read/written as
follows.

blockbytes = nblocksXfblksize.

If reading {doread = true), then if blockbytes >
fleof - fpos (the number of bytes to the end of
the file) then reduce blockbytes to fleof - fpos
and reduce nblocks to (blockbytes + (fblksize-1)})
div fblksize. (I.e. Don’t attempt to read past
end of file. Read to eof, and return nblocks as
number of blocks that include all bytes to eof.
The end of the last block will be uninitialized.)

SDG 150

Errors:

Call the AM to read/write blockbytes bytes from/to
the file at position fpos.

If the ioresult returned is inoerror, return
nblocks.

Otherwise, return 0.

The AM may set ioresult.
If ioresult is not inoerror, 0 should be returned.

SDG 151

function fbufferref (var f . fib): windowp;

Purpose: To return a valid file window.

Parameters: f the FIB.

Stack:
------------------------------ <- sp + 12
| function result |
------------------------------ <~ sp + 8
| ptr to f |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Action: If freadmode and not fbufvalid and flocked then
call the AM to read frecsize bytes from the file
at offset fpos into fwindow™.

If the AM call resulted in an eof, set eof to true,
and if feoln is not already true set fwindow™[0]

to ' ', set feoln to true, set fbufvalid to true,
and set ioresult to inoerror (i.e. create the
"GHOST' end of line).

If the AM call did not result in an eof, set
fbufvalid to true and feof to false.

Return fwindow.

If the call to the AM was not necessary (i.e. the
else for the first 'if’' above), just return fwindow.

Errors: If not (freadable or fwriteable), set ioresult
to inotopen.
If not flocked, set ioresult to ifileunlocked.
The AM call may set ioresult.

SDG 152

procedure fclose {(var f . fib;

ftype : closetype)
Purpose: To close a file.
Parameters: f the FIB.

ftype the type of close (i.e. cnormal, purge,
lock, ccrunch).

Stack:
------------------------------ <- sp + 12
| ptr to f |
------------------------------ <- sp + 8
| ftype |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: If the file is not open (not freadable and not
fwriteable) don’'t do anything.
If fanonymous or ftype = purge or (fisnew and
ftype = ccrunch) call the DAM with a purgefile
request .
Otherwise, if the file is locked,
call the AM to with a flush request, set the
logical end of file to be the current file
position if ftype = ccrunch (call DAM with
stretchit request if this will extend the file)
by setting fleof to fpos.
Then call the DAM with a closefile request.
In any case, set the FIB fields to their default
(¢closed) state:
freadmode false
fbufvalid false
freadable false
fwriteable false
flockable false
flocked true
feoln true
feof true
Errors: The DAM may set ioresult.

The AM may set ioresult.
In particular, the DAM may set ioresult to
icantstretch.

SDG 153

procedure fcloseit (var f o fib;

Purpose:

Parameters:

Stack:

Action:

Errors:

stype : string255);

To close a file.

f the FIB.

stype the type of close. (This is a string as in
the second parameter of a Pascal close
call.)

------------------------------ <- sp + 12

| ptr to f |

------------------------------ <- sp + 8

| ptr to stype]

------------------------------ <- sp + 4

------------------------------ <- stack pointer

Convert stype to a closetype. Valid strings include
"NORMAL’, "TEMP', 'LOCK', 'SAVE’', 'CRUNCH', and
"PURGE’ (’'NORMAL’' is equivalent to 'TEMP’ and

"LOCK’ is equivalent to 'SAVE'). Case is ignored.

Call fclose with the closetype constructed.
If the file is not open (not freadable and not
fwriteable), set ioresult to inotopen.

If the stype cannot be converted to a closetype, set
ioresult to ibadclose.

SDG 154

function feof
Purpose:
Parameters:

Stack:

Action:

Errors:

(var f . fib): boolean;
To determine if file pointer is at end of file.

f the FIB.

------------------------------ <- sp + 10
| func. result [//////1117117]
------------------------------ <- sp + 8
| ptr to f |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

I1f not (freadable or fwriteable) (i.e. file closed)
then return true.

If frecsize <= 0 {untyped files) then return true if
fpos > fleof, false otherwise.

If frecsize > 0 and freadable and fwriteable then
return true if fposition(f) > fmaxpos(f),

false otherwise.

Otherwise, call fbufferref if the unit is not
interactive (to get proper FIB state),

set ioresult to inoerror if it was ieof,

and return f . feof.

If not flocked, set ioresult to ifileunlocked.
Fbufferref may set an ioresult other than ieof.

SDG 155

function feoln
Purpose:
Parameters:

Stack:

Action:

Errors:

(var f . fib): boolean;

To determine if file pointer is at end of line.

f the FIB.
------------------------------ <- sp + 10
| func. result |////7117111117]
------------------------------ <- sp + 8
| ptr to f |
------------------------------ <- sp + 4

------------------------------ <- stack pointer
Call fbufferref (toget proper FIB state), set
ioresult to inoerror if it was ieof,

and return f.feoln.

Fbufferref may set an ioresult other than ieof.

SDG 156

procedure fget
Purpose:
Parameters:

Stack:

Action:

Errors:

(var f . fib);
To position file pointer to next record.

f the FIB.

------------------------------ <- stack pointer

I1f freadmode and not fbufvalid then call fread
with f and f.fwindow”™ to get the next record with
the AM.

Otherwise, set the lazy 1/0 condition by setting
freadmode to true and fbufvalid to false.

If not (freadable or fwriteable), set ioresult

to inotopen.

If not freadable, set ioresult to inotreadable.
If not flocked, set ioresult to ifileunlocked.

SDG 157

procedure fgetxy

Purpose:

Parameters:

Stack:

Action:

Errors:

(anyvar f . fib;
var X,
integer);

To fetch the position of the cursor of an
interactive file.

f the FIB.

X the x (column) coordinate of the cursor.
the v (row or line) coordinate of the
cursor.,

------------------------------ <- sp + 16

| ptr to f |

------------------------------ <- sp + 12

| ptr to x [

------------------------------ <- sp + 8

| ptr to y |

------------------------------ <- sp + 4

------------------------------ <- stack pointer
Call the AM with a setcursor request.

Set x to fxpos.

Set y to fypos.

The AM may set ioresult (e.g. ibadrequest).

SDG 158

procedure fgotoxy (anyvar f . fib;

Purpose:

Parameters:

Stack:

Action:

Errors:

X,
integer);

To position the cursor of an interactive file.

f the FIB.

X the x (column) coordinate of the cursor.

y the vy (row or line) coordinate of the
cursor.

------------------------------ <- sp + 16

| ptr to f |

------------------------------ <- sp + 12

| x I

------------------------------ <- sp + 8B

Y I

------------------------------ <- sp + 4

------------------------------ <- stack pointer
Set fxpos to x.

Set fypos to y.

Call the AM with a setcursor request.

The AM may set ioresult (e.g. ibadrequest).

SDG 159

procedure fhpopen (var f o fib;

typ . faccess;
var title,
option : string255);
Purpose: To open a file with a name and an optional third

parameter. (I.e. Pascal reset, open, append,
rewrite procedures, e.g. reset(f,title,option).)

Parameters: f the FIB.
typ the type of open (i.e. readonly = reset,
readwrite = open, writeappend = append,
writeonly = rewrite.)
title the file identifier.
option the equivalent of the third
parameter in the Pascal open call.

Stack:
------------------------------ <- sp + 18
| ptr to f |
------------------------------ <- sp + 14
| typ I
------------------------------ <- sp + 12
| ptr to title |
------------------------------ <- sp + 8
| ptr to option |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer

Action: Call fclose with f and cnormal.

Set fanonymous to false.

Call scantitle to extract fvid and ftitle and
fkind and filesize from name.

Set fpos to the filesize extracted.

Set foptstring to addr(option).

If fpos > 0 then set fpos to fposXfblksize.
Set feft to efttable™[fkind];

If typ = writeonly, set fisnew to true,
false otherwise.

Set freptcnt to 0.

Set fbufchanged to false.
Set flastpos to -1.

Set fstartaddress to 0.
Set pathid to -1.

Set fnosrmtemp to true.

SDG 160

For typ = readonly (reset) do
Call findvolume with fvid and false (no verify)
to get unit.
Call the DAM with a openfile request.
If ioresult is not inoerror, call findvolume with
true (do verify) and call DAM with openfile
request again.

For typ = readwrite (open)

and

for typ = writeappend (append) do
Call findvolume with fvid and false (no verify)
to get unit.
Call the DAM with an openfile request.
If ioresult is not inoerror and not inofile, call
findvolume with true (do verify) and call DAM
with openfile request again.
If it fails again, set fisnhew to true (revert
to fmaketype).

If openfile request succeeds, then if

fpos > fpeof, call the DAM with a stretchit
request.

If the stretchit request fails

(fpos still > fpeof), set ioresult to
icantstretch.

If fisnew (reverted to fmaketype), call the DAM
with a createfile request. If ioresult is not
inoerror, and the last findvolume call was not
with true (do verify), call findvolume with true
and call DAM with createfile request again.

Now that the hard stuff is done, if typ is
readwrite and fistextvar is true, call the DAM
to close the file and set ioresult to
ibadfiletype (not allowed to 'open’ or 'append’
text files).

For typ = writeonly (rewrite) do
Call findvolume with fvid and false (no verify)
to get unit.
Call the DAM with a createfile request.
If ioresult is not inoerror, call findvolume with
true (do verify) and call DAM with createfile
request again.

SDG 161

Now for all values of typ set fmodified to fisnew.
Set up file state as follows.

For typ = readonly (reset)

fpos 0
fbufvalid false
feof false
f readmode true
feoln true
freadable true
fwriteable false

For typ = readwrite (open)

fpos]

fbufvalid false
feof false
freadmode false
freadable true
fwriteable true

For typ = writeappend (append)

fpos fleof
fbufvalid false
feof true
f readmode false
freadable false
fwriteable true

For typ = writeonly (rewrite)

fpos 0

fbufvalid false
feof true

freadmode false
freadable false
fwriteable true

fleof 0

fmodified true

Errors: If name is too long or scantitle fails, set

ioresult to ibadtitle.

If findvolume returns unit 0, set ioresult to
inounit.

The DAM may set ioresult.

SDG 162

procedure fhpreset (var f . fib;

Purpose:

Parameters:

Stack:

Action:

typ : faccess);

To open (or reopen) a file without a name (i.e. no
name was specified in the Pascal open call). If
the file is already open, just change the state

of the FIB.

f the FIB.

typ the type of open (i.e. readonly = reset,
readwrite = open, writeappend = append,
writeonly = rewrite.)

------------------------------ <- sp + 10
| ptr to f |
------------------------------ <- sp + 6
| typ I
------------------------------ <- sp + 4

------------------------------ <- stack pointer

If the file is not already open, it must be
created as follows.

Set fanonymous to true.

Set fvid to the system volume.

Set fkind to datafile.

Set fpos to -1 (half the largest or second largest
space, whichever is largest).

Set foptstring to addr(nullstring) (dummy value).

Set feft to efttable™[fkind];
Set fisnew to true.

Set freptcnt to 0.

Set fbufchanged to false.

Set flastpos to -1.

Set fstartaddress to 0.

Set pathid to -1.

Set fnosrmtemp to true.

Call findvolume with fvid and false (no verify)
to get unit.

Call the DAM with a createfile request.

If ioresult is not inoerror, call findvolume with
true (do verify) and call DAM with createfile
request again.

Set fmodified to true.

SDG 163

Now for the old file or the one created above,
set up file state as follows.

For typ = readonly (reset)

fpos 0
fbufvalid false
feof false
freadmode true
feoln true
freadable true
fwriteable false

For typ = readwrite (open)

fpos 0

fbufvalid false
feof false
f readmode false
freadable true
fwriteable true

For typ = writeappend (append)

fpos fleof
fbufvalid false
feof true
freadmode false
freadable false
fwriteable true

For typ = writeonly (rewrite)

fpos 0

fbufvalid false
feof true
freadmode false
freadable false
fwriteable true
fleof 0

fmodified true

Errors: If name is too long or scantitle fails, set

ioresult to ibadtitle.

If findvolume returns unit 0, set ioresult to
inounit.

The DAM may set ioresult.

SDG 164

function findvolume (var fvid ©ovid;
verify . boolean): unitnum;

Purpose: To find the unit associated with the volume id fvid.
With verify true or with fvid of the form '#nn’ fvid
is also set to the actual volume name.

Parameters: fvid the volume id.
verify boolean to indicate whether DAM must be called
if searching by name.

Stack:
------------------------------ <- sp + 12

------------------------------ <- sp + 10
------------------------------ <- sp + 6
------------------------------ <- sp + 4
------------------------------ <- stack pointer

Action: If fvid is of the form "#nn’' then call the DAM
for unit
nn with a getvolumename request. If a name is
returned by the DAM, return nn.

If fvid is not of the form '#nn’ then

Search the unitable (unit 50 to unit 1 since
faster devices (e.g. hard discs) are usually
assigned to higher unit numbers) for uvid = fvid
(uppercased if unit entry so indicates).

If found and verify is true call the DAM for that
unit with a getvolumename request. If the name
returned by the DAM still matches fvid, set fvid
to uvid and return the unit number.

If no match search again, but this time call DAM
regardless of verify or matches to update uvid.
If match is found set fvid to uvid and return
the unit number as above.

Errors: Findvolume may return 0 if the volume is not found.
Nete that if fvid passed in is of the for '#nn’
and unit nn has no volume name, findvolume will
still return unit nn (not 0), but fvid will be
unchanged.

SDG 165

procedure finitb {var f o fib;

window : windowp
recbytes : integer);
Purpose: To initialize an FIB.
Parameters: f the FIB to be initialized.
window the address for the file window.
recbytes the file record size.

Note: -3 is passed to indicate
type text and to -1 to indicate
an untyped file.

Stack:
------------------------------ <- sp + 16
| ptr to f |
------------------------------ <- sp + 12
| window |
------------------------------ <- sp + 8
| recbytes |
------------------------------ <- sp + 4
| return address]
------------------------------ <- stack pointer
Action: Set the following FIB fields to their default
values:
freadmode false
fbufvalid false
freadable false
fwriteable false
flockable false
flocked true
feoln true
feof true
Set fwindow to window.
Set fistextvar to true if recbytes = -3,
false otherwise.
If recsize = -1 (untyped file) then set fwindow to
nil and set frecsize to 0.
If recsize <= 0 (except -1) set frecsize to 1 and
initialize the first character of fwindow™ to
chr(0).
Otherwise, set frecsize to recbytes.
Set fbuffered to true if fracbytes > 0,
false otherwise.
Errors: None.

SDG 166

procedure fixname {(var title . string;

Purpose:

Parameters:

Stack:

Action:

Errors:

kind . filekind);

To put proper suffixes on file names. Also removes
spaces and control characters.

title the file name to be fixed.

kind the file type associated with the suffix.
------------------------------ <- sp + 12

| strmax(title)l///////1/111117]
------------------------------ <- sp + 10

| ptr to title |
------------------------------ <- sp + 6

| kind |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call zapspaces with title.

If title ends in ':' then do nothing.

If title ends in '. ' then remove last character.

Otherwise, if a call to suffix with title returns
datafile (i.e. no suffix is already present)

then look up a suffix in suffixtable (indexed by

kind), and (if it will fit) append the suffix to

title. If the suffix does not fit do nothing.

None.

SDG 167

procedure fmaketype (anyvar f . fib;

Purpose:

Parameters:

Stack:

Action:

var title,
option,
typestring © string);

To make a file of a given type (i.e. disregard
suffix of title).

f the FIB.

title the file identifier.

option the equivalent of the third
parameter in the Pascal open call.

typestring a string with a suffix
corresponding to the file type
desired.

------------------------------ <- sp + 26

| ptr to f |

------------------------------ <- sp + 22

| strmax(title)|//////11171177]

------------------------------ <- sp + 20

| ptr to title |

------------------------------ <- sp + 16

Istrmax (option)|////////1177/]

------------------------------ <- sp + 14

| ptr to option]

------------------------------ <- sp + 10

Istrmax (typestring)|/////////]

------------------------------ <- sp + 8

| ptr to typestring |

------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call fclose with f and cnormal.

Set fanonymous to false.

Call scantitle to extract fvid and ftitle and
filesize from name.

Set fpos to the filesize extracted.

Call suffix with typestring and set fkind to the
kind returned.

Set foptstring to addr{option).

I1f fpos > 0 then set fpos to fposXfblksize.
Set feft to efttable”[fkind];

Set fisnew to true.

Set freptcnt to 0.

Set fbufchanged to false.

Set flastpos to -1.

Set fstartaddress to 0.

Set pathid to -1.

Set fnosrmtemp to true.

SDG 168

Errors:

Call findvolume with fvid and false (no verify) to
get unit.

Call the DAM with a createfile request.

If ioresult is not inoerror, call findvolume with
true (do verify) and call DAM with createfile
request again.

Set fmodified to true.

Set up file state as follows.

fpos 0

fbufvalid false
feof true
freadmode true
freadable false
fwriteable true
fleof 0

fmodified true

I1f name is too long or scantitle fails, set
ioresult to ibadtitle.

1f findvolume returns unit 0, set ioresult to
inounit.

The DAM may set ioresult.

SDG 169

function fmaxpos (var f . fib): integer;

Purpose: To determine the number of records in a file.
Parameters: f the FIB.
Stack:
---------- mmmm---s------------ - 5p 4+ 12
| function result |
------------------------------- <- sp + 8
| ptr to f |
------------------------------- <- sp + 4

------------------------------- <- stack pointer
Action: Return fleof div frecsize.

Errors: Return 0 on all errors.
If not (freadable or fwriteable), set ioresult
to inotopen.
If not (freadable and fwriteable), set ioresult
to inotdirect.
If not flocked, set ioresult to ifileunlocked.

SDG 170

procedure foverfile (anyvar f . fib;

Purpose:

Parameters:

Stack:

Action:

var title,
option,
typestring . string);

To create a file of a given type (i.e. disregard
suffix of title) which will ’“overwrite’ another
file of the same name.

f the FIB.

title the file identifier.

option the equivalent of the third
parameter in the Pascal open call.

typestring a string with a suffix
corresponding to the file type
desired.

------------------------------ <- sp + 26

| ptr to f |

------------------------------ <- sp + 22

| strmax(title)|//////1/11117]

------------------------------ <- sp + 20

| ptr to title |

------------------------------ <- sp + 16

Istrmax (option)|////1/11111//]

------------------------------ <- sp + 14

| ptr to option |

------------------------------ <- sp + 10

Istrmax (typestring)|//////1//]

------------------------------ <- sp + 8

| ptr to typestring |

------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call fclose with f and cnormal.

Set fanonymous to false.

Call scantitle to extract fvid and ftitle and
filesize from name.

Set fpos to the filesize extracted.

Call suffix with typestring and set fkind to the
kind returned.

Set foptstring to addr(option).

If fpos > 0 then set fpos to fposXfblksize.
Set feft to efttable™[fkind];

Set fisnew to false.

Set freptcent to 0.

Set fbufchanged to false.

Set flastpos to -1.

Set fstartaddress to 0.

Set pathid to -1.

Set fnosrmtemp to true.

SDG 171

Errors:

Call findvolume with fvid and false (no verify) to
get unit.

Call the DAM with an overwritefile request.

If ioresult is not inoerror and not inofile, call
findvolume with true (do verify) and call DAM with
overwritefile request again.

If it fails again, set fisnew to true (revert to
fmaketype) .

If overwritefile request succeeds, then if

fpos > fpeof, call the DAM with a stretchit
request.

If the stretchit request fails

(fpos still > fpeof), call the DAM with a purgefile
request to clean up the temporary file and set
ioresult to icantstretch.

If fisnew (reverted to fmaketype), call the DAM
with a createfile request. If ioresult is not
inoerror, and the last findvolume call was not
with true (do verify), call findvolume with true
and call DAM with createfile request again.

Set fmodified to true.

Set up file state as follows.

fpos 0

fbufvalid false
feof true
freadmode true
freadable false
fwriteable true
fleof 0

fmodified true

If name is too long or scantitle fails, set
ioresult to ibadtitle.

If findvolume returns unit 0, set ioresult to
inounit.

The DAM may set ioresult.

SDG 172

procedure foverprint(var t

text):
Purpose: To write ah overprint command to a text file.
Parameters: t the text file.
Stack:
------------------------------ <- sp + 8
| ptr to t |
-------------------------------- <- sp .+ 4
| return address |
------------------------------ <- stack pointer
Action: Write an eol (cr -- chr(13)) to the text file.
For printer files this will reposition the print
head to the beginning of the current print line.
Errors: None.

SDG 173

procedure fpage (var t ©otext);

Purpose: To write a page eject sequence to a text file.
Parameters: t the text file.
Stack:
------------------------------ <- sp + 8
| ptr to t |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Action: Write an eol (cr -- chr(13)) and clearscr
(ff -- chr(12)) to the text file.

Errors: None.

SDG 174

function fposition (var f : fib): integer;

Purpose: To determine the position of the file pointer.
Parameters: f the FIB.
Stack:
------------------------------ <- sp + 12
| function result |
------------------------------ <- sp + 8
| ptr to fib |
------------------------------ <- sp + 4

------------------------------ <- stack pointer
Action: Return fpos div frecsize + 1 - ord(fbufvalid).
Errors: Return 0 on all errors.

If not (freadable or fwriteable), set ioresult

to inotopen.
If not flocked, set ioresult to ifileunlocked.

SDG 175

procedure fput
Purpose:
Parameters:

Stack:

Action:

Errors:

(var f . fib);
To write the file window to the file.

f the FIB.

Call fwrite with f and f.fwindow™.

See fwrite.

SDG 176

procedure fread

Purpose:

Parameters:

Stack:

Action:

Errors:

{anyvar f . fib;
anyvar buf © window);

To read a record from the file.

f the FIB.

buf the buffer to read the record into.
------------------------------ <- sp + 12

| ptr to f]
------------------------------ <- sp + 8
| ptr to buf |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

If fbufvalid and flocked then move frecsize bytes
from fwindow™ to buf and set lazy I/0 condition
by setting fbufvalid to false.

Otherwise, call the AM with a readbytes request
to read frecsize bytes into buf from the file at
position fpos.

Set lazy I/0 condition by setting

freadmode to true and fbufvalid to false.

If the AM call resulted in an eof and fistextvar
and not feoln then set buf[0] to ' ', set feoln

to true, and set ioresult to inoerror (i.e. create
the 'GHOST' end of line).

If not (freadable or fwriteable), set ioresult
to inotopen.

If not freadable, set ioresult to inotreadable.
If not flocked, set ioresult to ifileunlocked.

SDG 177

procedure freadbool (var t T text;

var b : boolean);
Purpose: To read (formatted) a boolean from a text file.
(I.e. read an identifier an return the boolean
value.)
Parameters: t the text file.
b the boolean value to be returned.
Stack:
------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8
| ptr to b |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: Call freadenum with the address of a constant
table of string values for the enumerated type
(FALSE , TRUE) .
If the index (scalar) returned is 1, set b to true.
Otherwise set b to false.
Errors: Freadenum may set ioresult.

SDG 178

procedure freadbytes(anyvar f . fib;

anyvar buf : window;
size : integer);

Purpose: To read size bytes from buf to the file.
Parameters: f the FIB.

buf the buffer to be read into.

size the number of bytes to be read.
Stack:

------------------------------ <- sp + 16

| ptr to f |

------------------------------ <- sp + 12

| ptr to buf |

------------------------------ <- sp + 8

| size |

------------------------------ <- sp + 4

| return address |

------------------------------ <- stack pointer
Action: Call the AM with a readbytes request to read

size bytes into buf from the file at position fpos.

Set lazy I/0 condition by setting

freadmode to true and fbufvalid to false.
Errors: If not (freadable or fwriteable), set ioresult

to inotopen.

If not freadable, set ioresult to inotreadable.
If not flocked, set ioresult to ifileunlocked.
The AM may set ioresult.

SDG 179

procedure freadchar (var t o text,

var ch . char);
Purpose: To read a character from a text file.
Parameters: t the text file.
ch the character to be read into.
Stack:
------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8B
| ptr to ch |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: Call fread with t and ch.
Errors: See fread.

SDG 180

procedure freadenum (var t . text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var i . shortint;
vptr);

To read (formatted) an enumerated type from a
text file.

(I.e. read an identifier an return the scalar
value.)

t the text file.

i the index into p.
the compiler generated table of string
values for the enumerated type.

------------------------------ <- sp + 16
| ptr to t |
------------------------------ <- sp + 12
| ptr to i |
------------------------------ <- sp + 8
I p |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Using t~ (compiler generated call to fbufferref),
get (compiler generated call to fget), read (handle
backspace and clearline if unit is interactive)

and ignore all leading spaces, and

read all legal identifier characters ('0’ to ‘9",
‘A’ to 'Z’, 'a’ to 'z’ and ’'_’ starting with 'A’

to 'Z’, 'a’ to 'z’) up to the first illegal
character into a string (max of 255 characters).
Call freadstrenum to search the compiler generated
table for the constructed string and return the

index in 1.

T~ (compiler generated call to fbufferref) may

set ioresult.

Get (compiler generated call to fget) may

set ioresult.

Freadstrenum may set ioresult or escape on failures.

SDG 181

procedure freadint (var t . text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var i . integer);
To read (formatted) an integer from a text file.

t the text file.
the integer to be read into.

------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8
| ptr to i |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Using t~ (compiler generated call to fbufferref),
get {compiler generated call to fget), read
(handle backspace and clearline if the unit is
interactive) and ignore all leading spaces, and
read at most 1 sign (+,-) character and all digit
("0’ to '9') characters up to the next non digit
into a string (max of 255 characters).

Call strread (compiler generated call to
freadstrint) to convert the constructed string to
an integer (i).

T~ (compiler generated call to fbufferref) may
set ioresult.
Get (compiler generated call to fget) may

set ioresult.
Freadstrint may set ioresult or escape on failures.

SDG 182

procedure freadln (var t ©otext):

Purpose:

Parameters:

Stack:

Action:

Errors:

To read (and ignore) characters from a text file
up to and including the next end of line marker.

t the text file.

------------------------------ <- stack pointer

While the text file is not at end of line, do gets
on the text file to skip characters (handle
backspace and clearline if unit is interactive).
Do one more get on the text file to consume the
end of line marker.

None.

SDG 183

procedure freadpaoc (var t o text:

Purpose:

Parameters:

Stack:

Action:

Errors:

var a . window;
aleng : shortint);

To read (formatted) a packed array of characters
from a text file.

t the text file.
a the array to be read into.
aleng the size of the array.

------------------------------ <- sp + 14
| ptr to t |
------------------------------ <- sp + 10
| ptr to a |
------------------------------ <- sp + 6
| aleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

If the unit is interactive then using t~ (compiler
generated call to fbufferref), get (compiler
generated call to fget), read (handle backspace and
clearline if unit is interactive) a maximum of
aleng characters into a starting at a[l] until the
file is at end of line.

If the unit is not interactive (no need to read
one character at a time to handle backspace

and clearline), read and save the look ahead
character, call the AM with a readtoeol request to
read a maximum of a aleng-] byte string into s
starting at s[1] (this means a[l1] will hold the
string length) and place the saved look ahead
character (see above) in a[l1]. This may seem round
about but much of the code is also used in

reading strings.

Fill the rest of the array with spaces.

T~ (compiler generated call to fbufferref) may
set ioresult.

Get (compiler generated call to fget) may

set ioresult.

AM may set ioresult.

SDG 184

procedure freadreal (var t D text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var X © real);

To read (formatted) a real from a text file.

t the text file.

X the real to be read into.
------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8
| ptr to x |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Using t™ (compiler generated call to fbufferref),
get (compiler generated call to fget), read
(handle backspace and clearline if the unit is
interactive) and ignore all leading spaces, and
read all valid characters that make up a real
number representation (e.g. sign, digits, decimal
point, exponent field) up to the next invalid
character into a string (max of 255 characters).
Call strread (compiler generated call to
freadstrreal) to convert the constructed string to
a real (x).

T~ (compiler generated call to fbufferref) may
set ioresult.

Get (compiler generated call to fget) may

set ioresult.

If t is at end of file, set ioresult to ieof.
Freadstrreal may set ioresult on failures.

SDG 185

procedure freadstr (var t o text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var s © string);

To read (formatted) a string from a text file.

t the text file.

S the string to be read into.
------------------------------ <- sp + 14
| ptr to t |
------------------------------ <- sp + 10
I strmax(s) [77171171171171]
------------------------------ <- sp + 8
| ptr to s |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer

If the unit is interactive then using t* (compiler
generated call to foufferref), get (compiler
generated call to fget), read (handle backspace and
clearline if unit is interactive) a maximum of

255 characters into s starting at s[1] until the
iile is at end of line.

Set the length of the string to the number of
characters read.

If the unit is not interactive (no need to read

one character at a time to handle backspace and
clearline), read and save the look ahead character,
call the AM with a readtoeol request to read a
maximum of a 254 byte string into s starting

at s[1] (this means s[1] will hold the string
length), set the length of s to s[1]+1, and place
the saved look ahead character (see above) in s[1].
This may seem round about but much of the code is
also used in reading packed arrays of characters.

T~ (compiler generated call to fbufferref) may
set ioresult.

Get (compiler generated call to fget) may

set ioresult.

AM may set ioresult.

SDG 186

procedure freadstrbool(var s : string255;

Purpose:

Parameters:

Stack:

Action:

Errors:

var p2 . integer;
var b . boolean);

To read (formatted) a boolean from a string.
(I.e. read an identifier an return the boolean
value.)

s the string.

p2 the index into the string. Initially where
the read is to start. Finally one past
the last character read.

b the boolean value to be returned.
------------------------------ <- sp + 16
| ptr to s |
------------------------------ <- sp + 12
| ptr to p2 |
------------------------------ <- sp + 8
| ptr to b |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call freadstrenum with the address of a constant
table of string values for the enumerated type
(FALSE, TRUE) .

If the index (scalar) returned is 1, set b to true.
Otherwise set b to false.

Freadstrenum may set ioresult.

SDG 187

procedure freadstrchar(var s ; string255;

Purpose:

Parameters:

Stack:

Action:

Errors:

var
var

To read
s
p2

ch

Set ch t
Incremen

If p2 <
ioresult

p2 . integer;
ch . char);

a character from a string.

the string.

the index into the string. Initially
where the read is to start. Finally one
past the last character read.

the character to be read into.

---------------------- <- sp + 16
s I
---------------------- <- sp + 12
p2 I
---------------------- <- sp + 8
ch |
---------------------- <- sp + 4
address |
---------------------- <- stack pointer
o s[p2].
t p2 by 1.

1 or p2 > the length of s, set
to istrovfl.

SDG 188

procedure freadstrenum(var S © string255;

Purpose:

Parameters:

Stack:

Action:

Errors:

var p2 . integer;
var i . shortint;
p covptr);

To read (formatted) an enumerated type from a
string.
(I.e. read an identifier an return the scalar
value.)

S the string.

p2 the index into the string. Initially where
the read is to start. Finally one past
the last character read.

i the index into p.
the compiler generated table of string
values for the enumerated type.

------------------------------ <- sp + 20
| ptr to s |
------------------------------ <- sp + 16
| ptr to p2 |
------------------------------ <- sp + 12
| ptr to i |
------------------------------ <- sp + 8
) |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Starting at s[p2] skip all leading spaces and copy
all legal identifier characters (0’ to '9’, 'A’
to 'Z', 'a’' to 'z’ and '_' starting with 'A’ to
"2, 'a’ to 'z’) up to the first illegal
character into a string (max of 80 characters).
Add the number of characters skipped and copied

to p2.

Search the table p for the identifier and set i to
the index.

If p2 < 1 or p2 > length of s, set ioresult

to istrovfl.

If the leading spaces extend to the end of s, set
ioresult to istrovfl.

If the identifier does not start with 'A’ to 'Z’",
'a’ to 'z’, set ioresult to ibadformat.

If the identifier is not found in the table p, set

ioresult to ibadformat.

SDG 189

{PROCEDURE FREADSTRINT(VAR S : STRING255;

Purpose:

Parameters:

Stack:

Action:

Errors:

VAR P2,
I . INTEGER) ;}

To read (formatted) an integer from a string.

S the string.

p2 the index into the string. Initially where
the read is to start. Finally one past
the last character read.

i the integer to be read into.
------------------------------- <- sp + 16
| ptr to s |
------------------------------- <- sp + 12
| ptr to p2 |
------------------------------- <- sp + 8
| ptr to i |
------------------------------- <- sp + 4

------------------------------- <- stack pointer

This routine is written in assembly for speed.

Starting at s[p2], skip spaces.

If first non space is a sign remember it.

Initialize an accumulator value to 0.

While the next character is a digit get characters
one at a time from s, and, for each one,

multiply the accumulator by ten and add the
character's numerical value to it.

Add the number of characters skipped and used to p2.
Adjust the sign of the accumulator and

assign it to i.

If p2 < 1 or p2 > length of s, set ioresult

to ibadformat.

If not at least on digit, set ioresult

to ibadformat.

If number is too large (overflow), set ioresult
to ibadformat.

SDG 190

procedure freadstrpaoc{var s . string255;

Purpose:

Parameters:

Stack:

Action:

Errors:

var p2 . integer;
var a © window;
aleng : shortint);

To read (formatted) a packed array of characters
from a string.

s the string.

p2 the index into the string. Initially where
the read is to start. Finally one past
the last character read.

a the packed array of characters to be
written.

aleng the size of the packed array of characters.

------------------------------ <- sp + 18
| ptr to s |
------------------------------ <- sp + 14
| ptr to p2 |
------------------------------ <- sp + 10
| ptr to a |
------------------------------ <- sp + 6
| aleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Initialize a to all spaces.

Copy characters from s starting at s[p2] to a until
aleng characters have been copied or until there
are no more characters in s.

Add the number of characters copied to p2.

If p2 < 1 or p2 > length of s, set ioresult
to istrovfl.

SDG 191

procedure freadstrreal (var s . string255;

Purpose:

Parameters:

Stack:

Action:

Errors:

var p2 . integer;
ver X © real);

To read (formatted) a real from a string.

s the string.

p2 the index into the string. 1Initially where
the read is to start. Finally one past
the last character read.

X the real to be read into.
------------------------------ <- sp + 16
| ptr to s |
------------------------------- <- sp + 12
| ptr to p2 |
------------------------------ <- sp + 8
| ptr to x |
------------------------------ <- sp + 4

--------------------------- --- <- stack pointer

Starting at s[p2], skip spaces.

Read all valid characters for a real number (e.g.
sign, digits, decimal point, exponent field) up to
the next invalid character.

Convert the characters read into a real (x).

Set p2 to one past the last character read.

If p2 < 1 or p2 > length of s, set ioresult
to strovfl.

If there is no valid real represented by the
characters, set ioresult to ibadformat.

SDG 192

procedure freadstrstr(var

Purpose:

Parameters:

Stack:

Action:

Errors:

var
var

t . string255;
p2 . integer;
s : string);

To read (formatted) a string from a string.

t the
p2 the
the
the
s the

string to be read from.

index into the string. Initially where
read is to start. Finally one past
last character read.

string to be read into.

------------------ <- sp + 18
I
------------------ <- sp + 14
I
------------------ <- sp + 10
V/1171111117171
------------------ <- sp + 8
I
------------------ <- sp + 4

------------------ <- stack pointer

Copy characters from t starting at t[p2] into s

starting at

s[1] until strmax(s) characters are

copied or until there are no more characters
in t to copy.
Add the number of characters copied to p2.

If p2 < 1 or p2 > length of t, set ioresult

to istrovfl.

SDG 193

procedure freadstrword(var s : string255;

var p2 . integer;
var i : shortint);
Purpose: To read (formatted) a short (16 bit) integer from
a string.
Parameters: S the string.
p2 the index into the string. Initially

where the read is to start. Finally one
past the last character read.
i the short integer to be read into.

Stack:
----------- emmememmmmmee----- - sp + 16

------------------------------- <- sp + 12
------------------------------ <- sp + 8
------------------------------ <- sp + 4
------------------------------ <- stack pointer

Action: Call strread (compiler generated call to
freadstrint) to read an integer from the string.
If the integer is not in the range -32768 to 32767
then escape(-8).

Otherwise, set i to the integer read.

Errors: Freadstrint may set ioresult or escape on failures.
If the integer is not in range, escape(-8).

SDG 194

procedure freadword (var t . text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var i : shortint);

To read (formatted) a short (16 bit) integer from
a text file.

t the text file.

i the short integer to be read into.
------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8
| ptr to i |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Read (compiler generated call to freadint) and
integer (32 bit) from t.

If the integer is not in the range -32768 to 32767
then escape(-8).

Otherwise, set i to the integer read.

The integer is out of range, escape(-8).
Freadint may set ioresult.

SDG 195

procedure fseek

Purpose:

Parameters:

Stack:

Action:

Errors:

{var f . fib;
position . integer);

To reposition the file pointer.
f the FIB.

position the desired record position of
the pointer.

------------------------------ <- sp + 12
| ptr to f |
------------------------------ <- sp + 8
| position I
------------------------------ <- sp + 4

If positicn < 1 then set fpos to 0.

Otherwise, set fpos to {(position - 1) X frecsize.
Put file in non read mode condition by setting
freadmode to false and fbufvalid to false.

I1f not (freadable or fwriteable), set ioresult

to inotopen.

If not (freadable and fwriteable), set ioresult
to inotdirect.

If not floccked, set ioresult to ifileunlocked.

SDG 196

procedure fstripname(s . fid;

Purpose:

Parameters:

Stack:

Action:

Errors:

var pvhame,
ppath,
pfname : string);

To remove passwords from file identifiers.

s the file identifier.
pvhame the volume name returned.
ppath the path name returned.
pfname the file name returned.

------------------------------ <- sp + 26
| ptr to s |
------------------------------ <- sp + 22
Istrmax (pvname) |//////111171/]
------------------------------ <- sp + 20
| ptr to pvname |
------------------------------ <- sp + 16
| strmax(ppath)|//////111111/]
------------------------------ <- sp + 14
| ptr to ppath |
------------------------------ <- sp + 10
Istrmax(pfname) |//////1/11117]
------------------------------ <- sp + 8
| ptr to pfname |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Scantitle is called with the fid passed in.

Then findvolume is called to find the volume
indicated by the fid.

Then the DAM for that unit is called with the fid.
The DAM then parses the fid into three parts:
volume name, pathname, and file name without
passwords.

If scantitle fails ioresult is set to ibadtitle.
If findvolume fails, ioresult is set to inounit.
Otherwise, the DAM may set the ioresult as
appropriate {e.g. ibadtitle, etc...).

SDG 197

procedure fwrite (anyvar f o fib;

anyvar buf . window) ;
Purpose: To write a record to the file.
Parameters: f the FIB.
buf the record to be written.
Stack:
------------------------------ <- sp + 12
| ptr to f |
------------------------------ <- sp + 8
| ptr to buf |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: Call the AM with a writebytes request to write
frecsize bytes from buf at position fpos.
Set non read mode condition by setting
freadmode to false and fbufvalid to false.
Errors: If not (freadable or fwriteable), set ioresult

to inotopen.

If not fwriteable, set ioresult to inotwriteable.
If not flocked, set ioresult to ifileunlocked.
The AM may set ioresult.

SDG 198

procedure fwritebool(var t ¢ text;

b . boolean;
rleng : shortint);
Purpose: To write (formatted) a boolean to a text file.

(I.e. write an identifier given the boolean value.)

Parameters: t the text file.
b the boolean value.
rleng the field width to be written into

{max 255).

Stack:
------------------------------ <- sp + 12
| ptr to t |
------------------------------ <- sp + 8
| b WI11111111171
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Action: Call fwriteenum with the ordinal value of b as the
scalar, the address of a constant table of string
values for the enumerated type (FALSE,TRUE) and
rleng as the field width.

Errors: Fwriteenum may set ioresult.

SDG 199

procedure fwritebytes(anyvar f . fib;

anyvar buf : window;
size . integer);

Purpose: To write size bytes from buf to the file.
Parameters: f the FIB.

buf the buffer to be written.

size the number of bytes to be written.
Stack:

------------------------------- <- sp + 16

| ptr to f |

------------------------------- <- sp + 12

| ptr to buf |

------------------------------- <- sp + 8

| size |

------------------------------- <- sp + 4

| return address |

------------------------------- <- stack pointer
Action: Call the AM with a writebytes request to write

size bytes from buf at position fpos.

Set non read mode condition by setting

freadmode to false and fbufvalid to false.
Errors: If not (freadable or fwriteable), set ioresult

to inotopen.

If not fwr.teable, set ioresult to inotwriteable.
If not flocked, set ioresult to ifileunlocked.
The AM may set ioresult.

SDG 200

procedure fwritechar(var t T otext;
ch : char;
rleng : shortint);

Purpose: To write (formatted) a character to a text file.
Parameters: t the text file.
ch the character to be written.
rleng the field width to be written into
(max 255).

Stack:
------------------------------ <- sp + 12

------------------------------ <- sp + 8

------------------------------ <- sp + 6

------------------------------ <- sp + 4

------------------------------ <- stack pointer
Action: If rleng < 1 then set rleng to 1.

Construct a packed array of characters of rleng-1

spaces followed by the character ch.

Call fwritebytes to write rleng characters from

the packed array to the text file.

Errors: Rleng > 255 will cause boundary error.
Fwritebytes may set ioresult.

SDG 201

procedure fwriteenum(var t . text;

i . shortint;
rleng . shortint;
P o ovptr);
Purpose: To write (formatted) an enumerated type to a text

file.
(I.e. write an identifier given the scalar value.)

Parameters: t the text file.
i the index into p (the scalar value).
rleng the field width to be written into
(max 255).
p the compiler generated table of string

values for the enumerated type.

Stack:
------------------------------- <- sp + 16
| ptr to t [
------------------------------- <- sp + 12
[i I
------------------------------- <- sp + 10
| rleng]
------------------------------ <- sp + 8
I p |
------------------------------- <- sp + 4
| return address |
------------------------------- <- stack pointer
Action: Call fwritestrenum to write the identifier to a
string (i.e. to do the hard part).
If ioresult is inoerror then call fwritebytes to
write the string to the file.
Errors: Fwritestrenum may set ioresult.

Fwritebytes may set ioresult.

SDG 202

procedure fwriteint (var t o text;

Purpose:

Parameters:

Stack:

Action:

Errors:

i . integer;
rleng : shortint);

To write (formatted) a integer to a text file.

t the text file.
i the integer to be written.
rleng the field width to be written into
(max 255).
------------------------------ <- sp + 14
| ptr to t |
------------------------------ <- sp + 10
| i |
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call strwrite (compiler generated call to
fwritestrint) to write the integer to a string.

If ioresult is inoerror, call fwritebytes to write
the string to the text file.

Fwritestrint may set ioresult.
Fwritebytes may set ioresult.

SDG 203

procedure fwriteln (var f : fib);

Purpose: To write an end of line marker to the file.

Parameters: f the FIB.

Stack:
------------------------------ <- sp + 8
| ptr to f |
-------------------------------- <- sp + 4

------------------------------- <- stack pointer

Action: Call the AM with a writeeol request at position
fpos.
Set non read mode condition by setting
freadmode to false and fbufvalid to false.

Errors: If not (freadable or fwriteable), set ioresult to
inotopen.
If not fwriteable, set ioresult to inotwriteable.
If not flocked, set ioresult to ifileunlocked.
The AM may set ioresult.

SDG 204

procedure fwritepaoc(var t D text;

Purpose:

Parameters:

Stack:

Action:

Errors:

var a . window;
aleng,
rleng . shortint);

To write (formatted) a packed array of characters
to a text file.

t the text file.

a the string to be written (max length of 80).

aleng the size of the array.

rleng the field width to be written into.
Note that this must be no more than

255 + aleng.
------------------------------ <- sp + 16
| ptr to t |
------------------------------ <- sp + 12
| ptr to a |
------------------------------ <- sp + 8
| aleng |
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

If rleng < 0 then set rleng to the length of s.

If rleng > aleng, call fwritechar to write a space
in a field width of rleng - aleng (i.e. write that
many spaces) and set rleng to the aleng.

Call fwritebytes to write aleng bytes from the
packed array of characters to the file.

Fwritechar may set ioresult.
Fwritebytes may set ioresult.

SDG 205

procedure fwritereal (var t text;
X real;
W,
d shortint):
Purpose: To write (formatted) a real to a text file.
Parameters: t the text file.
X the real to be written.
W the field width to be written into
(max 255).
d the number of digits after the decimal
point.
Stack:
------------------------------ <- sp + 16
| ptr to t I
------------------------------ <- sp + 12
| ptr to x |
------------------------------ <- sp + 8
| w I
------------------------------ <- sp + 6
| d |
------------------------------ <- sp + 4
. | return acdress |
------------------------------ <- stack pointer
Action: Call strwrite (compiler generated call to
fwritestrreal) to write the real to a string.
If ioresult is inoerror, call fwritebytes to write
the string to the text file.
Errors: Fwritestrreal may set ioresult.

Fwritebytes may set ioresult.

SDG 206

procedure fwritestr (var t . text;

anyvar s . string80;
rleng : shortint);
Purpose: To write (formatted) a string to a text file.
Parameters: t the text file.
S the string to be written (max length of 80).

rleng the field width to be written into.
Note that this must be no more than
255 + length of s.

Stack:
------------------------------ <- sp + 14
| ptr to t |
------------------------------ <- sp + 10
| ptr to s |
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: If rleng < 0 then set rleng to the length of s.
If rleng > length of s, call fwritechar to write
a space in a field width of rleng - length of s
(i.e. write that many spaces) and set rleng to
the length of s.
Call fwritebytes to write the string to the file.
Errors: Fwritechar may set ioresult.

Fwritebytes may set ioresult.

SDG 207

procedure fwritestrbool{(var s . string;

Purpose:

Parameters:

Stack:

Action:

Errors:

var p2 ;. integer;
b . boolean:
rleng . shortint):

To write (formatted) a boolean to a string.
(I.e. write an identifier given the boolean value.)

s the string.

p2 the index into the string. Initially where
the write is to start. Finally one past
the last character written.

b the boolean value.
rleng the field width to be written into
(max 255).
------------------------------ <- sp + 18
| strmax(s) V/117117711717171
----------------------------- <- sp + 16
| ptr to s |
--------------- e m i (= gD + |2
| ptr to p2]
------------------------------ <- sp + 8
| b 1/7171711111771]
—————————————————————————————— <- sp + 6
| rleng [
------------------------------ <- sp + 4

------------------------------ <- stack pointer
Call fwritestrenum with the ordinal value of b as
the scalar, the address of a constant table of
string values for the enumerated type (FALSE, TRUE)
and rleng as the field width.

Fwritestrenum may set ioresult.

SDG 208

procedure fwritestrchar(var

Purpose:

Parameters:

Stack:

Action:

Errors:

var

3 . string;

p2 . integer;
ch . char;
rleng : shortint);

To write (formatted) a character into a string.

S the
p2 the
the
the
ch the
rleng the
| strmax(s)
| ptr to s
| ptr to p2
| ¢h
| rleng

string.

index into the string. Initially where
write is to start. Finally one past
last character written.

character to be written.

field width to be written into.

------------------ <- sp + 18
/1111111111171
------------------ <- sp + 16
|
------------------ <- sp + 12
|
------------------ <- sp + 8
/1171111111171
------------------ <- sp + 6
I
------------------ <- sp + 4

------------------ <- stack pointer

Convert ch to a string of length 1.
If rleng < 1 then set rleng to 1.
Call fwritestrstr with s, p2, the constructed

string, and

rleng.

Fwritestrstr may set ioresult.

SDG 209

procedure fwritestrenum(var s : string;

var p2 : integer;
i,
rleng . shortint;
p Covptr);
Purpose: To write {formatted) an enumerated type to a string.

(I.e. write an identifier given the scalar value.)

Parameters: s the string.
p2 the index into the string. Initially where
the write is to start. Finally one past
the last character written.

i the index into p (the scalar value).

rleng the field width to be written into
(max 255).

p the compiler generated table of string

values for the enumerated type.

Stack:
------------------------------ <- sp + 22
| strmax(s) [/11717111111111
------------------------------ <- sp + 20
| ptr to s |
------------------------------ <- sp + 16
| ptr to p2 |
------------------------------ <- sp + 12
| i |
------------------------------ <- sp + 10
| rleng |
------------------------------ <- sp + 8
| p |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: Extract the identifier in table p indexed by 1i.
Call fwritestrstr with s, p2, the identifier, and
rleng.
Errors: If the index i is out of the range of the table,

escape(-8).
Fwritestrstr may set ioresult.

SDG 210

{PROCEDURE FWRITESTRINT(VAR T . STRING;

Purpose:

Parameters:

Stack:

Action:

Errors:

VAR P2 . INTEGER;
I . INTEGER;
RLENG : SHORTINT); }

To write (formatted) an integer to a string.

t the string.

p2 the index into the string. Initially where
the write is to start. Finally one past
the last character written.

i the integer to be written.

rleng the field width to be written into.

------------------------------ <- sp + 20
[strmax(t) 1/11711111171117]
------------------------------ <- sp + 18
| ptr to t |
------------------------------ <- sp + 14
| ptr to p2 |
------------------------------ <- sp + 10
| i |
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4

------------------------------ <- stack pointer
This routine is written in assembly for speed.

Remember sign of i.

By successively dividing by decreasing powers of
ten the remainder of previous divisions, determine
the digits in order (left to right) and put them
into a dummy string.

If rleng > length of the dummy string (+ 1 if sign
is negative), put rleng-legnth of dummy string

(-1 if sign is negative) in s starting at s[p2].
If sign is negative, put a '-' after the spaces
(if any).

After the sign, if any, put the dummy string.

If the length of s has changed, updated s[0].
Add the number of characters written to s to p2.

If p2 < 1 or p2 > length of s + 1, set ioresult
to istrovfl.

If the write would extend the length of s past
strmax(s), set ioresult to istrovfl.

SDG 211

procedure fwritestrpaoc(var s . string;

var p2 ;. integer;
var a . window;
aleng,
rleng : shortint);
Purpose: To write (formatted) a packed array of characters

into a string.

Parameters: S the string.
p2 the index into the string. Initially where
the write is to start. Finally one past
the last character written.

a the packed array of characters to be
written.
aleng the size of the packed array of characters
(max 255).
rleng the field width to be written into.
Stack:
------------------------------ <- sp + 22
| strmax(s) [7771111111117]
------------------------------ <- sp + 20
| ptr to s |
------------------------------ <- sp + 16
| ptr to p2 [
------------------------------ <- sp + 12
| ptr to a [
------------------------------- <- sp + 8
| aleng |
------------------------------ <- sp + 6
| rleng |
------------------------------ <- sp + 4
| return address |
------------------------------ <- stack pointer
Action: Convert a into a string of length aleng.
Call fwritestrstr with s, p2, the constructed
string, and rleng.
Errors: Boundary errors may arise if aleng > 255.

Fwritestrstr may set ioresult.

SDG 212

procedure fwritestrreal(var

Purpose:

Parameters:

Stack:

Action:

Errors:

var

r : string;
p2 : integer;

X © real;

W,

d shortint);

To write (formatted) a real to a string.

r the
p2 the

string.

index into the string. Initially where
write is to start. Finally one past
last character written.

real to be written.

field width to be written into.

number of digits after the decimal

point.

the

the
X the
W the
d the
| strmax(r)
| ptr to r
| ptr to p2
| ptr to x
| w
| d

Convert the

------------------ <- sp + 22
/1111111111111
------------------ <- sp + 20
I
------------------ <- sp + 16
I
------------------ <- sp + 12
I
------------------ <- sp + 8
I
------------------ <- sp + 6
I
------------------ <- sp + 4

------------------ <- stack pointer

real (x) to a string representation

right justified in a field width of w with d
digits to right of the decimal point.

If it will fit, move this string representation
into r starting at p2 and update the length of r
if necessary.

Set p2 to one past the character written.

If p2 < 1 or p2 > length of s + 1, set ioresult

to istrovfl

If the write would extend the length of s past

strmax(s),

set ioresult to istrovfl.

SDG 213

procedure fwritestrstr(var s string;
var p2 integer;

anyvar t string255;

rleng shortint)

Purpose:

Parameters:

Stack:

Action:

Errors:

To write (formatted) a string into another string.

s the string to be written into.
p2 the index into the string.

the write is to start.

the last character written.

t the string to be written.

Initially where
Finally one past

rleng the field width to be written into.
------------------------------- <- sp + 20
| strmax(s) /7711111111171
------------------------------- <- sp + 18
| ptr to s |
------------------------------- <- sp + 14
| ptr to p2 |
------------------------------- <- sp + 10
| ptr to t |
------------------------------- <- sp + 6
| rleng |
------------------------------- <- sp + 4
| return address |

<- stack pointer

If rleng < 0 then set rleng to the length of t.

If rleng > the length of t,

replace s[p2] to

s[p2+rleng-(length of t)-1] with spaces and add

rleng-(length of t) to p2.

Copy rleng characters of t into s starting at s[p2].

Add rleng to p2.
If p2 + length of t - 1 > length of s,
of s to p2 + length of t - 1.

If p2 < 1 or p2 > length of s + 1,
to istrovfl.

If p2 + rleng (adjusted) - 1
won't fit into s starting at s[p2]),
to istrovfl.

SDG 214

set length

set ioresult

> strmax(s) (i.e. t
set ioresult

procedure fwritestrword(var

Purpose:

Parameters:

Stack:

Action:

Errors:

var

S . string;

p2 . integer;
i,

rleng . shortint);

To write (formatted) a short (16 bit) integer to

a string.

s the
p2 the
the
the
i the
rleng the

string.

index into the string. Initially where
write is to start. Finally one past
last character written.

short integer to be written.

field width to be written into.

------------------ <- sp + 18
/1711111111111
------------------ <- sp + 16
|
------------------ <- sp + 12
|
------------------ <- sp + 8
[
------------------ <- sp + 6
|
------------------ <- sp + 4

------------------ <- stack pointer

Call fwritestrint with s, p2, i, and rleng.

Note that i

is passed by value so this is possible.

See fwritestrint.

SDG 215

procedure fwriteword(var t o text;

i,
rleng . shortint);
Purpose: To write (formatted) a short (16 bit) integer to
a text file.
Parameters: t the text file.
i the short integer to be written.
rleng the field width to be written into
(max 255).
Stack:
------------------------------- <- sp + 12
| ptr to t [
------------------------------- <- sp + 8B
I i I
——————————————————————————————— <- sp + 6
| rleng |
------------------------------- <- sp + 4
| return address |
------------------------------- <- stack pointer
Action: Call fwriteint with t, i, and rleng.
Note that i is passed by reference so this is
possible.
Errors: See fwriteint.

SDG 216

function scantitle (fname o fid;

Purpose:

Parameters:

Stack:

Action:

var fvid . ovid;

var ftitle . fid;

var fsegs . integer;

var fkind . filekind): boolean;

Given a file identifier, to return the volume id,
the rest of the file id (i.e. without volume id),
the file size specifier, and the filekind
associated with the suffix in the file id.

fname the file identifier input.

fvid the volume id returned.

ftitle the rest of the file id returned.
fsegs the file size specifier returned.
fkind the filekind returned.

------------------------------ <- sp + 26
| func. result |/////11111177]
------------------------------ <- sp + 24
| ptr to fname |
------------------------------ <- sp + 20
| ptr to fvid |
------------------------------ <- sp + 16
| ptr to ftitle |
------------------------------ <- sp + 12
| ptr to fsegs |
------------------------------ <- sp + 8
| ptr to fkind |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Call zapspaces with fname.

If no file name is left return false.

Otherwise, if there appears to be an SRM volume
password immediately to the left of the colon (i.e.
"<', ., max 16 chars ...’>'), move it to the right
of the colon.

Extract the volume id.

If there is an illegal volume id then return false.
(Legal volume ids include ’'#nn’', ’'#nn:’, ':', X'
"X:’, and 'ccccecececceccecce: L)

The colon (if any) is removed.

If after removing the colon 'X' is left, use the
system volume id.

If nothing is left, use the default (prefix)

volume id.

Set fvid to the volume id.

SDG 217

Extract the file size specifier.

If no legal size specifier is found, set fsegs to 0.
(Legal size specifiers include [X] and

[non-negative integer]).

If it is [X] then set fsegs to -1.

Otherwise, set fsegs to the non-negative integer.

Set ftitle to "all the rest" (i.e. the file id
without spaces and control characters, volume
identifier, colon, and file size specifier.)

Call suffix with ftitle and set fkind to the
filekind returned.

Errors: No file name left after call to zapspaces,

return false.
Illegal volume id, return false.

SDG 218

function suffix (var ftitle : string): filekind;

Purpose: To determine the filekind associated with the
suffix of a filename.

Parameters: ftitle the filename.

Stack:
------------------------------ <- sp + 12
| function result |
------------------------------ <- sp + 10
Istrmax(ftitle)|////////1111/]
------------------------------ <- sp + 8
| ptr to ftitle |
------------------------------ <- sp + 4

------------------------------ <- stack pointer

Action: Search suffixtable from untypedfile to lastfkind.
If suffix in table entry matches suffix of ftitle
(uppercased) then return the filekind index.
Stop when first match is found.
If no match is found, return suffix = datafile.

Errors: None.

SDG 219

procedure zapspaces (var S © string);

Purpose: To remove all spaces and control characters from
a string.

Parameters: $ any string.

Stack:
------------------------------- <- sp + 10
| strmax(s) 1/1771111711711
------------------------------- <- sp + 8
| ptr to s |
------------------------------- <- sp + 4

------------------------------- <- stack pointer

Action: String is scanned and all characters <= ' ' or
= chr(del) are removed. (del = 127)

Errors: None.

SDG 2120

Chapter 9
Directory Access Methods

Reference Specification for DAM’s

This chapter describes what a Directory Access Method (DAM) must be able to do in order work
properly with the File Support routines and Transfer Methods. A good way to get the most out
of this text is to scan it, then go through it again while examining one of the DAMs supplied
with the system. The LIF or WS1.0 DAMs are about equally good choices.

type

damrequesttype =

(getvolumename, setvolumename, getvolumedate, setvolumedate,
changename, purgename, openfile, createfile, closefile,
purgefile, stretchit, makedirectory, crunch, opendirectory,
closedirectory, catalog, makelink, setunitprefix, openvolume,
duplicatelink, openparentdir, catpasswords, setpasswords,
lockfile, unlockfile, openunit);

damtype = procedure
(anyvar f:fib; UNUM:unitnum; request:damrequesttype);

Every DAM is a procedure taking three parameters. Usually the parameters take the following
interpretation:

The first is a File Information Block for any type of file. The second is a unitnumber (an index
into the Unitable). The third is a scalar telling what the caller wants the DAM to do. All other
information the DAM uses can be found in the FIB or the Unitable.

Nota Bene: the first parameter F is an ANYVAR, which means the Compiler will accept
anything that has an address (any variable; not a constant or expression). In a few cases
something other than a FIB is passed, and the DAM internally coerces the argument’s address
into some other type. This may be confusing on first sight; instances of this behavior are pointed
out in the commentary below.

It is best to implement each request as a procedure within the DAM, or anyway within the

module containing the DAM. We will discuss each damrequesttype as if it were a separate
routine.

SDG 221

The Golden Rule for DAMs

All of the following routines should (unless no access is necessary) verify that the volume name
of the disc medium installed in the unit is the same as the UVID in the unit table. If not, the
routine should make these changes in the unit entry for the volume:

1. Set UMEDIAVALID to false.

2. Set UVID to the correct name (the one actually found on the volume label), or to ” (the nil
string) if no recognizable medium.

This rule is designed primarily for protection in the case of removable media on devices with no

"door has been opened" state flag. It also guards against tricksters who manipulate the IO
subsystem in unforeseen ways.

Calling DAM’s
OPENFILE and CREATEFILE
On entry the DAM parameter F is actually a FIB with fields initialized by the File Support level.
Some of the initialization is performed by SCANTITLE, a procedure which does preliminary
parsing of file specifications.
® Both FUNIT and DAM parameter UNUM indicate the desired unit.
® FVID is the volume name derived from the original file name.
@ FTITLE contains the original file name with these components removed:
Spaces and control characters (ord in [0.31,127])
Volume name and 7’ (if any)
Size specification in brackets [<size>] (if any)
¢ FKIND reflects the suffix of the file name.
e FRECSIZE = 0 means the file is untyped (declared 'FILE’).
e FISTEXTVAR = true means the file was declared type TEXT.
¢ FBUFFERED = true means FRECSIZE > 0.
e FEFT = the HP external file type.
@ FREPTCNT = 0.
® FLASTPOS = -1.

® FPATHID = -1.

The following guidelines apply both to opening an old file and creating a new one:

SDG 222

® If no medium is present in the unit, set IORESULT to ord(inodirectory). You can tell this if
the driver returns IORESULT = znomedium when it tries to access the disc.

© The volume name FVID need not necessarily be retained, but it probably should be since it
is useful when closing or stretching a file.

® The file title FTID should be set to the "root" of the file name, by which is meant that part
of the file specification which is not volume name, path id, passwords, file size, or other
miscellaneous stuff. This root name is what the system uses to identify P-loaded programs.
If FTITLE doesn’t syntax correctly for this DAM, set IORESULT to ord(ibadtitle).

Certain FIB assignments are made in common by both the CREATEFILE and OPENFILE
routines:

FPEQOF := Physical end of file; this is the total number of
bytes allocated for the file. Note the convention
that the first byte of a file is byte zero, so FPEOF
is the "index" of the byte after the last possible
byte of data. If the DAM doesn’'t worry about the
physical end of file (eg non-contiguous file systems),
FPEOF should be set to maxint.

AM = Name of the Access Method procedure, chosen by
whatever rules the DAM likes. The policy we like is:

if unblocked device use TM from the unit table
else if not FBUFFERED use amtable™[untypedfile]
else use amtable™[FKIND]

FILEID := Some sort of identification appropriate for the

Transfer Method; for simple file structures
this is probably just the byte offset from the
beginning of volume to the beginning of file.

- PATHID May be used any way the DAM well pleases.

OPENFILE

Opens an existing file. This involves finding the file by name in the directory, and setting fields
of the FIB.

FKIND := Type of the file.
FISNEW := False.
FLEOF := Logical end of file; this is the number of bytes of

valid data in the file. It indicates where EOF gets
true, and where to start APPENDing if the file is
extended. Same convention as FPEOF: first byte is
number zero.

SDG 223

The opening operation may fail for any number of reasons: volume not present, storage medium
switched, no such file, file already opened exclusively for someone else.

if open was successful then (¥and only thenX)
if not UMEDIAVALID then
begin
close all OTHER open files (Xespecially temporary filesX)
UMEDIAVALID := true;

end;
else (*open failedX)
IORESULT := ord(inofile); (¥or other appropriate valueX)
CREATEFILE

Makes a new file. This involves allocating a directory name slot and initial space for the file,
verifying that there isn’t already a file of this name, and filling in the new directory entry.

If a file of the same name already exists, the preferred behavior is to ignore the old file until the
new one is LOCKed, at which time the old one is purged. The create operation also has to deal
with "anonymous" files, if the FIB so designates by the FANONYMOUS flag. Either of these
situations may require generating a random file name since some DAM’ unfortunately don’t
allow "temporary" files which could serve the needs of both anonymous and duplicated file
names.

On entry to this routine, FIB field FPOS reflects the requested size of the file.

FPOS > 0 The file must be guaranteed at least FPOS bytes
of available space.

FPOS = 0 No size was specified. This suggests the DAM
should allocate as large a space as "possible",
whatever that means. If the directory method
uses contiguous files, the largest space is
the biggest "hole" in the allocation map.

FPOS < 0 Indicates that the size specifier was '[X]'
which suggests that about half the available space
be allocated. In contiguous files, this is usually
interpreted to mean the second largest space or half
of the largest, whichever is greater.

The steps in creating a new file are given here.

if not UMEDIAVALID then
begin
close all OTHER open files (*especially temporary files¥)
UMEDIAVALID := true;
end;

FISNEW := true;
FLEOF := 0; (XThe file has no contents yetX)

SDG 224

Allocate the space and directory entry. If unsuccessful, IORESULT should be set to:

ord(inoroom) if out of data space on volume.

ord(idirfull) if no space in directory.

ord{(idupfile) if there is another of tha same name and the DAM
can't cope.

PURGEFILE

The parameter F is actually a FIB. The purpose of the call is to purge the physical file associated
with the FIB (said physical file must be open). This is a little different from purging a file by
name, since some DAM’s may allow more than one file to be (temporarily) open under any
particular name (FTID).

Verify that FVID (the volume name in the FIB) matches the volume name on the medium. If no,
set IORESULT to ord(ilostfile).

If the volume is right but the file name can’t be found (eg if someone else purged it), set
IORESULT to ord(ilostfile). Some DAMs may remember how many logical files are open to a
given physical file and refuse to purge if the file is in use.

The physical file must now be closed, although for many implementations this requires no special
action. Then the physical file is destroyed, that is, deleted from the volume directory.

Fields FISNEW, FVID, FTID, PATHID, FUNIT and FILEID are still valid, retaining the values
placed there by OPENFILE or CREATEFILE.

CLOSEFILE
Parameter F is actually a FIB, and the physical file associated with F must be open.

Verify that FVID (the volume name in the FIB) matches the volume name on the medium. If no,
set IORESULT to ord(ilostfile).

If the volume is right but the file name can’t be found (eg if someone else purged it), set
IORESULT to ord(ilostfile). Some DAMs may remember how many logical files are open to a
given physical file and refuse to purge if the file is in use.

The value of FLEOF is the final end-of -file which will be recorded in the volume directory.
FPEOF retains the physical limit value assigned by OPENFILE, CREATEFILE, or STRETCH.
FISNEW, FVID, FTID, PATHID, FUNIT and FILEID are still valid. FMODIFIED indicates
whether FLEOF or FPEOF have been changed; many DAM implementations will not need to
take any action with respect to the volume directory if the size of the file hasn’t changed.

NB: SEEK does not change either FLEOF or FPEOF; to force a file to be extended, you need to

write something! Neither will altering a record within the size limit currently specified by
FLEOF cause FMODIFIED to be set true.

SDG 225

STRETCHIT

The purpose of this routine is to extend the physical limit of a file. Not all DAMs can necessarily
do this. For instance, the UCSD DAM can only stretch a file if there happens to be free space
after it on the medium. Generally you can assume

® If the directory distinguishes between logical and physical eof, it ought to be possible at
least to extend the file’s logical eof up to the limit of the physical eof. Not all directories
retain enough data to make this distinction; sometimes FPEOF := FLEOF when the file is
closed.

e If the volume space is managed on the basis of contiguous files, a file should be stretchable
if there 1s free space after it.

e if disc space 1s allocated in a non-contiguous way, such as using extents, linked lists or tree
structures, files probably can be stretched until the volume is full.

For calls to STRETCHIT, the parameter F is actually a FIB, and the physical file associated with
F must be open. FPOS contains the desired size of the file in bytes (not the amount to stretch). It
is usually desirable to allocate a "reasonably large" amount of additional space to the file, since
adding a minimal amount will probably result in repeated calls to stretch, adversely affecting
performance.

If the stretch succeeds (there is enough space), set FPEOF to the new physical end of file and set
FMODIFIED to true. Note that STRETCHIT does not return an error if it fails; instead it leaves
FPEOF unchanged. To tell if the stretch succeeded, the caller must compare the requested FPOS
to FPEOF after the stretch.

GETVOLUMENAME and SETVOLUMENAME

The actual parameter F is a string variable at least 16 bytes long, instead of a FIB. The routines
read or write, respectively, the name of the medium currently mounted in the unit selected by
the DAM parameter UNUM.

If the unit is an unblocked device, the name in uvid of the unit entry is returned. If there is no
recognizable medium, the nil string ” should be returned.

GETVOLUMEDATE and SETVOLUMEDATE

The actual parameter F is a variable of type datetimerec instead of an FIB. datetimerec is
exported from SYSGLOBALS.

SDG 226

packed record
year: 0..100;

type daterec

day: 0..31;
month: 0..12;
end;

timerec = packed record
hour: 0..23;
minute: 0..59;
centisecond: 0..5999;
end;
datetimerec = packed record
date: daterec;
time: timerec;
end;

When month = 0 the date is invalid; some file systems may use year = 100 in the creation date to
denote temporary files.

These routines read or write, respectively, the date and time associated with the volume label of
the medium currently installed in unit UNUM. This generally is the creation date of the volume.
If the operation is not applicable to the directory format, the value of the daterec parameter
should be unchanged.

CRUNCH

This operation is useful for disc formats using contiguous files. Its purpose is to move files on the
volume as necessary to that all free space is contiguous. The operation is "silent", ie it doesn’s
report on its progress to the CRT as was the case in the 1.0 release.

On entry, F 1s an FIB containing FVID, FUNIT and FTITLE as in OPENVOLUME. There must
be no open files in the volume! It is especially important that the crunch implementation verify
that the right volume is installed in the unit.

PURGENAME

Remove a permanent file from the directory by name. Parameter F is a FIB containing FVID,
FUNIT and FTITLE as in OPENFILE. Note the clear separation between FS and DAM
operations; this operation of purging a file from a directory has nothing to do with closing the
logical file (the FIB) If no such file is found, set IORESULT = ord(inofile).

CHANGENAME

Change the name of a file in the directory. F is a FIB with FVID, FUNIT and FTITLE as in
OPENFILE. FWINDOW is a pointer to the new desired name, which is a string no longer than
file names are permitted to be by the DAM. If the file name doesn’t parse properly for this
DAM, set IORESULT = ord(ibadtitle). If the change would duplicate an existing permanent file
name, set IORESULT = ord(idupfile).

SDG 227

MAKEDIRECTORY

Create a new directory containing no files. This corresponds to the Filer’s Zero operation. On
entry, F is actually a FIB containing FVID, FUNIT, and FTITLE as in OPENFILE. FWINDOW is
a pointer to a catentry, the fields of which are as follows:

@ CNAME is the desired name of the new directory.

® CEXTRAI is the number of file entries desired; zero passed in allows the DAM to decide
default number.

¢ CPSIZE is the total available physical space on the unit.

The type catentry is exported by kernal module MISC. It is a general structure able to describe
many possible variations on file naming.

MAKEDIRECTORY is expected to do its thing unless absolutely impossible (eg no medium
mounted in unit), in which case it should come back with the appropriate IORESULT.

OPENDIRECTORY and OPENPARENTDIR

Since directories may be arbitrarily long, they are dealt with by scanning through them in a
series of sequential operations. Regardless of the actual directory structure, this serializing
operation presents the directory as if it were an array of directory entries, a few of which can be
examined at a time. Obviously the way to manipulate a directory is to use an FIB to describe it.
If you look in the DAMSs, you will find that for simple sequential directory structures we have
implemented the directories themselves as random-access files of directory entries.
OPENDIRECTORY is the first such operation; it gets information about a directory, and also
prepares the FIB and directory for a cataloguing operation. In the case of the SRM,
OPENDIRECTORY AND OPENPARENTDIR get a pathid for subsequent calls to catalog,

openfile, createfile, opendirectory, openparentdir and so forth.

On entry, F is a FIB containing FVID, FUNIT and FTITLE as in OPENFILE. FWINDOW points
to a catentry (not a directory entry of the type supported by the DAM, but our generalized
catalog descriptor type).

On exit, FTITLE is the file name part of the original FTITLE. The fields of the catentry
reached through FWINDOW contain this information:

e CNAME is the name of the directory.

® CEXTRA1 is the maximum number of entries this directory could ever hold.

® CPSIZE is the physical size of the medium.

® CLSIZE is the size of the data portion of the medium.

® CEXTRAZ2 is the unused space available.

o CSTART is the first legal (volume-relative) byte address for the data portion of a file.

e CBLOCKSIZE is the number of bytes in one sector or block.

SDG 218

e CCREATEDATE, CCREATETIME are the day and time the directory was created.

e CLASTDATE, CLASTTIME are when the directory was last modified.

¢ CINFO may contain other useful messages.

Various ioresults may be returned: inodirectory if the volume has no directory or a directory for
some other DAM; ilostunit if the volume name doesn’t match the unit table.

CATALOG

OPENDIRECTORY must be called first; then calls to CATALOG bring in sections of the
directory. The parameter F to the CATALOG call must be the same undisturbed FIB returned by
OPENDIRECTORY, except:

® FPEOF is the number of files on which the caller is requesting information.

¢ FWINDOW now points to an array [0.FPEOF-1] of catentry.

e FPOS is the "index" of the first file for which information is being requested; an FPOS of
zero corresponds to the first file in the directory. Stated differently, element zero in the
array of catentries to be returned will describe file number FPOS (indexing from zero) in
the directory.

On exit, FPEOF is the actual number of files catalogued; it will be no greater than the number
requested, but may be smaller. FPOS should remain the same. Elements zero through (FPEOF-1)
of the array of catentry are filled in as follows:

® CNAME is the name of the file.

e CKIND is the file kind (codefile, textfile etc.)

® CEFT is the external file type (16-bit LIF code, for example)

e CPSIZE is the physical size (in bytes) of the file.

o CLSIZE is the current logical file size (in bytes).

® CSTART is the starting location (byte offset) of the file in the volume; it may be some other
form of identification, generally corresponding to the FILEID field of an FIB.

® CBLOCKSIZE is the size in bytes of a sector or block.
¢ CCREATEDATE, CCREATETIME are when the file was created.
e CLASTDATE, CLASTTIME are when the file was last modified.

e CEXTRA! and CEXTRA2 are additional implementation-dependent information; we use
CEXTRAI1 for the LIF "extension word".

e CINFO may contain further implementation-dependent messages.

SDG 229

CLOSEDIRECTORY

Terminate the association of the FIB which was set up by OPENDIRECTORY or
OPENPARENTDIR. In many DAMSs there will be nothing to do for this operation.

MAKELINK

This operation is provided only for hierarchical directories. Its purpose is to create a new access
path (link) to a file from a directory which is not the original parent of the file. On entry, F is
actually a FIB containing FVID, FUNIT and FTITLE as in OPENFILE; and FWINDOW is a
pointer to the desired new path name.

SETUNITPREFIX

Set the default subdirectory or path name for a unit. It is possible to have several workstation
logical units which are connected to Shared Resource Managers (or even to the same SRM). Each
of these units can have a "default" pathname, designating the current working directory for the
unit. What this means is:

© If the pathname to a file begins with a slash ’/’, the path will be followed down from the
root.

e If the pathname is absent or does not begin with a slash, the path will be taken as starting
from the current working directory.

On entry to this DAM call, F is an FIB containing FVID, FUNIT and FTITLE as in OPENFILE.

OPENVOLUME

Open a whole volume (unit) as a single file. The interface is like OPENFILE, but FLEOF and
FPEOF reflect the physical size of the volume, and no temporary file cleanup is done. This
function is useful for such purposes as complete volume transfers during a backup operation.

It is not useful for the SRM DAM; for the LIF and UCSD DAMs, it is translated into a call on
the "unblocked DAM" exported from MISC. The unblocked DAM is a very limited
implementation, which sets up just enough FIB information to allow a simple byte-stream Access
Method to access the volume directly.

SDG 230

The LIF Directory Access Method

This section examines the LIF DAM as an example to help you understand how DAMs work.
The Pascal 2.0 LIF DAM is a superset of the LIF specification, allowing access to 9826 BASIC
files and providing compatibility with 9826 Pascal release 1.0 file naming conventions. The
extensions are only in the allowable names for files -- Pascal 2.0 is less restrictive than the
Standard.

The LIF DAM is written as a program with the following overall structure:
program instlifdam;

module lifmodule;
imports
exports
procedure lifdam (...);
procedure installlifdam;
implement

end; {lifmodule}

begin {program instlifdam}
installifdam;
end.

The intent is that program INSTLIFDAM be compiled and placed in INITLIB along with
LIFMODULE. During bootup, INSTLIFDAM is permanently loaded along with the rest of
INITLIB, and then it is executed. Its execution simply results in calling procedure
INSTALLIFDAM, which leaves things in such a state that LIFDAM can be called when needed.
Recall that DAMSs are called as procedure variables, through a Unitable entry whose value
assigned by the execution of the configuration program TABLE.

Procedure INSTALLLIFDAM is very simple. It merely allocates from the heap a file variable
called DIR, which is hidden within the module implement part. DIR is a file of LIF directory
entries, which is used to read the disc directory. (This recursive trick should not be too confusing.
The LIF directory simply looks like a contiguous sequence of directory entries, so why not read it
as a file?)

SDG 231

Most of the remainder of this discussion pertains to procedure LIFDAM, which does the dirty
work. LIFDAM is structured so that the procedures which implement each type of DAM request
are nested within it:

procedure lifdam

(anyvar f:fib; {file descriptor}
unum:unitnum; {logical unit number}
request:damrequesitype): {requested action}

declarations of:
local types
utility routines
procedures to implement various DAM requests

begin {body of lifdam}
lockup; {stop key interlock}
disable media change error reporting;
set up DIR file to reference desired unit;
ioresult := no error;
try
case request of
openfile:
createfile:

various DAM requests, mostly procedure calls

end;

recover
if (escapecode<0) {system escape code}
and {escapcode<>-10) {not I0 error}
then

begin lockdown; escape(escapecode) end;
enable media change error reporting;
lockdewn; {release interlock}
end: {lifdam}

The LOCKDOWN and LOCKUP operations, provided by module KBD, serve to keep the STOP
key from interrupting critical operations such as rewriting a disc directory. The mode of
operation is that a record is kept of certain types of requests made through the keyboard
interrupt routine, and these are executed at a later (presumably safe) time. Locking is discussed
in the section on keyboard handling.

SDG 232

Implementation of LIFMODULE

The module implementation begins by defining some types and utility routines. Type VNAME is
a 6-character array representing the name of a LIF volume. LVHEADER describes the so-called
"volume header" at the front of every LIF volume. This header names the volume and specifies
certain characteristics of the disc medium such as tracks per surface and sectors per track. It also
indicates the date the volume was created. LIFNAME is a 10 character packed array which gives
the external name of a file.

Each LIF directory entry has this form:

direntry = packed record
fname: lifname;
ftype: integerl6; {16-bit integer}
fstart: integer;
fsize: integer;
fdate: tdate;
lastvol: boolean;
volnumber: wordl5; {15-bit unsigned}
extension: integer;
end;

LIF allows for a file to span multiple volumes, which is the function of fields VOLNUMBER and
LASTVOL. The multi-volume capability is not implemented by the Pascal 2.0 DAM.

The EXTENSION field deserves special mention. This field is in some sense a little extra data
which goes with a LIF file. It can generally be used however the file system wants, but for
certain file types such as LIF ASCII (Pascal .ASC suffix) the extension must be zero. For data
files (file of <type>), Pascal uses the extension to retain the logical (as opposed to physical)
end-of-file. There is more information about this with the description of the
FSTARTADDRESS field of the FIB.

The fields FSTART and FSIZE are sector numbers on the disc (an HP disc sector is 256 bytes).
FSIZE is the number of sectors allocated to the file.

Type SPACEREC 1is used to record information about free "holes" in the disc’s allocation
structure. CATENTRY, which is referenced by this DAM, is a type exported from FS; you may
recall that it is a sort of "normalized" directory entry. Whenever directory entries are read by a
DAM and passed back to the caller, they are transformed from the form native to the DAM into
the canonical representation of a CATENTRY for processing in a standard way by the file
system.

We already mentioned DIR, which is a pointer to a file of LIF DIRENTRYs.
Next after the types local to LIFDAM are declared some utility routines which do such things as

deblanking a LIF name, converting a date and time in system format to the format expected by
LIF directory entries, and handling file name suffixes.

SDG 233

LIF Directory File Names

The LIF Directory Access Method generally allows any ASCII character to be used in a file
name. This is centrary to the HP LIF Standard, which states that file names must be composed
only of upper-case letters, digits, and the underscore ° ’ character. Note that upper and lower
case letters are distinct. File names stored in LIF directories are always exactly 10 characters;
they may be blank-padded by the DAM if necessary.

The LIF DAM accepts only uppercase suffixes!

The 10-character file name length would be a very severe restriction when four or five
characters are required for a suffix. To ease this problem, the LIF DAM performs a
transformation on the file name which compresses the suffix if one is present. The
transformation occurs automatically when a LIF directory entry is made, and it is reversed
automatically before the file name is ever presented to any program or to the user.

This "black magic" is usually completely transparent to the Pascal user, although its effects may
be seen when a LIF directory is examined from the BASIC language system. It sounds
complicated and dangerous, but in practice it is very smooth. Most people would never notice 1t
if they weren’t told.

Here 15 how LIF DAM changes a name before putting it into the directory:

1. Look for a standard suffix. If there is none, the file is a data file and the name is used
unchanged unless it is too long. If it 1s longer than 10 characters an error is generated.

2. If a suffix is found, it 1s removed from the name but the dot ’’ delimiter 1s left. If the
resulting name is longer than 10 characters, an error is generated.

3. If the trimmed name is not too long, the dot is replaced by the first letter of the suffix, eg
A’ for *.ASC.

4. If the name is now less than 10 characters long, it is extended by appending underscores’ ’
to 10 characters.

Using this algorithm, we would have the following examples:

"A . ASC’ ==> "AA '

"charlie’ ==> ‘charlie

'123456789 . TEXT’ ==> "123456789T"

"GollyGeeeT’ ==> rejected because it would be

confused with transformation of
"GollyGeee . TEXT'

SDG 234

The reverse transformation is fairly obvious:
1. If the 10th character is a blank, do nothing; otherwise,
2. Remove all trailing underscores.

3. Compare the last non-underscore to the first letter of each valid suffix. If a match is found,
remove that letter from the file name and append a dot °’ followed by the full suffix.

4. If no suffix match is found, use the original file name.

Routines within Procedure LIFDAM

Parameter F is an FIB, or occasionally another record type depending on the value of REQUEST.
UNUM is the unit number of the device on which the requested operations are to be performed.
REQUEST specifies the operation to be performed.

Most operations have a secondary effect of checking the volume name in the unit table against
the actual volume name. If the two do not match then the one in the unit table (UVID) is
changed and the medium is marked as changed (UMEDIAVALID:=FALSE).

Initial actions: save current UMEDIAVALID bit from UNITABLEMNUNUM] set
UMEDIAVALID:=TRUE; clear UREPORTCHANGE; copy unit number into directory FIB DIR";
IORESULT:=INOERROR; set ANYCHANGE:=FALSE. On normal exit from the call, a true value
in ANYCHANGE will cause the directory buffer to be flushed.

The remaining interesting routines are all declared within procedure LIFDAM. They operate on
a few variables which are local to LIFDAM (but "global" to the procedures within it, by the
normal scoping rules of Pascal). These variables are VOL, the header of the volume in question;

VOLID, its system name; DENTRY, a directory entry; and DINDEX, DLAST, DEND which are
integers used when scanning through the directory.

function LIFVOL

Uses the Transfer Method (specified in the Unitable) and FIB DIR™ to read the volume header
from a LIF volume and verify that it does indeed seem to be in LIF format. If the volume name
is not the same as the "expected" name found in the Unitable entry, LIFVOL sets umediavalid :=
false to indicate that the disc has been changed. After accessing the disc to clear any hardware
medium change indication, reporting of medium change errors is enabled by setting
UREPORTCHANGE.

A LIF volume name of six blanks will be rejected as invalid.

procedure OPENDIR

Calls LIFVOL for verification, then sets up the DIR™ FIB to look like an open direct-access file
which can be used to read the LIF directory entries. Once this is done, operations like READ and
SEEK can be used on the directory in the normal Pascal style. OPENDIR also sets DILAST to the
number of directory entries and DEND to a value one greater than the number of the last
directory sector on the disc.

Be aware that the LIF volume is not necessarily at the front of the disc! The location where the
volume begins 1s specified by field BYTEOFFSET in the Unitable entry for the volume. The

SDG 235

Transfer Methed takes care of translating volume-relative byte offsets (such as the physical and
logical EOF indicators) into physical addresses on the disc.

OPENDIR finishes by reading the first directory entry.

procedure FLUSHDIR

Issugs a "flush" request to empty the buffer associated with DIR”™ when a directory is being
rewritten;

procedure GETSYSDATE

procedure SETSYSDATE

procedure CVTDATETIME

Transform the date between LIF representation and the standard Workstation DATEREC type.

procedure CRUNCHY

Repacks the volume so that all files are contiguous and all the free space is at the end of the
volume. Note that when LIF files are purged, they are not really lost; instead their type is
changed to mark them purged. CRUNCHV will reclaim all the space held by purged files.
Moving is performed one file at a time, using as much memory as is available for temporary
buffering. The directory is updated after each file is moved.

procedure DOMAKIEDIRECTORY

Creates an empty directory on a LIF volume, and uses DIR” to write it out.

procedure DOOPENDIRECTORY

Implements the OPENDIRECTORY DAM request. Calls OPENDIR and CHECKVOLID, then
sets up a CATENTRY to describe the volume which was opened.

procedure DOCAT

Implements the CATALOG DAM request. Recall that the purpose of this request is to read a
specifed number of directory entries into an array of canonical CATENTRYs.

procedure FINDFILE

Searches the directory for a file by name. The parameter TEMPORARY specifies whether the
search is for a temporary file or a permanent one. Temporary files are denoted by a month of
creation set to 99. Note that anonymous files are identifed by the fact that they start at the
"correct" place on the volume; the FIB field FILEID is simply the offset of the first sector of the

file.

SDG 236

procedure PURGEF

Purges the file described by DENTRY. This is done by setting its LIF type to zero and rewriting
the directory entry.

procedure DOPURGENAME

Implements the corresponding DAM request. Calls FINDFILE and PURGEF to do the work.

procedure CLEANDIR

Removes all the temporary files from the directory. This is necessary when, for instance, a
program aborts or the medium in a disc drive has been changed.

function GETSPACE

Implements the space allocation policies for LIF. The amount of space requested is determined by
the parameter SPACE:

@ SPACE > 0: The request is for a specific amount of space, which will be rounded up to the
nearest sector (multiple of 256 bytes).

e SPACE = 0 : Request for largest available block of free space.

® SPACE < 0: Request for "about half the free space"”, which is the greater of (half the largest
hole) or (the second largest free hole).

The value of SPACE is determined by the File Support level, according to an analysis of the
name of the file. If the file name ends in the characters [*], the value of SPACE will be minus
one ("about half"). If the file name ends in ’[nnn], the integer nnn is multiplied by 512 to
determine the value of SPACE. This is a request for 512*nnn bytes. The use of 512 byte blocks
rather than bytes is a historical hangover. If there is no bracket-notation, the value of SPACE
will be zero ("the largest free block").

To understand GETSPACE, you need to know how the LIF organization works. It is quite a bit
more complicated than one might initially expect.

The LIF directory is usually placed at the front of the disc volume, right after the header; but it
need not be there. The header has a field called DSTART which tells where the directory begins.
The LIF DAM habitually places Pascal LIF directories right after the header, which is 2 sectors
long. Another field, DSIZE, tells the number of sectors allocated for the directory. Each sector
holds up to 8 directory entries.

Files with FTYPE = O are purged files. The last directory entry has FTYPE = -1. The
fundamental rule of LIF is that files in the directory must appear in the same order as files in
the volume. If the directory is completely full, the -1 entry will not be present and DLAST is
used to determine when the end of directory has been reached.

Free space in LIF may appear in two ways: a "hole" between the spaces defined by two directory
entries, or the space past the last file, which has never been allocated. Note that a file with
FTYPE = Ois not a reliable way to measure open space; the file may have been broken up and
part of it given away.

SDG 237

You may wonder how a hole can be created between two directory entries, since a file still keeps
its slot in the directory after being purged. The answer is that after a file has been purged, part
of its space may be re-allocated. When this happens, the purged directory entry is re-used to
denote the new file, and the "hole" which remains can only be detected as the difference between
the end of one file and the start of the next.

When reclaiming purged filess GETSPACE must also be able to combine adjacent purged files
into one big free area. This happens as a side-effect of the process of scanning for free space.

Finally, note that directory entries for purged files must also be managed. For instance, suppose
the directory is full but a big chunk of free space exists at the distal end of the volume. Suppose
further that the third directory entry describes a purged file. If a large space request is issued,
which can only be satisfied by the chunk at the end, the third directory entry must be re-used.
Since LIF requires that directory entries appear in the same order as the files appear on the
volume, all the directory entries must be "scooted left" to open up a free entry at the end of the
directory. In general, a fully capable LIF handler must be prepared to shuffle directory entries
either left or right. Moreover, because the entries can move, a correctly implemented LIF DAM
can never depend on the physical location of a directory entry; it must always search!

Not all LIF implementations are nearly this fancy. Many just give up in disgust at the slightest
difficulty in getting either space or a free directory entry. For this reason, the Pascal DAM may
succeed in allocating file space in situations where BASIC or HPL will fail. Still, if the allocation
succeeds, the resulting directory is valid and will be recognized by other LIF file systems.

With this background, you should be able to understand GETSPACE. The body of the procedure
simply scans all the directory entries, looking for free space and determining if the directory is
full. CHECKENTRY is called to process each entry; it is responsible for noticing adjacent free
spaces. It also tries to manage things so that if a free hole is selected, the most convenient
directory entry is allocated to that hole. To get its work done, CHECKSPACE is called to look at
the space, ALLOCATE fills in fields in SPACEREC, and SHUFFLE is called to shuffle directory
entries as required.

procedure FINISHFIB

Called from various places to "finish" setting up the user’s FIB in response to various DAM
requests. Also provides the service of selecting the Access Method for the file, based on the
FKIND field of the user’s FIB.

procedure OPENNEW

Called from OPENF to open a "new" file (which requires space to be allocated). Updates the
directory to indicate that the new file has been opened. New files are always temporary until
closed with LOCK.

procedure OPENOLD

Called from OPENTF to finish opening an existing file.

SDG 238

procedure OPENF

Opens either an old or a new file, depending on the value of the FISNEW field of the user’s FIB.
Calls OPENNEW, OPENOLD, and FINDFILE as required.

procedure CLOSEF

Closes an open file. If the file is a new (temporary) file, then any old file of the same name will
be purged first. If the file has been modified in such a way as to invalidate its directory entry
(for example, if the file has been extended), then the directory entry is updated.

procedure STRETCHF

Tries to extend the file by an amount indicated by FPOS in the user’s FIB. The mechanism for
requesting is discussed in the section about FIB’s; what happens is that FPOS is set to the desired
new limit, and a STRETCHIT DAM request is issued.

STRETCHF first sees if the requested limit is beyond the current limit. If so, the file can only be
stretched if a hole exists beyond the current physical end.

procedure CHANGEFNAME

Implements the CHANGENAME DAM request. Searches for an existing file and either rewrites
its directory entry (thus changing the name) or returns an IORESULT <> 0.

procedure DOOVERWRITEFILE

Implements the OVERWRITEFILE DAM request. If the file exists, calls OPENOLD then changes
the FIB and directory entry to show it as a new temporary file. If the file doesn’t exist then
OPENNEW is called.

procedure NOWOPEN

First makes sure the disc hasn’t been changed, then makes sure the file exists.

This concludes the list of support routines in procedure LIFDAM. As explained in the beginning

of this section, LIFDAM selects the correct routines by a case statement which branches on the
type of DAM request.

SDG 239

Details on Various DAM Requests

The notes which follow detail the setup and state required for various DAM requests processed
by LIF DAM. If you try to implement a new DAM, it would be a good idea to outline your setup
conditions and actions in a fashion similar to this.

OPENFILE

Set values in the FIB F to allow read/write operations to be done to the file identified in the
FIB.

FIB entry setup
fistextvar
fbuffered
fanonymous (must be false)
fvid
funit
ftitle

FIB exit changes

fisnew := false

ftid = ftitle

fkind

fileid = start address(volume relative in bytes) of file
fpeof = size of file in bytes

fleof = logical size of the file in bytes

fmodified := false

fstartaddress

feft

am determinded by fbuffered, fistextvar and fkind

As a secondary function, if UMEDIAVALID is false then all temporary files are purged from the
directory AFTER the file is sucessfully opened.

UMEDIAVALID := true;
(It may happen that header validation will set umediavalid
false and open will set it true in the same call to the DAM.)

CREATEFILE

Allocate space on the volume for a temporary file; set values in the FIB (F) to allow read/write
operations to be done to this file.

FIB entry setup
fistextvar
fbuffered
fanonymous
fkind
feft
fpos size of file in bytes or 0 or negative
fstartaddress

SDG 240

fvid
funit
ftitle

FIB exit changes
fisnew := true

ftid = ftitle (for non anonymous files only)

fileid = start address{volume relative in bytes) of file
fleof = 0

fpeof = allocated size of the file in bytes

fmodified := true

am determinded by fbuffered , fistextvar and fkind

As a secondary function, if UMEDIAVALID is false then all temporary files are purged from the
directory BEFORE the file is created.

UMEDIAVALID := true;
(It may happen that header validation will set umediavalid false
and the create will set it true in the same call to the DAM.)

OVERWRITEFILE If the file identified in FIB F exists then use its space instead of using the
space allocation routines. Then operate as for CREATEFILE. If the file does not exist then the
operation performed is CREATEFILE.

FIB entry setup
fistextvar

fbuffered

fanonymous must be false

fkind

feft

fpos size of file in bytes or 0 or negative

(used only if the file does not exist)
fstartaddress
fvid
funit
fritle

FIB exit changes

fisnew .= true

ftid = ftitle

fileid = start address(volume relative in bytes) of file
fleof = 0

fpeof = allocated size of the file in bytes

fmodified := true

am determinded by fbuffered , fistextvar and fkind

As a secondary function, if UMEDIAVALID is false then all temporary files are purged from the
directory BEFORE the file is created.

SDG 241

UMEDIAVALID := true;
(It may happen that header validation will set umediavalid
false and the create will set it true in the same call to
the DAM.)

CLOSEFILE F identifies a currently open file. If this file is a temporary file (as created by
CREATEFILE or OVERWRITEFILE) then if a permanent file of the same name exists, purge it.
Otherwise mark this file permanent.

FIB entry setup
fvid
funit
fmodified if fmodified is false, this call is a no op.
fisnew
feft
fanonymous
ftid

FIB exit changes
no changes

PURGEFILE
F identifies a currently open file; mark it purged.

FIB entry setup
fvid
funit
fisnew
feft
fanonymous
ftid

FIB exit changes
no changes

STRETCHIT
F identifies a currently open file. If possible, extend the allocated space for the file.

FIB entry setup
fvid
funit
fisnew
feft
fanonymous

SDG 242

ftid
fpos the requested SIZE of the file in bytes

FIB exit changes
fpeof the new size of the file (this will not change if

the request could not be performed and it may be
larger than the requested size)

CHANGENAME

Fwindow (in F) points to a filename. Find the file identified in ftitle then change its name to the
value in fwindow”™ .

FIB setup
funit
fvid
fwindow points to an fid (the new name);
fanonymous false;

FIB exit changes
no changes

GETVOLUMENAME

F is a string; place the volume name in this string.

SETVOLUMENAME

F is a string; replace the volume name with the contents of this string.

PURGENAME

F identifies a file, mark this file purged.

GETVOLUMEDATE

F is a daterecord, place the systemdate in this record. (Systemdate is a special datetime field near
the end of the volume header sector.)

SETVOLUMEDATE

F is a daterecord; copy the value in this record to the systemdate field of the volume header.
(Systemdate is a special datetime field near the end of the volume header sector)

SDG 243

CRUNCH

Move the directory entries and data area of the volume so as to leave all unused space at the end
of the directory and volume.

FIB setup
funit
fvid
ftitle must be nil string

FIB exit changes
no changes

CATALOG

Return an array containing information about the files in the directory excluding temporaries.
fpos <= 0 indicates a request for the first file.

For a series of calls, set fpos to 0 and fpeof to the number of entries in the callers array. After
the first call, set fpos := fpos + fpeof to CAT consecutive files.

FIB setup
funit
fvid
fwindow points to an array of CATENTRY 's
fpos index of first file to cat
fpeof number of entries to cat

FIB exit changes
fpeof the actual number of entries filled.

OPENDIRECTORY
Returns information about the directory (same format as catalog)

FIB setup
funit
fvid
fwindow points to a variable of type CATENTRY

FIB exit changes

The array pointed to by fwindow is filled, otherwise
no changes are made to the FIB.

SDG 244

CLOSEDIRECTORY

This is a no op; the volume header is NOT checked.

OPENVOLUME and OPENUNIT

Passes this request to UNBLOCKEDDAM,; the volume header is NOT checked.
SETUNITPREFIX

Checks ftitle, it must be zero length. No other fields are checked, no changes to the FIB are

made. The volume header is NOT checked.

All other DAM requests will return: IORESULT = IBADREQUEST.

SDG 245

SDG 246

Chapter 10
File Operations

Introduction

This chapter outlines typical file operations. A module containing many of these operations has
been listed. After each procedure or function, a short commentary is provided. The last few
sections of this chapter deal with writing your own Command Interpreter.

The listed module is named: FILEPACK and is a collection of sample procedures to perform
common file operations.

The procedures in this module may be called from a program to perform the following
operations:

® copy a file

® translate a file

® duplicate a link to a file

® change a file name

® [ist file passwords

@ change file passwords

® remove a file

® make a file

® catalog a directory

® make a directory

® create a volume directory

® repack a volume

@ list volumes on line

® set default and unit prefixes
FILEPACK is provided as a set of examples or guidelines to illustrate the use of the lowest level

of the Pascal 2.0 file support system, particularly certain service requests to the Directory Access
Methods (DAM’s).

SDG 247

Filepack Examples

What follows is a commentary on this set of examples, which should help the reader to
understand the requirements and calling sequences of the DAM’s well enough to fashion similar
code.

$sysprog$

module filepack;
sysglobals,
misc,

fs,

asm;

import

export
type volumearray

array[1..50] of string[25]:

procedure volumes (var v: volumearray):
procedure filecopy (filenamel,
filename2: fid; format, writeover: boolean);
procedure duplicate(filenamel,
filename2: fid; purgeold: boolean);
procedure change (filenamel,
filename2: fid);
procedure repack (filename: fid);
procedure createdir(filename: fid; newname: vid; entries, bytes: integer);
procedure makefile (filename: fid);
procedure makedir (filename: fid);
procedure remove (filename: fid);
procedure prefix (filename: fid; unitonly, sysvol: boolean);
procedure startcat(filename: fid;
var dirname: vid;
var typeinfo: string;
var createdate, changedate: daterec;
var createtime, changetime: timerec:
var blocksize, phy_size, start_byte, free_bytes, max_files: integer);
procedure cat(filenumber: integer;
var filename: tid;
var typeinfo: string;
var createdate, changedate: daterec;
var createtime, changetime: timerec;
var kind: filekind;
var eft: shortint;
var blocksize, logical_size,
phy_size, start_byte,
extensionl, extension2: integer);
procedure endcat;
procedure startlistpass(filename: fid);
procedure listattribute(wordnumber: integer; var outstring: string);
procedure listpassword(wordnumber: integer; var outstring: string);
procedure changepassword(word: passtype; attrlist: string255);
procedure endpass;

SDG 2438

function ioerrmsg(var msg: string): boolean;

implement
const
catlimit = 200;
type
buftype = packed array[0..maxint] of char;
bigptr = “buftype;
closecode = (keepit,purgeit);
catarray = array[0..catlimit] of catentry;
passarray = array[0..catlimit] of passentry;

passarrayptr “passarray;
var catfib, passfib: ~fib;
catentptr: “catarray;
wordlist, optionlist: passarrayptr;

function memavail $alias 'asm_memavail'$:integer; external;

FUNCTION MEMAVAIL is a system routine which returns the number of bytes of free
memory, that is, the space between the stack pointer and the heap pointer.

function min(a, b: integer): integer;
begin if a < b then min := a else min := b end;

FUNCTION MIN returns the lesser of two integers.

function ioerrmsg(var msg: string): boolean;
begin
if ioresult=ord(inoerror) then icerrmsg := false
else
begin
ioerrmsg := true;
getioerrmsg(msg,ioresult);
end;
end; { ioerrmsg }

FUNCTION IOERRMSG returns true if there was an I/O error (that is, if IORESULT isn’t equal

to ord(inoerror)). It also calls the system routine GETIOERRMSG (which is exported from
module MISC) to put the proper English error message into a string parameter.

procedure iocheck;
begin if ioresult<>ord(inoerror) then escape(-10); end;

PROCEDURE IOCHECK tests to see if IORESULT is non-zero (<> ord(inoerror)) and if so,

SDG 249

escapes with escapecode = -10. IOCHECK should be called after any I/O operation which might
fail, unless the caller wishes to explicitly test IORESULT to find out what happened.

procedure badio(iocode : iorsltwd);
begin ioresult := ord(iocode); escape(-10); end;

PROCEDURE BADIO sets IORESULT to the specified value and escapes.

function unitnumber(var fvid : vid):boolean;
var scanning: boolean:
i: shortint;
begin
unitnumber := false;
zapspaces(fvid);
if strlen(fvid) > 1 then
if fvid[1]="4#" then

begin

scanning := true: i := 2;

repeat
if (fvid{il]>="0") and (fvid[i]l<="9’) then i := i + 1
else scanning := false;

until (i>strlen(fvid)) or not scanning;

unitnumber := scanning,

end;

end; { unitnumber }
FUNCTION UNITNUMBER tests a string to see if it is exactly a unit specification, that is, it has

the form #ddd, where ddd is one or more digits. (The procedure ZAPSPACES removes blanks and
control characters from the string.)

function samedevice(unitl ,unit2:unitnum):boolean;

var
u : “unitentry;
begin
u = addr(unitable”[unitl]);
with unitable™[unit2] do
samedevice := (u™.sc=sc) and (u™.ba=ba) and
(u™.du=du) and (u™.dv=dv) and
(u™.letter=letter) and
(u”.byteoffset=byteoffset);
end; { samedevice }

FUNCTION SAMEDEVICE compares some corresponding fields of two entries in the unit table
to determine if they are the same physical device, such as an SRM or disk.

procedure anytomem(ffib : fibp;
anyvar buffer : bigptr;
maxbuf : integer);

var
bufrec . “string255;
bufptr . “char;
leftinbuf : integer;

SDG 250

begin { anytomem }
bufptr c= addr(buffer™);
bufptr® chr(0); { data comming }
bufrec addr(bufptr™,1);
setstrlen(bufrec”™,0): { zero length record }
bufptr c= addr(bufrec™,1);
leftinbuf := maxbuf;

with ffib™, unitable”[funit] do
begin
call(am,ffib, readtoeol ,bufrec”™,6 255, fpos);
repeat
iocheck; { check ioresult from last readtoeol }
bufptr := addr(bufptr™,strlen(bufrec™));

leftinbuf := leftinbuf - strlen(bufrec”™) - 2;

if strlen{bufrec™) = 255 then bufptr := addr(bufptr™, -1)
else

begin

if strlen(bufrec™)=0 then
begin { discard the length byte }

bufptr := addr(bufrec”™,-1); leftinbuf := leftinbuf + 1;
end;

{ check end of line/file }

call(am,ffib,readbytes, bufptr™,1, fpos);
if feoln then
begin { end of line }

bufptr™ := chr(1); feoln := false;

if ioresult = ord{(ieof) then bufptr := addr(bufptr™,1);
end;
if ioresult=ord(ieof) then
begin { end of file }

bufptr® = chr(2);
ioresult := ord(inoerror);
feof = true;
end;
iocheck; { check ioresult from readbytes }

end;
if not ((leftinbuf < 259) or feof) then
begin { setup for then read the next line }
bufptr := addr(bufptr™,1);
bufptr® chr(0); { data record }
bufrec addr(bufptr™,1);
setstrlen(bufrec™,0); { zero length record }
bufptr := addr(bufrec™,1);
call(am,ffib, readtoeol bufrec”™,6 255, fpos);
end;
until (leftinbuf < 259) or feof;
bufptr := addr(bufptr™,1); bufptr™ := chr(3); { end buffer }
end;
end; { anytomem }

PROCEDURE ANYTOMEM reads the source file into the buffer until it reaches the end of the
file or until the buffer is full.

SDG 251

procedure memtoany(anyvar buffer : bigptr;
FFIB . fibp);
var
bytes : integer;
bufptr: “char;

begin
bufptr := addr(buffer™);
with ffib™, unitable™[funit] do
begin
bytes = 0;
repeat
bufptr addr(bufptr”™,bytes);
bytes ord(bufptr™);
bufptr := addr(bufptr™,1);
case bytes of
0: begin { data bytes }
bytes ord(bufptr™); { record length }
bufptr:= addr(bufptr™,1);
call(am,ffib ,writebytes,bufptr™ bytes, fpos);
end;
1: begin { end record }
call(am,ffib ,writeeol bufptr”, bytes, fpos); bytes
end;
2: begin { end file }
call(am,ffib,flush, bufptr™ bytes, fpos); bytes
end;
3: bytes := -1; { end buffer }
otherwise ioresult := ord(ibadrequest);
end;
iocheck;
until bytes<0;
end;
end; { memtoany }

w on

]
o

n
1
pa—

PROCEDURE MEMTOANY writes the contents of the buffer into the destination file.

PROCEDURES ANYTOMEM and MEMTOANY

These two procedures provide the mechanism by which files (primarily TEXT) are
TRANSLATED. In the Pascal 2.0 system, text is not necessarily stored as a stream of ASCII
characters; in fact, there are at least three distinct formats for text files. It is the job of routines
called Access Methods (AM’s) to construct the proper format for a text file when it is being
written, and to interpret that format when it is being read back.

When a file is opened, the DAM (Directory Access Method) selects one of several possible AM’s to
use with it, according to the type of file. The entry point of that AM is stored in a procedure
variable in the FIB (File Information Block). There is even a special AM for serial devices, such as
the printer, keyboard, and screen.

All textual information in a Pascal file can be represented by strings of characters punctuated by
end-of -line markers, and terminated by an end-of-file marker. Lines can be arbitrarily long
(although some formats limit line length). The translation process consists of calling upon the
AM for the source file to read strings of characters and to determine where the end-of -lines are,

SDG 252

then to call upon the AM for the destination file to write the characters and end-of -lines in the
same sequence.

The characters are read into a large buffer, which consists of variable length records of
information. A flag is placed at the beginning of each record to indicate what the record
signifies, as follows:

0: A string of characters (bytes) to be written. The number of characters is given by the byte
following the flag byte. The actual characters follow the length byte.

1: An end-of-line marker.

2: The end of the file.

3: The end of the buffer.

The AM service requests which are used by ANYTOMEM and MEMTOANY are as follows:

¢ RIADTOEOL: Reads a string of characters from the file into the buffer. Characters are
read until an end~of ~line is reached, or the end of the file, or until the maximum indicated
number is reached (in this example, 255). The actual number of characters which are
returned is indicated by a length byte preceding the characters themselves, so the format is
that of a Pascal string.

¢ READBYTES: Reads the indicated number of characters (usually only 1) into the buffer.
End-of-line markers are translated to spaces (ASCII 32). If the last character is an
end-of -line, then the FEOLN flag in the FIB is set to true. If the end of the file is reached
before the requested number of characters is read, then IORESULT is set to ord(IEOF).

¢ WRITEBYTES: Writes the indicated number of characters to the file. (No length byte is
associated with these characters.)

® WRITEEOL: Writes an end-of -line marker into the file.

® FLUSH: Finishes writing to a file, done at the end of the file.

procedure setupfibforfile(var filename o fid;
var 1fib . fib;
requiredirectory : boolean):
var
lkind : filekind;
sedgs . integer;
begin
ioresult := ord(inocerror):

with 1fib do
if scantitle(filename, fvid,ftitle, segs,lkind) then
begin
funit := findvolume(fvid, true);
if funit = 0 then badio(inounit);
if not ((ioresult = ord(inodirectory))
and (strlen(ftitle) = 0)
and (not requiredirectory))
then begin
iocheck;

SDG 253

if unitnumber(fvid) then badio(znodevice);

end;

fkind = lkind; feft := efttable™[lkind];
fpos '= segs X 512;
freptcnt = 0; flastpos = -1
fanonymous := false; fmodified := false;
fbufchanged:= false; fstartaddress := 0;
pathid = =1 foptstring := nil;
fnosrmtemp := true; flocked = true;
feof = false; feoln .= false;

end

else badio(ibadtitle);

end; { setupfibforfile }

PROCEDURE SETUPFIBFORFILE The major data structure associated with a file is the File
Information Block, or FIB. Every open file must have its own FIB. The FIB contains all of the
current state information associated with a file. The FIB is also the major communication path
for requests to the DAM’s (Directory Access Methods).

Initialization of the various fields of the FIB is similar for almost all file operations, so
SETUPFIBFORFILE is called by many of the other routines in module FILEPACK.

The steps in initialization of the FIB are as follows:
1. Parse the file name into its component parts, ie.
4. volume name (which might be a unit specifier)
b. file title (which may include the path name)
c. size specifier, if any

d. file type (derived from the suffix)

2. Determine what unit the file is associated with.

3. Assign known values to miscellaneous state variables.

The parsing is done by a system routine exported from module FS called SCANTITLE.

IR]

The FIB field FVID is reserved for the volume name, which is the part preceding the * in the
filename (or the system prefix if it starts with *, or the default prefix if no volume is specified).

The FIB field FTITLE contains the remainder of the file name except for the size specifier.

The size specifier (which appears in square brackets in the file name) is returned in the
parameter SEGS; if it was absent, SEGS is 0, if it was [*], SEGS is -1.

The file kind is returned in the parameter LKIND. It is determined by looking up the suffix (e.g.
»TEXT) of the file title in a table.

Determining what unit the file name refers to is accomplished by a system routine exported
from FS called FINDVOLUME. There are two cases: If the volume name is already a unit

SDG 254

specifier (e.g. ’#12), then the unit is obvious. In this case, FINDVOLUME calls the DAM for
that unit to find out what is the actual current name of that unit (or the medium currently in
the drive). It is usually an error if no name can be determined, but a special case is allowed if the
only error is the absence of a directory when no file title was given and no directory is necessary
(e.g. in the case of the CREATEDIR operation). This special case is allowed by setting the
parameter REQUIREDIRECTORY to false.

The other case is when the volume name is not a unit specifier. In this case, FINDVOLUME
searchs all 50 units of the unit table to find a matching name. If it finds a match, it calls the
DAM on that unit to verify that the name is still correct (the medium may have been removed
or changed). If it does not find a match, it calls the DAM for all 50 units to verify the names of
all units (just in case the required volume has recently come on line). If the volume cannot be
found at all, FINDVOLUME returns O as the unit number. This is always an error. Otherwise,
the unit number matching the volume name is returned and deposited in the FIB field FUNIT.

Initialization of the remaining FIB fields is simply a matter of giving them values which, by
agreed upon conventions, correspond to the initial state of a file which is about to be opened.
These fields are described elsewhere in the System Designer’s Guide, but here are some brief
comments about some of the fields:

FVID the volume name

FTITLE the file title

FUNIT the logical unit number (indexes into the unit table)
FKIND the file kind (e.g. text, data, code, etc.)

FEFT the external file type, an integer code for the file type

which is recognized by LIF and other HP file systems

FPOS initially contains the size specifier from the file name,
but later corresponds roughly to the file position.
(This is always in bytes, so the size specifier must be
multiplied by 512.)
FANONYMOUS indicates a temporary file with no name (e.g. REWRITE(F))
FSTARTADDRESS the execution address for type SYSTM (bootable) files
FOPTSTRING a pointer to the optional third parameter in open statements,
a string which may contain, e.g., 'SHARED’' or "EXCLUSIVE'.
may be initialized to NIL if no third parameter is given.
FMODIFIED indicates that some attribute of the file has changed which
would require modifying the directory (e.g. FLEOF, file size)
PATHID often used by hierarchical directories (e.g. SRM) to store an
identification code for the parent directory (the path name
part of the file name).
Must be initialized to -1.
FLOCKED indicates whether a lockable file is currently locked
FEOF indicates that the file position is at the end of the file
FEOLN indicates that and end-of-line marker has been read
FREPTCNT temp field used by AM’s, must initially be 0O
FLASTPQS temp field used by AM’s, must initially be -1
FBUFCHANGED temp field used by AM's, must initially be false
FNOSRMTEMP temp field used by SRM, must initially be true

SDG 255

procedure closeinfile(var infib: fib);
begin
with infib do if freadable then
begin
fmodified := false;
call(unitable™[funit].dam,infib,funit, closefile);
freadable := false;
end;
end; { closeinfile }

PROCEDURE CLOSEINFILE calls the DAM to close a file which has been open for reading
(indicated by the FREADABLE flag). FMODIFIED is set to false to insure that the file isn’t

altered.

procedure closeoutfile(var outfib: fib; option : closecode);

var
coption : damrequesttype;
begin
with outfib do if fwriteable then
begin
case option of
keepit: begin
fmodified := true;
coption := closefile;
end;
purgeit: coption := purgefile;
end;
call{unitable™[funit].dam,outfib, funit coption);
fwriteable := false;
end;
end; { closeoutfile }

PROCEDURE CLOSEOUTFILE calls the DAM to close a file which has been open for writing
(indicated by the FWRITEABLE flag). There are two options:

1. We wish to retain the file and make it permanent. This is usually when we have
successfully corapleted a copy or translate. FMODIFIED is set to true to indicate a possible
directory update. The DAM request is CLOSEFILE, which will make the file permanent in
the directory, and purge any existing file of the same name.

2. We wish to delete this file. This is usually when we wish to abort an unsuccessful operation

due to an error. The DAM request is PURGEFILE, which will delete this file, which is
usually a temporary file. Any existing permanent file of the same name is not purged.

procedure filecopy(filenamel, filename2: fid, format, writeover: boolean);

type
fullname = string[vidleng+tidleng+1];
ipointer = ~integer;
var
infib, outfib : fib;
outsize . integer;
outfkind . filekind;

SDG 256

outeft . shortint;
outfstarta . integer;
overcreate . damrequesttype;
typecode integer;

lheap . anyptr;

saveio integer;
saveesc integer;

buf bigptr;

bufsize integer;
movesize integer;

begin { filecopy }
mark(lheap);

if format then typecode :

newwords

-3 { TEXT file }
1; { DATA file }

else typecode

(infib.fwindow,1); { buffer variable }

finitb(infib, infib.fwindow, typecode):

newwords

(outfib.fwindow,1); { buffer variable }

finitb(outfib,outfib.fwindow, typecode):

try

with infib do

begin

setupfibforfile(filenamel, infib, false):

if s

trlen(ftitle)=0 then
begin { volume -> x }
call(unitable™[funit].dam,infib, funit,openvolume):

fkind .= datafile; feft := efttable™[datafile];
end

else begin { file -> x }
call(unitable”™[funit].dam,infib, funit,openfile):
end;

iocheck;

fpos := 0;

freadable := true:

outfkind .= fkind;

outeft = feft;

outsize = fleof;

outfstarta := fstartaddress;

end; { with infib }

with outfib do

begin

setupfibforfile(filename2, outfib, false):

if format then
begin

SDG 257

fkind := suffix(ftitle); { set destination fkind }
feft = efttable™[fkind];
outsize := 0;
end
else
begin
fkind = outfkind;
feft = outeft;
if fpos = 0 {no size was specified}
then fpos '= outsize;
end;
fstartaddress := outfstarta;

if strien(ftitle)=0 then

begin { x -> volume }
call(unitable™[funit].dam,outfib, funit, K openvolume);
iocheck;
if fpeof<outsize then badio(inoroom);
end
else
begin { x -> file }
if writeover then overcreate .= overwritefile

else overcreate := createfile;
call{unitable™[funit].dam,outfib, K funit, 6 overcreate);

iocheck;
if fpeof<outsize then
begin { try to stretch the file }
fpoes := outsize;
call(unitable”[funit].dam,outfib, funit, 6 stretchit);
iocheck;
if outsize>fpeof then badio(inoroom);
end;
end;
fpos := 0;
fwriteable := true;
end;

bufsize := ((memavail- 5000) div 256) X 256; {save 5K for slop}
if bufsize<512 then escape(-2); { not enough room }
newwords (buf bufsize div 2); { allocate buffer space }

if format then outsize := -1;

repeat { move the file }
with infib do

if format then
begin { formated filecopy }
anytomem(addr(infib) buf, bufsize);
if feof then outsize := 0;
end

else
begin { unformated filecopy }
if bufsize>outsize then movesize := outsize

else movesize := bufsize;

call(unitable”[funit].tm,addr(infib), K readbytes, buf™ movesize, K fpos);

SDG 258

fpos := fpos + movesize;
end;
iocheck;

with outfib do
if format then
memtoany (buf, addr(outfib))
else
begin { unformated filecopy }
call(unitable”[funit].tm,addr(outfib) writebytes,
buf”™ movesize, K fpos);

fpos = fpos + movesize;
fleof := fpos;
outsize .= outsize - movesize;
end;
iocheck;

until outsize = 0;

release({lheap);
closeinfile(infib):
closeoutfile(outfib, keepit);

recover
begin
release(lheap);
saveio ;= ioresult;
saveesc 1= escapecode;

closeinfile(infib);
closeoutfile(outfib, purgeit);
ioresult ;= saveio;
escape(saveesc);
end;

end; { filecopy }

PROCEDURE FILECOPY provides the ability to copy or translate one file to another.
FILECOPY will also copy whole volumes. Filenamel is the name of the source file (or volume)
and filename2 is the name of the destination file (or volume). The boolean parameter FORMAT
indicates that is a translate rather that a copy. The boolean parameter WRITEOVER indicates
that the destination file should be overwritten.

The major steps are as follows:

1. Initialize the source and destination FIB’s by calling the system procedure FINITB (which is
exported from FS). This procedure initializes some FIB fields (e.g. FISTEXTVAR and
FISBUFFERED) which are necessary for the DAM to properly choose the correct Access
Method (See ANYTOMEM, etc.) for text files. The call to newwords is to get a dummy
buffer variable which FINITB uses to initialize FWINDOW, although this won’t be used by
FILECOPY.

2. Open the source file. Notice that the call to SETUPFIBFORFILE does not require a
directory to be present on the volume. There are two cases: If there is no file title part of
the file name, then we assume that the source is an entire volume. The DAM is called using
the OPENVOLUME request, which treats the whole volume a one big file. In this way, a
whole disk can be copied. There doesn’t even have to be a directory on it. Notice that the

SDG 259

file type is assumed to be DATA. If there is a file title present, call the DAM using the
OPENFILE request. This searches the volume for an existing file of that name.

3. Set FPOS to O to indicate that reading will start at the beginning of the file. Also set
FREADABLE to true to indicate that the file 1s open.

4. Extract the file type, size, and start address information from the FIB. These values may be
necessary to use when opening the destination file.

5. Set up the FIB for the destination file. Again, no directory is required for a volume
transfer. If this is a translate, then the destination file type is taken from the destination
file name according to its suffix. In this case the size of the destination file cannot be
determined from the size of the source file. If this is not a translate, then the file type
information is adopted from the source file. If no size specifier was given in the destination
name (FPOS = 0) then the file size is also taken from the source size. In both cases,
FSTARTADDRESS is copied from the source file.

6. Open the destination file. If this is a volume transfer, the DAM request OPENVOLUME is
used. A quick test of FPEOF (physical size of file) indicates whether the destination volume
is big enough. If this is a file transfer, then according to the WRITEOVER parameter the
file is either overwritten using the OVERCREATE request, or a new file is created using
the CREATEFILE request. If the file just opened isn’t big enough, an attempt is made to
increase its size by calling the DAM using the STRETCHIT request. FPOS indicates the
desired size for stretching. If stretching fails there is no more that can be done.

7. Set FPOS to 0 to indicate that writing will start at the beginning of the file. Set
FWRITEABLE to true to indicate that the file is open.

8. Allocate a large buffer. Grab the memory in increments of 256 bytes, since this is the size
of physical sectors on most HP mass storage media. Take as much memory as is available,
except leave enough for the program’s execution stack space (5K should be enough). Set
outsize to -1 for translating because it is used as a flag to terminate the transfer loop.

9. Read as much of the source file as will fit into the buffer. If translating, use PROCEDURE
ANYTOMEM. FEOF indicates the end of the file has been reached. If copying, call the
device driver directly. The device driver is called a Transfer Method (TM) and its address is
stored in the unit table. FPOS indicates the current file position and it must be advanced
by the number of bytes read.

10. Write the contents of the buffer to the destination file. If translating use PROCEDURE
MEMTOANY, otherwise call the device driver (TM). FPOS must be advanced to indicate
the file position. Set FLEOF to indicate the logical file size.

Repeat steps 9) and 10) until the whole file is transferred.

11. Release the buffer memory.

12. Close the input file.

13. Close the output file with the option to make it permanent.

procedure volumes(var v: volumearray);

var
un counitnum;

SDG 260

i ; integer;

sym ; string[3];
begin
for un := 1 to maxunit do
with unitable™[un] do
begin
call(dam, uvid, un, getvolumename);
viun] = '
if (ioresult=ord(inoerror)) and (strlen(uvid) > 0) then
begin
if uvid = syvid then sym := °~ X °
else
if uisblkd then sym := ' # ' else sym := ' "
strwrite(v[un], 1, i, sym, uvid, ':'):
end;
end;
end; { volumes }

PROCEDURE VOLUMES creates a list of the volumes which are on line. The list is generated
into an array of 50 strings. The index of the string corresponds to the unit number. A null string
indicates a unit which is not on line.

The procedure is simply to loop through all the units and for each one call the DAM using the
GETVOLUMENAME request. Notice that no FIB is needed for this request, and the volume
name is returned as a string parameter in the position normally occupied by the FIB parameter.
The string UVID is a field in the unit table which normally records the volume name. The
system volume is recognized because its volume name is the same as the global variable SYVID.
Blocked volumes are recognized by the field in the unit table named UISBLKD.

procedure repack(filename: fid):
var infib: fib;

begin
with infib do
begin
setupfibforfile(filename,infib, true);
call{unitable”[funit].dam,infib, funit,crunch); iocheck;
end;
end; { repack }

PROCEDURE REPACK calls on the DAM using the CRUNCH request to repack the indicated
volume.

procedure opendir(var filename o fid;
var infib . fib;
var dircatentry . catentry);

begin { opendir }
with infib do

begin
freadable = false;
fwindow := addr(dircatentry):

setupfibforfile(filename, infib, false):
if ioresult = ord(inoerror) then

SDG 261

begin
call(unitable~[funit].dam,infib,funit, opendirectory);

iocheck;
freadable := true;
end;
end;
end; { opendir }

PROCEDURE OPENDIR: The major data structure for creating and cataloging directories is the
CATENTRY. A CATENTRY contains fields which give information about the directory such as
its name, the number of files it can handle, etc. (See PROCEDURE STARTCAT.) PROCEDURE
OPENDIR calls the DAM to do an operation called OPENDIRECTORY, which is similar to
opening a file except that it prepares the directory for operations such as cataloging. The call to
the DAM does several things:

1. The field in the ¥IB called FWINDOW must be a pointer to a CATENTRY. The DAM fills
in the fields of the CATENTRY with information about the directory.

2. The file title in the field FTITLE is parsed to determine whether part or all of it is the
name of a file (as opposed to the path name for a hierarchical directory). Only the file
name part is returned in FTITLE.

For example, if FTITLE was ’/USERS/JOHN/TEST . TEXT’, then the OPENDIRECTORY would
return "TEST1.TEXT’ in FTITLE, and it would place information about the directory called
JOHN into the CATENTRY pointed to by FWINDOW, as well as preparing 'JOHN’ for
cataloging.

procedure closedir(var infib : fib);

begin
with infib do
begin
if freadable then
begin
call(unitable~[funit].dam,infib,funit,closedirectory);
freadable := false;
end;
end;
end; { closedir }

PROCEDURE CLOSEDIR calls the DAM to perform a CLOSEDIRECTORY operation, which is
similar to closing a file except that it refers to a directory which was opened by an
OPENDIRECTORY. Other operations, such as cataloging, may be done before closing the
directory, but a CLOSEDIRECTORY must always be done eventually or else the file system may
hold that directory open (which might block other operations or other users from accessing that
directory).

procedure createdir(filename: fid; newname: vid; entries, bytes: integer):
var

infib . fib;

dircatentry . catentry;

saveio, saveesc: integer;

begin { createdir }
with infib, dircatentry do

SDG 262

try
opendir(filename, infib, dircatentry):
if ioresult = ord(inodirectory) then

begin { no directory, so setup default values}
setstrlen{cname,0); {volume name}

cpsize = maxint; {size in bytes}

cextral = 0; {number of entries}

end

else if (strlen(ftitle)>0) or (cpsize<=0) then badio(ibadrequest);

closedir(infib);

cpsize := min(cpsize, ueovbytes(funit));

if entries >= 0 then cextral := entries; { -1 retains old value}
{ O selects default}

if bytes > 0 then cpsize := bytes; { -1 retains old value}

if cpsize=0 then badio(ibadvalue);

zapspaces (newname) ;
if strlen(newname) > 0 then chame := newname; { null retains old name}

call(unitable™[funit].dam,infib, funit makedirectory):

iocheck:;

recover begin
saveio
saveesc :
closedir(infib);
ioresult
escape(saveesc);
end;

ioresult;
escapecode;

saveio;

end; { createdir }

PROCEDURE CREATEDIR creates a new directory on a mass storage medium. The parameters
needed are:

1. The filename of the device to be zeroed (usually a unit number)

2. The new name of the volume to be created

3. The maximum number of directory entries which are needed

4. The maximum size in bytes of the medium or logical volume
CREATEDIR first calls PROCEDURE OPENDIR to find out if there is already a directory on
the volume. If there is, information about it is placed in the CATENTRY:

® CNAME is the volume name.

® CEXTRA1 is the number of possible directory entries.

® CPSIZE is the physical size of the volume in bytes. If CPSIZE is O, it indicates that it is a
type of device for which zeroing a volume directory is inappropriate, so this is an error.

SDG 263

¢ If FTITLE contains a non-null string, it indicates a file name was present in the original
file name. This is an error. At this point, PROCEDURE CLOSEDIR is called to close the
directory, since all the useful information has been extracted. The system function
UEOVBYTES (exported from module MISC) is called to check the maximum size in bytes
of the volume. If there was a previous directory, then the same name as the old one can be
retained by passing a null string for the new name. The same number of directory entries
can be retained by passing -1. A default number of directory entries (dependent on the
particular DAM) can be selected by passing 0. The same physical volume size can be
retained by passing -1.

® Finally, the DAM is called using the MAKEDIRECTORY request.

procedure makedir(filename: fid);

var
infib . fib;
dircatentry . catentry;

saveio, saveesc:. integer;

begin
with infib, dircatentry do
try
opendir(filename,infib dircatentry);
iocheck;
if strlen{ftitle)=0 then badio(idupfile);
chame := ftitle;
call(unitable”[funit].dam,infib,funit makedirectory);
iocheck;

closedir(infib);

recover begin
saveio
saveesc :
closedir(infib);
ioresult
escape{saveesc);
end;

closedir(infib);
end;

ioresult;
escapecode;

saveio;

PROCEDURE MAKEDIR makes a directory, usually on a hierarchically structured device such
as an SRM. The only parameter needed is the new file name. First;, OPENDIR is called to test
whether the given directory already exists, which would be indicated by having no file name
returned in FTITLE. The string returned in FTITLE will be the name of the new directory, so it
must be placed in the CNAME field of the CATENTRY. Then the DAM is called using the
MAKEDIRECTORY request.

procedure makefile(filename: fid);
var
outfib . fib;

begin
with outfib do
begin
setupfibforfile(filename, outfib, true);
call(unitable™[funit].dam,outfib, funit,createfile);

SDG 264

iocheck;
fwriteable := true;
fleof := fpeof; {cause file size to be retained}
closeoutfile(outfib, keepit):
iocheck;
end; { with }
end; { make }

PROCEDURE MAKEFILE creates an empty file by calling the DAM using the request
CREATEFILE, which also opens it. The flag FWRITEABLE is set to true to indicate that the file
has been opened. The FIB field FLEOF records the Logical End Of File (the file size) in bytes.
This is always zero for a newly created file, so it must artificially be set to the Physical End Of
File (FPEOF, the amount of disk space allocated to the file) even though no contents have been
written to the file. This forces the file to be of the size given in the size specifier in the file
name, if there was one. PROCEDURE CLOSEOUTFILE is called to make the file permanent.

procedure endcat;
begin
if catfib <> nil then

begin
closedir(catfib™);
release(catfib);
catfib := nil;
end;

end;

PROCEDURE ENDCAT deallocates the heap space that was allocated by PROCEDURE
STARTCAT in order to do cataloging. It also calls PROCEDURE CLOSEDIR to release the
directory being cataloged. Naturally, this procedure should always be called when you have
finished cataloging.

procedure startcat(filename: fid;
var dirname: vid;
var typeinfo: string;
var createdate, changedate: daterec;
var createtime, changetime: timerec;
var blocksize, phy_size, start_byte, free_bytes, max_files: integer);

var
dircatentry . catentry;
saveio . integer;
saveesc . integer;

begin { listdir }
endcat;
new(catfib);
new(catentptr)
try
opendir(filename, catfib”™ dircatentry):
iocheck;
with dircatentry do
begin
dirname := cname;

SDG 265

typeinfo :=

createdate
createtime

cinfo;
.= ccreatedate; changedate = clastdate;
= ccreatetime; changetime = clasttime;

blocksize := cblocksize;
phy_size 1= ¢psize;
start_byte := cstart;
free_bytes := cextra2;
max_files = cextral;
end;

with catfib”™, unitable”™[funit] do
begin
fwindow := addr{catentptr™);
fpos := 0;
fpeof := catlimit;
call(dam, catiib”™, funit, catalog);
iocheck;
end;

recover

begin

saveio := ioresult;

saveesc .= escapecode;

endcat;

ioresult := saveio;

escape(saveesc) ;

end;
end;

PROCEDURE STARTCAT initiates a cataloging operation. The only input parameter is the
name of the directory to be cataloged. The following parameters return useful information about

the directory:

DIRNAME the name of the directory or volume
TYPEINFO a string up to 20 characters, usually labelling the kind
of directory it is, e.g. LIF, SRM etc.
CREATEDATE the date that the directory was created
CREATETIME the time that the directory was created
CHANGEDATE the date that the directory was last modified
CHANGETIME the time that the directory was last modified
BLOCKSIZE the size in bytes of a logical block, usually 256, 512, or 1
PHY_SIZE the physical size of the volume
START_BYTE the first possible byte offset of a file on the volume
FREE_BYTES the amount of remaining space available for files
MAX_FILES the maximum number of files the directory can hold, if limited

Not all of the items above may be applicable to every directory type, so some of the values

returned may be -1 or O to indicate they don’t apply.

All of the above items are returned in fields of the CATENTRY record which is pointed to by

FWINDOW. (See the code for the specific field names.)

The steps of initiating a catalog are as follows:

1. Allocate the FIB from the heap.

SDG 266

2. Allocate CATENTPTR, a pointer to an array of CATENTRY records.

3. Initialize the FIB by calling PROCEDURE OPENDIR. (FWINDOW becomes a pointer to a
local CATENTRY called DIRCATENTRY)

4. Extract the information about the directory from the fields of the CATENTRY into the
return parameters.

S. Initialize these fields of the FIB: FWINDOW should be changed to point to the array,
CATENTPTR” FPOS indicates which file should be cataloged first (initially 0) FPEOF
indicates how much room there is for cataloging files

6. Call the DAM using the CATALOG request

7. Upon successful completion, the array of CATENTRY records has been filled with
information about the files in the directory, up to the maximum limit given. FPEOF
returns with the actual number of files which were cataloged.

procedure cat(filenumber:

var filename: tid:

var typeinfo: string;

var createdate, changedate:

var createtime, changetime:

var kind: filekind;

var eft: shortint;

var blocksize, logical_size,
phy_size, start_byte,
extensionl, extension2:

integer;

daterec;
timerec;

integer);
begin
if catfib = nil then escape(-3);
with catfib”™, unitable™[funit] do
begin
if not freadable then badio(inotopen);
if (filenumber>=0) and
({filenumber<fpos) or ((filenumber>=fpos+catlimit) and (fpeof=catlimit)))
then begin

fpos := filenumber; fpeof := catlimit;
call(dam, catfib”™, funit, catalog);
iocheck;

end;

1

if (filenumber<fpos) or (filenumber>=fpos+fpeof) then filename :=
else with catentptr™[filenumber-fpos] do

begin
filename := chame;
typeinfo := cinfo;
createdate := ccreatedate; changedate := clastdate;
createtime := ccreatetime; changetime := clasttime;
kind := ckind;
eft .= ceft;
blocksize := cblocksize; logical_size := clsize;
phy_size := cpsize; start_byte = ¢cstart;
extensionl:.= cextral; extension2 .= cextraz;
end;
end;
end;

SDG 267

PROCEDURE CAT retrieves the catalog information about a particular file. You must call this
routine only after having initiated a catalog using PROCEDURE STARTCAT (but you may call
CAT as many times as you like without calling STARTCAT again). The input parameter to CAT
is the parameter FILENUMBER, an integer from 0 to N-1, if there are N files in the directory.
Information about the file is returned in the following parameters:

FILENAME the name of the file. If this is a null string, it
indicates that there are no more files.
TYPEINFQ a string of up to 20 characters, giving miscellaneous

information about the file, such as protect codes or
whether the file is open

CREATEDATE the date that the file was created

CREATETIME the time that the file was created

CHANGEDATE the date that the file was last modified

CHANGETIME the time that the file was last modified

KIND the file kind, e.g. data, code, text, etc.

EFT the external file type, an HP standard type code

BLOCKSIZE the size of a logical block, usually, 256, 512, or 1
LOGICAL_SIZE the size of the file in bytes

PHY_SIZE the physical size of the file, i.e. the allocated disk space
START_BYTE the byte offset of the start of the file from the beginning
EXTENSION] implementation dependent information, depends on directory type
EXTENSION2 implementation dependent information, depends on directory type

Not all of the items above may be applicable to every directory type, so some of the values
returned may be -1 or O to indicate they don’t apply.

The information about the file is in the element of the array of CATENTRY (see the code for
the specific field names) which is indexed by (FILENUMBER-~-FPOS) as long as FPOS <=
FILENUMBER <= (FPOS+FPEOF). If FILENUMBER 1s not in this range, then another call to the
DAM using the CATALOG request must be made (but notice that there is no need to try it if
FPOS is too large and FPEOF is not equal to the maximum value CATLIMIT, since this means
there aren’t any more files).

procedure duplicate(filenamel, filename2: fid; purgeold: boolean});
var

infib, outfib: fib;

dircatentry . catentry;

savelo, saveesc:. integer;

2gin
with infib do

try
opendir(filenamel, infib, dircatentry);
iocheck;
opendir(filename2, outfib, dircatentry);
iocheck;
if not samedevice(funit, outfib.funit) then badio(ibadrequest):
fwindow := addr(outfib);

fpurgeoldlink := purgeold;
call(unitable™[funit].dam,infib, funit, duplicatelink):
iocheck;

closedir(infib);

SDG 268

closedir(outfib);
recover
begin
saveio ioresult;
saveesc .= escapecode;
closedir(infib},
closedir{outfib);
ioresult '= saveio;
if saveesc<>0 then escape(saveesc);
end;
end; { duplicate }

PROCEDURE DUPLICATE makes a duplicate link to a file, on those directory types which
support links to files (e.g. SRM). The parameter PURGEOLD gives the option of purging the link
to the source file, so that the effect is that of moving the file from one directory to another. Of
course, the source and destination must both be on the same device, since this is an operation
which merely manipulates links in the (hierarchical) directory.

For this operation two FIB’s are used. The DAM is called to do an OPENDIRECTORY for both
the source and destination directories. The field FWINDOW of the source FIB is a pointer to the
destination FIB. There is a field in the source FIB called FPURGEOLDLINK which indicates
that this is a move rather than a duplicate.

procedure remove(filename: fid);
var infib: fib;
begin
setupfibforfile(filename, infib, true);
with infib do
call(unitable™[funit].dam, infib, funit, purgename);
iocheck;
end;

PROCEDURE REMOVE purges a file by calling the DAM with the PURGENAME command.
The only advantage to doing it this way instead of with the standard Pascal sequence: RESET(F,
'FILENAME’), CLOSE(F, 'PURGE); is that it is only one call to the DAM and doesn’t actually
open the file.

procedure change(filenamel, filename2: fid);
var infib, outfib: fib;
lsegs: integer;
lkind: filekind;
begin
setupfibforfile(filenamel, infib, true);
with outfib do
if not scantitle(filename2,fvid, ftitle, 6 lsegs,lkind) then badio(ibadtitle);
with infib do
if ftitle = '’ then
call{unitable”[funit].dam, outfib.fvid, funit,6 setvolumename)
else begin
fwindow := addr(outfib. ftitle);
call(unitable”[funit].dam,infib, funit,changename);
end;
iocheck;
end; { change }

SDG 269

PROCEDURE CHANGE changes the name of a file or a volume. The system procedure
SCANTITLE (exported from FS) is used to parse the new name into its component parts. There
are two cases:

1. If there is no file title part in the original name, it is assumed we are changing a volume
name. In this case, the DAM is called using the SETVOLUMENAME request. The new
volume name is passed to the DAM in the parameter position normally occupied by the
FIB; the FIB is not actually used for this request.

2. If there is a file title part in the original name, then we are changing a file name. In this
case, the field FWINDOW of the FIB is made to be a pointer to the (title part of) the new
file name. Then the DAM is called using the CHANGENAME request.

procedure endpass;
begin

if passfib <> nil then release(passfib),;
end;

PROCEDURE ENDPASS releases the heap memory which was allocated by PROCEDURE
STARTLISTPASS in order to manipulate passwords. ENDPASS should always be called after
listing and changing passwords is complete.

procedure startlistpass(filename: fid);
begin

endpass;

new(passfib);

new(wordlist);

try
setupfibforfile(filename, passfib™, true);
with passfib”™ do
begin
fwindow := addr(wordlist”™);
fpos .= 0, fpeof := catlimit;
call(unitable”[funit].dam, passfib®™, funit, catpasswords);
iocheck;
optionlist := addr(foptstring™);
end;
recover
begin
endpass; escape(escapecode);
end;
end;

PROCEDURE STARTLISTPASS initiates the process of listing the current passwords of a file.
The steps are:

1. Allocate the FIB from the heap.

2. Allocate WORDLIST, a pointer to an array of PASSENTRY records.

SDG 270

3. Initialize the FIB:
a. FWINDOW is a pointer to WORDLIST"
b. FPOS indicates which password should be listed first (initially 0)

¢. FPEOF indicates how much room there is for listing passwords

4, Call the DAM using the CATPASSWORDS request

5. Upon successful completion, the FIB field FOPTSTRING is a pointer to an array of
PASSENTRY records which enumerate the allowed, legal attributes for this particular
directory type. The value in the PBITS field is a bit pattern which is used to associate these
attributes with passwords. A PBITS field of 0 marks the end of the list.

6. The array WORDLIST has been filled with the current passwords of the file (up to the
limit given in FPEOF). FPEOF gives the actual number of passwords returned. The PBITS
field of the PASSENTRY is a bit pattern which is used to match these passwords with their
attributes.

procedure listattribute{wordnumber: integer; var outstring: string);
var i:. integer;
done: boolean;
begin
outstring := '’
if passfib = nil then escape(-3);
with passfib”® do

begin
i:=0;
done := false;
repeat
with optionlist™[i] do
begin
if pbits = 0 then done := true
else if i = wordnumber then begin
outstring := pword;
done .= true;
end;
end;
i =14+,
until done;
end;

end;

PROCEDURE LISTATTRIBUTE searches the list of legal password attributes produced by
PROCEDURE STARTLISTPASS and returns the name of the one which is the Nth attribute,
into the string parameter OUTSTRING. WORDNUMBER is an integer from 0to N-1 which
indicates which attribute you want. OUTSTRING is set to null if N is too large.

procedure listpassword(wordnumber: integer; var outstring: string):
var i, j, p: integer;

first, last: boolean;
begin

SDG 271

outstring : = ;
if passfib = nil then escape(-3);
with passfib™ do
begin
if (wordnumber >= 0) and
((fwindow <> addr(wordlist™)) or
(wordnumber < fpos) or ({(wordnumber>=fpos+catlimit) and (fpeof=catlimit)))

then begin
fwindow := addr{wordlist™);
fpos := wordnumber; fpeof := catlimit;
call(unitable™[funitl].dam, passfib”™, funit, catpasswords);
iocheck;
end;

if (wordnumber >= fpos) and (wordnumber < fpos + fpeof) then
with wordlist™[wordnumber-fpos] do
if pbits <> 0 then
begin
strwrite{outstring, 1, j, pword, ':'):
first := true;
last := false;
i =0;
p = pbits;
repeat
with optionlist™[i] do
begin
last := pbits = 0;
if not last then if iand{pbits, p) = pbits then
begin
if not first then strwrite(outstring, strlen(outstring)+1, j, ',’');
first := false;
strwrite(outstring, strlen(outstring)+1, j, pword);
end;
end;
i =1+ 1;
until last;
end;
end:
end;

PROCEDURE LISTPASSWORD returns information about the Nth password of the file whose
passwords are being listed. The desired information is in the PASSENTRY record indexed by
(WORDNUMBER -FPOS) as long as FPOS <= WORDNUMBER < (FPOS+FPEOF). If wordnumber
is out of this range, or if FWINDOW no longer points to the WORDLIST array due to having
modified a password, then a new call to the DAM to do a CATPASSWORDS must be made. If
WORDNUMBER is still out of range, the null string is returned; otherwise the parameter
OUTSTRING will be constructed in the form:

PASSWORD:ATTRIBUTE,ATTRIBUTE,ATTRIBUTE etc.
The attributes are matched to the password by scanning the list of legal attributes. An attribute

is associated with the password if the PBITS field of the attribute is a logical subset of the PBITS
field of the password.

procedure changepassword(word: passtype; attrlist: string255);
var entry: passentry;

SDG 272

name: passtype;
bits,i: integer;
found: boolean;

begin
if passfib = nil then escape(-3);
bits := 0;

zapspaces(attrlist); {remove blanks and control characters}
while strlen(attrlist) > 0 do

begin
i = strpos(’,’ ,attrlist);
if i=0 then i := strlen(attrlist) + 1;
name := str(attrlist,},i - 1); upc(name): { uppercase the attribute }
if i > strlen(attrlist) then setstrlen(attrlist, 0)
else attrlist := str(attrlist,i+], strlen(attrlist)-i);
i = 0;
found := false;
repeat

with optionlist™{i] do

begin

if pbits = 0 then badio(ibadformat);
if name = pword then begin

found := true;
bits := ior(bits, pbits);
end;
end;
i=1i+1;
until found;
end; { get attributes }

zapspaces(word);
with entry do

begin
pword := word;
pbits := bits;
end;
with passfib”™ do
begin
fwindow := addr(entry);

fpos := 0; fpeof := 1;
call(unitable™[funit].dam, passfib™, funit, setpasswords);
iocheck;
end;
end;

PROCEDURE CHANGEPASSWORD allows passwords to be added, deleted, or associated with a
different set of attributes. The password to be modified is given in the parameter WORD. The
new set of attributes is given by the string parameter ATTRLIST as a list separated by commas.
ATTRLIST should be a null string to specify that the password is to be deleted. The steps are as
follows:

1. Construct a PBITS bit map by logically ORing together the PBITS fields of each of the legal
attributes which appear in the ATTRLIST string.

2. Put the password WORD together with its new PBITS value into a PASSENTRY record

SDG 273

3. Set these fields in the FIB:
a. FWINDOW is a pointer to the new PASSENTRY record
b. FPOS is 0

c. FPEOF 1s 1

4. Call the DAM using the SETPASSWORDS request

procedure prefix(filename: fid; unitonly, sysvol: boolean);
var i: integer;

$: vid;
begin
zapspaces(filename);
if unitonly then doprefix(filename, s, i, true)
else if sysvecl then doprefix(filename, syvid, sysunit, true)
else doprefix(filename, dkvid, i, false);
iocheck;

end;

PROCEDURE PREFIX uses a system routine exported from FS called DOPREFIX to change
either the default prefix, or the system volume, or the prefix on an individual unit, according to
these parameters:

unitonly: sysvol:
unit: TRUE (don’'t care)
system: FALSE TRUE
default: FALSE FALSE

The variables SYVID, SYSUNIT, and DKVID are global variables exported from SYSGLOBALS.
SYVID is the name of the system volume, SYSUNIT is the unit number of the system volume,
and DKVID is the name of the default volume. DOPREFIX returns values into these variables.

end. { module filepack }

SDG 274

Writing your Own Command Interpreter

The "Command Interpreter" is the program which displays the outer-level menu on the CRT,
allowing the user to invoke subsystems such as the Editor and Compiler. This program is found
on the boot device under the name STARTUP. It is loaded and executed by TAIL, the last
module in INITLIB.

STARTUP may be any application program -- there need not be anything special about it. For
instance, if you write an accounting program named STARTUP and put it on the BOOT: disc, the
“system" will come up running that accounting program. If the program terminates for any
reason, the message "SYSTEM FINISHED. RESET TO RESTART" will be displayed. At that
point the computer must be re-booted.

The Standard Command Interpreter

The standard Command Interpreter provided with Pascal 2.0 is a program called CMD, which
invokes code provided in module CI. These together make up the standard STARTUP. The code
is not very interesting, and in fact is not included in this documentation. Instead, this section
shows you how to write your own CI.

However, there are three routines exported from the standard CI which may be useful. They are:
procedure chain (filename; fid);

This routine accepts a file specifier which should be the name of a program. If the currently
executing program terminates normally after calling chain, the standard CI will then run the
named program.

procedure startstream (filename: fid),

This routine accepts a file specifier which should be the name of a text file, eg 'DO__ME.TEXT"
After the call to STARTSTREAM, any input characters which would normally have been read
from the standard file INPUT are instead taken from the named file, until end-of -file is

reached. When EOF is reached, input reverts to the keyboard.

If the system was already streaming when STARTSTREAM is called, the current stream input
file is closed and the newly specified one is opened. Stream files cannot be "nested".

function streaming: boolean,

This function returns true if and only if input is currently being taken from a stream file.

SDG 275

Creating a New Command Interpreter

On the other hand, you may be writing an out-of ~the-ordinary application, which needs to have
features more like those of the standard command interpreter. In particular, a user "shell"
frequently needs to load or execute other programs. The purpose of this chapter is to show how
to do that. By combining the information in this chapter with the capabilities provided by
Directory Access Method calls, it is possible to write very powerful interesting and
"user-friendly" applications.

Because so many of the necessary capabilities are exported from various system modules, a
minimal command interpreter capable of executing programs and cleaning up after errors can be
written in about 100 lines of Pascal. The "custom" CI presented below is about 150 lines long,
and allows a user to either permanently or temporarily load other programs, and to execute
them.

Below is an overview of the sample program’s structure; the complete source text is at the end of
this chapter. Only a few points need to be made beyond the comments in the program itself.

1. STARTUP is nominally a user program, which means it runs on the 68000’s user-mode
stack and uses the USP register to address data on the user stack.

2. But a CI which loads and executes other programs must be run on the supervisor-mode
stack. It gets there by calling CI _SWITCH prior to doing anything useful. There is a
limited amount of space on the supervisor stack, and the CI must not overflow that area.
This is checked in a static way at the beginning of OUTERINTERPRETER in the example.
In Pascal 2.0 a generous area of 5000 bytes is allowed for the CI stack. Remember however
that interrupt service routines also run on that stack. A good rule is for the CI to occupy
no more than a couple of thousand bytes of stack at worst.

3. Once a CI gets onto the supervisor stack, it can’t exit! It must never terminate until the
system is re-booted. If you write a CI which exits back to the system kernel, errors may or
may not be reported, but the behavior will be unreliable.

4. The assembly language routine USERPROGRAM causes a loaded program to be invoked as
a co-routine to the CI It looks like a subroutine call syntactically, but USERPROGRAM
first switches the CPU into user mode and thus switches to the user program stack.
USERPROGRAM surrounds the user program with a TRY-RECOVER, then calls the start
address as if it were a procedure.

5. The example includes some "magic code" which searches the loader’s data structures to find

out if a requested program is already in memory. It isn’t important to understand why this
code works, as long as you don’t alter it. Just believe, there is a Santa Claus.

SDG 276

Structure of the Command Interpreter

program customsystem
A command interpreter is written and compiled as a user program
which uses modules of the underlying kernel, such as the loader

and file system. This program must be stored as file STARTUP
on the boot device.

procedure outerinterpreter
The "outer interpreter" is a layer imposed mainly to intercept
and report errors which occur when programs are run.
Programs are invoked in response to user commands, which are
processed by the "executive" below.

procedure cleanup

Error recovery is relatively simple. The command
interpreter must reset certain system state variables.

procedure disableuserisrs
The user program may have installed its own interrupt
service routines. Any ISRs which are temporary must
be "disconnected" in case of error terminations, since
the code itself may be gone after the program terminates.

procedure executive
This routine prompts the user for commands, and satisfies
them by loading and/or executing program files. The
ability to load files without executing them is the
“induction rule" by which the system grows. Most other
significant actions would be performed by running
programs.

procedure go
Executes a program which has been loaded into memory.

procedure findorload
Searches for a program identified by its file name.
If the program is already present in memory, its
entry point is returned; otherwise an attempt is
made to load the file.

begin executive

Here is where the human interface work is done.
end executive

begin outerinterpreter

Here is where errors are caught and reported, including
errors which take place when loading program files.
end outerinterpreter

begin customsystem

The command interpreter first gets onto the 68000°'s supervisor
stack, then executes the outer interpreter.
end customsystem

SDG 277

Sample Command Interpreter

$sysprog$

program customsystem (input, output);

{*X*X $search 'INTERFACE’

import

or wherever you keep the interface spec

asm,sysglobals,misc,ldr,loader, fs;

procedure outerinterpreter:
var
marker: anyptr;

procedure cleanup;

var iu: 1..maxunit;
begin
locklevel := 0;
actionspending := 0;
for iu := 1 to maxunit do
unitable™[iu] . umediavalid :=
end: {cleanup}

procedure disableuserisrs;
begin
call(cleariohook);
interrupttable perminttable;
end; {disableuserisrs}

procedure executive;

var
whatfile: fid;
ch: char;

procedure go;

var
modptr: moddescptr;
allexecuted: boolean;
userheap: anyptr;
saveescape,
saveior: integer;
begin
modptr = entrypoint;
repeat

allexecuted :=

begin
mark(userheap);

userprogram(modptr”™.startaddr, userstack)
escapecode;

saveescape =
saveior := ioresult;
release(userheap);

openfiles;

if saveescape <> 0 then

begin
allexecuted :=
disableuserisrs;

{~desc of

modptr™.lastmodule;
if modptr~.startaddr <> 0 then

true;
{restore system interrupt routines}

{used to measure stack height}
{called after error terminations}
{unlock STOP key}

{flush immediate-action keys}

{force volume directory cleanups}
false;

{clear all interfaces}
{restore "permanent" ISRs}

{name of a program to execute}
{read user commands}

{execute a loaded program}

{step thru module descriptors}

{files may have >1 executable module}

{used to clean up heap}
{keep user program’s escape code}

{keep user program’s I0 error code}

st module in loaded file}

{examine each module in the file}
{last one?}

{module is a main program}

{remember top of heap}
{do it!}
{how did it terminate?}
{may be an I0 error}
{retrieve heap space}

{re-open standard input & output files}

{bad termination}

{don't execute any more}

SDG 278

cleanup; {force disc directory cleanups}

if (saveescape<>-1) {error but no message}
and (saveescape<>-20) {stop key}
then
printerror(saveescape,saveior); {report facts}
end;
end;
modptr := modptr”™.link; {look at next module in file}
until allexecuted;
end; {go}
procedure findorload; {look for loaded program or load it}
label 1;

var
vol: wvid; name: fid; segs: integer; kind: filekind;
modp: moddescptr; upchame: tid;

begin
if scantitle(whatfile,vol, name,segs, kind) {take apart name}
then {file name looks legitimate}
begin
if strlen(name)<=tidleng {proposed name acceptable size?}
then upcname := name {will want uppercase version}
else upcname := '’ ; {else don’'t bother}
upc (upcname) ; {upper case it}
modp = sysdefs: {root of list of resident modules}
while modp <> nil do with modp”™ do
begin {search resident modules for requested file}
if startaddr <> 0 then {module is a program}
if (name=progname) {name user typed?}
or (ucase and (upcname=progname)) {try uppercase}
then {eureka! - we found it}
begin
if entrypoint<>modp {most recently loaded one?}
then releaseuser; {no, try to recover space}
entrypoint := modp; {remember what we found}
goto 1; {well-structured GOTO)}
end;
modp := link; {not this, look at next module}
end;
end;
load(whatfile, false); {not found - nonpermanent file load}

end; {findorload}

begin {executive}

writeln(output): {prompt user}

writeln(output, 'Do you want to'):

writeln(output,’ Execute a program (type E)');

write (output,’ Load a program (type L) ? ');

read(input,ch); writeln(output);

if (ch>="a’') and (ch<="z') then {must upper case key}
ch := chr(ord{ch)-ord('a')+ord('A’)):

if ¢ch in ['E',"L’] then {legitimate menu selection?}
begin

write (output, 'What is the name of the program? ’):
readln (input,whatfile):
fixname (whatfile, codefile): {append ' .CODE’ if necessary}

SDG 279

if ¢ch = "E’ then

begin
findorload; {make sure file is in memory}
if entrypoint <> nil then go; {if found, run it}
end
else
begin
load(whatfile, true); {permanent load}
markuser; {permanently increment heap limit}
end;

end;
end; {executive}

begin {outerinterpreter}
mark(marker); {did this program take too much stack?}
if ord(marker) > userstack then escape(-2); {out of memory}
markuser; {MUST MAKE COMMAND INTERPRETERS PERMANENT!!}
repeat {2 levels of repeat in case stop key is hit during cleanup}
try {catch all errors}
repeat {repeat user prompt after each operation}
try {catch all errors}
executive; {ask what to do, then do it}
recover {if user program blows away ...}
if escapecode <> -1 then {genuine error or simply halt?}
begin {program had a problem (maybe stop key)}
cleanup; {repair system variables}
disableuserisrs; {repair interrupt structure}
printerror(escapecode,ioresult); {report problem}

end;
until false: {CANNOT GRACEFULLY EXIT AFTER CALLING CI_SWITCH}
recover {errors or stop key during error recovery}
printerror(escapecode,ioresult); {report them too}
until false; ’
end; {outerinterpreter}

begin {customsystem}
ci_switch;

{ NOW ON SUPERVISOR STACK. THIS PROGRAM CANNOT GRACEFULLY

EXIT NOW. IT SHOULD NOT EVEN TRY TO DO SO! }
outerinterpreter; {execute the custom shell}
end. {customsystem}

SDG 280

Chapter 11
CPU Interrupt Handling

Introduction

This chapter discusses how the Pascal system sets up and processes interrupts. Although the
section begins with a brief refresher on how interrupts work, you really need to know the
material in the "MC68000 User’s Manual".

Note

The topic covered here is the lowest level interrupt structure,
not interrupts as handled by the device IO library procedures.
That is covered in another section. Also, the system designers
took pains to provide an easy-to-use special case for
intercepting keyboard interrupts, which is discussed in the
next chapter.

Interrupts are a special case of exception processing. The 68000 microprocessor has eight
interrupt priority levels. Level zero means no interrupt active; levels one through six are the
"maskable" interrupts which are used for interaction with peripheral interfaces. Level seven is
the "non-maskable" interrupt NMI, which can never be disabled. NMI is not the same as RESET,
which is a separate line into the CPU.

In the 9836, some of these levels are already consumed by built-in peripherals:

® [evel 1 -- keyboard, knob and clock.

® Level 2 -~ the two minifloppy drives.

® Level 3 ~- internal HPIB port; also DMA card.

® Level 7 -~ powerfail interrupt if present; also shift~-PAUSE cntrl-shift-PAUSE.
The CPU has two states, called "user" and "supervisor". There is a separate copy of register A7
(the stack pointer) for each state. The user stack pointer is commonly denoted USP, and the
supervisor one SSP.
An interface requests interrupt service over three signals (IPLO', IPL1', IPL2') coming into the
CPU. The interface puts on these lines an octal number indicating the priority at which its
request should be serviced. This value is noticed by the CPU between instructions (but note that
NMI 1s handled slightly differently). The processor compares the priority at which it is currently
operating, as designated in its status register, to the value on the IPL’ lines. If the requested level

Is greater than the CPU level, an interrupt is granted. The processor pushes its state (the status
register and program counter values) on the stack pointed to by SSP.

SDG 281

Then an Interrupt Service Routine (an ISR) is chosen for the interrupt by selecting an "interrupt
vector". This can happen in two ways: a fixed location in memory (corresponding uniquely to the
priority level) can provide the address of the service routine, or the interface itself can push a
vector number onto the bus during an Interrupt Acknowledge operation. In either case, the
processor derives from this "vector" the address, somewhere near address zero of memory, of a
pointer to the service routine. Although both methods are possible with the 9836, as of this
writing only the first method is actually used by HP interface.

In the 9836, all the exception vectors are in the Boot ROM. Each vector contains a pointer to a
6-byte area in RAM near $FFFFFF. The intent is for a software system to put JMP instructions
in these RAM areas, leading to the service routines. The Boot ROM itself puts initial values in,
which lead to error reporting routines within the Boot ROM. For more details about the
addresses of these RAM vectors and how they are initialized when the machine powers up, see
the section on the Boot ROM.

Pascal control begins at the assembly language routine POWERUP, mentioned in the previous
discussion of the Pascal boot process. As soon as POWERUP has created the Pascal proto-
environment (stack and heap, plus error recovery block), it fills in all the RAM exception vectors.
In particular, the locations for level one through six interrupts are set up as jumps to a single
routine called INTERRUPT, within the POWERUP module itself. It is the duty of this routine to
"interface" between all actual interrupts and the intended ISRs. The primary reason for this
intervention is that we wanted to be able to write ISRs in Pascal, and there is no guarantee that
the machine will be in a valid "Pascally" state when an interrupt occurs.

The state information saved includes all the registers, the current value of IORESULT, and the
current value of the error variable ESCAPECODE. This is enough to assure that side effects of
an ISR which does IO or gets errors will not foul up the running program. Additionally, a
TRY-RECOVER is set up around the interrupt servicing itself. Any errors which occur and try
to escape out of the ISR will be trapped and thrown away. (The STOP key, ESCAPECODE=20, is
the only exception.)

A certain amount of interrupt servicing speed is lost in this mechanism, which is the price of
convenience. It is claimed, by those who should know, that Pascal can service about 4000
interrupts per second through this mechanism. If that is a problem, there is the option of writing
an ISR in assembly language and simply putting a jump to it into the appropriate RAM vector
location. However, the vector MUST have its normal content if the Pascal IO subsystem 1s to deal
with the interrupts. If you every try changing the vectors, be sure to put them right before your
program exits back to the OS. Use a TRY-RECOVER statement surrounding the body of your
program to be sure that error terminations won’t deprive you of the opportunity to make the
system honest again.

Interrupt servicing for a given priority level is complicated by the fact that there may be several
interfaces which can all interrupt at that level. So there is a general mechanism for "chaining"
together ISRs for the various interfaces which are operated on each priority level. This chain of
ISR descriptions is searched by a process called polling, performed by the all-purpose service
routine INTERRUPT. The best overview of polling is gotten by examining the Pascal
descriptions. The polling routine simply interprets these Pascal structures.

SDG 282

In module SYSGLOBALS:

type
pisrib = ~isrib;
isrproctype = procedure (isribptr:pisrib);

isrib = packed record
intregaddr: charptr;
intregmask: byte;
intregvalue: byte;
chainflag: boolean;
proc: isrproctype,;
link: pisrib;

end;
inttabletype = array [1..7] of pisrib;

var
interrupttable: inttabletype;
perminttable: inttabletype;

In module ISR:

procedure isrlink (procentry: isrproctype;
lintregaddr: charptr;
lintregmask: byte;
lintregvalue: byte;
lintlevel: byte;
isribp: pisrib);
procedure permisrlink (procentry: isrproctype;
lintregaddr: charptr;
lintregmask: byte;
lintregvalue: byte;
lintlevel: byte;
isribp: pisrib);

procedure isrunlink (lintlevel: byte;
isribp: pisrib);

procedure isrchange (procentry: isrproctype;
isribp: pisrib);
In module POWERUP: (although their link-time names look like they’re in ASM)
procedure setintlevel (level: integer):
function intlevel: integer;
Every ISR 1s a procedure which takes, as its single parameter, a pointer to an ISR information
block (ISRIB).

The ISRIB gives all the information needed to test if any single interface is interrupting.
INTREGADDR is a pointer into the IO portion of address space; it accesses a one-byte register

SDG 283

indicating whether the interface is requesting interrupt service. This byte is ANDed with the
INTREGMASK field, and the result is compared with field INTREGVALUE. If the two values
are equal, the service routine PROC will be called, passing the address of the ISRIB itself.

(Recall from the system memory map presented in an earlier section that each IO select code is
allocated 65536 bytes of address space. A trivium: it is usually the case that the byte-wide
registers of our cards are placed in the odd byte of a word address. At byte offset 1 (ie the 2nd
byte) from the low address end of the 65k allocated to a select code, one finds the card ID byte,
which identifies the interface type. The "requesting interrupt” register which must be polled is
probably at byte offset 3. Certain built-in peripherals whose IO mapping addresses are fixed, do
not identify themselves.)

The other fields of an ISRIB have to do with polling, the search by which this test process is
applied to all devices on a given priority level.

ISRs are accessed through the array called INTERRUPTTABLE. There are two classes of ISR:
"permanent" and "user". Permanent ISR’s are the ones the system expects to be present. They are
NOT removed automatically whenever a program terminates, whereas user ISR’s are removed
then. User ISRs are simply temporary ones stacked at the front of the list or removed by calls to
ISRLINK or ISRUNLINK. (ISRUNLINK will work on permanent ISRs too.)

| -|----permanent-ISRIB-is-current-one--->| perm. [<----- | - |
7 | | ISRIB | I 71
[R bl ditto-=-----------oo--o- >| perm. |¢----- -
6		ISRIB		6
mmmmmmmmmmmmmm e >	perm.	<----- -		
&5		ISRIB		5
[=== >	user -f------m---oemmmo--e- >	perm.	<----- [-	
4		ISRIB		ISRIB
mf=mmmmmmmmmm s oo >	perm.	<----- (-		
3		ISRIB		31
	- >	user -{---- >	user -f------ >	perm. [
2 | | ISRIB | | ISRIB | | ISRIB | [2]
T e bbbttt >| perm. |<----- -
L1 | ISRIB | (A
INTTABLE "USER" ISR CHAIN PERMANENT PERMINTTABLE
ISRIBs

ISR cleanup when a program terminates consists mainly of copying the values of
PERMINTTABLE into INTERRUPTTABLE. The picture above does not depict the fact
PERMINTTABLE may point to an ISRIB which is not the last one in the chain. That is, there
may be several permanent routines for a priority level.

When an interrupt is granted, the INTERRUPT interfacing routine goes to the list of ISRIBs
headed by INTERRUPTTABLE[INTLEVEL] and examines the first ISRIB, using the register

SDG 284

mask-and-compare procedure described above. In many cases, the "current" head of the list will
simply be the permanent ISRIB installed by the Pascal OS. When a match is found, the PROC in
the ISRIB is called.

This procedure will usually perform the requisite service, but need not necessarily do so; it may
look at the device’s status and choose to pass the interrupt on down the ISRIB chain. If it does
NOT to service the interrupt, it must set the CHAIN field of the ISRIB to true (it was initially
false); this causes polling to go on to the next ISRIB. If instead the procedure elects to service the
interrupt, it must act on the interface so the interrupt is cleared.

If the end of the chain is reached and no one serviced the interrupt, the polling routine will
restore the CPU to its state prior to interruption and execute a ReTurn from Exception (RTE)
instruction. This lowers the CPU priority level, and the unserviced interface will immediately
interrupt again, producing an infinite loop. (By the way, there is an easy way to induce this
undesirable behavior. It is not illegal for an INTTABLE entry to be nil; this is detected, and a
dummy routine NOISR, exported from INITUNITS, is called. Unfortunately, NOISR can’t clear
the interrupt, so the system will just hang.)

There is no rule governing what action must be performed to "clear the interrupt condition" for
an interface. Obviously resetting it will do so, but that isn’t what you want! Some cards drop
interrupt request when their data is read; others must be commanded explicitly through a
control register.

You should be aware of two problems which can occur in ISR design: the "destructive read" and
the "phantom interrupt".

Some interface circuits, notably the TI9914 HPIB chip, have the property that when their status
is read, the status register is cleared. The circuit forgets its status! If different interrupt
conditions are to be serviced by different interrupt routines, the status read by one ISR must be
shared by all. Moreover, reading status may clear the interrupt request, so that the proper ISR
won’t get called at all. The solution is that every ISR must be prepared to invoke the others as
“fake" interrupts if the interface status which was read requires this. ™ -

Phantom interrupts are a related problem. Suppose the CPU is running at level zero and
(destructively) reads a status register, the clearing of which also drops the interrupt request.
Things may happen in this sequence:

1. CPU starts instruction which reads the status register.

2. During execution of the read instruction, the interface for some reason raises its interrupt
request.

3. The CPU captures data indicating the interface wants service. The instruction completes,
and the interface -- having been read -- drops its interrupt request.

4. The 68000 only performs interrupts between instructions. As soon as the read completes,
the CPU acknowledges the now rescinded interrupt request by spinning off into the ISR
polling process.

5. But since the interface was cleared, no ISR finds anything to do.

6. Finally, execution resumes with the instruction following the unsynchronized read, and the

level zero instruction sequence gets to provide the service which would otherwise have been
done by the ISR.

SDG 285

Hooking in Your Own ISR

Your own ISR for an interface can easily be hooked into the system using the ISRLINK,
ISRUNLINK and ISRCHANGE routines. You need to import SYSGLOBALS and ISR to do this.

See the restrictions on ISR procedures, below.

Nota Bene: this is different from writing ISRs to work as a part of the Pascal device IO library.
The procedure to be described now bypasses the IO subsystem by coming in at the
next-to-lowest possible level. (The lowest level would be to replace the RAM vector for the
interrupt level.)

To install a new ISR at the head of a list, you will need to provide both the name of a service
procedure taking a single ISRIBP as a value parameter (ie compatible with type ISRPROCTYYE),
and the address of an ISRIB allocated in "safe" storage. Of course, you also need to specify the
address of the "interrupt request" register, the mask and the target value for the polling match.
All this is needed even if the ISRIB will be the only one at the chosen priority level.

Safe storage is storage whose lifetime is at least as long as the ISR is expected to be enabled. This
means the ISRIB whose address you pass should either be a global variable, or taken from the
heap in such a way that it will hang around as long as it is needed. (We tend to take them from
the heap at INITLIB time.) It should NOT be a local variable of the procedure which sets up the
ISR, UNLESS the ISR will be unlinked before that procedure exits!

To get storage from the heap, you can of course use the standard Pascal procedure NEW. If you
want to use a global variable MYISRIB, you will need to pass its address "ADDR(MYISRIB)" since

the link/unlink routines want a pointer to an ISRIB.

Call ISRLINK with the appropriate parameters to hook in a new ISRIB at the front of the
INTTABLE list.

Call PERMISRLINK to hook in a new ISRIB at the front of the part of the list reached via
PERMINTTABLE.

Call ISRUNLINK to remove any ISRIB from its priority chain, whether user or permanent.

Call CHANGEISR to change the name of the service routine represented by any one ISRIB,
whether user or permanent.

SDG 286

A Cautionary Note

If you link in or change a permanent ISR, the system won’t undo it. Don’t use this feature unless
you expect the system as a whole to run properly WITH your ISR in place. To replace an ISR
during execution of a program, try to take advantage of the user ISR chain.

There are occasions when one wishes to leave new permanent ISRs around, for instance if they
service several programs whose executions are chained together. In this case, you may wish to be
sure of getting a chance to set things right in one of these programs should it bomb. A useful
technique is to surround the main body of the program with a TRY-RECOVER statement:

begin (¥main programX)

try
(X body... install user ISRs and use them X)
escape(0); (Xnon-error branch into RECOVER codeX)
recover
begin
: (¥undo ISRIB changes as necessaryX)
end;

end. (¥main programX)

This technique assures that under all conditions, the ISR structure can be returned to normal by
the programmer, rather than letting the system do its thing.

SDG 287

Restrictions on Interrupt Service Routines

There are a few significant restrictions on the routines you supply as ISRs. These are
UNENFORCED rules; if your procedures violate them, the system may or may not be damaged,
and you may or may not find out.

Error Conditions "Thrown Away”’

The ISR interface routine, INTERRUPT, protects the system from errors during ISR execution
by:

1. Saving the values of ESCAPECODE and IORESULT as part of the machine state.

2. Surrounding the ISR with a TRY-RECOVER to trap all errors which might otherwise try
to escape out of the ISR.

3. Restoring the interrupted values of ESCAPECODE and IORESULT at the end of interrupt
service.

The net result is that any errors which are detected during interrupt service are "thrown away".
The sole exception is the STOP key. You should turn off all the checks enabled by Compiler
directives when compiling ISR code, such as $STACKCHECKS, SRANGES, $OVFLCHECKS,
SDEBUGS.

The reason for this policy should be fairly apparent. If an ISR could surprise a program at any
time by changing the values of IORESULT or ESCAPECODE, then attempts to structure
program response to errors would be fairly futile. Note, however, that you may utilize
TRY-RECOVER within an ISR. In this case, explicit programmed calls to ESCAPE are probably
the only cause for recovery branches.

The ISR in an ISR” Mistake

We have seen several cases of the following silly (but not unreasonable) mistake.

A program intercepts keyboard interrupts, which always arrive with priority level one. Then in
the service routine, it tries to do keyboard 10: reading a character, reading the clock, etc.
Unfortunately, the keyboard usually communicates with the 68000 by interrupting it, and since
the request comes from within keyboard interrupt service, the CPU is already running at level
one. The keyboard can’t again interrupt with its reply until the current ISR exits, so the machine
hangs up in the first ISR.

There is potential for this problem to appear elsewhere, especially in HPIB service since the
TI9914 chip often communicates by interrupt.

SDG 288

Notes

SDG 289

SDG 290

Chapter 12
The Keyboard

Introduction

This chapter introduces the keyboard, a surprisingly complicated subject. The keyboard includes
its own microprocessor which not only handles keystrokes but also manages the "knob" and
maintains several timers capable of interrupting the CPU. There are at present two types of
keyboards, 71 keys (small) and 1035 keys (large), distinguished by the configurations jumpers on
the keyboard. At present the small keyboard is detached from the mainframe while the large
keyboard is attached. Associated 68000 system software takes care of communicating with the
keyboard processor, mapping keystrokes into character values, handling timer interrupts and so
forth.
In designing the Pascal software, we tried to anticipate some commonly needed extensions or
alterations to the standard keyboard drivers, and to make it easy for programmers to achieve the
desired behavior without getting involved in very low-level details. Many programmers --
perhaps most -- will be able to take advantage of these "hooks" and solve their problems
expeditiously and with little effort. These time-saving features are discussed before getting into
the gritty details of talking to the keyboard processor. You should read this higher-level
material even if you presently suspect you "must” handle all the keyboard details yourself. The
gritty stuff is covered afterward.
Summary of Keyboard Capabilities
Real time clock functions:

¢ Set time of day and date.

® Maintain time of day.

e Sample time of day.

® Set up real time match.

® Cancel real time match.

® Generate real time match interrupt.

® Set up delayed interrupt.

¢ Generate delayed interrupt.

¢ Cancel delayed interrupt.

® Generate periodic interrupt.

SDG 291

Non-maskable timeout:
¢ Set up delayed non-maskable timeout interrupt.
e Cancel non~maskable timeout.

¢ Generated non-maskable timeout.

10 msec periodic system interrupt (PSI)

® Enable or mask out the PSI

Beeper (tone generator) functions:

® Beep with specified frequency and duration.

Keyboard:

® Keycodes: 102 key matrix positions (large keyboard), qualified by SHIFT and CONTROL
keys. 71 keys on small keyboard.

® Scanning: 2-key rollover with trailing-edge debounce (not avaiable on the small
keyboaard).

e Interrupt 68000 on keystroke.
® Auto-repeat depressed key.
e Set auto-repeat rate.

® Set auto-repeat delay before first repetition.

Rotary pulse generator (the RPG or "knob")
® Detect rotation direction; 120 pulses per 360 degrees.
e Accumulate pulse count during specified period.
® Set up knob interrupts.

® Read knob pulse count.

SDG 292

Keyboard Access with the File System

The keyboard looks like an unblocked (byte stream) volume which can be read as a textfile using
standard Pascal techniques. Since Pascal is a sequential language, a "typeahead" buffer retains
keystrokes until they are read. You can observe this by pressing PAUSE and then typing on the
keyboard. Hold down CNTRL and press CLR LN to clear the typeahead buffer.

The keyboard, like all HP Pascal text files, exhibits "lazy" IO behavior. This was discussed in the
earlier section on the file system; it simply means that a character isn’t read until it is needed.
Nevertheless the file window F* is always valid, meeting the ISO Pascal specification; the system
does this by forcing a read at the time the window is accessed, if the window is not already valid
due to a previous reference.

Echoing Read

The standard text file INPUT reads a character, string, or whatever from the keyboard. Each
character is echoed to the CRT at the current cursor positon. The precise rules of editing depend
on the type of data being read. A single character is passed through unedited. A string is
terminated by the ENTER key or the limit of the string’s length, whichever happens first. You
can NOT backspace from beyond the string’s limit, back into a valid part of the string. A packed
array of characters (PAC) is treated like a string, except it is filled with trailing blanks if
necessary. Numbers are parsed according to a relaxed Pascal syntax, and integers are coerced
into real numbers if necessary.

EOLN(INPUT) is true if the next character to be read corresponds to end-of-line (the ENTER
key). If S is a string which is long enough to contain the rest of the line, then READ(INPUT,S)
will leave EOLN true and the next character read will swallow the end-of-line and return a
space (blank) character. Correspondingly, READLN(INPUT,S) will leave EOLN false and
consume the end-of ~line blank.

You can easily find out the ordinal value of the character returned by any keystroke, by running
either of the programs below. Turning the knob will also return characters:

counterclockwise #8 (ASCII backspace)
clockwise #28 (ASCII Form Separator)
shift counterclockwise #31 (ASCII Unit Separator)
shift clockwise #10 (ASCII Line Feed)

In you try either sample program, you will discover that some keys beep rather than returning a
value. We will soon discuss how you can dynamically alter the character mapping.

SDG 293

Non-Echoing Read

The same capability is accessible without the incoming keystrokes being echoed, using a different
file than INPUT. In fact there are two ways.

Using the standard file KEYBOARD:

program readquietly (keyboard,output);
var
ch: char;
keyboard: text;
begin
repeat
read(keyboard,ch);
write(output, 'You pressed character #' ord(ch):1);
if ch >= #32 then {printable character}
write(output,' "'’ ,ch,’’"");
writeln(output);
until false;
end.

Because KEYBOARD is a file passed in from "outside" the program, you must not RESET it. Like
INPUT, it comes to you already connected to the proper logical unit. Nonetheless it must be
declared both in the program heading and as a variable. For some reason, the HP Pascal language
standard requires that only the standard files INPUT and OUTPUT must not be declared, but no
files passed in as program parameters need be explicitly reset.

Connecting any text file to the keyboard:

program readquietly (output);
var
ch: char;
f. text;
begin
reset(f,6 '#2:°); {open to logical unit one}
repeat
read(f,ch);
write(output, 'You pressed character #' ,ord(ch):1);
if ch >= #32 then {printable character}
write(output,' ''’.ch, "),
writeln{output);
until false;
end.

There is a minor difference between these techniques. If you pass in the system file "keyboard",
the FIB used will be the one which is always present for use by the OS. If you declare your own,
a FIB (about 160 bytes) and a 512-byte buffer will be allocated. The 512 byte buffer has to be
present, even though it isn’t used for unblocked TEXT files, because the system doesn’t know if
the same file might not later be opened to mass storage instead of the keyboard. Despite this
overhead, declaring the file yourself may be aesthetically preferable.

SDG 294

The Beeper

Although the beeper resides physically in the large keyboard and in the mainframe for the small
keyboard, it can be triggered by writing an ASCII "bell" character to the standard file OUTPUT:

write(output #G); { "bell" is control-G }

To control tone and duration, it is necessary command the keyboard directly, using system
routines which are described later.

That pretty well covers what the keyboard can do using only the statements of standard Pascal,
with no access to internal system routines. Next we discuss some of the system entry points
which offer extended capabilities.

Easy-to-Use Extensions

Most of these capabilities are supplied by the modules KBD, KEYS, CRT, BAT and CLOCK
which are part of the kernel. For now, ignore types, variables and procedures other than the ones
of immediate interest.

Avoiding "Hanging Reads”.

The nature of Pascal is that one statement must be completed before the next can begin
execution. This goes for READ statements too. Pascal programs will wait forever if no one
presses a key. This syndrome can be avoided by testing, before executing the READ statement,
whether there are any characters waiting to be read in the typeahead buffer.

This test is performed by calling the boolean function UNITBUSY, passing the logical unit
number corresponding to the keyboard. The keyboard is "busy" if the typeahead buffer is empty
(waiting for at least one keystroke). The UNITBUSY predicate is exported from module UIO.

program avoidhangups (keyboard,output);
import uio;
var
keyboard: text;
ch: char;
i: integer;
begin
writeln(output, Press any key. Hurry!');
for i := 1 to 300000 do
begin
if not unitbusy(2) then
begin
writeln(output, You beat mel!’');
read(keyboard,ch);
halt;
end;
end;
writeln(output, Guess I was too fast for you.');
end.

SDG 295

Timing with the System Clock

You may wish to control the timing in the above example more accurately, by measuring elapsed
time with the system clock. From CLOCK is exported an integer function SYSCLOCK, which
returns the number of centiseconds (hundredths of a second) since midnight.

program avoidhangups (keyboard,output);
import uio,clock;

const

timelimit = 200; {200 centiseconds = 2 seconds}
var

keyboard: text;

ch: char;

start: integer,
gotone: boolean;

begin
writeln(output, Press any key within 2 seconds! '};
start := sysclock; gotone := false;
repeat
if not unitbusy(2) then
begin
writeln(output, You beat me!');
read(keyboard,ch);
gotone := true;
end;

until gotone or ((sysclock-start)>timelimit);
if gotone then writeln(output, Thank you.')
else writeln(output ,#G, 'Golly, you ARE slow!’);
end.

Using the System Clock and Calender

CLOCK also can manipulate the calendar, and the clock in an hours, minutes, centiseconds
format. The clock actually times in centiseconds since midnight; the hours-minutes-centiseconds
format is just a convenience. SYSGLOBALS exports the following things:

type
daterec

u

packed record
year: 0..100;
day: 0..31;
month: 0..12;
end;

packed record

hour: 0..23;

minute: 0..59;

centisecond: 0..5999; {per minute}
end;

timerec

datetimerec = packed record
date: daterec;
time: timerec;
end;

SDG 296

CLOCK exports these things:

procedure sysdate (var thedate: daterec);
procedure setsysdate (thedate: daterec);
procedure systime (var thetime: timerec);
procedure setsystime (thetime: timerec):

To read the system date, declare a variable of type DATEREC and pass it to a call on SYSDATE.
To set the system date, assign values to the fields of your DATEREC in the obvious way and pass
it to a call on SETSYSDATE. If the computer stays on for more than 24 hours or has a powerfail
device installed, the clock will retain time and roll over the date within ten minutes after
midnight.

Similarly, a variable of type TIMEREC can be used to read or set the system clock in an hours,
minutes, centiseconds format. The time is military time.

NB: none of these routines check to see that what is passed in makes sense!

Remapping the Keyboard

In reading the following material it may be helpful if you are familiar with interrupt servicing
mechanism, which was presented in a previous section.

Sometimes it is necessary to redefine the mapping from key matrix positions to ASCII characters
received by the file system. Remapping includes the capability to suppress keystrokes. Using the
techniques presented now, it is possible to redefine all the keys except SHIFT, CTRL and RESET
(SHIFT-PAUSE). SHIFT and CTRL are separated from all the other keys to allow for the
computer to detect simultaneous depression of SHIFT or CNTRL and any other key. These two
are "qualifiers" for the other keys. RESET is noticed as a special case by the keyboard processor
and causes a Non-Maskable Interrupt instead of the usual level one service request. It cannot be
remapped. However, it can be disabled by sending a low-level command directly to the keyboard
processor. This is discussed with the gritty stuff.

First you need to understand a bit about how the keyboard microprocessor and the 68000
communicate. When the keyboard has something to say, it usually interrupts the 68000 on
priority level one. Under certain circumstances it can force NMI (Non- Maskable Interrupt), but
not for keystrokes. Conversely, the 68000 interrupts the keyboard processor when it wants to
issue 2 command. The interrupts initiate or terminate communication; data is actually exchanged
via memory-mapped IO, meaning certain locations in the 68000’s address space form a
bi-directional path between the processors instead of containing physical memory.

The detail you need now is that when the keyboard sends a message to the processor about a
keystroke or anything else, the message is delivered as two bytes called Status and Data. For a
keystroke, Data gives a value showing what key was depressed. By looking at Status the driver in
the 68000 can determine what the nature of the message is, whether the SHIFT or CTRL keys
were also depressed, and so forth.

When a keyboard interrupt is detected, the ISR reads Status and Data. If Status indicates a
keystroke, the ISR must translate the keycode into a character, taking into account such factors
as the language of the keyboard (Katakana, French, Spanish ..), whether the SHIFT key was
down or CAPS LOCK active, and whether the key was an "immediate execute" function to be

SDG 297

performed by the ISR instead of passed to the file system. An example of immediate-execute is
CTRL-BACKSPACE, which deletes the last character from the typeahead buffer.

The 8-bit character value which results from this translation is then normally stuffed into the
typeahead buffer, from whence it will be eaten by the keyboard Transfer Method on behalf of
the file system. If the buffer is full, the computer beeps and the keystroke is lost.

Knob interrupts are handled similarly, since Pascal translates them into ASCII characters, except
that knob characters are only put in the typeahead buffer if it is empty. Otherwise they are
discarded. So there can never be more than one character from the knob, and if there is one, it is
at the head of the buffer. This prevents "inertia". For instance, the knob -- at 120 pulses per
rotation -- can generate characters much faster than the Editor can scroll text vertically
through the CRT. If the buffer filled up with scroll characters, it would be very hard to make
the cursor stop where you want it.

In summary: the keyboard processor sends Status and Data to the 68000 for each character press.
On the 68000 side, the ISR decodes Status and Data to derive an ASCII character which is
stuffed into the typeahead buffer.

Here is What You Want to Know

The system’s keyboard ISR provides an opportunity to examine and alter Status and Data before
they are passed to the mapping algorithm. Thus you can change one keypress into another. You
can also tell the system to NOT pass on the keystroke; then by recording it yourself in the
typeahead buffer or in a private keyboard buffer, you can translate it as your heart desires.

This capability is provided by a procedure variable hook exported from KBD. An exactly
analogous capability is provided for intercepting timer interrupts.

type
kbdhooktype = procedure (var statbyte,databyte: byte;
var dokey: boolean);
timerhooktype = procedure (var statbyte,databyte: byte;
var dokey: boolean);
var
kbdhook: kbdhooktype;
timerhook: timerhooktype;

The procedure named by KBDHOOK is called by the keyboard ISR whenever the keyboard
interrupts with a keystroke or knob pulse count. The procedure activated by this call is of course
actually run as part of the ISR -- it IS an ISR, and it must follow the guidelines on ISRs given
previously. The call occurs sequentially right after Status and Data have been read, and before
any Pascal-related processing takes place. (Unless the ANYCHAR key had been pressed and let
through to the normal ISR processing; then the next three keypresses are handled by the system
keyboard handler.)

SDG 298

KBDHOOK is initialized to the standard keyboard driver. When you assign the name of your
own hook procedure, here is how it should interpret the parameters:

® STATBYTE is the value of the status register. Your routine can examine it, and since it is a
VAR parameter it may also be altered.

® DATABYTE is the value of the data register. It also can be examined or altered.

® DOKEY is passed in set to TRUE. If set FALSE in the hook routine, no further processing
of the interrupt will take place after the hook returns to the main ISR.

Exactly analogous remarks apply to timer interrupts.

KBDHOOK Status Byte

Here is the definition of the Status byte when KBDHOOK is called. Please note that the
definition is different for other kinds of interrupts.

bit meaning

7 Most significant bit always = 1 for KBDHOOK calls.
6 = 0 if keystroke, = 1 if knob pulse count.

5 = 0 if CTRL pressed, =1 if not.

4 = 0 if SHIFT pressed, =1 if not.
3-0 Should be ignored and not disturbed.

The simplest way to test one of these bits is with ODD and DIV. For instance, to set a boolean
TRUE if CTRL was depressed,

control := not odd (status div 32);

Alternatively, vyou might figure out how to declare a packed record which has
boolean fields in the right places and trick the value of Status into this
record.

If Status indicates the interrupt came from the knob, the value of Data tells
how many pulses have accumulated since the last knob interrupt. The pulse count
is a signed byte, which is a representation the Compiler won't generate without
some pranks on the part of the programmer. So the way to interpret the count
is:

Data {counter clockwise}
128-Data; {clockwise}

if Data < 128 then count
else count

If bit 6 of Status = 0, indicating a keystroke, then the correspondence between Data values and
physical keys pressed on a large keyboard is given by this picture. Please note that the "names"
of the keys shown are those on the standard English keyboard. If your machine has a foreign or
small keyboard, some of the keycaps may be in different positions. The physical position of the
switch is what counts on the large keyboards.

SDG 299

The Large Keyboard

— [KOI[k1I[k2]1[k3]1[k4] [dal[ual {1110d1]{rc] [ed][alllgr]lst
/\ 26 27 28 32 33 34 35 40 41 42 48 49 50 51
lknb| [kS5][k6]1[k7]1[k8]1[k9] [lal[ral [ic][dc][cel [clllrs]lpallio]
_/ 29 30 31 36 37 38 39 43 44 45 52 53 54 55

[10 110 210 310 410 510 610 710 811 911 010 -1 =ilbs] [ps] [EIL (10)IL ~]
80 81 82 83 84 85 86 87 88 89 90 91 46 56 76 77 78 79

[¢610 Q10 WIL EJL RIL TIC YIL UIL T30 010 PIC 10 1 [rnd [710 81 910 /]
25 104 105 106 107 108 109 110 111 100 101 92 93 47 72 73 74 15

[cl 10 AXL SI[DI[FIL GIL HIL JIL KIC LIC ;10 "Ilent] [en] [410 SI[61[*]
24 112 113 114 115 116 117 118 102 103 94 95 57 58 68 69 70 71

(shift]l Z10 XI0 CI[vi[BIL NI[MIL .10 .10 /1[shift] 0110 210 310 -]
120 121 122 123 124 125 119 96 97 98 64 65 66 67
[========= space bar ==========] lex] [010 .30 .10 +]

99 59 60 61 62 63

SDG 300

The Small Keyboard

Small keyboard must return keycodes that correspond to the equivalent keycap notation of the
large keyboard since the physical arrangement of the small keyboard is not the same as the large
keyboard. There are some keys on the large keyboard that are not available on the small
keyboard due to the differences in the number of keys. In other cases, some keycaps of the small
keyboard contain different pairs of functions than the large keyboard. Not all functions are
shown on the keycap of the small keyboard and require the use of CTRL and SHIFT-CTRL to
access the equivalent keycodes of the large keyboard. This is shown in the picture below of the
small keyboard where (s) represents the status register indicating a shifted key, (c) indicating a

control key and (&) indicating a shift/control key.

[K5] [K6] [K7] [K8] [K9] [la] [ral [rc] [il] [ic] [dc] [cl] [st]
KK ONLY 29 30 31 36 37 38 39 42 40 43 44 52 51
SHIFT 26 27 28 32 33 34 35 s42 41 s53 s54 s52 51
CTRL s76 s77 s78 s79 s75 s71 s67 s63 s62 79 44 ¢52 ¢51
SH/CT s76 s77 s78 s79 s75 s71 s67 s63 s62 79 44 852 &51
(1102031041 [05)06) 071081091 [01[~-1T1=1Ibs]
K ONLY 80 81 82 83 84 85 86 87 88 89 90 91 46
SHIFT s80 s81 s82 s83 s84 s85 s86 s87 s88 s89 s90 s91 s46
CTRL ¢80 ¢81 ¢82 ¢8B3 84 ¢85 86 <c87 ¢88 <¢89 ¢90 <c91 c46
SH/CT &80 &B81 &82 &83 &84 &85 4&B6 &B7 &88 &89 &90 &91 &46
(QIIWITEILRITITICYILUILIY[OYCLPICLIIL]
K ONLY 104 105 106 107 108 109 110 111 100 101 92 93
SHIFT s104 s105 s106 s107 s108 s109 s110 si11 s100 s101 s92 s93
CTRL c104 c105 ¢106 cl107 ¢c108 ¢c109 ¢110 ¢111 ¢100 ¢c101 ¢92 ¢93
SH/CT &104 &105 &106 &107 &108 &109 &110 &111 &100 &I101 &92 &93
[ct]J LAIDSIIDITFITGITHILIILKILLIL ;10 '] [enl]
K ONLY 112 113 114 115 116 117 118 102 103 94 95 57
SHIFT s112 s113 s114 s115 s116 s117 s118 s102 s103 s94 95 54
CTRL ¢l12 ¢113 ¢114 ¢115 ¢116 ¢117 ¢118 ¢102 ¢c103 ¢c94 ¢95 57
SH/CT 8112 &113 &114 &115 &116 &117 &118 &102 &103 &94 &95 57
[shf] [ZJ O XTI L CILVITIBIINILIMIL 30 .1107/1I(shift]
K ONLY 120 121 122 123 124 125 119 96 97 98
SHIFT $120 s121 s122 s123 s124 s125 s119 s96 s97 s98
CTRL ¢120 ¢121 ¢122 ¢123 ¢124 ¢125 ¢119 ¢c96 ¢97 ¢98
SH/CT &120 &121 &122 &123 &124 &125 &119 &96 &97 &98
[============= space bar =============] [tb] [Cl]
99 25 24
s99 s25 s24
c99 c25 «c24
&99 &25 &24

SDG 301

[io]
55
s55
¢S5
&55

[ps]
56
rst
c56
rst

[rn]
47
sd47
c47
847

[cn]
58
s58
¢58
858

[ex]
59
s59
c¢59
&59

There is now a second-revision small keyboard. The keyboard can be identified by reading the
keyboard configuration register. Bit 6 will be set if the keyboard is the second-revision
keyboard. (Bit 6 is reset if the keyboard is the first-revision small keyboard.)

The second-revision small keyboard returns a different key-code for the SHIFT-CONTROL of
most of the top row of keys. The ENTER key also returns a different key-code when SHIFT
and/or CONTROL has been pressed.

Note

At this time, the small Swedish/Finnish keyboard (option 850)
does not have the "*" character. The proposed location for this
key is CONTROL DELETE CHARACTER. Depending on the
revision of the keyboard, this key may be available.

[KS] [K61 [K7] [K81 [K9]1 [la] [ral [re]l [il] [ic] [de] [cl] [st] [io]
K ONLY 29 30 31 36 37 38 39 42 40 43 44 52 51 55
SHIFT 26 27 28 32 33 34 35 s42 41 s53 s54 s52 s51 55
CTRLL. s76 s77 s78 s79 s75 s71 s67 s63 s62 79 44 c52 b1 b5
SH/CT 26 s27 s28 s32 s33 ¢38 ¢39 c42 c40 c43 c44 852 &51 855

(1102031041516 [717081 [91[01[-1T0[=11Ibs] [ps]
K ONLY 80 81 82 83 84 85 86 87 88 89 90 91 46 56
SHIFT s80 s8] s82 s83 s84 s85 s86 s87 s88 s89 s90 s91 s46 rst
CTRL ¢80 81 82 ¢83 84 ¢85 86 ¢87 c88 ¢899 <c90 <c91 c46 cb6
SH/CT &80 &81 &82 &83 &84 &85 &86 &87 &88 &89 &90 &91 &46 rst

[QIIWILEILRICTYICYICUICLITCLOYCPY OO I] [rnl

K ONLY 104 105 106 107 108 109 110 111 100 101 92 93 47
SHIFT s104 s105 s106 s107 s108 s109 s110 s111 s100 s101 s92 s93 s47
CTRL cl04 c105 c106 c107 ¢108 ¢109 ¢110 ¢l111 ¢100 ¢101 ¢92 ¢93 c47
SH/CT &104 &105 &106 &107 &108 &109 &110 &111 &100 &101 &92 4893 &47
[ct] AL SIIDILFYLGILHILIYIKILLIL 10 '] [en] [en]
K ONLY 112 113 114 115 116 117 118 102 103 94 95 57 58
SHIFT $112 s113 s114 s115 s116 s117 s118 s102 s103 s94 s95 54 s58
CTRL ¢112 ¢113 ¢114 ¢115 ¢116 ¢117 ¢118 ¢102 ¢c103 c94 ¢95 «¢57 ¢58
SH/CT &112 &113 &114 &115 &116 &117 &118 &102 &103 &94 &95 457 &58
[shf] [2] [X] L CILVITIBIINIIMIL 20 .1107/] [shiftl [ex]
K ONLY 120 121 122 123 124 125 119 986 97 98 59
SHIFT s120 s121 s122 s123 s124 s125 s119 s96 s97 s98 s59
CTRL c120 ¢121 ¢122 ¢123 ¢124 ¢125 ¢119 ¢96 ¢97 ¢98 c¢59
SH/CT &120 &121 &122 &123 &124 &125 &119 &96 &97 458 &59
[::::::::::::: space bar ===========::=] [tb] [Cl]
99 25 24
$s99 s25 s24
c99 c25 c24
899 &25 &24

SDG 302

An Example Keyboard Program

At this point an example may serve to bring together the information that has been nresented so
far. This program installs a keyboard hook which detects the "user keys" KO through K9 and
performs certain functions when the keys are pressed. It also illustrates certain good
programming practices which should be followed by any program using KBDHOOK. When the

program is running, the following key definitions obtain:

® KO displays the system time in centiseconds.

e K1 starts a "stop watch" function.

o K2 displays time since K1 was pressed last.

® K3 displays the system time in military format.

® K4 displays the system date in Month-Day-Year format.

® K5-K8 display the number of the soft key depressed.

® K9 stops the program and restores KBDHOOK.

The Program

$sysprog$ {Enables system programming features: TRY-RECOVER and
procedure variables}

program samplesoftkeys (input,output);

import

{These modules need to be in the system LIBRARY
or found in the INTERFACE library via a $SEARCH
compiler directive.}

sysglobals, kbd,

var

<-savehook
starttime
endtime
time
date

% done,
control,
shift,
clockflag,
startflag,
endflag,
timeflag,
dateflag,
quitflag,
unimplemented
key

clock;

kbdhooktype;
integer;
real;
timerec;

. daterec;

. boolean;
string[15];

{timerec and daterec are}
{exported from KBD}

{type byte is exported from}
{module SYSGLOBALS}

SDG 303

proced
begin
§ if

{KS

end;

begin
try

b

ure softkeyhook (var status,data: byte; var doit: boolean);

doit then {Only process key if not previously taken}
{See explanatory remarks below.}
if not (data in [26,27,28,29,30,31,32,33,36,37]) then

call (savehook,data,status, doit) {Pass to previous hook}
{if not processed here}
else {it's a soft key}
begin
doit := false; {makes KBD ISR ignore keypress}
control := not odd(status div 32);
shift ;= not odd{status div 16):

case data of

{K0} 26: clockflag := true; {KO tells the time}
{K1} 27: startflag := true; {K1 starts stop watch}
{K2} 28: endflag := true; {K2 stops the stop watch}
{K3} 32: timeflag := true; {K3 also tells time}
{K4} 33: dateflag := true; {K4 gives the date}
..K8} 29,30,31,36:
begin

unimplemented := true;

key := ',

if control then key := 'CTRL ';

if shift then key := key+ SHIFT ’;
case data of

{K5} 29: key := key+'K5';

{K6} 30: key := key+'K6';

{K7} 31: key := key+'K7’;

{K8} 36: key := key+'K8’;
end; {case}

end;

{K9} 37: quitflag = true;
end; {case}
end;
{softkeyhook}

{main program}

savehook = kbdhook; {keep old hook, restore at end}
kbdhook = softkeyhook;

unimplemented := false;

clockflag = false;

startflag = false;

endflag .= false;

timeflag = false;

dateflag = false;

quitflag = false;

done ;= false;

writeln('PRESS ANY SOFT KEY AND SEE WHAT HAPPENS.');
writeln(’ TRY SHIFT AND CTRL, TO0O.');

SDG 304

. repeat {loop, testing flags and performing actions}
if unimplemented then

begin
unimplemented := false;
writeln(#G, key, 1is not implemented.’);
end:
if clockflag then
begin

clockflag := false;
writeln('Clock time is ', sysclock:1);

end;
if startflag then
begin
startflag := false;
starttime := sysclock;
writeln{ 'Stopwatch reset and started.’);
end;
if endflag then
begin
endflag := false;
endtime := (sysclock-starttime) / 100.0;
writeln{ 'Elapsed time is ',endtime:7:2, seconds’);
end;
if timeflag then
begin
timeflag := false;

systime(time)

writeln('Current military time is
time.hour:1, ",
time.minute:1," ",
time.centisecond div 100:1);

end;
if dateflag then
begin
dateflag := false;
sysdate(date)

writeln('Today 's date is ',
date.month:1,'/",
date.day:1,'/19",
date.year:1);
end;
o 1f quitflag then
<begin
- kbdhook := savehook; {normal exit, restore hook}
-done := true;
“end;
-until done;

. recover {catch errors, STOP key etc.}
- begin
< kbdhook := savehook; {error exit restores hook too!}
escape{escapecode) {pass error on out to 0S}
cend;

end. {main program}

SDG 305

Commentary on the Example

Using KBDHOOK accomplishes a considerable modification of the system’s behavior while
avoiding the necessity of writing a complicated new ISR which does everything the standard one
did and more. Instead we extended the system’s keyboard ISR.

The main program begins by saving the current value of KBDHOOX in a variable of the
program. This serves two purposes. The most important one is that the original value MUST be
restored before the program exits, since SOFTKEYHOOK will vanish as soon as the program
terminates. Notice how a TRY-RECOVER in the main program ensures that no error condition
can cause the program to fail to restore the previous keyboard hook. Restoration occurs both at
the end of normal flow through the TRY, or in the RECOVER clause in case of error or STOP
key.

The second purpose is a sort of courtesy or protocol: keypresses which are not interesting to our
particular key hook are passed on to the previous hook. If every keyboard hook follows this
convention, it is perfectly possible to have a chain of hooks which together do some fancy
dynamic mapping of the keyboard. At any rate, the standard (system) keyboard driver is usually
the last hook in the chain.

Procedure SOFTKEYHOOK is the means of detecting soft key presses, which normally get a
“"beep"” and no character. This example works by setting flags indicating what keys have been
pressed. The main program just runs around in a loop testing and resetting the flags. This very
simple strategy is well suited to asynchronous user keypresses. Other strategies, such as putting
bytes into the typeahead buffer so they appear to READ statements, may be better for your
needs.

SOFTKEYHOOK runs as an ISR, since it is called from inside the system keyboard ISR. It
therefore has the following characteristics:

® Reasonably short and fast.
® Almost no stack space needed.

@ Declared in the outer block (global scope) of program.

It might seem tempting to instead perform the operations done by the main program inside
SOFTKEYHOOK itself. Unfortunately that leads to disaster, because the SYSDATE, SYSTIME,
and SYSCLOCK procedures themselves try to talk to the keyboard processor. Since
SOFTKEYHOOK is already running at priority level one as a service routine for a keypress,
there is no way for the keyboard to signal the 68000 when the answer to a clock time query or

other request is ready to be read. Instead, the system will hang up.

Note also the avoidance of IO such as WRITELN from within SOFTKEYHOOK. The main
reason for this is to avoid the unknown stack usage of complicated routines. It is in fact possible
to do file IO while at priority level one.

It may be desirable to have user keyboard hooks which are installed automatically whenever the
computer boots up, and are in effect permanently (from one program to the next). This can be
done by appending to INITLIB a program containing the user keyboard hook procedure and an
assignment statement to install it.

SDG 306

Gritty Details of the Keyboard

The next several pages present an abbreviated "Internal Reference Specification” of the keyboard
with emphasis on matters of interest to a programmer, including a description of all the
commands the 68000 can issue to the keyboard processor. At the end of the section we return to
the Pascal 2.0 KBD module, which exports a routine which can be used to command the
keyboard directly.

About the Electronics

In the 9826 and 9836 the keyboard control circuits are on the "mother board", which also
provides connectors for the CPU board, floppy and CRT controllers, backplane and some other
miscellaneous stuff. In the 9816, the keyboard control circuits are on the CPU board where the
scan circuits are on the keyboard.

Keyboard Microcomputer

Keyboard functions are performed by an 8041 single-chip microcomputer, which is particularly
well adapted to the sorts of scanning and control functions needed.

Clock

The clock is a 10 MHz canned crystal oscillator. It provides the time base for the floppy disc
controller, the CRT, built-in HP-IB port, and keyboard/realtime clock. The keyboard and HP-IB
need S mHz and get it by dividing the main clock. The various timers of the "real-time clock"
are mainly implemented by software in the 8041.

Non-Detachable Keyboard Scanning

The keyboard appears electrically as a matrix of thirteen columns by eight rows; thus 104
distinct keypresses can be recognized. The 8041 polls the keyboard by outputting a seven bit
address selecting a key.

This address is split out so the upper four bits can be used as a column address and the bottom
three as a row address. The four bit column address is demultiplexed into 16 individual output
lines; thirteen actually drive the thirteen columns of the key matrix, while the remaining three
are used for other control purposes. The three bit row address drives a one-of-eight data
selector. The output of this selector goes into the 8041, which reads it as the instantaneous state
of the key being addressed. When the 8041 interrupts the 68000 to report a keypress, the full
seven bit address is given as the Data byte to identify the key. The exact mapping of key
addresses to switch positions is shown by a picture in the immediately preceding section.

SDG 307

------------------------ 16 3

| 8041 Y > demux |---/-------- 0~---/---> other uses
| I I | 4 to 16 | |

I I I mmemmeme- I

I I | I

| I /4 I

| | | / 13 columm select
| key | 7 | [drive lines
| address |--/---0------- |

| outputs | |]

! | /3 |

I I I Y

| | |

! | Vv

| | memmmeeeeee-

| key | 1 | data | 8 o

| state |[<--/----] selector |<---/--- . . . % |

| input | | 1 of 8 |

| | e

| | o

| | KEY SWITCH MATRIX

| I

| |

| special [<===-----mmmmme e n CTRL key special path
| handler |<==--cecmmemm oo SHIFT key special path

The SHIFT and CTRL Kkeys are not mapped through this matrix. They are handled separately
because they must be detected simultaneously with other keypresses. The keyboard can see
"ghost" keys if more than two matrix positions are depressed simultaneously.

Detachable Keyboard Scanning

The detachable keyboard is connected by a six conductor cable and therefore must use a
different method of scannng the key matrix than employed by the large keyboard. The keys are
scanned serially so they can be transmitted over the cable by the use of Keyclock and Keydata
line. The scanning is accomplished by the use of a counter on the keyboard that is reset to zero
at the beginning of each new scan. As the counter is incremented, the keyboard microprocessor
keeps track of the counter’s scan position and therefore knows which key is being read at each
moment in time. When a key "hit" is detected, the microprocessor looks up in a table the
keycode (position code) equivalent of the large keyboard and outputs this code to the 68000. In
this manner, the microprocessor is able to adjust for the fact that the keys are in different
locations and contain different functions for the small keyboard as compared to the large
keyboard.

The SHIFT and CTRL are handles like any other key in that they are scanned in sequence. When
either or both are detected, the "hit" is recorded and the status register of the 8041 is adjusted to
contain this information when outputting the keycode code to the 68000. When two keys are
actuated simultaneously, except in the case involving either the SHIFT and/or CTRL, the first
key to be detected is recorded. If the second key is still actuated when the first key is released,
the second key is also recorded. The 8041 does not provide a storage buffer so the second key
will not be recorded until after the first key is sent to (and received by) the 68000.

SDG 308

The rotary pulse generator (knob) drives a counter which is reset each time the keyboard is
scanned. The counter is read like any bank of keyswitches, but the information received by the
8041 is used to update an internal count register within the 8041. If the knob is turned
clockwise, the count read from the keyboard is subtracted from the current internal (8041)
counter value. The internal RPG counter is not checked for under or over flow conditions. The
direction of the RPG is detected in the keyboard and is read as a bit during the keyboard scan.

Circuits Common to both Keyboards

The RESET (SHIFT-PAUSE) key is scanned like any other key but handled specially by the
8041. Instead of outputting the keycode, the 8041 generates an NMIL When the 68000’s NMI
service routine tries to decide what caused the interrupt, it looks at bit two of the Status register.
If zero, the interrupt indicates the RESET key (SHIFT-PAUSE) was pressed; if one, the interrupt
is a timeout. Although the RESET key can’t be remapped, its interrupting can be suppressed by
a command to the keyboard processor discussed below.

Keystroke debounce occurs in the 8041 software. The leading edge (key going down) is only
debounced for 0.1 msec, enough to prevent electrical noise from causing a false key. Mechanical
debounce is on the trailing edge (key being released). A key is not considered gone until at least 3
periods of 10 msec have passed.

The Rotary Pulse Generator (Knob)

When the knob is turned, it pulses a pair of signal lines 120 times per revolution. These signals
are about 90 degrees out of phase, so it is possible to tell which direction the knob is moving. In
the case of the non-detached keyboard, the 8041 receives two derived signals; one says the knob
has pulsed, the other tells which direction. The detached keyboard knob scan is discussed under
the section dealing with the detached keyboard.

The Beeper

The beep frequency is controlled by a six bit latch. There are 63 possible tones; tone number zero
turns off the speaker, while number 63 is the highest pitch. The actual beep frequency will be
81.38 times the frequency in the latch. Duration of beep is controlled by software in the 8041.

SDG 309

Protocol for Keyboard Handling
Communication Addresses

Status register: read byte at address $428003
Command register: write byte to address $428003

Data to 68000: read byte at address $428001
Data to 8041 : write byte at address $428001

The Status register may be read at any time. Whenver the keyboard interrupts, its ISR must first
read Status and then read Data. Data must be read even if Status indicates a condition which
has no associated data, because the read operation is what clears the interrupt.

Interrupting the 68000

The keyboard can interrupt on either level one or level seven, depending on the type of
interrupt. Most communication uses level one; NMI generated by the keyboard is reserved for
timeout and to indicate that RESET (SHIFT-PAUSE) has been pressed. (There are other sources
of NMI than the keyboard.)

When level seven interrupt is being requested, the keyboard processor sets an unused bit in one
of the status registers of the built-in HP-IB port. This is certainly an odd place to look! It came
about as a result of adding the feature at the last moment. Anyway, if bit one of the byte at
$478005 is a one, the keyboard is requesting NMI. There are other, non-keyboard sources of
NMI, so you should check this. For our case, bit two of Status indicates the cause of interrupt: if
zero, the interrupt indicates the RESET key (SHIFT-PAUSE) was pressed; if one, the interrupt is
a timeout.

Bit zero of the keyboard Status register is a one when level one service is desired. The 8041 can
be commanded to mask any or all its reasons for interrupting. When any capability of the 8041
is masked, it not only won’t interrupt to request service for that capability; it also will not set
bits in Status indicating the service is wanted.

Of course, masking the 8041 is different from masking interrupts in the 68000. If the 68000 is
running at level one or higher, and the 8041 is enabled to interrupt, the Status register will so
indicate. Status can be polled at any time.

SDG 310

Sending a Command to the 8041

To tell the 8041 to do something, the general scheme is:
& Wait until bit one of the Status register is zero.
® Write a one-byte command to the Status register.
® Some commands need from 1 to 3 bytes of data; for each byte:
a. Wait until bit one of Status is zero.
b. Write the data byte to the Data register.
Bit one is the 8041’s side of the "handshake"; when it is zero, the 8041 is ready for the next byte
of data or has carried out the command.

"Black Box” Description of Functions

The following descriptions refer to a thing called the "timer output buffer", which is simply §
contiguous bytes in the 804 1’s 64 byte address space. This buffer can be examined by commands
to the keyboard processor.

A command sent to the 8041 cannot be considered carried out until bit one of Status is cleared
to zero. If 68000 code, following a command which masks interrupts or turns off a timer,
depends on not getting an interrupt from the masked or cancelled function, it must wait for
Status bit one to clear. The 8041 is considerably slower than the 68000, and it may be off
servicing a timer when the command arrives. Verbum sap.

When any command is sent which asks for data, an interrupt will occur in response. This
interrupt can’t be masked.

Set Time-of-Day and Date

Command: $AD (173 decimal)

Begins counting time from the moment the 8041 begins executing the command. Follow with 3
or 5 bytes of data, least significant byte (LSB) first. First 3 bytes are the number of centiseconds
(10 msec) since midnight. Last 2 bytes, if sent, are an integer representing the "day" in whatever
calendar you prefer.

Set Date

Command: $AF (175 decimal)

Follow with 2 bytes, LSB first, just like the optional last two bytes of the $AD command.

SDG 311

Maintain Time-of -Day

Not a command. The 8041 updates S bytes. When the 3 LSB, which count centiseconds since
midnight as an integer, reach 23 hours, 59 minutes, 5999 centiseconds, the day (top two bytes) is
incremented. Invalid times >= 24 hours will be rolled over and become valid within 10 minutes.
Sample Time-of-Day

Command: $31 (49 decimal)

Copies the 5 bytes of real time/date into the timer output buffer. Further commands are
necessary to read it.

Read Timer Qutput Buffer

Commands: suspend $13 (19 decimal) read timer buffer’s LSB $14 (20 decimal) read 2nd timer
output byte $135 (21 decimal) read 3rd timer output byte $16 (22 decimal) read 4th timer output
byte $17 (23 decimal) read Sth timer output byte

Five separate commands; each sends a byte to the Data register and interrupts the 68000. These
interrupts are not maskable within the keyboard processor.

Set Real-Time Match

Command: $B4 (180 decimal)

Takes 3 bytes of data, so match is within 24 hours. Cancels itself after it occurs. Sending an
invalid time will result in no match unless the clock is also invalid. The 8041 will begin checking

for the match after it receives the third byte. NB: if you set the time while a realtime match is
active, spurious match interrupts may be generated.

- Cancel Real-Time Match

Command: $B4 (180 decimal)

Same as setting up a match, except no data bytes follow. Can be sent at any time. Erases any
pending (but masked) interrupt. Does not release level one interrupt request if it is already
asserted as the result of a real time match. After this command is accepted no interrupt will be

generated as a result of a match, regardless of whether the match is masked and/or logged at the
time of accepting the command.

It is advisable to cancel real-time match when the real time is about to be changed, as an
erroneous match interrupt could occur.

Sample Match Time

Command: $38 (56 decimal)

Copies the match time into the timer output buffer. It may be read by command sequence $13,

$14, 815

SDG 312

Generate Match Interrupt

Not a command; goes along with the next Periodic System Interrupt if PSI is enabled, else timer
interrupt is generated by itself.

Set Delayed Interrupt

Command: $B7 (183 decimal)

Takes 3 bytes representing delay period in centiseconds, LSB first. Immediately cancels any
pending delayed interrupt. Begins counting time after receipt of 3rd byte. NB: the time is sent
complemented; O=longest delay, all 1’s is the shortest. The result of shortest could be anywhere
between 0 and 10 msec.

« Cancel Delayed Interrupt

Command: $B7 (183 decimal)

This is just a Setup command followed by no data. Can be sent at any time. Erases any pending
but masked interrupt, etc. -~ See Cancel Real Time Match.

: Sample Delay Timer

Command: $3B (59 decimal)

Copies the three bytes of the current delay timer into the first three bytes of the timer output
buffer. The LSB will be in the first byte of the buffer. Use the $13, $14, $15 commands to read
the result.

Generate Delayed Interrupt

Not a command. The interrupt rides along with the next PSI (if enabled), or happens by itself.

Set Cyclic Interrupt, Copy Cyclic Timer, Cancel
Commands:
$BA (186 decimal) set up interrupt

$BA (186 decimal) with no data: cancel
$3E (62 decimal) copy to timer output buffer

These commands are analogous to the delayed interrupt commands.

Generate Cyclic Interrupt

Not a command. If no PSI is already pending, log a normal interrupt; if pending, increment the
counter, saturating at 31.

SDG 313

Set up Non-Maskable Timeout

Command: $B2 (178 decimal)

Takes two bytes, LSB first, indicating the number of centiseconds until timeout. The value is 2’s
complemented, so 0 = 633560 msec and 255 = 10 msec. This command cancels any pending

non-maskable timeout immediately. Begins counting time after receipt of second byte.

The designation "non-maskable" refers to the fact that the interrupt generated is on level seven.
This timeout is in fact maskable in that the 8041 can be told to keep it quiet for a while.

Cancel Non-Maskable Timeout
Command: $B2 (178 decimal)
Analogous to Cancel Delayed Interrupt; send the setup command followed by no data. Also

releases NMI if it was asserted. 68000 has to wait so many micro- seconds to be sure NMI was
released, but nowhere can I find the value of "so many". It is probably less than 10 msec.

Generate Non-Maskable Timeout
Not a command. Set bit 2 of Status register, indicating "not RESET key". This flag bit won’t be
overwritten even if RESET is pressed before the 68000 reads the status register, because the

RESET key is artifically delayed 1.6 msec from when it goes down. Assert NMIL. NMI will remain
asserted until either a system Reset or Cancel command occurs.

Beep

Command: $A3 (163 decimal)

Takes 2 bytes of data. Duration byte is the complement of the length of time to beep (00000000
= 2560 msec; 11111111 = 10 msec). Frequency byte is <= 63, where O means stop beeping and
63 is the highest frequency. The actual beep frequency will be 81.38 Hz times the value of the
frequency byte.

Auto-Repeat

Feature: All keys auto-repeat except RESET, SHIFT, CONTROL. Repeating starts after a given
key has been down longer than the specified delay.

Set Auto-Repeat Rate

Command: $A2 (162 decimal)

Takes one data byte which is 2’s complement of desired repeat rate. 0 = no repeat; 1 = 2550 msec;
255 = 10 msec.

SDG 314

Set Auto-Repeat Delay

Command: $A0 (160 decimal)

Takes one data byte which is 2’s complement of the required delay. 0= 2560 msec; 255= 10
msec.

Set Knob Pulse Accumulation Period

Command: $A6 (166 decimal)

The knob accumulates pulses for a specified period before interrupting the 68000 to report the
count. This command specifies the period with one data byte. The number sent is the number of
10 msecs in the period, with a funny behavior for a period of zero. 1 = 10 msec; 255 =
2550msec; 0 = 2560 msec.

The knob is normally scanned every 100 us; 200us when a key is detected; 500 us when a 10 ms
interrupt occurs.

Read Knob Counter

There is no command to do this; the knob must reach the end of its accumulation period and
send the data via an interrupt.

Generate Periodic System Interrupt

Not a command. The keyboard will interrupt every 10 msec when PSI is not masked. PSI
interrupts will occasionally be accompanied by real- time clock interrupts (ie bits in the Status
register will be set). It is possible to get one more PSI after masking it. The jitter in the PSI
interrupt could be as much as 2 msec.

Mask Interrupts

Command: 010xxxxx binary.

The five bits xxxxx each correspond to some excuse for the 8041 to interrupt. Sending a bit = 1
will suppress that interrupt when its condition arises; sending a zero will enable it.

bit 0 Mask keyboard and knob.
bit 1 Mask the RESET key.
bit 2 Mask the timer interrupts.
3
4

bit Mask the 10 ms periodic system interrupt.
bit Mask the "non-maskable timer interrupt".

Read interrupt mask
Command: $04 (4 decimal)

Sends the current interrupt mask back through the Data register.

SDG 315

Read Configuration Jumper

Command: $11 (17 decimal)

Sends back a value indicating which jumper on the mother board configuration is closed:

® Non-Detached Keyboard

b w N —~Oo

no jumper

J1
J2
J3
J4

0~ O

® Detached Keyboard

bit
bit
bit
bit
bit

W —-O

J3
J4
J5
J6
J7

(0 for large
(unassigned)
(unassigned)
(unassigned)
(unassigned)

J5
J6
J7
J8

keyboard, 1 for small keyboard)

Note

The unassigned jumpers are wired connected yielding a "0" in
the associated bit position. The remaining bits 5§ through 7 are
set to "0".

SDG 316

Read Language Code
Command: $12 (18 decimal)

Sends the keyboard language code back through the Data register. The values whose meanings
have been assigned are

¢ Non-Detached Keyboard

0 standard English keyboard

1 French 5 Katakana
2 German 6 Jumper J8
3 Swedish/Finnish 7 Jumper J10
4 Spanish 8 Jumper J11

® Detached Keyboard

The values listed above for the non-detached keyboard apply as well to the detached
keyboard for values zero through S.Jumper designation J8, J10, and J11 do not apply.
Actually, the implementation on the detached keyboard consists of three jumpers, JO, J1,
and J2. These are read during the power up or 68000 reset first scan of the keyboard and
not read again. A cut jumper indicates as a "1", therefore a Spanish keyboard should have
jumper J2 cut with JO and J1 uncut or connected. The remaining jumpers J4 through J7
are used as configuration jumpers as discussed above.

SDG 317

Keyboard Command

Naturally there’s a pattern buried in the preceding description. All the commands that involve
getting information from the keyboard/realtime clock are specific cases of just two commands.
The 8041 has 64 bytes of on-board RAM, and every byte can be read by the 68000.

Send the command 000xxxxx to address any byte in the lower 32 bytes of 8041 memory (xxxxx
is a number between zero and 32). The command will answer by an interrupt and the Data

register.

Send the command 001xxxxx to cause five bytes from the upper 32 to be copied down into the
timer output buffer, which can then be read by 000xxxxx. Mote that lxxxxx is the highest

Processing

location to be loaded; the lowest location is 1xxxxx-4

Now here is the use of every by
$0-%1 Scratch

$2 These bits are

0-2 used for deb

3 =] when the

4 =] when the

5 =] when the

6

7

=] when the
=] when the

$3 Matrix or scan add
$4 Another set of fla

0 =1 when keyb
] =] when RESE
2 =1 when user
3 =1 when 10 m
4 =] when "non
5 =] when it i
6 =] when larg
7 first tru
te: bits 6 and 7
keyboard.

No

$5 More flag bits:

=0 when SHIF
=0 when CTRL
=1 when it i
=] when time
=] when time
=] when time
not used

=] when time

~NO O, wNn —~ O

te of 8041 memory:

a set of flags:

ounce

non-maskable timer is in use
cyclic timer is in use

delay timer is in use

match timer is in use

beeper is on

ress of the key switch being scanned
g bits:

oard/knob are masked

T is masked
timer interrupts are masked

sec PSI is masked

-maskable timer" is masked

s time to auto-repeat

e keyboard is connected (detached kb)

e bit for auto-repeat (detached kb)
are not used with the non-detached

T key is down
key is down
s time to do a PSI
to do user timer interrupt
to do a knob interrupt
to send 68000 something it asked for

to do non-maskable timer interrupt

SDG 318

$6
$7

$8-$F
$10

$11

$12
$13-$17
$18-31A

$1B

$i1C
$1D
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27

$28-2C

$2D-$2F
$30-$31
$32-$33
$34-$36
$37-$39
$3A-$3C

$3D-$3F

~NOo O

Roll-over key save buffer
The current key that is down

The 8041's stack space
Reset debounce counter
Configuration jumper code
Language jumper code
The 5 bytes of timer output buffer. LSB is $13.
Scratch
Timer status bits:
The number of cycle interrupts missed
=] when a cycle is up
=] when a delay is up
=] when there was a real-time match
Current knob pulse count
Location to put data sent by 68000
Location for data to send to 68000
Six-counter for 8041 timer interrupt
Time to wait to start auto-repeating
Auto-repeat timer
Auto-repeat rate
Beep frequency
Beep timer (counts up to zero)
Knob timer
Knob interrupt rate
If bit 6 is a one, the 8041 timer has interrupted
Not used
Three bytes of time-to-day; LSB is $2D
Two bytes of days integer: LSB is $30
Two bytes of "non-maskable timer". LSB is $32.
Three bytes of real time to match; LSB is $34.
Three bytes of delay timer; LSB is $37
Three bytes of cycle timer; LSB is $3A

Three bytes of cycle timer save; LSB is $3D

SDG 319

Processing an 8041 Service Request

This stuff goes on at priority level one. Either the 8041 will have interrupted, or the request for
service may have been noticed by polling bit zero of Status. In either case bit zero of Status is
true.

® When the sequence starts, read Status to determine the nature of the service request.

® Always read Data once if there is no data associated with the service. This clears the
interrupt. If N (greater than zero) bytes are expected from Data in response to a request,
read Data EXACTLY N times. Reading too much or too little data can cause missed

interrupts or misinter- pretation of interrupts.

e For each subsequent byte of data that goes with the message, the 8041 will interrupt once.
Your code needs to "know" how many data bytes to expect.

a. Wait for bit one of Status true (or until interrupted).

b. Read the Data register to get data and clear interrupt.

SDG 320

For level one interrupts, the most significant four bits of Status tell the nature of the service

request:

Status

0000xxxx
0001xxxx
0010xxxx
001 1xxxx
0100xxxx
030 Txxxx
0110xxxx
011 1xxxx
1000xxxx
100 Txxxx
1010xxxx%
107 Ixxxx
1100xxxx
11071 xxxx
1110xxxx

TTTIXXxXx%

Interpretation

Not used.

10 msec Periodic System Interrupt (PSI).

Interrupt from one of the special timers.

Both PSI and special timer interrupting.

The Data register contains a byte requested by 68000.

Not used.

Not used.

Power-up reset and self test completed successfully.

Data

Data

Data

Data

Data

Data

Data

Data

contains

contains

contains

contains

contains

contains

contains

contains

key address (both SHIFT and CTRL pressed).
key address (CTRL only).

key address (SHIFT only).

key address (no SHIFT or CTRL).

knob count (SHIFT and CTRL).

knob count (CTRL only).

knob count (SHIFT only).

knob count (no SHIFT or CTRL).

Knob and Timer Details

The knob count is the number of pulses accumulated since the last knob interrupt. The number
counts up to a magnitude of 127 then saturates; it does not wrap around. The value returned is a

2’s complement

signed byte,

which is negative for clockwise turns and positive for

counterclockwise. This is probably counter-intuitive.

SDG 321

For special timer interrupts (match on time, delayed interrupt, cyclic interrupt) the Data register
is defined:

® bit 7 =1 means a time match interrupt.

® bit 6 =1 means a timed delay interrupt.

® bit 5 =1 means a cyclic timer interrupt.
Any combination of these bits may be set. If bit §Sis set, then bits 4 through O indicate how
many cycles of the cyclic timer have occurred since the interrupt was requested. This 1s relevant
if the 68000 was running for a long time at a higher interrupt level and so did not service the
keyboard. The "missed cycle" counter saturates at 31.
The Keyboard at Power-up and Reset
The 8041 powers up in the following state:

® The auto-repeat is random.

® The knob interrupt rate is random.

© The real time is random.

¢ All the 8041 interrupts are masked.
The 8041 first does a checksum on its ROM, and examines the language and configuration
jumpers. If any of these are wrong or invalid, it will keep on trying until they get right (usually
forever). When things do get right, the 8041 interrupts on level one, sending $7 in the upper half
of the Status register and $8E in the Data register.
When the 8041's reset line is pulled, the following defaults are established:

o All real time clock functions and beeper off.

® Pending interrupts cancelled.

® All interrupts masked.

¢ All pending knob pulses discarded.

e All saved keystrokes (roll-over) discarded.

Interrupt level one will be asserted for about 20 usec after the reset line goes away.

SDG 322

Pascal Interface to the Keyboard

Module KBD (in INITLIB) exports several procedures which can be used to send commands or
read data from the keyboard, avoiding the messy stuff.

Procedure BEEP generates a standard tone, which is the same as you’ll get by writing an ASCII
"bell” character to the standard file OUTPUT. Procedure BEEPER lets the caller specify the tone
and duration. See the relevant keyboard command discussion (3A3) for interpretation of the
parameters.

. Procedure KBDCOMMAND takes a command byte followed by an integer specifying the
number of data bytes "numdata" to be sent, and then five byte arguments. The first numdata
parameters will be written to the 8041; pass zeros for the remaining parameters.

. Function READS8041BYTE reads a single byte of data back from the 8041 using proper
protocol. The function expects a keyboard service routine (KBDISR in the same module) to
process an interrupt and put the data byte into a variable. Thus you can’t call READ8041BYTE
from within an ISR ~-- it will hang, because the keyboard generates level one interrupts.

SDG 323

SDG 324

Chapter 13
The Displays

Introduction

The displays are a much simpler subject than the keyboard, but the 9816, 9826 and 9836
displays are all slightly different. This chapter covers all three displays. References to "the
display" should be taken to mean all three versions.

The display is a magnetic-deflection raster device which appears in the 68000’s address space as
a memory-mapped IO device consisting of dual-port memories and some control registers. The
hardware is relatively simple and conceptually quite similar across the family. Alpha characters
are generated by a ROM containing the raster bit map for each displayable character. Graphic
images are stored as rasterized pixel maps which are scanned and displayed. Alpha and graphic
images can be displayed simultaneously. '

The CRT control signals are generated by a 6845 chip, which is a member of the 6800 family

peripheral devices. The 68000 bus and instruction set allow use of 6800 family devices. System
software must correctly set up the control registers of the 6845.

SDG 325

Display Capabilities
9836 Alpha

Dimensions: Screen size 300mm diagonal with useable area about 160mm x 210 mm. Up to 2§
lines of 80 characters can be displayed at a time, although the Pascal system uses the bottom line
for a "typeahead buffer" so normally 24 user lines are available. This typeahead buffer can be
moved by software operations.

Character set: Characters are defined by a ROM containing 256 different characters. The 9836
can display all 128 ASCII characters, as well as the HP Roman extension and Japanese
characters. The cell for Alpha characters is 9 x 15, with most characters fittingina 7 x 9 cell. A
typical character ("A") is 1.9 mm wide by 3.7 mm high, although more dots may be used for
descenders. Cells are displayed so that there are two "blank" dots between character cells which
are adjacent in the horizontal direction.

Attributes: Characters can be displayed in normal, half- bright, inverse video and blinking. Any
combination of these attributes can be employed.

Enabling: The Alpha display is turned on or off by writing a byte to the LSI controller.

9836 Graphics

Dimensions: The graphics raster is 512 dots wide and 390 dots high. The graphics screen extends
outside the Alpha screen by 16 graphics dots on each side, and extends 15 scan lines vertically
above the Alpha display. Alpha and graphics dots do not overlay; one graphic dot equals 3/2 of
an Alpha dot.

What happens when graphic and alpha rasters are both displayed? Graphic pixels will invert any
coincident FULL bright pixel in the alpha display. Graphic pixels will overwrite (in FULL
bright) any coincident HALF bright pixel in the alpha display.

Enabling: Graphics display is turned on if its memory is accessed with address line A15 low, and
turned off if A15 is high.

R
|

I I

! |

[|

(I [390 1375

| 19 char cell | |graphic |Alpha
(. | | scan |scan

[[lines flines
| f<--m--- 720 Alpha dots ---------- 1| | |

| ¢====- 480 graphic dots --------- 1| | |

| ¢=f------ 512 graphic dots ~---------- [->] | |

(- [v v

CRT VIEWING AREA

SDG 326

9826 Alpha

Dimensions: 190mm diagonal, with useable viewing area about 130mm x 100mm. Up to 25 lines
of 50 characters can be displayed, although Pascal uses the bottom line for a typeahead buffer
(see 9836 discussion above).

Character set: Same as the 9836 character set, except that certain characters are displayed in
slightly different shapes. The character cell is 8 dots wide by 12 dots high, and character cells
are displayed on the CRT adjacent to one another (no extra spacing dots between cells; there are
8x50=400 horizontal Alpha dots). A typical character is represented in a 5 by 7 dot matrix, but
more dots may be used for descenders.

Attributes: The 9826 has no character attributes such as blinking or inverse video. Since the
graphic and Alpha displays are identically sized and spaced and dots are exclusive-or’ed together,
it is possible to "simulate" inverse video by turning on graphics dots "behind" the Alpha screen
positions.

The bottom n lines of display can be set up to display in half-bright inverse video. This feature
has been used in some applications to visually separate soft key labels from the remainder of the

screen.

Enabling: The Alpha display is turned on or off by writing a byte to the CRT controller.

9826 Graphics

Dimensions: Graphic and Alpha dots exactly overlay. The raster is 400 dots wide by 300 dots
high. Dot pitch is the same in both vertical and horizontal directins (about 0.3mm per dot).

Normally graphic and Alpha dots are exclusive or’ed together, that is, an Alpha dot will invert a
graphic dot and vice-versa. In the "soft key area" at the bottom of the screen, graphic dots are

full bright over the half-bright background (inclusive or’ed with Alpha).

Enabling: The graphic display is turned on if its memory is accessed with address line A15 low,
and turned off if A135 is high.

SDG 327

9816 Alpha

Dimensions: 240mm diagonal, with a useable area of about 160mm x 120mm. Up to 25 lines of
80 characters can be displayed; Pascal uses the bottom line for a typeahead buffer, see 9836
discussion.

Character set: Same as the 9826 Alpha display. The character cell is 8 dots wide by 12 dots high,
but characters are displayed in a 10 by 12 matrix (ie there are 800 horizontal Alpha dots).
Usually the 2 extra dots are zero. A typical character is 7 by 8 dots, so there are three dot spaces
between character cells.

Attributes: The display has no character attributes such as blinking or inverse video. The bottom
n lines can be set up to display in inverse video; this has been used to visually distinguish the soft
key area from the rest of the screen. In the soft key area, graphic dots are inverted.

Enabling: The Alpha display is turned on or off by writing a byte to the LSI display controller.

9816 Graphics

Graphics is an optional feature in the 9816, not necessarily present in every mainframe.
Dimensions: The graphics raster is 400 dots wide by 300 dots high. Graphics dot pitch is the
same horizontally and vertically (about 0.4mm per dot), with Alpha dots half as wide as graphic

dots. Graphic dots are exclusive ored with Alpha dots on the display (they invert one another).

Enabling: The graphics display is turned on if its memory is addressed with address line A 15 low,
and turned off if A1S5 is high.

SDG 328

Alpha Screen Driver Considerations

The general process by which Alpha characters are displayed on the CRT is as follows. There is a
dual-port RAM beginning at $512000 in the 68000s address space. The 68000 stores in
consecutive odd-numbered bytes of this memory characters which it wants displayed on the
Alpha screen. The CRT controller circuitry reads these bytes sequentially, starting at an address
programmed into the 6845 controller, and extracts from a ROM the pixel patterns to be
displayed as the raster sweeps across the screen. Characters from sequential odd-numbered Alpha
RAM locations are displayed starting at the upper left-hand corner of the screen, sweeping right
until the screen line is full, then dropping to the leftmost position of the next lower screen line.

In the 9836, the even-numbered byte of each word of Alpha RAM controls the highlight
attributes (inverse video, blinking etc); the Alpha RAM for the 9836 is really 2k words or 4k
bytes in size. In the 9826 and 9816, there 1s no highlight byte and only the odd bytes are
present; the memory is 2k bytes in size. Since a "line" in the 9826 is 50 characters wide, there is a
good deal of extra memory in the Alpha RAM on that machine.

A programming note when accessing Alpha RAM. In the 9826 and 9816, a bus error will occur
if the 68000 tries to access the even-numbered bytes with a byte-wide operation, since they
aren’t there. The easiest way to write code which will work properly whether or not the
highlight bytes are present (ie will work on any flavor of machine) is to always store both the
highlight and data byte together in a word-wide operation. Word accesses to Alpha RAM will
always work properly, whether for reads or writes.

Because the Alpha RAM is right on the 68000 bus, operations such as scrolling and window
management are easily implemented in software. To scroll a region of the CRT, the 68000
simply shifts the whole region "up" or "down" by copying the data and highlight bytes. This is a
very fast operation if done with the move- multiple (MOVEM) instruction.

Controlling Character Attributes

In the 9836 only, Alpha characters can be displayed using any combination of these attributes:
inverse video, blinking, underlined, half -bright. The display attributes of a character (which is in
Alpha RAM but looks to the 68000 like an odd-numbered byte of its address space) are stored in
the immediately preceding even-addressed byte of 68000 memory (Alpha RAM).

The attributes are governed by the low-order 4 bits of the attribute byte as follows:

bit 0 = 1 iff inverse video
bit 1 = 1 iff blinking

bit 2 = 1 iff underlined
bit 3 = 1 iff half bright

SDG 329

The 6845 CRT Controller

This is an LSI device which does most of the dirty work in generating the visible display you see
on the Alpha screen. It sequentially steps through the Alpha RAM, fetches the scan-line pixel
maps from the character generation ROM, and generates the basic sweep timing signals.

It is told "what to do" by means of a number of byte-wide registers which can be written into by
the 68000 but not read. In the 9826 reading them produces a bus error, since they are not wired
to generate the correct data acknowledgement bus signals for reading. In the 9836 no bus error
is caused but the data returned is garbage.

Writing to a 6345 register is a two-step process. First you must write, to address $510001
(5308417 decimal), a byte whose value is an integer between zero and seventeen; this selects
which of the eighteen controller registers will to be written into next. Then the byte of data to
be sent to the controller is written into address $510003 (5308419 decimal). See the example
program below.

The first 10 registers of the 6845 are initialized at boot time with certain magic numbers which
are characteristic of the particular mainframe and whether it is refreshing at 50 or 60 hz. Don’t
change these values; it is possible to damage the CRT drive circuitry by putting in wrong values.

Some of the remaining registers are potentially useful

Registers 10 and 11

These registers control the height of the cursor, its blink rate, and whether blinking is enabled.
(The character position of the cursor is controlled by registers 14 and 185, see below). The height
of the cursor is just the number of horizontal scan lines of a character cell during which the
cursor is illuminated. For instance, the 9836 character cells are displayed in a matrix 15 dot
rows high; the cursor can be "turned on" at its current character position during the scan of cell
dot rows 0 through 14 in order to have a cursor as tall as an entire character cell. (For the 9816,
use 0 through 13 instead of 14.)

Biis 0-4 of register 10 select the starting dot row of the cursor; row zero is at the top of the
character cell. Bit § is set to zero if the desired blink rate is 1/16 of the vertical frame rate (slow
blink) or set to one for a blink every 1/32nd of the vertical frame rate (fast blink). Bit 6 is zero
if the cursor should not blink at all; one if the cursor should blink fast or slow. Here is the full
table of meanings for bits 5 and 6:

6 5 meaning

0 o non-blinking cursor

0 1 cursor non-display mode

1 0 blink at 1/16th field rate
1 1 blink at 1/32nd field rate

Bits 0-§ of register 11 select the ending row of the cursor. If the ending row number is smaller
than the starting row number, no cursor appears at all. However, that is not the approved way to
turn off the cursor; instead use the cursor non-display mode of the 6845, set by bits 5 and 6 of
register 10.

You might want to try the following program to see its effect on the cursor shape. The program
expects a register number in decimal, but the register value in binary. The functions HEX and

SDG 330

BINARY are standard in HP Pascal. The normal cursor setting for the Pascal cursor is register
10=01001100 and register 11=00001101.

$sysprog$

program cursorsw (input,output);

var
regselect [hex('510001°)]: char;
crtreg [hex('510003")]: char;

reg,byte: char;
X: integer;
instr: string[50];

(X Note: the compiler accesses type 'char’ as a byte,
but type '0..255° as a word; it won't make an
unsigned subrange. X)

begin
repeat
writeln;
write{ What register number (enter in decimal)? ');
readln(x);
if (x<10) or (x>15) then writeln(’'Bad register number’')
else
begin
reg := chr(x);
write('Write what value (enter 8-bit binary pattern)? '};
readln(instr); byte := chr(binary(instr));

regselect := reg;
crtreg := byte;
end;
until not true;

end.

Registers 12 and 13

The 6845 must be told which byte of the 2k of Alpha RAM is the "first" byte (the one displayed
at the upper left corner of the CRT). This address is presented as a 14-bit integer; the lower 8
address bits go to R13, the upper 6 bits to R12. (Of course, R12 expects these as a byte with the
two highest bits zero.) The values are stored in a manner completely analogous to the method
just shown for cursor size control.

Why should you care about this? Only the lower 11 bits of address are needed to span the 2k
bytes of Alpha RAM. The upper three bits of the addresses outputted by the 6845 as it
sequentially scans Alpha RAM can be used to get special control capabilities. The programmer
can affect the addresses which go out by appropriately setting the scan start address.

In the 9836 design, the three upper bits are designated FLD (bit 11), KEYS (bit 12) and TEXT
(bit 13). By definition, when the FLD line is high, characters are being displayed in the "soft key
area" near the bottom of the screen, and when FLD is low characters are being displayed in the
"text" area. The 9836 uses the KEYS and TEXT bits to turn on/off either or both sections of the
screen:

SDG 331

KEYS TEXT function

0 Neither text nor soft key areas are displayed.
1 Text area displayed, soft key area off.

0 Soft key area displayed, text off.

1 Both areas are displayed.

—_——_, D O

The KEYS and TEXT signals are "statically" controlled by the choice of start address written to
R12 and R13. The FLD signal is also governed by the start address, but dynamically: it may
toggle from off to on as the scan address increments through its range, indicating where the soft
key area starts.

So, by changing the start address, system software can govern the appearance of the soft key area
and text areas, or turn off the Alpha display altogether. Note however that changing the start
address also changes which character of Alpha RAM appears at the upper left corner of the
screen!

The comments above apply equally to the 9826 and 9816. When using this information, don’t
forget that an 80 character wide screen requires different setup values than a 50 column screen.

Registers 14 and 15

These registers control the cursor position. R14 is the high byte of the address of the cursor
within the Alpha RAM address space, and R135 is the low byte of the address. Note that the 6845
compares the entire 14-bit scan address with the 14-bit cursor address to determine when the
raster is over the cursor position.

SDG 332

Graphics Screen Driver Considerations

The Graphics display is a much simpler subject. Again it is simply a dual-port memory accessible
both by the 68000 and by the CRT display circuitry.

9836 9826 9816
Width (mm) 210 130 160
Height (mm) 160 j00 120
Dots width 512 400 400
Dots height 390 300 300
Dot spacing (mm) 0.4 0.3 0.4
Start address $530000 $530001 $530001
Ending address $537FFF $537FFF $537FFF
Size of Graphics mem 32k 16k 16k

As this table indicates, the 9836 has much more Graphic memory than the other family
members. 9836 Graphic memory is accessed as word-wide, while the 9826 and 9816 are accessed
as odd bytes. A little calculation will show that each machine has slightly more memory than
needed for graphic display. The extra bytes can be used as ordinary read/write memory, but
remember that access to them is slowed by the dual-port usage of the memory.

The display operation is very simple. Bytes are accessed sequentially, and the bits in a byte are
shifted out onto the Graphics raster with the most significant bit to the left. The first byte
appears at the upper left hand corner, with its most significant bit being displayed first. The
9836 uses 64 bytes per raster line; the 9826 and 9816 use 50 bytes per line.

When accessing Graphics memory, bit 15 of the address is used to control whether Graphics is
displayed or not. This means that Graphics memory is "doubly mapped" -- it will respond to the
addresses beginning at $530001, and also to $53FFFF. Any access in the $53Fxxx range will
turn OFF the display; any access in the $530xxx range will turn ON the display.

SDG 333

Pascal Access to the CRT

The Pascal system provides two levels of access to the CRT: through the standard file OUTPUT,
and by means of procedures and variables exported from the modules comprising the CRT and
keyboard drivers.

File System Operations

The standard file OUTPUT, or any text file opened to the volume named '"CONSOLE?, will write
to the Alpha CRT. Most characters are displayed, with the mapping from byte value to character
image being a function of the keyboard language jumpers discussed in the previous chapter.
However, some characters have particular interpretations.

character effect
1 homes cursor to upper left corner.
3 terminates current call to driver.
7 beeps.
8 moves the cursor left one place if possible.
9 clears from present cursor position to end of line.
10 moves the cursor down one place if possible.
11 clears the screen from present cursor to end.
12 homes cursor and clears screen.
13 moves cursor to left end of line.
28 moves the cursor right one place if possible.
31 moves the cursor up one place if possible.
128-143 cause highlighting on 9836; see comments below.

The choices of these characters are largely historical in nature, and don’t make as much sense as
most people would wish.

In the Pascal system on the 9836 only, the various character highlighting attributes can be
activated by writing to the standard OUTPUT file the characters 129 through 143. Once
activated, the Pascal CRT driver continues to apply the selected attributes until they are disabled
by writing character 128.

The significance of the values is straightforward; as explained under the subheading "Controlling
character attributes" above, there are 16 possible combinations of inverse video, blinking,
underscore and half-bright attributes. Each control character is simply 128 plus the selected
attribute combination.

program flashes (output);
begin
writeln{chr(129), inverted’ ,chr(128));
writeln(chr(130), 'blinking’ ,chr(128));:
writeln{chr(132), underlined’' ,chr(128));
writeln{chr(136),6 'half-bright’ chr(128));
writeln;
writeln(chr(143), deluxe to go with everything’ ,chr(128));
end.

SDG 334

Scrolling

Pascal treats the CRT as having 24 lines of 50 or 80 characters. Output is always written to the
current cursor position, and then the cursor is advance one place. After passing the right edge of
the screen, the cursor wraps to the next line. After passing the lower right-hand corner, the
screen is scrolled up one line the bottom line is cleared, and the cursor is placed at the left edge
of the bottom line.

The screen will also upscroll if a linefeed is written in the last line, and will downscroll if a US
character is written in the top line.

It is possible to change the dimensions of the CRT scrolling area. This is done by changing
SCREENHEIGHT and its counterpart SYSCOM™HEIGHT, and changing MAXY. MAXY is the
number of the line from which scrolling occurs; ie the screen scrolls up whenever a writeln is
done to line MAXY.

Lower-Level Access to the CRT

At this point we begin to discuss features which can be gotten at through the KBD module
(which is also the CRT driver). These features are of course in no way part of the HP Pascal
language; they are just goodies that come with the Pascal system.

Cursor Motiorn
There are at least three ways to move the cursor around.

e Write to the 6845 CRT controller directly; this is not a good idea, because the Pascal system
software will then not know what you did. This technique also does not allow you to find
out where the cursor is, since the computer cannot read the contents of the CRT controller
registers.

® Use the Access Method requests for GOTOXY or GETXY, passing the OUTPUT file or a
textfile opened to ’CONSOLE. as the FIB. This will work neatly with terminals, the
terminal driver can translate the AM calls into escape sequences, and it appears nicely
orthogonal within the hierarchical structure of the File System.

® Use the FS level calls FGOTOXY and FGETXY. These procedures each take three
parameters: a file name (actually a FIB) and two integers:

FGOTOXY(F,0,0) move the cursor
TGETXY (F,XP0S,YPOS) returns cursor position
Note that FGOTOXY will not put the cursor out of the limits of the scrolling area, and

FGETXY will return the actual cursor position as opposed to some invalid location which may
have been demanded in a call to FGOTOXY.

SDG 335

Interrogating the Dimensions of the CRT

The variables SCREENWIDTH and SCREENHEIGHT give this information.

Writing Directly to Screen Locations

The type CRTWORD is a record whose layout corresponds to the highlight and data bytes in
Alpha RAM. Type SCRTYPE is an array of CRTWORD:s indexed [0.maxint].

The variable SCREEN points to an SCRTYPE; it is correctly set up by the Pascal system, so that
SCREEN"{0] is the CRTWORD at the upper left corner of the display. Therefore,

n

X will write 'X° in the upper left
corner of the CRT.

screen™[0].character

screen™[1].character = 'Y’ will write 'Y’ in the next
{horizontally adjacent) character.
screen™[n¥screenwidth].character := 'Z°

will write 'Z° in the leftmost
character of the n-th line.

Fiddling with the Typeahead Buffer

The typeahead buffer actually stores keypresses in the CRT memory itself, which explains why
keys become visible in line 25 when typed. Type KEYBUFFERTYPE could just as well be
identical to SCRTYPE. The variable KEYBUFFER points to the last line of the display area.
KEYBUFLENGTH tells how many keystrokes are waiting to be read; it is zero when the buffer
is empty. KEYBUFSIZT tells the allowed length of the typeahead buffer, which is a function of
the screen width.

If you wished to use the 25th display line for some purpose of your own, you could allocate a
substitute keybuffer from the heap (using NEWBYTES from module ASM to get the desired
amount of space; get 2 bytes of space for every one character of desired typeahead capacity since
each keybuffer entry takes one word) and point KEYBUFFER to the substitute. Set
KEYBUFLENGTH and KEYBUFSIZE. KEYBUFSIZE has a counterpart which should also be
set for the sake of safety: SYSCOM”~KEYBUFFERSIZE. The first cell of the buffer is
KEYBUFFERM0].

However, just moving KEYBUFFER is not sufficient. In SYSCOM" there is a copy of the pointer
to keybuffer called KEYBUFFERADDR. You can set it to the new keybuffer address using
either the ORD function or a trick record with one field a pointer and the other an integer. You
also have to move the "program status area" at the lower right corner of the display. This is
where the "run light" appears, along with debugger display of the current line number. This area
is accessed by another array of CRTWORD pointed at by variable PROGSTATEINFO and the
counterpart SYSCOM” PROGSTATEINFOADDR. You must move it just like KEYBUFFER was
moved, allocating 8 CRTWORDs worth of space somewhere.

The Debugger also puts information in the lower right corner of the CRT. Unfortunately it
doesn’'t use the PROGSTATEINFO pointer; it uses the copy in SYSCOM™. Moreover, the
Debugger makes its own copy of this information at the time it installs inself from INITLIB. In
effect this means that if you move PROGSTATEINFO” and use the Debugger, you're liable to

SDG 336

get some surprises. It’s hard to predict exactly what these surprises might be (if they were
predictable they wouldn’t be surprises?)
Turning the Screens On and Off

The exported variables ALPHASTATE and GRAPHICSTATE are true when the respective
screens are visible.

To change the state of either screen, use the system programming language extension CALL on
the exported hook procedures TOGGLEALPHAHOOK and TOGGLEGRAPHICSHOOK:

call(togglealphahook);

Dumping the Alpha or Graphic Screens

To programmatically force the displays to be dumped to the standard system printer, call the
exported hooks DUMPALPHAHOOK and DUMPGRAPHICHOOK:

call(dumpgraphichook);
You may also wish to implement your own "dump" keys, sending the output to a different
display device such as a non-HP graphics printer. After implementing the procedure which will

dump the output, assign its name to the appropriate hook procedure variable. These variables get
called automatically when the operator presses <shift>ALPHA or <shift>GRAPHICS.

SDG 337

SDG 338

Chapter 14
The MISCINFO File

Introduction

Certain characteristics of the Pascal human interface can be altered by an optional data file
called MISCINFO. This file is read in after INITLIB is loaded but before TABLE or STARTUP
runs.

The system expects to find MISCINFO, if at all, on the boot volume. If this file is found, it
consists of one record of type ENVIRON (also defined in module KBD). The contents of an
ENVIRON record determine such things as:

e Maximum X and Y dimensions of the CRT.

e Constants used in setting up the 6845 CRT controller chip.

e Aaddress of CRT controller chip and CRT memory buffer.

o Address of keyboard typeahead buffer.

e Address of program state information area (debugger info at lower right corner of
typeahead line on CRT).

e Character sequences sent to the console device for some standard operations like moving the
cursor up, down, left, right; deleting a character; and the EXECUTE ("ETX") and
shift-EXECUTE ("ESC") functions.

A little study of the standard constants used (when no MISCINFO is present) to set up the CRT
and keyboard will be enlightening.

If you wish, for instance, to use a terminal as the human interface for your workstation, you can
do so. In fact that example is presented in the discussion of the IO subsystem later in this book. If
you try to do what the example presents, youwll have to create a MISCINFO file with data
describing the characteristics of the terminal you use.

The following program is an example of how to create a MISCINFO file. You might wish to do it

more simply, say by declaring a file of ENVIRON and writing out a record with just the values
you want.

SDG 339

The Listing

program setmiscinfo(input K output);
import sysglobals, kbd,fs;

var
keyboard: text;

procedure change_environ;

const
default9826 = crtconsttype [64,
default9836 = crtconsttype[114,
newmod80 = crtconsttype[103,
var

lsyscom: environ;
lfilename: string[40];
e: file of environ;
answer: char;
instring: string[80];

50,49,10,25,9,25,25,0,11,74,11];
80,76,7,26,10,25,25,0,14,76,13];
80,79,2,25,9,25,25,0,11,74,111;

function getval(int,x,y:integer):
var

n . integer;
begin

getval := int;

instring := strltrim(instring);

if strlen(instring) = 0 then
begin
fgotoxy(input x,y);
readln{instring);

end;
instring := strltrim(instring)
if strlen(instring) > 0 then
begin

strread{instring,1,n,int);
strdelete(instring,1,n-1);
end;
fgotoxy(input ,x,y);
writeln(int : 1,chr(9));
getval := int;
end;

procedure setparameters:

var
i : integer;

begin

with lsyscom do
begin

crttype = 0;
with miscinfo do
begin

‘nobreak:=false;
stupid :=false;
slowterm:=false;
hasxycrt:=true;
write(' Internal CRT ? ');

'

SDG 340

integer;

repeat

read(keyboard,answer);
until answer in ['Y','yv',’N’,'n’];

writeln{answer);

haslccrt:=answer in ['Y','y’'];
{for displaying long prompts}

hasclock:=true;
canupscroll:=true;

candownscroll:=true;

end;

with crtctrl do
begin

rlf.=chr(31);
ndfs:=chr(28);
eraseeol :=chr(9):
eraseeos:=chr(11);
home:=chr(1);
escape:=chr(0);
backspace:=chr(8);

fillcount:=10;
clearscreen:=chr(0):
clearline:=chr(0);

0 to 8 do prefixed[i]:=false;

for i:=
end;

with crtinfo do

begin

)

writeln('A 9826 default 50 character screen’);
writeln('B 9836 default 80 character screen’);

writeln;

write{ What CRT type?

repeat

"),

read(keyboard,answer) ;

if answer in ['a’..’'z’] then
answer := chr(ord(answer)-32):
until answer in ['A’..'E'];

writeln(answer);
case answer of

A

. begin

height

width

crtmemaddr
crtcontroladdr
keybufferaddr
progstateinfoaddr
keybuffersize
crtcon

end;

‘B’

begin

height

width

crtmemaddr
crtcontroladdr
keybufferaddr
progstateinfoaddr

24;

50;
5316608;{512000
5308417, (510001
5319008; {512960
5319092, {5129B4
42,
default9826;

24,
80;
5316608; {512000
5341185;{518001
5320448; {512F00
5320592 {512F%0

SDG 341

hex}
hex}
hex}
hex}

hex }
hex}
hex}
hex }

keybuffersize
crtcon
end;
end;

writeln;

12;
default9836;

writeln(’'Would you like to edit the addresses or’');

write
repeat
read(keyboard,answer) ;
if answer in ['a’ .
answer
until answer in ['Y','N’];
writeln(answer);
if answer Y’
begin
answer := 'N’;
while answer <> 'Y' do
begin

then

{'the control register constants?

")

.’z] then
chr{ord(answer)-32);

setstrlen(instring,0);

write (chr(12));
fgotoxy(input,0,1};
writeln(height
writeln('width
writeln{ crtmemaddr

writeln(’ crtcontroladdr
writeln(keybufferaddr
writeln(’'progstateinfoaddr :
writeln(keybuffersize

writeln(crtcon[0]
writeln{ 'crtcon[1]
writeln('crtcon[2]
writeln('crtcon[3]

writeln{ crtcon[4]
writeln{(crtcon[5]
writeln{(crtcon[6}
writeln('crtcon[7]
writeln(crtcon[8]

writeln('crtcon[9]
writeln('crtcon[10]
writeln(crtcon[11]

height

width

crtmemaddr
crtcontroladdr
keybufferaddr
progstateinfoaddr
keybuffersize

crtcon{0]
crtcon{1]
crtecon[2]
crtcon[3]
crtcon[4]

' height:1);

" width:1);

' crtmemaddr:1);

' crtcontroladdr:1);

* keybufferaddr:1);

' progstateinfoaddr:1);
" keybuffersize:1);

“erteonf[0]:1

*ertcon[1]:1):
"erteon[2]:1);
"erteon[3]:1);
"ertcon[4]:1);
*,ertcon[5]):1);
" crtcon[6]:1);
"Lertecon[7]:1);
", crtcon[8]:1);
" ertcon[9]:1);
“Lertcon[10]:1);
"erteon[11]:1);

getval(height, 21.,1);
getval (width, 21,2);
getval (crtmemaddr, 21.,3);
getval (crtcontroladdr, 21,4);
getval (keybufferaddr, 21,5):
getval(progstateinfoaddr,21,6);
getval (keybuffersize, 21.,7);
getval(crtcon[0], 21.8);
getval(crtcon[1], 21,9):
getval{crtcon[2], 21,10);
getval (crtcon[3], 21,11);
getval(crtcon[4], 21,12);

SDG 342

crtcon[5] := getval(crtcon[5], 21,13);

crtcon[6] .= getval(crtcon[6], 21,14);
crtcon[7] 1= getval(crtcon[7], 21,15);
crtcon[8] .= getval(crtcon[8], 21,16} ;
crtcon[9] 1= getval(crtcon[9], 21,17);
crtcon[10] .= getval(crtcon[10], 21,18);
crtcon[11] c= getval(crtcon[11], 21,19);
writeln;
write ('0K? ');
repeat

read(keyboard,answer);

if answer in ['a’.."'z'] then

answer := chr(ord(answer)-32);

until answer in ['Y','N'];
writeln(answer);

end;
end;
down{LF}:=chr(10); up{US}:=chr(31); right{FS}:=chr(28);
flush{ACK}:=chr(6); eof{etx}:=chr(3); left{BS}:=chr(8);

stop{DC3} :=chr(19); break{DLE}:=chr(16): badch{?}:=chr(63);
chardel{BS}:=chr(8); altmode{esc}:=chr(27);
linedel{DEL}:=chr(127);

prefix:=chr(0); etx:=chr(3); backspace{BS}: =chr(8);
cursormask := 0; spare := 0;
for i:= 0 to 13 do prefixed[i]:=false;

end;

end: {with lsyscom™}
end; {setparameters}

begin (Xchange_environX)

setparameters;

writeln;

writeln(Enter name for MISCINFO file’);
write (' (default is #3:MISCINFO) ? ');
setstrlen(lfilename 0);
readln(lfilename)

if strlen(lfilename) = 0 then 1filename := '#3:MISCINFO':
rewrite(e,lfilename);

e™: =1lsyscom;

put(e);

close(e, 'lock’);
end (*¥change_environX):

begin

reset (keyboard, '#2');
change_environ;
end.

SDG 343

SDG 344

Chapter 15
Internal Disc Drives

Floppy Control Board

This chapter discusses the interface to the mini-floppy drive which is built into your 9826A or
9836A. The sub-assemblies which comprise the built in mass storage include:

1. 9130K Double-sided, double-density floppy drive
2.09826-66561 or 09826-66562 Floppy control board

The 09826-66561 control board was used in early 9826As, and is capable of controlling a single
disc drive. As of this writing, the 09826-66562 drive control board is the standard control board
for the 9826A and 9836A, and can control two disc drives. Software interface to the boards is
the same except that a second drive can be addressed by setting the appropriate bit in the
extended command register on the 09826-66562.

Theory of Operation

The 09826-66561 and 09826~66562 floppy control boards are based around an Large Scale
Integration (LSI) floppy drive controller chip. The chip is a part of the Western Digital
Corporation FD179X family of controller chips or equivalent.

The floppy control board is designed to interface the 9826/36 bus with up to two 5.25 inch
double-density, double-sided drives. The drive has 270 Kbytes of capacity when formatted to
the HP Logical Information Format (LIF) standard. The actual data transfer rate is 16 Kbytes
per second with discs which are formatted to interleave one and default track to track stagger.

The standard disc is formatted (per initialization drivers) with 16 sectors per track, two physical
tracks per cylinder, and thirty five physical cylinders. As a result, there are 35 cylinders X 2
tracks/cylinder = 70 physical tracks which are available. However, four of the 70 physical tracks
are spares for the initialization driver to use if defective tracks are found during initialization.
If no spares are needed during initialization, four additional tracks are written after the last user
track. Because of this, only 66 logical tracks are available for the user.

Usually, there are no tracks spared during initialization. In this case, the logical track address is
the same as the physical track address. When a defective track is found, it is spared. That is, the
physical track is skipped over, and the next available good physical track address is used for the
next logical track.

Addressing

The address space of the internal mini-floppy is defined as 440000 hex (4456448 decimal) to
44FFFF hex (45219783 decimal). The space is decoded by the 9826/36 motherboard to a single
line called chip select floppy (CSF).

SDG 345

Data transfers

The board has its own internal bus which is used to transfer data to and from the LSI floppy disc
controller and the board’s 256 byte RAM buffer. Usually the internal bus is connected to the
system bus. However, there are some times that the internal bus is "broken off" of the system bus
during command execution. During these times the operating system cannot read from or write
to any of the memory or registers on the controller board except the extended command and
extended status registers.

A state machine on the controller board coordinates data transfers between the floppy disc
controller chip and the the 256 byte RAM buffer. This allows the operating system to perform
other activities while data is being transferred to or from the disc media. When the controller
board sets the interrupt line data transfers are complete.

Data Encoding Format

The controller board encodes data onto the disc using the Modified Frequency Modulation
(MFM) encoding technique. In Frequency Modulation (FM), data is distinguished to be a one or a
zero by the frequency of the data pulses. The system starts with a clock signal of 125 kHz. Clock
cell boundries are defined by a pulse which occurs every 8 uS. Only clock pulses are present if
the bit pattern is all zeros. A ’one’ is formed by the adding a pulse to the middle of the ’data’ cell.
As far as the controller chip is concerned, the addition of the pulse doubles the effective
frequency of pulses. In summary, FM encoding has clock cells and data cells which are each 4 uS
long. Every clock cell has a pulse. Only data cells which are ones have pulses.

1] [} 1 1 [1] 1
ook | oar | BELLME | e fee rus
DATA
STREAN —J | Tl nJjonnf 7 Jf

patrern 1 IO LI

FM DATA ENCODING

SDG 346

MFM encoding is based on a series of clock pulses which occur 4 uS apart. Only these clock
pulses are present if the bit pattern is all zeros. If a one occurs in the bit stream, a DATA pulse is
written between the two clock pulses (as in FM encoding) but the CLOCK pulses for the bit and
the FOLLOWING bit are NOT written. This MFM encoding technique keeps the transition
density low but the data is now phase modulated instead of frequency modulated. That is,
identical transition patterns (bit streams) can have different interpretations depending upon the
phase of the clock which they start in.

o 0 1 1 0 1
oo omr | P | e s
DATA
STREAM [[[mE
MAG
paTTERN L[1 —

.

MFM DATA ENCODING

READ o
Bck /N S N TT~—
COMPARATOR ——— [[
ouT

berh M M M M

reee | L L LT

MFM DATA DECODING

SDG 347

Status and Control Registers
A summary of the valid addresses for the controller board is shown below:

09826-66561/66562 ADDRESSES

ADDRESSES ACCESS
REGISTER ~ ---===------------- =—=c—-----eco---c--co-o----

DESCRIPTION HEX DECIMAL TYPE TIME
EXTENDED COMMAND 445000 4476928 WRITE 625 ns
EXTENDED STATUS 445000 4476928 READ 625 ns
CLEAR XSTATUS 445400 4477952 WRITE 625 ns
256 BYTE ON- 44E000 4513792 READ-WRITE 1 us

BOARD RAM 44E1FF 4514303
COMMAND 44C000 4505600 WRITE 1 us
STATUS 44C000 4505600 READ 1 us
TRACK 44C002 4505602 READ-WRITE 1 us
SECTOR 44C004 4505604 READ-WRITE 1 us
DATA 44C006 4505606 READ-WRITE 1 us

A detailed description of the controller board registers follows:

Extended Command

The extended command register (at hex address 445000) is an 8-bit write-only register which
controls board functions. It is external to the LSI floppy disc controller chip. The bit assignments
for the extended command register are as follows:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
- - -	- - -	- -~	--- o meene	--ommm o	== --	- -	--nommeme o
ADDR 1	ADDR 0	LOCAL	READ/WRITE'	RESET FDC'	HEAD 1	PRE-COMP	DRIVE ACTIVE
- e	---e e R R s R	---o-e	-emeeee	- mm e			

At power up the extended command (XCMD) register is cleared. This clears bit 3 of the XCMD
register which in turn resets the floppy disc controller chip. The XCMD register is a write only
register. Because of this, it is up to the mass storage driver to maintain an image of the last
command in order to set and clear individual bits. A short description of each bit’s function
follows:

DRIVE ACTIVE (bit 0) enables the floppy drive which is selected by bits 6 and 7. Setting the
DRIVE ACTIVE bit will light the LED on the front panel of the selected drive, and will start
and hold the mctor on.

PRE-COMP (bit 1) causes a higher level of precompensation current in the read/write head to
be used in any writes to the floppy discs. This bit should be set for inner tracks where more
pre-compensation current is required (due to the increased bit density) and should be cleared for
outer tracks where little or no pre-compensation is needed. Pre-compensation should be used on
any track whose number is greater than 16.

SDG 348

HEAD 1 (bit 2) selects the physical head to read and write on the selected drive. This head
selection information is NOT latched by the drive. As a result, the state of this bit must remain
constant through the duration of a read or write cycle.

RESET FDC’ (bit 3) resets the LSI floppy controller chip. The floppy disc controller chip will be
reset ANY time this bit is cleared (set to 0). The reset may occur on either the rising or falling
clock edge depending upon the implementation of the LSI floppy disc controller chip. This bit is
cleared during power up and remains that way until it is set by software.

READ/WRITE’ (bit 4) selects the data transfer direction for the state machine which is on the
controller board. (A state machine coordinates the transfer of data between the floppy disc
controller chip and the board’s 256 byte RAM buffer). Setting READ/WRITE’ to | selects a data
transfer from the floppy disc controller chip to the 256 byte RAM buffer (READ operation).
Setting the READ/WRITE’ to O selects a data transfer from the 256 byte RAM to the floppy
disc controller chip (WRITE operation). The data transfer direction MUST agree with the type of
disc operation selected, such as read a sector.

LOCAL (bit 5) determines system access to the controller board’s internal bus. Setting LOCAL to
0 allows system access to the internal bus. Setting LOCAL to | places the internal bus under the
exclusive control of the controller board. The system is not allowed to access the floppy disc
controller chip or the 256 byte RAM buffer when LOCAL is set. However, LOCAL does not
affect system access to the extended command or extended status registers. Setting LOCAL passes
the floppy disc controller chip and 256 byte RAM buffer signals to state machine control
Clearing LOCAL gives the responsibility for coordinating data transfer to the system.

ADDRESS 0 and ADDRESS 1 (bits 6 and 7) are used to select a floppy drive. ADDRESS 1 is not
used in the 9826A and 9836A. Setting ADDRESS 0 to O selects drive 0. Setting ADDRESS 0 to
1 selects drive 1 (left hand drive in 9836A).

Extended Status

The extended status (XSTAT) register (at hex address 445000) is a read-only register which
provides information regarding the state of the LSI floppy disc controller chip and the disc drive.
The XSTAT register is external to the floppy disc controller chip, and provides information
which is not available from the floppy disc controller chip. The bit assignments for the extended
status register are as follows:

| INTERRUPT | MARGIN ERROR | MEDIA CHANGE | DATA REQUEST |
R i R | -omm e | -omm e |

A short description of each extended status bit follows:

DATA REQUEST (bit 0) is a copy of the data request output of the LSI floppy disc controller
chip. This information is primarily used with interrupt information to control the flow of data
from the system bus into the floppy disc controller chip during time-critical media initialization
operations.

MEDIA CHANGE (bit 1) is set each time the disc drive write protect switch goes from false to

true. This will happen every time a disc is fully removed from the drive. The MEDIA CHANGE
bit is cleared by the clear extended status register (CLRXSTAT) special function address.

SDG 349

MARGIN ERROR (bit 2) is set when a read data transition occurs too close to a read clock
timing signal. This information can be used by during initialization to evaluate media quality.
(To aid in determining if a track should be spared). The MARGIN ERROR bit is cleared by
CLRXSTAT special function address.

INTERRUPT (bit 3) is a direct copy of the interrupt output of the floppy disc controller chip.
Due critical timing needs, the system masks all interrupts during media initialization and uses
this copy of the interrupt bit to determine when the LSI floppy disc controller chip has
completed i1ts command. This bit 1s used primarily for fast handshake transfers.

Extended Status Clear

The extended status clear register (at hex address 445400) is a write-only register which, when
written to, will clear the extended status register.

Command

The command register (at hex address 44C000) is an 8-bit write-only register which is internal
to the floppy disc controller chip. This register holds the command which is presently being
executed. With the exception of the ’force interrupt’ command, this register should never be
loaded with a new command when the floppy controller chip is busy. A summary of the types of
valid commands to the floppy controller chip is presented later.

Status

The status register (at hex address 44C000) is an 8-bit read-only register which is internal to
the floppy disc controller chip. This register holds floppy drive/command status information
such as whether a cyclic redundancy check (CRC) error has occurred during a read command. A
summary of the types of status information which 1s available for each type of command to the
floppy controller chip is presented later.

Track

The track register (at hex address 44C002) is an 8-bit read/write register which is internal to
the floppy disc controller chip. This register holds the current READ/WRITE head position. The
track register is incremented by one each time the head is stepped in (towards track 70) and
decremented by one each time the head is stepped out (towards track 0) if the update flag is on
during STEP, STEP-IN, and STEP-OUT operations. The track register is used during read, write
and verify operations. During such operations, the recorded track number in ID field from the
disc i1s compared to the contents of the track register. The track register should NEVER be
loaded when the floppy controller chip is busy.

Sector

The sector register (at hex address 44C004) is an 8-bit read/write register which is internal to
the floppy disc controller chip. This register holds the address of the desired sector for read or
write operations. During such operations, the recorded sector number in the ID field from the
disc is compared to the contents of the sector number. The sector register should NEVER be
loaded when the floppy controller chip is busy.

SDG 350

Data

The data register (at hex address 44C006) is an 8-bit read/write register which is internal to the
floppy controller chip. The controller chip internally converts the contents of the data from
parallel to serial for write operations, and from serial to parallel during read operations. The
floppy controller chip uses the data register to hold the desired track address during seek
operations.

On-Board RAM (256 byte buffer)

The floppy controller board contains 256 bytes of local (on-board) RAM. This memory is used
during read and write operations to buffer up to a sector (128 words) at a time. When the
controller board’s internal bus is not in 'LOCAL’ mode, the state of each lower address line
loaded into an address counter and latched. This address will remain unchanged until local RAM
is accessed by the system bus or by the on-board state machine.

When the internal bus is in 'LOCAL’ mode, the state machine will increment the address of local
RAM after each transfer of data between local RAM and the floppy controller chip. The
starting address of these local RAM access 1s the LAST address read to the system bus. Because of
this, it is important that the system reset the local RAM pointer BEFORE passing control to the
state machine by reading the first address of local RAM.

The state machine is a shift register and a data selector (address counter). The outputs of the

shift register provide appropriate timing and control strobes for read and write operations. The
last thing that the state machine does is to increment the local RAM address counter.

SDG 351

Commands and Status

The 9826A/36A internal mass storage controller has eleven basic commands. With the exception
of the ’force interrupt’ command, the system should never issue a command to the controller
board command register while the floppy drive is busy. The floppy controller chip sets a 'DRIVE
BUSY’ bit (bit 0) in the status register (at address 44C0O00 hex) while it is executing a command.
An interrupt is generated and the ‘DRIVE BUSY’ status bit reset upon the completion of a
command. The status register indicates whether the execution of the last command was
fault-free. The eleven basic commands can be divided into four types for ease of discussion as
summarized below.

Command Summary

BITS
TYPE COMMAND 7 6 5 4 3 2 1 0
I Restore 0 0 0 0 H V Rl RO
I Seek 0 0 0 1 H V RI RO
I Step 0 0 1 U H V RI RO
I Step In 0 1 0 U H V Rl RO
I Step Out 0 1 1 U H V Rl RO
II Read Sector 1 0 0 M S E C 0
II Write Sector 1 0 i M S E C A
III Read Address 1 1 0 0 0 E 0 0
III Read Track 1 1 1 0 0 E 0 0
III Write Track 1 1 1 1 0 E 0 0
v Force Interrupt 1 1 0 1 I3 I2 Iv 10

A description of the command flags, commands and status information for each of the different
types of commands follows below. The command flags information is presented first to
familiarize you with the option parameters which are available for each command. A description
of the actual commands and status information follows the flags section.

Type | Command Flags

® U = Update the track register flag. This flag is valid only on the step, step-in and step-out
commands. The restore and seek commands cause an automatic update of the track register.
Setting this bit to 1 on valid commands causes the track register to be updated, otherwise
the track register is left alone.

® H = Head load select flag. This flag is valid for all Type I commands. Setting this bit to 1
causes the READ/WRITE head to load at the beginning of the command. Setting this bit to
0 causes the head to be unloaded at the beginning of the command. The head will
automatically be disengaged if the floppy controller chip is left idle for more than 15
revolutions of the disc media. HOWEVER, the head load solenoid is not implemented in the
9826/36 internal disc drive -- the read/write head is always in contact with the media.

® V = Verify flag. This flag is valid for all Type I commands. Setting bit to 1 causes a
verification operation to be performed on the destination track. If the verify flag is set to O
then no verification takes place on the destination track. The floppy controller chip verifys
the track by comparing the contents of the track address register to the track address in

SDG 352

the first ID field it encounters. A successful verification occurs when there is a match and
the ID field CRC is valid. When this happens, the INTERRUPT’ bit is set and the 'DRIVE
BUSY’ bit is reset.

The INTERRUPT’ and 'SEEK ERROR STATUS’ bits are set and the 'DRIVE BUSY’ bit reset if
no match is found but there is a valid ID field CRC.

The ’CRC ERROR'’ status bit is set if there is a match but there is no valid ID field CRC. When
this happens, the next encountered ID field is read from the disc for verification. The 'DRIVE
BUSY’ bit is reset and INTERRUPT is set if an ID field with a valid CRC is found within four
revolutions of the disc.

® R1, RO = Stepping Motor Rate flags. These flags specify the amount of time which each
track positioning step is to take. An additional 15 ms is required in the last step if the *V’
(verify) flag is set for any Type I command or if the 'E’ flag is set for any Type II or Type
HI commands. Except for the RESTORE command, R1 and RO are normally set to O in
9826A/36A systems. The stepping rates for each combination of R1 and RO with the 'E’
and 'V’ flags cleared are shown in Table X.X.

TABLE X.X STEPPING RATES

R1 RO milli-seconds
0 0 3
0 1 6
1 0 10
1 1 15

Type Il Command Flags

® M = Multiple Records flag. This flag is available on all Type II commands. Setting this flag
to O causes a single sector to be read or written, and setting this flag to 1 causes a multiple
sectors to be read or written with the sector register internally updated so that verification
can occur when the next record is encountered. Additional sectors will continue to be read
until the sector register exceeds the number of sectors on the track or until a 'FORCE
INTERRUPT’ command is issued to the controller chip. The 'RECORD-NOT-FOUND’ bit
will be set if the value in the sector register exceeds the number of records on the track.
The 'FORCE INTERRUPT’ command causes the floppy controller chip aborts the current
command and issues an interrupt. THE FAST HANDSHAKE METHOD OF DATA
TRANSFER MUST BE USED TO COORDINATE DATA TRANSFER WHEN THIS
COMMAND IS PERFORMED.

® S = Side Select compare flag. This flag is available on all Type Il commands and is used for
comparison only. (See Side Comparison Flag below). Setting the "S" flag to O indicates that
side O is desired. Likewise, setting it to 1 indicates that side 1 is desired.

® C = Side Compare flag. This flag is available on all Type Il commands. No side comparison is
made if ’C’ is set to 0. The side number is read off of the track ID field from the disc and
compared to the side select flag ’S’ If a match exists, the floppy controller chip continues
with the instruction. The INTERRUPT and 'RECORD-NOT-FOUND’ status bits are reset
and 'DRIVE BUSY’ reset if a match is not found within five revolutions.

SDG 353

e E = Delay flag. This flag is available on all Type II commands. Read/write heads are
sampled 15 ms after they are loaded if 'E’ is set to 1. Otherwise, the read/write heads are
sampled immediately after they are loaded.

® A = Data Address Mark. This flag is available only on the "WRITE SECTOR’ command.
Setting this flag to 1 causes the 'WRITE SECTOR’ command to write a 'Deleted Data Mark’
on the disc, while setting this flag to O causes the write sector command to write a 'Data
Mark’ on the disc.
Type Il Command Flags
¢ E = Delay flag. This flag is available on all Type III commands. Read/write heads are
sampled 15 ms after they are loaded if ’E’ is set to 1. Otherwise, the read/write heads are
sampled immediately after they are loaded.
Type IV Command Flags
e I3 = Immediate Interrupt. (Requires reset as described below).
@ [2 = Interrupt on Every Index Pulse.

@ I1 = Interrupt on Ready-to-Not-Ready Transition.

® 0 = Interrupt on Not-Ready-to-Ready Transition.

Note

If interrupt flag bits I3 thru I0 are set to 0, there is no
interrupt generated. However, the current command is aborted
and the 'DRIVE BUSY’ status bit is reset. Issuing the 'FORCE
INTERRUPT command wiht all interrupt flags set to O is the
only command which will cause the °IMMEDIATE
INTERRUPT’ command to clear.

A description of the basic commands and status information follows immediately below. A
detailed description of the command flags for the different types of commands follows this
section.

SDG 354

Type | Commands

Restore

This command causes the drive read/write head to seek toward track O until the track O switch
is enabled. The stepping rate is determined by the stepping rate flags R1 and RO. The track
register is loaded with zeroes and the INTERRUPT’ bit set and 'DRIVE BUSY’ reset when the
command is completed successfully. The INTERRUPT’ and 'SEEK ERROR’ bits are set and
‘DRIVE BUSY’ reset if the track O switch does not enable in less than 255 stepping pulses.

Seek

This command seeks the read/write head from a current track to a desired track. The track
register is assumed to contain the current track number. The data register is assumed to contain
the desired track number. The floppy controller chip will step the heads in the appropriate
direction and update the track register until the contents of the track register match the
contents of the data register. INTERRUPT is set and 'DRIVE BUSY’ reset at the completion of
the command.

Step

This command seeks the read/write heads on step in the same direction as the previous STEP
command. The track register is updated (incremented or decremented) if the 'U’ flag is on. A
verification takes place after a delay determined by the R1 and RO bits if the 'V’ flag is on.
INTERRUPT is set and 'DRIVE BUSY’ reset at the completion of the command.

Step-in

This command seeks the read/write heads one step in the direction towards track 70. The track
register is updated (incremented or decremented) if the 'U’ flag is on. A verification takes place
after a delay determined by the R1 and RO bits if the 'V’ flag is on. INTERRUPT is set and
'DRIVE BUSY’ reset at the completion of the command.

Step-out
This command seeks the read/write heads one step in the direction towards track 0. The track
register is updated (incremented or decremented) if the *U’ flag is on. A verification takes place

after a delay determined by the R1 and RO bits if the 'V’ flag is on. INTERRUPT is set and
'DRIVE BUSY’ reset at the completion of the command.

SDG 355

Type Il Commands

Read Sector

This command causes the floppy controller chip to read a sector of data from the disc. The
system must seek the read/write heads to the desired track and then load the desired sector
number into the sector register prior to issuing the 'READ SECTOR’ command. (The side select
and compare flags must be set appropriately for this command.) Data is transferred from the disc
only after an ID field has been encountered that has the following conditions true:

1. Correct track number

2. Correct sector number

3. Correct side number

4, Correct CRC
The command is aborted and the 'RECORD-NOT-FOUND’ status bit set if the 'Data Address
Mark’ is not found within 43 bytes of the last ID field CRC byte. The 'DATA REQUEST’ status
bit is set each time a byte is read from the disc. The 'LOST DATA’ status bit is set if the system
has not read the previous contents of the data register before the data register receives a new

data byte from the disc. Passing control to the on-board state machine through the 'LOCAL’ bit
in the extended status register causes the state machine to coordinate this data transfer.

This sequence continues until the complete sector data field has been transferred from the disc.
The 'CRC ERROR’ status bit is set and the command aborted if there is a CRC error at the end
of the data field. This will happen even if the multiple records flag ‘M’ is set.

The type of ’Data Address Mark’ encountered in the data field is recorded in the status register
upon completion of the read operation as follows: 1 = 'Deleted Data Mark’ and 0 =’Data Mark.

Write Sector

This command causes the floppy controller chip to write a sector of data to the disc. The system
must seek the read/write heads to the desired track and then load the desired sector number into
the sector register prior to issuing the "'WRITE SECTOR’ command. (The side select and compare

flags must be set appropriately for this command.) The 'Data Request’ status bit is set only after
an ID field has been encountered that has the following conditions true:

1. Correct track number

2. Correct sector nur: ser

3. Correct side number

4. Correct CRC
The ’'Data Request’ must be serviced (data register loaded) when the 'Data Request’ bit comes
true. Otherwise, the command is aborted and the 'LOST DATA’ status bit is set. The floppy

controller chip writes 12 bytes of zeros followed by the 'Data Address Mark’ onto the disc.

It then writes the data field and issues 'Data Requests’ to the computer. The 'LOST DATA’ status
bit is set if the 'Data Requests’ are not serviced in time for continuous writing of a sector of data

SDG 356

to the disc. However, the command is not terminated. The controller chip continues to write to
the disc until a sector of data has been transferred. It then calculates the two-byte CRC and
writes that onto the disc followed by one byte of logic ones. The command is terminated at this
time and the INTERRUPT’ status bit is set and 'DRIVE BUSY’ reset.

Passing control to the on-board state machine through the "LOCAL’ bit in the extended status
register causes the state machine to coordinate the data transfer from local RAM to the disc.

Type Il Commands
Read Address

This command causes the floppy controller to read the first six byte track ID field it encounters
from the disc. The ’Data Request’ bit is set for each of the six bytes which are transferred. It is
left to the mainframe or on-board state machine to transfer the data from the controller’s data
register to local RAM. The six bytes which are transferred from the track ID are shown below:

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6
|- memme e | o mmmemeo |- memmoe |-ommmemmmma |------ |-mmo- !
ITRACK ADDR | SIDE NUMBER | SECT ADDR | SECT LENGTH | CRC 1 | CRC 2 |
R R it | -mmmemeee | -mmmem e |--- - |---n- :

The floppy controller chip checks the CRC of the transferred data stream and sets the ’CRC
ERROR’ status bit if there is a CRC error. Also, the track address of the ID field is written into
the Sector Register. The INTERRUPT’ status bit is set and 'DRIVE BUSY’ reset upon completion
of the command.

Read Track

This command causes one full track of data to be read from the disc and transferred to the Data
Register. Reading starts with the first encountered index pulse and continues until the next
encountered index pulse. The 'Data Request’ status bit is set for each byte transferred. All bytes
on the disc, including gaps, transferred. No CRC checks are performed. INTERRUPT is set and
'DRIVE BUSY’ reset upon completion of the command.

Write Track

This command is used for initializing discs (formatting tracks). Writing starts with the leading
edge of the first encountered index pulse and continues until the next encountered index pulse.
The ’Data Request’ bit is set immediately upon receiving the 'WRITE TRACK’ command.
However, writing will not start until after the first data byte has been loaded into the Data
Register. The command is aborted, the INTERRUPT and ’LOST DATA’ status bits set, and the
‘DRIVE BUSY’ status bit reset if the Data Register is not loaded by the time the first index pulse
is encountered. A byte of zeros is substituted for actual data if a data byte is not loaded into the
data register when it is needed.

The CRC generator is preset by including the hexadecimal number F$ in the outgoing data
stream. The control bytes which are used for initialization are shown below.

SDG 357

INITIALIZATION CONTROL BYTES

DATA REGISTER

CONTENTS (HEX) ACTION
00 thru F4 Write 00 through F4
F5 Write A1X, PRESET CRC GENERATOR
F6 Write C2%xX
F7 GENERATE TWO CRC BYTES
F8 thru FF Write FC through FF

X Missing a clock transition between bits 4 and §
XX Missing a clock transition between bits 3 and 4

Type IV Commands
Force Interrupt

This command forces the floppy controller chip to set the 'INTERRUPT’ status bit upon
detection of the condition specified by the option flags.

Note

If interrupt flag bits I3 thru I0 are set to O, there is no
interrupt generated. However, the current command is aborted
and the 'DRIVE BUSY’ status bit is reset. Issuing the 'FORCE
INTERRUPT command with all interrupt flags set to O is the
only command which will cause the °‘IMMEDIATE
INTERRUPT’ command to clear.

Status Information

The Status Register is cleared and the 'DRIVE BUSY’ status bit set upon receipt of any command
except 'FORCE INTERRUPT . The 'DRIVE BUSY’ status bit is reset but the rest of the status bits
remain unchanged if a 'FORCE INTERRUPT command is received while another command is
being executed. The Status Register is updated or, in the case of a previous Type I command,
cleared and the 'DRIVE BUSY' bit reset if a *'ORCE INTERRUPT’ command is received when
the floppy controller chip is idle.

The format of the Status Register is as follows:

Status Register Bit Format

SDG 358

The information returned in the Status Register is a function of the previous command executed.
A summary of the status information for each command type follows.

XX
Xk

ALL TYPE I

COMMANDS READ ADDRESS
"NOT READY ' "NOT READY'
"PROTECTED’ 0
"HEAD LOADED’ 0
"SEEK ERROR’ "RECORD NOT FOUND’
"CRC ERROR’ "CRC ERROR’
"TRACK 0’ "LOST DATA'
"INDEX' 'DATA REQUEST’
"DRIVE BUSY ' %X "DRIVE BUSY'

drive is not ready
controller is busy
1 = 'Deleted Data Mark’,

0 = 'Data Mark’

READ TRACK WRITE SECTOR
"NOT READY’ "NOT READY'
0 "WRITE PROTECT'
0 "WRITE FAULT’
0 "RECORD NOT FOUND’
0 "CRC ERROR’
"LOST DATA’ "LOST DATA’
'DATA REQUEST’ "DATA REQUEST’
"DRIVE BUSY’ "DRIVE BUSY'

SDG 359

READ SECTOR
"NOT READY'

0
"RECORD TYPE ' %XX
"RECORD NOT FOUND'
"CRC ERROR’
"LOST DATA’
"DATA REQUEST'
"DRIVE BUSY’

WRITE TRACK
"NOT READY’
"WRITE PROTECT’
"WRITE FAULT’

0

0
"LOST DATA’
'DATA REQUEST'
"DRIVE BUSY’

Programming Considerations

Following is a list of tips to consider when developing custom drivers for the 9826A/36A
internal mass storage.

1.

Avoid clearing bit 4 (READ/WRITE’) of the extended status register when seeking the
read/write heads about the disc. Clearing the READ/WRITE’ bit allows the possibility of
accidentally destroying data by issuing a valid write command to the disc. It is safer to
leave the heads in the read sense until a write command is actually to be executed.

. Reset the local RAM pointer by reading the first address of local RAM (44E000 hex) prior

to turning control of the local bus to the controller board’s state machine. When in local
mode, the state machine will increment the RAM address after each data transfer between
the floppy controller chip and the local RAM. The starting address for this process is the
LAST ADDRESS READ TO THE OUTSIDE BUS.

. The state of the floppy disc controller chip shown in the 'DRIVE BUSY’ status bit. The state

of the actual drive is shown in the "NOT READY’ status bit. The 'DRIVE BUSY’ bit is
always set when a command is actually being executed, and is reset (cleared) upon
completion of a command. The INTERRUPT bit is also set upon the completion of a
command.

. The RESET FDC’ bit (bit 3) of the extended command register is normally set to 1. The

floppy disc controller chip will reset any time the the RESET FDC’ bit is cleared (set to 0)
thus aborting any command in progress. As a result, any command which clears the RESET
FDC’ bit of the extended command register will be immediately aborted.

. Allow at least 600 milli-seconds for the disc drive motor to come up to speed prior to

attempting any read or write commands.

. Never attempt to seek the read/write heads beyond physical cylinder 40. Such a seek may

permanently damage the heads by causing them to impact the floppy dust cover jacket.

SDG 360

Chapter 16
The Power-Fail Option

Introduction

The 9826 and 9836 may be equipped with an optional battery powered back-up supply, which
also contains an uninterruptible real-time clock and some non-volatile CMOS RAM. This
section describes the features of this option and how they are accessed.

Features

The Power~Fail option contains an 18 volt, 2 amp-hour nickel-cadmium (NICAD) battery with
its associated charging and transfer circuitry, a real-time clock, and CMOS RAM which is
battery powered when the AC power is off.

The Power-Fail option is controlled by an 8041A microcomputer which provides some user
programmable features. Two S-volt power supplies are included on the Power-Fail circuit board.
One insures that the Power-Fail microcomputer and voltage comparators are operating before
the rest of the computer comes up, and the other keeps the CMOS circuitry operating when AC
power is off.

The word "battery" is generally used in this discussion to denote the entire Power-Fail "smart
peripheral", under the control of its 8041 microcomputer.

Power-Fail Behavior

Once the battery turns on and passes its self -test, it may be thought of as having four states:
Power Valid, Power Failed, Last Second, and Switched Off. The 8041 may be programmed to
interrupt the 68000 via level 7 (non-maskable interrupt) at each transition among these states,
or 68000 interrupts may be suppressed. (Obviously there is no interrupt on the transition to
Switched OffY)

® Power Valid: This is the normal state, when things are running properly. When power fails,
the battery will immediately go to Power Failed state.

¢ Power Failed: In this state, the battery provides protective power to the mainframe for a
limited time (default 60 seconds). After a delay which is programmable (default zero
seconds) the battery will try to interrupt the mainframe with a power-failed interrupt. If
power does not return during the protection period or the NICAD battery is about to die,
the battery will go to Last Second state. If power returns and stays up for a specified time
(default 1 second) the battery returns to Power Valid state.

® L ast Second: One second after this state is entered, the battery will go to Switched Off state

and shut down the computer. After Last Second is entered, the computer WILL be shut
down even if power comes back.

SDG 361

® Switched Off: Once this happens, if the power is restored the computer will go through its
normal! power-up sequence as if someone had turned on the main power switch.

Note that in Power Failed state, if power is restored but protection time runs out before the
power-back delay is elapsed, the battery will go to Last Second anyway.

There is a fourth timer in the battery which is not programmable. Its purpose is to prevent the
power supply from heating up too much while the fan is off. It counts up to 60 seconds when
there is a power failure, and if it reaches 60 seconds the computer is shut off. This timer is not
cleared when power comes back, but counts back down toward zero at half speed. For instance if
power was down for 40 seconds, it would have to be on for 80 seconds before a full minute of
protection is again available.

Real-Time Clock

The non-interruptible real-time clock is kept as a combination of three pieces of data: a 32-bit
timer which counts in 10 msec increments, a record of the timer value when the clock was set,
and the time and date when the clock was set.

To figure out the real time, the battery subtracts the current timer count from the timer value
when the clock was set, and adds the difference to the time and date when the clock was set.
This is a time-consuming operation which is normally only done when the machine is turned on.
For moment-to-moment timing while the computer is on, use the keyboard microcomputer
which has a number of timing features.

Non-Volatile RAM

The battery contains 128 bytes of battery-powered CMOS RAM. 16 bytes are used by the
battery for its own purposes; 112 are available for user-programmed purposes.

This RAM 1is accessed by moving it into 8041 memory in 16-byte blocks. Commands are
available which enable the 68000 to read or modify a block while it is in the 8041’s memory.

No standards have been established for how users may allocate space in this RAM, except that
the first 16 byte block is reserved for the real-time clock.

SDG 362

Here is the layout of bytes in the first 16 byte block:

byte use / meaning

0-2 Will be $0F, $AS, $C2 if the battery has been
commanded to set the real time since the CMOS RAM
woke up; else garbage. You can use these values
to verify that the real time is probably meaningful.

3 Least significant byte of time when clock was set.
4 2nd byte of time when clock was set.
5 Most significant byte of time when clock was set.
6 Least significant byte of day number when clock
was set.
7 Most significant byte of day when clock was set.
8-11 Value of 32-bit CMOS counter at time when clock was
set.
12-15 Used as temporary cell during computation of real

time to honor $41 command.

Interface to the 68000

The 68000 can send commands to the battery by writing to the byte at address $458021.
Reading a byte from this address yields battery status information.

The 68000 can write data bytes to the battery through address $458001, or read data from the
battery via the same byte address.

The battery status register bits are interpreted as follows:

bit meaning
0 if = 1, there is data ready to read at $458001.
1 if = 1, command buffer full;
if = 0, battery is ready for a command to be written to
$458021. MUST be zero before a command is sent.
2 if = 1, battery is interrupting 68000 on level 7.
5 if = 1 and bit 2 = 1, this is Last Second interrupt.
6 if = 1 and bit 2 = 1, this is power returning interrupt.
7 if = 1 and bit 2 = 1, this is power fail interrupt.

In general the 68000 communicates with the battery by sending a command to the command
register, then sending one or more bytes of data to the data register. If the battery is enabled to
interrupt the 68000, level 7 (non-maskable) interrupts will signal the mainframe of changes in
battery state. Otherwise the 68000 may ask the battery what’s up. See commands $0x and $C3
below.

SDG 363

Commands to the Battery
The following commands can be sent to the battery.

$01 Tells the battery to turn off power. This command is used
to discontinue battery protection in order to conserve the
charge. It will turn power off even if there is not a
power failure; if there is no power failure, the machine
will come back up in about one second.

$10 Tells the battery to stop interrupting on level 7. It takes
the battery about 200 microseconds to stop interrupting
after this command is received. (The command has been
received when bit 1 of the status register goes to zero).

$2x Set the interrupt mask. This command disables the
three types of interrupt. The lower four bits of the
command are:

bit 0 -- must be zero.
bit 1 -- If one, power fail interrupt disabled.

If zero, enable condition stays unchanged.
bit 2 -- If one, power back interrupt disabled.

If zero, enable condition stays unchanged.
bit 3 -- If one, last second interrupt disabled.

If zero, enable condition stays unchanged.

$0x Clear the interrupt mask. Used to enable the three types
of interrupt. The lower four bits of the command are:

bit 0 -- must be zero.
bit 1 -- If one, power fail interrupt enabled.

Ii zero, enable condition stays unchanged.
bit 2 -- If one, power back interrupt enabled.

I1f zero, enable condition stays unchanged.
bit 3 -- If one, last second interrupt enabled.

If zero, enable condition stays unchanged.

Note that command $0E will be ignored. Only one or
two of these bits may be cleared at a time.

Data is written to and read from the CMOS memory through a 16 byte buffer in the 8041’s
address space. The following four commands have to do with using the CMOS memory and the
buffer.

$Fx Tell the battery to send a byte from the CMOS buffer to the
68000. The lower four bits of the command act as a pointer
to the byte to be sent. Bit zero of the status register will
be 1 when the data is ready.

$Bx Used to write to the CMOS buffer. The four lower bits of the
command act as a pointer to the byte to be written in the
buffer. The command is followed by sending the data. The
buffer pointer is retained and decremented when a data byte

SDG 364

is received, so if all 16 bytes of the buffer are to be sent,
issue command $BF followed by 16 data bytes.

$7x This command tells the battery to load the CMOS buffer with
a 16 byte block of CMOS memory. Bit zero must be a zero.
Bits one through three tell what block to load, and must
indicate 1 through 7; block zero is used by the Real Time
Clock.

$6x Tells the battery to write the CMOS buffer into one of the
16-byte blocks of CMOS RAM. Bit zero must be zero. Bits
one through three tell what block to write. If block zero
is written to, the real time will be lost.

The real time is read and written through the same buffer that is used to read and write CMOS
memory. The following three commands are used to read and write the real time.

$B7 Tells the battery that the next five bytes of data sent will
be the real time. The five data bytes must be sent in this
order:

MSB (most significant byte) of days.
LSB (least significant byte) of days.
MSB of time of day.

Second byte of time of day.

LSB of time of day.

"Days" is an arbitrary integer. "Time of day" is the number
of 10 msec ticks since midnight.

$40 Tells the battery to set the time to what is in the buffer.

$41 Tells the battery to load the buffer with the real time.
Then particular bytes of the real time can be requested by
the 68000 using these commands:

$F7 MSB of day

$F6 LSB of day

$F5 MSB of time of day

$F4 Second byte of time of day
$F3 LSB of time of day

There are three ongoing timers that may be read. These are maintained by the 8041 and are all
two bytes long; they are "volatile" in that they go away when the machine shuts down. A single
timer buffer in 8041 memory is used by the 68000 to access these timers.

$82 Tells the battery to load the timer buffer with the value
of the non-programmable 60-second power-supply cooling

timer.

$90 Load timer buffer with the amount of time that power has been
back without leaving Power Fail state.

SDG 365

#94

$EB

$EA

$A7

$AS

$A3

$DB

$C3

$C6

$C7

Load timer buffer with the length of the most recent power
failure since power-up. This timer is set to zero whenever
the power fail state is first entered.

Send the MSB of the timer buffer to the 68000.
Send the LSB of the timer buffer to the 68000.

Set the amount of protection time. Command is followed by
two bytes of data (MSB first) indicating the protection time
in 10-msec tics. Anything greater than 60 seconds will be
treated as 60 seconds.

Set the amount of time power must be gone before giving a
level 7 interupt. Command is followed by two data bytes
(MSB first). Time is in 10-msec tics.

Set the amount of time power must be back before leaving the
power fail state. Command is followed by two data bytes
(MSB first). Time is in 10-msec tics.

Tells battery to send power status to 68000. The data bits
returned are:

bit 0 -- If one, power is down.
bit 1 -- If one, power fail interrupt delay is up.
bit & -- If one, the AC is gone.

Tells battery to send a status word to the 68000.

bit 1 -- If one, power fail interrupt is masked.

bit 2 -- If one, power back interrupt is masked.

bit 3 -- If one, last second interrupt is masked.

bit 4 -- If one, battery is in Last Second state and power
is about to go away.

bit 6 -- If one, the battery is in power fail state.

Tells battery to send 68000 the self-test status. A value
of zero means 8041 thinks battery passed self-test. A value
of 2 means it failed.

This command tells the battery to send the amount of the

last second that has been used up. It is only valid in
Last Second state, and returns time in 10-msec tics.

SDG 366

Pascal Programming Interface

Pascal 2.0 doesn’t make much use of the Power-Fail option. However, there is a module called
BAT which is in the standard INITLIB and exports some useful routines.

BATINIT sets the standard power fail protection to 60 seconds.
BATCOMMAND takes a command byte, followed by a number telling how many bytes of data
to send to the battery, followed by five bytes of data. To send, for instance, a command followed
by three bytes, use the call:

batcommand (commandbyte,3,datal,data2,data3,0,0)

with dummy bytes for the unused data arguments.

Function BATBYTERECIEVED waits until a data byte is available from the battery and then
returns it to the caller.

SDG 367

SDG 368

Chapter 17
Object Code Format

Introduction

This section describes the structure of object code files accepted by the linking loader. This is the
format generated by the Assembler, Pascal compiler, and Librarian.

Purposes of the Object Code Format

® Allow the linking loader to allocate space for global variables, and to relocate and link
references to those variables so the loaded code will run properly.

® Allow the linking loader to allocate space for code segments, and to relocate and link
references among the code segments so the loaded code will run properly.

® Provide for management of libraries of code modules which have been compiled
independently of any program, and can be bound into a program or the system when
needed.

® Provide an efficient notation, so that the operations of linking and loading can be very fast
and automatic.

Definitions

® Module: A module is the basic unit of compiled or assembled code. The Assembler always
generates a single module per invocation. The Pascal compiler generates a module for the
main program and one for each Pascal MODULE declaration in a compilation. This is true
even if the source modules are themselves nested within the main program.

® Library: The terms "library”" and "code file" are completely equivalent. The output of a
compilation or assembly is always a library, even if it contains just a single module. A
library consists of a directory describing its contents, and modules of code.

© Interface text, export text, define source: These terms also are synonyms. The interface text
of a module is essentially just the Pascal declaration of the IMPORT and EXPORT parts of
the original source module.

¢ External reference, REF: A location in the object code which needs to be filled in at link
time with the address of code or data which is a component of another module.

® Definition, DEF: A location in the object code whose final address is a value which may be
used to fill in ("satisfy") a REF in some other module. REFs and DEFs are complementary.

SDG 369

e Global (variable): A variable declared in the outer block of a main program, or in the
EXPORT or IMPLEMENT part of a module. Global variable space is allocated by the
loader. Global variables are addressed at some displacement from where 68000 register AS
points.

e (Loader) Symbol: The name given to a DEFed value. Symbols may represent the beginning
of a contiguous area of memory allocated to a module’s globals, or the first instruction of
an exported procedure, or the main program, or the location of a structured constant in
code space.

Structure of a Library File

Library Directory

A library consists of the library directory, followed by zero or more modules. The library
directory is structured like a Pascal 1.0 Workstation disc volume directory. This was chosen as a
convenience, there is no special significance to the fact. Here are the relevant declarations.

const
blocksize = fblksize; {the Loader thinks of things in
terms of 512-byte blocks relative
to beginning of code file}
vhlength = 7; {library name length}
fnlength = 15; {length of module name}
type
volname = string [vnlengthl;
filname = string [fnlength]; {name of "file" within library}
daterec = packed record
year: 0..100;
day: 0..31;
month: 0..12;
end;
filekind = (untypedfile, {directory entry}
badfile, {bad blocks}
codefile, {executable or linkable}
textfile, {UCSD format w/Editor envt}
asciifile, {LIF ASCII file format}
datafile, {file of <type>}
sysfile, {system boot file}
fkind7,fkind8, 6 fkind9, fkindl10,
fkindll,fkind12,fkindl3,fkindl4,lastfkind);
dirrange = 0. .mmaxint; {0..maxlongdir}
direntry =
record
dfirstblk: shortint; (*module starting blockX)
dlastblk: shortint, (*¥block following endX)

{NOTE: for DIR[0], these refer to the library directory itself}
case dfkind: filekind of

SDG 370

untypedfile: (Xlibrary info in DIR[0]X)

(dvid: volname; (*name of libraryX)

deovblk: shortint; (Xblock following library*)

dnumfiles: dirrange; (¥num modules in libraryX)

dloadtime: shortint; (Xtime of last modificationX)

dlastboot: daterec); (Xmost recent date settingX)
datafile..lastfkind:

(dtid: filname; (¥title of moduleX)

dlastbyte: 1..flbksize; (*1..256 bytes in last blockX)

daccess: daterec) (Xlast modification dateX)

end; {direntry}

The library directory may be thought of as an array of DIRENTRY, starting at byte zero of
block zero of the file. The very first DIRENTRY describes the directory itself, in particular
DNUMFILES tells how many modules are in the library. Each subsequent DIRENTRY describes
one module by giving its name truncated to 1§ characters (DTID), the file-relative number of
the first block of the module (DFIRSTFLK), and the number of the next block after the end of
the module (DLASTBLK).

Module Directory
The organization of a module is:

MODULE DIRECTORY

EXT table lists referenced external symbols
DEF table lists symbols defined in this module
DEFINE SOURCE compiler interface specification
TEXT record stuff to be loaded

REF table describes objects to be relocated
TEXT record

REF table

There is a module directory for each module, telling where to find the components of the
module; these are different from the directory of the library, which lists the modules themselves.
The order in which the parts of a module occur is not specified; the module’s directory tells
where to find each part. Any number of TEXT records and REF tables may appear in a module.

The module directory contains the following information. This declaration is a sort of
pseudo-Pascal where necessary.

SDG 371

moduledirectory packed reco

date: daterec;
revision: daterec;
producer: char;
systemid: byte;
notice: string[80];

directorysize: integer;
modulesize: integer;

executable: boolean;
relocatablesize,
relocatablebase,
globalsize,
globalbase,

extblock,
extsize,
defblock,
defsize,
sourceblock,

sourcesize,

textrecords: integer;

{Remainder of directory is made up of variable length
which must be walked through using pointer arithmetic

system programming extension,
Strings begin and end on word

directory itself may cross block boundaries.
see description later) occuring below have

address records (GVR's,

the short variant offset; the

rd

{date of creation}

{producer’'s revision date number}
{A = assembler, C compiler,

L linker, etc.}

{syztem version number

(hard or soft, etc) }
{copyright notice}
{size of module directory, in bytes}

{total size of module, in bytes}

{module has start address}

{number of relocatable bytes required}

{current origin of relocatable code}

{number of global bytes required}

{current origin of global area
(relative to A5) }

{module relative block of EXT table}
{size of EXT table, in bytes}
{module relative block of DEF table}
{size of DEF table, in bytes}
{module relative block where

DEFINE SOURCE begins}
{size of DEFINE source, in bytes}
{number of TEXT records}

objects,

via the ADDR
records.

The

value or

or using tricky variant
(even byte) boundaries.
General

offset itself is the length of the

GVR to assist in stepping quickly through the list.}

mname: string[(variable)]

startaddress: gvr;

repeat for each text record

textstart,
textsize,
refstart,
refsize: integer;
loadaddress: gvr;
end

end;

: {name of module; length=1 byte}

{execution address, present only
if executable}

{list of TEXT records}
{module relative block of
TEXT record}
{size of TEXT record, in bytes;
must always be EVEN number!
{module relative block of
REF table}
{size of REF table, in bytes}
{location to load the TEXT}

}

SDG 372

General Value or Address Record (GVR)

The GVR is a variable length structure which is intended to represent any absolute, relocatable,
or linkable value. A GVR begins and ends on a word (even byte) boundary. The format is:

left byte right byte
low +---4+----- L e R it + -
| FLAGS (below) | offset{short) | offset, either 1 or 3 bytes)
D R B ket +
| offset(long form, low part) | 3 byte form only, see REF's
D e Fmmmm e +
| wvalue extension (optional) | 4 or 8 bytes, if present
R Fmmmm e ——— +
| wvalue extension continued |
D e R Fmmmm - - +
| value extension continued | (8 byte form only)
e e +
| wvalue extension continued | (8 byte form only)
D R T et -4+
| REFERENCE POINTERSs | | | zero or more of these
high +---------------ocmmomeoom- +-+-+ may be present

The approximate Pascal type descriptions for a GVR are:

type
reloctype = (absolute, relocatable, global, general);
datatype = (sbyte, {signed byte}
sword, {signed 16 bit word}
sint, {signed 32 bit integer}
fltpt, {floating point}
ubyte, {unsigned byte}
uword) ; {unsighed word}

generalvalue = packed record
primarytype: reloctype;

{quick indication of most common types}

datasize: datatype; {specifies 1, 2, 4 or 8 bytes, signed or not}

patchable,
valueextended: boolean;
case longoffset:

false: {short: 0..255);
true: (long:

end;

valueextension =

packed record
case datatype of
sbyte,sword,sint,
ubyte,uword:
fltpt:
end;

referenceptr =
packed record

0..16777215);

(value:
(valuer:

{specifies self relative field in branch}
{indicates presence of valueextension}
boolean of

{1 or 3 byte offset}
{unsigned 8 bits}
{unsigned 24 bit value}

{present iff valueextended bit set}

integer);
real);

{one or more present if type = general}

SDG 373

op
la
end;

avr

o

prim

00
01
10
11

data

000
001
010
011
100
101
110
[RR

patc

address: 0..16383: {multiply by 4 to get address of EXT symbol}

© (addit, subit); {add or subtract the modifying value}
st: boolean; {indicates end of list}
= concatenation {MOCK PASCAL}
generalvalue; { 2 to 4 bytes of header info}
valueextension; { 0, 4 or 8 bytes of value}
array [zero or more] {list of EXT references}
of referenceptr;
end;
Note
Although the link format provides for REAL arithmetic at
link or load time, this feature has not yet been implemented.
The eight-byte form of Value Extension is not used.
7 6 5 4 3 2 1 bit 0
B e trm————— e —— D $mmm - i tm—————- +
primary | data |patch- |value |long |
type | size | able| extend| offset|
e ———— O Fmmmm— - tmmm———— o —— R dmmmm - +
ary type:
value type is absolute, no REFERENCE POINTERs follow
value type is relocatable, no REFERENCE POINTERs follow
value type is global, no REFERENCE POINTERs follow

value type is general, with one or more REFERENCE POINTERs

size: (Note that this should be signed long everywhere
except in a REF record.)

sighed byte (8 bits) -128..127

signed word (16 bits) -32768..32767

signed long (32 bits) -2147483648 . .2147483647
floating point (8 bytes) IEEE 64-bit format
unsigned byte (8 bits) 0..255

unsigned word (16 bits) 0..65535
(reserved)
(reserved)

hable:

Indicates that the linker may patch a location in a

TEXT record. Used for extending the reach of a short
displacement branch by targeting it to a JMP instruction.
Applicable only in a REF record, and must be false
everywhere else.

SDG 374

value extend:

0 No value extension present, assume 0

1 Value extension is present. Length is 4 bytes unless
type is floating point, in which case it is 8 bytes.
Always true in DEF records.

long offset:

0 Use short form (1 byte) of offset field. Value is
in the range 0..255 and specifies the total length
of the GVR except in REF records. (see DEF record)

1 Use long form (3 bytes) of offset field. Value is a
24 bit unsigned number in the range 0..16777215.
Applicable only in some REF records.

Reference Pointer

bit 15 thru bit 2 bit 1 bit 0
D R e e e e e D o +
| address of an EXT record |ladd or| end |
| relative to beginning of EXT table | sub | flag |
D T e e T e L - Fm———— +

A REFERENCE POINTER is the relative address of an entry in the EXT table. To get the actual
address, just clear the end flag (bit 0) and the add/subtract flag (bit 1) and add the rest to the
address of the EXT table. Note that this works because 1) EXT records are always a multiple of 4
bytes in length, and 2) the EXT table is limited to 6 5K bytes in length.

The add or sub flag indicates whether the value of the external symbol is to be 0) added, or 1)
subtracted from the GVR value in order to obtain the actual value. There may be any number
of REFERENCE pointers in a GVR, and there may be more than one reference to the same EXT
record. There may not, however, be both an add reference and a subtract reference to the same
symbol, since these would cancel each other.

The end flag indicates whether there are any more REFERENCE POINTERSs in this GVR:
0 more to come
1 this is the last one

There are three special cases for the EXT address:

e Address O (bit pattern 00000000000000xx) refers to the relocation DELTA for the current
module {i.e. new load address minus the old load address).

o Address 4 (bit pattern 00000000000001xx) refers to the global area DELTA for the
current module (i.e. new data address minus the old data address).

SDG 375

® Address 8 (bit pattern 00000000000010xx) is the first valid reference to an external
symbol.

There are REFERENCE POINTERs in a GVR only if the primary type field specifies "general".
Note that having a primary type of ‘relocatable’ is an abbreviation for (and entirely equivalent
to) having exactly one REFERENCE POINTER with a bit pattern of 0000000000000001, that
is, the relocation DELTA should be ADDED to the GVR value exactly once. Similarly, having a
primary type of "global" is an abbreviation for (and entirely equivalent to) having exactly one
REFERENCE POINTER with a bit pattern of 0000000000000101, that is, the global data area
DELTA should be ADDED to the GVR value exactly once.

How a GVR is evaluated

The calculation of a GVR’s final value at load time is a process of addition. The effective value
is the sum of:

relative part (relocated base of the segment of
code or data)

value extension (if present in the GVR)

global part (if indicated)

content of text field (if and only if the GVR is part of a REF
record which is modifying loader text)

This evaluation is performed for the loader by an assembly language routine called EVALGVR.
In the Librarian, during linking, it is sometimes necessary to do a more symbolic form of GVR
evaluation, where two GVR’s are added to yield another GVR rather than an absolute value.
This allows modules to be relinked repeatedly. The symbolic evaluation is done by the Librarian’s
NEWGYVR routine.

EXT Table (External Symbol Table)

There may be one EXT table per module. The EXT table begins on a block boundary which is
specified in the directory for the module. Its length is also given in the directory. The EXT table
is contiguous over its length, which means that individual EXT records within the table may
cross block boundaries.

Each EXT record is a packed string which is the name of a symbol referenced (used, imported) in
this module, but not defined in it. Each EXT record is a multiple of four bytes long. The first
byte of each string is its length (according to the Pascal string type); thus strings may be from 1
to 255 bytes long. If length(string) + 1 is not a multiple of 4, then 1 to 3 bytes are added as
padding to make the EXT record extend to the proper boundary. These extra bytes may be
garbage!

The first eight bytes of the EXT table are reserved. Thus the first string in the table starts at
offset 8 from the start of the table.

The EXT table is restricted to 65532 bytes in length (plus the length of the last string). This is so

that any entry in the table can be uniquely referenced by 14 bits. See the description of a
REFERENCE POINTER.

SDG 376

low +--------- AR R +
| len = 6 | S | EXT record
B D +
[Y | M | This one is 8 bytes long.
Hmm e A + The formula is:
| B | 0 | EXT size = len+4-(len mod 4)
D Fmmmm - +
| L | padding |
high #+=-----=---- Fom - +

DEF Table {Definition Symbol Table)

There may be one DEF table per module. It contains one DEF record for each symbol which is
exported from the module. The DEF table begins on a block boundary which 1is specified in the
directory for the module. Its length is also given in the directory. The DEF table is contiguous
over its length, which means that individual DEF records within the table may cross block
boundaries.

Each DEF record has two parts. The first part is a packed string containing the name of the
symbol which is defined. The string begins and ends on a word (even byte) boundary. If
length(string) is even, then an extra byte is added to the end for padding, so that the next part of
the DEF record will begin on a word boundary. This extra byte may be garbage.

The second part of a DEF record is a general value or address record (GVR) which defines the
value of the symbol which is being exported.

The value extension is 4 or 8 bytes long, according to the datasize field. The value of the symbol
is defined to be the value extension plus whatever references are specified by the primary type
and any REFERENCE POINTERSs that may exist. The value extension must be present.

low +--------- e +

| len = 6 | S | DEF record

o b — +

| Y | M |

o dommm +

| B | 0 | (symbol string first)

R il dmmm o +

| L | padding |

D Frmm - +

| flags | len = 8 |

R et R +

| value (high part) | (GVR second, len is length

Hmommmmmmmmem oo + of GVR part)

| value (low part) |

Fommm e +-+-+

| ref pointer | | | (GVR includes any number of
high +-=-wccecmacouo- +-+-+ REFERENCE POINTERs)

SDG 377

Define Source

There may be one section of DEFINE SOURCE per module. It begins on a block boundary, which
is given in the module directory. The length is also given in the directory. The DEFINE SOURCE
may be any arbitrary text, but it is intended to be a copy of the ’define section’ from a Pascal
separately compiled unit. It is this section of the module which is accessed when it is imported, or
used, by the compiler.

TEXT Record

A TEXT record is a contiguous chunk of bytes beginning on a block boundary which is given in
the module directory. The length is also given in the directory. The TEXT record can be any
arbitrary data, but is usually object code produced by the compiler or assembler.

A TEXT record can be placed by the loader anywhere, as specified by the GVR for the load
address in the module directory. For example, the FORTRAN 'DATA statement’ could be
implemented by giving a global data relative value in the load address, which would result in
initialization of data when the program is loaded. Another application is the patching of table
entries, hooks, or patch jumps, by linking additional modules.

REF Tables

Each REF table follows a TEXT record and is associated with that TEXT record. The REF table
begins on a block boundary, which is specified in the directory for the module. Its length is also
given in the directory. The REF table is contiguous over its length, which means that individual
REF records within the table may cross block boundaries.

Each REF record is associated with one object (byte, word, integer or real number) within the
preceding TEXT record. There can be at most one REF record for a given object in the TEXT
record. The REF records are ordered within the table according to the TEXT objects they
reference.

The REF record is basically a general value or address record (GVR). (See description elsewhere.)

The offset field specifies which TEXT object is referenced. The first REF record gives an offset
from the beginning of the TEXT record. Subsequent REF records give an offset from the object
referenced by the previous REF record. Thus if a REF record refers to an object which is less
than 256 bytes from the previous one, the short form of the offset may be used. This way, many
REF records will be only two bytes long!

The data size field refers to the referenced TEXT object. The value extension, if it exists, will
always be four bytes long and contain that part of the TEXT object which can’t fit in the TEXT.
This will only happen for objects of type (8 bit) byte and (16 bit) word which are partially
resolved. The true value of the object is the sum of the value in the TEXT plus the value
extension plus whatever references are specified by the primary type and any REFERENCE
POINTERSs that may exist.

SDG 378

low #--------- #ommmmmm - + REF record is a GVR

| flags | offset |

L $o-m-mmm - + offset, 1 or 3 bytes, indicates

| offset (low part) | next object in TEXT record

R +----- +-+-+

| ref pointers | | | (GVR includes any number of
high #----~===--==--- +-t-4 REFERENCE POINTERs)

Miscellaneous Notes

The linker and loader will treat upper and lower case letters as distinct, therefore it is
recommended that assemblers and compilers for languages which make no distinction should
emit all of their symbols with only uppercase letters.

(This does not apply to module names, in which upper and lower case are equivalent.)

When global data areas are allocated, the base address is at the top of the area, while the base
address of a relocatable (code) area is at the bottom of the area.

SDG 379

SDG 380

Chapter 18
The Boot ROMs

Introduction

This chapter of the System Designer’s Guide describes the BOOT ROM. User’s guide to the BOOT
ROM is documented elsewhere (e.g. 9816 Installation Manual, 09816-90000). Also, the tools
that are required to build systems are documented elsewhere.

The BOOT ROM is a read only memory located at physical address zero in all of
Hewlett-Packard’s Motorola 68000 processor based computers. It contains various processor
vectors including the power-up vector. It also contains code to load and start up a language or
operating system. The code for such a system can be in ROM or stored in some mass storage
device. Booting (loading and then granting execution control) of systems is the primary function
of the BOOT ROM.

At this time there are at least four versions of the BOOT ROM (1.0 for 9826 only, 2.0 for
9826/9836 only, 3.0 for 9826/9836/9816, and 3.0L for 9816 only). This chapter describes how
to use them all. To determine the difference between the 3.0 BOOT ROM and the 3.0L BOOT
ROM, look at the power up version number displayed on the screen. The 1.0and 2.0 BOOT
ROMs do not display the version number at power up. (To determine differences from software,
see section on BOOT ROM configuration.)

The BOOT ROM also contains evolving code and data segments that may or may not be used by
software systems. Most of the code is there to support the booting process itself. This chapter
documents the useful code and data segments that can be used safely without fear of change.

Note

Routines in the BOOT ROMs cannot simply be called directly
from the Pascal 2.0 system. A small amount of special-purpose
interfacing code is required. The section called "Using Boot
ROM Routines from Pascal", at the end of this chapter,
describes what you must do.

Because the BOOT ROM is physically part of the machine’s hardware, the latest BOOT ROM (the
3.0 BOOT ROM) was designed to handle new boot devices and formats that are currently not
supported by Hewlett-Packard. Hewlett-Packard may choose not to support other boot devices
in the future. The capabilities help assure that a machine with the 3.0 BOOT ROM will be able
to accept new I/O cards, new mass storage devices, and new operating systems as they become
available.

SDG 381

Note

If you wish to design systems which will be portable to other
Hewlett-Packard computers, avoid using the routines in the
Boot ROM.

Overview

This chapter is a collection of several documents describing the BOOT ROM.

The BOOT ROM is in some ways the lowest level software kernel of the system. Some of the text
that follows is actually more of a system software/hardware interface document, than solely a
BOOT ROM document.

Immediately following this section, the most crucial documentation about the BOOT ROM: the
boot formats, is presented. The boot forr-ats tell what form that an operating system must be
found to be subsequently started by the BOOT ROM.

Setting the default mass storage device specifier (includes: select code, bus address, media format,
and device type) is one of the responsibilities of the BOOT ROM. A section of this manual is
devoted to how this is done, why it is done, and possible values for the default mass storage
device specifier.

Soon, many of Hewlett-Packard’s 68000 based products will contain a software readable PROM
(programable read only memory) with the serial number and product number in them.
Determining if the PROM is present and reading it are explained.

A whole section of this manual enumerates several recommended techniques for identifying the
configuration of the machine. With the aid of these methods, it is possible to design systems that
can operate across many of Hewlett-Packard’s 68000 based products.

The next section specifies the state of the machine after an operating system has been loaded,
but just before the operating system receives execution control.

The next section documents the interfaces which operating systems can use to load additional
code and data segments to bootstrap themselves.

A complete set of low level device drivers for the internal 5.25 inch flexible disc drive are also
accessible via the BOOT ROM. A section documents them.

The rest of the sections document several miscellaneous things: system switching between
operating systems; initializing the internal display; decoding level seven non-maskable interrupts;
hanging the machine; a table of character scan-line bit images; high and low memory maps; and
boot configurations.

First, the boot formats will be presented.

SDG 382

Boot Formats

This section presents the various forms in which an operating system may exist such that the
BOOT ROM will find, load, and start the operating system.

The BOOT ROM will accept two types of systems: hard systems in read only memory (ROM) and
soft systems in a wide variety of forms. Hard systems execute primarily out of ROM and are
never really loaded (because they are already loaded). Soft systems are always copied (loaded)
from some mass storage device into memory and then execute out of that memory.

Explained first, is what the BOOT ROM expects in order to recognize a hard ROM system. Next,
the various logical disc media formats and file formats that the BOOT ROM allows for a soft
system are enumerated. Then, the ROM/EPROM Disc format allowed for a soft system is
explained. Finally, having soft systems on the Shared Resource Manager (SRM) is explained.

Note

Some versions of the BOOT ROM do not support all boot
formats. Only the 3.0 and later BOOT ROM versions support
everything. In the text that follows, watch for notes indicating
limitations.

ROM Headers

A ROM (hard) system can be found in ROM space if it starts with a valid ROM header.

The ROM header is the first 18 bytes found at the beginning of each 16 Kbyte boundary in
ROM space. ROM space begins at 256 Kbytes for 1.0 and 2.0 BOOT ROMs, at 64 Kbytes for the
3.0 BOOT ROM, and at 64 Kbytes for the 3.0L BOOT ROM. ROM space ends at 4 Mbytes.

ROM Header (Starting at 16 Kbyte Boundary)

...... Even Rom......0dd ROM.......
...Bits 15 thru 8... Bits 7 thru 0

IoBeo 11 Byel |
I oevtez 1 1 Byes |
| Byted 1| Bytes |
I oBytes |0 Bye7 |
| eytes | | Byes |
I eyt l0 1| Byenl |
I oevte1z |1 Byte1s |
I yre1d 11 Byels |
I eytels || Bytel7 |

SDG 383

There are two ROM systems that have only 16 bytes of a header (1.0 HPL and 1.0 BASIC). A 16
byte header is present whenever bytes 14 and 15 both have only bit 6 set in bits 7 thru 3. (For
all discussions that follow: bit O is the least significant bit, LSB.) A 16 byte header is assumed to
be part of a pair of 8K by 8 ROMS for checksum purposes.

Here is a description of the ROM header:

Byte Use

0 First Byte of Header:
Must equal $F0 for a valid header. (Note "$" indicates a
hexadecimal or base 16 number.)

i Second Byte of Header:
Must equal $FF to have a valid header.

2 Literal (Third Byte of Header):
ASCII character to designate system name. (BOOT ROM only
uses this if system ROM bit, bit 0, of byte 3 is set.)
Values presently being used are:
B for BASIC

H for HPL
3 Flag:
Flag for type of ROM.
Bit 0 1 = System ROM (LSB of the byte)
Bit 1 Reserved for HP, set to 0.
Bit 2 1 = Language Extension ROM
Bit 3 1 = Pseudo-Disc Follows Header in Memory
(Not supported by 1.0 or 2.0 BOOT
ROMs.) (See ROM/EPROM Disc section.)
Bit 4 1 = ROM should not be checksummed
Bit 5-7 Reserved for HP, set to 0.
4-7 Reserved:

This location can be used for storing a checksum. (How
to generate a ch:cksum is shown below.)

8-11 SYSTEM EXECUTE ADDRESS:
Address relative to start of header plus 8 to start
execution of a system. This is only used if bit 0 of
byte 3 is set. It should be zeroed otherwise.

12 EVEN PART ROM Number and SYSTEM REV:
Bits 5 thru 0 are the part number for the even ROM in a
ROM pair. (1 is the first valid number. 3 is the next
valid number.) Bits 7 thru 6 are the system revision
number for the even ROM in a ROM pair. (0 is the first
valid number.) The 3.0 BOOT ROM verifies that bytes 12
and 13 have consecutive part number values.

SDG 384

13

16

17

ODD PART ROM Number and SYSTEM REV:

Bits 5 thru 0 are the part number for the odd ROM in a
ROM pair. (2 is the first valid number. 4 is the next
valid number.) Bits 7 thru 6 are the system revision
number for the odd ROM in a ROM pair. (0 is the first
valid number.)

CAPABILITY B1TS I and EVEN PART REV:

Bits 2 thru 0 are the part revision for the even ROM in a
ROM pair. (1 is the first valid number.) Bits 7 thru 3
are system capability bits:

Bit 7 Reserved for HP, set to 0

Bit 6 A value of 1 means that the system can
handle a 50 character wide CRT.

Bit 5-4 Resczrved for HP, set to 0

Bit 3 A value of 1 means that the system can

handle an 80 character wide CRT
(Capability bits are only looked at by the BOOT ROM if
the system bit is set, bit 0 of byte 3.)

CAPABILITY BITS II and 0DD PART REV:

Bits 2 thru 0 are the part revision for the odd ROM in a
ROM pair. (1 is the first valid number.) Bits 7 thru 3
are system capability bits:

Bit 7 Reserved for HP, set to 0
Bit 6 Reserved for HP, set to 1
Bit 5-3 Reserved for HP, set to 0

ROM SIZE and GROUP TYPE:

Bits 7 thru 4 are the ROM size flag. It is a multiple of
64 Kbits (e.g. zero is illegal). (For ROMs that don't
have this byte as above, 64 Kbits is assumed.) Bits 3
thru 0 are the group type. Systems are given the number
0. Option ROMs are then given consecutive numbers
starting with 1.

ROM ADDDRESS:

This is bits 21 thru 14 of the address of the ROM header
byte 0 right shifted 14 bits. The BOOT ROM does not
verify this to allow for relocatable systems.

Note

Reserved bits are for future extensions by Hewlett-Packard
and could be used by present or future version BOOT ROMs at
any time without notice. It is advised to set the reserved bits to
the above documented values.

SDG 385

To generate and verify checksums, the following assembly language routine can be used:

X

¥ SUMROM: Checksum a section of memory.

X On entry: a0.1 = 32-bit start address for checksum

X dd.1 = 32-bit size of area to checksum

X On exit: d2.w = 16-bit even (bits 15 thru 8)

X byte checksum

X d3.w = 16-bit odd (bits 7 thru 0)

X byte checksum

X

sumrom moveq #0,d1 dl = Dummy word
moveq #0,d2 d2 = Checksum of even bytes
moveq #0,d3 d3 = Checksum of odd bytes

sumrom] movep .w 0(ad) .d5 Get 16 bits from even bytes
movep.w 1(a0).d6 Get 16 bits from odd bytes
add d5,d2 Sum even bytes
addx dl, d2 Add in carry bit also
add d6,d3 Sum odd bytes
addx dl,d3 Add in carry bit also
addqg #4 a0 Increment to next location
subg.l #4,d4 Decrement size to checksum
bgt.s sumrom] Repeat if more to checksum
rts Done if size is zero or less

To generate a checksum, a 32-bit long word location on a four byte boundary inside the area to
be checksummed is zeroed. (The address of a 32-bit long word on a four byte boundary has the
two least significant bits both equal to zero.) The area must also be a multiple of four bytes in
length. Next, the above routine is called with the address of this area in register a0 and the size
in bytes of this area in register d4. Next, both odd and even checksums are negated and stored
into the previously zeroed checksummed long word. Below is an example of generating a
checksum in assembly language

X

X Generating a checksum.

X On Entry: addr equated to Start of Area to

X checksum on 4 byte boundary

X size equated to size of area that

X is a multiple of 4 bytes

X chk equated to address of 32-bit

X checksum (address must be

X multiple of 4)

X
lea addr, a0 Address of area to checksum
lea chk,al Address of 32-bit checksum
move .l #size, K d4 Size of area to checksum
clr.l (al) Clear Checksum
bsr sumrom Generate checksums
not dz2 Make even byte compensator
not d3 Make odd byte compensator
movep.w d2.0(al) Set even byte checksum
movep.w d3 1(al) Set odd byte checksum

SDG 386

To verify a checksum, the sumrom routine can be called again. It should then return -1 for both
odd and even byte checksums (registers d2 and d 3, respectively).

ROM systems provide the convenience of always being on-line. With a ROM system, the amount
of read/write RAM memory required can be minimized.

The current trend of Hewlett-Packard’s 68000 based products is towards multiple flavors of
languages/operating systems and allowing systems to be improved by revisions. This dictates the
use of soft systems for flexibility and re-use of read/write RAM memory.

The next section presents the soft system formats that are recognized by the BOOT ROM.

Boot Disc Formats

When the BOOT ROM searches disc media, it can look for systems on several logical formats.
They are: LIF (Logical Interchange Format) 68000 Family System File, SDF (Structured Disc
Format) Boot Area, and UNIX ((R) trademark of Bell Laboratories) Boot Area. (All BOOT ROM
revisions support LIF. Only the 3.0 BOOT ROM supports all formats.) SDF and UNIX boot areas
are supported for possible future use.

To determine which format is on a disc medium, the BOOT ROM looks at the first 16~bit word
of the system record. The system record is the first record on a medium (typically 256 bytes in
size).

The disc formats are defined below by using Pascal structure type declarations. The following
types are used in these definitions:

type
becd = 0..9;
bedl2 = packed array[1..12] of becd;
unsgnlb = 0..32767;
stringlé = string[16];

The actual boot code data is the same for all formats. It consists of a sequence of load segments.
Each load segment must begin on a 256-byte boundary (typically the size of a sector). The first 4
bytes is the load address. The second 4 bytes is the number of bytes of code that follow in the
load segment. (The load address should be sign extended to the full 32 bits to allow the BOOT
ROM to do address range checking before loading.)

Format For A Load Segment

byte # 0 1 2 3 4 5 6 1 8 9

B bl L R Rl L Y et T
| load address | no. of bytes | code text to be
memedecebmccpmmepmeg---t---t---+---]Joaded for as

many bytes as
is required.

The start address for execution and the total length of the boot code data area is kept in a
directory entry or in the header of a boot area depending upon the medium format.
First, the most portable disc format, LIF, is presented.

SDG 387

LIF System File Format

All BOOT ROMs support Logical Interchange Format (LIF). LIF is supported by all 68000 based
products as a common means for data communication.

File names must begin with "SYSTEM__ " to be found by the BOOT ROM. The 3.0 BOOT ROM
also will find system files whose names begin with "SYS".

A LIF disc can have multiple system files on it. The 3.0 BOOT ROM allows any of them to be
chosen. (See Installation Guides for more detail, e.g: 9816 Installation Manual, 09816-90000.)
All other BOOT ROM revisions will only allow loading of the first system file found on the disc
at power-up. All BOOT ROM revisions allow system switching between multiple systems on a
disc. (See section on system switching.)

The LIF system record must be of the following format (concisely shown using Pascal constructs):

LIF_vol_type = {LIF volume label}
packed record

LIFid;: signedl6; {Must equal -32768}
LIFvolume_label: packed array[l..6] of char;
LIFdir_start_address: integer;
LIFoct_10000: signedl6; {Must equal 4096}
LIFdummy : signedl6; {Must equal 0}
LIFdir_length: integer;
LIFversion: signedl6;
LIFzero: signedl6; {Must equal 0}

end;

LIFid equal to -32768 identifies the medium to be of LIF format. LIFvolume label is a six
character logical name of the medium. LIFdir start address is a 32-bit value pointing to the
first sector of the directory. LIFoct 10000 is a 16-bit value that must be equal to 4096 to
eliminate console messages on the SYSTEM 3000. LIFdummy is a dummy 16-bit value that
must be set to zero. LIFdir length is a 32-bit value containing the maximum allowable length
of the directory in number of sectors. LIFversion is a 16-bit value indicating version of the LIF
standard. LIFzero must be set to zero. Words that follow depend upon the version of LIF and are
ignored by the BOOT ROM.

A LIF directory entry for a system file to be found by the BOOT ROM must be of the following
format:

LIF_dir_entry = {LIF directory entry}
packed record

LIFfile_name: pacl0 {array[1..10] of char};

LIFfile_type: signedl6; {Must equal -5822}

LIFstart_address: integer;

LIFfile_length: integer;

LIFtoc: becd12;

LIF1_flag: boolean;

LIFvol_number: unsgnlb;

LIFimplement: integer; {Execution Address}
end;

LIFfile _name is a 10 character file name. LIFfile type is a 16-bit number that indicates the
file type. -5822 is the file type for a 68000 family product system file and can be found by the

SDG 388

BOOT ROM. LIFstart__address is a 32-bit value that is the starting sector number for the body
of the file. (The body of a system file was shown previously.) LIFfile length is a 32-bit value
showing the allocated number of sectors for the file. LIFtoc is 12 BCD digits of the form
YYMMDDHHMMSS indicating the time of creation of the file. LIFtoc is ignored by the BOOT
ROM. LIFl_ flag or last volume flag is one bit. LIFl flag equal O means this is not the last
volume of the file. LIFl_ flag equal 1 means this is the last volume of the file. LIFl flag is
ignored by the BOOT ROM. LIFvol number is a 15-bit value indicating the volume number of
this file on this medium (zero is illegal). LIFvol number is ignored by the BOOT ROM.
LIFimplement is a 32-bit implementation dependent field. LIFimplement is used by the BOOT
ROM as the start execution address in memory for the system.

Below is an example of soft HPL from a LIF 5.25" flexible disc:
Hexadecimal/ASCII dump of record O (LIF system record)

+0 +1 +2 +3 +4 +5 +6 +7 01234567
00 80 00 48 50 39 38 32 36 . .HP9826
08 00 00 00 02 10 00 00 00
10 00 00 00 OE 00 O1 00 00
18 00 00 00 21 00 00 00 02
20 00 00 00 10 00 00 00 0O
28 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00
38 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00
48 00 00 00 00 00 00 00 0O
50 00 00 00 00 00 00 00 00
58 00 00 00 00 00 00 00 00

F8 00 00 00 00 00 00 00 00

LIFid is -32768 or $8000 hexadecimal.

LIFvolume_label is "HP9826" or $485039383236 hexadecimal.
LIFdir_start_address is sector 2 or $00000002 hexadecimal.
LIFoct_10000 is 4096 or $1000 hexadecimal.

LIFdummy is 0 or $0000 hexadecimal.

LIFdir_length is 14 or $0000000E hexadecimal.

LIFversion is 1 or $0001 hexadecimal.

LIFzero is 0 or $0000 hexadecimal.

Number of tracks per surface is 33 or $00000021 hexadecimal.
Number of surfaces per medium is 2 or $00000002 hexadecimal.
Number of sectors per track is 16 or $00000010 hexadecimal.

SDG 389

Hexadecimal/ASCII dump of sector 2 (LIF directory entries)

+0 +1 +2 +3 +4 +5 +6 +7 01234567

00 53 59 53 54 45 4D 5F 48 SYSTEM_H First Entry
08 50 4C E9 42 00 00 00 10 PLiB....

10 00 00 01 B! 00 00 00 GO ...1....

18 00 00 80 01 FF FE B7 A0 7

20 63 62 61 63 6B 75 70 20 cbackup Second Entry

28 20 20 E8 14 00 00 01 C1 h....A

30 00 00 00 0B 00 00 00 0O

38 00 00 80 01 00 00 05 4B K

40 69 62 61 63 6B 75 70 20 ibackup Third Entry
48 20 20 E8 14 00 00 01 CC h....L

50 00 00 00 10 00 00 00 OO

58 00 00 80 01 00 00 07 BF ?

60 39 38 32 35 6B 65 79 20 9825key Fourth Entry
68 20 20 E8 10 00 00 01 DC h.oo o\

70 00 00 00 OB 00 00 00 GO

78 00 00 80 01 00 00 05 50 P

80 39 38 37 36 63 68 61 72 9876char Fifth Entry
88 73 20 E8 10 00 00 01 E7 s h....g

90 00 00 00 02 00 00 00 0O

98 00 00 80 01 00 00 00 9D

A0 20 20 20 20 20 20 20 20 End of Directory
A8 20 20 FF FF 20 20 20 20

BO 20 20 20 20 20 20 20 20

B8 20 20 20 20 20 20 20 20

CO0 20 20 20 20 20 20 20 20

C8 20 20 20 20 20 20 20 20

DO 20 20 20 20 20 20 20 20

D8 20 20 20 20 20 20 20 20

EO 20 20 20 20 20 20 20 20

E8 20 20 20 20 20 20 20 20

FO 20 20 20 20 20 20 20 20

F8 20 20 20 20 20 20 20 20

The first entry (bytes $00 thru $19 hexadecimal) is for the 2.0 HPL soft system:

LIFfile_name is "SYSTEM_HPL" or $53595354454D5F48504C
hexadecimal .
LIFfile_type is -5822 or $E942 hexadecimal.
LIFstart_address is 16 or $00000010 hexadecimal.
LIFfile_length is 433 or $000001B1 hexadecimal.
LIFtoc is 0 or $000000000000 hexadecimal.
LIF1_flag is 1 or most significant bit of $8001 hexadecimal.
LIFvol_number is 1 or least significant 15 bits of
$800) hexadecimal.
LIFimplement is $FFFEB7A0 hexadecimal.

Next, two media formats that are supported for possible future use are presented.

SDG 390

SDF Boot Area Format
Only the 3.0 BOOT ROM supports Structured Disc Format (SDF).

SDF is a hierarchical directory structure that is used by the Shared Resource Manager (SRM) to
manage its files. Some day SDF format may become as common place as LIF is today. It is
tree-like, hierarchical, and meets needs of larger file systems. Only the 3.0 BOOT ROM allows
the SDF boot area to contain a 68000 system. The purpose of this is to allow the SRM (which
runs in 2 68000 machine) to boot up straight from one of its own hard discs.

A boot area is a simple block on disc that contains a system to be loaded by the BOOT ROM.
There can only be one such area per disc medium. The BOOT ROM cannot decipher the
hierarchical directory of SDF directly to find multiple systems (as it can with the LIF format).

The SDF system record contains pointers to the boot area and must be of the following format to
be recognized by the 3.0 BOOT ROM (again in Pascal):

SDF_vol_type = {SDF volume label}
packed record

SDFid: signedl6; {Must equal 1792}

SDFreservedl : packed array[2..3] of char;

SDFreserved?: packed array[1..6] of integer;

SDFlogical_block_size: integer;

SDFboot_start_block: integer;

SDFboot_block_count: integer; {Must be Non-zero}
end;

The SDF Boot Block must be of the following format to be recognized by the 3.0 BOOT ROM:

SDF_boot_head_type = {SDF boot block header}
packed record

SDFowner : signedl16; {Must equal -5822}
SDFexecution_address: integer;
SDFfilename: stringl6;

{Pad to 256 byte boundary}
{Load Segments follow as documented previously}
end;

SDFowner is 16-bit word that identifies the target machine family for the system. -5822 is the
value that identifies the boot area for Hewlett-Packard’s 68000 based products.
SDFexecution__address is the 32-bit start address where the BOOT ROM starts execution of the
system after it has been loaded. SDFfilename is the system name to be displayed in the menu of
the 3.0 BOOT ROM. (See 9816 Installation Manual, 09816-90000, for more detail) The actual
load segments then start on the next 256 byte boundary and are of the form previously
documented.

SDF is currently used only by the Shared Resource Manager. The next format is supported only
for possible future use.

SDG 391

UNIX (R) Boot Area Format

UNIX (R) (registered trademark of Bell Laboratories) Boot Area is supported only on the 3.0
BOOT ROM. This is supported in anticipation of the possibility that someone may want to boot
directly from a disc that also contains a UNIX hierarchical file system. (UNIX is an operating
system originally designed by Bell Laboratories.) .

The first disc sectors of a medium that has a UNIX file system on it has traditionally had system
dependent boot information and/or code.

For the 3.0 BOOT ROM to load a system from a UNIX disc, the system record (first sector of the
disc) must have the following format:

UNIX_vol_type = {UNIX volume label}
packed record

UNIXid: signed16; {Must equal 12288}
UNIXreservedl: packed array[2..3] of char;
UNIXowner: integer; {Must equal -5822}
UNIXexecution_address: integer;
UNIXboot_start_sector: integer;
UNIXboot_byte_count: integer; {Must be Non-Zero}
UNIXfilename: stringl6;

end;

UNIXid is a 16-bit word that indicates that the medium has a UNIX file system on it.
UNIXreserved! is two 8-bit bytes as yet to be defined by Hewlett-Packard. UNIXowner is a
32-bit word that identifies for which machine family the boot area is targeted (-5822 indicates
that it is for an HP 68000 based product). UNIXexecution__address is the 32-bit address where
the BOOT ROM starts execution of the loaded system. UNIXboot start sector is the 256-byte
disc sector which starts the contiguous boot area. (Zero is the first sector on the medium. The
number of the last sector on the medium depends upon its capacity.) The boot area contains load
segments of the same format as described above. The length of the contiguous boot area is given
in bytes in the 32 bits of UNIXboot_byte count. UNIXfilename is the system name displayed
in the menu of the 3.0 BOOT ROM. (See 9816 Installation Manual, 09816-90000, for more
detail.)

All three of the formats (LIF, SDF, and UNIX) usually implies that they are present on some sort
of sector oriented mass storage device. The 3.0 BOOT ROM also allows such formats to be stored
in memory in ROM space.

ROM/EPROM Pseudo-Disc Format

To get the best (or worst) of both worlds of hard and soft systems, the 3.0 BOOT ROM can find
soft systems stored in ROM/EPROM in the ROM address space (64 Kbytes thru 4M bytes). This
allows a soft system to be loaded without the use of any mechanical mass storage device.

A ROM/EPROM pseudo-disc begins with a ROM header in ROM space with the disc bit set (bit
3 of byte 3 in ROM headers section). Immediately following the 18 bytes of header information
is the first sector of the disc, the system record. Following the system record are the rest of the
disc records. The data is contiguous, except that a zeroed 16-bit word is placed at every 16
Kbyte boundary to prevent ROM headers from accidentally occurring.

A ROM/EPROM pseudo-disc can have any of the previous formats (LIF, SDF, or UNIX).

SDG 392

Unit 01s the first ROM/EPROM pseudo-disc found in the ROM address space. Unit 1 is the
second ROM/EPROM pseudo-disc found in ROM address space. Unit N is the nth ROM/EPROM
pseudo-disc found in ROM address space.

All the previous boot format presentations dealt with disc media formats for sector oriented
devices that the BOOT ROM read from directly. The 3.0 BOOT ROM also has the capability of
talking to Shared Resource Managers (SRM). This is presented next.

SRM System Files

The Shared Resource Manager (SRM) allows multiple machines to share the same operating
systems (among other things).

The 3.0 BOOT ROM only, will search the /SYSTEMS directory of each SRM disc volume for
68000 family system files beginning with the name "SYS" for possible load and execution.

For an explanation of how to place and manipulate SRM system files, see FILER chapter of the
Pascal 2.0 User’s Manual, 98615-90020, December 1982.

That completes the description of the boot formats recognized by the BOOT ROM. Next, a piece

of information left by the BOOT ROM for the system, the default mass storage device specifier,
is described.

SDG 393

Default Mass Storage

The BOOT ROM is responsible for setting up a variable called the Default Mass Storage s,
DEFAULT _MSUS. It is available for interrogation at any time after a system has been loaded
by the BOOT ROM.

DEFAULT_MSUS can be found as a 32-bit value in memory at the hexadecimal address:
SFFIFFFEDC.

DEFAULT__MSUS is used by systems for three purposes:

1. Default Mass Storage Device Specifier by language systems (e.g. "msi" statement in HPL or
SCRATCH A command in BASIC),

2. Auto-start Device (Device that is searched for a program that is automatically loaded and
run at power-up by a language system), and

3. Secondary Load MSUS (place to retrieve additional drivers: e.g. INITLIB of Pascal 2.0).

DEFAULT_MSUS consists of four bytes: the Device TYPE byte, the UNIT Byte, the Select Code
Byte, and the Primary Address Byte. The Device TYPE byte specifies the mass storage device and
media format. The UNIT byte specifies the drive number, unit number, or volume number. The
Select Code byte specifies the I/0O select code of the device. The Primary Address byte specifies
the HP-IB address or node address. Not all four bytes are used for some device types.

Note

Some device types have already been assigned device numbers
even though they are not currently supported and may never
be supported. They are assigned because the 3.0 BOOT ROM
was designed to provide for the future. Included in this
category are: 7905, 7906, 7920, 7925, Bubble memory, and
the 5/10/15 Mbyte single volume 5.25" winchesters.

Note

Hewlett-Packard reserves the right to assign any of the
reserved device-type numbers at any time.

SDG 394

Below is a breakdown of the assigned values for the four bytes that make up DEFAULT MSUS.

$FFFFFEDC TYPE Byte This byte defines the File
System Format and the
Protocol/Device Type.
TYPE<7:5> - Directory Format
0 = LIF Sector Format
1 = SDF (Structured Disc Format)

2 = UNIX Sector Format
3-6 = Reserved by HP for Future Sector Formats
7 = Special (ROM, SRM, Networks, etc.)
TYPE<4:0> - Device Type
0 = 09826/36 internal 5.25" flexible disc
{(or ROM for Special)
1 = Reserved by HP for Future
(or SRM for Special)
2-3 = Reserved by HP for Future
4 = 9895 8" flexible disc / 913X 5.25"
winchester (HP-IB)
5 = 82900 series 5.25" flexible disc (HP-IB)
6 = 09885 8" flexible disc (GPIO)
7 = 5-Mbyte 5.25" winchester (HP-IB)
8 = 10-Mbyte 5.25" winchester (HP-IB)
9 = 15-Mbyte 5.25" winchester (HP-IB)
10 = 7905 hard disc (HP-IB)
11 = 7906 hard disc (HP-IB)
12 = 7920 hard disc (HP-IB)
13 = 7925 hard disc (HP-IB)
14-15 = Reserved by HP for Future
16 = Command Set '80 devices with
256-byte blocks (HP-IB)
17 = all other Command Set '80 devices (HP-IB)
18-19 = Reserved by HP for Future
20 = ROM/EPROM pseudo-disc (ROM Space Memory)
21 = Reserved by HP for Future
22 = Bubble memory card)
23-31 = Reserved by HP for Future
$FFFFFEDD UNIT Byte Typically 0 to 3

UNIT<7:0> - Device Dependent Variant Record
packed record case boolean of
false: un; 0..255; 8-bit unit number
true: {(vn4: 0..15; vol. no. (CS80/7905/7906)
und4: 0..15;) wunit number
end
TYPE<4:0> - Device Type
$FFFFEEDE Select Code Byte 0 to 31
(Meaningless for Device type

Number 0.)
$FFFFEEDF Primary Address Device Address
Byte (HP-IB addr. for HP-IB Discs.)

(Node addr. for SRM)

SDG 395

The TYPE byte has two fields. Bits 7 thru § specify the medium format (e.g. LIF or SDF or
Special). Bits 4 thru O specify which device it is (e.g. 9895 or 9885). A medium format of type,
Special is for boot devices that are communicated with, in a special way (e.g. SRM or ROM).

The UNIT byte specifies the drive number that a medium is found. Most devices such asa 9895
have just one level of specification. For these devices the complete 8 bit value is used. Some
devices such as CS-80 discs and the 7096 can have two levels of specification: a volume number
and a unit number. This happens for example if there is both a removable and fixed disc platter
on the same unit number. In this case the most significant four bits is the volume number and
the least significant four bits is the unit number. The UNIT byte may also be meaningless
depending upon the TYPE byte. For example a ROM system does not have a valid drive number.

The Select Code byte specifies the I/O card address of the boot device. If the select code is 7, the
internal HP-IB is referenced if it is present. The select code byte is device dependent and may
also be meaningless depending upon the TYPE byte. (ROM systems do not have a select code.)

The Primary Address byte is a device dependent address field. For some devices it is meaningless
(e.g. ROM). It has a different meaning depending upon the device. For an HP-IB disc, it is the
HP-IB primary address. For an SRM, it is the node number.

On 1.0 and 2.0 BOOT ROMs, the DEFAULT__MSUS is always set to LIF on an internal flexible
disc drive O.

The DEFAULT__MSUS is set according to the following algorithm:
1. Same as the mass storage that the system was loaded from, for all but ROM systems; or
2. In order of priority, either:

a. Non-ROM value passed in DEFAULT__MSUS to booter routine. (The BOOT ROM never
does this. Only systems calling the booter can do this.); or

b. First device found with media present in boot list (shown below) if ROM is specified in
DEFAULT_MSUS. (Media present means that the disc is in, with the door closed and is
one of the formats: LIF, SDF, or UNIX); or

c. First device found present in the boot list (shown below) if ROM is specified in
DEFAULT__MSUS and no media can be found. (A disc drive turned on with the door
open fits this category.); or

d. A LIF media in an 8290XM drive at HP-IB select code 7, bus address 0, drive O; if ROM
is specified in DEFAULT__MSUS and no devices are present. This was a rather arbitrary
choice. INTERNAL,O was not chosen because case "¢" would always catch it. (This case
can occur only on machines with no internal mass storage, when a ROM system is

powered-up, and no external mass storage devices are powered up.)

SDG 396

When searching for the DEFAULT _MSUS, the 3.0 BOOT ROM uses a priority order called the
boot list. All other BOOT ROMs just set the DEFAULT__MSUS to LIF on an internal flexible
disc drive 0. The 3.0L BOOT ROM sets the DEFAULT__MSUS to case "d" above. The boot list for
the 3.0 BOOT ROM is:

Internal flexible disc drive 0
External discs at select codes 0-31, bus address 0,
unit 0, volume 0
SRM at node 0 at select code 21 on volume 8
Bubble memory card on select code 30
ROM/EPROM pseudo-disc unit 0
ROM
Internal flexible disc drives 1 thru n
Remaining external discs at select codes 0-31,
bus addresses 0-7, units 0-7, volumes 0-1
Remaining SRMs at select codes 0-31
Remaining bubble memory cards on
select codes 0 thru 29 and 31
Remaining ROM/EPROM pseudo-disc units

For each category in the boot list, there is also an order of search. All have some sort of address
location. In all cases, lower addresses are found first. This means that select code 0 will be found
before select code 7. If a device has multiple addresses to locate it, then searching is done at a
local level first. For example, after looking at select code 7, bus address 1, and unit 1; unit 2 at
same address will be looked at before going to select code 8.(The SRM equivalent of unit
number, the volume, is an exception. It has the strange order of priority: first unit 8, then unit 7,
then units 9 thru 24 in order.)

For more information on how the BOOT ROM searches for systems see 9816 Installation
Manual, 09816-90000.

SDG 397

CPU Board PROM

In the future, several of Hewlett-Packard’s 68000 based products will contain a socketed
software readable PROM (programable read only memory) with the serial number and product
name in them.

To determine if the PROM is present, look at bit O (the least significant bit) of hexadecimal
address SFFFEDA (also known as SYSFLAG?2). A value of 1 means that a valid PROM of the
format shown below is present. A value of O means that there is no PROM present, that the
PROM did not checksum, or that the PROM is not Hewlett-Packard format.

Visually one can tell that a machine has a PROM because the 3.0 BOOT ROM will display the
serial number on the screen at power up.

The PROM is located at $SFO001 when present and has data every other byte.

HEX. Address Bytes Used Item Description

$5F0001 002 Checksum

$5F0005 001 Size of PROM in multiples of 256
bytes

$5F0007 011 Machine Serial Number represented
in ASCII

$5F001D 007 Product Number represented
in ASCII

$5F004F 078 Used By HP for BOOT ROM Self-Test
Information

$5F00C7 001 Owner Byte: Zero Means it has HP
format

$5F00C9 001 PROM Rev. Byte (Currently zero)

$5F00CB 002 Spare Checksum (Set to $FF's)
(To allow 2nd Pass to PROM)

$5F00CF 025 Reserved at $FF's for HP Future
Use

$5F0101 128 Reserved at $FF’'s for Future Use
(Half of PROM)

101 Bytes Allocated
1585 Bytes Reserved for Future Use

(Reserved at all $FF's):

SDG 398

Below is an example of a 9826A with the serial number 2010A 000000:
Hexadecimal/ASCII dump of a 9826 A PROM

+0 +2 +4 +6 +8 +A +C +E 02468ACE
$5F0001 36 39 01 32 30 31 30 41 69.2010A
$5F0011 30 30 30 30 30 30 39 38 00000098
$5F0021 32 36 41 20 20 FF 01 02 26A
$5F0031 03 04 05 FF FF FF FF FF
$5F0041 FF FF FF FF FF FF FF FE
$5F0051 00 00 FF FF FF FF FF FF
$5F0061 FF FF FF FF FF FF FF FF
$5F0071 FF FF FF FF FF FF FF FF
$5F0081 FF FF FF FF FF FF FF FF
$5F0091 FF FF FF FF FF FF FF FF
$5F00A1 FF FF FF FF FF FF FF FF
$5F00B1 FF FF FF FF FF FF FF 00
$5F00CT 00 00 00 00 00 FF FF FF
$5F00D1 FF FF FF FF FF FF FF FF
$5F00E1 FF FF FF FF FF FF FF FF
$5F00F1 FF FF FF FF FF FF FF FF
$5F0101 FF FF FF FF FF FF FF FF
$5F0111 FF FF FF FF FF FF FF FF
$5F0121 FF FF FF FF FF FF FF FF
$5F0131 FF FF FF FF FF FF FF FF
$5F0141 FF FF FF FF FF FF FF FF
$5F0151 FF FF FF FF FF FF FF FF
$5F0161 FF FF FF FF FF FF FF FF
$5F0171 FF FF FF FF FF FF FF FF
$5F0181 FF FF FF FF FF FF FF FF
$5F0191 FF FF FF FF FF FF FF FF
$5FO1A1 FF FF FF FF FF FF FF FF
$5F01B1 FF FF FF FF FF FF FF FF
$5F01C1 FF FF FF FF FF FF FF FF
$5F01D1 FF FF FF FF FF FF FF FF
$S5FO1E1 FF FF FF FF FF FF FF FF
$5FO1F1 FF FF FF FF FF FF FF FF

No two machines will have the same PROM (unless its fraud or non-HP).

The PROM is checksummed to allow for a check of its validity. (See section on ROM headers for
checksum algorithm.) A byte is used to determine the size of the PROM to allow for larger size
PROMs in the future. The machine serial number is of the form DDDDCSSSSSS where DDDD is
the date code, C is the country, and SSSSSS is the serial number. The machine serial number is
identical to the serial number plate on the back of the machine. The product number (e.g
9826A) is the number marketing gives a machine. It is the first 7 characters or blank pad
extended to 7 characters. Together the serial number and product number make up a unique
identification for a machine. 78 bytes of the PROM are used by the BOOT ROM to aid in the
power-up self -test process. The owner byte specifies who generated the PROM. The revision byte
specifies what version the PROM format is. Much of the PROM remains undefined at this time.

The above definition allows for security via the product name and serial number. It allows for

reliability via the checksum. It is easy to replace because the serial number matches the one on
the back plate. It is easy to trace fraud. (Whenever someone has an illegal PROM serial number,

SDG 399

it will not match their serial number plate. And it will be possible to see whose PROM was
copied.)

The serial number PROM is just a small part of machine configuration identification that must
be done by operating systems that run on Hewlett-Packard’s 68000 family products. The next
section presents several recommended techniques for identifying the configuration of the
machine. With the aid of these methods, it is possible to design systems that can operate across
many of Hewlett-Packard’s 68000 based products.

Machine Configuration

Machine configuration identification is important on Hewlett-Packard’s 68000 based products if
software is to be designed that will operate on more than one product. This section presents the
current picture of the evolving set of identification techniques.

The philosophy is to try to determine a capability from the peripheral in question. This means
that one shouldn’t assume something about a machine based solely upon which product it is. (For
example in a 9816, do not assume that there is no CRT alpha underlining capability, instead,
look at the SYSFLAG byte to see if CRT alpha highlights are present. Then if the 9816 ever has
CRT alpha highlights, the software could use them.)

SDG 400

SYSFLAG

SYSFLAG is a byte at hexadecimal address SFFFED2 that is part of the current mechanism for
communicating machine configuration to operating systems.

SYSFLAG is generated by the BOOT ROM and is defined as follows (bit O is the least significant
bit):

SYSFLAG<bit 0> Width of CRT alpha. 0 = CRT alpha is 80
characters wide. 1 = CRT alpha is 50
characters wide.

SYSFLAG<bit 1> Resolution of CRT graphics. 0 = graphics
has 400 horizontal dots by 300 vertical
dots. 1 = graphics has 512 horizontal dots
by 390 vertical dots.

SYSFLAG<bit 2> CRT alpha highlights. Highlights include
inverse video, underlining, etc. When
highlights are not present: (SYSFLAG<2> XOR
SYSFLAG<1>) = 0. When highlights are
present: (SYSFLAG<2> XOR SYSFLAG<1>) = 1.

SYSFLAG<bit 3> Internal keyboard controller. 0 = internal
keyboard controller present. 1 = internal
keyboard controller not present.

SYSFLAG<bit 4> CRT configuration register (presented
below). 0 = no CRT configuration register
present. 1 = CRT configuration register

present.
SYSFLAG<bit 5> Internal HP-IB. 0 = internal HP-IB
present. 1 = internal HP-IB not present.
SYSFLAG<bit 6> Reserved for HP, set to a value of 0.
SYSFLAG<bit 7> Reserved for HP, set to a value of 0.

SYSFLAG is one of many pieces of configuration information available.

SDG 401

SYSFLAG2

There is a second set of system configuration bits in the byte, SYSFLAG?2, at hexadecimal address
$FFFFFEDA. SYSFLAG?2 is generated by the BOOT ROM before a system is given control.
SYSFLAG?2 is defined as follows (bit O is the least significant bit):

SYSFLAG2<bits 7:1> Reserved for HP future use at hexadecimal
value of $27.

SYSFLAG2<bit 0> Serial number PROM (described earlier).
] = a valid PROM is present. 0 = no PROM
present, that the PROM did not checksum,
or that the PROM is not Hewlett-Packard
format.

Both SYSFLAG and SYSFLAG?2 should be examined a bit at a time (versus examining a whole
byte value) to allow reserved bits to take on meanings in the future. Next, the byte, BATTERY,
is presented. The whole byte value of BATTERY can be examined.

BATTERY

BATTERY is a byte at hexadecimal address $FFFFFDCD that contains a value of 1if the
battery backup hardware option is installed and a value of O otherwise. BATTERY is initialized
by the BOOT ROM at power-up. (The 3.0L BOOT ROM will always set this byte to a value of O
indicating no battery is present.)

Only a small portion of all configuration information required by operating systems is left by
the BOOT ROM. Most information must be extracted by the operating systems themselves. Of
this information, some must be inferred as the result of some algorithm. The next section
presents how to get additional CRT configuration information.

SDG 402

CRTID, CRT Presence, Graphics Presence

Determining characteristics of the CRT display that are not specifically given by SYSFLAG can
be done using the algorithm shown below:

| Is There |---No-->| Controller |---->| Assume No CRT |

| A CRT I | Bus Errors | = -----------------
I

Yes

|

| Is There A CRT |---Yes--->| Use CRT Configuration |

| Configuration | | Register |

| Register? I i e b L L LR L el

| Does HP-IB Reg. 3, Bit 2 = 1 (9816)7? |

| (Explained Below) |
I I

No (or No HP-IB) Yes

Assume 9836A CRT.

| | | | Assume 9816 CRT.
| 9836A CRT Constants:| |
I I
| I

| 9816 CRT Constants:
| 80 Wide Alpha
| 400X300 Graphics

80 Wide Alpha
512X390 Graphics

| Assume 9826A CRT. |
| 9826A CRT Constants: |
| 50 Wide Alpha |
| 400X300 Graphics |

To determine if the CRT is present, a bus error check should be done with the instruction:
move.b #15,$510001

(This instruction sets the CRT controller to point to the cursor register.) (See MC68000 User’s
Manual, 09826-90073, for handling of the bus error exception.)

SDG 403

To determine if the CRT has a CRT configuration register, look at bit 4 of SYSFLAG as
explained previously. (The contents of a CRT configuration register are enumerated below.)

CAUTION

If a CRT configuration register is not present, do not read or
write the non-existent register. If a non-existent CRT
configuration register is accessed, it will turn off the CRT
horizontal sweep in some machines (9826 and 9836). Later,
accessing of normal CRT alpha will then turn the CRT
horizontal sweep back on. This will in turn stress the CRT
hardware.

If the machine does not have a CRT configuration register, the CRT must be the same as one of
the three CRTs found on the 9826, 9836A, or 9816.

First, a check should be made to see if the CRT is the same as a 9816. This is done by looking to
see if bit 2 of the byte at hexadecimal address $478003 (known as register 3 of the internal
HP-IB) is equal to one. Of course the internal HP-IB must be present for this bit to be valid. Bit
S of SYSFLAG tells if this register and the internal HP-IB are present.

If the machine doesn’t have a CRT configuration register and it does not identify as a 9816 like
CRT, then a check is made to see which of the two CRT tops it has (9826 or 9836A). This is
done by determining if it has alpha highlight capability. A 9836A like CRT has highlight
capability and a 9826 like CRT does not.

Below is the 16 bit CRT configuration identification register (at hexadecimal address $51FFFE)
to be used in future products (bit O is the least significant bit):

SDG 404

CRTID<bit 15> - Self-Initializing CRT.
CRTID<bits 14 thru 13> - Reserved by HP for future, set to 0.

CRTID<bits 12 thru 11> - Graphics Memory Layout:

(Currently only zero is used.)

0: Monochrome

1: 4 Memory Planes starting at $520000
4 bits/byte using 256 Kbytes
1 byte/pixel

(least sign. 4 bits)

2: 3 Memory Planes starting at $528000
8 pixels/byte using 128
Kbytes
(unused 64 Kbytes at $520000)

3: 8 Memory Planes starting at $520000
8 bits/byte using 256 Kbytes
1 byte/pixel

CRTID<bit 10> - Same as SYSFLAG<Bit 2>. CRT alpha
highlights. Highlights include
inverse video, underlining, etc.
When highlights are not present:
(SYSFLAG<2> XOR SYSFLAG<1>) = 0.
When highlights are present:
(SYSFLAG<2> XOR SYSFLAG<1>) = 1.

CRTID<bit 9> - Same as SYSFLAG<Bit 1>.
Resolution of CRT graphics. 0 =
graphics has 400 horizontal dots
by 300 vertical dots. 1 =
graphics has 512 horizontal dots
by 390 vertical dots.

CRTID<bit 8> - Same as SYSFLAG<Bit 0>. Width of
CRT alpha. 0 = CRT alpha is 80
characters wide. 1 = CRT alpha is
50 characters wide.

CRTID<bits 7 thru 4> - CRT Number: Implies CRT constants
for BOOT ROM initialization of CRT
controller and physical dimensions
of CRT.

0: 9826A Monitor
1. 9836A Monitor
2: 9816 Monitor
3-15: Reserved by HP for future

products
CRTID<bit 3» -1 =50Hz. 0 =60 Hz.
CRTID<bits 2:0> - Model # (0 is for all systems

based on the 6845 CRT controller chip.)

SDG 405

Any CRT top with a CRT ID Register may also have a control register (which isa 16 bit word at
hexadecimal address $ S1FFFC) to control the CRT:

Turns Off Graphics
Turns On Graphics

bit 0 (least significant) 0
1

Graphics presence is determined by doing a bus error check of graphics RAM.

Besides the CRT, the keyboard has additional configuration information, that is not documented
elsewhere.

Keyboard

The keyboard system jumpers are used to identify the configuration of the keyboards. The
jumpers can be found on the printed circuit board that has the key switches connected to it. The
9836 and 9826 already use the value of zero. The 9816’s small keyboard uses the value of 1. (See
other chapters for more detail on the keyboards.)

In addition to knowing which size keyboard is present, one may want to know how many
internal flexible disc drives are present.

NDRIVES

The byte NDRIVES at hexadecimal address SFFFFFEDS is the highest allowable unit number
for the internal flexible disc. A value of 255 (or -1) means that there are no drives present (e.g.
9816). This location is not valid on 1.0 BOOT ROMs. (The BOOT ROM LD. in the 16 bit word at
hexadecimal address $ 3FFE is negative for 1.0 BOOT ROMs.)

As the number of BOOT ROMs increases, the need to differentiate between their capabilities
arises. The next section presents the BOOT ROM configuration and I.D. words.

BOOT ROM Configuration and Revision

Currently there are two 16 bit words that help to differentiate the ever growing number of
BOOT ROMs: the configuration word and the revision word.

The BOOT ROM configuration word is a 16 bit word at hexadecimal address $ 3FFC. It is only
valid on 3.0 or later revision BOOT ROMs. (To tell which BOOT ROM one has, look at BOOT
ROM Revision Word below.) For the 1.0 and 2.0 BOOT ROMs assume the hexadecimal value of
$0501. A layout of the configuration word is shown below (bit O is least significant):

SDG 406

BOOT ROM Configuration Word

bits 15 thru 11 Reserved by HP, set to Zero

bit 10 0 = BOOT ROM has user I/0 vectors 125
thru 255 defined. (See section on LOW
ROM Map exception vectors for more
detail.)

bit 9 0 = BOOT ROM has character table at
hexadecimal address $4000 defined.
(See section on Character Table for
more detail.)

bit 8 0 = BOOT ROM has a Read Interface.
(See section appearing later on the
Read Interface)

bits 7 thru 5 These bits are reserved by HP, set to
zero.
bits 4 thru 0 These bits form a value that indicates

the size of BOOT ROM in 16 Kbyte
increments.

The BOOT ROM revision word is a 16 bit word at hexadecimal address $ 3FFE. It is present in all
revisions of the BOOT ROM. Its possible values are:

BOOT ROM Revision Word

Negative (-19492) 1.0 BOOT ROM (9826 only)
1 2.0 BOOT ROM (9836/9826 only)
3 3.0 BOOT ROM

To determine the difference between the 3.0 BOOT ROM and the 3.0L BOOT ROM, look at the
BOOT ROM configuration word. The 3.0L BOOT ROM has no read interface, no character table,
and does not have user I/O vectors 125-255. (The 3.0 BOOT ROM has everything.) Currently
the 1.0, 2.0, and 3.0L BOOT ROMs are 16 Kbytes in size. The 3.0 BOOT ROM is 48 Kbytes in
size.

This completes the section devoted solely to machine configuration. The next section summarizes

what state the machine is left in by the BOOT ROM just before control is passed to a loaded
system.

SDG 407

CPU State at Load

At the time control is turned over to the system, the following conditions will be in effect and
the following information will be made available:

1. The type of boot asa 16 bit Value of BOOTTYPE (at hex address $SFFFDCO0).

Boot type Value
POWER UP 0
REQUESTED RE-BOOT 12
REQUESTED BOOT 18

2. Address of lowest usable RAM (determined by RAM test) is stored in LOWRAM at
$FFFFFDCE.

3. The flag byte showing battery backup presence (BATTERY) is set up.
4. Interrupts will be disabled:

The hardware will be RESET except for the keyboard, battery backup, and the internal
flexible disc. Keyboard interrupts are disabled. There may be something in the keyboard
input buffer. Battery backup (if present) is set to give 60 seconds of protection. (60 seconds
is the maximum possible.)

5. All vectors above hexadecimal address SFFFFFEEQ will be initialized to JSR CRASH (jump
to subroutine named CRASH). CRASH is a recovery routine in the BOOT ROM. If there is
a RAM Monitor present at hexadecimal address $00880000 (by looking for the
hexadecimal value of $4EF9 at that address), then trap 15 and the trace trap will be left as
the monitor set them up. (See MC68000 User’s Manual, 09826-90073, for handling
explanations of trap instructions.)

6. The status register will be set to a hexadecimal value of $2700. That is, interrupts will be
disabled.

7. The stack pointer will be pointing to the top of the booter stack area (hexadecimal address
$FFFFFDAC).

8. SYSFLAG and SYSFLAG2 will be set correctly.

9. The system CRT controller will be initialized to it’s power-up values. The CRT will be
blanked out. Graphics memory will be zeroed and turned off.

10. The DEFAULT _MSUS at $SFFFFFEDC will be set up.

11. NDRIVES will be set up.

12. F_AREA (Low RAM) Memory Pointer is set up. F_AREA is an area of stolen RAM for
BOOT ROM usage (mass storage drivers) bounded by the bottom of physical memory and
the address stored in LOWRAM at hexadecimal address $FFFFFDCE. BOOT ROM 1.0

steals no space. BOOT ROM 2.0 steals 32 bytes. BOOT ROM 3.0 steals 160 bytes. The 3.0L
BOOT ROM steals 44 bytes.

SDG 408

After a system has been loaded and given execution control by the BOOT ROM, the above
conditions will be valid. If the system that is loaded needs to load additional drivers before it can
operate (i.e. mass storage drivers), then the system can do that via the interfaces documented in
the next section.

Read Interface and Secondary Loading

There are two methods for operating systems and secondary loaders to utilize the read mass
storage drivers of the BOOT ROM:

1. The Read Interface drivers which can be redirected to many different devices.

2. The Flexible Disc Interface drivers which can be redirected to one device, the mass storage
device from which the system was booted. (To redirect the Flexible Disc Interface drivers;
set DRV__KEY, a byte at hexadecimal address SFFFFFEDB, to 0.)

Only one of the two methods is ever available on any given BOOT ROM revision. To determine
which is available look at bit 8 of the BOOT ROM configuration word (see BOOT ROM
Configuration and Revision section). If the Read Interface is present, that is the only method
available. If the Read Interface is not present, the second method (redirecting the Flexible Disc
Interface) is the only method available. (Currently the 3.0 BOOT ROM has the Read Interface.
The 3.0L BOOT ROM, the 1.0 BOOT ROM, and the 2.0 BOOT ROM do not have the Read
Interface.)

This section presents the Read Interface. The section that immediately follows this one,
documents the Flexible Disc drivers.

No general purpose disc write drivers are present in the BOOT ROM (except for the internal
flexible disc). The BOOT ROM’s read drivers can be used by any system under the following
constraints:

1. The read interface will point to some msus (usually the default msus, DEFAULT_ MSUS
stored at hexadecimal address $SFFFFFEDC).

2. The read drivers will not concern themselves with interactions with any other I/O drivers.
They will not know about multi-tasking, virtual memory, interrupts, running in user mode,
or anything over what they do during booting.

3. The read drivers should only be used to do extended booting of additional code.

All routines in the BOOT ROM are callable from assembly language directly. Pascal 2.0 in many
cases has entry points that handle environment changes and eventually call the routines. See
"Using Boot ROM Routines from Pascal”. Assembly language calls require that the machine state
be in supervisor mode. See trap instructions of MC68000 User’s Manual, 09826-90073, for
putting machine in supervisor mode.

Only one MSUS and one file can be open at a time. The routines use the Error Recovery Block
mechanism for hardware failures or unexpected errors.

All calls to these routines must allocate a memory space for the drivers to utilize. This must be
done once only, before making a series of calls to these routines. Below is some assembly language
source that shows how to allocate the right amount of memory. A pointer to the allocated block
of memory is stored in the bottom of physical memory. The required amount of memory is also
specified there.

SDG 409

Allocating space:

mb_size equ $10 Of fset to required size
mb_ptr equ $14 Offset to memory pointer
f_area equ $FFFED4 Pointer to variables
movea.l f_area, a0 Pnt to low RAM variables
move.l mb_size(a0),do0 Get required memory

<get pointer to d0 bytes of memory in al>
move.l al mb_ptr(a0) Save pnt to allocated
memory
The routines can destroy d0-d7 and a0-a4.

The caller must handle any bus error exceptions. Only bus errors caused by a DMA card will be
trapped as an error.

The a7 register (Stack pointer) should point to a memory space of at least 1 Kbytes.

If the routines are called from assembly language, a recover block must be set up for handling
errors. The following is an example of setting up a recover block:

Make a5 point to a recover block.

link a5, #-10 allocate block

pea recover set name of error
handling routine

move.l sp,-10(ab5) save pointer to

address of error

handling routine
where recover is the address of a routine that
extracts the error number from -2 offset off
register a5 and handles it.

There are several generic errors (or escape codes) that can be returned from these routines. They
include:

Number Short Name Description/Example

1 No Device Device is missing

2 No Medium Disc is missing or
door is open

3 Not Ready Controller is busy

4 Read Error Data lost

5 Bad Hardware Hardware failure

6 Bad Error State Software’'s last ditch

effort at error
7 Bus Error Memory missing

SDG 410

M__INIT

This routine sets up the Read Interface for a mass storage device. It initializes internal
temporaries. It determines if the device and media are present and returns true if they are
present. It verifies that the device in the parameter msus is of the expected mass storage specifier
format. An internal pointer used by M_ FOPEN (explained below) is reset to the start of the
directory. This routine can escape with any of the possible errors (escape codes): 4 thru 7.

This is usually the first routine to be called in a sequence of calls to the Read Interface.

CALLING FROM PASCAL 2.0 (See "Using 300t ROM Routines from Pascal");

Declarations:

type msustype = packed record {See DEFAULT_MSUS}
mtype: byte; {Mass Storage Type}
munit: byte; {Unit Number}
mscode: byte; {Select Code}
maddr: byte; {Bus Address}

end;
function boot_minit(msus:msustype):boolean; external;

CALLING FROM ASSEMBLY LANGUAGE:

default_msus equ $fffedc Default mass storage

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

subqg.l #2,sp Reserve space for boolean

move .l default_msus,~-(sp) Pass MSUS parameter

isr $4004 Call M_INIT

tst.b (sp)+ Test returned result

clear error recovery (arguments are removed by

the routine)

M__FOPEN

This routine attempts to open the specified file, parameter filename below. If successful it
returns the following: return true, the actual file name opened, the actual file type, the size in
bytes and start execution address in memory. If successful the routine also sets up the Read
Interface driver to read sectors relative to the opened file. If a character of the file name is a
null, then a wild card search of anything with the same previous characters is done. If filetype
(ftype) is -1, it will allow any file type. Otherwise, the filetype must also match. (Any file type is
allowed.) The first found is used. M__FOPEN returns false if the device or media is not present.
The routine can escape with any error (or escape code). Searching for a file always begins at the
point left off by the last call to M_ FOPEN. (SRM is an exception. When a specific file name on
an SRM is given with no wild card, it will try to open it directly without affecting the current
search state.)

When the mass storage specifier is the Shared Resource Manager the file name is actually a path
name into a directory tree of the following format:

SDG 411

/n1<p1>/n2¢p2>/n3<p3>/nd<pd>/n5<p5>/n6<p6>
Where:
/ is a separator between path name parts,

nl thru n6 are names that can be up to 16 characters each
in length,

<pl> thru <p6> are optional passwords of up to 16
characters each in length,

/nl<pl>/ can be left off to imply "/SYSTEMS/", and

everything to the right of and including any "/" is
optional. This means that files can be found at any of 6
different tree levels.

This routine is typically called after another M__FOPEN call to do directory searching. M__INIT
must be called before the first call to M__FOPEN.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
type string255 = string[255]; {Maximum possible string}
shortint = -32768..32767; {16-bit integer}
function boot_mfopen{var filename:string255;
var x_adr,length:integer;
var ftype:shortinit):boolean; external;

Where
filename is the file name. x_adr is the returned
execttion address. length is the size in bytes of the
file. ftype is the file type of the file opened.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

subqg.l #2,sp Reserve space for boolean

pea filename Pass file name pointer

pea Xx_adr Pass execution addr. ptr.

pea length Pass length pointer

move #-1 ftype Set file type

pea ftype Pass file type pointer

isr $4008 Call M_FOPEN

tst.b (sp)+ Test returned result

clear error recovery (arguments are removed by

the routine)

SDG 412

M__READ

M_ READ reads the specified number of bytes (bytecount) starting at the specified sector (a
sector is 256 bytes) to a specified RAM location (ramaddress). Sector number is relative to a file
if one is open and if the passed parameter, "media" is set to false, absolute on media otherwise.
(Sector zero is the first sector.) Bus error exception is handled by caller.

If file relative reading is being done (media is false), M__ FOPEN must have been called sometime
previously to open the file. M__INIT must have been previously called before any M__READ
calls can be made.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
function boot_mread(sector,bytecount,ramaddress:integer:
media:boolean) boolean; external:

Where:
sector is the sector number to start reading. bytecount
is the number of bytes to read. ramaddress is the
location in memory to transfer the data read. media is a
boolean that determines if the reading to be done is
relative to the media.

CALLING FROM ASSEMBLY LANGUAGE:

set crror recovery (see F_PWR_ON in Flexible
Disc Driver section)
subq.l #2,sp Reserve space for boolean
move .1l sector,-(sp) Pass the sector number
move.l bytecount,-(sp) Pass the no. of bytes
move .l ramaddress,-(sp) Pass destination address
move .w media,-(sp) Pass media relative bool.
jsr $400C Call M_READ
tst.b (sp)+ Test returned result
clear error recovery (arguments are removed by

the routine)

SDG 413

M__FCLOSE

This routine closes any file previously opened by M_ FOPEN. This is typically the last routine
called in a sequence of calls to the Read Interface. M__FOPEN must have been called previously.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
function boot_mfclose; external;

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

jsr $4010 Call M_FCLOSE

clear error recovery (arguments are removed by

the routine)

This completes the presentation of the Read Interface. The Read Interface is only intended for
use as a part of an extended load operation. The next section presents the Flexible Disc Drivers.
They must be used in the absence of the Read Interface for extended loads. The Flexible Disc
Drivers are also intended to be used by anyone who wants to talk to the built-in flexible disc
drive(s).

A typical sequence of calls to the read interface would be:
M_INIT to point the read interface at a disc
M_FOPEN to open a file for reading

M_READ multiple calls, to read data into memory
M_FCLOSE to clean-up and close files

SDG 414

Flexible Disc Drivers

The BOOT ROM contains a set of device drivers for the internal 5.25 inch flexible disc drive(s).
This code is actually an extension of the hardware design and provides for hardware timing
support. Thus, it is recommended that these drivers be used before any consideration is made to
talk to the flexible disc hardware directly.

When a BOOT ROM revision has no Read Interface, it is necessary to utilize the read drivers of
this interface to do any loading operation. This is done by setting the byte DRV__KEY at
hexadecimal address $FFFEDB, to zero. (In normal operation, DRV__KEY should be set to true
or non-zero.)

If there is no flexible disc present, these routines will escape with the error value (escape code) of
2080. (DRIVE, a byte at hexadecimal address $FFFFFED3, should be set to O or 1 to select drives
0 and 1, respectively.) (See High RAM Map for other variables used.)

Below is an enumeration of all the possible errors (escape codes) that the flexible disc drivers can

return: (The first seven can only occur when the flexible disc driver interface is redirected with
DRV__KEY set to 0.)

SDG 415

o whNh —

7
1066
2066
3066
4066
1080
2080
3080
8080
9080
1081
2081
3081
4081
5081
6081
7081
1083
2083
1084
2084
3084
1087
1088
6090
7090
8090
9090

11090
1082

No Device

No Medium

Not Ready

Read Error

Bad Hardware

Bad Error State

Bus Error

bad track 0, side 0O

more than 4 spares

write fault or lost data
timeout during initialize

no media or door open

no media or door open

no media or door open

media changed

media changed during operation
track not found

restore error

track 0 not found after reset
read lost data error

write lost data error or fault
address lost data error
address CRC error during write
write protect error

write protect error

read record not found/d bit set
write record not found

address (track) not found
address CRC error

read CRC error

unexpected interrupt

interrupt during write track handshaking
timeout waiting for interrupt
interrupt mask > 2 (drive locked out)
timeout:; drive not responding
2nd drive not present

The error reporting mechanism for all of the flexible disc drivers is as follows:

link
move . w
move.l
rts

This mechanism is compatible with Pascal 1.0 directly. Pascal 2.0 has a slightly different
mechanism. Pascal 2.0 has separate entries to all routines to handle differences (see "Using Boot

a5 #-10 Make error recover block
#error no.,-2(ab) set error number
-10(a5),sp set the stack pointer

‘return’ to the
recovery routine

ROM Routines from Pascal").

All routines in the BOOT ROM are callable from assembly language directly. (Pascal 2.0 in many
cases has entry points that handle environment changes and eventually call the routines.
Assembly language calls require that the machine state be in supervisor mode. See trap
instructions of MC68000 User’s Manual, 09826-90073, for putting machine in supervisor mode.)

SDG 416

F__PWR_ ON / RESET
This routine sets the level 2 interupt vector, initializes the High RAM variables used by the
drivers and resets the drive. This routine must be called at least once before any calls to other

flexible disc drivers or file utilities are made.

F__PWR__ON (Flexible Disc Power On) is called by the BOOT ROM; before any system is started;
so that it is only required to be called by a system after a RESET instruction has been executed.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
procedure asm_f_pwr_on; external:

CALLING FROM ASSEMBLY LANGUAGE:

*

X Set-up an Error Recover Block

X
link a5, #-10 Make error recover block
pea recover Push error handler addr.
move.l sp,-10(a5) Push stack pointer

X

X Call the Routine

X
jsr $144 Call F_PWR_ON

X

X Clear Error Recover Routine

%
unlk a5 Remove recover block from

the stack (any arguments
are removed by routine)

ASSEMBLY LANGUAGE ERROR RECOVERY ROUTINE:
X
X This is the recover routine that goes with the above
X assembly code. This routine is the same for all flexible
X disc routines. At the Pascal language level this is taken
X care of automatically via try-recover. (Try-recover is the
X mechanism for trapping errors.)

recover equ X
move .w -2(a5),do Get the error number
unlk ab Clean off the stack

process escape code

SDG 417

FLPYREAD

This routine reads a specified 256 byte sector from the drive into a given RAM location.
(FUBUFFER at hexadecimal address SFFFFFDD2 is a 256 byte buffer that can be used as a
destination for a sector of data.)

Arguments are not range checked. A bus error could occur because of an invalid buffer address.
F_PWR__ON must have been called some time previously.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
procedure asm_flpyread(sector:integer;
var buffer:integer); external;

Where:
sector is the sector number to read into memory at
address pointed to by buffer. A sector is 256 bytes.
The legal range for sector number is 0 to 1055 for the
internal flexible disc.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

move.l sector,-(sp) Set sector number

pea BUFFER Set buffer address

jsr $120 Call FLPYREAD

clear error recovery (arguments are removed by

the routine)

FLPY__WRT
This routine writes a specified 256 byte sector from a given RAM location on the disc.

Arguments are not range checked. An invalid buffer address will cause a bus error.
F_PWR_ ON must have been previously.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
procedure asm_flpy_wrt(sector:integer;
var buffer:integer); external;

Where:
sector is the sector number to write using the data in

memory at address pointed to by buffer. A sector is 256

SDG 418

bytes. The legal range for sector number is 0 to 1055
for the internal flexible disc.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

move .l sector,~-(sp) Set sector number

pea BUFFER Set buffer address

jsr $124 Call FLPY_WRT

clear error recovery (arguments are removed by

the routine)

FINTRUPT

This routine is the ISR (Interrupt Service Routine) for the flexible disc drivers. It resets the
flexible disc interupt bit. It tests and clears bit 1 of FFLAGS. (FFLAGS is an internal temporary
variable to the Flexible Disc Drivers. It does not need to be accessed directly. The other Flexible
Disc drivers automatically manipulate FFLAGS correctly.) Bit 1 of FFLAGS must be set when
the interrupt occurs. (If it was not set, then an error results) Bit 2 of FFLAGS is set by
FINTRUPT. F_PWR__ON must have been called previously.

USING ASSEMBLY LANGUAGE TO SET LEVEL 2 VECTOR:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)
move .w $4ef9,$ffffffb8 Move JMP to vector
move .l #3128, $ffffffba Move addr of FINTRUPT
FLPYINIT

This routine initializes the internal flexible disc. The interleave factor is one word (16 bits). The
address of the CRT message area is assumed to be even and is intended to be in the CRT alpha
area. The message is written to the odd bytes. The message is:

INITIALIZE: TRACK tt, SIDE s, SPARED n
Arguments are not range checked. A bus error could result from a bad message address.
Interleave is taken modulo 16. F__PWR__ON must have been called previously.
CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):
Declarations:
type shortint = -32768..32767;

procedure asm_flpyinit{crtptr:anyptr;
interleave:shortint); external;

SDG 419

Where:

crtptr is a valid pointer into CRT memory. (See other
sections of manual for range of CRT memory.) interleave

is a value in the range of

to 15.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery

move.l crtptr,-(sp)
move.w interleave,-(sp)
jsr $12C

clear error recovery

FLPYMREAD

(see F_PWR_ON in Flexible

Disc Driver section)

Set CRT message line ptr

Set interleave factor

Call FLPYINIT

{arguments are removed by
the routine)

This routine reads a given number of sectors into a given RAM location beginning at a specified
sector. Arguments are not range checked. A bus error could occur because of an invalid buffer

address. F_PWR__ON must have been called previously.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:

procedure asm_flpymread(sector_count sector:integer;
var buffer:integer); external;

Where:

sector is the first sector number to start reading into
memory at address pointed to by buffer. A sector is 256
bytes. The legal range for sector number is 0 to 1055

for the internal flexible disc.

sector_count is the

number of contiguous sectors to read.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery

move.l sec_cnt,-(sp)
move.l sector,-(sp)
pea buffer

jsr $130

clear error recovery

(see F_PWR_ON in Flexible

Disc Driver section)

Set number of sectors

Set sector number

Set buffer address

Call FLPYMREAD

(arguments are removed by
the routine)

SDG 420

FLPYMWRITE

This routine writes a given number of sectors from a given RAM location beginning at a
specified sector. Arguments are not range checked. An invalid buffer address will cause a bus
error. F PWR__ON must have been called previously.

CALLING FROM PASCAL 2.0 (see "Using Boot ROM Routines from Pascal"):

Declarations:
procedure asm_flpymwrite(sector_count sector:integer;
var buffer:integer); external;

Where:
sector is the first sector number to start writing using
data in memory at address pointed to by buffer. A sector
is 256 bytes. The legal range for sector number is 0 to
1055 for the internal flexible disc. sector_count is the
number of contiguous sectors to write.

CALLING FROM ASSEMBLY LANGUAGE:

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

move .l sec_cnt,-(sp) Set number of sectors

move .1 sector,~(sp) Set sector number

pea buffer Set buffer address

isr $134 Call FLPYMWRITE

clear error recovery {arguments are removed by

the routine)

FMSGS

This routine formats the text for an error message. It is specifically designed for flexible disc
error codes. (Read Interface errors, 1 thru 7, will not be displayed mnemonically.)

The format is:
{number MOD 1000}, {number DIV 1000} text
e.g. an 8080 value would result in:
80,8 MEDIA CHANGED
If the error number does not match an entry in the text table, only the number is printed.
On entry to the routine, register DO (least significant 16 bits) contains the error code. Register
A1l contains the address to which the message is to be written (RAM not CRT).
CALLING FROM ASSEMBLY LANGUAGE:

SDG 421

lea buffer al Set the buffer pointer

move . w escapecode, d0 Set the error number
jsr $1BC Call the formatter

%

%X Then to put on CRT (Example)

X
lea buffer, K a0 Point to message
moveq #1,d0 Put on line 1 of CRT
jsr crtmsg Call routine documented

in later section

This concludes the presentation of the Flexible Disc Drivers. The next section presents routines
that can be used to cause the BOOT ROM to load and start another system.

System Switching

In some applications, the strengths of multiple operating systems may be important. The BOOT
ROM provides a very low level method for automatically switching between operating systems.
The BOOT ROM allows one operating system to replace itself with another operating system.
This is called system switching.

The routines in this section present three ways to start another system. The first two have
minimal environment requirements. The last of the three requires the same environment as the
Read Interface presented in an earlier section. (All three routines leave the machine in state
specified by section "CPU State at Load")

REQ__BOOT

This routine, REQ_ BOOT (request boot), will load and start a system. SYSNAME (at
hexadecimal address SFFFFFDC?2) is a 10 byte location that contains the file name of the system
to start. If the first character is null (binary zero) then the powerup search sequence will be
made for a system. If the first character is not null and the second one is, then a search will be
made for soft system "SYSTEM _ Cxx" where C is the given character and xx are any characters.
If the search fails then ROM system C will be searched for. (On 3.0 and later BOOT ROMs, the
DEFAULT__MSUS chooses mass storage device or ROM. Also, a character followed by a null will
cause a wild card search for the first system that starts with the character.) If neither the first or
second character is null then only soft systems will be searched for.

BOOTTYPE (a 16 bit word at hexadecimal address $FFFFFDCO) will be set to 18
(BOOTTYPE=18 indicates that a boot or system switch was done) when the system starts and the
machine will be in power-up state.

CALLING FROM ASSEMBLY LANGUAGE:

sysname equ $fffdc2 10 Character System Name
move.l 'SYSQ', sysname Set the name

clr.b sysname+4 Set the terminator

jmp $1C0 Do it

SDG 422

REQ__REBOOT

This routine, REQ _REBOOT (request reboot), is exactly the same as REQ_BOOT except that
BOOTTYPE will be set to 12 (BOOTTYPE=12 indicates that a re-boot was done) and the routine
entry point is at hexadecimal address $1A4.

BOOT

The 3.0 BOOT ROM and later BOOT ROMSs present another interface (when the Read Interface
is present). This interface allows the specification of up to a 255 character file name. The file
name has the same format as M_ FOPEN presented with the Read Interface. The new interface
also will return if the device is inaccessible or the file cannot be opened.

If the system is not found, it will return to the caller. If it i1s successful, it will never return to
the caller. There are several cases where returning is impossible because the caller or some of the
caller’s data structures may have been destroyed by the booting process. In these cases, it will
never return to the caller.

The booter will return to the caller if the mass storage device is not present, the system is not
found, or requested boot is not a valid system. If the boot error is unrecoverable the booter will
display an error message on the line next to the bottom of the screen and hang.

The caller has the option of setting up the level 7 interrupt vector before calling the routine.

Before calling the routine, the environment specified for the Read Interface needs to be set up.
This includes allocating space for the mass storage drivers (as shown below), and changing the
machine state to supervisor mode. Currently Pascal 2.0 is the only language which is not already
in supervisor mode. (See trap instructions of MC68000 User’s Manual, 09826-90073, for
switching to supervisor mode.)

ALLOCATED SPACE FROM ASSEMBLY LANGUAGE:

mb_size equ $10 Offset to required size
mb_ptr equ $14 Offset to memory pointer
f_area equ $FFFED4 Pointer to variables
movea.l f_area,a0 Pointer to low RAM

X variables
move.l mb_size(al),hdo Get required memory

<get pointer to d0 bytes of memory in al>

move.l al,mb_ptr(a0) Save pointer to allocated
X memory

CALLING FROM PASCAL 2.0
(see "Using Boot ROM Routines from Pascal"): PASCAL Declarations:

type msustype = packed record {See DEFAULT_MSUS.}
mtype: byte; {Mass Storage Type}
munit: byte; {Unit Number}
mscode: byte; {Select Code}
maddr: byte; {Bus Address}
end;

SDG 423

string255 = string[255];
function boot(msus msustype;
var filename:string255); external;

Assembly Language Declarations:
def boot
boot equ $4000

CALLING FROM ASSEMBLY LANGUAGE:

default_msus equ $fffedc Default mass storage

set error recovery (see F_PWR_ON in Flexible
Disc Driver section)

subqg.1l #2,sp Reserve space for boolean

move .l default_msus,-(sp) Pass MSUS parameter

pea filename Pass file name

jsr $4000 Call BOOT

jmp X Boot failed if it returns

clear error recovery (arguments are removed by

the routine)

This concludes the presentation of the routines used for switching to another system from inside
an operating system. The next sections present miscellaneous BOOT ROM routines that are

available for use.

SDG 424

CRTINIT

This routine sets the CRT controller registers O thru 11. These are the registers that control the
actual operation of the horizontal and vertical sweep circuitry. This routine is automatically
called by the BOOT ROM at power-up and should not be necessary at a later time. But, some
operating systems inadvertently modify these registers while they are attempting to move the
CRT cursor. This routine can be used to put the CRT controller back to it’s power-on settings.

Calling CRTINIT from Pascal 2.0 requires that the machine be put in supervisor mode first. (See
MC68000 User’s Manual, 09826-90073, regarding trap instructions that do this.)

CALLING FROM PASCAL 2.0:

(see "Using Boot ROM Routines from Pascal"):

PASCAL Declarations:

procedure crtinit; external;

Assembly Language Declarations:
def crtinit
crtinit equ $13C

CALLING FROM ASSEMBLY LANGUAGE:
jsr $13C Call CRTINIT

If initializing the CRT controller is desired, it is recommended that CRTINIT be used rather
than attempting the operation from an operating system application. The next section presents
some CRT operations that are recommended for an operating system application.

SDG 425

CRTCLEAR/CRTMSG

Two routines that commonly appear in other Internals Manual examples are CRTCLEAR and
CRTMSG. Unfortunately, these two routines do not exist in the same form in all of the revisions
of the BOOT ROM. So it is advised for a user to code these routines himself. Fortunately they are
so simple that the source code is included below. CRTCLEAR clears the CRT. CRTMSG displays
one line of text on a specified line of the CRT.

KK KK KKK KKK 3K 3K KK oK KKK AR KKK K KKK AR KK K K 3K 5K KoK K HOK KKK K KK KKK KKK KKK KKK HOKK

%X CRTCLEAR -- Initializes the CRT,

% CRTBLANK --.Only blanks the CRT.

then blanks it.

* K K K

X CRTCLEAR requires supervisor mode.

X CRTBLANK can be called directly from assembly language

X in any environment.

3K KK KK 3K KK KK K KK 3K 3K K K K K K K 3 K 3 5K 3 K K 3K 3 K K 5 K K K K 3K K KK K KK K K 5K KK K K KK XK K K KK XK K K

X

X Declarations

X

crtmb equ $5121a0 Beginning of alpha

crtendb equ $513140 End of alpha

crtinit equ $13C Address of CRTINIT

X

X CRTCLEAR routine

X

crtclear jsr crtinit Initialize the CRT

X

X CRTBLANK routine

%

crtblank move.l #$00200020,d0 Blank CRT memory
lea crtmb,al Start at beginning

clrloop move .l do, (al0)+ Clear two at a time
cmpa.l #crtendb,al Stop at end of CRT mem.
blt clrloop
rts

SDG 426

3Kk KK K 3K K K 3K XK K KK K 3K K XK KK K 3K K 3K 5K K K 3 3K ¢ K 3K 3K Sk K 3K 3K 3K 5K K 3K 3K 5K K 3K 5K 3K 3K 3K XK K 5K XK K K K K XK K K XK oK KK K K
X CRTMSG -- Write message to given line of CRT.

X

¥ O K N K H N

X

X Decla
%

crtma
crtmb
crtllen
crtllen
X

X CRTMS
X

crtmsg

crtmsgb
crtmsg0

crtmsgl

crtretu

environment.

On entry:

Can be called directly from assembly language in any
al - contains address of null terminated
message to display on CRT.
do - contains CRT line number to place

rations

equ

equ
a equ
b equ

G routine

btst
beq.s
mulu
add.l
bra.s
mulu
add.l
movea.l
moveq
move.b
beq.s
move .w
bra.s
rn rts

message where line 0 is the top
line of the CRT.
KK 3K KK 3K K 3K 3K K K 9K K K 3K 5K K K K 3K 3K 3K K 3K 3K K 5K 3K 3K K 3¢ 3K 3K K 3 3 K 3K 3K K 3K 3K K 3 3K 3k oK K 2K 3K 3K 3K 5K 5K K 3K 3K K K K K K K XK

$512704
$5121a0
100
160

#0,sysflag
crtmsgb
#icrtllena,do
#crtma, do
crtmsg0
#icrtllenb,do
#crtmb,do
do,al

#0,d0
(a0)+,do0
crtreturn
do, (al)+
crtmsgl

Beginning of 9826 alpha
Beginning of 9836 alpha
2 X 9826 CRT line length
2 X 9836 CRT line length

80 or 50 wide alpha?

80 wide

50 wide so X100

Use 9826 alpha offset

Go to copy string

80 wide so X160

Use 9836 alpha offset
Use al to point to alpha
Clear highlight byte

Get a character of strin
If null, then done

Put character on screen
Get next character

Done

SDG 427

I} A K K K AH K K K

9

NMI__DECODE

NMI__DECODE is the address of the NMI Interrupt Service Routine (ISR) used by the BOOT
ROM. (An NMI is a level 7 non-maskable interrupt.) It determines which device caused the NMI
then jumps to one of four (4) pseudo vectors:

FFFFFF34 PSEUDO VECTOR 1 RESET from keyboard
FFFFFF2E PSEUDO VECTOR 2 Keyboard timer timeout
(fast handshake)
FFFFFF28 PSEUDO VECTOR 3 Battery backup interrupt
FFFFFF22 PSEUDO VECTOR 4 NMI from the backplane

The address at location $1BO must be moved to the level 7 vector. The variable, BATTERY,
must be set correctly. This is done by boot code.

After initializing the level 7 vector to use this routine the above four vectors can be initialized
to jump to operating system dependent routines that are terminated by the RTE instruction.
(See MC68000 User's Manual, 09826-90073, for more detail.)

EXAMPLE FROM ASSEMBLY LANGUAGE:
X
X Setting Level 7 Vector
X
move.w #$4ef9 $ffffff9a Set JMP opcode
move.l $1b0,$ffffff9¢c Set the ISR address

SDG 4238

CRASH

This routine is intended to recover the system after an interrupt or pseudo vector not setup by
the operating system occurs.

Once called, CRASH displays the message (before hanging):

UNEXPECTED USE OF aaaaaaaa
Where aaaaaaaa is the address in hexadecimal of the JSR. This address is computed as return
address minus 6. The boot code loads all vector locations with JSR CRASH prior to the system
being given control.
EXAMPLE FROM ASSEMBLY LANGUAGE:

jsr $1b8 Go crash

This concludes the presentation of all routines that the BOOT ROM provides.

Character Table

The BOOT ROM also makes available a readable copy of the CRT character ROM for the 9826.

The raster character patterns for the 9826A CRT are stored in addresses $2000 to $2FFF. These
patterns are stored 16 bytes per character, with each byte representing 8 horizontal pixels. The
first byte is the upper 8 pixels of the character, and bit 7 is the leftmost pixel of the byte. The
characters are in order by character code with O first and 2535 last.

To save on cost, the 3.0L BOOT ROM does not have valid data at these addresses. See section on
BOOT ROM Configuration Identification to determine if the BOOT ROM present has a valid

character table.)

To round out the presentation of the BOOT ROM, the next two sections present memory maps of
both the low ROM and high RAM areas.

SDG 429

High RAM Map

The high RAM map specifies soft vectors that are at the disposal of operating systems to process
exceptions. The map specifies and summarizes variables used or set-up by the BOOT ROM. The
map also shows where memory can be safely accessed by a system.

The layout of high memory usage by the BOOT ROM follows. It starts at top of memory and
works downward.

The following vectors are accessed via the 68000 exception vectors in low ROM. 68000
exceptions transfer control to these RAM vectors which normally have been initialized by the
language system.

X

b Soft Interrupt Vectors

X

FFFFFFFA Bus Error

FFFFFFF4 Address Error

FFFFFFEE Illegal Instruction
FFFFFFE8 Divide By Zero Trap
FFFFFFE2 CHK Instruction Trap
FFFFFFDC TRAPV Instruction Trap
FFFFFFD6 Privilege Instruction Violation
FFFFFFDO Trace Trap

FFFFFFCA 1010 Opcode Line Emulator
FFFFFFC4 1111 Opcode Line Emulator

FFFFFFBE Interrupt Level 1
FFFFFFB8 2
FFFFFFB2 3
FFFFFFAC 4
FFFFFFAG 5
FFFFFFAOQ 6
FFFFFF9A 7

FFFFFF94 TRAP Instruction
FFFFFFSE
FFFFFF88
FFFFFF82
FFFFFF7C
FFFFFF76
FFFFFF70
FFFFFF6A
FFFFFF64
FFFFFFSE
FFFFFF58
FFFFFF52
FFFFFF4C
FFFFFF46
FFFFFF40
FFFFFF3A

MMOOTP>POWONANANUTTIE WN—O

SDG 430

The ROM has a facility for decoding NMI; if the language system routes NMIs thru
NMI__DECODE, it will jump to one of the following four vectors depending on what caused the
NMI

FFFFFF34 Pseudo Vector 1 RESET from keyboard
FFFFFF2E Pseudo Vector 2 Keyboard timer timeout
(fast handshake)
FFFFFF28 Pseudo Vector Battery hackup interrupt
FFFFFF22 Pseudo Vector 4 NMI from the backplane

w

FFFFFFIC Spurious Interrupt
FFFFFF16 Vectored "
FFFFFF10 " "
FFFFFFOA " "
FFFFFFO04 " "
FFFFFEFE . "
FFFFFEF8 " u
FFFFFEF2 " "
FFFFFEEC " "
FFFFFEE6 Pseudo Vector (unassigned) These have no stated
FFFFFEEO " " " purpose

FFFFFEDC DEFAULT_MSUS Default Mass Storage Specifier

~NO U WN —O

VARIABLES:

FFFFFEDB DRVR_KEY Disable Reads to Default MSUS Thru Flexible
Disc (Ignored by 3.0 BOOT ROM - Use READ
Interface)

FFFFFEDA SYSFLAG2 This is a system configuration byte.

FFFFFEDO RETRY Used by Flexihle Disc Drivers

FFFFFEDS NDRIVES This byte is the number of internal drives
minus one (255 means no drives)
(Not Valid on 1.0 BOOT ROMs)

FFFFFED4 F_AREA This long-word points to an area in low RAM
that is used for mass storage temporaries.
The address of the first word above this area
is contained in LOWRAM. (F_AREA is not valid
on 1.0 BOOT ROMs)

FFFFFED3 DRIVE Language systems set this byte to indicate the
drive (0 or 1) to be accessed with the next
flexible disc operation. (Not Valid on 1.0
BOOT ROMs)

SDG 431

FFFFFED2
FFFFFDD2

FFFFFDCE

FFFFFDCD

FFFFFDC2

FFFFFDCO

FFFFFDBC

FFFFFDBC

FFFFF9A4

SYSFLAG This is a system configuration byte.

FUBUFFER This is a 256 byte buffer for use by mass
storage drivers

LOWRAM When control passes from the booter to the
operating system, this location will contain
the address of the lowest byte of usable RAM
(four bytes).

BATTERY This byte will contain a 1 if battery backup
is installed; 0 otherwise.

SYSNAME This 10 byte area will contain the ID byte for
the 0OM being started or the name of the file
the system was loaded from. If the file name
is less than 10 bytes long, the last byte +]
MUST BE binary 0. (For example is the file
name is 5 characters, then character number 6
should be a zero.) This convention applies
when boot code is invoked to switch systems.

BOOTTYPE This word will contain a code to indicate what
condition caused the system to start.

0 = power on
12 re-boot requested
18 = boot or system switch

STARTADDRESS For soft systems, this byte contains the
start address of the system. For ROM systems,
this byte is meaningless.

SYSTEMS SHOULD BE CAREFUL OF USING MEMORY AT THIS

ADDRESS OR HIGHER FOR TEMPORARIES.

SYSTEMS SHOULD NEVER LOAD OVER THIS LOCATION OR HIGHER.
The 3.0 BOOT ROM will check this, previous ones do not.

SYSTEMS SHOULD NOT LOAD OVER THIS LOCATION OR HIGHER,
If they want SYSNAME to be preserved throughout the
load.

SDG 432

Low ROM Map - Exception Vectors

The Low ROM MAP (hard coded in the BOOT ROM) specifies where to jump for the various
exceptions and routines.

Addr. Contents
0000 Power up RESET stack address
0004 Power up RESET start address (This goes to the BOOT ROM.)
0008 FFFFFFFA Bus Error
000C FFFFFFF4 Address Error
0010 FFFFFFEE Illegal Instruction
0014 FFFFFFES8 Divide By Zero Trap
0018 FFFFFFE2 CHK Instruction Trap
001C FFFFFFDC TRAPV Instruction Trap
0020 FFFFFFD6 Privilege Instruction Violation
0024 FFFFFFDO Trace Trap
0028 FFFFFFCA 1010 Opcode Line Emulator
002C FFFFFFC4 1111 Opcode Line Emulator
0030 - 0OSF Unassigned Vectors (Motorola has reserved these)

00000000
0060 FFFFFFIC Spurious Interrupt
0064 FFFFFFBE Interrupt Level 1
0068 FFFFFFBS8 " " 2
006C FFFFFFB2 " "
0070 FFFFFFAC " "
0074 FFFFFFA6 " "
0078 FFFFFFAO " "
007C FFFFFF9A " "
0080 FFFFFF94 TRAP Instruction
0084 FFFFFFSE
0088 FFFFFF88
008C FFFFFF82
0090 FFFFFF7C
0094 FFFFFF76
0098 FFFFFF70
009C FFFFFF6A
00A0 FFFFFF64
00A4 FFFFFFSE
00A8 FFFFFF58
00AC FFFFFF52 11
00B0 FFFFFF4C 12
00B4 FFFFFF46 13
00B8 FFFFFF40 14
00BC FFFFFF3A 15
00C0 -- OOFF

00000000

~NOO bW

SCWONOUOTEWN— O

SDG 433

FFFFFF16
FFFFFF10
FFFFFFOA
FFFFFF04
FFFFFEFE
FFFFFEF8S
FFFFFEF2
FFFFFEEC

JMP Flexible
JMP Flexible
JMP Flexible
JMP Flexible
JMP Flexible
JMP Flexible

Vectored Interrupt 0 (User Interrupt Vector)

Disc
Disc
Disc
Disc
Disc
Disc

Internal routine
JMP CRTINIT Initializes CRT registers RO - RI1l
Internal routine
JMP Flexible Disc Power On

-- 01A3

JMP REQ_REBOOT

-- 01AF

address NMI_DECODE

Internal routine

JMP CRASH
JMP FMSGS
JMP REQ_BOOT
-- 01F3

|

~N OO s WN

Sector Read & move data to user buffer
Sector Write from user buffer

ISR

Initialize LIF disc

Multi-sector Read to user buffer
Multi-sector Write from user buffer

Internal routines

Re-load and start current system
Internal routines

Address of NMI decoder ISR

Crash recovery routine

Flexible Disc error messages routine
Boot SYSNAME system

Internal routines and Vectors

==

Interrupt Vectors (125-255) {New as of 3.0 BOOT ROM):
(No hardware currently supports user interrupt vectors.)

User

01F4
01F8
01FC
0200
0204
0208

03F8
03FC

FFFFF400
FFFFF406
FFFFF40C
FFFFF412
FFFFF418
FFFFF41E

FFFFF706
FFFFF70C

User Interrupt Vector 125
User Interrupt Vector 126
User Interrupt Vector 127
User Interrupt Vector 128
User Interrupt Vector 129
User Interrupt Vector 130

User Interrupt Vector 254
User Interrupt Vector 255

SDG 434

Using Boot ROM Routines from Pascal

Most of the routines in the Boot ROM are not really designed to be used after the booting
process is complete. In particular, these routines don’t address variables or report errors in a way
which is fully compatible with Pascal 2.0; and Boot ROM routines expect to run in Supervisor
mode, while user programs in Pascal 2.0 run in User mode.

The Pascal OS itself uses an assembly language module called ROMCALL to provide the
necessary interfacing. This module provides Pascal-callable entry points for some commonly used
routines, and may be used as an example of how it’s done. The purpose of this section is to give
some guidelines for you to follow if you want to call other routines yourself.

1. Routines in the Boot ROM will operate properly only in supervisor mode. In the PASCAL
2.0 system, entry into supervisor mode can be forced with a TRAP #11 instrucion. The
exception handler for TRAP /11 leaves the old status register (SR) contents on the stack, so
that the previous mode can be recovered easily.

For example,

TRAP #11 enter supervisor modsa

make whatever calls must be done in supervisor
MOVE (SP)+,SR restore status register, hence initial mode

2. Since switching from user mode to supervisor mode implies changing which stack A7 points
to, any parameters which are passed on the stack must be transferred to the other stack
whenever a switch is made. One way to do this is move the parameters into registers while
the switch is done, then back to the (other) stack after the switch. The TRAP #11
exception routine uses no registers. Remember that the return address is on the stack in
front of any parameters if your routine provides an interface to the Boot ROM.

MOVEM.L (SP)+,D0-D4 move 4 integer parameters off the stack
MOVE.L DO,-(SP) replace return address onto stack

TRAP #11 switch stacks, SR saved on stack
MOVEM.L D1-D4,-(SP) put parameters on other stack

C make necessary call

MOVE (SP)+,SR restore stack, mode

RTS return to caller

SDG 435

3. If the Boot ROM routine accesses the internal mini floppy disk drive, you must change the
level 2 interrupt vector before calling the routine. (The following routine assumes that it is
not necessary to save and restore the old contents of the level 2 interrupt vector. Usually
the save/restore IS necessary, and it’s up to you to figure out where you want to save it)

INTVEC2 EQU -72 absolute address of level 2 interrupt
vector

FINTRUPT EQU $128 Boot ROM interrupt service routine
address

LEA INTVEC2 A3 point to level 2 interrupt vector

MOVE .W #20217, (A3)+ move a JMP instruction to vector
MOVE .L #FINTRUPT, (A3) move address of Boot ROM ISR to vector
make necessary calls to Boot ROM

4. If the Boot ROM routine being called has any error conditions, it will escape using a
mechanism similar to the TRY - RECOVER construct used by PASCAL 2.0. The

approximate sequence that the Boot ROM will use is:

MOVE .W #ERRORCODE, -2(A5) save "escapecode"
MOVEA.L -10(A5),SP pop stack to "recover block”
RTS execute error recovery code

This sequence is not compatible with the PASCAL 2.0 workstation recover method, although it
was compatible with the PASCAL 1.0 workstation. One possible sequence to set up this error

recovery environment follows:

LINK AS #-2 save old A5 on stack, save space for
error code

PEA RECOVER -6(A5) address code to be executed on
error

PEA (SP) -10(A5) address "recover block" on
stack

- call Boot ROM

UNLK AS normal return, nho error, pop

"recover block"

X errors return here:

RECOVER MOVE.W (SP)+,errorcode
(equivalent to MOVE.W -2(AS),error code)

MOVEA.L (SP)+ A5
(equivalent to UNLK A5)

process the error

The example given above will trap any errors generated by the Boot ROM, but will not trap the
stop or clear I/0O keys on the PASCAL 2.0 workstation.

SDG 436

Creating a Bootable System

You can use the Assembler, Pascal Compiler and Librarian to create a bootable disc with a
standalone application or operating system on it. This is may be very important to a few
customers, but is to be avoided by most people because it’s probably a lot of work in the end.

Before giving some guidelines and an example, it seems appropriate to remind you of some of the
reasons to avoid writing your own bootable system:

1. You will have to write physical drivers for IO devices such as discs. This is not easy to do.
You could ruin an expensive drive by seeking the head into the spindle, which makes a
horrible noise. Also, you’d need documentation on the disc protocols.

2. You’ll probably need a file system. If you invent a new, incompatible file system you’ll end
up with applications that can’t communicate with anything else -~ your own narrow little
world.

3. You can take advantage of the drivers and other software in the Pascal system by using our
kernel and replacing the STARTUP program (the Command Interpreter) with your
application. This will have most of the benefits of writing your own operating system,
without most of the pain.

Verbum Sapienti.

Guidelines for System Creation
When creating your own system, you are entirely responsible for all aspects of the environment
in which you run. There is no operating system unless you implement it. You must be thoroughly
familiar with the M68000 processor and the other resources provided by your machine. If you
are using the PASCAL compiler to generate code, then you must be familiar with the code
produced by the compiler and the internal conventions it follows.
The things you must do include but are not limited to the following:

1. Decide where your code is to be loaded into memory (see BOOT command).

2. Set your stack pointer to an appropriate place.

3. Set up all interrupt vectors which your system will use.

4. Set up all vectors for exceptions which might occur in your system.

5. Set up handlers for any TRAP instructions which occur in your code or code emitted by the
PASCAL compiler.

6. Set up the heap pointer, recover block pointer, open file list pointer, and any other pointers
which are referenced implicitly by the compiler.

7. Decide where global variables will reside and set up register AS to point to your global area.
(Use the G’ command when linking to establish the AS relative starting point of your
global data area.)

8. Set the status register for an appropriate mode and interrupt level.

SDG 437

9. Provide all utility routines called by the compiler:

integer and floating point math
string operations
set operations
heap management (to implement new, dispose, mark, release)
file operations
open, close, read, write

many, many more

10. Read the BOOTROM 3.0 documentation to find out what environment is provided when
control is first transfered to your system. Some useful information is retained in memory
regarding physical resources which are present. The boot ROM also provides a few routines
to do common operations which might be useful to some systems.

Ruies for Using the 300t Command

A bootable disc is written using the Librarian’s B command. (This is how the Boot disc for Pascal
2.0 is created.) The boot file MUST be created on a volume with a LIF directory, not on an SRM
volume! After the disc is created, a copy of the system file can be moved out onto the SRM using
the Filer.

There are two requirements for the boot command to work properly.

1. There must be no unresolved external references in any module transferred by the boot
command. Each one must be a complete, standalone code segment. The Librarian will
complain if you try to "B" a file with unresolved references.

2. All addresses and relocatable data must be resolveable at the address at which it is
currently linked. The most common problem is 16 bit addresses that cannot reach their
destinations. To get around these, you must use "patch jump space" during the linking
process. See the Librarian documentation.

The address which serves as the load address is the current relocation base. For a standalone
assembly module, this is specified with an ORG or RORG at the beginning of the code. For
modules created or modified with the librarian, the relocation base is specified with the 'R’
command while linking. Linking overrides the load addresses specified by RORG but not those
specified by ORG.

Any compiled modules must be linked in order to specify the load address, since the relocation

base emitted by the compiler is 0. Similarly, the 'R’ command must be invoked when linking,
since otherwise the librarian emits a relocation base of O.

SDG 438

An Example
The following small program is provided as an example of using the Boot command. Follow the
instructions below to create a boot disc.
1. Edit 'BTEST.TEXT’, for either a 50 or 80 column screen.
2. Assemble 'BTEST.TEXT’, producing 'BTEST.CODE.
3. Execute the librarian.
4. Put an initialized LIF disk in #3.
5. Press 'B’ for boot command.
6. Enter '#3:SYSTEM__ X! for name of system file on mini floppy.
7. Press T’ for input file.
8. Enter 'BTEST’ for the example code file.
9. Press 'T’ or A’ to transfer the file.
10. Press ’B’ to finish "booting".

11. Cycle the power on your computer to load 'SYSTEM__ X’ and run it.

X
X EXAMPLE OF A MINIMAL BOOTABLE PROGRAM FOR 9826/9836
X
rorg -15000 default load address
X can be changed by linking
start X beginning execution address
lea msg,al a0 indexes message
lea $5121A0, a1l al indexes CRT memory, 80 cols
X lea $512704 a1l al indexes CRT memory, 50 cols
moveq #0,d1 clear highlight byte
again move.b (a0)+, d] move message byte into register
beq X infinite idle loop when finished
move.w dl,(al)+ move highlight, character to screen
bra again repeat
msg dc.b 'Hello, this is a message.',0
nosyms no symbol table dump, please
end

SDG 439

Trap / Exception Vectors used in Pascal

These interpretations of the 68000 traps and exceptions are set up in the assembly language
routine POWERUP, which stores values in the vector locations in high RAM. These values
override the ones set up by the Boot ROM.

TRAPS
address trap escapecode usual meaning
$FFFFFF3A 15 (none) debugger
$FFFFFF40 14 -21 unassigned
$FFFFFF46 13 -21 unassigned
$FFFFFF4C 12 -21 unassigned
$FFFFFF52 1 =21 unassigned
$FFFFFF58 10 "N escape N
$FFFFFFSE 9 (none) non local goto
$FFFFFF64 8 -3 dereference NIL pointer
$FFFFFFBA 7 -8 value range error
$FFFFFFT70 6 -9 case statement error
$FFFFFF76 5 -5 divide by zero
$FFFFFF7C 4 -4 integer overflow
$FFFFFF82 3 -3 I0result <> 0
$FFFFFF88 2 -2 stack overflow
$FFFFFF8E 1 (-2 if any) link a6 emulator with stack check
$FFFFFF94 0 (none) PASCAL line breakpoint
SYSTEM EXCEPTIONS
address escapecode usual meaning
$FFFFFFC4 -13 1111 opcode line
$FFFFFFCA -13 1010 opcode line
$FFFFFFDO (none) TRACE
$FFFFFFD6 -14 privilege violation
$FFFFFFDC -4 integer overflow (TRAPV)
$FFFFFFE2 -8 CHK instruction
$FFFFFFES -5 divide by zero (hardware)
$FFFFFFEE -13 illegal instruction
$FFFFFFF4 =11 address error
$FFFFFFFA -12 bus error

SDG 440

Chapter 19
Device I/0

Introduction

This discussion of I/O is on ’device I/0O. In general the device I/O facilities deal with the
interface cards that plug into the computer backplane or appear to be logically plugged into the
backplane. To better understand this device I/O discussion, familiarity with the I/O
documentation (in the Pascal Procedure Library User’s Manual) is very strongly recommended.

The goal of device I/0 is to provide the I/O facilities of the computer hardware in a general
way to both the Pascal language system and the Pascal programmer. Device I/O is used by the

programmer via the system library facility. Device 1/O is used by the system to access external
printers, disks, et cetera via various low level device drivers.

The Hardware View

The physical memory map of the computer is defined as:

| $FFFFFF | RAM

| $800000]

| -mmmmm e !

| $7FFFFF | External I/0
| $600000 |
[-===ommmmmm e |

| $SFFFFF | Internal I/0
| $400000 |

|- mmmmmmeme e o

| $3FFFFF | ROM - system and BOOT ROM
| $000000 |

The internal interfaces are in the $400000 through $SFFFFF range. These interfaces include
the built in disk drives, keyboard, and CRT devices. This area also includes the built in HP-IB
interface and the plug in DMA interface (HP 98620A). Although the actual locations vary the
intent is that these interfaces will occur on 65536 (35 FFF) boundries.

The external interfaces (ie. HP 98624A, et cetera) exist in the $600000 through $7FFFFF
address range. These interfaces occur on 65536 ($FFFF) boundries. As of this writing, only the
HP 98627 color graphics card violates this by using 128K bytes in the external I/O address
space.

Note that, even though the built in HP-IB interface is in the internal 1/O address space, it is
handled via the device 1/0 system. This is due to the fact that the interface is almost identical to
the external HP-IB interface (HP 98624A). Handling the internal HP-IB interface any other
way would cause unnecessary overhead.

SDG 441

The 9816 computer has a built in RS-232 interface. This interface is at address $690000 and so
is an ’external’ interface and requires no special handling. This interface is equivalent to the
98626 interface card.

The Programmer View

The intent of the Pascal device I/O system is to present a logical view of the I/O hardware that
is very similar to the BASIC language view of the I/O hardware. BASIC defines, fundamentally,
31 different select codes. These select codes and their definition are:

Select code device address/type

1 CRT display internal

2 keyboard internal

3 graphics internal

4 floppy internal

5 power fail option internal

6 reserved

7 built-in HP-IB internal $478000
8 plug in interface external $680000
9 plug in interface external $690000
10 plug in interface external $6A0000
11 plug in interface external $6B0000
30 plug in interface external $7E0000
31 plug in interface external $7F0000

The Pascal system is not exactly the same. Its definition for the programmer view of the 1/0
select codes is:

Select code device address/type

] CRT display internal

2 keyboard internal

3 dma internal

4 unused

5 unused

6 unused

7 built-in HP-IB internal $478000
8 plug in interface external $680000
9 plug in interface external $690000
10 plug in interface external $6A0000
11 plug in interface external $6B0000
30 plug in interface external $7E0000
31 plug in interface external $7F0000

SDG 442

Note that in both of these schemes there are only 31 logical select codes presented to the user.
The hardware supports 64 different select codes (32 internal and 32 external). Further note that
there are gaps in what external cards can be directly accessed -- any external (plug in) interface
set to select code O through 7 will not be recognized by the Pascal I/O system.

Earlier 1t was mentioned that device I/O is not concerned with the built in CRT or keyboard.
These internal devices are included as a convenience to the programmer (for debugging). The
device drivers use the standard Pascal READ and WRITE routines. BASIC has the keyboard and
CRT on two seperate select codes and allows writes to the keyboard select code for various
reasons. The Pascal system views select codes 1 and 2 as identical -- a write is sent to the CRT
and a read gets data from the keyboard. Also -- input, output, and reset operations are all that
are supported by Pascal for select codes 1 and 2.

In general, the normal programmer will deal with these device I/O facilities through the system
library 1/0 modules. The system programmer use (such as the internal HP use of this device 1/0)
is done at a low, driver level for the most part. This is done so that the system does not require
major pieces of the I/O library to be resident for normal operations. Applications programs
should use the library modules.

The user’s view of the library is of a collection of modules. The modules are:

Level Use GENERAL HPIB SERIAL

0 status/control GENERAL_O HPIB_0 SERIAL_O
1 simple I/0 GENERAL_1 HPIB_1 --------
2 enter/output GENERAL_2 HPIB_2 --------
3 status/control GENERAL_3 HPIB_3 SERIAL_3
4 transfer GENERAL_4 ==-=-= —omecenn

In addition to the these modules there are two other modules of interest to the user:
IODECLARATIONS and IOCOMASM. IODECLARATIONS contains the library’s constant, type,
and variable declarations. IOCOMASM is a support module that contains binary operations (like
binand etc.).

SDG 443

General Architecture

In the following device 1/O discussion, the term kernel will mean the device I/O kernel -- not
the Pascal system kernel. Any reference to the Pascal kernel will be specifically mentioned as
such. The I/0 Library consists of three primary collections of modules:

1. Kernel modules
2. Driver modules
3. IO library high level modules

The kernel modules are the base on which the rest of the device I/O system depends. It allocates
and intializes the various tables used by the underlying drivers and the high level routines. The
drivers are independent entities that can, for the most part, be added or deleted at will. These
low level drivers do not depend on other driver modules. They do, however, depend on some of
the kernel facilities. The high level routines are a set of layered modules that reside on top of the
kernel structure.

| level 4 |
........................... |
| level 3 | I
----------------- | |
| level 2 | | | high level
----------------- o
| level 1 I | | |
------------ I
| level 0 | [| | |
I I
| I/0 KERNEL | kernel
I I
| dma | hpib | gpio | data | rs232 | drivers
| | I | comm | I
These collections of modules reside in three places in the released system -- INITLIB on the

BOOT volume, 10 on the LIB volume and in various files on the CONFIG volume. When you
configure your system to use the I/O facilities there will only two primary places for these
modules -- INITLIB on the BOOT volume and LIBRARY on the SYSVOL volume. The normal
user documentation explains how to configure your system appropriately.

The kernel code and the installed driver code reside in INIT.IB. The kernel export text, IO
library code, and 10 library export text (originally in file IO on the LIB volume) are installed in
the file LIBRARY on the SYSVOL volume. It is possible for a user to extend the drivers and/or
the high level routines and place these extensions in other files in the system. This approach
however, will not allow the facilities to be used automatically. It is also possible to not install the
drivers in the INITLIB file on the BOOT volume but load the drivers by executing the
appropriate file on the CONFIG disk. Similarly, it is possible to not install the I/O code into the
file LIBRARY on the SYSVOL volume. This would require that your source code do a
$SEARCHS prior to any IMPORTSs of I/0 routines. This is not recommended. The remainder of
the discussion on 1/0 will assume that the I/O system is installed in a normal fashion.

SDG 444

The kernel modules consist of the following:
1. IODECLARATIONS
2. IOCOMASM
3. GENERAL_O
4. IOLIBRARY__KERNEL

These four kernel modules are linked together under the name IODECLARATIONS. Each
INITLIB module can also have an executable program segement that gets executed at the time it
is loaded. IOLIBRARY_ KERNEL is an executable program (the other three are not) and it
allocates and initializes the static read/write memory used by the rest of the device I/O system.
This program also allocates the temporary storage for any card that exists, independent of
whether there is or is not a driver for it. The IOLIBRARY KERNEL program consists of a
single call to a GENERAL 0 routine, KERNEL_INITIALIZE, which does all of the
initialization work. This initialization routine MUST execute only once -- at INITLIB
load/execute time.

The driver modules consist of the actual assembly or PASCAL routines that deal with a specific
interface card. There is also an executable program segment for each driver module. This
program searches the select code table in the static r/w initialized by the KERNEL general_ 0
module for all select codes that have the right interface card (HPIB drivers will search for the
98624 interface). This program will then set up the driver tables to point to the correct drivers.

The rest of the IOLIB modules are high-level modules that are used by an end user in his/her
application program. These routines make calls to the low-level drivers.

From the low level drivers view, IOCOMASM not only contains binary operations for the user
but also contains utilities used by the assembly language driver code (HPIB and GPIO in
particular).

The IODECLARATIONS module and some set of driver modules will exist in the INITLIB file as
object code (not EXPORT text). The export text will reside on the LIBRARY file. The rest of the
library will reside in the LIBRARY (export text and code). Note that the low level drivers do not
have any export text anywhere in the released system.

To put the modules into perspective -- the following table contains all the identifiable modules
that exist in the device I/O system, where they came from, and how big they are. Each of the
modules has two main size attributes -- global space and code size. The following table shows
the approximate size of each of the modules.

SDG 445

module code global code export source file
name size size location text (P)=PASCAL
(A) =ASSEMBLY

TODECLARATIONS 3798 1082 INITLIB (N) KERNEL (P)

(N) COMASM (A)
HPIB 3846 120 INITLIB (N) HPIB (A)

(N) H_DRV (P)
GPIO 2174 120 INITLIB * (N) GPIO (A)

(N) G_DRV (P)
DATA_COMM 5196 126 INITLIB X {(N) DC (A)

(N) DC_DRV (P)
DMA 506 0 INITLIB (N) DMA_DRV (P)
RS232 3132 120 INITLIB * (N) RS_DRV (P)

(N) RS (A)
TODECLARATIONS 0 0 LIBRARY XX (Y) KERNEL (P)
I10COMASM 0 0 LIBRARY XX (Y) COMASM (A)
KERNEL_INITIALIZE 0 0 LIBRARY Xx (Y) KERNEL (P)
GENERAL_O 0 0 LIBRARY XX (Y) KERNEL (P)
GENERAL_1 650 0 LIBRARY Xx (Y) IoLIB (P)
GENERAL_2 1972 0 LIBRARY *xX (Y) I0LIB (P)
GENERAL_3 1982 0 LIBRARY *xX (Y) I0LIB (P)
GENERAL_4 2238 0 LIBRARY %X (Y) I0LIB (P)
HPIB_O 210 0 LIBRARY XX (Y) I0LIB (P)
HPIB_1 1854 0 LIBRARY *X (Y) IoLIB (P)
HPIB_2 1038 0 LIBRARY XX (Y) I0LIB (P)
HPIB_3 604 0 LIBRARY *x (Y) I0LIB (P)
SERIAL_O 1592 0 I.IBRARY XX (Y) I0LIB (P)
SERIAL_3 2802 0 LIBRARY *x (Y) I0LIB (P)

X - This module might be in INITLIB or on the CONFIG disk.
XX - This module might be in LIBRARY or in I0 on the LIB disk.

The modules IODECLARATIONS, IOCOMASM and KERNEL_ INITIALIZE exist in the
LIBRARY as code-less entities for the express purpose of providing user-accessable export text.

SDG 446

Main Data Structures

The way the the kernel supports the underlying drivers and the high level routines is primarily
through a set of common data structures. These data structures consist of 3 primary structures:

1. A select code table -- ISC__TABLE

2. Driver R/W

3. Buffer Control Blocks
The select code table is intended primarily for use by the high level routines and directly by the
Pascal (and system) programmer. The driver R/W is intended for use by the low level driver
code. These two structures are the interface between the high or low level code and the kernel.
The select code table is not currently used by the low level drivers (and you will see duplication
of information between the driver R/W and the ISC__ TABLE because of this fact). The driver
R/W has some fields intended for use by the higher level routines. This high level use of the
driver R/W was done to reduce the size requirements of the select code table -- every possible

select code is allocated an entry in the select code table, not every select code has driver R/W.

The buffer control blocks are a specialized interface mechanism between the high and low level
code specifically for buffered transfers.

ISC__TABLE

As mentioned previously, the high level routines utilize a select code table. The INITLIB kernel
allocates and intializes this table. This table needs to contain all the information necessary to
support the high level use of the low level drivers. To support this use, there are four primary
pieces of information (and some secondary information) that the high level routines need, which
are:

1. Where are the low level drivers.

2. Where is the driver R/W for this select code.

3. What sort of interface is this.

4. Where is the interface card.

The table to support these needs is defined as:
VAR isc_table : PACKED ARRAY [0..31] OF isc_table_type;

TYPE isc_table_type =
RECORD

io_drv_ptr: ~drv_table_type; { where are the drivers }

io_tmp_ptr: pio_tmp_ptr; { where is the drv R/W }

card_type : type_of_card; { what sort of card }

user_time : INTEGER; { user timeout }

card_id © type_card_id; { what sort of card }

card_ptr : ANYPTR; { where is the card }
END;

SDG 447

ISC_TABLE is a static, global array with indicies of O to 31. O is reserved. Select codes 1
through 7 are pre-defined internal interfaces. Select codes 8 through 31 are defined to be
external interfaces.

Each of the entries in ISC__ TABLE has the following meaning:
io_drv_ptr: Contains a pointer to a table of low level drivers.

io_tmp_ptr: Contains a pointer to the driver R/W area
(permanent heap) used by the low level drivers
and system routines.

card_type: Contains a short integer signifying the generic
interface type (such as HPIB or SERIAL). The
integer was chosen over enumerated type for
extensibility of card types. The defined card type
constants are:

serial_card
graphics_card
srm_card

no_card =0 ;
other_card =1 ;
system_card =2
hpib_card =3 ;
gpio_card = 4 ;
5 ;
6
7

¥

If you (the customer) need a new type, use
negative numbers. Positive numbers are reserved
for Hewlett Packard use.

user_time; Contains a 32 bit integer containing the timeout
period in milliseconds.

card_id: Contains a short integer signifying the specific
interface type (such as HP 98626). As with card
type, integers were chosen for extensibility.
Positive values for card id indicate that the id
value is the actual card hardware id bits (in the
hardware register # 1 |_ bits # 0 .. 4).
Negative id values indicate a 'pseudo-id’'. The
defined constants for card id are:

hp98628_dsndl = -7; { DSN/DL }
hp98629 = -6; { resource manager }
hp_datacomm = -5;

hp$3620 = -4, { dma }
internal_kbd = -3;

internal_crt = -2

internal_hpib = -];

no_id = 0;

hp98624 = 1, { hpib }
hp98626 = 2 { serial }
hp98622 = 3, { gpio }
hp98623 = 4, { bed }

SDG 448

hp98625 = 8 { disk }
hp98628_async = 20; { async version }
hp98627 = 28; { graphics }

If you (the customer) need a new id, use negative
numbers of -1024 and beyond (-1025, -1026, etc.).
Note that there is no guarantee of uniqueness for
user generated card_id’'s.

card_ptr: Contains an address specifying the hardware address
of the interface card (like $478000 for the
internal HP-IB interface).

Card ptr and i0o__temp ptr should have unique values for each card. The driver pointer points
to a table of low level routines that are shared between a common card type. For example --
there might be an HP-IB interface plugged in plus the internal HP~IB. The table entries for
these 2 interfaces might look like -

isc_table[7] card_id .= internal_hpib
card_type ;= hpib_card
io_drv_ptr := ANYPTR(hpib_drivers)
io_temp_ptr .= temp_space_x
card_ptr ;= HEX 478000
isc_table[8] card_id ;= hp98624
card_type ;= hpib_card
io_drv_ptr := ANYPTR(hpib_drivers)
io_temp_ptr 1= temp_space_y
card_ptr ;= HEX 680000

External cards can have the select code switches set to O through 7. These cards will not be
found by the system. It is possible to fool the system into finding them by setting the card ptr
field in ISC__TABLE[x] and the card_ addr field in ISC__TABLE[x]IO__TMP_PTR” to the
address of the card you wish to deal with (where x is an unused select code in ISC_ TABLE --
like select codes 4,5,6 or one of the unused in the 8 through 31 range). Note that you will have
to take care of setting up the remaining fields in the various data structures, linking in an ISR
(if appropriate) and reseting the interface. Note that for most applications, the 24 external
available select codes should sufficient.

SDG 449

Driver Read/Write

When the kernel module IODECLARATIONS is brought in at INITLIB time, the program (and
module) KERNEL INITIALIZE is executed. This code allocates a block of R/W memory (heap
space) for each I/O card plugged into the back plane. This memory is allocated with the system
procedure NEW. To insure that the space does not go away, the system marks a new start of heap

after all INITLIB modules have been execut=d (described elsewhere). This area looks like:

PACKED RECORD
myisrib
user_isr
user_parm
card_addr
in_bufptr
out_bufptr:
eirbyte
my_isc
timeout
addressed :
drv_misc

END;

ISRIB ; { system ISR linkage }
io_funny_proc; { user ISR linage }
ANYPTR ;
. ANYPTR ; { card location }
. ANYPTR ; { ptr to buf ¢tl block }
ANYPTR ; { ptr to buf ctl block }
. CHAR
io_byte { select code }
INTEGER ; { driver timeout }
io_word ; { bus address, etc. }
: ARRAY[1..xxx] OF CHAR :;{ actual driver R/W }

Each of the entries has the following meaning:

myisrib:

user_isr:

A block of information (called an ISRIB |_ Interrupt
Service Routine Information Block) used by the
operating system to set up interrupts (described
elsewhere) .

A procedure variable that contains a procedure to be
called by the low level drivers if a user specified
interrupt condition occured. This is not THE driver
ISR, it is just a procedure that gets called AFTER
the driver ISR is done (if appropriate). The
procedure is of type io_funny_proc |_ this type looks
like:

TYPE io_funny_proc =
RECORD
CASE BOOLEAN OF
TRUE:
(real_proc : io_proc);
FALSE :
(dummy_sl : ANYPTR : { static link }
dummy_pr : ANYPTR) { proc addr }
END;

The type io_proc is defined as:

TYPE io_proc : PROCEDURE (temp : ANYPTR);
What all this boils down to is the user isr procedure
is a procedure with a single ANYPTR parameter. The

io_funny_proc record is necessary so that the I/0

SDG 450

system can set up NO procedure (procedure address
and static link are NIL) at initialization times.

user_parm: The user isr procedure receives this parameter when
the procedure is called.

card_addr: This field contains a pointer to the interface
hardware address |_ identical to ISC_TABLE[x].card_ptr.
This is used by the low level drivers because they do
not have access to ISC_TABLE.

in_bufptr: This field contains a pointer to a buffer control
block IF there is an active inbound transfer between
the buffer control block’'s buffer and this select code.

out_bufptr: This field contains a pointer to a buffer control
block IF there is an active outbound transfer between
the buffer control block’'s buffer and this select code.

eirbyte: This field is a byte used by some of the drivers for
an enable interrupt facility |_ state information.
my_isc: This field contains a byte with the value of the

select code that this interface is specified to be
at (a sort of back pointer to the ISC_TABLE).

This field is used by the IO_FIND_ISC(tmp_ptr)
function.

timeout: A copy of user_time in ISC_TABLE timeout value. This
is in two places because the system printer and disk
drivers have their own timeouts. Whenever a shared
interface (like HP-IB) goes through re-addressing
the user_time value will get copied into timeout.

addressed: This field is a short integer and indicates whether
the interface is a shared (or bus) interface. A -1
indicates that it is not shared. A positive value
indicates the actual device bus address.

drv_misc: This field is an array of characters that is to be
used by the drivers as they see fit. This area is
the 'actual' driver R/W. This area comes in three
sizes |_ 32, 128, and 180 characters. Unrecognized
interfaces are given 180 characters. If a new card
is given the 180 character field, the driver can
throw the temp space that the kernel gave the
drivers and allocate a new block (as long as it
is appropriately initialized).

SDG 451

Buffer Control Block

The buffer control block 1s a user created structure that contains all the information necessary
for control of a buffer transfer and a pointer to a buffer. Normally the block is statically
created by a user VAR. At the static allocation time, there is no valid information in the block
and there is no allocated buffer space. When the user calls IOBUFFER(block size), a data area is
created on the heap (with NEW) and the block is initialized to a clean, valid state. When a
transfer starts, the control block is bound to a select code for the duration of the transfer. The

buffer control block looks like:

RECORD

drv_tmp_ptr :

active_isc
act_tfr
usr_tfr
b_w_mode
end_mode
direction
term_char
term_count
buf_ptr
buf_size
buf_empty
buf_fill
eot_proc
eot_parm

dma_priority:

END;

drv_tmp_ptr:

active_isc:

act_tfr:

usr_tfr:

pio_tmp_ptr; { ptr to driver R/W }
io_byte: { select code }
actual_tfr_type ; { given transfer mode }

: user_tfr_type ; { requeste tfr mode }
BOOLEAN { byte/word mode }

. BOOLEAN ; { end/eoi mode }
dir_of_tfr ; { direction of tfr }
-1..255 ; { termination character }
INTEGER ; { transfer count }

: “buf_type ; { ptr to buffer area }
INTEGER ; { maximum buf size }

. ANYPTR ; { next datum in buffer is }
: ANYPTR ; { where to put next datum }
io_funny_proc; { end of transfer link }

: ANYPTR ;

BOOLEAN;

This field contains a pointer to the driver R/W

when a transfer is in progress. The temp space also
contains a pointer to the buffer control block when a
transfer is active.

This byte field contains the select code currently
active with this buffer. When no transfer is active
the field contains a 255 (= constant NO_ISC).

This field is an enumerated type that indicates what
type of transfer the driver is using (as opposed to
what the user requested). The values are:

no_tfr
INTR_tfr
DMA_tfr
BURST_tfr
FHS_tfr

This field is an enumerated type that indicates what
type of transfer the user requested (as opposed to
what the driver gave the user). The values are:

dummy_tfr_1 overlap_INTR
serial_DMA overlap_DMA
serial_FHS overlap_FHS

SDG 452

b_w_mode:

end_mode:

direction:

term_char:

term_count:

buf_ptr:

buf_size:

buf_empty:

buf_fill:

eot_proc:

eot_parm:

dma_priority:

serial_FASTEST
dummy_tfr_2

overlap_FASTEST
OVERLAP

This is a boolean field that contains an indication
of whether or not the transfer is a byte or word mode
transfer.

This is a boolean field that contains an indication
of whether or not the transfer is to have an EQI/END
termination (input) or is to send an EOI/END (output).

This field contains an enumerated type indicating
transfer direction (to_memory or from_memory).

This short integer field contains a -1 if there is no
character termination. A 0..255 value indicates that
the specified character value is the termination
character.

This integer field holds the maximum transfer count.

This field contains a pointer the actual buffer
space. The buffer is viewed as a large packed array
of characters.

This integer field holds the maximum buffer size.

This field contains a pointer to the first valid
character in the buffer. This pointer is incremented
when a character is read from the buffer.

This field contains a pointer to the first empty
character position in the buffer. This pointer is
incremented when a character is put into the buffer.

This field is a procedure variable. This procedure
is called when a transfer finishes. This procedure
follows the form of user_isr in io_tmp_ptr”™.

This paramter is passed to the user’'s eot procedure.

This boolean field if true indicates a DMA transfer
is to be given high hardware priority. The DMA
hardware has two channels. Basically the priority
indicates whether or not the DMA hardware will allow
bus cycles by the CPU between very fast requests.
This is only required if the transfer rate is greater
than 300K transfers/second.

SDG 4353

Driver Structure

As mentioned earlier, the kernel is the base for the various drivers and high level routines. The
kernel is presented primarily through the ISC_ TABLE structure. The other main mechanism for
supporting device I/O is a common structure for the routines that comprise the device driver.
This section discusses the form of a common driver structure.

The goal of the device I/O system is similar to the goal of the underlying file system structure
-- extensibility. The intent is that at a later date HP (or a customer) could extend the I/O system
and add new drivers and still have major portions of the system work with the new interface.

The major aspect of this extensibility is a common set of ’atomic’ operations that all interface
drivers support. Fundamentally, a driver consists of two pieces: the low level drivers and an
intialization program. The low level drivers are contained in a table of procedure variables (this
i1s what is in the 120 bytes of global space in the driver modules HPIB et cetera -- the driver
table variable). The table consists of the following set of procedures:

RECORD
iod_init : io_proc ; { initialization }
iod_isr . ISRPROCTYPE ; { interrupt routine }
iod_rdb : io_proc_ve { read a character }
iod_wtb : io_proc_c { write a character }
iod_rdw ©i0_proc_vw { read a word }
iod_wtw © lo_proc_w ; { write a word }
iod_rds . lo_proc_vs { read status }
iod_wtc © lo_proc_s ; { write control }
iod_end : io_proc_vb { end(eoi) test }
iod_tfr : io_proc_ptr { transfer }
iod_send : io_proc_c; { send ATN msg }
iod_ppoll : io_proc_ve { parallel poll }
iod_set : io_proc_l { set interface line }
iod_clr : io_proc_l { ¢lr interface line }
iod_test : io_proc_vl ; { tst interface line }
END;
The procedure variable types used above are defined as:
TYPE
io_proc = PROCEDURE (temp : ANYPTR);
io_proc_c = PROCEDURE (temp : ANYPTR ; v . CHAR)
io_proc_vc = PROCEDURE (temp : ANYPTR ; VAR v : CHAR)
io_proc_w = PROCEDURE (temp : ANYPTR ; v . io_word):
io_proc_vw = PROCEDURE (temp : ANYPTR ; VAR v : io_word);
io_proc_s = PROCEDURE (temp : ANYPTR : reg © io_word ;
v : io_word);
io_proc_vs = PROCEDURE (temp : ANYPTR ; reg : io_word
VAR v : io_word);
io_proc_l = PROCEDURE (temp : ANYPTR ; line : io_bit);
io_proc_vl = PROCEDURE (temp : ANYPTR ; line : io_bit
VAR v : BOOLEAN):
io_proc_vb = PROCEDURE (temp : ANYPTR : VAR v : BOOLEAN);
io_proc_ptr = PROCEDURE (temp : ANYPTR ; v . ANYPTR);

SDG 454

This set of procedures was decided upon because they were "atomic" for the desired operations
within the Pascal system. In the initial investigation BASIC drivers were going to be used but
BASIC was tuned specifically to the BASIC language and the BASIC line and end of line
structure (including line temporaries). This overhead would have been too great for the Pascal
system. The code and structure that was used for the low level drivers {for hpib and gpio) was
based on the 9826 HPL code. Its structure closely matched what was needed. Note that he code is
NOT IDENTICAL. Primary differences occur in the ISR’s, transfers, and the way that the
drivers are connect to the rest of the language system.

In looking at the set of driver procedures, not all of them are obviously ’atomic’. What is "atomic’
depends on your needs. The general uses and needs for the various procedures are:

iod_init: This procedure is called whenever IORESET(sc) is
called, whenever IO_INITIALIZE or IO_UNINITIALIZE
is called, whenever the STOP or CLR I/0 keys are
pressed, and at system load.

iod_isr: This procedure is called whenever the specified
interface generates an interrupt.

iod_rdb: This procedure is called from the various procedures
in modules GENERAL_1 and GENERAL_2 that input data.

iod_wtb: This procedure is called from the various procedures
in modules GENERAL_1 and GENERAL_2 that output data.

iod_rdw: This procedure is called from the READWORD function
in GENERAL_T.

iod_wtw: This procedure is called from the WRITEWORD procedure
in GENERAL_1.

iod_rds: The read status routine is called by IOSTATUS and by
some of the interface specific modules |_ especially
HPIB_1, HPIB_2, HPIB_3, SERIAL_0 and SERIAL_3. Any
library use of status is preceded by a interface id

check.
iod_wtc: The write control routine is called by IOCONTROL and
by some of the interface specific modules |_ especially

HPIB_1, HPIB_2, HPIB_3, SERIAL_O0 and SERIAL_3. Any
library use of control is preceded by a interface id
check.

iod_end: This procedure indicates whether EQOI (END) was set
on the last byte read. This is used by the END_SET
function in module HPIB_1. It is also used by the
various disk drivers.

iod_tfr: The transfer procedure is the low level code that
handles the buffer transfers. It is called from
various GENERAL_4 procedures and by the various disk
drivers.

SDG 455

iod_send: The send command procedure sends a bus command on an
HP-IB interface. It is used in various places in the
library and disk drivers. All uses are preceded by a
check for an HP-IB interface.

iod_ppoll: The ppoll procedure performs a parallel poll on an
HP-IB interface. It is used in the PPOLL function in
module HPIB_3 and in the disk drivers. All uses are
preceded by a check for an HP-IB interface.

iod_set,iod_clr,iod_test:
These procedures allow for checking and setting the
interface lines. Only HP-IB and GPIO have
implemented these procedures. Data comm and the
RS-232 drivers use status and control to implement
these features. The only library call is in HPIB_0
and is preceded by an HPIB card test.

At an absolute minimum in most applications only three procedures in this table are required --
read a character, write a character and initialize. What else is needed depends on what your
drivers need to do.

The main additions to the ’true’ atomic operations are the HPIB specific procedures. These were
added so that the disk drivers could be implemented with only the low level code. The procedures
are just what is needed to implement most disk driver functions.

Note that all the procedures have only one parameter in common -- io__tmp_ ptr. This is
necessary so that the code will operate on the appropriate r/w space. The card address is also
necessary but it is contained in the r/w space so the low level drivers do the look up there --
rather than take the time to pass it in as a parameter.

These procedures are all PROCEDUREs -- none of them are FUNCTIONs. This is due to the
manner in which they are called. The drivers , because they are indexed out of a table , must be
called with the CALL statement in Pascal. The calling facility does not provide any mechanism
for returning values. So all values returned are done by a VAR parameter in the calling
parameter list. An example of the calling of the drivers looks like:

CALL(isc_table[mysc].io_drv_ptr™.iod_rdb |,
isc_table[mysc].io_tmp_ptr™ |,
mychar);

CALL{isc_table[mysc].io_drv_ptr™.iod_wtb ,

isc_table[mysc].io_tmp_ptr™ |,
x');

SDG 456

High Level Routines

The high level routines of the library are fairly straight forward. The higher numbered modules
contain more powerful facilities.

One of the major aspects of the high level routines that needs some explanation is the select code
/ device parameter. Most of the general purpose routines allow either a select code (ie. 7) or a
device specifier (ie. 705). The way that this works is with a trick of organization. All the
modules that allow both select codes and devices call some addressing routines in the module
HPIB__1. These routines are functions that return a select code. The calling routines pass in the
select code / device and the addressing routines perform the appropriate addressing (and then
return a select code to the calling routine).

From an organizational (and structured) point of view, it would be better to relegate the
addressing features to HP-IB modules only. This would make the library more difficult to use
by the programmer.

The addressing routines consist of four procedures:

ADDR_TO_LISTEN SET_TO_LISTEN
ADDR_TO_TALK SET_TO_TALK

The two sets are different in that the ADDR__TO__ routines are intended for use by data
transfer routines (like READNUMBER and others in GENERAL_ 2 and GENERAL_ 4)
whereas the SET__TO__ are intended for use by bus control routines (like TRIGGER and others
in HPIB_ 2 and HPIB__3). The ADDR__TO__ will wait to be addressed if the HP-IB card is not
the active controller. The SET__TO__ routines generate an error if the HP-IB card is not the
active controller.

SDG 457

Execution Walkthrough

This section is included to help tie things together. It will show various steps in the execution of
the device I/O system. The steps included in this walkthrough include power-up, stop key,
program compilation and program execution. As a suggestion, read through the section first and
then, using the system listings, go through the steps and look at the actual code.

Power-Up

For the device I/O system, the first time of interest is at INITLIB load time. The kernel and
drivers reside as linked modules in INITLIB on the BOOT device (mini-floppy or shared resource
manager). As each module is brought in, it is executed if it has an execution address. The order of
device I/O modules in INITLIB is IODECLARATIONS followed by any device drivers (ie.
INIT_HPIB et cetera) The IODECLARATIONS module contains the kernel modules
(iodeclarations, iocomasm, general 0 and iolibrary__kernel).

After IODECLARATIONS is brought in, it is allocated its global space (including the select code
table) and then it is executed. This execution goes through and searches for the various
interfaces (both internal and external) that the device I/O system is concerned with. As it finds
the interfaces, it initializes the ISC_TABLE entry with appropriate values. If the interface
requires driver R/W (or if the kernel doesn’t know for sure), heap space is allocated and
initialized. The driver field of the ISC__ TABLE for every select code is set to point to a set of
dummy drivers (that generate an error if ever called). Then select codes 1 and 2 are set up with
their simple drivers. The last thing that the kernel does is to set a CLRIOHOOK. This hook is a
system hook that is called when the STOP or CLR I/0 keys are pressed. It is also called when the
system catches an escape from any program. This hook is set to the routine
IO_SYSTEM _RESET which 1is the same routine called by IOINITIALIZE and
IOUNINITIALIZE.

Now that the kernel has done its duty, drivers can start being loaded. For this walkthrough the
HPIB driver will be discussed. After INIT HPIB (which contains exth, hpib__initialize, and
init__hpib) is loaded, it is allocated its globals. These globals consist of 120 bytes for its driver
table (the entity that the driver pointer field in ISC__ TABLE points to). When execution starts,
it will first set up this driver table with procedure values taken from the exth driver module.
The approach taken for this is to first set the drivers up as dummy drivers (all errors if ever
called) and then fill in the valid routines -~ ie. iod__wtb = eh__ wtb; -~ this insures all entries
in the driver table are valid (if errors).

The hpib driver then searches for all valid HP-IB interfaces and sets the ISC__TABLE driver
pointer to the hpib driver table. It then links in the system interrupt for the interface. When this
has been done for all interfaces, the interfaces are reset, one by one. Note that at the start of the
hpib initialization code there is a string (IO_ REVID). This string is intended to be used by the
HP field service force to determine which revision of the drivers you have installed in your
machine.

SDG 458

Stop Key

When the STOP or CLR I/0O key is pressed, the CLRIOHOOK calls the IO SYSTEM__RESET
routine in module GENERAL 0. This routine goes through each select code and sets the user
timeout value to zero (infinite timeout). It also sets the driver R/W entries that it understands to
valid defaults. For example, user ist’s are set to 'no isr’ and driver timeouts are set to zero
(infinite). When these values are set for all select codes, the IO SYSTEM__RESET routine then
goes through and calls the reset driver for each interface. Finally, to insure availibility of the
DMA resources, the DMA channels are released.

Program Compilation and Execution

To show what happens in a typical compilation/execution sequence, a sample program will be
used. The program is:

PROGRAM TEST(INPUT,QUTPUT);
IMPORT GENERAL_2;
BEGIN

WRITENUMBERLN(701 , 23.45);
END.

When this program text file is compiled, the compiler (after encountering the 'IMPORT
GENERAL 2 line) will search the system library for module GENERAL 2. Having found
that module, it will include the export text in GENERAL 2 into the program (without listing
it) as if the user had it in his/her text file. This phase is recursive in that GENERAL 2 imports
other I/O library modules that in turn import system modules. This is why you see so many dots
on the screen when you import I/O modules. Note that if you have HP-IB or Shared Resource
Manager mass storage or if you get a listing then the I/O system is called by the file system to
bring in the compiler, library code and text files, to put out the code files and to generate the
listing.

When the program code file i1s executed, the first step is to load the code file. This load will result
in unresolved external references. To see these references, try to load the program code file with
the SYSVOL (or whatever volume contains LIBRARY) turned off. When the code file is loaded,
the system library is searched for the unresolved references. For this sample program the
modules are GENERAL 2 HPIB_ 1 and IODECLARATIONS. Note that IODECLARATIONS
already is in the machine because of the kernel. So, GENERAL 2 and HPIB_ 1 are loaded.

When the program starts actual execution, note that no I/O reset was performed by the system
or by the user. The drivers are, however in a good state because the drivers themselves did a reset
at INITLIB load/execution time.

The WRITENUMBERLN routine is called with 701 as the device parameter and 23.45 as the
real number to be written. WRITENUMBERLN then does an ADDR__TO LISTEN with
address 701.

ADDR_TO_LISTEN breaks out select code and device address (7 and 1)
ADDR_TO__ LISTEN then checks to see if the interface is addressable (since the operation is to
an addressed device within the select code). Since it is addressable, ADDR__TO_LISTEN then
sends the 3 HP-IB commands for MY TALK, UNLISTEN, and DEVICE 1| LISTEN. These
commands are sent via SEND__COMMAND. SEND COMMAND calls the low level driver by
doing a '"CALL ISC__TABLElisclio__drv_ ptr™iod _send (temps, command);.

SDG 459

The iod_send routine in the HP-IB drivers is the eh_send routine. This assembly language
routine checks for an active transfer (so you don’t mess up an overlap transfer). It then sets the
attention line (which checks for active control). Then the iod send routine checks what sort of
command was being sent so that it can set up the TI 9914 interface chip appropriately.

ADDR__TO__LISTEN finally returns back just the select code (7) to the WRITENUMBERLN
routine. WRITENUMBERLN then calls WRITENUMBER with a select code of 7 and a real
number of 23.45.

WRITENUMBER uses the system number formatter via the STRWRITE routine. STRWRITE
works like WRITE(xxxxx) except that the destination of the write is a string variable instead of
the screen. So, STRWRITE puts the characters '23.45 into the string IO0__ WORK __STRING.
WRITENUMBER then does a FOR on the string and sends each byte of the string to the select
code via the 10d__wtb routine.

The iod__wtb routine in the HP-IB drivers is the eh wtb routine. This assembly language
routine checks that the HP-IB interface is addressed as a talker. It then makes sure that the
attention (command) line is false. It then makes sure that the interface is ready for the next byte.
It then can put the character into the interface.

When all the characters have been sent by iod wtb inside of WRITENUMBER,
WRITENUMBER returns to WRITENUMBERLN. WRITENUMBERLN then calls the iod _wtb
routines twice with a carriage return and a line feed character.

WRITENUMBERLN is now finished and returns to the main program. The program, itself, is
finished and terminates with no further I/O activity.

SDG 460

Low Level Drivers

HP-iB

The HP-IB low level drivers consist of three source modules:

source module source file code location written in
EXTH HPIB HPIB Assembly
INIT_HPIB H_DRV HPIB Pascal
HPIB_INITIALIZE H_DRV HPIB Pascal

As stated earlier, there is no export text anywhere in the system for the driver modules.
HPIB _INITIALIZE 1s the executable module for setting up the HP-IB driver. INIT__HPIB
contains the procedure used to set up the driver. EXTH contains the low level code.

Some hardware notes about HP-IB. The HP-IB internal interface and the plug in 98624
interface are based on the Texas Instruments 9914 IEEE-488 chip. In general the interfaces are
identical. The exceptions are that the internal HP-IB interface can only operate with DMA
channel O and the internal interface does not have an ID register. Another deviation is that most
cards fall on xxx0000 hex address boundries so you would expect the internal card to exist at
470000 because it is hardwired at internal select code 7, but it does not. The internal HP-IB
resides at hex 478000.

The code in EXTH is based on the 9826 HPL system. There have been many modifications,
primarily in the transfer mechanisms. Because of being taken from an HPL language system,
there are some unusual pieces of code. The HPL system emulates the 9825 interface system. This
means that the code attempts to make the HP-IB interfaces look like the 98034 interface cards
on the 9825/35/45. This is where the ’eirbyte’ came from -~ the 9803x interface structure. The
interrupts supported inside the code are 98034 style interrupts.

The 9914 works in a fairly straight forward way when it is used as a simple device or as a
permanent system and active controller. When it is used as a general controller -~ with
selectable system control and passable active control -- things get more complex.

One of the aspects that makes the hpib drivers somewhat messy is the ’fakeisr’ facility. Unless
you are really interested in getting into the hpib drivers or you are writing your own hpib
drivers understanding this is not necessary. The 'fakeisr’ facility is when normal non-interrupt
code is executing and this code notices that a hardware interrupt was missed. This normal code is
then required to call the ’fakeisr’ routine (H__FAKEISR) to get the driver to handle the missed
interrupt (pretend an interrupt happened). This is necessary because when the drivers check the
INTOSTAT register in the TI 9914 chip, it is cleared. When a condition occurs (SRQ, data in
ready, or whatever) the enabled bit is set in the INTOSTAT register. If this register is read
quickly enough, there is no interrupt generated and it is up to the code that read the register to
handle the condition. The way that the drivers handle this is to see if any conditions occurred
that it does not care about. If these conditions occurred, the H_FAKEISR routine is called
(simulating a real interrupt). Eventually the fakeisr finishes and returns to the calling code. Any
conditions that the fakeisr did not handle are placed in a copy location. The code then checks
these conditions for the condition it was looking for. Note that there is a similar -- alternate
problem where the 9914 can generate an ISR request and then have INTOSTAT read (removing
the reason but not the interrupt). This causes a spurious ISR in the system -- no ISR will get
execution but the system will try to poll the interfaces.

SDG 461

GPIO

The GPIO low level drivers consist of three source modules:

source module source file code location written in
EXTG GPIO GPIO Assembly
INIT_GPIO G_DRV GPIO Pascal
GPIO_INITIALIZE G_DRV GPIO Pascal

As stated earlier, there is no export text anywhere in the system for the driver modules.
GPIO__INITIALIZE is the executable module for setting up the HP-IB driver. INIT _GPIO
contains the procedure used to set up the driver. EXTG contains the low level code.

The GPIO card has a DMA priority switch. This switch does not have any direct effect on the
DMA hardware. It is read by the driver firmware and is used to effect the DMA priority. The
dma__ priority field in the buffer control block and the switch are inclusively ORed.

The code in EXTG is based on the 9826 HPL system. There have been many modifications,
primarily in the transfer mechanisms. Because of being taken from an HPL language system,
there are some unusual pieces of code. The HPL system emulates the 98235 system. This means
that the code attempts to make the GPIO interface look like the 98032 interface card on the
9825/35/45. Fortunately, the 98622 really does look like the 98032 interface.

DMA

The DMA drivers are, as a separate module, very simple. Mostly what the DMA drivers do is to
look for the actual DMA hardware and set up some ISRs.

Some of the code for the support of DMA is in IOCOMASM -- the test, request and release
channel routines. This code 1s relatively small.

It is necessary to have a special termination routine set up by the actual transfer drivers to catch
the DMA interrupt. This is necessary because the transfer has two different terminating
conditions -- the DMA count termination and whatever card terminations (like HPIB eoi
termination).

Note that the DMA channels are actually two separate entities. Each channel has its own
interrupt service routine.

The I/0 library and drivers takes care of handling the DMA channels. If you are writing your
own drivers and wish to use the DMA hardware there are some steps you must take to insure
you do not conflict with the rest of the drivers. The DMA channels are resources that are
allocated to various requestors by an algorithm. The requestor is viewed as being an interface
card.

The algorithm is: If the requestor is the internal HP-IB card, then if channel O is available it is
allocated to the HP-IB interface, otherwise no channel is allocated. (This 1s due to the fact that
the internal HP-IB interface is not symmetrical with DMA channels) If the requestor is any
other interface, then channel 1 is allocated if available, otherwise channel 0 is allocated if
available, otherwise no channel 1s allocated.

SDG 462

If you need to use DMA resources as part of your drivers, you must use the routines
DMA__REQUEST and DMA__RELEASE in the module IOCOMASM (which is in the kernel).
The form of use is:

VAR mychannel : INTEGER;
BEGIN
mychannel := DMA_REQUEST(ISC_TABLE[isc].io_tmp_ptr™);

{ if mychannel is -1 then I did not get a channel
0 then I got channel 0
1 then I got channel 1 }

IF mychannel = -}

THEN BEGIN
{ error or try again...... }

END

ELSE BEGIN
{ use the channel....... .. }
DMA_RELEASE(ISC_TABLE [isc J.io_tmp_ptr™);

END;

Data Comm

The interface card contains a Z80, ROM, RAM, timers, and so on. It is a ’smart’ card. It can
support several different types of applications. Current configurations include asynchronous data
communication, HP factory data link (DSN/DL), and shared resource manager uses. The shared
resource manager use requires some hardware modifications. The drivers for data comm are
actually a generic set of drivers for various configurations of the interface. The drivers, as they
exist, support async, FDL, and SRM uses.

The data comm interface drivers are rather unusual. The assembly language driver code looks
nothing at all like the ’atomic’ operations. The code is based on the 98628 drivers in the BASIC
language system. The code is designed specifically for the needs of the data comm card, not for
the system that is using it. The data comm drivers consist of four modules:

source module source file code location written in
EXTDC DC DATA_COMM Assembly
INTDC DC_DRV DATA_COMM Pascal
DC_INITIALIZE DC_DRV DATA_COMM Pascal
INIT_DC DC_DRV DATA_COMM Pascal

SDG 463

EXTDC is the low level assembly language drivers. INTDC is the Pascal that insulates the I/O
structure and the low level structure. DC__INITIALIZE is the executable module that sets up the
drivers. The EXTDC module consists of the following entry points:

ALVINIT

ALVINISR
ENTER_DATA
OQUTPUT_DATA

OUTPUT_END

DIRECT_STATUS

DIRECT_CONTROL

BFD_CONTROL

START_TFR_IN

START_TFR_OUT

Card/driver intialization |_ called once at
power up. All further resets occur via a
direct_control reset.

Driver ISR.

Read a block of data of specified length.
Output a block of data.

OQutput an 'end’ control block |_ like a CR/LF
character pair or drop a modem line or send a

special block on an FDL interface.

Card status routine.

Card control routine |_ do not wait in a
queue |_ do it immediately.

Card control routine |_ queue up control
command.

Start an inbound transfer.

Start an outbound transfer.

A set of ’atomic’ operations are implemented with these routines. These ’atomic’ operations are:

IDC_INIT
IDC_ISR
IDC_RDB
IDC_WTB
IDC_RDW
IDC_WTW
IDC_RDS
IDC_WTC
IDC_TFR

driver initialization
driver isr

read a byte

write a byte

read a word

write a word

direct status

buffered and direct control
transfer

SDG 464

I/0 Examples

Using Special Buffers
The I/O Library’s transfer facility is oriented around character transfers. This is adequate for
many needs, but by no means all the needs of a programmer. It is possible to trick the system into
using another structure for the actual buffer data space. The steps involved are:

1. Create a buffer control variable.

2. Allocate an iobuffer with O bytes.

3. Change the buffer data space pointer to your structure.

4. Set the buffer size.

5. Reset the buffer.

6. Use the buffer.
The use of the buffer involves setting empty and fill pointers. As you take data from the buffer,
increment the empty pointer. As you put data into the buffer, increment the fill pointer. If, in
your application, you know how much data is coming in or going out you can just set the buffer
empty or full before you do any 1/0O library transfers.

$SYSPROG ON$

PROGRAM specialbuffer (INPUT, OUTPUT);

IMPORT jodeclarations,general_4;
TYPE short_integer = -32768..32767,;

VAR buffer : buf_info_type;
stuff : PACKED ARRAY[0..1023] OF short_integer;
i,j . INTEGER;
BEGIN
iobuffer(buffer,0); { set up for 0 bytes }
WITH buffer DO BEGIN
buf_ptr := ADDR(stuff); { set up ptr to data }
buf_size:= 2048; { size in bytes }

END; { of WITH DO BEGIN }

FOR j:=0 TO 7 DO BEGIN

FOR i:=0 TO 1023 DO stuff[i]:=i; { put data into array }
WITH buffer DO BEGIN
buffer_reset(buffer); { to get empty/fill set }
buf_fill := ADDR(buf_fill,2048); { mark buffer full }

END; { of WITH DO BEGIN }
transfer(701,serial_fastest, from_memory, buffer,62048);
{ send data }
END: { of FOR DO BEGIN }

END. { of PROGRAM }

SDG 465

Remote Console Driver

This section is intended to show, by example, how to replace the system keyboard/crt drivers and
install drivers for a remote console. Included 1s a functional example by which you can totally
replace the existing console drivers with a remote console on an HP terminal connected via an
RS-232 interface (either the 98626 or 98628 interface). If you want to do something other than
this sample approach, you need to have familiarity with:

1. KBD modules in INITLIB.

2. Access methods.

3. 1/0 drivers and their structure.

4. CTABLE.

5. MISCINFO.
Before you do ANYTHING discussed in this section be sure you make back up copies of your
BOOT disc (with INITLIB and TABLE) and of your CTABLE source.
There are two main approaches to putting in a remote console driver. The first is to merely add
two new modules to the KBD part of INITLIB. This has the advantage of still allowing some
9826/36 interaction on the normal keyboard. The other approach is to replace part of the KBD
modules with new drivers. This approach has the advantage of being less code in INITLIB but it

does not allow ANY use of the normal keyboard.

There are a specific set of operations that need to happen to create a Pascal system with a
remote console. These steps are:

1. BACK UP
Back up your BOOT disk and your CTABLE source.

2. CREATE NEW DRIVERS
Create a remote console (input and output) set of access modules (via the EDITOR and
COMPILER). These modules correspond to the KEYS and CRT modules that contain the
routines KBDIO and CRTIO.

3. INSTALL DRIVERS IN INITLIB
Install these modules in INITLIB on your boot disk (via the LIBRARIAN). The modules can
either be added to the existing INITLIB modules or they can replace the current modules
(ie. KEYS and CRT).

4. MODIFY CTABLE
Change the TABLE file on your boot disk to make use of these new modules. This is done

by editing CTABLE and compiling it and then copying the object file onto the TABLE file
on the boot disk.

SDG 466

5. ADD MISCINFO TO BOOT

Change the system information about the console device with a MISCINFO file. This is
done by compiling and running the MISCINFO program. This program will put a
MISCINFO data file onto the boot disk.

Create New Drivers

The keyboard/CRT modules are actually a set of 5 modules. Each module is a separate program
and exported module. The program part takes care of initializing the exported module. The
modules are:

module purpose normally
requires

KBD fundamental support of the
"keyboard' 8041 uP including
interrupt handling

KEYS support of the keyboard part KBD
of the keyboard

CRT support of the CRT KBD,KEYS

BAT support of the battery KBD
part of the 'keyboard’

CLOCK support of the timers KBD
part of the 'keyboard’

If CLOCK and BAT are intended to work normally (and actually function with clock and
battery operations), then the KBD module needs to be fully functional. If battery and clock
functions are not necessary (or are provided by some other means), then almost all of the modules
can be replaced by dummy modules. The example at the end of this section shows the case where
all five modules have been replaced.

There are three aspects of the KEYS and CRT modules that are a little strange and need some
explanation. The first is the EOL__LYING__AROUND array in the KEYS module. The original
code has an operation called READTOEOL. This operation is supposed to read all characters
from the keyboard up to but NOT INCLUDING the EOL character (which is a carriage return).
In the original code, there is a keyboard buffer that contains the characters. To read to EOL
with the buffer you just look into the buffer until you find an EOL and back up one character.
It is very difficult to push a character back into an interface. To accommodate this, the remote
KEYS module will detect when a READTOEOL operation is in effect and an EOL is
encountered and then set a flag. When the next input operation occurs, it checks to see if the
EOL LYING AROUND flag is set. The EOL__LYING__AROUND flag is an array so that you
can use these drivers for more than just the SYSTERM and CONSOLE volumes of the system.

The second strange aspect of the code is the NEWDRIVERS variable in KEYS and in CRT. This
driver table contains a set of modified 1/O drivers. The intent is to take the normal I/O drivers
and remove the ability to reset the interface. This is necessary because many of the RS-232 line
characteristics are set up via software but modified if a reset occurs. As a case in point, the
98628 interface needs to have control register 28 set to O to specify that there are no inbound

SDG 467

eol characters. If you did not do this, the interface would use the default of 2 characters for eol
with those characters being <CR> and <LF> Whenever a <CR> would come in from the
terminal, the 98628 interface will NOT pass the <CR> on to the desktop computer because it is
waiting to see if the next character is a <LF> and thereby completing the eol sequence. The
interface must never be reset or the card will go back to its default 2 character eol sequence.
The drivers must be modified because you can not depend on when a reset will occur - the
IOINITIALIZE, IOUNINITIALIZE, and IORESET procedures and the STOP and CLR I/O keys
will case this type of reset.

The third strange aspect of the drivers relates to CTABLE and INITUNITS. Before TABLE has
had a chance to execute, messages are written to the CRT. The module INITUNITS initializes a
minimum TABLE (CTABLE) to handle the definitions. It would be possible to change this
module to specify the correct interface. In the example drivers a different approach was taken.
The default TABLE (CTABLE) and INITUNITS specifies a select code of 0 for the CONSOLE
and SYSTERM devices. The example drivers make use of this and the fact that external interface
cards can only be on select codes of 8 and above. The code contains a line:

IF myisc <= 7 THEN myisc := 20:

This line will re~direct the I/O to select code 20.If you think about this for a bit, you will
notice that you do not need to change CTABLE unless you are going to use more than one device
as a remote volume. It might be desireable to change this code to search the interfaces for the
first RS-232 interface that is in the desktop computer - it depends on your application.

Install Drivers in INITLIB

The modules, once they are compiled, need to be placed into INITLIB. The console modules
should be in linked form to minimize the space they consume on the boot disk. For each of the
modules that you are replacing (KBD, KEYS, CRT, BAT and/or CLOCK), go into the
LIBRARIAN and link the compiled object file into a single module. For example for the KEYS
module you would go through the following steps:

step keystrokes meaning
1. CNEWKBD <cr> Go into the compiler
N <¢cr> and compile the source

NEWKBD with no listing
and put object code
into NEWKBD.CODE

2. LONEWKBD <cr> Go into the librarian
LINEWKBD <cr> and specify an output
ALKQ file of NEWKBD.CODE

link together all the
modules of input file
NEWKBD . CODE

finishing linking,
keep the output file
and quit

Once you have all the modules you wish to replace in this linked form, you need to put them
into INITLIB. To do this, it works best to create a temporary INITLIB (with a name of something
like '"MYINIT.CODE’) on a larger mass storage device. Go through and replace (or add) the

SDG 4638

modules with the LIBRARIAN. The KBD, KEYS, etc. modules are some of the first modules in
INITLIB. When you have replaced (or added) the appropriate modules, then keep the new
temporary MYINIT and exit the LIBRARIAN. Go into the FILER and transfer the temporary
MYINIT onto the BOOT disk with a file name of 'INITLIB’

Modify Ctable
The CTABLE file needs to be modified to allow the remote console to work. The normal
CTABLE (as shipped with the default system) will specify where the default CONSOLE and

SYSTERM volumes exist and what type of units they are.

The CTABLE changes to allow for the addition of the new remote console drivers look like the
following:

procedure tea_crt(un:unitnum);

begin
tea{un, 'MISC_UNBLOCKEDDAM'
"REMC_CRTIO ', { change drv }
21, { change isc }
0,0,0,0,0, CONSOLE’ ,#0,T,T,F,0);
end:

procedure tea_kbd(un:.unitnum);

begin
tea(un, 'MISC_UNBLOCKEDDAM' ,
"REMK_KBDIO' , { change drv }
21, { change isc }
0,0,0,0,0, SYSTERM' ,#0 F T ,F,0);
end;

The CTABLE changes to allow for the replacement of the remote console drivers look like the
following:

procedure tea_crt(un:unitnum);

begin
tea(un, 'MISC_UNBLOCKEDDAM' , 'CRT_CRTIO’,
21, { change isc }
0,0,0,0,0, CONSOLE' #0,T7,T,F,0);
end;

procedure tea_kbd(un:unitnum);
begin
tea(un, 'MISC_UNBLOCKEDDAM'
"KEYS_KBDIO',
21, { change isc }
0,0,0,0,0, SYSTERM' ,#0,F, T,F,0);

end;

The CTABLE also has an alternate field that can be used for optional paramters (like baud rate
or whatever). The alternate parameter is the parameter right before the volume name (e.g.
'SYSTERM’).

SDG 469

The approach taken with the remote console is such that these drivers can be used with other
volumes in the system. Whether or not you wish to use the drivers as a remote console, it is
possible to use the new KEYS and CRT modules as a general remote interface. Once the modules
are placed in INITLIB, add the volumes to CTABLE source (and TABLE object file on the boot
device).

Add MISCINFO to BOOT

The MISCINFO file needs to exist and specify an external CRT. Refer to the section on
MISCINFO for more information.

Other Possibilities

It is also possible to use interfaces other than the serial interfaces shown in this example.
Appropriate changes in KEYS and CRT will be necessary for the IOSTATUS and IOCONTROL
usage. If you use an addressed interface (like HP-IB or HP-IL) it will also be necessary to preface
the operations with a talk address or listen address sequence (assuming ycur interface is
system/active controller).

In addition to using interfaces, it is possible to use no interface for the keyboard/crt device. This
might be useful in a stand-alone application where no user interaction occurs. It is even possible
to have the KEYS module contain sufficient information to send characters to the system (i.e. it
sends a sequence of characters like ’<cr><cr>FP# 3<cr>QXmyprog<cr> which would prefix the
system to volume #3 and then execute the file ‘'myprog’ on #3). In essence this could function
similarly to Stream files.

Problems and Trouble Spots
There are some potential problems with dealing with a remote console. Some of these are:

Area Problem

DEBUGGER The debugger is hardwired to the internal CRT and
keyboard of the 9826/36. You must leave the old
KEYS and CRT module installed in the system if you
intend to use the debugger and it must be used on
the normal keyboard and CRT. Without re-writing the
debugger, it is impossible to use from the remote
console.

Stop key The stop key can be supported in a limited way with
the KEYS module. Currently, no support is included.
It is possible to add stop key facilities in two
ways. The first is to do an ESCAPE(-20) whenever
a specific key is read from the interface. This
approach depends on the keystrokes being read before
the stop action occurs. The second approach is to
use the SERIAL_S interrupt facilities described
elsewhere in this document to generate an interrupt
when a BREAK occurs from the terminal. The ISR
procedure that you install will then do an
ESCAPE(-20) to cause the stop action.

SDG 470

Graphics It is not intended or possible with the 2.0 system to
be able to do remote console (on screen) graphics.
It will be possible in the 2.1 release to install new
drivers into the graphics system to use a remote
terminal.

HP9920 The keyboard interface must be installed, even if
it is not being used. There is some part of the
kernel of the Pascal system that is still depending
on its existence.

There are some potential problems involved in trying to bring up the remote console example.
Some of these are:

1. AUTO LF should be OFF

HP terminals respond to cursor sense differently when
AUTO LF is enabled.

2. RS-232 CHARACTERISTICS

Make sure RS-232 line characteristics are the same. This
includes:

baud rate

parity

stop bits

character or hardware handshakes (probably none)

3. ELECTRICAL CONNECTIONS

In most RS-232 hardware the lines are connected properly.
However, just because the male and female RS-232 connectors
can be connected physically does not mean they are
electrically connected. A case in point is the HP 2382
terminal and the HP 98626/98628 option 001 RS-232 cable.
The option 001 cable and terminal connected physically

but pins 2 and 3 were turned around. It was necessary to
wire up a special connector.

In general, the interface pins 1, 2, 3, and 7 are the
fundamental lines.

4. TERMINAL TYPE

The examples are written with HP terminals in mind.
The primary facility that is depended upon is the
cursor sensing and cursor positioning facilities.

If your terminal does not support the SAME mechanisms
you will have to modify the programs appropriately.

SDG 471

Standard ASCII Keystroke Meanings

internal keyboard ASCII terminal keyboard
ENTER CR RETURN

up arrow us CTRL DEL

down arrow LF CTRL J

left arrow BS CTRL H

right arrow FS CTRL \

BACKSPACE BS BACKSPACE

space bar space bar

EXECUTE CTRL C

shift EXECUTE ESC ESC

SDG 472

$SYSPROG ON$

$heap_dispose off$

$iocheck off$

$range off$ $ovflcheck off$
$debug off$

$STACKCHECK OFF$

PROGRAM installkbd;
MODULE kbd;
IMPORT sysglobals,asm,bootdammodule,isr misc;

EXPORT
TYPE

crtconsttype = PACKED ARRAY [0..11] of BYTE;

CRTFREC = PACKED RECORD
NOBREAK, STUPID, SLOWTERM HASXYCRT,
HASLCCRT{built in crt} K HASCLOCK,
canupscroll, candownscroll : BOOLEAN;
END;

B9 = PACKED ARRAY[0..8] OF BOOLEAN;

B14= PACKED ARRAY[O0..13] OF BOOLEAN;

CRTCREC = PACKED RECORD (* CRT CONTROL CHARS X)
RLF NDFS, ERASEEOL,
ERASEEOS ,HOME,

ESCAPE : CHAR;
BACKSPACE . CHAR;
FILLCOUNT : 0..255;
CLEARSCREEN,
CLEARLINE . CHAR;
PREFIXED . B9
END;
CRTIREC = PACKED RECORD (¥ CRT INFO & INPUT CHARS %)
WIDTH,HEIGHT : shortint;

crtmemaddr,crtcontroladdr,

keybufferaddr progstateinfoaddr: INTEGER:
keybuffersize: shortint;

crtcon . crtconsttype;
RIGHT,LEFT,DOWN,UP: CHAR;
BADCH , CHARDEL , STGOP,

BREAK, FLUSH, EOF : CHAR;
ALTMODE, LINEDEL . CHAR;
BACKSPACE,

ETX,PREFIX . CHAR;
PREFIXED . B14
CURSORMASK : INTEGER;
SPARE . INTEGER;

END;

ENVIRON = RECORD
MISCINFO: CRTFREC;

SDG 473

VAR

CRTTYPE: INTEGER;

CRTCTRL: CRTCREC;

CRTINFO: CRTIREC,;
END;

stat8041 = PACKED RECORD
case INTEGER of
0: (padl: 0..63;
busy: BOOLEAN;
readready ;BOOLEAN) ;
1: (statchar: CHAR):
END;
crtword= RECORD case INTEGER of
1:(highlightbyte,character:CHAR;):
2:{(wholeword: shortint);
END;
kbdhooktype = PROCEDURE(VAR statbyte,databyte: BYTE;
VAR dokey: BOOLEAN):

timerhooktype = PROCEDURE(statbyte,databyte: BYTE;
VAR dotimer: BOOLEAN);

keybuffertype= ARRAY[O0. maxint] of crtword;

SYSCOM: “ENVIRON;
changehardware: BOOLEAN;
progstateinfo:“keybuffertype;

ALPHASTATE['ALPHAFLAG']:BOOLEAN;
GRAPHICSTATE['GRAPHICSFLAG']:BOOLEAN;

kbdhook: kbdhooktype;
timerhook: timerhooktype;
dumpalphahook: PROCEDURE;
dumpgraphicshook: PROCEDURE;
togglealphahook: PROCEDURE;
togglegraphicshook: PROCEDURE;

kbeepfreq, kbeepdur : BYTE;

PROCEDURE beep;
PROCEDURE beeper(frequency,duration : BYTE);

PROCEDURE kbdinit;
PROCEDURE lockedaction(a: action);

PROCEDURE kbdcommand{cmd . BYTE;
numdata . INTEGER;
bl, b2, b3 : BYTE);

FUNCTION read8041byte : BYTE;

IMPLEMENT

SDG 474

CONST

B9826INFO=CRTIREC[

CONST

WIDTH

crtmemaddr
crtcontroladdr
keybuf feraddr
progstateinfoaddr
keybuffersize
crtcon

RIGHT{FS}
LEFT{BS}
DOWN{LF}
UP{US}
BADCH{?}
CHARDEL {BS}
STOP{DC3}
BREAK{DLE}
FLUSH{ACK}
EOF {ETX}
ALTMODE{ESC}
LINEDEL{DEL}
BACKSPACE {BS}
ETX

PREFIX
PREFIXED
CURSORMASK
SPARE

: 80 ,HEIGHT:24,

. 5316608,
. 5341185,
. 5320448,
: 5320592,
72,

. crtconst

. CHR({28),
. CHR(8),
. CHR(10),
¢ CHR(31),
. CHR(63},
. CHR(8),
. CHR(19),
. CHR(16),
. CHR(86),
: CHR(3),
. CHR(27),

type [114,80,76,7,
26,10,25,25,
0,14,76,13],

. CHR(127),

. CHR(8),
: CHR(3),
. CHR(0),

: B14[14 OF FALSE],

0,
2 0]

ENVIRONC=ENVIRON[MISCINFO:CRTFREC[

CRTTYPE: 0
CRTCTRL

CRTINFO

NOBREAK
STUPID
SLOWTERM :
HASXYCRT
HASLCCRT :
HASCLOCK
canupscroll
candownscro

: CRTCREC[

RLF
NDFS
ERASEEOL
ERASEEOS
HOME
ESCAPE
BACKSPACE :
FILLCOUNT:

CLEARSCREEN:

CLEARLINE:
PREFIXED :
: CRTIREC [
WIDTH

: FALSE,
. FALSE,

FALSE,
TRUE,
TRUE,
TRUE,

. TRUE,
11 : TRUE],

{7}

: CHR(31),
. CHR(28),

CHR(9),

: CHR(11),
: CHR(1),
: CHR(0),

CHR(8),

10,

CHR(0),
CHR(0),

B9[9 OF FALSE]],

. 50,

SDG 475

HEIGHT
crtmemaddr

crtcontroladdr

keybufferaddr

progstateinfoaddr:
: 42,

keybuffersize

o 24,

. 5316608,
. 5308417,
: 5319008,

5319092,

crtcon: crtconsttype [64,50,49,10,25,9,

RIGHT{FS}
LEFT{BS}
DOWN{LF}
UP{US}
BADCH{?}
CHARDEL{BS}
STOP{DC3}
BREAK{DLE}
FLUSH{ACK}
EOF {ETX}
ALTMODE{ESC}
LINEDEL{DEL}
BACKSPACE {BS}
ETX

PREFIX
PREFIXED
CURSORMASK
SPARE

PROCEDURE lockedaction(a: action);

label 1;

VAR i: INTEGER;

BEGIN
IF locklevel
ELSE
BEGIN

i := actionspending;

0 THEN call(a)

25,25,0,11,74,11],

. CHR(28),
: CHR(8),

. CHR(10),
: CHR(31),
. CHR(63),
: CHR(8),

: CHR(19),
: CHR(16),
. CHR(6),

. CHR(3),

: CHR(27),
: CHR(127),
. CHR(8),

: CHR(3),

: CHR(0),

: B14[14 OF FALSE],
.0,

0 011:

WHILE i>0 DO IF deferredaction[i]=a THEN goto 1 ELSE i := i - 1;

IF actionspending

ELSE BEGIN

actionspending
deferredaction[actionspending]

END;
END;
1:
END;

FUNCTION read8041byte:BYTE;

BEGIN

read8041byte:=0;

END;

PROCEDURE waitd4kbdready;

BEGIN
END;

10 THEN beep

actionspending + 1;

SDG 476

PROCEDURE kbdcommand(cmd . BYTE;
numdata . INTEGER;
b1, b2, b3 : BYTE);

BEGIN

END;

PROCEDURE beep;
BEGIN
END;

PROCEDURE beeper(frequency,duration : BYTE);
BEGIN
END;

PROCEDURE dummykbdhook (VAR stat, data: BYTE;
VAR doit: BOOLEAN);

BEGIN

END;

PROCEDURE dummytimerhook(stat, data: BYTE;
VAR doit: BOOLEAN);

BEGIN

END;

PROCEDURE INITSYSCOM;
VAR f: file of ENVIRON;
dertinfol['dcrtinfo’]: anyptr;
BEGIN
NEW(SYSCOM); SYSCOM™ := ENVIRONC;
WITH syscom™ DO
BEGIN
IF not sysflag.alpha50 THEN crtinfo := B9826info;
RESET(F, NODESTR+'MISCINFQ', 'shared’);
IF IORESULT = ORD(INOERROR) THEN READ(F, SYSCOM™);
changehardware := IORESULT = ORD(INOERROR);
dertinfo := ADDR(crtinfo);
END;
END; {INITSYSCOM}

PROCEDURE kbdinit;

BEGIN
kbdhook := dummykbdhook;
timerhook := dummytimerhook;
initsyscom;

END; ({kbdinit}

END; { of module }

IMPORT kbd;

SDG 477

BEGIN
kbdinit;
END.

SDG 478

$SYSPROG ON$

$heap_dispose off$

$iocheck off$

$range off$ $ovflcheck off$
$debug off$

$STACKCHECK OFF$

PROGRAM installkeys:

MODULE keys:
IMPORT sysglobals,asm,misc,kbd, iodeclarations,general_0,iocomasm:

EXPORT
CONST
yencode = 92; { Yen symbol overlays USASCII
backslash (\) in Kana machines }

TYPE
langtype = (gringo,french,german,swedish{,finnish},
spanish,katakana) ;

VAR
kbdlangjumper: RECORD CASE BYTE of
0: (b:PACKED RECORD
dummy, jnum:BYTE

END) ;
1: (ilang:langtype); {16 bit}
END;

kbdwaithook : PROCEDURE ;

kbdreleasehook . PROCEDURE;

keybuffer . “keybuffertype;

keybufsize . shortint;

keybuflength . shortint;

capslock . BOOLEAN;

kanaflag . BOOLEAN;

PROCEDURE kbdio (fp . fibp;

request . amrequesttype;
ANYVAR buffer : window;
length . INTEGER ;
position . INTEGER) ;

PROCEDURE initkeys:
IMPLEMENT
VAR eol_lying_around : PACKED ARRAY[type_isc] OF BOOLEAN:
myisc . shortint;

newdrivers . drv_table_type;

SDG 479

{ note that you should not use the ’'console’
select code for anything else }

PROCEDURE new_reset{(mytemp : ANYPTR);
BEGIN

{ do nothing so that the configuration stays the same }
END;

PROCEDURE myinit;

BEGIN
IF isc_table[myisc].card_id = hp98628_async
THEN iocontrol(myisc,28,0); { no EOL characters
iocontrol(myisc,12,1); { connect the card
newdrivers := isc_table[myisc].io_drv_ptr™; { copy card dvrs
newdrivers.iod_init := new_reset; { put in new reset
isc_table[myisc].io_drv_ptr := ADDR(newdrivers); { install drvs
END;

FUNCTION inchar : CHAR;

VAR X : CHAR;
BEGIN
IF eol_lying_around[myisc]
THEN BEGIN
inchar := eol;
eol_lying_around[myisc] := FALSE;
END
ELSE BEGIN

WITH isc_table[myisc] DO
CALL (io_drv_ptr~.iod_rdb ,
io_tmp_ptr ,
X),
inchar:=x;
END;
END;

FUNCTION kbdbusy : BOOLEAN;

VAR X : INTEGER;
BEGIN
IF isc_table[myisc].card_id = hp98628_async
THEN BEGIN

{ check inbound queue for data }
Xx:=iostatus(myisc,5);
IF (x=1) OR (x=3) OR eol_lying_around[myisc]
THEN kbdbusy:=FALSE
ELSE kbdbusy:=TRUE;
END;
IF isc_table[myisc].card_id = hp98626

SDG 480

THEN BEGIN
x:=iostatus(myisc,10):
{ check character buffer for data }
IF bit_set(x,0) OR eol_lying_around[myisc]
THEN kbdbusy:=FALSE
ELSE kbdbusy:=TRUE;

END;

END;

PROCEDURE kbdio (fp . fibp;
request . amrequesttype;
ANYVAR buffer : window;
length . INTEGER ;
position : INTEGER);

VAR buf . charptr;

BEGIN

myisc := unitable™[fp”.funit].sc;
IF myisc <= 7 THEN myisc := 20;
ioresult := ORD(inoerror);

buf := ADDR(buffer);

CASE request OF

flush: BEGIN
myinit;
END;

unitstatus: BEGIN
fp~.fbusy := kbdbusy ;

END;
clearunit: BEGIN
myinit;
END;
readtoeol,
readbytes,

startread: BEGIN
IF request = readtoeol
THEN BEGIN
{ the buffer is a string, so set it to empty }
buf := ADDR(buf”™, 1);
buffer[0] := chr(0):

END;
WHILE length>0 DO BEGIN
buf”™ := inchar;

IF buf™ = chr(etx)
THEN length := 0
ELSE length := length-1;
IF (buf”=eo0l) and (request=readtoeol)

THEN BEGIN
eol_lying_around[myisc] := TRUE;
length := 0

SDG 481

END

ELSE BEGIN
fp~.feoln := FALSE;
buf := ADDR{buf”™, 1);
IF request readtoeol

THEN buffer[0]

END;

END; { of WHILE DO }
IF request = startread THEN CALL(fp™.feot, fp);

END;

OTHERWISE BEGIN

ioresult := ORD(ibadrequest);

END;

END; { of CASE }
END; { of PROCEDURE }

PROCEDURE dummyproc;
BEGIN

{ nothing }
END;

PROCEDURE initkeys;
VAR localisc : shortint;
BEGIN

FOR localisc := 0 TO 31 DO eol_lying_around[localisc]

WITH syscom™.crtinfo DO BEGIN
keybuffer:=NIL;
keybufsize:=1;
kanaflag:=FALSE;
capslock:=TRUE;

END;

END;

END:;{ of module }

IMPORT keys;

BEGIN
initkeys;
END.

SDG 482

:= CHR(ORD(buffer[0])+1);

:= FALSE;

$SYSPROG ON$

$heap_dispose off$

$iocheck off$

$range of f$ $ovflcheck off$
$debug of f$

$STACKCHECK OFF$

PROGRAM installcrt;

MODULE crt;
IMPORT sysglobals,asm,misc,kbd, keys, iodeclarations,h general_0 ;
EXPORT

TYPE scrtype

PACKED ARRAY[0. .maxint] OF crtword;

scrptr = “scrtype;

VAR screenwidth . shortint;
screenheight . shortint;
maxx,maxy : shortint;
screensize . shortint;
Xpos,ypos . shortint;
screen . scrptr;

defaulthighlight : shortint;

PROCEDURE crtinit;

PROCEDURE crtio { fp . fibp;
request . amrequesttype;
ANYVAR buffer : window;
length . INTEGER;
position . INTEGER) ;

PROCEDURE updatecursor;

PROCEDURE setrunlight(x:CHAR);

IMPLEMENT

CONST dcl =17 ;

VAR myisc : shortint;
newdrivers : drv_table_type;

{ note that you should not use the ’'console’
select code for anything else }

PROCEDURE new_reset (mytemp : ANYPTR);
BEGIN

{ do nothing so that the configuration stays the same }
END;

SDG 483

PROCEDURE myinit;
BEGIN

IF isc_table[myisc].card_id = hp98628_async

THEN iocontrol(myisc,28,0);
iocontrol(myisc,12,1);

{ no EOL characters
{ connect the card

newdrivers := isc_table[myisc].io_drv_ptr™: { copy card dvrs

newdrivers.iod_init := new_reset; { put in new reset

isc_table[myisc].io_drv_ptr := ADDR(newdrivers); { install drvs
END; ‘

FUNCTION inchar : CHAR:
VAR X . CHAR;
BEGIN
WITH isc_table[myisc] DO
CALL (io_drv_ptr™.iod_rdb ,
io_tmp_ptr ,
x),
inchar:=x;
END;

PROCEDURE out(x:CHAR);
BEGIN
WITH isc_table[myisc] DO
CALL (io_drv_ptr~.iod_wtb ,
io_tmp_ptr ,
x);
END;

PROCEDURE output(s :10_STRING):
VAR i:INTEGER;
BEGIN

FOR i:=1 to STRLEN{(s) DO out(s[i])};

END;

PROCEDURE localbeep;
BEGIN

out (CHR(7)); { send beep to card }

END;

PROCEDURE setrunlight(x:CHAR);
BEGIN

{ DO nothing at all but have an exported PROCEDURE }

END;

SDG 484

}
}

PROCEDURE updatecursor;
BEGIN

{ DO nothing at all but have an exported PROCEDURE }
END;

PROCEDURE getxy (VAR x,y: INTEGER);
VAR dummy : CHAR;

BEGIN
x:=0; vy:=0;
{ go thru sequence to get actual position }
out(CHR(esc)): out(’''); { send cursor sense abse }
out (CHR(dc1)); { tell terminal I am ready }
dummy := inchar; { get esc }
dummy := inchar; { get & }
dummy := inchar; { get ' }
X := ORD(inchar)-48; { get column digit 1 }
X := ORD(inchar)-48+x%10; { get column digit 2 }
X := ORD(inchar)-48+xX10; { get column digit 3}
dummy := inchar; { get ¢ }
y := ORD(inchar)-48; { get row digit 1 }
y := ORD(inchar)-48+yX10; { get row digit 2 }
y := ORD(inchar)-48+yX10; { get row digit 3 }
dummy := inchar; { get Y }
dummy := inchar; { get cr }
Xpos 1= X, ypos = V;
END;

PROCEDURE setxy{x, y: shortint);
VAR s : string[9];
p : INTEGER;
BEGIN
IF x>=screenwidth THEN xpos:=maxx
ELSE IF x<0 THEN xpos:=0
ELSE xpos := x;
IF y>=screenheight THEN ypos:=maxy
ELSE IF y<0 THEN ypos:=0
ELSE ypos := y;

{ send xpos/ypos via escape esc & a xx y yy C }
SETSTRLEN(s,9) ;
STRWRITE (s,1,p ,CHR(esc), &' ,ypos:2,'y’ ,xpos:2,'C');
output (s);

END;

PROCEDURE gotoxy(x,y: INTEGER);
BEGIN

setxy(x,y);

updatecursor;
END;

SDG 485

PROCEDURE crtio (fp . fibp;

request . amrequesttype:
ANYVAR buffer . window;
length . INTEGER;
position . INTEGER) ;
VAR ¢ . CHAR;
s . STRING[1];
buf : charptr;
d,e : INTEGER;
BEGIN
myisc := unitable™[fp~.funit].sc;
IF myisc <= 7 THEN myisc := 20;
ioresult := ORD(inoerror):
buf := ADDR(buffer):
CASE request OF
setcursor: BEGIN
gotoxy(fp™.fxpos, fp~.fypos);
END;
getcursor: BEGIN
getxy (fp™.fxpos, fp~.fypos);
END;
flush: BEGIN
myinit;
END;

uhitstatus: BEGIN
kbdio(fp, unitstatus,buffer, K length,position):

END;
clearunit: BEGIN
myinit;
END;
readtoeol: BEGIN

buf := ADDR{buf”™, 1):
buffer[0] := CHR(0);
WHILE length>0 DO BEGIN
kbdio(fp, readtoeol, s, 1, 0);
IF STRLEN(s)=0
THEN BEGIN
length := 0
END
ELSE BEGIN
length := length - 1;
crtio(fp, writebytes, s[1], 1, 0);:
buf := ADDR{buf”™, 1):
buffer[0] := CHR(ORD(buffer[0])+1):
END; { of IF }

END; { of WHILE DO BEGIN }
END; { of BEGIN }
startread,
readbytes: BEGIN

SDG 486

WHILE length>0 DO
BEGIN
kbdio(fp, readbytes, buf™, 1, 0);
IF buf” CHR(etx) THEN length := 0
ELSE length := length - 1;

n

IF buf™ = eol
THEN crtio(fp, writeeol, buf™, 1, 0)
ELSE crtio(fp, writebytes, buf™, 1, 0);
buf := ADDR(buf”™, 1);
END;
IF request = startread THEN call(fp™.feot, fp);
END;

writeeol: BEGIN
IF ypos=maxy
THEN BEGIN
out(CHR(esc));
out('S’); { scroll up 1 line }
END;
gotoxy (0, ypos+1);
END;

startwrite,
writebytes: BEGIN
WHILE length>0 DO BEGIN
c:=buf”™; buf:=ADDR(buf”™,1): length:=length-1;

CASE ¢ OF
homechar: BEGIN
setxy(0,0);
END;

leftchar: BEGIN
out (CHR(bs));
END;

rightchar:BEGIN
getxy(d,e);
IF (xpos = maxx) and (ypos<maxy)
THEN setxy(0, ypos+1)
ELSE setxy{xpos+1, ypos);
END;

upchar: BEGIN
IF (ypos<=1)
THEN BEGIN
out (CHR(esc)):
out{('L’); { insert line }
END;
IF (ypos»>0)
THEN BEGIN
{ out(CHR(esc)):
out('A’); }
setxy(xpos,ypos-1);
END;
END:

SDG 487

downchar: BEGIN

IF (ypos=maxy)

THEN BEGIN

out (CHR(esc));
{ scroll up 1 line }

out(’'S’);
END
ELSE BEGIN

{ out(CHR(esc)):

out('B’);

}

setxy(xpos,ypos+1);

END;
END;

bellchar: BEGIN
localbeep;
END;

cteos: BEGIN
out (CHR(esc)):
out('J’);
END;

cteol: BEGIN
out (CHR(esc)):
out('K’);
END;

clearscr:BEGIN
setxy(0,0):
out (CHR(esc)):
out('J’);
END;

eol: BEGIN
out (CHR{cr)):
out (CHR(1f));
END;

CHR(etx): BEGIN
length:=0;
END;

OTHERWISE BEGIN
out(c):

IF xpos = maxx

THEN BEGIN
IF ypos =

maxy

THEN BEGIN
out (CHR(esc));
out('S');

END;

{ scroll up 1

setxy(0,ypos+1);

END
ELSE BEGIN

{ setxy(xpos+1,ypos); }
Xpos := xpos + 1;

SDG 488

line }

END; { of IF }
END;

END: { of CASE c¢ OF }
updatecursor;
END: { of WHILE DO BEGIN }
IF request = startwrite THEN call(fp”~.feot,
END: { of startwrite, writebytes case }

OTHERWISE BEGIN
joresult := ORD(ibadrequest);
END;

END; { of CASE request OF }
END: { of PROCEDURE crtio }

PROCEDURE dummyproc;
BEGIN

{ nothing }
END;

PROCEDURE crtinit;

BEGIN
WITH syscom™.crtinfo DO BEGIN
screen :=NIL;

screenwidth: =width;
screenheight :=height;
screensize :=widthXheight;

maxx c=width-1;

maxy c=zheight-1;

Xpos :=0;

ypos =0
defaulthighlight := 0;
dumpalphahook := dummyproc;
dumpgraphicshook := dummyproc;
togglealphahook = dummyproc;

togglegraphicshook := dummyproc;
ALPHASTATE := TRUE;
END; { of WITH DO BEGIN }
END; { of PROCEDURE crtinit }

END; { of MODULE crt }
IMPORT crt;
BEGIN

crtinit;
END.

SDG 489

fp);

$SYSPROG ON$

$heap_dispose off$

$iocheck off$

$range off$ $ovflcheck off$
$debug off$

$STACKCHECK OFF$

PROGRAM installbat;

MODULE bat;

IMPORT sysglobals, kbd;

EXPORT

VAR batterypresent[-563]: BOOLEAN;

PROCEDURE batcommand(cmd
numdata

. BYTE;
. INTEGER;

b1, b2, b3, b4, b5 : BYTE);

FUNCTION batbytereceived:BYTE;
PROCEDURE batinit;

IMPLEMENT

PROCEDURE batcommand(cmd

numdata

b1, b2, b3, b4, b5
BEGIN
END;

FUNCTION batbytereceived : BYTE;
BEGIN

batbytereceived := 0;
END;

PROCEDURE batinit;
BEGIN
END;

END; { of MODULE }
IMPORT bat;

BEGIN
batinit;
END.
~MF
$SYSPROG ON$
$heap_dispose off$
$iocheck off$
$range off$ $ovflcheck off$
$debug off$
$STACKCHECK OFF$

PROGRAM installclock;

. BYTE;

INTEGER;

. BYTE);

SDG 490

MODULE clock;
IMPORT sysglobals, asm, kbd, bat;
EXPORT
TYPE
RTCTIME = PACKED RECORD
PACKEDTIME , PACKEDDATE : INTEGER;
END;

FUNCTION sysclock: INTEGER; {centiseconds from midnight}
PROCEDURE sysdate (VAR thedate: daterec);

PROCEDURE systime (VAR thetime: timerec);

PROCEDURE setsysdate (thedate: daterec);

PROCEDURE setsystime (thetime: timerec);

PROCEDURE initclock;

implement

PROCEDURE SYSDATE (VAR THEDATE: DATEREC);
BEGIN
WITH THEDATE DO
BEGIN
YEAR:=00;
MONTH:=01;
DAY .=01;
END;
END;

FUNCTION sysclock: INTEGER;
BEGIN

sysclock := 0;
END;

PROCEDURE SYSTIME (VAR THETIME: TIMEREC);
BEGIN
WITH THETIME DO
BEGIN
HOUR
MINUTE
CENTISECOND :
END;
END;

00;
00;
0000;

PROCEDURE setsysdate(thedate: daterec);
BEGIN
END;

PROCEDURE setsystime(thetime: timerec);
BEGIN
END;

PROCEDURE inittime;
BEGIN
END;

SDG 491

PROCEDURE initclock:
BEGIN

END;

END;

IMPORT clock;

BEGIN

initclock;
END.

SDG 492

Removal of Drivers

The structure of the code is such that only the kernel JODECLARATIONS in INITLIB) must be
in INITLIB. The rest of the INITLIB drivers can be removed. The high level routines that exist in
LIBRARY are there in relatively small modules so you only get what you need.

In general, the removal of drivers is necessary to create a minimum system disk for stand alone
applications. As stated earlier the IODECLARATIONS module is about 3K bytes and all the I/0
device drivers are slightly larger than 12K bytes. The drivers in INITLIB and their uses are:

driver use

HPIB Built in HP-IB interface and 98624 interfaces.
Used by disk and printer drivers that go through
these interfaces.

GPIO For 98622 interfaces. Only system use is if the
system table specifies a printer on a 98622
interface, then these drivers are used. The
9885 floppy disk drives have their own drivers and
do not go through the GPIO module.

Data Comm For 98628 and 98629 interfaces. The system will use
these drivers if the system table specifies a
printer (or other unblock volume) on a 98628
card. The system uses these drivers for the shared
resource manager access.

DMA If there is no DMA card in the system, this driver
can be removed. The 9885 disk drivers require the
DMA hardware and this driver to be present.

RS-232 For 98626 interfaces. Only system use is when the
table specifies the interface as an unblocked
volume.

SDG 493

Addition of a Driver

The general structure of a new driver follows the form shown in the existing drivers -~ the low

level driver code and some intialization code. The initialization code consists of the following
pieces:

1. Set up the new driver table.
2. Search the ISC__TABLE for interfaces of my type.

3. If the code has any ISR support or needs, perform a permanent ISR linkage to the driver
ISR.

4. Initialize the drivers and interface.
The driver code and the intialization need to be linked (via the librarian) and placed onto
INITLIB. If this code does not allocate any heap space, it is possible to merely load it as a

permanent library (via the 'P’ command in the main command interpreter). This 'P facility
makes the debugging of the new drivers a lot easier.

SDG 494

A Specific Example

The following example is a simple ’dummy’ driver. It shows the main aspects of a new driver
from a structural point of view. It does not show the interrupt linkages. The code is designed so
that it puts itself in at all select codes that have no__id.

$SYSPROG ON$
{RRARAKAKKHIK KK AR K A HKKHK KK KKK KKK KKK KIKKAK KKK HKKHKHKKHIKKKKHKKKKKHKKK)

(% X)
(% X)
(% I0LIB example drivers %)
(% X)
(* X)
(***)
(% X)
(X X)
(% library - IoLIB X)
(% name - DuMMY X)
(% module(s) - extd Xx)
(% - init_dummy X)
(% - dummy_initialize X)
(% X)
(X date - July 21 , 1982 %)
(% update - July 21 , 1982 %)
(% X)

(RRAAORAHK KKK KK KKK KK KK KKK KKK KKK KKK K KAKA KK KK KA KK NKAKK KK KKK KK KKK KK)

PROGRAM dummy_initialize (INPUT , OUTPUT);
{ This module has a program segment so that there is
an executable entry point into the module.
At INITLIB time this program is executed. }

MODULE extd;
IMPORT sysglobals , iodeclarations ;
EXPORT
PROCEDURE ed_init (temp : ANYPTR);
PROCEDURE ed_rdb (temp : ANYPTR ; VAR x : CHAR);

PROCEDURE ed_wtb {temp : ANYPTR ; wval : CHAR);
PROCEDURE ed_send (temp : ANYPTR ; wval : CHAR);
IMPLEMENT

PROCEDURE ed_init (temp : ANYPTR);
BEGIN

WRITELN(INITIALIZATION on ',io_find_isc(temp):4);
END;

PROCEDURE ed_rdb (temp : ANYPTR ; VAR x : CHAR):
BEGIN
WRITELN(READ CHARACTER on ', io_find_isc(temp):4);
READ(x) ;
END;

PROCEDURE ed_wtb (temp : ANYPTR ; wval . CHAR):

BEGIN
WRITELN('WRITE CHARACTER on ’,io_find_isc(temp):4);

SDG 495

WRITE(val);
END;

PROCEDURE ed_send (temp : ANYPTR ; wval © CHAR):
BEGIN
WRITELN{ SEND COMMAND on ',io_find_isc(temp):4,
" of command ' ,0RD(val):3);
END;
END; { of extd }

MODULE init_dummy ; { This module initializes the HPIB drivers.)}
IMPORT iodeclarations ;
EXPORT

CONST dummy_id = -100;

dummy_type = 100;

VAR my_dummy_drivers : drv_table_type;

PROCEDURE io_init_dummy:
IMPLEMENT

IMPORT sysglobals , isr , general_0 , extd :

PROCEDURE io_init_dummy:

VAR io_isc . type_isc;
dummy . INTEGER;
io_lvl : io_byte;
BEGIN
io_revid := io_revid + ' DUMMY1.0'; { io_revid indicates

what version of the
drivers are in the
system. }

{ set up the driver tables }

WITH my_dummy_drivers DO BEGIN

my_dummy_drivers := dummy_drivers; { sets up the table
with all dummy
entries }

iod_init = ed_init;

iod_rdb c= ed_rdb;

iod_wtb c= ed_wtb;

iod_send := ed_send;

END; { of WITH }

{ set up drivers for the interfaces }
FOR io_isc:=ziominisc TO iomaxisc DO
WITH isc_table[io_isc] DO BEGIN
IF (card_id = no_id)

THEN BEGIN
card_id := dummy_id; { put in my id }
card_type := dummy_type; { put in my type }

io_drv_ptr:=ADDR(my_dummy_drivers)
{ link in an ISR here if it is necessary }
END; { of IF card_id }
END; { of FOR io_isc WITH isc_table[io_isc] BEGIN }

{ call the actual driver initialization }
{ this is seperate from the set up code in case

there are 2 or more cards connected - and generate

SDG 496

an isr between each other }
FOR io_isc:=iominisc TO iomaxisc DO
WITH isc_table[io_isc] DO
IF (card_id = dummy_id)
THEN BEGIN
CALL(io_drv_ptr~.iod_init , io_tmp_ptr);
END; { of WITH IF }
END; { of io_init_dummy }
END: { of MODULE init_dummy }

IMPORT init_dummy ;
BEGIN
io_init_dummy;
END. { of dummy_initialize }

SDG 497

Modification of a Driver

It is possible for a user to extend the drivers. You must create a driver table and fill it with
appropriate procedures. Then you must modify the isc__table to point to the new driver table.
An example might be to extend the the kbd/crt drivers to show the character values that are
being sent to select code 1.

$SYSPROG ON$
PROGRAM modifydrivers (INPUT,OUTPUT) ;
IMPORT iodeclarations,general_l,general_2;

VAR newkbd : drv_table_type;
oldkbd : ~drv_table_type;
i . INTEGER;

{ new driver procedure }
PROCEDURE MYPROC(mytemp : ANYPTR ;
mychar : CHAR);
BEGIN
WRITELN('write byte of character value ' ,ORD(mychar):3,
"is <' ,mychar,’>’);

END;

BEGIN
{ set up new drivers }
newkbd := isc_table[l1].io_drv_ptr™; { to copy some drivers }
oldkbd := ADDR(isc_table[1].io_drv_ptr™);{ to keep the old ones }
newkbd.iod_wtb := MYPROC; { add new procedures }

isc_table[1].io_drv_ptr := ADDR(newkbd): { set up isc table [1] }

{ use new drivers }
writenumberln(1,12.345);

{ remove new drivers }
isc_table[1].io_drv_ptr := ADDR(oldkbd™):
{ restore isc table [1] }
END.

SDG 498

End-of-Transfer Procedures

The transfer facility in the drivers supports an end-of-transfer (EOT) procedure. When a
transfer completes, the specified procedure is called. This is very similar to the ON EOT
capability in BASIC. One major difference is that the procedure is called from inside an ISR
(since that is where the transfer was detected as finished). There is no end~-of -line in Pascal, so
you have to be very careful of the operations inside an EOT procedure.

The current library has no high level support for EOT. Rather than force the use of a rather
upleasant mechanism, the following module will provide a nice, high-level set of routines.

Note that you can start up another transfer in the EOT procedure. Note that you can not do a

READ/READLN from the keyboard (since the kbd is interrupt driven and at level 1 and all the
external interfaces are at level 3 and above). Be very careful in using this facility.

SDG 499

$COPYRIGHT 'COPYRIGHT (C) 1982 BY HEWLETT-PACKARD COMPANY'$
$SYSPROG ON$

$PARTIAL_EVAL ON$

$STACKCHECK ON$

$RANGE OFF$

$DEBUG OFF$

$0OVFLCHECK OFF$
{HAARAKKKKKKK KKK IAAOKAKAOK KKK KKK KA AR A KKK KKK KKK KKK KKK KKK KK)

(% X)
(% not released VERSION 2.0 X)
(% X)
(***)
(x X)
(%)
(% IOLIB extensions Xx)
(X X)
(% X)
(***X*)
(% X)
(% x)
(% library - IOLIB X)
(% name - EXTLIB Xx)
(% module(s) - general_5 X)
(% X)
(% date - July 22 , 1982 %)
(% update - July 30 , 1982 X)
(% X)
(x X)

(KRR AOKAHORK KA A KK KKK AR KKK KKK K KK A KA KKK KK KK KKK KK KKK K K KK KK XK)

(| KRRAKKKAAOKK AR AR KKK KKK AR KA KKK KK KK HKKKKOK KK KKK KKK KKK KK KK HK)

(% X)
(% Xx)
(% GENERAL EXTENSIONS X)
(X X)
(x Xx)

{ RARKAORAKR KA ORAKK K HOKAKK KK AR KA KK KKK A KKK KK KKK KA KK KKK KK KKK KK)

MODULE general_5

{ date 07/22/82
update 07/30/82

purpose This module contains the LEVEL 5 GENERAL
GROUP procedures.

IMPORT iodeclarations ;
EXPORT

TYPE user_eot_proc = PROCEDURE (parameter : INTEGER);

SDG 500

PROCEDURE on_eot (VAR b_info: buf_info_type ;
your_proc : user_eot_proc ;
your_parm . INTEGER);

PROCEDURE off_eot (VAR b_info: buf_info_type };
IMPLEMENT
PROCEDURE on_eot (VAR b_info: buf_info_type ;

your_proc . user_eot_proc ;
your_parm : INTEGER);
RECORD CASE BOOLEAN OF
TRUE: (user: PROCEDURE (parm:INTEGER));
FALSE: (sys : PROCEDURE(parm:ANYPTR))
END;
RECORD CASE BOOLEAN OF
TRUE: (int : INTEGER);
FALSE: (ptr : ANYPTR)
END;
VAR localproc : proc_coerce;
localparm . parm_coerce,;

TYPE proc_coerce

TYPE parm_coerce

BEGIN
WITH b_info DO
BEGIN
localproc.user = your_proc;
eot_proc.real_proc := localproc.sys;
localparm.int = your_parm;

eot_parm localparm.ptr;
END: { of WITH DO }

END; { of on_eot }

PROCEDURE off_eot (VAR b_info: buf_info_type);
BEGIN
WITH b_info DO
BEGIN
eot_proc.dummy_sl := NIL;
eot_proc.dummy_pr := NIL;
eot_parm NIL;
END: { of WITH DO }
END; { of on_eot }

END. { of general_5 }

SDG 501

Interrupt Service Routine Procedures

Most of the drivers support a user-interrupt facility. When an user-interrupt mask has been
enable, the condition has occurred and the driver ISR completes, the specified procedure is called.
This is very similar to the ON INTR capability in BASIC. One major difference is that the
procedure is called from inside an ISR (since that is where the condition was detected). There is
no end-of-line in Pascal, so you have to be very careful of the operations inside an EOT
procedure.

The current library has no high level support for user ISRs. Rather than force the use of a
rather upleasant mechanism, the following modules will provide a nice, high-level set of
routines.

Note that you can do other I/O in the isr procedure. Note that you can not do a
READ/READLN from the keyboard (since the kbd is interrupt driven and at level 1 and all the
external interfaces are at level 3 and above). Be very careful in using this interrupt facility, it
has not been thoroughly tested.

There are 3 modules for this interrupt facility -- HPIB__ 5, GPIO__5 and SERIAL 5. They are
all very similar in structure. Each has a global variable (an array of pointers) that contains a
pointer to NIL or to an allocated (heap) block of control information for the interrupt. So only
the select codes that are enabled for interrupts will consume space for the control block.

Each interrupt condition has two procedures associated with it; enable and disable an interrupt
on that condition. The general form is:

ON_condition (select_code , user_procedure , integer_parm):

OFF_condition (select_code , user_procedure , integer_parm);

Each condition is viewed as being separate from all other conditions (even on the same select
code). So a user can have four different conditions on a particular interface handled by four
separate procedures. Each user procedure must have a single INTEGER parameter -- even if it
is not used. The intent of this parameter is open to the programmer. An example use of this
parameter is when the programmer wishes to handle several interfaces in the same manner. The
programmer can use the parameter to indicate the select code to his/her user procedure.

SDG 502

HP-IB Interrupts
The four interrupts for HP-IB are:
1. Talker
2. Listener
3. Controller
4. SRQ
An example use of HP~IB interrupts follows:
$SYSPROG ON$
PROGRAM isrtest (INPUT,OUTPUT);

$SEARCH '#3:HPIBS'$ { or wherever }
IMPORT iodeclarations,general_l hpib_0 hpib_2,hpib_3,hpib_5;

VAR i . INTEGER;
PROCEDURE myproc(temp : INTEGER);
BEGIN
WRITELN(' ISR ');
TRY
i:=spoll(730);
WRITELN(' "i:4);
clear_hpib(7,atn_line); { so 98034 can re-assert srq line
since I used a 9835/98034 as a
device }
RECOVER BEGIN
WRITELN("' ISR ESCAPE’);
ioreset(7);
END;
END;
BEGIN
ii=-1;

set_timeout(7,1.0);
on_srq(7,myproc,0);
WHILE TRUE DO BEGIN
WRITELN(waiting ',i:4);
END;
END.

SDG 503

$COPYRIGHT 'COPYRIGHT (C) 1982 BY HEWLETT-PACKARD COMPANY'$
$SYSPROG ON$

$PARTIAL_EVAL ON$

$STACKCHECK ON$

$RANGE OFF$

$DEBUG OFF$

$0VFLCHECK OFF$
(1 KARHORAK AR AR IKAK KKK KA AR KKK AR FOKAAK KKK KKK KK AR KKK KKK KKK KK KK)

(% X)
(% not released VERSION 2.0 X)
(X X)
(**X************)
(x X)
(% X)
(X I0LIB extensions X)
(% X)
(X Xx)
(RAKAKKK KK KKK KAKHKKK AR AR KKK KK KKK KKK AK AR KKK KK KK KKK KKK KK KK KKK KKK K)
(% X)
(X X)
(% library - IO0LIB X)
(% name - EXTLIB X)
(% module(s) - hpib_5 X)
(% X)
(% date - July 22 , 1982 X)
(% update - July 30 , 1982 X)
(X X)
(% X)

{ KKAAORAK AR KAK AR AR KKK K KA K AR KKK AKK K KKK AR KKK KKK KKK K KKKk)

(| RARAARRRRAKKKK AR IR AR AR A KKK AR KKK AR KK AR KKK KKK KK KAKK KK)

(X X)
(X X)
(% GENERAL EXTENSIONS X)
(X X)
(X X)

(1 KKARKHKKK KK A KK A AR AOK KKK KKK AOK KK A K KKK KA KA KK AK KKK K AR KKK KK KK KK)

PROGRAM hpib_5_init;

MODULE hpib_5 ;

{ date 07/22/82
update 07/30/82

purpose This module contains the LEVEL $ HPIB GROUP
procedures.

IMPORT 1iodeclarations , iocomasm , general_0 , hpib_1 , hpib_3

EXPORT

SDG 504

TYPE hpib_user_proc = PROCEDURE (parameter : INTEGER) ;
TYPE hpib_isr_block = RECORD
state : PACKED ARRAY[0..3] OF BOOLEAN;
mask INTEGER;
procs : ARRAY[0..3] OF hpib_user_proc;
parms : ARRAY[O0..3] OF INTEGER;
END;

VAR hpib_isr_table : ARRAY[iominisc..iomaxisc] OF

~hpib_isr_block;

PROCEDURE on_srg (isc type_isc ;
your_proc : hpib_user_proc
your_parm : INTEGER);

PROCEDURE off_srgq (isc : type_isc);

PROCEDURE on_talker (isc type_isc
your_proc : hpib_user_proc
your_parm : INTEGER);

PROCEDURE off_talker (isc type_isc);

PROCEDURE on_listener (isc type_isc
your_proc . hpib_user_proc ;
your_parm : INTEGER);

PROCEDURE off_listener(isc type_isc);

PROCEDURE on_active_ctl
(isc type_isc
your_proc : hpib_user_proc ;
your_parm : INTEGER);

PROCEDURE of f_active_ctl
(isc type_isc):

IMPLEMENT
CONST srqgcond = 0; srgmask = 128;
tlkcond = 1; tlkmask = 32;
lstcond = 2; lstmask = 16;
ctlcond = 3; ctlmask = 64;
TYPE coerce = RECORD CASE BOOLEAN OF
TRUE: (int INTEGER) ;
FALSE: (ptr : ANYPTR)
END;
PROCEDURE hpib_isr_allocate
(isc type_isc);

VAR counter :
BEGIN
NEW (hpib_isr_tablelisc]);
WITH hpib_isr_table[isc]” DO BEGIN
FOR counter:=srqcond TO ctlcond DO state[counter] :=
mask := 0;
END; { of WITH DO BEGIN }
END: { of hpib_isr_allocate }

INTEGER;

FALSE ;

SDG 505

PROCEDURE hpib_isr_proc
(temp . ANYPTR) ;
VAR counter : INTEGER;
happened: BOOLEAN;

isc . INTEGER;
local . coerce |
BEGIN
local .ptr := temp: { coerce for select code }
isc = local.int;

{ prevent recursive hpib_isr_proc in user isr }
iocontrol(isc , 5 , 0);
WITH isc_table[isc].io_tmp_ptr™ DO BEGIN
user_isr.dummy_sl := NIL;
user_isr.dummy_pr := NIL;
END; { of WITH isc_table DO BEGIN }

WITH hpib_isr_table[isc]” DO BEGIN
FOR counter := srqcond TO ctlcond DO
IF state[counter]
THEN BEGIN
happened := FALSE;
CASE counter OF
srgcond: happened:=requested(isc);
tlkcond: happened:=talker{isc);
lstcond: happened:=listener(isc);
ctlcond: happened:=active_controller(isc);
END: { of CASE }
IF happened THEN CALL(procs[counter] parms{counter]);
END; { of FOR DO IF bit_set THEN }

{ set up hpib_isr_proc in user_isr in temps }

WITH isc_table[isc].io_tmp_ptr™ DO BEGIN
user_isr.real_proc := hpib_isr_proc;

END; { of WITH DO BEGIN }

{ re - enable interrupts }
iocontrol(isc , 5 , mask);

END; { of WITH BEGIN }
END; { of hpib_isr_proc }

PROCEDURE hpib_isr_setup
(isc . type_isc ;
your_proc : hpib_user_proc ;
your_parm : INTEGER ;
which_cond: INTEGER);
VAR local : coerce;
BEGIN
IF (isc_table[isc].card_id <> hp98624) AND
(isc_tablel[isc].card_id <> internal_hpib)
THEN io_escape(ioe_not_hpib,isc);
IF hpib_isr_table[isc] = NIL THEN hpib_isr_allocate(isc);
WITH hpib_isr_table[isc]” DO BEGIN
{ set up procedures & parameters in allocated isr proc block }

SDG 506

END;

END;

procs[{which_cond]
parms{which_cond]

L= your_proc;
your_parm;

{ set up state condition and interrupt mask }
CASE which_cond OF
=BINIOR(mask,sramask) ;

srqcond: mask:
tlkcond: mask
lstcond: mask
ctlcond: mask
END; { of CASE }

state[which_cond]

:= TRUE;

:=BINIOR(mask, tlkmask);
:=BINIOR(mask,lstmask);
:=BINIOR(mask,ctlmask);

{ set up hpib_isr_proc in user_isr in temps }

WITH isc_tablefisc].io_tmp_ptr™ DO BEGIN

user_isr.real_p
local.int
user_parm

END; { of WITH DO

{ enable card }

iocontrol(isc , 5
{ of WITH DO B
{ of hpib_isr_se

roc = hpib_isr_proc;
= isc;
.= local.ptr;
BEGIN }
, mask):

EGIN }
tup }

PROCEDURE hpib_isr_kill

BEGIN
IF hpib_isr_table[isc] <> NIL THEN
WITH hpib_isr_table[isc]™ DO BEGIN

END;

END;

(isc
which_cond:

type_isc;
INTEGER) ;

{ type coercion }
{ type coercion }

{ clear state condition and interrupt mask }

CASE which_cond O

srgcond: mask
tlkcond: mask
lstcond: mask:
ctlcond: mask
END; { of CASE }

state[which_cond]

F

- =BINAND (mask,BINCMP (srqgmask));
:=BINAND (mask,BINCMP (tlkmask));

=BINAND (mask,BINCMP(lstmask));

:= FALSE;

:=BINAND (mask,BINCMP(ctlmask)) ;

{ if necessary clear hpib_isr_proc in user_isr in temps }
IF mask=0 THEN WITH isc_table[isc].io_tmp_ptr™ DO BEGIN

user_isr.dummy_sl :=
user_isr.dummy_

user_parm
END;

NIL;
pr = NIL;
.= NIL;

{ of WITH isc_table DO BEGIN }

{ disable or enable card as specified by the mask }

iocontrol(isc , 5

{ of hpib_isr_ki

PROCEDURE on_srgq

, mask);

{ of WITH DO BEGIN }

11}

(isc
your_proc
your_parm

type_isc

INTEGER) ;

SDG 507

. hpib_user_proc ;

BEGIN
hpib_isr_setup(isc,your_proc,your_parm,srqcond);
END;

PROCEDURE off_srq (isc ¢ type_isc);
BEGIN
hpib_isr_kill(isc,srqcond);
END;
PROCEDURE on_talker (isc . type_isc ;

your_proc : hpib_user_proc
your_parm : INTEGER);
BEGIN
hpib_isr_setup(isc,your_proc,your_parm,tlkcond):
END;

PROCEDURE off_talker (isc . type_isc);
BEGIN
hpib_isr_kill(isc,tlkcond);
END;
PROCEDURE on_listener (isc © type_isc

your_proc : hpib_user_proc
your_parm : INTEGER);
BEGIN
hpib_isr_setup(isc,your_proc,your_parm,lstcond);
END;

PROCEDURE off_listener(isc . type_isc);
BEGIN

hpib_isr_kill{isc,lstcond);
END;

PROCEDURE on_active_ctl
(isc . type_isc
your_proc : hpib_user_proc
your_parm : INTEGER);
BEGIN
hpib_isr_setup(isc,your_proc,your_parm,ctlcond);
END;

PROCEDURE off_active_ctl

(isc © type_isc);
BEGIN
hpib_isr_kill(isc,ctlcond);
END;

END; { of hpib_5 }

IMPORT iodeclarations , hpib_5;
VAR counter : INTEGER;
BEGIN

FOR counter := iominisc TO iomaxisc DO
hpib_isr_table[counter] := NIL;

END. { of hpib_5_init }

SDG 508

GPIO Interrupts

There is one interrupt for GPIO which is the flag interrupt. An example use of GPIO interrupt
follows:

$SYSPROG ON$

PROGRAM isrtest(INPUT,OUTPUT);

$SEARCH '#3:GPIOS'$ { or wherever }
IMPORT iodeclarations,general_l,gpio_5;

VAR i : INTEGER;

PROCEDURE myproc(temp : INTEGER);
BEGIN
WRITELN(' ISR '),
TRY
readword(15,1);
WRITELN(’ ',1:6);
RECOVER BEGIN
WRITELN(’ ISR ESCAPE’);
END;
END;

BEGIN
ir==1;
set_timeout(15,1.0);
on_flag(15,myproc,0);
WHILE TRUE DO BEGIN

WRITELN('waiting ',i:4);

END;

END.

SDG 509

$COPYRIGHT 'COPYRIGHT (C) 1982 BY HEWLETT-PACKARD COMPANY'$
$SYSPROG ON$

$PARTIAL_EVAL ON$

$STACKCHECK ON$

$RANGE OFF$

$DEBUG OFF$

$0VFLCHECK OFF$
((RAKAKACK KA HOK K KKK KKK KK AR KKK KKK AKK A KK KKK AR KA AR K AR KKK KKK KK)

(x X)
(% not released VERSION 2.0 X)
(% X)
(RARAAKAORAKAR A KKK KKK KK KKK AR AR KKK AR AR AR KKK KK KAOK KK KKK KAKKKK)
(% X)
(% X)
(% I0LIB extensions X)
(¥ X)
(% X)
(KKK AR K KKK KKK KKK 3K KKK K K K K K KoK KK KKK KK K KK A KOK KK KK KKK KKK K KK KKK KK)
(% X)
(% X)
(X library - IOLIB %)
(% name - EXTLIB %)
(% module(s) - gpio_5 X)
(% X)
(% date - July 22 , 1982 X)
(% update - July 30 , 1982 X)
(% X)
(% X)

(KKK AKK K HRACOK K AR KKK A KKK A KK AR AR KA A KK AR A AKK KKK KKK A KIKIOK KKK KKK KX)

(KKK AR A KKK AR KA KKK K AR K KKK K AR HK A KK KKK KK KAOK KKK KKK KKK KKK KKK)

(% X)
(x X)
(% GENERAL EXTENSIONS X)
(% X)
(% X)

{{KKKOKROK K K KK KoK KK KK KK KKK KKK KKK KK KK KK A K AR K KKK KK KK AKIK K KKK K KKK KKK)

PROGRAM gpio_5_init;

MODULE gpio_5 ;

{ date 07/26/82
update 07/30/82

purpose This module contains the LEVEL 5 GPIO GROUP
procedures.

IMPORT 1iodeclarations , iocomasm , general_0 ;
EXPORT
TYPE gpio_user_proc = PROCEDURE (parameter : INTEGER);

SDG 510

TYPE gpio_isr_block = RECORD
state : PACKED ARRAY[0..0] OF BOOLEAN;
mask : INTEGER;
procs : ARRAY[O0..0] OF gpio_user_proc;
parms : ARRAY[O0..0] OF INTEGER;
END;

VAR gpio_isr_table : ARRAY[iominisc..iomaxisc] OF
~gpio_isr_block;

PROCEDURE on_flag (isc © type_isc
your_proc : gpio_user_proc ;
your_parm : INTEGER);

PROCEDURE off_flag (isc © type_isc);
IMPLEMENT
CONST flgcond = 0; flamask = 128;

TYPE coerce = RECORD CASE BOOLEAN OF
TRUE: (int : INTEGER);
FALSE: (ptr : ANYPTR)

END;
PROCEDURE gpio_isr_allocate
(isc : type_isc);
VAR counter : INTEGER;

BEGIN
NEW(gpio_isr_table[isc]);
WITH gpio_isr_tablefisc]™ DO BEGIN
FOR counter:=flgcond TO flgcond DO state[counter] := FALSE;
mask := 0;
END; { of WITH DO BEGIN }
END; { of gpio_isr_allocate }

PROCEDURE gpio_isr_proc
(temp : ANYPTR) ;
VAR counter : INTEGER;
happened: BOOLEAN;

isc . INTEGER;
local . coerce |
BEGIN
local .ptr := temp;
isc = local.int;

{ prevent recursive gpio_isr_proc in user isr }
iocontrol(isc , 5 , 0);
WITH isc_tablel[isc].io_tmp_ptr”™ DO BEGIN
user_isr.dummy_sl := NIL;
user_isr.dummy_pr := NIL;
END; { of WITH isc_table DO BEGIN }

WITH gpio_isr_table[isc]”™ DO BEGIN
FOR counter := flgcond TO flgcond DO
IF state[counter]

SDG 511

THEN BEGIN
happened := FALSE;
CASE counter OF
flgcond: happened:=bit_set(ioread_byte(isc,0),0);
END; { of CASE }
IF happened THEN CALL(procs[counter],parms[counter]);
END; { of FOR DO IF bit_set THEN }

{ set up gpio_isr_proc in user_isr in temps }

WITH isc_table[isc].io_tmp_ptr”™ DO BEGIN
user_isr.real_proc := gpio_isr_proc;

END; { of WITH DO BEGIN }

{ re - enable interrupts }
iocontrol(isc , 5 , mask);

END; { of WITH BEGIN }
END; { of gpio_isr_proc }

PROCEDURE gpio_isr_setup
(isc . type_isc ;
your_proc . gpio_user_proc ;
your_parm : INTEGER ;
which_cond: INTEGER);
VAR local : coerce ;
BEGIN
IF (isc_table[isc].card_id <> hp98622)
THEN io_escape{ioe_misc,isc);
IF gpio_isr_table[isc] = NIL THEN gpio_isr_allocate(isc);
WITH gpio_isr_table[isc]™ DO BEGIN
{ set up procedures & parameters in allocated isr proc block }
procs[which_cond] := your_proc;
parms[which_cond] := your_parm;

{ set up state condition and interrupt mask }
CASE which_cond OF
flgcond: mask:=BINIOR(mask, flgmask);
END; { of CASE }
state[which_cond] := TRUE;

{ set up gpio_isr_proc in user_isr in temps }
WITH isc_table[isc].io_tmp_ptr”™ DO BEGIN
user_isr.real_proc gpio_isr_proc;
local.int isc; { type coercion }
user_parm := local.ptr; { type coercion }
END; { of WITH DO BEGIN }

"

{ enable card }
iocontrol(isc , 5 , mask);
END; { of WITH DO BEGIN }
END; { of gpio_isr_setup }

PROCEDURE gpio_isr_kill
(isc : type_isc ;
which_cond: INTEGER);
BEGIN

SDG 512

IF gpio_isr_table[isc] <> NIL THEN
WITH gpio_isr_table[isc]” DO BEGIN

{ clear state condition and interrupt mask }
CASE which_cond OF

flgcond: mask:=BINAND(mask,BINCMP(flgmask));
END; { of CASE }
state[which_cond] := FALSE;

{ if necessary clear gpio_isr_proc in user_isr in temps }
IF mask=0 THEN WITH isc_table[isc]l.io_tmp_ptr~ DO BEGIN

user_isr.dummy_sl := NIL;
user_isr.dummy_pr := NIL;
user_parm 1= NIL;

END: { of WITH isc_table DO BEGIN }

{ disable or enable card as specified by the mask }
iocontrol(isc , 5 , mask);
END: { of WITH DO BEGIN }
END: { of gpio_isr_kill }

PROCEDURE on_flag (isc : type_isc
your_proc : gpio_user_proc ;
your_parm : INTEGER);

BEGIN

gpio_isr_setup(isc,your_proc,your_parm,flgcond);

END;

PROCEDURE off_flag (isc : type_isc);
BEGIN

gpio_isr_kill(isc,flgcond);
END;

END;: { of gpio_5 }

IMPORT iodeclarations , gpio_5;
VAR counter : INTEGER;

BEGIN
FOR counter := iominisc TO iomaxisc DO
gpio_isr_table[counter] := NIL;
END. { of gpio_5_init }

SDG 513

Serial Interrupts
The eight interrupts for the 98628 data comm card are:
1. Data Ready
2. Prompt Received
3. Frame or Parity Error
4. Modem Line Change
5. No Activity Timeout
6. Lost Carrier
7. End-of ~Line Received
8. Break Received

An example use of data comm interrupts follows:

SDG 514

$SYSPROG ON$

PROGRAM isrtest (INPUT,OUTPUT);

$SEARCH '#3:SERIALS'$ { or wherever }

IMPORT iodeclarations,general_0,6general_1,general_2,
serial_3,serial_5;

VAR i . INTEGER;
isc : INTEGER;

PROCEDURE myproc(temp : INTEGER);
BEGIN

WRITELN('break received ISR ’);
END;

BEGIN
isc:=-1;
FOR i:=0 TO 31 DO IF isc_table[i].card_id=hp98628_async THEN isc:=i,
WRITELN(isc);

set_baud_rate (isc,2400);
set_parity (isc,odd_parity);
set_char_length (isc,7);
set_stop_bits (isc,V);

iocontrol{isc,12,1);
writestringln(isc, ready when you are CB - to hit break’);
on_break(isc,myproc,0);
i =0;
WHILE TRUE DO BEGIN
i:=i+1;
WRITELN('waiting ',i:6);

END;
END.

SDG 515§

$COPYRIGHT 'COPYRIGHT (C) 1982 BY HEWLETT-PACKARD COMPANY'$
$SYSPROG ON$

$PARTIAL_EVAL ON$

$STACKCHECK ON$

$RANGE OFF$

$DEBUG ON$

$0VFLCHECK OFF$
(RAHRKAKHKHAIKANKAKAK KRR KK KKK KA KKK IOKK KKK KK KKK KKK KKK KKK KA KK KK)

(% x)
(% not released VERSION 2.0 X)
(% X)
(***)
(% X)
(% X)
(% I0LIB extensions X)
(x X)
(% Xx)
(****************X**)
(% X)
(% X)
(X library - IOLIB X)
(% name - EXTLIB X)
(% module(s) - serial 5 X)
(% X)
(% date - July 22 , 1982 X)
(% update - July 30 , 1982 Xx)
(X X)
(% x)

{ KHAKAKAKK KKK KKK KIKHOKKAKAKKK KKK A KKK KA KKK K KK KKK KKK KKK KK KKK A K)

{ KRAKKKK KA AIORAIK KKK KKK AR AR AR KKK KK KA AR KKK KKK AR A KKK KK KKK KK)

(% X)
(% X)
(% GENERAL EXTENSIONS X)
(% X)
(% X)

(| ROKAKRAOKAK KK KKK AAIK KKK AR K AR AR AOK KKK KKK AR A KKK KKK KKK KK AR KK KKK KKK)

PROGRAM serial_5_init;

MODULE serial_5 ;

{ date 07/26/82
update 07/30/82

purpose This module contains the LEVEL 5 SERIAL GROUP
procedures.

IMPORT iodeclarations , iocomasm , general_0
EXPORT
TYPE serial_user_proc = PROCEDURE (parameter : INTEGER);

SDG 516

TYPE serial_isr_block = RECORD
state : PACKED ARRAY[O0..7] OF BOOLEAN;
mask INTEGER;
procs : ARRAY[0..7) OF serial_user_proc,;
parms : ARRAY[O0..7] OF INTEGER;
END;
VAR serial_isr_table : ARRAY[iominisc..iomaxisc] OF
~serial_isr_block;
PROCEDURE on_data (isc type_isc ;
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE of f_data (isc type_isc);
PROCEDURE on_prompt (isc type_isc
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE of f_prompt {isc type_isc);
PROCEDURE on_fp_error (isc type_isc
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE off_fp_error(isc type_isc);
PROCEDURE on_modem (isc type_isc
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE of f_modem (isc type_isc);
PROCEDURE on_no_activity
(isc type_isc
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE off_no_activity
(isc type_isc):
PROCEDURE on_lost_carrier
(isc type_isc
your_proc serial_user_proc
your_parm : INTEGER);
PROCEDURE off_lost_carrier
(isc type_isc);
PROCEDURE on_eol (isc type_isc
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE off_eol (isc type_isc);
PROCEDURE on_break (isc type_isc ;
your_proc serial_user_proc ;
your_parm : INTEGER);
PROCEDURE of f_break (isc type_isc);
IMPLEMENT

SDG 517

CONST data_cond = 0; data_mask = 1: { data ready }
prmpt_cond = 1; prmpt_mask = 2; { prompt }
fperr_cond = 2; fperr_mask = 4; { frame/parity }
mdmch_cond = 3; mdmch_mask = 8; { modem change }
noact_cond = 4, noact_mask = 16; { no activity }
lstcr_cond = 5; lstcr_mask = 32; { lost carrier }
eol_cond = 6; eol_mask = 64; { end of line }
break_cond = 7 break_mask = 128; { break }

TYPE coerce = RECORD CASE BOOLEAN OF
TRUE: (int : INTEGER);
FALSE: (ptr : ANYPTR)
END;

PROCEDURE serial_enable
(isc : type_isc
newmask . INTEGER);
VAR x : INTEGER;
BEGIN

{ There are two interrupt mask areas - the general card
interrupt mask and the ON INTR interrupt facility within the
card’s interrupts. The iocontrol register 13 is the ON INTR
mask. The drv_misc[3] AND iocontrol register 121 is the
general card interrupt mask. }

WITH isc_table[isc].io_tmp_ptr”™ DO BEGIN
iocontrol (isc , 13+256 , newmask); { set ON INTR mask }
X .= ORD(drv_misc[3]); { get usrOmask }
IF newmask = 0 THEN x BINAND(x,BINCMP(8))

ELSE x := BINIOR(x,8);
drv_misc[3] := CHR(x); { set/clr bit 3 in }
{ usrOmask }
iocontrol (isc , 121+256 , x); { set/clr bit 3 in }

{ ctl reg 121 }
END; { of WITH DO BEGIN }
END; { of serial_enable }

PROCEDURE serial_isr_allocate
(isc : type_isc);
VAR counter : INTEGER;
BEGIN
NEW(serial_isr_table[isc]);
WITH serial_isr_table[isc]” DO BEGIN
FOR counter:=data_cond TO break_cond
DO state[counter] := FALSE;
mask := 0;
END; { of WITH DO BEGIN }
END; { of serial_isr_allocate }

PROCEDURE serial_isr_proc
. (temp : ANYPTR);
VAR counter : INTEGER;
happened: BOOLEAN;
isc . INTEGER;

SDG 5§18

local . coerce ;
reason : INTEGER;

BEGIN
local .ptr := temp,; { coerce to get sc }
isc = local.int;
reason := iostatus (isc , 4);

{ prevent recursive serial_isr_proc in user isr }
serial_enable(isc , 0};
WITH isc_table[isc].io_tmp_ptr~ DO BEGIN
user_isr.dummy_sl := NIL,;
user_isr.dummy_pr := NIL;
END: { of WITH isc_table DO BEGIN }

WITH serial_isr_table[isc]” DO BEGIN
FOR counter := data_cond TO break_cond DO
IF state[counter]
THEN BEGIN
happened := bit_set(reason |, counter);
IF happened THEN CALL(procs[counter], parms[counter]);
END: { of FOR DO IF bit_set THEN }

{ set up serial_isr_proc in user_isr in temps }

WITH isc_table[isc].io_tmp_ptr™ DO BEGIN
user_isr.real_proc := serial_isr_proc;

END: { of WITH DO BEGIN }

{ re - enable interrupts }
serial_enable(isc , mask);

END: { of WITH BEGIN }
END: { of serial_isr_proc }

PROCEDURE serial_isr_setup
(isc . type_isc ;
your_proc : serial_user_proc ;
your_parm : INTEGER ;
which__cond: INTEGER);
VAR local : coerce;
BEGIN
IF (isc_table[isc].card_id <> hp98628_async) AND
{isc_table[isc]).card_id <> hp_datacomm)
THEN io_escape(ioe_misc,isc);
IF serial_isr_table[isc] = NIL THEN serial_isr_allocate(isc);
WITH serial_isr_table[isc]™ DO BEGIN
{ set up procedures & parameters in allocated isr proc block }
procs[which__cond] := your_proc;
parms[which__cond] := your_parm;

{ set up state _condition and interrupt mask }
CASE which__cond OF
data_cond: mask:=BINIOR(mask,data_mask);
prmpt_cond: mask:=BINIOR (mask,prmpt_mask);
fperr_cond: mask:=BINIOR (mask,fperr_mask);
mdmch_cond: mask:=BINIOR(mask,mdmch_mask);

SDG 519

noact_cond: mask:=BINIOR(mask,noact_mask);
Ister_cond: mask:=BINIOR(mask,lstcr_mask):
eol_cond: mask:=BINIOR(mask,eol_mask):
break_cond: mask:=BINIOR(mask,break_mask);
END; { of CASE }
state[fwhich__cond] := TRUE;

{ set up serial_isr_proc in user_isr in temps }
WITH isc_table[isc].io_tmp_ptr™ DO BEGIN

user_isr.real_proc := serial_isr_proc:
local.int = isc; { type coerce }
user_parm ;= local.ptr; { type coerce }

END; { of WITH DO BEGIN }

{ enable card }
serial_enable(isc , mask):
END; { of WITH DO BEGIN }
END; { of serial_isr_setup }

PROCEDURE serial_isr_kill
(isc . type_isc ;
which__cond: INTEGER):
BEGIN
IF serial_isr_table[isc] <> NIL THEN
WITH serial_isr_table[isc]”™ DO BEGIN

{ clear state condition and interrupt mask }

CASE which__cond OF
data_cond: mask:=BINAND(mask,BINCMP(data_mask));
prmpt_cond: mask:=BINAND(mask,BINCMP(prmpt_mask));
fperr_cond: mask:=BINAND(mask,BINCMP(fperr_mask));
mdmch_cond: mask:=BINAND (mask,BINCMP (mdmch_mask)):
noact_cond: mask:=BINAND(mask,BINCMP (noact_mask)):
lstcr_cond: mask:=BINAND(mask,BINCMP(lstcr_mask)):
eol_cond: mask:=BINAND(mask,BINCMP(eol_mask));
break_cond: mask:=BINAND(mask,BINCMP(break_mask)):

END; { of CASE }

state[which__cond] FALSE:

{ if necessary clear serial_isr_proc in user_isr in temps }
IF mask=0 THEN WITH isc_table[isc].io_tmp_ptr™ DO BEGIN

user_isr.dummy_sl := NIL;
user_isr.dummy_pr := NIL:
user_parm = NIL;

END; { of WITH isc_table DO BEGIN }

{ disable or enable card as specified by the _mask }
serial_enable(isc , mask);
END; { of WITH DO BEGIN }
END; { of serial_isr_kill }

PROCEDURE on_data (isc . type_isc
your_proc : serial_user_proc
your_parm : INTEGER):

BEGIN

SDG 520

serial_isr_setup(isc,your_proc,your_parm,data_cond);
END;

PROCEDURE of f_data (isc . type_isc);
BEGIN
serial_isr_kill(isc,data_cond);
END;
PROCEDURE on_prompt (isc © type_isc

your_proc : serial_user_proc ;
your_parm . INTEGER);
BEGIN
serial_isr_setup(isc,your_proc,your_parm,prmpt_cond);
END;

PROCEDURE of f_prompt (isc . type_isc);
BEGIN
serial_isr_kill(isc,prmpt_cond);
END;
PROCEDURE on_fp_error (isc . type_isc

your_proc : serial_user_proc ;
your_parm : INTEGER);
BEGIN
serial_isr_setup(isc,your_proc,your_parm,fperr_cond);
END;

PROCEDURE off_fp_error(isc . type_isc);
BEGIN
serial_isr_kill(isc,fperr_cond);
END;
PROCEDURE on_modem (isc © type_isc

your_proc : serial_user_proc ;
your_parm : INTEGER);
BEGIN
serial_isr_setup(isc,your_proc,your_parm,mdmch_cond);
END;

PROCEDURE of f_modem (isc . type_isc);
BEGIN

serial_isr_kill(isc,mdmch_cond);
END;

PROCEDURE on_no_activity
(isc : type_isc
your_proc : serial_user_proc ;
your_parm : INTEGER);

BEGIN

serial_isr_setup(isc,your_proc,your_parm,noact_cond);
END;
PROCEDURE off_no_activity

(isc : type_isc);
BEGIN
serial_isr_kill(isc,noact_cond);
END;

PROCEDURE on_lost_carrier
(isc . type_isc
your_proc : serial_user_proc

SDG 521

your_parm : INTEGER);
BEGIN
serial_isr_setup(isc,your_proc,your_parm,lstcr_cond);
END;
PROCEDURE off_lost_carrier

(isc © type_isc);

BEGIN

serial_isr_kill(isc,lstcr_cond);

END;

PROCEDURE on_eol (isc . type_isc
your_proc : serial_user_proc ;
your_parm : INTEGER);

BEGIN

serial_isr_setup(isc,your_proc,your_parm,eol_cond);
END;

PROCEDURE off_eol (isc . type_isc);
BEGIN
serial_isr_kill(isc,eol_cond);
END;
PROCEDURE on_break (isc . type_isc

your_proc : serial_user_proc ;
your_parm : INTEGER);
BEGIN
serial_isr_setup(isc,your_proc,your_parm.break_cond);
END;

PROCEDURE off_break (isc © type_isc);
BEGIN

serial_isr_kill(isc,break_cond);
END;

END: { of serial_5 }

IMPORT iodeclarations , serial 5;
VAR counter : INTEGER;

BEGIN
FOR counter := iominisc TO iomaxisc DO
serial_isr_table[counter] := NIL;
END. { of serial_5_init }

SDG 522

Chapter 20
The DIO Bus

Introduction

The Series 200 Desktop-computer Input/Output (DIO) Bus standard defines both mechanical
and electrical requirements of cards which are to be used as optional input/output (I/O) devices
with HP Series 200 Computers. The DIO Bus was first implemented in the Model 26 Computer
(HP 9826A), followed shortly thereafter by the Model 36 (9836A) and the Model 16 (9816A).
The 9888A Bus Expander, which can be used with Series 200 Computers, also implements the
DIO Bus.

The DIO Bus is designed around the MC68000 series of microprocessors. If you want further
information regarding MC68000 operation, refer to the MC68000 User's Manual, HP part
number 09826-90073.

Objectives

The purpose of this document is to provide sufficient documentation to permit experienced
digital-hardware designers to develop devices for use with the DIO Bus. The goal is to provide
enough information to design Bus Slaves -- in particular, I/O cards. Bus Masters, such as
Processor and DMA Controller boards, cannot be designed by using the information in this
document. You may want to use the HP 98630 Breadboard Interface as the beginning of your
own custom interface.

Any questions you may have regarding the information in this document should be brought to
the attention of your local HP Desktop Computer Systems Engineer.

Designer’s Responsibilities

in order to ensure safe, reliable operation with Series 200 Computer products, the specifications
in this document must be strictly followed when designing Bus Slave devices. The "Electrical
Specifications" and "Mechanical Specifications" sections describe topics such as available
power-supply current and size requirements of I/O cards. The section called '"Design
Qualification" provides safety and operating requirements that your I/O card design must meet
to qualify as a usable device.

Keep in mind that you are responsible for any circuitry that you design and use with HP
products, both in terms of personal safety and proper operation with the equipment.

SDG 523

CAUTION

HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL. REPAIRS NECESSITATED BY MISUSE OF
THE EQUIPMENT, OR BY HARDWARE, SOFTWARE, OR
INTERFACING NOT PROVIDED BY HEWLETT-
PACKARD ARE NOT COVERED BY THE WARRANTY.

Signal Terminology

The following convention is used throughout this document: Active-low signals are denoted with
a * following the name. This is equivalent to a bar over the signal name which 1s often used for
active-low signals. Thus, the following are equivalent:

BASX = BAS

When a signal is referenced as "asserted" or "true,” "negated" or "false," and so forth, it 1s relative
to the signal’s function. For example, to say that BAS is asserted means that it is active
(performing its function). Whether it exists as BAS (active-high) or BAS?* (active-low) on the
backplane is irrelevant.

References to "high" and "low" refer directly to TTL logic voltage levels. When referring to high
and low signals, the actual name of the signal is used. For example, when the signal BAS?* is
described as being low, the signal entitled BAS* has a TTL logic-low voltage level. The TTL logic
levels are defined as follows:

Logic High: >= 2.0 volts

Logic Low: <= 0.8 volts

System Elements

The functional modules of the DIO Bus are shown below. Where signals go specifically from one
functional module to another, the two modules are shown side-by-side for clarity.

SDG 524

BUS [EEEEEEEE >

MASTER

)
i
i
]
1]
)
i
t
v

|

| INTERRUPT
| REQUEST

| HANDLER

I

DMA REQUEST |
HANDLER

t
'
'
'
1
i
1
!
v

Figure 1c. Direct-Memory Access System Elements

Bus Slave Subsystem

BASX
IMAX

ENDT*

DMAROX
DMACKO X

DMAR1%
DMACK 1%

DMARDY*
DONEX
FOLDx*

BUS

SLAVE

INTERRUPT
REQUESTER

REQUESTER

A diagram of a Bus Slave subsystem is shown in the following drawing.

SDG 5§25

BUS SLAVE SUBSYSTEM

| BUS SLAVE |
[----=-ommmmmmm o |
| INTERRUPT | Optional
| REQUESTER |
| -omm oo ee e !
| DMA REQUESTER | Optional

The Bus Slave subsystem consists of the system interface elements listed on the right hand side of
Figures la, 1b,and lc.

Bus Timing Background

The key feature of the DIO Bus is that it is asynchronous -- in other words, there is no clock
signal on the backplane to which other signals are referenced. While address and data generation
are related to the CPU clock, the actual clock does not appear on the bus. The presence of
address or data is indicated by various control lines which execute interlocked handshakes to
convey address and data. Because the address, data, and control lines are not referenced to a
clock on the backplane, signal skew must be controlled to maintain the relative timing between
these signals.

For example, the MC68000 microprocessor is guaranteed to drive the bus address lines 30 ns
prior to asserting Address Strobe. Most receiving devices require at least 15 ns of address setup
time prior to Address Strobe. To guarantee 15 ns of address setup time, the following rules were
developed to control gate delays and bus loading (these are expanded in greater detail in later
sections).

® Fach board is limited to one LS TTL load on the address bus, data bus, the address strobe,
the data strobes, and read/write signal.

® The PC board trace length on bus signals should be as short as possible and, in any case,
must not exceed 3 inches.

® An SN74LS245 (or equivalent SN74L.S244) is used to buffer the above signals.

Thus the designer is given the guideline that, from the input of the 74LS245 bus driver to the
input of the slave’s bus receivers, 15 ns of skew are possible (see Figure 2). Signal skews are due
to differences in device delays and physical properties of bus lines (such as capacitance).
Therefore, skews due to the bus drivers and the bus are not specified separately. Detailed
signal-loading specifications are discussed in the "Electrical Specifications" section.

SDG 526

PROCESSOR BACKPLANE OPTION
BOARD CONNECTOR BOARD

Hl

AN

A
N
®

Figure 2. Origins of Signal Skew

SDG 527

Memory Map

This Bus specification is not intended to document in detail all Series 200 Computers’ memory
maps. Instead, documentation of the memory map is limited to the External I/O memory map
and standard 1/0 register assignments.

Series 200 Memory Map
The Series 200 memory map is shown below. The 68000’ 24-bit address bus can directly address
16 Mbytes of memory. The External I/O occupies 2 Mbytes of address space (hexadecimal

addresses 600000 through 7FFFFF).

Hex Address

FFFFFF
I !
| !
| |
I I
I I
| RAM | 7 MByte
I I
| I
| I
| I
| |
900000 | |
| MONITOR & TEST ROM/RAM | 1 MByte
800000 | |
I |
| EXTERNAL I/0 | 2 MByte
[|
600000 | |
| Asynchronous |
500000 |_ _ _ _ _ INTERNAL I/0 _ _ _ _ _ | 2 MByte
| Synchronous |
400000 | i
I |
| |
I |
| SYSTEM & ADD-ON ROM | 4 MByte
I |
| |
000000 | |

SDG 5238

External I/0O Memory Map

The External I/0 address space is divided into 32 segments of 64 Kbytes each. The I/O cards
contain select code switches which determine the physical address of the card in the External
I/0 address space. Five switches permit the user to choose one of 32 select codes, ranging from 0
through 31, to determine which 64 Kbyte memory space the card resides in. Switches should be
implemented in the 1/O card design for flexibility reasons. The address format, shown below,
locates 1/O devices in memory locations 600 000 through 7FF FFF. Note that all registers or
memory locations on an I/O card are offsets to the card’s "base address."

Address Bit:
232221 2019181716 1514 13121110 9 8 7 6 5 4 3 2 1

| I I |
| | 0 0 0 0 0| Register Number]
| 011 | thru | (Offset to Base Address) |
| P11 1 1 01 |
| | | |
Select Codes Registers (offsets) 0 thru 65535
0 thru 31

Not all external 1/0 select codes can be used with the Pascal operating system. With Pascal I/0
procedures, all select codes from 0 through 7 reference internal I/0O devices only. It is important
to realize that, electrically speaking, 1/O cards can be set to select codes 0 through 7. However,
the Pascal and BASIC language systems map select codes | through 7 to other addresses in the
internal 1/O address space. Thus, I/O cards set from [through 7 are inaccessible with these
languages; only I/O cards set from 8 through 31 can be accessed. At the assembly language level,
however, I/0O cards with select codes over the entire range of O through 31 can be accessed.

The external I/0 memory map is shown below. The default factory select code settings are

shown for the interfaces currently available. Note that select codes 15 and 16 are reserved for
use with custom I/O cards.

SDG 529

SELECT BASE STANDARD
CODE ADDRESS ASSIGNMENT

| |
I |
I I
I I
| |
TJFFFFF | 31 JF0000 Reserved |
| 30 7E0000 Reserved |
| 29 7D0000 98627 (continued) |
| 28 7C0000 98627 Color Output |
| 27 780000 Reserved |
| 26 7A0000 Reserved |
| 25 790000 Reserved [
| 24 780000 Reserved |
| 23 770000 Reserved |
| 22 760000 Reserved i
] 21 750000 98629A SRM |
| 20 740000 98628A Datacomm]
| 19 730000 Reserved |
| 18 720000 Reserved |
| 17 710000 Reserved |
| 16 700000 Custom I/0 Card 2 |
| 15 6F0000 Custom I/0 Card 1 |
| 14 6E0000 98625 Disc I
| 13 6D0000 Reserved |
[12 6C0000 98622 GPIO |
| 11 6B0000 98623 BCD |
| 10 6A0000 Reserved |
| 9 690000 98626 RS-232 | Note 1
| 8 680000 98624 Ext. HP-IB |
I I |
| 7 670000 |
| 6 660000 |
| 5 650000 |
| 4 640000 |
| 3 630000 |
| 2 620000 |
| 1 610000 |
| 0 600000 [
600000 | |

NOTE 1. The 98626A interface built into the 981 6A is "hardwired" to this Select Code.

SDG 530

Registers

The function of certain registers within I/0 cards are pre-assigned. Note that because most 1/0
cards are byte-oriented and these registers are connected to the lower byte of the data bus, their
memory addresses are odd (1, 3, 5, and so forth) relative to the card’s base address.

The designer is free to implement registers in addition to (but not instead of) the ones listed
below. Also, the designer is not required to uniquely map each register to a location within the
card’s address space (ie. several offset addresses may access the same register, which simplifies
address decoding, as long as the addresses are not outside the card’s 64 Kbyte address space).

Standard I/0 Registers

The standard 1/O card registers are defined as follows; the register number is the offset (added to

the base address of the card) which is used to access the register.

Read Register 1: ID Register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	I						
I	!			I			
] 0	0] 0	Ip4	ID3	ID2	IDV	IDO	
!	I I		I !				
	I I	I					
Value	Value	Value	Value	Value	Value	Value	Value
=128	=64	=32	=16	=8	=4 o=	=1]	
I | | I I I | |

ID4 thru IDO -- Contain the card ID, which uniquely identifies each type of 1/0 card.

Currently Defined ID Numbers

I |

| 0 - Reserved | 16 - Custom I/0 Card 2
| 1 - 98624 | 17 - Reserved

| 2 - 98626 | 18 - Reserved

| 3 - 98622 | 19 - Reserved

| 4 - 98623 | 20 - 98628A/98629A
| 5 - Reserved | 21 - Reserved

| 6 - Reserved | 22 - Reserved

| 7 - Reserved | 23 - Reserved

| 8 - 98625 - | 24 - Reserved

| 9 - Reserved | 25 - Reserved

| 10 - Reserved | 26 - Reserved

| 11 - Reserved | 27 - Reserved

| 12 - Reserved | 28 - 98627

| 13 - Reserved | 29 - Reserved

| 14 - Reserved | 30 - Resarved

| 15 - Custom I/0 Card 1 | 31 - Reserved

I I

Note that two ID numbers, 15 and 16, have been reserved for custom I/O cards designed and

implemented outside of Hewlett-Packard.

SDG 531

I
I
|
I
I
I
|
I
|
I
I
I
I
[
I
I
I
|

Write Register 1. Interface Reset

Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 Bit 0

| [
| I
| I
| The value written into this |
| register is irrelevant. |
| I
[|
I I
| I

Value | Value | Value | Value | Value | Value | Value | Value
=128 | =64 | =32 | =16 | =8 | =4 | =2 | =1
| | | | I | [

Writing any value into this register performs an Interface Reset of the card. The card’s actual
response to this action depends on how it is designed.

Good system design requires that the operating system should be capable of resetting an I/O card
to its power-on state. One of two methods must be implemented:

1. If the card contains LSI chips, one or more commands may be defined which can be sent to
gracefully return the card to its power-on state.

2. If the card does not have such a sequence, the card may be capable of being reset to its
power-on state by writing to register 1.

Read Register 3: Interrupt and DMA Status

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
I | | I | | I | |
| I [| I | I
| IE | IR | INT LVL | Undefined | DE1 | DEO |
| |] Switches | | | |
I I | [| | [
| Value | Value | Value | Value | Value | Value | Value | Value |
| =128 | =64 | =32 | =16 | =8 | =4 | =2 | = |
I | | I | |

IE -- Interrupts Enabled: If this bit is set, interrupts are enabled.

IR -- Interrupt Request: If this bit is set, the card is requesting an interrupt. This bit is used
during software polling to determine interrupt origin.

SDG 532

INT LVL Switches -- Interrupt Level: The interrupt level is typically set by two switches on the
I/0 card; these switches map into the 2 Interrupt Level bits.

Switch Interrupt
Setting Level
00 3
01 4
10 5
11 6

Undefined -- These bits have no standard definition and are thus are available for user-defined
functions.

DE1 -- When this bit is set, DMA 1is enabled on channel 1.

DEQ -- When this bit is set, DMA is enabled on channel 0.

Write Register 3: Interrupt and DMA Enable

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| | I I I | f | |
| I | | I
| EI | Undefined | DEl | DEO |
| I | | |
I I I | I
| Value | Value | Value | Value | Value | Value | Value | Value |
| =128 | =64 | =32 | =16 | =8 | =4 | =2 | = |
I I I | I

EI -- Setting this bit enables interrupts.

Undefined -- These bits have no standard definition and are thus are available for user-defined
functions.

DE1 -- Setting this bit enables DMA operations on Channel 1.

DEQ -- Setting this bit enables DMA operations on Channel 0.

SDG 533

Data Transfers

This section discusses the transfer of data between Bus Masters and Bus Slaves. Briefly stated,
data transfers on the DIO Bus are made by writing data to a memory location (or reading data
from a location). The Bus Master (the CPU, or Processor, board) defines the address, data
direction, and whether a byte or word is to be transferred. The Bus Slave device that contains the
memory location makes an acknowledgement to the master, which completes the transfer.

he rest of this section describes the signals involved in the transfer and the transfer process.

Data Transfer Signals

The bus signals used in data transfers are shown below. Signal names starting with B (for
"buffered") are derived from signal names of the 68000 microprocessor -- the 68000 name is
that which follows the "B" in the name. A brief description of each signal is given; for more
detailed information on the buffered 68000 signals, refer to the MC68000 User's Manual, HP
part number 09826-90073. Two of the signals, IMA* and ENDT?*, are HP-defined.

BA23--BA1 The 23-bit address bus. Note that BAO is not on the bus; its meaning is conveyed in
BUDS?* and BLDS* (see below).

BAS* Buffered Address Strobe, defines when the address is valid.
BD15--BDO0O The 16-bit data bus.
BR/W* Buffered Read/Write: High for read, Low for write.

BUDS*, Buffered Upper Data Strobe, Buffered Lower Data BLDS*, Strobe and Buffered Data
Strobe: BUDS* indicates BDS* that BD15-BDS& are required; BLDS* indicates that BD7-BDO are
required. BDS* is used generically to, refer to either BLDS* or BUDS*. It is not a bus signal; it is
used for discussion purposes only.

DTACK?* Data Transfer Acknowledge: issued by the currently addressed slave (RAM, I/O card,
etc.) to inform the master that the slave can complete the transfer cycle. During a read
operation, it indicates that data signals placed on the bus by the slave are now valid. During a
write operation, it indicates that the slave has accepted the data.

IMA* I'm Addressed: issued by a card that detects itself being addressed. It is also used by the Bus
Expander to reverse its data-bus buffers when a card in the Bus Expander is addressed.

ENDT* Enable DTACK: generated by the CPU board and (optionally) used by Bus Slaves to
generate the DTACK?* signal automatically, which reduces the access-overhead time and
provides a pseudo-synchronous, repeatable access-cycle time. Note that this signal does not have
to be implemented in a Bus Slave design.

SDG 534

Data Transfer Overview

Before the transfer is initiated, the R/W¥* line is used to indicate the direction of data flow.
BAS* which defines when the bus address is valid, begins the data transfer operation. As soon as
BAS? is asserted, each Bus Slave should check to see if the address currently on the address bus is
contained within its address space. Once a Bus Slave detects that it is being addressed, it must
acknowledge with IMA* BLDS* and BUDS?* indicate which data lines are involved in the
transfer.

An interlocked handshake is used to transfer data from the Bus Master to the Bus Slave. The
steps of the handshake are as follows:

1. Bus Slave asserts DTACK?* when data accepted from bus or provided on bus.
2. Bus Master sees DTACK®* and enters "terminate cycle” sequence.

3. Bus Master negates BAS* when cycle completes.

4, Bus Slave negates DTACK?* when BAS* negated.

As mentioned earlier, ENDT* is available from the Bus Master. It is used to improve the
response time of Bus Slaves. ENDT? is basically BAS* delayed by one and one-half clock cycles
(of an 8 MHz clock). A Bus Slave can use this signal to pseudo-synchronize an asynchronous
process (e.g. dynamic memory) so that access time is fixed (at five clock cycles). ENDT?* timing is
discussed later in this chapter.

The reference to clock cycles should not be confused with the state designators SO through S7
shown on 68000 timing diagrams. One clock cycle is equal to two states. For instance, one clock
cycle corresponds to states SO and S1 on the 68000 timing diagrams. The following diagram
shows the relationship of the CPU-board clock cycles and 68000 state designators.

] SO | S1 | S2 | S3 | S4 | w | w | S5 | S6 | S7 |
|--mmmme | ---mmme ESRCEEEE | ---omme |- om o |
| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 |

Read Cycle Description

Figure 3 shows the timing of signals during a read cycle. Timing specifications are for Bus Slaves.
The key aspects of a read cycle are as follows:

1. Prior to the beginning of the read cycle, BR/W*, BUDS* BLDS* and DTACK? are actively
pulled high. The setup time on BR/W* high is 15 ns before BAS* goes low. Because this is
a read cycle, BR/W* remains high during the entire cycle.

2. The Bus Master drives the address bus BA23-BA1 with a minimum address setup time of
15 ns before BAS* is asserted.

3. All Bus Slaves determine if they are being addressed using BAS* as a decode enable; the
device being addressed responds with IMA* within 50 ns after BAS* occurs.

4. When a Bus Slave is addressed, it puts data on the bus after BDS* is asserted. (Note that
BDS* can precede or follow BAS* by up to 75 ns.) DTACK®* is asserted by the Bus Slave to
indicate that the data signals are valid and that the transfer can be completed by the Bus

SDG 535

Master reading the data; thus, the time from BDS* to data valid is device-dependent. Bus
Slaves must drive the data bus 30 ns prior to asserting DTACK?* (except when using
ENDT* or during memory-to~-1/O DMA transfer). This 30 ns set-up time requirement
must be met at the receiving device, so it must include all signal skews (see specification 9a
of Figure 3).

Note

The MC68000 specification for asynchronous data setup time
permits valid data to follow DTACK?* by as much as 75 ns,
due to delays in synchronizing DTACK®*; however, to support
DMA and other Bus Masters, the DIO Bus requires data to
precede DTACK* (except when using ENDT?#; see specification
9 of Figure 3).

For memory-to-I/O DMA transfers, the data must be valid
45 ns prior to DTACK?*. This is to accomodate delay through
the Fold Buffer (on the HP 98620 DMA controller card) as
well as any additional bus delay. Additional bus delay occurs
because twice the normal bus load is driven (the bus load to
the Fold Buffer and the bus load from the Fold Buffer to the
I/0 card). Up to 30 ns of delay can be permitted and still meet
the write timing specification of 15 ns data setup time prior
to DTACK?* (see specification 9b of Figure 3). The DMA
section further describes DMA timing.

For I/O-to-memory DMA transfers, the data setup time from
the I/O card is still specified at 30 ns. This is because there are
matching delays in both the data (Fold Buffer plus 2 times
normal bus loading) and the DTACK?* signal (I/O card
generates DMARDY* which the DMA Controller delays in
“converting" to DTACK®*). The DMA section further describes
DMA timing.

5. The Bus Master detects that DTACK* has occurred and ends the cycle by negating BAS*
and BDS*. BASY* is set false within 350 ns of assertion of DTACK*.

6. The Bus Slave detects that the cycle has ended when BAS* or BDS* go false (whichever
occurs first) and then stops driving IMA* DTACK?*, and the Data Bus. Likewise, the Bus
Master stops driving the address bus. Relative to BAS* or BDS* (whichever occurs last), the
following signals change with the indicated delay:

Address hold: 15 ns (min.)
IMA* high: 50 ns (max.)
DTACK?* high: 50 ns (max.)
Data Bus hold: 100 ns (max.)

SDG 536

Note

Processor Boards actively drive DTACK* high when BAS* goes
high after a read or write cycle. Because the I/O card will
keep DTACK?* low until it sees BAS* high, there is a brief
(<100 ns) DTACK* driver conflict until the I/O card stops
driving DTACK*.

~— 0O

— P

ADDRESS VALID

S —

BAS

_:;f*@
—®

- ®

P

/

—_—

kS e
[~

BR/W l

BDS

o

st e —]
BDO-15 DATA VALID

~— @ ——— O — @
DTACK * J(‘-

Figure 3. Read Cycle Timing

SDG 537

Read Cycle Times Min. Max .

| | | | |

| 1 | BASX low (limited by BERRX on CPU board) | | 4500 |

| 2 | BASX low to DTACKX low (without Bus Error): | | |

| al DMA Operation | | 1500 |

| bl Non-DMA Operation] | 3000 |

| 3 | DTACKX low to BASX high (without Bus Error) | | 350 | Note 1
| 4 | BASX high | 140 | |

| 5 | Address setup before BASX low | 15 | |

| 6 | BR/WX high to BASX low or BDSX low] 15 | |

| 7 | BASX low to IMAX low | 0 | 50 |

| 8 | BASX low to BDSX low | -75 | 75 |

| 9 | Data setup before DTACKX low: | | |

| al Data transfers without ENDTX or | | |

| | I/0-to-memory DMA transfers | 30 | |

| b| Memory-to-1/0 DMA transfers | 45 | |

| cl Data transfers with ENDTX | -75 | |

| 10 | Data hold after BASX or BDSX high | 0 | 100 | Note 2
| 11 | BR/WX high after BASX or BDS* high | 15 | | Note 3
| 12 | Address hold after BASX or BDSX | 15 | | Notes 3&4
| 13 | BASX high to IMAX high | 0 | 50 |

| 14 | BASX high to DTACKX high | 0 | 50 |

| | | I l

Notes

1. This time must be met if Time 2 is 3000 ns. Otherwise, the requirement is that Time 2 +
Time 3 < 3500 ns.

2. Whichever goes high first of BAS* or BDS*.
3. Whichever goes high last of BAS* or BDS*.

4. Based on the 68000 and buffer/bus skew specifications, the address hold time is 15 ns.

Write Cycle Description

Figure 4 shows the timing of signals during a write cycle. Timing specifications are for Bus
Slaves. The key aspects of a write cycle are as follows:

1. Prior to the beginning of the write cycle, BR/W* BUDS* BLDS* and DTACK?* are
actively pulled high by the Bus Master.

2. Address is valid on the address bus BA23-BA1 with a minimum address set-up time of 15
ns before BAS* is asserted. The address is valid 2 minimum of 5 ns before BR/W?* goes low
(Write). BR/W* goes low sometime in the interval from 75 ns before to 85 ns after the
assertion of BAS*.

3. All devices on the bus determine if they are being addressed using BAS as a decode enable;
the device being addressed responds with IMA* within 50 ns after BAS* occurs.

SDG 538

. Data is valid on the data bus BD15-BD0 a minimum of 15 ns prior to the assertion of
BDS*. Notice that the time from BAS* to the data strobes can vary over a wide range (50
ns to 2500 ns). Longer times can occur when doing a DMA operation, because a read must
be performed prior to the write operation.

. When BDS?* is asserted (low), BR/W¥* is guaranteed to already be asserted (low); BR/W*
should not be qualified with BAS* because of the potential for bus conflicts, since BR/W*
can still be changing up to 85 ns after BAS* goes true.

. The Bus Slave stores the data and asserts DTACK®* indicating to the Bus Master that the
storage operation is complete.

. The Bus Master detects that DTACK®* is true and negates BAS* and BDS* within 350 ns.
The Bus Master then removes the data BD15-BDO0 from the data bus. To ensure data hold
time sufficient to allow the Bus Slave to clock the data at the same time it asserts
DTACK?*, the minimum Bus Master data hold time after detection of DTACK®* is 85 ns.

. The following signals change with the indicated delay after the negation of BDS* and BAS*
(whichever occurs last).

Address hold: 15 ns (min.)

BR/W* high: 25 ns (min.)

DMA* high: 50 ns (max.)

DTACK? high: 50 ns (max.)

DTACK? (a pull-up O ns (min.) is asserted on the Processor Board)

SDG 539

~— O

391-2;;%£;l

ADDRESS VALID

Sl

BAS \

®

_:__ﬁ@

=

F:

r®

—>.
™A
P e
eI —
BR/W
-~ ® —
ﬁs 4
~— +@j&
BDO-15 DATR VALID
® ® —
DTACK N

[—©

Figure 4. Write Cycle Timing

SDG 540

Write Cycle Times Min. Max .

| | | | I

| 1 | BASX low (limited by BERRX on CPU board) | | 4500 |

| 2 | BASX low to DTACKX low (without Bus Error) | | 3000 |

| 3 | DTACKX low to BASX high (without Bus Error) | | 350 | Note 1
| 4 | BASX high | 140 | |

| 5 | Address setup before BASX | 15 | |

| 6 | BASX lov; to IMAX low | 0 | 50 |

| 7 | BASX low to BR/WX low | -75 | 85 |

| 8 | BASX low to BDSX low | 50 | 2500 |

| 9 | BR/WX low to BDSX low | 65 | | Note 2
] 10 | Data setup before BDSX low | 15 | |

| 11 | Data hold after DTACKX low | 85 | |

| 12 | BR/WX hold after BASX or BDSX high | 15 | | Note 3
| 13 | Address hold after BASX or BDSX | 15 | | Note 4
| 14 | BASX high to IMAX high | 0 | 50 |

| 15 | BASX high to DTACKX high | 0 | 50 |

| I I I I

Notes

1. This time must be met if Time 2 is 3000 ns. Otherwise, the requirement is that Time 2 +
Time 3 < 3500 ns.

2. Times 7 & 8 imply that BR/W* could go low after BDS* goes low; in actuality, this cannot
happen as guaranteed by Time 9.

3. Whichever of BAS* or BDS* goes high last.

4. Based on the 68000 and buffer/bus skew specifications, the address hold time is 1 5 ns.

Read-Modify -Write

No current 1/O cards support read-modify-write operations.

Enable DTACK Timing

As discussed previously, Enable DTACK (ENDT*) is used to improve the response time of
backplane cards by generating DTACK?* pseudo-synchronously, permitting memory accesses to
always occur in five clock cycles (of an 8 MHz clock). ENDT?* is currently used only by Series
200 RAM cards. However, I/O cards that contain large amounts of memory can use ENDT* to
speed up the transfer of data to and from this memory, since the access time of memory is
usually fixed. During a read, DTACK* is generated before data is set up on the bus; however,
because of synchronization delays, the 68000 permits data to follow DTACK?*.

ENDT?* is generated by the Processor board and is delayed from BAS* by one and one-half clock
cycles, as shown below. The Bus Slave must have a 25 ns "turnaround” time from the assertion of
ENDT?* to asserting DTACK*. Also, data must be valid within 265 ns of BAS* being asserted
during a read cycle.

SDG 541

< S-CYCLE ACCESS >
S N
CLOCK [8MHz) Vo N 2N 2 N 2N 2
BA1 - 23 YOO ADDRESS VALID NI
BAS / N
@ —~
ENDT \ -
@ —
— - ®
DTACK /
@ DATA VALID

BDO- 15 XXX XXX XXX

Figure 5. Enable DTACK Timing

SDG 542

ENDTX Timing Min. Max .

| | I |

| 1 | Clock cycle time @ 8 Mhz | 125 ns nominal| Note 1
| 2 | Clock low to ENDTX low | | 40 |

| 3 | ENDTX low to DTACKX low | | 50 | Note 2
| 4 | DTACKX setup time | | 35 |

| 5 | BASX low to read data valid | | 265 |

| 6 | Address to read data valid [| 295 | Note 3
I | | I I

Notes

1. The clock is on the Processor board and does not appear on the DIO Bus; it is shown for
reference only.

2. To ensure that DTACK* is low at the Processor board input within 50 ns, the maximum
ENDT* to DTACK* gate delay on the Bus Slave device cannot exceed 25 ns; this must
represent the worse-case gate delay. The DTACK* driver must ensure that DTACK?* is
driven low on the bus within an additional 25 ns.

3. Whichever of these times is longer.

SDG 543

Direct Memory Access

All DMA operations with Series 200 Computers require the use of the HP 98620 Direct Memory
Access (DMA) Controller card. This card monitors DMA requests from I/O cards, requests
control of the bus, and orchestrates DMA data transfers. The DIO Bus supports two direct
memory access channels. DMA transfers between I/O cards and memory are supported;
memory-to-memory transfers are not. DMA data rates exceeding 1 million transfers/second are
possible in word (or byte) mode. This section gives an overview of DMA operation and discusses
DMA input and output operation.

DMA Signals

The signals unique to DMA operation are listed below. In addition to these signals, the normal
Master/Slave data transfer signals are used (see the previous chapter).

DMARO*, DMA Request: asserted by an 1/0O card to request DMAR 1* a2 DMA transfer on DMA
Channel 0 or Channel 1.

DMACKO* DMA Acknowledge: a response from the DMA DMACKI1* Controller which
acknowledges DMA request on Channel 0 or Channel 1.

DMARDY* DMA Ready: indicates that the I/O card has provided the data (DMA input) or
accepted the data (DMA output).

DONE?* Done: an output from the DMA Controller to indicate that DMA is done. DONE* can
be used at the option of the I/O card designer to determine when DMA is done.

FOLD* Fold: an output from the DMA Controller to indicate that a data byte is being folded
from the upper byte of the data bus to the lower byte (or vice versa). This folding is performed
by the DMA Controller.

In the discussions that follow, DMARO* and DMACKO* are used; however, all operations apply
equally to DMAR 1* and DMACK 1%

DMA Overview
Two enable a DMA transfer, the operating system (or program) must perform two operations:

1. Program the DMA Controller with the type of transfer (word/byte, input/output, priority,
etc.).

2. Enable DMA channel 0 or DMA channel 1 on the I/O card by writing to Write Register 3.
The 1/O card will then request a DMA operation on the assigned channel. In response to
this request, the DMA Controller requests and eventually receives control of the bus and
then begins the DMA transfer.

A DMA transfer occurs during a single bus cycle during which data is both read and stored. For
a DMA output cycle, the data is fetched from memory and written to the I/O card. For a DMA
input cycle, the data is read from the I/0O card and stored in memory. The 1/0 card itself 1s
programmed to request the DMA transfer; upon seeing this DMA request, the DMA Controller

SDG 544

requests and receives control of the bus and provides the necessary address and control signals for
the transfer.

During a DMA operation, the memory device does a normal data transfer using BAS*, BR/W*
BDS* DTACK?* etc. Therefore, the 1/0 card must use different signals to handshake data. As
discussed above, the 1/0O card asserts DMARO* to request a DMA transfer. Once the DMA
Controller has control of the bus, it responds with DMACKO* which the I/O card treats the
same as BAS* in that it begins the actual data transfer cycle. When the I/O card has provided or
accepted the data, it responds with DMARDY?* which the DMA Controller interprets as
DTACK?* and responds accordingly.

Both byte and word DMA transfers are supported. In word mode, data is transferred a word at a
time between memory and the I/O device. In byte mode, data is transferred on the lower byte of
the I/O card; however, because the data in memory is "packed", both upper and lower bytes of
memory must be accessed. The DMA Controller supports this via a "Fold Buffer," which is used
to transfer data between the upper byte of the data bus (for memory accesses) and the lower byte
of the data bus for I/O cards. During a DMA input operation, the Fold Buffer is alternately
used to transfer I/O data to the upper byte of memory (BD15-BD8). Likewise, during a DMA
output operation, the Fold Buffer is used to transfer memory data on BD!5-BD38 to the lower
data byte for the I/O card. The DMA Controller provides the FOLD?* signal indicating when
folding is to occur; this is used primarily by the Bus Expander. Bus Slave designs should not
incorporate this signal.

Note that, depending on programming of the DMA Controller, the speed of the I/O card and the
speed of the peripheral, the DMA Controller may give up control of the bus between DMA
cycles. Relinquishing of bus control depends upon two factors: 1) The time for the I/O card to
request another DMA transfer and, 2) the channel priority programmed into the DMA
Controller. This subject is discussed in more detail below.

DMA Output Cycle Description

Figure 6 shows the DMA Output cycle. To do a DMA output, a memory read is followed by an
I/0 write. Again, DMA Channel 0 is assumed; all operations apply equally to DMA Channel 1.

1. The I/O card asserts DMARGO, indicating that it is ready to begin a DMA output operation.

2. The DMA Controller detects this request and, if not the current Bus Master, 1t requests, and
is eventually granted, the system bus.

3. The DMA Controller then initiates what looks like a normal memory read cycle:
a. Memory address is put on the bus and BR/W* line is set to Read (high).

b. BAS* and BDS* are asserted for the memory device and DMA Acknowledge (DMACK 0%)
is asserted to indicate to the I/O card that a DMA cycle has started. The I/O card
responds to DMACKO0* as it does to BAS* during a normal transfer. If the DMA transfer
is a word transfer, BLDS* and BUDS* are strobed simultaneously. If a byte transfer,
BLDS* or BUDS is strobed (depending on the byte being read). If the upper byte is being
read, the Fold Buffer is used to transfer data from the upper byte to the lower byte of
the data bus for the I/O card.

4. When the I/0O card detects DMACKUQO, it can optionally release DMARGO. This is discussed in
more detail below.

SDG 545

5. The memory device fetches the data, places it on the bus with 30 ns of setup time and
asserts DTACK*. The I/O card detects DTACK®* and, reacting to it like it normally reacts
to BDS?*, begins its own sequence to accept the data. If priority is not set for channel 0 and
DMARO* was set false after DMACKO0*, the 1/O card must re-assert DMARO* to request
the next cycle. In either case, the I/O card asserts DMARDY®* when it has accepted the
data.

6. The DMA Controller detects that DMARDY?* has occurred and, responding to it like Bus

Masters normally respond to DTACK?*, ends the cycle by removing BAS* BDS* and
DMACKO*. Once the I/0 card detects that DMACKO?* is gone, it removes DMARDY*.

SOURCE DESTINATION

DMAR \ / X 170 DMAC
R elf————

BA1 - 23X XX XX ADDRESS VAL ID DMAC MEMORY
DMACK y DMAC 1/0
BAS, BDS yd DMAC MEMORY
BR/N 1 Y DMAC MEMORY

~— ©®
BOO- 15 DATA VALID XXX MEMORY 1/0
~ @ —~ <
DTACK \ /" MEMORY 170

DMARDY N 1/0 DMAC

Figure 6. DMA Output Cycle Timing

SDG 546

DMA Qutput Timing Min. Max .

| I I [!
| 1 | DMARX release after DMACKX low | 0 | | Note 1
2	DMARX low after DTACKX low:		
al Priority = 0		65	
bl Priority = 1		1600	
3	BR/WX setup before DMACKX low	15	
4	BR/WX hold after DMACKX high	15	
5	Data setup before DTACKX low	15	}
6	BASX low to DTACKX low	0	1500
] 7	DMACKX* low to DMARDYX low (w/o Bus Error)] 3000	
8	Data hold after DMARDYX low	85	
9	DMARDYX release after DMACKX high	0	50
I | I I |
Notes

1. The 1/0O card may keep DMAR™? low after its request is acknowledged.

DMA Input Cycle Description

Figure 7 shows the DMA Input cycle. To do a DMA input, an I/0 read is followed by a memory
write. Again, DMA Channel 0 is assumed; all operations apply equally to DMA Channel 1.

1. The I/O card asserts DMARGO, indicating that it is ready to begin a DMA input operation.

2. The DMA Controller detects this request and, if not the current Bus Master, it requests, and
is eventually granted, the system bus.

3. The DMA Controller then initiates what looks like a normal memory write cycle:

a. Memory address is put on the bus and BR/W* line is set to write (low). Notice that
BR/W* is set low prior to BAS contrary to a normal write cycle in which BR/W* may
go low after BAS. Since the DMA Controller knows that a memory write operation is to
occur, it can assert BR/W immediately.

b. BAS* is asserted for the memory device and DMACKO?* is asserted to indicate to the I/O
card that a DMA cycle has started.

4, The I/0O card responds to DMACKO* the same as it does to BAS* during a non-DMA
transfer in that it enables the data transfer. When the I/O card detects DMACKO%, it can
optionally release DMARO?*; this is discussed in more detail below. In response to
DMACKO* the I/O card fetches the data, places it on the bus and, after a minimum data
setup time of 30 ns, asserts DMARDY?* to indicate to the DMA Controller that the bus
data is valid.

5. If the DMA transfer is a byte transfer and the data is to be written to the upper byte of
memory, the DMA Controller uses its Fold Buffer to move the byte from the lower data
byte to the upper data byte. In either case, the DMA Controller detects that DMARDY*
has occurred and asserts the BLDS* and/or BUDS* to indicate to memory that data is valid
on the bus.

SDG 547

6. The memory then stores the data and asserts DTACK?* to indicate that data has been
accepted. The DMA Controller detects that DTACK®* has occurred and ends the cycle by
removing BAS* BDS* and DMACKUO?*. In response to the removal of BAS* the memory
card removes DTACK®¥; likewise, in response to the removal of DMACKO?*, the I/O card
removes DMARDY*

7. On the last byte, the DMA Controller generates the DONE? signal to tell the I/O card that
“this is the last byte. An I/O card can, at its option, use this control line to inhibit further
DMA Requests. Once the transfer count is satisfied, the DMA controller ignores further
DMA Requests and relinquishes the bus.

8. A bus error also causes the DMA Controller to terminate the DMA transfer and relinquish
the bus. A bus error occurs if a DMARDY?* does not occur within 2.5 us of DMACKO*

going true.

SOURCE DESTINARTION

DHAR \ 4 N 1/0 DMAC
BA1-23 X ADDRESS VALID X DMAC MEMORY
DMACK y DMAC 1/0
BRS \ / DMAC MEMORY
BDS AN y DMAC MEMORY

——— @ () —
BR/W :L /J;‘: DMAC MEMORY
e
BDO-15 DATA VALID 1/0

/
~— ® — ® —
DMARDY \ MEMORY OMAC
~
DTACK Y R ¥ DMAC

MEMORY

Figure 7. DMA Input Cycle Timing

SDG 5438

DMA Input Cycle Timing Min. Max .

| [[| I
| 1 | DMARX release after DMACKX low | 0 | |
| 2 | DMARX low after DTACKX low: | | |
I al Priority = 0 | } 65 |
bl Priority = 1		1600	
3	BR/WX low before DMACKX low	15	
4	BR/WX high after DMACKX high	15	
5	DMACKX low to DMARDYX low (w/o Bus Error)		2500
6	BASX low to DTACKX low (w/o Bus Error)		3000
7	Data setup before DMARDY* low	30	
8	Data hold after DMACKX high	0	100
9	DMARDYX release after DMACKX high	0	50
I	I !		

DMA Speed Considerations

To optimize the speed of DMA transfers, the transfer (read/write) must be completed during a
single bus cycle. Also, the overhead time of the DMA Controller must be minimal and the device
connected to the I/0O card must be able to provide or accept the data immediately. The time for
the existing DMA Controller (98620A) to synchronize the handshake signals is similar to the
response of the 68000 and adds minimal overhead.

To meet the desired performance, the DMA Controller must also minimize overhead time
between bus cycles. The DMA Controller is designed to hold the bus continuously providing that
the I/O card can generate another DMA Request (DMARO%) within a certain length of time
after DTACK?.

The amount of time that the I/O card has after DTACK?* depends on the current setting of the
Priority bit on the DMA Controller card. This time is either 65 ns (DMA Priority bit = 0) or 1.6
Ms (Priority bit = 1). See specification 2 in Figures 6 and 7. Priority bit set to O requires a 65 ns
response; if the I/O card does not assert DMARO* within 65 ns, the DMA Controller relinquishes
the bus at the end of the cycle to the next highest priority bus master (typically the Master
Controller).

Because designing an I/O card to respond to DTACK* with DMARO* within 65 ns adds
complexity to the I/O card, the DMA Controller can be programmed for the 1.6 Us
DTACK*-to-DMARO?* response time in the hope that the I/O card will generate another DMA
Request. As mentioned above, selection of this time is done with the Priority bit, which operates
as follows:

® If the Priority bit is O the I/O card must assert DMARO* within 65 ns of DTACK?*. This
ensures that the DMA Controller keeps control of the bus and provides 1.2 Mbytes/sec.

e If the Priority signal for the channel is 1, then the bus is not relinquished until 1.6 us after
the last transfer is complete.

SDG 549

Terminating DMA Transfers
DMA transfers can be terminated in several ways:

1. The DMA Controller can be programmed to interrupt the Bus Master after the transfer is
complete and the bus relinquished.

2. The Bus Master can monitor the ARM bit in the DMA Controller between DMA cycles (if
the bus is released) and when the DMA operation is complete. When ARM is 0, the transfer
is complete.

3. The I/O card can use the DONE? signal from the DMA Controller to interrupt the Bus
Master.

The DONE? signal works as follows: DONE?* is asserted by the DMA Controller on the last byte
of a DMA transfer. For an input operation, DONE#* can be used by the I/O card to inhibit
further acceptance or handshaking of data from the peripheral. Without the DONE? signal, the
I/O card, not realizing that the transfer is complete, could accept the next byte from the
peripheral. This can result in data being lost (unless the transfer count is set to the actual size
minus 1).

For an output operation, the DONE* signal is not typically needed, since the DMA Controller
simply ignores DMARO* from the I/O card when the transfer count is satisfied. If desired, the
DONE* signal can be used by the I/O card to inhibit an extra DMA Request. DONE* has
sufficent setup and hold time to be qualified off of DMACK®*.

SDG 550

Bus Error Operation

An exception sequence is generated when the Processor Board’s Bus Error (BERR*) signal is
asserted. This is an open-collector signal, permitting it to be generated by any device (including
the CPU board). Current applications of the Bus Error signal are discussed in this chapter. This
section is for informational purposes; the Bus Error line should not be implemented with Bus
Slaves. Refer to the MC68000 User's Manual for timing requirements of the 68000 processor.

The Bus Error Signal

One signal is involved in bus error operation: the Bus Error signal (BERR*). When asserted, this
signal causes the 68000 processor to terminate the current bus cycle and float the address and
data bus. When negated, the processor begins its exception processing.

Bus Timeouts

The Master Controller will generate BERR* when an accessed device fails to respond within a
certain time. As discussed previously, a device responds with DTACK?*. Thus, the time from
asserting BAS* to the arrival of DTACK* is monitored; since DTACK* causes BAS* to go false
(with some delay), the BERR* circuit simply monitors the length of BAS*. If DTACK* occurs too
late or fails to occur, BAS* will remain true and a counter will time out.

A four-bit BERR* counter, located on Series 200 CPU boards, remains cleared as long as BAS* is
false. When BAS? is true, it begins counting (4 Mhz) and generates a BERR* when it overflows
after 16 counts (16 x 250 ns = 4.0 us). To provide margin, the maximum width of BAS* is set at
3.5 us. To ensure that DTACK* has time to negate BAS* prior to 3.5 us, DTACK* must arrive
two CPU clocks cycles (250 ns) earlier. Because of this time and other delays, and to provide
ample margin, the maximum time from BAS* going low to DTACK?* going low has been
specified at 3.0 Us.

From the above description, it appears that devices have 3.0 us to assert DTACK*. However, for
devices that implement DMA, it is not this simple. For example, during a DMA output cycle,
RAM must be read and the 1/O card written to within one cycle while BAS* is asserted. Thus,
the combined RAM read time and I/O card write time must be less than 3.0 Us or a bus error
will occur. DMA timing is discussed in detail in the DMA chapter.

For a DMA input (I/O read, memory write), DMARDY* must be true (indicating valid 1/0 card
data) within 2.5 us of DMACK?* (which goes true at the same time as BAS*). As usual, DTACK*
(indicating the memory card has accepted the data) must be true within 3.0 us of BAS* to
prevent a BERR* timeout.

For 2 DMA output (memory read, I/O write), memory is ready within 1.5 Us as evidenced by
DTACK?; the I/O card has another 1.5 Us to accept the data, as evidenced by DMARDY*.

SDG 551

To ensure data transfers without a Bus Error, the following timing requirements must be met.

Max imum
Time (in ns)

Description of
Time Interval

(DMA source is I/0)

I | I
I | |
I | [
| [|
| BASX low (read or write) | 3500 |
| I |
| DTACKX low to BAS* high | 350]
| (read or write) | |
I I |
| Write to Bus Slave: | |
| | I
BASX low to DTACKX low	3000
(non-DMA write)	
DMACKX low to DMARDYX low	3000
(DMA write)	
[I	
Read of Bus Slave:	
[[
BASX low to DTACKX low	3000
{non-DMA source) i [
i I	
BASX low to DTACKX low	1500
(DMA source is memory) [I	
! I [
DMACKX low to DMARDYX low	2500
! [
	I

SDG 552

Interrupt Operation

Even though the MC68000 supports two types of interrupts, only one method of responding to
interrupts is currently supported on the DIO Bus: autovectored interrupts. With autovectoring,
the interrupting device does not provide a vector to the interrupt service routine -- the
Processor Board generates its own default vector. Like the 68000, the DIO Bus supports seven
interrupt (hardware) priority levels.

Interrupt Signals

The interrupt signals on the DIO Bus are shown below. Interrupts can occur at levels 1 through
7 (lowest to highest); interrupt levels 3 through 6 are for "external" I/O cards. The following
table shows the assignment of interrupt levels for Series 200 computers.

| Signal | Hardware Priority | Device]
| | (INT LVL) | |
I I I I
I | | I
INTIX	1	Keyboard/Real-Time Clock
INT2%	2	Internal Disc
I	I	
INT3% -	3 -6	External I/OC
INTeX]]		
I		I
INT4X	7	Reset Key, Powerfail
[I | |

Note that there is no INTO* signal: interrupt level O is the quiescent (non-interrupting) state.
For 68000-based Bus Masters, logic is used to encode these interrupt signals into the three
processor inputs, IPLO, IPL1, and IPL2. For example, Series 200 Processor boards use an 741L.S148
8-t0-3 priority encoder to allow INT! through INT7 to generate the proper combination of
IPLO, IPL1 and IPL2.

The following interrupt levels are the only interrupt levels which have been "hardwired"; all
other I/O cards have a two-bit switch to select one of levels 3 through 6.

Internal HP-IB Level 3
Internal RS-232 Level 4

(Model 16 only)

|
I
|
DMA Interface | Level 3
|
I
I
I

SDG 553

Note

Even though IR1, IR2, and IR7 are not used for external 1/0,
the signals have been put on the backplane for expandability
and compatibility with future products. Do not use IR1, IR2,
or IR7 in Bus Slave implementations.

Interrupt Description

The DIO Bus does not support interrupt vectoring from the I/0 cards. Instead, autovectoring on
the Processor Board is used. The interrupt sequence is described as follows; refer to the
subsequent timing diagram as you read about the sequence:

1. When an interrupt request is made on one of the Interrupt Request signal lines (IR1*
through IR7%), logic on the Processor board is used to encode the signals into the three
inputs IPLO, IPL1, and IPL2 of the 68000 processor. Series 200 processor boards use an
7415148 8-to-3 priority encoder to allow INT1* through INT7* to generate the proper
combination of IPLO, IPL1 and IPL2.

2. If the level of the interrupt is greater than the current processor priority, the processor
begins exception processing (after finishing the current instruction).

3. In response to an interrupt request, the Processor Board generates one of 7 vectors that is a
function of the interrupt level. These interrupt vectors are mapped in high memory by the
Boot ROM. For information about the 7 interrupt vectors, refer to the Boot ROM section
in the Pascal 2.0 System Internals Documentation, HP part number 09826-90074.

4. If more than one I/O card is on the same interrupt level, then it is not possible to tell which
card is interrupting. Thus, a software polling routine must be used to determine which card
to service. The two most significant bits of read register 1 contain interrupt information:
Bit 7 is set if the card is enabled to interrupt, and bit 6 is set if the card is currently
requesting an interrupt.

SDG §54

Utility Signals

This section identifies and defines the signal lines which serve utility-type functions on the DIO
Bus. These utility lines supply reset and state-decoding capabilities for the bus.
Signals
The utility signals consist of the following lines:
® RESET*
e HALT*

® Function Codes (BFCO, BFC1, BFC2)

Reset Operations

The RESET#* signal goes low at system power-up to allow cards to properly initialize. The
Processor board can also generate RESET?.

Power-Up and Power-Down Resets

RESET?* is automatically generated within the system at power-up and remains true until 120
ms after +5V reaches 4.5 volts. When RESET* is negated, the +12V supply will have been within
in its 11.5-volt limit for at least 55 ms. At power-down, RESET?* is re-asserted within 15 ms
after +5V drops to approximately 4 volts.

Reset by the Processor

The processor can generate a Reset by executing a RESET instruction. See the MC68000 User's
Manual for further information.

Reset by a Bus Slave

Asserting RESET* by an DIO Bus device does not reset the processor board unless HALT? is
simultaneously asserted; thus, RESET?* by itself only resets other bus devices.

Note

Bus Slaves should not be allowed to assert RESET* and
HALT?* signals simultaneously, since such action Resets the
entire system.

SDG 555

Function Code Signals

The Function Codes (FC2, FC1, and FCO) generated by the 68000 are buffered (BFC2, BFCI,
and BFCO0) and brought out on the bus for general purpose use and for future expandability. As
would be expected, the Function Code buffer is disabled when bus control is passed; however, this
buffer is also disabled during an interrupt acknowledge cycle to inhibit certain control signals
which happen to share the same buffer. Therefore, when FC2=FC1=FC0=1 (interrupt
acknowledge), the buffered Function Codes on the bus will float (no pull-ups) and are undefined.
Therefore, to use Function Codes, the following guidelines should be followed:

e When BAS* occurs, the Buffered Function Codes are valid. BAS* is one of the control
signals inhibited by disabling of the buffer during an interrupt acknowledge cycle; so when
BFC2 -- BFCO are floating, BAS* is pulled high with a pull-up resistor.

e During an interrupt acknowledge cycle, the presence of IACK?* indicates that
FC2=FC1=FCO0=1. However, BFC2, BFC1, and BFCO are undefined and cannot be used.

Note

It is recommended that Bus Slaves not use the Function Codes,
even though they are currently defined, since future
implementations may not define them.

SDG 556

Electrical Specifications

This section defines the non-timing electrical specifications for the DIO Bus. Included in this
chapter are power supply tolerances, card power dissipation specifications, and signal loading
information. Pinouts of the DIO Bus are discussed in the "Mechanical Specifications" section.

Power Distribution and Grounding

Power on the DIO Bus is distributed on the backplane as regulated, dc-voltage supplies. The
supplies are:

+$§ Vdc -- Main logic supply

+12 Vdc -- Provided for 1/O circuitry requiring multiple voltages. Can also be used for analog
applications.

-12 Vdc -~ Provided for 1/0O circuitry requiring multiple voltages, can also be used for analog
applications.

Note

This +12V supply is used for the 9826A’s disc drive motor.
Designers should be aware of potential noise on the line.

Power Supply Tolerances

The specfications shown below allow for the effects of line regulation, load regulation, cross
regulation, initial accurracy, temperature stabiblity, and ripple. The tolerances represent the
worst-case tolerances for existing DIO Bus devices.

Supply Tolerance Range
I I I !
| +5 | +5/-4 . 3% | 5.25, 4.78 |
: +12 : +6/-4% : 12.7, 1.5 :
E -12 i +10/-4% i -13.2,-11.5 i

SDG 557

Power Requirements of Cards

The following table shows the typical and maximum supply power (and current) available for use
with cards used in Series 200 computers and bus expanders.

TYPICAL POWER & CURRENT MAXIMUM POWER & CURRENT

| | I
I | I
| I |
I | |
TYP.	TYPICAL AVERAGE	MAX.	MAXIMUM AVERAGE
POWER	CURRENT (Amps dc)	POWER	CURRENT (Amps dc)
PER		PER	
CARD			
(WATTS)	+5	+12	=12
I I [
I			I
4.4	.8	096	.064

Backplane power is a finite resource which makes its availability dependent upon the
configuration of the backplane. The diagram above shows standard power requirements for a
typical Bus Slave. If a Bus Slave uses more than the standard current requirements, other
calculations are needed to ensure power consumption does not exceed power supply design limits.
The following table gives the maximum current (and power) alotted to the backplane.

Maximum Typical Amps

+5 +12 -12

Model 16 2.2A 0.33A 0.20A

Not to exceed 17.5 Watts total

Models 26436 7.6 A 0.91 A 0.60A

Not to exceed 41.6 Watts total

CAUTION

POWER LIMITS DISCUSSED IN THIS SECTION MUST NOT
BE EXECEEDED. FAILURE TO FOLLOW THESE
GUIDELINES VOIDS ANY WARRANTIES ON THE
AFFECTED EQUIPMENT AND DEVICES.

SDG 558

Current requirements for existing interface and accessory cards.

Interface or Accessory Typical current (mA)
+5V +12V -12v
HP 98254 64 Kbyte Memory 590 0 0
HP 98256 256 Kbyte Memory 830 0 0
HP 9888A Bus Expander interface 1000 0 0
HP 98620 DMA Controller 1200 0 0
HP 98622 GPIO Interface 750 0 0
HP 98623 BCD Interface 500 0 0
HP 98624 HP-IB Interface 470 0 0
HP 98625 High-speed Disc Interface 600 8 0
HP 98626 RS-232 Serial Interface 400 50 50
HP 98627 Color Video Interface 1100 0 0
HP 98628 Datacomm Interface 720 37 60
HP 98629 Resource Mgmt. Interface 750 37 37
HP 98691 PDI (without EPROM) 750 37 60
HP 98028 Resource Mgmt. Multiplexer 530 530 0
(4 channels connected)

HP 13264 Data Link adapter 30 160 23
HP 13265 300-baud Modem 100 45 45
HP 13266 Current loop adapter 200 90 80

Correct voltages are guaranteed from the mainframe power supply only if the above limits are
observed (these limits refer to all power supplied to the backplane, including any external devices
obtaining power from I/O cards). Even though the system can operate properly for short periods
while excedding these limits, local heating and other stresses that result shorten the life and
compromise the reliability of the power supply.

The following examples show power calculations for two configurations (all current is in mA):

Example 1
+5 +12 -12
1 HP 98620 DMA Controller 1200 0 0
1 HP 98256 256 Kbyte memory card 830 0 0
1 HP 98628 Datacomm Interface 710 37 60
1 HP 13265 300-baud Modem 100 45 45
2840 82 105

Total power: 16.4 Watts

Conclusion: Total currents are well within the acceptable limits for Models 26 and 36.

SDG §59

Example 2

+5 +12 -12

1 HP 98620 DMA Controller 1200 0 0
3 HP 98256 256 Kbyte memory car 2490 0 0
4 HP 98628 Datacomm Interface 2840 148 240
4 HP 13265 300-baud Modem 400 180 180
6930 328 420

Total power: 43.6 Watts

Conclusion: The value for total power exceeds the maximum. This configuration should not be
attempted.

On-Card Fuse Specifications

A UL/CSA/IEC requirement is that any device operating from a supply capable of supplying
more than 8 amps be fused. Therefore, any board plugged into the backplane must have a
4-amp maximum fuse in series with the +5V bus.

Signal Loading

The following table shows the drive capabilities of each output signal and recommended drivers
for each input signal on the DIO Bus.

Maximum Recommended
Signal Name Receive Loading Send Device

BASX, BR/WX, BUDS*, BLDS* 1 LS load max. SN74LS245 buffer

IMAX, DTACKX, ENDTX 1 LS load max. Any 3S/0C LS gate
DMAR1X, DMAROX K DMACK1X,

DMACKOX, DMARDYX, DONEX

1 LS load max. Any 3S/0C LS gate

INT6X-INT3% 1 LS load max. Any 3S/0C LS gate

2 LS loads max. SN741.S245

I
[
I
I
l
I
I
|
I
I
BFC2%-BFCOX |
l
[
l
[
I
|
I

RESETX 5 LS loads max. SN7417 OC Buffer
HALTX .8 mA TOTAL for --

card cage
BA23-BAl 1 LS load max. SN74LS245 Buffer
BD15-BDO SN74L8245 transceiver

SDG 560

Notes
1. "3S" signifies a device with 3-state outputs

2."OC" signifies an device with open-collector outputs

SDG 561

Mechanical Specifications

This section presents sufficient mechanical information to create printed-circuit (PC) boards
that fit into the Series 200 backplane.

Specifications for Cards

The drawing on the following page shows the size requirement for I/0O or non-1/O cards. The
points worth noting are:

® [/0 cards fit in every other slot of the I/O backplane. The slots in between hold non-1/0
cards such as RAM cards.

¢ Non-1/O cards have a recess at the rear to allow clearance for the connector of the
next-lower 1/0O card.

® 1/0 cards have a "keep out" area in the rear where traces and parts are not allowed to
prevent them from shorting to the metal coverplate.

e For both types of cards, space must be left on either side of the board to prevent
components from interfering with the card guides in the card cage.

® 1/0 connectors are left-justified and extended to the right as needed for the size of the
connector.

The following drawing shows the outline of an I/O-type board that can be used in the Series
200 card cages.

SDG 562

DATUM

.400;

1.320
_"

THIS LINE REPRESENTS
THE CENTERL INE FOR
1/0 CONNECTOR'S
MOUNTING HOLES

NO TRACES WITHIN
.062 OF TOP EDGE

5.36S 6
.171 FHS [2]1 —

.355

.

l. 150

.{

i

NO COMPONENTS NITHIN/
0.125 OF SIDE EDGES

[FOR CARD GUIDES1I

4.615

CONNECTOR MOUNTING HOLES MUST
BE WITHIN THESE ENDPOINTS

2XS0 [.125 CENTERS]

i

s

o

NO TRACES WITHIN .175 RADIUS
OF THIS MOUNTING HOLE [2]

FOR EACH CONNECTOR SIZE,
ONE MOUNTING HOLE MUST
BE ON THIS POINT.

5.011

l5.308

Figure 8. Blank PC Board Outline

6.523

6.685

Non-1/0-type PC boards must have a cutout to allow room for the connector of the next lower
I/0 board’s connector, as shown in the next drawing.

SDG 563

Card Cage Specifications

Shown below are the specifications of the 9826A/9836A card cage. The drawing also shows the
maximum vertical height of components on the boards. The rear panel is further described in the
next drawing.

—

\
/4

)
/

Figure 9. HP Series 200 Card Cage

SDG 564

170 Card Coverplate

The coverplate for I/O cards is shown in the following drawing. Note the placement of
different sizes of connectors.

9.35
19.0(2 1.6 FULL R
| @ 15.9 \
DATUM \ 2(2)

|eo.o(2‘)-‘ /» L6 R (4)
3.
~
|8.7(2_)L |
ros sison O
54 A
5,0_,’ |89.o—-|
192.5 —
DATUM s
B]] ¥
12.8(2) _L
23.0 18R (2) C'SINK 6.86 DIA X 90° (2) 33DIA
3.2R(4) 172.0
27.0

176.0

Figure 10. 1/0 Card Coverplate

Minimizing Electromagnetic Noise
The following rules should help to minimize electromagnetic interference (EMI) problems:

® PC boards should be a minimum of 4 layers, with planes 2 and 3 reserved for power and
ground, respectively. Boards greater than 4 layers should maintain power and ground on
the middle layers, so that a good, high-frequency bypass capacitor is formed by the planes.

® I/0 cards must have a sheet metal coverplate with screws which securely mount the board
in the computer and provide good electrical connection to safety ground.

® Grounding of I/O cable housings or shields is done through the coverplate. Appropriate
techniques must be used to ensure solid contact between the connector housing and the
coverplate. If the shield ground appears on a pin of the connector (as with HP-IB),
termination can be done with a generously sized PC trace from the connector to the
screwpad which secure the coverplate to the PC board.

SDG 565

PC-Board Layout Rules

The following PC-board layout rules should be met:

® Fach card must limit loading to one LS load on the following signals: BA23-BA1, BAS*,
BD15-BD0, BUDS*, BLDS* and BR/W*.

® The PC board trace length for the above signals should be as short as possible and no more
than 3 inches. Where possible, these signals should be isolated from the ground and power
planes to minimize capacitance.

® PC boards should be a minimum of four layers, with planes 2 and 3 being power and
ground, respectively. For boards with more than four layers, the middle layers should be

power and ground.

@ IC’s are mounted parallel to the connector with pin | being in the lower left when viewing
the board from the component side with connector pin 1 in the lower left corner.

e Adequate bypass capacitors are highly recommended.

® The PC edge connector is a standard S-100 connector with 100 pins on 0.125-in centers
and 0.060-in fingers.

Pin Assignments

The DIO Bus pinout is shown in the following table. Odd pins are on the component side, even
pins on the circuit side. Relative to viewing the board from the component side with the
connector pointing down, the pins numbers increase from left to right.

The following conventions are used in the table:

1. A "-" in front of the pin number indicates should not be implemented by a Bus Slave.
"Spare" pins should not be used at all.

2. A "#" in front of the pin number indicates an the line is optional in a particular subsystem.

SDG 566

Component Side

Circuit Side

1

3
-5
-7
9
-11
13
15
17
-19
21
-23
25
-27
-29
-31
-33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
-95
-97
99

DMAROX
DMACKOX
Spare 0
IR2%
DMARDYX
BG2X
GND
IR4%
IR6X
VECTORX
GND
BGX
#DONEX
Spare 1
BDRVX (BMONX)
BFCO
BFC2
GND
RESETX
GND
#IMAX
BLDSX
BR/WX
GND
HALTX
BA2
BA4
BA6
BA8
BA10
GND
BA12
BA14
BA16
BA18
BA20
BA22
GND
BDO
BD2
BD4
BD6
+5 V
BD8
BD10
BD12
BD14
DGND
Spare 3
-12 V

I

|

[

I

I

|

I

I

I

|

I

|

I

I

|

|

I

|

| -32
| 34
I 36
| -38
| 40
| -42
| 44
| 46
| 48
| 50
| 52
| 54
I 56
| 58
| 60
| 62
| 64
| 66
| 68
| 70
|72
| 74
| 76
| 78
I 80
| 82
| 84
| 86
| 88
| 90
[92
| o4
| -96
| -98
| 100
|

DMAR1X
DMACKX
IR7X
IR X
BG1xX
BG3x
GND
IR3%
IRSX
IACKX
GND
BRX
BGACKX
Spare 2
HENDTX
BFCI
DTACKX
GND
BERRX
GND
FOLDX
BUDSX
BASX
GND
BA1
BA3
BAS
BA7
BAS
BA11
GND
BA13
BA15
BA17
BA19
BA21
BA23
GND
BD1
BD3
BDS
BD7
+5 V
BD9
BDI1
BD13
BD1S
DGND
Spare 4
+12 V

Operation in the Bus Expander

Devices for the HP 9888 Bus Expander are required to meet the same electrical and mechanical
constraints as devices which plug directly into the I/O cardcage. The Bus Expander employs
delay lines and latches to ensure that all timing requirements are met. This chapter discusses
features of the Bus Expander and several limitations affecting operation of DIO Bus devices in
the expander.

Features of the Bus Expander
The features of the Bus Expander are as follows:

e The Bus Expander card plugs into an I/O slot in the computer. Up to 4 Bus Expanders can
be plugged into a computer; however, an expander may not be attached to another
expander.

® The Bus Expander is totally self -powered.

e The Bus Expander has sixteen slots which will support eight I/O cards and eight non-1/0
cards, or sixteen non-1/O cards.

e A 5.2-foot cable connects the Bus Expander to the computer. Signals are buffered at each
end of this cable (on the board that plugs into the computer and on the board in the
expander). The Pm Addressed signal (IMA*) discussed previously is used to "turn the buffers
around" if the addressed card is in the expander.

Operating Limitations With the Expander

In designing DIO Bus devices, designers should be aware of the following limitations when
operating in the Bus Expander:

1. Bus Masters cannot operate in the Bus Expander; there is no provision for "turning around"
certain signals such as the address bus.

2. RAM boards will operate in the Bus Expander; however, RAM boards require six-state
accesses as opposed to five-cycle access for boards installed in the computer. This is due to
signal delays. Software being executed from the Bus Expander will thus run proportionately
slower and timing loops will be altered.

3, For information only, the 9826/36 Powerfail option (which is installed internal to the
mainframe) is not supported with the Bus Expander. The Bus Expander resets the computer
when the power fails and again when power returns. This will destroy any data or
programs in memory. For correct operation, the expander must be turned on before the
computer is powered up and not powered down while the computer is operating.

SDG 568

Design Summary

Many details covering Bus Slave design have been covered in other sections. The key
requirements are summarized below.

I/0 Card Design Guidelines

The following design guidelines are for external I/O cards only. Following these guidelines is a
sample design highlighting key features.

® 1/0 cards should provide five select code switches to allow select codes settings of O through
31

® 1/0 cards must implement the four standard 1/O registers (and bits thereof) described in the
Registers section. Additional registers may be defined as needed.

® I/O cards may be either 8-bit or 16-bit devices.

® Implementing interrupt capability is left to the option of the designer; however, it is
strongly recommended that interrupt capability be included. I/O cards that implement
interrupt capability must have switches to select interrupt levels 3 to 6.

¢ Implementing DMA capability is left to the option of the designer. I/O cards that
implement DMA can optionally use DONE?* from the DMA Controller to determine when
DMA is done.

1/0 Card Design Example

This section presents an example 8-bit I/O card design and describes the following interface
elements: data-transfer, interrupt, and DMA.

Data-Transfer Interface

Figure 11 shows a typical circuit used for transferring data between the 1/O device and the
Processor. The key steps that occur while accessing the card are as follows:

1. An Address Comparator, the 74LS688, compares the upper 8 address bits (BA23-BA16) to
the bit pattern for the External I/O memory space (011) and the user-set select code
switches (00000 through 11111). This comparison is enabled by BAS*. The Card Select
output (CS*) is generated when the addresses match. CS* does not have glitches, because the
address precedes BAS* by 15 ns.

2. CS* generates IMA* and enables the DTACK®* buffer. CS* is not used to enable the Data
Bus Buffer, the 741.S245, because of a possible driver conflict between the I/O card and
the Processor Board. This conflict would otherwise occur during a write cycle when BR/W#*
is asserted while BAS* is low; BR/W?* low would cause the Processor Board buffers to drive
the data bus while the I/O card was still driving the data bus (until it recognizes that
BR/W* is low, which takes 15-20 ns). To avoid this, the 1/O card does not enable its Data
Bus Buffer until BLDS* is low.

SDG 569

3. When CS* and BLDS* are both asserted, LDCS* is generated (indicating the start of an
access cycle). LDCS* generates DTACK?* (after some delay), regardless of whether the
operation is a read or a write. The delay time should be set to the longest time required for
either reading a register (plus 30 ns setup on the bus) or setting up a register for clocking
when DTACK?* is asserted. LDCS?* also enables the Data Bus Buffer.

4. Reading and writing are then determined by BR/W* and the steps of both processes are as
follows:

a.

b.

. While Reading, BR/W* high enables the Data Bus Buffer to drive the DIO Bus data lines

(BD7 through BDO).

. LDCS* low and BR/W?* high enables the Register Select chip, the 74LS138, which

generates a read strobe for the device at the address selected by BA2 and BA1l. The
addressed device then drives the I/O card’s data bus. As mentioned above, the DTACK*
delay circuit should be designed to ensure 30 ns of setup time prior to driving DTACK*
low.

. The card remains in this state until BLDS* or BAS* goes high, disabling the Data Bus

Buffer and the Register Select chip.

While Writing, BR/W?* causes the Data Bus Buffer to drive the I/O card’s data bus.

LDCS* low and BR/W#* low enables the Register Select chip, which generates a write
strobe at the device selected by BA2 and BA1.

. Generation of DTACK?* ends the write strobe. The data hold time for the register is

guaranteed by the minimum response time of the Bus Master to DTACK* low (835 ns).

. The write cycle ends when BLDS* or BAS* goes high.

SDG 570

+5v » ‘&

CARD 1D INPUTS
[1D = 24 SHOWN]

0
5 4+ 3 2 1 0 b
s CARD 1D
B a (READ REGISTER 17
0 0 o
7 74LS244
8 Ay A wp—+
82 Az
800
1 B3 A3
| DATA BUS 1/0 CARD OATA BUS
807 84 pyrrer M
Bg fg
Bg fAg 16 A
By A7 INTERRUPT AND DMR STATUS
7415245 [READ REGISTER 31
D
[ATOB CKF— | . 74L5244
INTERRUPT AND OMA ENABLE o _1 7
[WRITE REGISTER 31 INTERRUPT
REQUEST
7418273 FROM 1/0
o 1 7 cL INTERRUPT [CARD LOGIC
LEVEL
DEO DE1 1€
+sv
N —
T0 1/0 CARD LOGIC
RESET ¢ RESET CARD
r'n
BAL W A YoP
w3
J\ i
BA2 B
Y p—
l\ REGISTER
B8R/ ¢ seect T3P
R
L]
BA1S R3
G2A Sp——
BR14
YePp—
(]
me [e=]
7 Pp—
J g1 74Ls138
DTACK
ICal Locs
DELAY CIRCUIT

BLOS -
=3
pP:Q)
Po Qo
o
Py ay
o
Pz az
BA1E P3 @ g 1
| m— £ 8 i
BAZ3 P BE
Ps 3 45y SELECT CODE
SWITCHES
Pg O [SELECT CODE =24 SHOWN]
0
P [
7 745888 |
G

S |

Figure 11. Example Data-Transfer Interface Design

SDG 571

Interrupt Interface
Figure 12 shows a typical interrupt request circuit. The circuit operates as follows:

1. If Interrupt Request (IR) and Interrupt Enable (IE) are true, one of the interrupt request
signals (IR3* IR4* IRS5* or IR6%) will be low, as determined by the two Interrupt Level
lines (ILO and IL1).

2.1/0 cards are polled by software to determine which card is interrupting. When bit 7 of the
Interrupt and DMA Status Register (Read Register 3) is set (to 1), interrupts are enabled; if
bit 6 is set (1), an interrupt is being requested by the card (or peripheral connected to the

card).
1/0 CARD DATA BUS
D Y
INTERRUPT AND DMA ENABLE INTERRUPT AND DMA STATUS
[WRITE REGISTER 3] [READ REGISTER 3]
745273 74L5244
a5 Ay Ag Rg Ay
1€ IE |IR [IL1|ILO
+5V
INTERRUPT
LEVEL
DECCDER
— L0 1L0
dr . o—0
1R3 0 A INTERRUPT
—_— 1Lt Lt LEVEL
e I 3
1R ! I SWITCHES
IRE ——— 172 ob— [LEVEL 3 SHOWN]
e — 173 2C~——+5V
2y INTERRUPT
g-'o 16— REQUEST
fo LA 26 D—}
d 2Yp
d 2Y3
745156

Figure 12. Example Interrupt Interface Design

Note

External interrupt vectoring is not supported with the DIO
Bus.

SDG 572

DMA Interface
Figure 13 shows a typical DMA interface. It operates as follows:

1. If a DMA channel is enabled (by setting bit DECO* or DE1* in the Interrupt and DMA
Enable Register, Write Register 3), a DMA Request signal from the I/O card drives
DMARO* (or DMAR1%) low.

2. DMACKO* (or DMACK 1*) enables the Data Bus Buffer. During a normal R/W operation,
the direction of this buffer is determined by BR/W#%* During a DMA operation, the
exclusive-OR gate inverts BR/W?* to control the direction; this is because BR/W?* is
intended for memory so the 1/0 card uses it in the opposite way.

3. The I/O card generates DMARDY? just as it normally generates DTACK* during a R/W
cycle. For a DMA input cycle, the delay timing starts immediately with BR/W?* high. For a
DMA output cycle, the delay timing is not started until valid data is on the bus as
indicated by DTACK?* from the memory device.

SDG 573

DELAY CIRCUIT

800 DATA BUS
1 Ry BUFFER B,
807 A, By
A3 B3
Fig B4
As Bs INTERRUPT AND DMA ENABLE
Ag Bg [WRITE REGISTER 31
7 B,
8 74L5245 B8 7418273
g D 1 0
DE1 DEO
DMARD \I » DMAR FROM CARD LOGIC
DMART
+5v
DMACKO ~
D A
DMACK1 l/\ *
TO REGISTER
SELECT CIRCUITRY
BR/U
DRARDY ’
DTACK
|
| |
| |
BLDS Y f l
|
§ ————(| f
| |
i

Figure 13. Example DMA Interface Design

SDG 574

Design Qualification

All HP Computers and supporting equipment are designed according to rigorous standards and
thoroughly tested to ensure that they meet these high standards. Every new design for an 1/0
card to be used with Series 200 Computers should likewise be carefully qualified for adherence
to acceptable design standards. Qualification for new cards can be broken down into the
following areas:

e Safety compliance
¢ Hardware qualification

e Software qualification
This section outlines qualifications that should be made before finalizing any Bus Slave design.

Safety Compliance

I/0 cards must be designed to meet all UL, CSA, and IEC safety requirements. This requires that
the 1/O card’s coverplate always be secured to the computer chassis with dog bolts and that the
1/0 connector and cable be adequately grounded to the coverplate. This configuration must meet
the following requirements:

1. Ground-current carrying capacity: The conductive path between the I/O cable (cable
shield, connector ground pins, and connector shell) and the safety ground pin of the power
receptacle must be capable of carrying 30 amperes for 120 seconds. This requirement can
be expressed in ohmic resistance for the following two cases:

a. For cable lengths less than 4 meters, the dc resistance between the end of the cable and
the safety ground pin of the power receptacle should be less than 100 milliohms.

b. For cable lengths greater than 4 meters, the dc resistance between the I/O connector on
the card’s coverplate (cable shield, connector ground pins, and connector shell) and the
safety ground pin of the power receptacle should be less than 100 millichms.

WARNING

I/0 CABLES WHICH ARE NOT GROUNDED AS STATED
ABOVE PRESENT A POTENTIAL SHOCK HAZARD TO
THE USER OF THE EQUIPMENT.

2. Fault-current carrying capacity: Because the +5V supply in the Series 200 computers has
over an 8-ampere fault-current capability, an on-card fuse is required. Refer to the
"Electrical Specifications" section for the recommended fuse.

SDG 575

CAUTION

AN I/O CARD NOT EQUIPPED WITH THE PROPER FUSE
IS CONSIDERED TO BE A MISUSE OF THE EQUIPMENT
AND MAY RESULT IN A PERSONAL HAZARD TO THE
OPERATOR AND/OR EQUIPMENT DAMAGE.

Hardware Qualification

Hardware testing can be divided into two areas: environmental testing and configuration testing.
Environmental testing involves testing the I/O card throughout the range of operating
environments. Configuration testing involves testing several different I/O operations with all
significant mainframe configurations.

In performing environmental tests, a subset of possible configurations are selected for testing in
the following areas:

® Initial testing of a small sample of prototypes: Testing at this stage involves high electrical,
thermal, and mechanical stresses of short duration, often to the level of inducing failures so
as to identify weak points of the hardware.

e Strife (stress+life) testing of a larger sample of production devices: Testing at this stage
involves thermal cycling and vibration tests derived primarily from MIL-Std-810B. These
tests also involve forcing failures, determining the cause, and implementing a solution.
However, the emphasis is on determining failure modes and assessing margins. It is also the
first opportunity to search for production-process related failure mechanisms.

Approximately 50 thermal cycles are performed with the range of temperatures varying
from -20 to 65 °C. The time for each cycle is adjusted so that the units reach thermal
equilibrium during the dwell portion of each cycle.

Random vibration tests are performed periodically with a range of accelerations from 1-2
g (9.8~19.6 m/s/s) rms. Total accumulated time is on the order of 25 minutes.

e Environmental testing of a small sample of units: This stage of testing involves a complete

set of tests known as HP Class B (Industrial and Commercial) Environmental tests. Testing
is performed in the following areas for adherence to the stated standards:

SDG 576

Type of Test Description

Temperature:

Non-operating -40 to +75 degrees Celsius
(storage)
Operating -20 to +65 degrees Celsius
(survival)
Normal Operating 0 to +55 degrees Celsius
Humidity:
Operating 40 degrees Celsius at
5 to 95% Relative Humidity
Non-operating 65 degrees Celsius at
90% Relative Humidity
Condensation Operates without damage

and recovers within
specified limits.

Vibration:
Cycle Range 5-55-5 Hz.
Sweeptime 15 min. (1 min./octave)
Dwell @ Resonances 10 min. at each resonance

Ampl. @ Resonances 3.17 mm @ 5-10 Hz.
1.52 mm @ 10-25 Hz.
0.38 mm @ 25-55 Hz.

Shock:
Magnitude 30 g (approx. 294 m/s/s)
Duration 11 ms
No. Shocks 18 (3 on ea. of 6 surfaces)
Waveform Half-sine
Bench handling 102 mm tilt drop
Altitude:
Non-operating 15 300 m
Operating 4 600 m

I
|
I
|
|
I
I
I
I
I
l
|
I
|
I
I
I
|
I
| Amplitude (p-p) 0.38 mm
I
|
|
I
|
I
|
|
!
|
|
|
|
|
|

® RFI testing: This type of testing requires compliance with VDE Level B (with a 2 db
margin) and FCC Class B standards.

Software Qualification

The key concern with software is, of course, its reliability. Sufficient testing should be
performed to ensure that the card operates properly with the desired operating system(s). When
operating systems are revised, new operating systems are released, and when changes are made to
an I/0 card which affect its operation, additional software testing should be performed.

SDG 577

SDG 578

Subject Index

Accessmethods 110,115
Addressrecord...................... 373
Alternate DAMs 15
APPEND. 71
Architecture 444
Auto configuration. 13
BASICFiles 19
BATTERY......... 402
Battery backup. 361
Beeper......................... 295,309
BOOT............. 423
Bootcommand 438
Bootdevice. 12
Bootdiscformat. 387
Bootfiles. 88
Bootrequest. 422
BootROM. 381,406
BootROMecalls 435
Boot:
Filenames....................... 88
Linking.......................... 85
Loading 85
Memorymap..................... 89
Overviewovii.. 87
Summary....................... 100
Buffer/O 452 465
Bus:
Addresses. 12
Error....... 551
Expander................... 568,568
VO . 523
Pinout 567
Signals......................... 534
Slave 525
Timeout........................ 551

SDG 579

Cardcage..........coovivi o 563
Clock. 296
CLOSE 72
Command interpreter 275
Configuration 14,400
CPUloadstate. 408
CRASH. 429
CRT:
9816.. 328
9826. 327
9836. 326
Controller 330
Cursorcontrol 334,335
CRTCLEAR 426
CRTID. 403
CRTINIT........... 425
CTABLE 5,31
DAMs:
Alternate 15
Definition. 12
LIF 231
Primary 16
Reference....................... 221
WS1.0 17
Data Commdrivers. 463
DEF. 369
Default mass storage 394
Definesource................... 369,378
Definition symbol table 377
Device specifier 12
DIObus 523
Direct accessfiles..................... 75
Directory access methods 12,114,221
Directory entries. 17
Directory path names 63

Disc:

Drivers 415

Drives....................... 18,345

Errors. 416

Format................... .. 391,392

Partitioning 43
Display:

Alpha 328

Attributes. 329

Drivers 329,333

Graphics. L. 328

Pascalaccess. 334

Processor registers 330

Remote 466

Toggling the screen. 337
DMA ... 544
DMAdrivers........................ 462
Drivers:

Addition. 494

Modification. 498

Removal. 493

Structure 454
DTACK............................ 534
Dumpalpha............ 337
Dump graphics. 337
Errors:

FilelO 142
Exception vectors. 440
Exporttext 369
External symboltable 376
FIBs........................... 108,118
Filesupport 133
Filesystem 107
File:

Buffer........... 74

Names.................. 61,64,65,66

Operations. 67

Parameters. 80

Pointer 69,74

Specifications. 61

States 69

SDG 580

Files:
Accessrights 83
Concurrentaccess. 81
Creating......................... 70
Debugging................. 84
Direct access operations. 75
Disposing.................... 72
Examplecalls. 248
Operations. 109
Sequential operations. 73
Supportlevel.............. 112
Systemcalls................. 144 247
TEXT .. 76
Variables 108
General valuerecord. 373
Global variable. 370
GPIOdrivers 462
GPIOinterrupts 509
GRAPHICS file 22
GVR ... 373
HP-IB:
Drivers 461
Interrupts., 503
i
INITLIB....................... 20.24.53
Interface 11
INTERFACEfile...................... 21
Interfacetext 369
Interrupt 553
Interrupt service routine 282
Interrupts 281
VOBus............................ 523
/O card qualification. 574
IOfile 22
VOmap............... 442
ISR .. 282
ISR procedures 502

KBD 323
KBDHOOK. 299
Kernel 101,444
Keyboard remapping. 297
Keyboard:
Capabilities 291
Command processing. 318
Commands 311
Electronics. 307
Example........................ 303
Interrupts. 310
Large 300
ModuleKBD 323
Scanning 307
Servicerequest.................. 320
Small, 301
Knob.......................... 293,309
Librarian............................ 30
LIBRARY 20,23
Library directory 370
LIF. .. o 5,388
LIFFilenames...................... 234
LIFModule......................... 233
LIFDAM, 231
Linking 85
Loadstate.......................... 408
Loaders............................ 409
Machine configuration. 400
Map:
Highram....................... 430
LowROM 433
Massstorage..................... 18,394
Memorymap 89,528
MISCINFOfile...................... 339
MODCAL 8
Module directory 371,371
Modules..................... 27,101,369
Modules in the Kernel 103

SDG 581

Object code format 369
OPEN 71

Partitioning. 43
Pascal 1.0............................ 4
Pathnames....................... ... 63
Peripheral 11
Power requirements 558
Power-faitoption................ 361
Power-up 458
PROM.. 398

RAMmap.......................... 430
READ 73
Readcycle 535
REF........ 369
REFtable 378
Registers........................... 531
Remoteconsole..................... 466
Reset....... 555
REWRITE........................... 70
ROMheaders....................... 383
ROMmap.......................... 433

Screen height. 335
Screenwidth 335
SDF. 391
Selectcode 11,442
Select code addresses 530
Sequential files. 73
Serial interrupts 514
SID .. 1
Softwaretools., 8
SRM:
Accessrights 83
Concurrentaccess. 81
Overview 45
Stopkey.......... ... 459
Structured Disc Format. 391
Supported mass storage 18
Symbols 370
SYSFLAG. 401
SYSFLAG2. 402
Systemvolume. 12
System: ‘
Creation........................ 437
Names 6
Switching. 422
TEXTfiles......... 76
TEXTrecord. 378
Third parameter forfiles 80
Transfer 534
Transfermethods. 113
Transfer procedures. 499
Trapvectors............. 440
Typeahead buffer 336

SDG 582

Unittable.............. ... 12,14,113,126

Variable allocation 9
Volume 12
Volumenames....................... 62

WRITE 73
Writecycle 538

(/A eaciaro

Part No. 09826-90074
E0383 Printed in U.S.A.
Microfiche No. 09826-99074 First Edition, March 1983

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001_01_Introduction
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011_02_PeripheralConfiguration
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029_03_ModifyingTheConfiguration
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045_04_SRMsetup
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061_05_ProgrammingWithFiles
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085_06_TheBootingProcess
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107_07_TheFileSystem
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133_08_FileSupport
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221_09_DirectoryAccessMethods
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247_10_FileOperations
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281_11_CPUInterruptHandling
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291_12_TheKeyboard
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325_13_TheDisplays
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339_14_TheMISCINFOFile
	340
	341
	342
	343
	344
	345_15_InternalDiscDrives
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361_16_ThePowerFailOption
	362
	363
	364
	365
	366
	367
	368
	369_17_ObjectCodeFormat
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381_18_TheBootROMs
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441_19_DeviceIO
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523_20_TheDIOBus
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579_Index
	580
	581
	582
	xBack

