HP 9000 Series 200 Computers 1} FAckaRD

ascal Language Reference

HP Pascal Language Reference

for the HP 9000 Series 200
Computers

Manual Part No. 98615-90050

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. Ali rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

February 1984.. First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products soldinthe U S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery *
Hewlett-Packard will. at its option. repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment. or by hardware. software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU. software, or firmware will be uninter-
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING. BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

* For other countries. cortact your focal Sales and Support Office {o determine warranty terms

Table of Contents

INtrodUCHON 1
Manual Organization. 1
NOtAHON .« .« o 1
Where to Start 2

HP Standard Pascal. 3
Assignment Compatibility. 3
CASE Statement oo 3
Compiler Options (Directives) 3
Constant EXpressions 3
Constructors (Structured Constants) 3
Declaration Part. 4
Halt Procedure. 4
Heap Procedures. i 4
Identiflers 4
File VO . 4
Function Return. 5
Longreal Numbers. 5
MININE . . 5
Record Variant Declaration 5
String Literals. 5
StNG TUPE. . . o o 5
WITH Statement 6
Numeric Conversion Functions 6
Modules 6

ADS . 7

AN . 8

APPENd . .. 9

ATCIAN . o o e e e 11

ARRAY . 12

ASSIGNMENL oo 16

BEGIN . . 19

binary PP 20

BlOCKS . . . o 21

DOOICAN . .« o . o 22

CASE 23

AT . . 25

R . 26

ClOSe . 27

COMMENTS . . oot e e 28

CON ST . . 29

CONSIANES © © .« oottt 30

O . o v e 32

DiIrectiVes 33

QISPOSE . . o oo 35

DIV 37

iii

iv

DO, 28
DOWNTO .. 38
ELSE. 38
END 38
Enumerated Types 39
COf . 40
=701 o 41
XD 42
EXPORT . . 43
Expressions. 44
false . .. 47
FILE 48
Files. ..o 50
FOR. . 58
FUNCTION . . 61
Function Calls 63
0 =1 65
Global Variables. 67
GOTO. .o 68
halt .. 70
Heap Procedures. 71
X 72
Identifiers 73
E 74
IMPLEMENT . .. 76
IMPORT . .. 77
IN 78
DU L L 79
Nteger. . oo 80
LABEL . 81
JASEPOS . . . 82
NePOS. . . 83
I 84
Local Variables. 85
longreal. 86
MATK L L, 87
MaAXIN. . 88
IMAXPOS . o ¢ttt et et 89
MININ . L 90
MO . .. 91
MODULE . . . 92
Modules 94
DBW L ot 96
NI 98
NOT 99
Numbers. 100
OCtal .. o 102
odd ... 103

10)07=) o WU P 105

OPEIaIOrS . . . oo oo 107
O . o 117
O, o 118
Ordinal TyYPeSt 119
OTHERWISE 120
OURPUL . . . ettt e e e e e e e e 121
OVEIPIINL . . . ottt e e e e e e e e 122
PACK . . 124
PACKED . .. 126
7= 127
Parameterso e 128
POINEEYS. . . oottt e e e 130
POSIION . & o 132
Pred. . o 133
PROCEDURE o 134
ProCedUIES . . . oo oot 136
PROGRAM . .o 138
Programs 139
PYOIMIPE .« . ottt et et e e 142
PUL. L 144
FOAA . . o 145
readdir 148
rCadIn . . o 150
FCAl o o 151
RECORDo 152
RECUISION . .« o v ot e e e e e e e 158
TOlRASE. . . ot 159
REPE AT . . o 160
Reserved Wordso 162
FOSCE o v ot 163
FOWIIC . o ot e e e e 165
TOUNA . ot e 167
0P . . o oot e e 168
SCCK . . 169
SEPAIALOTS oottt e 170
SE T . 171
SCEStTINY. . o e 174
Side EffeCts. . . oot e 175
SIIl o o s 176
Lo | R OSSP 177
Yo 1 S P 178
Standard Procedures and Functions 179
StAteMENTS . . . o oot 180
1 CU AU PP 183
SHAPPENA 184
strdelete 185
SIS . . 186

String Literals. 189

vi

StNSet . L 191
Strlen . .o 192
Strltrimy. 193
SIMAX . . o 194
SIMNOVE. . L 195
I DOS 197
strread. ... 198
STt L 200
SUTHM L 201
SIYWIIte . 202
Subrange 204
SUCC . L o e 205
Symbols . ..o 206
Bt 207
THEN 208
T . 208
tUe L 209
ETUNC L 210
T PE 211
Types .. 214
Unpack ... 216
UNTIL. 218
VAR 219
Variables. 221
WHILE . 222
WITH . 224
WIIEE 227
writedir ... 228
WHIteIN . 231
Series 200 HP-UX Implementation 235
Compiler Options 236
ALLAS 237
AN 238
CODKE . 239
CODE_OFFSETS . .. 240
DEBUG . .. 241
FLOAT 242
E 243
INCLUDE. . .. 244
LINENUM 245
LINES 246
L ST 247
OVFELCHECK . .. 248
PAGE . 249
PAGEWIDTH 250
PARTIAL_EVAL . . . 251
RANGE. . 252
SAVE_CONST . .. 253
SEARCH . . 254
SEARCH _SIZE . 255
SYSPROG . . . 256
TABLES . 257

Implementation Dependencies i 259
Special Compiler Warnings.t 260
Replacements for Pascal Extensions. oo 261
Other Replacements. 261
System Programming Language Extensions 262
Error Trapping and Simulation. oo 262
Absolute Addressing of Variables.o 263
Relaxed Typechecking of VAR Parameters., 264
The ANYPTR TUDE . . .o oot et e e 265
Procedure Variables and the Standard Procedure CALL..................... ... 265
Determining the Absolute Address of a Variable 266
Determining the Size of Variables and Types.t 266
Special use of RESET and REWRITE 268
Unbuffered Terminal Input o 269
The pc Command for Series 200 HP-UX oo 270
Using the pc Command. i 270
The Load Formato 271
Separate Compilation 271
Program Parameters.t 274
Program ArQUIMENES\ttt 274 .
Series 200 HP-UX Pascal Heap Managers 277
HE AP . 277
HE AP . . 278
PIallS . . . o 279
Deciding which Heap Managerto Use, 279
Specifying the Heap Manager.o 279
Pascal and Other Languages.t 280
Calling Other Languages from Pascal 280
Calling Pascal from Other Languages e, 280
Pascal Run Time Error Handling 281
Operating System Run Time Error Messages, 285
JO ETTOTS. © o ot e 286
Systemn EXrors 287
Pascal Compiler Exrors. 288
The Series 200 Workstation. 293
Compiler OPHONS\ 294
ALLAS . . 295
AN 296
CALLABS . 297
CODE . . 298
CODE _OFFSETS . . oot 299
COPYRIGHT 300
DEBUG . . .o 301
DEF . . 302
FLOAT . . 303
HEAP _DISPOSE . . . oo 304
IE 305
INCLUDE 306
IOCHECK . .. o 307
LINENUM . 308
LINES . 309
LIS o 310

vii

viii

PAGE . 312
PAGEWIDTH 313
PARTIAL_EVAL 314
RANGE. . 315
REF 316
SAVE_CONST ... 317
SEARCH . .. 318
SEARCH_SIZE 319
STACKCHECK o 320
SWITCH_STRPOS 321
SYSPROG 322
TABLES . 323
UCSD . . 324
WARN 325
Implementation Restrictions. 326
Pascal Extensions 330
Supported Features of UCSD Pascal 331
System Programming Language Extensions 341
Error Trapping and Simulation 341
Absolute Addressing of Variables 342
Relaxed Typechecking of VAR Parameters 342
The ANYPTR Type 343
Determining the Absolute Address of a Variable. 344
Procedure Variables and the Standard Procedure CALL. 344
Determining the Size of Variablesand Types 345
The IORESULT Function 346
Workstation Files. 348
Syntax of Physical File Names. 348
Characters Allowed in Volume and File Names 349
Examples of File Specifications 350
Disposition of Files Upon Closing 350
Standard Files and the Program Heading 351
File System Differences 351
Heap Management 352
MARK and RELEASE 352
NEWand DISPOSE. 352
Mixing DISPOSE and RELEASE 353
What Can Go Wrong? 354
Can't Runthe Compiler. 354
Errors 900 thru 908 354
Errors When Importing Library Modules 355
Not Enough Memory 355
Insufficient Space for Global Variables. 355
Errors 403 thru 409 355
Error Messages. 356
Unreported Errors. 356
Operating System Run Time Error Messages. 357
IOErrors. ... oo 358
VOLIBRARY Errors 359
Graphics Library Errors. 360

Pascal Compiler Errors. 361

Keyword Dictionary

Introduction

Niklaus Wirth designed the programming language Pascal in 1968 as a vehicle for teaching the
fundamentals of structured programming and as a demonstration that it was possible to efficiently
and reliably implement a ‘‘non-trivial”” high level language. Since then, Pascal has established itself
as the dominant programming language in university-level computer science courses. It has also
become an important language in commercial software projects, especially in systems program-
ming.

Hewlett-Packard Standard Pascal (HP Pascal) is a company-standard language currently im-
plemented on several Hewlett-Packard computers and is a superset of American National Stan-
dards Institute (ANSI) Pascal.

This section outlines the organization of this manual and summarizes the differences between
Pascal and HP Pascal. The experienced Pascal programmer may use these summaries as a guide
for further study of unfamiliar features.

Manual Organization

This manual is a Language Reference for HP Pascal. Here you will find a description for each
keyword (reserved words and standard identifiers) recognized by HP Pascal. In addition to the
keywords, this manual contains entries for topics important to HP Pascal but not necessarily related
to a particular keyword.

After the keyword section, you will find “implementation” sections. These sections describes HP
Pascal for your particular computer. This information includes the minimum and maximum ranges
for numeric values, restrictions on the sizes of variables, compiler options, system programming
extensions, and error codes.

Notation

Throughout this document, HP Pascal reserved words and directives appear in uppercase letters,
e.g. BEGIN, REPEAT, FORWARD. Standard identifiers appear in lowercase letters, in a typewriter-
like type-style, e.g. readln, maxint, text. General information concerning an area of programming
(a topic) appears as an entry with initial capitalization, e.g. Scope, Comments, Standard Procedures
and Functions.

2 Introduction

Where to Start

If you are totally unfamiliar with the Pascal programming language, this manual is not the place to
start learning. Like a dictionary, a reference contains the facts, but trying to learn a language by
reading its dictionary is a very difficult task. There are many introductory texts available that make
learning Pascal much more enjoyable.

If no other book is currently available, do not try to read this manual from cover to cover. Start,
instead, by reading the topics covered in this manual. Here is a partial list to get you started.

® Symbols, Identifiers, and Reserved Words

® Operators, Numbers, and Expressions

® Constants, Types, and Variables

e Statements, Assignment, Procedures, and Functions

® Programs and Modules

When you have read all of the topics and studied the keywords, you may be able to write a working
program. Be sure to also read the implementation section of this manual. There are several
examples of working programs throughout this manual. However, there are more ‘“‘partial” exam-
ples which only show the area of interest for a particular keyword.

If you are familiar with Pascal but not HP Pascal, you may only need to refer to the implementation
section of this manual. However, HP Pascal has features not found in other implementations. See
the next section and the topics describing strings and modules.

If you are familiar with HP Pascal, start reading the implementation section at the back of this
manual. The keyword section may prove handy when you want to check the syntax or semantics of
a particular keyword.

HP Standard Pascal

The following is a list of the HP Pascal features which are extensions of ANSI Standard Pascal. For
the full description of a feature, refer to the appropriate keyword or topic.

Originally, the term “‘string”” referred to any PACKED ARRAY OF char with a starting index of 1.
HP Pascal, however, supports the standard type st rins. To avoid confusion, the term PAC is used
for the type PACKED ARRAY OF char.

Assignment Compatibility

If T1 is a PAC variable and T2 is a string literal (or PAC variable), then T2 is assignment compatible
with T1 provided that T2 is not longer than T1. If T2 is shorter than T1, the system will pad T1 with
blanks.

If T1is real and T2 is 1ondreal, the system truncates T2 to real before assignment.

CASE Statement

The reserved word OTHERWISE may precede a list of statements and the reserved word END in a
CASE statement. If the case selector evaluates to a value not specified in the case constant list, the
system executes the statements between OTHERWISE and END (see CASE). Also, subranges may
appear as case constants.

Compiler Options (Directives)

Compiler options appear between dollar signs ($). HP Pascal has five options: ANSI, PARTIAL_
EVAL, LIST, PAGE, and INCLUDE. The ANSI option sets the compiler to identify in the listing
when source code includes features which are not legal in ANSI Standard Pascal. PARTIAL_EVAL
permits the partial evaluation of boolean expressions. LIST allows the suppression of the compiler
listing. PAGE causes the listing to resume on the top of the next page. INCLUDE specifies a source
file which the compiler will process at the current position in the program.

Other options are implementation defined. See the implementation section of this manual for
complete details.

Constant Expressions

The value of a declared constant may be specified with a constant expression. A constant express-
ion returns an ordinal value and may contain only declared constants, literals, calls to the functions
ord, chr, pred, suce, hex, octal, binary, and the operators +, -, ¥, DIV, and MOD.

A constant expression may appear anywhere that a constant may appear.

Constructors (Structured Constants)

The value of a declared constant can be specified with a constructor. In general, a constructor
establishes values for the components of a previously declared array, record, string or set type.
Record, array, and string constructors may only appear in a CONST section of a declaration part of
a block. Set constructors, on the other hand, may also appear in expressions in executable state-
ments and their typing is optional.

4 HP Standard Pascal

Declaration Part

In the declaration part of a block, you can repeat and intermix the CONST, TYPE, and VAR
sections.

Halt Procedure
The halt procedure causes an abnormal termination of a program.

Heap Procedures

The procedure mark marks the state of the heap. The procedure release restores the state of the
heap to a state previously marked. This has the effect of deallocating all storage allocated by the rew
procedure since the program called a particular mark.

Identifiers
The underscore character (_) may appear in identifiers, but not as the first character.

File I/O

A file may be opened for direct access with the procedure oren. Direct access files have a maximum
number of components, indicated by the function maxros, and the current number of written
components, indicated by the function 1astros. The procedure seek places the current position of
a direct access file at a specified component. Data can be read from a direct access file or write to it
with the procedures readdir or writedir, which are combinations of seek and the standard
procedures read or write. A textfile cannot be used as a direct access file.

A file may be opened in the “‘write-only” state without altering its contents using the procedure
arrend. The current position is set to the end of the file.

Any file may be explicitly closed with the procedure close.
To permit interactive input, the system defines the primitive file operation set as ‘‘deferred get”.

The procedure read accepts any simple type as input. Thus, it is possible to read a toolean or
enumerated value from a file. It is also possible to read a value which is a packed array of char or
string,

The procedure write accepts identifiers of an enumerated type as parameters. An enumerated
constant may be written directly to a file.

The function rosition returns the index of the current position for any file which is not a textfile.
The function lineros returns the integer number of characters which the program has read from or
written to a textfile since the last line marker.

The procedures rase, suerrrint, and rromet operate on textfiles. Pase causes a page eject when a
text file is printed. Duerrrint causes the printer to perform a carriage return without a line feed,
effectively overprinting a line. Promet flushes the output buffer without writing a line marker. This
allows the cursor to remain on the same screen line when output is directed to a terminal.

HP Standard Pascal

Function Return

A function may return a structured type, except the type file. That is, a function may return an array,
record, set or string.

Longreal Numbers

The type londreal is identical with the type real except that it provides greater precision. The letter
“L” precedes the scale factor in a longreal literal.

Minint

The standard constant ninint is defined in the HP Pascal. The value is implementation dependent.

Record Variant Declaration
The variant part of a record field list may have a subrange as a case constant.

String Literals

HP Pascal permits the encoding of control characters or any other single ASCII character after the
sharp symbol (#). For example, the string literal #G represents CTRL-G (i.e. the bell). A character
may also be encoded by specifying its value (0..255) after the sharp symbol. For example, #7
represents CTRL-G.

String Type

HP Pascal supports the predefined type string. A string type is a packed array of char with a
declared maximum length and an actual length that may vary at run time.

A variable of type string may be compared with a similar variable or a string literal, or assign a
string or string literal to a string.

Several standard procedures and functions manipulate strings.

® St rlen returns the current length of a string;

® 5t rmax the maximum length.

® Strwrite writes one or more values to a string;

® Strread reads values from a string.

® 5t rros returns the position of the first occurrence of a specified string within another string.
estritrimand strrtrim trim leading and trailing blanks, respectively, from a string.

® 5trret returns a string composed of a designated string repeated a specified number of times.
® Strarrend appends one string to another.

® 5t r returns a specified portion of a string, i.e. a substring.

® Setstrlen sets the current length of a string without changing its contents.

® Strmove copies a substring from a source string to a destination string.

® Strinsert inserts one string into another.

e strdelete deletes a specified number of characters from a string.

6 HP Standard Pascal

WITH Statement

The record list in a WITH statement may include a call to a function which returns a record as its
result (see WITH).

Numeric Conversion Functions

The functions tinary, actal, and hex convert a parameter of type strins or PAC, or a string literal,
to an integer. Binarv interprets the parameter as a binary value; octal as an octal value; hex as a
hexadecimal value.

Modules

HP Pascal supports separately compiled program fragments called modules. Modules may be used
to satisfy the unresolved references of another program or module.

Typically, a module “‘exports” types. constants, variables. procedures, and functions. A program
can then “import” a module to satisfy its own references.

This mechanism allows commonly used procedures and functions to be compiled separately and
used by more than one program without having to include them in each program.

See MODULE.

abs

This function computes the absolute value of its argument.

numeric
expression

Semantics
The function ats(x) computes the absolute value of the numeric expression x. If x is an integer

value, the result will also be an integer.

A error may result from taking the absolute value of minint.

Examples
Input Result
abs{-13) 13 {inteder result}

abs(-7,11) 7 L10000E+00

AND

This boolean operator returns true or false based on the logical AND of the boolean factors.

boolean boolean
'| factor | '(AND) 'l factor I >

Semantics
The logical AND is shown in this table.
X Y XannY
false false false
false true false
true false false
true true true
Example Code
VAR
bitGy bit7 : booleans
counter : inteders
BEGIN

IF bitB AND bit7 THEN counter := 03}
IF bitB AND (counter = 0) THEN hit7 := true}
END

append

This procedure allows data to be added to an existing file.

file
APPEND identifier '@—’
physical file -
specifier

options
string

Item Description/Default Range Restrictions
file identifier name of a logical file file cannot be of type text
phuysical file specifier name to be associated with f; must be a string -

expression or PAC variable
options string a string expression or PAC variable implementation
dependent
Examples

append{(file_var)
apprend(file_varsphy_file_srec)
arpend(file_varsphy.file.srPecrorPt._str)
append(fuar, ' SHORTFILE ")

Semantics

The procedure arrend(f) opens file f in the write-only state and places the current position im-
mediately after the last component. All previous contents of f remain unchanged. The eot(f)
function returns true and the file buffer {* is undefined. Data may now be written on f.

If f is already open, arrend closes and then reopens it. If a file name is specified, the system closes
any phuysical file previously associated with f.

10 append

[llustration
Suppose examp_file is a closed file of char containing three components. In order to open it and
write additional material without disturbing its contents, we call append.

{initial condition}

| state: closed

append(examp_{file);

current position
l
state: write-only
‘ P A s examp_file”™: undefined
eof(examp_file): true

arctan

This function returns the principal value of the angle which has the tangent equal to the argument.
This is the arctangent function.

wreTaN (O D

Examples
Input Result
arctan{num_exep)
arctan(2) 1v107149E+00
arctan(-4,002) -1,32594E+00
Semantics

The result is in radians within the range —w/2.. /2. This function returns a real for integer or real
arguments, and longreal for longreal arguments.

11

12

ARRAY

An array is a fixed number of components which are all of the same type.

_ | array type } -
identifier o g
»(ARRAY .. oF)+ tyoe
PACKED

Semantics

Array Declarations

An array type definition consists of the reserved word ARRAY, an index type in square brackets, the
reserved word OF, and the component type. The reserved word PACKED may precede ARRAY. It
instructs the compiler to optimize storage space for the array components.

A computable index designates each component of an array.
The index type must be an ordinal type. The component type may be any simple, structured, or
pointer type, including a file type. The symbols (. and .) may replace the left and right square
brackets, respectively.
An array type is a user-defined structured type.
A component of an array may be accessed using the index of the component in a selector.
In ANSI Standard Pascal, the term “‘string”” designates a packed array of char with a starting index
of 1. HP Pascal defines a standard type st ring which is identical with a packed array of char except
that its actual length may vary at run time. To distinguish these two data types, the acronym PAC
will denote

PACKED ARRAY [1..n] OF char;
throughout this manual.

The maximum number of elements is implementation defined.

Permissible Operators
assignment: :=

relational <, <=4 =y ¢34 3=y

(string or
PAC):

Standard Procedures

array para-

meters:

rack

Example Code

TYPE
name
list
strande
flag
files

n

= PACKED
ARRAY [1

unrack

ARRAY [1,.301 OF chari {PAC tvpel}

01001 OF inteders

ARRAY [boolean] OF chars

ARRAY [{red, whites blue)l OF 1.,,503

ARRAY [

2101 OF texts

Multi-Dimensioned Arrays
If an array definition specifies more than one index type or if the components of an array are
themselves arrays, then the array is said to be multi-dimensioned. The maximum number of array
dimensions is implementation defined.

TYPE

{ eguivalent

triuth

truth

truth

truth

ARRAY [1
ARRAY

definitions of truth }

o201 OF
[1..531 OF

ARRAY [1,.,101 OF booleans

ARRAY [1
ARRAY
ARRAY [1
ARRAY

ARRAY [1..204+ 14453y 14,101 OF booleans

v+ 201 OF

[1,+3y 1,,101 OF booleani
+e20y 14,31 OF

[1,.101 OF booleans

Array Constants and Array Constructors

An array constant is a declared constant defined with an array constructor which specifies values for
the components of an array type.

ARRAY 13

An array constructor consists of a previously defined array type identifier and a list of values in
square brackets. Each component of the array type must receive a value which is assignment
compatible with the component type.

Array Constant:

array type
identifier

(e

N

N\
L—D{i constant F—D<: OoF }—‘

constant

structured
constant

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly. For
example, 3 OF 5 assigns the integer value 5 to three successive array components. The symbols (.
and .) may replace the left and right square brackets, respectively. An array constant may not

contain files.

14 ARRAY

Array constructors are only legal in a CONST section of a declaration part. They cannot appear in
other sections or in executable statements.

An array constant may be used to initialize a variable in the executable part of a block. You may
also access individual components of an array constant in the body of a block, but not in the

definition of other constants (see Array Selector).

Values for all elements of the structured type must be specified and must have a type identical to the
type of the corresponding elements.

Example Code

TYPE
boolean_table = ARRAY [1.,.,5]1 OF booleant
table = ARRAY [1.,,1001 OF inteders
roW = ARRAY [1.,:3] OF inteders
matrix = ARRAY [1+.351 OF rows
color = {red, vellows blue}s

PACKED ARRAY [1,.61 OF chars
ARRAY [colorl OF colorostrings

color_string
color.array

CONST

true_values boolean_table [5 OF truel:

init.valuesl
init_values?
identity

colors

table C100 OF 013
table [G0 OF 0. 40
matrix Crow L1+ O
row [0y 1

row LOs Oy 1y O

row L[Os O 1y
row L0y Oy O O
color.array [color_string
color.string

oF 1713
Oy 0y

0y 0y

0y

071

01,

01,

01,
1113
[‘RED' 3 OF
["YELLOW']

i

1

Ll
LR

color_string ['BLUES oF ‘113
In the last example, the type of the array component is char, yet both string literals and characters
appear in the constructor. This is one case where a value (string literal) is assignment compatible

with the component type (char). Alternatively, you could write

colors color_arrav['RED’ 'YELLOW' sy 'BLUE"]3
for the last constant definition.

The name of the previously declared literal string constant may be specified within a structure
constant.

CONST
red = ‘red ‘3
yellow = “vellow’s
Elue = ‘blue ‘3
gcolors = color_.array [color_stringlredl:

color_stringlvellowls
color_stringlbluel 13

ARRAY 15

Array Selector

An array selector accesses a component of an array. The selector follows an array designator and
consists of an ordinal expression in square brackets.

array type ordinal
identifier expression

The expression must be assignment compatible with the index type of the array. An array designa-
tor can be the name of an array, the selected component of a structure which is an array, or a
function call which returns an array. The symbols (. and .) may replace the left and right brackets,
respectively. The component of a multiply-dimensioned array may be selected in different ways
(see example).

For a string or PAC type, an array selector accesses a single component of a string variable, i.e. a
character.

Example Code
PROGRAM show.arravselectors
TYPE
a_type = ARRAY [1,.10]1 OF inteders’
VAR
mon : inteders

simp_array : ARRAY [1.,.31 OF 1,.,100%
multi-arrary : ARRAY [1.,.5+1,+,101 OF intesers

P r ta_tyres
BEGIN
+
mi= simp_arrav[Z2]1} {Assigns current value of 2nd ¥
' {component of simp_array to m. ¥
multi_arrav[2+91:= mi {These are +
multi_arrav[21[91:= m3 {equivalent. }
+
ne= P [m MDD 10 + 11 % m {Dynamic array with computed }
END. { selector. }

16

Assignment

An assignment statement assigns a value to a variable or a function result. The assignment state-
ment consists of a variable or function identifier, an optional selector, a special symbol (: =), and an
expression which computes a value.

\>:= expression
selector

variable
identifier

function
identifier

The receiving element may be of any type except file, or a structured type containing a file type
component. An appropriate selector permits assignment to a component of a structured variable or
structured function result.

The type of the expression must be assignment compatible with the type of the receiving element
(see below).

Types must be identical except when an implicit conversion is done, or a run-time check is
performed which verifies that the value of the expression is assignable to the variable.

Example Code
FUNCTION show_assidgn: inteders
TYPE
rec = RECORD
fi: inteders

d: reals
END 3

index = 1,,31%
table = ARKRAY [index] OF inteder:

CONST
ct = table [10, 20, 3013
cr = rec [fe2y 913,013

53 inteders
a: tablei
1: indexs
r: recs
P
P

“inteder}
stry stringl1013

FUNCTION show.structured: rec?

BEGIN {Assidn to a +
show_structured,f 1= 203 {rpart of the record, }
show_structured := cr3 {whole record, b
show_assidgn 3= 503 {outer function., +

END 3

BEGIN {show.assidn}

33

s 1= 3§ 1:1=

a 1= ¢t

a [i] = 5 + 33
r := ¢r}

r.f 1= 33

poi= pli

P 1= r.f -

a [i13

str 1= ‘Hil’}

show_assidn

1= pUd

ENDJ {show_assidn}

Assignment Compatibility

{Assign to a
{simple variable.
{array variable:

{subscrirted array variable.

{record variable:

{selected record variable,

{pointer variable:
{dvnamic variable
{string variable,

{furction result variable,

L i L

Assignment

A value of type T2 may only be assigned to a variable or function result of type T1 if T2 is
assignment compatible with T1. For T2 to be assignment compatible with T1, any of the following
conditions must be true:

1. T1 and T2 are type compatible types which are neither files nor structures that contain files.

2. Tlis real or londreal and T2 is inteder or an integer subrange. The compiler converts T2
to real or longreal prior to assignment.

3. Tlislongreal and T2is real. The compiler converts T2 to lonsreal prior to assignment.

4. T1is real and T2 is longreal. The compiler rounds T2 to the precision of T1 prior to

assignment.

Furthermore, a run-time or compile-time error will occur if the following restrictions are not

observed:

If T1 and T2 are type compatible ordinal types, the value of type T2 must be in the closed interval

specified by T1.

If T1 and T2 are type compatible set types, all the members of the value of type T2 must be in the
closed interval specified by the base type of T1.

A special set of restrictions applies to assignment of string literals or variables of type st rins, PAC,

or char (see below).

Special Cases

The pointer constant NIL is both type compatible and assignment compatible with any pointer type.

The empty set [] is both type compatible and assignment compatible with any set type.

17

18 Assignment

String Assignment Compatibility

Certain restrictions apply to the assignment of string literals or variables of the type st rin 3. packed
array of char (PAC), or char.

1. [fT1is a string variable, T2 must be a string variable or a string literal whose length is equal to
or less than the maximum length of T1. T2 cannot be a PAC or char variable. Assignment
sets the current length of T1.

2. 1fTlisa PAC variable, T2 must be a PAC or a string literal whose length is less than or equal
to the length of T1. T1 will be blank filled if T2 is a string literal or PAC which is shorter than
T1. T2 cannot be a string or a char variable. (See table below.)

3. If Tlis a char variable, T2 may be a char variable or a string literal with a single character. T2
cannot be a string or PAC variable.

The following table summarizes these rules. The standard function :t rnax(s) returns the maximum
length of the string s. The standard function st rlen(s) returns the current length of the string s.

String constants are considered string literals when they appear on the right side of an assignment
statement.

Any string operation on two string literals, such as the concatenation of two string literals, results in a

string of string type.
String, PAC, and String literal Assignment
String
T1:=T2 string PAC char Literal
Only if Only if
string strmax(T1) > = Not Not strmax(T1) > =
strlen(T2) allowed allowed strlen(T2)
Only if Only if
Not T1 length > = Not T1 length > =
PAC allowed T2 length allowed strlen(T2)
T2 is padded T2 is padded
if necessary if necessary
Not Not Yes Only if
char allowed allowed strlen(T2) = 1

Note
The st rlen function can only be used with strings. not PAC's.

This reserved word indicates the beginning of a compound statement or block.

statement

Semantics

BEGIN indicates to the compiler that a compound statement or block follows.

Example Code

PROGRAM show_begin(input, output)s

VAR
running ¢ booleans
iy J : integders

BEGIN

i 1= 03

Jo1= 13

running := trues
writeln(’See Dick run.)}
writeln(/Run Dick run,)3
IF running then

BEGIN
I := 1 + 13
Joi= g - 13
END 3
END 3

END.

BEGIN

19

20

binary

This function converts a binary string expression or PAC into an integer.

(Cemay)~(O—~erin O

Item | Description/Default | Range Restrictions
binary string string expression or PAC variable implementation
dependent
Examples
Input Result
binarv(strndg)
Bivnary(7100117) 19

~binary (7100117 -19

If your particular implementation used 32-bit 2's complement notation, the following example

would also work.

Binary (7111100000000 00 0100 104111101101 %) -19

Semantics
The string or PAC is interpreted as a binary value.

The three numeric conversion functions are tinary, hex, and octal. All three accept arguments
which are string or PAC variables, or string literals. The compiler ignores leading and trailing blanks

in the argument. All other characters must be legal digits in the indicated base.

Since binary, hex, and octal return an integer value, all bits must be specified if a negative result is

desired. Alternatively, you may negate the positive representation.

Blocks

A block is syntactically complete section of code.

label constant procedure
declaration declaration declaration
type function
declaration declaration
variable
declaration :
module
declaration

import
list

statement

Semantics

There are two parts to a block, the declaration part and the executable part. Blocks may be nested.
All objects appearing in the executable part must be defined in the declaration part or in the
declaration part of an outer block.

Note

MODULE declarations and IMPORT lists can not appear in inner
blocks. (i.e. in procedures or functions)

21

22

boolean

This predefined ordinal type indicates logical data.

Example
UAR’
loves.me: booleans
HP Pascal predefines the type toolean as:
TYPE
boolean = (falsey truels
The identifiers false and true are standard identifiers, where true > false.
Boalean is a standard simple ordinal type.
Permissible Operators
assignment: :=

boolean: AND: ORs NOT
N

1

relational: Shofmg o=y ing o

Standard Functions
boolean argument: ord, pred, succe

boolean return: eafs eolny odd

CASE

The CASE statement selects a certain action based upon the value of an ordinal expression.

END

statement

_.(CASEH expression J—-DC oF
C.(i Hcor\stant

statement

| ; »(OTHERWISE

Semantics

The CASE statement consists of the reserved word CASE, an ordinal expression (the selector), the
reserved word OF, a list of case constants and statements, and the reserved word END. Optionally,
the reserved word OTHERWISE and a list of statements may appear after the last constant and its
statement.

The selector must be an ordinal expression, i.e. it must return an ordinal value. A case constant may
be a literal, a constant identifier. or a constant expression which is type compatible with the selector.
Subranges may also appear as case constants.

A case constant cannot appear more than once in a list of case constants. Subranges used as case
constants may not overlap other constants or subranges.

Several constants may be associated with a particular statement by listing them separated by
commas.

You need not bracket the statements between OTHERWISE and END with BEGIN..END.

When the system executes a CASE statement:

1. [t evaluates the selector.

2. If the value corresponds to a specified case constant, it executes the statement associated
with that constant. Control then passes to the statement following the CASE statement.

3. If the value does not correspond to a specified case constant, it executes the statements
between OTHERWISE and END. Control then passes to the statement after the CASE
statement. A run time error occurs if you have not used the OTHERWISE construction.

23

24 CASE

Example Code

PROCEDURE scanner:
BEGIN
get.next_charsy
CASE current_char OF
fatia 'z {Subrande label, }
IA’OQ’Z,:

scan_wordi

MRS R
scan_numbersy

OTHERWISE scan.speciali
END 3
END

L]

FUNCTION octal_digit
(d: digit): hbooleans {TYPE didit = 0..,9)
BEGIN
CASE 4 OF
0,71 octal_digit := trues
B+v9: octal_didit := falses
END3
END

L]

FUNCTION oe {TYPE orerators={plussminusstimes divide)}
(oPerator: oreratorss
operandl
operand2: real)
reals
BEGIN
CASE orerator OF
plus: oP = gpPerandl
minus: op := operandl operands
times: oF := operandl operandzs
divide: op := operandl / operand2i
END 3
END3

+

operandzi

E 3

1

This predefined ordinal type is used to represent individual characters.

@D~

The char type allows the 8-bit ASCII character set.
A pair of single quote marks encloses a char literal.

Permissible Operators
assignment: :=

relational: 9 3y o=y L3y b=y Fy IN

Standard Functions

char argument: ord

char return: chrs preds succ
Example Code

VAR

do.vou: chari

BEGIN
do.vou 3= ‘Y3
END 3

char

25

26

chr

This function converts an integer numeric value into an ASCII character.

RO ET=aN0

Item | Description/Default | Range Restrictions
argument | integer numeric expression | 0 thru 255

Examples

Input Result

chrix)

chr(G3) i

chr(B82) R

chr(13) (carriage return)
Semantics

The function ch r(x) returns the character value, if any, whose ordinal number is equal to the value
of x. An error occurs if x is not within the range 0..255.

close
This procedure closes a file from further access.
options
o
Item Description/Default | Range Restrictions
file identifier name of a logical file -
options string a string expression or PAC variable implementation
dependent

Examples

close(fil_var)
close(fil_varsoPt_str)

Semantics

The procedure close(f) closes the file f so that it is no longer accessible. After clase, references to
the function eof(f) or the buffer variable (f*) will result in an error, and any association of f with a
physical file is dissolved.

When closing a direct access file, the last component of the file will be the highest-indexed compo-
nent ever written to the file (1astros(f)). The value of maxros for the file, however, remains
unchanged.

Once a file is closed, it may be reopened. Any other file operation on that file will produce an error.

Option String

The options string specifies the disposition of any physical file associated with the file. The value is
implementation dependent. The compiler ignores leading and trailing blanks and considers upper
and lower case equivalent. If no options string is supplied, the file retains its previous (original)
status.

27

28

Comments

Comments consist of a sequence of characters delimited by the special symbols { and }, or the
symbols (* and *). The compiler ignores all the characters between these symbols. Comments
usually document a program.

Examples

<comment}
(¥comment*)
{comment*)
{4 { {comment?
{This comment
occupies more than one line.’

Semantics

A comment is a separator and may appear anywhere in a program a separator may appear. A
comment may begin with { and close with *), or begin with (* and close with }.

Nested comments are not legal, however, a comment may cross a line boundary in source code.

CONST

This reserved word indicates the beginning of one or more constant definitions.

——G:ONS'D-L—{ identifier

St

constant

Semantics

Constant definitions appear after the program header (any LABEL declarations) and before any
procedure or function definitions. In HP Pascal, CONST, TYPE, and VAR definitions may be

intermixed.

Example Code
PROCGRAM show_CONSTH
LABEL 13

TYPE

tyrpel = inteders

typel = booleani

strl = stringlS11
CONST

constl = 3,14153%

const2 = truel

stroonst = stril‘abcde’1%
VAR

varl : tyeels

BEGIN
END.

29

30

Constants

A constant definition establishes an identifier as a synonym for a constant value. The identifier may
then be used in place of the value. The value of a symbolic constant may not be changed by a
subsequent constant definition or by an assignment statement.

The reserved word CONST precedes one or more constant definitions. A constant definition
consists of an identifier, the equals sign { =). and a constant value. (See CONST.)

Constant: Structured Constant:

constant
expression array
constant
.Ichar‘acter . record
constant

constant

The reserved word NIL is a pointer value representing a nil-value for all pointer types. Declared
constants include the standard constants maxint and winint as well as the standard enumerated
constants true and false.

Constant expressions are a restricted class of HP Pascal expressions. They must return an ordinal
value which is computable at compile time. Consequently, operands in constant expressions must
be integers or ordinal declared constants. Operators must be +, —, * DIV, or MOD. All other
operators are excluded. Furthermore, only calls to the standard functions ard, chr, pred, succ, ats,
hex. octal, and tinary are legal.

Floating-point values are not allowed in constant expressions.
One exception to the restrictions on constant expressions is permitted: you may change the sign of
a real or longreal declared constant using the negative real unary operator (—). The positive

operator (+) is legal but has no effect.

A constructor specifies values for a previously declared array, strins, record, or set type. Subse-
quent pages describe constructors and the structured declared constants they define.

Constant definitions must follow label declarations and precede function or procedure declarations.
You can repeat and intermix CONST sections with TYPE and VAR sections.

Constants 31

Example Code

CONST

firnders = 103 {Unsidned inteder, +
Pi = 33,1415 {Unsidgned real. }
messade = ‘Use a fork!’3 String literal, H
nothing = NIL3

delicious = truei {Standard caonstant. ¥
nedg.ri = -pii {Feal unary¥ orerator. +
hands = finders DIY 33 {Constant expression, }
numforks = predihandsis {Constant expPression with ¥

{call to standard function. ¥

32

Cos

This function returns the cosine of the angle represented by its argument (interpreted in radians).
The range of the returned value is —1 thru + 1.

(@)D}~

Item | Description/Default | Range Restrictions
argument numeric expression implementation
dependent
Examples
Input Result
cos{x.rad)

cos(1.62) -4,91836E+00

Directives

A directive may replace a block in a procedure or function declaration.

procedure
—(PROCEDURE | Proveitie -
formal
parameter list
function result
—=(FuNcTION }—={ ;Sanciise. O8O)
formal
st

parameter 1i

black

ORWARD

F

block

FORWARD

In HP Standard Pascal, the only directive is FORWARD. The FORWARD directive makes it
possible to postpone full declaration of a procedure or function. Additional directives may be
provided by an implementation.

The term FORWARD may appear as an identifier in source code and, at the same time, as a
directive.

FORWARD Directive

The FORWARD directive permits the full declaration of a procedure or function to follow the first
call of the procedure or function. For example, suppose you declare procedures A and B on the
same level. Both A and B cannot call each other without using the FORWARD directive.

PROCEDURE A§ FORWARD:
PROCEDURE B3

BEGIN
Al {calls A}
END 3
PROCEDURE A3 {full declaration of AY}
BEGIN

+

B3 {calls B}
END 3

After using the FORWARD directive, you must fully declare the function or procedure in the same
declaration part of the block. Formal parameters, if any, and the function result type must appear
with the FORWARD declaration. You may omit these formal parameters or result type, however,
when making the subsequent full declaration (see example below). If repeated, they must be
identical with the original formal parameters or result type.

The FORWARD directive may appear with a procedure or function at any level.

33

34 Directives

Example Code

FUMCTION exclusive_or (xsv: boolean): hoolean;
FORWARD 3

+

FUNCTION exclusive_ori {Parameters not rereated,?
BEGIN
exclusive_or:= (x AND NOT v) OR (NDT x AND +)3
END 3

dispose

This procedure indicates that the storage allocated for the given dynamic variable is no longer
needed.

—(DISPOSEW —())~
O
value

Item Description/Default Range Restrictions
pointer identifier a variable of type pointer cannot be NIL or
undefined
tag value a case constant value must match case
constant value specified
inmnew
Examples
dispose(Ptr_var)
dispose(ptr_vars tlsessrtnd
Semantics

The procedure disrose(p) indicates that the storage allocated for the dynamic variable referenced
by p is no longer needed.

An error occurs if p is NIL or undefined. After dispase, the system has closed any files in the
disposed storage and p is undefined.

If you specified case constant values when calling new, the identical constants must appear as t
parameters in the call to disrose.

The pointer p must not reference a dynamic variable which is currently an actual variable para-
meter, an element of the record variable list of a WITH statement, or both.

35

36 dispose

Example Code

PROCRAM show_disrose {output)s
TYPE
marital_status = (singles engaged: married, widowed, divorced)s
vear = 1900,,2100;3
Ptr = “person_infos
persan-info = RECORD
name: stringlZ813
birdate: vears
next_rFerson: Ptri
CASE status: marital_status OF
married. divorced: (when: vear;
CASE hacs._kids: boolean OF
true: {(how_manvil, ,50);%

false: ()
1)
endaded: (date: vear)
single ¢ 13
END 3
VAR
P i PLT}
BEGIN
newl(p)s

+
+
dispose(p);
+
+
newl(Prengaged) s
+
+
dispose(psendaged)’
+
+
rew(Psmarried,false)’
4+
+
dispose(pimarried false)s
+

+

END.

DIV

This operator returns the integer portion of the quotient of the dividend and the divisor.

——Ijividend HDIVHidivisorJ—»

Item Description/Default Range Restrictions
dividend an integer or integer subrange -
divisor an integer or integer subrange not equal to 0
Examples
Input Result
dud DIV dur
413 DIV B 68

37

38

DO

See FOR. WHILE, WITH.

DOWNTO

See FOR.

ELSE

See [F.

END

See BEGIN.

39

Enumerated Types

An enumerated type is an ordered list of identifiers in parentheses. The sequence in which the
identifiers appear determines the ordering. The o rd function returns O for the first identifier; 1 for the
second identifier; 2 for the third identifier: and so on.

Enumerated Type

~©

identifier

There is no arbitrary limit on the number of identifiers that may appear in an enumerated type. The
limit is implementation dependent.

Enumerated types are user-defined simple ordinal types. -

Permissible Operators
assignment: :=

relational: Sy =y o=y Dy xzy by IN

Standard Functions
enumerated ords rreds succ
argument:

enumerated Fred: succ
return:

Example Code
TYPE
davs = (monday: tuesday,» wednesday,
thursdays fridavs saturdays sunday)si
color = {reds dreens bluey vellows cvan: madenta, white., black)s

40

eof

This boolean function returns t rue when the end of a file is reached.

EOF -~

file
variable

Item | Description/Default l Range Restrictions
file variable l variable of type file l file must be open
Examples

eof
eof(file_var)

Semantics

If the file f is open, the boolean function eof(f) returns t rue when f is in the write-only state, when f
is in the direct access state and its current position is greater than the highest-indexed component
ever written to f, or when no component remains for sequential input. Otherwise, eof(f) returns
false. If false, the next component is placed in the buffer variable.

When reading non-character values (e.g. intesers, reals, etc.) from a textfile, eof may remain
false even if no other value of that type exits in the file. This can occur if the remaining compo-

nents are blanks.

If fis omitted, the system uses the standard file irrut.

eoln
This boolean function returns t rue when the end of a line is reached in a textfile.
- D)
Item | Description/Default | Range Restrictions
textfile variable

variable must be a textfile file must be open in the
read-only state

Examples

eoln
eolnitext_file)

Semantics

The boolean function ealn(f) returns true if the current position of textfile f is at an end-of-line
marker. The function references the buffer variable {*, possibly causing an input operation to occur.
For example, after readin, a call to eoln will place the first character of the new line in the buffer
variable.

If f is omitted, the system uses the standard file ineut.

41

exp

This real function raises e to the power of the argument. The value used for Naperian e is
implementation dependent.

CORONETTINe

Item l Description/Default I Range Restrictions
argument numeric expression implementation
dependent
Examples
Input Result
EXPIMUM_BXP)
expi{3)} 2 00B3536RE31BT7TL+00L
exP(B.BE-3) 1, 00BB3IE+GO

exp(B.,BL-3} 1,00BB3883382838L+000

EXPORT

This reserved word precedes the types. constants, variables, procedures, and functions of a MOD-
ULE which can be used (IMPORTed) by other programs and modules.

{ . 1,
EXPORT) > -
| constant | ' -
declaration
declaration e
| variable }
declaration h
—=(_ PROCEDURE)| froretier Jj—r’O

function result type
FUNCTION))

.|

declaration

See MODULE.

43

44

Expressions

An expression is a construct which represents the computation of a result of a particular type. An
expression is composed of operators and operands. An operator performs an action on objects
denoted by operands and produces a value.

Operators are classified as arithmetic. boolean. relational. set, or concatenation operators. An
operand may be a literal, constant identifier, set constructor, or variable. Function calls are also
operands in the sense that they return a result which an operator can use to compute another value.

The result type of an expression is determined when the expression is written. It never changes. The
actual result, however, may not be known until the system evaluates the expression at run time. It
may differ for each evaluation. A constant expression is an expression whose actual result is
computable at compile time.

In the simplest case, an expression consists of a single operand with no operator.

Examples
¥i= 194 {Simrlest case, "19" is the exrression }
{ 1n the statement: "x = 189" ¥
100 + x4 {Arithmetic orperator with literal and i
{variable operands, }

(A OF B) AND (C OR D) ABoolean orerator with boolean orerands,’

¥oEoy {Relational operator with variable +
{orerands.,

o

zeth % setB3 {Set orerator with variable orperands. ¥
‘ice‘+ cream’ {Concateration orFerator with string ¥
{literal orerands. ¥

Syntax

Expression:
_ integer
expression j >
real
expression
boolean
expression
string
expression
set
expression

Expression

simple
expression

Simple Expression

<>

<=

o=

ClJelel L

N

simpl
express

’] ={ term } |

Term

o] |

DIV

é

AND

Simple Set Expression

set
factor

Expressions

45

46 Expressions

Factor

unsigned

constant |

| |

‘7] variable |

DL -0

NOT

factor

~(D
U

set type

identifier

(M
Y

expression]

expression

constant
identifier |

field

identifier

function

parameter]
1ist [

identifier

et
field
identifier

J

Relational Expressions Involving Sets:

N

simple ordinal
expression

simple set
expression

-

simple set
expression

Set Factor:

set
variable

simple set
expression

\/

simple ordinal | -

a !

simple ordinal
expressiaon

expression |
set
type .

1.
50~

Example Code

PROGRAM show_false{outrutls

TYPE
whaty lie : booleans

BEGIN
IF false THEMN writelnt
what 1= falsesd
lie 1= NOT trues

“alwavs

This predefined boolean constant is equal to the boolean value false.

falses mever printed’)3

IF what = lie THEM writeln{ MWould I 1ie?’}3

END .

false

47

48

FILE

This reserved word designates a declared data structure.

file type
identifier

type

~(F1LE OF -+ 16eil85ien
PACKED

Semantics

A file type consists of the reserved words FILE OF and a component type. See also text.

A logical file is a declared data structure in a HP Pascal program. A physical file is an independent
entity controlled by the operating system. During execution, logical files are associated with physical
files, allowing a program to manipulate data in the external environment.

A logical file is a sequence of components of the same type, which may be any type except a file
type or a structured type with a file type component. The number of components is not fixed by the
file type definition.

File components may be accessed sequentially or directly using a variety of HP Pascal standard
procedures and functions.

It is legal to declare a packed file. Whether this has any effect on the storage of the file is imple-
mentation dependent.

Example Code

TYPE
PETSON = RECORD
name: PACKED ARRAY [1..301 OF chars
adge: 1.,100;
END 3
person.file = FILE OF Fersons

bit_wector = PACKED ARRAY [1.,.1001 OF booleans
vector_file = FILE OF bit_vectors

FILE OF inteders
texts

data_file
doc_file

1 "

FILE

File Buffer Selector

A file buffer selector accesses the contents, if any, of the file buffer variable associated with the
current position of a file. The selector follows a file designator and consists of the caret symbol (7).

Buffer Variable:

file
variable

A file designator is the name of a file or the selected component of a structure which is a file. The @
symbol may replace the caret.

If the file buffer variable is not defined at the time of selection, a run time error occurs.

Example Code

PROGRAM show_bufferselectors
UaR

f : FILE OF inteder:

ash & intedersd

BEGIN
a:= f° + 23 {fAssidns current contents of file ¥
‘ {buffer plus 2 to a. +
friza + bi {fissigns sum of a and b to buffer 2

{variable. +

49

50

Files

Files are the means by which a program receives input and produces output. A file is a sequence of
components of the same type. This type may be any type, except a file type or a structured type
with a file type component.

Logical files are files declared in a HP Pascal program. Physical files are files which exist indepen-
dently of a program and are controlled by the operating system. You may associate logical and
physical files so that a program manipulates data objects external to itself.

The components of a file are indexed starting at component 1. Each file has a current component.
The standard procedure read(f,x) copies the contents of the current component into x and adv-
ances the current position to the next component. The procedure write(f,x) copies x into the
current component and, like read, advances the current position.

Each file has a buffer variable whose contents, if defined, are accessible using a selector.

One of the standard procedures reset. rewrite, arrend, or oren opens a file for input or output.
The manner of opening a file determines the permissible operations. In particular, reset opens a
file in the read-only state, i.e. writing is prohibited; rewrite and arrend open a file in the write-only
state, i.e. reading is prohibited: and oren opens a file in the read-write state, i.e. both reading and
writing are legal.

All files are automatically closed on exit from the block in which they are declared, whether by
normal exit or non-local GOTO. Files allocated on the heap are automatically closed when the file
or structure containing the file is disposed. All files are closed at the end of the program.

Files opened with reset, reurite, or arrend are sequential files. The current position advances only
one component at a time. Files opened with oren are direct access files. You may relocate the
current position anywhere in the file using the procedure seek. Direct access files have a maximum
number of components determinable with the standard function maxros. The maximum number of
components of a sequential file, on the other hand, is not determinable with a Pascal function.

Textfiles are sequential files with char type components. Furthermore, end-of-line markers sub-
structure textfiles into lines. The standard procedure writz=1n creates these markers. The standard
files ineut and outrut are textfiles. You cannot open textfiles for direct access.

The following table lists each HP Pascal file procedure or function together with a brief description
of its action. The third column of the table indicates the permissible categories of files which a
procedure or function may reference.

File Procedures and Functions

Procedure Permissible
or Function Action Files
append Opens file in write-only state. Current position is after | any
last component and eof is true.
close Closes a file. any
Returns true if file is write-only, if no component exists
eof for sequential input, or if current position in direct ac- | any
cess file is greater than lastpos.
eoln Returns true if the current position of a text file is at a | read-only
line marker. textfiles
get Allows assignment of current component to buffer | read-only or
and, in some cases, advances current position. read-write files
linepos Returns number of characters read from or written to | textfiles
textfile since last line marker.
lastpos Returns index of highest written component of direct | direct access files
access file.
maxpos Returns maxint or the maximum component read or | direct access files
written. Check implementation.
open Opens file in read-write state. Current positionis 1 and | any except a
eof is false. textfile
overprint A form of write which causes the next line of a textfile | write-only
to print over the textfiles current line. textfiles
page Causes skip to top of new page when a textfile is | write-only
printed. textfiles
position Returns integer indicating the current component of a | any file except a

non-text file.

textfile

Files 51

52 Files

Procedure Permissible
or Function Action Files
prompt A form of write which assures textfile buffers have | write-only
been written to the device. No line marker is written. textfiles

put Assigns the value of the buffer variable to the current | write-only or
component and advances the current position. read-write files

read Copies current component into specified variable pa- | read-only or
rameter and advances current position. read-write files

readdir Moves current position of a direct access file to desig- | direct access files
nated component and then performs read.

readln Performs read on textfile and then skips to next line. read-only

textfiles

reset Opens file in read-only state. Current position is 1. any

rewrite Opens file in write-only s035tate. Current position is 1 | any
and eof is true. Old components discarded.

seek Places current position of direct access file at specified | direct access files
component number.

write Assigns parameter value to current file componentand | write-only or
advances current position. read-write files

writedir Advances current position in direct access file to de- | direct access files
signed component and performs a write.

writeln Assigns parameter value to current textfile component, | write-only
appends a line marker and advances current position. | textfiles

Files 53

Opening and Closing Files

A program must open a logical file before any input, output, or other file operation is legal. Four file
opening procedures are available: reset, rewrite, aprend, or oren. When they appear as program
parameters, the standard textfiles ineut and outrut are exceptions to this rule. The system auto-
matically resets inrut and rewrites outeut.

The procedure reset opens a file in the read-only state without disturbing its contents. After reset,
the current position is the first component and the program can read data sequentially from the file.
No output operation is possible.

The procedure rewrite opens a file in the write-only state and discards any previous contents. After
rewrite, the current position is the beginning of the file. The program can then write data sequen-
tially to the file. No input operation is possible.

The procedure arrend is identical to the procedure rewrite except that the current position is
placed after the last component and the file contents are undisturbed. The program can then
append data to the file.

The . procedure oren opens a file in the read-write state. The contents of the file, if any, are
undisturbed and the current position is the beginning of the file. The program may then read or
write data.

A file opened in the read-write state is a direct access file. Using the procedure seet, the current
position can be placed anywhere in the file. Furthermore, direct access files permit calls to the
standard procedures readdir or writedir, which are combinations of seek and the procedures
read or write. Direct access files have a maximum number of components. The function maxros
returns this number.

In contrast, files opened in the read-only or write-only states are sequential files; the current position
only advances one component at a time and the maximum number of components cannot be
determined by a Pascal function.

The procedure ¢1ose explicitly closes any logical file and its associated physical file. You need not
use this procedure, however, before opening a file in a new state. For example, suppose file f is in
the write-only state and the program calls reset(f). The system first closes f and then resets fin the
read-only state.

The system also closes a file, not on the heap, when the program exits from the scope in which the
file was declared. The system closes a ‘‘heap’ file when the 4isrose procedure uses the pointer to
the file as a parameter or when the program terminates.

When a program finishes using an existing file, the file is closed in the same state that it existed when
it was opened.

When a program closes a file it has created, the implementation may allow an optional parameter to
be specified in the c1ose procedure. This parameter may affect the state of the file after the program
terminates.

54 Files

I/O Considerations

The procedures read and write perform the fundamental input and output operations. Read(f x)
copies the contents of the current component into x and advances the current position. Write(f.x)
copies x into the current component and advances the current position.

The original Pascal standard describes read and write in terms of the buffer variable f* and the
procedures set and rut. The procedure rut writes the contents of the buffer variable to the current
component and then advances the position. The procedure st copies the current component to
the buffer variable and advances the position.

Thus, the following are equivalent:

Write{f x} fro= xi
putifis

And these are equivalent:

Read(fx) = fos
det(f)3

These definitions of set and read, however, have certain unfortunate consequences when [/O
operations occur with interactive devices such as terminals (which were not available at the time
Pascal was designed). In particular, at the initiation of a program or following a call to readln, the
system tries to read a response before asking the question (writing a prompt).

HP Standard Pascal addresses this issue by defining a *‘deferred”” set which postpones the actual
loading of a component into the buffer variable. When programming, keep these practical implica-
tions in mind:

1. Suppose read(f.x) has just placed the value of component n in x. Then a reference to {*
copies the value of component n+1 into the buffer variable. It isn’t necessary to call set
explicitly. If set is called after a reas, however, a reference to f* copies the value of
component n + 2 into the buffer. Component n+ 1 is skipped.

2. The buffer variable is undefined after calls to rut, write, seek, writedir, writeln, oren,
rewrite, and arrend. Before inspecting the current component, you must call set or read
explicitly.

3. It is best not to use the buffer variable with direct access files. After read, for example, a
reference to f” places the next component in the buffer even if {* appears on the left side of
an assignment statement.

4. When reading a file sequentially, there may come a time when no component is available for
assignment to x. Calling read in this case will cause a run-time error. You should use eof to
determine if another component exists. On some files, notably terminals, this may require
that a device read be performed to request another component. The component is held in
the files’s buffer variable and will be produced as the next result of a call to read.

Files

5. Iffis a direct access file, eaf(f) is distinct from maxros(f). In particular eof is determined by the
highest-indexed component ever written to f. Maxros, on the other hand, is a limit on the size
of the associated physical file. An error occurs if a program attempts to read a a component
beyond the current e f. It is always possible, however, to write to a component with an index
no greater than naxeos(f). This will create a new eof condition if the index of the component
written is greater than the index of any previously written component. It is never possible to
write beyond naxros(f). See the implementation section.

6. When writing to a direct access file, a program may skip certain components. If the file is later
read sequentially, these components will have unpredictable values.

7. In a direct access file, the system doesn't allocate components preceding n until n is written. If
n is very large and preceded by many unused components, this allocation may take a
significant amount of time. (Use lower-indexed components in preference to higher-indexed
components.)

Logical Files

Any file declared in the declaration part of a HP Pascal block is a logical file. Within a program, the
scope of a file name is the scope of any other HP Pascal identifier. However, you may associate the
logical file with a physical file that exists outside the program. Then operations performed on the
logical file are performed on the physical file.

A logical file consists of a sequence of components of the same type. This type may be any type,
except the type file or a structured type with a file type component. Every logical file has a buffer
variable and a current position pointer.

The buffer variable is the same type as the type of the file's components. It is denoted:
fo

where f is the designator of the logical file. You can use the buffer variable to preview the value of
the current component.

The current position pointer is an integer index, starting from 1. It indicates the component that the
next input or output operation will reference. The function rosition returns the value of this index,
except in the case of textfiles.

After certain file operations, such as write with direct access files, the buffer variable is undefined.
You must call set before f* will access the value of the current position. After other operations, such
as read, a subsequent reference to f* will successfully access the current component. No get is
necessary.

You may assign the contents of {* to a declared variable of the appropriate type. Alternatively, the
value of an expression with an appropriate result type may be assigned to {”.

Textfiles are a special class of logical files substructured into lines (see below). Input and outrut are
standard textfiles.

55

56 Files

P

You must explicitly open any logical file before performing a file operation. except for inrut and
autrut when they appear as program parameters (see below). The four file opening procedures are
reset, rewrite, arrend, and oren (see below). The manner of opening a logical file determines its
“state”. For example, a file opened with arrend is in the write-only state. No input operation is
possible.

You may use the procedures read, write, set, and rut. and the function o, with any appropriate-
ly opened logical file, regardless of its type.

Example Code

PROGRAM show_lodgfile {inrutoutrutsbfilels
TYPE
book.info = FECORD
title 1 FACKED ARRAY [1..30]1 OF chars
author @ FACKED ARRAY [1..50G] OF char:
nurber r 1, 32000%
status @ {on_shelfschecked_out:lostsordered)
END 4
VAR
old_book: book_infos
bfile : FILE OF book_infoi {Declaring a lodical file, ¥
POSMUM ¢ inteders

BEGIN
reset{bfile)s {0Opening lodical file which is associated }
' {by default with the file named ‘BFILE’,
old_books= bfile” i {Assidning buffer variable to ¥
R {declared variable, H
posnum:= Fosition(bfile)s {Using index of current 7
' {compPanent . ¥

END .

Physical Files

The operating system controls physical files which exist independently of an HP Pascal program.
These files may be permanent files on disc or other media. or interactive files created at a terminal.

A particular physical file may be associated with a logical file declared in an HP Pascal program. The
type of the logical file determines the characteristics of the physical file.

Except for textfiles, all physical files associated with Pascal logical files are fixed length binary files.
The record length of these files depends on the type of the component.

The system associates textfiles with variable length ASCII files.

Files

Textfiles

Textfiles are a special class of logical files which are substructured into lines by end-of-line markers.
Textfiles are declared with the standard identifier text. The components of a textfile are type char.

If the current position in a textfile advances to a line marker (i.e. beyond the last character of a line),
the function eoln returns true and the buffer variable is assigned a blank. When the current
position advances once more, a reference to the buffer variable will access the first character of the
next line and eoln returns false, unless the next line has no characters. An end-of-line marker is
not an element of type char. Only the procedure writeln places it in a textfile. A line marker always
precedes an eof condition, whether the last line was terminated with writeln or not.

The procedures readin, writeln, rage, rromet, and overerint, and the functions eoln and line-
ros are available exclusively for textfiles.

Reading from a textfile may entail implicit data conversion. In certain cases, the operation searches
the textfile for a sequence of characters which satisfies the syntax for a st rins, PAC, or simple type

other than char.

Wiriting to a textfile may entail formatting of the output value. You can specify a field-width
parameter or allow the system to use various default field-width values.

Textfiles cannot be opened for direct access. Their format is incompatible with certain direct access
operations.

The system defines two standard textfiles, inrut and output.

57

FOR

The FOR statement executes a statement a predetermined number of times.

G S F N Nl G R €D) e
DOWNTO

Item Description/Default Range Restrictions
loop counter ordinal variable must be local to the
block in which the loop
appears
initial value ordinal expression -
final value ordinal expression -
Semantics

The FOR statement consists of the reserved word FOR and a control variable initialized by an
ordinal expression (the initial value): either the reserved word TO indicating an increment or the
reserved word DOWNTO indicating a decrement; another ordinal expression (the final value); the
reserved word DO: and a statement.

The control variable is assigned each value of the range before the corresponding iteration of the
statement.

The control variable must be a local ordinal variable. It may not be a component of a structured
variable or a locally declared procedure or function parameter. The initial and final values must be
type compatible with the control variable. They must also be in range with the control variable
when the initial value is first assigned. The statement after DO, of course, may be a compound
statement.

When the system executes a FOR statement, it evaluates the initial and final values and assigns the
initial value to the control variable. Then it executes the statement after DO. Next, it repeatedly tests
the current value of the control variable and the final value for inequality, increments or decrements
the control variable, and executes the statement after DO.

After completion of the FOR statement, the control variable is undefined.
In a FOR..TO construction, the system never executes the statement after DO if the initial value is

greater than the final value. In a FOR..DOWNTO construction, it never executes the statement if
the initial value is less than the final value.

The FOR statement

FOR control_var := initial TO final DO
statement

is equivalent to the statement

BEGIN
templ := initial}
temp? 1= fimals
IF templ <= temprZ THEN
BEGIN
control.var := templs
statement i
WHILE control_var < temp2 DO
BEGIN
control_var := succ{control_var)i {increment?}
statement 3

END 3
END
ELSE BEGIN END3 {Don’t execute statement at allil
END {control.var now undefivned, }
The FOR statement
FOR control_var := initial DOWNTO final DO
statement

is equivalent to the statement

BEGIN
templ := initials
tempZ 1= finals
IF templ = temp2 THEN
BEGIN
control_var := temprls3
statement’
WHILE control_var < temp2 DO
BEGIN
contraol_var = pred(control_var)i {decrement?}
statements
END
END

ELSE BEGIN END3 {Don’t execute statement at allil

END {control_var now undefined,

FOR

In the statement after DO, the compiler protects the control variable from assignment. You cannot
pass the control variable as a variable parameter or use it as the control variable of a second FOR
statement nested within the first. Furthermore, it may not appear as a parameter for the standard
procedures read or readln. Also, the statement cannot call a procedure or function which changes

the value of the control variable.

59

60 FOR

The system determines the range of values for the control variable by evaluating the two ordinal
expressions once, and only once, before making any assignment to the control variable. So the
statement sequence

1= 3%
FOR i := pred(i) TD succ{i) DO writelni{‘i=* izl)}

will write

1=

._..,_.
[T I o
(SR 1]

instead of

1=4

=

n}

-

Example Code

{VAR color: (red: dreens blues vellow) i}
FOR color := red TO blue DO
writeln (‘Color is ‘+ colorls

+

FOR 1 := 10 DOWNTO ¢ DO
Wwriteln (i)s
writeln (‘Blast Off')3

+

FOR 1 = {(alJdl % 13) TO {(f(x) DIV 40) DO
IF odd(i) THEN
¥[il 2= cos(i)
ELSE
x[1] 1= sin(i)s

FUNCTION

A function is a block which is activated with a function call and which returns a value. A function
declaration consists of a function heading followed by a block or a directive.

» () I functio | . result
FUNCTION identifigr | : o
faormal
L’®_.|7parameter‘ list
~C =
FORWARD

Formal Parameter List

heading

identifier

type
identifier

Heading

procedure | >
PROCEDURE | Sioveirier |
formal
parameter list
function | = -PeSUIt
FUNCTIO"D—’I identifier | N type
formal
parameter list

Item Description/Default Range Restrictions
function identifier name of a user-defined function any valid identifier
formal parameter list see diagram -
result type type identifier any previously defined

type
heading see drawing -

61

62 FUNCTION

Semantics

A function heading consists of the reserved word FUNCTION, an identifier (function name), an
optional formal parameter list. and a result type. The result type may be any type. except a file type
or a structured type containing a file.

A directive can replace the function block to inform the compiler of the location of the block.

In the body of a function block there must be at least one statement assigning a value to the
function identifier. This assignment statement determines the function result. If the function result is
a structured type. you must assign a value to each of its components using an appropriate selector.

Function declarations may occur at the end of a declaration section after label, constant, type,
variable declarations. and MODULE declarations at the outer level. You may repeat function
declarations and intermix them with procedure declarations.

Function Calls

A function call activates the block of a standard or declared function.

Factor Containing a Function:

function (| >
identifier o

O -0
. field
e O

Semantics

The function returns a value to the calling point of the program. An operator can perform some
action on this value and. for this reason. a function call is an operand.

A function call consists of a function identifier. an optional list of actual parameters in parentheses,
and an optional selector.

The actual parameters must match the formal parameters in number. type. and order. The function
result has the type specified in the function heading.

Actual value parameters are expressions which must be assignment compatible with the formal
value parameters.

Actual variable parameters are variables which must be type identical with the formal variable
parameters. Components of a packed structure may not appear as actual variable parameters.

Actual procedure or function parameters are the names of declared procedures or functions.
Standard functions or procedures are not legal actual parameters.

The parameter list, if any, of an actual procedure or function parameter must be congruent with the
parameter list of the formal procedure or function parameter. See the Procedure Statement.

Functions may call themselves recursively. See Recursion.

If an actual function or procedure parameter, upon activation, accesses any entity non-locally, then
the entity accessed is one which was accessible to the function or procedure when its identifier was
passed. For example, suppose Procedure A uses the non-local variable x. If A is passed as a
parameter to Function B, then it still has access to x, even if x is otherwise inaccessible in B.

If the function result is a structured type, then the function call may select a particular component as
the result. This requires the use of an appropriate selector.

63

64 Function Calls

Example Code

PROGRAM show_function (inputsouteput)]
VAR

L[]

coef

answer: integers

FUNCTION fact (P: integer) : intedger:
BEGIN
IF P > 1 THEN
fact 1= p % fact (p-1)
ELEE fact 1= 1|
END 3

FUNCTION binomial_coef (n: r: inteder) : integer;
BEGIN
binomial_coef := fact {n) DIY {fact (r) % fact {(n-ri}
END 3

BEGIN {show_function}
read(n)i
FOR coef := 0 TO n DO
writeln (binomial_coef (n: coaf))}
ENDy {show_function}

get

This procedure assigns the value of the current component of a file to its argument.

file
(D D

Item I Description/Default | Range Restrictions

file identifier variable of type file file must be open to read

Example

get{file_var)

Semantics

The file must be in the read-only or read-write state.

The procedure set(f) advances the current file position and causes a subsequent reference to the
buffer variable {” to actually load the buffer with the current component. In certain circumstances,
namely after a call to read, set also advances the current position.

If the current component does not exist when set is called, {* will be undefined and eaf(f) will
return true. An error occurs if f is in the write-only state or if eaf(f) is t rue prior to the call to set.

If you oren a file, a et must be performed before the buffer variable contains valid data. However,
if you reset a file, the buffer variable contains valid data and a set should not be performed until
you want to access the second component.

65

66 get

Hlustration

Suppose exanr_file is a file of char with three components which has just been opened in the
read-write state. The current position is the first component and examp_file” is undefined. To
inspect the first component, we call set:

{initial condition for open}

current position
l
state : read-write
examp_file”™: undefined
a b c)
eof(examp_file) : false

get(examp_file):

current position

l

state : read-write
’ a b c a b c examp_file” (deferred) : a

eof(examp_file) : false

The current position is unchanged. Now. however. a reference to examr_file* loads the first
component into the buffer. We assign the buffer to a variable.

char_var: = examp_file”®

current position

l

state : read-write
’ a b c examp_file”™ : a

eof(examp_file) : false

get(examp_file);
current position
l
state : read-write

a b c examp_file” (deferred) : b
eof(examp_file) : false

Global Variables

Global variables are declared in the outermost block of a program or module and are available to all
of the procedures and functions within the program or module.

Conversely, “local” variables are declared within a particular procedure or function and their
“scope’’ is limited to that procedure or function.

67

68

GOTO

A GOTO statement transfers control unconditionally to a statement marked by a label.

Semantics
A GOTO statement consists of the reserved word GOTO and the specified label.

The scope of labels is restricted. Labels may only mark statements appearing in the executable
portion of the block where they are declared. They cannot mark statements in inner blocks. GOTO
statements, however, may appear in inner blocks and reference labels in an outer block. Thus, it is
possible to jump out of a procedure or function but not into one.

A GOTO statement may not lead into a component statement of a structured statement from
outside that statement or from another component statement of that statement. For example, it is
illegal to branch to the ELSE part of an IF statement from either the THEN part, or from outside the
IF statement.

A GOTO statement which refers to a non-local label declared in an outer routine will cause any
local files to be closed.

GOTO 69

Example Code

PROGRAM show_dotos
LABEL 300, 3013
TYPE
index = 1,,10%
VAR
iy indexs
tardet: inteders
a: ARRAY[index] OF inteders
PROCEDURE checks
VAR
answers string L1013
BEGIN
{ask user if OK to search?}
IF answer= ‘no’ THEN GOTO 50135 {Jumping out of procedure’

END 3

BEGIN {show_do0to}

+

checks’

FOR 1 = 1 T0 10 DO
IF target = alil THEN GOTO 5003
writeln (7 Not found?)3
GOTO 2013
200
writeln (Found?®)3
S0
END, A{show_doto}

70

halt

This procedure terminates the execution of the program.

HALT > -
integer
expression

Examples
halt
halt{int_exp)

Semantics

Execution of a program is stopped by the halt procedure. When an integer expression is included,
the operating system will return the integer value in an error message.

Heap Procedures

HP Pascal distinguishes two classes of variables: static and dynamic.

A static variable is explicitly declared in the declaration part of a block and may then be referred to
by name in the body. The compiler allocates storage for this variable on the stack. The system does
not deallocate this space until the process closes the scope of the variable.

On the other hand. a dynamic variable is not declared and cannot refer to by name. Instead, a
declared pointer references this variable. The system allocates and deallocates storage for a dyna-
mic variable during program execution as a result of calls to the standard procedures new and
disrose. The area of memory reserved for dynamic variables is termed the “heap”.

HP Pascal also supports the standard procedures nark and release. Mark records the state of the
heap. A subsequent call to release returns the heap to the state recorded by mark. Effectively, this
disposes any variables allocated since the call to nark.

Dynamic variables permit the creation of temporary buffer areas in memory. Furthermore. since a
pointer may be a component of a structured dynamic variable. it is possible to write programs with

dynamic data structures such as linked lists or trees.

Depending on implementation, mark and release may not perform any action.

71

72

hex

This function converts a hexadecimal string expression or PAC into an integer.

hexadecimal
(O O

Item l Description/Default I Range Restrictions
hexadecimal string string expression or PAC variable implementation
dependent
Examples

Input Result

hex(strng)

hex{'FF") 255
~hex (“FF) -258

If your particular implementation used 32-bit 2's complement notation, the following example
would also work.

hex ("FFFFFFQOL ") -255

Semantics

The function hex(s) converts s to an integer. S is interpreted as a hexadecimal value.

The three numeric conversion functions are binary, hex, and sctal. All three accept arguments
which are string or PAC variables, or string literals. The compiler ignores leading and trailing blanks
in the argument. All other characters must be legal digits in the indicated base.

Since binary, hex. and octal return an integer value, all bits must be specified if a negative result is
desired. Alternatively, you may negate the positive representation.

Identifiers

An HP Pascal identifier consists of a letter preceding an optional character sequence of letters,
digits, or the underscore character (_).

-

letter
H.'

Examples
GOOD.TIME_D {These identifiers ¥
good.time_9 {are ¥
g00d_TIme_ 8 {equivalent. ¥
¥x2.G0
a.londg.identifier
boolean {Standard identifier.+?}
Semantics

Identifiers denote declared constants, types, variables, procedures, functions, and programs.

A letter may be any of the letters in the subranges A..Z or a..z. The compiler makes no distinction
between upper and lower case in identifiers. A digit may be any of the digits O through 9. The
underscore (_) is an HP Standard Pascal extension of ANSI Standard Pascal.

An identifier may be up to a source line in length with all characters significant.

In general, you must define an identifier before using it. Two exceptions are identifiers which define
pointer types and are themselves defined later in the same declaration part, and identifiers which
appear as program parameters and are declared subsequently as variables. Also, you need not
define an identifier which is a program, procedure, or function name, or one of the identifiers
defining an enumerated type. Its initial appearance in a function, procedure, or program header is
the “‘defining occurrence”. Finally, HP Pascal has a number of standard identifiers which may be
redeclared. These standard identifiers include names of standard procedures and functions, stan-
dard file variables, standard types, and procedure or function directives.

Reserved words are system defined symbols whose meaning may never change. That is, you
cannot declare an identifier which has the same spelling as a reserved word.

73

74

IF

An IF statement specifies a statement the system will execute provided that a particular condition is
true. If the condition is false, then the system doesn’t execute the statement, or, optionally, it
executes another statement.

C I) l boolean THEN statement r— > o
ELSE statement

The IF statement consists of the reserved word IF, a boolean factor. the reserved word THEN, a
statement, and. optionally, the reserved word ELSE and another statement.

When an IF statement is executed, the boolean factor is evaluated to either true or false, and one of
the three actions is performed.

1. If the value is true, the statement following THEN is executed
2. If the value is false and ELSE is specified. the statement following the ELSE is executed.

3. If the value is false and no ELSE is specified, execution continues with the statement
following the IF statement.

The statements after THEN or ELSE may be any HP Pascal statements, including other IF state-
ments or compound statements. No semicolon separates the first statement and the reserved word
ELSE.

The following IF statements are equivalent:

IF a = b THEN

IF a = b THEN BEGIN
IF ¢ = 4 THEM IF ¢ = d THEN
a = ¢ a 1= g
ELSE ELSE
a 1= e} a 1= ey
END ¥

That is, ELSE parts that appear to belong to more than one IF statement are always associated with
the nearest IF statement.

A common use of the IF statement is to select an action from several choices. This often appears in
the following form:

IF el THEN
ELSE IF eZ THEN
ELSE IF e3 THEN

ELSE

[

IF 75

This form is particularly useful to test for conditions involving real numbers or string literals of more
than one character, since these types are not legal in CASE statements.

It is possible to direct the compiler to perform partial evaluation of the boolean expressions used in
an IF statement. See the compiler directives for your particular implementation.

Example Code

PROGRAM show_if (inpPut output)i

VAR
isd ¢ inteders
s : PACKED ARRAY [1.,.51 OF chari

found: booleans

BEGIN
IF i = O THEN writeln (71 = 07)3 {IF with no ELSE. ¥
IF found THEN {IF with an ELSE Part, ?}
writeln (/Found it’)
ELSE

writeln (/Still looking’);i
IF i = J THEN {Select among different}
writeln (71 = J7) {boolean exPpressions.
ELSE IF i < J THEN
writeln (/1 < J7)
ELSE {i » J}
writeln (71 » 7)1

+

IF s = ‘RED’ THEN {This IF statement H
i:=1 {cannot be rewritten as?}
ELSE IF s = ‘GREEN’ THEN {a CASE statement ¥
i= 2
ELSE IF s = ‘BLUE’ THEN
i = 3i

END.

76

IMPLEMENT

This reserved word indicates the beginning of the internal part of a MODULE. The implement
section may be empty or it may contain declarations of the types, constants, variables, procedures,
and functions that are only used within the module.

IMPLEMENT

See MODULE.

IMPORT

This reserved word indicates which modules will be needed to compile a program or module.

dul
—-CIMPORT)—EES;Q-‘

See MODULE.

77

78

IN

This operator returns t rue if the specified element is in the specified set.

element IN set
identifier identifier

Item Description/Default Range Restrictions
element identifier expression of an ordinal type see semantics
set identifier expression of type SET see semantics

Example

IF item IN set_of_items THEN rFrocesss

Semantics
Both the element being tested and the elements in the setmust be of the same type.

The result is false if the object is not a member of the set.

Example Code

PROGRAM show_ia{output)s

VAR
ch :+ char}
good : set of chars
more 3 set of chars
member ¢ boolaan}

BEGIN
ch 1= ‘v 7’3
good 1= [y +'%Y 4y 'n’y'N'1%
more = [‘a’.,"z'1%
IF ch IN dood THEN
member := true
ELSE
member 1= falsey
writeln{membar) s
END .,

input

The standard textfiles inrut and outrut often appear as program parameters. When they do, there
are several important consequences:

1.
2.
3.

You may not declare inrut and outrut in the source code.
The system automatically resets inrut and rewrites autrut.

The system automatically associates inrut and suteut with the implementation dependent
physical files.

If certain file operations omit the logical file name parameter. irrut or gutput is the default
file. For example, the call read(x). where x is some variable. reads a value from inrut into x.
Or consider:

PROGRAM mute (inputli
VAR answer : strind[25513
BEGIN
readlnf{answer}s
END .

The program waits for a something to be typed. No prompt can be written without adding sutrut to
the program heading.

79

80

integer

This type is a subrange whose lower bound is the standard constant minint and whose upper
bound is the standard constant maxint.

Examples
VAR
wholenum: intedert
Tedebel ¢ inteders
Semantics
Inteser is a standard simple ordinal type whose range is implementation defined.
Permissible Operators
assignment: =
relational: CaodEy o=y Ly by o=y IN
arithmetic: +o o o- ¥y /oy DIV, MOD
Standard Functions

integer argument: abs+ arctan: chry cosy expy lny odds ords preds sins sar.
59Tty SUGC

integer return: abss binarvy hex, lineposs lastross maxpPoss octals ord:
positions pred, rounds strlens strmaxs StrPOS: S9ry trunc

LABEL

A label declaration specifies integer labels which mark executable statements in the body of the
block. The GOTO statement transfers control to a labeled statement.

Label Declaration:

. I

integer

Labelled Statement:

unsigned unlabelled
integer statement

Semantics
The reserved word LABEL precedes one or more integers separated by commas.

Integers must be in the range 0 to 9999. Leading zeros are not significant. For example, the labels 9
and 00009 are identical.

Label declarations must come first in the declaration part of a block.
You cannot use a label to mark a statement in a procedure or function nested within the procedure,
function, or outer block where the label is declared. This means a GOTO statement may jump out

of but not into a procedure.

The Label declaration must occur in the declaration part of the block which contains the label.

Example
LABEL 9 19, 403

81

82

lastpos

This function returns the integer index of the last component of a file which has been written.

(Las7P08)OO sgeneifrer =)

[tem | Description/Default Range Restrictions

file identifier a file type variable file must be opened in
the read-write state

Example

lastros(file_var)

Semantics

The function 1astros(f) returns the integer index of the last component of f which the program may
access. An error occurs if f is not opened as a direct access file.

linepos

This function returns the number of characters read from or written to a textfile since the last
end-of-line marker.

D O N0

Item | Description/Default Range Restrictions

textfile identifier a textfile textfile must be opened

Example

linepos{text_file)

Semantics

The function 1ineros(f) returns the integer number of characters read from or written to the textfile
f since the last end-of-line marker. This does not include the character in the buffer variable {*. The
result is zero after reading a line marker, or immediately after a call to readln or writeln.

The standard files inrut or autrut must be specified by name.

83

84
In

This function returns the natural logarithm (base e) of the argument.

GO~ -0

Item | Description/Default I Range Restrictions
argument numeric expression must be greater than 0

Examples

Input Result

In{rum_exp)

In(d3) 3 7BLZ0O0E+00

In(zZv121) 7+51BB74E-01

In{0) {error}
Semantics

The function 1n(x) computes the natural logarithm of x. If x is 0 or less than 0, a run-time error
occurs.

85

Local Variables

Local variables are variables declared within a particular procedure or function and their ‘“‘scope’ is
limited to that procedure or function.

Conversely, ‘‘global’’ variables are declared in the outermost block of a program or module and are
available to all of the procedures and functions within the program or module.

86

longreal

This standard simple type represents a subset of real numbers.

Semantics

Landreal is a standard simple type. Although similar in usage to the real type, the letter “L" is used
to indicate the start of the exponent instead of the letter “E”. (See below.)

Permissible Operators

assignment: :=
relational: poAmg oZa Sy vEad
arithmetic: TN

Standard Functions
longreal ats: arctans coss exps Iny rounds sins sars sarts trunc
argument:

longrealre- abss arctany cosy expy Iny sine sar sart
turn:

Example Code

VAR
precisenum: londreal?
BEGIN
precisenums= 1,1Z2343676891L+1043

+

mark
This procedure marks the state of the heap.
()~ O
Item I Description/Default | Range Restrictions
heap marker | a pointer variable | -
Usage

mark{ptr_var)

Semantics

The procedure nark(p) marks the state of the heap and sets the value of p to specify that state. In
other words, mark saves the state of the heap in p. which must not subsequently be altered by
assignment. If altered, you will be unable to perform the corresponding release.

The pointer variable appearing as the p parameter must be a dedicated variable. It should not be
dynamic variable.

Mark is used in conjunction with release. See the example under release.

87

88

maxint

This standard constant returns the largest value that can be represented by the inteser type.

Semantics

The constant maxint returns the largest value that can be represented by an inteser. The value is
implementation dependent.

Example Code

PROGRAM show_maxint(inPut soutpPut) s

VAR
1+d 1 integers
r roreals

BEGIN

readln(isd)s

o= 1o+ s

IF r % maxint THEN writeln(‘Sum too larde for inteders,’);
END,

maxpos
This function returns the index of the last accessible component of a file.
© @
Item I Description/Default I Range Restrictions
file identifier name of a logical file file must be opened

Example

maxpos(file_var)

Semantics

The function maxros(f) returns the integer index of the last component of f which the program could
possibly access. An error occurs if f is not opened as a direct access (read-write) file.

For extensible files, naxros(f) returns the value of maxint.

89

90

minint
This standard constant returns the smallest value that can be represented by the inteser type.

Semantics

The constant wirnint returns the smallest value that can be represented by an intesder. The value is
implementation dependent.

In general, the range of signed integers allows the absolute value of minint to be greater than
maxint,

Example Code

PROGRAM show_minint(inputsoutput)s

JAR
ivd & integers
T i oreals

BEGIN

readlnlisd)d v 3= 1 - Js

IF r < minint THEN writeln{‘'Difference too larde for inteders, ‘)3
END,

91

MOD

This operator returns the remainder of an integer division.

——l dividend '——(MOD)—" divisor I-—>

Item | Description/Default Range Restrictions
dividend an integer or integer subrange -
divisor an integer or integer subrange greater than 0
Examples
Input Result
dvs MOD dur
4 MOD 3 1

3

7 MOD 35

92

MODULE

This reserved word indicates the beginning of a separate unit of compilation.

dul t
—(vonue)+ aineitier =G [’ o e on - IMPLEMENT
i t
de;Tgrglion

[* o END

constant procedure
declaration declaration
Type function Note: When modules are

Ay

Note: Procedure/function pust end with a period.
declarations need not

duplicate informatiaon

contained in the EXPORT

list.

the last module in a file
declaration

Example
MODULE mod_id

Semantics

A MODULE can be compiled separately or included in the compilation of a program. The general
form of a module is shown in the following example.

Example Code

MODULE show.modules

IMPORT my_modules

KPORT

T \‘I

PE
brie =

VAR

testhyt

FUNCTION

IMPLEMENT

T \If

PE
boot =

PROCEDURE

BEGIN
IF i
END 3

FUNCTION

END.

BEGIN

IF 1 <

ELSE
END3

0402353

e 1 bytes

control{

0442353

check(1l =

i

bvte)

bvte)s

hooleans

-~ 127 THEN writeln(' non-ASCII

controlli

control

thvte)

32 then control

falses

bhooleans

true

{Module declaration

{Other modules needed for
{compilation of this module

{Start of export text

{Exrported tvre

{Exported variable

{Exported function

{Gtart of implementation

{Non-exported tvre

{Non-exeported procedure

character’)}

{Exported function

}

}

MODULE 93

9

Modules

A module provides a mechanism for separate compilation of program segments.

Semantics

A module is a program fragment which can be compiled independently and later used to complete
otherwise incomplete programs. A module usually defines some data types and variables. and
some procedures which operate on these data. Such definitions are made accessible to users of the
module by its export declarations.

The source text input to a compiler (complete unit of compilation) may be a program or a list of
modules separated by semicolons (). An implementation may allow only a single module to be
compiled at a time. thus requiring multiple invocations of the compiler to process several modules.
The input text is terminated by a period.

A module is a collection of global declarations which may be compiled independently and later
made part of a program block. Any module used by a program whether appearing in the program'’s
globals or compiled separately, must be named in an import declaration. Modules, and the objects
they export, always belong to the global scope of a program which uses them.

A module cannot be imported before it has been compiled. either as part of the importing program
or by a previous invocation of the compiler. This prevents construction of mutually-referring
modules. Access to separately compiled modules is discussed below.

Although a module declaration defines data and procedures which will become globals of any
program importing the module. not everything declared in the module becomes known to the
importer. A module specifies exactly what will be exported to the “outside world”, and lists any
other modules on which the module being declared is itself dependent.

The export declaration defines constants and types, declares variables, and gives the headings of
procedures and functions whose complete specifications appear in the implement part of the
module. It is exactly the items in the export declaration which become accessible to any other code
which subsequently imports the module.

There need not be any procedures or functions in a module if its purpose is solely to declare types
and variables for other modules.

Any constants, types and variables declared in the implement part will not be made known to
importers of the module; they are only useful inside the module, and outside it they are hidden.
Variables of the implement part of a module have the same lifetime as global program variables,
even though they are hidden.

Modules

Any procedures or functions whose headings are exported by the module must subsequently be
completely specified in its implement part. In this respect the headings in the export declaration are
like FORWARD directives. and in fact the parameter list of such procedures need not be (but may
be) repeated in the implement part. Procedures and functions which are not exported may be
declared in the implement part: they are known and useful only within the module.

Separately compiled modules are called “library modules™. To use library modules, a program
imports them just as if they had appeared in the program block.

When an import declaration is seen, a module must be found matching each name in the import
declaration. If a module of the required name appears in the compilation unit before the import
declaration, the reference is to that module. Otherwise, external libraries must be searched.

The compiler option $SEARCH “strins’$ names the order in which external libraries are searched,
The parameter is a literal string describing the external libraries in an implementation-dependent
fashion. Multiple files are specified by multiple strings. For instance,
$SEARCH ‘filel’s‘fileZ’+ file3’$. This option may appear anywhere in a compilation unit, and
overrides any previous SEARCH option.

95

96

new

This procedure allocates storage for a dynamic variable.

Fointer .)
identifier h
tag
value

[tem | Description/Default I Range Restrictions

pointer identifier

a pointer type variable ‘ -

tag case constant

Examples

newi(ptr)
new{rtrstadls,.vstadn)

Semantics

The procedure neu(p) allocates storage for a dynamic variable on the heap and assigns its address
to the pointer variable p. If insufficient heap space is available for the allocation, a run-time error
occurs.

If the dynamic variable is a record with variants, then t may be used to specify a case constant. This
constant only determines the amount of storage allocated. The procedure call does not actually
assign it to the dynamic variable. For nested variants, you must list the values contiguously and in
the order of their declaration.

If you call new for a record with variants and do not specify any case constants, the compiler
determines storage by the size of the fixed part plus the size of the largest variant.

You should be careful when using an entire dynamic record variable allocated with one or more
case constants as an operand in an expression, an actual parameter, or on the left side of an
assignment statement. The variant may be smaller than the actual size at run time.

The pointer variable may be a component of a packed structure.

Pointer dereferencing accesses the actual values stored in a dynamic variable on the heap.

new

Example Code

PROGRAM show_new (outrputli

TYPE
marital_status = {sindles endadeds married, widoweds divorced)}
year = 1900,,21003
ptr = “person.infol

persan-info = RECORD
name: stringlE513
kirdate: vears
next_person: Ptri
CASE status: marital-status OF
married,,divorced: (when: veari
CASE has_kids: boolean OF
true: {(how_manv: 1.,30)
1)
endaded: (date: vear)
sindle 1 13
END3

VAR
P : Ptrd
BEGIN {Various ledal calls of new.?
i
+
new(p)i
+
+
new(rsengaded)]
+
new(psmarried)’
+
new(pswidowed false)s
+

END.

97

98

NIL

This predefined constant is used when a pointer does not contain an address.

NIL

Semantics

NIL is compatible with any pointer type. A NIL pointer (a pointer that has been assigned to NIL)
does not point to any variable at all.

NIL pointers are useful in linked list applications where the “link”” pointer points to the next element
of the list. The last element’s pointer can be assigned to NIL to indicate that there are no further
elements in the list.

An error occurs when a NIL valued pointer is dereferenced.

NOT

This boolean operator complements a boolean factor.

—.(NOT)—"-I bfoaoclteoapn I__,

Example
NOT dorne

Semantics

The NOT operator complements the value of the boolean factor following the NOT operator. The
result is of type boolean.

Example Code

PROGRAM show_not{inPutroutput);i

VAR
times money : booleans
line 1 string[23513

test_file : filesd

BEGIN

4

IF NOT (time AND momney) THEN wait;i

+

WHILE NOT eof{test.file) DO
BEGIN
readln{test_filesline)s
writeln{line)s
END3

+

END.

99

100

Numbers

HP Pascal recognizes three sorts of numeric literals: integer, real, and longreal.

Integer Literals

An integer literal consists of an sequence of digits from the subrange 0..9. No spaces may separate
the digits for a single literal and leading zeroes are not significant. The compiler interprets unsigned
integer literals as positive values.

The maximum unsigned integer literal is equal in value to the standard constant maxint. The
minimum signed integer literal is equal in value to the standard constant minint. The actual value is
implementation dependent.

Unsigned Integer: Signed Integer

unsigned
integer

Real and Longreal Literals

A real or longreal literal consists of a coefficient and a scale factor. An “E” preceding the scale factor
is read as “‘times ten to the power of” and specifies a real literal. An “‘L" preceding the scale factor
also means ‘‘times ten to the power of ’, but specifies a longreal literal.

Lowercase “e” and “I” are legal. At least one digit must precede and follow a decimal point. A
number containing a decimal point and no scale factor is considered a real literal.

Unsigned Real: Signed Real
unsigned . o unsigned
——(ﬁ%‘r——-idwt.&J - g BT

unsigned
integer

Number:
unsigned
integer

unsigned
real

Numbers 101

Examples
100 {Inteder. ¥
041 {Feal with no scale factor. 1}
SE-3 {Real with no decimal Point.}
3.14159265358873L0 {Londreal., }

87,35e+8B {Real, +

102

octal

This function converts a string or PAC, whose literal value is an octal number. to an integer.

D e O i 2 O

Item | Description/Default l Range Restrictions
octal string string expression or PAC variable implementation
dependent
Examples

Input Result

octal(strngd)

octal(/777) 63
-octal ('777) -G3

If your particular implementation used 32-bit 2's complement notation, the following example
would also work.

octal("37777777701") -63

Semantics

The function actal(s) converts s to an integer. S is interpreted as an octal value.

The three numeric conversion functions are tinary, hex, and gctal. All three accept arguments
which are string or PAC variables, or string literals. The compiler ignores leading and trailing blanks
in the argument. All other characters must be legal digits in the indicated base.

Since tinary, hex, and ectal return an integer value, all bits must be specified if a negative result is
desired. Alternatively, you may negate the positive representation.

103

odd

This function returns t rue if the integer expression is odd, and false otherwise.

integer
expression

Examples
Input Result
odd{int_var)
odd{ord(color))
odd (2 + 4) false
0dd(-32767) true
0dd (32768) false
odd () false

104

OF

See ARRAY, CASE, FILE, and String Constructor.

open

This procedure opens a file in the read-write state and places the current position at the beginning
of the file.

file)
identifier -
physical file |
specifier

options
string

Item Description/Default Range Restrictions
file identifier name of a logical file file cannot be of type text
physical file specifier name to be associated with f; must be a string -

expression or PAC variable
options string a string expression or PAC variable implementation
dependent
Examples

open{file_var)
open(file_varsphy.file_sprec)
open(file_varsphy.file_srPecrorPt.str)
open{filvary'TESTFILE")

Semantics

The procedure oren(f) opens f in the read-write state and places the current position at the
beginning of the file. The function eof returns false, unless the file is empty. The buffer variable f*
is undefined.

After a call to oren, f is said to be a direct access file. You may read or write data using the
procedures read, write, readdir, or writedir. The procedure seek and the functions lastros and
maxpos are also legal. Eof(f) becomes true when the current position is greater than the highest-
indexed component ever written to f.

Direct access files have a maximum number of components. The function maxeos returns this
number. On implementations that allow direct access files to be extended, naxros returns the value
of maxint (the maximum possible number of components).

The 1astros function returns the index of the highest-written component of a direct access file.

You cannot open a textfile for direct access since its format is incompatible with direct access
operations.

105

106 open

When a file is specified, the system will close any physical file previously associated with f.

When f does not appear as a program parameter and s is not specified, the system maintains any
previous association of a physical file with f. If there is no such association, it opens a temporary
nameless file. This file cannot be saved. It becomes inaccessible after the process terminates or the
physical-to-logical file association changes.

Illustration

Suppose examp_file is a file of integer with three components. To perform both input and output,
we call oren:

open(examp_{file);

current position

l
state: read-write

16 10 o5 examp_file™: undefined
eof(examp_file): false

Operators

An operator performs an action on one or more operands and produces a value.

An operand denotes an object which an operator acts on to produce a value. An operand may be a
literal, a declared constant, a variable, a set constructor, a function call, a dereferenced pointer, or
the value of another expression.

Operators are classified as arithmetic, boolean, set, relational, and concatenation operators. A
particular symbol may occur in more than one class of operators. For example, the symbol “+" is
an arithmetic, set and concatenation operator representing numeric addition, set union, and string
concatenation, respectively.

Precedence ranking determines the order in which the compiler evaluates a sequence of operators
(see Operator Precedence).

The value resulting from the action of an operator may in turn serve as an operand for another
operator.

Arithmetic Operators
Arithmetic operators perform integer and real arithmetic. They include +, -, *, /, DIV, and MOD.

Most arithmetic operators permit real, longreal, integer, or integer subrange operands. DIV and
MOD, however, only accept integer operands.

107

108 Operators

In general, the type of its operands determines the result type of an arithmetic operator. In certain

cases, the compiler implicitly converts an operand to another type (see below).

Operator Result
+ The value of a single operand which may be any numeric type.
(unary)
- The negated value of a single operand which may be any
{unary) numeric type.
+ The sum of two operands which may be any but not necessari-
(addition) ly the same numeric type.

(subtraction)

%
(multiplication)

/
(division)

DIV
(division with
truncation)

MOD
{modulus)

Implicit Conversion

The difference of two operands which may be any but not
necessarily the same numeric type.

The product of two operands which may be any but not neces-
sarily the same numeric type.

The quotient of two operands which may be any but not neces-
sarily the same numeric type. If both operands are type integer
or integer subrange, the result is, nevertheless, real.

The truncated quotient of two operands which both must be
type integer or integer subrange. The sign of the result is posi-
tive if the signs of the operands are the same, negative other-
wise. The result is zero if the first operand is zero.

The remainder when the right operand divides the left oper-
and. Both operands must be integers or integer subrange, but
an error occurs if the right operand is negative or zero. The
result is always positive, regardless of the sign of the left oper-
and, which must be parenthesized if it is a negative literal (see
example). The result is zero if the left operand is zero. Formally,
MOD is defined as

iMODj =i — ((iDIVj) #j)
wherei> 0 andj > 0. Or
iMODj =1 — ((iDIVj) #j) +j

where i < 0 andj > 0.

The operators +, -, #, and / permit operands with different numeric types. For example, it is
possible to add an integer and a real number. The compiler converts the integer to a real number
and the result of the addition is real.

Operators 109

This implicit conversion of operands relies on a ranking of numeric types:

Rank Type
highest longreal
real
. integer
lowest integer subrange

If two operands associated with an operator are not the same rank, the compiler converts the
operand of the lower rank to an operand of the higher rank prior to the operation. The result will
have the type of the higher rank operand. In sum:

One operand type | Other operand type Result type
integer-subrange integer-subrange integer
integer-subrange integer integer
integer real real

integer longreal longreal
real longreal longreal

Real division (/) is an exception. If both operands are integers or integer subranges, the compiler
changes both to real numbers prior to the division and the result is real.

It is not legal to perform real or longreal arithmetic in a constant definition.

Examples
Expression Result

—(+10) -10 {Unary —. }

5+ 2 7 {Addition with integer operands. }

5-20 3.0 {Subtraction with implicit conversion. }

5 %2 10 {Multiplication with integer operands. }

50/2.0 2.5 {Division with real operands. }

5/2 2.5 {Division with integer operands, real }
{result. }

50L0/2 2510 {Division with implicit conversion. }

5DIV 2 +2 {Division with truncation. }

5DIV (-2) -2

-5DIV2 -2

-5DIV(-2) +2

5MOD 2 +1 {Modulus. }

5MOD (-2) error {Right operand must be positive. }

(—5)MOD 2 +1 {Result is positive regardless of }
{sign of left operand, which is }
{parenthesized since MOD has higher }
{precedence than —. }
{See Operator Precedence }

110 Operators

Boolean Operators

The boolean operators perform logical functions on boolean type operands and produce boolean
results. The boolean operators are NOT, AND, and OR.

When both operands are boolean, = denotes equivalence. < = implication, and <> exclusive or.

Operator Result
NOT The logical negation of a single boolean operand accord-
(logical negation) ing to the following table:
a | NoTa
true false
false true
AND The evaluation of two boolean operands produces a boo-
(logical and) lean result according to the following table:
a b aAND b
true true true
true false false
false true false
false false false
OR The evaluation of two boolean operands produces a boo-
(inclusive or) lean result according to the following table:
a b aORb
true true true
true false true
false true true
false false false

The compiler can be directed to perform partial evaluation of boolean operators used in statements.
For instance:

IF right_time AND ridht_rlace THEN ...
By specifying the $PARTIAL_EVAL ON$ compiler directive, if “‘right_time’ is false, the remaining
operators will not be evaluated since execution of the statement depends on the logical AND of
both operators. (Both operators would have to be true for the logical AND of the operators to be
true.)

Similarly, the logical OR of two operators would be t rue even if only one of the operators was t rue.

With careful planning of “most likely” values for boolean operators, partial evaluation can reduce
execution time of a program.

Operators

Example Code

IF NOT possible THEN fordet_it}
WHILE time AND money DO vour_things
REPEAT., .UNTIL tired OR bored:

IF has_rore = true DO skies

IF pain <= heartache THEN try_it}

FUNCTION NAND (A, B : BOOLEAN) : BOOLEANS
NAND := NOT(A AND B}i {NOT AND}

FUNCTION XOR (A, B : BODLEAN) : BOOLEANS
XOR := NOT(A AND B) AND (A OR B)§ {EXCLUSIVE OR?

FUNCTION XOR (A, B : BOOLEAN) : BOOLEAN:
KOR = A <> B3

Concatenation Operators

The concatenation operator + concatenates two operands. The operands may be string variables,
string literals, function results of type st ring, or some combination of these types.

If one of the operands is type strins, the result of the concatenation is also type strins. If both
operands are string literals, the result is a string.

It is not legal to use the concatenation operator in a constant definition.

Example Code
VAR
slys2: stringfBOIS
BEGIN
sl:= ‘abc’s
gl:= ‘def’}
sli= g1 + g2} {51 is now ‘abcdef’}

+

521

‘The first six letters are ' + sli
+

END.

Relational Operators

Relational operators compare two operands and return a boolean result. The relational operators
are <, <=, =, <> >=_ > and IN. The < operator means “less than””; <= *less than or

equal’; = ‘“equal’; <> ‘“not equal”’; >= ‘‘greater than or equal’; > “greater than’’; and IN
indicates set membership.

Depending on the type of their operands, relational operators are classified as simple, set, pointer,
or string relational operators.

111

112 Operators

Simple Relational Operators

A simple relational operator has operands of any simple type, i.e. inteser, boolean, char, real,
longreal, enumerated, or subrange. All the operators listed above except IN may be simple
relational operators. The operands must be type compatible, but the compiler may implicitly
convert numeric types before evaluation (see Arithmetic Operators).

For numeric operands, simple relational operators impose the ordinary definition of ordering. For
char operands, the ASCII collating sequence defines the ordering. For enumerated operands, the
sequence in which the constant identifiers appear in the type definition defines the ordering. Thus
the predefinition of taolean as

TYPE boolean = (falses true)s
means that false < true.

If both operands are boolean, the operator = denotes equivalence, <= implication, and <>
exclusive or.

Set Relational Operators

A set relational operator has set operands. The set relational operators are =, <> >=_ <= and
IN.

The operators = and <> compare two sets for equality or inequality, respectively. The <=
operator denotes the subset operation, while > = indicates the superset operation. Set A is a subset

of Set B if every element of A is also a member of B. When this is true, B is said to be the superset of
A.

The IN operator determines if the left operand is a member of the set specified by the right operand.
When the right operand has the type SET OF T, the left operand must be type compatible with T.
To test the negative of the IN operator, use the following form:

NOT (element IN set)

Pointer Relational Operators

You can use the operators = and <> to compare two pointer variables for equality or inequality,
respectively. Two pointer variables are equal only if they point to exactly the same object on the
heap. You may compare two pointers of the same type or the constant NIL to a pointer of any type.

String Relational Operators
You may use the string relational operators =, <>, <, <=, > or >= to compare operands of
type string, PAC, char, or string literals.

The system performs the comparison character by character using the order defined by the ASCII
collating sequence.

If one operand is a string variable, the other operand may be a string variable or string literal. If the
operands are not the same length and the two are equal up to the length of the shorter, the shorter
operand is less. For example, if the current value of S1 is “abc’” and the current value of S2 is “ab”,
then S1 > S2is true. It is not possible to compare a string variable with a PAC or char variable.

Operators

If one operand is a PAC variable, the other may be a PAC (of any length) or a string literal no longer
than the first operand. If shorter, the string literal is blank filled prior to comparison. It is not possible
to compare a PAC with a string or char variable.

If one operand is a char variable, the other may be a char variable or a single-character string literal.

It is not possible to compare a char variable with a string or PAC variable.

If one operand is a string literal, the other may be a string variable, a PAC, a string literal, or a char

variable provided that the string literal is only of length 1.

The following table summarizes these rules. The standard function st rmax(s) returns the maximum
length of the string variable s. The standard function strlen(s) returns the current length of the

string expression s.

A string constant is considered a string literal when it appears on either side of a relational operator.

String, PAC, Char, String Literal Comparison

A/<relop>/B string PAC char string literal
Length of Length of
comparison Not Not comparison

string based on allowed allowed based on
smaller smaller
strlen strlen
Only if
The shorter Alength > =
Not of the two Not strlen(B)
PAC allowed is padded allowed
with blanks B is blank
filled if
necessary
Not Not Only if
char allowed allowed Yes strlen(B) = 1
Length of The shorter Only if Yes
comparison of the two strlen(A)
string based on is padded =1
literal smaller with blanks AorBis
strlen blank filled
if necessary

113

114 Operators

Example Code

PROGRAM show_relationals
TYPE

color = (redy vyellows blue)s
VAR

asbhrc: booleans

Pya: “hooleani

s+t: SET OF colars

col: colors

std: stringll1073

BEGIN
B {Tvres of relational oPerators: }

boi= 5 » 23 {simrle; ¥
bos= 5 4 Z5,0L+13 {simple; ¥
b or= a AND (b OR (NOT ¢ AND (b <= a))): {implication.?
IF (p = 9] AND (P <> NIL) THEN #“:= a = bi {pointer: ¥
b= 5 <3 t3 {3et, +
boi= 5 4= ta {58t subset,’}
B o= col IN [vellows bluels {3ety IN, ¥
std := ‘alpha’s
C = std » ‘heta’s {strind, ¥

END,

SET Operators

The set operators perform set operations on two set operands. The result is a third set. The set
operators are +, —, and *.

Operator Result
+ A set whose members are all the elements present in
(union) the left set operand and those in the right, including

members present in both sets.

— A set whose members are the elements which are

(difference) members of the left set but are not members of the
right set.
* A set whose members are only those elements present
(intersection) in both of the set operands.

Operands used with set operators may be variables, constant identifiers, or set constructors. The
base types of the set operands must be type compatible with each other.

Operators 115

Example Code
PROGRAM show.setorsi
VAR
as by o SET OF 1..103
¥ o1 1103
BEGIN
ar= [1y 3y 513
be= [29 413
cr= [1.,100%
Xxi= 93
a:= a + b {Union} a is now [1y 2+ 3+ 44 51, }
b:i= ¢ - a {Difference’ b is mow [By 7+ B+ 84 1011}
c:= a % b {Intersectiont ¢ is mow [1, }
ci= [2y 51 + [x] {Set constructor operandsi ¢ is now }
END. {[2y 5y 91, }

Operator Precedence

The precedence ranking of a HP Pascal operator determines the order of its evaluation in an
unparenthesized sequence of operators. The four levels of ranking are:

Precedence Operators
highest NOT
%/, DIV, MOD, AND
. +, —, OR
lowest <, <=, <> =, >=, >

The compiler evaluates higher precedence operators first. For example, since * ranks above +, it
evaluates these expressions identically:

(x + v * 1) and (x + (v % 2))

When a sequence of operators has equal precedence, the order of evaluation is implementation
dependent.

If an operator is commutative (e.g. *), the compiler may choose to evaluate the operands in any
order.

Within a parenthesized expression, of course, the compiler evaluates the operators and operands
without regard for any operators outside the parentheses.

116 Operators

Summary

The following table lists each HP Pascal operator together with its actions, permissible operands,

and type of results. In the table, the term “‘real”” indicates both real and lonsreal types.

HP Pascal Operators

Operator Actions Type of Operands Type of Results
addition real, integer real, integer
+ set union any set type T T
concatenation string, string lit. string
- subtraction real, integer real, integer
set difference any set type T T
* multiplication real, integer real, integer
set intersection any set type T T
/ division real, integer real
DIV division with truncation integer integer
MOD modulus integer integer
AND logical ‘and’ boolean boolean
OR logical ‘or’ boolean boolean
NOT logical negation boolean boolean
< less than any simple type boolean
string or PAC boolean
> greater than any simple type boolean
string or PAC boolean
less than or any simple type boolean
<= equal, string or PAC boolean
set subset any set boolean
greater than or any simple type boolean
>= equal, string or PAC boolean
set superset any set boolean
any simple type boolean
= equal to string or PAC boolean
any set type boolean
pointer boolean
any simple type boolean
<> not equal to string or PAC boolean
any set type boolean
pointer boolean
left operand: any
IN set membership ordinal type T boolean
right operand: set
of T

This boolean operator returns the logical OR of its two factors.

boolean boolean
factor factar

Example

ok OR auit
Semantics
The truth table is:

A B Ao B
false false false
false true true
true false true
true true true

Example Code

PROGRAM show_or{inPutsoutrPut)i

VAR
ch : chars
time : booleans
ererdy @ booleani

BEGIN

+

+
IF time OR enerdy then doits

+

IF (ch = ‘¥7) OR (ch = "v')

+

END .

A

OR

117

118

ord

This standard function returns an integer designating the position of the argument in an ordered set.
€0 O

Examples
Input Result

ord{ord_exp)

ord{‘a‘’) a7
ord(‘A7) GBS
ord(-1) -1
ord{vellow} 2 A{TYPE color=(redsbluesvellow)}
ord{red) 0

Semantics

The function o rd(x) returns the integer representing the ordinal associated with the value of x. If x is
an integer, x itself is returned. If x is type char, the result is an integer value between 0 and 255
determined by the ASCII order sequence. If x is any other ordinal type (i.e., a predefined or
user-defined enumerated type). then the result is the ordinal number determined by mapping the
values of the type onto consecutive non-negative integers starting at zero. For example, since the
standard type toolean is predefined as:

TYPE boolean = (falsestrue)
the call ord(false) returns 0, and the call ord(true) returns 1.
For any character ch, the following is true:

chr(ord(ch)) = ch

119

Ordinal Types

Ordinal types are types that can be uniquely mapped into the set of natural numbers.

Ordinal Type:
ordinal type
S g M EEU T o
enumerated
type
subrange
type
INTEGER

BOOLEAN

i

CHAR

Ordinal types include enumerated types, subrange types, integers, booleans, and characters (char
type).

Ordinal types are declared by enumerating all of the possible values that their variables and
functions can possess. Predefined ordinal types include integers, boolean values, and characters.

Permissible Operators
Any of the relational operators may be used with ordinal types. The IN (membership test) operator
may also be used with ordinal types.

For relational tests, the two factors must be of the same type. When membership tests are per-
formed, the left-operand type must be a single ordinal value while the right-operand is of a SET

type.

Permissible Functions
The following functions may be used with all ordinal types.

suce This function returns the next value in the list of possible values the variable may possess.
The succ of the last value is undefined.

pred This function returns the previous value in the list of possible values. The rred of the first
value is undefined.

ord This function returns the ordinal number of the given value.

120

OTHERWISE

In HP Pascal, a CASE statement may include an OTHERWISE part.

See CASE.

output

The standard textfiles inrut and cutrut often appear as program parameters. When they do, there
are several important consequences:

1. You may not declare inrut and outrut in the source code.
2. The system automatically resets inrut and rewrites output.

3. The system automatically associates inrut and sutrut with the implementation dependent
physical files.

4. If certain file operations omit the logical file name parameter, inrut or cutrut is the default
file. For example, the call read(x), where x is some variable, reads a value from input into x.
Or consider:

PROGRAM sample {(output)}
BEGIN

writeln{’I like Pascal!)i
END,

The program displays the string literal on the terminal screen. Dutrut must appear as a program
parameter; inrut need not appear, however, since the program doesn’t use it.

121

122

overprint

This procedure writes a special character to a textfile which suppresses the generation of a line-feed
after the item is printed.

OVERPRINT >

(write

parameter
text file
identifier

Write Parameter
enumerated _
expression el

minimum
STRING or PAC field width
expression
boolean
factor
integer
expression

real
expression
minimum
field width

fraction
length

Item Description/Default Range Restrictions

textfile identifier variable of type text file must be opened
default = sutput
write parameter see drawing -
minimum field width integer expression greater than 0
fraction length integer expression greater than 0
Examples
overprint{(file_var)

(
overPrint{(file_varsexpr)
opverprint(file_varsexrPl vy rexpn)
ouerrrint{exp)
overprint(exrl vy reXPn)
oueTPTrint

overprint

Semantics

The procedure ove rerint(f) writes a special line marker on the textfile f and advances the current
position. When f is printed, this special marker causes a carriage return but suppresses the line feed.
This means the printer will print the line after the special marker over the line preceding it.

After the execution of aue rerint(f), the buffer variable {” is undefined and eo1n(f) is false.

The expression parameter behaves exactly like the equivalent parameter for the procedure write.

123

124

pack

This standard procedure transfers data from unpacked arrays to packed arrays.

PACK non—-packed array starting packed array
identifier position identifier

Item

Description/Default

Range Restrictions

non-packed array
identifier
starting position

packed array identifier

Example

variable of type array

expression which is type compatible with the in-
dex of the non-packed array

variable of type PACKED array

pack(arraysstart_rosypacked_array)

Semantics

Assuming a: ARRAYCw..nl OF t and x: PACKED ARRAY [u..ul OF t; the procedure rack(a,iz)
assigns components of the unpacked array a, starting at component i, to each component of the
packed array z. The unpacked array must be as long as or longer than the packed array, i.e. n—m
>= v—u. The value of i must be greater than or equal to m, the lower bound of a. Since all the
components of z are assigned a value, the normalized value of i must be less than or or equal to the
difference between the lengths of a and z plus 1, i.e. i—-m+1
Otherwise, an error occurs when rack attempts to access a non-existent component of a (see

example below).

The component types of arrays a and z must be type identical. The index types of a and z, however,

may be incompatible.

The call rack(a,i,z) is equivalent to:

IF J <% v THEN K:= succ(K)3

BEGIN
ki= i3
FOR J:= o TO v DO
BEGIN
zldl:s= alkli
END
END3

where k and j are variables that are type compatible with the index type of a and the index type of z,

respectively.

see semantics

see semantics

= (n—-m) — (v—u) + 1.

Example Code

PROGRAM show_rack (inputsoutprut)i
TYPE
clothes = (hats dloves shirts ties sack)s
VAR
dis : ARRAY [1.,,101 OF clothess
box : PACKED ARRAY [1.,31 of clothesi
index: inteders

+

BEGIN

+

+

index:= 13

pack(dissindexsbox) {After pack executes» box contains
' {the first 5 components of

+

index:i= B3

pack(dissindexsbox)i {6 error results when rPack
N {to access non-existent llth component?

+ {of dis.,
END .

pack 125

126

PACKED

This reserved word indicates that the compiler should optimize data storage.
PACKED may appear with an ARRAY. RECORD, SET, or FILE.
By declaring a PACKED item, the amount of memory needed to store an item is generally reduced.

Whether data storage is optimized depends on the implementation.

page

This procedure writes a special character to a textfile which causes the printer to skip to the top of
form when the file is printed.

PAGE —
textfile
identifier

Item | Description/Default | Range Restrictions

variable of type text; file must be open
default = outrut

textfile identifier

Examples

pade{text_file)
Fage

Semantics

The procedure rase(f) writes a special character to the textfile f which causes the printer to skip to
the top of form when f is printed. The current position in f advances and the buffer variable {” is
undefined.

If f is omitted, the system uses the standard file outrut.

127

128

Parameters

A procedure or function is declared, the heading may optionally include a list of parameters. This
list is called the formal parameter list.

A procedure statement or function call in the body of a block provides the matching actual
parameters which correspond by their order in the list. The list of actual parameters must be
assignment compatible with their corresponding formal parameters.

The four sorts of formal parameters are value, variable, function, and procedure parameters. Value
parameters are identifiers followed by a colon (:) and a type identifier. Variable parameters are
identical with value parameters except they are preceded by the reserved word VAR. Function or
procedure parameters are function or procedure headings.

Formal Parameter List

g

identifier

type
identifaier

heading

Heading:

PROCEDURE)}~ [iorcitie. | 7 f
formal
L’®_.L;:»ar*ameter* list
FUNCTION— Senetise. | : BN
formal
L’@"’Lparameter‘ list

You may repeat and intermix the four types of formal parameters. Several identifiers may appear
separated by commas. These identifiers will then represent formal variable or value parameters of
the same type.

Y

type
identifier

A formal value parameter functions as a local variable during execution of the procedure or
function. It receives its initial value from the matching actual parameter. Execution of the procedure
or function doesn’t affect the actual parameter, which, therefore, may be an expression.

A formal variable parameter represents the actual parameter during execution of the procedure.
Any changes in the value of the formal variable parameter will alter the value of the actual
parameter, which, therefore, must be a variable. A st rins type formal variable parameter need not
specify a maximum length, it will assume the type of the actual parameter.

Parameters

A formal procedure or function parameter is a synonym for the actual procedure or function
parameter. The parameter lists, if any, of the actual and formal procedure or function parameters
must be congruent.

Example Code

PROGRAM show_formeparm:
VAR
test: booleans

FUNCTION chekl (xs vy z: real): booleans

BEGIN
{Perform some tvepe of validity check on x» ¥y z 1}
{and return arpropriate value. }
END 3
FUNCTION chek? (xs vy z: real): booleant
BEGIN
{Perform an alternate validity check on ¥+ v 2 ¥
{and return appropriate wvalue. }
END 4

PROCEDURE read.data (FUNCTION check (ays by c: real): boolean)s
VAR Py a4+ r: reall
BEGIN
{read and validate datal
readln (py ay 1)3
IF check (py gy 1) THEN 44,
END3

BEGIN {show_formparm}

IF test THEN read_data {(chekl)
ELSE read_-data {(chek2)}

+

END.

PROGRAM show_varparm{outpPut)}

VAR
i+d & inteders

PROCEDURE fix(VAR 1 1 intederi J ! inteder):

BEGIN
i += Jj3 {i is passed by references it will return eaual to 42}
J 1= 03 {J is Passed by values this assidnment will 3
{not chande the value of J in the main Prodram?}
END 3

BEGIN {show_varparm}
ir= Q3
Ji= 423
fix{isrddi
IF i = 4 THEN writeln(‘They both = 427)3
END,

129

130

Pointers

A pointer references a dynamically allocated variable on the heap. A pointer type consists of the
caret (") and a type identifier.

Pointer Type:
pointer type
identifier
type
identifier

The type may be any type, including file types. The @ symbol may replace the caret.
You need not have previously defined the type appearing after the caret. This is an exception to the

general rule that Pascal identifiers are first defined and then used. However, you must define the

identifier after the caret within the same declaration part, although not necessarily within the same
TYPE section.

A type identifier used in a pointer type declaration in an EXPORT section need not be defined until
the IMPLEMENT section.

The pointer value NIL belongs to every pointer type: it points to no variable on the heap.

Permissible Operators

assignment: 1=
equality: =y 43
Standard Procedures
pointer parameters: news disposes mark, release
Examples
TYPE
ptrl = “recli
Ptrl = “regiy
recl = RECORD
fls f2: inteders
link: Pt 23
END 3
recs = RECORD
fis f2: reals
link: ptrli

END i

Pointers

Pointer dereferencing

A pointer variable points to a dynamically-allocated variable on the heap. The current value of this
variable may be accessed by dereferencing its pointer.

Pointer dereferencing occurs when the caret symbol (™) appears after a pointer designator in source
code.

pointer
identifier

The pointer designator may be the name of a pointer or selected component of a structured
variable which is a pointer. The @ symbol may replace the caret.

If the pointer is NIL or undefined, dereferencing causes an error.

A dereferenced pointer can be an operand in an expression.

Examples
PROGRAM show_pointerderef (output)s
TYPE
P = “inteder}
VAR
a»h : inteders
p_array : ARRAY [1.,.,101 OF p3
Pt 1P
BEGIN
p_arravlal :i= a + b3i
writeln{ptr” * 2)1 {Dereferenced Pointer is operand., }

+

END.

131

132

position

This function returns the index of the current file component.

TR~ e -

Item I Description/Default | Range Restrictions
file identifier variable of type file ’ must not be a textfile
Example

position{file._var)

Semantics

The function resitian(f) returns the integer index of the current component of f, starting from 1.
Input or output operations will reference this component. f must not be a textfile. If the buffer
variable " is full, the result is the index of the component in the buffer.

pred

This function returns the value whose ordinal number is one less than the ordinal number of the

argument.

ordinal
expression

Examples
Input Result
predl{ord_var)
pred{l) 0
pred{-3) -B
pred(‘B") ‘A
pred{true) false
Semantics

The function rred(x) returns the value, if any, whose ordinal number is one less than the ordinal
number of x. The type of the result is identical with the type of x. A run-time error occurs if rred(x)

does not exist. For example, suppose:

TYPE day = (mendav.tuesdavwednesday)
Then,
pred{tuesday) = mondavy

but rred(mondar) is undefined.

133

134

PROCEDURE

A procedure is a block which is activated with a PROCEDURE statement. A procedure declaration

consists of a procedure heading, a semi-colon (), and a block or a directive followed by a semi-
colon.

-—D(PROCEDURE H ipdreoncte1dfuipeer JI '
formal j_.@_}
parameter list

=
FORWARD

Formal Parameter List

identifier

type
identifier

VAR

heading

Y

Heading:

procedure |
PROCEDURE identifier | .
formal
parameter list
function | . type
formal
parameter list

Item | Description/Default Range Restrictions
procedure identifier name of a user-defined procedure any valid identifier
formal parameter list see diagram -
heading see drawing -

PROCEDURE 135

Semantics

The procedure heading consists of the reserved word PROCEDURE, an identifier (the procedure
name), and, optionally, a formal parameter list.

A directive can replace the procedure block to inform the compiler of the location of the block. A
procedure block consists of an optional declaration part and a compound statement.

Procedure declarations must occur at the end of a declaration part after label, constant, type, and
variable declarations and after the module declarations in the outer block. You can intermix
procedure and function declarations.

136

Procedures

A procedure statement transfers program control to the block of a declared or standard procedure.
After the procedure has executed, control is returned to the statement following the procedure call.
A procedure statement consists of a procedure identifier and, if required, a list of actual parameters
in parentheses.

Procedure Statement:

procedure o
identifier '
H.'

identifier

The procedure identifier must be the name of a standard procedure or a procedure declared in a
previous procedure declaration.

The declaration may be an actual declaration (i.e. heading plus body), a forward declaration, or it
may be the declaration of a procedure parameter.

If a procedure declaration includes a formal parameter list, the procedure statement must supply
the actual parameters. The actual parameters must match the formal parameters in number, type
and order. There are four kinds of parameters: value, variable, procedure and function.

Actual value parameters are expressions which must be assignment compatible with the formal
value parameters.

Actual variable parameters are variables which must be type identical with the formal variable
parameters. Components of a packed structure cannot appear as actual variable parameters.

Actual procedure or function parameters are the names of procedures or functions declared in the
program. Standard procedures or functions are not legal actual parameters.

If a procedure or function passed as an actual parameter accesses any entity non-locally upon
activation, then the entity accessed is one which was accessible to the procedure or function when it
was passed as a parameter. For example, suppose Procedure A uses the non-local variable x. If A is
then passed as an actual procedure parameter to Procedure B, it will still be able to use x, even if x
is not otherwise accessible from B.

Procedures

The formal parameters, if any, of an actual procedure or function parameter must be congruent
with the formal parameters of the formal procedure or function parameter. Two formal parameter
lists are congruent if they contain an equal number of parameters and the parameters in corres-
ponding positions are equivalent. Two parameters are equivalent if any of the following conditions

are true.

1. They are both value parameters of the identical type. Assignment compatibility is not suffi-

cient.

2. They are both variable parameters of the identical type.

3. They are both procedure parameters with congruent parameter lists.

4. They are both function parameters with congruent parameter lists and identical result types.

Example Code
PROGRAM show_pstate (output)i
PROCEDURE wow? forwardi

PROCEDURE bows
BEGIN
write{ 'bow-")3
WOW 3
END 3

PROCEDURE wows
BEGIN
write(‘wow')3
END3

PROCEDURE actual_proc
{al: inteders
aZ: real)si
BEGIN

IF aZ < al THEN

actual_proc (alys aZ-al)

Y

END 3

PROCEDURE outer
(a: inteders
PROCEDURE proc.rParm
(pl: intederi P2 :

PROCEDURE inner:
BEGIN

actual_proc (350 50,0053

END3

BEGIN {outer}
writeln (‘Hi‘)i
innersi
proc_parm (2 4,001
END3 A{outer?}

BEGIN {show_Pstate?
outer (30 actual_proc)i
END, {show_Pstatel}

{Forward declaration.

{procedure used before
{ it is defined

b
}

{Forward procedure defined}

{fActual procedure declaration.?

{recursive call?’

{Another actual declaration.

reall))s

{nested procedure’

{Calling a

{predefined procedure:
{inner Procedure;
{procedure Parameter,

{procedure Parameters.,

¥

e o

137

138

PROGRAM

An HP Pascal program consists of three major parts; the program heading, the program declara-
tion, and the program block.

(PRUGHAM)_'I identifien]I ™\
ll
identifier

label
declaration constant
declaration
variable
declaration
type
declaration
import
declaration
module
L declaration

Heading

[

jus

declaration

procedure
declaration

Declaration Part
A

A

statement

Program Block

See Programs.

Programs

An HP Pascal compiler will successfully compile source code which conforms to the syntax and
semantics of an HP Pascal program. The form of an HP Pascal program consists of a program
heading, a semicolon (), a program block, and a period.

program
O,

The program heading consists of the reserved word PROGRAM, an identifier (the program name)
and an optional parameter list.

GHUGRAD-"I identifier JI -

.l

identifier

The identifiers in the parameter list are variables which must be declared in the outer block, except
for the standard textfiles inrut and outrut.

Inrut and outrut are standard file variables which the system associates by default with system
dependent files and devices which it opens automatically at the beginning of program execution. In
HP Pascal, inrut or sutrut need only appear as program parameters if some file operation, e.g.
read or write, refers to them explicitly or by default.

Program parameters are often the names of file variables, but a logical file, i.e. a file declared in the
program, need not necessarily appear as a program parameter. What must appear is system

dependent.

The program block consists of an optional declaration part and a required statement part.

statement
part

declaration
part

The declaration part (see next page) consists of definitions of labels, constants and types, and
declarations of variables, procedures, functions, and modules. The statement part is made up of a
compound statement which may be empty or may contain several simple or structured statements

(see Staterments). The statement part is also termed the ‘‘body” or ‘“‘executable portion” of the
block.

139

140 Programs

Example Code
PROGRAM mivnimums {The minimum prodram the HP Pascal ¥
BEGIN {compiler will process successfully: }
END {no Pprodram Parameters., }

PROGRAM show_forml (output)i {Uses the standard textfile output 3}
BEGIN {and the standard procedure writeln.,’
writeln (‘Greetings!’)

END.

PROGRAM show_formZ (inputsoutput);
UaR
ashstotal: inteders

FUNCTION sum (isd: inteder): inteder: {Furction declaration 7}
BEGIN
sumi= 1+ J
END

BEGIN
write (‘Enter two inteders: '3
RIOMPL 3
readln (asb)3
total:= sum (ash)s
writeln (‘The total is: ‘s total)
END,

Declaration Part

The declaration part of an HP Pascal program block defines the labels, declared constants, data
types, variables, procedures, functions, and modules which will be used in the executable state-
ments in the body of the block.

The reserved word LABEL precedes the declaration of labels; CONST or TYPE the definition of
declared constants or types; VAR the declaration of variables; IMPORT a list of modules; MODULE

the declaration of a module; PROCEDURE or FUNCTION the declaration of a procedure or a
function.

Type DBeclaration

1 L Rt O e

Constant Declaration

identifier

constant
N===0

Programs

Variable Declaration

Gt e e[-0

Within a declaration part, label declarations must come first; procedure or function declarations last.
You can intermix and repeat CONST and TYPE definition sections, VAR declaration sections (see
example below) and MODULE declarations.

ANSI Standard Pascal does not allow any of the reserved words, LABEL, CONST, TYPE, or VAR
to be used more than once.

You can redeclare or redefine a standard declared constant, type, variable, procedure or function in
a declaration part. You will, of course, lose any previous definition associated with that item.

Example Code

PROGRAM show.declareparts
LABEL 253
VAR

birthday: inteder:
TYPE

friends = (Joes Simons Leslies Jill)s
CONST

maxnuminvitee = 33
VAR

invitee: friends:
PROCEDURE hellos

BEGIN
writeln(/Hi’")i
END 3§ {End of declaration Part.?
BEGIN {Beginning of body. ¥

+

END.

141

142

prompt

This procedure causes the system to write any buffers associated with a textfile to the output device.

—»{(PROMPT) -

(write

parameter
text file
identifier

Write Parameter
enumerated -
expression i

minimum
STRING or PAC| field width
expression
boolean
factor
integer
expression

real
expression
minimum
field width

fraction
length
[tem Description/Default Range Restrictions
textfile identifier variable of type text: file must be opened to
default = autrut write

write parameter see drawing -

minimum field width integer expression greater than 0
fraction length integer expression greater than 0

Examples

prompt(file_var)
prompt(file_varsexp)
promrt(file_varsexplsivirexen)
prompt{exp)
prampt{exrlsivirexen)

Promet

prompt 143

Semantics

The procedure rronrt(f) causes the system to write any buffers associated with textfile f to the
device. Promrt does not write a line marker on f. The current position is not advanced and the
buffer variable {* becomes undefined.

You normally use rronet when directing I/O to and from a terminal. Fromrt causes the cursor to
remain on the same line after output to the screen is complete. The user may then respond with

input on the same line.

The expression parameter e behaves exactly like the equivalent parameters in the procedure write.

144

put

This procedure assigns the value of the buffer variable to the current file component.

file
(P DO~ ssentifser (D)

Item | Description/Default | Range Restrictions
file identifier variable of type file file must be open to write
Example

put(file_var)

Semantics

The procedure rut(f) assigns the value of the buffer variable {~ to the current component and
advances the current position. Following the call, f~ is undefined.

An error occurs if f is open in the read-only state.

Illustration

Suppose examp_file is a file of inteser with a single component opened in the write-only state by
arrend. Furthermore, we have assigned 9 to the buffer variable examp_file”. To place this value in
the second component, we call rut:

append(examip_file);
examp_file™: = 9;

current position

l
state: write-only
1 examp_file™: 9
+ - + eof(examp_file): true
put(examp_file):
current position
l
state: write-only
1 9 1 9 examp_file™: undefined
eof(examp_file): true

read
This procedure assigns the value of the current component of a file to its arguments.
N
O
Item Description/Default Range Restrictions
file identifier variable of type file file must be open to

read;
default = outeput

variable identifier type compatible with file type; -
see semantics

Examples

read(file_varsvariable)
read{filesvariablel»sssrvariablen)
read(variable)
read{variablelsssssvariablen)

Semantics

The procedure read(f,v) assigns the value of the current component of f to the variable v, advances
the current position, and causes any subsequent reference to the buffer variable {" to actually load
the buffer with the new current component.

Variable Compatability

If the file is a textfile, the variable can be a simple, string, or PAC variable. If the file is not a textfile,
its components must be assignment compatible with the variable. Any number of variable identi-
fiers can appear separated by commas.

The parameter v may be a component of a packed structure.

The following statement:

read (fsu)

is equivalent to

y o= f°
det(f)s

145

146

read

If tis a textfile, an implicit data conversion may precede the read operation (see below).

The call

read{fsulysyysun)i

is equivalent to

read(fyul)s
read (fyu2) 3
read(fsun)i
Illustration

Suppose exane_file is a file of char opened in the read-only state. The current position is at the
second component. To read the value of this component into char_var, we call read:

{initial condition}

current position
y
state: read-only
. examp_file”: i or undefined
eof (examp_file): false
char_var: old value, if any

read(examp_file,char_var)

current position

i
state: read-only
. : examp_file”™(deferred): p
P eof(examp_file): false

char_var: i

Implicit Data Conversion

If fis a textfile, its components are type char. The parameter v, however, need not be type char. It
may be any simple, strins, or PAC type. The read procedure performs an implicit conversion from
the ASCII form which appears in the textfile f to the actual form stored in the variable v.

If vis type real, longreal, inteser, or an integer subrange, the read operation searches f for a
sequence of characters which satisfies the syntax for these types. The search skips preceding blanks
or end-of-line markers. If v is 1ongreal, the result is independent of the letter preceding the scale
factor.

read 147

An error occurs if the read operation finds no non-blank characters or a faulty sequence of
characters, or if an integer value is outside the range of v. After read, a subsequent reference to the
buffer variable £~ will actually load the buffer with the character immediately following the number
read. Also note that eof will be talse if a file has more blanks or line markers, even though it
contains no more numeric values.

If v is a variable of type strins or PAC, then read(f,v) will fill v with characters from f. When v is
type PAC and eoln(f) becomes t rue before v is filled, the operation puts blanks in the rest of v. If v
is type string and eoln(f) becomes t rue before v is filled to its maximum length, no blank padding
occurs. St rlen(v) then returns the actual number of characters in v. You may wish to use this fact to
determine the actual length of a line in a textfile.

If v is a variable of an enumerated type, read(f,v) searches f for a sequence of characters satisfying
the syntax of a HP Pascal identifier. The search skips preceding blanks and line markers. Then the
operation compares the identifier from f with the identifiers which are values of the type of v,
ignoring upper and lower case distinctions. Finally, it assigns an appropriate value to v. An error
occurs if the search finds no non-blank characters, if the string from f is not a valid HP Pascal
identifier, or if the identifier doesn’t match one of the identifiers of the type of v.

The following table shows the results of calls to read with various sequences of characters for
different types of v.

Implicit Data Conversion

f(’)il(:) l:sil:lcgec(:xfr:::tr?)ztsei:isolr? f Type of v Result stored in v
(space)(space)1.850 real 1.850
space)(linemarker)(space)1.850 longreal 1.850
10000(space)10 integer 10000
8135(end-of-line) integer 8135
54(end-of-line)36 integer 54
1.583E7 real 1.583x10(7)
1.583E+7 longreal 1.583x10(7)
(space)Pascal string[5] ‘Pasc’
(space)Pas(end-of-line)cal string[9] ‘Pas’
(space)Pas(end-of-line)cal PAC ‘Pas’
{length 9}
(end-of-line)Pascal PAC ‘Pasca’
{length 5}
(space)Monday(space) ennumerated Monday

148

readdir

This procedure reads a specified component from a direct-access file.

file . variable
READDIR)} O] sgentsfser (D snoer H=(O—{ Si0it0e H—+0)

Item Description/Default Range Restrictions
file identifier variable of type file file must be open to
read;

file must not be a textfile

index integer expression greater than 0;
less than lasros(file
identifier)
variable identifier variable that is type compatible with file type see semantics
Examples

readdir(file_varsindxsvariable)
readdir(file_varsindxsvariablelsvsssvariablen)

Semantics

The procedure readdir(f,k,v) places the current position at component k and then reads the value
of that component into v. Formally, this is equivalent to:

seak(f k)3
read (f u)j

The call se1t(f) is not required between seek and read because of the definition of read.

You can use the procedure readdir only with files opened for direct access. Thus, a textfile cannot
appear as a parameter for readdir.

Illustration

readdir

Suppose examp-_file is a file of inteser with four components opened in the read-write state. The
current position is the first component. To read the third component into int var, we call readdir.
After readdir executes, the current position is the fourth component.

{initial condition}

current position

l

10

readdir(examp_file,3,int_var);

current position

l

10

state: read-write
examp_file™: undefined
eof(examp_file): false
int_var: old value

state: read-write
examp_file™ (deferred): 10
eof(examp_file): false
int_var: 40

149

150

readln

This procedure reads a value from a textfile and then advances the current position to the beginning
of the next line.

—»(READLN) >

(variable
identifier

text file
identifier

Item Description/Default Range Restrictions
textfile identifier variable of type textfile: file must be open to read
default = input
variable identifier variable must be a simple type, a string type or a -
PAC
Examples
readln(file)

(
readln(filesvariahble)
readln(filesvariablelssvssvariablen)
readln(variable)
readln(variablel s, vsvariablen)
readln

Semantics

The procedure read1n(f,v) reads a value from the textfile f into the variable v and then advances the
current position to the beginning of the next line, i.e. the first character after the next end-of-line
marker. The operation performs implicit data conversion if v is not type char (see discussion of read
above).

The call readin(f,uts..,sun) is equivalent to

read (fFoulyeyyrun)s
readln(f)s

If the parameter v is omitted, read1n simply advances the current position to the beginning of the
next line.

151

real

The type real represents a subset of the real numbers.

The type real is a standard simple type. For HP Pascal, the range of the subset is implementation
dependent.

Permissible Operators
assignment: 1=
relational: £ d=y =g Gy EEg ok
arithmetic - 44 — ¥y /
Standard Functions
realargurnent: abss arctans cos: expy lns rounds sins sars sarts trunc

real return; akss arctans cos+ exPs lns sins sary sart

Example Code

PROGRAM show_realnum{outpPut)}

VAR
realnum: reals

BEGIN
realrum 1= B,0EZ3E+233
writeln(realnum)?
END.

152

RECORD

A record is a collection of components which are not necessarily the same type. Each component is
termed a field of the record and has its own identifier.

A record type is a structured type and consists of the reserved word RECORD, a field list, and the
reserved word END.

The reserved word PACKED may precede the reserved word RECORD. It instructs the compiler to
optimize storage of the record fields.

_ | record type}
identifier
»(_RECORD)—-l:ff;t" wJ
PACKED

The field list has a fixed part and an optional variant part.

Field List:

fixed
part I

variant
part

In the fixed part of the field list, a field definition consists of an identifier, a colon (:), and a type. Any
simple, structured. or pointer type is legal. Several fields of the same type can be defined by listing
identifiers separated by commas.

Fixed Part of a Field List:

(N
o/

.|

identifier

In the variant part, the reserved word CASE introduces an optional tag field identifier and a
required ordinal type identifier. Then the reserved word OF precedes a list of case constants and
alternative field lists. Fields of type file or of a type which contains files are not legal in the variant
part of a record.

RECORD 153

Variant Part of a Field List:

~@n =
identifier
D
_/

: 41
. field
constantJ . list
.. }——I constant

Case constants must be type compatible with the tag. Several case constants may be associated
with a single field list. The various constants appear separated by commas. Subranges are also legal
case constants. The empty field list may be used to indicate that a variant doesn’t exist (see
example). HP Pascal does not require that you specify all possible tag values.

type
identifier

o/

Field List:

AW
A

{ .) . .

« | type
@ *| identifier OF
O

) . field
constant | .
. constant

You may not use the OTHERWISE construction in the variant part of the field list. OTHERWISE is
only legal in CASE statements.

Variant parts allow variables of the same record type to exhibit structures that differ in the number
and type of their component parts. If a record has multiple variants, when a variant is assigned to
the tag field, any fields associated with a previous variant cease to exist and the new variant’s fields
come into existence with undefined values. An error occurs if a reference is made to a field of a
variant other than the current variant.

A field of a record is accessed by using the appropriate field selector.

154 RECORD

Permissible Operators
assignment (entire record): r=

field selection: .

Example Code

TYPE
word_tvere = {ints ch)i
Word = RECORD {variant Part only with tag}
CASE word_tad: word_tvre 0OF
int: {(number: inteder?i
ch 1 (chars : PACKED ARRAY [1..21 OF char)s
END 3
rolys = {circles squares rectansgles triangle)s
rolvdon = RECORD {fixed part and tadless variant rPart}
poly_color: {(reds vellows blueds
CASE polvys OF
circles {(radius: inteder)s
squares: (side: inteder)s

rectandle: (lendth, width: inteder)i
triandle: (bases height: inteder)s
END 3

name_string FACKED ARRAY [1.,301 OF chars
date_info = PACKED RECCRD {fixed Part onlyv}
mo: (Jans febs mars arry mavs Jun:
July auds sers octs movs dec)s
da: 1..31%

yri 1900, ,20013%

END 3
marital.status = {(married, serarated, divorced: single}s
person-info = RECORD {mested variant Parts}

name: name.string:
borne: date_infos
CASE status: marital_status OF
married,,divorced:
(when: date_infoi
CASE has_Kids: boolean OF
true: {(how_manv: 1.,50)3
false:)i {Empty variant}

sindle: (13
END 3

RECORD 155

Record Constructor

A record constant is a declared constant defined with a record constructor which specifies values for
the fields of a record type.

A record constructor consists of a previously declared record type identifier and a list in square
brackets of fields and values. All fields of the record type must appear, but not necessarily in the
order of their declaration. Values in the constructor must be assignment compatible with the fields.

Record Constant:

record type [(
identifier

Lo~

10,
field tant
identifier constan

constant

For records with variants, the constructor must specify the tag field before any variant fields. Then
only the variant fields associated with the value of the tag may appear. For free union variant
records, i.e. tagless variants, the initial variant field selects the variant.

The values may be constant values or constructors. To use a constructor as a value, you must
define the field in the record type with a type identifier. A record constant may not contain a file.

A record constructor is only legal in the CONST section of a declaration part. It cannot appear in
other sections or in an executable statement.

A record constant may be used to initialize a variable in the body of a block. You can also select
individual fields of a record constant in the body of a block, but not when defining other constants.

156 RECORD

Example Code

TYPE
securtyre = {lidhtsy mediums heauvy)i
counter = RECORD
Fades: inteder:
lines: inteders
characters: inteders
END 3
rerFOrt = RECORD
revision: chars
FIrice: reals
info: counters
CASE securtad: securtvyre OF
lidht: [
medium: {mcode: inteder)s
heauy: {hoode: inteders
password: strind[107113
END S
CONST
no.count = gounter [rpades: Oy characters: O: lines: Ol
bid_rerort = rerport [revision: ‘B7,
Price: 19,00,
infoz counter [Pades: 19,
lines: 25
characters: 80071,
securtad: heavy
hocode: 999,
passwords ‘unity 13
no_rerort = rerort [revision @ 7 73
price 0,004
info Iono-counts
securtad : lightls

Record Selector

A record selector accesses a field of a record. The record selector follows a record designator and
consists of a period and the name of a field.

field
identifier

A record designator is the name of a record, the selected component of a structure which is a
record, or a function call which returns a record.

The WITH statement *‘opens the scope” of a record. making it unnecessary to specify a record
selector.

Example Code

PROGRAM show.recordselectors
TYPE
r.tyre = RECORD
fl: inteders
fZ2: chars

END 3
VAR
ash : inteder:
ch i chars
r ;orotvres
rec_array : ARRAY [1.,.,101 OF r_types
BEGIN
a:= r.f1 + b3 {Assigns current value of inteder field
' {of r Plus b to a.

+

rec_arravial.f2:= chi {Assidgns current value of ch to char

' {field of a’th component of rec_array

END.

RECORD 157

158

Recursion

A recursive procedure or function is a procedure or function that calls itself. It is also legal for
procedure A to call procedure B which in turn calls procedure A. This is indirect recursion and is
often an instance when the FORWARD directive is useful.

When a routine is called recursively, new local variables are created dynamically (on the stack).

Example Code

FUNCTION factorial i{n: inteder): inteders
iCaleculates factorial recursivelv}
BEGIN
IF n = O THEN
factorial := 1
ELSE
factorial := n % factorialin-113
END 3

release

This procedure returns the heap to its state when it was marked by the nark procedure.

heap
marker

[tem Description/Default Range Restrictions

heap marker a pointer variable pointer should have

previously appeared as a
parameter in a call to
mark, and should not
have been passed to
release see semantics

Example

release(ptr)

Semantics

The procedure release(p) returns the heap to its state when mark was called with p as a parameter.
This has the effect of deallocating any heap variables allocated since the program called nark(p).
The system can then reallocate the released space. The system automatically closes any files in the
released area.

An error occurs if p is not passed as a parameter to mark, or if it was previously passed to release
explicitly or implicitly (see example below). After release, p is undefined.

Example Code

PROGRAM show_markreleases

VAR
WK eye Tinteders
BEGIN
+
mark{w)s
release({w)s {Returns hear to state marked by w, b
+
mark(x)3

mark{y)3

+

release{x)s {FReturns hear to state marked by %, The }

. {pointer v no londer marks a hear state.?}
END ., {Release{y) is now an error. +

159

160

REPEAT

A REPEAT statement executes a statement or group of statements repeatedly until a given condi-
tion is true.

,C REPEAT statement UNT ID'—’I ufoaoclteoapn l"

A REPEAT statement consists of the reserved word REPEAT, one or more statements, the reserved
word UNTIL, and a boolean factor {the condition).

The statements between REPEAT and UNTIL need not be bracketed with BEGIN..END.

When the system executes a REPEAT statement. it first executes the statement sequence and then
evaluates the condition. If it is false, it executes the statement sequence and evaluates the condition
again. If it is true, control passes to the statement after the REPEAT statement.

The statement

REFEAT
statement s
UNTIL condition

is equivalent to the following:
lr statements

IF NOT condition THEN GOTO 13

Usually the statement sequence will modify data at some point so that the condition becomes false.
Otherwise, the REPEAT statement will loop forever. Of course. it is possible to branch uncon-
ditionally out of a REPEAT statement using a GOTO statement.

The compiler can be directed to perform partial evaluation of boolean operators used in a RE-
PEAT...UNTIL statement. For example:

FEPEAT 4. UNTIL done OF finished
By specifying the $PARTIAL_EVAL ON$ compiler directive, if “‘done” is true, the remaining

operators will not be evaluated since execution of the statement depends on the logical OR of both
operators. (Both operators would have to be false for the logical OR of the operators to be false.)

Example Code

sum 1= 01
gount = 03
REPEAT
writeln(‘Enter trial values or "-1" to gquit’)i
read {(wvalue)s
sum $= sum + values
count = count + 13
averade := sum / counts
writeln (‘value =7y valuey ' averade =’ averade)
UNTIL (count »= 10) OF {(walue = -1)3

+

REPEAT
writeln (real_array [index1)3
index = index + 13

UNTIL index » limits

REPEAT 161

162

Reserved Words

These are the reserved words recognized by HP Pascal.

AND ARRAY

BEGIN

CASE CONST

DLy Do DOWNTD
ELSE END EXPORT
FILE FOR FUNCTION
GOTO

IF IMPLEMENT IMPORT IN
LABEL

MGD MODULE

NIL NOT

OF Or OTHERWISE
FACKED PROCEDURE PROGRAM
FECORD REPEAT

SET

THEN T0 TVPE
UNTIL

VAR

WHILE WITH

Reserved words can not be used as identifiers.

The letter-case of reserved words is unimportant. They may be typed in either upper or lower case.

reset

This procedure opens a file in the read-only state and places the current position at the first

component.

@D~

Item

file

identifier

-0

physical file
specifier

Description/Default

options
string

Range Restrictions

file identifier

phuysical file specifier

options string

Examples

reset{file.var)

variable of type file

name to be associated with f; must be a string
expression or PAC variable

a string expression or PAC variable

reset{file_var,file_name)
reset(file_varsfile_name opt_str)

Semantics

implementation
dependent

The procedure reset(f) opens the file f in the read-only state and places the current position at the
first component. The contents of {, if any, are undisturbed. The file f may then be read sequentially.

If f is not empty, eof(f) is false and a subsequent reference to the buffer variable {~ will actually
load the buffer with the first component. The components of f may now be read in sequence. Iffis
empty, however, eof(f) is true and ™ is undefined. A subsequent call to read produces an error.

If f is already open at the time reset is called, the system automatically closes and then reopens it. If
the parameter s is specified, the system closes any physical file previously associated with f.

163

164 reset

Hlustration

Suppose examp._file is a closed file of char with three components. To read sequentially from
examp-_file, we call reset:

{initial condition}

' state: closed

reset(examp._file);

current position

l
state: read-only

a b c examp_file™ (deferred): a
eof(examp_file): false

rewrite

This procedure opens a file in the write-only state and places the current position at the beginning of
the file.

file =< >—>
REWRITE) a identifier)
physical file >
specifier " o

options
string

Item Description/Default Range Restrictions
file identifier variable of type file -
physical file specifier name to be associated with f; must be a string -
expression or PAC variable
options string a string expression or PAC variable implementation depen-
dent
Examples

rewrite(file)
rewrite{filesfile_name)
rewrite{filesfile_namesoPt_str)

Semantics

The procedure reurite(f) opens the file f in the write-only state and places the current position at
the beginning of the file. The system discards any previously existing components of f. The function
eof(f) returns t rue and the buffer variable {” is undefined. You may now write on f sequentially.

If f is already open at the time rewrite is called, the system closes it automatically and then reopens
it. If s is specified, the system closes any physical file previously associated with f.

165

166 rewrite

Illustration

Suppose examp_file is a closed file of char with three components. To discard these components
and write sequentially to examp_file, we call rewrite:

{initial condition}

' state: closed

rewrite(examp_file);

current position
y
state: write-only
’ examp_file” : undefined
eof(examp_file): true

round

This function returns the argument rounded to the nearest integer.

@D~ -0

Examples

Input Result
round(bad_real)

round{(3.,1)

round (-6.4) -
round (-4.6) -
round (1.,5)

[SS TS | By B S

Semantics

The function round(x) returns the integer value of x rounded to the nearest integer. If x is positive or
zero, then round(x) is equivalent to trunc(x + 0.5); otherwise, round(x) is equivalent to trunc(x —
0.5). An integer overflow occurs if the result is not in the range ninint..naxint.

167

168

Scope

The scope of an identifier is its domain of accessibility, i.e. the region of a program in which it may
be used.

In general, a user-defined identifier may appear anywhere in a block after its definition. Furth-
ermore, the identifier may appear in a block nested within the block in which it is defined.

If an identifier is redefined in a nested block, however, this new definition takes precedence. The
object defined at the outer level will no longer be accessible from the inner level (see example
below).

Once defined at a particular level, an identifier may not be redefined at the same level (except for
field names).

Labels are not identifiers and their scope is restricted. They cannot mark statements in blocks
nested within the block where they are declared.

Identifiers defined at the main program level are “global”. Identifiers defined in a function or
procedure block are “local” to the function or procedure.

The definition of an identifier must precede its use, with the exception of pointer type identifiers,
program parameters, and forward declared procedures or functions.

For a module, identifiers declared in the EXPORT section are valid for the entire module, identifiers
declared after the IMPLEMENT keyword are valid only within the module.

Example Code

PROGRAM show_score (output)s
CONST
asterisk = ‘%73
VAR
X: chars
PROCEDURE writeits
CONST
x = ‘LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT';
BEGIN
write (x)
END 3
BEGIN {show_score?}
Xi= asterisks
Wwrite (x)3i
Wwriteits
write (x)
ENDy {show_score}

Results:

*LOCAL AND GLOEAL IDENTIFIERS DO NOT CONFLICT#

seek
This procedure places the current position of a file at the specified component.
E—~0 O ®

Item | Description/Default | Range Restrictions

file identifier variable of type file must be direct access;
must be open for read-
write

index integer expression greater than 0

Example

seek{file_varsindx)

Semantics

The procedure seek(f k) places the current position of f at component k. If k is greater than the
index of the highest-indexed component ever written to f, the function eof(f) returns true, other-
wise false. The buffer variable {” is undefined following the call to seek. An error occurs if f is not
open in the read-write state.

Illustration

Suppose examp_file is a file of char with four components opened for direct access. The current
position is the second component. To change it to the fourth component, we call seek.

{initial condition}

current position

)
state: read-write
I examp-file™ (deferred): e
h € P eof(examp_file): false

seek(examp_file,4);

current position

J
state: read-write
h examp_file”™: undefined
e | p]
eof(examp_file): false

169

170

Separators

A separator is a blank, an end-of-line marker, a comment, or a compiler option.

At least one separator must appear between any pair of consecutive identifiers, numbers, or
reserved words. When one or both elements are special symbols, however, the separator is
optional.

Example Code
IF eof THEN GOTO 99 {Required separators.?’
X 1= x + 1 {0Optional serparators.?’

He=x+1 {No serarators. +

SET

A set is the powerset, i.e. the set of all subsets, of a base type. A set type consists of the reserved
words SET OF and an ordinal base type.

Set Type:

- set type | .
'| identifier | h
of SET oF Or‘tdyipneal
PACKED

A set type is a user-defined structured type. The base type may be any ordinal type. The maximum
number of elements is implementation defined but must be at least 256 elements. It is legal to
declared a packed set, but whether this affects storage is implementation dependent.

Permissible Operators
assignment: :=
union: +

intersection: *

difference: -

subset: {=

superset: 3=

equality: =y {7

inclusion: IN

Example Code

TYPE
charset = SET OF chars
fruit = {appley bavwavnas cherrys Peach» pPears Pinearrleli
somefruit = SET OF aprle..cherrys
roets = SET OF (Blakes Frosts Brecht)i
some_set = SET OF 1.,2003

171

172 SET

Restricted Set Constructor

A set constant is a declared constant defined with a restricted set constructor which specifies set
values.

Set Constant: { \

set type [(
indentifier
constant

A\

"‘ .. }—Dl constant '——)

Lo~

A restricted set constructor consists of an optional previously declared set type identifier and a list of
constant values in square brackets. Subranges may appear in this list.

N
A

- { A ~(D)—~
set type
..)—h‘l constant |——J

A value must be an ordinal constant value or an ordinal subrange. A constant expression is legal as
a value. The symbols (. and .) may replace the left and right square brackets, respectively.

Restricted set constructors may appear in a CONST section of a declaration part or in executable
statements. Unrestricted set constructors permit variables to appear as values within the brackets.

You can use a set constant to initialize a set variable in the body of a block.

Example Code

TYPE
didgits = SET OF 0.,.93
charset = SET OF chars
CONST
all_didgits = didits [0,.,9]13 {Subrangde,
odd_digits = digits [1,y 1424 54 74 911
letters = charset [/a’vv’z7y A7 72°15
no-chars = charset [13
no_iden = [Zy 4y By B] {Nop set identifier.?}

SET 173

Set Constructor

A set constructor designates one or more values as members of a set whose type may or may not
have been previously declared. A set constructor consists of an optional set type identifier and one
or more ordinal expressions in square brackets. Two expressions may serve as the lower and upper
bound of a subrange.

R
N

-4 1 .o~
e

xpression
LC .)—P{ expression I—J

If the set type identifier is specified, the values in the brackets must be type compatible with the base
type of the set. If no set type identifier appears, the values must be type compatible with each other.
The symbols (. and .) may replace the left and right square brackets, respectively.

Set constructors may appear as operands in expressions in executable statements. Set constructors
with constant values are legal in the definition of constants.

Example Code

PROGRAM show.setconstructors
TYPE

int-set = SET OF 1.,1003

cap-set = SET QF ‘A7, '273
UaR

asb: 0,,2351%

sl: SET OF intederi

s2: SET OF chars

BEGIN
sle= int_setl(a MOD 100) + (b MOD 100)1]
s2:= cap.setl B/, /Ty "Xy ‘2715

END.

174

setstrlen

This procedure sets the current length of s to the specified length.

(Cserstaen)0+ sotntitfer (O~

Item Description/Default l Range Restrictions
string identifier variable of type string -
new length integer expression 0 thru the maximum

length of the string

Example

setstrlen(str_varsint_exe)

Semantics

The procedure setstrien(s,e) sets the current length of s to e without modifying the contents of s.
If the new length of s is greater than the previous length of s, the extra components will be
undefined. No blank filling occurs. If the new length of s is less than the previous length of s,

previously defined components beyond the new length will no longer be accessible.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

VAR
alpha: string[B01;
BEGIN
alpha:= ‘abcdef’s {strlen(alrha) = B}
setstrlen{alrhasZ*¥strlientalrhal)i {Doubles current lendgth }
' {of alpha, Alerhal7] +
, {throudh alrhall12] not ¥
’ {defined. }
setstrlen{alrha2) {Alrhal3] throudh +
' {alrhaliB0] unavailable, }

END.

Side Effects

A side effect is the modification, by a procedure or function, of a variable not appearing in the
parameter list.

Global variables are declared at the beginning of a program before any procedure declarations.
Global variables are valid during the execution of the program.

Local variables are variables declared within a procedure or function (or in the headings as para-
meters) and are only valid during the execution of the procedure of function.

If you declare a local variable using the same identifier as a global variable, the local variable can be
modified without affecting the global variable. A side effect is likely to occur if you forget to declare
the variable within the procedure or the procedure heading. Without the local declaration, the
compiler assumes that the global variable is to be used.

Example Code

PROGRAM show_effects(output)s
VAR 1sJ & intederi {Globkal variables}
PROCEDURE oors{(i : inteder)’ {1 is local to the procedurel

BEGIN
IF i » 0 THEN J := 4 - 13 {J is a dlobal variable}
END§

BEGIN
i
Jo
ooprs(
IF i

END .

(S 3 gh]

i
3
)

LIl

3
J THEN writeln(‘There was a side effect’)3

175

176

sin

This function returns the sine of the angle represented by its argument.

numeric
OO epremmion ()

Examples
Input Result
sin{rad)
sin{0.024) 24+388770E-02
Semantics

The function sin(x) computes the sine of x, where x is interpreted to be in radians. X can be any
numeric value.

177

sqr

This function computes the square of its argument.

numeric
expression

Examples
Input Result
sar(3) g
sqr(1,198E3) 1,435204E+06,
sar{maxint) {error’
Semantics

The function s=r(x) computes the value of x squared. If x is an integer value, the result is also an
integer. If the value to be returned is greater than the maximum value for a particular type, a
run-time error occurs.

178

sqrt

This function computes the square root of its argument.

ED~0

Item

argument o

Description/Default

Range Restrictions

argument

Examples

Input
sart(B4)
sart (13.,5E12)
sart(0)
sart({-5)

Semantics

numeric expression

Result

{error’

greater than or equal to 0

The function sart(x) computes the square root of x. If x is less than 0, a run-time error occurs.

179

Standard Procedures and Functions

The standard procedures and functions recognized by HP Pascal are listed in the following tables.
These identifiers may be redefined within a program since they appear “global’’ to a program.

Standard Procedures and Functions for HP Pascal

Procedures Functions
append abs
close arctan
disrose bimary
det chr
halt cos
mark eof
rew eoln
OPEN exP
guerprint hex
pachk lastros
rage lineros
Prompt In
PUt maxpos
read octal
readdir odd
readln ord
release position
reset pred
rewrite round
seek sin
setstrlen sqar
strarrend sqrt
strdelete str
strinsert strlen
strmoue strmax
strread strlitrim
strurite st TPOS
unrack strrert
write strririm
writedir suce
writeln trunc

180

Statements

A statement is a sequence of special symbols, reserved words, and expressions which either
performs a specific set of actions on data or controls program flow.

Statement:

[unlabelled |
'| statement | g

O ©
'—.<BEGIN statement @

assignment
statement

CASE
statement

FOR
statement

GOTO
statement

IF

statement
PROCEDURE
statement

REPEAT
statement

WHILE
statement

WITH
statement

HP Pascal statement types and purposes include:

Statement Type Purpose
compound group statements
empty do nothing
assignment assign a value to a variable
procedure activate a procedure
GOTO transfer control unconditionally
IF, CASE conditional selection
WHILE, REPEAT, FOR | iterate a group of statements
WITH manipulate record fields

Empty, assignment, procedure, and GOTO statements are “simple” statements. IF, CASE,
WHILE, REPEAT, FOR, and WITH statements are “structured”’ statements because they them-
selves may contain other statements.

Statements

A GOTO statement requires a label to mark the location of the statement where execution is to
continue. The label consists of an unsigned integer and a colon “:” preceeding the ‘‘target”
statement. When a label is used, a LABEL declaration must appear in the declaration section of the
block containing the GOTO statement and its destination statement.

The following pages describe compound, and empty statements.

Compound Statements

A compound statement is a sequence of statements bracketed by the reserved words BEGIN and
END. A semi-colon (;) delimits one statement from the next. The system executes the sequence of
statements in order.

Certain statements may alter the flow of execution in order to achieve effects such as selection,
iteration, or invocation of another procedure or function.

After the last statement in the body of a routine has executed, control is returned to the point in the
program from which the routine was called. The program terminates after the last statement is
executed.

statement

A compound statement has two primary uses: (1) it defines the statement part of a block; (2) it
replaces a single statement within a structured statement. A compound statement may also serve to
logically group a series of statements.

Compound statements are allowed but unnecessary in the following cases.

1. The statements between REPEAT and UNTIL
2. The statements between OTHERWISE and the end of the CASE statement.

181

182 Statements

Example Code

PROCEDURE check_min;

BEGIN {This }

IF min * max THEN {compPound }

BEGIN {Compournd } {statement }

writeln('Min is wrong,)3 {statement is} {is }

min 1= 03 {part of IF } {the }

END 3§ {statement, } {Procedure’s}

END 3 {body, }
BEGIN {Nested compound statements ¥
BEGIN {for logically drouring statements.}

start_prart_13
finish.part_13
END 3

BEGIN
start_rpart_23
finish_part_23
END3
END 3

Empty Statements

An empty statement performs no action and is denoted by no symbol. It is often useful for
indicating that nothing should occur or for inserting extra semi-colons in code.

These two statements, for example, explicitly specify no action when i is 2,3,4,6,7.8,9, or 10:

CASE i O IF 1 IN [2+44y 6+,101 THEN
0 !ostarts {do nothing?
1 pocontinues ELSE continues
204 ¢
) ! report_errors
Berl0s 3

11 P stoPs
OTHERWISE fatal_error;
END 3

In this compound statement, there is an empty statement before END:

BEGIN
Ii= J + 1
Ki= 1T + J3
END

str
This function returns a portion of a string.
© O) O
Item Description/Default Range Restrictions
source string expression of type string -
beginning position integer expression 1 thru the current length
of the string + 1
substring length integer expression Othrul + the
maximum length of the
string — the beginning
position
Example

stri{str_expshed_rosssub_len)

Semantics

The function st r(s,b,e) returns the portion of s which starts at s[b] and is of length e. The result is
type st ring and may be used as a string expression. An error occurs if strlen(s) is less than the sum
of band e minus 1, or b.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

VAR
i: integers
wish_list: string[13213
dgranted: stringl313

BEGIN
ir= 134
wish_list:= ‘wishl wish2 wish3 wishd wishS'3
dranted:= str{wish_listsis3)3 {Selects the 3rd wish?}

' {Granted is ‘wish3’, 1}
END,

183

184

strappend

This procedure appends one string to the end of another.

string string
sTRAPPEND)—~((() O O

Item Description/Default Range Restrictions
string identifier variable of type string -
string expression expression of type string length must be less than

the difference between
the maximum and actual
length of the string
variable

Example

strapPend(str_varsstr_exp)

Semantics

The procedure strarrend(s1,s2) appends string s2 to s1. The call passes sl as an actual variable
parameter to the procedure. The strlen of s2 must be less than or equal to
strmax(sl)—strlen(sl). That is, it cannot exceed the number of characters left to fill in sl. The
current length of s1 is updated to strlen(s1) + strlen(s2).

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code
VAR
messade: stringl132]
BEGIN

+
i

messade:= ‘Naw hear ‘3
strappend(messades ' this! ‘)i

END,

strdelete

This procedure deletes characters from a string.

string beginning deletion
STRDELETE)—~(()) O

Item Description/Default Range Restrictions
string identifier variable of type string -
beginning position integer expression 1 thru the current length

of the string

deletion length integer expression Othrul + the

maximum length of the

string — the beginning
position

Example

strdelete{str_varshedin_rossdel_len)

Semantics

The procedure strdelete(s,p,n) deletes n characters from s starting at component s[p], and the
current length of s is updated to the length s —n.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code
PROGRAM show_strdeletes’
UAR
longs short: stringlB013
BEGIN
long:= “tiny pickle’s
strdelete(longsd4+3)3
shaort:= longds {short is ‘tinkle’,}

END.

185

186

Strings

In HP Pascal, a string is a packed array of char whose maximum length is set at compile time and
whose actual length may vary dynamically at run time.

A string type consists of the standard identifier strins and an integer constant expression in
square brackets which specifies the maximum length.

String Type:

CED e O e T 2 ©

Item Description/Default l Range Restrictions

maximum length integer expression 1 thru an implementation
dependent number

The limit for the maximum length is implementation defined. The symbols (. and .) may replace the
left and right square brackets, respectively.

A strind type is a standard structured type.

Characters enclosed in single quotes are string literals. The compiler interprets a string literal as type
PAC, string, or char, depending on context.

Integer constant expressions are constant expressions which return an integer value, an unsigned
integer being the simple case (see Constant Definition above).

When a formal reference parameter is type strins, you may choose not to specify the maximum
length (see example below). This allows actual string parameters to have various maximum lengths.

A single component of a string can be accessed by using an integer expression in square brackets as
a selector. The numbering of the characters in the string begins at one (1). In other words, to select
the first character of a string named s, type: s011. The standard function st r selects a substring of a
string.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Note
Variables of string type, as other Pascal variables, are not initialized. The
current string length contains meaningless information until you initialize
the string.

Strings

Permissible Operators

assignment: 1=

concatenation: +

relational: =gy =g bEa kg
Standard Functions

string argument: stry strlens strltrimy strmaxs streoss strrePty strririm

string return: strs stritrims strrpty strririm
Standard Procedures

string parameter: gsetstrleny strappends strdeletes strinserty strmoves strread,

strwrite

Example Code

CONST

maxlendth = 1003

TYPE
name = gtring[3013
remark = strindlmaxlendgth * 213

PROCEDURE procl (VAR s: strindg)i EXTERNALY {Maximum lendth }
{not required, 1}

String Constructor

A string constant is a declared constant defined with a string constructor which specifies values for a
strind type.

A string constructor consists of a previously defined string type identifier and a list of values in
square brackets.

o
string type (1
OF constant

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly. For
example 3 OF ’a’ assigns the character “‘a” to three successive string components. The symbols (.
and .) may replace the left and right brackets, respectively. String literals of more than one character
may appear as values.

The length of the string constant may not exceed the maximum length of the st rins type used in its
definition.

String constructors are only legal in a CONST section of a declaration part. They cannot appear in
other sections or in executable statements.

187

188 Strings

A string constant may be used to initialize a variable in the statement part of a block. You may also
access individual components of a string constant in the body of the block, but not in the definition
of other declared constants.

Example Code

TYPE
s = strindlBOIS

CONST
blank = © 73
greeting = s ‘Hella!’13
farewell = s['G’+2 OF ‘o’+’d’+'bve’]}

blank_string = s[10 OF blankl;

String Literals

A string literal consists of any combination of the following.

e A sequence of ASCII printable characters enclosed in single quote marks.
e A sharp symbol (#) followed by a single character.

e A sharp symbol (#) followed by up to three digits which represent the ASCII value of a
character.

Literal

M)

oo H

Up to 3 digits

The printable characters appearing between the single quotes are those ASCII characters assigned
graphics and encoded by ordinal values 32 through 126.

A letter or symbol after a sharp symbol is equivalent to a control character. For example, #G or #g
encodes CTRL-G, the bell character. The compiler interprets the letter or symbol according to the
expression chr(ord(letter)MOD 32). Thus, the ordinal value of G is 71; modulus 32 of 71 is 7; and
the ASCII value of 7 is the bell.

A number after a sharp symbol may contain up to three digits but must be in the range 0..255. It
directly encodes any ASCII character, printing or non-printing. For example, the string literal
#80#65#83#67#65#76 is equivalent to the string literal “PASCAL”.

A string literal is type char, PAC or string, depending on the context.

If a single quote is a character in a string literal, it must appear twice.

A string literal may not be longer than a single line of source code, nor may it contain separators,
except for spaces (blanks) within the quotes.

Two consecutive quote marks () specify the null or empty string literal. Assigning this value to a
string variable sets the length of the variable to zero. Assigning it to a PAC variable blank-fills the
variable.

189

190

Examples
‘Please don’’t!”’ {Singdle quote
! A 7
r {Null strind.
#F
#243#H

#27 that was an ESC chars and this is also’#[
“this string has five hells '#Guasg#787' in it’

character,}

strinsert
This procedure inserts a string into another string.
saE)0 © © @
Item Description/Default Range Restrictions
insert string expression of type string length less than

maximum length of
destination — insert

position
destination string variable of type string -
insert position integer expression 1 thru current length of
destination string
Example

strinsert(insert sdest pos)

Semantics

The procedure st rinsert(sl,s2.n) inserts string sl into s2 starting at s2[n]. Initially, s2 must be at
least n-1 characters in length or an error will occur. The resulting string may not exceed st rnax(s2).
The current length of s2 is updated to strlen(s1) + strlen(s2).

A string expression may consist of a string literal. a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

VAR
remark: stringlBO13
BEGIN
remark:= ‘There is missing! '3

strinsert(’ something’ sremark 973
+

END,

191

192

strlen

This function returns the current length of a string.

GO~ -0

Example

strlen{str_exp!

Semantics
The function st rlen(s) returns the current length of the string expression s.

If s is not initialized, st rlen(s) is undefined.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Note
The st rlen function can only be used with strings, not PAC’s.

Example Code

VAR
arss wita: stringl13273
b: bocleans
BEGIN
IF strlen(ars) > strleni{vita) THEN
bi= true
ELSE
halts

END.

stritrim

This function returns a string trimmed of all leading blanks.

sTRLTAIN)—() 0

Example

strltrim{str_exp)

Semantics

The function st r1trim(s) returns a string consisting of s trimmed of all leading blanks. The function
strrtrim trims trailing blanks.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code
VAR
st stringlB013
BEGIN
s:= f abg ‘1
si=strltrimis) s {5 15 now ‘abec’}
f {strlen(s) = 3 }

END,

193

194

strmax

This function retums the maximum allowable length of a string.

GO 2 -0

Item | Description/Default l Range Restrictions
string identifier ' variable of type string I -
Example

strmax{str_var}’

Semantics
The function st rmax(s) returns the maximum length of s.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

VAR
s: stringl13213
BEGIN

+

IF strlen(s) = strmax(s) THEN

BEGIN
st= strltrim(s)}
si= strrtrim(s)s
END 3

END.

strmove

This procedure copies characters from one string or PAC to another.

copy source

sTAMOVE)= {15258) O
destination destination
identifier position

Item Description/Default Range Restrictions
copy length expression of type integer see semantics
source expression of type string or variable of type PAC -
source position integer expression 1 thru current length of

source string
destination identifier variable of type string or PAC -
destination position integer expression 1 thru current length of
destination string — 1
Example

strmove(copry_lenssourcessource.prosdest_idsdest_ros)

Semantics

The procedure st rnove(n,s1,pl,s2,p2) copies n characters from s1, starting at s1[p1], to s2, starting
at s2[p2]. String length is updated, if needed, to p2 + (n—1) if p2 + (n-1) > strlen(s2).

If p2 equals strlen(s2) + 1, strmove is equivalent to appending a subset of s1 to s2.

You may use strmove to convert PAC’s to strings and vice versa. It is also an efficient way of
manipulating subsets of PAC’s.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

You should not strmove into an uninitialized variable regardless of its type.

195

196 strmove

Example Code

VAR
pac: PACKED ARRAY[1..15]1 OF chars
s: strindl8071;
BEGIN
si1= 73
pac:= ‘Hewlett-Packard’s
strmove(lDsracslsssl s {Converts
END .

a FAC to a string.}

strpos

This function returns the starting position of the first occurrence of a series of characters within a
string.

\ source pattern
s1RP05)—(() O O

Item | Description/Default Range Restrictions
source string expression of type string -
pattern string expression of type string -
Example

strpos{sourcespattern)

Semantics

The function st rros(s1,s2) returns the integer index of the position of the first occurrence of s2 in
s1. If s2 is not found, zero is returned.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Note

Some HP Pascal implementations have the order of the two parameters
reversed. Also, a compiler option may exist for reversing the order of

parameters.
Example Code
CONST
separator = ' '}
VAR

i: inteders
names: stringlBOI1S
BEGIN
+
vames:= ‘Jon Jill Ruth Marnie Bob Joan MWendy '3
it= gstrpos (namess:seParator)s
IF i «» O THEN
strdelete{names 1,101 {deletes first namel

4

END

197

198

strread

This procedure reads a value from a string as if it were an external textfile.
string starting next free
STRREAD)= () O O
variable
O O

Item Description/Default Range Restrictions
string expression expression of type string -
starting position expression of type integer -
next free character variable of an integer or integer subrange type -
variable identifier simple, string. or PAC variable -
Examples

strread{str_exp:start_possnext_charsvariable)
strread(str_exrsstart_possnext_charsvariablelsssssvariablen)

Semantics

The procedure strread(s,p.t,v) reads a value from s, starting at s[p], into the variable v. After the
operation, the value of the variable appearing as the t parameter will be the index of s immediately
after the index of the last component read into v.

S is treated as a single-line textfile. 5trread(s.p.t.v) is analogous to read(f.v) when f is a textfile of
one line. Like read, strread implicitly converts a sequence of characters from s into the types
integer, real, longreal, boolean, enumerated, PAC, or string.

A string expression may consist of a string literal. a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

strread 199

An error occurs if st rread attempts to read beyond the current length of s.

The call

strread(sspatsulsysunls

is equivalent to

strread (s spatsulli
strread{sst st sul)s
+

+

strread{sststrun)

Example Code

VAR
s: stringlBO13
Ppyt: 1.,.803%
min: inteders

BEGIN
g1z ! 12 564 H
pi= 1}
strread{s spstsm)} {The value of m will be 123% }
4) {t will be G. }
strread{s st st em) i {The wvalue of n will be S5G643%}
+ {t will hte i1,

END.

200

strrpt

This function returns a string composed several copies of its string argument.

string repeat
s1ARPT () O O

Item | Description/Default | Range Restrictions
string expression expression of type string -
repeat count expression of type integer -
Example

strrertistr_exprrer_count!

Semantics

The function strret (s n) returns a string composed of s repeated n times.

A string expression may consist of a string literal. a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

CONST
ane = ‘173
YAR
bovum: strind[3213
BEGIN
+
bonmume= strret(aonesstrmax{b_num));

END.

strrtrim

This function returns a string trimmed of trailing blanks.

GO 2 O

Example

strrtrim{str_exp)

Semantics

The function strririm(s) returns a string consisting of s trimmed of trailing blanks. Leading blanks
are stripped by the function strltrin (see above).

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

Example Code

VAR
s: stringlB0]
BEGIN
si= ‘abe '3

strrtrim{s) {5 is now ‘abc’?}
' {strleni(s) = 3 }

i
i

201

202

strwrite

This procedure writes a value to a string as if it were an external textfile.

string starting next
STRWAITE

write
parameter

Write Parameter
enumerated o
expression -

minimum
STRING or PAC field width
expression
boolean
factor
integer
expression
real
expression sl
minimum .
field width o

fraction
length

Item Description/Default Range Restrictions

string identifier variable of type string -

starting position expression of type integer 1 thru current length of
the string + 1

next character variable of an integer or integer subrange type -

write parameter see drawing -

minimum field width integer expression greater than 0

fraction length integer expression greater than O

Examples

strwrite(str.expsstart.posmext.charyvariable)
strwrite(str_expsstart_posnext_charsvariablelssyvrvariablen)

strwrite

Semantics

The procedure st ruwrite(s,p,t.e) writes the value of e on s starting at s[p]. After the operation, the
value of the variable appearing as the t parameter will be the index of the component of s
immediately after the last component of s that st rurite has accessed.

S is treated as a single-line textfile. St rwrite(s,p,t,e) is analogous to write(f,e) when fis a one-line
textfile. As with write, strwrite also permits you to format the value of e as it is written to s using
the formatting conventions. The same default formatting values hold for strurite.

Strwrite may write into the middle of a string without affecting the original length.

An error occurs if st rurite attempts to write beyond the maximum length of s, or if p is greater than
strlen(s) + 1.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Strings must be initialized just like any other variable. The string functions and procedures assume
that the string parameters contain valid information.

The call

strwrite{sspstselrssvenl)s

is equivalent to

strwrite(sspatsel)s
strurite{s tstsed)s
+

strwrite(sststren)i

Example Code

VAR
53 stringlBO]
Prt: 1+.B03
fi1dg: inteders
BEGIN
fi= 1003
g:= 993
pi=1}
strurite{sspstsfisl)s {S is now ‘10075 t is 4 ¥
strurite{sstasts’ “yd3l)3 {5 is now ‘100 89973 t is 7. 1}

+

END,

203

204

Subrange

A subrange type is a sequential subset of an ordinal host type. A subrange type consists of a lower
bound and an upper bound separated by the special symbol ““..” (i. e. 10..33). The upper and
lower bounds must be constant values of the same ordinal type and the lower bound cannot be
greater than the upper bound.

Subrange Type:

constant - constant

A constant expression may appear as an upper or lower bound.

A subrange type is a simple ordinal type: boolean, char, inteser, and user-defined enumeration or
subrange types.

Permissible Operations and Standard Functions
A variable of a subrange type possesses all the attributes of the host type of the subrange, but its
values are restricted to the specified closed range.

Example Code

TYPE
day_.of_vear = 1.,,3G66:

lowercase = fatea Tzt {Host t¥re is char, +

davs = {Monday» Tuesday, Wednesdayv,
ThursdaysFridaySaturday »Sunday) s

weekdays = Monday..Fridays
weekend = Saturday..Sundays
a.typre = lyemaxsize - | {Uprer bound is con-

{stant exrression.
{Maxsize 15 declared
{constant,

B

205

sSuccC

This function returns the value whose ordinal number is one greater than the ordinal number of the
argument.

(suec) (O~ ")

Examples
Input Result
succf{ord_tvre)
succ(l) 2
succ(-5) -4
succ{’a’) b
succ(false) true
succ{true) {error’
Semantics

The function succ(x) returns the value, if any, whose ordinal number is one greater than the ordinal
number of x. The type of the result is identical with the type of x. A run-time error occurs if succ(x)
does not exist. For example, suppose:

TYPE calor = (reds blues vellow)
Then

sueci{red) = blue

but suce(yellow) is undefined.

206

Symbols

The following table lists the special symbols valid in HP Pascal.

Symbol Purpose
+ add. set union, concatenate strings
- subtract, set difference
¥ multiply. set intersection
divide (real results)
= equal to
less than
greater than
¢) delimit a parameter list or a subexpression
[1 delimit an array index or a constructor. May be replaced by (. or .)
. select record field. decimal point
. separate listed identifiers
i delimit statements
delimit list of identifiers
define or dereference pointers, access file buffer. May be replaced by @.
not equal
<= less than or equal. subset
b= greater than or equal, superset
= assign value to a variable
‘e subrange
{ 1 delimit a comment. May be replaced by (* or *)
encode a control character
$ delimit a compiler option
delimit a string literal

- may appear within an identifier
Separators may not appear within special symbols having more than one component (e.g. :=).
Certain special symbols have synonyms. In particular, (. and .) may replace the left and right

brackets [and]. The symbol @ may substitute for the up-arrow *, also (* and *) may take the place
of the left and right braces, { and }.

text

The standard file type text permits ordinary input and output oriented to characters and lines. Text
type files have two important features:

1. The components are type char.
2. The file is subdivided into lines by special end-of-line markers.

Text type variables are called *‘textfiles™.
A text file type consists of the predefined type text.

Textfiles cannot be opened for direct access with the procedure sren. Textfiles may be sequentially
accessed, however, with the procedures reset. rewrite, or arrend. All standard procedures that
are legal for sequentially accessed files are also legal for textfiles.

Certain standard procedures and functions, on the other hand. are legal only for textfiles: readin,
writeln,Paye,Prompt,ouerPrinL,eoln.and lineros.

Textfiles permit conversion from the internal form of certain types to an ASCII character representa-
tion and vice versa.

Example Code

VAR
myfile: text}

207

208

THEN

See [IF.

TO

See FOR.

209

true

This predefined constant is equal to the boolean type whose value is true.

Example Code

PROGRAM show_true{outrutl}i

TYPE
whats truth : boolean?

BEGIN

IF true THEN writeln(’alwavs trues alwavs printed’)3

what = trues

truth := NOT falses

IF what = truth THEN writeln(‘Evervthing I sav is a lie.’}3
END.

210

trunc

This function returns the integer part of a real or longreal expression.

QRN O~ exerezison (D)

Examples
Input Result
trunci{real_exe)
trunc(S,61) =
trung(-3,38) -3
trunc(18,999) 18
Semantics

The function t runc(x) returns an integer result which is the integral part of x. The absolute value of
the result is not greater than the absolute value of x. An integer overflow occurs if the result is not in
the range minint..maxint.

211

TYPE

This reserved word delimits the start of the type declarations in a program, module, procedure or
function.

A type definition establishes an identifier as a synonym for a data type. The identifier may then
appear in subsequent type or constant definitions, or in variable declarations.

The reserved word TYPE precedes one or more type definitions. A type definition consists of an
identifier, the equals sign (=), and a data type.

Type Definition:

—DCTYPE)—-‘:’I identifie

A data type determines a set of attributes which include:

e the set of permissible values
e the set of permissible operations
e the amount of storage required

Subsequent pages explain the permissible values and operations for the various data types.
The three most general categories of data type are simple, structured, and pointer.

Simple data types are the types ordinal, real, or longreal. Ordinal types include the standard types
integer, char, and boolean, as well as user-defined enumerated and subrange types.

Structured data types are the types array, record, set, or file. The standard type strins is also a
structured data type. The standard type text is a variant of the file type.

Pointer data types define pointer variables which point to dynamically allocated variables on the
heap.

212 TYPE

The following figure shows the relation of these various categories.

DATA TYPES

POINTER

| SIMPLE ISTRUCTURED

RERL

I

FHRRAY

L.ONGREAL RECORD

i
i

ORDINAL SET

INTEGER STRING

BOOL.ERN FILE

CHAR TEXT

H

ENUMERATED

T

SUBRANGE

HP Pascal Data Types

Type Compatibility

Relative to each other, two HP Pascal types can be identical, type compatible, or incompatible.

Identical Types

Two types are identical if either of the following is true:

1. Their types have the same type identifier.

2. If A and B are their two type identifiers, and they have been made equivalent by a definition
of the form:

TYPE A = B

TYPE 213

Compatible Types
Two types T1 and T2 are type compatible if any of the following is true.

1. T1 and T2 are identical types.

2. T1 and T2 are subranges of the same host type, or T1 is a subrange of T2, or T2 is a
subrange of T1.

3. T1 and T2 are set types with compatible base types and both T1 and T2 or neither are
packed.

4. T1 and T2 are PAC types with the same number of components, or if either T1 or T2 is a
character constant or a string literal constant whose length is less than the length of the other
type, in which case the constant is extended on the right with blanks to reach a compatible
length.

5. T1 and T2 are both strinsg types.
6. T1 and T2 are both real types, i.e. real or longreal.

Incompatible Types

Two types are incompatible if they are not identical, type compatible, or assignment compatible.

Example Code
TYPE
interval = 0,,103
range = intervalsl

VAR
ul = 0,104
uZy uld: 0,107
udl 1 intervali
u3 & intervali
uB : randes

All of the variables are type compatible, but v4, v5, and v6, have identical types. The variables v2
and v3 also have identical types.

Just because two types look compatible, it does not mean they are compatible. In the following
example, type T1 and T2 are not compatible.

TYPE
T1 = record
a i inteders
bt chari
ends
T2 = record
c i intederi
d : chars

erdi

214

Types

The following data types are available in HP Pascal.

Type:

simple
type

structured
type
pointer
type

Simple Type:

Integer Type:

Structured Type
_ array
—~
set
type
record
type
file
type

string
type

Pointer Type:
pointer type
identifier
type
identifier

Integer Subrange Type

integer integer
constant i constant

Subrange Type:

—btconstan?}—b(. H constant }—b

Types 215

Real Type:

real type
identifier

Array Type:

— array type
identifier I

.|

type

o PACKED—)

File Type:

. file type -
identifier [

=(FILE) 0F)+ tvee
PACKED
TEXT

Record Type:

record type I -
™ '| identifier |
field
~(RECORD) 5. l——CEND)—}

PACKED

]

Set Type:

set type -

] identifier | ,
‘FSET OF) | or‘tdylpnea 1
PACKED

216

unpack

This procedure transfers data from a packed array to a regular array.

packed array starting non-packed array
UNPACK ©)) identifier

Item Description/Default Range Restrictions
packed array identifier variable of type array see semantics
starting position expression which is type compatible with the in-

dex of the non-packed array
non-packed array variable of type PACKED array see semantics
identifier
Example
unpack (Packed.arravsstart_possarray)
Semantics
Assuming a : ARRAY[m..n] OF t and x : PACKED ARRAY [u..v] OF t; the procedure

unrack(z+i+a) successively assigns the components of the packed array z, starting at component u,
to the components of the unpacked array a, starting at ali].

All the components of z are assigned. Hence, z must be shorter than or as long as a, i.e. (v—u) <=
(n—m). Also, the normalized value of i must be less than or equal to the difference between the
lengths ofaand zplus 1,ie.i—-m+1 <= (n—m) — (v—u) + 1. Otherwise, an error occurs when
unrack attempts to index a beyond its upper bound (see example below).

The index types of a and z need not be compatible. The components of the two arrays, however,
must be type identical.

The call unrack(z.1.a) is equivalent to:

BEGIN
Ke= 13
FOR d:= o TO v DO

BEGIN

alklei= 20411

IF 4 < v THEN k:= succi(k)s
END 3

END

where k and j are variables that are type compatible with the indices of a and z respectively.

unpack 217

Example Code

PROGRAM show_unpack {inPutoutputls
TYPE

suit_tvepes = {casuals business: leisures birthday)s
UAR

suit ¢ PACKED ARRAY [1.,.3]1 OF suit_tvress

kase @ ARRAY [1,,101 OF suit_tvresi

+

'
BEGIN
+
unpracki{suitslskase) i {After executions the first 3 ¥
' {comronents of Kase contain the ¥
' {value of suit, ¥
'
unpack{suit:7+kase)r {An error results because unrack ¥
' {attemPts to assidn a component of ¥
' {suit to a component of Kase which ¥
' {is out of rande. }

END,

218

UNTIL

See REPEAT.

VAR

This reserved word delimits the beginning of variable declarations in a Pascal program or module.

A variable declaration associates an identifier with a type. The identifier may then appear as a
variable in executable statements.

The reserved word VAR precedes one or more variable declarations. A variable declaration consists
of an identifier, a colon (:), and a type. Any number of identifiers may be listed separated by
commas. These identifiers will then be variables of the same type.

Variable Declaration:

identifier

The type may be any simple, structured, or pointer type. The form of the type may be a standard
identifier, a declared type identifier, or a data type (see example below).

You may repeat VAR sections and intermix them with CONST and TYPE sections.

Components of a structured variable may be accessed using an appropriate selector. Pointer
variable dereferencing accesses dynamic variables on the heap.

HP Pascal predefines two standard variables, inrut and outeut, which are textfiles. Formally,

VAR
inPuts putpPut: texts

These standard textfiles commonly appear as program parameters and serve as default files for
various file operations.

Each variable is a statically declared object and is accessible for the duration of the program
procedure or function in which it is declared. Module variables are accessible for the duration of the
program which imports the module.

Every declaration of a file variable F with components of type T implies the additional declaration of
a buffer variable of type T. The buffer variable, denoted as F”, may be used to access the current
component of the file F.

219

220 VAR

Example Code
TYPE
answer = {(ves,; nos mavheds
VAR
Pagecount
Iinecount s

charcount: intesders {Standard identifier. +
whats_the: answers {User-declared identifier.,}
album : RECORD {Data tyee, ¥

speed: (lpy ford: seuf):
Price: reals
name @ stringlZ013

END 3

221

Variables

A variable appearing in an executable statement takes the following form.

Variable

A
|/
|

—

variable

identifier |

field
identifier

Y

II expression |

field
identifier
-0 -

222

WHILE

The WHILE statement executes a statement repeatedly as long as a given condition is true. The
WHILE statement consists of the reserved word WHILE. a boolean factor (the condition). the
reserved word DO. and a statement.

_.@H IL Hbfoaoclteoar‘n —,—D(Do }—D'Ltat emen t—|—>

When the system executes a WHILE statement. it first evaluates the condition. If the condition is
true. it executes the statement after DO and then re-evaluates the condition. When the condition
becomes false, execution resumes at the statement after the WHILE statement. If the condition is
false at the beginning, the system never executes the statement after DO.

The statement
WHILE condition DO statement

is equivalent to:

s IF condition THEN BEGIN
statement i
GOTO 13
END 3

Usually a program will modify data at some point so that the condition becomes false. Otherwise,
the statement will repeat indefinitely. It is also possible, of course. to branch unconditionally out of a
WHILE statement using a GOTO statement.

The compiler can be directed to perform partial evaluation of boolean operators used in WHILE
statements. For example:

WHILE a_owne AND a_two DO ...

By specifying the $PARTIAL_EVAL ON$ compiler directive, if “‘a_one” is false, the remaining
operators will not be evaluated since execution of the statement depends on the logical AND of
both operators. (Both operators would have to be t rue for the logical AND of the operators to be
true)

Example Code

WHILE iwndex <= limit DO
BEGIN

writeln (real_array [indexlis

index == index + 13
END 3

WHILE NOT ecof (f} DO
BEGIN
read {(fs chisd
writeln fchis
EMND 3

WHILE 223

224

WITH

A WITH statement allows you to refer to record fields by field name alone. A WITH statement
consists of the reserved word WITH, one or more record designators, the reserved word DO, and a

record
designator

A record designator may be a record identifier. a function call which returns a record, or a selected
record component.

statement.

statement

The statement after DO may be a compound statement. In this statement, you can refer to a record
field contained in one of the designated records without mention of the record to which it belongs.
The appearance of a function reference as a record designator is an invocation of the function.

You may not assign a new value to a field of a record constant or a field of a record returned by a
function.

When the system executes a WITH statement, it evaluates the record designators and then ex-
ecutes the statement after DO.

The following statements are equivalent:

WITH rec DO BEGIN
BEGIN rec.fieldl := el3
fieldl == @ei; writeln{rec,fieldl
wWwriteln(fieldl * fieldZ)3 * rec,field?)s
END 3 END 3

Since the system evaluates a record designator once and only once before it executes the state-
ment, the statement sequence, where f is a field,

1 1= 13
WITH alil DO
BEGIN
writeln(f)s
i:=23%
writeln(f)
END 3

produces the same effect as:

writeln{alll,f):
writeln(alZ1,f):

WITH 225

Records with identical field names may appear in the same WITH statement. The following inter-
pretation resolves any ambiguity:

The statement

WITH recordls record2, +++ recordn DO
BEGIN
statement?
END3J

is equivalent to

WITH recordl DO
BEGIN
WITH recordZ DO
BEGIN
WITH recordn DO
BEGIN
statement i
END 3
END 3
END3

Thus, if field f is a component of both record]l and record2, the compiler interprets an unselected
reference to f as a reference to record2.f. You may access the synonymous field in recordl using
normal field selection, i.e. record].f.

This interpretation also means that if r and f are records, and f is a field of r, then the statement

WITH r DO
BEGIN
WITH r.f DO
BEGIN
statements
END 3
END 3

is equivalent to

WITH rsf DO
BEGIN
statements
END 3

If a local or global identifier has the same name as a field of a designated record in a WITH
statement, then the appearance of the identifier in the statement after DO is always a reference to
the record field. The local or global identifier is inaccessible.

226 WITH

Example Code

PROCRAM show_withi

TYPE
status = {(married, widowed: divorced: single)s
date = RECORD

mowth &1 {(Jany feby mars apry mavs Jun.
Julys audy serts octys nouvs decls

dav ro 1,311

YBAT :ointedersd

END3
person = RECORD
name : RECORD
firsty last: strindl10]

END 3
35 inteders
seX : (males female)s
birth : dates
ns postatuss
salary & real

END 3

VAR
emplovee : Persons

BEGIN {show_with?}
WITH emplovees names birth DO

BEGIN
last := ‘Hacker’3
first := ‘Harrv’i
55 t= 21474836473
sex = males
month 1= feb}
day 1= Z93%
year 1= 19523
ms = sindlel
salary 1= 32767.0

END 3

END {show.with}

write

This procedure assigns a value to the current component of a file and then advances the current

position.

write

<

text file
identifier

parameter

file
identifier

write
expression

Write Parameter

enumerated
expression
STRING or PAC
expression
boolean
| factor

integer
expression

minimum
field width

real
expression
minimum
field width

Item

fraction
length

Description/Default

Range Restrictions

textfile identifier

write parameter

file identifier
write expression

minimum field width

fraction length

file of type text;
defaults = output

see drawing

variable of type file
expression

integer expression

integer expression

file must be opened

must be opened to
write

must be type
compatible with file

greater than 0

greater than 0

227

228 write

Examples

Wwrite(file_varsexp:S)
write(file_varsexrlsevssenpn)
write{exp)
write{exrl vy rexpn)

Semantics

The procedure write(f,e) assigns the value of e to the current component of f and then advances
the current position. After the call to write, the buffer variable {~ is undefined. An error occurs if f is
not open in the write-only or read-write state. An error also occurs if the current position of a direct
access file is greater than maxros(f).

If fis not a textfile, an expression whose result type is assignment compatible with the components
of £ If fis a textfile, e may be an expression whose result type is any simple or string type, a
variable of type st ring or PAC, or a string literal. Also, you may format the value of e as it is written
to a textfile (see below).

The call write(f.e) is equivalent to

frooi= g1
Fut(f)s

The call write(f,el....en) is equivalent to

write{f,elldi
Wwrite(fsed)s
+

4

Wwrite(fyen)

Illustration

Suppose examp_file is a file of irteser opened in the write-only state and that we have written one
number to it. To write another number, we call write again:

{initial condition}

current position
l
state: write-only
l 1 examp_file”™: undefined
eof(examp_file): true

write(examp_file,19);
current position

l
state: write-only
1 19 examp_file”: undefined
eof(examp_file): true

write

Formatting of Output to Textfiles

When f is a textfile, the result type of e need not be char. It may be any simple, strins, or PAC
type, or a string literal. The value of e may be formatted as it is written to f using the integer
field-width parameters m and, for real or longreal values, n. If m and n are omitted, the system uses
default formatting values. Thus, three forms of e are possible in source code:

e {default formattingl}
[{whevr e is any tvrel
ermin {when e is real or londreall

The following table shows the system default values for m.

Default Field Widths
Type of e Default Field Width (m)

char 1
integer 12
real 13
longreal 22
boolean length of identifier
enumerated length of identifier
string current length of string
PAC length of PAC
string literal length of string literal

If eis boolean or an enumerated type, what gets written is implementation defined.

When m is specified and the value of e requires less than m characters for its representation, the
operation writes e on f preceded by an appropriate number of blanks. If the value of e is longer than
m, it is written on f without loss of significance, i.e. m is defeated, provided that e is a numeric type.
Otherwise, the operation writes only the leftmost m characters. M may be O if e is not a numeric

type.

When e is type real or londreal, you may specify n as well as m. In this case, the operation writes e
in fixed-point format with n digits after the decimal point. If n is 0, the decimal point and subsequent
digits are omitted. If you do not specify n, the operation writes e in floating-point format consisting
of a coefficient and a scale factor. In no case is it possible to write more significant digits than the
internal representation contains. This means write may change a fixed-point format to a floating-
point format in certain circumstances.

229

230 write

Example Code

PROGRAM show_formats (outputls

VAR
¥x: reals
Ir: londreals
dearde: booleans
list: {ves» nos mavhe)s
BEGIN
writeln(999);
Wwriteln(999;:1)3
writelnt “abg '3
writeln{ abeo 1213
¥i= 10,9993
writelni{x) s
Wwriteln(w:Z
writelnix:
writeln(x:ZE:
writeln(x:Z5:0)3
Iri= 19,1111%
writeln{lr)s
georde:= trues
writeln{deorde)s
writelni{deargesZ)s
list:= mavhes
writei{list)i
END,

The output of this program is:

999
999
abc
ah
1,098900E+01

1,089300E+01
10,93900

1.0
11
1,81110092431641L+001
TRUE
TR

MAYBE

{default formatting}
{format defeated?

{strind literal truncated}

{default formattingl

{default format}

{default formattind’

writedir

This procedure places the current position at the specified component and then writes the value of

its argument to that component.

file . write
wRITEDIR)—~(()) () O

Item Description/Default Range Restrictions
file identifier variable of type file file must be open to
write:
file must not be a textfile

index integer expression greater than 0;

less than lasros(file
identifier)
write expression expression that is type compatible with file see semantics
type
Examples

writedir(fil_varsindssexp)
writedir(fil_varsindxsexpl vy rexpn)

Semantics

The procedure writedir(f,k.e) places the current position at the component of f specified by k and

then writes the value of e to that component. It is equivalent to

seek(f k)3
write(fse)

An error occurs if f has not been opened in the read-write state or if k is greater than maxros(f). After
writedir executes, the buffer variable {” is undefined and the current position is k + 1.

231

232 writedir

Illustration

Suppose file examp_file is a file of intese r opened for direct access. The current position is the third
component. To write a number to the first component, we call writedir:

{initial condition}

current position

!

state: read-write

10 19 1 examp_file” (deferred): 1
eof(examp_file): false

writedir(examp_file.1,4 + 5);
current position
J

state: read-write

9 19 1 examp_file”™: undefined
eof(examp_file): false

writeln
This procedure writes the value of its argument to a textfile.
—=((WRITELN) -
it
(poronter
text fil
o
Write Parameter
enumerated -
. | expression I -
minimum
O
expression
boolean
expression
\ | real I
expression
l () | minimum }
field width
fraction
)
Item Description/Default Range Restrictions
textfile identifier file of type text; file must be opened to
default = outrut write
write parameter see drawing -
minimum field width integer expression greater than 0
fraction length integer expression greater than O
Examples

writeln(fil_var)
writeln(fil_varsexr:d)
writeln{fil_varsexprlsvessexPn)
writelnlexr)
writeln{explsivsrexen)

writeln

233

Table of Contents

HP-UX Implementation. 235
Compiler Options 236
ALIAS . 237
ANSL . 238
CODE . . 239
CODE _OFFSETS . .. 240
DEBUG . . 241
FLOAT 242
IF 243
INCLUDE 244
LINENUM . 245
LINES . 246
LIS T 247
OVFLCHECK 248
PAGE . . 249
PAGEWIDTH . .. 250
PARTIAL _EVAL . . . 251
RANGE . . . 252
SAVE _CONST . 253
SEARCH . . 254
SEARCH _SIZE 255
SYSPROG . . . 256
TABLES . . o 257
WARN 258
Implementation Dependencies. 259

Special Compiler Warnings 260
Replacements for Pascal Extensions 261
Other Replacements. 261
System Programming Language Extensions i L 262
Error Trapping and Simulation 262
Absolute Addressing of Variables 263
Relaxed Typechecking of VAR Parameters 264
The ANYPTR Type 265
Procedure Variables and the Standard Procedure CALL. 265
Determining the Absolute Address of a Variable. 266
Determining the Size of Variables and Types 266
Special use of RESET and REWRITE. 268

Unbuffered Terminal Input. 269

The pc Command for Series 200 HP-UX. 270
Usingthe pc Command. 270
The Load Format 271
Separate Compilation. 271

Program Parameters 274

Program Arguments 274

HEAP L . 277
HEAPZ . 278
Pitfalls. ... 279
Deciding which Heap Managerto Use 279
Specifying the Heap Manager. 279
Pascal and Other Languages 280
Calling Other Languages from Pascal. 280
Calling Pascal from Other Languages. 280
Pascal Run Time Error Handling. 281
Operating System Run Time Error Messages. 285
IO Errors. ..o 286
Systern Errors.o 287

Pascal Compiler Exrors 288

234 writeln

Semantics

The procedure writeln(fe) writes the value of the expression e to the textfile f, appends an
end-of-line marker, and places the current position immediately after this marker. After execution,
the file buffer {* is undefined and ecof(f) is t rue. You may write the value of e with the formatting
conventions described for the procedure write.

The call writeln(f.el,....en) is equivalent to

write(fi ells
Write(f 274
+
write(fsen)i
writeln(f)

The call writeln without the file or expression parameters effectively inserts an empty line in the
standard file outrut.

HP-UX 235

Implementation Appendix

Series 200 HP-UX

This appendix describes the implementation-specific details of HP Pascal for the HP-UX operating
system on the Series 200 Computers.

The following topics are described in this appendix.
e Compiler Options
e Implementation Dependencies
@ Replacements for Pascal Extensions
e System Programming Language Extensions
e Special Use of RESET and REWRITE
e Unbuffered Terminal Input
® The HP-UX pc Command
® Program Parameters and Program Arguments
@ Pascal Heap Managers for Series 200
@ Using Pascal with other Languages
@ Pascal Run-Time Error Handling
® Error Messages

236 HP-UX

Compiler Options
The pages in this section describe the compiler options (compiler directives) you may use with
Pascal on Series 200 HP-UX systems. When specified, compiler options usually have a default
action and restrictions on where they may appear. These restrictions are shown on every page
below the option.

The explanation of these restrictions is given below.

Restrictions on the Placement of Compiler Directives

Location Restriction
Anywhere: No restriction.
At front: Applies to entire source file; must appear before the first “token’” in the source file

(before PROGRAM, or before MODULE if compiling a list of modules).

Not in body: Applies to a whole procedure or function; can’t appear between BEGIN and END.
Good practice to put these options immediately before the word BEGIN, or the
procedure heading.

Statement: Can be applied on a statement-by-statement basis or to a group of statements, by
enabling before and disabling after the statements of interest.

Special: As explained under the particular option.

If a option appears in the interface (import or export) part of a module, it will have effect as the
module is compiled. However, the option itself will not become part of the interface specification
(export text) in the compiled module’s object code and will have no effect in the implement section
of the module being compiled.

HP-UX

ALIAS

Default: External name = Procedure Name
Location: Special, See Below

This option causes a name, other than the name used in the Pascal procedure or function declara-
tion, to be used by the loader.

external
name

Item I Description/Default Range Restrictions

string Entire declaration must
fit on one line.

external name

Semantics

The string parameter specifies the external name for the procedure in whose header the option
appears.

Example
procedure $alias ‘charlie’$ p (i: inteder)j externalj

[X3R2]

Within the program, calls use the name “p”’; but the loader will link to a physical routine called
“charlie”.

The option must appear between the keywords PROCEDURE or FUNCTION and the first symbol
following the semicolon (i) denoting the end of the procedure or function declaration.

The option may not appear in an export section.

237

238 HP-UX

ANSI

Default: OFF
Location: At Front

This option selects whether an error message is to be emitted for use of any feature of HP Standard
Pascal not contained in ANSI/ISO Standard Pascal.

om.g.o

Semantics
“ANSI” is interpreted as “ANSI ON”".

ON causes error messages to be issued for use of any feature of HP Standard Pascal which is not
part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example

$ansi ond

HP-UX 239

CODE

Default: ON
Location: Not in Body

This option is used to control whether a CODE file will be generated by the compiler.

Semantics
“CODE" is interpreted as ‘‘CODE ON".

ON specifies that executable code will be emitted.

Example
$code off$

240 HP-UX

CODE_OFFSETS

Default: OFF
Location: Not in Body

This option controls the inclusion of program counter offsets in the compiler listing.

o CODE_OFFSETS ll' o

Semantics
“CODE_OFFSETS" is interpreted as ““CODE_OFFSETS ON”.

ON specifies that line number-program counter pairs will be printed for each executable statement
listed. This can be applied on a procedure-by-procedure basis.

HP-UX 241

DEBUG

Default: OFF
Location: Not in Body

This option controls whether the code produced by the compiler contains the additional informa-
tion necessary for reporting line number information with error messages.

0@%0

Semantics
“DEBUG?” is interpreted as “‘DEBUG ON”

“DEBUG ON” will cause instructions to be emitted, which assign the current line number to the
system variable ‘‘asm_line”’, for the procedure bodies following it. These instructions are not
stripped by the strip(1) command of HP-UX.

This option may be applied on a procedure-by-procedure basis.

Example

procedure budgyi
var i: intederi
$debugd an$
bedin

LR)
endi
$debug off$

242 HP-UX

FLOAT HDW

Default: OFF
Location: Not in body

This option enables and disables the use of floating-point hardware.

O—Com 0O

OFF

Semantics

An optional floating-point hardware board is available for Series 200 Computers to increase the
execution speed of floating-point math programs.

A small overhead occurs on every procedure when this option is enabled. For maximum perform-
ance, bracket calls to math-intensive procedures with $FLOAT ON$ and $FLOAT OFF3$.

“FLOAT_HDW" is interpreted as ' FLOAT_HDW ON”

ON instructs the compiler to generate accesses to hardware for most floating-point operations. If the
hardware does not exist when the program is executed, an error will result.

OFF tells the compiler to generate calls to libraries for all floating-point operations.

TEST causes the compiler to generate both hardware accesses and library calls. The compiler
automatically includes code to test for the presence of floating-point hardware. At execution time, if
the test succeeds, the hardware accesses are used, otherwise the library calls are used.

The operations that use the hardware include: addition, subtraction, multiplication, division, nega-
tion, and the sar function. All other math functions call library routines. There are libraries that
access the floating-point hardware. Hardware can also be used by any operation that converts an
integer to a real or longreal, converts a real to a longreal, or converts a longreal to a real. The
hardware is not used by operations that convert reals or longreals into integers.

Example

$float test%

HP-UX 243

IF

Default: Not Applicable
Location: Anywhere

This option allows conditional compilation.

F boolean conditional
expression text

Item | Description/Default I Range Restrictions
boolean expression - may only contain
compile time constants
conditional text source to be conditionally compiled
Semantics

If the expression evaluates to FALSE, then text following the option is skipped up to the next END
option.

If the boolean evaluates to TRUE, then the text following the option is compiled normally.

IF-END option blocks may not be nested.

Example
const fancy = trues
limit = 103
cize = 93

$if fancy and {{(size+l)<limit)$
v (# this will be sKirped ¥)
end

244 HP-UX

INCLUDE

Default: Not Applicable
Location: Anywhere

This option allows text from another file to be included in the compilation process.

file
NN O~®

Item | Description/Default | Range Restrictions
file specifier | string I any valid file specifier
Semantics

The string parameter names a file which contains text to be included at the current position in the
program. Included code may contain additional INCLUDE options.

Example

prodram inclusives

$include “/users/steve/declars’$
$include ‘/users/steve/body’$
end,

HP-UX 245

LINENUM

Default: Not Applicable
Location: Anywhere

This option allows the user to establish an arbitrary line number value.

—P-@-—D-CLINENUMH line number]—»@——-

Item | Description/Default I Range Restrictions
line number | integer numeric constant I 1 thru 65534
Semantics

The integer parameter becomes the current line number (for listing purposes and debugging
purposes if $debug$ is enabled).

Example

$linenum Z20000%

246 HP-UX

LINES

Default: 60 lines per page
Location: Anywhere

This option allows the user to specify the number of lines-per-page on the compiler listing. 2000000
lines-per-page suppresses autopagination.

s | o

Item | Description/Default | Range Restrictions
lines per page | integer numeric constant | 20 thru MAXINT
Example

$lines 554

$lines Z2000G000% (¥supFPress auntoradination#!

HP-UX

LIST

Default: ON to Std. output file
Location: Anywhere

This option controls whether or not a listing is being generated. and where it is being directed to.

Item I Description/Default I Range Restrictions
file specifier I string I any valid file specifier
Semantics

“LIST" is interpreted as “LIST ON".

LIST with a file specifier specifies that the file is to receive the compilation listing.

LIST OFF suppresses listing.

LIST ON resumes listing. No listing will be produced at all. regardless of this option. unless
requested by the operator when the Compiler is invoked. (i.e. the **-L™" option of the pc command

is specified.)

Example

$list ‘Jusersisteve/keeplist %
$list of f#

247

248 HP-UX

OVFLCHECK

Default: ON
Location: Statement-by-statement

This option gives the user some control over overflow checks on arithmetic operations.

OVFLCHECK

Semantics
“OVFLCHECK?” is interpreted as “‘OVFLCHECK ON”

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks; they will still be made for 32-bit integer DIV, MOD, and
multiplication.

Example
$ouflcheck off%

HP-UX 249

PAGE

Default: Not Applicable
Location: Anywhere

This option causes a formfeed to be sent to the listing file if compilation listing is enabled.

o PAGE o

Example
$rPade$

250 HP-UX

PAGEWIDTH

Default: 120
Location: Anywhere

This option allows the user to specify the width of the compilation listing.

characters
AGEWIDTD—"{ per line , g (:)

Item | Description/Default | Range Restrictions
characters per line | integer numeric constant | 80 thru 132
Semantics

The integer parameter specifies the number of characters in a printer line.

Example

$radewidth BOS%

HP-UX 251

PARTIAL EVAL

Default: OFF
Location: Statement-by-statement

PARTIAL_EVAL

Semantics
“PARTIAL_EVAL" is interpreted as “PARTIAL_EVAL ON”.

ON suppresses the evaluation of the right operand of the AND operator when the left operand is
FALSE. The right operand will not be evaluated for OR if the left operand is TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition of any
other operands.

Example

$partial.eval ons%
while (p< nil) and (P .count:0) do
p o= p o links

252 HP-UX

RANGE

Default: ON
Location: Statement-by-statement

This options enables and disables run-time-checks for range errors.

Semantics
“RANGE” is interpreted as “RANGE ON"".

ON specifies that run time checks will be emitted for array and case indexing, subrange assignment,
and pointer dereferencing.

Example

var a: arravyfl,,10] of intederi i: inteders
LN

i 1= 113

$range offs$

alil = 03 (# invalid index mot caudght! *)

HP-UX 253

SAVE_CONST

Default: ON
Location: Anywhere

This option controls whether the name of a structured constant may be used by other structured
constants.

SAVE_CONST

Semantics
“SAVE_CONST” is interpreted as “‘SAVE_CONST ON”.

ON specifies that compile-time storage for the value of each structured constant will be retained for
the scope of the constant’s name (so that other structured constants may use the name).

OFF specifies that storage will be deallocated after code is generated for the structured constant.

Example
$save_const offs%
type ary = array [1.,,100] of inteder:
const acon = ary [345,45691s vewvs 11

(#bid constants take lots of compile-time memory*)

254 HP-UX

SEARCH

Default: Not Applicable
Location: Anywhere

This option is used to specify files to be used to satisfy IMPORT declarations.

(5 e
/

file
(&)(seanem—L(1) O—~®

Item | Description/Default | Range Restrictions
file specifier I string I any valid file specifier
Semantics

SEARCH must be the last option in an option list!

Each string specifies a file which may be used to satisfy IMPORT declarations. Files will be searched
in the order given. The file, “‘/lib/libpc.a” is always searched last. A default maximum of 9 files may
be listed. (See $SEARCH_SIZE ... $.)

Specified files may be either “a.out”” or archive (*.a”) format.

Example

$search ‘/users/steve/firstfile.a’s'/users/steve/secondfile.a’s
import comeplexmaths Polarmath;

HP-UX

SEARCH SIZE

Default: 9 files
Location: At front

This option allows you to increase the number of external files you may SEARCH during a
module’s compilation.

SEARCH_SIZE)——I Jpumoer

Item | Description/Default | Range Restrictions
number of files | integer numeric constant | less than 32767
Semantics

When compiling a Pascal module, it is sometimes desirable to import another module from another
file. To import a module from another file, the SEARCH option is used to identify the file. Up to
nine SEARCH options may be given unless the SEARCH _SIZE option is given. The SEARCH_
SIZE option allows you to SEARCH up to 32 766 external files for imported modules.

Example

$search_size 30%

255

256 HP-UX

SYSPROG

Default: System Programming Extensions not enabled
Location: At Front

This option makes available some language extensions which are useful in systems programming
applications. See “System Programming Language Extensions’ in this appendix.

oNCEDN0

Example

$svsProgé
prodgram machinederendents

LI

HP-UX 257

TABLES

Default: OFF
Location: Not in Body

This option turns on and off the listing of symbol tables.

NON TSN EB N0
L

Semantics
“TABLES” is interpreted as “TABLES ON”

ON specifies that symbol table information will be printed following the listing of each procedure.
This is useful for very low-level debugging.

Example

$tabless
procedure hasabug (var P: inteder):
var

b

258 HP-UX

WARN

Default: ON
Location: At Front

This option allows the user to suppress the generation of compiler warning messages.

Semantics
“WARN?" is interpreted as “WARN ON"’ and compiler warnings will be issued.

Example
$warn off$

HP-UX

Implementation Dependencies

The following list of Pascal keywords have implementation dependencies in Series 200 HP-UX

Pascal.

Keyword

arpPend

ARRAY .. OF

close

Directives
dispose

external

Heap Proce-
dures

longreal

mark
maxint
MAXPOS
minint
Modules

real

release

rewrite

Dependency

You cannot arrend to textfiles. The optional third parameter, the t in arrend(f,s,t),
has no signifigence.

There is no limit on the number of elements in an ARRAY.

The following literals may be used as the optional string parameter in the close
procedure.

'L0CK * or ‘SAVE’: The system will save the file as a permanent file.

'NORMAL /, ‘TEMP‘, or none: If the file is already permanent, it remains in the direc-
tory. If the file is temporary, it is removed.

'PURGE ': The system will remove the file.
The external directive allows Pascal to use externally defined code segments.
See the section on Pascal Heap Managers.

This directive may be used to indicate a procedure or function that is described
externally to the program. See the section: Pascal and Other Languages.

The supported heap procedures are: rew, mark, release, disrose. See the Heap
Managers Section.

The approximate range is:

—1.79769313486231L + 308 thru —2.22507385850720L — 308,
0,
2.22507385850720L — 308 thru 1.79769313486231L + 308

See the section describing the Pascal Heap Manager
The value of maxint is: 2147483647

This function always returns maxint. (See lastros).
The value of minint is: —2147483648

Module identifiers are restricted to 12 characters.

The approximate range is:

—3.402823E + 38 thru —1.175494E-38,
0,
1.175494E — 38 thru 3.402823E + 38

Files in the heap will not be closed by release.

The optional third parameter, the t in rewrite(f,s t), is used for buffered or unbuf-
fered input. See the Unbuffered Terminal Input section for details.

259

260 HP-UX

Strings

strread
struwrite

text

WITH

The longest possible string contains 255 characters.

The return parameter (indicating the next character to be used with the next
strread operation) must be an integer (an integer subrange is not allowed).

The return parameter (indicating the next position to be used with the next
strurite operation) must be an integer (an integer subrange is not allowed).

Appending to a text file is not allowed.

When 1 is a function call, WITH f DO is not allowed.

Special Compiler Warnings

The following warnings should never be seen.

warning
warning

“1line number: symbol defined alreadv: <symbol name:
“line number: symbol not found: <symbol name:

The appearance of these warnings usually indicates a problem with your compiler. The program
may not run correctly. If you suspect this to be true, contact your Hewlett-Packard Service En-

gineer.

HP-UX

Replacements for Pascal Extensions

Over the years, various implementations of Pascal have added extentions to simplify certain opera-
tions. One of the more common implementations, the UCSD implementation, added several string
functions, byte functions, and IO intrinsics. To simplify the conversion of UCSD Pascal programs to
HP Pascal programs for the Series 200 HP-UX operating system, the following table lists replace-
ments for many of the UCSD extensions.

Extension

Replacement

Other Replacements

function length

function pos

function concat
function copy
function delete
function insert
function scan
function moveleft
function moveright

function blockread

function blockwrite

Use strlen and setstrlen

Use strpos
{NOTE: parameters are reversed from pos}

Use infix ““+"’ operator
Use str

Use strdelete

Use strinsert

Recode using a FOR loop
Recode using a FOR loop
Recode using a FOR loop

Recode to use file of buf512
(where: buf512 = PACKED ARRAY([0..511] of char)

Recode to use file of buf512
(where: buf512 = PACKED ARRAYI[0..511] of char)

Use the following replacements when converting Pascal programs for the Series 200 HP-UX
operating system.

PRINTER:

CONSOLE:
SYSTERM:

IORESULT

Use rewrite(f,’/deuv/1r’) i Note that use of /dev/1r may be restricted by the
system. See your system administrator or the System Administrators Manual for
more information.

Use input

Add the following variable declaration:

kevboard :

texti

Then add these procedures to the beginning of the main program:
reset{kevboard,»’'0')3

reset(kevboardsy’ " y‘unbuffered’)s

Convert to access the variable IORESULT[asm_ioresult’]
See the section: System Programming Language Extensions.

1 “UCSD Pascal" is a trademark of the Regents of the University of California.

261

262 HP-UX

System Programming Language Extensions

Seven extensions to HP Pascal have been provided to support machine-dependent programming
and give users better control over (or access to) the hardware.

1. Error Trapping and Simulation

Absolute Addressing of Variables

Relaxed Typechecking of VAR Parameters

The ANYPTR Type

Procedure Variables and the Standard Procedure CALL
Determining the Absolute Address of a Variable

No U e W

Determining the Size of Variables and Types

These extensions may be used in any compilation which includes the $5YSPROG ON$ option at the
beginning of the text.

The extensions may not be supported by other HP Pascal implementations. The Compiler displays
a warning message at the end of compilation when they are enabled.

Error Trapping and Simulation

The TRY-RECOVER statement and the standard function ESCAPECODE have been added to
allow programmatic trapping of errors. The standard procedure ESCAPE has been added to allow
the generation of soft (simulated) errors.

try
“statement: 3§
“statement: §
LR N
“statement
recover
“statement:

When TRY is executed, certain information about the state of the program is recorded in a marker
called the recover-block, which is pushed on the program’s stack. The recover-block includes the
location of the corresponding RECOVER statement, the height of the program stack, and the
location of the previous recover-block if one is active. The address of the recover-block is saved,
then the statements following TRY are executed in sequence. If none of them causes an error, the
RECOVER is reached, its statement is skipped, and the recover-block is popped off the stack.

But if an error occurs, the stack is restored to the state indicated by the most recent recover-block.
Files are closed, and other cleanup takes place during this process. If the TRY was itself nested
within another one, or within procedures called while a TRY was active, then the outermost
recover-block becomes the active one. Then the statement following RECOVER is executed. Thus,
the nesting of TRYs is dynamic, according to calling sequence, not statically structured like nonlocal
goto’s which can only reach labels declared in containing scopes.

HP-UX 263

The recovery process does not ‘“‘undo’” the computational effects of statements executed between

TRY and the error. The error simply aborts the computation, and the program continues with the
RECOVER statement.

When an error has been caught, the function ESCAPECODE can be called to get the number of
the error. ESCAPECODE has no parameters. It returns an integer error number selected from the
error code table.

Escape codes generated by the system are always negative. The programmer can simulate errors
by calling the standard procedure ESCAPE (1), which sets the error code to n and starts the error
sequence. By convention, programmed errors have numbers greater than zero. If an ESCAPE is
not caught by a recover-block within the program, it will be reported as an error by the Operating
System. Negative values are reported as standard system error messages, and positive values are
reported as a halt code value. Note that HALT (n) is exactly the same as ESCAPE (n).

TRY-RECOVER statements are usually structured in the following fashion:

try
L A
recover
if escarecode = {whatever vou want to catch)
then
hedin
{recouvery sequencel
end
else

escapref{escarecode):

This has the effect of ensuring that errors you don’t want to handle get passed on out to the next
recover-block, and eventually to the system. All programs which are executed are first surrounded
by the Operating System with a try-recover sequence. The recovery action for the system is to
display an error message.

Absolute Addressing of Variables

A variable may be declared as located at an absolute or symbolically named address. For example,

var ioport [416000T: chars
assemblysymbol [‘asm_external_name’l: inteders

Each variable named in a declaration may be followed by a bracketed address specifier. An integer
constant specifier gives the absolute address of the variable. A quoted string literal gives the name of
a load-time symbol which will be taken as the location of the variable; such a symbol must be global
in assembly-language which will be loaded with the program.

Absolute addressing with integer constants has little meaning to “‘virtual memory™ operating sys-
tems such as HP-UX. However, symbolic addressing can be very useful, as demonstrated in the
next section.

264 HP-UX

Determining 10 Errors

When errors are trapped and handled programmatically, by the TRY...RECOVER mechanism, it is
often useful to know the exact cause of the error (so that the appropriate response can be taken).
Since these errors occur “outside’”” the program, a method of accessing the error-code from within
the program is needed. By adding the following declaration to your program, the last IO error can
be accessed.

VAR
IORESULTL “asm_ioresult’] 1 integers

If you include this declaration within your program, you can test for some errors. For example,
suppose you try to reset a file (inside a TRY...RECOVER block). When you check the standard
function ESCAPECODE, it returns — 10 (indicating an IO error has occurred). You can now check
IORESULT and take the appropriate action.

The list of IORESULT values is included at the end of this appendix.
This feature may not be supported on future implementations.

Relaxed Typechecking of VAR Parameters

The ANYVAR parameter specifier in a function or procedure heading relaxes type compatibility
checking when the routine is called. This is sometimes useful to allow libraries to act on a general
class of objects. For instance an 1/O routine may be able to enter or output an array of arbitrary size.
type
buffer = array [O..maxint] of chars
var
al: arravy [2,.501 of chari
aZ: array [0,.981 of char}

procedure output_heib(anvvar arv:buffersy loboundshibound:inteder)s

LR

outrut_hrib{als2:50)3
output_hrpib(aZ,0,99)3

ANYVAR parameters are passed by reference, not by value; that is, the address of the variable is
passed. Within the procedure, the variable is treated as being of the type specified in the heading.

This can be very dangerous! For instance, if an array of 10 elements is passed as an ANYVAR
parameter which was declared to be an array of 100 elements, an error will very likely occur. The
called routine has no way to know what you actually passed, except perhaps by means of other
parameters as in the example above. ANYVAR should only be used when it’s absolutely required,
since it defeats the Compiler’s normal type safety rules.

Programs calling routines with ANYVAR parameters should be very thoroughly debugged.

HP-UX

The ANYPTR Type

Another way to defeat type checking is with the non-standard type ANYPTR. This is a pointer type
which is assignment-compatible with all other pointers, just like the constant NIL. However, vari-
ables of type ANYPTR are not bound to a base type, so they can’t be dereferenced. They may only
be assigned or compared to other pointers. Passing as a value parameter is a form of assignment.

tvpe
pl = “inteder?
p2 = “record
f1:f2: reals
endi
gyar

Iy

visula:s ply u2: P23
anyu: anvypPtri
which: (tvyrelstyprel)i
bedin
new(ul)s new(ui)s

D)

if v+ then
bedin anvv := ul§ which = tvpel end
else

bedin anvv 2= v2i which := tvreZ endi
+ e
if which = typel then
bedin
vla = anvui
via® s= uwila® + 13
endi
ends’

This can be very dangerous! The Compiler has no way to know if ANYPTR tricks were used to put
a value into a normal pointer. If a pointer type which is bound to a small object has its value tricked
into a pointer bound to a large object, subsequent assignment statements which dereference the
tricked pointer may destroy the contents of adjacent memory locations.

Programs using this feature must be very thoroughly debugged.

Procedure Variables and the Standard Procedure CALL

Sometimes it is desirable to store in a variable the name of a procedure, and then later to call that
procedure.

A variable of this sort is called a procedure variable. The “type” of a procedure variable is a
description of the parameter list it requires. That is, a procedure variable is bound to a particular
procedure heading.

tvpe Procuar = procedure (op:inteder)s
var pP: Procvars

procedure a(oprinteder)s {identically structured Parameter list?}

D]

P := q9i {p dets the name of ai in effect P Points to a9}
call(psi)i {mame of proc variabhle, then arpropriate Parameter list}

265

266 HP-UX

A procedure variable is “called” by the standard procedure CALL, which takes the procedure
variable as its first parameter, and a further list of parameters just as they would be passed to a real
procedure having the corresponding specification.

It is not possible to create a function variable, that is, a variable which can hold the name of a
function.

Don't assign the name of an inner (non-global) procedure to a procedure variable which isn’t
declared in the same block as the procedure being assigned. Such a variable might be called later,
after exiting the scope in which the procedure was declared. The appropriate static link would be
missing, vielding unpredictable results.

Determining the Absolute Address of a Variable

The ADDR function returns the address of a variable in memory as a value of type ANYPTR. It
accepts, as an optional second parameter, an integer “offset”” expression which will be added to the
address; this has the effect of pointing “‘offset” bytes away from where the variable begins in
memory.

addr{variable)s
addrivariablesoffset)s

ADDR is primarily used for building or scanning data structures whose shapes are defined at
run-time rather than by normal Pascal declarations.

The ADDR function is very dangerous! It has the same dangers described above for ANYPTRSs, in
addition to some of its own. Use of the “offset”” can produce a pointer to almost anywhere. This can
be dangerous to the integrity of the task’s memory.

Never use ADDR to create pointers to the local variables of a procedure or function. When the
routine exits, storage for local variables is recovered thus making the value returned by ADDR
useless.

Programs using this feature must be very carefully debugged.

Determining the Size of Variables and Types
The size (in bytes) of a type or variable can be determined by the SIZEOF function.

sizeof({variable)
sizeof(tvrename)

i
H

i H

If the variable or type is a record with variants, an optional list of tagfield constants may follow the
parameter. This is similar to the procedure rew (although new implies that space is to come from the
heap).

n o= sizeof(varrecstruesblue)s

SIZEOF is not really a function, although it looks like one; it is actually a form of compile-time
constant.

HP-UX

Memory Allocation for Pascal Variables
Here is a list of storage allocations for common Pascal data types.

Type

boalean:
character:
Ernumerated scalar:
inteder:

londgreal:

Pointer:
Procedure:

real:

SET:

String:

Subrange:

Allocation |

One byte, O-false 1-true

One byte, ASCII character values O thru 255

Two bytes, unsigned.

Four bytes signed, —2147483648 to 2147483647

Eight bytes, approximate range is:
+1.1797693134862315L + 308 thru +2.225073858507202L — 308

Four bytes containing 24-bit logical address.
Eight bytes containing address and static nesting information.

Four bytes, approximate range is:
+ 3.40823E + 38 thru +1.175494E — 38

Two bytes of length plus multiples of 2 bytes to contain possible elements
which require 1 bit each to a maximum of 256 elements.

One byte of length field plus up to 255 bytes

Two bytes if maximum and minimum values are in [—32768..32767].

267

268 HP-UX

Special use of RESET and REWRITE

It is sometimes desirable to create an HP-UX file or pipe from a language other than Pascal, and
then call a Pascal routine to continue reading or writing without having to close and then re-open
the file. There is a special instance of RESET and REWRITE which make this possible. The first
parameter to RESET and REWRITE is the name of the file. The second parameter is the name of
an external file. To connect a file or pipe which has been established outside the Pascal program to
the file variable, simply put the HP-UX file descriptor in a quoted string as the second parameter.
For example:

PROGRAM P}

VAR F @ TEXTS
BEGIN
RESET(F+'B‘) 3
WRITE(F s 'ABC)3
END,

This program will connect the the file variable F with the HP-UX file descriptor 6. The string must
contain only the file descriptor; if leading or trailing blanks are present, the string will be interpreted
as a file name. No file positioning is done; the file is not rewound. If the file descriptor is associated
with a regular file, current position is determined and POSITION(F) is set to this value.

If it is necessary to rewind one of these special files from Pascal, this can be accomplished in either

of two ways:
PROGRAM P} PROGRAM P3
VAR F @ TEXTS VAR F @ TEXTS
BEGIN BEGIN
OPEN(F s 674 RESET(F:+'G") 1
SEEK(F 133 RESET(F) 3
END. END.

When attempting to close one of these special HP-UX files, it is not possible to purge it. Even if the
“purge’’ option is specified by CLOSE, the file will be saved.

This feature works for OPEN and APPEND, as well.

HP-UX 269

Unbuffered Terminal Input

Normally, terminal input is processed in units of lines. A line is delimited by a new-line (ASCII LF)
character, an end-of-file (ASCII EOF) character, or an end-of-line character. This means that a
program attempting to read will be suspended until an entire line has been typed. Also, no matter
how many characters are requested in the read call, at most one line will be returned. It is not,
however, necessary to read a whole line at once; any number of characters may be requested in a
read, even one, without losing information. By default, input from the terminal will behave in this
way; that is, it will be buffered into lines.

The HP Pascal Standard requires that input from the standard input device be unbuffered. In order
to override the system default of buffered input, the user can add the following statement to his
program:

REWRITE (INPUT»’ s 'UNBUFFERED ") 3

In this mode terminal input is processed in units of bytes. This means that a program attempting to
read will receive each byte as it is typed. A line is delimited by a new-line (ASCII LF) character. The
end-of-file (ASCII EOF) character behaves the same as if end-of-file was reached while reading
from a regular file. To restore the state to buffered input the user can add the following statement to
his program:

REWRITE(INPUT,’ ‘s BUFFERED)}

270 HP-UX

The pc Command for Series 200 HP-UX

The pc command on the Series 200 HP-UX system is a program (/bin/pc) that coordinates the
execution of the Pascal compiler (/usr/lib/pascomp). the ranlib command, and the linker-loader
(/bin/ld) of the HP-UX system.

When invoked, pc parses its arguments. If one of its arguments is a file with a “.p’ extension, it
proceeds to call the Pascal compiler. The compiler creates an archive, or ““.a" file, which contains a
“.0" file for each module (See The Load Format). It is an archive file. even if there is only one
module or main program in the source file. Assuming the compiler was called, the pc program then
calls the archive utility, ranlib, which causes a directory of *".0”” components to be prepended onto
the “.a” file.

If the compilation is successful, ranlib is always called, even when the “-¢”” option is invoked to
suppress linking and loading. If ranlib succeeds, Id (the link editor) is called, which links the *.a” file
with the appropriate library files (/lib/crt0.0, /lib/libpc.a. /lib/libc.a). and any other files which were
given as arguments to the pc command and are also needed to satisfy unresolved references.

Unless the *“— 0" option was invoked to cause the final output file to be a particular name. the
resulting file is named “‘a.out”, and is ready to run. No matter the pathname of the Pascal source
file, the a.out file is left in the current directory from whence pc was invoked. If multiple ““.p” files
are given, the resulting ““.a" files will remain in the current directory. If only one ““.p" file was given
the corresponding ““.a” file will be purged, leaving only the a.out file.

See also pc(1) in the HP-UX Reference manual.

Using the pc Command

For Series 200 HP-UX, the pc command is like the cc command. In other words, invoking the
Pascal language compiler is very similar to invoking the C language compiler. Notable exceptions
are:

e [t supports mostly different and fewer options

e [t will not accept source files of another language besides Pascal.

® [f the -c option is used to suppress linking and loading, a ““.a” file is produced, instead of a **.0”
file.

The pc command can be used to compile Pascal source files, or to link any “.a” or *“.0” files that
require loading with Pascal run-time support. The pc command will accept any combination or

number of “.p”, “.a”", and “.0” files. Usually a compile will go all the way to an “‘a.out” file, which
is linked and loaded.

HP-UX 271

The Load Format

Here are some things to know about the load format of Pascal programs.

The Series 200 HP-UX HP Standard Pascal compiler (/usr/lib/pascomp) produces code that is
formatted into archive files. Each module in the source causes a ‘“.0” file to be generated, which is
then collected with all *“.0” files of a single compilation (a compilation of a single “.p” file), and

archived into a ““.a” file. Information on archive files and “‘a.out’” format files can be found in the
HP-UX manual.

This arrangement permits mixing and matching of object code modules for different Pascal source
“modules”, using the ar command. The name of each ““.0" file is taken from the module name in
the source. For purposes of creating this *“.0” file, the name can be no longer than twelve characters
in length. The compiler treats the main program as a module also. If the name of the program is
longer than 12 chars (which is allowed by the compiler), the name is truncated to 12 before being
associated with the ““.0” file.

All external symbols (module entry points, exported procedures, global data areas, external proce-
dures, aliased names) appear in the link editor symbol table. For user programs, different types of
symbols are created by different conventions, and are shown in the following table:

Symbol type Construction
dlobal data area Tmodule nmamer
exported Procedure _imodule namer_<Proc rnamepr
module entry PoOints _i<module mame:_<module name?
aliased Procedure name Taliased namer
structured constants ‘module namer_<constant namer
aliased variables Taliased name.
external procedure

(not aliased) _iProc name.r
main prodram entry Point _main and

i<Programnamei<prodramname’

Separate Compilation

The $SEARCH ...$ option must be given arguments that are filenames suffixed with “.a” or *“.0”,
which are files that are results of a compilation by this compiler. The $SEARCH ...$ option looks for
“.0” files within the “.a” files. If you desire to combine several *“.a” files into one (so fewer files
have to be searched) you must use the ar command to extract the ““.0” files, and then recombine
them into another *‘.a” file.

Note
The ar command will archive anything you tell it to, even “.a”" files. The
compiler is not guaranteed to find “.0” files in a *“.a” file that is so
constructed.

272 HP-UX

Loading and linking separately compiled ““.a” files can be tricky. The loader will not load from an
archive file unless entry points defined in it have been previously entered into the link editor symbol
table as undefined. This means that in linking several *“.a” files derived from Pascal source, the file
with the unresolved reference must be given to the loader before the file with the definition.

An example can be seen below. Assume that the following three source files have been compiled
separately, with the ““-¢”’ option, to give files FILE1.a, FILEZ,a, and FILE3. a.

{ FILELl,r }
module ores
BXPOTIt Procedure printmessii

implement
procedure printmessis
bedin
Wwriteln{ 'messade 17})1
end 3

end.,

{ FILEZ.P }
module twoi
export Procedure pPrintmessZs

implement
procedure Printmess?s
bedin
writeln(’'messade 2703
ends

end,

{ FILE3., }
$search ‘FILEL.a’+'FILEZ.a’%$
prodram test{outpPut)s

imPort onestuwol

bedin
pPrivntmessis
Printmessss
end,

HP-UX

Now load them with “‘rc FILEL1-31.a"". The following message results:

1ds

Undefined external -
two
one
~two.two
~one_one
_one_pPrintmessli
_two_printmess2

The undefined symbols were generated by Id because of FILE3. a, which was loaded last. There are
four workarounds for this problem, each of which has its uses.

1.

2.

The —u option

The —u option of the loader causes the symbol that is its argument to be entered as
undefined, thus forcing the loading of the code that is associated with the symbol. For the
above example,

PC ~uU two -4 gne -u _two_two -u _one.one -u -one_Printmessl

-u _two_printmess? FILE[1-31,a causes successful linking and loading.

Always compile source

The pc command has been designed to enter all module entry points with the —u option,
only for the “.a” files it creates with that invocation. When it is practical, this is the easiest
method. For instance, “‘rc FILE[1- 31.¢” works fine. You can verify that it works by using
the --v option of pc to see the linker run string.

Order of linking

You can link “.a” files in a particular order. “‘pc FILE3.a FILEl.a FILEZ.a” would work.
Note that the corresponding source files cannot be compiled in that order.

Extract .o files

Using the ar command, all “.0” files may be extracted and then loaded as they are.
“pc oneso two.o test.o will load successfully.

273

274 HP-UX

Program Parameters

It is often desirable to pass the name of one or more files to a Pascal program. This can be
accomplished by the use of “‘program parameters”. On Series 200 HP-UX Pascal, these para-
meters must be of type file. The parameters are specified in the program heading in much the
same way that inrut and outeut are specified.

For example, this program has one program parameter named READFILE.

PROGRAM file_example{inpPuty outeputs READFILE)i
VAR

readfile : texts
BEGIN

reset{readfile)s

read(readfilesy + +)3

close(readfile);s
END.

The name of the physical file to be used by the program parameter is passed by including it as an
argument when executing the program. For example,

a.out <file name>
Where <file name> is the name of a physical file.

Muiltiple file names can be passed by specifying multiple program parameters and providing the
names of the files at the time of execution. Each parameter takes one of the specified files.

In the event that no file name is specified for a program parameter, a file will be created. The file
name will be the same as the identifier used as the program parameter (the file name will appear in
all uppercase letters regardless of the letter case of the identifier).

Program Arguments

A more traditional HP-UX operating system approach to passing arguments to a program is
supported by using routines exported from module ARG.

The ARG module exports several functions. The ARGC function returns a count of the number of
arguments in the command line. The ARGV function returns a pointer to an array of pointers to the
arguments in the command line. The ARGN function returns any particular argument converted to
a Pascal string. In addition, a function with similar purpose to ARGN (PAS_PARAMETERS) is
provided for compatibility with Series 500 HP-UX Pascal.

HP-UX

The “arguments” module (listed below) may be imported by your program to allow programmatic
access to any arguments specified in the command line. Your program does not require a
$SEARCH ... 3% directive to access this module, because it is included in libpc.a, which is searched

automatically.

$S5YSPROGRANGE OFF sOVFLCHECK OFF$%
module argsi

EXPOTY
tvpe
ard_string253 = stringl23313
argtvee = packed arrav[l..maxintl of chars
argarray = arrav[O.,.maxintl of “ardtvpPes

ardarravyptr = “argarrav)

function ardu: ardarrayrtri
function ardc: inteders
function argn(n: inteder): ard_string2S53
function pas-parameters(n: intederi anvvar p:
implement
vyar
ardc.valuel’_ardgc.value’] intederi

ardu_valuel‘_arduv._value’] ardarrayptrsi

const
value_.rande_error = -83%
function ardv: ardarravprtri
bedin
ardu = argu_values
endsi
function ardc: inteders
bedin
arde := ardc_value?
endj
function argni{n: inteder): ard_string2353
uar

s: arg.stringd2s59;
ir 0,.2561%

bedin
if (n »= ardc.value) or (n < 0) then
escare{value_rande_error)s
setstrlen(ss235)3
i = 14
while ardv_value*[nl"[i) <3 chr(0) do
bedin
s[il]l 2= argu_value Inl"[il}
i = 1+ 13
end?d

setstrlen(ssi-1)1
argn = 84
ends

ardtyeped l: inteder): inteders

275

276 HP-UX

function Pas_rarameters{n: inteder’ anvvar P: ardtyrei l: inteder): inteders

var
i: inteders
bedin
if (n »= ardc_value) or (n < O) then
pas_parameters := -1
else
bedgin
i 3= 13
while (argu_value Inl*[i] < chr(0)) and (1 <= 1) do

bedin
pl1] := arguv_value Inl [i]3
i = 1+ 14
endsi
pas.Parameters 3= i-11
while i <= 1 do
bedin
pL1] 1= * 73
i =1+ 13
endi
end
endi {rPas.parameters}

end,

Programming Example
The following example demonstrates the use of the ARG module.

PROGRAM ard_demo(inPutsoutput) s

VAR
fi textt
line: strindl[25513
friame: stringlBOI3

IMPORT argi

BEGIN
IF ardec » 1 THEN
BEGIN
friame := argn{l
reset(f sfrname) s
WHILE NOT eof(f
BEGIN
readln(fsline)s
writeln{line)s
END 3
END3
END.,

)3

) DO

When argc indicates an argument has been passed, the program assigns the first argument to a
filename. The program then resets the file and lists its contents.

You can test the program with the following command line.

as0ut arddemo.p

The contents of the file will be listed to the screen.

HP-UX 277

Series 200 HP-UX Pascal Heap Managers

The “heap” is the area of memory from which so-called dynamic variables are allocated by the
standard procedure NEW. When a process begins, it has available one area of memory for dynamic
data. The Pascal heap access routines (NEW, DISPOSE, MARK, and RELEASE) must share this
area of memory with any other memory allocation package (MALLOC) called from the same
process.

Conceptually the Pascal heap routines NEW, MARK and RELEASE operate in a purely stack-like
fashion. When the program finishes with all the variables above a MARK, a RELEASE is called to
move the top of the heap (the next available space) back to the value saved by MARK.

MALLOC does not allocate memory in a true stack fashion. Instead, it allocates the first sufficiently
large contiguous reach of free space found in a circular search from the last block allocated or freed.
It is possible that a memory allocation could be performed from MALLOC after a MARK is done,
yet still have an address which is less than the mark pointer. In this situation, RELEASE would not
be able to free this memory. The opposite problem arises when a memory allocation performed
from MALLOC before a MARK has a pointer value which is greater than the mark pointer. Here
RELEASE would free memory which was allocated before the heap was marked, and may destroy
valid data.

Pascal now provides two distinct heap managers. The first is simpler, faster, and requires less
memory. The second allows RELEASE and MALLOC to be called from the same process.

HEAP1

Version [does not allow RELEASE to be executed after any MALLOC has been done by the
process. Memory which has been allocated to the Pascal heap manager can be returned to the
Series 200 HP-UX memory manager by RELEASE, and can then be allocated to any other heap
manager (i.e. MALLOC).

NEW(P) allocates exactly enough space for a new dynamic variable, and returns the address of the
newly-created dynamic variable in P. This space can be allocated from the Pascal free list, or from
memory which has never been allocated in this process. The space cannot be allocated from the
free lists of other memory allocation packages.

DISPOSE(P) indicates that the space used by the variable P™ is no longer needed, and can
therefore be used when dynamic variables are to be created. This space is returned to the Pascal
free list, and the pointer P is set to nil.

MARK(P) causes the first free address in the heap to be assigned to P. The next execution of NEW
will allocate memory which begins at the address contained in P.

RELEASE(P) can be done only after a MARK(P) has assigned an address to P. This restores the
heap to its state at the moment the statement MARK(P) was executed. All dynamic variables
created after the MARK statement are effectively destroyed by RELEASE, and the memory space
that they used is freed for new dynamic variables.

278 HP UX

HEAP2

Version Il permits a process to do any combination of allocates and frees by any of the memory
managers. This version performs slower for all heap operations (significantly slower to do a RE-
LEASE), and it requires more space. Once memory has been allocated to the Pascal heap mana-
ger, this memory can only be reused by Pascal. The memory is not returned to the Series 200
HP-UX memory manager until the process terminates.

NEW(P) allocates an extra twelve bytes for a new dynamic variable. The first four bytes will contain
a forward pointer in a linked list of all currently allocated segments. The next four bytes contain a
backward pointer to the most recently allocated memory segment. The last four bytes contain the
word size of the current segment. This space can be allocated from the Pascal free list, or from
memory which has never been allocated in this process. The space cannot be allocated from the
free lists of other memory allocation packages. The address of the newly-created dynamic variable
is returned in P.

DISPOSE(P) indicates that the space used by the variable P” is no longer needed, and can
therefore be used when dynamic variables are to be created. This space is returned to the Pascal
free list along with the extra twelve bytes which were allocated by NEW(P). The pointer P is set to
nil.

MARK(P) allocates twelve bytes to put a marker into the list of all currently allocated segments. The
first four bytes will contain a forward pointer in this linked list. The next four bytes contain a
backward pointer to the most recently allocated memory segment. The last four bytes contain the
word size of the current segment. This space can be allocated from the Pascal free list, or from
memory which has never been allocated in this process. The space cannot be allocated from the
free lists of other memory allocation packages. The address of the newly-created marker is returned
in P.

The next execution of NEW will NOT allocate memory which begins at the address contained in P.

RELEASE(P) can be done only after a MARK(P) has created a marker in the list of allocated
segments and assigned an address to P. This restores the heap to its state at the moment the
statement MARK(P) was executed. It begins with the marker and disposes of all segments following
it in the list of allocated segments. All dynamic variables created after the MARK statement are
effectively destroyed by RELEASE, and the memory space that they used placed in the Pascal free
list. RELEASE will only free memory which has been allocated by NEW and MARK:; it does not
affect memory which was allocated by any other memory allocation package.

HP-UX 279

Pitfalls

Pascal standards place certain restrictions on heap operations. You may be able to write a program
which let you “‘get away with” ignoring the following restrictions using Version I, whereas Version Il
will produce unpredictable results.

e The pointer variable passed to RELEASE must have been generated only by a MARK.
e [t is not permissible to RELEASE a pointer which was returned by NEW.

o Pointer variables returned by NEW and MARK can be compared only for equality or inequal-
ity. The result of comparing these pointers in any other relation is undefined.

Deciding which Heap Manager to Use

If you have a stand-alone Pascal program which does not call any library routines, then you should
use Version [. You will have to use Version 11 if your program calls both MALLOC and RELEASE.
You may not be able to tell whether both are called (either may be called from a library routine). In
this case, you should try using Version I first. If you ever get

ERROR -31:Calls to RELEASE and MALLOC are incompatible.
you should then use Version I

Specifying the Heap Manager

Version 1 is automatically included with the Pascal run time support, whether you use the pc
command or compile in another language and link /lib/libpc.a. If you decide to use Version II, you
must specify this explicitly, by giving a — 1 option:

pc prodg.p -1 hearZ

or

PC -C PTrog.p
cc crrod.c Prod.a -1 hearZ /lib/libec.a

Note

If hear? and /lib/libpc.a are both specified, hearz MUST precede
/lib/libpc.a.

280 HP-UX

Pascal and Other Languages

Series 200 HP-UX Pascal can communicate with other languages on the system. Simple data types,
like integers, longreals, and characters are the same for Pascal, C, and Fortran. Therefore, these
simple types can be passed to routines written in other languages. Strings and other complex data
types cannot be passed between languages, unless great care is taken to construct types that each
language can understand and the data types are passed by reference.

Calling Other Languages from Pascal

An external declaration is required to call other languages (including Series 200 HP-UX system
calls) from Pascal. Like other compilers on this HP-UX system, this compiler prepends an under-
score (““_"") on most external symbols (see the previous section: The Load Format). If the external
name is the same as the one you are going to use in Pascal, then no $alias. .. is required. If you
want to use a different name, then you must also use $alias "_<rroc name:"$ in the procedure
heading, prepending an underscore for C, FORTRAN, and Pascal names. Since the assembler
does not prepend underscores on symbol names, use onein a $alias...s option only if it actually
appears in the source.

A program containing an external declaration requires an EXTERNAL directive. The EXTERNAL
directive is similar in construction to the FORWARD directive.

PROCEDURE elsewhere(i: intederi b: boolean)s EXTERNAL
PROCEDURE %$alias ‘_realproc’$ mvproc(ii inteder)} EXTERNAL]

Calling Pascal from Other Languages

Calling Pascal from any other languages requires that calls to asm_initrroc and asm_wrapue
bracket the program containing calls to Pascal routines. These routines are in assembler and the
symbol names are: *“_asm_initrroc” and “_asmn_wrarue” (they are located in /lib/libpc.a). The
initeroc procedure has one parameter that is a pointer to an integer. The integer may be zero
(echo) or non-zero (no echo). Only one call to each of these routines is required per program.
Among other things, they set up the Pascal file system, heap manager, and error recovery. Without
them, results may not be as expected.

HP-UX 281

Pascal Run Time Error Handling

During the execution of a Pascal program, an error may originate from several sources:

e In-line compiled code

@ Miscellaneous run time support routines (String, Set, Math, etc.)
® Pascal file system

e HP-UX file system support (system errors)

e Hardware (SIGNALS)

By using the $SYSPROGS$ extensions TRY, RECOVER, and ESCAPECODE, almost all of these
errors can be trapped for inspection. A kill signal cannot be caught.

In the broadest sense. there are two kinds of errors; errors resulting from the execution of in-line
code and errors resulting from calls to support routines “‘outside’” the program. The in-line errors
include range violation errors, NIL pointer errors, and math overflow errors.

When a program is compiled, the compiler normally emits calls to an error routine which will
generate an escapecode upon the detection of an in-line error. These calls can be suppressed by
the use of compiler options. See the compiler options: RANGE and OVFLCHECK.

Errors detected during the execution of miscellaneous run time support routines generate
escapecodes the same way that in-line compiled code does. The key difference is that errors
detected by support routines cannot have the error generation suppressed.

Errors detected by the Pascal file system (IO errors) are generated by a combination of run time
support code and in-line compiled code. The file system detects an error and assigns an appropriate
IO error number to a global variable. After each call to a file system routine, the compiler also emits
code to test the 10 error global variable and conditionally generates an escapecode error of —10.
You may access this global variable by adding a declaration to your program. See the System
Programming Language Extensions section.

During normal execution of the Pascal file system, HP-UX file support routines are continuously
called to actually perform the desired actions. In most cases, if an error condition is returned to the
Pascal file system, its significance is translated into a Pascal file system IO error. There are, however,
conditions which arise that are totally unexpected, and in these cases a SYSTEM error is generated
(escapecode of —30). The generation of these errors cannot be suppressed.

The final way in which an error can be generated is by an HP-UX signal. All signals that can be
intercepted by a user process are converted into appropriate escapecode values.

When emitting code for a main program, the Pascal compiler first emits a call to an initialization
routine. When executed, the initialization routine calls the Pascal procedure catch_signals (see
listing). The catch_signals procedure instructs the operating system to transfer control to the
catch_all procedure whenever a signal occurs. The catch_all procedure determines which signal
occurred and generates an appropriate escapecode. While the generation of these errors cannot be
suppressed, you can set up your own routine to handle any particular signal desired.

Also see the HP-UX documentation for SIGNAL.

282 HP-UX

What follows is a complete listing of the signal handling module. A listing of all IO, SYSTEM and
ESCAPECODE messages that could be generated appears at the end of this appendix.

$sysProd$
module signalss

EXPOTt
procedure catch_sidnalsi

procedure default_sidnalss
procedure catch_all(sid_mo: intederi tve: intederd Ptr: anvetr)i

implement

tvpe
shortint = -32768,.32767}
sigvals = {dummyssidhuPssidintssigauitysidill ssigtrarssidiotssidemnt s

sidfressighkillssigbusssidsegussidsysssidpipessidalarm:
sigtermsuseriyuser?ssidgchildrssigpur)]

sig_proc = procedure{sig_no: intederi tyeP: inteder’ PLr: anvetr)}

var
r : record case inteder of
: {(Froc ! sid_proc)s
t (address @ anvetrs
static & inteder):

1

endi
asm-sid_nol'asm_sid_no’l : inteders

const
sigdfl = NILj

function sidrnal $ALIAS ‘_sidgnal’$
(1: inteder’ P: anvePtr): anveiri externals

procedure cateh_all(sig_no: intederi tvp: intederd Ptr: anvetr)}
var
P ! oanvetri
bedin
r+proc := catch_alls
asm-sid.mo := sidg_nos
P 1= sidnal(sid_nosr.address);
case sig_no of
ord(sighup): {handuer}
escare(-21)3

ord{sidint): {interrupt -- hreak Kev or "C 3}
escare{-20)3

ord(sidauit): {aquit --

i
escare(-21)3

prd(sigill)s

ord{sidtrar):

ord(sidiot):

ord{sidemt):

ord{sigfre):

ord(sigkill):

ord{sighus):

ord{sidsequ):

ord(sidsvys):

ord{sidrire):

HP-UX

{illedal instruction -- not reset to default?
case typ of
s escare(-13)i{Kludge for temp sidgnals}

G: escare{-B)3} {chk?}
7: escare(-4)3 {trarul
ptherwise escare(-21)3

ends

{trace trap -- not reset to defaultl}

escare(-21)3

{lineal
escare(-21)3

{unimplemented instruction?}

escare({-21)3

{floating Point exception and divide by zerol}
if tvp = 3 then

escare(-5) {zerodiv}
else

escapre(-21)3

{cannot be caudht}:

{bus error’

~

pscare(-12)3

{address violatian}?
escaprel(-11)3

{bad ard to svstem call}l
escapre(-21)3

{write on Pire with no one to read?}
pscare({-21)3

ord{sidalarm):{alarm clock went off}

ord{sidterm):

ord{useri):

ord{userd):

escapre(-21)3

{software termination -- similar to sigKill?}
escape(~20)3

{user defined?}
escare(-21)3%

{user defined?}
escare{-21)3

ord(sidchild):{child died -- do not catch this signall} 3

ord{sidPuwr):

endi
end i

{case?’

{power fail -- will never det to userl} 3

283

284 HP-UX

procedure catch_sidnals}
const
sid.idn = 13
uar
it shortints
rec: record case inteder of
1y (ptr: anvetr)i
(i ¢ inteder):

catch.alli

ord{(sidghupr) to ord{sidpwr) do

if 1
bedin
recsptr t= sidgnal(isr,address)}
if recsi = sig_.idn then

rec.Ptr := sidnal(isrec.ptr)}
endi

ends

endsi

ordl{sidgchild) then

{maintain

procedure
var
i shortints

default.sidnalss

P! oanvyertri

bedin

for i 1= ord{sidhup) to ord{(sigpwr) do
P oi= sidnal(issigdfl)s

endsj

end.

sidgnals that are idnored?}

Operating System Run Time Error Messages

HP-UX 285

Errors detected during the execution of a program generate an integer number. An error message is
obtained by scannng the appropriate error message file for a line beginning with the same integer

value.

There is nothing to prevent you from modifying the error messages. If the error message file cannot
be found or if its contents are invalid, subsequent error messages will be displayed as integer values.

When using the TRY..RECOVER construct, the following numbers correspond to the value of

ESCAPECODE.

These messages are in the file named: /usr/lib/escerrs.

Abnormal termination.
Not enough memory.
Reference to NIL pointer.
Integer overflow.

Divide by zero.

Real math overflow.

Real math underflow.
Value range error.

Case value range error.
Non-zero IORESULT —
Segmentation violation.
CPU bus error.

lllegal CPU instruction.
CPU privilege violation.
Bad argument — SIN/COS.
Bad argument — Natural Log.
Bad argument — SQRT.

Bad argument — real/BCD conversion.

Bad argument — BCD/real conversion.

Stopped by user.
Unassigned CPU trap.

System error —

Calls to RELEASE and MALLOC are incompatible.

Heap operations out of sequence.

lllegal variant on dispose.

286 HP-UX

10 Errors

When ESCAPECODE = — 10 one of the following errors has occurred. You can determine which error
has occurred if you include the following variable declaration in your program.

YAR TORESULTL ‘asm_ioresult’] : inteder:
The value of IORESULT will match one of the following errors.
These messages are in the file named: /usr/lib/ioerrs.

Bad file name.

No room on volume.

10 File not found.

13 File not open.

14 Bad input format.

24 File not opened for reading.

25 File not opened for writing.

26 File not opened for direct access.

28 String subscript out of range.

29 Bad file close string parameter.

30 Attempt to read past end-of-file mark.

36 File type illegal or does not match request.

39 Undefined operation for file.

HP-UX 287

System Errors

The following are HP-UX system error messages.

When using the TRY..RECOVER construct, an EscAPECODE = -30 indicates a system error has
occurred.

These messages are in the file named: /usr/lib/syserrs.

1 Not owner.

2 No such file or directory.
3 No such process.

4 Interrupted system call.
5 I/O error.

6 No such device or address.
7 Arg list too long.

8 Exec format error.

9 Bad file number.

10 No child processes.

11 No more processes.

12 Not enough space.

13 Permission denied.

14 Bad address.

15 Block device required.
16 Mount device busy.

17 File exists.

18 Cross-device link.

19 No such device.

20 Not a directory.

21 Is a directory.

22 Invalid argument.

23 File table overflow.

24 Too many open files.
25 Not a typewriter.

26 Text file busy.

27 File too large.

28 No space left on device.
29 lllegal seek.

30 Read-only file system.
31 Too many links.

32 Broken pipe.

33 Math argument.

34 Result too large.

288 HP-UX

Pascal Compiler Errors

Errors detected during the compilation of a program generate an integer number. An error message
is obtained by scanning the appropriate error message file for a line beginning with the same integer

value.

There is nothing to prevent you from modifying the error messages. If the error message file cannot
be found or if its contents are invalid, subsequent error messages will be displayed as integer values.

These messages are in the file named: /usr/lib/paserrs.

1 Erroneous declaration of simple type:;
2 Expected an identifier ;
4 Expected a right parenthesis **)’":
5 Expected a colon *:";
6 Symbol is not valid in this context;
7 Error in parameter list:
8 Expected the keyword OF:
9 Expected a left parenthesis “(**;
10 Erroneous type declaration:
11 Expected a left bracket [
12 Expected a right bracket “]"";
13 Expected the keyword END;
14 Expected a semicolon *.";
15 Expected an integer;
16 Expected an equal sign “="";
17 Expected the keyword BEGIN:
18 Expected a digit following **."";
19 Error in field list of a record declaration:
20 Expected a comma "
21 Expected a period **.";
22 Expected a range specification symbol
23 Expected an end of comment delimiter;
24 Expected a dollar sign “*$"":
50 Error in constant specification:
51 Expected an assignment operator *: ="";
52 Expected the keyword THEN:
53 Expected the keyword UNTIL:
54 Expected the keyword DO:

ooy

55
56
58
59
98
99

100

101
102

103
104
105
106
107

108
110
111

113
115
117
121
123

125

Expected the keyword TO or DOWNTO:;
Variable expected:;

Erroneous factor in expression:
Erroneous symbol following a variable:
lllegal character in source text:

End of source text reached before end of prog-
ram;

End of program reached before end of source
text;

Identifier was already declared:;

Low bound > high bound in range of con-
stants;

Identifier is not of the appropriate class:
Identifier was not declared:

Non-numeric expressions cannot be signed:
Expected a numeric constant here:

Endpoint values of range must be compatible
and ordinal;

NIL may not be redeclared:;
Tagtfield type in a variant record is not ordinal;

Variant case label is not compatible with tag-
field,

Array dimension type is not ordinal;

Set base type is not ordinal:

An unsatisfied forward reference remains:
Pass by value parameter cannot be type FILE:

Type of function result is missing from declar-
ation;

Erroneous type of argument for built-in
routine:

126

127

129
130
131

132

133

134

135

136
137

138
139

140
141
143

144
145

147
149
150

152
154

156
158

HP-UX

Pascal Compiler Errors (continued)

Number of arguments different from number
of formal parameters;

Argument is not compatible with correspond-
ing parameter;

Operands in expression are not compatible:
Second operand of IN is not a set;

Only equality tests (=, <>) allowed on this
type;

Tests for strict inclusion { <, >) not allowed
on sets;

Relational comparison not allowed on this
type;
Operand(s) are not proper type for this oper-
ation;

Expression does not evaluate to a boolean re-
sult;

Set elements are not of ordinal type:

Set elements are not compatible with set base
type;
Variable is not an ARRAY structure;

Array index is not compatible with declared
subscript;

Variable is not a RECORD structure:
Variable is not a pointer or FILE structure;

FOR loop control variable is not of ordinal
type;
CASE selector is not of ordinal type;

Limit values not compatible with loop control
variable;

Case label is not compatible with selector;
Array dimension is not bounded:

lllegal to assign value to built-in function iden-
tifier;
No field of that name in the pertinent record:

lllegal argument to match pass by reference
parameter;

Case label has already been used;

Structure is not a variant record;

160
163
164

165
166
167
168
169
171

177

181

182
183
184
185
190

300
301
302
303
304
400
401
403
404
405
406
407
408
409

Previous declaration was not forward:
Statement label not in range 0..9999;

Target of nonlocal GOTO not in outermost
compound statement;

Statement label has already been used:
Statement label was already declared:
Statement label was not declared:
Undefined statement label:

Set base type is not bounded,;

Parameter list conflicts with forward declar-
ation;

Cannot assign value to function outside its

body;

Function must contain assignment to function
result;

Set element is not in range of set base type;
File has illegal element type;

File parameter must be of type TEXT:
Undeclared external file or no file parameter:

Attempt to use type identifier in its own declar-
ation;

Division by zero;

Overflow in constant expression:;
Index expression out of bounds;
Value out of range;

Element expression out of range;
Unable to open list file;

File not found;

Compiler error;

Compiler error;

Compiler error;

Compiler error;

Compiler error;

Compiler error;

Compiler error;

289

290 HP-UX

660
661

662

663

665

667
668
671
672
673

674

675
676

677
678
679
680
681
682
683
684
685

686

687

688

689

Pascal Compiler Errors (continued)

String constant cannot extend past text line:

Integer constant exceeds the range imple-
mented:

Nesting level of identifier scopes exceeds max-
imum (20):

Nesting level of declared routines exceeds
maximum (15):

CASE statement must contain a non-
OTHERWISE clause;

Routine was already declared forward:;
Forward routine may not be external:
Procedure too long:

Structure is too large to be allocated:

File component size must be in range
1..32766:

Field in record constructor improper or mis-
sing;
Array element too large:;

Structured constant has been discarded (cf.
$SAVE_CONST);

Constant overflow:

Allowable string length is 1..255 characters:
Range of case labels too large:

Real constant has too many digits:

Real number not allowed:

Error in structured constant:

More than 32767 bytes of data:

Expression too complex;

Variable in READ or WRITE list exceeds
32767 bytes:

Field width parameter must be in range
0..255:

Cannot IMPORT module name in its EXPORT
section;

Structured constant not allowed in FOR-
WARD module;

Module name may not exceed 12 characters:

600
602
604
605

606

607
608

609
610

611
612
613
614
620

621
646
647
648
649
651

652

653

654

655

657
658
659

Directive is not at beginning of the program:
Directive not valid in executable code;
Too many parameters to $SEARCH;

Conditional compilation directives out of
order;

Feature not in Standard PASCAL flagged by
$ANSI ON:

Language feature not allowed:

$INCLUDE exceeds maximum allowed depth
of files;

Cannot access this $INCLUDE file:

$INCLUDE or IMPORT nesting too deep to
IMPORT <module-name>:

Error in accessing library file:

Language extension not enabled:

Imported module does not have interface text:
LINENUM must be in the range 0..65535 :

Only, first instance of routine may have
$ALIAS;

$ALIAS not in procedure or function header:
Directive not allowed in EXPORT section:
lllegal file name;

lllegal operand in compiler directive;
Unrecognized compiler directive:

Reference to a standard routine that is not im-
plemented;

lllegal assignment or CALL involving a stan-
dard procedure;

Routine cannot be followed by CON-
ST, TYPE, VAR, or MODULE;:

Module declaration may not follow structured
constant declaration;

Record or array constructor not allowed in ex-
ecutable statement;

Loop control variable must be local variable:
Sets are restricted to the ordinal range 0 .. 255;

Cannot blank pad literal to more than 255
characters;

696
697
698
699
701

702

704
705
706
707

708
709
710
711
712
714
715
716
717
718
719

720
730

731

732
733
750
751
900
901

Pascal Compiler Errors (continued)

Array elements are not packed:
Array lower bound is too large:
File parameter required;

32-bit arithmetic overflow:

Cannot dereference (©) variable of type
anyptr;

Cannot make an assignment to this type
of variable;

[llegal use of module name;
Too many concrete modules;
Concrete or external instance required;

Variable is of type not allowed in variant
records;

Integer following # is greater than 255;
[llegal character in a “‘sharp’ string;
lllegal item in EXPORT section;

Expected the keyword IMPLEMENT;
Expected the keyword RECOVER;
Expected the keyword EXPORT;
Expected the keyword MODULE;
Structured constant has erroneous type;
[llegal item in IMPORT section;

CALL to other than a procedural variable;

Module already implemented (duplicate
concrete module);

Concrete module not allowed here;

Structured constant component incom-
patible with corresponding type;

Array constant has incorrect number of
elements;

Length specification required,;

Type identifier required;

Error in constant expression;

Function result type must be assignable;
Error opening code file;

Error writing to code file;

HP-UX 291

Table of Contents

The Series 200 Workstation. 293
Compiler Options 294
ALLAS . 295
ANSL . 296
CALLABS . . 297
CODE . . . 298
CODE_OFFESETS . . . 299
COPYRIGHT 300
DEBUG . .. 301
DEF . 302
FLOAT . 303
HEAP_DISPOSE. 304
IF 305
INCLUDE. . 306
IOCHECK . . 307
LINENUM . 308
LINES . 309
LIS 310
OVFLCHECK . .. 311
PAGE . 312
PAGEWIDTH 313
PARTIAL_EVAL . . . 314
RANGE. . 315
REF 316
SAVE_CONST .. 317
SEARCH . .. 318
SEARCHL_SIZE 319
STACKCHECK 320
SWITCH_STRPOS 321
SYSPROG . . . 322
TABLES . . 323
UCSD . . 324
WARN 325
Implementation Restrictions. 326
Pascal Extensions 330
Supported Features of UCSD Pascal 331
System Programming Language Extensions 341

Error Trapping and Simulation 341

Absolute Addressing of Variables 342

Relaxed Typechecking of VAR Parameters 342

The ANYPTR Typeo o 343

Determining the Absolute Address ofa Variable.............................. .. 344

Procedure Variables and the Standard Procedure CALL. 344

Determining the Size of Variables and Types 345

The IORESULT Function e 346
Workstation Files 348
Syntax of Physical File Names. 348
Characters Allowed in Volume and File Names 349
Examples of File Specifications 350
Disposition of Files Upon Closingo 350
Standard Files and the Program Heading 351
File System Differences 351
Heap Management 352
MARK and RELEASE 352
NEW and DISPOSE 352
Mixing DISPOSE and RELEASE 353
What Can Go Wrong? 354
Can’t Runthe Compiler. 354
Errors 900 thru 908 354
Errors When Importing Library Modules 355
Not Enough Memory 355
Insufficient Space for Global Variables. 355
Errors 403 thru 409 355
Error Messages. 356
Unreported Exrors. 356
Operating System Run Time Error Messages. 357
IO Errors. .. 358
VO LIBRARY Errors 359
Graphics Library Errors. 360

Pascal Compiler Errors 361

292

Notes

Workstation 293

Implementation Appendix

The Series 200 Workstation

This appendix describes the implementation-specific details of HP Pascal for the Workstation
Langauage System on the Series 200 Computers.

The following topics are described in this appendix.
e Compiler Options
e [mplementation Dependencies
® Supported Pascal Extensions
e System Programming Language Extensions
® Pascal File Support
® Heap Management

® Error Messages

If you are not already familiar with the Pascal lanuguage, the information presented in this appendix
may not be sufficient for you to successfully compile and execute a non-trivial Pascal program. If
you have difficulties, please refer to the user manuals and techniques manuals provided with your
Series 200 Workstation for more information.

294 Workstation

Compiler Options
This section describes the compiler options (compiler directives) you may use with HP Pascal on
Series 200 Workstations. When specified. compiler options usually have a default action and
restrictions on where they may appear. These restrictions are shown on every page immediately
below the option. The explanation of these restrictions is given below.

Restrictions on the Placement of Compiler Directives

Location Restriction
Anywhere: No restriction.
At front: Applies to entire source file;: must appear before the first “‘token™ in the source file

(before PROGRAM., or before MODULE if compiling a list of modules).

Not in body: Applies to a whole procedure or function: can’t appear between BEGIN and END.
Good practice to put these options immediately before the word BEGIN, or the
procedure heading.

Statement: Can be applied on a statement-by-statement basis or to a group of statements, by
enabling before and disabling after the statements of interest.

Special: As explained under the particular option.

If a option appears in the interface (import or export) part of a module, it will have effect as the
module is compiled. However, the option itself will not become part of the interface specification
(export text) in the compiled module’s object code and will have no effect in the implement section
of the module being compiled.

Note

The syntax of the two Compiler options $IF and $SEARCH do not
conform to the syntax of all other allowable options.

Workstation

ALIAS

Default: External name = Procedure Name
Location: Special. See Below

This option causes a name, other than the name used in the Pascal procedure or function declara-
tion, to be used by the loader.

external
ONCDO O~®

Item Description/Default Range Restrictions

external name string Entire declaration must
fit on one line.

Semantics

The string parameter specifies the external name for the procedure in whose header the option
appears.

Example
procedure $alias ‘charlie’$ p (i: inteder)i externali

oY,

Within the program. calls use the name “‘p’’; but the loader will link to a physical routine called
“charlie”.

The option must appear between the keywords PROCEDURE or FUNCTION and the first symbol
following the semicolon () denoting the end of the procedure or function declaration.

The option may not appear in an export section.

295

296 Workstation

ANSI

Default: OFF
Location: At Front

This option selects whether an error message is to be emitted for use of any feature of HP Standard
Pascal not contained in ANSI/ISO Standard Pascal.

om.g.o

Semantics
“ANSI” is interpreted as “‘ANSI ON".

ON causes error messages to be issued for use of any feature of HP Standard Pascal which is not
part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example

$ansi ong

Workstation 297

CALLABS

Default: ON
Location: Anywhere

This option determines whether 16-bit relative or 32-bit absolute jumps are to be generated by the
compiler.

ORCrDSNEPENG
L

Semantics
“CALLABS” is interpreted as ““CALLABS ON".

ON specifies that 32-bit absolute jumps will be emitted for all forward and external procedure calls.
OFF specifies 16-bit PC-relative jumps. Allowed on a statement-by-statement basis.

Example
$callabs off$

298 Workstation

CODE

Default: ON
Location: Not in Body

This option is used to control whether a CODE file will be generated by the compiler.

OREDE LEVE 10

OFF

Semantics
“CODE" is interpreted as ““CODE ON".

ON specifies that executable code will be emitted.

Example
$code off$

Workstation 299

CODE_OFFSETS

Default: OFF
Location: Not in Body

This option controls the inclusion of program counter offsets in the compiler listing.

OSCEDS SEPREC

Semantics
“CODE_OFFSETS” is interpreted as “CODE_OFFSETS ON".

ON specifies that line number-program counter pairs will be printed for each executable statement
listed. This can be applied on a procedure-by-procedure basis.

Example

$code_offsets on$

300 Workstation

COPYRIGHT

Default: Not Applicable
Location: Anywhere

This option is provided for inclusion of copyright information.
copyright
® O O~®

Item | Description/Default | Range Restrictions

Entire copyright must fit
on one line.

copyright message string

Semantics

The string parameter is placed in the object file as the owner of the copyright. If more than one
COPYRIGHT option is included. the last one is effective.

Example

$copyridht ‘Hewlett Packard Companys 1983°%

Workstation 301

DEBUG

Default: OFF
Location: Not in Body

This option controls whether the code produced by the compiler contains the additional informa-
tion necessary for the full use of the debugger.

0@%‘0

Semantics
“DEBUG?” is interpreted as ‘DEBUG ON”

This option will cause debugging instructions to be emitted by the compiler and may be applied on
a procedure-by-procedure basis.

Example

procedure buggyi
var i: intederi
$debug on$
bedin

bt
end s
$debug offé

302 Workstation

DEF

Default: 10 records (on same volume as code output)
Location: At Front

This option allows the user to change the size and location of the temporary compiler file *“,DEF”.

def file
size
def file
volume id

Item | Description/Default l Range Restrictions
def file size integer numeric constant less than 32767
def file volume id string valid volume identifier

If the parameter is a string, it specifies the volume where a temporary Compiler file called “DEF”,
which holds external definitions, will be stored. If the parameter is a number, it specifies how many
logical records will be allocated for the DEF file. See the section, What Can Go Wrongi? near the
end of this appendix.

Examples

$def S0%
$def ‘compuol:’$
gdef ‘Junkwol: v def 50%

Workstation 303

FLOAT HDW

Default: OFF
Location: Not in body

This option enables and disables the use of floating-point hardware. Requires Pascal 3.0

-
-

‘ FLOAT_HDW

Semantics

An optional floating-point hardware board is available for Series 200 Computers to increase the
execution speed of floating-point math programs.

“FLOAT_HDW' is interpreted as “FLOAT_HDW ON"

ON instructs the compiler to generate accesses to hardware for most floating-point operations. If the
hardware does not exist when the program is executed. an error will result.

OFF tells the compiler to generate calls to libraries for all floating-point operations.

TEST causes the compiler to generate both hardware accesses and library calls. The compiler
automatically includes code to test for the presence of floating-point hardware. At execution time, if
the test succeeds. the hardware accesses are used. otherwise the library calls are used.

The operations that use the hardware include: addition. subtraction. multiplication. division. nega-
tion, and the sar function. All other math functions call library routines. There are libraries that
access the floating-point hardware. Hardware can also be used by any operation that converts an
integer to a real or longreal. The hardware is not used by operations that convert reals or longreals
into integers.

Example

$float test$

304 Workstation

HEAP DISPOSE

Default: OFF
Location: At Front

This option enables and disables *‘garbage collection” in the heap.

HEAP_DISPOSE

Semantics
“HEAP_DISPOSE" is interpreted as ‘‘HEAP_DISPOSE ON”

ON indicates that DISPOSE allows disposed objects to be reused.
OFF does not recycle disposed objects.

If enabled, this option must appear at the front of the main program. [t has no effect in separately
compiled modules.

Example

$hear_dispose ong
Prodram recvycle:

[}

begin
dispose({r)i (*¥free up cell#*)
new(r)i (#probably gdets same cell back#)

and,

IF

Default: Not Applicable
Location: Anywhere

This option allows conditional compilation.

¥ boolean conditional
expression text

Item Description/Default

Workstation 305

Range Restrictions

boolean expression -

conditional text source to be conditionally compiled

Semantics

may only contain
compile time constants

If the expression evaluates to FALSE, then text following the option is skipped up to the next END

option.

If the boolean evaluates to TRUE, then the text following the option is compiled normally.

IF-END option blocks may not be nested.

Example
const fancy = trues
limit = 103
size = 93

$if fancy and ({size+l)<limit)¥%
e (% this will he skipped *)
end

306 Workstation

INCLUDE

Default: Not Applicable
Location: Anywhere

This option allows text from another file to be included in the compilation process.

file
ONCTHYo O~®

Item l Description/Default I Range Restrictions
file specifier I string l any valid file specifier
Semantics

The string parameter names a file which contains text to be included at the current position in the
program. Included code may contain additional INCLUDE options.

The remainder of the line containing this option must be blank except for the closing ““$”".

Example

PROGRAM inclusives

$include ‘SOURCE:DECLARS %
$include ‘SOURCE:BODY 4
END.

Workstation

IOCHECK

Defualt ON
Location: Statement

This option enables and disables error checking following calls to system I/O routines.

Semantics
“IOCHECK?” is interpreted as “IOCHECK ON"

ON specifies that error checks will be emitted following calls on system I/O routines such as RESET,
REWRITE, READ, WRITE.

OFF specifies that no error will be reported in case of failure.

This option can be used in conjunction with the standard function 10RESULT if the UCSD or
SYSPROG language extensions have been enabled.

IOCHECK can be specified on a statement-by-statement basis.

Example
$ucsd$

$iocheck off$

reset{f datafile’)}

$iocheck on$

if ioresult % O then writeln(’I0 error’)s

307

308 Workstation

LINENUM

Default: Not Applicable
Location:
Anywhere

This option allows the user to establish an arbitrary line number value.

o LINENUMH line number l——@—»—

Item I Description/Default I Range Restrictions
line number | integer numeric constant l 1 thru 65535
Semantics

The integer parameter becomes the current line number (for listing purposes and debugging
purposes if $detius¢ is enabled).

Example

$linenum 20000%

Workstation 309

LINES

Default: 60 lines per page
Location: Anywhere

This option allows the user to specify the number of lines-per-page on the compiler listing.

lines per
LINES)—»«I ol }—-—@——»

Item | Description/Default | Range Restrictions
lines per page integer numeric constant 20 thru MAXINT
string any valid file specifier

Semantics

Specifying 2000000 lines-per-page suppresses autopagination.

Examples

$lines 55¢%
$lines 20000003 (*#¥s5uPPress autoradination®*)

310 Workstation

LIST

Default: ON to Std. output file
Location: Anywhere

This option controls whether or not a listing is being generated. and where it is being directed to.

file
® O O

Item | Description/Default | Range Restrictions
file specifier | string I any valid file specifier
Semantics

“LIST” is interpreted as “LIST ON"".
LIST with a file specifier specifies that the file is to receive the compilation listing.
LIST OFF suppresses listing.

LIST ON resumes listing. No listing will be produced at all, regardless of this option, unless
requested by the operator when the Compiler is invoked. (i.e. the **-L”" option of the pc command
is specified.)

Example

$list 'MYUOL:KEEPLIST %
$list ‘PRINTER: %
$list off$%

Workstation 311

OVFLCHECK

Default: ON
Location: Statement-by-statement

This option gives the user some control over overflow checks on arithmetic operations.

OVFLCHECK

Semantics
“OVFLCHECK” is interpreted as “OVFLCHECK ON"

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks: they will still be made for 32-bit integer DIV, MOD, and
multiplication.

Example
$ouflcheck off$

312 Workstation

PAGE

Default: Not Applicable
Location: Anywhere

This option causes a formfeed to be sent to the listing file if compilation listing is enabled.

(e (8

Example

$rades

Workstation 313

PAGEWIDTH

Default: 120
Location: Anywhere

This option allows the user to specify the width of the compilation listing.

characters
GEWIDT"D—"‘l per line | > (:)

Item | Description/Default | Range Restrictions
characters per line | integer numeric constant | 80 thru 132
Semantics

The integer parameter specifies the number of characters in a printer line.

Example
$padewidth BO%

314 Workstation

PARTIAL EVAL

Default: OFF
Location: Statement-by-statement

PARTIAL_EVAL

Semantics
“PARTIAL_EVAL" is interpreted as ‘‘PARTIAL_EVAL ON”.

ON suppresses the evaluation of the right operand of the AND operator when the left operand is
FALSE. The right operand will not be evaluated for OR if the left operand is TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition of any
other operands.

Example

$rartial_eval ons
while (Pi:nil) and (P scount>0) do
F o= Py links

Workstation 315

RANGE

Default: ON
Location: Statement-by-statement

This options enables and disables run-time-checks for range errors.

Semantics
“RANGE” is interpreted as ‘‘RANGE ON".

ON specifies that run-time checks will be emitted for array and case indexing, subrange assignment,
and pointer dereferencing.

Example

var a: arrav[1,.,101 of integers i: inteder)
LR N

i o= 113

$rande off$

alil = O3 (# invalid index not caudght! ¥}

316 Workstation

REF

Default: 30 records (on same volume as code output)
Location: At Front

This option allows you to change the size and location of the temporary compiler file *“, REF”.

ref file
size
ref file
volume id

Item | Description/Default I Range Restrictions
less than 32767

valid volume identifier

ref file size integer numeric constant

ref file volume id string

If the parameter is a string, it specifies the volume where a temporary Compiler file called ‘. REF’’,
which’holds external references, will be stored. If the parameter is a number, it specifies how many
logical records will be allocated for the REF file. See What Can Go Wrong? near the end of this

appendix.

Examples

$ref Z0%
$ref ‘REFVOL:"$
$ref “JUNKYOL: s ref S50%

Workstation 317

SAVE _CONST

Default: ON
Location: Anywhere

This option controls whether the name of a structured constant may be used by other structured
constants.

SAVE_CONST

Semantics
“SAVE_CONST” is interpreted as “SAVE_CONST ON".

ON specifies that compile-time storage for the value of each structured constant will be retained for
the scope of the constant’s name (so that other structured constants may use the name).

OFF specifies that storage will be deallocated after code is generated for the structured constant.

Example
$save_const of f$
tvpe ary = array [1,,1001 of inteder:
const acon = ary [345,:456891, 4w 13

(*%bi1d constants take lots of compile-time memory¥)

318 Workstation

SEARCH

Default: Not Applicable
Location: Anywhere

This option is used to specify files to be used to satisfy IMPORT declarations.

-
N\
(&(eerret) =L D e HO—®)

Item | Description/Default I Range Restrictions
file specifier I string l any valid file specifier
Semantics

SEARCH must be the last option in an option list!

Each string specifies a file which may be used to satisfy IMPORT declarations. Files will be searched
in the order given. The file. “sL18RARY" is always searched last. A default maximum of 10 files may
be listed. (See $SEARCH_SIZE ... $.)

Example

$search ‘FIFRSTFILE’: 'SECONDFILE %
import comrplexmath: polarmathi

Workstation 319

SEARCH SIZE

Default: 10 files
Location: At front

This option allows you to increase the number of external files you may SEARCH during a
module’s compilation.

(s) SEARCH_SIZE R ()

Item I Description/Default | Range Restrictions
number of files I integer numeric constant I less than 32767
Semantics

When compiling a Pascal module. it is sometimes desirable to import another module from another
file. To import a module from another file. the SEARCH option is used to identify the file. Up to ten
SEARCH options may be given unless the SEARCH_SIZE option is given. The SEARCH_SIZE
option allows you to SEARCH up to 32 766 external files for imported modules.

Example

$csearch_size 30%

320 Workstation

STACKCHECK

Default: ON
Location: Not in Body

This option enables and disables stack overflow checks.

STACKCHECK

Semantics
“STACKCHECK?" is interpreted as “‘STACKCHECK ON"’.

ON specifies that stack overflow checks will be generated at procedure entry. It is very dangerous to
turn overflow checks off! Obscure and unreported errors may result.

Example

$stackcheck off%

procedure unsafes

var

mav_smash_-hear: array [1,,5001 of inteders
bedin v+ onds

Workstation

SWITCH_STRPOS

Default: OFF
Location: Anywhere

This option reverses the positions of the parameters of the STRPOS function.

O CICELTD SO

Semantics
Without this option, the order of parameters for the STRPOS function is as follows:

8TRPOS(search_Patterns source-string)

Later, when the HP Pascal Standard was established, the order of parameters was reversed. Thus,
if you use the STRPOS function, the compiler issues a harmless warning to indicate that you are not
conforming to the standard.

If you wish to conform to the standard. include the $switch_strros$ option and reverse the order
of the parameters. (See example below.)

Example

$switch_strros$
+ o+t
STRPOS{source_strinds search_pattern)i

[

STRPOS(‘1’ hurricane’)}

321

322 Workstation

SYSPROG

Default: System Programming Extensions not enabled
Location: At Front

This option makes available some language extensions which are useful in systems programming
applications. See **System Programming Language Extensions’” in this appendix.

o SYSPROG e

Example

$svsPrrodsé
PROGRAM machinederendents

[N}

Workstation 323

TABLES

Default: OFF
Location: Not in Body

This option turns on and off the listing of symbol tables.

O ENEIES0
L

Semantics
“TABLES” is interpreted as ““TABLES ON"

ON specifies that symbol table information will be printed following the listing of each procedure.
This is useful for very low-level debugging.

Example

$tabless$
procedure hasabug (var p: inteder)s
var

e

324 Workstation

UCSD

Default: UCSD not enabled
Location: At Front

This option allows the compiler to accept most UCSD Pascal language extensions. See Supported
Features of UCSD Pascal later in this appendix.

(& ew)3

Example

$ucsds$
prodram funnvio?
var
fr files (% no type specified! *)
bedin
urnitread(Brary 80,1003
end,

Workstation 325

WARN

Default: ON
Location: At Front

This option allows the user to suppress the generation of compiler warning messages. Requires
Pascal 3.0

om'g.o

Semantics
“WARN" is interpreted as “‘WARN ON’’ and compiler warnings will be issued.

Example

$warn offs

326

Workstation

Implementation Restrictions

The following HP Pascal keywords and topics have implementation dependencies when using the
Series 200 Workstation compiler.

Keyword
CASE

s
mi

close

Compiler Input

Dependency

CASE statements are implemented using a “jump table’". This table is orga-
nized as an array of 16-bit values, each an “‘offset’” or distance from the head
of the statement to the various cases. The number of entries in the table is the
inclusive range from the lowest to the highest labels in the statement. If the
lowest is labeled “'1'" and the highest is ‘15000, there will be 15000 entries!

The Compiler displays a warning if it decides a CASE statement is unreason-
ably large and most of the values in the table are absent or correspond to the
same case. If you get such a warning. you should probably recode the state-
ment using [F's or a combination of [F's and a smaller CASE statement.

Despite the warning. the Compiler will try to generate the statement as written.
If the jump table is very large, it may take a long time to write to the output file.
You may even think the Compiler has gotten hung up somehow, but the
warning message indicates this is not the case.

The following literals may be used as the optional string parameter in the close
procedure.

LOCK* or ‘SAVE‘: The system will save the file as a permanent file.

‘NORMAL . 'TEMP ', or none: If the file is already permanent, it remains in the
directory. If the file is temporary, it is removed.

"PURGE : The system will remove the file.

Input to the Compiler is normally prepared by the Editor. Files produced by
the Editor are text files. that is, they can be read as files of type TEXT.
However, they are more restricted in structure than text files produced by
Pascal WRITE statements.

Text files are stored as *‘pages’ consisting of 1024 bytes per page. The restric-
tion imposed by the Editor is that no line ever crosses a page boundary;
instead, when a line is too long to fit into the current page, the page is padded
with Null characters (ASCII zero) and the line which would have spanned the
boundary between two pages starts at the front of the next page. WRITE
statements simply do not impose this restriction.

The Compiler is unable to properly process a line which spans a page bound-
ary. [t will “see’” spurious characters in the line, and report a syntax error. If
you wish to compile a text file not produced by the Editor, the easiest way to
fix it is to simply fetch it with the Editor and immediately save it back out. The
Editor will fix things up.

Directives
disrose

external

Global Variables

Workstation 327

The external directive allows Pascal to use externally defined code segments.
See the section on the Pascal Heap Manager.

This directive may be used to indicate a procedure or function that is described
externally to the program. See the section: Pascal and Other Languages.

The global variables of a program or module must not exceed 65 536 bytes of
space.

Global areas are accessed through the processor’s A5 register. The A5 register
actually points to a location 32 768 bytes below the start of global space. By
adding (subtracting) a displacement value (which can range from —32 768
through +32 767) to the contents of register A5, all 65 536 bytes of global
space can be accessed.

Use the main command level's command to see the current amount of
global space (and free space) available for programs and libraries.

Every module loaded is allocated global area at load time. The sum of global
space for all the modules and programs loaded at any time can’t exceed
65 536 bytes. About 2000 bytes of global space are taken up by the operating
system. The Compiler and Assember each take about 7000 bytes. the Editor
about 4000 bytes. the Librarian about 2000 bytes. and the Filer about 1000
bytes.

If you're writing a program which needs a very large global area (i.e. a big
array). it can be allocated out of the heap by a call to new. then referenced
through a pointer. This is a bit of a nuisance, but carries a negligible perform-
ance penalty.

prodram bidarray}

type
didantic = array [1,,200001 of reals d{needs 1G0O,000 bvtes 1}
ptr = “didantic?

yar hidthind: Ptra
i+d: inteders

kedin
new{bigthing) i
far 1 := 1 to Z0000 do bidthing [i] 1= 0,04
end.
Note

Each time you permanently load (P-load) a program or library. there
will be fewer bytes of global space for use by an application program.
The only way to regain the global space is to reboot.

328 Workstation

Heap Procedures

IMPUORT

INCLUDE

inteders

lazstrasz
lineros

Local Variables

londreal

mark
maxint
minint

Modules

The supported heap procedures are: new, mark, release, disrose. See the
Heap Managers Section.

Unless the $5EARCH_SIZE$ compiler option is specified in your source file, the
Compiler can only keep track of a maximum of 10 active input files at once.
This means that an INCLUDE file can include another file, and so forth, up to
nine times. Exceeding this limit causes errors 608 or 610.

When a module is imported which hasn’t been previously imported during a
compilation. a form of inclusion takes place in which various library files are
opened and searched. These files are counted against the maximum of ten
while they are open (during the processing of the IMPORT declaration).

If module “A™ is imported, and its interface specification imports module ‘B,
and so on, the Compiler will chase the importation chain to its very end (unless
it runs into the name of a module which has already been seen). If you
encounter a situation in which the chain exceeds the limit of ten open input
files. you can avoid the problem by making the first module in the chain import
all the others in reverse order: the end of the chain first, then the modules
which depend on that last one, and so on.

See the restrictions for 1MPORT.

The range is:

— 2147483648 thru 2147483647

The lastro: function is not implemented on the Workstation.
The standard function lineros is not implemented.

The local variables of a procedure or function must not exceed 32 767 bytes
of space.

The approximate range is:

—1.79769313486231L + 308 thru —2.22507385850720L — 308.
0.
2.22507385850720L — 308 thru 1.79769313486231L + 308

See the section describing the Pascal Heap Manager
The value of maxint is: 2147483647
The value of minint is: —2147483648

Module identifiers are restricted to 15 characters. No other identifiers are
restricted in length in this implementation.

Module Names Used by the Operating System.

[f you create a module having the same name as a system module, and your
module exports a procedure which has the same name as some procedure
exported from that Operating System module, the loader will hook up external
references to the wrong place. The simplest way to avoid this is to not use any
of the module names in the operating system.

real

release

Sets
Strings

strread
strwrite

Subrange

text

WITH

Workstation

You can use the Librarian to list the file directory of the system modules to
discover what names are used by the operating system. In particular, you
should check the INITLIB, LIBRARY, 10, INTERFACE, and GRAPHICS modules.

Some common module names are listed below.

CI MINI IODECLARATIONS
F§ ASH KERNEL

KBD ISR LOCKMODULE
LOADER EYGGLOBALS DEBUGGER
DISCHPIB uIo ALLREALS

Type real has the same precision as lonsreal. However, in urite statements
the default field width for langreal is the same as for real, and the exponent is
written preceded by E instead of L.

The approximate range is:

—1.79769313486231E + 308 thru —2.22507385850720E — 308,

O’
2.22507385850720E — 308 thru 1.79769313486231E + 308

Files in the heap will not be closed by release.
The ordinal range of sets may not be greater than 256 elements.
The longest possible string contains 255 characters.

The return parameter (indicating the next character to be used with the next
strread operation) must be an integer (an integer subrange is not allowed).

The return parameter (indicating the next position to be used with the next
strwrite operation) must be an integer (an integer subrange is not allowed).

A variable declared as a subrange needing 16 or fewer bits for its representa-
tion will be stored as a word instead of a longword. For example,

tvpe inteder = -3E7GB..,327G7}
If all the operands of an expression are represented as 16-bit objects, the
Compiler implements the expression in 16-bit rather than 32-bit instructions.
In particular, integer overflow is detected as a carry into the 17th bit. The rules
are:
add, subtract: overflow will be detected.
divide: —32768 div — 1 yields integer overflow.
multiply: the result is widened to 32 bits.

Note that the representation of an unpacked subrange of integer always re-
serves room for a sign bit. Hence the range 0..65535 will not be represented in
16 bits, even though it could in fact be.

Appending to a text file is not allowed.

When f is a function call, WITH f DO is not allowed.

329

330 Workstation

Pascal Extensions

Over the years, various implementations of Pascal have added extentions to simplify certain opera-
tions. One of the more common implementations, the UCSD! implementation, added several
string functions, byte functions, and IO intrinsics. The Workstation implementation allows you to
use the UCSD extensions by including the $ucso# compiler option in your program.

HP Pascal will not provide perfect compatibility with UCSD Pascal or IEM Pascal (HP 9835/9845
systems). In particular, it isn’t possible to directly interpret P-code programs since HP Pascal
translates programs directly into the native language of the processor. In addition. it is not possible
to provide complete compatibility due to definition conflicts between UCSD Pascal and HP Pascal.
Most programs should port easily, but some programmer attention will be required.

To simplify the conversion of UCSD Pascal programs to HP Pascal programs for the Series 200
Workstation, the the next section lists many of the UCSD extensions and possible replacements.

1 UCSD Pascal is a trademark of the Regents of the University of California

Workstation

Supported Features of UCSD Pascal

To use these language extensions. precede the source program text with the $UCSD$ option. HP
Pascal replacements for these extensions are given where possible.

blockread

blockwrite

CASE

This non-standard predefined integer function transfers data from a disc file to
an array.

Examples:

count := blockread(file_ids arrav_ids num_blocks)}

count 2= blockread{file_ids arrav_id: num_blockss block.num)i

gount := blockread(file_ids arrav_idlindx];

num_-blockss blocK_vum)s

Where file_id is the name of an untyped file, arrar_id is the name of an
array, and nun_t1ocks is the number of 512-byte blocks to be transferred. The
optional tlock_nun parameter specifies the offset (starting with zero) into the
file where the transfer should start. If tlock_nunm is omitted, the transfer will
start at the current position in the file window. The optional indx parameter
specifies the first element of the array to be accessed by the transfer. The
function returns an integer value indicating the actual number of blocks trans-
ferred.

Replacement: Recode to wuse file of buf512 (where:
kuf517 = PACKED ARRAYLO. 5111 of char).

This non-standard predefined integer function transfers data from an array to a
disc file.

Examples:
count := blockwrite{(file_id, arrav_id,» num_blocKs)3i
count := blocKwrite(file_id, arrav_ids num_blocks: bBlocKomum)i
count := blockwrite{(file_id, array_idlindxd:

num_blocksy blocK.ovium)3i

Where file_id is the name of an untyped file, arrav_id is the name of an
array, and nun_tlocks is the number of 512-byte blocks to be transferred. The
optional tlock_nun parameter specifies the offset (starting with zero) into the
file where the transfer should start. If bl1ock_num is omitted, the transfer will
start at the current position in the file window. The optional indx parameter
specifies the first element of the array to be accessed by the transfer. The
function returns an integer value indicating the actual number of blocks trans-
ferred.

Replacement: Recode to wuse file of buf512 (where:
hufS512 = PACKED ARRAYLO..5111 of char).

In HP Pascal you must add an OTHERWISE clause to a CASE statement to trap
illegal selectors.

In UCSD Pascal, if the selector of a CASE statement doesn’t match any of the
labelled cases, the entire statement is skipped. HP Pascal instead reports error
-9, “Case statement range error’.

331

332 Workstation

close

Comments

Compilation Units

This problem can be avoided by putting an OTHERWISE clause at the end of
the case statement:

case 1 of
1 writeln(’case 17)1
£t writeln{‘case Z7):
otherwise
Writeln{‘The value of 1 15 7:1:5)3
enid s

For HP Pascal, the file options L0Ck, NORMAL, PURGE, or CRUNCH must be en-
closed in quotes.

UCSD Pascal supports the use of nested comments. This feature can be
supported by HP Pascal by using the compiler’s $1F option.

Comments in UCSD Pascal programs may be delimited by either curly braces
or parenthesis-asterisk pairs:

{ this is a comment 1

(% and so is this #*)
UCSD Pascal requires that the closing delimiter of a comment be the same
“kind” as the opening one. HP Pascal treats the two kinds of opening (and
closing) delimiter as synonmyms.

(% this 15 an HP Pascal comment ¥
(* this 1s all one { UCSD } comment #*)

The last example will get a syntax error in HP Pascal because the curly brace
after the word “UCSD” terminates the comment.

The easiest way to get around nested comments in a UCSD Pascal program is
to surround the outer comment with conditional compilation options:

$if false$
Ve all of the materal inside gets skipped v
end
The syntax of UCSD Pascal UNITs can readily be changed into an equivalent MOD-
ULE for compilation by HP Pascal implementations. The word INTERFACE is re-
moved. The word USES is replaced by 11PoRT. And the other declarations in
the interface part of the UNIT are preceded by the word ExPORT.

unit doodstuffs module doodstuffs
interface imPort badstuff :hetterstuff;
uses badstuff,betterstuffs EXPOTL
const const
++s (ronstant declarations) ta
type tvpe
voe (type declarations) Ve
uvar yar
veo (variable declarations) Vs
procedure Pl (ash: inteder): procedure Pl (asbh: inteder):
furnction fix): reals furnction fi{x): reals
implemevntation imrlement

LR} [

end, end.

Compiler Options

concat

CoPY

delete

Workstation

The compiler options for UCSD Pascal and HP Pascal differ in syntax. Even if
you choose not to convert your UCSD Pascal programs to HP Pascal, you
may still need to convert other UCSD compiler options to HP compiler options
and include the HP option, $ucsD$, at the beginning of your program.

COPYRIGHT Supported.

DEBUG Supported.

FLIP The byteflip option is unsupported (irrelevant).

coTo Unsupported (GOTO’s are always allowed).

10CHECK Supported. Also see the TRY. .RECOVER language extension.
INCLUDE Intermixed declarations in INCLUDE are supported.
L1BRaRY Use the $SEARCH$ option.

LINESPERPAGE Use the $LINES$ option.

LINEWIDTH Use the $PAGEWIDTH$ option.

L1sT Use LIST <file specification: to replace LIST, LIST <filemame?,
and LISTFILE.

PAGE Supported.

gUIET Unsupported (irrelevant).

RANGE Supported.

sWaP Unsupported.

TABLE Use $TABLESS.

TRaCE Use $DEBUGH and use the debugger.
TRACEPAUSE Use $DEBUGS and use the debugger.
USERMODE Unsupported (irrelevant).

This non-standard predefined function concatenates any number of strings.
Example: str_exp := concat(strls str2: 44y strndi

Replacement: Use the infix + concatenation operator.

This non-standard predefined function returns a string obtained by copying
from another string, starting at the specified position.

Example: str_var := copv(source_str: start_pos count)i

Where start_ros and count are integers.

Replacement: Use the st r function.

This non-standard predefined procedure removes a specified number of char-
acters from a string.

Example: str_var := delete(source_str: start_ros, count)i

Where start_ros and count are integers.

Replacement: Use the strdelete procedure.

333

334 Workstation

EXit This non-standard predefined procedure is used to alter program flow.

In UCSD Pascal, the statement ExIT(rroc) causes normal program flow to be
altered. The current procedure is discontinued. and procedures are exited in
order (most recently called first) until procedure “‘proc” is exited. The program
continues at the next statement after the call on proc.

This Pascal implementation has no exactly comparable feature; the program
must be altered. If the EXIT statement occurs within the procedure which is to
be exited. a simple goto statement will suffice. Otherwise you must use the
TRY. RECOVER statement, which is enabled by the $5v5Pr0GS compiler option.

The basic technique is to surround with a TRY the entire body of any proce-
dure which is the target of an EXIT. The EXIT itself is simulated by calling
ESCAPE with an error code corresponding to the name of the procedure to be
exited. The target procedure catches this escape in its recovery part and then
exits normally.

$ucsds$ $cvsprogs
prodram UCSDexitss prodram HPtryrecowvers
const exitrZ = 1007 exited =1013
procedure pli procedure pli
labkel 1%
bedin begin

+ ot
exit {(pl)i
+ o+

endi

Procedure pZ;
procedure p31
bedin

LR
exit{p3)s
L]
exiti{pZl)}

LI}

goto 13 {simple local exit?
LR IR}

end s

procedure P23
procedure p3:
begin
Lry

LR IR
escaref{exitrld)
LR N 3
pscaref{exitpi)}

CRaR}

recouver
if escarecode <2 exitr3 then
escarei{escarecode) s
endy {p3} ends {p3}
bedgin {PZ} begin {PZ}
try
P31 P33
recouer
if escarecode < exitrZ then
escarelescarecode)
ends {pZ} ends {pZ}

bedin {main’

bedin {main’

pli P13
p2i P23
end., erd.,

Replacement: This procedure can be simulated by the TRY..RECOVER

statement.

Workstation 335

external Support: The external directive is supported. Refer to the user manuals for
information on using the external directive.

Files UCSD Pascal doesn’t prevent writing to a file which was opened for reading
(using RESET). The converse is also true. If you get IO error 24, 25 or 26, the
file should have been opened using the HP Pascal standard procedure OPEN.

UCSD Pascal's random access mechanism (SEEK) considers that the first
component of a file is number zero. HP Pascal considers that files begin with
component number one. The $UCS0$ option does not fix this problem.

UCSD Pascal recognizes a text file type called INTERACTIVE, which differs from
files of type TEXT in that a component of the file isn't fetched until it is needed.
All HP Pascal text files exhibit this ‘‘lazy 0" behavior, so you should change
INTERACTIVE files to files of type TEXT.

See Workstation Files near the end of this appendix for more information on
files.

fillchar This non-standard predefined procedure fills a range of memory with a speci-
fied value.

Example: fillcharivariatles count, character)i

Where variatle may be any type except file. count is an integer expression,
and character is of type char.

Replacement: Recode the program using a FOR loop. byte stream fill support.

Jotoxy This non-standard predefined procedure positions the cursor on the system
terminal.

Example: dotoxyicolumnsrow) s

Replacement: There is no direct replacement for gotoxv in HP Pascal. On the
Workstation, your program can IMPORT the file-system module (Fs) to access
the fsotoxy procedure to achieve the same effect.

halt This non-standard procedure terminates the execution of a program.
Example: halts
The halt procedure, with differing syntax, is supported in HP Pascal.

Heap Procedures See Heap Management near the end of this appendix for information on heap
procedures.

insert This non-standard predefined procedure inserts a string into another string, at
a specified location.

Example: insertisource.stry dest_stry index)i

Where source_str and dest_str are string expressions and index is an in-
teger.

Replacement: Use the strinsert procedure.

INTERACTIVE This file type specifier is disallowed in HP Pascal but the behavior is provided
by the TEXT file type.

336 Workstation

Integers

toresult

lendth

log

Long Integers
memavaill

moveleft

maveright

Multiword Com-
parisons

POs

Program Heading

HP Pascal integers use 32 bits. You may declare a 16-bit subrange.
Example:

TYPE
intlB @ -3Z7E68,,327673

This non-standard predefined function returns the result of the last /O opera-
tion. The result value differs for UCSD Pascal and HP Pascal.

This non-standard predefined function returns the length of a string.

Example: irt_var := lensthistr_exe)

This non-standard predefined real function returns the decimal logarithm of its
parameter.

The 104 function is not supported in HP Pascal.

Replacement: The natural log function. 1n. is supported. Note that
lagiyl = Inix)/Inil0)

Long BCD integers up to 36 digits are not supported by HP Pascal.
This heapspace interrogation function returns the size in bytes, not words.

This non-standard predefined procedure moves a specified number of bytes,
starting with the leftmost byte, to a new location.

Example: noveleftisource_var, dest_var, count)i

Where source_var and dest_var are variables of any type except file. The
count i an integer expression.

Replacement: Recode the program using a For loop.

This non-standard predefined procedure moves a specified number of bytes.
starting with the rightmost byte. to a new location.

Exannﬂe:mouerishtiaource_uarydezt_uarecaunt)i

Where source_var and dest_var are variables of any type except file. The
count is an integer expression.

Replacement: Recode the program using a For loop.

The multiword comparisons of arrays and records are not supported.

This non-standard predefined function returns the position of the first occurr-
ence of a substring within a string.

IExarnple:int_uar 1= ros{Pattern.str_exrs SOUTCE_StLT_gxp)}

Replacement: Use strros. Note that the parameters are reversed from
St TPOS.

A program heading without listing the standard files (i.e irrut. suteut) is
supported when the $UC5D$ option is enabled.

Replacement: Include the standard files in the program heading.

PUROFTEN

Reals

scan

seek

SEGMENT

Sets

SIZEQF

Standard Units

str

Workstation

This non-standard predefined real procedure returns the value of integer pow-
ers of ten.

This function is not supported.
Replacement: Use exponentiation.

This implementation of HP Pascal uses the same internal representation for
both real and lonsreal types (64-bits). 32-bit reals are not supported.

This non-standard predefined function scans a specified section of memory for
a specific byte.

Examples:
scanf{count: = chr_exps test._var)i
sganfcounts < chr_expy test_varli

Where count is the number of bytes to scan, chr_exr is an expression which
evaluates to a character, and test_uar is any variable except a file variable.
The scan can either match a character (=) or not match a character (:).

Replacement: Recode the program using a FOR loop.

This non-standard predefined procedure positions the file window in an arbit-
rary place.

Example: seek(file_vars indx)j

Where file_var is a file variable of a file that was opened using the aren
procedure, and indx is the index of the desired component of the file. In HP
Pascal the first component’s index is one (1), while in UCSD Pascal, the first
component’s index is zero (0).

UCSD SEGMENT procedures are not supported by HP Pascal.

Either the entire program must be resident or the segmentation procedures
supplied with the Series 200 Workstation must be used.

UCSD Pascal supports sets with up to 4096 elements. HP Pascal sets are
limited to 255 elements.

This non-standard predefined integer function returns the number of bytes
that a variable uses in memory.
Examples:

num_bytes := sizeofi{tvrpe_id):

num-bytes = sizeof{var_id)}
Where tvre_id is a type identifier, and var_id is a particular variable.
Support: This function is supported when system programming language
extensions are enabled. (The $5Y5PrDG$ compiler option is enabled.)

The standard units: PRINTER, CONSOLE, and 5YSTERM are supported. See Work-
station Files near the end of this appendix for more information.

This non-standard predefined procedure converts an integer or long integer
into a string.

Example: str{int_varsstr_var);

Where int_var is an integer variable, and str_var is a string variable.

Replacement: HP Pascal has the more general procedure strwrite. Note:
HP Pascal uses this identifier for its ‘“‘string copy’” procedure.

337

338 Workstation

Strings HP Pascal supports most of the string features available in UCSD Pascal. In
UCSD Pascal, the declaration var s: strins is equivalent to
var s: string[80] . HP Pascal requires the length specifier.

A similar comment applies to strings value parameters; the specifier st rin¢ is
equivalent to the name of an 80-character string type, whereas HP Pascal
requires an explicit string typename specifier for value parameters.

UCSD Pascal considers that all strings are compatible as VAR parameters,
even if the actual parameter is shorter than the specified formal parameter.
This can lead to unexpected bugs. HP Pascal allows two forms of VAR string
parameter. If a string typename is used, only another string of identical type
may be passed. If the specifier st riny is used. any string may be passed. In the
latter case, however, an “invisible” second parameter is also passed, giving
the maximum length of the actual parameter. Thus range checking can be
performed.

Replacement: In HP Pascal. use the setstrlen procedure to set the string
length.

Example: T¥PE s = stringlmaxlendgth]

The maximum string length is 255 characters.

prodram UCSDstringdss prodram HPstrindss
type type
strindld = string[15]13 strindld = stringl151;
strindgB0 = stringlBOI1S
var var
sl: strings sl: stringB03
s2: string L1513 521 strindlss
s3: string[BO1: s3: stringl801:
procedure Pl {5: string)s procedure Pl (s: stringBO):

LI) 4
procedure plb (s: string)i{illegal?}

DR

procedure PZ {53 stringls)i procedure P2 {(s: stringlS)s
b 4

procedure P3 {(var s: stringl: rrocedure P3 (var s: string):
RN Ve

procedure pd (var s: stringlB)s rrocedure pd {var s: stringlS)3

o4 RN
procedure PS {var s: string80)3

LIRS

bedin bedin
plisl)s {ledal’ plisl)i {legal}
p2isl)i {legal} p2isi)i {legal}
r3{sil: {legal} p3{si)s {legal}
p3{s2)1 {legal} p3(sZ)i {ledall}
pd{sl)} {legal} pdisi)y {illegal}
pd(si)s {legal} Pd{sZ) {legal}

p3({sl)s {legal}
P3{sd)i {illegal}
end, end.,

time

Type Checking

UNIT

unithusy

unitclear

urnitread

Workstation

This non-standard procedure or function returns the value of the system’s
real-time clock.

To read the clock. 1MPORT the svspEYS OR k8D module and use the svsclock
procedures and functions.

HP Pascal enforces stricter compatibility rules than UCSD Pascal. HP Pascal
generally requires that types be identical or equivalent where UCSD Pascal
will accept mere similarity of form.

prosram UCSDisvoteicky: prodram HPispickys
tyre type
complex = record complex = record
resim: real resim: real
end3 ends
polar = record polar = record
rstheta: real rstheta: real
and s end
roundly = polars
var yar
a: complexi a: complex’
b: polar: ki polars
c: roundlyi
bedin bedin
a := by { legal 1} a := by { illegal %

¢ = by { ledal ?
end, end.

A UCSD Pascal UNIT is functionally a subset of a HP Pascal MODULE. The
syntax a little different.

This non-standard predefined function tests if an I/O device is busy.
Example: dev_tusy 1= unithusy (unit_num? i

Where unit_nun is an integer expression which evaluates to a valid unit num-
ber in the unit-table, and dev_tusy is a boolean. The function returns true is
the device is busy.

This non-standard predefined procedure resets an /O device.
Example: unitclear(unit_num)i

Where unit_nunm is an integer expression which evaluates to a valid unit num-
ber in the unit-table.

This operation sets the value of ioresult.

This non-standard predefined procedure performs low-level input operations
on various devices.

Examples:

unitread{unit_nums store_arrays count)i

unitread{unit_nums store_arrays counts blocKk_num)3
unitread(unit_nums store_arravs counts blocK_nums asvync)i
umitread(unit_nums store_arraylindxls counts blocK_num, async)i

339

340 Workstation

unitwait

unitwrite

Untyped Files

Where unit_nun is the integer identifer of the unit in the unit-table,
store_array is a packed array in which the data will be stored. and the count
is the number of bytes to be read.

The optional parameter t1ock_num is required for block-structured devices and
indicates which block is read. The default is zero. When the optional boolean
async parameter is true, the transfer is made asynchronously. The default is
false.

When specified. the indx of the storage array indicates the first element of the
array to recieve data.

This non-standard predefined procedure waits until an /O operation is
finished.

Example: uritwaitiunit_num);

Where unit_num is an integer expression which evaluates to a valid unit num-
ber in the unit-table.

This non-standard predefined procedure performs low-level output operations
on various devices.

Examples:
unitwrite{unit_nums store_arravs count!s
unmitwrite{unit._numes store_arrav¥s counts hlock_vum)3
unitwrite(unit_nums store_arrav: counts block_vmums async) s
unitwrite(unit-nums store_arrayLinduly counts black_rums asvnc)}

Where unit_num is the integer identifer of the unit in the unit-table,
store_array is a packed array containing the available data, and the count is
the number of bytes to be written.

The optional parameter t1ock _num is required for block-structured devices and
indicates which block is written. The default is zero. When the optional boo-
lean async parameter is true. the transfer is made asynchronously. The default
is false.

When specified. the indx of the storage array indicates the first element of the
array in which data is available.

Untyped files are supported with the $ucsps option. Untyped files do not have
an associated buffer variable.

Example: var un_file : file;

Workstation 341

System Programming Language Extensions

Eight extensions to HP Pascal have been provided to support machine-dependent programming
and give users better control over (or access to) the hardware.

1. Error Trapping and Simulation
Absolute Addressing of Variables
Relaxed Typechecking of VAR Parameters
The ANYPTR Type
Procedure Variables and the Standard Procedure CALL
Determining the Absolute Address of a Variable
Determining the Size of Variables and Types
The IORESULT Function

N0k W

These extensions may be used in any compilation which includes the $5v5PROG ON$ option at the
beginning of the text.

The extensions may not be supported by other HP Pascal implementations. The Compiler displays
a warning message at the end of compilation when they are enabled.

Error Trapping and Simulation

The TRY-RECOVER statement and the standard function ESCAPECODE have been added to
allow programmatic trapping of errors. The standard procedure ESCAPE has been added to allow
the generation of soft (simulated) errors.

try
Tstatementr 3
sstatementy 3
fas
Cstatement’
recouver
fstatement’

When TRY is executed, certain information about the state of the program is recorded in a marker
called the recover-block, which is pushed on the program’s stack. The recover-block includes the
location of the corresponding RECOVER statement, the height of the program stack, and the
location of the previous recover-block if one is active. The address of the recover-block is saved,
then the statements following TRY are executed in sequence. If none of them causes an error, the
RECOVER is reached, its statement is skipped, and the recover-block is popped off the stack.

But if an error occurs, the stack is restored to the state indicated by the most recent recover-block.
Files are closed, and other cleanup takes place during this process. If the TRY was itself nested
within another one, or within procedures called while a TRY was active, that previous recover-block
becomes the active one. Then the statement following RECOVER is executed. Thus the nesting of
TRYSs is dynamic, according to calling sequence, not statically structured like nonlocal goto’s which
can only reach labels declared in containing scopes.

342 Workstation

The recovery process does not “undo’ the computational effects of statements executed between
TRY and the error. The error simply aborts the computation. and the program continues with the
RECOVER statement.

When an error has been caught. the function ESCAPECODE can be called to get the number of
the error. ESCAPECODE has no parameters. It returns an integer error number selected from the
error code table. System error numbers are always negative.

The programmer can simulate errors by calling the standard procedure ESCAPE(n). which sets the
error code to n and starts the error sequence. By convention. programmed errors have numbers
greater than zero. If an ESCAPE is not caught by a recover-block within the program, it will be
reported as an error by the Operating System. Negative values are reported as standard system
error messages, and positive values are reported as a halt code value. Note that HALT(n) is exactly
the same as ESCAPE(n).

TRY-RECOVER statements are usually structured in the following ““canonical” fashion:

try
L I)
recover
if escarecode = (whatever ¥ou want to catoh)
then
bedin
{recovery segquerce’
e
else
escare({escarecode) s

This has the effect of ensuring that errors you don’t want to handle get passed on out to the next
recover-block, and eventually to the system. All programs which are executed are first surrounded
by the Command interpreter with a try-recover sequence. The recovery action for the system is to
display an error message.

Absolute Addressing of Variables

A variable may be declared as located at an absolute or symbolically named address:

var ioport L[41B000T1: char:
assemblvsymbol [“asm_external_name’l: integers

Each variable named in a declaration may be followed by a bracketed address specifier. An integer
constant specifier gives the absolute address of the variable; this is useful for addressing 10 interface
hardware. A quoted string literal gives the name of a load-time symbol which will be taken as the
location of the variable: such a symbol must be defined (DEF ed) by an assembly-language module
which will be loaded with the program.

Relaxed Typechecking of VAR Parameters

The ANYVAR parameter specifier in a function or procedure heading relaxes type compatibility
checking when the routine is called. This is sometimes useful to allow libraries to act on a general
class of objects. For instance an 1/O routine may be able to enter or output an array of arbitrary size.

Workstation 343

tvre

buffer = array [0O,.maxint] of chars
war

al: array [2..50G] of chars

af: array [0,.,991 of chars

Frocedure output_hrib{anyvar arv:buffers lobound shiboundrinteder)s

IR

putput_hpib{al 2500
putput_heib{aZ 0981

ANYVAR parameters are passed by reference. not by value: that is. the address of the variable is
passed. Within the procedure, the variable is treated as being of the type specified in the heading.

This can be very dangerous! For instance. if an array of 10 elements is passed as an ANYVAR
paramter which was declared to be an array of 100 elements. an error will very likely occur. The
called routine has no way to know what you actually passed. except perhaps by means of other
parameters as in the example above. ANYVAR should only be used when it's absolutely required,
since it defeats the Compiler’s normal type safety rules.

Programs calling routines with ANYVAR parameters should be very thoroughly debugged. Care-
less use of this feature can crash your system.

The ANYPTR Type

Another way to defeat type checking is with the non-standard type ANYPTR. This is a pointer type
which is assigment-compatible with all other pointers. just like the constant NIL. However, variables
of type ANYPTR are not bound to a base type. so they can't be dereferenced. They may only be
assigned or compared to other pointers. Passing as a value parameter is a form of assignment.

tyPe
pl = “inteders
p2 = “record
f1:f2: reals
endsi
var

vlsuiar pld uwi: PESD
anyu: anyrtra
which: (typelstyreZls
bedin
newi{ul)y newl(uZ)i
N
if s then
hedin anvy i= uwli which 1= tveel end
alse
bedin anyy := vZi which :

1

tvpefZ endi
LR AN}
if which = tyrel then
kedin
vla 1= anvus
pla® 1= wvla® + 13
end i
ends

344 Workstation

This can be very dangerous! The Compiler has no way to know if ANYPTR tricks were used to put
a value into a normal pointer. If a pointer type which is bound to a small object has its value tricked
into a pointer bound to a large object. subsequent assignment statements which dereference the
tricked pointer may destroy the contents of adjacent memory locations.

Careless use of ANYPTR can crash your system. Programs using this feature must be very thor-
oughly debugged.

Determining the Absolute Address of a Variable

B
Fos

addrivariable)s
addrivariablesaffsetii

The ADDR function returns the address of a variable in memory as a value of type ANYPTR. [t
accepts. as an optional second parameter. an integer “offset”” expression which will be added to the
address: this has the effect of pointing “offset” bytes away from where the variable begins in
memory. ADDR is primarily used for building or scanning data structures whose shapes are defined
at run-time rather than by normal Pascal declarations.

The ADDR function is very dangerous! It has the same dangers described above for ANYPTRs, in
addition to some of its own. Use of the “offset”” can produce a pointer to almost anywhere, with
concommitant dangers to the integrity of system memory.

Never use ADDR to create pointers to the local variables of a procedure or function. Storage for
local variables is recovered when the routine exits. so the value returned by ADDR is ephemeral.

Careless use of the pointers returned by ADDR can crash your system. Programs using this feature
must be very carefully debugged.

Procedure Variables and the Standard Procedure CALL

Sometimes it is desirable to store in a variable the name of a procedure, and then later to call that
procedure. For instance. the system **Unittable"" is an array which contains the name of the driver
to be called to perform IO on each logical volume.

A variable of this sort is called a *‘procedure variable™”. The “type’ of a procedure variable is a
description of the parameter list it requires. That is. a procedure variable is bound to a particular
procedure heading.

t¥yrFe pProcvar = procedure (or:inteder)s
yar F: FIOCUATH
rrocedure af{oprinteder) s {identically structured Parameter list?
LR)
I {p dets the name of 4% in effect P Foints to =
callipsilds {name of rroc wariable: then aprropriate rFarameter list?

A procedure variable is “called” by the standard procedure CALL. which takes the procedure
variable as its first parameter, and a further list of parameters just as they would be passed to a real
procedure having the corresponding specification.

Workstation

It is not possible to create a ‘“‘function variable™. that is. a variable which can hold the name of a
function.

Don’t assign the name of an inner (non-global) procedure to a procedure variable which isn’t
declared in the same block as the procedure being assigned. Such a variable might be called later,
after exiting the scope in which the procedure was declared. The appropriate static link would be
missing, vielding unpredictable results. See “‘How Pascal Programs Use the Stack”. at the end of
this chapter, for an explanation of static links.

Determining the Size of Variables and Types

The size (in bytes) of a type or variable can be determined by the SIZEOF function. This also is
enabled by the $UCSD$ option.

sizeof{variable):
sizeof{tvrename)

If the variable or type is a record with variants, an optional list of tagfield constants may follow the
parameter. This works like the standard Pascal procedure NEW:

n o= sizeof{varrecstruesblue)s

SIZEOF is not really a function, although it looks like one: it is actually a form of compile-time
constant.

Memory Allocation for Pascal Variables
Here is a list of storage allocations for common Pascal data types.

TYPE Allocation
boolean: One byte, O-false 1-true
character: One byte, ASCII character values O thru 255
Enumerated scalar: Two bytes, unsigned.
integer: Four bytes signed. -2147483648 to 2147483647
longreal: Eight bytes, approximate range is:
+1.1797693134862315L + 308 thru *2.225073858507202L-308
Pointer: Four bytes containing 24-bit logical address.
Procedure: Eight bytes containing address and static nesting information.
real: Same as longreal.
SET: Two bytes of length plus multiples of 2 bytes to contain possible elements

which require 1 bit each to a maximum of 256 elements.
String: One byte of length field plus up to 255 bytes

Subrange: Two bytes if maximum and minimum values are in [.02332768..32767].

345

346 Workstation

The IORESULT Function

Normally the Compiler emits instructions after each 1O statement to verify that the transaction
completed properly. If it fails, the program is terminated with an error report.

It is possible to trap IO errors programmatically. using the TRY-RECOVER statement. The system
function IORESULT can then be called to discover what went wrong with the transaction.

IO Checks and Results

Normally the Compiler emits instructions after each IO transaction to verify that the transaction
completed properly. If it didn’t, the program is terminated with an error report. The error code for
all 10 errors is -10.

You may wish to intercept IO errors programmatically rather than have them terminate the prog-
ram. This can be done two different ways. The program or module must be compiled with the
$SYSPROG$ or $UCSD$ Compiler option at the front of the source text. These options both make
available a system function called IORESULT which returns an integer value reporting on the
success of the most recent 1O transaction. A result of zero indicates a successful transaction; other
values are given in the list below.

Method 1. This method is the preferred one. Compile the program or module with $SYSPROG$
enabled, and use the TRY-RECOVER statement to trap the errors.

$cvsprodd
Frogram trarmethod (inPutsoutrut)
var
name: stringl[BO1S
fi texti
10r: inteder:
bedin
rereat
Wwrite('Open what file
readln{sis

try
reset{f s+’ ,text’ s
ior 1= 03 (#1f we det heres it didn't fail#}
recoyver
if escarecode = -10 then {(#*¥it’s an I0 error#*)
bedin
ior := ioresultiy (#¥save 1ti will be affected by write stmt¥)
writeln(’ Can’‘t oren it, IOresult =7 siorls
end
else
gscaFelescarecode) s
until ior = 03

and,

Workstation 347

Method 2. This method is used in UCSD Pascal programs. For it to work. you must also suppress

the error checks normally emitted by the Compiler.

fucsds

prodram ucsdmethod

var

name: stringl[BO13
fi texts
iors inteders

bedin
repeat

write{ 'Oren what file
readln{sii

$iocheck
reset (fss+',text’)3
$1ocheck

ior

if ior ©F
writelnt’
until dor = 03

and,

(inPutsontrPut) i

affected by

vior) s

The values returned by the 10RESULT function are listed in the Error Messages section at the end of

this appendix.

348 Workstation

Workstation Files

The file system is covered in detail in the section describing the Filer (file manager) in the user’s
manual. The abbreviated discussion provided here explains how the connection is made between
physical files and Pascal file variables.

A physical file is identified by a file specification, which tells what volume the file is on, and further
gives the name of the file if the volume is one with a directory. A logical file is simply a file-structured
variable declared in a Pascal program. A file variable is associated with a particular physical file
when the file is opened by a call to one of the standard procedures RESET. REWRITE or OPEN,

Syntax of Physical File Names

A file specification is a string literal or expression which conforms to the following syntax:

~(O—— O 0
unit
number |
volume
name

| 1
oldirectory] -

name ~P—
—Le ®

e password °

. Range
Item Description/Default Restrictions
unit number integer; corresponding to an entry in the unit 1 thru 50
table

volume name literal any legal volume name

password literal any legal password

directory name literal any legal SRM directory
name

file name literal any legal file name

number of blocks integer any legal number of
blocks

Workstation

The file specifier is a name, one to nine characters long (ten characters if there is no suffix). If you
are using a Shared Resource Management (SRM) file system, the file specifier is one to sixteen
charcters long including the suffix. See the list of allowable characters below. If the volume specified
is an unblocked volume (like PRINTER), which has no directory, the file specifier is ignored.

The file name may end in one of three reserved sulffixes:

JTEXT denotes a Pascal text file; usually created by the Editor.
,CODE denotes an executable code file.

BAD denotes a file spanning a failed region of the mass storage medium.
A file whose name doesn’t end in one of these suffixes is generically called a “‘data’ file.

The size is used when creating a new file. If it is omitted, the file is created in the largest unused area
on the volume. The asterisk syntax allocates either the second largest free area, or half of the
largest, whichever is bigger. If a specific size is given, the integer indicates how many 512-byte
blocks will be allocated to the file. The size must be at least two blocks, and can’t be bigger than the

largest free area in the volume. No volume can exceed 32767 blocks, so no file may be bigger than
16,776,704 bytes.

Characters Allowed in Volume and File Names

When specifying file names, letter case is important! The file named infa is not the same as the file
named INFO. Also, a file named stuff,text will be saved as stuff,TEXT, that is, the suffix will be
converted by the file system to its uppercase equivalent.

Note

Only the HP Pascal 1.0 Workstation converted all lowercase alphabetic
characters to uppercase.

All characters are allowed in names except: control characters (those with ordinal value less than
32), blank “ 7, sharp ‘‘#", asterisk ‘‘+”’, comma ‘“+"’, colon ““:”’, equals , question mark ", left

bracket “r”’, right bracket “1”’, and del (ordinal 127).

e_

349

350 Workstation

Examples of File Specifications

These examples assume the following variable specifications.

var ot texts
c: file of charsi

f: file of inteders

reset{t» "MYTEXT.TEXT ") 3

reset{cs "MYTEXT)3

reset{cy tMYTEXT)3

reset (L " #JUNK,TEXT ") 3

reset{t s "MYVOL:MINE.TEXT)3

reset(t "#B:MINE, TEXT)3
reset (t 'SYSTERM: ")
rewrite(t»'PRINTER: ")}
rewrite(t . 'CONGOLE: ") 3

rewrite{t, " #G6:)}

rewrite{t s ' #67) 4

rewrite(f "®#JUNK)3

rewrite(t s "MINE, TEXTL®#17)3

rewrite{f, JUNKLSO17)3

oren{f);

The .TEXT suffix must be specified, even though 1 is de-
clared as a textfile. The suffix is part of the name! The file is
on the default volume.

This is a data file on the default volume.

Same as previous one. An empty volume name is assumed
to precede the colon.

The file is on the system volume. The colon is optional for a
volume specifier.

The file is on the volume labelled MyunL, wherever that
might be found.

The file is on whatever volume is presently in unit #8.
Open the keyboard for input.

Open the unblocked volume PRINTER for output.
Open the CRT volume for output.

Open logical unit #6 for output. The system printer is #6 by
convention.

The colon is optional.

Open a data file called JUNK on the system volume. Allo-
cate the largest free area to this file.

Open a text file on the default volume: allocate it half the
largest free area.

Open a data file of 50 blocks.

The file is opened for both reading and writing. The system
will generate a dummy name for it.

Disposition of Files Upon Closing

When a file is closed, its disposition depends on the second parameter to the CLOSE standard

procedure.
close(f ' SAVE ")
close{f, LOCK")

clase(f s NORMAL)

The file is made permanent in the volume directory.
Same as SAVE.

If the file is already permanent. it remains in the directory. Otherwise it is
removed.

close(f) Same as 'NORMAL'.

close(f s PURGE ")

If the file was permanent, it is removed from the directory.

Workstation 351

Standard Files and the Program Heading

There are four standard files which. if used by your program. are automatically opened when the
program starts. Any of these files which is used must be listed in the program heading. No other files
should be listed in the heading.

All the standard files are text files.
INPUT The default file for read statements is the keyboard. Characters are echoed to the CRT

at the current cursor position as they are read.

keveoarn This file also reads from the keyboard. but characters are not echoed as they are read.
The keystrokes are read straight through. and editing is not enabled.

ouTPRUT The default file for write statements. Characters are written to the CRT.

LISTING The default printer file: automatically opened to volume "'PRINTER:" .

Note
The files INFUT and OUTPUT must not be redeclared in the program.,
while the files KE¥BDARD and LISTING must be declared as type TEXT.
Do not explicitly clase. reset or rewrite any of these system files. If
they are ever closed. the Initialize command on the main command
interpreter prompt will re-open them.

Standard Files Example
prodram use_them_all {inrutsoutput:kevboard:listingli
var
z: stringl8013
le:r texts

bedin
rewrite(lp s 'PRINTER:)3
readlnis)si {# from kevboardi echoes to CRT %)
writelnis)s (¥ to the CRT %)
readln{KEYBOARD »51 3 (¥ not echoed #)
Wwriteln (LISTING 503 (% does to the printer ¥)
Wwriteln{lpssii (% so does this #)

end.

File System Differences

To allow for the fact that different computers provide different underlying operating system support,
HP Pascal allows certain variations in the parameters passed to the standard procedures for
opening and closing files. These parameters appear as strings passed to the standard procedures; it
is their content which may vary. For instance, the file naming conventions are very different in
different operating systems. Such variations may require minor changes in a program if it is moved
to a type of computer different from the one on which it was developed.

When a file is open, its behavior in performing the input and output operations of HP Pascal should
be the same in all implementations.

352 Workstation

Heap Management

The “heap” is the area of memory from which so-called dynamic variables are allocated by the
standard procedure NEW. When a program begins running. it has available one area of memory
for data. The program'’s stack begins at the high-address end of this area and grows downward: the
heap begins at the low-address end and grows upward. If the stack and heap collide. a Stack
Overflow error (escapecode -2) is reported.

Two regimes are available for the recovery of heap variables after they become unwanted: the
MARK/RELEASE method. and the DISPOSE method. The first is simpler and faster. the second
more general.

MARK and RELEASE

This method uses two standard procedures to manage the heap in a purely stack-like fashion.
MARK is called to set a pointer to the next available byte at the top of the heap. Subsequent calls to
NEW will all take space from above this point. When the program finishes with all the variables
above the mark, RELEASE is called to move the top of the heap (the next available space) back to
the value saved by MARK.

Frodram markreleases

tyFPe
Ftr = =N]
rec = record
fl:fZ: inteders
end s
var

torsF: PLTS
1: inteders

bedin
markitop)s (% remember the base aof the heap #
rereat
for 1 1= 1 to 5000 do
bedin
newirpls i* allocate from ne«t hidhest hear address %)
evd s
release({tor?i (% cut back the heari recover all space #)
until falses (% prodram will run forever #)
end .

When using this method. the computer does not prevent you from making the mistake of releasing
to a point above the current top-of-heap!

NEW and DISPOSE

Alternatively, the standard procedure DISPOSE can be used to return each unwanted dynamic
variable back to a pool of free space.

Calls to DISPOSE will have no effect (the freed storage will not be reused) unless the main
program and the modules containing the NEW and DISPOSE calls are compiled with the
option $SHEAP_DISPOSE ON$.

Frodram disposals

type
Ptr = ° recs
rec = regord

next: Ptri
flefZ: inteders
endsi

Workstation 353

var
toPsPsTOOLE FLTS
i: inteders

bedin
mark{tor): (* remember the base of the heap *)
rereat
rogt = nily
for i 1= 1 to S000 do
bedin
newl(pii {# after disposess will allocate from free list #)
P emext 1= rooti root := p3 (% chain all cells todether #)
4o
gnd s
AN
reFeat (% dive back all cells one at a time #*)
P i= roots
root := roottinexts (¥ follow the chain *)
disrose(r)i (% mem manader Puts on a free list #)
until root = nils
until falses (% Prodram will run forever %)
end,

The recycling algorithm takes advantage of the fact that programs which use the heap operate on a
great many variables of just a few types. Each type has a characteristic size. When a variable is
disposed, it is saved at the front of a list of other variables of the same size. When a variable is
allocated, the NEW routine first looks on the list corresponding to the size required: if there is a free
object there, it can be allocated immediately. Usually there will be very little computational over-
head for either NEW or DISPOSE.

The memory manager maintains free lists for objects of sizes 4. 6. 8. ... 32 bytes, and one more list
for all larger objects. Objects are allocated from this last list on a first-fit basis. No dynamic variable is
ever allocated an odd number of bytes.

It is possible for the program to behave so that the heap becomes fragmented (broken into many
small pieces). If a request then arrives to allocate space for a large variable, the memory manager
will try to recombine the fragments to make a piece big enough to satisfy the request. The fragments
must be sorted by address and adjacent ones merged.

The recombination process takes much longer than a simple allocation. Consequently, in real-time
applications it is important to analyze the dynamic behavior of programs which use DISPOSE.

Mixing DISPOSE and RELEASE

It is also possible to mix the regimes in a well-behaved manner. However, not all implementations
of HP Pascal allow mixing these methods in a program. A program which does so may not run
properly on other implementations.

lf you RELEASE a properly MARKed pointer after some calls to DISPOSE, the memory manager
will leave on the free lists all disposed objects whose addresses are below the released location. All
the space above the released location becomes free, whether or not it was disposed.

During this process the memory manager also recombines any adjacent free fragments, so RE-
LEASE can also be used to reduce fragmentation. Just MARK the current top of the heap, then
immediately RELEASE to the same spot.

354

Workstation

What Can Go Wrong?

This section discusses some problems which may occur when using the Compiler, and how to solve
them.

Can’t Run the Compiler

1. If the system reports, Carnot oren ‘COMPILER ', the volume with the Compiler is not online.
You may have removed the volume and not put it back. If the Compiler wasn’t found when
the system booted, you are expected to insert the disc containing the Compiler in the drive
before invoking it. The system is shipped with the Compiler on the diskette labelled
CMPASM.

2. lf the system reports, Cannot load ‘COMPILER’, either the disc is bad or not enough memory
is installed in the computer to run the Compiler. It is desirable to have at least 393 Kbytes: the
system is normally sold with at least 512 Kbytes.

Errors 900 thru 908

During compilation, three files are written by the Compiler: the code file, which is the one you want,
and the REF and DEF files. The latter two are temporary working storage for linkage information
which is appended to the code file if the compilation terminates normally. All three of these files are
normally opened on the same volume (the volume to which you directed the code file).

Each of these files is subject to three classes of error:

® Error in opening the file.
e Insufficient space to open the file.
o File fills up before compilation finishes.

An error in opening the file usually means the volume is not online. It can also indicate that the
volume’s directory is full.

The amount of space allocated to the code file is usually half of the largest free area on the volume,
with the potential to expand to the second half of that area if needed. If you get errors 900, 903, or
906 you need to make more room on the volume to which the code file was directed, or use a
different volume.

The REF file by default is opened with 30 blocks of disk space on the same volume as the code file.
A Compiler directive at the beginning of the source program can change the size and the volume
selected for REF. There's no simple rule which gives the “‘right” size for the REF file. If the file fills
up (error 907), make it bigger in proportion to the amount of program that remained to compile
when the error occurred.

$REF S50% Allocate 50 blocks
$REF “U3: 7% Put it on volume V3
$REF ‘U4:7, REF 50% Put it on V4 and allocate 50 blocks

Exactly analogous remarks hold for the DEF file, except that its default size is 10 blocks and the
directive is DEF.

Workstation 355

Errors When Importing Library Modules

There are several errors that can occur when importing modules.

1. Syntax errors in the interface of an imported library module. This usually indicates that the
library module itself tried to import some other module which was not found by the Compil-
er’s search algorithm.

2. Errors 608, 610: Include or import nesting too deep. If module “A” imports “B”, which
imports “C”" and so forth, the Compiler must follow the chain to its end. The chain can only
be 10 imports deep (unless you use the $5EARCH_51ZE$ option). Since the same file handling
mechanism is used to process $IMPORT$ and $INCLUDE$ files, the combined limit on import
and inclusion nesting is 10 deep (unless changed with the $SEARCH_S1ZE$ option.

3. Error 613: Imported module does not have interface text. If the library has been linked by the
Librarian, the interface specification has been removed. Also, a main program looks internal-
ly like a module; but it has no interface text.

Not Enough Memory

If the Compiler generates error —2 “‘Not Enough Memory’. there isn’t enough room in memory to
compile the program. You can watch the numbers which appear on the screen in square brackets
as the compilation proceeds — they show approximately how much memory is left. There are two
primary reasons for running out of memory during a compilation. One of them is large procedure
bodies, and the other is permanently loaded (*‘P-loaded”) files.

Large Procedure Bodies

When the Compiler processes a procedure, the entire procedure (declarations and body) is scan-
ned. An internal representation of the procedure, called a “tree”. is built. This tree is not complete
until the scanner reaches the end of the procedure, and only then does code generation begin. The
tree form takes a lot of storage. particularly the statements making up the body. If you write a
procedure whose body is ten pages long, the Compiler is very likely to run out of memory. The
moral is that you should keep your procedures reasonably short. A good guideline is that no
procedure should be longer than a page or two.

P-loaded Files

If you’'ve Permanent-loaded a lot of libraries or programs, or space has been allocated to a
memory-resident mass storage volume, you can reboot the system to recover the memory, and try
again.

Insufficient Space for Global Variables

You may discover, either at compile time or at run time, that there isn’t sufficient space for the
global variables of your program. If this happens, please refer to the Implementation Restrictions
section in this appendix, which explains the limitations and what to do if you exceed them.

Errors 403 thru 409

These errors should never be reported by the operating system. They usually indicate a malfunction
in the Compiler itself. (Although one may occur due to a strange coding error.) If this ever happens,
please show the program which causes it to your HP field support contact.

356 Workstation

Error Messages
This section contains all of the error messages and conditions that you are likely to encounter during
the operation of your workstation.
® Run time errors — These may occur when you are running a program.

@ [/O related errors — When run-time error — 10 occurs. there has been a problem with the /O
system. The operating system then prints a message from the I/O error list.

e [/O LIBRARY errors — When run-time error — 26 occurs, there has been a problem in an [/O
LIBRARY procedure.

e Graphics LIBRARY errors — When run-time error —27 occurs. there has been a problem in a
graphics LIBRARY procedure.

e Compiler syntax errors — During the compilation of a program. any of these errors may occur.
The compiler will show the number of the error and you can look it up.

Unreported Errors

Certain errors in Pascal programs are not reported by this implementation.

e Disposing a pointer while in the scope of a WITH referencing the variable to which it points.
e Disposing a pointer while the variable it points to is being used as a VAR parameter.

e Disposing an uninitialized or NIL pointer.

e Disposing a pointer to a variant record using the wrong tagfield list.

e Assigment to a FOR-loop control variable while inside the loop.

e GOTO into a conditional or structured statement.

e Exiting a function before a result value has been assigned.

e Changing the tagfield of a dynamic variable to a value other than was specified in the call to
NEW.

® Accessing a variant field when the tagfield indicates a different variant.
® Negative field width parameters in a WRITE statement.

(X3R!

® The underscore character “‘_" is allowed in identifiers. This is permitted in HP Pascal, but is not
reported as an error when compiling with $ANSI$ specified.

e Value range error is not always reported when an illegal value is assigned to a variable of type
SET.

Operating System Run Time Error Messages

Workstation 357

Errors detected by the operating system during the execution of a program generate one of the
following error messages.

When using the TRY..RECOVER construct, the following numbers correspond to the value of

ESCAPECODE.

Normal termination.
Abnormal termination.
Not enough memory.
Reference to NIL pointer.
Integer overflow.

Divide by zero.

Real math overflow. (The number was too large.)

Real math underflow. {The number was too small.)

Value range error.

Case value range error.

Non-zero IORESULT.

CPU word access to odd address.
CPU bus error.

lllegal CPU instruction.

CPU privilege violation.

Bad argument - SIN/COS.

Bad argument - Natural Log.

Bad argument - SQRT. (Square root.)
Bad argument - real/BCD conversion.
Bad argument - BCD/real conversion.
Stopped by user.

Unassigned CPU trap.

Reserved

Reserved

Macro Parameter not 0..9 or a..z
Undefined Macro parameter.

Error in l/O subsystem.

Graphics error. RAM Parity error.

Misc. floating-point hardware error.

358

Workstation

IO Exrors

These error messages are automatically printed by the system unless you have enclosed the
statement in a TRY-RECOVER construct. Within a RECOVER block. when £scarecope = — 10.
one of the following errors has occurred. You can determine which error if you examine the system
variable 10RESULT.

O 0 NSRRI W=

RN N N N N N N e o o o o ot e ek e
\IG\U"-BOJN#O\OOO\IC\U‘-POJMI—tO

No I O error reported.
Parity (CRC) incorrect.
lllegal unit number.
lllegal ['O request.
Device timeout.
Volume went off-line.
File lost in directory.
Bad file name.

No room on volume.
Volume not found.
File not found.
Duplicate directory entry.
File already open.

File not open.

Bad input format.

Disc block out of range.

Device absent or unaccessible.

Media initialization failed.
Media is write protected.
Unexpected interrupt.
Hardware/media failure.
Unrecognized error state.

DMA absent or unavailable.

File size not compatible with type.

File not opened for reading.

File not opened for writing.

File not opened for direct access.

No room in directory.

28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52

String subscript out of range.
Bad file close string parameter.

Attempt to read or write past end-of-file
mark.

Media not initialized.

Block not found.

Device not ready or medium absent.
Media absent.

No directory on volume.

File tupe illegal or does not match request.
Parameter illegal or out of range.
File cannot be extended.

Undefined operation for file.

File not lockable.

File already locked.

File not locked.

Directory not empty.

Too many files open on device.
Access to file not allowed.

Invalid password.

File is not a directory.

Operation not allowed on directory.

Cannot create
/WORKSTATIONS/TEMP_FILES.

Unrecognized SRM error.
Medium may have been changed.
1O result was 52.

Workstation 359

I/O LIBRARY Errors

When run-time error — 26 occurs, there has been a problem in an I/O LIBRARY procedure. The
operating system puts a value in the system variable 10E_RESULT. By importing the I0DECLARATIONS
module, you can access 10E_FESULT and call the 10ERROR_MESSAGE function. which returns the error
description. For example:

$SYSPROG ON%
IMFORT iodeclarations

LRI}

BEGIN
TRY
v tstatements?
RECOVER
IF escarecode = ioescarecode
THEM writeln (ioerror_messadelige_resultli;
sscapelescarecode)s
END .,

ESCAPE is a procedure you can call and ESCAPECODE is a variable you can access when you use the
$5YSPROG ON$ compiler directive. 10ESCAPECODE is a constant (equal to —26) you can import from
the 10DECLARATIONS module.

1 No error. 18 Not system controller.
2 No card at select code. 19 Bad status or control.
3 Not active controller. 20 Bad set/clear/test operation.
4 Should be device address. 21 Interface card is dead.
not select code. 22 End/eod has occurred.
5 No space left in buffer. 23 Miscellaneous - value of parameter error.
6 No data left in buffer. 306 Data-Comm interface failure.
7 Improper transfer attempted. 313 USART receive butfer overflow.
8 The select code is busy. 314 Receive buffer overflow.
9 The buffer is busy. 315 Missing clock.
10 Improper transfer count. 316 CTS false too long.
11 Bad timeout value. 317 Lost carrier disconnect.
12 No driver for this card. 318 No activity disconnect.
13 NoDMA. 319 Connection not established.
14 Word operations not allowed. 325 Bad data bits/parity combination.
15 Not addressed as talker. 326 Bad status/control register.
16 Not addressed as listener. 327 Control value out of range.

17 A timeout has occurred.

360 Workstation

Graphics Library Errors

When run-time error —27 occurs, there has been a problem in a graphics LIBRARY procedure.

By importing the DGL_LIB module and enclosing the main body in a TRY-RECOVER statement,

you can call the GRAPHICSERROR function which returns an INTEGER value you can cross
reference with the numbered list of graphics errors. For example:

$SYSPROG ON%
imrort DGL_LIE

LN}

BEGIN
TRY
vee {statementsr
RECOVER
IF escapecode = -27
THEN writeln (‘Grarhics error #°y draphicserror:
“ has occurred?)
ELSE escare{escarecodel
END,

You may wish to write a procedure which takes the INTEGER value from GRAPHICSERROR and
prints the description of the error on the CRT. You could keep this procedure with your program or,
for more global use. in SYSVOL:LIBRARY.

No error. {Since last call to graphicserror or init_graphics.}

The graphics system is not initialized.

The graphics display is not enabled.

The locator device is not enabled.

ECHO value requires a graphic display to be enabled.

The graphics system is already enabled.

lllegal aspect ratio specified.

lllegal parameters specified.

The parameters specified are outside the physical display limits.

© 00NN R W N =S

The parameters specified are outside the limits of the window.

ot
(=)

The logical locator and the logical display use the same physical device. {The logical
locator limits cannot be redefined explicitly. They must correspond to the logical view
surface limits. }

11 The parameters specified are outside the current virtual coordinate system boundary.
12 The escape function requested is not supported by the graphics display device.

13 The parameters specified are outside of the physical locator limits.

Workstation

Pascal Compiler Errors

The following errors may occur during the compilation of a HP Pascal program.

ANSVISO Pascal Errors

1 Erroneous declaration of simple type
Expected an identifier

Expected a right parenthesis)"
Expected a colon ‘"

Symbol is not valid in this context

Error in parameter list

Expected the keyword OF

O 00 NN e N

Expected a left parenthesis “*(**
10 Erroneous type declaration

11 Expected a left bracket ("

12 Expected a right bracket ““]”
13 Expected the keyword END
14 Expected a semicolon ;"

15 Expected an integer

16 Expected an equal sign ="
17 Expected the keyword BEGIN
18 Expected a digit following "’
19 Error in field list of a record declaration
20 Expected a comma *,”

21 Expected a period *.”

22 Expected a range specification symbol *.."”

23 Expected an end of comment delimiter
24 Expected a dollar sign “$"".

50 Error in constant specification

51 Expected an assignment operator ‘1 ="
52 Expected the keyword THEN

53 Expected the keyword UNTIL

54 Expected the keyword DO

55 Expected the keyword TO or DOWNTO
56 Variable expected

58 Erroneous factor in expression

59 Erroneous symbol following a variable

98
99

100

101
102
103
104
105

106
107

108
110
111

113
115
117
121
123

125
126
127

129
130
131

132

[llegal character in source text

End of source text reached before end of
program

End of program reached before end of source
text

[dentifier was already declared

Low bound > high bound in range of con-
stants

Identifier is not of the appropriate class
Identifier was not declared

Non-numeric expressions cannot be signed
Expected a numeric constant here

Endpoint values of range must be compatible
and ordinal

NIL may not be redeclared
Tagfield type in a variant record is not ordinal

Variant case label is not compatible with tag-
field

Array dimension type is not ordinal

Set base type is not ordinal

An unsatisfied forward reference remains
Pass by value parameter cannot be type FILE

Type of function result is missing from declara-
tion

Erroneous type of argument for built-in
routine

Number of arguments different from number
of formal parameters

Argument is not compatible with correspond-
ing parameter

Operands in expression are not compatible
Second operand of IN is not a set

Only equality tests (=, <>) allowed on this
type

Tests for strict inclusion (<, >) not allowed
on sets

361

362 Workstation

133

134

135

136
137

138
139

140
141
143

144
145

147
149
150

152
154

156
158
160
163
164

165
166
167
168
169
171

Relational comparison not allowed on this
type

Operand(s) are not proper type for this opera-
tion

Expression does not evaluate to a boolean re-
sult

Set elements are not of ordinal type

Set elements are not compatible with set base
type
Variable is not an ARRAY structure

Array index is not compatible with declared
subscript

Variable is not a RECORD structure
Variable is not a pointer or FILE structure

FOR loop control variable is not of ordinal
type
CASE selecter is not of ordinal type

Limit values not compatible with loop control
variable

Case label is not compatible with selector
Array dimension is not bounded

lllegal to assign value to built-in function
identifier

No field of that name in the pertinent record

llegal argument to match pass by reference
parameter

Case label has already been used
Structure is not a variant record
Previous declaration was not forward
Statement label not in range 0..9999

Target of nonlocal GOTO not in outermost
compound statement

Statement label has already been used
Statement label was already declared
Statement label was not declared
Undefined statement label

Set base type is not bounded

Parameter list conflicts with forward declara-
tion

177

181

182
183
184
185
190

300
301
302
303
304
400
401

403..

409

Cannot assign value to function outside its
body

Function must contain assignment to function
result

Set element is not in range of set base type
File has illegal element type

File parameter must be of type TEXT
Undeclared external file or no file parameter

Attempt to use type identifier in its own dec-
laration

Division by zero

Overflow in constant expression
Index expression out of bounds
Value out of range

Element expression out of range
Unable to open list file

File or volume not found

Compiler errors

Compiler options

600
601
602
604
605
606

607
608

609
610

611
612
613
614

Directive is not at beginning of the program
Indentation too large for SPAGEWIDTH
Directive not valid in executable code

Too many parameters to $SEARCH
Conditional compilation directives out of order

Feature not in Standard PASCAL flagged by
$ANSI ON

Feature only allowed when $UCSD enabled

$INCLUDE exceeds maximum allowed depth
of files

Cannot access this $INCLUDE file

$INCLUDE or IMPORT nesting too deep to
IMPORT <module-name>

Error in accessing library file
Language extension not enabled

Imported module does not have interface text

LINENUM must be in the range 0..65535

620

621
646
647
648
649

Only first instance of routine may have
$ALIAS

$ALIAS not in procedure or function header
Directive not allowed in EXPORT section
lllegal file name

lllegal operand in compiler directive

Unrecognized compiler directive

Implementation restrictions

651

652

653

655

657
658
659

660
661

662

663

665

667
668
671
672
673

674
675
676

Reference to a standard routine that is not im-
plemented

lllegal assignment or CALL involving a stan-
dard procedure

Routine cannot be followed by
CONST,TYPE VAR, or MODULE

Record or array constructor not allowed in ex-
ecutable statement

Loop control variable must be local variable
Sets are restricted to the ordinal range O .. 255

Cannot blank pad literal to more than 255
characters

String constant cannot extend past text line

Integer constant exceeds the range im-
plemented

Nesting level of identifier scopes exceeds max-
imum (20)

Nesting level of declared routines exceeds
maximum (15)

CASE statement must contain a non-
OTHERWISE clause

Routine was already declared forward
Forward routine may not be external
Procedure too long

Structure is too large to be allocated

File component size must be in range
1..32766

Field in record constructor improper or missing
Array element too large

Structured constant has been discarded (cf.
$SAVE_CONST)

677
678
679
680
681
682
683
684
685

686
687

688

689
696
697
698
699

Workstation

Constant overflow

Allowable string length is 1..255 characters
Range of case labels too large

Real constant has too many digits

Real number not allowed

Error in structured constant

More than 32767 bytes of data

Expression too complex

Variable in READ or WRITE list exceeds
32767 bytes

Field width parameter must be in range 0..255

Cannot IMPORT module name in its EXPORT
section

Structured constant not allowed in FOR-
WARD module

Module name may not exceed 15 characters
Array elements are not packed

Array lower bound is too large

File parameter required

32-bit arithmetic overflow

Non-ISO Language Features

701

702

704
705
706
707

708
709
710
711
712
714
715

Cannot dereference { ©) variable of type

anyptr

Cannot make an assignment to this type of
variable

lllegal use of module name
Too many concrete modules
Concrete or external instance required

Variable is of type not allowed in variant re-
cords

Integer following # is greater than 255
lllegal character in a ‘‘sharp’ string
lllegal item in EXPORT section
Expected the keyword IMPLEMENT
Expected the keyword RECOVER
Expected the keyword EXPORT
Expected the keyword MODULE

363

364 Workstation

716
717
718
719

720
730

731

732
733
750
751
900
901
902
903
904
905
906
907
908

Structured constant has erroneous type
lllegal item in IMPORT section
CALL to other than a procedural variable

Module already implemented (duplicate con-
crete module)

Concrete module not allowed here

Structured constant component incompatible
with corresponding type

Array constant has incorrect number of ele-
ments

Length specification required
Type identifier required

Error in constant expression
Function result type must be assignable
Insufficient space to open code file
Insufficient space to open ref file
Insufficient space to open def file
Error in opening code file

Error in opening ref file

Error in opening def file

Code file full

Ref file full

Def file full

(ép HEWLETT

PACKARD

Part No. 98615-90050

E 0284
Microfiche No. 98615-99050

Printed in U.S.A.
First Edition, February 1984

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234a
	234b
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292a
	292b
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	xBack

