HP 9000 Series 200/300 Computers 2] Sickano

Pascal 3.1 Workstation System
Vol. I: Main Command Level and Subsystems

Pascal 3.1 Workstation System

Vol. I: Main Command Level and Subsystems
for the HP 9000 Series 200,300 Computers

Manual Reorder No. 98615-90022

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Coliins. Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1985...Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Table of Contents

Chapter 1: Manual Overview.ttt e 1
INtrodUCHON 1
Before Reading this Manual. 1
Preview of ChaptersinVolume [.......... 2
Preview of ChaptersinVolume Il 3
Chapter 2: The Main Command Level. 5
IntrodUucton e 5
Main Command Prompt. 5
Main Command Quick Reference e 6
Main Command Reference. 7
B UL, . . o o e 8
Initialize. 9
Memory volume 10
New sysvol. 12
Permanent 13
RUN. L 14

] 7= o« A 15
USer TS AT, . . . oot e 18
VTS ON . o Lo 19
What. . oo e 21
Chapter 3: File System 23
Introduction 23
Primary Vs. Secondary Storage. 23
Pascal Volumes 24
VOIUMIESo 24
Logical Units 25
The System Volume and Default Volume 26
FRles. . .o 27
File Naming Conventions.ooittt i 28
File Specifications and File Names i i, 28
Syntax of File Names 31
File Types Derived from File Names. i i i 31
File names (LIF)t e e e e 32
File Names (Workstation 1.0 Directory)t 33
File Names (SRM System)t e 33
File Size Specification e 33
Several Directory Organizations Allowed, 34
File Name Suffixesand File Types i 34
Suppressing the Suffix e 35

Translating Files from One Data Typeto Another. 36

Wildcardso 37

File Names to Avoid 39
Allowable File Names 39
File Name Length 40
NoRoomonVolume. 40
The Shared Resource Management System. 41
Hierarchical directories 41
Notation 42
SRM Unitsand Volumes 42
Moving Up and Down the Hierarchy 43
Default Volume Vs Current Working Directory 45
SRM Concurrent File Access 46
SRM Access Rights 46
Chapter 4: The Editor. 47
Introduction 47
Entering the Editor. 48
Creatinga TextFile. 49
The Editor Prompt 49

A Sample Editor Session. 50
Creating Text. . ..ot 50
Storing your File and Returningto the Editor 51
Copying Text from Other Files, 52
Confirming or Aborting Commands 53
Moving the Cursor 54
Deleting Text. 55
Recovering Deleted Text 56
Moving and Duplicating Text. 56
Changingand Altering Text. 57
Formatting Text. 62
Exiting the Editor and Savingthe File. 66
Making a Backup Copy 67
ACloser Look 68
The Cursor. 68
The ANChor o 68
The Screenasa Window intoaFile................. 68
Memory and File Sizes 69
Structure of Text Files. 70
Using Workfiles inthe Editor 70
Stream Files and the ANYCHAR Key. 71

I/O Errors (Entering and Exitingthe Editor) 71
Editor Commands 72
Editor Command Summary 72
Command Syntax and Semantics. 73
AJUSt . . . 74
GOy . ot 76
Delete 78

ISt . o 84
JUINID. . 87
Margin 88
Page . . 89
QUIL. . . ot 90
Replace. o 92
=3 VR 95
VY . . 99
eXChange. 100
D . 102
Chapter 5: The Filer 103
Introduction 103
Enteringthe Filer. o 104
The Filer Prompt. o 104
Filer Operations.\ttt 105

A Sample Filer Sessiont 105
Finding Out What Devices are Accessible 105
The Default and System Volumes. i 106
Changing the Default Volume. 106
The System Volume. 107
Listing @ Directory. 108
Getting a More Detailed Listing. 109

A Few Words About Wildcards. o i 111
Translating Text Files o 111
Sending File Listings to the Printer and Screen. 112
Copying Entire Volumes: Backup Copies 113
Creatinga Directory 115
Copying Files from VolumetoVolume 116
Renaming Filesand Volumes i i i i 119
Removing Fileso 120
Leavingthe Filer. 121
The System Workfile (A Convenient Scratchpad). 121
Filer Commandsttt 122
Filer Command Summary 122
Command Syntax and Semantics. i 123
AACCESS. . . oot 126
Bad SeCtOro 128
ChaNGe. . . oot 129
Duplicate_link 131
Extended directoryt e 132
FIloCODY .« . v 135
Gt . oo 139
Rrunch 140
List dir@CtOry 142
MakKe. . . 144

QUIt. . o 149
Remove 150
SV . . 152
Translate 153
Unit directory. 155
Volumes. 157
What. .. 158
ZRIO o 159
Chapter 6: Pascal Compiler 161
Introduction 161
Steps In Program Development. 162
Prepare the Source Program. 162
Invoke the Compiler. 162
Handling Syntax Errors 163
Interpreting the Compilation Listing 164
Running the Compiled Program 165
UsingaWorkfile 165
Debugging 166
Modules 167
Module Structure 167
Developingand TestingaModule 170
Anlllustration 172
Compiling a Module Separately 172
How the Compiler Finds Library Modules. 173
How the Loader Finds Library Modules. 175
ASubtle Point. 176
SINCLUDEFiles 176
Miscellaneous 176
What Can GoWrong? 177
Can'tRunthe Compiler. 177
Errors 900 thru 908 177
Errors When Importing Library Modules 178
NotEnoughMemory 178
Insufficient Space for Global Variables. e 178
Errors 403 thru 409 178
Compiler Options 179
ALLAS . 180
ALLOW_PACKED o 181
ANSL. 182
CALLABS . . 183
CODE. . . e 184
CODE_OFFSETS . . . 185
COPYRIGHT ... 186
DEBUG . .. 187
DEF 188

vii

HEAP _DISPOSE . .. ot 190

IE . 191
INCLUDE . .. e 192
IOCHECK . .ot 193
LINENUM . . 194
LINES . . oo 195
LIS . e 196
OVELCHECK . . oo e e 197
PAGE . . . 198
PAGEWIDTH . . .o e 199
PARTIAL _EVAL . . .o 200
RANGE . .. 201
REF. . . o 202
SAVE _CONST . oot 203
SEARCH 204
SEARCH . _SIZEo 205
STACKCHECK. . . . e e e 206
SWITCH_STRPOS. . . .ot e 207
SYSPROGot e 208
TABLES . . . o e 209
UCS D . . o 210
WARN . 211
How Pascal Programs Use the Stack. i .. 212
The Pascal Stack.o oot e 212
Global Variablesot 212
Procedure Calls.t 213
Function Callsot 214
Parameter Passing Mechanisms i 214
Function Resultsot e e 215
Chapter 7: The Assembler i 221
INtrOdUCHON .« . . . oottt e e e e e 221
Operating the Assembler 222
Invoking the Assembler 222
Source File Specificationt 222
Listing File Information 222
Object File Specificationc..ouuiiiiiniiiiii e 223
Interpreting the Listing.o. i 224
The Programming Systemttt e 225
The IMPORT TeXt . .. oottt et e e e e e e e e e e e 226
The DEF Tableottt e e e e 226
The EXT Table oot e e e e e 227
Declaring the Module Name 228
Passing Parameters.ttt 228
Declaring Global Variables i 229
Referencing Global Variables 229
Referencing Other Module’s Globals. 230

Local Variables 230

viii

Module Initialization 233
Error Recovery 233
Exception Coding. 235
Returningto Pascal. 235
Declaring External Procedures 236
Instruction Syntax 237
General Syntax. 237
Line Labels 238
Opcodes. o 239
Operands. 241
Addressing Modes. 245
Comments and Comment Lines .. 247
MC68881 Floating Point Co-processor Support. 249
Assembler Support of the Co-processor 249
Assembler Pseudo-Op Reference 250
COM. L 250
D 251
DECIMAL . . 251
DEF 252
DS 252
END . 253
EQU .. 253
INCLUDE . .. 253
L EN . 254
LIS . 254
LMODE . . . 255
LPRINT . 255
MNAME . . 256
NOLIST . . . 256
NOOBJ . . . 257
NOSYMS . 257
ORG . . 258
PAGE . . 258
REFA 259
REFR . 259
RMODE . . . 260
RORG . 260
SMODE . .. 261
SP C 261
SPRINT . 261
SR 262
ST ART . . 262
T 262
The Examples 263
The Sample Pascal Programs 263
The Sample Pascal Module. 264
The Disassembly of the Module 265

The Assembly Language Module 267

Chapter 8: The Librarian. 271

Introduction 271
Prerequisitest 271
Library Overview. 272
Modules and Libraries 272
What the Librarian Does 272
Example Modules. i 273
Compiling and Running the Example Program 275
Entering the Librarian. 278
Setting Up Mass Storage 279
Creating Libraries of Object Modules. 280
Adding Modules to the System Library. i i i 280
Making Your Own Libraryc i 282
Linking Object Files Together. 283
Getting Detailed Object File Information i .. 286
The Text and Table Commands 287
The Unassemble Commands o 288
Creatinga New Boot File. 292
Librarian Command Reference. 293
Glossary of Object Code Terminology. 296
DEF Table (Definition Symbol Table) 296
DEFINE SOURCE e e 296
EXT Table (External Symbol Table) 297
EXPORT . .. 298
Flags . . . 298
General Value or Address Record (GVR)......... 299
IMPLEMEN T . . 299
IMPORT . . . 299
LIBRARIAN 299
brary . . 300

L BRARY . . . 300
Object Fille o 300
Object Module. 300
Pascal Module. e 300
REF Tables 301
Reference Pointer. 301
Systemn Library 302
Text Record. 302
Chapter 9: The Debuggert 303
IntrodUction 303
Is the Debugger Loaded? 303

A Sample Session 304
The Example Program. 304
Please Participate i 305
Loading the Debugger.ttt e 305

A Note about Key Notations. i 306

Is the Debugger Installed? i 307

Invoking the Debugger 307

The Debugger Command Screen i, 308
Single-Stepping a Program 309
Slow Program Execution......... 309
Returning to the Debugger Command Screen................................. 309
Toggling Between Screens 309
Screen Dumps. 310
ALook atthe Queue. 310
Displaying Data. 310
Controlling Execution with Breakpoints. 313
The Pause Function and Breakpoints 316
Executing a Number of Statements L. 316
Tracing Program Flow through Procedures 317
ALook atthe Stack Frame. 318
Examining Variables. 318
Examining Consecutive Memory Locations 320
Formats for Structured Variables 321
Changing Memory Contents. 322
Static and Dynamic Links i 323
Exception Trappingoiii i 324
Generating Escapes 325
A Note about Assembly Language Programs. 325
Debugger Keyboard 327
A Note about Key Notations. 327
Is the Debugger Installed? 327
Calling the Debugger from the Main Command Level.......................... 328
Step Modes 328
Command Mode. 328
Debugger Command Summary 331
Breakpoint Commands 331
Call Command 331
Display Commands 331
Dump Commands i 331
Escape Code Commands i 331
Format Commands 331
Go Commandst 331
IF, ELSE, and END Commands. 332
Open Memory Commandsoouiitinitiin i 332
Procedure Commands. e 332
Queue Commands.ttt 332
Register Operationso it 332
Softkey Commands 332
System Boot Command 332
Trace Commands. 332
Walk Procedure Links Commands., 332
Debugger Command Reference 333
Debugger Expressions 333

Multiple Commandsonaline.......... 334

Breakpoint Commands. 335
B 335
BA. . 335
B 336
B o 336
B 337

The Call Command 338

Display Commando 339
D 339

Dump Commands. 341
DA 341
DG 341

Escape Code Commands.oitiiir 342
EC . 342
BT 342
ETC 343
BTN 343

Format Commands. e 344
BB . 344
FH. o 344
FL o 344
FO. 344
FU. o 344

GO Commands 345
G 345
GE. 345
G 346
G 346

IF, ELSE, and END Commands. i 347

Open Memory Commandsoiiiiii 349
OL, OW, OB. . .. 349
SeMANICS.o 349

Procedure Commands i 350
PN 350
P 350

Queue Commandsttt 351
Qe 351
QE 351
QS 351
Softkey Commandst 352
“KO” thru K 352

Register Operations. ittt 353

System Boot 353

Trace Commands i 354
T o 354
T, . 354
T 354

xi

xii

Walking the Procedure Links. i 356
D . . 356
R 356
S 356

Technical Reference 357

System History 358
Pascal 1.0 ... 358
Pascal 2.0 and 2.1 359
Pascal 3.0 362
Pascal 3.0 366
Pascal 3.1 367

File Interchange Between Pascal and BASIC 371

Module Names Used by the Operating System 373

Physical Memory Map 375
Full 16 Megabyte Addressing Range L. 375
A Hypothetical RAM Configuration i i 376
The Overall Memory Map. 377
Memory Mapped [/O 378
External I/O 378
Internal /O 379

The Software Memory Map. 381

Character Sets 383

U.S. ASCII Character Set e 384

U.S. ASCII Character Set e 385

U.S./European Display Characters i 386

U.S./European Display Characters i 387

U.S./European Display Characterst 388

U.S./European Display Characters i 390

U.S./Eurpoean Display Characters i 391

Katakana Display Characters. 392

Katakana Display Characters. i 393

Monochrome Highlight Characters. 394

Color Highlight Characters. e 394

Command Summaries it 395

Main Command Level Summary 395

Editor Command Summary. 396

Filer Command Summary 397

Librarian Command Summary 398

Debugger Command Summary 399

GlOSSAYYo 401

xiii

Error Messages. e 407
Unreported Errors. 407
Boot-Time Errors. 408
Run-Time Errors e 408
/O System Errors 409
IO Library Errors 410
Graphics Errors e 411
Loader/SEGMENTER Exrors. e 412

SEGMENTER Errorso 412
Loader Boot-Time Errors 412
Pascal Compiler Errors. 413
ANSIISO Pascal Errors. 413
Compiler OptoNSottt 414
Implementation Restrictions 415
Non-ISO Language Features i, 415
Assembler Errors. 417
Error Messagest 417
Debugger Error Messages/Conditions. i 419

Subject Index 421

Chapter

1

Manual Overview

Introduction

This is Volume I of a two-volume manual that describes using the Pascal 3.1 Workstation System. It
shows how to use the Main Command Level and the subsystems of the Pascal Workstation
“environment”’ — the Editor, Filer, Compiler, Assembler, Librarian, and Debugger — and how they
interact to provide you with a powerful Pascal program development tool.

Volume II focuses on programming and configuration of the system.

Before Reading this Manual

Here are the manuals that you should have read before reading this manual.

Documentation Guide
This guide describes each manual in the documentation set. It will help you to learn where the
various parts of the system are described.

Computer Installation Guides
You should have already set up your computer hardware according to the instructions in the
Installation Guide for your particular computer.

Peripheral Installation Guide

If you have peripheral devices, such as disc drives and printers, you should have set them up
according to the instructions given in this manual. It contains pertinent information taken from each
supported peripheral’s installation/operating manual.

Pascal User’s Guide
You should have booted the Pascal system according to the instructions in the Pascal User’s Guide.
This manual also describes the software configuration required for various peripheral devices.

You may have also followed along with the examples to learn how to begin using the system to
enter and compile a few simple Pascal programs, although that is not mandatory due to similar
coverage in this manual.

The Pascal Textbook

If you are not familiar with the Pascal language, you may want to first read or scan An Introduction
to Programming and Problem Solving with Pascal (included in the manual set sent with your
system).

2 Manual Overview

Volume II: Programming and Configuration Topics

The second volume of this manual is similar to the Pascal textbook described in the last paragraph,
but it presents programming techniques that are specific to the Workstation Pascal programming
language; i.e., the extensions to “‘standard” Pascal that are provided by the Workstation. As with
the Pascal textbook mentioned above, you may want to read or scan Volume II of this manual
before delving too deeply into this volume.

Previous Workstation Pascal Manuals

If you are familiar with the documentation for earlier versions of the Pascal Workstation System,
you may be happy to know that this manual is a later edition of the Pascal User’s Manual. However,
this manual describes only Version 3.1 of the Pascal Workstation system.

Note

The main text of this manual does not generally discuss earlier versions
of the system; however, the ““‘System History” section of the “Technical
Reference’”” appendix of this manual will help you if you are upgrading
from an earlier version of the Workstation Pascal System.

Other Manuals

This manual does not generally assume that you are familiar with any of the other languages and
systems available for this series of HP computers, although references are occasionally made to
some of these other languages where appropriate (such as BASIC).

Previews of Chapters in Volume I
Here are brief previews of the contents of each of the remaining chapters of this manual.

Chapter 2: The Main Command Level
This chapter describes the commands available in the ‘“Main Level”” of the Workstation System.

Chapter 3: The File System

This chapter introduces you to the Workstation File System. It describes how the logical units and
volumes are organized. However, it does not describe access of files from Pascal programs, which is
covered in the subsequent ‘‘Programming with Files”” chapter.

Chapter 4: The Editor

A program usually starts out as an idea. The Editor’s function is to provide a useful environment for
the translation of thoughts into actual programs or documents. This chapter fully explains the
features of the Pascal Workstation Editor.

Chapter 5: The Filer
The Filer is used to store, load, copy, translate and perform other file-related utility operations. This
chapter details performing these operations with the Filer.

Chapter 6: The Pascal Compiler

Once a program has been written with the Editor, this source code must be compiled into object
code before it can be executed. This chapter explains the operation of the Compiler and the options
that can be used to modify its operation. The chapter also describes the modular programming
capability, which is one of the most powerful features of this system.

Manual Overview

Chapter 7: The Assembler

This chapter introduces you to the Assembler, which converts programs written in assembly lan-
guage — a humanly understandable version of the microprocessor’s machine language — into object
code for the MC68000 family of processors used in these HP computers.

Chapter 8: The Librarian

This chapter covers using the Librarian. In the system are libraries of object-code modules: some
consist of device-drivers, while others consist of useful procedures for such applications as [/O and
graphics. You can also design your own modules. The Librarian’s function is to manage libraries of
Pascal and Assembler object modules.

Chapter 9: The Debugger

We all wish that a program would run perfectly the first time. Unfortunately, there is little evidence
in real life to support that fantasy. The next best thing is to have some good tools to help you debug
your programs. This chapter explains the debugging features available with this system.

Technical Reference Appendix
This appendix contains the following information:

® A history of the Pascal system, which includes descriptions of the differences between the 3.1
and previous versions of the Workstation system.

e A list of module names used by the 3.1 system.

® Software memory map.

® Tables of available display characters.

Command Summaries
This appendix contains a summary of commands for each of the Pascal subsystems.

Glossary
Knowing what technical terms mean is always useful.

Error Messages
This appendix contains the complete listings of all error messages for the Pascal System and its
various subsystems.

Index
This section contains an index to the topics in both volumes of this manual.

Previews of Chapters in Volume II
Here are brief previews of the contents of each of the chapters in the second volume of this book.

Chapter 10: Overview of Workstation Software Features
This chapter gives a brief introduction to Workstation Pascal language and library features. It also
tells where various software features are described in the Workstation Pascal documentation set.

Chapter 11: Data Types and Structures
This chapter describes the types of data available in the Workstation Pascal language. It also briefly
describes some of the data types and structures that are not available with standard Pascal.

4 Manual Overview

Chapter 12: Program Flow
This chapter describes the features of this system which allow you to alter the flow of a program.

Chapter 13: Numeric Computation

This chapter describes the standard Pascal numeric data types and how they are implemented in
this Pascal language. It then shows several examples of useful techniques for dealing with angles,
rounding, logarithms, number-base conversion, calendars, and pseudo-random numbers.

Chapter 14: String Manipulation
This chapter describes how to use the HP Pascal type st ring, as well as using the associated string
functions and procedures.

Chapter 15: Programming with Files
This chapter describes general uses of files, as well as many Workstation-specific file access techni-
ques.

Chapter 16: Dynamic Variables and Heap Management
This chapter describes how to create and use dynamic variables, as well as how to reclaim the
memory used for these temporary variables.

Chapter 17: Error Trapping and Simulation

This chapter describes how to programmatically handle, and possibly correct, errors before they
halt the execution of your programs. It also shows how to simulate errors in order to debug the
error-handling portions of your programs.

Chapter 18: Special Configurations

This chapter describes how to set up ‘‘non-standard” configurations. It first gives background
information regarding how the system boots and configures itself, and then it describes the steps
required to set up several configurations.

Chapter 19: Non-Disc Mass Storage

Several “non-disc”’ types of mass storage devices are available on the Pascal Workstation: EPROM
(Erasable Programmable Read-Only Memory) cards, Magnetic Bubble Memory cards, and DC600
tape cartridge drives. Configuring and using these devices is described in this chapter.

Chapter 20: Compatibility and Porting
This chapter describes the approaches available for running existing Pascal 3.0 software on new
Series 300 computers with the Pascal 3.1 system.

Error Messages

This appendix is an abbreviation of the lengthier appendix given in Volume 1. This listing of errors
fits on a single sheet of paper, which you may find handy to remove from the manual and place in a
more convenient place.

Index
This volume also has an index to the topics in both volumes of this manual.

Chapter

2

The Main Command Level

Introduction

The Main Command Level is the central point of reference for the operating system. It is ‘“where
you are”’ after booting the system and entering the time and date.

All the Main Command Level commands are listed in the subsequent Quick Reference. However,
this chapter focuses mainly on those Main Command Level operations which do not call subsys-
tems (such as the Editor, Filer, Compiler, etc.); the subsystems are each described in later chapters
of this manual.

Main Command Prompt

The Main Command Level consists of two prompt lines, only one of which is displayed at one time.
Press the (_?) key to toggle between them.

Command: Compiler Filer Editor Initialize Librarian Run eXecute Version 7

Command: Assembler Debugder Memuol Newsvsvuol Permanent Stream User What 7

The uppercase letters in the prompt lines indicate which key to press to start the operation.
All of the operations are available regardless of which prompt is being displayed.

The prompts are abbreviated on the 50 column display of the Model 226.

Command: Cmplr Edit File Init Libr Runm Xcut Ver 7

Command: Asm Dbg Memuv New Perm Stream User What 7

Note
This manual describes many keyboard operations. Since you can have
one of three different keyboards, this manual generally describes the
keystrokes required on all three keyboards.

For instance, on the HP 46020A keyboards, there are both and
keys, while on the HP 98203A and 98203B keyboards, there is
only an key. When you are directed in this manual to press one
of these keys, the text will usually say: “Press the (Return) or (Enter)
key.”

Another common example is the key on the 46020 and the
key on the 98203 keyboards. When you are directed to
press one of these keys, the text will say: “‘Press the (Select) ((_EXECUTE))
key.” (The second key noted in parentheses is the 98203 key.)

Descriptions of each keyboard and key-correspondence tables are
given in the Pascal User’s Guide.

6 Main Command Level

Main Command Quick Reference

Command Description

Compiler Calls the Compiler to translate Pascal source code
into object code.

Editor Calls the Editor for creating or editing a source program or textual document.

Filer Calls the Filer for management of the File System.

Initialize Initializes the File System (but not discs).

Librarian Calls the Librarian for managing, linking, or unassembling object-code files.

Run Runs the workfile (compiling it if needed) or the last program compiled since
power-up. If there is no workfile, Run operates like eXecute.

eXecute Asks for a code file and runs it.

Version Allows setting the time and date, and displays all the current system version
information.

Assembler Calls the Assembler to translate an Assembler language source program into
object code.

Debugger Runs a program under control of the Debugger.

Memory volume Sets up a memory resident mass storage volume for fast access.

New sysvol Asks for a volume to be designated as the system volume.

Permanent Asks for a code file to be permanently loaded into memory for execution without
disc loading each time.

Stream Asks for a stream file whose characters are interpreted as keyboard input until

User restart
What

there are no more left.
Restarts the last program or subsystem that was run.

Displays the system file table and allows you to change the system files or system
and default volumes.

Main Command Level

Main Command Reference

Each command in this section contains a description and a syntax diagram. The syntax diagrams
contain rounded and rectangular boxes. Elements in rounded boxes should be interpreted as
literals. An example is as follows:

This notation indicates that you must literally type a (_C) as part of the command.

(Returs) or (ENTER)

The (Retun) or (Enter) indicates that you can press either key.

Elements in rectangular boxes are non-literal descriptions of command parameters. An example is
as follows:

file
name

This notation indicates that you must supply the actual file name as part of the command.

An example of a complete command is as follows:

@—{EH-GE=)~

If, for example, this was the Compiler command syntax diagram, it would mean that you must type
(¢) to run the Compiler, then type the name of the file to be compiled, and enter the file name

with either the or the key.

8 Main Command Level

eXecute

The eXecute command runs a specified code file.

file
@’lspecihcation] '((Retum) or (ENTER)) 'I

Item l Description/Default Range Restrictions

file specification literal Any legal file
specification (see the File
System chapter)

Semantics

The file you specify should be previously compiled or assembled and ready to run. It is not
necessary to include the . CODE suffix in the file name; it is automatically appended to the file name
if not included. If the actual file name does not contain a . CODE suffix, you will need to terminate
the file specification with a period to suppress this suffix.

If the specified code file imports other modules, those modules must be contained in the file being
executed, in the current System Library (which must be on-line), or they must be Permanently
loaded (by using the Permanent command at the Main Level). You can use the What command to
see which file is designated as the current System Library, and to change it if desired.

Main Command Level

Initialize

The Initialize operation updates Unit Table entries for all units that are currently on-line. (It does not
initialize mass storage media; that function is performed by using the MEDIAINIT utility program.
See the Pascal User’s Guide for further details.)

Semantics

The Unit Table contains a record for each of 50 possible logical units available to the File System.
The assignment of unit numbers to physical devices (auto-configuration) is performed by the
TABLE program at power-up. Each record contains the “device address vector” of the physical
device which corresponds to that logical unit number. The computer then looks at the physical
location indicated by the device address vector to see if the device is on-line. If it is, that fact is
marked in the record for that unit, along with the volume name (if media is currently installed in the
device). Afterwards, the computer only looks at the Unit Table to see if a particular device is on-line;
it does not check the actual device. (See the Booting Process section of the Special Configurations
chapter for further details of how the TABLE program works.)

When a device is added to your system after the computer has been powered-up, you will usually
need to execute BOOT:TABLE or power-up the system again in order for the device to be
recognized. However, the Initialize command may in some cases be sufficient to get the system to
recognize the new device.

Initialize also performs a device clear for all on-line devices and causes the system to forget the last
loaded file (the User command can’t reload the last program). The Initialize operation also causes
all temporary files to be removed from each volume the next time a file is opened on the volume.

The volumes CONSOLE: (Unit #2) and PRINTER: (Unit #6) are special cases; these volumes are
always assumed to be on-line. Thus, the system may ‘“‘hang’” if either of them is off-line.

9

10 Main Command Level

Memory volume

The Memory volume command creates a mass storage volume in memory.

N A NG i N D = i e D

Item Description/Default Range Restrictions
unit number integer 7 thru 50
volume size integer indicating the number of 512-byte blocks =1
directory size integer indicating the maximum number of files =1
in the volume

Semantics
The Memvol command gives you the capability for very fast mass storage operations.

When the Memvol cornmand is given, you are prompted for a unit number. This number corres-
ponds to an entry in the Unit Table. Don’t give a unit number which is already in use. The Volumes
command in the Filer subsystem shows which unit numbers are currently used. For most applica-
tions 50 is the recommended unit number to use for your first memory volume.

You are then prompted for the number of (512-byte) blocks needed for the memory volume. Try
to estimate conservatively the amount of memory you want reserved for the memory volume
because it cannot be returned for general purpose use without turning off the computer. On the
other hand, if you don't specify enough space, you have to create another larger volume.

Memory volumes are useful for program development where a lot of mass storage I/O (editing and
compiling) is involved. Reserve enough space on the memory volume for both the source file, the
object code file, and 40 extra blocks for the Compiler’s temporary files. A good rule of thumb is:

size_of_volume = size_of_source_file (in 512-byte blocks) * 4 + 40

If you are transferring a source file from disc (as opposed to starting from scratch) you can
determine its size by getting a directory listing of the volume that contains it. However, note that
different directories return the file size in different units.

o LIF directories use 256-byte ‘‘blocks”

e WS1.0 directories use 512-byte ‘‘blocks”

® SRM directories use 1-byte ‘‘blocks”

Note that the default directory access method (DAM) for memory volumes is LIF; this DAM is the
primary DAM specified in the TABLE program. See the Special Configurations chapter for further
details about changing the primary DAM.

Main Command Level

You are then prompted to give the number of directory entries you need for this memory volume.

Number of directory entries 7
Type the number you think you’ll need and press (_Enter).

You can refer to your memory volume by it’s unit number. For example:

#50:

Alternately, you can refer to it by its given volume name, which is initially RAM:. For example:

RAM:
If you plan to use more than one memory volume, use the Filer's Change command to give
each memory volume a unique name.

Here is a method for setting up an extremely fast program development environment.

1. Create a RAM: volume and specily it as the system volume using the Newsysvol com-
mand.

Specify RAM: as the default volume using the Main Command Level’s What command
or the Filer’s Prefix command.

2. Permanently load the Editor and Compiler using the Permanent command.

w

Go into the Editor and write your program.

4. When you're ready to leave the Editor, use the Update option to create a workfile. The
system puts the workfile on the fast RAM system volume.

5. Press(_R).

Your file will automatically be compiled. If it compiles with no errors, it will be run. If it contains
errors, you will have the option of returning to the Editor.

Note

Since memory volumes are volatile, don’t forget to save the files in the
memory volume on a disc before turning off the computer.

11

12 Main Command Level

New sysvol

The New sysvol command specifies a new system volume and updates the operating system file
table accordingly.

CD (e)~

Item | Description/Default | Range Restrictions
unit number | integer | 1 thru 50
Semantics

The system file table is used in locating operating system files. [t contains the volume and file names
of system files (EDITOR, FILER, etc.). When you press a key at the Main Command Level that
invokes one of these subsystems (such as (_E_)), the system attempts to load the corresponding
file indicated in the system file table (here, the EDITOR file).

You can use this command to specify a new system volume. The first step in this operation prompts
you for a unit number. The device corresponding to the specified unit number is considered to be
the new system volume, and serves as a starting point in the search for the system files:
ASSEMBLER, COMPILER, EDITOR, FILER, LIBRARIAN, LIBRARY, and the work file. If any of
these system files are not found, the Unit Table is used in a sequential search for the rest of them. As
each file is found, the name of the volume on which it is found is prepended to the file name (for
instance, SYSVOL:LIBRARY), and the complete file specification is placed in the file table. If any
system file is not found in this search, the operating system assumes that it will find the file on the
flexible disc volume on which it was delivered (for instance, ACCESS:EDITOR).

Use the Main Command Level's What command to see the resultant system file table.

Main Command Level

Permanent
The Permanent command loads a program permanently into memory.
C(E)_’Is pec iffiilcea tion Chetu) or)—"
Item | Description/Default Range Restrictions
file specification literal Any legal file

specification (see the File
System chapter)

Semantics

The Permanent command can be used to load a user program, a system program (Editor, Compiler
etc.), or a module that is needed by a program. This code file is then ready to execute immediately
when the command is given. A “P-loaded” (Permanently loaded) program does not have to be
loaded from disc each time it is run.

After you give the Permanent command, you are prompted for the name of the file which contains
the module or program. You need not include the . CODE suffix; if you don’t include one, the suffix
will be appended to the file name. If the file to be P-loaded does not have a . CODE suffix, end the
file specification with a period to suppress the suffix from being appended to the file name automati-
cally.

Several programs may be P-loaded in memory. The operating system keeps track of which prog-
rams have been P-loaded. When you give a command to run a program, the operating system
checks to see if it has been P-loaded; if so, it is executed immediately. If not, it is loaded from disc
and then executed; after execution, the memory used by the program is reclaimed.

An object module which is imported by a program must be in the object file that contains the

program, in a file previously P-loaded, or contained in the current System Library (which must be
on-line).

A program or module’s global variables are zeroed only when it is loaded, not each time the
program is run. However, note that neither local variables nor dynamic variables are zeroed.

Note

Th volume name is not retained when a file is P-loaded. Attempting to
execute a file of the same name but on a different volume will still result
in the P-loaded file being executed.

For SRM users, do not use a directory path name to execute a P-loaded file.

13

14 Main Command Level

Run

The Run operation causes the workfile or last compiled program to be executed.

|
(@) - >
file (Retum) or (ENTER
specification

Item | Description/Default Range Restrictions

file specification literal Any legal file
specification (see the File
System chapter)

Semantics

When the Run command is given, the operating system checks to see if there is a workfile. If there is
a CODE workfile, it is executed; if not, the most recently compiled or assembled file is executed. If
there is a TEXT workfile but no CODE workfile, the TEXT workfile is first compiled (with the system
compiler) to a CODE file and then the CODE file is executed. If there is no workfile or previously
compiled program, the command operates like the eXecute command and you are prompted for a
file specification.

Main Command Level 15

Stream

The Stream command “‘executes’ a file of ASCII characters as if they were being typed from the
keyboard.

file
(O) pee i s @ o@m)

Item | Description/Default Range Restrictions

file specification literal Any legal file
specification (see the File
System chapter)

Semantics

A command stream or stream file is a file that is interpreted as input to the Main Command Level
and/or its subsystems in place of keyboard input. The Stream operation causes a file to be inter-
preted. Therefore, a stream file is useful for executing a sequence of commonly used commands
without requiring any operator intervention.

A stream file is created with the Editor and may be of type “. TEXT"”, “.ASC” or Data. If you do not
specify a suffix, a “ TEXT” is automatically appended to the file name; if the name of the file to be
streamed does not have a suffix, add a trailing period to the file name to suppress the suffix.

In order to generate a valid sequence of keystrokes, you should first run through the desired
sequence while noting the keystrokes entered. Note particularly the occurences or absences of the
(Return) or (Enter) key. Then enter the same keystrokes in your stream file. If, during an Editor or
Filer command sequence, you encounter an unpredictable question that has a (Y/N) or (R/O/N)
question associated with it, do not answer the question in the stream file. These kinds of questions
are answered automatically as the file is streamed. (Y/N) questions (Yes/No) are answered “Y”.
(R/O/N) questions (Remove/Overwrite/Neither) are automatically answered “R”.

After all the characters in a stream file have been interpreted, control is returned to the keyboard.

Comments

Stream files may contain comments. A line beginning with an asterisk (#) will be interpreted as a
comment if it occurs at the Main Command Level. (Comments cannot be embedded among
commands for subsystems or user programs.) When the command interpreter encounters one or
more comment lines while streaming, they are displayed briefly on the screen, thus allowing the
process to be monitored.

16 Main Command Level

Immediate Execute Keys
If it is necessary to use keys that also act as immediate-execute commands in the Editor, such as
(Select) ((_EXECUTE)) or (Backspace), use the following key sequences to generate those keystrokes.

Immediate-Execute Key Generate with these Keys

(CctRL)-(setect) (M)

CTRL)-(Select) (_ €)

(ot (saet) ()
CTRL)-(Select) (1)

(LCTRL)-(Select)

Left arrow (CctRL)-(select) (_ H)

Right arrow (cTRL)-(Select)

Up arrow (LcTRL)-(select) (_ 2)
Down arrow CTRL J-(Select) (4)

If you have a 98203 keyboard, substitute (_EXECUTE) or (_EXEC) for (Select) in the preceding table.

Prompts for Keyboard Input

A stream file can be made to display a prompt on the console and then wait for an input string from
the keyboard. The input string is assigned to a variable in the stream file. When the variable is
encountered during streaming, the string is used in its place.

This input prompting must appear in the stream file before all of the commands or comments. Up to
36 prompts are allowed. They are denoted with an ““‘="" as the first character on a line.

To prompt for an input string, place an equal sign, followed by a single alphanumeric character
variable name (uppercase and lowercase letters used for variables are treated as equal), followed by
the prompt text. For example:

=f What is the name of the file to be P-loaded 7

When the file name is typed in response to the prompt, it is stored in the specified variable, in this
case the variable named f.

After the input prompting, begin entering the commands in the stream file. When you want the
input string to be given to the operating system, use the variable preceded by “@”’. For example,
the following characters are a command stream:

PET

The command is the Permanent load command with a file name parameter indicating which file is
to be P-loaded. The file whose name was given in response to the above prompt is then P-loaded.

Main Command Level

Disabling the Prompt Feature
If the stream file name contains a [# 1 specifier, the ability to prompt for keyboard input is disabled.

(Normally when a file is Streamed, the file is copied to the file named STREAM on the current
system volume; during this copy, prompts are displayed and @ variables assigned values input
from the keyboard by the computer operator. After all variables have been assigned, the file is read
as keystrokes; in other words, *STREAM is the file that is actually streamed. The [#1 suppresses
the normal processing of the prompts and input variables, as the keys are read directly from the
specified file.)

Stream Files on Read-Only Devices

It is the disabled-prompt mechanism (see preceding discussion) that allows the use of stream files
stored on read-only mass storage, such as EPROM, and the use of read-only devices as system
volumes. This mechanism is also used to process the AUTOKEYS stream file, if found during the
boot process when the AUTOSTART stream file is not present. For examples of AUTOSTART and
AUTOKEYS stream files, see the discussions in the Pascal User’s Guide and in the Special Con-
figurations chapter of this manual.

17

18 Main Command Level

User restart

The User restart command causes the last program that was run to be rerun.

Semantics
Included in the meaning of “‘program” are user programs and operating system programs such as
Editor, Filer, Compiler, etc.

Global variables are zeroed at the time a program is loaded, not each time a program is rerun.
However, note that neither local variables nor dynamic variables are zeroed.

The Version operation allows you to change the system time and date.

=

Main Command Level

Version

(Betum) or (ENTER)

Y

:-—| hours }

L"sepabatorl—L—I minutes Ir

Y

day T
L‘—‘separ‘ator PL{month }

=

Item Description/Default Range Restrictions
day integer 1 thru 31
month three alpha characters; letter case is ignored Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct,
Nov, Dec
year integer 0 thru 99
hour integer 0 thru 23
minutes integer 0 thru 59
seconds integer 0 thru 59
separator non alphanumeric character ;, -, /, space, etc.
Semantics

In addition to prompting for the system time and date, some operating system information is
displayed. The current operating system revision, available global and user memory space informa-
tion is displayed. Also, default and system volume information is displayed.

19

20 Main Command Level

The Version Prompt

r
New system date 7
Svstem date is 1-Jun-84
ClockK time is 14:14:50
Workstation Rewv, 3.0 15-Apr-84
Available Global Srpace 57960 bvtes
Total Available Memory 191042 bvtes
Svystem wvolume: SYSWOoL :
Default volume: SYSWOL:
Copvright 1984 Hewlett-PacKkard Companv.
All rights are reserved, Copving or other
reproduction of this prodram excerpt for archival
purposes is prohibited without the pPrior
written consent of Hewlett-PacKard Companv.
_

For more details on “‘Global Space”, see the Compiler chapter.

Main Command Level 21

What

The What command displays the *‘system file table”” and allows you to specify new file specifica-

tions for the system files.
I L&
- or

Y

@t

file
specification

TN

volume
specification

I

Item Description/Default Range Restrictions

file specification literal any legal file specification
(see the File System
chapter)

volume specification literal any legal volume
specification (see the File
System chapter)

Semantics

The system file table contains file specifications that are used by the operating system when locating
system files (Assembler, Compiler, Editor, Filer, Librarian, Library, and Default and System
volumes). The What command displays the system file table; a typical example is shown below.

22 Main Command Level

The What Display

()

Assembler Compiler Editor Filer Librarian
liBrary Svystem volume Default volume Quit

ASSEMBLER SYSVOL :ASSEMBLER

COMPILER SYSWOL:COMPILER
EDITOR SYSVOL:EDITOR
FILER SYSUDL:FILER
LIBRARIAN SYSUDOL:LIBRARIAN
LIBRARY SYSUOL:LIBRARY

¥ B8vystem volume: SYSVOL s
Default volumes SYSVOL:

Typing one of the uppercase letters at the top of the menu allows you to change the corresponding
file specification for that system file.

Note
When specifying a system file name that does not have a + CODE suffix,
use a period at the end of the file name to prevent a . CODE suffix from
being appended to the file name.

With this command, it is possible to do such things as specify a file other than LIBRARY as the
System Library or your custom graphics editor as the System Editor. In the case of your custom
editor, you need only press (_E_) to invoke it.

Specifying a logical unit number, such as #3 :, as the Default volume allows any disc media in a unit
with removable media to be the desired volume. To subsequently specify any volume in the default
unit, only the file name need be specified. To accomplish this, make sure that the drive door is
open, type (_ D) for a Default volume change, and then type the following:

#3: (Enter)

Chapter

3

The File System

Introduction

This chapter introduces you to the Workstation Pascal File System. The File System organizes and
accesses information which is stored on mass storage devices. Even if you are an experienced
programmer, you should read this material because it will help you understand the features of your
Pascal workstation.

Primary vs. Secondary Storage

Your computer has built into it a substantial amount of very high speed memory called Random
Access Memory, or RAM. This memory is called primary storage to distinguish it from external
mass storage, also called secondary storage. Normally, data processed by the computer must first
be placed in internal memory. (The term “‘data’ is used broadly to mean any information proces-
sed by the computer, so programs are data, too.)

RAM has three important characteristics:
e RAM is very fast: Some data items can be stored or retrieved from RAM in less than a millionth
of a second.
® RAM is volatile: Data in RAM is lost when the computer is powered off.

e [t is expensive compared to alternative, slower forms of data storage, such as discs or magnetic
tape.

Information not immediately needed by the computer is kept in secondary storage. Some impor-
tant characteristics of magnetic discs are listed below:

e Data access is slow compared to RAM, often as much as ten thousand times slower.

® The data is relatively permanent; that is, it is available until erased.

® Magnetic storage is inexpensive compared to RAM.

® Magnetic media are often removable and replaceable, providing an almost unlimited amount
of long-term storage.

23

24 The File System

Pascal Volumes

Let’s take an exploratory trip, using the computer itself to investigate the file system. You
should already know how to load the Pascal Language system, and be aware of its various
subsystems, such as the Editor and Filer.

To begin our journey, begin at the Main Command and load the Filer subsystem by pressing:

CE)

The Filer is located on the Pascal disc labelled ACCESS:. When the Filer’s prompt line appears,
execute the Volumes command by pressing:

The various disc drives connected to your computer will be accessed and then you will see a
display similar to the following:

Yolumes on-line:

1 CONSOLE: This is your workstation’s CRT display.
2 SYSTERM: This is your workstation’s keyboard.
3 « BOOT: BOOT: disc is in right-hand drive (of 9836).
4 # WRKING: Initialized disc with volume name WRKING:
B PRINTER: Printer is connected to built-in HP-IB.
11 * SYSVOL: The * indicates the system volume.
12 & MYyOL: (Volumes 11 through 14 are examples of a
13 # MASTER: possible HP 9133A disc drive configuration.)
14 # Ui4:
S0 = RAM: Ram volume made with Memory Volume command.

Prefix is - MYYOL: MYVOL: is current prefix volume.

Precisely what will be displayed depends on what peripherals are connected to your computer
and what discs are currently installed in the disc peripherals. Note how your display appears.
You may want to change some of the discs in your systems disc drives or turn off a peripheral
and see how that changes the display.

Volumes

The word “‘volume’” was chosen by analogy to a book. Volume denotes a logical entity in which
a substantial amount of information can be stored. For instance, a flexible disc is a volume.
Volumes have names by which we may refer to them. The display above shows what volumes
are currently accessible to the file system on my system.

Notice that each volume name is followed by a colon. This convention is used throughout the
Pascal system. The colon is a delimiter or punctuation mark which separates the volume name
from further information used to designate data within the volume.

A single large disc may contain more than one volume, as a shelf can hold more than one book.
Flexible discs contain a single volume. For flexible discs we may use the volume name as the
disc drive’s name. By that [mean, if we refer to the volume BOOT: by name, the computer will
find it in whichever drive it is located.

The File System 25

Note

Because the file system works with named volumes, it is very impor-
tant not to have more than one volume of a given name on-line at
one time. The file system may destroy data by using one volume
when you meant the other.

You can see that some of the volume names don’t correspond to any disc device at all. Actually
the file system has a name for each input/output device. SYSTERM: is the name of the

keyboard volume, CONSOLE: is the name of the CRT, and PRINTER: is the name of the
system hard copy device. We will have more to say about these non-disc volumes later.

Logical Units

The numbers in the column to the left of the Volume names displayed above are called “‘logical
unit numbers” or simply ‘‘units”’. The volume name denotes a particular disc, while the unit
number denotes a particular location for a volume. In the case of flexible discs, the unit number
corresponds to a physical disc drive. In the case of a large fixed disc which is divided into several
logical volumes, each logical unit represents a portion of the disc surface which is treated as if it
were a separate physical disc drive.

To refer to a unit instead of a volume, use a # followed by the unit number. For instance #3:
and BOOT : both refer to the same volume as long as BOOT: is installed in the right-hand disc
drive of a Model 226 or Model 236 computer.

Drive Numbers vs. Unit Numbers

Since a single machine can contain two or more drives, you need to be able to distinguish
between them. If you read the machine’s manual, you will find that the drives are differentiated
by drive number. For instance, the right-hand floppy drive in a 9836 is drive number 0, while
the left-hand drive is drive number 1. The File System distinguishes between them by assigning
each a unique logical unit number. In the case of the 9836, these drives are normally assigned
unit numbers 3 and 4, respectively. With external dual floppy drives, drive 0 is usually the
left-hand drive, while drive 1 is the right-hand drive. And with hard disc drives, there can be
several drive numbers. Don’t be alarmed, however, because the system takes care of the
correspondence between drive numbers and unit numbers for you. In addition, this manual
refers almost solely to logical unit numbers, not drive numbers. Drive numbers were mentioned
so that you would realize that they are not the same as unit numbers.

Blocked and Unblocked Units

Some of the units are displayed with # or # between the unit number and the volume name.
These are blocked units. Blocked units are memory devices that are divided into sectors
(blocks) and have directories describing their contents.

We aren’t yet ready to talk about the data stored in a volume, but you probably won’t be
surprised to learn that it is organized into groups called “‘files”’, which are like chapters in a
book. The directory of a blocked volume is essentially a table of contents.

The other units are unblocked or ‘“‘byte stream’ devices (such as the printer, keyboard, and
CRT). Unblocked devices process information one character at a time and do not have direc-
tories.

26 The File System

The System Volume and Default Volume

Although your workstation can deal with many volumes (up to 50 on-line at once), there are
two volumes which are referred to so frequently that special abbreviations have been provided
to name them. They are the system volume and the default volume.

The System Volume

The system volume is used by the Operating System to store its own private files and records.
Since the Operating System is always overseeing your computer’s operation, the system
volume needs to be accessible practically all of the time. The abbreviated name for the system
volume is * (asterisk), which appears next to the system volume in the Volumes command’s
display. The asterisk need not be followed by a colon, since it is distinctive. Thus for the Volume
display shown previously, these notations all denote the system volume:

*

* 1
SYSVOL:
#11:

Here are some of the ways the operating system uses the system volume:

® When the Operating System is loaded and begins to function, it looks on the system
volume for subsystem programs such as the Editor, Filer and Compiler. If these subsystem
programs are on other volumes, the Operating System will still find them.

e When the Operating System first begins to function, it looks on the system volume to find
the system date. The system date is put on all files as they are created to help in maintain-
ing file organization. If you change the system date, the new date gets written on the
system volume.

e During processing of a stream file, data may be temporarily stored on the system volume.
A stream file is a pre-recorded sequence of keystrokes which are treated as if they came
directly from the keyboard.

e If you create an anonymous file (see the Programming With Files section), it will be stored
on the system volume. An anonymous file is a file created by a program, used by the
program, and then destroyed when the program ends. While the program is in existence,
the anonymous file is for all purposes a real file.

e If you use a work file during development of a program, it will be stored on the system
volume.

e If you use an AUTOSTART or AUTOKEYS file, it must be stored on the system volume.

The Default (Prefix) Volume

The other special volume is the default volume. This volume is sometime called the prefix
volume. In many applications it is most convenient to have the frequently needed files together
in a single volume. If these files are being accessed frequently, it is tedious to constantly type the
volume name or unit number. You can instead tell the system that when no volume name is
specified, the one to use is the default volume. You specify the default volume by using the
Filer's Prefix command.

The File System 27

The preceding Volumes display indicates ‘‘Prefix is - MYVOL.:”’. This means that MYVOL. is the
default volume. The default volume can be specified in two ways. If a colon separator appears
with no volume name before it, the default volume is assumed. If a file name is given with no
volume name before it, the default volume is assumed.

Use the Filer’s Prefix command to set the default volume name:

)

Prefix to what directory?
sYsvoL : (Retun) or (ENTER)
Prefix is SYSUOL:

The default volume and the system volume can be the same volume. In fact, except for single
drive configurations, the default condition you received from the factory has SYSVOL.: as both
the default and system volume.

If a unit specified by unit number (e.g. #3:) in a Prefix command does not contain a disc when
the Prefix command is executed, that unit becomes the default volume. That means that the
current disc in that drive, no matter which disc is the current disc, is the default disc as long as it
is in the drive.

You can also set the default volume name using the What command of the Main Command Level.
The What command is more powerful than the Prefix command because What allows you to
specify a new system volume, as well as the name and location of each of the system files (Filer,
Editor, Library, etc). For further information on the What command, see the “Main Command
Level” chapter of this manual.

Files

Information within a blocked volume is further organized into files. A file is a collection of
related information, having a name by which it is identified during the file operations. Since a
volume usually contains many files, within the volume there is also a directory, or “‘table of
contents,” telling the name of each file, how big it is, what sectors it occupies on the disc, and
(roughly) what sort of data it contains.

Files are created by computer programs — either system programs (such as the Editor, Filer and
Compiler,) or user application programs.

For example, when you save a Pascal program written with the Editor, the program is saved
with the specified file name in either the current default volume or the specified volume. When
that same program is compiled, the object code is stored in another file. When the object code
program is executed, it may create more files.

You can use the Filer to list the files in a volume. For instance, to see what is in the default
volume of our example system, type:

to invoke the Filer’s List directory command. The Filer responds with:

List what directorv?

28 The File System

When a volume is not specified, the default volume is assumed. To specify the default direc-
tory, type in:

(_:) (Return) or (ENTER)

Assuming the configuration shown on previous page, you could have done the same job by
typing:
5YSVOL : (Return) or (ENTER)

The listing of the default volume’s directory is shown below.

(" h

SYSWOL ¢ Directory tvyrpe= LIF level 1
created 9-Aud-82 21.,13,37 block size=256
changed 9-Aug-82 21,13.37 Storade order

vesfile namess o # bhlKs # bvytes last chnd
TAPEBKUP.CODE 54 13824 2Z8-0ct-82
FILEINTRO.TEXT 64 16384 28-0ct-82
FILEINTRO.ASC 73 18688 28-0ct-82
DATAFILE 10 2560 28-0ct-82

FILES shown=4 allocated=4 unallocated=7G6
BLOCKS (256 bvtes) used=201 unused=4499 lardest space=4493

File Naming Conventions

The definition of HP Pascal tries to minimize the work of moving Pascal programs from one
operating system to another by requiring the use of string values to specify the names of files
and certain other information such as passwords and access rights.

In Pascal 2.0 and later versions, the allowable syntax of a file name depends on the type of
directory in which the file resides. The underlying file support is structured to allow programs to
work properly regardless of the directory organization(s) being used, but the syntax of file
names is defined by the type of directory on the volume.

File Specifications and File Names

There is a difference between a file specification and a file name. A file name is a character
string which is the external identifier by which a file is designated in a disc directory. A file
specification is a character string which consists of the file name and several other optional
items: volume_id, directory_path, passwords, and size_specifier. Not all of these items are
allowed by every Directory Access Method or under all circumstances; for instance, directory
paths and passwords are only used with the Shared Resource Management System’s hier-
archical directory organization.

The File System 29

Syntax of a File Specification
The syntax of a legal file specification is given by the following diagram:

file_specification :: = [volume_id] [directory_path] file_name [*‘[“‘size_spec’’]"’]

volume_id

1l

In this notation, items between square brackets [and] are optional; quoted items appear
literally. The definition just given means that a file_spec (file specification) may appear in one of
two forms. The first form consists of an optional volume_id followed by a colon, then an
optional directory_path, then a file_name which is not optional, then an optional size_spec. The
second form consists just of a volume_id.

Examples of the first form are as follows:

File.x

A49ZBL10C1]
#d:LLIBRARY .,
BOOT:SYSTEM_P
#45:SYSTEM21 /FILER
*EDITOR.,

Examples of the second form are as follows:

BOOT:
#3:
*

#45:GYSTEM21/T00LS
#45:

Syntax of a Volume Identifier

The volume_id selects one of up to 50 logical units known to the file system. If no volume_id is
present, the volume used is the ‘‘default volume’” selected by the Filer's Prefix command.
Otherwise, the volume is specified in one of two ways:

0

volume_id :: = “#" integer [password] ‘*:

(I8 2!

::= name [password] ‘“:

In the first case, the integer is a two-digit number from one to fifty; for example, #23: is a
volume_id. In the second case, the name is a sequence of characters. The length of the name
and allowable characters depend on the particular directory organization used by the logical
unit. For mass storage devices, the volume name is actually stored on the disc itself so it can be
identified whenever it is inserted into a drive. For devices which have no directory, such as
printers, the volume name is an arbitrary one supplied by the TABLE configuration program at
boot-up time.

30 The File System

Example volume_ids of the second form are MYSYS: and PRINTER: Volume_ids may be 6
characters long in LIF directories, 7 characters long in Workstation 1.0 (UCSD-compatible)
directories, and 16 characters long in SRM directories. LIF and SRM allow lowercase letters,
while WS1.0 and unblocked devices ignore letter case. WS1.0 converts all characters to upper-
case automatically.

In the case of a logical unit connected to a Shared Resource Management System, the
volume_id takes a special meaning. The notation #5: refers to the current working directory of
unit number five; the notation #5:/ refers to the root directory of the SRM with which unit
number five is associated. The current working directory for any SRM volume is selected by the
Filer’s Prefix or Unit commands, or the What command of the Main Command level.

On the other hand, if the logical unit does not have a hierarchical directory, then the two
volume_id notations (e.g., #11: and SYSVOL:) have the same meaning. This is the case for all
local mass storage devices.

Syntax of a Directory Path (SRM)
Directory paths are only allowed when specifying files on SRM logical units. The syntax for a
directory_path is:

directory_path :: = [““/”’] { directory_name [password] /"’ }
password :: = ‘<’ word ‘“>"

file_name

[X3R2)

I

directory_name ::

(X

The use of curly braces “{"” and “‘}’ indicates that the information between them may occur
zero or more times. As you can see, there are two special directory names allowed with the
SRM. The name ‘.’ (a single period) refers to the current directory somewhere along a path to
a file of an SRM logical unit. The name ““..”" refers to the parent of the current directory. Other
file names occuring in a directory path are directories along the path to the one which contains

the file being specified.

Passwords are sequences of up to 16 characters, which govern the access rights to a file or
directory. They are given to a file either at creation time or by use of the Filer's Access
command.

Note that a directory path doesn’t appear by itself; it appears as part of a file specification, with
the file name after the directory path. Examples of directory paths are:

/. <PASS1>/ Denotes root, using password ‘“‘PASS1”.

/USERS/ROGER/ Denotes directory ROGER in USERS, which is in root directory.
HERE/THERE/ Denotes directory THERE, found in HERE.
../THERE<PASS2>/ Directory THERE, found in the parent of the current working

directory.

The File System

A directory path together with a volume_id might appear as follows:
#5:/WORKSTATIONS/SYSTEM13/

Occasionally there is need for a volume password, which is a case not covered by the above
syntax. You may use either of the following forms:

#5<volpassword>:/dirnamel/dirname2/filename
#5: <volpassword>/dirnamel/dirnameZ/filename

That is, the volume password may either immediately precede or follow the colon separator.

Syntax of File Names
To the Pascal Workstation System, a file name is just a sequence of characters. The Directory
Access Methods allow all printable characters. However, the following characters have signifi-
cance either in Filer commands or in the overall specification of files under various Directory
Access Methods (such as directory paths in hierarchical directories), and therefore should be
avoided in file names:

® sharp ‘#’

® asterisk ‘¥’

® comma

® colon *’

® equals ‘=’

® question mark ‘?’

o left bracket ‘[’

® right bracket ‘]’

e dollar sign ‘$’

® less than ‘<’

® greater than ‘>’

Control characters (ASCII ordinal value less than 32) and blanks are removed by the File
System before the name is ever presented to any Directory Access Method.

File Types Derived from File Names

The type of a file is determined when it is created, and is derived from a suffix (the last
characters of the file name). Once the file type is determined, a type code is recorded in the
directory, and changing the file name won’t change its type.

Suffix File type

.ASC LIF ASCII text file

.TEXT WS 1.0 / UCSD compatible text file
.CODE Pascal 2.0 object code

.BAD File covering bad area of disc
SYSTM Boot image file

No Suffix “Data” file

31

32 The File System

File Names (LIF)

The LIF Directory Access Method (DAM) generally allows any ASCII character to be used in a
file name. This is contrary to the HP LIF Standard, which states that file names must be
composed only of upper-case letters, digits, and the underscore ‘_’ character. Note that upper
and lower case letters are distinct. File names stored in LIF directories are always exactly 10
characters.

The LIF DAM recognizes only upper case suffixes.

The 10-character file name length would be a very severe restriction when four or five charac-
ters are required for a suffix. To ease this problem, the LIF DAM performs a transformation on
the file name which compresses the suffix if one is present. The transformation occurs automati-
cally when a LIF directory entry is made, and it is reversed automatically before the file name is
ever presented to any program or to the user.

This process is usually completely transparent to the Pascal user, although its effects may be
seen when a LIF directory is examined from the BASIC language system. It sounds complicated
and dangerous, but in practice it is very smooth. Most people would never notice it if they
weren’t told.

Here is how the LIF DAM changes a name before putting it into the directory.
1. Look for a standard suffix (for example, . ASC”’).

a. If a suffix is found, the suffix characters are removed from the name, leaving a trailing
period. If this name is longer than 10 characters, including the period, then an error
is reported.

b. If no suffix is found, and the file name contains less than 10 characters, the file is
assumed to be a Data file and the name is put into the directory unchanged. If no
suffix is found, but the file name is exactly 10 characters in length and the last
characteris an A, B, C, S, or T, then an error is reported.

2. If the file is not a Data file and no error has been reported, the dot is replaced by the first
letter of the suffix; for instance, the .ASC sulffix is replaced by A. If the name is now less
than 10 characters long, it is extended to a length of 10 characters by appending under-
score characters (_) to the name.

Using this algorithm, we would have the following examples:

File name Translated name

‘A.ASC’ ‘AA_ _ ______ ’

‘charlie’ ‘charlie’
‘123456789.TEXT’ ‘123456789T’

‘GollyGeeeT’ rejected because it would be

confused with transformation of
‘GollyGeee. TEXT’

The File System 33

The reverse transformation is fairly obvious:

1. If the 10th character is a blank, do nothing; otherwise,
2. Remove all trailing underscores.

3. Compare the last non-underscore to the first letter of each valid suffix. If a match is
found, remove that letter from the file name and append a dot ‘.’ followed by the full
suffix.

4. 1f no suffix match is found, use the original file name.

File Names (Workstation 1.0 Directory)

The Workstation 1.0 (UCSD compatible) DAM allows file names of up to 15 characters includ-
ing the suffix. Any lower-case letters are transformed to upper-case, so that ‘a.text’” and
‘A. TEXT denote the same file.

File Names (SRM System)

The SRM itself allows almost any file name. The Pascal system removes blanks and control
characters from file names.

However, the Pascal SRM Directory Access Method takes the ‘<’ character to denote the
beginning of a password. All characters up to the next *“>"" character are part of the password,
so that << <<<<<<> is a (poorly chosen) password. Passwords may be up to 16 characters
long.

File Size Specification
The last, optional part of a file specification is the file size specifier. If present, its syntax is

size_spec :: = ‘[integer “]”’

= 1

This specification only takes effect if a new file is being created with REWRITE, OPEN,APPEND
or APPEND with OPEN . If the file already exists, the file system tries to make it at least the size
specified. The size is ignored for RESET.

In the first form, the integer gives the number of 512-byte blocks to be allocated to the file. For
instance [100] would cause allocation of 51 200 bytes.

The second form [*] specifies that the file is to be allocated either (half of the largest free space)
or (the second largest free space), whichever is larger.

If no size specifier is present when space for a new file is being allocated, the largest free area is
assigned to the file.

For files stored in the SRM, the first extent allocated to the file will be contiguous and of the size
specified if possible.

34 The File System

Several Directory Organizations Allowed

HP LIF (Logical Interchange Format) is the default directory format used by your Pascal
Language System. There are many (mutually incompatible) ways to organize files and director-
ies on a disc. LIF is an HP standard disc organization used to transport files between computers
made by Hewlett Packard Company. The HP Series 200 BASIC Language System also sup-
ports the LIF directory structure on your Series 200 computers.

In addition, your Pascal workstation understands two other disc directory organizations. The
WS1.0 format was the primary disc directory format used by the Pascal 1.0 Language System.
You Pascal workstation also supports the hierarchical directory structure used by the Shared
Resource Management System. The SRM and hierarchical directories are discussed as a sepa-
rate topic later in this section. The WS1.0 format is compatible with the widely used UCSD*
Pascal system.

File Name Suffixes and File Types

Here are four examples of legal file names:

FILEINTRO.ASC
FILEINTRO.TEX
TAPEBKUP.CODE
DATAFILE

The first three file names have a suffix. This suffix is part of the file name, so FILEINTRD.ASC and
FILEINTRO.TEXT are different files. The suffix was appended to specify the file type when the file was
created. The file type is stored in the directory along with the file name. Thus, the file type would
not be changed if you later changed the file name by removing or modifying the suffix. You can see
the file type of each file by listing the directory using the Filer's Extended Directory List command.

The suffixes recognized by the Pascal 2.0 File System (and later versions) are shown below:

+ASC These files are HP Logical Interchange Format (LIF) ASCII files. It is intended to
be the method for interchanging data files among various HP computers. In-
formation stored in a . ASC file is stored as individual logical records. Each record
has a two-byte length header and contains an even number of bytes. (A pad
character is added, if necessary, to make an even number of bytes.)

JTEXT Text files are the default type of file produced by the Editor. They follow the
WS1.0 (UCSD-compatible) format. .TEXT files consist of a 1024-byte header
containing Editor environment information, followed by compacted text in 1024-
byte pages. Each line of information with more than one leading blank begins
with a Data Link Escape control character (DLE, ASCII code 16). This character
is followed by a one-byte “indentation” code; its binary value is calculated by
adding 32 to the number of initial blank characters in the line. (Lines with zero or
one leading blank merely put the actual line there; there is no DLE/leading
blanks compression.) Each line is then terminated by a Carriage-Return control
character (ASCII code 13). If a line will not fit at the end of a 1024-byte page,
then the whole line is moved to the beginning of the next page, and the remain-
der of the previous page is padded with ASCII nulls (chr(0)).

The File System 35

,CODE A .cooE file is the object code produced by the Compiler, Assembler, or Libra-
rian. This file is also called a library.

+SYSTM A .sYsTM file is a special file recognized by the Boot ROM as a file containing an
operating system (a ‘‘system Boot file”’).

+BAD A .8aD file is used as a permanently cover failed disc sectors. Use the Filer's Make
command to make a file of type .BAD over the defective sector of the disc media.
This type of file should only be used as an emergency measure, until the defec-
tive disc can be replaced.

(no suffix) A file whose name at the time of creation does not end in one of these suffixes is
said to be of type Data.

The Pascal operating system utility programs (e.g., Editor, Filer), in many circumstances, automati-
cally append the appropriate default suffix to a file’s name. (Note that the only time the Filer
appends a suffix is in the Get and Save commands.) For instance, when loading a file into the Editor,
just type the file name without a suffix. The Editor assumes that in normal circumstances you will
want to edit a . TEXT file and will automatically add the suffix. Of course, if you wish or need to
specify a suffix, you may. For instance, if you want the Editor to load another type of file, then the
correct suffix must be specified. If the file has no suffix, place a period at the end of the file name.
The period stops the Editor from adding the . TEXT suffix. If you try to specify a file type that the
subsystem can’t work with, such as a . CODE file in the Editor, you may get various kinds of probably
undesirable results. In this example, depending on how you access the file and the mass storage
device used, you could get an error message reading ‘“‘Illesal I/0 request’’, a
“No workfile found’ message, or myriad empty lines.

Automatic suffixing is very convenient. For instance, you might write a program with the Editor and
call the output file WORK. The Editor automatically appends . TEXT. When you use the Compiler to
compile WORK, the compiler automatically appends . TEXT to the source file name, and .CODE to the
output file name. Although there are two files, you only need to remember one name. To execute
WORK . CODE, you need only type the following (from the Main Command Level):

WORK
or

(_EXECUTE) WorK (ENTER)

Suppressing the Suffix

On the other hand, you may wish a file name which has no suffix. You can suppress the automatic
appending of a suffix by typing a period as the last character in the file name. For instance, to create
a file of type Dat a with the name AFILE, just tell the Editor to save your file as “AFILE.”. The period
suppresses the default . TEXT suffix and implicitly directs the Editor to create a file of type Data.
Likewise, the Librarian and Compiler will automatically append . TEXT or . CODE to file names unless
you tell them not to with the period.

36 The File System

System programs like the Editor don’t have the .CODE suffix attached to their file names. This
protects them against accidental destruction by a wildcard purge operation on all . coDE files. If you
wish to permanently load a system program (which have no suffix) into memory with the Perma-
nent command, then you must append a dot to the file name. For example, to load the Editor, type:

(P)epIiTor,
or
(P) ep1ToR,

Without the period, the system would try to load EDITOR.CODE, which is not what you want.

Translating Files from One Type to Another

Sometimes you may want to translate the contents of a file from one file type to another. For
instance, you may have a file of type .TEXT, created by the Editor, and wish to read it with the

BASIC system. BASIC understands the LIF ASCII (.ASC) format, but not the .TEXT format. You
can use the Filer's Translate command in this situation. A typical dialogue would be:

Translate what file?
EXAMPLE.TEXT (Return) or (ENTER)
Translate to what?
EXAMPLE . ASC (Retun) or (ENTER)

For Translate to make sense, the source file must contain data that is textual in nature; attemp-
ting to translate a .CODE file, for example, would not make sense.

Translating Text Files to the Printer

Another situation where translation is required is to move a file from a disc volume to the
printer. The file may be a .TEXT, .ASC or DATA file . The way such files are stored on the disc
is not compatible with unblocked devices (such as the printer), so you must use the Translate
command. Just type in:

Translate what file?
WORK « TEXT (Return) or (ENTER)
Translate to what?
PRINTER: (Retum) or (ENTER)

This example illustrates several points. First, in the Filer environment you must always specify
the complete file name including the suffix. Second, to send a file to a device like the printer
which has no directory, there is no point in specifying a file name. Just use the volume name.
Had you specified a file name after PRINTER: the Filer would have given you an error message.

The File System

Wildcards

In the Filer environment you can specify a particular file or set of files by giving a pattern which
identifies the files you want. These patterns include special characters called wildcards.

For example, we can use the wildcard = (equal sign) to list a subset of the file using the Filers
List Directory command. From the Filer subsystem, press:

The computer responds with:

List what directory?

Respond with:
FILE= (Return) or (ENTER)

FILE= uses the equal sign wild card to specify all files whose names begin with FILE and end
with any sequence of characters. Using our example system, this command sequence would
produce:

réYSUDL: Directory tvepe= LIF level 1
created 8-Aug-82 21.,13.37 block size=256
chanded 9-Aug-82 21,13.37 Storade order

sesfile namessos # blKks # bytes last chng
FILEINTRO.TEXT 64 16384 2Z8-0ct-82
FILEINTRO.ASC 73 18688 28-0ct-82

FILES shown=2 allocated=4 unallocated=706
BLOCKS (256 bytes) used=201 unused=4499 largest space=44893

Notice what happened here. The Filer recognized that the response to the prompt, ‘‘List what
directory?”’, specified not just a volume name but a set of files within that volume.

37

38 The File System

More than one wild card may appear in a single file specification given to the Filer, allowing you
to easily describe some rather complex operations. For instance, you can copy all the files on
unit #13 whose names contain the characters INT to the system volume by means of this
command sequence:

CF)

Filecory what file?
#13:=INT= (Return) or (ENTER)
Filecory to what?

*$ (Return) or (ENTER)

This example uses the destination wildcard ‘‘$”’, which means ‘‘use the same name as the
source file had”. The command locates each file on unit #13 whose name matches the pattern,
and writes a new copy with the same file name on the system volume. Remember that * is
shorthand for the name of the system volume.

You can use ‘“?”” as a wild card instead of ““‘="". Question mark works like equals, except that
for each file whose name matches the specification, the Filer will ask if you want to perform the
operation. For example, to have the Filer change each file name on the default volume begin-
ning with FILE into a file name beginning with WORK,; type in:

Cc))

Chande what file?
FILE? (Return) or (ENTER)
Chande to what?

WORK = (Return) or (ENTER)

This would for example turn FILE_ONE.TEXT into WORK_ONE.TEXT. Each time the speci-
fication is met, the Filer will present what it has found and ask if the process should be
completed for the entry. Answer with Y for yes or N for no each time you’re asked.

The File System 39

File Names to Avoid

The file system won’t prevent you from creating file names containing wildcard characters, but
you’ll be sorry if you do. The Filer will think such file names are wildcard specifications instead
of simple file names. For instance if you created a file called =.TEXT, then used the Filer
sequence:

CR)

Remove what file?
=, TEXT (Return) or (ENTER)

the Filer would remove every file whose name ends in . TEXT in the default volume!

Should you ever accidentally create a file with a wildcard in its name in volume VOLNAM, you
can get rid of it this way:

CRr)

Remove what file?
YOLNAM: 7 (Return) or (ENTER)

This will cause the Filer to offer to remove each file in the directory VOLNAM:. You can then
remove the problem file, and retain the other files.

Allowable File Names

What file names are allowable depends on the type of directory used on the volume in which
the file resides. In other words, the directory organization makes the file name rules. The exact
rules for file names are given in the section Programming with files in this chapter. Here is a
summary of the rules.

It is wise to choose names consisting of alphabetic letters and digits; if you want a punctuation
mark within a file name, a hyphen, an underscore, or period is acceptable. Blanks are removed
from file names.

In LIF directories and SRM directories, upper and lower case letters are distinct; “CHARLIE” is
not the same file as ‘“‘Charlie”. In WS1.0 directories lower-case letters in a file name will
automatically be converted to upper-case. This exception makes it easier to use wildcards to
move files from one type of directory to another. Only upper case suffixes are allowed in LIF
directories. Lower case suffixes in LIF directories will cause an error.

Don’t use the following characters:

g, =" Filer wildcard characters.

R Used in specifying volumes.

B A Have special meaning with the Shared Resource Manager.
“, 1T Used to specify the size of a file when it is created.

control characters Control characters are automatically removed from file names.

[XEER]

Blanks are removed from file names.

40 The File System

File Name Length

In LIF directories, file names (without suffix) are limited to 9 characters. If the last character in
the file name is not an A, B, C, S, or T, then 10 characters can be used. If a suffix is present, up
to 9 characters may precede the dot and suffix.

In WS1.0 directores, file names may be up to 15 characters including the suffix.
In SRM directories, file names may be up to 16 characters including the suffix.

No Room on Volume

Obviously there is a limited amount of space in a disc volume. When there is no room on a
volume to create a new file, the system will report an /O error.

You may be able to solve this problem by using the Filer’s Krunch command. This command
consolidates all of the volumes free space by moving all of the files on a volume to the front of
the volume

Both the LIF and WS1.0 directory organizations are designed for ‘‘contiguous file space alloca-
tion”’. This means that when space is reserved for a file, the disc sectors set aside have sequen-
tial numbers. For instance a file requiring 3 sectors might get sectors 26, 27 and 28; or 31, 32
and 33. Files would not be allocated sectors 13, 56 and 2, because those sectors are not
logically adjacent. To go back to the analogy with file folders in a drawer, if you had a file too
big for one folder you might put it in two or three folders; but you’d want store them next to
each other, not in random places in the drawer.

When a file is purged, all of its sectors are again available for use by another file. As files are created
and purged, the disc space usage will develop ‘‘holes” of free space between valid files. This is
called “‘fragmentation”. It's possible for a considerable amount of free space to exist in the volume,
yet be unusable because it is in pieces too small to use. Since files tend to be small compared to the
total space on a volume, this problem usually occurs when the volume has relatively little free space
left.

To see how fragmented your volume is, use the Filer’s Extended Directory List command. This
command lists both the files and the empty space on the volume.

The File System 41

The Shared Resource Management System

The concepts presented so far have all been applied to local mass storage devices. The same
concepts extend naturally to deal with shared mass storage.

The Shared Resource Management System (SRM) allows several workstations (computers) to
be connected into a network that allows sharing of files and resources. This network is
controlled by a system controller. Since files can now be shared between several users, a new
directory structure is needed. Setting up the SRM system is not described in this manual; see
the SRM documentation for that information. Configuring your workstation to access an SRM
system is described in the Special Configurations chapter.

Hierarchical directories

The Shared Resource Management System uses a hierarchical directory structure to organize
its files. This directory structure is a multi-way tree data structure. That is, the first, or top
directory in the structure is called the root directory. Subordinate to the root directory are other
directories which, in turn, may have further subordinate directories. Each directory may contain
files or other directories. When a directory contains only files, it is called a leaf directory. All
files can be called leaf files. The drawing below shows a hierarchical directory structure.

SYSTEMS WORKSTATIONS USERS
SYSTEM_P SYSTEM SYSTEM21 SYSTEM45 ROGER BOB FRED
EDITOR WORK WORK WORK
FILER
COMPILER

The directory SYSTEMS is a special directory used by the BOOT ROM, version 3.0 or newer,
to automatically load operating or language systems.

The directory USERS has three subordinate directories: ROGER, BOB, and FRED. Each sub-
ordinate directory has a single file called WORK. Each file and directory is uniquely specified by
the list of directories from the root to the file. That means several files of the same file name can
exist without confusion if they are in different locations in the directory structure.

To save space, the Filer's Duplicate Link command can be used to link a file into a directory
other than its original location. This allows you to have access to a file, such as the Compiler or
Editor, without making an extra, unnecessary copy. See the Filer Chapter of this manual for
more information.

Once a duplicate link has been set up, if the directory is purged, what happens to the link? Only
the purged directory loses access to the file. All other directories with links to the file can still find
it. The disc space allocated to the file is only reclaimed when no directories have links to it.

42 The File System

Notation

Hierarchical directories are a simple concept, but we need some specialized words and notation
to talk about them.

The directory at the top of the hierarchy is called the “‘root” directory. If we want to refer to a
file or directory which is immediately under the root, for instance WORKSTATIONS in the
illustration above, we would write

/WORKSTATIONS

This is read as ‘‘slash WORKSTATIONS" or “stroke WORKSTATIONS’’. The / indicates the
root directory.

To go further down the hierarchy, for instance to SYSTEMS under WORKSTATIONS, write
/WORKSTATIONS/SYSTEM

and for another level yet
/WORKSTATIONS/SYSTEM/COMPILER

As you can see, to specify a file, the list of directories from either the root directory or the
current working directory to the target file must be specified. The list is delimited with a /.

Such a sequence of strokes and filenames is called a directory path, since it indicates the path
one must follow down the hierarchy to get to a particular file.

SRM Units and Volumes

A workstation connected to an SRM normally has units #5: and #45: set up for SRM access.
The use of two units is in keeping with the idea that there are usually two special volumes (the
system volume and the default volume) through which most file accesses occur.

If the workstation is booted from SRM, unit #45: will automatically be configured to be the
system volume and unit number #5: will be available for use as the default volume. If there is
local mass storage, the system volume can be any volume you desire. To set these volumes, use
the What command from the Main Command Prompt.

Here is how the Filer's Volumes display might look right after booting up a workstation con-
nected to the SRM and having no local mass storage:

Volumes on-line:
i CONSQOLE:
SYSTERM:

SRM:
PRINTER:
45 * SYSTEMAS:
Prefix is - S5RM:

L1 SN

o

You can see that the system starts out with #5: as the default volume and #45: as the system
volume.

The File System

Where do the names SRM: and SYSTEM45: come from? They are actually the names of
particular directories in the SRM’s hierarchy. In this example, the name of the SRM volume is
SRM, and the workstation we are using is at node address 45. Since there is a directory
SYSTEM45, it is selected as the system volume. All of this selecting is done by the TABLE
program as it automatically configures the system each time you boot.

If you need to specify the SRM volume’s password, you can do it by using this syntax:

SRM:/.<password>

The SRM volume password is also the SRM root directory’s password. That is, they specify the
same thing.

Moving Up and Down the Hierarchy
It would be tedious to type a directory path every time you wanted to access a file. To avoid

this, you can specify the current working directory using the Filer’s Unit Directory command.
The current working directory can be used as the “‘root” to specify subordinate files.

Cv)

Set unit to what directorvy?
#5: /USERS/ROGER (Return) or (ENTER)

Once you have done this, unit #5: is in effect a volume named ROGER: which contains all the
files under directory ROGER in the hierarchy. It’s as if you had inserted a disc called ROGER: in
a disc drive. If you now command the Filer with:

List what directory?
ROGER : (Return) or (ENTER)

it will list all the files in subdirectory ROGER:. You could also use the sequence:

List what directory?
#5: (Retum) or (ENTER)

since directory ROGER:was installed in #5: by the Filer’s Unit Directory command.

Suppose that under ROGER is another directory named MYSTUFF which contains more files.
To list the files in MYSTUFF, use the sequence

List what directory?
ROGER:MYSTUFF (Return) or (ENTER)

The Filer will realize that MYSTUFF under volume ROGER is itself a directory, and list its
contents. If MYSTUFF were not a directory, it would simply be listed as a file in directory
ROGER.

43

44 The File System

You can move the current working directory still farther down the hierarchy in the obvious way.
For instance to make MYSTUFF the current directory of #5:

)

Set unit to what directory?
#5:MYSTUFF (Retumn) or (ENTER)

There was no need to specify the entire pathname from the root, because MYSTUFF was
already accessible as a file within volume ROGER.

A special notation is provided to move up the hierarchy. Two periods can be used to denote the
“parent”’ directory of a file. For instance, after moving down to MYSTUFF, unit #5: could be
moved back up to the parent directory ROGER by:

Cu)

Set unit to what directory?
#5:,, (Return) or (ENTER)

To go up two levels, use the double-period twice, separated by a slash:

Cv)

Set unit to what directorvy?
#5:,./.. (Return) or (ENTER)

This can be executed all the way up to the root directory. Of course, if you want to get all the
way to the top, it is easier to go there directly, using a stroke as the ‘“‘name’ of the root
directory. For instance, while #5: is assigned to MYSTUFF you could list all the files in the root
directory with the command sequence

List what directorv?
#5: / (Return) or (ENTER)

The File System 45

Default Volume vs. Current Working Directory

The current working directory concept is different from the default volume concept. Specifying
a current working directory is like installing a disc into a drive unit. Specifying a default volume
simply tells the file system what volume name to use when none is specified with a file name.

The two concepts can come together in the Filer's Prefix command. For instance, typing:

)

Prefix to what directorv?
#5: /USERS/BIG_USER (Return) or (ENTER)

has two effects since #5: is an SRM unit. The current working directory of #5: is set to
/USERS/BIG_USER, and the default volume name is set to BIG_USER. If we now type:

(u)

Set unit to what directory?
#5:,, (Return) or (ENTER)

the current working directory of #5: becomes USERS (the parent of BIG_USER). However the
default volume name is still BIG_USER. So the command

List what directorv?
: (Return) or (ENTER)

will fail with the message that BIG_USER is not on-line!

The same sort of mistake is commonly made with the system volume. Suppose the current
working directory of #45: is SYSTEMA45, and the COMPILER, EDITOR and other system files
are under SYSTEMS. If the current working directory of #45: is changed, the Operating
System won’t be able to find the system programs since it thinks of them as
SYSTEM45:COMPILER and so on. If this happens, you need to get into the Filer and restore
the current working directory of #45:. How can you do so if the Filer is no longer on-line? You
will need to execute the Filer by name, specifying a path all the way down from the root to
wherever it is:

(Select) ((_EXECUTE))
Execute what file®?
#45: /WORKSTATIONS/SYSTEM/FILER . (Retun) or (ENTER)

Note the dot after the Filer's name. You don’t want the system to append .CODE in this case.

46 The File System

SRM Concurrent File Access

The SRM system also provides the capability of several users concurrently accessing *‘shared” files.
For further information on this capability, see the ‘‘Programming with Files” chapter of this manual.

SRM Access Rights

You can restrict the use of SRM files with special ‘““access right”” password-protection scheme. For
further information on this capability, see the ‘‘Programming with Files”” chapter of this manual.
Also see the Access command description in the “‘Filer” chapter for more information on assigning
and removing SRM passwords with the Filer.

Chapter

4

The Editor

Introduction

This chapter introduces the features of the Workstation Pascal Editor. The Editor enables you to
create, change, store, and retrieve text files, which may be either programs or other textual docu-
ments. Like other parts of the system, the Editor has visual reminders (prompts) and uses single-
keystroke commands.

The Editor is a cursor-based screen editor. The cursor, normally shown on the screen as a blinking
underline character, shows where subsequent characters will be inserted into the text. You can
rapidly access any part of the text file by moving the cursor to the desired location.

The programs and documents created by the Editor are usually stored as text (. TEXT-suffix) files,
but can also be stored as ASCII (.ASC-suffix) or data (no suffix) files.

This chapter has four main sections:
® The first two sections, ‘‘Entering the Editor” and “A Sample Editor Session,” demonstrate
how to enter and use the Editor by leading you through writing a short Pascal program.
® The next section, “‘A Closer Look,” presents more detailed information about the Editor.

® The last section, “Editor Commands,” contains an overview and summary of all the Editor
commands, as well as a syntactic and semantic description of each command, in alphabetical
order.

Once familiar with the Editor, you can use the overview/summary of the Editor commands for quick
reference.

47

48 The Editor

Entering the Editor

It is assumed that the Pascal System is already ‘‘up and running”.

(Command: Compiler Editor Filer Initialize Librarian Run eXecute Version ?]

This prompt tells you that you are at the system’s Main Command Level — the level from which
all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry to any subsystem is
accomplished by typing the first character of the name of the subsystem you wish to enter.

Note

If you have a system workfile (created in a previous Editor session or
in the Filer subsystem), first go into the Filer and use the Save, New
and Quit commands to store and release the workfile. Then exit the
Filer subsystem.

When the system is delivered to you, the Editor is on the disc labeled “ACCESS:” and is
named:

ACCESS:EDITOR
Now press the (_E) key. You can use uppercase or lowercase: the computer treats both

exactly the same while at the Main Command Level. If the Editor code file is on-line, the screen
clears and displays:

(Loading ‘ACCESS:EDITOR’ 1

If you copy the Editor code file to another disc, which has a different volume name, you should
tell the operating system where to look for the Editor. (See the What command in Chapter 1)

The Editor

Creating a Text File
When you enter the Editor, the following prompt is displayed.

()

Editor [Rev, 3,0 15-Apr-841

Copvyright 1982 Hewlett-Packard CompPanvy.
All rigdhts reserved.

No workfile found,
File? (<ent> for new files <stor> exits)

This tells you that you are entering the Editor without a system workfile and requests a file
name. Respond by pressing the (Return) or (ENTER) key to instruct the Editor to create a new text
file for your use. The file will be named later when leaving the Editor.

The Editor can also be directly entered from the Compiler subsystem. This is covered in the
Compiler chapter.

The Editor Prompt

The screen clears again and displays the Editor prompt on the top line:

(f *Edit: Adist Cey Dlete Find Insrt Jmp Replace Quit Xchng Zar ?‘]

You are now in the Pascal Editor with a new file. The Editor prompt shows the most common
commands used in the Editor. This is called a “‘prompt’” because it prompts you to take some
action, i.e., give the Editor a command.

The first character of the prompt line (or <) indicates the direction of cursor movement (i.e.,
the way the cursor moves when (_TAB), (Retum) or (ENTER) keys, or the space bar is pressed).
When the “>"" character is displayed, the cursor will move “forward” in the text. Similarly,
when the ‘<’ character is displayed, the cursor will move ‘‘backwards’ in text. Pressing
(>, () or (C+) will set forward direction, while (<), (,), or (-) will set
reverse direction.

The character indicates the direction that searches take place in the Find and Replace com-
mands, also the Delete and Page commands.

The prompt line shows a partial list of commands available in the Editor. To see the rest of the
commands, type (_?). The screen shows the Editor’s alternate prompt:

[V *Edit: Mardin Pagde Set environment Verify 7 [3.,01

49

50 The Editor

This alternate prompt also shows the revision number of the Editor enclosed in brackets. Type
again and the main Editor prompt reappears.

All of the commands in the Editor are initiated by typing a single key corresponding to the first
character of the command shown in the Editor prompt. Again it does not matter whether the
character is uppercase or lowercase — the Editor accepts either one. Now that you are in the
Editor and understand something about the Editor prompt, let us begin the sample Editor
session.

A Sample Editor Session

Feel free to skim this section if you are familiar with screen oriented editors. You may even
prefer to try out the Editor commands on your own. If you choose to experiment with the Editor
commands, do not use any files you cannot afford to lose.

If you are still reading, step through the following examples on your machine. Doing the
examples will help you learn faster than just reading about them.

Creating Text

The most direct way to generate text is with the Insert command. Initiate the Insert command by
pressing (1) and the screen responds with the following prompt:

(*Insert: Text «hbsrs <clr lnk [<sel» accertss “sh-sell escapres]]

While in the Insert command, any of the regular character-entry keys (the main keyboard) or
the numeric pad keys (on the right) may be used. With a few exceptions, using the key clusters
on the top of your keyboard or key sequences is not advised. (Most of these keys
generate a question mark (7) while in the Insert command. Others have results which may
surprise you). Use key sequences only if you are working with Stream files. (See Chapter
1 for details on the use of Stream files). The exceptions are the cursor control keys,

("BACK SPACE), (CLR LN), (ANY CHAR) and (which sends a copy of the screen image to
your printer).

Let’s start typing in a Pascal program now. Press (Retum) or (ENTER) and then type the text shown
in the following display. If you make a mistake, use to move the cursor backward
and then type the correction. You can use to delete the most recently inserted line.
Prompts in the Editor always show actual key options in the form of a key abbreviation shown
in (<) and () symbols.

The word “‘binary’’ is misspelled in the display; leave it that way for now.

Notice that when you press (Retum) or (ENTER) after typing the first line, the cursor returns to
column one (the column that the “‘P”’ in PROGRAM is in). To type the second line, use to
indent the comment enclosed in the braces. The next time you press (Return) or (ENTER) the cursor
automatically returns to the indented position created in the previous line. This indenting
feature proves handy when writing Pascal programs as it adds visual clarity to the code.

The Editor

*Insert: Text <bs>s <clr In [{sel> accerpts: <“sh-sel> escares]

PROGRAM Binerv.search(INPUT,OUTPUT)i
{This prodram does a binervy search
on an arrav of characters to find a
"Key" character input by the user.}

The display above shows what your screen should look like after the first few lines are typed. To

move the cursor back to column one for the next line, press and hold (_BACK SPACE). The
keyboard automatically ‘‘repeats’ any key that remains pressed.

*Insert: Text <bs>, <clr 1lnk [<sel» accePtss <{sh-sel> escares]

PROGRAM Binerv_search(INPUT,OUTPUT) i
{This prodram does a binerv search
on an arravy of characters to find a
"Key" character input by the user.}

VAR done : BOOLEANS
Key : CHAR}
alpha : ARRAY [1..28] of CHAR;
loops torPs mids btm = INTEGERS

When your screen looks like the display above, press (Select) ((_EXECUTE)) to complete the
insertion. The screen displays the Editor prompt along with the text you inserted. Next we will
save this program fragment on the disc and then return to create more text.

Storing Your File and Returning to the Editor

This section shows how to save a file on a disc and then return to the Editor. It is a good idea to
do this periodically when writing and editing large text files. Although power outages occur
infrequently, it can be devastating to lose an entire session of work. Occasional updating of your
file secures your work against this possibility.

Press (_Q) to initiate the Quit command. The screen clears and displays:

»Quite
Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return

Before typing anything, find the disc labeled DOC : and insert it in your disc drive in place of the
disc labeled ACCESS:. Now press (_W_) and the screen displays:

*Quits
Name of output file (<ent> to return) --=:

51

52 The Editor

The prompt is requesting a file specification. Respond by typing DOC : BINSEARCH followed by
(Return) or (ENTER). The screen now displays:

*Quits

Writing..

Your file is 275 bytes lond.

Exit from or Return to the editor?

The exact number of bytes may differ with what is indicated in the line above.

Now press (_R). The screen fills with your text and the cursor is positioned where it was when
you initiated the Quit command.

Copying Text from Other Files

The Insert command is the most common way of creating text but other commands are avail-
able. The Copy command allows you to copy specified text from another file.

On the DOC: disc is a text file called BINDOC. TEXT which you are going to copy into your
current text file. Position the cursor by pressing (_J_) and then (_E_) (for Jump to End). This
command sequence moves the cursor to the end of your text file. (More on the Jump command

later). Now press and your screen displays:

fr *Copy: Buffer File <sh-sel: ﬁ‘]

The Buffer option is demonstrated along with the Delete command later in this section. Now
press (_F) (to Copy from a File) and the new prompt appears:

»Copy: FilelmarKersmarkerl 7

The system is requesting a file specification. Type DOC:BINDOC and press (Retum) or (ENTER).
The . TEXT part of the file name does not have to be typed; it is automatically supplied by the
Editor. The volume name , DOC:, had to be specified because otherwise the Editor would look
for the file on ACCESS:, the default volume. See Chapter 2 for further information on the
default volume.

The Editor

The entire file DOC:BINDOC. TEXT has been copied into your current text file in memory.
The copy always occurs at the cursor position. This is why you moved the cursor to the end of
the file before the copy. The screen now appears as follows:

4 N
»Edit: Addst Cepy Dlete Find Insrt Jmp Relace Quit Xchng Zar 7

PROGRAM Binervy_search(INPUT0UTPUT)
{This Prodram does a binerv search
on an array of characters to find a
"Key" character inPut by the user.,?’

VAR done : BOOLEANS
key i CHAR;
alpha : ARRAY [1,.,261 of CHAR}
loors tops mids btm : INTEGER]S

BEGIN {Binerv.search}
done:=FALSEF btm:=0§ top:=263 {initialize}
FOR loop:=1 TO tor DO alrhalloorl:=CHR(loor+B4)3
WRITELN(‘Tvpre uppercase character for a Kev')]
READ(Kev)3 WRITELNS
WHILE NOT done DO
BEGIN {This is the actual binery searchl}
mid:= ROUND((top + btm)/2)3
IF Kev = alphalmidl THEN done:= TRUE
ELSE IF Kevy < alphalmidl THEN torp:=mid
ELSE btm:=mid3
IF top=btm THEN BEGIN

- J

To Copy only part of a file, a beginning and ending marker are specified. These markers must
have been previously set in the text file being copied. (See the Set command in the “‘Editor
Commands’’ section of this chapter for further information on setting markers). Now that you
have your screen full of text, let’s look at the general pattern of leaving an Editor command and
some ways to move the cursor.

Confirming or Aborting Commands

The (Select) ((EXECUTE)) key tells the Editor to accept all of the insertions or changes you have
made in the text file. The cursor remains where it was when you pressed (Select). Conversely,

holding down the key while pressing (shown as (SHIFT)-(Select)) tells the Editor to

ignore all of the changes made since initiating the command and leaves the cursor where it was
when the command was initiated. (The ((ESC) key also performs this function on keyboards so

equipped.) Both key sequences (and (SHIFT) -(Select)) return you to the main Editor prompt.

The changes are stored in the computer’s internal read/write memory but are not made permanent
on a mass storage medium until you exit the Editor and use one of the options that writes the
information to a file.

53

54 The Editor

Not all commands let you abort changes with (SHIFT) -(Select) and not all require for accept-
ance. For instance, the Copy from buffer command is accomplished by simply pressing

. The text is copied and the Editor’s prompt appears with no other action on your part.
The specifics of how each command uses these keys is discussed as each command is pre-

sented.

Moving the Cursor

Now that you have some text on the screen, experiment with positioning the cursor. The arrow

keys, the (Retum) and (ENTER) keys, the key, the space bar, the mouse, and the cursor wheel
(also called the knob) all move the cursor. The wheel normally moves the cursor left or right,

depending on which direction you turn it. If you hold down the key while turning the wheel,
the cursor moves up or down while remaining in the same column position.

An integer in the range 1 to 9999 can be used as a ‘‘repeat factor’’ before all of the cursor
control keys and some of the Editor commands. (Repeat factors must be in the range 1 to 4095
for use with the key). The result will be the same as if you had pressed the key that many
times. For instance, typing the number 42 and then pressing the space bar causes the cursor to
move 42 characters in the current direction.

The Jump Command offers another means of cursor positioning. Press (_J) and the top of
your screen displays:

()
>JUMP: Bedin End MarKer <sh-sel>»

PROGRAM Binerv_search(INPUT,OUTPUT)
{This prodram does a binery search
on an array of characters to find a
"Kev" character inPut by the user.?}

Typing causes the cursor to jump to the beginning of the file, in this case directly above
the (P) in PROGRAM, and the Editor’s main prompt reappears. Now press (_J) then (_E)
and the cursor moves to the end of your text file as shown in this partial display:

IF Key = alrhalmidl THEN done:= TRUE
ELSE IF Kevy < alrphalmid]l THEN top:i=mid
ELSE btm:=mids;

IF top=btm THEN BEGIN

done:=TRUESF mid:= -1}
END3
END §
IF mid>0 THEN
WRITELN(‘Key -'sKevs’- is in position ‘smid:2)
ELSE WRITELN(‘Key - ‘sKevs’ - was not found’)}
END._

W,

You can also Jump to previously set markers (see the Set command in the “‘Editor Commands”’
section) by typing (_J) (_M) followed by a marker name.

The Editor

The beginning and end of a file are simply the first and last characters in the current text file. In
this case, the position directly above the (P) in PROGRAM and the space following the final word
END . are the first and last characters, respectively. The Editor adjusts these internal pointers
automatically as the text file is changed.

The Page command lets you move through a file one screen (23 lines) at a time. It is roughly
equivalent to using a repeat factor of 23 with (_1) or (_!) depending on the direction
shown in the prompt. If the cursor is not at the end of the file, press (J) (CE_). Now type <
to change from the forward to the backward direction and press (_P_) (for Page). The top half
of your screen now looks like:

()

<{Edit: Adist Cepy Dlete Find Insrt Jmp Rplace Quit Xchng Zar ?

PROGRAM Binerv_search(INPUT.0UTPUT)}
{This prodram does a binerv search
on an array of characters to find a
"Kevy" character input by the user.,}

VAR done : BOOLEANS
key : CHAR]
alrha : ARRAY [1..2861 of CHAR]
loorsy torPy mids btm : INTEGER]

BEGIN {Binerv.search?}
done:=FALSES btm:=03i torP:=2B} {initialize}

Notice that the cursor is positioned at the YAR declaration in the program which is 23 lines from
the end of the file. Since the cursor movement direction is still backward, type to change it to
forward. The Page command is especially handy when moving through a large file.

Deleting Text

Now position the cursor under the first bracket on the second line of the program and press
(D). This initiates the Delete command. Moving the cursor removes text from the file. To
restore the text, use any cursor control key which moves the cursor back over the area where
text has been removed. The key and the cursor wheel work well for this.

Upon pressing (_D_), the screen displays:

»Delete: < » <Movind commands> [<{sel> deletes, <sh-sel> aborts]

PROGRAM Binerv_search(INPUT,DUTPUT)
{This prodram does a binerr search
on an array of characters to find a
"Kev" character inPut by the user.?

VAR done : BOOLEAN;3
key : CHAR3
alrha : ARRAY [1..26] of CHAR;
loops toPps mids btm : INTEGER}

55

56 The Editor

First make sure the direction is forward (>) as shown above and then type 4 followed by or
(ENTER). This uses a repeat factor and moves the cursor 4 lines, deleting text as it goes. (The
deleted text is temporarily stored in the copy buffer). Now press (Select) ((_EXECUTE)) and the screen
displays:

4)

*Edit: Addist Cepvy Dlete Find Insrt Jmp Replace Quit Xchng Zaep 7

PROGRAM Binerv_search(INPUT,,QUTPUT)
VAR done : BOOLEAN}
kevy 1 CHARS
alpha : ARRAY [1..261 of CHAR]
loops torp,y mids btm : INTEGER]}

Before typing any other keys or moving the cursor, press (_ €) then (_B_). This takes the
information stored in the copy buffer and copies it into the text file beginning at the current
position of the cursor. Since the Delete command just filled the buffer with the text that was
removed, the Copy from Buffer command simply returns the screen to its state before the
Delete command was entered.

The top of the screen should now display:

()

*»Edit: Addst Cepy Dlete Find Insrt Jmp Rplace Quit Xchng Zar 7

PROGRAM Binerv_search(INPUT DUTPUT)
{This Pprodram does a binery search
on an array of characters to find a
"Kevy" character input by the user,}

VAR done : BOOLEAN;
Key : CHAR]
alrha : ARRAY [1.,.2B1 of CHAR]
loory topsy mids btm : INTEGERS

Recovering Deleted Text

As the example shows, even if you complete the Delete command using (Select) ((_EXECUTE))
instead of -(Select), you can still change your mind and recover that text using the Copy (from
buffer) command. Take care not to wait too long or depend on this too heavily as there are other
commands which alter the contents of the buffer. None of the cursor movements alter the buffer in
any way.

Moving and Duplicating Text

The sequence of the Delete and Copy (from buffer) commands provide a convenient way of
moving text to different parts of the file. For instance, in the operation just completed above,
any of the cursor control keys could have been used to reposition the cursor after the deletion
occurred and before the Copy from the buffer was executed.

The buffer is “‘filled” with the text affected by the Delete command and by the Insert and Zap
commands. Doing a Copy from buffer sequence does not change the contents of the buffer.
This feature lets you copy the same text in numerous places.

The Editor

Whether the Delete command was completed with the ((Shitt) (Select) ((_EXECUTE)) or
((sHIFT) -(_EXECUTE)) sequence makes no difference to the copy buffer. What this means in
practical terms is that the Delete command allows you to fill the buffer without affecting your
original text.

So if you want to duplicate the text instead of moving it to a different location, use the sequence:

Press (_D) to initiate the Delete command.
Cause some cursor movement. This deletes text and stores it in the copy buffer.

Press (SHIFT)-(Select) to recover the text that was just deleted.

Reposition the cursor to where you want to duplicate the text.
5. Press(_ ¢) to execute the actual copy at the new cursor position.

W

Changing and Altering Text

Mistakes or necessary changes in a program or text file are not always obvious when creating
text. The Editor features commands which allow you to go back and make changes when
needed. These are the Replace and eXchange commands and the Delete/Insert sequence.
These will be demonstrated by making corrections to the sample program text.

Press (J) to move the cursor to the beginning of the file and then type 5 and press
to initiate the Replace command. The prompt at the top of the screen appears:

[r *Repl[S): L V «<tardrdisubi=> ‘W

Press (L) and (_V_) to tell the Editor that you are going to give it a Literal string and that
you want to operate in the Verify mode. A Literal string may occur as a word or as part of a
word. The alternative is a Token string which must occur as a word. The Verify mode makes the
changes one at a time after asking you if you want this occurrence replaced. Now type:

/inerv//inarv/

The slashes are used to delimit the target and substitution strings. Any non-alphanumeric or
non-control characters can be used as delimiters. This is necessary when the slash is part of the
search string or replacement string. Notice also that “‘inery’ is specified instead of ‘‘binery’.
This is because two occurrences of the word are ‘‘Binery”’. The two words are unequal.

After you type the final delimiter, the screen clears and displays:

()

*Rp1[31: <sh-sel> aborts R rerplacess’ ' doesn’t

PROGRAM Binerv_search(INPUT,OUTPUT)
{This Pprodram does a binery search
on an arravy of characters to find a
"Kev" character inPut by the user.,}

57

58 The Editor

The cursor is positioned behind the first occurrence of the string ine r». Now press(_R_) and
watch what happens:

4)

*Rp1L4]1: <csh-sel> aborts:sR replaces:’ ' doesn’t

PROGRAM Binarv_search(INPUT+OUTPUT)
{This prodram does a binery_search
on an array of characters to find a
"Key" character input by the user.,}

VAR done : BOOLEANS
Ker 1 CHAR3
alpha : ARRAY [1..26]1 of CHAR}
looPs tors+ midysy btm : INTEGERS

BEGIN {Binerv_search}
done:=FALBSE} btm:=03 tor:=2B} {initializel}
FOR loop:=1 TO tor DO alrhalloorl:=CHR(loor+G4);
WRITELN('Tyre urrpercase character for a Kev’)i
READ(Kev)§ WRITELN;S
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:i= ROUND((tor + btm)/2)3%
IF Kevy = alphalmid]l THEN done:= TRUE
ELSE IF Key <« alphalmid]l THEN tor:=mid
ELSE btm:=mid3
IF top=btm THEN BEGIN

The Editor

The first string i rie r¥ has been replaced with inarv, the cursor is now positioned behind the
second occurrence of the target string and the prompt shows that you can make four more

replacements. Press the space bar (represented by ‘

unchanged and the screen now displays:

’ in the prompt) to leave the string

-

*RPp1L31: <sh-sel> abortssR rerplaces:’ ‘ doesn’t

PROGRAM Binary_search(INPUT0UTPUT)]
{This Prodram does a binery search
on an array of characters to find a
"kKevy" character input by the user.}

VAR done : BOOLEANS
key : CHAR]
alpha : ARRAY [1..261 of CHAR]}
loorps torps mids btm : INTEGERS

BEGIN {Binerv_search}

done:=FALSE] btm:=03§ top:=2B1} {initializel}
FOR loorp:=1 TO torp DO alphalloorl:=CHR(loor+B4);
WRITELN('Tyre urrercase character for a Kev ')}
READ(Kev) s WRITELN;S

WHILE NOT done DO

BEGIN {This is the actual binery search}

59

60 The Editor

The cursor is now behind the occurrence of Bine r» following the BEGIN statement. Press
to replace this one and then press it again to replace the last occurrence of binervy.
The screen now displays:

()
*ERROR: Pattern not found, <space’ continues,

PROGRAM Binarvy_search(INPUT,DUTPUT)
{This program does a binery search
on an arravy of characters to find a
"Key" character input by the user.}

VAR done : BOODLEANS
Key : CHARS
alepha : ARRAY [1.,.261 of CHARS
loors torps mids btm : INTEGER]

BEGIN {Binarv_search?’
done:=FALSEF btm:=0§ toP:=2B63 {initialize}
FOR loorp:=1 TO tor DO alrphalloorl:=CHR(loorp+B4)}
WRITELN(‘Tvyre urpercase character for a Kev ')}
READ(Kev)i WRITELN]
WHILE NOT done DO
BEGIN {This is the actual binervy_search}
mid:= ROUND((tor + btm)/2)3
IF Key = alphalmid]l THEN done:= TRUE
ELSE IF Key < alphalmidl THEN torp:=mid
ELSE btm:=midj
IF top=btm THEN BEGIN

. _J

The prompt at the top of the screen tells you that the Editor could not find any more occurences
of the specified string in the file. The cursor is positioned at the final occurrence of the string but
it has not yet been changed. Press the space bar and the Editor prompt reappears, the final
occurrence of the string gets replaced and the cursor remains at the same place on the screen.

To correct the spelling of bire ry (which was intentionally skipped), use the eXchange com-
mand. Move the cursor to the e in binery in the second line of your program. Now press
(_x) and the screen shows:

e)

*Xehnde: Text <bs’s <sh-sel> aborts <sel> acceprts

PROGRAM Binarv_search(INPUT »OUTPUT)
{This program does a bingrv search
orn an arravy of characters to find a
"Kevy" character inPut by the user,}

Type the letter a and then press (Select) ((_EXECUTE)). Pressing confirms changes made in
eXchange and returns the Editor prompt. That’s all there is to the eXchange command.

The Editor 61

You should always position the cursor before initiating eXchange because this command can-
not cross line boundaries; you can only make eXchanges on the line where the cursor is

located.

The eXchange command is handy but the combination of the Insert and Delete commands is
often a more effective way to change text. For example, to clarify the program by adding
comments, position the cursor at the comment following the second BEGIN, press (D), and

press (TAB) once. The screen displays:

()
Delete: « » <Movind commands [<sel> deletess <sh-sel> aborts]
PROGRAM Binarv._search(INPUT :0UTPUT)

{This Pprodram does a binarvy search
on an array of characters to find a
"Key" character inPut by the user.,}
VAR done : BOOLEANS
Key : CHAR3
alrha : ARRAY [1..2B81 of CHAR}
loorsy tory midsy btm : INTEGER]
BEGIN {Binarv_search}
done:=FALSES btm:=03 torP:=263 {initializel
FOR loop:=1 TO tor DO alrphalloorl:=CHR(loor+Bd)};
WRITELN('Tyre urrercase character for a Kev’)]3
READ(Ke¥) 3 WRITELN;S
WHILE NOT done DO
BEGIN { the actual binary search?
mid:= ROUND((top + btm)/2)3
IF Key = alrhalmid]l THEN done:= TRUE
ELSE IF Kevy <« alrphalmid]l THEN top:=mid
ELSE btm:=mid3}
IF top=btm THEN BEGIN
\ J

Using a combination of and the space bar, delete everything between the two brackets

and press (Select) ((EXECUTE)). Part of the screen

WHILE NOT done DO
BEGIN {1
midi= ROUND((top + btm)/2)3

looks like:

62 The Editor

Press (_1_) to initiate the Insert command and notice how a space is opened between the
brackets. Insertions always occur directly in front of the cursor’s position when Insert is initiated.
Now type in the text shown below and then press (Select) ((_EXECUTE)) to complete the insertion.

WHILE NOT done DO
BEGIN {This routine compares Kev to
middle, A new top or bottom is chosen
and a new middle computed. The loop
continues until either Key = middle or
the array is exhausted.?}
mid:= ROUND{((torp + btm)/2)3

Finding Patterns of Text

If you want to find a particular text pattern, you can use the Editor’s Find command. This
command is similar to the Replace command in that it begins looking for the pattern that you
specify, beginning at the current cursor location; it also interprets the pattern you specify as a
Token or a Literal, according to the current Token environment parameter setting.

Jump to the beginning of the file by pressing and then . Find the first occurrence of
the word “‘loop” by pressing (_F_) and then typing these characters: /1o0r/. The /’s act as
delimiters for the pattern that you want to find. These delimiters don’t have to be the slash (/)
character; the Find command uses the first character that you specify as the delimiter (except T
while in Literal mode and L while in Token mode), so you will need to follow the pattern with the
same delimiter. For example, you could have specified: "1o0r".

When the pattern is found, the cursor is placed at the beginning of the pattern. You can use
commands to change the text (such as eXchange), or you can search for the next occurrence of

the pattern by pressing (_F_) and then (_S) (for Find Same).

If the pattern is not found, then you are prompted with the message:
*ERROR: Pattern not found, <space> continues. Press space to answer the
prompt, which puts you back into normal Edit mode.

Formatting Text

The Pascal Editor allows you to format text with the Adjust and Margin commands. Text is also
formatted by inserting or deleting blanks where needed.

The Editor’s Adjust command provides a means of shifting the starting column of a line of text
left or right in the file. This command helps make your Pascal programs and other text more
readable. To increase the clarity of our sample program, move the cursor to the word mid
following the second BEGIN statement in the program. Press (_A) and the Adjust prompt
appears:

(V *Adjust: Liust RJust Center <arrow Kevs: [<{sel?> to leavel ‘1

The Editor

Experiment with the Adjust command by pressing(_ L _J),(_R_J,or(_C). These options move
text to the left, right, or center. The values used to shift the text are the Left and Right margins of
the environment (discussed below). Any of the cursor arrow keys as well as and the
cursor wheel can be used to Adjust text. Now return the line to its original position and press
(Select). Repeat factors are available for use with the Adjust command so that many lines of text can be

shifted at one time.

Note

Think twice before using Adjust with large repeat factors. This is because
(SHIFT)-(Select) ((SHIFT)-(_EXECUTE)), which usually aborts all changes
made by a command, is not available for exiting the Adjust command.
Therefore, to recover the original format of your text, you would have
to Adjust it again.

Now that the line is in its original place, press (_A) (to initiate Adjust), type 3 (to indent
the text three spaces to the right), and then type & and press (_|). Watch what happens: the
cursor moves down six lines and shifts each line three spaces to the right. Thus, the Adjust

command is useful for indenting entire blocks of text in a Pascal program.

The screen now looks like:

-

*Addust: LJust RJust Center <{arrow Kevs>» [<sel> to leavel
done:=FALSE} btm:=037 torP:=263 {initializel}
FOR loorp:=1 TD torp DO alphalloorl:=CHR(loor+B4)]
WRITELN('Tyre urpercase character for a Kev’)}
READ(Kev)3 MWRITELNS
WHILE NOT done DO
BEGIN {This routine compPpares Key to

middle, A new top or bottom is chosen
and a new middle comPuted. The loopr
continues until either Key = middle or
the array is exhausted.}
mids= ROUND((tor + btm)/2)}
IF Key = alphalmid]l THEN done:= TRUE
ELSE IF Kevy < alphalmid]l THEN top:=mid
ELSE btmi=mid}
IF top=btm THEN BEGIN
done:=TRUES mid:= -1}
END
END 3
IF mid>0 THEN
WRITELN(‘Key ~-‘sKeys’- is in pPosition ‘smid:2)
ELSE WRITELN(’‘Key - ‘+Keys’ - was not found’)]}
END.,

-

J

Press (Select) ((EXECUTE)) to terminate the Adjust command. If you wish to make adjustments in
other parts of your text file, exit the Adjust command using before moving the cursor from

one area to another. Otherwise you may make unwanted adjustments to your text.

63

64 The Editor

The Margin command lets you margin and fill your text according to a predefined ‘‘environ-
ment’’. Margin operates on the paragraph where the cursor is located when (_M_) is pressed.
A paragraph is any text delimited by any combination of blank lines, lines whose first non-blank
character is the ‘‘command character’” (see the Set environment command in the section
“Editor Commands’’), or the beginning or end of a file. The Margin command is executed
completely by pressing (_M_) ; no parameters or options are available.

Entering the Editor without a workfile or a named file (as you did earlier in this session)
automatically sets (or defaults) the environment to the ‘‘program’ environment. This environ-
ment is optimized for writing programs. When the Editor is entered with either a file name or a
workfile, the environment associated with that file is the current environment.

You can alter the environment at any time using the Set (Environment) command. Once you
have altered or redefined the environment and saved a text file on a mass storage medium, that
environment is stored along with the text file and is used whenever the Editor is entered with
that file.

Since you entered the Editor without a file, your current environment is the Editor’s ‘‘program”’
environment (the default supplied by the system). The Filling option of this environment is set
to false (which disables the Margin command) so, if you press (_M_) , the screen displays:

*ERROR: Wrong environment <space’ continues.

If Filling had been set True (with Auto-indent False), the Margin command would fill and Margin
your program like this:

PROGRAM Binarv_search(INPUT»OUTPUT)3 {This Prodram does a binary
search on an array of characters to find a "Kev" character inPut by
the user,> VAR done : BOOLEANjS Key : CHARS alepha : ARRAY [1.,.2B] of
CHARS looep+ torps mids btm : INTEGER3F BEGIN {Binarv_search?}
done:=FALSES btm:=03 top:=26% {initialize} FOR loorp:=1 7O tor DO
alphalloorl:=CHR(loor+B4)37 WRITELN('Trre urppercase character for a
Kev)5 READ(Kev)3 WRITELN3F WHILE NOT done DO BEGIN {This routine
compPpares Key to middle. A new top or bottom is chosen and a new
middle computed, The loop continues until either Key = middle or
the arravy is exhausted.,} mid:= ROUND((tor + btm)/2)3 IF Key =
alphalmidl THEN done:= TRUE ELSE IF Key < alphalmid]l THEN torp:=mid

ELSE btm:=midj IF top=btm THEN BEGIN done:=TRUES§ midi= -13 END}
END§ IF mid > O THEN WRITELN(‘Key -‘'sKevs’- is in pPosition ‘smid:2)
ELSE WRITELN(‘Key - ‘sKevs+’ - was not found’)i END.

The previous display gives you some idea of how important it is to know what your environ-
ment settings are before using the Margin command. The only recovery from this operation is to
use a combination of the Adjust and Insert commands to rebuild the text. If you have a copy of
the original file available, you can exit the Editor without updating the file and reenter it with the
old copy.

The Editor

Note
The Insert command has effects similar to those of the Margin com-
mand when the Filling option of the environment is set to True and
Auto-indent is False. Any time you do an Insert and confirm the
operation by pressing (Select) ((EXECUTE)), both the inserted text and
all the text that follows the insertion in that same paragraph are
automatically margined.

The Margin takes place according to the Left and Right margin settings of the environment. If
you begin an insertion and are not sure of the environment settings, press (SHIFT)-(Select)
((sHIFT) -(EXECUTE)) to exit the Insert command. This way, even if Filling is true, your text will not
be margined. Then press (S _) (_E) to look at the environment settings.

When writing programs, your use of the environment and the Margin command will probably
be more limited than when writing other kinds of text. To see how the program environment is
configured, press (S) (CE) (for Set Environment). The screen displays the default environ-
ment:

(> »Environment: {orptions} <sel* or <sp> leaves <w
Auto indent True
Filling False

Left margin)
Right mardin 78

Para mardin S
Command ch "
Token def True
Idnore case False

Zap marKers
275 bvtes used: 34B909 available.

Patterns:
<{tardet>= ‘inerv’s <substi= ‘inarvy’
MarKers:
TOP FIX

File BINSEARCH.TEXT
Date Created: 10-11-82 Last Used: 10-11-B8B2

Press the space bar to exit the environment display and the Editor prompt reappears along with
your text. The cursor is at the position it was when the Set command was entered.

65

66 The Editor

Exiting the Editor and Saving the File

Now that you have finished writing and editing the program, exit the Editor by pressing (_Q)
(for Quit). Make sure that the disc named DOC : is in the same disc drive you have been using.
The screen displays:

()

PQuits:
Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file mame and return
Save as file new file BINSEARCH.TEXT
Overwrite as file BINSEARCH.TEXT

Respond by pressing (_§) for Save. If you are on an SRM system, you would use the
Overwrite option. The Overwrite option allows all duplicate links and passwords to a text file to
remain accurate after a file has been modified. More information on these options is given in the
command reference under the Quit command.

*Quite

Writing,.

Your file is 1009 bvtes long,

Exit from or Return to the editor?

Your program text has been written to your disc and is accessible under the name
BINSEARCH . TEXT on the volume DOC:.

If you are creating a file for use with another language system, such as BASIC or HPL, the file
should be stored as an ASCII type file on a disc with a LIF directory. To accomplish that, use the
Wirite option and name the file:

DOC:BINSEARCH.ASC

On a LIF directory, the Pascal system codes all the file names that end in a standard suffix. The
coding scheme removes the period, appends the first character of the suffix to the file name,
and pads the file name to ten characters with *“_"’ (underscore characters). This allows you to
specify file names up to 15 characters. They are encoded to the maximum ten characters for the
LIF directory. The file system encodes the above file name to:

BINSEARCHA
In this case, the first character of the suffix is the tenth character so no ‘“_"’ characters were
added. This coding mechanism is invisible as long as you are using the Pascal system. When
you catalogue your disc with other language systems, the coded version of the file name is
observed.

The Editor

Making a Backup Copy

The most direct way to make a backup copy of your file is to press (CR) (to return to the
Editor) and then press (_Q) (to initiate the Quit command). Each time you Quit the editor,
you can make another copy of the file currently in the Editor.

Press(_ W) for the Write option, type in a name for your backup copy suchas DOC : BINBKP and
press (Retum) or (ENTER). If you have another disc handy, replace the DOC : volume with it, specify
the name of the new volume along with a file name and press or (ENTER). Remember the ten
character limit for file names. After pressing (Retum) or (ENTER), the screen displays:

FQuit:

Writing..

Your file is 1008 bvtes long,.

Exit from or Return to the editor?

There are now two identical files on your disc(s) of the binary search program. Now press
(CE_) (for the Exit option) and you will be returned to the Main Command Prompt:

[rCommand: Compiler Editor Filer Initialize Librarian Run eXecute Version ?‘]

All the Editor commands covered here are explained in further detail in the ‘“‘Editor Com-
mands”’ section. Less commonly used commands not presented in this sample session can also
be found there.

67

68 The Editor

A Closer Look

This section contains details about how the Editor works and includes information on the
cursor, the screen, memory and file sizes and how the Editor allocates space for text files on a
storage medium. The section also presents information on using workfiles in the Editor, on
Stream files and on [/O errors that may occur when entering and exiting the Editor.

The Cursor

The cursor (the flashing underline symbol on the screen) is a reference point for all of the
Editor’s commands. The action associated with most commands occurs at the cursor position.
Commands that perform actions on lines or paragraphs act upon the line or paragraph where
the cursor is currently located.

You have complete control over the cursor through the arrow keys, the and or
keys, the space bar, the mouse, and the cursor wheel (also called the knob). The screen
cursor’s position determines where the Editor will act upon the text, thus reflecting the internal
cursor’s position (in the computer’s memory).

The Anchor

You can also use the Zap command to delete text. With this command, all text between the current
cursor position and the “anchor” is deleted. The anchor is set at the position of the latest Adjust,
Find, Insert, or Replace command. (You can also find the position of the anchor by pressing =.)

If more that a line of text is to be deleted, you will be warned as follows:
*WARNING! Zar more than 80 chars? (v/n) Press(_Y) to confirm the Zap oper-
ation; press (_N) (or space bar, etc.) to abort the Zap.

The Screen as a Window into a File

Text files are often too large to be shown all at once on the computer’s screen (CRT), so the
Editor uses the screen as a “‘window’”” which shows a portion of a file. Depending on which
machine you have, your CRT can display lines of text that are either 49 or 79 characters long
while in the Editor. If a line’s length is greater than your display area, the Editor puts an
exclamation point (!) in the last column to inform you that the entire line is not shown.

The screen is capable of displaying 25 lines of characters at a time. The Editor displays only 23 lines
of text from a file since the top line is reserved for the system’s prompt and the bottom line is
reserved for the “type ahead” line. The type ahead line displays any characters input from the
keyboard which have not yet been processed by the system. One other item is displayed in the
lower right corner of the screen. This is a system status display or “‘runlight.”

The screen generally displays the cursor and the text surrounding it. (The Set environment
command is an exception to this). This means that you can move the window up and down
through your text file by moving the cursor. Whether the text is on or off the screen, it resides in
the computer’s read/write memory and is easily accessed using either the cursor control keys or
the various editing commands which reposition the window. When an Editor command oper-
ates on a portion of text it displays as much of that text as possible on the screen.

The Editor

Memory and File Sizes

When the Editor is entered, the current text file is stored in the computer’s read/write memory.
All changes that occur to a text file (including text creation) take place in this memory and only
become permanent when the Editor is exited and the contents of the text file are written from
memory to a mass storage medium such as a flexible disc.

The maximum size of the text files that can be accessed or created by the Editor depend on the
memory configuration of your system. This size can easily be determined using the Set (environ-
ment) command. The two environment headings, ‘‘bytes used”” and ‘‘available”, should be
added together. The sum equals the maximum size (in bytes) of the text files which can be
handled by the Editor.

If your text file approaches the maximum size while you are doing an insertion, the Editor displays
the following message:

ERROR: Finish the insertion <space? continues.

This tells you that you are nearing the Editor’s memory limits. If, after finishing the insertion, you
attempt to initiate the Insert command again, the Editor informs you:

*ERROR: No room to insert. <spaces continues.,

Here is procedure to help you work around the Editor memory limits (whatever they may be on
your machine):

1. Set a marker toward the end of your original file (to be used later).

2. Quit the Editor, Save the original file, and Exit the Editor completely (in order to reenter
with a new file).

3. Reenter the Editor and press (Retun) or (ENTER) (to create a new file).

4. Using the Copy from file command, specify your original file and your marker as
follows: FILENAMELMARK ;1 and press (Retum) or (ENTER). The name of your file and
marker will be different; this just shows you the general form. Notice that a second marker

was not specified so that the copy takes place from the marker’s location to the end of the
original file.

5. Now, press (_J_) then (_E) (to Jump to the end of your new file).
6. Press (_1_) (to initiate the Insert command).

Now you can continue inserting your text in your new file without too much loss of continuity.
You may want to go back to your original file and delete the text that was copied into your new file
so that it will not exist in both files.

69

70 The Editor

Structure of Text Files

The Editor can read and write three types of files. The predominant file type is TEXT. The
others are DATA and ASCII. TEXT files contain ASCII characters and are structured in a
particular way.

In every text file, the first two blocks (or 1024 bytes) are reserved for information about the
environment settings, the locations of markers in the file and other information the Editor needs
to work with that file. Since the Editor allocates mass storage in two block increments, text files
always contain an even number of blocks. Also, because the Editor reserves the first two blocks
for file information, a file with only a single character will take up 4 blocks of storage space on a
mass medium.

It is possible to create a text file that does not have . TEXT appended to the end of the file
name. If, when exiting the Editor and specifying a file name usingthe Write as ... option,
you place a period (.) at the end of the file name, the Editor will not append . TEXT to the file
name. The file will appear to be a data file on the directory for the mass storage medium. (See
the chapter on the Filer for more details on file types and the directory).

If you want to access this file with the Editor, you must specify the file name followed by a
period when entering the Editor. If you do not use the trailing period, the Editor appends
+ TEXT to the name you type in and looks for a file with that name on the mass storage
medium.

For example, suppose when exiting the Editor you answer the prompt for a file name with
DUX .+ . Notice the period following the name. The Editor saves the file with the name DUX (it
strips off the period) and does not append the . TEXT suffix. If you enter the Editor and want
that file, you must specify DUX . . If you instead specify DUX (i.e., leave out the period), the
Editor appends « TEXT to the name you typed and looks for a file with the name DUX . TEXT. It
may even find a file with that name, but it will be a different file than the one saved by specifying
DUX., .

ASCI] files are structured differently. ASCII files on LIF discs are compatible with the BASIC
and HPL language systems that run on your computer. ASCII files are created by writing to a
file whose name ends in the suffix:

+ASC

When writing ASCII files, the Editor’s environment information is lost.

Using Workfiles in the Editor

A workfile in the Editor is used as a ‘‘scratchpad’ version of a text file. The workfile is useful
because it is the default file in the Editor (as well as in many of the Pascal subsystems). Chapter
2 contains information about using workfiles in all the subsystems; only Editor-related workfiles
are covered here.

The Editor

There are two ways to enter the Editor: from the Main Command Level or from the Compiler
subsystem (after the Compiler finds an error in the text file it is compiling). When entering from
the Compiler, the text file being used is automatically read in. When entering the Editor from
the main level, the system automatically- looks for a workfile and, if it finds one, reads the
contents of the file into the computer’s memory. If the Editor does not find a workfile, it prompts
you for a file name.

Exiting the Editor (using the Quit command) gives you the option of Updating the workfile. If
the Editor was entered with a workfile (or if the Update option was used earlier in the same
editing session), the Editor writes the contents of the text file in memory to the file called
*WORK . TEXT on the system volume. When you are through with all your editing, it is a good
idea to enter the Filer subsystem and Save the workfile.

Stream Files and the Key

Stream files (covered in Chapter 1) can be created by the Editor to simulate a ‘‘batch’” mode in
which the computer executes the commands in the Stream file as if they were coming from the
keyboard. The key is useful in this regard. It can be used to generate characters which
may not otherwise be attainable by regular keystrokes. For further information on the
key and Stream files, see Chapter 1.

I/O Errors (Entering and Exiting the Editor)

There are two general types of errors that can occur when entering the Editor. The first type of
error is generated by the system when it cannot find the volume or file which you specified. The
solution to this is to make sure that the proper volume is on-line. This type of error also occurs
when a workfile exists but the Editor cannot find it because the medium containing that file is no
longer on-line. When the Editor encounters this situation, it informs you that the workfile has
been “lost”” and then prompts you for a filename.

The second type of error possible while entering the Editor is a memory overflow condition.
This happens only if the text file being read was created on a machine with more memory than
the machine currently being used. Note that this condition is met if you use the Permanent
command (at the Main Command Level — see Chapter 1) to load something into memory that
was not there when you created the text file. Your machine now has less available memory so
the space for text files is smaller.

When a memory overflow occurs while reading in the file, the Editor lets you continue the entry
process even though the entire file has not been read into memory. However, upon exiting the
Editor, the Save option is no longer available. This safeguard keeps you from accidentally
overwriting your original file.

When exiting the Editor, a number of different errors are possible. If the Editor detects an error
while writing the contents of the text in the computer’s memory to a mass storage medium, it
will display a self-explanatory error message.

71

72 The Editor

Editor Commands

This section contains a brief overview and summary of all the Editor commands and a complete
alphabetized description of the syntax and semantics of all the Pascal Editor commands and

options.

Editor Command Summary

Text Modifying Commands
Copy - Insert text from the copy buffer or an
external file in front of the current cursor location.

Delete — Remove text from the current cursor
location to the location of the cursor when

((_EXECUTE J) is pressed.

Insert — Inserts text in front of the current cursor
location.

Replace — Replace the specified target string
with the specified substitute string.

eXchange — Replace the text at the cursor with
text typed from the keyboard, on a
character-by-character basis.

Zap — Delete all text between the anchor and
the current cursor location. (The anchor is set at
the location of the latest Adjust, Find, Insert, or
Replace command.)

Text Formatting Commands
Adjust — Adjust the column in which a line (or
lines) start.

Margin — Format the paragraph the cursor is
located to the margins in the current environment.

Miscellaneous Commands

Quit — Leave the Editor in an orderly manner.
Provides various ways for saving the text currently
in memory.

(s10P) ((SHIFT) -(CLR 1/0)) — terminates the Editor
subsystem, but the text is lost.

Set — Modify the environment or set markers in
the text.

Verify — Update the displayed text to reflect the
text stored in memory.

Cursor Keys
— Move cursor to next tab position (fixed
tabs) in the current direction.

or (ENTER) — Move cursor in current
direction to the leftmost character in the next
line.

Space Bar — Move cursor one character in the
current direction.

Arrow Keys — Move cursor in the direction
specified by the key.

Cursor Wheel — Moves the cursor like the arrow
keys. Without (SHIFT), works like right and left
arrows; with (SHIFT), works like the up and
down arrows.

Cursor Positioning Commands

(Z] — Typing (E positions the cursor at

the anchor. (The anchor is set at the location of
the latest Adjust, Find, Insert, or Replace
command.)

Find — Position the cursor after the specified target
string.

Jump — Position the cursor at the beginning, the
end, or the specified marker.

Page — Position the cursor = 23 lines from the
current location.

The Editor 73

Command Syntax and Semantics

The Editor commands are presented in alphabetical order and described in a variety of formats to
make them more useful to you. Each command’s explanation includes: the command’s name, a
brief functional description, a diagram showing its legal syntax, the command’s prompt (if any)
and text which discusses using the command. Each of the command’s options are also covered
and some have examples to show the proper use of these options.

Alphabetical Listing
of Editor Commands

Adjust
Copy
Delete
Equals (=)
Find
Insert
Jump
Margin
Page

Quit
Replace
Set

Verify
eXchange
Zap

74 The Editor

ADJUST

Adjust horizontally shifts the starting column of one or more lines of text.

@ { . |V

cursor wheel

—()—
—()—~
—— (o)—
(L=)

Item | Description/Default l Range Restrictions
repeat factor I integer numeric constant | 1 thru 9999
Semantics
The Adjust prompt:

*Addust: Ldust RJust Center <arrow Kevs® [<{excr to leavel

The Adjust command provides a means of formatting text and enables you to make text more
readable. Adjust uses the line position of the cursor when the command is entered as a starting
point. A line-oriented command, Adjust lets you shift an entire line of text to the left or right
using the (_~_), (_«<), ((BACK SPACE), or cursor wheel. Repeat factors can be used with these
keys to shift the text. For example, pressing 7 results in the line of text shifting 7 spaces
to the right.

Pressing (_A_) (for Adjust) and then (L), (CR_) or (_C_) moves the line to the left margin,
right margin or centers the line between the two margins. The margins used by these options
are the Right and Left margins currently set in the environment (see Set command).

Typing a repeat factorand (_1) or (!) causes that number of lines to be adjusted the same
amount as the accumulated adjustments at that point. The slash (/) functions as an infinite
repeat factor and can be used with (_1) and (_|). It causes adjustments to be made from
the current line to either the beginning or the end of the text file, respectively. For example,
pressing (_ C) / (_l) causes all the text between the current cursor position and the end of
the file to be Centered according to the current margins.

The Editor

Note

Take care when using large repeat factors or the slash (/) character
when adjusting text. This is because the effects of the Adjust com-
mand cannot be aborted. Whatever adjustments are made become
permanent unless the Adjust command is used again.

Adjust also sets the anchor used by the Zap command. Pressing = (the Equals command)
moves the cursor to the position of the last Adjust unless the anchor has been reset by either a
Find, Insert, or Replace command.

Leave the Adjust command by pressing (Select) ((_EXECUTE)). The system stores the adjusted text in
the computer’s memory and the Editor prompt reappears.

75

76 The Editor

COPY
Copy inserts text from a specified file or from the copy buffer.
ONE®

. () I file |
) specification
volume
specification

(Return) o (ENTER)

—\@» (D —

Y

Item Description/Default Range Restrictions
volume name literal any valid volume name.
file name literal any valid text file; do not enter .TEXT suffix.
marker literal 1 to 8 ASCII characters excluding CHR (0) thru CHR (31)
and CHR (127).

Semantics

The Copy prompt:
*Copv: Buffer File <sh-sel’

The Copy command provides a way of moving or duplicating text in a file and copying text
from another file. These are the Buffer and File options. Pressing (¢) (for Copy) and (_B)
(for Buffer) results in the contents of the copy buffer being written to your current text at the
cursor position when the command was entered. The screen displays the new text and the
Editor prompt.

The copy buffer is filled with the text involved in the most recent Delete, Insert or Zap command
and its contents are cleared with the Margin command. Margin clears the copy buffer regardless
of the settings in the environment. Doing a Copy (from a File) also clears the copy buffer. A
subsequent Copy from Buffer command generates the message:

*ERROR: Invalid copv. <spacer continues.

The Editor

Any subsequent Delete, Insert or Zap refills the buffer (destroying its previous contents) and
copying from a file clears the contents of the buffer. However, doing a Copy (from Buffer) does
not alter the buffer’s contents. Neither do any cursor control movements or commands. There-
fore, you can make multiple copies of the same text in different locations by repeatedly posi-

tioning the cursor and pressing (€) .

To Copy from a file, press (_¢_) (_F_). The screen displays:

=

*Copvye: File [marKersmarKerl 7

The Editor is requesting a volume name, file name, and two marker names. The volume name
may be omitted if the file in question is on the default volume. The volume (specified or default)
must be on-line. Specification of the two previously set markers (see Set command) is optional
but, if given, the marker names must be enclosed in square brackets and separated by a comma.
Remember, only TEXT type files have markers.

If markers are specified, only the text between those two markers is copied. If no markers are
specified, the entire file is copied. Only one marker has to be specified. If it is the first marker (i.e.,
followed by a comma), the text is copied from the marker position to the end of the specified file.
If only the second marker is given (i.e., preceded by a comma), the text is copied from the
beginning of the specifed file to the position of the marker. The copy occurs at the cursor’s
position when the Copy command was entered. You can exit the command before all specifica-

tions are complete by pressing (SHIFT) -(Select).

After typing the appropriate information and pressing (Retum) or (ENTER), the Editor displays:

*CoPvyaan

This shows that the specified text is being copied into your current text. When the operation is
complete, the Editor prompt reappears and the screen displays all or part of the text that was
copied.

77

78 The Editor
DELETE
Delete removes text from the current file.

D (1 (Soteet) (CEXECUTE))

repeat

=
= actor L(snm}@ (GoD)-(EEa))
H

(Retm) or (ENTER)

2P QP

cursor wheel

()
—(apacenar)—~

Item | Description/Default | Range Restrictions

repeat factor integer numeric constant 1 thru 9999
(1 thru 4095 for TAB)

Semantics
The Delete prompt:

*Delete: < » <Moving commands> [<{exc: deletess <sh-exc?> aborts]

The Delete command enables you to remove text and fills the copy buffer with the deleted text.
Delete uses the cursor position when the command is entered as a starting point. Subsequent
cursor movement by any cursor control key causes text to be removed between this point and
the new cursor position. Text can be recovered by moving the cursor back toward the starting
point.

The Editor

Direction applies in the Delete command and is shown by (») (forward) or (<) (backward) in the
Delete prompt. If forward, movement occurs from the cursor toward the end of the file; if
backwards, movement is from the cursor toward the beginning of the file. Movement generated
with the (_ TAB)}, (Return) or (ENTER), and space bar takes place in the direction shown. Direction can

be changed while in the Delete command by pressing > .+ or + (for forward) or < » or - (for
backward).

Repeat factors are available within the Delete command. For example, pressing (D) (for

Delete) and then 9 will remove 9 lines of text in the current direction starting at the
cursor position.

Delete fills the copy buffer with the deleted text and thus provides a means of moving or
duplicating text. See the example in the section ‘A Sample Editor Session’.

To exit the Delete command press (Select) ((EXECUTE)) or (SHIFT) -(Select) ((SHIFT) -(_EXECUTE)). (Select)
confirms the deletion, returns the Editor prompt and displays the cursor at its position when
was pressed. (SHIFT)-(Select) aborts all changes made since Delete was entered, returns the Editor
prompt and displays the cursor at its position when Delete was entered.

Note that the copy buffer is filled by whatever is deleted; whether the command is exited with a
or (SHIFT) -(Select) makes no difference to the copy buffer.

79

80 The Editor

EQUALS (=)

EQUALS positions the cursor at the anchor’s location.

(=)—

Semantics

The equals sign (=) is a cursor positioning command. It moves the cursor to the beginning of
the most recent item Adjusted, Found, Inserted, or Replaced. Pressing = causes the cursor to
jump to the location of this “‘anchor” and the Editor’s prompt is displayed. This is the anchor
used by the Zap command.

The Editor 81

FIND

Find moves the cursor to an occurrence of a specified string.

L‘I delimiter |->-| tsat:%egt H delimiter

Item Description/Default Range Restrictions

repeat factor | integer numeric constant | 1 thru 9999

delimiter literal (see glossary) any valid delimiter; must be used in matched pairs.
target string literal 1 thru 128 characters

Semantics

The Find prompt:

*Findf11: L <tardet>=x
or »Find[1l: T <tardets==>

The prompt displayed depends on whether the ‘““Token” definition in the Editor’s environment
is set to true or false. If set to true, the first prompt is displayed,; if false, the second is shown.
These are explained below.

In its simplest form, the Find command is executed by pressing (_F_) and specifying a string
surrounded by delimiters. Upon typing the final delimiter, the cursor is positioned at the end of
the first occurrence of the specified string in the current direction.

The Find command moves the cursor and sets the anchor (used by Zap) at the location of the
target string. In this context, a “‘string”’ is a contiguous series of non-control ASCII characters
surrounded by delimiters. Delimiters are separators that signify to the Editor the beginning and
end of the string such as the characters / ‘ .+ and »* (more are listed in the glossary).

Avoid using a delimiter that appears in your string. Delimiters must be matched pairs; if you use
% to signify the beginning of a string, you must use % to signify the end of the string. The
maximum length of a target string is 128 characters.

The Find prompt shows the current direction. When searching for a string occurence, Find
looks for that string between the cursor position when the command was entered and either the
end of the file (if direction is forward *) or the beginning of the file (if direction is backward <).

82 The Editor

Repeat factors are available with the Find command but must be typed before the Find
command is initiated. If a repeat factor is used, the Editor positions the cursor at the end of that
occurrence of the string. For example, typing 8 (_F_) /the/ results in the cursor being
positioned at the end of the eighth occurrence of t he. The slash (/) operates in a similar way
but signifies the last occurrence of the specified string in the current direction. If no repeat factor
or slash character is specified it defaults to the value 1 and the Editor attempts to find the first
string occurrence. The Find prompt displays this value in square brackets.

After pressing (_F_), the prompt on your screen contains either an L or T for “literal” or
“token’’ modes. Literal and token are interdependent; if one option is shown as available, the
other is automatically the default. If L is shown in the prompt and you want to use the token
search mode, simply type in the target string surrounded by delimiters. The search will take
place in the default mode (in this case, token). To do the same search in the literal mode, press
then type in the string as before. The Find command then searches for a literal form of
the string.

A literal string is exactly that — a literal string of characters either isolated or imbedded in a
word or paragraph. A token string is one which is isolated by delimiters. Delimiters in this
context are any ASCII characters except numbers or alphabetic characters. Blanks are common
delimiters in English text because they separate words.

To illustrate literal and token searches, the following example assumes the direction is forward
(*) with the cursor located at or before the start of the sentence shown. In the sentence
That ‘s my hat!, atoken search for hat moves the cursor behind the last word hat in the
sentence whereas a literal search for hat moves the cursor behind the hat imbedded in
That ’s.

The “‘same’ option is another feature of the Find Command. Same refers to the most recent
target string used in either the Find or Replace command. Suppose you typed the sequence
CF) *dalactic#*. After pressing the final delimiter (*), the Editor moves the cursor
behind the first literal occurrence of the target string salactic. Then typing (_F)
(s) results in the cursor moving behind the next literal occurrence of the same target.

When using the ‘‘same’ option with the direction set backward (<), use a repeat factor of two
before initiating the Find. Otherwise, the Editor finds the previous occurrence since it searches

between the cursor’s current position and the beginning of the file.

Suppose after the first Find your screen displays:

“Edit: Addist Cep» Dlete Find Insrt Jmp Relace Ouit Xchng Zap 7

According to the galactic archivess the
interdalactic_cruisers continued their
explorations without regdard for

The Editor

Ifyoupress(F) (L) (S) toFind the same literal string, the cursor position on the screen
does not change. To find the next occurrence, type 2 thenpress(_F) (_L) (_S). Sincethe
direction is backwards and the Find command always positions the cursor behind the target
string, using a repeat factor of 2 skips to the next effective occurrence of the literal salactic.
Repeated searches in the forward (>) direction operate in a straightforward manner.

Note
If a Replace has been done since the last Find operation, the target
string used by the ‘‘same’’ option is now the target specified in the
Replace command.

Searches are sensitive to the case of the characters (upper and lower case) unless Ignore case and
Token are set to True in the Environment. Type (_§_) and(_E) to Set the Environment. Type
(1 Jand(_ T) tosetlgnorecaseto True. Type (T) and(_T_) if Tokenis notalready True.
After these two conditions are met, the Editor treats both the target string and each token string as
uppercase.

Find is one of the commands that sets the anchor used in the Zap command and accessed by the
Equals command.

(SHIFT) -(Select) (('SHIFT)-(EXECUTE)) can be used to abort the Find command before all specifica-
tions are complete. If (SHIFT)-(Select) is used, the target pattern used by the “‘same’ option remains
unchanged. cannot be used with the Find command. The command is executed immediately
when the final delimiter (or (_S) if ‘‘same’ is used) is typed.

83

84 The Editor

INSERT

Insert opens a window in the current file for the subsequent insertion of text.

() { - -] (Seect) (CERECUTE))
L‘{ASB??_Eggﬁggéer | L(@_@(@_)

Tab

‘

cursor wheel

or (ENTER

spacebar

I

Item | Description/Default I Range Restrictions
non-control literal Any valid ASCII character excluding: CHR (0) thru CHR
ASCII character (31) and CHR (127).
Semantics

The Insert prompt:

*Insert: Text <bs>, #<clr In: [<sel> accertss; <sh-sel’ escares]

The Insert command opens a window in the text file directly in front of the cursor position for
text creation. When initiated (by pressing (_ 1) or (_INS CHR) or (INS LN)), the text from the
cursor to the right edge of the screen is shifted to the right. Insertion always takes place directly
in front of the cursor location when Insert was entered. Any sequence of non-control ASCII
characters may be inserted and any cursor control key may be used. However, unless the
movement generated by the cursor control keys is backward, they produce question marks (?)
in the text. You can to delete a character or press to delete the most
recently inserted line. is available only after a line of text has been inserted. Back-
spacing past the point at which Insert was entered is not possible.

The Editor

The way in which text insertion takes place depends on flags or parameters set in the Editor’s
environment. These flags have default values supplied by the Editor but can be changed with the
Set command. The ones that concern you here are Filling and Auto indent. These two options
generally have opposite values. Most of what you need to know about Filling and Auto indent can
be summed up in one sentence: If you are writing program source text, set Filling to false and
Auto indent to true; if writing regular text, set Filling to true and Auto indent to false.

Filling, when set true, performs both ‘‘wrap around” and ‘‘margining’ functions. As inserted text
approaches the Right margin (another environment option), the Editor attempts to fit the words
on the current line. If a word would cause the line to extend beyond the right margin, it is
automatically shifted to the next line (i.e., the system supplies a carriage return and a line feed).
When the insertion is completed by pressing (Select) ((_EXECUTE)), all text following the cursor in the
current paragraph is margined. Margining adjusts the text to fit between the environment’s
margins and also compresses blanks in the text. You can have two blanks following the four
characters: ? . : !. All other blanks are compressed into a single blank character.

Note that the Editor’s definition of a paragraph is ANY text delimited by any combination of
blank lines, lines having the Command character as the first non-blank character in a line, or the
beginning and end of a text file. The Command character is yet another of the environment’s
options; see the Set command for more details.

Note

As the definition of a paragraph infers, the Editor does not disting-
uish tables from other kinds of text material. Any insertions within a
table will result in the table being margined (i.e., collapsed) if Filling
is set to true and the insertion is exited with (Select) ((EXECUTE)). Use
the Set command to set Filling to False before inserting in a table or

list. ((SHIFT)-(Select) will NOT restore the text to its original state after a

paragraph has been margined).

If Filling is false, a beep is generated as you approach the end of the line, signaling you to press
(Return) or (ENTER) the same way a bell on a typewriter does. If you continue to insert text past the
last visible column on your screen, the Editor accepts the characters and shows you that they are
outside of the display area by placing an exclamation point (!) in the final column. To access these
characters, complete the insertion by pressing (Select) ((EXECUTE)), position the cursor before the
last word on the line and press (_1__) followed by (Retum) or (ENTER) to insert a carriage return.

85

86 The Editor

If Auto indent is true, pressing (Retum) or (ENTER) automatically places the cursor in the same
starting column as the previous line. When Auto indent is false, the cursor is positioned according
to either the Left or Paragraph margin in the environment.

If Insert is exited with (Select) ((EXECUTE)) (and Filling is true and Auto indent false), all text
following the insertion in the same paragraph is margined according to the Right, Left and
Paragraph margin values in the environment. Also, the entire insertion is stored in the copy buffer
so you can copy the same text elsewhere if you wish. If Insert is exited with (SHIFT)-(Select)
(regardless of the options set), all changes are aborted and the text and cursor appear as they did
when the command was entered.

The Insert command sets the anchor (used by the Zap command) at the position where Insert was
initiated. The anchor is set regardless of whether (Select) or (SHIFT)-(Select) is used to exit the
command.

The Editor 87

JUMP

The Jump command repositions the cursor.

(Roum) or (ENTER)

J
() (i) (3 (o)) }—

006

Item | Description | Range Restrictions
marker literal 1 to 8 ASCII characters excluding: CHR (0) thru CHR (31) and
CHR (127).
Semantics
The Jump prompt:

*JUMP: Bedin End MarKer <{sh-sel:

The Jump command moves the cursor to the beginning or end of a text file or to a previously
defined marker. The command has no other effects; it merely repositions the cursor. To Jump

to the beginning of your file, press (_J) . To Jump to the end of your file, press (_J)
CeD.

You can also Jump to a marker by pressing (" M) and typing the name of any previously
set marker in the file followed by (Retum) or (ENTER). Marker names are defined with the Set
command. A legal marker name is any sequence of up to eight non-control ASCII characters
(control characters are deleted by the system). They can actually be longer than this but the
Editor only pays attention to the first 8 and truncates the rest.

Also, marker names are not case sensitive. The Editor converts all marker names to uppercase
letters so they can be typed using any desired combination of uppercase and lowercase letters.
There is a 10 marker limit per text file. See the Set command for more information on markers.

88 The Editor

MARGIN

Margin formats all text in the current paragraph to fit the margins set in the environment.

Semantics

Margin is disabled and the system generates an error message unless the environment’s Auto
indent is false and Filling is true when the command is executed.

The Margin command provides a means of formatting paragraphs in your file. A paragraph is
defined by the Editor to be ANY text delimited by any combination of blank lines, lines having
the Command character as the first non-blank character in a line, or the beginning and end of a
text file. See the Set command for details on the Command character.

Upon initiating Margin (by pressing (_M_)), the Editor takes all the text in the current para-
graph (the one where the cursor is) and forces it to fit within the Left, Right and Paragraph
margin boundaries of the environment. After margining, the first line of the paragraph begins at
the column specified by the Paragraph margin setting and the rest of the text conforms to the
Left and Right margin settings. If a word would exceed the Right margin it is ‘‘wrapped around”’
to the next line.

Two blanks are allowed following the four characters: ? + : !. All other blanks are compressed
into a single blank character.

Since the Command character in the environment delimits a paragraph, you may want to use it
as the first character in each line of tables or lists which you do not want margined. See the Set
command for more information on the Command character.

Note
If a table or list fits the definition of a paragraph, the Margin command
will definitely margin that text. Exiting the Insert command with
(Select) ((_EXECUTE)) also uses some of the Margin routine so be aware
that these commands can potentially ‘‘collapse’ a table or list.

The Margin command has no parameters and its effects cannot be aborted. When writing
program text or tables, it is advised that Auto indent be set true, Filling be set false and the
Paragraph margin be equal to the Left margin.

Note

The Margin command clears the contents of the copy buffer regard-
less of the settings of the Auto indent and Filling options.

The Editor 89

PAGE

Page moves the cursor one or more pages (23 lines) in the current direction.

r

PLPPY)

Item | Description/Default | Range Restrictions
repeat factor | integer numeric constant l 1 thru 1000
Semantics

The Page command lets you move rapidly through a text file by repositioning the cursor one or
more pages (23 lines of text) forward () or backward (<) in a file. Page is executed by pressing

and its movement occurs relative to the position of the cursor. Page moves the cursor in
the direction displayed by the Editor prompt when the command is entered. The direction can
be changed by pressing * + or + for forward or < » or - for backward.

Repeat factors are available in the Page command. For example, to move the cursor 3
“screens’’ or pages in the file, press 3 (_P_). The slash character (/) can be used in place of an
integer repeat factor. Pressing / (_P_) results in the cursor moving to the end of the file (if
direction is) or the beginning of the file (if direction is <). If neither repeat factor nor slash is
specified, the default is 1 and the cursor moves one page.

(select) ((EXECUTE)) and (SHIFT) -(Select) ((SHIFT) -(EXECUTE)) are not available in the Page command.
The command is immediately executed when (__P_) is pressed.

90 The Editor

QUIT
QUIT leaves the Editor with various exit options.

EOINED - :

6

Semantics
Quit:

Update the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return
Save as file new file BINSEARCH.TEXT
Overwrite as file BINSEARCH.TEHX

The Quit command allows you to exit the Editor and store your file on a mass storage medium.

The last two quit options shown above are only available if the file existed before the editing
session.

Quitis initiated by pressing(_@) from the Editor’s prompt. Choose any of the options displayed
by pressing the first letter of the option.

Pressing (U) (for Update) results in the contents of the text in the computer’s memory being
written to a text file on the system volume under the name WORK »TEXT. This workfile may or
may not be associated with another file name (see the Get and Save commands in the Filer
chapter). After writing the file, the system reports the file’s size (in number of bytes and blocks)
and displays the main command prompt.

Pressing (_E_) (for Exit) either immediately exits to the main level or displays:

Are vou sure vou want to exit without updating?
Tyrre Yes to Exit without urdate
Tyrpe No to Return to Editor

This message is displayed only if changes have been made to the text file in the current editing
session. If no changes have been made, the system immediately goes to the main level when

is pressed. It also exits to the main level if you respond by pressing (Y). Responding
with (_N_) returns you to the Editor.

The Editor 91

Pressing(_R) (for Return) returns you to Edit mode with the cursor located where it was when
Quit was entered.

Pressing (W) (for Write) causes the system to prompt you for a file name. A complete file
name is needed. If a volume ID is not given, the default volume is used. The volume PRINTER:
may be specified. This results in the file being listed to the printer.

If you use the Write option and the file already exists, the Editor displays this prompt:

AQuit:

FILE.TEXT exists +.+.
Rewrite then purde old
Overwrite
Purde old then rewrite
None of the above

Rewrite then purge old is like the Save command. An attempt is made to write the new file before
purging the old.

Overwrite removes the original file and then attempts to write the new version in its place. On
SRM units, duplicate links and passwords will be preserved. On a disc, the file may not fit if the
new version is larger than the old.

Purge old then rewrite removes the original file and then attemps to write the new file in the
biggest space on the disc. This alternative gives you the best chance that there will be room for the
new file.

Whether you “Overwrite’” or ‘‘Purge old then rewrite’’, the original copy of the file is gone and
the only copy of the file is in the Editor’s memory. It is advisable to save it on another disc as soon
as possible.

None of the above returns you to the Editor. You may Quit again and write the file with a different
name.

Pressing (S) (for Save) results in the file being written to the original volume and file.

If you try to Save a file and you get the message:

*ERROR: No room on vol <spPace> continues.

Press the spacebar to continue. You could put in another disc with enough space, then Quit and
Save it on the new disc. Alternatively, you can Quit and Overwrite the file.

Pressing (0) (for Overwrite) is designed for SRM systems. The Overwrite option allows all
duplicate links and passwords to remain accurate. On a disc, Overwrite may not work if the file
has been enlarged. If this happens, press the spacebar to continue, Quit and Save again. The
previous Overwrite removed the original file. Now the Save will try to save the file in the largest
space on the disc. If this does not work, you must put the file on another disc.

92 The Editor

REPLACE

Replace does one or more substitutions of a specified string for another string.

repeat
factor

target

delimiter H
string

_Lﬂ

H delimiter W delimiter H;ubslltute I——-I delimiter
string

—

Item Description/Default

Range Restrictions

repeat factor integer numeric constant

1 thru 9999

delimiter literal (see glossary) any valid delimiter; must be used in matched pairs.
target string literal 1 thru 128 characters
substitute string literal 1 thru 128 characters
Semantics
The Replace prompt:
*Repl[13: L V¥ <targ:<subsz
or Repll1]: T ¥ <targi<subs

The prompt displayed depends on whether the ‘““Token’ definition in the Editor’s environment
is set to true or false. If true, the first prompt is displayed; if false, the second is shown. These are
explained below.

The Replace command allows you to substitute one string for another in your text file. The
anchor (used by the Zap command and accessed by the Equals command) is set at the location
of the replacement. Replacements can be done to a single, all, or only certain occurrences of a
string.

In its simplest form, the Replace command is executed by pressing (_R) and specifying two
strings — a target and substitute — each surrounded by delimiters. The target and substitute
strings may be different sizes. Upon typing the final delimiter, the first occurrence of the target
string is replaced by the substitute string and the cursor is positioned at the end of the substitu-
tion.

A target string (the one that you want replaced) must be supplied. A string is a contiguous
series of non-control ASCII characters surrounded by delimiters. Delimiters signify the begin-
ning and end of a string and are characters such as: /7 ‘ + and » (more are listed in the
glossary).

The Editor

A substitute string (what you want the target string changed to) must also be supplied with
delimiters. The substitute may be an empty (null) string.

Avoid using a delimiter that appears within your string. Delimiters must be matched pairs, i.e., if
you use $ to signify the beginning of a string, you must use % to signify its end. The substitute
string can have a different set of delimiters than the target string and the two strings may be of
different sizes. The maximum length of either string is 128 characters.

After pressing (_R_), the prompt on your screen contains either an (_L) or (_T_) for
“literal”’ or ‘‘token”’ modes. Literal and token are interdependent; if one option is shown as
available, the other is automatically the default. If is shown in the prompt and you want
to use the token search mode, then type in the two strings and their delimiters. The replacement
takes place in the default mode, in this case, token. To do the same replacement in the literal
mode, press and type in both strings as before. The Replace command then searches for
a literal form of the string.

A literal string is exactly that — a literal string of characters either isolated or imbedded in a
word. A token string is usually a word (a string isolated by delimiters). Delimiters, in this
context, are any ASCII characters except numbers or alphabetic characters — they do not have
to be matched pairs. Blanks are the most common delimiters in English text because they
separate words.

To illustrate literal and token replacements, the following example assumes the direction is
forward () with the cursor located at or before the start of the sample sentence. In the sentence
That’s my hat!, atoken replacement for hat with umb rel 1 a replaces the last word hat
in the sentence with umb re 11 a whereas a literal replacement would substitute umb re 1 1a for
the hat imbeddedin That ‘s (resultingin Tumbrella’s my hat!).

Direction applies in the Replace command and is shown by the first character in the com-
mand’s prompt. If the direction is forward (*), the replacement occurs between the cursor
position and the end of the file; if backward (<), between the cursor and the beginning of the
file.

Repeat factors are available for the Replace command but must be typed before the command
is initiated (before (_R_) is pressed). A repeat factor causes that number of substitutions to be
made. If not specified, the repeat factor defaults to 1. A slash character (/) may also be used to
change all occurrences of the specified string in the current direction. The repeat factor (or slash
character) is displayed in brackets [1 in the command’s prompt. The repeat factor works
differently when the Verify option is used.

The Verify option lets you choose whether or not to make a particular replacement. The
combination of a repeat factor with Verify allows you to replace only certain occurences of a
string in the file. For example, after pressing 2 (_R) (V) and typing in the target and
substitute strings, the Editor moves the cursor to the first occurrence of the target string and
prompits:

*RP1[2]: <sh-exc: aborts»R reeplacess’ ‘' doesn’t

93

94 The Editor

To confirm the replacement, press (_R_). To skip to the next replacement (if any), press the
space bar. While using Verify, pressing (SHIFT) -(Select) ((_SHIFT)-(_EXECUTE)) aborts the operation
and retains all replacements made up to that time.

The ““same’ option is available with Replace and refers to either the most recent target string
(used in a Find or Replace) or the most recent substitute string (used only in Replace). Which
string it signifies (target or substitute) depends on where it is used in the Replace command. To
use “Same’’, simply press (_8) in place of the delimited string. If you type (_§) followed by
a delimited string, the most recent target is replaced with the specified string. If you type a
delimited string followed by (_S), the specified target is replaced with the last substitute. Both
strings may be specified by typing (§) (S). The current assignments of the ‘‘same”
patterns can be seen by pressing (S) (_E) (see the Set command for more details).

Note
If a Find has been done since the last Replace, the target string used
by the ‘‘same’” option is now the target specified in the Find com-
mand.

The “Ignore case’’ option applies to the Replace command. Type (_§) and(_E) to Set the
Environment. Type(_1_Jand(__T_) tosetIgnore case to True. Type and if Token
is not already True. The target string and all token strings in the text are treated as upper case.
When a match is found, the token string is replaced with the substitute string. The case of the
substitute string is not affected by the Ignore case option.

The Replace command can be aborted before all specifications are complete by pressing
(SHIFT) -(Select) ((SHIFT)-(_EXECUTE)). (Subsequent use of the ‘‘same’ option after aborting the
Replace command may give you unwelcome results).

The Editor

SET

Set defines markers and alters the environment in which your text operations occur.

arker -

#{_ (Retm) or (ETER)

 \

[=s

margin
\ integer

spacebar

r¢4

non-control
ASCII character

-
)

caaopneog

- (D () (D) (o) }————————
Item Description/Default Range Restrictions Recommended Range
marker literal 1 to 8 ASCII characters -

margin integer

non-control ASCII
character

Semantics
The Set prompt:

>Set: Env MrK

integer numeric constant

literal

Prog Doc <sh-sel>

excluding CHR(0) thru
CHR(31) and CHR(127)

0 thru 9999; left margin
must be less than right
margin

any valid ASCII
character excluding
CHR(0) thru CHR(31)
and CHR(127)

0 thru 49 for
50-column displays; 0
thru 79 for 80-column

displays

96 The Editor

Set lets you define markers and various environment parmeters. Markers are Set by moving the
cursor to where you want the marker, pressing(_§) (M) (for Set Marker) and typing in a
marker name followed by (Retum) or (ENTER). A marker name is any sequence of up to eight
non-control ASCII characters. The Editor accepts more than eight characters but truncates
anything longer. All non- printing characters (those with an ASCII value of either 127 or in the
range of 0 to 31) are deleted by the system. The Editor converts these names to uppercase so they
can be typed in whatever form is convenient.

No more than ten markers can be set in a file. If you attempt to set more than ten, the Editor
displays the markers in a numbered list and prompts you for the number of the marker you wish
to replace. All markers can be removed by giving the Zap marker command. Markers are used
with the Jump and Copy commands and their names are shown in the environment display. The
locations of the markers are not shown so the use of meaningful marker names is advised.

Pressing(_s) (CE) (for Set Environment) displays the current environment and allows you to
change the environment’s parameters. When entering the Editor with a new file, the default
environment is the Program environment which looks like:

*Environment: {orptions) <sel> or <sp> leaves
Auto indent True
Filling False

Left margin (8}
Right margin 78

Para mardin 3
Command ch

ToKen def True
Idnore case False

Zarp markers
275 bytes usedy 348909 available.

Patterns:
<tardet = ‘inery’s <substi= ‘inmary’

MarKers:
TOP FIX

File BINSEARCH.TEXT
Date Created: 10-11-82 Last Used: 10-11-82

. Y,

Patterns and Markers are only shown if they have been set. The heading near the bottom displays
a file name if the Editor is entered with a specified file. Whenever a file is saved on a mass storage
medium, the current environment is saved with it and becomes the default environment when
that file is used by the Editor.

The Editor

The environment also displays how many bytes of memory have been used and how many are
still available for use in the Editor. The total number of bytes (used and available) depends on the
amount of memory in your machine.

To change a parameter in the environment, press the first letter in the parameter’s name. The
cursor is automatically positioned at the item to be changed and the new value must be typed. If
the parameter needs a number (as in Left, Right and Paragraph margins), then the number must
be followed by pressing (Returm) or (ENTER) or the space bar. All other parameters accept a single
character and return the cursor to the environment’s prompt as soon as the character key is
pressed.

Automatic indenting is a boolean (with either a true or false value) which affects the Insert and
Margin commands. When inserting text with this item set true, pressing (Retum) or (ENTER) auto-
matically moves the cursor to the next line at the same starting column as the previous line. This
indenting feature is useful when writing Pascal programs so it is set true for the Program (default)
environment.

When Auto indent is true the Margin command is disabled. When Auto indent is false, pressing
(Return) or (ENTER) places the cursor on the next line at either the Left margin or Paragraph margin
(as currently defined in the environment).

Filling is another boolean value which affects the Insert and Margin commands. It usually has a
value opposite that of Auto indent. When set true (and auto-indent is false), filling causes
automatic ‘‘wrap around’ of text. If a word is too long to fit on the current line (as defined by the
Right margin value), itis carried or wrapped around to the next line and no carriage return ((Return)
or (ENTER)) is necessary. Another effect of this parameter being set true is that an Insert completed
by pressing (Select) ((_EXECUTE)) causes all text following the insertion in that paragraph to be
margined or filled according to the current values of the Left, Right and Paragraph margin
settings. All blanks in the text are then compressed to a single blank (though two blanks are
allowed following the characters: ?. ! :). The Margin command only works when Filling is set true
and Auto indent is set false.

With Filling set false, the wrap around and margining functions are disabled. When approaching
the end of a line, the system generates a ‘‘beep’’ to inform you that you need to press or
to go to the next line. If you type past the display area of the screen, an exclamation point
() is shown in the last column. The text, though not visible, is maintained in the computer’s
memory.

The Left margin may be set to any integer between 0 and 9999. Numbers longer than 4 digits are
truncated by the system. The Left margin must be less than the Right margin setting or an error
message is generated when you attempt to exit the environment.

The Right margin setting has the same numerical limitations as the Left margin. Unless you have
a particular reason for doing so (like making full use of a 132 column printer), it is not a good idea
to set this margin beyond the right column display limits of your screen because the text will not
be visible.

97

98 The Editor

The Paragraph margin can be set to any positive integer up to 4 digits. This setting determines
the indention that the first line in each ‘‘paragraph’ will get. This occurs when Filling is set false
(while inserting text) or when Margin is used. Note that a paragraph as defined by the Editor is any
text surrounded by blank lines or by lines beginning with the Command character (discussed
below). The beginning and end of a file will also delimit paragraphs.

The Command character can be any non-control ASCII character. If this character is the first
non-blank character in a line, the Margin command treats the line as if it were blank. The line is
not margined and it is considered to be the beginning or the end of a paragraph. The default
Command character is the (™) character.

Token is a boolean used by the Find and Replace commands. When Token is set true, the default
value for Find or Replace becomes token and the command’s prompt displays the literal option.
(Token and literal refer to the type of target string searches that take place in these commands).
Conversely, if Token is false, the default value for Find and Replace is literal and the command’s
prompt displays token as an option.

The Ignore case command affects searches in the Find and Replace commands. If ‘‘Ignore case’’
is left as False, then “‘string’”” and ‘“STRING”” and *‘String’’ are not treated as equal. If ‘‘Ignore
case’’ is set to True, they are treated as equal. This only works when the Environment’s Token
mode is True or if you type a “‘T"’ before typing the target string.

The Zap markers command removes all markers from the file.
The environment display is left and the Editor’s main prompt returned by pressing or

(ENTER), (Select) ((_EXECUTE)), or the space bar. The current environment settings are automatically
saved with your file when the text is written to a disc or other mass storage medium.

Although there is only a single environment associated with a text file, the environment may be
set to one of two predefined configurations: the Program environment (by pressing (_§)
(TP)) and the Document environment (by pressing (S) (D _)). These configurations
optimize the various environment parameters for writing programs or regular (non-program and
non-tabular) text, respectively. When either predefined environment is Set, the current environ-
ment is displayed and any of its parameters can be changed. If you want to change just one or two
parameters, use (S) (_E) to get into the existing environment.

Changes made to the environment cannot be aborted but the parameters may be changed as
many times as desired.

The Editor 99

VERIFY

Verify refreshes the screen display from memory.

Semantics

The Verify command has no options; it is executed immediately by pressing (_V_). Verify
causes the Editor to refresh or update the current screen display from memory, move the
current line (the one where the cursor is) to the middle of the screen, and display the Editor

prompt. If the cursor is located in the first 23 lines of text when Verify is used, the line containing
the cursor is not moved.

100 The Editor

eXchange

eXchange replaces text character for character at the cursor position.

D

non-control

e | ASCII character I >
(st)-(Select) (SHFT) -(EXECUTE)

(eoipae)

(Seleet) (EXECUTE))

Tab_

i

Item | Description/Default l Range Restrictions

any valid ASCII character excluding: CHR (0) thru CHR
(31) and CHR (127).

non-control literal
ASCII character

The Editor

Semantics
The eXchange prompt:

“¥ohnde: Text <hbs> <sh-sel> aborts <sel’ accepts

The eXchange command lets you exchange the text in a line on a character-for-character basis,
beginning at the cursor position. Typing a character overwrites the character at the current cursor
position and moves the cursor to the next character to the right. Using the horizontal cursor-
positioning keys is also allowed: backspacing (such as with (‘Backspace), (4), or cursor wheel)
moves the cursor backwards and restores the original character; forwardspacing moves the
cursor over the existing characters without changing them.

The exchange command operates only on the current line (i.e., the line where the cursor is
located when the command is entered). Attempting to move the cursor vertically will generate
question marks that overwrite the existing characters. Backspacing past the point at which
eXchange was entered is not allowed.

Almost any ASCII character can be used in eXchange; however, use of control characters is not
advised. Carriage returns cannot be entered, since you are not allowed to cross line boundaries
while in the eXchange mode. Direction and repeat factors do not apply to this command.

eXchange is initiated by pressing (X) and is exited by pressing (Select) ((_EXECUTE)) or ((SHIFT) -
(Select) ((SHIFT)-(EXECUTE)). (Select) confirms the exchanges, returns the Editor prompt, and dis-
plays the cursor at its position when was pressed. -(Select) returns the copy of the text
file in the computer’s memory to its state before eXchange was entered, displays the Editor
prompt and shows the cursor at its position when eXchange was entered.

101

102 The Editor

Zap

Zap deletes text and fills the copy buffer with the deleted text.

Semantics

The Zap command has no options; it is executed immediately by pressing (_Z). Zap deletes
all text between the “anchor” and the current cursor position and stores it in the copy buffer.
The anchor is located at the position in the text where the most recent Adjust, Find, Insert or
Replace command was executed. (You can confirm the position of the anchor with the Equals
command, which moves the cursor to the anchor).

If more than 80 characters are going to be Zapped, the Editor displays a prompt asking if you
wish to Zap anyway. Also, if the Copy buffer is not large enough to store the deletion, a prompt
asks if you wish to go ahead and Zap the text. (Use the Set environment command to see how
much memory is available; the copy buffer shares this memory with that used to hold the text
file in memory).

Recovery of the deleted text is achieved with the Copy (from buffer) command. Zap can also be
used to move large chunks of text from one location to another within a file.

Note that the effects of Zap can be surprising since the anchor position is set by four different
and commonly used commands (listed above). Therefore, it is a good practice to check the
location of the anchor (using the Equals command) before executing a Zap.

103

Chapter

5

The Filer

Introduction

This chapter documents the use of the Workstation Filer subsystem. The Filer lets you manipulate
files in various ways, including creating, listing, duplicating, and deleting files. The Filer can handle
files on devices with various directory structures and physical characteristics.

Before you read this chapter, you should read “The File System” chapter which defines basic
concepts such as files, volumes, and directory organizations.

There are four main sections in this chapter.

® The first two demonstrate how to enter and use the Filer by leading you through a sample Filer
session which uses the more common Filer commands.

® The next section, “A Closer Look,” presents detailed information about the Filer and its
operation.

® The “Filer Commands’’ section contains an overview or summary of all the Filer commands
(useful for quick reference once you are familiar with the Filer), and a semantic and syntactic
description of each Filer command, presented in alphabetical order.

Any questions you have about commands covered in the sample session should be answered in the
commands section.

104 The Filer

Entering the Filer

If your system is not already ‘‘up and running’’, refer to Chapter 1 for information on loading
the Pascal System. The following prompt must appear on the top line of your screen before you
can enter the Filer:

(Command: Compiler Editor Filer Initialize Librarian Run eXecute Version ?)

The prompt tells you that you are at the system’s Main Command Level — the level from which
all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry is accomplished by
typing the uppercase character of the subsystem you wish to enter (for instance, R for Run and X
for eXecute).

Insert the disc labeled ACCESS: and press the (_F) key. You can use either uppercase or
lowercase letters when typing commands at the Main Command Level. However, letter case is
important when typing file names. The screen displays:

(Loading ‘ACCESS:FILER’)

You can use the Permanent command (from the Main Command Level) to keep the FILER
code file in memory if you wish. This will allow faster access to the Filer but uses more memory.
Chapter 1 explains how to ‘“‘permanently load” the Filer.

The Filer Prompt

The screen clears and displays the Filer prompt on the top line:

Filer: Chande Get Ldir New Quit Remove Save Translate Yols What Access Udir J
You are now in the Pascal Filer subsystem. The Filer prompt shows the most common com-
mands used in the Filer and “prompts’ you to give the subsystem a command.

The prompt shows only a partial list of the available commands; to see the others, type (27).
The prompt line shows the Filer’s alternate prompt:

Filer: Bad-secs Ext-dir Krurch Make Prefix-vol Filecory Duplicate Zero 7 [3.01

The alternate prompt displays the revision number of the Filer in brackets. Type (_?_) again
and the main Filer prompt reappears.

The Filer

All Filer commands are initiated by typing a single key corresponding to the first character of the
command shown in the Filer prompt. Uppercase and lowercase command characters are treated
as equivalent by the Filer, so the keys may be typed in whatever form is convenient.

Filer operations can be aborted by typing (SHIFT)-(Select) ((SHIFT)-(_EXECUTE)) when a single
character is expected and (SHIFT)-(Select) (Return) or (ENTER) in place of a file specification.

Filer Operations

All of the commands in the Filer operate in one of two ways: the Filer either performs the
operation immediately (when you press the letter key for that command) or it requests the
information it needs to perform the operation and then does it. The request is generally for a
volume specification or a file specification since all of the Filer's commands (except Quit) operate
on volumes, directories and files.

A volume specification identifies a particular volume. This can be done by supplying any of the
following: the name of the volume; its associated unit number; a colon (:) to specify the default
volume; or an asterisk (*) to specify the system volume. A file specification consists of both a
volume specification and a file name; it completely identifies a particular file. All file specifications
include a volume specification even if by default. If the volume specification is omitted and only
the file name is given, the Filer looks for a file of that name on the default volume.

A Sample Filer Session

Work through the following examples on your machine as you read through this section.
Interacting with the computer will teach you more about the Filer than just reading the material.

Finding Out What Devices are Accessible

Now that you have the Filer prompt on the screen, press (_V). This initiates the Volumes
command and the screen now displays the volumes or I/O units associated with the Pascal
System. Here is a typical display (yours may vary slightly):

(A
Volumes on-line:
1 CONSOLE:
SYSTERM:
MYUOL:
ACCESS:
SRM_WORK:
PRINTER:
45 * SYSTEMO4:
Prefix is - MYVOL:

L) B S % B A
#

Gl

For each volume, the display shows the logical unit number and the associated volume which
are currently on-line. Volumes #5 and #45 are SRM volumes which you may or may not have.

105

106 The Filer

The “‘#’’ beside units 3, 4 and 5 indicates that these are blocked devices. These are used for mass
storage. The “*”’ beside unit 45 indicates that this is the system volume; also a blocked device.
The system volume is used by the system during certain operations and should be left on-line at
all time if possible. ‘‘Prefix is”’ indicates which is the default volume. The default volume is
assumed when no volume identifier is given. The default volume can be changed using the Filer’s
Prefix command and the Main Command Level’s What command.

The Default and System Volumes

Atpower-up, the system generally designates the highest performance mass storage device as the
“system volume’’ because it needs a volume to work with occasionally. The system volume is
denoted by an asterisk (*) in the Volumes command display and remains fixed unless the New
system volume command or the What command is used at the Main Command Level.

The Prefix command, because it defines the default volume, lets you specify a particular volume
where the Pascal System will look for files when you haven’t given a volume name or logical unit
number. This is handy in the Filer as well as in other subsystems such as the Compiler or Editor.

The default volume can be indicated with the colon (:) character. For example, to list the directory
of the default volume, press (for the List directory command) and answer the prompt by
typing ‘:”’. The Filer then displays the directory of the current default volume.

Changing the Default Volume

You can use the Volumes command (from the Main Command Level) to see what volume is the
current default volume. It is listed under the heading P re f i x in the Volumes display. You can
also see what the current default volume is by pressing (_P_) for the Prefix command. The
screen displays:

(Prefix to what directory 7)

Respond by pressing (Retum) or (ENTER). The screen now displays the current default volume. Now
press (_P_) again and in response to the prompt, type MOJD:. The screen now displays:

(Prefix is MDJOD: 1

Now, whenever you want to specify a file or group of files on the MOJO: volume, you can just
type the file name(s) and the Filer will assume that the file or files specified are on the volume
MOJO..

Itis possible to set the default prefix to a flexible disc drive, regardless of the volume inside. This is
done by typing:

#3: (Retun) or (ENTER)

while the drive door is open.

The Filer

The prefix command is used to set up a working directory on a Shared Resource Management
system as well. If you had an SRM file named:

#5:USERS/JOE/PROJECTL1/PROGRAMS/FILE

Initiate the Prefix command as usual and specify:

#5:/USERS/JOE/PROJECT1/PROGRAMS

This sets the SRM volume as the default volume and USERS/JOE/PROJECT1/PROGRAMS as
the working directory on the SRM. If the previous working directory had been PROJECT]1, then
only PROGRAMS need be typed. Now you can specify the file with:

FILE

If you were to use the Prefix command again to set the default prefix to another volume (not on
the same unit), the working directory and volume name for the unit remain PROGRAMS. You
need only specify either of the following to get the same file.

#5:FILE

or

PROGRAMS:FILE

It is possible to change the working directory on an SRM unit without changing the default
volume. Use the Filer’s Unit directory command. Press (_U_) and then give the directory name
that you wish to become the working directory. If the new directory is in the existing working
directory, just type the new directory name. If it is not, type the whole directory path as shown
above in the Prefix example.

Note

Do not use the Prefix command on unit #45. This is the system
volume and should not be altered.

The System Volume

The system volume can also be specified in a shorthand form using the *“*’’ character. Suppose
you want to specify the file named LIBRARY on the volume SYSVOL.:. Assuming that SYSVOL.:
is the system volume and is currently in the disc drive associated with unit #3, you can specify a
file on that volume by entering any one of the following three methods:

SYSUDL:LIBRARY

or

#3:LIBRARY

or

*LIBRARY

107

108 The Filer

Of course you can make the specification even shorter by typing something like:

*=ARY

However, if you are doing a critical operation, be sure that there are no other files on the same
volume which fit that file specification or use the ? wildcard instead. If a file named GARY existed
on SYSVOL.:, the operation would also be performed on it. Once again, use wildcards judi-
ciously.

Listing a Directory
To find out what files are on the disc called ACCESS:, press to initiate the List Directory
command. The Filer prompts you to specify the volume whose directory is to be listed:

List what directory 7
Respond by typing ACCESS : and pressing or (ENTER). Notice that the colon (:) is part of the
volume specification. The screen now displays the directory (catalog) for ACCESS:. It looks
similar to this display:

r)
ACCESS: Directory tvepe= LIF level 1
created B-0ct-82 3.47.54 blockK size=256

Storade order

vesfile namesss # blKs # bvytes last chng
FILER 218 55808 B8-0ct-B2
EDITOR 22 58368 B8-0ct-B2
LIBRARIAN 202 51712 8-0ct-B2
MEDIAINIT,.CODE 132 33792 8-0ct-BZ
TAPEBKUPR.CODE o4 13824 8-0ct-82

FILES shown=3 allocated=3 unallocated=11
BLOCKS (256 bvtes) used=834 unused=218 lardest srace=218

The name of the volume is displayed in the upper left-hand corner of the listing. To the right,
the directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain
the date the directory was created and the size of the volume. Level O directories do not. Your
directory listing should display the date the directory was created and the date it was changed as
system volume, the size of the storage blocks, and whether the listing is in storage order or
alphabetical order. The size of blocks on LIF volumes is 256 bytes (1 sector). The size of blocks
on WS1.0 volumes is 512 bytes. The Shared Resource Management system does its accounting
in 1-byte units. To have directories listed in alphabetical order, include [*] after the directory
name. For example:

LIFDIR:[#*]

The column entries for each file include: file name, number of blocks used for storage, the file
size in bytes, and the date the file was created or changed.

The Filer

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized.

Getting a More Detailed Listing

To get a more detailed listing of the directory on a disc, press (CE) (for the Extended
Directory command) and you will be prompted for a volume name as before. Respond by

typing:
ACCESS: (Return) or (ENTER)

Your screen now displays:

()
ACCESS: Directory tvepe= LIF level 1
created B8-0ct-82 3,47.54 block size=256
Storade order
vesfile namesss # blKks # hytes start blK +++ss1ast chande..,.extensionl
tvype t-code ..directory info.+s +sescreate date,.., extension2
FILER 218 55808 4 B8-0Dct-8B2 3.48. 6 0
Code -5882 1
EDITOR 228 58368 222 B8-0ct-B2 3.48.18 0
Code -5582 1
LIBRARIAN 202 51712 450 B8-0ct-82 3.,48.3%5 0
Code -5582 1
MEDIAINIT.CODE 132 33782 652 B8-0ct-B2Z 3.48.44 0
Code -5582 1
TAPEBKUP.CODE 54 13824 784 8-0ct-82 3.48.48 0
Code -3582 1
< UNUSED = 218 838
FILES shown=5 allocated=5 unallocated=11
BLOCKS (256 bvtes) used=834 unused=218 lardest space=218

The Extended directory listing contains all the same information as the List directory listing with
additional information. It also contains the number of the block where the file starts, the type as
recognized by the file system, the type-code used by the directory system, SRM access informa-
tion and two extension fields.

The “‘directory info”” column shows the public access rights and the current file status for SRM
files. (Because the listing above is not from an SRM volume, the column is empty.)

109

110 The Filer

If one of the letters from the table below is missing, then the public access right associated with
that letter has been removed.

Letter Access Right

Manager
Read
Write
Search
Purgelink
Createlink

OvnsEx=Z

Public access rights on a file are established at one of two times. If a file is created by a program,
the public access rights can be established when the file is opened. To do this, use the optional
third parameter on the command used to open the file. The commands used to open files are
Reset, Rewrite, Open and Append. The optional third parameter is explained in more detail in the
File System chapter and in the HP Pascal Language Reference.

If a file already exists, the Filer’'s Access command can be used to establish or, if the Manager
right has not been removed, change the public access rights.

The possible ‘‘current file status’ are listed below and explained in the ‘‘File System’” chapter.

CLOSED
SHARED
EXCLUSIVE
CORRUPT

The two extension fields are for LIF directories only. The other directories display a *“—1"". For
most LIF file types, extensionl contains a *‘0”’. For system files, it contains the start execution
address. For data files, it contains the logical end-of-file. Extension2 contains the volume
number in cases of multi-volume files. The Pascal system cannot create or read multi-volume
files; the LIF DAM merely recognizes them. For single volume files, it contains a “‘1”’.

The above examples are the most common uses of the directory listing commands, but there
are two other useful ways of using the command. One is to use a ‘‘wildcard’’ to specify a subset
of files that you want listed. The other way is to send the listing to the printer or to a file instead
of letting the listing default to the screen. Both methods are combined in the example below
and are covered in detail in the ‘‘Filer Commands’’ section. Press (_E_) again (to initiate the
Extended Directory command) and answer the prompt for a volume specification as shown in
the display:

Fist_ext what directory ? ACCESS:=.CODEsPRINTER: (Retun) or (ENTERﬂ

The ACCESS: volume should be on-line. Your specification tells the Filer you want a listing of
all the files on the ACCESS: disc whose name ends in *“.CODE”’. The *‘="" acts as a substitute
for all combinations of characters in a file name. The *,”’ separates the source specification from
the destination specification. The listing should only display the files whose names end with
“.CODE”. The EDITOR, FILER and LIBRARIAN are not listed because their names don’t end

in “.CODE".

The Filer

A Few Words About Wildcards

Wildcards are powerful tools for executing Filer commands on related files. There are three
wildcard characters.

? = $

A wildcard is a substitute for an arbitrary portion of a file name. For example, if you wanted to
list all the .CODE files on the EXAMP: volume, you could specify:

EXAMP:=,CODE

The * ="’ stands for any combination of characters. If the file name ended with *“.CODE”, that
file would appear in the listing. If you wanted to remove some of the . TEXT files on the EXAMP:
volume, you could specify:

EXAMP:? . TEXT

The ““?”” also stands for any combination of characters. However, the Filer will ask you, one at a
time, if you want to remove each file that fits the specification. The “?”’ wildcard lets you verify
operations before actually performing them. Unless you are absolutely certain about the effects
of a command using the equals sign wildcard (=), its best to use the question mark — by far the
safer of the two.

The ““$” character is a valid wildcard for destination file specifications. It indicates that the file is
to retain its original name. If ““‘$”’ is used with other characters, it is used as part of the name.

Wildcards act as replacement strings in file names. Part of a file name can be given before or
after the wildcard or both before and after. For example, two files named WILD.TEXT and
WILD.CODE on the default volume could be specified by:

WILD?oOr WILD=or =LD.=or ?ILD=
Partial file names must be given in the order in which they appear in the file name.

Translating Text Files

The Pascal system supports several different types of “‘text’” files. These files are usually created
by the Editor and can be programs, documents, or data. When the file is stored on a disc, the
internal representation (format) of the file is determined by the suffix appended to the file
specifier. The different formats have different information in the file header and can have
different end-of-line schemes. The Translate command can be used to convert from file type to
another. The various file formats recognized by the Pascal system are TEXT, ASCII, and DATA.
No suffix indicates a DATA file, a . TEXT suffix indicates a TEXT file and a .ASC suffix indicates
an ASCII file.

To use the Translate command, press and see the prompt:

(Translate what file 7)

111

112 The Filer

Respond with the name of your input file
MYUVOL:MYFILE.TEX

The Filer will then prompt:

(> Translate to what 7 ‘]

Respond with the name of your output file

MYUOL:NEWFILE.,ASC

The Filer will create an output file of a type corresponding to the suffix on the output file name
(ASC in the example) and will read the text data from the input file, reformat the data to match
the output file type, and write the data to the output file. This process may seem slow, but
remember that the text is being reformatted.

Sending File Listings to the Printer and Screen

The Translate command is used to send files to the printer or to the screen. Logically, the printer
and screen are just files of a different format.

Before using the Translate command, remove the volume ACCESS: and replace it with the
volume DOC: (supplied with this manual set). Now use the Extended Directory command to
display the contents of the DOC: volume. Press (_E), type in DOC: and press or (ENTER).
Your screen should display all the files on the documentation disc.

Press the space bar: this clears the screen of everything except the Filer prompt. Now press
to initiate the Translate command. The screen prompts you with:

(r Translate what file ? ‘]

Respond with DOC:BINDOC. TEXT and press (Retun) or (ENTER). The screen now prompts:

Translate what file ? DOC:BINDOC.TEXT
Translate to what 7

The Filer 113

Your first response includes both a volume specification and a file name and completely identifies
the file you want to transfer. Now type PRINTER: and press (Retun) or (ENTER). The text file is
translated to the printer as shown:

BEGIN {Binerv_search?
done:=FALSE} htme=03 torP:=Z61 {initializel}
FOR loorp:=1 TO tor DO alephalloorpl:=CHR(loor+B4d);
WRITELN(’Tyre urrercase character for a Kev ')}
READ(Kev)3i WRITELNS
WHILE NOT done DO
BEGIN {This is the actual binery search}
mid:= ROUND((torp + btm)/2)3%
IF Key = alphalmidl THEN done:= TRUE
ELSE IF Kevy < alphalmidl THEN tor:=mid
ELSE btm:=mid}
IF top=bhtm THEN BEGIN
done:=TRUEY mid:= -13
END 3
END 3
IF mid > O THEN
WRITELN(‘Key -'sKevs+’- is in pPosition ‘smid:2)
ELSE WRITELN(’Kevy - ‘sKev:s’ - was not found’);
END .

The Filer shows you what operation it has just performed by displaying:

(V DOC:BINDOC.TEXT ==3 PRINTER: ﬁ}

Since the operation is complete, the Filer again displays its prompt. Note that only files of type
TEXT, ASCII or DATA should be sent to the printer. You can also Translate these files to the
screen by using CONSOLE: in the destination specification instead of “‘PRINTER:”. The file is
displayed one screen at a time. Press the spacebar to move to the next screen; press (SHIFT) -
(‘Select) ({ SHIFT) -(EXECUTE)) to abort the operation.

If you are not sure if the file in question is a text file, use the Extended Directory command and look at
the column in the display where the file types are shown.

Copying Entire Volumes: Backup Copies

The backup process described here is suitable for volume-to-volume copies if both volumes are
the same size. For different size volumes, see Filecopy in the ‘“‘Filer Commands” section.

Note

Using Filecopy to copy an entire volume will result in the loss of disc
space if the source volume is smaller than the destination volume. To
copy a volume to a larger one, Filecopy individual files.

114 The Filer

You should still be at the Main Command Level and now have a blank initialized disc. We will
use it for a volume-to-volume filecopy. Volume-to-volume filecopies do not require that a
directory be present on the destination disc.

Insert ACCESS: in the disc drive. Press (_F_) and the Filer gets loaded and displays its prompt:

(Filer: Chande Get Ldir New Quit Remove Sauve Translate Yols What Access Udir q

Press for the Filecopy command and the screen shows:

(V Filecory what file 7 i}

Now type ACCESS: and press (Retun) or (ENTER). The screen displays:

Filecory what file 7 ACCESS:
Filecory to what 7

You can specify a volume by specifying the logical unit number associated with the physical disc
drive that it is in. Do this by typing #3: and pressing (Retun) or (ENTER). The Filer knows that
ACCESS: is currently in the drive associated with unit #3 and figures that you want to transfer
that volume to a different volume that will be inserted in the same drive. The Filer then reads as
much of ACCESS: as it can into read/write memory and the screen displays:

Please mount DESTINATION in unit #3
‘C’ continuess <sh-exc> aborts

Now remove ACCESS:, replace it with the blank initialized disc, and press (_€_). Since no
directory is on the initialized volume, the Filer simply copies the ACCESS: information that it
read into memory onto the new disc. If there had been a directory named TESTER: on the
destination volume, the Filer would have prompted:

Destrovy directory of TESTER: 7 (Y/N)

This precaution makes sure the information on the disc does not get destroyed if you change
your mind or inserted the wrong disc. Answering with (_N) for “No” aborts the Filecopy
operation and the Filer prompt returns. Answering with a for Yes lets the Filecopy take
place and the contents of ACCESS: are written to the new disc. This operation destroys the
directory (and, effectively, all information) that was previously on the destination disc.

In case your machine does not contain enough memory to read in the entire volume ACCESS:,
the Filer prompts you to swap the source and destination discs as many times as necessary to
complete the Filecopy operation. When the operation is complete the Filer prompt reappears.

The Filer 115

If you have more than one disc drive you can accomplish the same task by specifying both the
source and destination volumes with either a volume name (if it has one) or by the unit number
associated with the drive it is in. This second method of doing volume-to-volume transfers is
quicker — especially if the amount of memory in your machine is relatively small.

Note

Having two volumes with the same name on-line at one time is not
advised. The Filer looks for volumes according to their volume names
and may not be able to distinguish one from the other. Thus, the Filer
may perform an action on one volume when you wanted the opera-
tion to affect the other volume. The Filer warns you whenever it
detects that this condition exists. If you get a warning, either remove
one of the volumes or use the Filer's Change command to change the
name of one of the volumes.

Creating a Directory

In general, the Filer only works with volumes that already have directories. There are a few
exceptions to this rule, such as volume-to-volume transfers where the directory from the source
volume is copied onto the destination volume. Other exceptions are mentioned as they arise. The
Filer's Zero command creates an empty directory on a new disc that has been initialized using the
MEDIAINIT program, previously used discs, or on any other compatible type of mass storage
device such as a hard disc or a volume stored in read/write memory. The Zero command,
however, is not used to create directories on the Shared Resource Manager. This is done with the
Filer's Make command because making an SRM directory really involves making a file of type
“directory’’.

Your screen should now display the Filer prompt. Remove the current volume from the disc drive
associated with unit number 3 and replace it with the second disc that you initialized. Now press
(_z) to initiate the Zero command. The screen displays:

(Ze ro directory (NOT valid for SRM tvrpe units) Zerowhat uolume'?w

The request is for a volume specification. Answer with #3: and press (Retum) or (ENTER). The Filer
now prompts:

(Destrov U3: 7 (Y/N))

This question is just a safety precaution so that you won’t destroy a volume full of information
by accident. ¢“V3” is the name given to the directory by MEDIAINIT (if created on unit #3).
Press (Y) for yes. The next prompt is:

(Numt-er of directory entries (8) 7)

116 The Filer

This is asking for the maximum number of files that will be listed in the directory. The number in
the parentheses is the default that will be used if no value is given and is derived from the
number in the existing directory. In most cases, 80 directory entries is a good choice.

The next prompt is:

(ﬁ Number of bvtes (270336) 7 <W

This is asking for the total size of the disc to be handled by the directory (the logical size of the
volume). The number in the parentheses is derived from the number in the existing directory (if
any) or from the unit table entry for that given unit. Press (Retum) or (ENTER) to accept the default
size for your disc.

The system now prompts you for a volume name. Volumes and volume name syntax for the
different directory types are described in the File System chapter. Briefly, LIF directory names
must be six characters or less; upper and lower case characters being distinct. WS1.0 directory
names must be 7 characters or less and are always uppercased before being written in the
directory. The Filer then confirms that the volume name is the one you wanted. The screen now
appears:

~)
Zero directory (NOT valid for 5RM tvyrpe units)
Zero what volume 7 #3
Destroy ACCESS: 7 (¥/N) ¥
Number or directory entries (8) 7 B8O
Number of bytes (270336) <
New directory name? NEWONE
NEWONE: correct 7 (Y¥Y/N)

When you press to confirm the new volume name the Filer informs you that the volume
with that name has been zeroed and the Filer’s prompt appears. Your new volume is now ready
for use.

Copying Files from Volume to Volume

The Filecopy command allows you to copy files from one volume to another or even to a different
place on the same volume. The volumes can be separate discs, SRM directories or, in the case of a
hard disc, multiple volumes on the same physical device.

Remove the current volume from drive #3 and insert the DOC: volume supplied with this
document set. To copy a file from one volume to another, press (_F_) for Filecopy and respond
to the prompt for a file specification with:

DOC:STREAM.TEX

The Filer 117

When the Filer prompts you for a destination, type in the specification shown below and press
(Return) or (ENTER).

Filecory what file ? DOC:STREAM.TEXT
Filecory to what 7 #3:%

What happens here is similar to copying a volume from one disc to another using a single drive.
The Filer reads the contents of DOC:STREAM.TEXT into memory and then displays the
message:

Please mount DESTINATION in unit #3
‘C’ gontinuess “sh-exc> aborts

Take another disc and insert it in drive #3. Now that you have your new disc in drive #3, press
(¢) to continue. The Filer writes the contents of the file that it temporarily stored in memory
to the disc you just inserted and confirms that the Filecopy has taken place.

If you give a unit number (as above) or a different volume name which is not on-line, you must
swap discs to complete the copy.

The wildcard ($) is a feature to avoid repetitious typing and tells the Filer to give the destination
file the same name as the original file — STREAM. TEXT.

When copvying a file to a different volume, always include either a file name or the $ character
when you specify the destination. If you specify the name of a mass storage volume without a
file name, the Filer prompts: ‘

fr Destroy directory of SYSVYOL: 7 ‘1

Although the volume name may be different, if you answer with a , the Filer transfers the
specified file to the destination volume, destroying the directory in the process, and rendering
all previous information on that volume useless.

The next example demonstrates how to copy multiple files from one volume to another using

the 7 character as a wildcard. Press (_F_) once again and respond to both the prompts as
shown:

Filecory what file ? DOC:MODTPTEXT
Filecorpy to what 7 MKWORK:$%

118 The Filer

This tells the Filer to copy all the files on the DOC: volume that begin with the characters “MOD”’
and end with the characters “TEXT” to the volume MKWORK:, giving each the same name it had
on the DOC: disc. Before the Filer actually copies any files, however, it will verify with you that you
actually want to copy each file that fits the specification. Respond to each prompt with a for
“Yes.”” As you answer each prompt affirmatively, the Filer copies the corresponding file to the
destination (MKWORK:) volume. If you have a single-drive system, the Filer will prompt you to
swap the discs as in the previous example.

It is worth mentioning that, although specifying a unit number is less typing than specifying a
volume name, when you specify a unit number the Filer initially accesses the volume (disc)
currently in the drive without regard to whether or not it was the one you intended. After the
first access of a volume, the Filer associates a supplied unit number with the name of the
volume found in that device. However, if you specify a volume name, the Filer only performs
the command on that volume. If the volume you specified is not on-line the Filer will tell you so.
Specifying the volume name is a good habit if you are doing a lot of disc ‘‘swapping’’; this will
insure that the Filer does not operate on a disc other than the one you intended to use.

In cases where the destination volume already contains a file with the same name as the file
being copied, this prompt is displayed:

ANYVOL:XFILE
exists +++ Remove, Overwrites Neither 7 (R/0/N)

You have the options:

® Remove — remove the original file first, then write the new file in the largest space
available.

® Overwrite — replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result
in the file contents being inconsistent with the file type.

® Neither — cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links exist to a file. All links and passwords to the file are
accurate when a file is updated because it is put in the same logical location. If you chose the
Remove option, the original file would not actually be removed; only your link to it is removed.
The other user’s directories are still linked to the original file.

Note

Be careful when using the Overwrite option on an SRM system. If the
file specifier suffix (.TEXT, .ASC, or none) is not the same as the
original file suffix, the contents of the file may become inaccessable.

The Filer

Note

The Pascal Filer can also copy BDAT (BASIC Data: file type —5791)
files produced by the HP BASIC workstation system. However, there
are some side effects that occur when copying BDAT files from LIF to
SRM directories, and vice versa. See the description of the Filecopy
command in the “Filer Commands”’ section near the end of this
chapter.

Renaming Files and Volumes

The Filer's Change command allows you to rename files and volumes. (The one exception is that
the root directory of the Shared Resource Manager cannot be renamed.) This command requires
two specifications: the original name and the new name (the first name may include volume
specification and pathname and passwords for SRM, but the second name cannot). Assuming
that the volume MKWORK: is still on-line, press (_C_) for Change and respond to the prompt as
shown:

(Chande what file 7 MKWORK: »MOJO:]

The volume name is now “MOJO:”. To change the file STREAM.TEXT on the MOJO: volume to
RIVER.TEXT you can either type out both names (separated by either a comma or a press of the
(Return) or (ENTER) key) or use a wildcard as shown below:

Chande what file ? STREAM=
Chande to what 7 RIVER=

The Filer changes the file name as described. The wildcard was used as a substitute for the . TEXT
part of both names. The only restriction on using wildcards with this command is that if you use a
wildcard in one of the specifications, you must use it in the other. Because the strings or subsets
represented by the wildcard are not always obvious, discretion is advised when using wildcards
with the Change command.

When changing the name of a file of type TEXT or CODE, remember that parts of the Pascal
System attempt to append the suffixes . TEXT"’ or “.CODE"’ to the file you specify. You can get
around this by specifying a file and adding a period (.) to the file name. This tells the system not to
append the suffixes to the file name for which it searches.

Note

Excluding the Get command, the Filer makes no assumptions about
sufixes and will treat a trailing period as part of the file name.

119

120 The Filer

Removing Files

The Remove command is provided to delete files from a directory of a block structured volume.
Suppose you have a volume on-line named NEWSTUF: containing the file POLYNOM.TEXT
that you wish to delete. Press (_R) to initiate the Remove command and respond to the prompt
as shown:

Remove what file 7 NEWSTUF:POLYNOM.TEXT

Then press (Return) or (ENTER). The Filer removes the specified file from the volume and reports:

[» NEWSTUF : POLYNOM, TEXT removed <)

The Filer prompt reappears as the message is displayed. As in many of the Filer's commands, the
prompt requests a file specification. Wildcards can be used with the Remove command but
should be used carefully. The question mark (?) wildcard provides an easy method for removing
a TEXT and CODE file of the same name. It also lets you verify the operation (a good practice
when purging files).

Suppose the same volume NEWSTUF: contains two files you wish to remove called IOTEST
.TEXT and IOTEST.CODE. To remove these files answer the ‘‘Remove what file ?”’ prompt with:

NEWSTUF: IOTEST?

and press (Retun) or (ENTER). The Filer responds with:

Remove IOTEST.TEXT ? (Y/N)

Reply with (for Yes) to remove the file. Reply with (_N_) (for No) if you change your
mind. Either reply results in the next prompt:

Remove IOTEST.TEXT ? (Y/N) Y
Remove IOTEST.CODE 7 (Y/N)

Reply as before and the Filer responds with:

Remouve IOTEST.TEXT 7 (Y/N) Y
Remove IDTEST.CODE ? (Y/N) ¥
Proceed with remove 7 (Y/N)

This gives you one more chance to change your mind about the operation. The files are not
actually removed from the volume’s directory until you press . Pressing (_N_) has the
same effect as if you had never initiated the command (i.e., the directory remains unchanged and
your files remain intact).

The Filer

If you want to remove all of the files on a volume (for discs only; not SRM), the quickest way to do
sois to execute the Zero command. This command wipes out the directory of a volume so that the
volume may be re-used. See the description of the Zero command earlier in this section or in the
“Filer Commands’’ section.

Leaving the Filer

Exit the Filer by pressing(__Q@) for Quit from the Filer prompt. You willimmediately be returned
to the Main Command Level. The Filer can also be exited with the key. The key
waits for any current disc 1/0 to complete before it actually executes. This key can be used at any
time — even while executing a Filer command. However this practice is not recommended since
some commands may cause damage to your files if is pressed while they are being
accessed.

The System Workfile (A Convenient Scratchpad)

The Pascal System features a workfile which can be used in the Filer, Editor, Compiler and
Assembler. Each subsystem that uses the workfile documents its use.

Think of the workfile as being analogous to a default volume. In some of the subsystems, you are
not prompted for a file specification when entering the subsystem if a workfile of the appropriate
type exists. For example, if the text version of a workfile exists when entering the Editor, the
Editor never prompts you for a name of the text file to edit but reads in the workfile instead. As a
matter of fact, before you can edit any other file, you will need to use the Filer’'s New command
(preceeded by the Save command if you want to retain the file) to release the workfile. In the
same manner, invoking the Pascal Compiler when the text version of a workfile exists results in
that file automatically being compiled.

If the Filer’'s Get command is used, the workfile is the TEXT/ASCII/DATA and/or CODE file
specified in the command.

The Filer has four commands (Get, New, Save and What) which operate directly on the workfile.
These are covered in the next section.

121

122 The Filer

Filer Commands

This section contains a brief overview and summary of the Filer commands and a complete
alphabetized description of the syntax and semantics of all the Pascal Filer commands and

options.

Filer Command Summary

Volume Related Commands
Bad sectors — Scans a volume and searches for
unreliable (bad) storage areas.

Extended Directory — Lists directory information
about a specified volume or set of files.

Krunch — Consolidates all unused space on a
volume in a single area by packing the existing
files together. (Not valid for SRM)

List Directory — Lists directory information about
a specified volume or set of files.

Prefix — Specifies a new default volume.
Volumes — Lists the volumes currently on line.
Udir — Sets the default unit directory. (SRM only)

Zero — Creates an empty directory on the speci-
fied volume. (Not valid for SRM)

Exit Commands

Quit — Provides an orderly exit from the filer.

STOP — Pressing the (_STOP) key unconditional-

ly exits the Filer Subsystem. The current /O
operation is completed before exiting.

File Related Commands
Access — Change the access rights (passwords) on
a file or directory. (SRM only)

Change — Change the name of afile, set of files, or
volume.

Duplicate link — Duplicates links to a file or set of
files. (SRM only)

Filecopy — Copies a file, set of files, or a volume to
a specified destination.

Make — Create a directory (SRM) or a file on a
volume.

Remove — Remove a directory entry or a set of
directory entries.

Translate — Translates text files of types TEXT,
ASCII, and DATA to other text file representa-
tions or to unblocked volumes.

Workfile Related Commands
Get — Specifies a file as the workfile.
New — Specifies that no file is the current workfile.

Save — Saves the current workfile(s) with the spe-
cified name.

What — Lists the name and current state (saved or
not saved) of the workfile(s).

The Filer

Command Syntax and Semantics

The Filer commands are presented in alphabetical order. Each command’s explanation includes:
the command’s name, a brief functional description, a diagram showing its legal syntax (See
Chapter 1), the command’s prompt (if any) and text which discusses using the command. Each
command’s options are also covered and some have examples to show the proper use of these
options.

Several of the syntax diagrams on the following pages reference the the ‘‘volume only specifier”
and the ‘“‘complete file specifier’” below. The ‘‘volume only specifier” is the syntax for commands
that operate on volumes. The ‘‘complete file specifier”” is the syntax for commands that operate

€,y

on files. Volume only specifiers don’t need the *:”’ except when a literal volume name is given.

Then the name must end with a ‘.’ to distinguish it from a file name. If no volume specifier is
given, the default volume is assumed.

Alphabetical List
of Filer Commands

Access

Bad sectors
Change
Duplicate
Extended directory
Filecopy

Get

Krunch

List directory
Make

New

Prefix

Quit

Remove
Save
Translate
Unit directory
Volumes
What

Zero

123

124 The Filer

File Specification

Y

-]
[.
~O—— Lo =0

unit
number
volume
name

()
(e 1
J[directory]

o name
T Lo -0

e password °

. Range
Item Description/Default Restrictions
unit number integer; corresponding to an entry in the unit 1 thru 50
table

volume name literal any legal volume name

password literal any legal password

directory name literal any legal SRM directory
name

file name literal any legal file name

number of blocks integer any legal number of
blocks

See Chapter 2 for legal names and values.

The Filer
Volume Specification
Item Description/Default Range
Restrictions
unit number integer; corresponding to an entry in the unit 1 thru 50

volume name

table

literal

any legal volume name

125

126 The Filer

Access

The Access command allows you to change public access rights on your files (SRM only).

password attribute

) I file
CE) specification

Range

Item Description/Default Restrictions

file specification literal a legal SRM file
specification

attribute literal MANAGER READ
WRITE SEARCH
PURGELINK
CREATELINK ALL

password literal any legal password (See
Chapter 2 for details)

Semantics
The Access prompt:

Access ridhts for what file 7
Type the file specification. If the file already has a Manager password, then you must include the
password in the file specification. Access rights cannot be changed on open files or open working
directories.
The next prompt:

fAccess: Lists MaKes Removes Attributes, Quit 7
These are the possibilities. You can list the attribute passwords, make new ones or remove

passwords. The Attributes option just lists the possible attributes for your help. Quit returns you to
the Filer prompt.

The Filer

To make new passwords, press (_M_) . You see this prompt:

Make Password:attribute 7

Type the password (up to 16 characters), then a colon (:) and the attribute list (attributes
separated by commas). Different passwords may be associated with each attribute or one with
ALL. If you type a password that already exists, you are asked:

PASSWORD already exists...replace it 7 (Y/N)

Note that passwords should not contain the characters: **>", """ *".

k)

To remove passwords, press (_R). You see the prompt:

-
v

Remove Password
Type only the password and all attributes associated with it are cleared.

The Attributes option list:

MANAGER
READ

WRITE
SEARCH
PURGEL INK
CREATELINK
ALL

127

128 The Filer

Bad sector

The Bad sector command scans a mass storage medium for errors.

volume

.. Range
Item Description/Default Restrictions
volume specification literal (See the beginning of
this section)
Semantics

The Bad sector prompt:
Bad sector scan of what directory 7

The Bad sector command allows you to check a mass storage medium to find out if each block
(sector) is readable. A flexable disc may become unreliable after damage or excessive wear.

Press to initiate the command and answer the prompt with a volume only specifier. The
Filer then displays a message indicating that it is scanning the volume from block O to the end of
the volume. The Filer does a read operation on each sector and does a CRC error check on the
results. If the CRC results are normal, that sector is considered to be good; if not, the Filer lists the
sector number.

If you find a bad sector in a file, you may wish to use the Filer to change the file type (suffix) to
+BAD. (You did make a back-up copy didn’t you?) The BAD file will not be moved in a Krunch
operation. A large number of bad sectors indicates a worn-out medium. The medium should only
be used if you are willing to risk losing information on that volume.

The Filer

Change

The Change command lets you rename files, directories and volumes.

(Betur) or (ENTER)

volume new volume
specification name

(Betum) or (ENTER)

L. Range
ltem Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal {See the beginning of
this section)
new file name literal any valid file name
new volume name literal {See the beginning of
this section)
Semantics
The Change prompt:

Chande what file?

The Change command requires two specifications: the original volume or file specification and
the new one. The two specifications can be separated by either a comma or a carriage return. If
you are changing the name of a volume, any legal volume ID can be used for both specifications.

To change the name of a file, use any legal volume ID in the first specification and only the new
file name in the second specification. The Filer is intelligent enough to know that the file whose
name you are changing resides on the volume identified in the first specification. After the Filer
has finished changing the name and updating the directory it reports the name changes it has
made.

Because many of the Pascal subsystems append the string « TEXT or . CODE to a file name given
in response to a prompt, it is a good idea to retain these parts of a file name when making a
change.

Wildcards (the = and ? characters) may be used in the Change command. If a wildcard is used in
the first specification, it must also be used in the second one. The subset string that is replaced by
the wildcard in the second specification (the new name) is the same as the string it stands for in the
first specification.

129

130 The Filer

Suppose you have a volume named BUGS: with the following files:

WHATISIT.TEXT
WHOISIT.TEXT
WHYISIT.TEXT

Specifying BUGS : WH=TEXT » FO=FA in response to the Change prompt results in the following
messages being reported by the Filer:

BUGS:WHATISIT.TEXT chanded to FOATISIT.FA
BUGS:WHOISIT.TEXT chanded to FOOISIT.FA
BUGS:WHYISIT,.TEXT chanded to FOYISIT.FA

Here is another example using the original files shown above on the BUGS : volume. Specifying
BUGS:WH=,TEXT, = resultsin:

BUGSB:WHATISIT,.TEXT chanded to ATISIT
BUGS:WHOISIT.TEXT chanded to OISIT
BUGS:WHYISIT,.TEXT chanded to YISIT

You may wish to create some empty files using the Make command and experiment with them
before using wildcards extensively. Until you get used to them, the effects of wildcards are not
always obvious.

Note

Using the Change command to ‘‘change’ a file name to the same
name results in the file being removed.

Note
The Change command does not change the file type.

The Filer

Duplicate_link

The Duplicate_link command establishes a new pointer to a file (SRM only).

file
specification (Retum) or (ENTER)) -

.. Range
Item | Description/Default | Restrictions
file specification literal (See the beginning of
this section)

Semantics

The Duplicate link prompt:
Duplicate link (valid only for SRM tvrpe units)
Duplicate or Move 7 (D/M)

Do you want the original pointer to the file removed after the duplicate link is established? If you
do, type (_ M_) — if not, type (CD)
The next prompt:

Durp_link what file 7

Type the SRM file specification (including the password if the CREATELINK capability has one).

Dup.link to what 7

Type the new file specification. Wildcards can be used in the specification. This puts a link to the
file in a second directory. If the Move option was requested, the original link is then removed.

If the file is referenced from two or more directories, the file is physically removed from the disc
only when all links to the file have been removed.

You should be aware that new CODE files generated by the Compiler, Assembler and Librarian
to replace older versions are not written in the same space (unless Overwritten). If several
directories have duplicate links to the same CODE file and the CODE file is recompiled, only one
directory has an accurate link to the new CODE file. Other users must use the Duplicate link
command to become linked to the new CODE file.

Note
Using the Duplicate_link command to ‘““duplicate link” a file to the same
file results in the file being removed.

The Duplicate_link command cannot duplicate links or move files which
are on different physical volumes.

131

132 The Filer

Extended directory

The Extended directory command lists the directory of a blocked volume or a set of files in the
volume.

file

specification b > (Reum) or (ENTER)
—
specification specification
specification
\. ~ J
destination
Item Description/Default Rap ge
Restrictions
file specification literal {See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics

The Extended directory prompt:
List_ext what directory 7

The Extended directory command requires a legal volume ID or a file specification. Results can

be listed to the PRINTER: or to a text file if specified and separated from the first specification by a

comma. If no destination is specified the listing defaults to the CONSOLE. Wildcards are

available to identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right, the
directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain the
creation date and volume size information. Level O directories (created on other systems) do not.
Your directory listing should display the date the directory was created and the date it was
changed as system volume, the size of the storage blocks, and whether the listing is in storage
order or alphabetical order. The size of blocks on LIF volumes is 256 bytes. The size of blocks on
WS1.0 volumes is 512 bytes. The Shared Resource Management system uses single byte
“blocks’".

To have directories listed in alphabetical order, include [*] after the directory name. For example:

MYDIR:[#*1

The column entries for each file include: file name, number of blocks used for storage. the file size
in bytes, the number of the block where the file starts, the date the file was changed. the type as
recognized by the file system, the type-code used by the directory system, SRM access informa-
tion, the date the file was created and two extension fields.

The Filer

The SRM access information column comes under the heading ‘‘directory info’’. It contains
codes which show the public access rights:

M Manager
R Read

W Write

S Search

P Purgelink
C Createlink

And the current file status:

CLOSED
SHARED
EXCLUSIVE
CORRUPT

CLOSED, SHARED and EXCLUSIVE are file status that are associated with SRM systems and
are explained in detail in Chapter 2. If a file is ever marked CORRUPT, your Shared Resource
Manager has a problem. Stop your operation and notify the person responsible for your SRM. He
should restore the SRM to a usable state.)

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized.

The results can be listed to a printer or a file if you so specify. The destination of the listing is
separated from the volume ID or file specification beinglisted by a comma and, if no destination is
specified, the listing defaults to the screen. Wildcards are available to specify groups or subsets of
files on a mass storage medium.

For example, assuming that SYSVOL: (the system volume) is in the disc drive associated with
logical unit #3, a listing of all the CODE files on that volume could be sent to the printer by
specifying any of the following in response to the Extended directory prompt:

#3:=CODE »#6: specifies volume residing in unit #3; listing to logical unit #6: (the
PRINTER: volume)

*=CODE,PRINTER: specifies system volume; listing to the PRINTER. Without the colon,
the listing would be sent to a DATA file named “‘PRINTER” on the
default volume.

SYSYOL:=CODE »#6 specifies SYSVOL: volume; listing to unit #6.

In all cases the *“=CODE" string refers to all files whose names end in CODE on the specified
volume and the listing is sent to the printer.

133

; 134 The Filer

Listings can also be sent to a file. Use a destination parameter after the the source parameter
(separated by a *“,”’) as in the above PRINTER: example. Give a complete file specification. Use
the appropriate suffix in the file name. Otherwise, a file of type DATA is produced. For example:

List what directory 7 #3:,5YSVOL:LIST.TEX

or

List what directory 7 #3::5¥SV0OL:LIST.ASC

The Filer

Filecopy

The Filecopy command copies a specified file, set of files or volume to the specified destination.

file

specification
epec it son

file

specification
eoe it o)

specification specification

.. Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics
The Filecopy prompt:

?

Filecopy what file

The Filecopy command is initiated by pressing (_F_) and requires two specifications — a source
and a destination separated by either a comma (,) or (Return) or (ENTER). The source volume must
be on-line. The destination volume does not have to be on-line.

Copying Files
When copying files, you will need to enter two file specifications, separated by either a comma or
the key. The first is the existing file, and the second is the name of the duplicate file.

Wildcards may be used to specify sets of files. If the equals (=) wildcard is used, the copy is not
confirmed before taking place. Also, note that if the equals wildcard is used alone (i.e., without
any qualifying strings) then the Filer copies every file on the specified volume. If the question
mark wildcard is used, you are asked to verify the transfer of each file meeting the wildcard
specification before the Filecopy takes place. Thus, using the wildcard allows you more flexibility
and control over the process.

The dollar sign character ($) may be used in the destination specification to indicate that the file(s)
will have the same name (or names) as the source file(s). For example, assuming that there are a
number of TEXT files on the volume TRIG: and that a second volume named MATH: exists,

TRIG:=TEXT +MATH: %

This results in all the files on the TRIG: volume whose file names end with the string TEXT being
copied to the volume MATH: and given the same name as they have on the TRIG: volume.

Be sure to use either a file name or the $ character when specifying a destination volume. If, in the
example above, the destination volume was specified as MATH: instead of MATH:$, the Filer
would respond:

Destrovy directory of MATH: 7

135

136 The Filer

If you respond with , the directory of that volume gets overwritten. Pressing(_N_) aborts
the Filecopy command and returns the Filer prompt.

On a system with a single disc drive, the Filecopy command proceeds by reading the specified file
or files into memory, prompting you to remove that volume and insert the destination volume,
and then writing the file(s) in memory to the destination volume. Depending on the amount of
memory in your computer and the amount of material being copied, you may have to swap discs
more than once.

Note

When using the Filecopy command with a single disc drive, wait for
the Filer's prompt before removing the source volume and replacing it
with the destination volume. Failure to follow this guideline may result
in the loss of information from the source volume.

A size specification may be used in the destination description. For example, specifying:

YOUOL:FILE,OTHERVOL:FILEL35]

would result in the file being written to the first available area on OTHERVOL.: that was at least 35
blocks in size.

Copying BASIC BDAT Files

The Pascal Filer can also copy BDAT (BASIC Data: file type —5791) files produced by HP BASIC
Workstation Systems. When copying BDAT files from one LIF volume to another LIF volume, or
from one SRM volume to another SRM volume, an exact duplicate of the file is made just as with
Filecopy of other file types. However, the file size changes when BDAT files on LIF volumes are
copied to SRM volumes, and vice versa. This change is due to these factors:

® On volumes with LIF directories, BDAT files contain a special ‘‘system sector’” (256 bytes)
which describes the file: logical end-of-file pointer, and number of defined records in the file.
This sector is at the beginning of the data portion of the file on LIF volumes, because there is
not room for the information in LIF directories.

® On volumes with SRM directories, BDAT files also have some of this “‘system’ information
(only the logical end-of-file pointer). However, it is not in the data portion of the file; instead it
is in the parent directory, which has room for the information.

Therefore when using Filecopy to copy a BDAT file from from a LIF to an SRM volume, some of
the “'system sector”” at the beginning of the LIF BDAT file is moved to the SRM directory. The file
size, as shown in a Filer directory listing, consequently decreases. Part of this decrease may also be
due to the fact that the SRM system keeps track of how many bytes were actually written into the
file, and only allocates enough sectors for them. (The BASIC system, on the other hand, allocates
as many sectors for LIF BDAT files as indicated by the ‘“‘number of records” and “record size”
parameters in the CREATE BDAT statement.)

Also, when using BASIC’s CAT statement to list the SRM directory, the number of logical records
(“RECS/FILE”) may change due to the fact that BASIC calculates this number by dividing the
physical file size by the logical record size (“BYTES/REC”).

The Filer

Conversely, when using Filecopy to copy BDAT files from SRM to LIF volumes, the logical
end-of-file information is moved from the SRM directory to the BDAT ‘“‘system sector’” at the
beginning of the data portion of the file. The file size, as shown in a Filer directory listing, may
increase due to the movement of this information.

When accessing BDAT files on LIF volumes with a Pascal program, it is important to note that the
first sector (256 bytes) of data in the file is the “system sector.” You will usually ignore this
information (unless your program knows how to use it), using only the data in the second through
the last sectors of the file.

Copying Volumes

To make a back-up copy of an entire volume, use the Filecopy command. Simply type in the
source volume ID and the destination volume ID. The destination volume must be initialized but
does not have to be Zeroed (the directory gets copied from the source volume). The Filer will ask
you if you want the directory destroyed. A volume-to-volume copy makes an exact copy of the
source volume on the destination volume.

Note that having two volumes with the same name on-line at one time is not advised. The Filer
looks for volumes according to their volume names and may not be able to distinguish one from
the other. Thus, the Filer may perform an action on one volume when you wanted the operation
to affect the other volume. The Filer warns you whenever this condition exists. If you get a
warning, either remove one of the volumes or use the Filer's Change command to change the
name of one of the volumes.

You can copy files on one volume to a volume of a different size but you should not use volume
IDs alone to do this. If the source volume is larger than the destination volume, the Filer refuses to
execute the Filecopy. If the source is smaller than the destination, the destination volume ends up
the same size as the source when the operation is through so you lose storage space. Remember?
It makes an exact duplicate of the source.

The best way to handle copies between different size volumes is to use one of the wildcards. Use
the equals wildcard (=) if the destination is larger than the source and the question mark wildcard
(?) if the destination is smaller than the source. In the latter case you have to be selective in your
copies since there is not enough space for all of the files.

When the Filecopy command has finished its task, the screen displays what file(s) or volume has
been copied and the Filer prompt appears. The Filecopy command can be aborted before all
specifications are complete by pressing (Retum) or (ENTER) in response to the prompt.

137

138 The Filer

In cases where the destination volume already contains a file with the same name as the file being
copied, this prompt is displayed:

ANYVOL s XFILE
eXxists +++ Remouves Dverwrites Neither ? (R/0/7N)

You have the options:

® Remove: remove the file before proceeding with the copy operation.

e Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result in
the file contents being inconsistent with the file type.

e Neither: cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links exist to a file. All links and passwords to the file are
accurate when a file is updated because it is put in the same logical location. If you chose the
Remove option, the original file would not actually be removed; only your link to it is removed.
The other users are still linked to the original file.

Note

Using the Filecopy command to *‘copy’’ a file name to the same name
on the same volume results in the file being removed.

Note
The Filecopy command does not change the file type.

Note

Overwrite of a file of type SYSTM is not recommended because the
start execution address cannot be changed in an existing SYSTM file.

The Filer

Get

The Get command associates a specified file as the current workfile.

file
(CO Y opeciticatson—{ @ o @@)

Item | Description/Default I Re?t?i?:st;iz ns
file specification literal (See the beginning of
this section)

Semantics
The Get prompt:

Get what file 7

The Get command is initiated by pressing (_G) and prompts you for a file specification. If a
workfile currently exists when the Get command is executed, you are asked if you want to release
that file before being allowed to specify a new workfile. Upon receiving the specification, the Filer
finds the file (or files) and associates that name with the current workfile. Subsequent operations
on the workfile use the specified name. The workfile is generally named *WORK.TEXT and/or
*WORK.CODE.

The Get operation assumes that the text version of the specified file has a . TEXT suffix. If the text
version is ASCII, you must include the .ASC suffix. If the text version is DATA, you mustinclude a

(XA

.”" at the end of the file name (to prevent the appending of the . TEXT sulffix).

The operating system notes that either a text or code or both versions of the workfile exist.
Workfiles can only be of type TEXT/ASCII/DATA or of type CODE. If both text and code versions
of the specified file exist, both are associated with the workfile; if only one exists, the association is
made with that file. The Filer reports one of three things: either a text or code file has been loaded,
both have been loaded or the file cannot be found on the specified volume.

The Filer is not the only Pascal subsystem where a workfile can be created. The Compiler,
Assembler and Editor subsystems also create workfiles. Once a workfile exists, it is treated as the
default file in many of the subsystems. A workfile is ‘‘released’” by the Filer's New command.

139

140 The Filer

Krunch

The Krunch command moves all files on a block structured volume so that all the unused storage
space is at the end of the volume.

volume
@_’Ispecificatxonl '((Belum) or (ENTER)) !

- Range
Item | Description/Default | Restrictions
volume specification literal {See the beginning of
this section)

Semantics
The Krunch prompt:

Crunch what directory 7

If there is the slightest question about the reliability of the medium you are using (because of
excessive wear or damage), use the Bad sector command to do a scan of the sector on the volume
before initiating Krunch. If a bad sector is found, use the Filer's Make command to make a file of
type .BAD over the bad sectors. Krunch does not move files of type .BAD. Moving files onto an
unreliable area of storage is a good way to lose a file.

The Krunch command is initiated by pressing (_K) and it prompts you for a volume ID. After
you respond with a legal volume ID of an on-line block structured volume, it prompts:

Crunch directory MKWORK: 7 (¥/N)

Where MKWORK : is whatever volume you specified. Typing for Yes lets the command
continue; (_N_) for No returns the Filer prompt. The Krunch command executes a sensitive
operation -- that of moving all the files forward on the disc by reading the files into memory and
then writing them back out on the disc in such a manner so as to make all the unused space on the
volume contiguous at the end of the disc.

Note

UNDER NO CIRCUMSTANCES SHOULD YOU ATTEMPT TO IN-
TERRUPT THE KRUNCH OPERATION ONCE IT HAS BEGUN.
You are risking your directory and thus, all the information contained
on that medium if you do so. Do not touch the power switch, the door
on the disc drive or attempt to use the keyboard while a Krunch is
occurring.

The Filer 141

This process becomes necessary when, after repetitive reading and writing to the disc, the
available storage space becomes highly fragmented. The situation can exist where you have 100
blocks available on the disc but because they are all in 10 or 15 block chunks, there is not enough
contiguous storage space for the system to write a 20 block file to the disc.

The Krunch command is extremely useful and using it should not worry you. However, because it
alters the directory (which maps where the information on the disc resides), it is one of the
quickest ways to wipe out a volume. The precautions outlined above should help you avoid any
problems while using the command.

The Krunch command does nothing on SRM units.

142 The Filer

List directory
The List directory command lists directory information about a block structured volume or one of
its subsets.

sneciffiilceatlon - »{_ (Rewm) or (ENTER
specification specification
P—
specification
\ ~ J
destination
Item Description/Default Range
Restrictions
file specification literal {See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics

The List directory prompt:
List what directory 7

The List directory command requires a legal volume or file specification. Results can be listed to

the PRINTER: or to a text file if specified and separated from the first specification by a comma. If

no destination is specified the listing defaults to the CONSOLE. Wildcards are available to

identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right, the
directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain
directory-create and volume size information. Level O directories (created on other systems) do
not. Your directory listing should display the date the directory was created and the date it was
changed as system volume, the size of the storage blocks, and whether the listing is in storage
order or alphabetical order. The size ¢ f blocks on LIF volumes is 256 bytes. The size of blocks on
WS1.0 volumes is 512 bytes. The Shared Resource Management system uses single byte
“blocks”.

To have directories listed in alphabetical order, include [*] after the directory name. For example:

MYDIR:L[*1

The column entries for each file include: file name, number of blocks used for storage, the file size
in bytes, and the date the file was created or changed.

The Filer

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized. You need one
256 byte block for each eight directory entries.

For example, initiating the command by pressing (L), specifying ACCESS: and pressing
(Return) or (ENTER) results in the following listing appearing on the screen:

ACCESS: Directory tvype= LIF level 1
created Z0-S5ep-82 13.57.17 block size=256
Storade order

vasfile namess o # blKs # hvtes last chng

FILER 218 55808 20-Sep-82

EDITOR 224 57344 20-Ser-82
LIBRARIAN 202 51712 20-Ser-82
MEDIAINIT.CODE 132 33792 20-S5er-82
TAPEBKUP.CODE 54 13824 20-Ser-82

FILES shown=5 allocated=5 unallocated=3

BLOCKS (256 bvtes) used=830 unused=2ZZ3 lardest space=Z2Z3

The Extended Directory command gives more information about the files and unused areas on
the volume.

143

144 The Filer

Make

The Make command creates files and directories.

file

@ ﬁ specificationl '((Retum) or (ENTER)) I
G

Item | Description/Default i Reg?irést}iins
file specification literal (See the beginning of
this section)

Semantics
The Make prompt:

Make File or Directory 7 (F/D)

The Make command is useful primarily in two ways. Files can be made when you need to reserve
physical space on a disc, and directories can be made on an SRM system.

The Make command is not required to create files to be used by the various Pascal subsystems. It
reserves space only; it in no way initializes or changes the contents of the space. In the Pascal
System, each subsystem lets you either create or specify any files you need. Users of HP BASIC
may quite naturally think that the same function is served by this command as the CREATE
command in BASIC (where you must create a file before using it). Thus the distinction between
these similar sounding commands is drawn here.

The Make command requires at least a file specification (which includes a volume ID by
definition) and accepts an optional size specification. If the (positive integer) size is given, it must
follow the file specification on the same line and be enclosed in square brackets. The Filer then
creates a file with the specified name and of the specified size on the first area of the volume that
has a large enough area of contiguous storage space to meet the size requirements.

When using a size specification to make a file, you must be aware that the size is specified in
“number of blocks’’. The size of all ‘‘Make’’ blocks is 512 bytes — regardless of the directory
type. A LIF directory considers a 256 byte sector to be a block. The WS1.0 directory considers a
block to be 512 bytes. So if you make a file on a LIF volume and specify 500 blocks, it will show
up in the directory as 1000 blocks.

For example, assume that there is a volume named MKWORK: on-line that has at least 22 blocks
of contiguous and unused space available. Press (_M_) to initiate Make, specifying:

MKWORK : DUX . TEXTLZ221 (Return) or (ENTER)

The Filer

This results in a file named DUX. TEXT being created on the first available area with 22 blocks of
the volume MKWORK: and the Filer reporting the following:

MRKWORK :DUX.TEXT made

A subsequent listing of the directory (using the List directory or Extended directory commands)
will show a file of the same name with a 22 block size (on WS1.0 directories).

The size specification may be omitted in which case the Filer creates the specified file using the
largest unused area on the disc (i.e., the largest contiguous storage space on the disc will be
allocated to the file). It is recommended that you specify the size you want the file to be.

There are two special cases of size specification worth knowing about. The first is the number zero
enclosed in brackets [01 which is the same as omitting the size specification altogether — the
Filer uses the largest space available. The second case is the asterisk character enclosed in
brackets [* 1 which tells the Filer to make the file’s size either the second largest area on the disc
or half of the largest area, whichever is greater.

The Make command is useful if you must rebuild a file that was lost on a disc.

1. You must know its size and where it was located.

2. Then make TEMP files (e.g., TEMP1, TEMP2, etc.) over all the unused spaces on the disc
that are as large or larger than the file you’ll be making.

3. Then make a file of the proper type over the lost file to recover it.
4. Finally, use the Filer's Remove command to remove all the TEMP files.

An Extended directory listing can help you determine the location and size of unused areas on the
disc.

The above technique will not recapture lost files on SRM systems. However, the Make command
is used to create directories on an SRM system. For example:

Make File or Directory 7 (F/D)
Answer the first question by typing (_D) and specify where you want the directory located and

what is its name. The directory path tells where you want it and its name is the name on the end of
the path. For example, if you had an SRM directory:

#5:USERS/JOE/PROJECTH
If you wanted to create a directory for Project 1’s DATA files, you should type:
#5:USERS/JOE/PROJECTLI/DATA

The DATA directory is created in the PROJECT1 directory.

145

146 The Filer

New

The New command releases or clears the workfile area.

0

Semantics

The New command requires no specifications. Upon pressing (_N_) to initiate the command, it
clears the workfile unless the workfile has been updated since the last Save command. If this is the
case, the prompt appears:

Throw away current workfile? (Y/N)
Responding by pressing (_N_) for No allows you to use the Save command to write the file to a

volume; for Yes clears the current workfile area. When the Filer executes the New
command, it will respond with:

Workfile cleared

You can check the status of the workfile before using New with the What command. The What
command gives you the name and status (saved or not) of the current workfile.

Do not confuse the Filer's New command with the New system volume command at the Main
Command Level — the two commands are different and perform separate functions.

The Filer
Prefix
The Prefix command changes the default volume to the one specified.
((I) spec iffiilcia tion
volume
Item Description/Default Range
P Restrictions
file specification literal for SRM only (See the
beginning of this section)
volume specification literal (See the beginning of
this section)
Semantics

The Prefix prompt:

Prefix to what directory 7

The Prefix command is initiated by pressing (_P_) and requires a volume ID. The command
allows you to specify a new default volume — the one where the Filer searches for file specifica-
tions when a volume name is not specified. The volume must be block structured (one used for
mass storage) but does not have to be on-line. The current prefix (i.e., default) volume can be
obtained by responding to the Prefix prompt with a colon (:). (The Volumes command may also
be used).

When the command executes, the screen displays the message:

Prefix is MKWORK:

Where MKWORK: is the name of the current default prefix. The Prefix command saves keys-
trokes if you are doing a lot of file accessing on a particular volume.

Filer commands which request a volume ID may be answered with the colon character (:) which
specifies the current default volume.

It is possible to set the default prefix to a flexible disc drive, regardless of the volume inside. This
is done by typing the following while the drive door is open.

#3: (Return) or (ENTER)

147

148 The Filer

The prefix command is used to set up a working directory on a Shared Resource Management
system as well. If you had an SRM file named:

#5:USERS/JOE/PROJECT1/PROGRAMS/FILE

Initiate the Prefix command as usual and specify:
#5:USERS/JOE/PROJECTLI/PROGRAMS
This sets the SRM volume as the default volume (with volume name of PROGRAMS) and

USERS/JOE/PROJECT1/PROGRAMS as the working directory on the SRM. Now you can
specify the file with:

FILE
If you were to use the Prefix command again to set the default prefix to another volume (not on

the same unit), the working directory and volume name for the unit remain PROGRAMS. You
need only specify:

#3:FILE

or

PROGRAMS:FILE

Either will get the same file.

Note

Do not use the Prefix command on unit #45. This is the system
volume and should not be altered.

It is possible to change the working directory on an SRM unit without changing the default
volume. Use the Filer’s Unit directory command. Press (_U_) and then give the directory name
that you wish to become the working directory. If the new directory is in the existing working
directory, just type the new directory name. If it is not, type the whole directory path as shown
above in the Prefix example.

The Filer 149

Quit

The Quit command exits the Filer subsystem and returns control to the Main Command Level.

Semantics

The Quit command has no parameters and no specifications of any type are needed. Pressing
(@) exits you from the Filer and the Main Command Prompt is displayed on the screen.

150 The Filer

Remove

The Remove command purges specified files from the directory.

file
specification

(Betum) or (ENTER)

. Range
Item | Description/Default | Restrictions
file specification

literal (See the beginning of
this section)

Semantics

The Remove prompt:
Remove what file 7

The Remove command is initiated by pressing (_R_) and requires a file specification. The

command removes the specified file from the directory, updates the directory and reports the

action it has performed. Wildcards may be used to specify a subset of files to be removed. If the

equals wildcard { =) is used in the file specification, the Filer reports the specified file or files and

then prompts:

Proceed with remove 7 (Y¥/N)

This is the last chance you have to change your mind about the removal. Pressing(_ N) for No
aborts the operation and no files are removed. Pressing for Yes removes those files
meeting the wildcard specification from the directory. The process is not always reversible.
However, the Make command can sometimes be used to recover a removed file.

Note

The Filer considers the file specification = to specify ALL the files on
the default volume and MKWORK: = to specify ALL the files on the
MKWORK: volume. If you use the wildcard in this form and respond
to the Filer's prompt (Proceed with remove 7 (Y/N))with
a for Yes, every file on the directory of the specified volume is
removed. Responding with a (_N_) for No aborts the operation.
Wildcards can be hazardous to your files — watch the prompts.

Specifying a single file (of an on-line volume of course) in response to the Remove prompt results
in the removal of that file from the directory and a report that the file has been removed. Once the
or (ENTER) key is pressed following the file specification (unless wildcards are used), that file
is gone.

The Filer

While the use of the equals wildcard (=) results in being prompted for whether or not you want
the directory updated, the question mark wildcard (?) acts slightly differently. It allows you to be
more selective in your removal. Given the volume PROCESS: containing the files:

NOVMEMO ., TEXT
MARKLTR . TEX
PARSER . TEXT
PARSER.CODE
GARBAGE . TEX

The specification PROCESS:?TEXT in response to the Remove prompt results in the screen
clearing and the following message appearing.

Remove NOVMEMO.TEXT 7 (Y/N)

Answering with eithera (Y) or (_N_) results in the next prompt appearing below the first:
Remove MARKLTR.TEXT 7 (Y/N)

The process continues until you have been prompted for all the TEXT files on the PROCESS:
volume and then the final prompt appears:

Proceed with remove 7 (Y/N)
You may be respond with eithera (_Y) (for Yes) or (_N)} (for No). The files are not actually

removed until this prompt is answered with a (__Y). The ? wildcard thus allows you to be both
selective and relatively safe about your file removals.

The Remove operation treats SRM directories like files if they are empty. Remove is not allowed
on non-empty SRM directories.

151

152 The Filer

Save

The Save command saves the current workfile on the specified volume.

|
- >
file)]
CE) 'lspecificaticml '((Betun) or (ENTER)

. Range
Item I Description/Default | Re stri'(‘:i}ions
file specification literal {See the beginning of
this section)

Semantics

The Save command is initiated by pressing(_§) and may or may not require a file specification.
If the workfile was never updated, it is automatically saved with the original name.

If the workfile was previously named using the Save command, or originally obtained using the
Get command, then the Filer prompts:

Save as PREVIOUS.,TEXT 7 (Y/N)

Where PREVIDUS . TEXT is the name previously associated with the workfile. Responding with a
for Yes results in either a CODE or TEXT file (or both, depending on what is in the
workfile) of that name being removed and replaced with the current workfile.

If the workfile is not named, or if you answer (_N), the Filer prompts:

Save as what file ?

When naming the file, the following conventions apply to the type of the file:
1. If a standard sulffix is recognized, the workfile is either Filecopied, Translated or Changed
(on the system volume) to the file name and type.
2. If no suffix is recognized, a .TEXT file is the default.
If no suffix, but a **.”” is found, the file type is DATA.

4. The .CODE file is created by removing the suffix (if there is one) and adding . CODE to the
file name.

w

The Filer displays that the file is now saved.

To find out what the current name and state (saved or not) of the workfile is, use the What
command.

The Filer

Translate
The Translate command converts text files between the TEXT, ASCII, and DATA formats.

file file

specification

. Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics

The Translate prompt:

Translate what file 7

The Translate command is initiated by pressing and requires two specifications — a source
and a destination separated by either a comma (,) or a carriage return (press (Return) or (ENTER)).
The source specification can be any block structured volume, any file or any group of files on a
volume. The destination specified can be any of the above and may also be a non-block
structured volume (i.e., the PRINTER : or CONSOLE :). Non-block structured volumes (like the
PRINTER:) are assumed to be on-line.

Wildcards may be used to specify sets of files but if a wildcard is used in the source specification,
either a wildcard or the $ character (discussed below) must be included for the destination. If the
equals wildcard (=) is used, the translate is not confirmed before taking place. Also, note that if
the = wildcard is used alone (i.e., without any qualifying strings such as LIBR, TEXT, etc.) then
the Filer Translates every file on the specified volume. If the question mark wildcard (?) is used,
you are asked to verify the translate of each file meeting the wildcard specification before the
Translate takes place. Thus, using the ? wildcard allows you more flexibility and control over the
process.

The dollar sign character ($) may be used in the destination specification to indicate that the file(s)
will have the same name (or names) as the source file(s). For example, assuming that there are a
number of TEXT files on the volume TRIG: and that a second volume named MATH: exists,

TRIG:=TEXT sMATH: %

This results in all the files on the TR I1G : volume whose file names end with the string TEXT being
translated to the volume MATH: and given the same name as they have on the TRI1G: volume.

153

154 The Filer

On a system with a single disc drive, the Translate command proceeds by reading the specified
file or files into memory, prompting you to remove that volume and insert the destination volume,
and then writing the file(s) in memory to the destination volume. Depending on the amount of
memory in your computer and the amount of material being translated, you may have to swap
discs more than once.

Note

When using the Translate command with a single disc drive, wait for
the Filer's prompt before removing the source volume and replacing it
with the destination volume. Failure to follow this guideline may result
in the loss of information from the source volume.

The Translate command allows the translating of files or groups of files to non-block structured
devices like the PRINTER : and CONSOLE :. Only text (TEXT, ASCII, DATA) files should be sent
to printers since other files are not generally human readable.

When the Translate command has finished its task, the screen displays what file(s) have been
translated and the Filer prompt appears. The Translate command can be aborted before all
specifications are given by pressing (Retum) or (ENTER).

In cases where the destination volume already contains a file with the same name as the file being
Translated, this prompt is displayed:

ANYVYOL:XFILE
exi1sts ++4+ Remove,r Duverwrites Neither 7 (R/0/N)

You have the options:

® Remove: remove the existing file before proceeding with the translation.

® Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result in
the file contents being inconsistent with the file type.

® Neither: cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links, passwords, etc. exist to a file. All links and
passwords to the file are accurate when a file is updated because it is put in the same logical
location. If you chose the Remove option, the original file would not actually be removed; only
your link to it is removed. The other users are still linked to the original file.

The Filer

Unit directory

The Unit directory command changes the volume name and working directory for an SRM unit.

file

specification

specification

(Retum) or (ENTER)

e Range
Item | Description/Default | Restrictions
file specification literal l (See the beginning of

this section)

Semantics
The Unit directory prompt:

Set unit to what directorv 7
The Unit command changes the working directory on SRM units. The working directory and the

volume name for SRM units are the same. The Prefix command performs the same operation but
sets the default volume to the SRM volume. The Unit command does not.

To specify the working directory, you must start either from the existing working directory or from
the root directory.

To get to the root, an SRM volume identifier must be given or the default is assumed. Follow the
volume ID with ““/”’. This positions you in the root directory.

155

156 The Filer

From the working directory. you can continue down the tree structure from directory to directory
or you can go back up the structure one directory at a time using *‘.."”" for the parent of the current
directory.

For example, if the present working directory for unit #5 is:

USERS/JOE/PROJECT1/PROGRAMS

and you wanted the new working directory to be:

USERS/JOE/PROJECTS/DOCUMENTS

you can specity it in one of the following ways.

#3:/USERS/JOE/PROJECTS/DOCUMENTS

or:

PROGRAMS: /USERS/JOE/PROJECTS/DOCUMENTS
or:

#3:../../PROJECTS/DOCUMENTS

or:

PROGRAMS: ../ . /PROJECTS/DOCUMENTS

The Filer

Volumes

The Volumes command lists the volumes currently on-line.

Semantics

The Volumes command requires no specifications. Upon pressing it displays the following
information about all on-line volumes currently associated with the Pascal System: the logical
unit number associated with a volume, whether the volume is the system (boot) volume, a block
structured volume or a non-block structured volume, the volume’s name, and the current Prefix
or default volume.

This is a typical display generated by the Volumes command:

Yolumes on-line:

1 CONSOLE:
z SYSTERM:
3 # MINI3:

4 % MINI4:

5 # MY_SRM:
6 PRINTER:

45 * SYSTEMO4:
Prefix is - MY_SRM:

The number on the far left is the logical unit number associated with the volume. The # character
in the second column indicates the system volume which is always block structured. The #
character indicates all other block structured volumes currently on-line. The remaining volumes
(shown with no character in the second column) are non-block structured. The last line of the
display shows the current default volume. It is where the system looks for a file when no volume
has been specified.

The above configuration shows two 3.5 or 5.25-inch flexible disc drives associated with units #3
and #4 and two SRM volumes associated with units #5 and #45. Respectively, they are the
working volume and system volume.

157

158 The Filer

What

The What command displays the name and state (saved or not) of the workfile.

Semantics

The What command is initiated by pressing (_W) and requires no other input. The command
shows the name of the current workfile or indicates that it is not associated with a file name. It also
shows whether or not the workfile has been saved since the last update to the file. If no workfile
exists, the Filer responds with:

No workfile

Suppose you had two files named INFRARED.TEXT and INFRARED.CODE on the default or
prefix volume. Assume that you used the Filer's Get command and specified INFRARED to
associate the files with the workfile. If you then edited the TEXT version of that file (using the
Pascal Editor), returned to the Filer and executed the What command, the screen would display:

Workfile is INFRARED (rnot sauved)
because the workfile was changed since the last time a Save command was executed.

Saving the workfile does not change the fact that the workfile exists. It is still there. The New
command is used to clear the workfile. Saving the workfile is not remembered between separate
sessions of the Filer. If you Save the workfile during the current Filer session. a New command
immediately clears the workfile. If you Save it, quit the Filer and then return to use the New
command, the Filer will ask:

Throw away current workfile 7 (¥/N)

even though you saved it during the previous Filer session and haven’t updated it since.

The Filer

Zero

The Zero command creates an empty directory on the specified volume. The Zero command is
not allowed on SRM volumes. (See the Make command.)

volume
@) . e e D

Item | Description/Default I Regt?i?:st}izns
volume specification

this section)

literal ’ (See the beginning of

Semantics
The Zero prompt:
Zero directory (NOT valid on SRM tvyrpe units)

Zero what directory 7

The Zero command is initiated by pressing (_Z) and requires the volume ID of a block
structured volume. The volume must be formatted using the Pascal utility program
MEDIAINIT,CODE supplied on the ACCESS: volume.

Since the Zero command creates an new empty directory on the volume, you will be prompted:

Destroy THISVOL: 7 (Y¥/N)
Responding with a (_ N) for No aborts the command and returns the Filer prompt.

If you answer , the next prompt is:

Number of directory entries (8) 7

The number in the parentheses is the number in the existing directory. Respond with or
if that is the number you want. If there is no number in parentheses, (Return) or (ENTER)
causes the default number for that directory type (80 for LIF; 77 for WS1.0) to be put on the disc.

159

160 The Filer

The next prompt is:
Number of bytes (27033G) 7

Itis asking for the logical size of the disc (the extent to be managed by the directory). The number
in the parenthesis is the number in the existing directory or the default for that disc. Press
or (ENTER) to use the displayed number.

The next prompt is:
New volume name 7
The Filer is asking for a legal volume name. Volume name formats vary with different directory

structures. LIF directories allow up to six characters with upper and lower case characters being
distinct. WS1.0 directories allow up to seven characters and all are made upper case.

An answer of (Return) or (ENTER) aborts the Zero command.

After typing a volume name, the final prompt appears:

NEWSTUF: correct 7

Responding with (_N_) aborts the Zero command. Responding with results in the

message:

NEWSTUF: zeroed

Where NEWSTUF: is the name of the new volume. The Filer prompt reappears when the
operation is complete.

Note
Because the file system works with volume names. a LIF volume
whose name is all blanks (ASCII spaces) will not be recognized as a
valid volume.

Chapter

6

Pascal Compiler

Introduction

This chapter describes the Workstation Pascal Compiler, another subsystem of the Workstation
Pascal System. It shows how to use the Compiler to prepare Pascal source programs for execution
on the Workstation System.

The Workstation Pascal Compiler supports a generous set of Pascal language features. They are
briefly described in the ‘“Overview of Workstation Software Features” chapter. Further details of
the language features available on this system are referenced in that chapter.

Two slightly different compilers are shipped with the Workstation System:

e COMPILER produces object code for all the processors in the MC68000 processor family (be-
cause it generates only MC68000 instructions).

e COMPILEZ0 produces machine-specific object code for the MC68020 processor (the MC68000
and MC68010 processors cannot execute these instructions).

Preparing a program for execution on this system is a simple process. First, produce source text
file(s), usually with the Editor subsystem. Then use one of the two compiler subsystems to generate
an output file of relocatable object code. This output file is ready to be linked and run with the Run
command — normally there is no explicit link step.

Compilation speed depends on the storage medium where the source and object code reside.
Using floppy discs, about 1600 lines per minute (Ipm) is typical. If the files are memory-resident, the
rate is around 4000 lpm. The Compiler’s speed contributes significantly to the interactive and crisp
feeling of the Workstation Pascal environment.

The Compiler, supported by other subsystems, provides complete facilities for the creation, mainte-
nance and use of software libraries. Modules of Pascal code can be compiled, stored in the System
Library, and automatically accessed by any program which needs them. Compiled modules carry
along a detailed specification of their interface which allows any other program or module to use the
code or data structures they declare.

161

162 Pascal Compiler

Steps In Program Development

This section will teach you by example the steps required to compile and run a simple program.
You need to know how to use the Editor before you can proceed with this material. We begin at the
Command level of the system, with no workfile present.

Prepare the Source Program

First we need a program to compile. Enter the following program using the Editor. The Compiler
isn’t particular about margins, so you can adjust the program to the left margin as you type. Try to
preserve the indentation, to keep the program easily readable by mortals.

Notice that the word *‘end” is intentionally misspelled at the bottom of the program. Type it just as
shown. so you can see how errors are handled.

When you leave the Editor (Quit command), you should specify that the output is to be Written to
the file “HOWDY”. Don’t make a workfile (don’t use the Update option).

program howdy (inputsoutput)s
tvePe
color = (redsorandesvellowsdgreen)

var
hue: colors
i inteders

procedure show (c:i:color)i
bhedin

writeln(outrput sy "Howdy! ‘rc) i
i 1= i+13
endsj
bedin
writeln(outeput)s i 1= 03
for hue := red to dgreen do
show(hue) 3

emd .,

At this point, if you use the Filer to examine the directory of your default volume, you’ll see the file
“HOWDY.TEXT” .

Invoke the Compiler

The Compiler is invoked by typing the (_C) key when the system is at the Main Command
Level. At the time you booted up, the system looked for the Compiler on all the mass storage
volumes which were on-line. If the Compiler was found at that time, it is expected to still be in
the same volume whenever it’s needed. If the Compiler wasn’t found, the system will try to run
CMP:COMPILER (or the file specified with the last What command).

So if you press and the system responds that it can’t load the Compiler, you must first
put the CMP: disc in a drive, then press again.

It takes a few seconds for the Compiler to load from a floppy disc. Then it will ask you,

Compile what text 7

Pascal Compiler

If you had to swap discs, you should remove the CMP: disc and put back the default volume.
Now respond:

HOWDY (Return) or (ENTER)

The Compiler automatically appends the . TEXT"’ suffix to the name you give; you need not
do so yourself. Next you are asked,

Printer listing (1/v/n/e) 7
If you have no printer, you must answer (_N_) for no listing or for a listing file. If you've
got a printer, the response gets you a complete listing. Answering (_E) will get you a
listing only of any errors which are detected. For the moment, let's answer (_N) and get no
listing. Finally the Compiler asks:

Output file (defauwlt is "HOWDY.CODE") 7

Respond to this by pressing (Retum) or (ENTER) to accept the default.

As the Compiler runs, you can observe its progress through the source program. Each dot
displayed represents five lines of the source text which have been scanned. Whenever the body
(the “‘begin’’) of a new procedure is reached, that procedure’s name is displayed on the screen
along with an estimate (in square brackets) of how much memory is still available for the
Compiler to use. The Compiler reads through an entire procedure body before generating any
code; if you write very large procedures, you may notice the stream of dots hesitating momen-
tarily at the ends of some of them.

When the misspelled word ““emd’ is encountered, the Compiler will beep and display the
offending line. You now have three options: press the space bar to continue compiling, hold
down and press (Select) ((_EXECUTE)) to terminate the compilation, or enter the Editor to fix
the mistake. You should select “‘Edit”’ by pressing

Note

The Editor must be Permanently loaded, or the volume containing the
Editor must be on-line to use the @ option when exiting the
Compiler.

Handling Syntax Errors

If the Compiler is printing a listing, it will report errors on the printout, rather than interactively,
giving you an opportunity to edit the program. In this case, you must call the Editor yourself after
the compilation is finished.

When the Compiler points out a syntax error, the place it indicates is not necessarily the place
where the error occurred; rather, you are shown where the error was first recognized. An easy way
to get extreme examples of this is to accidentally have unbalanced “‘begin” and “‘end’” pairs in a
deeply nested program. The imbalance may be syntactically (though not visually) undetectable
until much later in the program. Compilers don’t see what you mean, only what you write.

163

164 Pascal Compiler

The error message may not seem reasonable to you. For instance, your misspelled “‘end’” looks
to the Compiler like an undeclared identifier which may be the beginning of an assignment
statement. The Compiler sees no similarity between “‘end” and “‘emd.

When an error is detected, the Compiler tries to recover by making an assumption about what
you meant. Frequently the assumption is wrong, which leads to further errors being reported in
the vicinity of the first one. Sometimes the Compiler will try to recover by skipping text until it
sees a keyword or other symbol it recognizes.

Back to the example: you elected to edit the program, so the Compiler terminated and the
Editor is now invoked. The file containing the offending line is automatically brought in, and the
cursor is placed where the error was reported. Simply fix the misspelling and quit the Editor,
using the Save option to rewrite the corrected file under its original name, “HOWDY"".

Repeat the steps above to compile HOWDY again. If you have a printer, this time you should
ask for a listing. If there are no other accidental errors, the compilation will succeed this time.
Your printout should look like this:

Pascal [Reuv 2,0 10/19/821 HOWDY.TEXT 19-0ct-82 14:08:32 Pade 1
1:D O prodgram howdy (inPuts outpPut)s
2:D 1 tvee
3:D 1 color = (redsorandesvellowsdreenls
4:D 1 wvar
5D -2 1 hue : colors
6G:D -6 1 i ¢ inteder})
7:8
g:D 1 procedure show (c:color)i
9:C 2 hegin
10:C 2 writeln{output s Howdy! ‘e
11:C 2 i 1= i+173
12:C 2 ernd}
13:8
14:C 1 bedin
15:C 1 writeln(outeut)i 1 1= 03
16:C 1 for hue := red to dreen do
17:C 2 show(huel s
18:C 1 end.

No errors, No warninsgs,

Interpreting the Compilation Listing

The column of numbers at the left enumerates the lines. ‘D" next to the line number indicates the
line is a declaration; ‘S’ indicates the line was skipped altogether, either because it's blank, or
because it is entirely within a comment. “C” indicates the line is part of the body of a Pascal block.

The two numbers, -2 and -6, provide information about where the variables “‘hue’” and “color’ will
be stored in memory. More detailed information about this can be requested by the $TABLES$
Compiler option.

Pascal Compiler

The column of numbers immediately to the left of the program text shows how deep structures in
the program are nested. This can be very useful when begin’s and end’s get out of balance. The
main program is at level 1, with procedures nesting successively deeper. The structural nesting of
complex statements such as for-loops, if's and with’s is also counted.

Running the Compiled Program

If you use the Filer to look at the directory of your default volume, you’ll see that there are two
HOWDY files now: HOWDY.TEXT and HOWDY.CODE . Press the (_R) or ((RUN) key. The
operating system remembers the name of the most recently compiled file. You'll see the
message,

Loading ‘HOWDY.CODE'

The program runs, producing this display on the screen:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Yersion 7
Howd v 1 RED

Howd ! ORANGE

Howdy ! YELLOW

Howdy ! GREEN

You can also run the program by using the eXecute command: press the (Select) ((EXECUTE }) or the
(_X) key. Then when asked

Execute what file 7

answer

HOWDY (Return) or (ENTER)

Try it now. Actually, you can eXecute any program, not just the one you most recently com-
piled. Also, if you use the Run command when you haven’t compiled any program, the
behavior is as if you used the eXecute command.

Using a Workfile

The Compiler’s behavior depends somewhat on whether you are compiling a workfile, or some
other source file. If you use a workfile, you are asked fewer questions by the Compiler and Editor;
in fact, while the workfile is present you can’t compile or edit any other file! This kind of abbreviated
behavior may be a blessing or a curse, depending on your needs.

Workfiles are most useful when you're writing a small program and you’re in a hurry. In that case
you’ll appreciate the convenient reduction in keystrokes needed to compile and run the program.
On the other hand, experienced programmers developing complex systems with many source files
almost never use workfiles.

165

166 Pascal Compiler

Workfiles are not particularly useful unless the Editor has been permanently loaded, or the volume
containing the editor is on-line. This is particularly important in systems which have no external
mass storage.

There are two ways to tell the system to use a workfile. You can create one by using the Update
option when quitting the Editor; a workfile made this way will always be called WORK.TEXT, and it
will be stored in the system volume. Alternatively, you can designate some existing file as the
workfile by using the Filer's Get command. The Update option and the Get command are ex-
plained in the Editor and Filer chapters of this manual.

Let's make a workfile of HOWDY using the Editor. Press the (_E_) key, and answer that you want
to edit HOWDY. Immediately use the Quit command, and select the option to Update the workfile.
This makes a copy of your original source file (but not of the code file). Note that the system volume
must be on-line at this point, since that is where the workfile is kept.

Now press (_R_). If the Compiler isn’t on-line, you will need to insert the CMP: or CMP20: disc
into a drive first. If you swapped discs, then the Compiler is loaded and will say:

Mount *WORK.TEXT and Press <spacesx

As you can see, the Compiler knows it’s supposed to compile the workfile, and you must put
your system volume back in the drive. If the Compiler was already on-line, only one question is

asked after you press (R _):
Printer listing (1/v/n/e) 7

Probably you'll answer no. The program then compiles, producing WORK.CODE, and im-
mediately runs.

To execute it again, just press (_R_). It won’t be recompiled unless you use change it with the
Editor. If you aren’t convinced it actually ran again (it happens pretty fast), press the space bar to
clear the screen before running it again.

Debugging

The Debugger subsystem is described in detail in a later chapter of this manual.

Note
With Pascal 3.0 and later versions, the Debugger is not automatically
loaded when the system is booted. You will need to load it if you want
to use it. See the “Debugger’’ chapter for loading instructions.

Pascal Compiler 167

Modules

A module is a program fragment which can be compiled independently and later used to complete
otherwise incomplete programs. For example, you might want to define a ““complex number” data
type and some relevant functions, then use those definitions in several programs. This section
introduces the concepts and facilities you will need to define, debug and use module libraries.

Modules, like almost everything else in Pascal, must have all their relevant features and characteris-
tics declared before use. Diagrams precisely detailing the syntax of a module declaration can be
found in the HP Pascal Language Reference; an informal presentation is more suitable for present
purposes.

Module Structure
The four parts of a module are its heading, the import and export sections, and its implement part.
o The heading introduces the module and names it. The name is an ordinary Pascal identifier.
Example:
module complexmathi

e The import part names all other modules on which the present one depends. One module
depends on another if the dependent module makes use of things exported from the imported
one: calling procedures, assigning to exported variables, or declaring variables of an exported
type. The names are separated by commas and the list ends with a semicolon:

import complexmathsconversionss?

There is no import part if the module is independent of all others.

® The export part defines the constants, types, variables, procedures and functions which this
module will supply to any program or module importing it. Constants, types and variables are
declared just as in a program or procedure block. Procedures and functions are presented as
headings without bodies.

expPort
const Pi = 3.,141583
type
polar = record radiusstheta: real endj
var

scalefactor: reals

oridin: polar:?
function maKerpolar (a: complex): Polari
procedure setoridin (a: complex)si

The export part may make use of things in turn exported from other modules listed in the
import part, such as the type “‘complex”. Every module must have an export part.

168 Pascal Compiler

® The implement part consists of the reserved word IMPLEMENT, followed by constant, type,
variable, procedure and function declarations, followed by the word END. All the procedures
and functions whose headings were in the export part must be present in their entirety in the
implement part. The implement part may make use of things in turn exported from other
modules listed in the import part.

A module does not have to export procedures or functions, it may be used simply to create
data types. In such a case there will be nothing between the words IMPLEMENT and END.

A complete module, ‘‘complexmath’, is shown on the next page. It has no import part because it
depends on no other modules. (The module is also on the DOC: disc; the source is called CXMO-
DULE.TEXT.)

The import and export parts are said to define the module’s interface to other modules or prog-
rams. This interface is public: the information it contains is available to any imported of the module.

The implement part is said to be “‘private’”’, which means that everything between the words
IMPLEMENT and END is hidden from importers. Anything declared here is unknown outside the
module, except for procedures and functions whose headings were also included in the export part.

The private and public parts of the module are separated in this way so that its implement part can
safely be changed without altering programs or other modules which import it. This independence
of modules from programs is a key to developing software libraries. Another implication is that
modules can only be dependent on other modules, not on programs. The reason is simply that
there’s no way to import a program into a module (since programs have no export declarations).

It was stated at the outset that a module is a “fragment”’ of a program. To be more precise, a
module is a set of global (outer level) declarations which can be compiled once, then bound into a
program by an IMPORT declaration in that program.

Pascal [Rev 2,0 10/19/821 CXMODULE.TEXT

OO0OONOOoOOOOCOO0NO0NNOoOoDoOONDoDO0O0oOo0O0DoONC 00000000

OGNS WM SCOONOUUEDEWRN - SO0OoNONES W= O0B0N0 s R

[T AR ST % B 7% B 7 B 7% B 0% Y 5 T S B o B % T % T o B o O O I 0 B e e i i sorli i i sl
[23 RN

39:C
40:C
41:85
42:D
43:C
44:5
45:D0
46:C
47:8
48:D
49:C
50:C
51:C
52:C
53:5
54:C

No errors,

-32

-40

-16

-18

-24

Pascal Compiler

19-0ct-82 09:09:35 Pagde |

0 module complexmathi

i export

i type

1 complex = record

i re: reals

1 im: reals

1 ends

1 const

1 zerc = complex [re:Q,0sims0,013

1 function eaual (asb: complex): booleani

1 function add {(asb: complex): complexi

1 function mul (ash: complex): complexi

1 function dud (asb: complex): complexi

1 function cond (a: complex): complexi

1 function mad (a: complex): reals

i function scmul (scale:reald a:scomplex): complexs
1 implement

1

1 function eaqual (asb: complex): booleans

2 bedin eaual := {(a.re=h.,re) and (a.im=b.im) end}
i function add (asb: comeplex): complexs

2 bedin add.re := a.re+b,red add.im := asim+tbedim endj
i function mul (arb: complex): complexsi

2 bedin

2 mulsre 2= (a,re*b.re-a,im*byim)3

2 muleim 2= (a.re*b,im+a,im*b,re)s

2 ends

1 function dud (ash: complex): complexi

2 var denom: reali

2 bedin

2 denom = sar{b.,re)+sar(b,im)}

2 if denom = 0.0 then halt(-5)§ (#divide by zero*)
2 dud.re := (b.re%a.re + b.im*a.im) / denomi

2 dvudeim == (b.re¥a.im - b.im*a,re) / denomi

2 endsi

1 function cond (a: complex): compPlexi

2 bedin cond.re = a.rei cond.im := -a.im ends
1 furnction mad {a:complex): real}

2 bedin magd := sart(sar(a,re)+sar(a.im)) end}
1 function scmul (scale:reali a:comelex): complexi
2 begin

2 scmul.re = scale*a.res

2 scmiulvim 2= scale*a.im

2 end}

1 end, (*complexmath#¥)

169

170 Pascal Compiler

Developing and Testing a Module

The Workstation environment supports a structured approach to the development and testing of
software modules. This is important because modules often become part of the system library, and

many programs may depend on them. The usual steps in the development cycle are:

® Decide what the module will do — define its functionality. Write the interface part first, specify-
ing what other modules will be needed and what things the module will export. Remember
that when the finished module is imported into a program, only this interface will be “‘visible.

Figure out how a program will use the exported things to get the module to do its job.

® Decide how the module will be tested. Write a test program which will thoroughly exercise it.

® Write the implement part of the module. Embed the completed module in the test program,
and compile the two together. Leave the module inside the program until you’re satisfied with
the results.

® Extract the module from the test program. This can be done by using the Librarian to pull it out
of the compiled test program, or by separating the module’s source text with the Editor and

compiling it independently.

® Use the compiled module. It can be put in the current system library (which is normally the
LIBRARY file), or left as a user library which is manually linked to dependent programs, or

loaded into memory by the Permanent load command.

The following listing shows the source of CXMODULE embedded into the program called CX (also

on the DOC: disc):

Pascal

WONRUNE WM —

el e el
(20N 0 B g A N SV I el
ar wx s = .

—_ .
wm

201

25:

[
~
O00NCoVUO0oONO0oUoONODUD0U0O0oONoODU0OOoOULUDUOOoOWNo

w
>3
w

[Rewv

2,0 10/19/821 CXOLTEXT

-32

-32

0

(SIS

[0 o BN I

pProdram cx

19-0ct-82

(listing)si

module complexmathi

exXPOTrt
tyPe
comPlex

const
sero =

function
furnction
function
function
function
function
function

implement

function
begin

function
bedin

function
begin

mul.re

mul,i
end’

= record
res
imz

ends

reals
realj

complex [re:Q.0,im:0,0153

(ashs
(ashs

booleans
compPlexi
comPlexs’
compPlex}
complexi
reali

arcomplex):

complex):
complex):
(asb: complex):
(asbh: complex):
(a: compPlex):
(a: complex):
(scale:reals

equal
add
mul
dud
cond
magd
scmul

kooleani
and

equal (asb: complex):
equal := (a.re=b,re)

add (asb:
add.re :=

comPlexsi
add.im ==

complex):
a.re+b.rej
mul (asb: complex): complexi
(asre*b,re-a,im*b.im)3j
(a.re*b,im+a.im*b.re)s

m

(asim=

comPlexs

beim) end}

asim+beim

09:15:91 Pade 1

end}

Pascal [Rev 2,0 10/19/823 CXO,TEXT

35:D
36:D
37:C
38:C
39:C
40:C
41:C
4z2:cC
43:5
44:D
45:C
46:8
47:D
48:C
49:9
30:D
51:C
32:C
53:C
54:C
55:5
56:C
57:5
58:5
39:8
B0:S
B1:D
B2:8
B3:D
B4:D
B3:D
B6:D
67:D
68:D
69:D
70:D
71:D
72:8
73:C
74:C
75:C
76:C
77:C
78:C
79:C
B0O:C
g81:C
82:C
83:C
B84:C
B85:C
B8G6:C
B7:C
B8:C
B89:C
80:C
91:C

No errors.

-32
-40

-16

-16

-24

-32
-304
-320
-324
-324

[K0 I N O I S TR S I A N

—

3

ry —

[A0 I SN N SN]

—

Py

[P UPIIE U O

[l % B O I o B e e S T U S0 T B SN I A Lt e

(ash: complex): compPlexs

real’

function dud
var denom:
hedin
derom := sar{b,re)+sar(b,im)}
if denom = 0.0 then halt(-3)§ (*divide
dud.re := (b.re¥a.re + b.im*a.im)
dudsim 2=
end§

cond (a: complex): compPlexs
conJ.re = a.rei condeim =

function

bedin
mag (a:complex): reals
mag =

function
bedin
function scmul (scale:real’ a:zcomplex):
bedin
somul.re 3= scale*a.rej
scmulsim := scale*a,im
endi

endi (*complexmath#*)

import complexmaths

const
pi = 3,1415926545%
nsters = 163
var
ash: complexs
table: array [l..nsteps+l] of complexs
thetasthetaster: reali
it inteders
listing : texts

bedin
theta 1= 0,03
thetastep := pPi/(2%¥nsters)}
a := zeros b := zeroj
for i 1= 1 to nsters+l do
bedin
a.re := sin(theta)i
beim == cos(theta)i
tablelil := add(asb)i
theta := theta + thetastepri
endi
writeln{listingd,’ REAL !
! IMAGINARY '
! MAGNITUDE
for i := 1 to nsteps+l do
writeln{listings’ '
tablelilsres’
mad(tablelil)

(#leave im pPart
(#leave re Part

1]

13

)3
‘stablelilsim,’

)i
end,

-a+im

sqrt(sar{a.re)+sar{a.im))

Pascal Compiler

19-0ct-B2 09:13:51 Pade 1|

by zero#*)

/ denomi
(bore¥asim - beim*a.re) / denomi

endj

endi

complexi

Zero¥)
Zero%)

1
+

171

172 Pascal Compiler

REAL
0, 00000E+000
9.80171E-002
1,95090E-001
2,90285E-001
3.82683E-001
4,71397E-001
5.55570E-001
6.34393E-001
7+07107E-001
7.73010E-001
8.31470E-001
8.81821E-001
9.,23880E-001
9.56940E-001
9.80785E-001
9,95185E-001
1+00000E+000

IMAGINARY
1,00000E+000
9,95185E-001
9,B8078B5E-001
9,56840E-001
9,23880E-001
8.81921E-001
B8.31470E-001
7.73010E-001
7.07107E-001
5.+34393E-001
5,353570E-001
4,71397E-001

3.82683E-001

2,90285E-001
1,950890E-001
9.,8B0171E-002
-2.0510E-010

MAGNITUDE
1.00000E+000
1.00000E+0Q0OO0
1.,00000E+000
1.00000E+000
1., 00000E+000
1.0C0000E+0O0
1.00000E+000
1.00000E+000
1.00000E+000
1+ 00000E+000
1.,00000E+000
1.,00000E+000
1,00000E+000
1.,00000E+0QO
1,00000E+000
1.00000E+000
1, 00000E+000

An Hlustration

The accompanying listing shows the module ‘‘complexmath’” embedded in a test program. The test
program isn’t very thorough, since it only checks the constant ‘“zero”” and the “add” and ‘“‘mag”
functions.

Modules embedded in a program may be intermixed with global constant, type, and variable
declarations, but all modules must appear before any of the program’s global procedures and
functions. Usually all the modules are put first, followed by the program’s own globals. If there are
several modules, they must be ordered so that no module is imported by another (or by the
program) until it has been declared.

Notice the semicolon following the END of the module (line 56), and that the program must have
an IMPORT declaration (line 61) even though the module is physically present in the program.

Program ““cx”’ can be compiled and run as shown. If you'd like to try it, invoke the Compiler by
pressing at the Main Command Level. When asked what text to compile, put the disc
labelled DOC: in a drive and answer:

DOC:CX
Let the Compiler put the output file on the same disc (accept the default output file).

Compiling a Module Separately

The file generated by compiling CX.TEXT is a library with two modules, the main program “‘cx”
and module ‘‘complexmath’. Strictly speaking a program isn’t a module, but within a library it has
a directory entry just as if it were. You might wish to use the Librarian and see this for yourself. The
Librarian can display every detail of a code file. Had there been several modules in “‘cx”, each one
would have had a separate directory entry.

It’s important to be clear about the distinction between modules and libraries. A library is a file that
contains object-code module(s); it is created by the Compiler or Assembler or Librarian. The
library’s name is its file name, which you can see with the Filer. Inside the library is a directory
naming all the modules in that file. The library directory can only be displayed by the Librarian.

Pascal Compiler

If you were satisfied at this point with the testing of “‘complexmath”, you could use the Librarian to
pull that one module out of the code file, and make it a user library or add it to the system library.
The Librarian chapter describes how to do this.

Another alternative is to compile the module separately. Simply use the Editor to create a text file
having only the module. Notice that when the module is compiled alone, it must be terminated by a
period instead of a semicolon. The Compiler will also accept a sequence of several modules
separated by semicolons, as long as the last one is terminated with a period. The program listing on
the next page shows the listing generated by a separate compilation.

How the Compiler Finds Library Modules

A module which has been compiled is called a “library module”. Library modules can be imported
by programs or other modules, because the compiled code file carries with it a description of the
module’s interface. The Compiler is able to read this description and from it determine how to
properly access everything exported by the module. (Note that modules which have been “‘Link-
ed” by the Librarian do not contain the module interface descriptions.)

When the Compiler processes an IMPORT declaration, it must find the modules named in the
import list and read their interface specifications. A particular search pattern is followed, which is
repeated for each module named in the list.

e If the imported module has been previously declared or imported in the source text being
compiled, the reference is to that module.

e If no module of that name has been found, the Compiler must search library files on mass
storage. The file(s) to be searched may be specified in a $SEARCH ‘FileName'$ option.

o If there is no $SEARCHS$ option or the module is not found in the specified list of files, the
Compiler goes on to look in the current system library.

o [f the module still isn’t found, error 104 (undeclared identifier) is issued.

Note
The Compiler does not search libraries which have been loaded into
memory with the P-load command. Module interface specifications are
not retained with memory-resident libraries.

A module which is imported may itself import other modules, which are listed in its import section.
The Compiler must follow such a chain all the way back to its root, to a module which imports no
others. The search pattern just described is applied recursively, to a maximum depth of ten levels.
For a restriction, see the subsequent “INCLUDE Files” section. Sometimes in following an import
chain, a module is named in more than one import list. The Compiler actually reads the interface
specification for a module just once.

If a program imports module “A”, which in turn imports module “B”, the things exported from
“B” are nevertheless hidden from the program. To make them visible, ‘B’ must also be imported
into the program.

173

174 Pascal Compiler

The listing below shows program “‘cx’’ recompiled to search for module ‘“‘complexmath’” in a
library called “CXMODULE” on mass storage unit #3. The second listing shows ‘‘cx’’ recompiled
assuming ‘‘complexmath’ has been put into the current System Library.

Pascal [Rev 2.0 10/19/821 CX.TEXT 19-0ct-82 09:30:34 Page 1
1:D O prodram cx (listing);
2:5
3:D 1 $search ‘#3:CXMODULE ‘%
4:D 1 import complexmathi
5:8
G:D 1 const
7:D 1 Pi = 3.,1415926543
8:D 1 nsters = 161
9:D 1 var
10:D -32 1 asb: complexi
11:0 -304 1 table: array [1..nsteprs+1] of complex]i
12:0 -320 1 thetasthetaster: reali
13:D -324 1 ii inteders
14:0 -324 1 listing 1 text]
15:8
16:C 1 bedin
17:C 1 theta 1= 0,03
18:C 1 thetaster 1= pPi/(2%nsters))
19:C 1 a := zeroi b = zeroi
20:C 1 for i = 1 to nsters+l do
21:C 2 bedin
22:C 2 a.re 1= sin{theta)si (*¥leave im Part zero#*)
23:C 2 beim 1= cos(theta)s (#leave re Part zero¥*)
24:C 2 tablelil := add(asb) 3
25:C 2 theta := theta + thetaster]
26:C 2 end]i
27:C 1 writeln(listing,’ REAL ‘y
28:C 1 4 IMAGINARY '
29:C 1 ! MAGNITUDE ‘)3
30:C i for i := 1 to nsters+l do
31:C 2 writeln(listings’ /
32:C 2 tablefilsres’ ‘stablelil.ims’ 7
33:C 2 mad(tablelil))3
34:C 1 end.,

No errors.

Pascal

201
21

b
doim 3

23:
24:
25:
26:
27:
28:

sy
i

30:
31:
32:

33:

No errors.,

MONNONEWN—

OOoONOoOO00O0O0nNO00O0O0o0NO00NoDUuUooVoocoonono

[Rev 2.0 10/19/821 CHZ.TEXT 19-0ct-82

-32
-304
-320
-3:24
-324

No

O program cx (listing)s

1

e b bt b b b b

PRI R e s BRI R PRI R o e e e

import complexmathi

const

pi = 3.1415926543
nsteps = 1B}

var

arb: complexi

table: arrav [i1..nsteps+1] of complexi
thetarthetaster: realj

i: intederi

listing @ texts

begin

theta 1= 0,03
thetaster := Pi/(2¥nsters)
a := zeroj b = zero}
for i := 1 to nsteps+i do
bedin
a.re := sin(theta)} (#leave im Part
bsim 2= cos(theta)]} (#leave re Part
tableli]l := add(asb)3
theta := theta + thetasters
ends;
writeln(listing,’ REAL !
’ IMAGINARY
! MAGNITUDE ‘
for i :t= 1 to nsteps+l do
writeln(listings’ '
tablefilsres’ ‘stablelilsims’
madg(tablelid))3

’
’
)i

end.

warninds.,

How the Loader Finds Library Modules.

When the Compiler processes an import declaration, it does not copy, or in any other way bind the
library module into the program being compiled. Instead it emits reference information (called
REF’s) which enables the loader or linker to make the required connections later. Usually REF’s are
satisfied (hooked up to the library module) at the last possible moment: when you Run' the

program.

Pascal Compiler

09:06:14 Pade 1

(*# from systemlibrary %)

Zero%)
Zero#*)

$

A compiled program contains no record of where the Compiler found any imported modules. The
loader has a search pattern it uses to find imported things the program needs:

o First, the file being loaded is searched. There may be modules in it which were compiled at the
same time as the program.

© Then memory-resident libraries are searched. The memory-resident libraries are those you
have loaded with the P command, the contents of INITLIB (which is automatically loaded at
boot time), and the modules of the Operating System itself. The order of search is most-
recently-loaded first.

e Finally, the current System Library is searched. If a required module is in the System Library,
then it will be loaded with the program and will remain in memory until a different program is
executed.

o If there are still unresolved references, the loader reports them on the CRT. The program won’t
run. Control is returned to the Main Command Level.

175

176 Pascal Compiler

If your program only imports from the System Library, everything is taken care of automatically.
This is the most common case. If the program imports from user libraries via the $SEARCH$
option, you must help out the loader in one of three ways.:

® Use the P-load command to load copies of the libraries into memory before running the
program. Do this just once, because the loader does not check to see if modules have already
been loaded! Memory-resident libraries stay there until you re-boot.

® Use the Librarian to make a new library containing the compiled program and any modules it
needs. This new library is an unlinked, executable program. It will automatically be linked
when it is loaded.

® Use the Librarian to link the necessary modules to the program. The resulting library is a
linked, executable program. It will probably still have some unresolved references (for instance
to the system read and write routines), which will be resolved at load time.

A Subtle Point

The loader doesn’t search for modules, it searches for external names. Each procedure or function
exported has an external name, as do most structured constants. A single name is used for all the
variables a module exports; it is actually the name of a place in memory where storage for the
variables will be allocated. Certain things, such as types and simple constants, are only useful at
compile time and so have no external name.

If two modules which are loaded define the same load-time name, the most recently loaded copy
overrides the older one. Generally this makes no difference, because external names created by the
Compiler identify the module where the name originated. However, some module names are used
by the Operating System. You should avoid using these names from your own modules unless you
intend to override the name of a system entry point. These names are listed in the Technical
Reference Appendix.

$INCLUDE Files

The source text of a module or program can be broken up into several text files which are edited
separately but compiled as a group. The $INCLUDE option tells the Compiler to insert the Pascal
source of another file into the one it is presently compiling.

Pprodgram showinclude (inPutsoutput)s’
$include 'MYVUOL:DECLARS’'$

$include ‘SYSVOL:BODY'%

end,

If the required volume is not on-line when needed, the Compiler pauses and prompts you to insert
the proper volume.

Miscellaneous

® An included file may in turn include another file. This ‘“‘nesting” is allowed to a maximum
depth of 10.

® Importing a library module is a form of file inclusion, and counts against the maximum
allowable depth of 10 while the import declaration is being processed.

e If the imported module has an import declaration in its own interface, the Compiler will follow
the chain and find those module interfaces too. This is another form of nested file inclusion.

Pascal Compiler

What Can Go Wrong?

This section discusses some problems which may occur when using the Compiler, and how to solve
them.

Can’t Run the Compiler
1. If the system reports, Canniot open ‘CMP:COMPILER’, the volume with the Com-
piler is not online. You may have removed the volume and not put it back or changed it
with the What command. If the Compiler wasn’t found when the system booted, you are
expected to put the CMP: disc (which contains the Compiler) on-line.

2. If the system reports, Cannot load ‘COMPILER, either the disc medium is bad, or
not enough memory is installed in the Computer to run the Compiler. It is desirable to
have at least 393K bytes; the system is normally sold with at least 524K bytes.

Errors 900 thru 908 ‘

During compilation, three files are written by the Compiler: the code file, which is the one you want,
and the REF and DEF files. The latter two are temporary working storage for linkage information
which is appended to the code file if the compilation terminates normally. All three of these files are
normally opened on the same volume (the volume to which you directed the code file).

Each of these files is subject to three classes of error:

® Error in opening the file.
e Insufficient space to open the file.
e File fills up before compilation finishes.

An error in opening the file usually means the volume is not online. It can also indicate that the
volume’s directory is full.

The amount of space allocated to the code file is usually half of the largest free area on the volume,
with the potential to expand to the second half of that area if needed. If you get errors 900, 903, or
906 you need to make more room on the volume to which the code file was directed, or use a
different volume.

The REF file by default is opened with 30 blocks of disk space on the same volume as the code file.
A Compiler option at the beginning of the source program can change the size and the volume
selected for REF. There’s no simple rule which gives the “right” size for the REF file. If the file fills
up (error 907), make it bigger in proportion to the amount of program that remained to compile
when the error occurred.

$REF 50% Allocate 50 blocks
$REF ‘CHARLIE:’'$ Put it on volume CHARLIE
$REF ‘CHARLIE: '+ REF 50% Put it on CHARLIE and

allocate 50 blocks

177

178 Pascal Compiler

Exactly analogous remarks hold for the DEF file, except that its default size is 10 blocks and the
Compiler option is DEF .

Errors When Importing Library Modules

1. Syntax errors in the interface of an imported library module. This usually indicates that the
library module itself tried to import some other module which was not found by the Compil-
er’s search algorithm.

2. Errors 608, 610: Include or import nesting too deep. If module “A” imports “B’’, which
imports “C” and so forth, the Compiler must follow the chain to its end. The chain can only
be 10 imports deep. Since the same file handling mechanism is also used to process
$INCLUDEC files, the combined limit on import and inclusion nesting is 10 deep.

3. Error 613: Imported module does not have interface text. If the library has been linked by the
Librarian, the interface specification has been removed. Also, a main program looks internal-
ly like a module; but it has no interface text.

Not Enough Memory

If the Compiler generates error —2 (not enough memory), then there isn’t enough room in
memory to compile the program. You can watch the numbers which appear on the screen in
square brackets as the compilation proceeds — they show approximately how much memory is left.
There are two primary reasons for running out of memory during a. compilation: one of them is
large procedure bodies, and the other is P-loaded files.

Large Procedure Bodies

When the Compiler processes a procedure, the entire procedure (declarations and body) is scan-
ned. An internal representation of the procedure, called a “‘tree”, is built. This tree is not complete
until the scanner reaches the end of the procedure, and only then does code generation begin. The
tree form takes a lot of storage, particularly the statements making up the body. If you write a
procedure whose body is ten pages long, the Compiler is very likely to run out of memory. The
moral is that you should keep your procedures reasonably short. A good guideline is that no
procedure should be longer than a page or two.

P-loaded Files

If you've Permanent-loaded a lot of libraries or programs, or space has been allocated to a
memory-resident mass storage volume, you can reboot the system to recover the memory, and try
again.

Insufficient Space for Global Variables

You may discover, either at compile time or at run time, that there isn’t sufficient space for the
global variables of your program. If this happens, please refer to “‘Implementation Restrictions” in
this chapter, which explains the limitations and what to do if you exceed them.

Errors 403 thru 409

These errors should never be reported. They indicate a malfunction in the Compiler itself. If this
ever happens, please show the program which causes it to your HP field support contact.

Pascal Compiler

Compiler Options

Compiler options affect the code emitted by the Compiler. For instance, the $DEBUG ON$ option
causes the Compiler to emit a TRAP instruction after the object code for each Pascal statement,
allowing you to single-step the program.

Sometimes there are restrictions on where an option may appear:

Location Restrictions

Anywhere Indicates that the location of the option in the file is irrelevant.

At front Applies to entire source file; must appear before the first “token” in the source
file (before PROGRAM, or before MODULE if compiling a list of modules).

Not in body Applies to a whole procedure or function; can’t appear between BEGIN and
END. Good practice to put these options immediately before the word BEGIN
or the procedure heading.

Statement Can be applied on a statement-by-statement basis or to a group of statements,
by enabling before and disabling after the statement(s) of interest.

Special As explained under the particular option.

If an option appears in the interface (import or export) part of a module, it will have effect as the
module is compiled. However, the option itself will not become part of the interface specification in
the compiled module’s object code.

179

180 Pascal Compiler

ALIAS

Default: External name = Procedure Name
Location: Special, See Below

This Compiler option causes a name, other than the name used in the Pascal procedure or function
declaration, to be used by the loader.

external
(&~)~ O~®

Item Description/Default Range Restrictions
external name string 1to 80
ASCII Characters
Semantics
The string parameter specifies the external name for the procedure in whose header the option
appears.
Example:

procedure $alias ‘charlie’$ P (1i: inteder) i external s’

[T LN

Within the program, calls use the name “‘p’’; but the loader will link to a physical routine called
“charlie”.

Should appear between the keywords PROCEDURE or FUNCTION and the routine’s identi-
fier.

Pascal Compiler

ALLOW_PACKED

Default: OFF
Location: Anywhere

This option permits or prohibits the passing of elements of packed arrays or records to var para-
meters.

Semantics
“ALLOW_PACKED” is interpreted as “ALLOW_PACKED ON”.

Passing elements of packed arrays or records to VAR parameters is illegal in HP Standard Pascal,
but the Workstation Pascal Compilers prior to Version 3.1 allowed it. Pascal 3.1 and sub-

sequent compilers allow passing of packed elements to var parameters only if the compiler option
ALLOW_PACKED is ON.

ON specifies that elements of packed structures will be allowed to be passed to var parameters in
functions and procedures. You may need to add the option $ALLOW_PACKED ONS$ and re-
compile existing pre-3.1 Pascal source code to run it on the 3.1 system.

OFF specifies that passing elements of packed structures to var parameters is illegal. Attempts to do
so result in a compile-time error message 154: “lllegal argument to match pass-by-reference
parameter’’.

Note
Pre-3.1 compilers allowed only certain packed elements to be passed to
var parameters. These are the elements which ALLOW_PACKED
affects. Others, which pre-3.1 compilers forbade from being passed, are
still forbidden in 3.1 and later compilers.

181

182 Pascal Compiler

ANSI

Default: OFF
Location: At Front

This Compiler option selects whether an error message is to be emitted for use of any feature of HP
Standard Pascal not contained in ANSI/ISO Standard Pascal.

om'g.o

Semantics
“ANSI” is interpreted as “ANSI ON”.

ON causes error messages to be issued for use of any feature of HP Standard Pascal which is not
part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example:
$ansi on$

Pascal Compiler 183

CALLABS

Default: ON
Location: Statement

This Compiler option determines whether 16-bit relative or 32-bit absolute jumps are to be gener-
ated by the Compiler.

CALLABS m o
® .l

Semantics
“CALLABS” is interpreted as “CALLABS ON”.

ON specifies that 32-bit absolute jumps will be emitted for all forward and external procedure calls.
OFF specifies 16-bit PC-relative jumps.
Allowed on a statement-by-statement basis.

Example:
$callabs off$

184 Pascal Compiler

CODE

Default: ON
Location: Not in Body

This Compiler option is used to control whether a CODE file will be generated by the Compiler.

0@%0

Semantics
“CODE" is interpreted as “CODE ON”.

ON specifies that a code file will be generated.

Example:
$code off$

Pascal Compiler

CODE_OFFSETS

Default: OFF
Location: Not in Body

This Compiler option controls the inclusion of program counter offsets in the compiler listing.

OSCER MEDL 0

Semantics
“CODE_OFFSETS” is interpreted as “CODE_OFFSETS ON”.

ON specifies that line-number/program-counter pairs will be printed for each executable statement
listed. This can be applied on a procedure-by-procedure basis.

185

186 Pascal Compiler

COPYRIGHT

Default: Not Applicable
Location: Anywhere

This Compiler option is provided for inclusion of copyright information.

copyright
®~Grmeny—) O~®

Item Description/Default | Range Restrictions

copyright string 1to 80

message ASCII Characters
Semantics

The string parameter is placed in the object file as the owner of the copyright. If more than one
COPYRIGHT option is included, the last one is effective.

Example:
$copyright ‘Hewlett PacKard Companvys 1981°%

Pascal Compiler 187

DEBUG

Default: OFF
Location: Not in Body

This Compiler option controls whether the code produced by the Compiler contains the additional
information necessary for full use of the Debugger system.

0@%‘0

Semantics
“DEBUG” is interpreted as “DEBUG ON”

“DEBUG ON” will cause debugging instructions to be emitted for the procedure bodies following
it. May be applied on a procedure-by-procedure basis.

Example:
procedure bugdys
var i: inteder;
$debud on%
begin
end}
$debud off$

188 Pascal Compiler

DEF

Default: 10 records on same volume as code output
Location: At Front

This Compiler option allows the user to change the size and location of the temporary Compiler file
named “.DEF”.

def file
size
def file
volume id

Item Description/Default Range Restrictions

def file size integer constant less than 32767

def file string valid volume id (see

volume id glossary)
Semantics

If the parameter is a string, it specifies the volume where a temporary Compiler file called ‘. DEF”,
which holds external definitions, will be stored. If the parameter is a number, it specifies how many
logical records will be allocated for the DEF file. See ‘“What Can Go Wrong, Errors 900 to 908

Examples:
$def 50%
fdef ‘JunKuol:’$
$def ‘JunKvol:’, def 50%

Pascal Compiler

FLOAT_HDW

Default: OFF
Location: Not in body

This option enables and disables the use of floating-point hardware.

=

FLOAT_HDW

Semantics
HP 98635 Floating-point Math Card

The HP 98635 is an optional PC board that increases the execution speed of floating-point math
computations. This board can be installed in all Series 200 computers.

e ON instructs COMPILER to generate accesses to 98635 hardware for the floating-point opera-
tions listed below. If the hardware is not installed when the program is executed, an error will
be reported.

o OFF tells COMPILER to generate math library calls for floating-point operations.
o TEST causes COMPILER to generate both hardware accesses and library calls. The code

includes tests for the presence of floating-point hardware. If the test succeeds (at execution
time), the hardware accesses are used; otherwise, the library calls are used.

Operations that can potentially use the 98635 floating-point card include: addition, subtraction,
multiplication, division, negation, and the sar function. Hardware can also be used by any opera-
tion that converts an integer into a real or longreal; however, hardware is not used by operations
that convert reals or longreals into integers. All other math functions call library routines. There are
also libraries that access the floating-point hardware.

MC68881 Floating-point Math Co-processor
When using this option with the COMPILE20 compiler on Series 300 computers equipped with the
optional MC68881 math co-processor, this Compiler option has slightly different meaning.

® ON causes COMPILEZ20 to generate MC68881 co-processor instructions.

o OFF causes COMPILEZ20 to generate code that uses Pascal math libraries.

o TEST is not allowed (COMPILEZ20 reports an error).

Operations that can can potentially use the 68881 hardware include all floating-point math com-
putations except t runc.

189

190 Pascal Compiler

HEAP_DISPOSE

Default: OFF
Location: At Front

This Compiler option enables and disables ‘‘garbage collection” in the heap.

HEAP _DISPOSE

Semantics
“HEAP_DISPOSE” is interpreted as ‘‘HEAP_DISPOSE ON”

ON indicates that DISPOSE allows disposed objects to be reused.

OFF does not recycle disposed objects. If enabled, this option must appear at the front of the main
program.

Example:
thear.disrpose on$
Prodram recvcles

LR AR

bedin

disrpose(r)i (¥freeurpcell*)

new{p)j (¥*probably gdets same cell back#)
end,

The HEAP_DISPOSE option must be the same (either ON or OFF) in the program and all modules
imported by the program. Erroneous results may occur if those declarations don’t agree, because
there is no way for the Compiler to check on which option other modules have used.

Default: Not Applicable

Location: Anywhere

This Compiler option allows conditional compilation.

F boolean conditional
expression text

Pascal Compiler 191

IF

Item Description/Default Restrictions

boolean expression that evaluates to either TRUE or FALSE may only contain
expression compile time constants
conditional source to be conditionally

text compiled

If the expression evaluates to FALSE, then text following the option is skipped up to the next

END option.

If the boolean expression evaluates to TRUE, then the text following the option is compiled

normally.

IF-END option blocks may not be nested.

String constants may not be used.

Example:
const fancvy
limit
size

LI 2

$if fancy and

trues
103

= 893

((size+1)<limit)$

ves (% this will be sKirprped #)
end
$if FALSES$

ve s (% thlS
end

will also be skirred*)

192 Pascal Compiler

INCLUDE

Default: Not Applicable
Location: Anywhere

This Compiler option allows text from another file to be included in the compilation process.

file
($) Cmevme () O~®

Range
Item Description/Default Restrictions
file specifier string any valid file specifier

(see Glossary)

The string parameter names a file which contains Pascal source to be included at the current
position in the program. Included code may contain additional INCLUDE options (nesting level is
10). The remainder of the line which contains this option must be blank except for the closing $.

Example:
prodram inclusives?
$include ’‘source:declars’$
$include ‘source:body’$
end.,

Pascal Compiler

IOCHECK

Default: ON
Location: Statement

This Compiler option enables and disables error checking following calls to system I/O routines.

0@%0

Semantics
“IOCHECK” is interpreted as “IOCHECK ON”

ON specifies that error checks will be emitted following calls on system I/O routines such as RESET,
REWRITE, READ, WRITE. Can be used in conjunction with the standard function [ORESULT if
UCSD or SYSPROG language features have been enabled. Allowed on a statement-by-statement
basis.

OFF specifies that no error will be reported in case of failure.

Example:
fucsd$
$iocheck off$
reset(fs’datafile’) s
$iocheck on%
if ioresult <3 © then writeln(’'I0 error’);i

193

194 Pascal Compiler

LINENUM

Default: Not Applicable
Location: Anywhere

This Compiler option allows the user to establish an arbitrary line number value.

—@—{LINENUM)—#—I line number I—-—@——»

Item l Description/Default | Range Restrictions
line number integer numeric constant l 0..65535
Semantics

The integer parameter becomes the current line number (for listing and debugging purposes).

Example:
$linenum 20000%

Pascal Compiler 195

LINES

Default: 60 lines per page
Location: Anywhere

This Compiler option allows the user to specify the number of lines-per-page on the Compiler
listing. 2000000 lines-per-page suppresses autopagination.

lines per
—»@—-—(LINES H s |—->@—>

Item | Description/Default | Range Restrictions
integer numeric constant I 20 thru MAXINT

lines per page

Example:
$lines 55%
$lines Z2000000¢% (*¥supPPress autoradination#*)

196 Pascal Compiler

LIST

Default: ON to PRINTER:
Location: Anywhere

This Compiler option controls whether or not a listing is being generated, and to where it will be
directed.

O~ O-LE OO

Item I Description/Default | Range Restrictions

file specifier string any valid file specifier
(see glossary)

Semantics
“LIST" is interpreted as “‘LIST ON”.

LIST with a file specifier specifies that the file is to receive the compilation listing.

LIST OFF suppresses listing.

LIST ON resumes listing. No listing will be produced at all, regardless of this option, unless
requested by the operator when the Compiler is invoked.

Examples:
$list ‘mvvol:Keeprlist.text’$
$list ‘printer:’$
$list offs

Pascal Compiler 197

OVFLCHECK

Default: ON
Location: Statement-by-statement

This Compiler option gives the user some control over overflow checks on arithmetic operations.

ORCED SR SN0
=4
G

Semantics
“OVFLCHECK?” is interpreted as ‘“OVFLCHECK ON”

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks; they will still be made for 32-bit integer DIV, MOD, and
multiplication.

Example:
fouflcheck off%

198 Pascal Compiler

PAGE

Default: Not Applicable
Location: Anywhere

This Compiler option causes a formfeed to be sent to the listing file if compilation listing is enabled.

(e)~(®)

Example:
trpaded

Pascal Compiler

PAGEWIDTH

Default: 120
Location: Anywhere

This Compiler option allows the user to specify the width of the compilation listing.

characters
AGEWID@—P{ per line i—p—@-—>

Item I Description/Default | Range Restrictions
characters per integer numeric constant 80 thru 132
line

Semantics

The integer parameter specifies the number of characters in a printer line.

Example:
$padgewidth BO$

199

200 Pascal Compiler

PARTIAL_EVAL

Default: OFF
Location: Statement-by-statement

OSCIENESEPE RO

Semantics
“PARTIAL_EVAL” is interpreted as ‘‘PARTIAL_EVAL ON”.

ON suppresses the evaluation of the right operand of the AND operator when the left operand
is FALSE. The right operand will not be evaluated for OR if the left operand is TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition of any
other operands.

Example:
$rpartial_eval on$
while (p<>nil) and (P scount>0) do
P 1= P +1ink3

Pascal Compiler

RANGE

Default: ON
Location: Statement-by-statement

This Compiler option enables and disables run-time-checks for range errors.

Semantics
“RANGE?” is interpreted as “‘RANGE ON”".

ON specifies that run time checks will be emitted for array and case indexing, subrange assign-
ment, and pointer dereferencing.

Example:
var a: arrav[1,.,10]1 of inteder?
i: inteder;
L N
i o= 1134
$rande off%
alil 1= 03 (# invalid index not caudht! %)

201

202 Pascal Compiler

REF

Default: 30 records on same volume as code output
Location: At Front

This Compiler option allows the user to change the size and location of the temporary Compiler file
named “.REF”.

ref file
ref file
volume id

Item Description/Default Range Restrictions

ref file size integer numeric constant less than 32767

ref file string valid volume id (see

volume id glossary)
Semantics

If the parameter is a string, it specifies the volume where a temporary Compiler file called
“.REF”, which holds external references, will be stored. If the parameter is a number, it
specifies how many logical records will be allocated for the REF file. See ‘“What Can Go Wrong,
Errors 900 to 908”.

Examples:

$ref 20%
$ref “JUNRKYVOL: ‘%
$ref ‘JUNKYOL:’y ref S0%

Pascal Compiler

SAVE_CONST

Default: ON
Location: Anywhere

This Compiler option controls whether the name of a structured constant may be used by other
structured constants.

SAVE_CONST

Semantics
“SAVE_CONST” is interpreted as ‘‘SAVE_CONST ON”".

ON specifies that compile-time storage for the value of each structured constant will be retained
for the scope of the constant’s name (so that other structured constants may use the name).

OFF specifies that storage will be deallocated after code is generated for the structured con-
stant.

Example:
$save_const off$
tvype ary = array [1.,.,100] of inteder;)

const acon = ary [345,45691 s +voees 13
(#¥bkig constants taKe lots of compile-time
memory*)

203

204 Pascal Compiler

SEARCH

Default: Not Applicable
Location: Anywhere

This Compiler option is used to specify files to be used to satisfy IMPORT declarations.

($(see—() O——®
Item I Description/Default I Range Restrictions
file specifier string any valid file specifier

(see Glossary)

Semantics

Each string specifies a file which may be used to satisfy IMPORT declarations. Files will be
searched in the order given. The current system library is always searched last. A maximum of 9
files may be listed.

Multiple SEARCH options are allowed; for instance, you may want to use one for each import
declaration. Note that only the last one encountered during compilation will be in effect for any
import statement (i.e., these options are not cumulative).

Example:
$search ‘FIRSTFILE’' s+ ’SECONDFILE’%

Pascal Compiler

SEARCH_SIZE

Default: 10 files
Location: At front

This Compiler option allows you to increase the number of external files you may SEARCH
during a module’s compilation.

9 SEARCH_SIZE ot 5 5es @

Item | Description/Default | Re?t:lii::st;i(:ms
number of files I integer numeric constant | less than 32767
Semantics

When compiling a Pascal module, it is sometimes desirable to import another module from
another file. To import a module from another file, the SEARCH option is used to identify the
file. Up to ten SEARCH options may be given unless the SEARCH_SIZE options is given. The

SEARCH_SIZE option allows you to SEARCH up to 32,766 external files for imported mod-
ules.

Example:
$search_size 30%

205

206 Pascal Compiler

STACKCHECK

Default: ON
Location: Not in Body

This Compiler option enables and disables stack overflow checks.

STACKCHECK

Semantics
“STACKCHECK" is interpreted as “STACKCHECK ON"’.

ON specifies that stack overflow checks will be generated at procedure entry. It is very danger-
ous to turn overflow checks off! Obscure and unreported errors may result.

Example:
$stackchecKk off$
procedure unsafes?
var
mayv._.smash_hearp: arravy [1.,.3001 of inteder:
bedgin ++¢ ends

Pascal Compiler 207

SWITCH_STRPOS

Default: Off
Location: At front

This Compiler option reverses the positions of the parameters of the STRPOS function.

O—Gmmame)—®)

Semantics

When this Compiler option is used, the exprected order of the parameters is that of the HP
standard. In Series 200 Pascal (like UCSD’s POS function), the STRPOS function expects the
first string parameter to be the search pattern and the second string parameter to be the source
string in which the search takes place. Later the HP standard was established with the order of
the parameters reversed. If SWARN OFF$ is not in effect, then the Compiler issues a harmless
warning that you are not conforming to the standard. If you wish to conform to the standard,
give the SWITCH_STRPOS option in your program.

Example:
$switch_strros$

208 Pascal Compiler

SYSPROG

Default: System Programming Extensions not enabled
Location: At Front

This Compiler option makes available some language extensions which are useful in systems
programming applications. See ‘‘System Programming Language Features” in this chapter.

ORCEDNO

Semantics
$SYSPROGS is interpreted as $SYSPROG ON$

Example:
$csvysprods
Prodram machinederendent’

L

Pascal Compiler

TABLES

Default: OFF
Location: Not in Body

This Compiler option allows the user to turn on and off the listing of symbol tables.

TABLES

Semantics
“TABLES” is interpreted as “TABLES ON”

ON specifies that symbol table information will be printed following the listing of each proce-
dure. This is useful for very low-level debugging.

Example:
$tabless
procedure hasabugd (var p: inteder)s
var

LB I

209

210 Pascal Compiler

UCSD

Default: UCSD not enabled
Location: At Front

This Compiler option allows the compiler to accept most UCSD Pascal language extensions.
See the subsequent ‘‘Converting UCSD Pascal’ section later in this chapter.

Opa 220

Example:
$ucsd$
Pprodram funnvios
var
f: filesd (¥ no tvre srecified! *)
bedgin
unitread{(Bsarv,80,10);
end.,

Pascal Compiler 211

WARN

Default: ON
Location: At Front

This option allows the user to suppress the generation of compiler warning messages.

O € '. ®

Semantics
“Warn” is interpreted as “WARN ON”’ and compiler warnings will be issued.

Example
$warn offs$

212 Pascal Compiler

How Pascal Programs Use the Stack

This section describes how Pascal programs use the stack to store data, return addresses for
procedures, and pointers needed to access variables belonging to nested procedures. The
information can be useful when writing assembly language routines, and when debugging at
the machine level.

You can also investigate this subject by writing some Pascal test programs and then looking at the
emitted code with the Librarian’s Unassemble command. Two Compiler options also produce
valuable information: $DEBUG ONS$ correlates the machine code displayed by Unassemble with
the original Pascal lines, and $TABLES$ causes the Compiler to print a description of the size and
location of each object in the program.

The Pascal Stack

Five types of data can be stored on the stack:

® procedure/function parameters
® return addresses

® |ocal variables

e stack frame pointers

® static links

Two address registers are reserved for stack manipulations:

e A7 - the stack pointer (SP)
® A6 - the stack frame pointer (SF)

The stack grows downward in memory as procedures are called, with A7 always pointing to the
base (beginning, lowest address) of the datum on the “‘top’ of the stack. That is, when space is
allocated for a procedure which has been called, the area allocated has a lower (more negative)
address than the space already allocated for the calling procedure. Space allocated to a proce-
dure is called its stack frame.

However, variables extend upward in memory. This simply means that the address of the first
element of an array, or the first field of a record, is lower than the address of the second element
or field.

Global Variables

Register A5 is reserved as the global base register. A reference to any program or module global
variable is always formulated as a displacement from where register A5 points. The maximum size
of the global area is 65 536 bytes (the displacement field size). In practice, not all of this space is
available to the program. Some of this area is used for system globals, command interpreter
globals, permanently loaded programs and modules, and so forth.

See the Assembler chapter for details on how to reference Pascal global variables from assem-
bly language programs.

Pascal Compiler

Procedure Calls

When one procedure calls another, the caller pushes any parameters to the called procedure on
the stack. The parameters are pushed on the stack by first decrementing the stack pointer (A7)
an amount equal to the size of the parameter, then storing the parameter where SP now points.
(Pushing a byte decrements the stack pointer by two, since it must always have an even value.)
The calling procedure executes a JSR instruction which pushes the return address on the stack
and jumps to the entry point of the called procedure.

The first instruction executed by the called procedure is a LINK instruction. The LINK instruction
format and function is illustrated below:

format: LINK A6,# —d

function: A6 — —(SP) —push the stack frame pointer onto the
stack
SP — A6 —set the stack frame pointer equal to the
stack pointer
SP-d — SP —drop the stack by the size(d) of the local

variables for the called procedure

If the program is compiled with $STACKCHECK ON$ (which is the default), a TRAP instruction is
issued instead of LINK. The trap service routine checks for stack overflow as it adjusts A6 and SP. In
this case the size #d is stored in the next word after the TRAP instruction.

The stack frame pointer (A6) is used by the called procedure to reference its local variables. See
Figure 6 for an illustration of stack usage for level 1 procedure calls. Level 1 procedures are
those declared at the global level of a program or module.

If the called procedure is not at level 1, the calling procedure pushes a pointer to the stack frame
of the procedure in which the called procedure is declared. This pointer is called the static link.
It is used by the called procedure to resolve references to intermediate variables -- variables
which are neither local to the called procedure, nor globals of the program.

An example might help to clarify the static link. Consider the following program structure
(indentation indicates nesting):

pProdram main
procedure pl
procedure P2
procedure P3
procedure P4

Assume this calling sequence: main calls p1, calls p2, calls p4. If p4 calls p3 then the static link
pushed would be that of procedure p2 (since p4 is declared within p2). If instead p4 were to call
p2 then the static link would point to pl (p2 is nested within p1). See Figure 7 for a detailed
example of static links.

213

214 Pascal Compiler

The called procedure is responsible for stack cleanup and for effecting the return to the calling
procedure. Any parameters, local data, or static links belonging to the called procedure must be
removed from the stack before returning to the caller. Once this is complete a return to the
calling procedure can be performed.

The stack cleanup is performed in two steps:

Step 1: Restore the stack frame pointer. Use the UNLK instruction to remove local data from
the stack.

format: UNLK A6

function: A6 — SP ——set the stack equal to the stack frame
pointer
(SP)+ — A6 —load the stack frame pointer from the

stack and autoincrement the stack
pointer (this leaves the stack pointer
pointing to the return address)

Step 2: Restore the stack pointer. This removes the static link and parameters from the stack.
After this step, the stack pointer should be as it was before the procedure call.

The called procedure returns to the caller by branching to the return address. If the return
address was saved in an address register during stack cleanup then an indirect JMP through the
address register is executed. If the return address was left on the stack then an RTS instruction is
executed.

format: RTS

function: (SP)+ — PC —set the program counter to the value
pointed to by the stack pointer and
pop the value off the stack

See Figure 8 for an example of a return from a called procedure.

Function Calls

Function calls differ from procedure calls only in that they return results. The result is usually
returned on the stack. It is the responsibility of the calling procedure or function to pop the
result off of the stack. This is normally done when the result is referenced.

Parameter Passing Mechanisms
There are two kinds of formal parameters: those passed by reference, and those passed by value.

® reference parameters
all handled alike

® value parameters:
a) simple value parameters:
simple types (integer, char.)
array and record types < = 4 bytes
b) copied value parameters:
reals, and array and record types > 4 bytes

Pascal Compiler

Reference parameters are those which are specified VAR in the procedure heading. They are
“passed by reference’: the address of the actual parameter is passed to the called procedure or
function. This address is used for all references to the parameter. No copying of the parameter
is performed.

Value parameters are those which are not specified VAR in the heading. They are “‘passed by
value”: a copy of the parameter is passed to the called procedure or function. If the value para-
meter is a simple type (except REAL), then its value is pushed on the stack. If the parameter is a
simple REAL, or an array or record (and its size is more than 4 bytes), then its address is pushed on
the stack by the caller. Before the called routine executes its first statement, it uses the pushed
address to copy the parameter into its local data space (the Compiler reserved this space in addition
to the local variable space).

Values of type ‘“‘procedure’ are not copied; their values are pushed directly even though they
are eight bytes long.

Function Results

Sometimes the calling environment must allocate temporary space in which to return function
results. In general this is necessary when the function returns a result which is bigger than 4
bytes. The temporary space is allocated as part of the program’s global area if the call is from
the main program; otherwise it is allocated as part of the local data area. The amount of
temporary space required is determined at compile time. Functions which return a value of type
real are an exception; the result area is on the stack and occupies eight bytes.

Figure 6. PASCAL Procedure Calls (Without Static Links)

Return Address

A6 e

Local Var_1

4 1 | \«— local variables for calling procedure

Local Var_n

Parm_1)

= o }.4__ parameters for called procedure

Parm_n
return address pushed on the stack by the jsr
Return Address == instruction executed by the calling procedure

A6 — A6 L | the stack frame pointer pushed on the stack by

the link instruction executed by the called pro-
Local Var_1 cedure
-~ 4 -«—— local variables for called procedure
A7 — Local Var_n

(The stack is pictured growing toward the bottom of the page. Pointers actually address the bottom of the designated entry.)

215

216 Pascal Compiler

The following Pascal program illustrates the use of the static link.

$DEBUG ON$%
prodram main{inrPutsoutpPut)}

var isinteders

procedure Aj
var K:integeri

procedure Bi
var miinteders

procedure C(itinteder)s
var osinteders

procedure Di
var g:inteder!

bedin
i = Ki
K 1= m3i
m = 03
0 1= 93
9 1= 13
Bi
Cti)s
endi {D}
begin {C}
m = 0%
Di
endis {C}
begin {B?}
K 3= 13
Cim) s
endi {B}
bedin {A}
B3
ends {A}

bedgin {main}
Aj
end,

Note
The preceding program is only for the purpose of illustrating the use of
the static link. Running the program results in error —2 (not enough
memory), because the program recurses infinitely.

Pascal Compiler 217

Consider the following calling sequence:

main calls A
A calls B
B calls C (with m as the parameter)
CcallsD
D calls B

The stack for this calling sequence is shown in Figure 7.

Figure 7. PASCAL Procecure Calls With Static Links

See Note#1

D’s A6

See Note#2

A6 —
A7 —

Note 1: The static link and the parameters are always accessed at positive offsets from A6. The
effective address of the static link (if present) is always 8(A6). Local variables are at
negative displacements from A6.

Note 2: In general the static link gives the called procedure access to the intermediate variables

of procedures which precede it in the calling sequence. In this particular case the static
link gives procedure B access to variables declared within procedure A.

(Pointers actually address the bottom of the designated entry.)

218 Pascal Compiler

Procedure D reaches intermediate variables using:

® its current stack frame pointer
® the difference between its nesting level and that of the called procedure

In this case procedure D is at level 4 and procedure B is at level 2, for a relative distance
of 2. Therefore procedure B must follow two static links to reach the stack frame of B.

In other words:

MOVEA L 8(A6),A0 - get procedure D’s static link
MOVEA.L 8(A0),A0 - get procedure C’s static link
MOVE.L 8(A0),-(SP) - get procedure B’s static link

and push it on the stack

Remember: procedure C’s static link gives access to B’s locals,
procedure B’s static link gives access to A’s, etc.

Note 3: When nested procedures reference intermediate variables they use the static link. An
example of this is when procedure D references k and m in the statement k : = m;.

k is declared in procedure A and m is in procedure B. The nesting level relative to
procedure D for k is 3 and for m it is 2.

The following code will perform the statement k : = m.

MOVEA.L 8(A6),A0 get D’s static link
MOVEA.L 8(A0),A0 get C’s static link
MOVEA.L 8(A0),A0 get B’s static link
MOVEA.L 8(A6),al get D’s static link
MOVEA L 8(al),al get C’s static link

MOVE.L —4(al), —4(A0) store mink
The return to procedure A (as shown in the following stack segment) is accomplished in four
steps. Note: the register prefixes indicate the value of the register for the indicated step. The
values are those the registers have AFTER the step has been executed.

Step 1: UNLK A6 - restore the stack frame pointer (A6)
Step 2: MOVEA.L (SP)+,A0 - save the return address in AQ
Step 3: ADDQ.l #12,SP - restore the stack pointer

Step 4: JMP (AO) - return to where procedure A called B

If there are not any parameters then the return sequence normally is:

restore the stack frame pointer

replace the static link with the return
address

return to procedure A

UNLK A6
MOVEA.L (SP) +,(SP)

RTS
If there is no static link (and no parameters) then the sequence is:

UNLK A6 - restore the stack frame pointer
RTS - return to procedure A

Figure 8. Return from a Procedure Call

(Step 1) A6 —
(Step 3) A7 —

(Step 2) A7 —

(Step 1) A7 —

(Start) A6 —

(Start) A7 —

(Pointers actually address the bottom of the designated entry.)

Pascal Compiler

219

220 Pascal Compiler

Notes

Chapter

The Assembler

7

Introduction

This chapter describes the use of the Workstation Assembler subsystem. The Assembler translates
assembly language routines into object code which can be executed on this system. Assembly
language programming gives you the ability to optimize critical sections of a program (such as for
reductions in execution time or code size).

The Workstation Assembler, which has a two-pass design, translates source files written in the
assembly language specified by Motorola in the MC68000! and MC68020 manuals included in the
Workstation Pascal documentation package. It also assembles instructions for the MC68881 float-
ing-point math co-processor, which are described in the 68881 manual included in the Workstation
documentation. A summary of the syntax required by this Assembler is provided in the “Instruction
Syntax” section of this chapter.

Although it is not a tutorial on assembly language programming, this chapter contains the informa-
tion necessary to write and execute assembly language routines on the Workstation System. The
first section demonstrates the method of generating external procedures and entire object modules
of Assembler code that can be interfaced to Pascal programs. You should be familiar with the
concept of Pascal modules before attempting to emulate them in assembly language; refer to the
“Pascal Compiler”’ chapter for pertinent information.

Unlike most other assembler subsystems you may have used, the directives (‘‘pseudo-operations”)
that you give to the Workstation Assembler are specified within the source program — they are not
given in an interactive session with the Assembler. The Workstation Assembler’s pseudo-operations
are fully described in the ‘‘Pseudo-op Reference” section near the end of this chapter.

1 The MC68000 manual also includes documentation for the MC68010 processor.

221

222 The Assembler

Operating the Assembler

This section shows you how to:

® Invoke the Assembler

® Specify the name of your text file program and your resulting code file
e Give listing specifications

o Interpret the listing

Invoking the Assembler

The Assembler is delivered on the ASM: disc. If you plan to run the Assembler several times in a
session, you could use the Permanent command to keep the Assembler in memory ready to run.
Otherwise, put the ASM: disc in a drive and press (_A_) to run the Assembler.

Source File Specification

If there is a work file (see the Filer chapter), that file will be automatically assembled and there
will be an “errors only” listing on the CRT. If the “‘errors only’ listing is sufficient, your source
program file can be specified as the work file. Otherwise, clear the work file.

If there is no work file, you will be prompted to enter the name of your program file:

What source file?_

Enter the volume name (unless using the default volume explained in the Filer chapter), and file
name of your source program. It is not necessary to include the ‘. TEXT" suffix of your file
name. If it is not included, it will be done for you by the system. For example, if your program
file is called PROGRAM.TEXT and it is on the volume called TOMS:, then use this file specifica-

tion:

TOMS: PROGRAM

Listing File Information
You are then prompted to specify whether or not you will want a listing of the assembly:

~

Do vou want a prodram listing (v/n/e) 7.

You may type:

for a complete listing
(_N) for no listing but errors reported on the CRT

(_E_) for a listing of the errors only

If you want a listing, you can have it printed immediately or have the Assembler generate a file
of the listing information:

What listing file (default PRINTER:PROGRAM.ASC) ~_

For a printer listing, press (Return) or (ENTER).

The Assembler

To generate a listing on a file, enter the name of the volume and the name of the file. It is
recommended that a size specification be made for the listing file (See the Filer chapter).
Otherwise, the largest space on the disc will be reserved for the listing, which may leave no
space for the code file. A good rule of thumb is to use twice the number of blocks used by
program file. For example, if TOMS:PROGRAM.TEXT is 20 blocks long, a size specification of
40 blocks is made for the listing file.

TOMS:PROGLIST.TEXTLAO]

(Be sure to include the period at the end of the file name.)

It is possible to have a CRT screen listing by specifying “CONSOLE.:” as the listing file. This is
not recommended unless the program is very small, or an “‘error only” listing was requested.
The listing will be scrolled onto the screen and you are returned to the Main Command Level.
There is no way to control the screen listing.

Object File Specification

Finally, you are prompted to give a name for the code file that will be generated by the
Assembler. The default name is that of the source file with the suffix: “.CODE” replacing
“TEXT”.

Output file (default is TOMS:PROGRAM.CODE) 7.

If the default name is acceptable, press (Returm) or (ENTER). If you want to specify another name,
enter the complete file specification.

After this entry, the Assembler begins processing your program. The CRT displays when the
first pass of the Assembler is completed along with the number of errors encountered during the
pass. There is a similar display for the second pass. After the second pass is completed, you are
returned to the Main Command Level. If no errors were generated during the assembler, a code
file was created.

If the assembly program is executable (has a start address), you may run it by pressing (R) at
the Main Level. The Run command will run your program automatically until:

@ another program is assembled or compiled.
e a workfile is specified.

e the computer is powered down.

e the system volume is re-specified.

If the Run command no longer works for your program, use the eXecute command and give the
name of the code file that was generated.

223

224 The Assembler

Interpreting the Listing

The output from the Assembler contains the following information. The first column on the listing
indicates the (decimal) number of the source-program line. For each line of source, a line number is
generated. This is true of blank lines as well.

The second column shows the location counter (relative to the code origin). The value is in hex
notation unless the DECIMAL pseudo-op is specified. When the program is loaded, the number in
column two can be added to the base address of the load to obtain the absolute address of the
instruction. This is useful information when debugging.

The third column shows the hexadecimal (base 16) representation of the machine code for the
instruction or value of equated symbols generated by the Assembler.

The right side of the listing is a copy of the source program.

Sample Assembler Output

r Line Number Address Emitted | Source Code
Code
36 Q0000000 rorg ©
37
38 00000000 0000 0000 simrleZ_zero dec.1 0,0
38 00000004 0000 0000
39
40 00000008 4E41 simpleZ2_initialize traep #1 (stack check)
41 Q000000A 0000 deew O (no local space)
42
43 0O0O000OC 4CFA 0300 movems]l simpleZ_zerosral-al
FFFOQ
44 00000012 48ED 0300 movems.l a0-al,sum(a3)
FFFO
45
46 00000018 4ESE unlk a8
a7 0000001A 4E7S rts
48
49 0000001C 4E41 simpleZ_partadd trap #1
20 000000O1E FFFC deew -4
51
o2 0000 0010 result eau 16
53 Q000 000C x equ 12
54 0000 0008 ¥ equ 8 (relative to aB)
35 0000 0004 ret_addr equ 4

Error messages are listed under the line in which they occur. At the completion of the assembly,
the number of errors will be displayed. If there are errors, there will be a directive for you to
check the location of the last error in the program. At that location there will be a description of
the error. Also listed will be the location of the error above it if one exists. In this manner, all
errors can be located without having to search the whole listing.

The Assembler

The Programming System

It is assumed that you will be writing most of your programs in Pascal. In the instance where the
execution speed of a particular routine is insufficient, this section will show you how to translate the
Pascal routine into an assembly language routine and call it from your Pascal program.

It is possible to write a simple procedure, put it in the system library (usually a file named LIBRARY
on the * volume), and access it with an EXTERNAL declaration from the Pascal program. Howev-
er, add some interface text to the routine, and you have created a module. The benefits of modules
are that global variables and constants may be used for communication among modules. Special
types which define parameters need only be declared in the module containing the called proce-
dure.

A Pascal module was developed for use as an example. The Librarian was used to disassemble the
code into its assembly language counterpart. The intent of this section is to explain the method of
interpreting the disassembly information and producing a working Assembler language module.
The listings of the examples are included at the end of this chapter. The examples are also available
on the documentation disc (DOC:). The file (ASMB_P1) imports the file (ASMB_M1). These are
both Pascal files. The Pascal file (ASMB_P2) imports the Assembler language file (ASMB_M2).

You'll notice in the example program that the variables are declared to be of the type which are
defined in the imported module. If the program merely declared one or two of the procedures to be
EXTERNAL procedures, those special types would have to be defined in every program that called
the procedures. It would be like going to the Library for a book and having to write down the table
of contents every time you wanted to use the book.

For your Assembler language module to interface cleanly with the Pascal program, the conventions
of the Compiler must be followed. That is, you must set up the Assembler language module to act
as if it were a compiled Pascal module. You must also exit the module leaving everything in order,
as a Pascal module would.

The information you need to accomplish a clean ‘‘Pascal-to-Assembler language” interface is
presented in this section. You should understand how the Compiler:

® Prepares interface text (IMPORT text)

® Declares entry points (DEF table)

e Declares external references (EXT table)
® Passes parameters

® Creates global variable space

o Initializes modules

® Recovers from errors

® Returns from subroutines

You will find a listing of the Pascal program and module as originally written, a listing of the
disassembly of the module, and a listing of the final, working Assembler language module. These
listings are included at the end of this section. It might be helpful to remove them from the manual
and keep them out for reference as you’re reading this material.

225

226 The Assembler

The first subject covered is the method of generating the IMPORT text. This is what separates
an importable module from a simple external routine. The subsequent material is of concern in
either case. There will be a short explanation of the method for declaring EXTERNAL routines
toward the end of the section.

The IMPORT Text

Certain information must be passed from an imported module to the Compiler to complete the
module interface. This information is the IMPORT text. Actually, IMPORT text contains IM-
PORT declarations and EXPORT declarations. It’s called IMPORT text because it's what the
Compiler needs when it is importing the module. It must know the module name, global
variables, global constants, and procedure and function names. If special TYPE declarations are
needed to define the variables, they must be included in this information.

At compile time, your imported Assembler module must make this information available to the
Compiler. This is done with the SRC pseudo-op. See how the IMPORT text of the Pascal listing is
exactly the same as the SRC-IMPORT text below.

src module simpleZs
SIC EXPOTtL

src type

sre rec = record

B il : intederi

[&+ i2 1 intederi

src end i

sre const

STC zero = reclil:0,i2:013%
src var

[g+ lastresult : reci

src procedure initializes

src procedure add(a:bk : reci

sSTC var out : rec)i
src end]i

The SRC section does not actually name the module or get the global space. There are separate
techniques for accomplishing these things, which are discussed later.

The DEF Table

The DEF table contains the locations of all the entry points in the Pascal module and the
location of its global space. This information is provided for the linking loader. The information
is used to link all the modules together before they can be loaded and executed.

DEF table of ‘SIMPLE’:

SIMPLE Ghase
SIMPLE_ADD Rbase+82
SIMPLE.INITIALIZE Rbase+10
SIMPLE_SIMPLE Rbase+252
SIMPLE_.ZERD Rbase

The symbol “SIMPLE” which is the same as the module name, is the name of the module’s
global variable space. This symbol is entered into the DEF table automatically when you
reserve the global space using the COM statement. This is explained later in the global variable
section of this chapter.

The Assembler

“SIMPLE_ADD” AND “‘SIMPLE_INITIALIZE” are the entry points into the two procedures ‘“‘add”
and “‘initialize”’. When writing Assembler language routines, they must be named as the Compiler
names its procedures. The Compiler appends the module name to the front of the procedure
name, separated by an “‘_"". When the Compiler looks at your IMPORT section, it assumes that the
procedures have been named by its convention. When it’s time for the loader to hook everything
together, it looks for those procedure names in your module’s DEF table.

“SIMPLE_SIMPLE" is the entry point, or location, of the module initialization body. Module
initialization is discussed later in this chapter.

“SIMPLE_ZERQO” is the location of the structured constant, ‘‘zero’’, which appears in the
IMPORT section of the module. Any code which resides in the assembly module and is de-
clared in the IMPORT section of the module, must appear in the DEF table. It, too, must be
named by prefixing the module name to the constant name that you declare in the IMPORT
section. This name must appear as a label at the constant’s location in the program.

You must create a DEF table for the Assembler version of your routine. This is done using the DEF
statement. Notice that all the symbols in the Pascal module’s DEF table are named in the DEF
statements below except the symbol for the global variable space. The global variable symbol is
entered into the table at the time the space is reserved with the COM statement.

def simpleZ_add
def simpleZ_initialize
def simple2_zerossimpleZ_simple2

The EXT Table

The EXT table that you get from the Librarian is the list of the symbols that the loader must find
in some corresponding DEF table so our module can access those external items.

EXT table of ‘SIMPLE’:

SYSGLOBALS

“SYSGLOBALS” is the only symbol in this particular list. We need to access some of the
system’s global variables in our routine so we must know where they are kept. They are in the
global variable space for the system, “SYSGLOBALS”. (See the TRY-RECOVER section for
more details about the system globals.)

The EXT table is created in the Assembler module using REFA and REFR. Both instructions enter
symbol names into the EXT table. REFA causes the symbol to be referenced using absolute
addressing. REFR causes the symbol to be referenced using 16-bit PC relative addressing. See
REFA, REFR, SMODE and LMODE in the pseudo-op reference section.

In the example, “SYSGLOBALS’’ was declared as external using REFA.
If other modules’ global variable sections were to be referenced, the symbol for those areas

would also need to be included in our EXT table. This is explained in the global variable
section.

227

228 The Assembler

Declaring the Module Name
The module is named using MNAME. This puts the name of the module in the module directory
for the Compiler to reference when importing the module.

If no MNAME is used, the module name will be the same as the file name.

Passing Parameters

When parameters are passed to a procedure, the values or addresses of variables in the
parameter list are pushed onto the stack. The function result space is put on the stack if the
routine is a function. The leftmost variable in the parameter list is pushed onto the stack. Then
the rest are pushed onto the stack in order from left to right. The return address is pushed onto
the stack automatically by the processor at the time the JSR instruction is encountered.

For example:

114 2FOQE moue.l aBs-(s5P)
116 487A 0O0OS5A rpea Rbase+208

120 2B4F FFFGB move.l sPp+SYSGLOBALS-10(a5)
124 B88F

130 21
134,

156 2BSF FFFC moue.]l (sPp)+ Gbase-4(ad)
160 202D FFF8 move.,l Ghase-8(al) 40
164 D1AD FFFO add.,]l d0sGbase-16(as)

The stack is mapped in the following way:

FUNCTION RESULT
12(SP)—
VALUE of x
8(SP)—
VALUE of y
4(SP)—
RETURN ADDRESS
(SP)~—

Notice that the stack grows downward (toward smaller addresses).

If a parameter is passed by reference, a 4-byte address is pushed onto the stack. When passing
by value, values up to 4-bytes are pushed onto the stack, but larger values are essentially
passed by reference. That is, a 4-byte address is pushed on the stack. In this case, a copy of the
value must be made in local variable space so that the actual parameter is not altered. This is
illustrated in the Local Variable section.

More information can be found in the Compiler chapter under the heading ‘‘How Pascal Uses
the Stack”.

The Assembler

Declaring Global Variables

You must understand how the Compiler allocates global variable space so that you get and use
global space the same way. The value stored in register A5 is the base address for all global areas.
Each module that declares global variables is allocated an area for them. The symbol assigned to
the area is the distance from the base address in A5 to the top of the global area. Globals are then
referenced symbolically, using the global area name and offset relative to A5.

The name for the location of a module’s globals (relative to the address in A5) is the same as the
module name. So the symbol for the global area for “‘module simple”” would be “SIMPLE”.

Determine how much space you need for your globals. When determining how much space is
needed, you must also consider any variables that are internally global to the module. Notice on the
Pascal module listing that the variable ‘‘sum” is global to the module.

If you are rewriting a Pascal module as we have done in the example, the Compiler provides
variable size information beside the variable declarations on the listing (the negative number). More
detailed information can be displayed using the Compiler's $TABLES$ directive. In Assembler
language modules, you must also specify the size as a negative value. Declare global space using
the COM statement:

COM simpleZ,-106

The value, — 16, corresponds to the total size of global variables ‘“‘lastresult’” and *‘sum’. Both
are records containing two integers each.

The COM statement also enters the symbol into the DEF table.

Referencing Global Variables

The Assembler module name is SIMPLEZ, as is its global base. Notice in the DEF Table that
“SIMPLE” is equal to “Gbase”’ (Global BASE) for the Pascal module. Global locations in the
disassembly of the Pascal module are referenced using the symbol “‘Gbase’ rather than “simple”.

DEF table of ‘SIMPLE’:

SIMPLE

SIMPLE_ADD

SIMPLE_INITIALIZE Rbase+10
SIMPLE_SIMPLE Rbase+232
SIMPLE_ZERO Rbase

170 202D FFFC movesl G

174 DiAD FFF4 add.1l 40O

178 4E76 traru

180 20BE 0008 movea,1l 8(aB)ral

184 4CAD 1E0O movem.w Gbase-8(a5),al-ad

229

230 The Assembler

When writing your Assembler language module, use the COM symbol to reference globals. The

Assembler doesn’t recognize ‘“‘Gbase”. In our Assembler module, the global variables are refer-
enced using “SIMPLEZ2”.

lastresult equ simpPleZ-B8

lastresult_il equ simpPleZ-8

lastresult_i2 equ simple2-4

sum equ simple2-16 (all are relative to ad)
sum~il equ simpleZ-16

sum—1i2 equ simpleZ-12

escarecode eau sysglobals-2

recover_rec equ sysdlobals-10

Note
When structured variables are used, the individual elements of the
structure are referenced at progressively higher addresses within the
structure’s space.

If, for example, you had declared two integers separately instead of together in one record, you
would refer to them as:

lastresult.il EQU simple?-4
lastresult_i2 EQU simpPpleZ2-8

Referencing Other Module’s Globals

When referencing the global variables of another module, it is necessary to establish the
external reference using REFR or REFA.

The individual variables are referenced at negative offsets from the symbol and relative to A5,
as described in the global variable section above. As was mentioned previously, offsets into
data areas are provided on Compiler listings.

Local Variables

There are several methods for getting local variable space. The following method is recom-
mended for those intending to produce purely relocatable code. This is important if the code is
to be committed to ROM.

Notice that the first instruction in each of the disassembled routines is:
TRAP #1
TRAP #1 calls a system routine which allocates local variable space in a new stack frame. A

check is made of available stack space. If there isn’t room on the stack, a ‘‘Not Enough
Memory’’ error is reported and control is transferred to the Main Command Level.

The TRAP #1 routine then executes a LINK instruction. The LINK instruction is explained in detail
in the MC68000 and MC68020 manuals, and in the Compiler chapter under “How Pascal Uses
the Stack’.

The Assembler 231

Our Assembler does not understand the double operand format of the TRAP instruction as it is
printed in the disassembly listing. The size of the stack frame is specified following the TRAP
instruction in a DC.W instruction. The value of the constant in the DC.W instruction specifies
the amount of space needed for local variables.

The following illustration shows the stack before the function ‘‘part_add” gets its local variable
space.

Before the LINK:
FUNCTION RESULT
12(SP)—
VALUE of x
8(SP)—
VALUE of y
4(SP)—
RETURN ADDRESS
(SP)—
After the LINK:
FUNCTION RESULT
16(A6)—
VALUE of x
12(A6)—
VALUE of y
8(A6)—
RETURN ADDRESS
4(AB)—
OLD (A86)
(AB)—
Temp
-4(AB)— ~—(SP)

Parameters are now referenced relative to A6 instead of SP. Local variables are referenced at
negative offsets from A6.

232 The Assembler

Local variable space is also needed for copies of some value parameters. As was discussed in
the parameter section, value parameters which are larger than 4 bytes have their address put on
the stack in place of the value. In order not to alter the value of the actual parameter, a copy
must be made in local variable space. Allocate the space using the TRAP instruction, then
immediately move the values of the value parameters into the local variable space. This is the
case with the parameters to ‘‘Procedure Add”.

ADDRESS of a
16(A6)—
ADDRESS of b
12(A6)—
ADDRESS of OUT
8(A6)—
RETURN ADDRESS
4(A6)—
OLD (A6)
(A6)—
COPY of b.i2
-4(A6)—
COPY of b.i1
-8(A6)—
COPY of a.i2
-12(A6)—
COPY of a.i1
-16(A6)— ~—(SP)

This mapping was accomplished by the following block of code:

76
78
80

SO4F
4EDO
0000

adda.w #B,sp
Jmp (a0)

deew O or desb 040 or de.b ‘
S PLE-A?

110
114
116
120

2F2D
2FOE
a487A
2B4F

FFFG

005A
FFFG

move.]l SYSGLOBALS-10(aS):-(spP)
move.l aBi-(spP)

pea Rbase+208

move,1l spSYSGLOBALS-10(a5)

The Assembler

Module Initialization

Finally, it is necessary to include a module initialization body within each module. The initializa-
tion body is a routine which is named by appending the module name to itself, separated by

[E)

The purpose of module initialization is to allow for file initialization within the module. Even if a
module declares no files, the Compiler emits a call to the module initialization body for every
module imported into a program. It can be a null routine such as an RTS with the label tacked on to
the end of the assembly:

simpleZ_simplel rts

The name of the module initialization body must be marked as an entry point along with the
other procedure names using DEF.

Error Recovery

The TRY-RECOVER escape mechanism can be written into assembly language routines for grace-
ful termination of programs that generate errors. TRY-RECOVER is explained in detail in the “Error
Trapping and Simulation” chapter.

The section of code that could cause the error is enclosed within the TRY section. The TRY
section creates a RECOVER-record on the stack. The record contains the location of the
previous RECOVER-record, the stack frame pointer, (A6), and the location of the RECOVER
code. The location of this record is saved in a special location that the system knows about. This
location is at an offset of —10 in “SYSGLOBALS” (operating SYStem GLOBALS). “SYSG-
LOBALS” is relative to A5.

An example of the TRY action is taken from the disassembly:

86 Z0BE 0010 movea,l 16(aB) a0
90 2DS58 FFFO moue.l (a0)+,-1G6(aB)
94 2D50 FFF4 move.l (a0)s-12(aBb)
98 2Z0BE 000C movea,l 12(aB) sal
102 2D58 FFF8 moue,1l (a0)+,-8B(aBb)

106 2D50 FFFC move.,l (a0),-4(aB)

.

1286 2F2E FFFO move.,l -1B6(aB)s-(spP)

130 2F2E FFF8 move.l -B(aB)-(spP)

134 4EBA FF98B Jsr Rbase+32

138 2BSF FFF8 move.l (sp)+,Gbase-B(a5)

After the above code has been written, write the code body of the routine.

233

234 The Assembler

The last piece of code must restore the pointer to the previous RECOVER-record and remove
the current one from the stack. Control is then transferred to the instruction following the
RECOVER section. For example:

178 4E78B trapu

180 Z20BE 0008 mouvea.,l B(aB) a0

184 4CAD 1E0OQ movem.w Gbase-8(a5)sal-ad
FFF8

190 4880 1E0QQ movem.w al-ad,(a0)
2BEF 0008 moves1 B(sp) ,5YSI

184

b 'S

2~

movea.l (spP)+,aB

708 2CSF

210 Z2BS5F FFFB move.]l (sP)+,8YSGLOBALS-10(ad)
214 7064 mouvea #100,40

216 BOGBD FFFE cmP.w SYSGLOBALS-Z(ab) »d0

220 GBOO 0012 brne Rbase+240

22 4CBA OF0O movem.w Rbasesra0-a3

If an error or exception does occur, the system stores the number of the error in a location at
“Sysglobals-2(A5)"’ and looks at ““‘Sysglobals-10(A5)” to find the location of the RECOVER-
record. This location is loaded into the Stack Pointer register (SP). The location of the RECOV-
ER routine is then popped off the stack and control is transferred to the RECOVER routine. The
next value popped off the stack is the stack frame pointer for the RECOVER routine. It is moved
to A6. Then the higher level RECOVER-record pointer is popped off the stack and moved to
“Sysglobals-10(A5)"".

Once these values have been restored, you may examine the value at ‘‘Sysglobals-2(A5)”” and
determine what action to take. If you want to handle the error, you may do so. If not, execute a
“TRAP #10” and the problem will ripple out to be handled by the higher level RECOVER

routine.

Here is the assembly version of the RECOVER routine:

204 QEE 0024 Jﬂp Rbase

742 4ESE Kk aB
244 200F movea.l (spP)+:a0
246 DEFC o0o0o0C adda.w #12,spP

The Assembler

Exception Coding

In your TRY block you may wish to raise certain exception conditions and handle them in the
RECOVER section. This corresponds to the Pascal standard procedure ESCAPE. When the condi-
tion is determined, store a 16-bit integer value representing the error in “SYSGLOBALS —2(A5)”
and execute a TRAP #10. For example:

32 4E41 FFFC trap #1,#-4

36 202E 000C move.l 12(aB),d0
40 DOAE 0008 add.1l 8(aB) ,d0
44 4E76 trapu

46 2D40 FFFC move.l d0,-4(aB)

GB ZDBE FFFC move.,l -4(aB)16(ab)
0010

72 4ESE unlk a6

74 205F movea.l (spP)+,a0

76 S0d4F adda.w #Bssp

The example generates an escape with escapecode 100 if lines 58-64 get executed. In your
recovery section, check “SYSGLOBALS —2(A5)” to see if you recognize the value. If you do,
make the appropriate recovery. Otherwise, your RECOVER section restores the old RECOVER-
record location and issues another TRAP #10. Thus the error is passed on to the next RECOVER
block.

Returning to Pascal

When returning to Pascal from assembly, the stack must be cleaned up, a function value must
be left on the top of the stack if appropriate, and all Pascal dedicated registers must be restored
(A5, A6 and A7).

You can return to Pascal by leaving the return address on the top of the stack and executing an
RTS, or you can store the return address in an address register and execute a JMP indirect
through the address register.

216 BOGD FFFE cmp.w SYSGLOBALS-2(ad) »d0
220 GBOO 0012 bne Rbase+240
224 4CBA OF0O movem,w Rbase:a0-a3
FFiC
230 48AD OFO0O movem,w a0-a3,Ghase-8(ad)
FFF8
236 B0O00O 0004 bra Rbase+242

240 4EdA trap #10

a
252 4E73 dc.w 200835 or dceb 78,117 or dc.b ‘Nu

235

236 The Assembler

Declaring External Procedures

Most of the subjects that have been covered in this section are relevant to EXTERNAL proce-
dures.

If you just want to write a routine, put it in the current System Library file (default is the “LIBRARY”
file), and call it from Pascal by declaring it as EXTERNAL, you won’t need to be concerned with
IMPORT text.

You will need to generate EXT and DEF tables. And you will have to deal with parameters. You
may or may not want to deal with local variable space. If you want local space, you will
reference your parameters relative to (A6). Otherwise, reference them relative to (SP). You will
not have to write a module initialization body.

The TRY-RECOVER mechanism is also optional. There’s always a RECOVER routine some-
where that has to handle those errors. The Operating System puts one around your program
before execution.

You must be concerned with the stack. All the parameters must be removed. It must be left in
the condition it was in before the calling procedure started preparing for the call.

You must be concerned with restoring A5 and A6 to their original values.

Write the routine, assemble it, and use the Librarian to put it in the System Library. From Pascal,
declare it as EXTERNAL, and call it just as if it were a Pascal procedure.

Just remember — if you’re not using standard types, every program that calls this routine will
have to define the special types just as you had originally defined them.

The Assembler

Instruction Syntax

This section provides details of the syntax of assembly language instructions required by the
Workstation Assembler.

Note
Beginning with system version 3.1, the Workstation Assembler supports
all of the 68020 processor and 68881 co-processor instructions. Thus,
you can assemble programs that contain instructions which may not be
executable by your computer. Consult the target computer’s hardware
documentation to determine which processor is installed in it.

General Syntax

Here is the syntax required for Workstation Assembler instructions. Each portion of the diagram is
further described or expanded in the following paragraphs.

Program Line Syntax

opcode P
Tt S O

line label

comment line

Empty circles denote required spaces. Line labels and comment lines must begin in column 1.

Examples
Labels Opcodes Operands Comments

RTS
Label.8 STOP
JSR Subr_name
Sum ADD Di1,D2 This is a comment,

This whole line is a comment,

237

238 The Assembler

Instruction Fields

There are no fixed-width fields within instructions; instead, space characters delimit the fields of
instructions. For instance, the first space after a line label separates it from the subsequent opcode;
the first space after the opcode separates it from the operand; and so forth. Therefore, the following
two program lines are equivalent:

Label ADD D1.,D2 This is a comment,

Label ADD D1+D2 This is a comment.

This rule dictates that spaces are not permitted within the label, opcode, or operand fields, because
the first space encountered after the start of the field ends that field. Instructions are otherwise
free-format with respect to spaces; for example, comment fields may have any number of spaces,
within the limits of the line width.

Letter Case
Upper- and lower-case characters may be used interchangeably, except inside of literal (quoted)
strings.

add d1,d2

MOVE D2, (A1)
BTst #31,D2

de ‘This is a literal.’ These two literals are not equivalent.
de ‘THIS IS A LITERAL.’
Line Labels

line label

+ commant line f———

If a line label is present, it must start in column 1 of the line. The opcode must start in column 2 or
later (or it will erroneously be considered to be a label).

123456789¢123456789012345678901234567890

Label MOVE A1,A2 Comment field,
MOVE Al,A2 Comment field,

Line labels are in a class of objects called symbols, which are described in the “Symbols” discussion
of the subsequent “Operands’ section.

The Assembler

Opcodes

Opcodes (operation codes) are mnemonic abbreviations used for specifying machine language
instructions. Here are some examples:

ADD
JER
MOVE

The term “‘opcodes’’ includes these three types of codes:

® Processor opcodes
e Co-processor opcodes
e Assembler pseudo-opcodes (or simply ‘‘pseudo-ops’’)

Processor and co-processor opcodes are described in this section. Assembler pseudo-ops are
described near the end of the chapter.

Processor Opcodes
All opcodes described in the 68000 or 68020 user’s manuals are supported by the Workstation
Assembler. Since the syntax and semantics of each instruction are fully described in those manuals,

they will not be described here.

Note that some instructions have Address, BCD, Immediate, or Quick forms. When possible,
Motorola’s assembler automatically generates machine instructions for these opcodes (for optimiza-
tion). However, the Workstation Assembler does not, unless explicitly told to do so.

Co-processor Opcodes

Co-processor opcodes are supported by the Workstation Assembler. See the MC68020 user’s
manual for a general description of the syntax and semantics of each. Details of particular co-
processors, such as the 68881, are provided in the documentation for the corresponding product.
See the “MC68881 Support” section for a description of exceptions to the syntax and support
suggested in the MC68881 document.

239

240 The Assembler

Size Suffixes

Size suffixes can be appended to both of the following items:

® Opcodes
® Index registers (in

operands)

They specify the size of operand(s) used by the instruction.

The available size suffixes and their definitions are as follows:

Suffix Meaning Data Size Where Used

B Byte 8 bits Opcodes only
Short 8 bits Opcodes (Branch instructions only)
Single 32 bits MC68881 opcodes only

W Word 16 bits Opcodes and index registers

L Long 32 bits Opcodes and index registers

D Double 64 bits MC68881 opcodes only

X Extended 96 bits MC68881 opcodes only

P Packed BCD 96 bits MC68881 opcodes only

All instructions that can operate on more than one data size will assume the default size of word (16

bits) unless a size suffix is explicitly specified.

Here are some examples of using these suffixes:

ADD.B D1.,DZ
ADD.W D1.D2
ADD D1.D2
ADD.L D1.DZ

ADD (A1,AZ2.MW) D1
ADD (A1.D2.L) D1

BEQ.S5 Label.Z
BEQ.W Label.Z
BEQ Label.Z
BEQ.L Label.Z

FSGLDIV.5 FPOFP1
FSGLMUL.S (RO) 4FP1
FMOVE.D #3,14,FPO

ADD registers as Bytes
ADD registers as Words

ADD registers as Words (default operand length)
ADD registers as Long words

16 bits of A2 are used as index (default)
32 bits of D2 are used as index

Branch on EQual; destination specified by 8 bits

Branch on EQual; destination specified by 16 bits (always)
Branch on EQual; destination specified by 8 or 16 bits
Branch on EQual; destination specified by 32 bits

Single-precision division: FPO/FP1
Single-precision multiply: (A0)*FP1
Double-precision move: 3.14 to FPO

Note that in the BE® instruction with no suffix, the Assembler determines whether it will use 8 or 16
bits to specify the destination. In contrast to this, the BEQ. W opcode specifies that 16 bits will be used,

even though the destination might fit in 8 bits.

The Assembler

Operands

Operands specify the data upon which the operation is to be performed. They are composed of any
of the following:

e Constants

® Symbols

e Expressions containing constants, symbols, and operators

® An instance of an addressing mode (see the subsequent ‘“Addressing Modes” section for
further information)

Constants
Constants are sequences of ASCII characters that define a numeric value. There are basically four
types of constants:

® Decimal numeric constants.

123

2147000111
Note that decimal numeric constants may contain any decimal digits ¢ through 9; however,
they may not contain a sign character (+ or -), which would make them an expression (see the
subsequent ‘“‘Expressions’ section).

e Hexadecimal numeric constants.

$19
$FF20

A s preceding a numeric constant indicates that it is a hexadecimal (base 16) quantity.
® Floating-point numeric constants.

3.14

S.01ED
-3.14E-99

2,71BE-231

The syntax requirements for these constants are the same as for Pascal floating-point (real)
constants. See the ‘“Real and Longreal Literals” section of the ‘“Numbers” entry in the HP
Pascal Language Reference for details.

241

242 The Assembler

e Literal character constants.

When the characters are enclosed within single quotes, the Assembler emits a series of bytes,
one per character, each of which contains the ASCII code of the corresponding character.

Literal character constants may contain O to 4 characters. If the single quote character (‘) is to
be part of the constant, you must put two quotes in the literal.

‘alih’ Literal is a' b

Symbols

Symbols are names used in place of values or registers. Symbols must begin with an alphabetic
character, but they may subsequently contain digits (¢..9), 8, $ and - as well as alphabetic charac-
ters. Here are some examples:

Symbol
SYM_.2
MAIN__main
Z@_%13

Symbols may contain any number of characters. The only restriction is that each instruction must
be contained entirely on one line. Note also that upper-case and lower-case letters are considered
equivalent in symbols; i.e., the symbol MAIN is equivalent to the symbol nain.

Here are examples of using symbols in instructions:

Symboll EQU RBase+32
JSR Symboll
ADD {(SvymbolZ2+A1) D1

The Location Counter Symbol

The * character is a symbol that signifies the value of the Assembler’s location counter (except
when the * is in column 1, which indicates a comment line). Here is an example of using the symbol
in a branch instruction.

BRA *-2

The location counter points to the memory address at which the instruction begins, and thus is
analogous to the processor’s program counter (PC). In fact, # is equal to the program counter at the
point the instruction is fetched; however, the PC varies from # by 2 or 4 bytes at the point the
operands are fetched.

The Assembler 243

Symbol Types
Here are descriptions of the various types of symbols known to the Assembler:

® Pre-defined register symbols are any of the following:

Symbol Register Specified

A0 thru A7 Address registers O thru 7

CCR Condition Code Register

CACR CAche Control Register

CAAR CAche Address Register

D0 thru D7 Data registers O thru 7

DFC Destination Function Code register

FPO thru FP7 Floating-Point co-processor registers O thru 7
FPCONTROL Floating-Point co-processor control register
FPSTATUS Floating-Point co-processor status register
FPIADDR Floating-Point co-processor Immediate ADDRess register
1sp Interrupt Stack Pointer (A7’)

MSP Master Stack Pointer (A7")

SFC Source Function Code register

5P Stack Pointer (same as USP and A7)

SR Status Register

UsP User Stack Pointer (same as SP and A7)

UBR Vector Base Register

Note that the symbolsFPCONTROL, FPSTATUS, and FPIADDR are deviations from Motorola’s
assembler symbol names; however, you can define the Motorola register symbols as shown in
the third example below.

o User-defined register symbols are created with the EQU (equate) pseudo-op:

StackPointer EQU SP

MyAddresskRed EQU Al

STATUS EQU FPSTATUS

Note that these are the only type of symbols that need to be defined before they are used.

e Absolute symbols are those which either follow an 0RG pseudo-op or are equated to an
absolute expression. Here are some examples:

ORG $FFFFFOOQO

AbsSvml EQU $FFFFFEDZ

AbsSvym2 EQU AbsSyml+16

AbsSym3 EOQU RelSvml-RelSym2 Note: DIFFERENCE of 2 relatives is absolute

244 The Assembler

® Relative symbols are those which follow a RORG pseudo-op or are equated to a relative
expression.

RORG # Relative to Prodgram Counter (PC)
RelSymi EQU RBase+16
RelSym2 EQU RelSyml

RelSvm3 EQU RelSymZ+AbsSym2 Note: CANNOT add 2 relatives

o External symbols are those which are defined in another module (by a DEF Assembler
pseudo-op, or by another language’s compiler). They can be either absolute or relative. Here
examples of how external symbols are defined (in the module to which they are external):

REFA AbsExtSym1 Absolute external symbol.
REFR RelExtSym1 Relative external symbol.

Expressions
Expressions are the general case of operand: they may be just symbols; or they can be more
complex combinations of symbols, constants, and operators. The operators in expressions are
limited to the following:

® - subtraction, or unary minus

® + addition, or unary plus

® | bit-wise logical OR

® & bit-wise logical AND

<
3
T
=3

Expressions are evaluated in strict left-to-right order, and parentheses are not allowed. Only one
external symbol, or symbol equated to an expression containing an external symbol, is allowed per
expression. Also note that you cannot add two relative symbols (although you can subtract two,
since the difference is an absolute value).

2+2
RelSymi1+d48+$DFQ0
RelSvyml-RelSym2+RelSym3+AbsExtSyml

AbsSymi-AbsSym2+RelSym3+AbksSym3

Addressing Modes

The Assembler

The Workstation Assembler supports all of the addressing modes of the current 68000 family of
processors; this section describes the syntax required to access each mode.

With system version 3.1, the Workstation Assembler was updated to support the 68020 processor’s
addressing modes. Since these new modes cannot be accessed with the old address syntax, new
syntax is required. However, note that the old 68000 syntax is still supported in all instances.

The following table shows the syntax and operand components of all supported addressing modes.
Descriptions of operand components are given in the legend on the next page.

Description of Mode Old Assembler New Assembler
Data Register Direct Dn same
Address Register Direct An same
Address Register Indirect (AN) same
Address Register Indirect

with Post-increment (An)+ same
Address Register Indirect

with Pre-decrement -(An) same
Address Register Indirect

(absolute displacement) d16¢an) (bdsan)

Address Register Indirect with Index
(absolute displacement)

Memory Indirect Post-indexed
Memory Indirect Pre-indexed

PC Memory Indirect Post-indexed
PC Memory Indirect Pre-indexed
Absolute Address

Program Counter Indirect
(relative displacement)

Program Counter Indirect with Index

(relative displacement)

Immediate Data

Register List (such as for MOVEM)
Bit Field Specifier

d8¢an,Rn.SIZE)
n/a
n/a
n/a
n/a

Expr

rd16

rd8(Xn,SIZE)
+Expr
Ai-Aj/Dm-Dn

n/a

(bdaAn,Xn,SIZE*SCALE)
(tbd +an1,Xn.SIZE*SCALE 10d)
(tbd+An,Xn,SIZE+SCALE1 ,0d)

({rbd1,Xn.SIZE*SCALE 1od)
(Irbd »Xn.SIZE+SCALE1 ;od)

same

rbd

(rbd +Xn,SIZE+SCALE)
same
same

operand{offset: width}

245

246 The Assembler

Legend:
An = Address register symbol: A0 thru A7
Dn = Data register symbol: DO thru D7
Xn = Index register symbol: A0 thru A7, or DO thru 07
Rn = Equivalent to Xn (see above)
ds = absolute expression (8-bit): —27 thru2’ —1
di6 = absolute expression (16-bit): — 215 thru 215 -1
bd = absolute expression (32-bit): —23! thru 231 -1
od = absolute expression (32-bit): —23! thru 23! -1
rd8 = relative expression (8-bit): PC-27 thruPC+27 —1
rd16 = relative expression (16-bit): PC -2 thruPC +2° -1
rbd = relative expression (32-bit): PC—23! thru PC+23! -1
SIZE = literal: W (or no suffix) specifies Word operand

L specifies Long word operand

SCALE = literal:1

"3

[= 5 ¥

n/a = not implemented in the older “68000” Workstation Assembler
Expr = expression (relative or absolute)

Ai-Aj/Dm-Dn = List of registers: - means ‘“‘thru’’; / means “and”.
The values of i, j, m, and n can range from O thru 7.
Examples: A0-A3/D1-D4/AS, and D5-D7/D0/A0

operand = any of the operands allowed with instructions that can operate on “‘bit fields’’.

offset = literal or symbol that specifies starting bit of a bit field.
width = literal or symbol that specifies number of bits in a bit field.
Examples: 0742:33, and (A0){D1:D2}

Operand Components: Order and Optionality
In the above table, an operand is the whole quantity shown in one column entry. Here are some
examples of single operands:

AbsExpri (ALl +A2.L)
(AbSExpr2,A1 D3 Wed)
([AbsExPr3,A41+A3.LsAbsExrrd)

Thus, some of the components of these operands are AbsExrri, AL, AZ.L, AbsExpr2, D3,K*4, and so
forth.

The Assembler

The newer Workstation Assembler allows you to vary the order of these operand components
(however, only with the new 68020 syntax). Here are some examples of varying the order of
operand components (note that all these operands are equivalent):

([AbsExpr31A41 A3, L+AbsExrrd)
(LA4sAbSExpr31 A3, L+AbsExprrd)
([AdAbsExpr3]+AbsExprrdsA3.L)
(AbsExrrdsA3.L+sLA4dAbsExPT3])

The Workstation Assembler also allows you to optionally omit some of the operand components, as
shown in the following examples (these operands are not equivalent):

(CAbsExprisAL1]1,AS.L+AbSExPT2)
(LA11,AS.LAbsExpPr2)
([AbsExprl]+AS.L)

(LAl

(D1)

Note that whenever any operand component is omitted, an effective value of 0 is used for that
component.

Comments and Comment Lines

comment

o comment line

The first space following an operand (or the opcode in an instruction with no operands) terminates
it: the remainder of the characters on the line, if any, are regarded as comments.

Label ADD D1:D2 This is a comment,
RTS This is also a comment (since RTS has no operands).

An asterisk (*) in column 1 indicates that the entire line is a comment; therefore, any instructions on
the line will be ignored.

1234567880123456789012345678901234567830

* These are comment lines.
* Add word addressed by Al to the value of the error counter.
*

247

248 The Assembler

Notes

The Assembler 249

MC68881 Floating Point

Co-processor Support

This section describes the Motorola MC68881 floating point co-processor support provided by the
HP Pascal Workstation Assembler. Note that the support provided by the Assembler is a subset of
the co-processor’s full capabilities.

Assembler Support of the Co-processor
The co-processor support provided by the Assembler is given in the list below. This list also includes
those capabilities not supported.
@ All opcodes are supported.
e All sizes and types of operands are supported, with the exception that floating-point constants
and immediate operands are restricted as follows:

@ The floating-point literal constant syntax is that defined in the HP Pascal Language
Reference under ‘“Numbers”, such that a period must be present, and the “L” expo-
nent flag is not allowed (i.e. only the “E” exponent is allowed).

e Only double-precision constants are allowed (i.e. “.D” size suffix).
® The size suffix “.D”” must explicitly be given.

® All non-zero constants and immediate operands are normalized (i.e. 0.0 and normal-
ized are the only supported IEEE types).

o Use of floating-point values in expressions is not supported.
o Single-precision division (FSGLDIV) and single-precision multiplication (FSGLMUL) may use
any sizes except X" and “.D”.
® Assembler Pseudo-op DS allocates space in memory for all types and sizes of operands.

® Assembler Pseudo-op DC, which reserves storage space, only supports double-precision oper-
ands (i.e. “.D”).

e No pseudo-ops (directives) are provided to control the rounding mode, so the default of
“round to nearest integer value’’ occurs.

® No pseudo-ops (directives) are provided to allow use of different co-processors. Therefore, the
default co-processor id of 1 is used, which is the MC68881 co-processor.

® The structured “IF”’ recommended in the MC68881 specification is not supported.

250 The Assembler

Assembler Pseudo-Op Reference

The following is a list of the commands which direct the assembler to take the described actions. For
a list of the Assembler-language and machine-language instructions, see the MC68000 User’s
Manual.

COM

Used to define a global area.

o=

Item | Description | Range Restrictions

symbol An identifier for the global area see ‘‘Symbols’’

size A numeric expression ~231thru 231 -1
Semantics

The exact location of the global area will be determined at link time. The symbol is DEFined as an
entry point. The amount of space is specified by the absolute value of the expression. If size is
negative, the value of the symbol will be the offset from (A5) to the top of the global area and
variables will have negative offsets from the symbol. This is how the Compiler does it. If size is
positive, the symbol’s value will be the bottom of the area, relative to (A5), and offsets will be
positive. Only one COM statement allowed per assembly.

The Assembler 251

DC

Used to define some constant value or values, including string literals, and place them in storage.

O

ol exorecsion |

=(DC) "1 expression I >
string
literal

L

Item Description Range Restrictions
label An identifier for the constant see “‘Symbols”’
value An expression that can be evaluated in pass 1 —23 thru 231 -1
string literal A string of characters The instruction must
be contained on one
line
Semantics

Size suffixes may be used to specify the units of storage into which the values will be justified for
storage. In the case of string literals, the amount of storage needed will be determined by the
Assembler and each character will be assigned into a unit.

The “.D” suffix is supported only for the MC68881 floating-point math co-processor.

DECIMAL

Causes addresses in the listing to be printed inn decimal rather than in hex notation.

DECIMAL

252 The Assembler

DEF

Defines a label or list of labels as entry points for other modules.

ey

Item I Description | Range Restrictions

label | An entry point identifier see ‘‘Symbols”’

DS

Reserves storage space.

{ DS) > expression
— |

0990046

Item | Description Range Restrictions
label An identifier for the data space see ‘‘Symbols”’
number An expression that can be evaluated in pass 1 0thru23' -1
Semantics
The units of space are specified by the size suffix. The number of units is determined by the
expression.

The “.S”, “.D”, “X”, and “.P” are supported only for the MC68881 floating-point math co-
precessor.

The Assembler

END

Indicates the end of the assembly. This should be the last line of the assembly.

EQU

Assigns the value and attribute (absolute or relative) of the expression to the label.

[label l—»(EQU)—b-[expressionl—b—'

Item | Description I Range Restrictions
label An identifier see ‘‘Symbols’
value An expression that can be evaluated in pass 1 ~2% thru 231 -1

INCLUDE

Specifies a file to be merged into the assembly at the point where the instruction is located. The
" TEXT suffix will be automatically appended to the file name. The INCLUDEJ file may not contain
another INCLUDE.

GNCLUDE)—D-[file name |—>-|

253

254 The Assembler

LLEN

Used to specify the line length (column width) of your printer.

(LLEN)—D-I length —I—H

LIST

Turns the printer listing back on. You must have requested a listing when the Assembler was
initiated for this to have an effect. LIST is used with NOLIST to exclude blocks of text from the
listing.

The Assembler

LMODE

Specifies a symbol or list of symbols to be accessed using long absolute addressing mode. Overrides
short addressing and PC-relative mode implications of REFR, ORG, and RORG.

—>
Item | Description | Range Restrictions
symbol | A location identifier see “‘Symbols”

LPRINT

(Default) Causes all output from DC statements to be printed. (See SPRINT)

255

256 The Assembler

MNAME

Used to assign a name to an Assembler module. The default is to assign the file name to the
module.

CMNAME)—D—L-noduIe nEJ—H

NOLIST

Turns off the listing until a LIST is encountered.

NOLIST

The Assembler 257

NOOBJ

Requests that no object code be produced.

NOSYMS

Inhibits the listing of the symbol table at the end of the program.

258 The Assembler
ORG

Specifies an absolute origin. When used with the “.L”" option, it forces long mode addressing for
forward and external references. Otherwise short absolute addressing mode is implied.

ORG > Jl - }-’-{
Item | Description | Range Restrictions
absolute origin I A numeric expression that can be evaluated in pass 1 | — 231 thru 231 -1

PAGE

Advances listing to top of next page. This command will not be printed on the listing.

The Assembler

REFA

Defines a symbol or list of symbols as external and absolute references. The size of the effective
address is implied by the ORG statement.

(REFA symbol
Item | Description I Range Restrictions
symbol | A location identifier I see “Symbols”

REFR

Defines a symbol or list of symbols as external and PC relative references.

O
CENER

symbol

Item I Description I Range Restrictions

symbol | A location identifier | see ‘“Symbols”

259

260 The Assembler

RMODE

Specifies a symbol or list of symbols for access using PC-relative addressing. Overrides all other
addressing mode specifications.

Item I Description I Range Restrictions

symbol I A location identifier | see “‘Symbols”

RORG

Sets a relocatable origin. Using the 'L’ option, forces long absolute addressing mode for forward
and external references. Otherwise, PC-relative addressing mode is implied for forward references
and short absolute addressing mode for REFA symbols.

(} > ‘{ relocatable | -
RORG o origin

Item | Description | Range Restrictions

relocatable origin | a numeric expression that can be evaluated in pass 1 | — 231 thru 231 -1

The Assembler

SMODE

Specifies a symbol or list of symbols to be accessed using short absolute addressing mode. Over-
rides all other addressing mode specifications.

RN

Item I Description I Range Restrictions

symbol | A location identifier see ‘‘Symbols”

SPC

Directs the assembler to generate the specified number of blank lines. Used to separate blocks of
code or blocks of comments on the listing.

) l number of
(spC blank lines

SPRINT

Print only the first line of output for the DC statements. Otherwise, each word used to store the
constant is printed.

261

262 The Assembler

SRC

Used to specify the IMPORT text information which the Compiler needs when importing the
module. Use one SRC for each line of IMPORT text. (see programming section)

line of
Csnc) 'Iexpontextl ™

START

Specifies a start location for execution of the main program. Use only in the main program.

)) I start I i
CSTART location

Item I Description | Range Restrictions

start location | An integer numeric or symbolic expression | ~23 thru 231 -1

TTL

Specifies a title to appear on each page of the assembler listing.

G+~

The Assembler

The Examples

Listings of the two programs and two modules are given here and also have been provided on the
documentation disc (DOC:). On the disc they are provided in source and object form. The file
(ASMB_P1) imports the file (ASMB_M1). These are both Pascal files. The Pascal file (ASMB_P2)
imports the Assembler language file (ASMB_M2).

If you want to see them work, you must either use the Librarian to link the modules to the
programs, P-load the modules, or put the modules in the current System Library. You can then
execute the two programs.

The Sample Pascal Programs
This Program Imports the Pascal Module

¢search '#3:ASMB_M1
Prosram test(inputsoutput)i
Import simples
var is+d*k @ reci
begin
initializes
ieile=13 1,i2:=23%
Jeil:=35 J.12:=4d3
add(isdsK)3
writeln(K.il1,K.i2)
end.,

This Program Imports the Assembly Module

$search '#3:ASMB._M2
Prodram test(inputsoutpPut)}
Import simpleZ2}
var isJdsK @ reci
bedin
initialize$
ivile=13 1.,i2:=23
Jeile=37 J.12:=43%
add(isdsK)3§
writeln(K,il »K.,1i2)
end.

263

264 The Assembler

The Sample Pascal Module

fsysProg$ (*¥to enable try-recover*)

module simples

axPOrt
type
rec = record
il: integders
i2: inteders
endi
const
zero = rec [i1:0,1i2:013
var

lastresult: reci

procedure initializes
procedure add (asb: rec’i var out: rec)s

implement
var
sum: recsi

procedure initializes
bedin sum := zero endj

function partadd (xsv: integer): integders;
var temp: inteder}

begin
temp = x+vi
if temp ¢ O then escare(100)3

partadd = tempi
endi (*partadd*)

procedure add (a:b: reci var out: rec)i
bedin
try
lastresult.il 2= partadd(a.ilsbsil)s
lastresult,i2 := partadd(a.i2sb.i2)3
sum,il 2= sum.il+lastresult.ils
sumei2 1= sum.iZ+lastresult,.i2j
out := lastresulti
recover
if escapecode = 100
then lastresult := zero
else escape(escarecode)}
endi (*add#*)

end.,

The Disassembly of the Module

Librarian [Rev, 2.0 19-0Oct-821 19-0ct-82 9: 7:14
MODULE SIMPLE Created 8-0ct-82
NOTICE: (none)

Produced by Pascal Compiler of Z20-Ser-B2
Revision number 2

Directory size 172 brtes

Module size 3072 brtes

Module NOT executable

Code base 0 Size 254 bvtes
Global base 0 Size 16 brtes
EXT block S Size 20 bytes
DEF block 3 Size 114 bvtes
EXPORT block 1 Size 192 brtes
There are 1 TEXT recorids
TEXT RECORD # i of ‘SIMPLE’:
TEXT start block 2 Size 254 brtes
REF start block 4 Size 42 bytes
LOAD address Rbase
0 0000 dcew O or dec.b 00
2 0000 desw O or desb 0,0
4 Q000 desw O or deceb 0.0
G 0000 dcew O or dc.b 00
8 0000 de.w O or dc+b 0,0

10 4E41 0000 trap #1,%0
14 4CBA OQFO0O0 movem.w Rbases,a0-a3

FFEE

20 4BAD OFOO0 movem.w a0-a3d,Gbase-16(al)
FFFO

26 4ESE unlk aB

28 4E7S rts

30 0000 de.w O or dc+b 0,20

32 4E41 FFFC trap #1,%-4

36 202E 000C move.l 12(aB) +d0

40 DOAE 0008 add.l 8(aB) d0

44 4E76 trapv

46 2D40 FFFC move.l d0,-4(aB)

50 4AAE FFFC tst,1l -4(aB)

54 GCOO OQOO0A bge Rbase+66

58 3B7C 0064 move.w #100,5YSGLOBALS-2(al)

FFFE
G4 4EdA trar #10
668 2ZDBE FFFC mouve.l -4(aB):16(ab)
0010
72 4ESE unlk aB
74 Z208F moveas,l (sP)+sal
76 SO04F adda.w #8:sp
78 4EDO Jmp (a0)
80 0000 docew O or dc.b 0,0

SIMPLE_INITIALIZE

The Assembler

pade 1

or de.b
or dc.b
or dc.b
or dc.b
or dc.+b

~ o~ s~

or desb !

or dec+b 7 ‘

265

266 The Assembler

Likrarian

82

86

g0

94

98
102
106
110
114
116
120
124
126
130
134
138
142
144
148
152
156
160
164
168
170
174
178
180
184

190
184

200
204
208
210
214
216
220
224

230

236
240
242
244
246
250

252

[Rev, 2,0

4E41
20BE
2D58
2Ds0
Z0BE
2D58
2D50
2F2D
2FOE
487A
Z2BAF
598F
2F2E
2FZE
4EBA
2B5F
S98F
2FZE
2FZE
4EBA
2B5F
202D
D1AD
4E76
202D
D1AD
4E76
206E
4CAD
FFFB8
4890
ZBGF
FFFG
DEFC
4EFA
2C5F
2BSF
7064
BOBD
BGBOO
4cBA
FF1C
48AD
FFF8
BOOO
dE4A
4ESE
205F
DEFC
4EDO
4E735

FFFO
0010
FFFO
FFF4
000C
FFFB
FFFC
FFFB

005A
FFFE

FFFO
FFFB8
FF98
FFFB8

FFFa
FFFC
FFBG
FFFC
FFF8
FFFO

FFFC
FFF4

0008
1E0Q0

1E0O
o0oB

0oocC
0024

FFFB
FFFE
0012
OF00
0F 00

0004

000c

19-0ct-821

trap #1,%-106

movea.,l 16(aB) »ald

19-0ct-82 9: 7:14

- - - SIMPLE_ADD

move.,l (a0d)+,-16(ab)
move.l (agQ),-12(aB)

movea,l 12(aB) sa0

move.l (a0)+,+-8(aB)

move.l (a0),-4(ab)

move.l SYSGLOBALS-10(ad)s-(sp)
moue.l aBi-(sp)

Pea Rbase+208

move.l sPsSYSGLOBALS-10(as)

suba,l #d4,sp

move.]l -16(aB),-(s5p)
move.l -8(aB)s-(spP)

Jsr Rbase+32

move.l (sPp)+,Gbase-8(as)

suba.,l #d,sp

move.,]l -12(aB)s~-(sp)
move,l -d4(aBG)s-(sp)

Jsr Rbase+32

move.l (sp)+,Gbase-4(a5)
mouve.l Ghbase-8(a3),d0
add.]l d0:Gbase-16(as5)

trapv

move.]l Ghbase-4(a%) 40
add.1 d0,Gbase-12(al)

trarv

movea.,l B{aB) a0
movem.w Gbase-B(aS)sal-ad

movem.w al-ad,(a0)
move.l B(spr) SYSGLOBALS-10(a%s)

adda.w #12;:sp
JmP Rbase+242

movea.l (sp)+sal
move.l (sP)+,SYSGLOBALS-10(a5)

moveg #100,d40

cmp.w SYSGLOBALS-2(a5) :d0

bne Rbase+Z240

movem.w Rbases,a0-a3

movem.w al-a3:Gbase-8(ald)

bra Rbase+242
trar #10
unlk aB

movea,l (sp)+,a0

adda.w #12,5p
Jmp (a0)
dc.w ZO0BS

or

de+b 784117

or

rade

de.b

2

Ny’

The Assembler 267

The Assembly Language Module

mname simple2

src module simpleZs
STrC eXPOTt

src tyrPe

sSrc rec = record

sre il 3 inteders

src i2 « inteders

sTeC ends

sTC const

src zero = reclil:0,i2:013
sre var

src lastresult : reci

sSrc procedure initializes

src procedure add(a:b : reci
src var out : rec)i
src end?

com simpleZ -16

def simpleZ_add

def simpleZ_initialize

def simpleZ.zerorsimple._simpleZ

refa sysdlobals

lastresult equ simpleZ2-8

lastresult.il equ simpleZ-8

lastresult_i2 equ simple2-4

sum equ simple2-16 (all are relative to a5)

sum-il eqy simpleZ-16

sum_iZ2 equ simpleZ-12

escarecode equ svsdlobals-2

recover_rec equ svsglobals-10
rord O

simple2_zero de.l1 0,0

simple2_initialize trap #1 (stack check)
dcew O (no local space)

movem.l simple2_zerosa0-al

movem.1 a0-alssum(ad)

unlk aB

rts

simpleZ_rartadd trap #1

de.w -4
result eau 16
X equ 12
¥ equ 8 (all arerelative to aB)

ret_addr equ 4

268 The Assembler

drn.link
temp

move.l x{aB),d0

eqi
eqiu

0
-4

(tempPpi=x+vy)

add., 1 y(aB) +d0

trapru (overflow check)
move+l dOstemp(aB)

tst.l temp(aB) (if tempiQ)

bde Past_escare
move #100sescarecode(as)

trap #10

rast_escare

(then escare 100)

move.]l temp(aB)sresult(aBb)

* (Partadd:=temp)
movea.l ret_addr(aB) sa0
unlk aB
adda,1 #1Z2,sp
Jmp (a0)
simple2_add trap #1 (stack check)
dc.w -16 (for Param cories)
a..addr equ 16
b-addr eau 12
out.addr eau 8
ret_addr2 eau 4
dyn_link2 equ 0 (relative to aB)
b.iZ_caopy eau -4
b_il_copy equ -8
a_iZ_coPy equ -12
a_il_copy equ -16

mouvea.]l a_addr(aB) a0 (maKing local
move,l (a0)+sa_il_coerv(ab) cories)
move.l (a0),a_iZ_.copv(aB)

movea.,l b_addr(aB) a0

mouve,l (aQ)+sb_il_coepv{aB)

move.l (a0)sb_iZ.copv(aB)

move.l recover_rec(aS)s-(s5p) (TRY)

moue.l aBs-(sp)
recover_addr

rPEea

move.l sPpsrecover_rec(aS)

suba.,l #4,sp (calling partadd)
move.l a_il_corv(aBG)s-(sp)
move.,l b_il_copv(aBG)s-(sp)

Jsr simpleZ_rartadd

move.l (sp)+slastresult_il(as)

suba.l #d,sp (callingd partadd)
move.l a_iZ2_copv(aB)-(sp)

The Assembler 269

move.,l b_iZ2_copv(aB)s:-(sp)
Jsr simple2_partadd
move.,]l (sp)+slastresult_iZ(ad)

move.]l lastresult_il(aS),d0 (sum:=

add,1 dOssum_il(ad) sum+lastresult)
traprv

move.l lastresult_iZ(aS) ,d0

add.1 dOssum_i2(al)

trarvy
movea.l out.addr(aBG) sal
movem.l lastresult(ad)sal-a2

movem.1 al-a2Z,(a0) (out:=lastresult)

move.l B(sp)srecover.rec(ad)

adda.,1l #12,sp

(end of TRY)

JmP Past_recover

recover_addr movea.l (sp)++ab (RECOVER)
move,l (sp)+srecover_rec(ad)
movea #100,d0 (if escarecode=100)
cmPpsw escaprecode(ald) »d0
bne sys_error
movem.l simpleZ_zero:a0-al

* (then lastresult:=0)
movem.,l a0-alslastresult(al)

bra Past.recover

sYsS_error trap #10 (else escare)
Past.recover unlk aB

movea.,l (spP)+:a0

adda.l #1Z2,sp

Jdmp (a0)
simple2_simple2 rts (initialization body)

end

#% BBOOO ASSEMBLER SYMBUL TABLE DUMP %%

EXTERNAL SYMBOLS

SYMBOL TYPE DEF VALUE
SIMPLEZ ABS 19 00000001
SYSGLOBALS ABS 23 00000002

INTERNAL SYMBOLS

SYMBOL TYPE DEF EQU SYM VALUE
AD AREG 0 00000000
Al AREG 0 00000001
A2 AREG 0 00000002
A3 AREG o 00000003
Ad AREG] 00000004
AS AREG o] 00000005
AB AREG 0 000000086
A7 AREG 0 00000007
A_ACDR ABS 80 00000010
A_I1._COPY ABS 88 FFFFFFFO
A_IZ_COPY ABS 87 FFFFFFF4
B_.ACDR ABS 81 0000000C

270 The Assembler

B.I1_COPY
B_IZ_COPY
CCR

DO

D1

DYN_LINK
DYN_LINKZ
ESCAPECODE
LASTRESULT
LASTRESULT_I1
LASTRESULT_IZ
OUT_ADDR
PAST_ESCAPE
PAST_RECOVER
RECOVER_ADDR
RECOVER_REC
RESULT
RET_ADDR
RET_ADDRZ
SIMPLEZ_ADD

SIMPLEZ2_INITIALIZE REL

ABS
ABS
STREG
DREG
DREG
DREG
DREG
DREG
DREG
DREG
DREG
ABS
ABS
ABS
ABS
ABS
ABS
ABS
REL
REL
REL
ABS
ABS
ABS
ABS
REL

SIMPLE2_PARTADD REL
SIMPLEZ_SIMPLEZ REL

SIMPLEZ_ZERO
5P

SR

5UM

SUM_TI1
SUM_I2
SYS_ERROR
TEMP

uspe

A
A

A,
I

REL
AREG
STREG
ABS
ABS
ABS
REL
ABS
STREG
ABS
ABS

56

49
145
38
0

30
31
32
138
37
0
53
54

SYSGLOBALS
SIMPLEZ2
SIMPLEZ
SIMPLEZ2

SYSGLOBALS

40

SIMPLEZ
SIMPLEZ
SIMPLEZ

+ 4+ + 4+

+ +

FFFFFFFB
FFFFFFFC

FFFFFFFE
FFFFFFF8
FFFFFFF8
FFFFFFFC

OOOO0O0F4d
0DOO000D2
FFFFFFFG

Q0000006
FFFFFFFO
FFFFFFFO
FFFFFFF4
QODOQOF2
FFFFFFFC

00000008

Chapter

8

The Librarian

Introduction

It may seem obvious that the Librarian’s purpose is to manage libraries. However, all the things that
it can do to fulfill this responsibility may not be as obvious. This chapter will help to put all of the
Librarian’s capabilities into perspective. The chapter first describes libraries and object modules,
providing some relevant background information that will help you to understand the Librarian
operations described in the latter sections of the chapter.

Here is a brief overview of the operations you can perform with the Librarian:

® Add object modules to or remove them from libraries. For instance, you can add object
modules to the System Library so that the modules will be found and loaded automatically
when any program that imports them is loaded for execution.

o Link the directories of the object modules in a library file. This operation reduces the file’s size.

e Obtain detailed information about the object modules in a library file. For instance, you can
unassemble a compiled Pascal object file and get the Assembler language object code. The
Librarian can disassemble all instructions for the MC68000 family of processors, as well as
MC68881 math co-processor instructions.

o Create new system Boot files. This operation is used to create files that are found and loaded
by the Boot ROM and in turn load a system.

Let’s look more closely at library files, what is in them, and how to use them.

Prerequisites
This chapter presents simple examples of user modules and libraries. If you find that you want more

information about modules as you read this chapter, read the sections of the Compiler and
Assembler chapters that describe modules.

If you are going to be using the Librarian for purposes other than adding modules to and removing
them from the System Library (usually LIBRARY) or Initialization Library (BOOT:INITLIB), then
you should also be familiar with the concepts presented in the Assembler chapter.

271

272 The Librarian

Library Overview

This section presents some important terms and concepts you will need to know in order to
understand libraries. It will help you see when and why you will need to use the Librarian.

Modules and Libraries

Libraries are object files. They contain zero or more object modules. Object modules are the
product of the Compiler or Assembler’. For instance, compiling a Pascal source module generates
an object module which is placed in an object file. This file is actually a library, because it contains
an object module.

An object file is composed of a directory of the module(s) that it contains, followed by the object
modules themselves. Here is a pictorial representation of an object file.

OBJECT FILE

Library Directory
Object Module Directory | ™)
Define Source
Ext Table
Def Table
Text Record

Ref Tables > Object Module
.
[]
.

Text Record

Ref Tables J

The terms Define Source, Ext Table, and so forth are defined in the Glossary of Object Code
Terminology at the end of the chapter.

What the Librarian Does

The Librarian’s purpose is to manage object modules. The Librarian can also produce object files;
however, these files consist of object modules produced by the Compiler or Assembler. It can
create library files and add modules to them or remove modules from them. The intent of these
libraries is to provide a convenient location to store object modules. The following drawing shows
the relationship of object modules in an object file (library):

1 Complete descriptions of how to produce and use Pascal and Assembler modules are provided in the Compiler and Assembler chapters.

The Librarian

273

OBJECT FILE
Library Directory
Object Module Directory Object Module Directory
Define Source Define Source
Ext Table LA 4 Ext Table
Def Table Def Table
Text Record Text Record
_____ Ref Tables | © " RefTables |
[] [}
. °
° .

Text Record

Ref Tables

Text Record

Ref Tables

Example Modules

For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_1.CODE), and the other two
contain compiled modules (MOD_2.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will only
be dealing specifically with the object versions, it is a good learning experience to compile the
source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

Here are source listings and brief explanations of each of the example modules.

Source Listing of PROG_1.CODE

PROGRAM ProgramOne(OUTPUT) i
IMPORT ModuleTwos

BEGIN
WRITELNS
WRITELNS
WRITELNC “#%%%%%%%%%%%%%% Prodramlne *¥¥%¥XEXXHXX%%%'))
TwolLines3
WRITELN(/#%%#%%%%%%%%%%%% ProgramOne #®XEXEEREXXX1X%T) 5

END.

274 The Librarian

The example program imports ModuleTwo, which declared the procedure named TwoLines. Here

is the source of ModuleTwo, which was compiled and stored in the library (object-code) file named
MOD_2.CODE.

Source Listing of MOD_2.CODE

MODULE ModuleTwos
IMPORT ModuleThreesj

EXPORT
PROCEDURE TwolLinesi

IMPLEMENT

PROCEDURE TwolLines}?
BEGIN

WRITELN('I came from ModuleTwo and broudght this:’)j
ThirdLines

END3

END,

ModuleTwo exports procedure TwoLines, which is used by ProgramOne. It also imports Mod-

uleThree, which declares procedure ThirdLine and is in the library (object-code) file named MOD_
3.CODE.

Source Listing of MOD_3.CODE

MODULE ModuleThrees

EXPORT
PROCEDURE ThirdLine}

IMPLEMENT

PROCEDURE ThirdLine$
BEGIN

WRITELN('I came from ModuleThree’)}i
END

END .

This module exports procedure ThirdLine, which is imported by ModuleTwo. Notice that it does
not import any modules.

Here are the results of running the program.

EEREREREREREXAE ProgramOne ¥EFXXXEXERKEXNHE
I came from ModuleTwo and broudht this:
I came from ModuleThree

HEHRRAERXEXXE*X%X* ProdramOne H¥EXEXEEXEREX%XH®

The Librarian

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines and
then the line of asterisks that contains its name. The procedure TwoLines, imported from Module-
Two, is then called; it prints the message: I came from ModuleTwo and brought this:.
Procedure ThirdLine, imported from ModuleThree, is then called; it prints the message:
I came from ModuleThree. Control is then returned to TwoLines and then to the program,
which again prints out its name in asterisks.

Let’s take a look at what is needed in order for you to compile and run the program.

Compiling and Running the Example Program
When a program (or module) imports modules, the imported modules must be accessible at two
times:

® When the program is compiled.

e When the program is loaded and run.

Let’s take a look at what happens at these two times.

How the Compiler Finds Imported Modules

At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module’s “‘interface text.”” Here is the order of
the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs can be
combined into one source file, as long as the modules precede the program and are in proper
sequence.)

2. In object files specified in a SEARCH Compiler option.

3. In the object file currently designated as the System Library.

(A module’s interface text consists of the MODULE name, the IMPORT section, if present, and
EXPORT section; these sections are part of the object module produced when the module was
compiled or assembled. See the subsequent section called Getting Detailed Object File Information
and the Compiler or Assembler chapters for a more complete description of interface text.)

275

276 The Librarian

Here is a strategy (and the method actually used) for compiling these source modules and program.
(Note that you will be learning these Librarian operations in the subsequent examples given in this
chapter, so you will probably want to perform this compilation exercise after working through the
examples using the object modules and program).

1.

Compile ModuleThree first (MOD_3.TEXT); call it MOD_3.CODE for simplicity. Since this
module does not import any others, it will be compiled with no need to search for any
imported module’s interface text.

Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library into
which you will place ModuleThree and the modules in the current System Library; this type
of operation is subsequently explained in this chapter.)

After merging these two libraries (into a third new library), you will need to do one of two
things: use the What command to make the resultant library the System Library; or use the
Filer to change the resultant library’s name back to the name of the current System Library.

Next, compile ModuleTwo (MOD_2.TEXT); call it MOD_2.CODE. The external references
to ModuleThree will be resolved when the Compiler finds the object ModuleThree in the
System Library.

Then place this compiled module in the System Library as in steps 2 and 3.

Compile the program (PROG_1.TEXT). Since both object modules upon which this prog-
ram depends are in the System Library, they will be accessed automatically by the Compiler
when the program is compiled.

Run the program. The loader automatically looks in the System Library in order to resolve
the external references; it loads the modules required to complete the program (in this case,
ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on the
DOC: disc, we will not discuss other alternatives of making the source files accessible to the
Compiler. (However, you are again encouraged to do this after learning how to use the Librarian.)

Let’s look now at how the loader finds imported object modules when the program is to be loaded
for execution.

The Librarian 277

How the Loader Finds Imported Modules

Since a compiled program contains no record of where the Compiler found the imported modules,
the loader must find the imported object modules at load time. Here is the order of the places where
the loader looks:

1. Modules that are part of the object file being loaded.

2. In modules already P-loaded in memory, which includes all INITLIB and Operating System
modules. (The loader searches for these modules in reverse order to which they were
P-loaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1 above),
you have two choices:

e Combine the source modules into one source file (and compile it). You can use the Editor to
add each imported module’s source file to the source program. You can also use an INCLUDE
Compiler option in the source program to include each imported module’s source file in the
compilation of the program.

e Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save space.

With both of these methods, only the file containing the program need be loaded; and when the
program is finished, the memory used by the modules can be reclaimed for other purposes. With
P-loaded modules, this is not possible (without re-booting).

If you want to P-load modules to make them accessible to the loader, you will only need to P-load
all modules which are not in one of the three places stated above. In the example modules already
given, ProgramOne imports ModuleTwo, and ModuleTwo imports ModuleThree. In the second
example that follows, you will be creating a library that contains these two modules and then
P-loading the library. (You can alternatively P-load MOD_3.CODE and MOD_2.CODE, in that
order, which does not require use of the Librarian.) The loader will then be able to link the modules
contained in the library to any program that imports them at execution time.

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the “System Library,” which is the third alterative shown above. (The default
System Library is the file named “LIBRARY”” found on the system volume at power-up. You can
also change it with the What command and the Main Command Level.) This is probably the most
common reason for using the Librarian. In the first example that follows, you will add modules
ModuleTwo and ModuleThree to the LIBRARY file and then run the program.

Subsequent tutorials also describe unassembling these library files and creating system Boot files.

278 The Librarian

Entering the Librarian

The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian, you
will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy the
LIBRARIAN file to another location (such as a hard disc) and use the What command (at the Main
Command Level) to specify this copy as the system Librarian. After doing either of these, pressing
directs the system to load and execute the Librarian program.

Here is the Librarian’s main prompt:

e)
Librarian [Rev, 3.0 15-Apr-841] 15-Apr-B4d 8:11:58
0 Quit
P Printout OFF PRINTER:LINK.ASC
0 Output file: (none)
B write to Boat disk
H file Header maximum size: 38
I Input file: (none)

Copyright 1984 Hewlett-PacKard Companvy.
command?

_ Y,

The commands shown on the left-hand side of the screen are invoked by pressing the correspond-
ing key. You will see how to use all of them in the following tutorial discussions. All commands are
summarized in the Librarian Command Reference.

The Librarian

Setting Up Mass Storage

You will often need two on-line mass storage volumes when using the Librarian. If you only have
one volume in your system, you may need to set up a memory volume. This discusson tells why
two volumes may be needed and then outlines how to estimate the size of the volumes required.

When you combine the object modules in two libraries using the Librarian, you actually create a
third (new) library and then copy into it the desired modules from the other two libraries. For
instance, suppose that you want to add the CONFIG:RS232 module to the BOOT:INITLIB library
file. You will first create a new library, and then add the existing INITLIB modules and the RS232
module to this new library. This new library must not be taken off-line during the entire process.

Thus, two separate volumes are often necessary for these two reasons:

e The sum of all source libraries plus the new destination library often exceeds the capacity of
one volume.

e The destination volume must not be taken off-line during this entire operation.

Continuing with the preceding example, suppose that you have only one mini-disc drive on-line
(the capacity is approximately 1050 sectors). The operation cannot usually be completed, because
one mini disc is not large enough to contain the modules in the INITLIB file (let’s assume 750
sectors), the RS232 module (approximately 25 sectors), and the new INITLIB file (roughly the sum
of 750 and 25 sectors). You will need two volumes for the process.

If you don’t have two disc drives (or one with sufficient space), you can create a memory volume. It
is usually more convenient to use the memory volume as the destination volume. In this case, you
could create one with a specified size of 400 blocks, or 200 Kbytes. (Remember that memory
volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.) See the Memvol
command in the Overview chapter for more specific details on creating memory volumes.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 100 blocks is
sufficient.

279

280 The Librarian

Creating Libraries of Object Modules

To create libraries, you can combine either modules provided by HP or your own modules, or any
combination of the two. Let’s first look at adding modules to the System Library file.

Adding Modules to the System Library

A common way to use library modules is to add them to the current System Library file. Let’s
assume that it is the file named LIBRARY for present purposes, although you can change it to any
file by using the What command at the Main Command Level. The procedure used to add modules
to LIBRARY is very similar to that of storing modules in a user library, which is the next example.

Here is a brief summary of the steps required: first, make a new library file, and copy into it all of the
modules currently in LIBRARY; next, add ModuleThree and ModuleTwo to the new file (in this
case the order of modules is arbitrary, since the loader will load them in the right order); then
replace the LIBRARY file with this new library; execute the program, and the modules are loaded
automatically for you. The actual procedure is given below.

1. Invoke the Librarian. This is done by pressing from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.) Now use the Librarian to create the new library.

2. Put the SYSVOL.: disc (or the one containing the LIBRARY file) in the #3 drive. Press (1)
and then type #3:LIBRARY . and press (Return) or (ENTER) to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the . CODE suffix.

When the Librarian finds the Input file, the display will show the name of the first module in
the file. (You should see the module named RND if you have not yet modified the LIBRARY
file.) If you have a printer, you can press (_F_) to list all of the modules in the Input library.

3. (For this example, we will assume that you are using unit #4 as the second volume;
however, if the LIBRARY file is small enough, you can also put the new library file on drive
#3. We will also assume that the destination volume has enough room for the new library
file.)

Press (0) and enter #4 : NEWL IB . as the Output file. Again, a trailing period prevents the
+ CODE suffix from being appended to the file name. If you are using a memory volume, use
the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating the
new NEWLIB file.)

4. Press (_E) to enter the Edit mode. You should now see this prompt (in the middle of the
screen):

F First module: RND
U Until module: {(end of file)

5. You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing (¢) (for Copy).

6. When the preceding transfer is complete, press (_A) to append a module to the NEWLIB
Output file. The Librarian prompts with Ineut file:. Put the DOC: disc, or whichever
disc now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3:MOD_3 as the Input file.

The Librarian 281

7. The Librarian now prompts with Enter list of modules or = for all. Enter =
for all. After ModuleThree has been transferred to the NEWLIB library, the Librarian
prompts with Aprend dones <space to continue. Pressthe spacebar to clear the
prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in file MOD_2.CODE) into the NEWLIB
file.

8. Now that all modules have been added to the NEWLIB file, press (_§) to stop editing and
(K) to keep the file.

9. You should now verify that the modules were indeed copied to the Output file. Press (_1_)
and enter #4 : NEWLIB . as the Input file. Press the spacebar repeatedly to scan through the
modules in the new library file. If you have a printer, press (_F_) to get a File Directory
listing.

10. If all modules are present, then press (_Q) to Quit the Librarian.

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL:
disc with this file. If you choose the second option, it is probably better to keep the current
copy of LIBRARY on the disc; you should first Change its name to something like OLDLIB
and then Filecopy the NEWLIB file onto the SYSVOL.: disc, changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

FERRRFREFXRXA%%% ProgramOnie **¥XXEXXXREFXRXRHR
I came from ModuleTwo and broudht this:

I came from ModuleThree

FERERERRRERRREF ProgramOne FEXEXXXXXXXRXER

After the program has completed execution, the memory used by both program and modules can
be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically
accessed by the linking loader at program execution time (and by the Compiler at compile time).
Because of this automatic access, you do not need to use the Permanent-load command to access
this library’s contents. This library would normally store those modules often used in your prog-
rams. Further descriptions of using HP-supplied libraries are given in the Pascal 3.0 Procedure
Library and Pascal 3.0 Graphics Techniques manuals.

282 The Librarian

Making Your Own Library

Since we created a library that contains the modules named ModuleTwo and ModuleThree in the
preceding example, you already know what is required to make your own library. The only
difference is that you will not be adding the current LIBRARY modules to your library.

Here is a brief summary of the steps you will take in this example: first, create a new library with the
Librarian and add the example modules ModuleTwo and ModuleThree to it (as with the last
example, the order of modules is arbitrary; since they are in one file, the loader will take care of
loading them in the proper order); P-load this library; and execute or run the program. A more
detailed procedure follows.

© © N

10.

11.

12.

Note

During the transfer process, you must not move the destination disc (the
one that contains the Output file).

From the Main Command Level, press to enter the Librarian. Your screen should
now display the Main Prompt for the Librarian.

Put the destination disc in drive #4. Then press (0), and type #4: USERLIB and press
(Return) or (ENTER) to enter the Output file specification.

Place the DOC: Disc into the #3: disc drive. Then press (_|__) and enter #3:MOD_3 as the
Input file specification. You will see MOD_3 . CODE displayed as the Input file. The first object
module found in the object file, MODULETHREE, is also displayed. The computer is in
Copying mode as shown by the word COPYING on the prompt.

Transfer the object module MODULETHREE using the T command. Since MOD-
ULETHREE is the only module in that file, the A command would have done the same job.

Repeat steps 4 and 5 to name MOD_2 as the Input file and Transfer the object module
MODULETWO into your new library.

If you had other modules to transfer, you would repeat steps 4 and 5 as needed.
Press (_K_) to Keep the new file on the destination volume.
Press (_Q) to Quit the Librarian and return to the Main Command Level.

If you P-loaded these modules as you worked through the preceding example, then you
need to re-boot in order to fully test your new library (to ensure that the modules P-loaded in
the preceding example aren’t accessed instead).

Press (_P) for the Permanent-load command. You will be prompted:
Load what code file ? Enter #4:USERLIB (you don’t need a period if you didn’t
include one when you specified this file as the Output file).

Now press (_X_) to eXecute ProgramOne. Answer the Execute what file? prompt
by entering #3: PROG_1 as the file specification.

The results of the executed program are shown below.

FREFFXRXEEEEX®NE ProdramOne *%%%HK%%%%%%%%%
I came from ModuleTwo and broudght this:

I came from ModuleThree
EXEEEXEXXXEXRRE ProgdramOne *EXXFXEXXEXEXHERH

The Librarian 283

As mentioned earlier, you could also have separately P-loaded ModuleThree and ModuleTwo, in
that order, and then run the program. Or, as with the preceding example, you could also have
added these modules to the System Library. You could also have used What at the Main Com-
mand Level to specify this library as the System Library. The method you use depends on factors
such as these: whether you are developing and testing the modules; whether you are also using
other modules in the System Library; who will be using the modules; and so forth.

Linking Object Files Together

The Librarian permanently links modules together by combining their module directories into a
single directory. To see this process in action, you will be linking the two example modules and the
example program together.

1. Put the ACCESS: disc in a drive and press to run the Librarian.

2. Put the DOC: disc in the #3 drive. Press (_0), and then type #3: TEST_1 and press
(Return) or (ENTER) to enter the Output file specification. #3:TEST_1.CODE will be our linked
library’s name; #3: TEST 1 . CODE is now displayed as the Output file. When an Output file is
named, the menu replaces the B and H command prompts with the ‘L Link” prompt. The
Librarian also enters the COPYING mode.

3. Enter the LINKING mode by pressing (_L). This is the first step in the two-step linking
process. Your screen now displays a new command prompt, as shown below.

4)
Librarian [Rev. 3.0 15-Apr-841 1-Jun-84 B:05:08
Q@ Quit
P Printout OFF PRINTER:LINK.ASC
a} Dutput file: TEST_1.CODE
€C Copry LINKING
N Name of new module: (none)

R Relocation base: 0
G Global base: 0
S Bprace for pPatches:

D output Def table? YES

X copvridht notice:

—

Input file: (none)

command?

284 The Librarian

4. Press (N _) and enter NEWNAME as the new module name. If you did not do this, the object
module contained in the new object file, TEST_1.CODE, would be the module name of the
first module transferred. To avoid confusion, use “NEWNAME”.

5. Press (_I_)and enter #3: PROG_1 as the Input file. (The “.CODE” suffix is automatically
appended to the Input file’s name.) PROG_1.CODE is now the Input file.

6. Press (_A) to transfer all object modules contained in PROG_1.CODE into TEST_
1.CODE. Since PROG_1.CODE contains only one module, would have done the
same job.

7. Repeat steps 5 and 6 to transfer MOD_2.CODE and MOD_3.CODE. When all files are
transferred, final linking must be done.

8. Press to complete the linking process. This is the second step in the linking process.
Remember that all object modules must be on-line when you complete the linking process.

9. Press (_K_) to Keep the new file, and press (_Q) to Quit the Librarian and return to the
Main Command Level.

To see that everything works, execute your new program. From the Main Command Prompt press
(CX), and then enter TEST_1 as the file specification. The “.CODE” is automatically added to
the file name. Your screen should now display the the following:

FEERRREEEREREE%E ProdramOne %5555 %% %% %% %% %%
I came from Module.2 and broudht

I camd from Module.3
EREXERXXRFXXXEE ProgramOne *EXEXEXXEXXEXEERH

The benefit gained over merely combining modules into one library is that linking modules together
reduces the amount of space required to store the library.

Subtle Points about Linking
There are several subtle side effects that occur when modules are linked that should be discussed
here.

® When you link object modules, the interface text is removed. Thus, linked modules cannot be
searched by the Compiler when it is attempting to satisfy IMPORT statements; however, these
modules can be used by other modules at load time by P-loading them or placing them in the
System Library. (Remember that you can also keep a copy of the unlinked object module
which can, of course, be imported by other modules at compile time.)

® The linking process always produces relocatable object code. This code has been relocated to
the values specified by Global base and Relocatable base, but it will be relocated again when it
is loaded for execution. For this reason, you don’t need to specify Global base and Relocatable
base — just leave them zero.

The Librarian 285

e If two or more programs are linked together into one object file, the resultant file contains code
with only one start address (rather than the two that you began with). Contrast this to the
situation in which you put two programs in an object file; when this file is executed, the two
programs get executed separately in the order encountered in the file. This is the reason that
you cannot link the INITLIB modules together; it is actually a set of programs and modules in a
library file.

e After linking, most programs will still have unsatisfied external references (such as calls to the
File System read and write routines). These unsatisfied references do not cause error mes-
sages; they are satisfied by the linking loader as the program is prepared for execution. These
system routines are not part of the compiled or linked program; rather, the entire operating
system looks to the linking loader like a group of P-loaded user libraries.

Summary of Linking Object Files

Note

All input modules must remain on-line for the duration of steps 6
through 9. The output file must be on-line for steps 3 thru 10.

Enter the Librarian.

Be sure the disc containing the file to be linked is in the appropiate disc drive.
Specify an Output file name.

Press to begin the linking process

Name the new module with the Name Command.

Specify the Input file containing the modules you want to link.

N oo W

Transfer only those files you want into the new Output file using the All and Transfer
commands.

o

Repeat steps 6 and 7 until all files are transferred.
Press to complete the Linking process.
10. Press (K) to keep your output file.

11. Press (@) to quit the Librarian

0

286 The Librarian

Getting Detailed Object File Information

Let’s unassemble the file MOD_2.CODE to see how the Librarian provides detailed information
about a code file. It is best to have a printer on-line while unassembling; however, if you don’t, you
can declare a Printout file as described in the following procedure.

1. The Librarian is on the ACCESS: disc shipped with your system. To access the Librarian,
you will need to put this disc on-line, or copy the file to a disc that is on-line, or P-load the file.
After the file is on-line, press (at the Main Command Level) to load the Librarian
subsystem into the computer.

2. If you don’t have a printer on-line, then you must specify a file to which the unassembled
information is sent. Press (_P_) (for Printout) and enter a file specification; if no suffix or
trailing period is included, then “. TEXT” is appended to the file name. The screen will be
updated to show that the printout device is ON and that it is the file you specified.

3. Press(_I_)and enter #3:MOD_Z as the Input file. No Output file is needed.

4. Press (U) to get into the Unassemble mode.

Your screen should now show the Librarian Unassemble menu.

()
Librarian [Rev. 3.0 15-APr-841] 1-dun-84 9:45:02
Q Quit
S Stop unassembling
T print import Text
E pPrint Ext table
D Pprint Def table
A unassemble all (Assembler conventions)

C unassemble all (Compiler conventions)
P PC range (Assembler conventions)
L Line rande (Compiler conventions)

unassemble orPtion?

\. _J

When the first command key is pressed, an information header is printed along with the desired
information. This header is printed only this one time. An internal counter keeps track of the line
count and prints a page heading at the top of every new page. If you change the placement of the
printer paper, you may waste some paper when the counter sends a form-feed to the printer. When
you quit, a final form-feed is sent to the printer automatically.

The Librarian

The Text and Table Commands

Use these commands to obtain Interface Text and REF and DEF tables of modules.

The Print Import (or Interface) Text Command

Pressing prints the interface text (DEFINE SOURCE) of the module, if any. In a compiled
module, the DEFINE SOURCE portion consists of the text in the MODULE, IMPORT (if present),
and EXPORT declarations; in an assembled module, this text consists of the lines containing the
SRC pseudo op. (Note that any comments and indentation have been removed.)

Librarian [Revs, 3.0 15-APrr-841] 23-APr-84 7: B:51 rpade 1
MODULE MODULETWO Created 23-APr-84
NOTICE: (none)

Produced by Pascal Compiler of 23-Apr-84
Revision number 3

Directory size 174 brtes

Module size 3072 brtes

Module NOT executable

Code base 0 Size 104 brtes
Global base 0 Size O brtes
EXT block S Size 72 brtes

DEF blaock 3 Size 90 bvtes

EXPORT block 1 Size 74 bvtes

There are 1 TEXT records

DEFINE SOURCE of ‘MODULETWO’:

MODULE MODRULETWOS
IMPORT ModuleThrees

EXPORT
PROCEDURE TwolLinesS§

END

The Print EXT Table Command
Pressing (_E) prints the table of External symbols the module references. Detailed information on
the EXT table may be found later in this chapter.

EXT table of ‘MODULETWD’:

FS_FWRITELN
FS_FWRITEPAOC
MODULETHREE_-THIRDLINE
SYSGLOBALS

The Print DEF Table Command
Pressing (_D) prints the table of symbols the module itself defines. Detailed information on the
DEF table may be found later in this chapter.

DEF table of ‘MODULETWO’:

MODULETWO Gbase
MODULETWO-MODULETWO Rbase+102
MODULETWO-TWOLINES Rbase+2

MODULETHWOD.-.-BASE Rbase

287

288 The Librarian

The Unassemble Commands

There are two conventions used when unassembling object files: Compiler and Assembler. The
reason for this is that the Compiler and Assembler use different conventions for the object code that
they generate.

The Compiler generates code so that each procedure begins with a TRAP #1 ora LINK #n:AB
and ends with a JMP or RTS. The Librarian uses this information to assume that everything from
the beginning of the file to the first TRAP #1 or LINK is a constant. From the end of the procedure
to the next TRAP #1 or L INK is also unassembled as constants. Everything else is unassembled as
instructions. The Assembler convention assumes that everything is an instruction.

Note

All Unassemble commands require a printer unless a destination file is
specified with the P command.

The Unassemble All (Compiler convention) Command

Pressing (_€_) directs the Librarian to unassemble the specified object module using the Compiler
convention described above. You can use this command on files that were created by either the
Assembler or Compiler. Here are the results of using this command with the MOD_2.CODE
compiled object file.

Librarian [Rev, 3.0 15-Apr-841] 23-Arr-84 9:58:42 pade 1

MODULE MODULETHO Created 23-Apr-84
NOTICE: (none)
Produced by Pascal Compiler of 23-Apr-84
Revision number 3

Directory size 174 bytes

Module size 3072 brtes

Module NOT executable

Code base s} Size 104 bvtes
Global base [Size O bvtes
EXT block 3 Size 72 bvtes

DEF block 3 Size 90 brtes

EXPORT block 1 Size 74 brtes

There are 1 TEXT records

The Librarian 289

TEXT RECORD # 1 of ‘MODULETWO’:
TEXT start block 2 Size 104 brtes
REF start block 4 Size 24 bvtes
LOAD address Rbase
0 0000 de.w O or de.b 0,0 or de.b !
- = = = = = = = = = 4 4 4 = = = = = = = = = - - - - MODULETWO.TWDLINES
2 441 0000 trap #1,%#0
6 2F2D FFAG move.l SYSGLOBALS-90(aS)s-(sp)
10 2F17 move.l (sP)s-{(sP)
12 487A 0030 Pea Rbase+B2
168 3F3C 0027 move.,w #39:-(sp)
20 3F3C FFFF move.w #-1:-(spP)
24 4EB9 0000 Jsr FS_FWRITEPAOC
Q000
30 4AAD FFEA tsts.l SYSGLOBALS-22(a5)
34 B702 bea,s Rbase+38
36 4E43 trap #3
38 4EB9 0000 Jsr FS_FWRITELN
0000
44 4AAD FFEA tst.l SYSGLOBALS-22(a5)
48 6702 bea.s Rbase+32
30 4E43 trap #3
32 4EB9 0000 Jsr MODULETHREE_THIRDLINE
0000
58 4ESE unlKk aB
B0 4E75 rts
B2 4920 dec.w 18720 or de.b 73,32 or de.b ‘I 7
B4 86361 deew 25441 or dec.b 99,97 or dec.b ‘ca’
56 BDBS dc.w 2B003 or de.b 109,101 or de+sbh ‘me’
B8 2066 dc.w B294 or dcsb 32,102 or de.sb * f7
70 726F dec.w 29295 or de.b 114,111 or de+b ‘ro’
72 BD20 dc.w 27936 or dc.b 109,32 or de.sb ‘m ’
74 4DGF dcew 19823 or de.b 77,111 or de.b ‘Mo’
76 6475 dc.w 25717 or dc.b 100,117 or de.b ‘du’
78 GCBS dc.w 27749 or dc.b 108,101 or decsb ‘le’
80 5477 de.w 21623 or dc.b 84,1189 or de.b ‘Tw’
82 BF20 dc.w 28448 or de.b 111,32 or de+sb ‘0 '
84 G1GE dc.w 24942 or dc.sb 97,110 or dc.b ‘an’
86 6420 dc.w 25632 or de.b 100,32 or de.b ‘d 7
88 6272 dec.w 23202 or dc.b 98,114 or dc.b ‘br’
90 BF75 de.w 28533 or desb 111,117 or dc.b ‘ou’
92 6768 de.w 26472 or de.b 103,104 or decsb ‘gh’
94 7420 dc.w 29728 or desb 116,32 or de.b 't/
96 7468 dec.w 29800 or desb 11645104 or de.b ‘th’
98 6973 dc.w 26995 or dos.b 103,115 or dc.b ‘is’
100 3A00 de.w 14848 or de.b 58,0 or dc.b ‘z

102 4E75 de.w 20085 or dc.b 78,117 or dc+b ‘Nu’

290 The Librarian

The Unassemble All (Assembler Convention) Command

Pressing (_A_) will cause your computer to unassemble the specified object module using the
Assembler convention described above. You can use this command on files that were created by
either the Assembler or Compiler.

Note

Use of the Assembler convention may produce unpredictable results,
because under this convention there is no way to tell code from data.
Files produced by the Compiler and unassembled under the Compiler
convention will almost always produce reasonable results.

Here is the unassembly of the MOD_2.CODE object file using the Assembler convention. Notice
that, with Assembler convention, the first two bytes ($0000) are assumed to be code; with Compiler
convention they are assumed to be data (remember that the Compiler convention assumes that
anything until the first TRAP #1 or LINK #n;AB is assumed to be data). Notice also that the
module heading shows that this object module was produced by the Compiler.

Litrarian [Rev, 3,0 15-Arr-841 23-APr-B4 10: 1:34 page 1

MODULE MODULETWO Created Z3-Arr-84
NOTICE: (none)
Produced by Pascal Compiler of 23-Arr-B4
Revision number 3

Directory size 174 bvtes
Module size 3072 brtes
Module NOT executable
Code base 0 Size 104 brtes
Global base 0 Size O bytes
EXT block 5 Size 72 brvtes
DEF block 3 Size 90 brtes
EXPORT blocK 1 Size 74 brtes
There are 1 TEXT records
TEXT RECORD # 1 of ‘MODULETKO:
TEXT start block 2 Size 104 brtes
REF start block 4 Size 24 brtes
LOAD address Rbase
O 0000 4E41 ori.b #B5,d40
4 0000 2ZF2D ori.b #45,40
8 FFAG dc.w -90 or dc.b 235:166 or dc.b !
10 2ZF17 moue.l (spP)s-(sP)
12 487A 0030 rea Rbase+B2
16 3F3C 0027 move.w #39,-(spP)
20 3F3C FFFF move.w #-1,-(sp)
24 4EB9 0000 Jsr FS_FWRITEPAOC

0000

30
34
36
38

a4
a8
50
S2

58
B0
B2
64
B6
68
70
72
74
78
80
84
86
88
90
92
94
96
a8
100
102

4AAD
6702
4E43
4EB9
0000
4AAD
6702
4E43
4EB9
0000
4ESE
4E75
4920
6361
BDGS
2066
726F
6D20
4DGF
BCES
5477
616E
8420
8272
B6F75
6768
7420
7468
6973
3A00
4E75

FFEA

0000

FFEA

0000

6475

BF20

tst.1l SYSGLOBALS-22(a3)
bea,s Rbase+38

trap #3

Jsr FS_FWRITELN

tst.l SYSGLOBALS-22(al)
bea.s Rbase+52

trap #3

Jsr MODULETHREE_THIRDLINE

unlk aB

rts

lea -(a0) rad
bls+s Rbase+163
blt+ss Rbase+1G689
movea.,l -(aB) a0
movea #111,d1
blt.s Rbase+10B
lea 25717(spP) saB
bde.s Rbase+181
adda.w #2,:32(spdB.1)
bsr+s Rbase+196
bcc+s Rbase+120
bhi+s Rbase+204
ble.s Rbase+209
beqa.s Rbase+198
movea #32,d2
moveq #104,d2
bus.s Rbase+Z215
move.w d0,d3

rts

The Line Range (Compiler Convention) Command
Pressing causes two prompts to be displayed. The computer needs to know the line number
range to unassemble. The code will then be unassembled up to, but not including, the upper range
value. The object module must have been compiled using the $DEBUG ON$ Compiler option to
be unassembled with this command.

The PC Range (Assembler Convention) Command
Pressing (_P_) causes two prompts to be displayed. The computer needs the location counter
values of the segment of code you want unassembled (relative to the relocation base of the
module). The code will then be unassembled up to but not including the upper location counter

value.

The Librarian 291

292 The Librarian

Creating a New Boot File

At power-up, the Boot ROM searches mass storage for system Boot files: Boot ROMs 3.0 and later
versions search all mass storage devices on-line and let you choose which Boot file you want; earlier
Boot ROMs choose the first Boot file found on the right-hand internal disc drive. A Boot file is then
loaded by the Boot ROM. The Boot file in turn may load other parts of a system. (For further details
of how this system boots, see the discussion called The Booting Process in the Special Configura-
tions chapter.)

The command is used to create Boot files. This is an advanced option and should only be
used if you have a clear understanding of system generation.

The following is an overview of the system generation process using the command.

o

10.

Note
The B command cannot create boot files in WS1.0 directories.

Use the Editor to produce the programs and modules that will make up the new boot
program. Both Assembler language and Pascal modules may be used.

Assemble the Assembler language modules and compile the Pascal modules.

Use the Librarian to Link the code files together as desired. Be sure to specify the global and
relocation bases. In addition, this file must have no unsatisfied external references. Note that
the first program linked will provide the start address for the Linked file. This start address will
also become the start execution address of the system Boot file at boot time.

Keep the linked file.

Specify the linked file as the Librarian Input file.

Now press to properly place the module name in the destination’s directory and
format the code for use by the boot ROM. The B command moves the cursor up to the
Output file prompt.

Specify the Output file as SYSTEM_xxx (the xxx can be any characters syntactically allowed
for file names. With Boot ROMs 3.0 and later, the name can be SYSxxxxxxx; see Re-
Naming BOOT: Files in the Special Configurations chapter for examples). Be sure to append
a trailing period to the file name to keep a suffix from automatically being appended to the
name.

Transfer the Input file into the boot file. This copies the code file.
Press again to finish the Boot operation.
You can now either Quit the Librarian or power up and test your new system.

The Librarian 293

Librarian Command Reference

The Librarian command set consists of single-letter commands allowed when the letter prompts are
displayed on the screen. You press the corresponding key to cause the command to be executed.

(CA) InCopying and Linking modes, this command transfers All modules from the Input file to
the Output file.

In Edit mode, this command is used to Append modules to the Output file.

In Unassemble mode, this command directs the Librarian to unassemble the Input file
using Assembler conventions.

The Boot command is used to create code files that are loadable by the Boot ROM. The
Boot command is given instead of the Output file command. The Input modules are then
combined in a format that is bootable. This command should only be used by system
designers. A boot file must be a self-contained processor environment. It must be stored
on a LIF or SRM volume and be named SYSTEM_xxx, where xxx represents any
combination of characters. If you have Boot ROM 3.0 or later version, the file can be
named SYSxxxxxxx or stored on an SRM system under the /SYSTEMS directory.

(¢) Inthe Link mode, this command returns you to Copy mode. While in Copy mode, you
can combine modules into a library without Linking. This mode can be used to add
modules to (or remove them from) the System Library, your own library, or INITLIB (the
Initialization Library file which is executed during the boot process).

In Edit mode, this command Copies the First module up to (but not including) the Until
module to the Output file.

In Unassemble mode, this command unassembles the Input file according to Compiler
conventions.

(b) In Link mode, this command controls whether or not the DEF table is included in the
Output file. If the Output file is to be Linked to another file later, the DEF table must be
left in the Output file. If the Output file is not to be Linked, you can save memory space
by removing the DEF table. A YES includes the DEF table, a NO removes it. Pressing
(Db) toggles between these two choices.

In Unassemble mode, this command prints the DEF table.

(CE) This command is available when you have specified both Input and Output files. It puts
you into Edit mode, which allows you to combine modules in the Input file with Append
modules and place them into the Output file (while either Copying or Linking).

In Unassemble mode, this command prints the Ext table.

(CF) This command prints the File directory of the Input file on the current Printout file
(external printer or file). It doesn’t matter whether the Printout promptis ON or OFF;
the printout will be sent to the Printout file.

In Edit mode, this command is used to specify the First module to be transferred to the
Output file. (The First module must precede the Until module in the Input file.)

(C6) InLinking mode, designate the Global base address (most useful when preparing a file
for use as a system Boot file).

294 The Librarian

CH)

J

J b

J 6 8Y

The Header command allows you to change the size of the library header. From 1
through 18 module entries require only one header block, so a header size of 18 is the
minimum. If you specify less (but not 0), you will still be given 18. From 19 through 38
module entries requires two header blocks. This is the default header size. The specifica-
tion is made in units of module entries — not blocks. The Librarian calculates how many
blocks are necessary to maintain the number of modules you specify and then gives you
the maximum number of entries that will fit in that number of blocks.

Name the Input file containing the modules you want to transfer to the Output file.
“.CODE” is automatically appended to the file name unless suppressed by a trailing
period (or by the presence of another standard suffix). This prompt can be used many
times to collect modules from several object files into your new object file.

Keep the Output file. Close and lock it into the directory, purging any old file of the same
name.

Enter Linking mode or finish Linking.

In Unassemble mode, you can use this command to unassemble a section of code
defined by two Line values using the Compiler convention. The code must have been
compiled using the $DEBUG ON$ Compiler option.

Enter the specific Module name you want to transfer. (The first module in the Input file is
automatically displayed when an Input file is specified.)

In Linking mode, name the New object module to be created by the Librarian. If you do
not specify specify a new module name, the name of the first module transferred will be
used.

Name your Output file. “.CODE” is appended automatically unless suppressed by a
trailing period (or standard suffix) in the file name. This Output file must remain on-line
throughout the process of transferring modules to it.

This command is used to turn the Printout option ON or OFF (the default is OFF) and to
select a Printout file. Pressing(_P_) and or turns the option ON. With the
option ON, the device to which the information is sent is shown on the screen. The
default Printout file specification is ‘“‘PRINTER:LINK.ASC” unless you specify another.
“. TEXT” is automatically appended to the file name unless it is suppressed by a trailing
period (or standard suffix) in the file name.

Before any information is sent to the Printout file, the Librarian first sends heading
information to the device. When Linking, you will get a map of all Linking done by the
Librarian. This option does not affect any information sent to the Printout file by the
Unassemble commands.

In Unassemble mode, this command allows you to unassemble (using Assembler con-
ventions) a section of code defined by two location counter range values.

ek

The Librarian 295

Quit the Librarian and return to the Main Command Level.
In Linking mode, designate the Relocation base address to be used.

In Linking mode, this command assigns Space for patches. To save execution time and
memory space, the Compiler can be made to use PC-Relative addressing instead of
Long-Absolute addressing. This is done with the Compiler option $CALLABS OFF$.
The PC-Relative addressing mode has an address range of — 32 768 through 32 767
bytes; if the referenced procedure is out of this range, an error will occur at load or link
time. This error prints an error message naming the module having the link out of range.
To fix this, relink the modules adding patch space between them as needed. The number
of bytes needed depends on the particular module. As a rule of thumb, begin with a
patch of 100 bytes.

In Edit or Unassemble modes, this command Stops the Edit or Unassemble session and
returns to the Librarian’s main prompt. (This will not stop an ongoing Unassemble;

however, the key will.)

In Copying and Linking modes, this command Transfers the object module currently
named in the Transfer prompt to the Output file.

In Unassemble mode, this command prints the interface Text (DEFINE SOURCE) of the
current Input module.

Enter the Unassemble mode.

In Edit mode, this command allows you to specify the Until module. If you enter a null
response (by pressing or with no file specification), then
(end of file) is displayed; a subsequent Copy will copy all remaining modules in
the Input file (i.e., up to the end of the file) to the Output file.

This command gets you into the Verify mode. This mode displays the name of each
module in the Input file and allows you to Transfer it to the Output file (press (_T_)), to
Unassemble it, or to not transfer or unassemble it (press the space bar) and step to the
next module name. After all module names have been displayed, you automatically
leave this mode. To re-verify the file’s contents, press (_V_) again.

In Linking mode, this command allows you to enter a copyright notice as part of the
Output file. The notice is part of the heading information sent to the Printout file. The
notice can be up to 255 characters long.

296 The Librarian

Glossary of Object Code Terminology

Here are detailed definitions of the terms used in this manual regarding object-code library files.

DEF table (Definition Symbol Table)

There is only one DEF table per module. It contains one DEF record for each symbol which is
exported from the module. The DEF table begins on a block boundary which is specified in the
directory for the module. Its length is also given in the directory. The DEF table is contiguous over
its length, which means that individual DEF records within the table may cross block boundaries.

Each DEF record has two parts. The first part is a packed string containing the name of the symbol
which is defined. The string begins and ends on a word (even-byte) boundary. If the string length is
odd, then an extra byte is added to the end for padding so that the next part of the DEF record will
begin on a word boundary.

The second part of a DEF record is a general value or address record (GVR) which defines the
value of the symbol which is being exported. GVR is defined later in this section.

The value extension is 4 bytes or 8 bytes long, according to the data size field. The value of the
symbol is defined to be the value extension plus what ever references are specified by the primary
type and any Reference Pointers that may exist. The value extension must be present.

DEF record
low
LEN=6 S
Y M
First part
B o P
L padding
flags len=8
value (high part) Second part
value (low part) (len is Second part length)
high ref pointers (....) (GVR includes any number of reference pointers)
DEFINE SOURCE

This is the section of an object module that is searched by the Compiler when the module is
imported (also called “interface text’’). With Pascal modules, the DEFINE SOURCE consists of the
declarations made by the reserved words MODULE, IMPORT (if present), and EXPORT. With
Assembler modules, it consists of the lines defined by the SRC pseudo op, which are intended to
serve the same function as in Pascal modules (however, it may be any arbitrary text).

There may be one table of DEFINE SOURCE per module. It begins on a block boundary, which is
given in the module directory. The length is also given in the directory.

The Librarian

EXT Table (External Symbol Table)

The EXT table contains records (Pascal strings), each of which is the name of a symbol referenced
in this module, but not defined in it (i.e., these symbols are declared in another module which this
one imports and to which this module is linked at load time).

There may be one EXT table per module. The EXT table begins on a block boundary which is
specified in the directory for the module. Its length is also given in the directory. The EXT table is
contiguous over its length, which means that individual EXT records within the table may cross
block boundaries.

Each EXT record is a multiple of four bytes long. The first byte of each string is its length (according
to the Pascal string type); thus strings may be from 1 to 255 bytes long. If strlen(string) + 1 is not a
multiple of 4, then 1 to 3 bytes are added as padding to make the EXT record extend to the proper
boundary.

The first eight bytes of the EXT table are reserved. Thus, the first string in the table starts at an offset
of 8 from the start of the table.

The EXT table is restricted to 65 532 bytes in length (plus the length of the last string). This is so that
any entry in the table can be uniquely referenced by 14 bits; the reference is relative to the start of
the table. See the description of the reference pointer.

EXT Record
low left byte right byte this one is 8 bytes long.
LEN=6 S
Y M The formula is:
B o EXTsize =len+4 —(len mod 4)
high L padding

297

298 The Librarian

EXPORT

EXPORT is a reserved word used in the Pascal Module. It is used to declare those procedures,
functions, constants, types, and variables that are exported, or made available, to other modules
that import the module.

Flags
Flags are used in the DEF table, in REF tables, and in the GVR. Their form is shown below.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Primary Type Data Size Patchabie |Value-Extend} Long Offset
primary type: 00 absolute :no REFERENCE POINTERS follow
01 relocatable :no REFERENCE POINTERS follow
10 global :no REFERENCE POINTERS follow
11 general :one or more POINTERS follow
data size: 000 signed byte (8 bits) —128..127
001 signed word (16 bits) —32768..32767
010 signed long (32 bits) —2147483648..2147483647
011 (reserved)
100 unsigned byte (8 bits) 0..255
101 unsigned word (16 bits) 0..65535
110 (reserved)
111 (reserved)
patchable: Indicates that the linker may patch a location in a TEXT record. Applicable only

value extend:

long offset:

in a REF record and must be false everywhere else.

0 No extension present, assume 0
1 Value extension present. Length is 4 bytes.
Always true in DEF records.

0 Use short form (1 byte} of offset field. Value is in the range 0..255 and specifies
the total length of the GVR except in REF records.

1 Use long form (3 bytes) and offset field. Value is a 24 bit unsigned number
in the range 0..16777215. Applicable only in some REF records.

Note

Data Size should be signed long everywhere except in a REF record.

The Librarian

General Value or Address Record (GVR)

The GVR is a variable length record which is intended to represent any absolute, relocatable, or

linkable value.

TYPE DATATYPE = (sbrte:
RELOCTYPE = (absolute:
GENERALVALUE = PACKED RECORD
PRIMARYTYPE RELOCTYPES

sword:

DATASIZE
PATCHABLE »
VALUEEXTENDED BOOLEAN
CASE LONGOFFSET BOOLEAN OF
FALSE (short:0,.,255)}
TRUE : long:0,.18777215)
END§
VALUEEXTENTION = PACKED
RECORD
CASE DATATYPE OF
SBYTE sSWORD »SINT »

DATATYPE S

relocatable

fltpts ubvtesuword)}
globals deneral)s

sints

(#allows auick indication
of most common tyPes#*)

(¥specifies 1:+2 or 4 bvtes:

(#specifies self relative field in

(#indicates valueextenion#%)

(#¥1 or 3 byte offset#)

(#¥unsigned B bits¥)

(#unsigned 24 bit value*)

sidgned or not#*)
branch#)

(#present if value extended bit above is set*)

UBYTE sUWORD (value inteder)s

END 3

REFERENCEPTR = PACKED RECORD (#one or more present if tvrpe = deneral#)
ADDRESS 0,,163833 (#multiply by 4 to dget address of EXT svymbol%)
aP (ADDITSUBIT) (¥add or subtract the modifvying value*)
LAST BOOLEANS (#¥indicated end of list#)

END j

GUR = CONCATENATION (¥*NOTE* This is pseudo pPascal#)
GENERALVALUE S (¥2 to 4 bytes of header info¥*)
VALUEEXTENTIONS (#0 or 4 brtes of value#)
ARRAYLzero or morel OF

REFERENCEPTR (#list of EXT references#*)
END 3
IMPLEMENT

IMPLEMENT is a reserved word used in the Pascal Module. It is used as a flag to indicate the
beginning of the module body. It is made up of the reserved word plus a declaration statement. The
statement can be either empty or used to declare those constants, variables, procedures and
functions used internally by the module. None of this information is available outside the module
(unless it is also declared in the module’s EXPORT section).

IMPORT

IMPORT is a reserved word used in the Pascal Module. It names the modules whose DEFINE
SOURCE sections must be examined by the Compiler in order to resolve references to constants,
variables, procedures, and functions exported by the modules. The Compiler uses a module’s
name in conjunction with names of constants, procedures, and functions declared in the module to
generate EXT strings for which the loader will search (and link) at run time.

LIBRARIAN

The Librarian is a subsystem designed to manage HP Series 200 Pascal and Assembler object files,
link and unassemble object modules, and create system Boot files. It can merge object files contain-
ing object modules and optionally link the object modules together. It is the file named LIBRARIAN
in your operating system, which can be changed with the Main Level’s What command. It is
accessed by pressing from the Main Command Level.

299

300 The Librarian

Library
A library is an object file produced by the Assembler, Compiler, or Librarian. Its purpose is to
contain object module(s).

LIBRARY

LIBRARY is a special library file included with your operating system. During the boot process, this
file (if on-line) generally becomes the System Library; you can also use the What command at the
Main Level to specify any file as the System Library.

Only a few useful object modules are included in the file when you received it. Feel free to examine
them with the Librarian. Other object modules are supplied on the LIB: and FLTLIB: discs and may
be added to the LIBRARY.

Object File

An Object File is the unit of object code managed by the Librarian. It is made up of a Library
directory and one or more object modules. The Assembler generates one object file from each
source file assembled; the Compiler also generates one object file per invocation. The Compiler’s
object file can contain one or more object modules depending upon the source file’s construction. If
the source file contains a number of compilable modules, that number of object modules will be
created in the object file.

Object Module

Each object module is made up of a module directory and a module body. The module body is
made up of the following items:

One EXT table A table of the symbols imported by the module.

One DEF table A table of symbols exported by the module.

One DEFINE SOURCE A software interface between the module and any program which
Area imports it.

One or more A TEXT record consists of the constants and code instructions that
TEXT-Record/REF-Table make up the program. The REF table is a directory of the symbols
pairs used in the TEXT record.

Pascal Module

HP Pascal allows source modules to be compiled separately into object modules. The object
modules are generally not executable, but are used to complete other Pascal programs. Examples
are given earlier in this chapter.

The Librarian 301

REF Tables

Each REF table follows a TEXT record and is associated with that TEXT record. The REF table
begins on a block boundary, which is specified in the directory for the module. Its length is also
given in the directory. The REF table is contiguous over its length.

Each REF record is associated with one object (byte, word or integer) within the preceeding TEXT
record. There can be at most one REF record for a given object in the TEXT record. The REF
records are ordered within the table according to the TEXT objects they reference.

The offset field specifies which text object is referenced. The first REF record gives an offset from
the beginning of the TEXT record. Subsequent REF records give an offset from the object refer-
enced by the previous REF record.

low Ref record is a GVR.
flags | offset
offset (low part) offset, 1 or 3 bytes, indicates next object in TEXT record.
high Ref pointers Can include any number of Ref Pointers.

Reference Pointer

Bit 15 thru Bit 2 Bit 1 Bit 0

Address of an EXT Record

Relative to Beginning of EXT Table Add or Sub| End Flag

A REFERENCE POINTER is the relative address of an entry in the EXT table.

The add or sub flag indicates whether the value of the external symbol is to be added (0) or
subtracted (1) from the GVR value in order to obtain the actual value. There may be any number of
REFERENCE POINTERS in a GVR, and there may be more that one reference to the same EXT
record. There may not, however, be both an add reference and a subtract reference to the same
symbol, since these would cancel each other.

The end flag indicates whether there are any more REFERENCE POINTERS in the GVR. (0)
indicates more to come, (1) indicates the end.

There are two special cases for the EXT address.

e Address O (bit pattern 00000000000000xx) refers to the relocation delta for the current
module (i.e. new load address minus the old load address).

® Address 4 (bit pattern 00000000000001xx) refers to the global delta for the current module
(i.e. new data address minus old data address)

Address 8 (bit pattern 00000000000010xx is the first valid reference to an external symbol.

There are REFERENCE POINTERS in a GVR only if the primary type field specifies general.

302 The Librarian

System Library

The System Library is a file that is automatically accessed by the Compiler at compile time and by
the linking loader at execution time. Object modules stored in this object file are automatically
available to any program importing them.

During the booting process, the LIBRARY file usually gets designated as the System Library;
however, you can use the What command at the Main Level to specify any file. See LIBRARY
above.

Text Record

A Text record is a contiguous section of code, beginning on a block boundary, which is given in the
module directory. The length is also given in the directory. The text record can be any arbitrary
data, but is usually the object code produced by the Compiler or Assembler.

Chapter

9

The Debugger

Introduction

The Workstation Pascal System features a programming aid called the Debugger. As you probably
have guessed, the major purpose of the Debugger is to make program debugging as painless as
possible.

You may have already seen a reference to this Debugger when you got this message:
RESTART WITH DEBUGGER?

The question is in response to a user program generating but not trapping an “‘exception.” You will
learn how to answer the question in this chapter.

Here are some of the operations you can perform with the Debugger:

e Step through programs on a procedure, statement, or machine-instruction basis.
@ Maintain a record of the statements which have already been executed (in order of execution).

e Examine any memory locations and CPU registers, and display the contents in any of the
following formats: binary, octal, decimal, or hexadecimal integer; real number; alphanumeric
character; and Assembler instruction.

® Set up “‘breakpoints” and ‘‘error traps” in the program, optionally displaying helpful informa-
tion when each is encountered.

@ Perform number-base conversions and integer arithmetic calculations.

The main emphasis of this chapter is to describe using the Debugger to debug Pascal programs.
Debugging an Assembler-language program is more direct; that information is obtainable from the
Debugger Reference Section.

Is the Debugger Loaded?

The Debugger is a very powerful subsystem, because it allows any user to access everything in the
computer. It is therefore a potentially dangerous feature in the hands of users who don’t know how
to use it (or who you don’t want to use it). For this reason, and for space considerations, it is not
automatically loaded when you boot the system. Therefore, you will need to load the Debugger
before attempting to use it. (In previous system versions, it was automatically loaded at boot time,
as it was part of the INITLIB file). Loading the Debugger is explained in the following Sample
Session section.

303

304 The Debugger

A Sample Session

This section describes methods for debugging Pascal programs with the aid of the sample program
called DEBUG, supplied to you on the DOC (documentation) disc. The program is given in source-
code and object-code form.

® DOC:DEBUG. TEXT — the source-code file

e DOC:DEBUG, CODE — the object-code file

The Example Program

A listing of the program is included here for reference. Note that a Pascal program must contain the
$DEBUG ON$ Compiler option if you want to have the ability to halt the program at particular line
numbers. The effects of this option are further described in the Compiler chapter.

Pascal [Rev 3.0 4/15/841 DEBUG,TEX 28-Apr-84 14:21:55 Page 1
1:D 0 $DEBUG ON$ { Enable debugging,
2:8
3:D O PROGRAM XYZ (OUTPUT)
4:D 1 VAR
5:D -4 1 i INTEGER 3
6:D -8 1 J INTEGER
7:D -16 1 X REAL
B:D -24 1 ¥ REAL S
9:D -25 1 chl CHAR
10:D -26 1 ch2 : CHARS
11:8
12:D 1 PROCEDURE Level_.13
13:D 2 VAR
14:D -4 2 i INTEGER 3}
15:D -8 2 X : INTEGERS
16:D -12 2 v : INTEGERS
17:8
18:D 2 PROCEDURE Level_2bk3
19:C 3 BEGIN
20%C 3 WRITE('Level Zb: ‘)
21%C 3 WRITE(i='491224" Xx="syx:d)3
22%C 3 WRITELN(’ chi=‘schlzl)3
23%C 3 END
24:8
25:D 2 PROCEDURE Level_Zasj
26:D 3 VAR
27:D -12 3 iy % v : INTEGER
28:8
29:D 3 PROCEDURE Leuvel_33%
30:C a BEGIN
31*C 4 IF i < 4 THEN
32:C 5 BEGIN
33%C 5 WRITE(Level 3: ‘)i
34xC 5 WRITE(’ i='43i12+’ x='yx:4);3
35#*C 3 WRITELNC chi='ychl:1)}
36%C) ir= i + 13
37%C S Level_33
38:C =) END 3
39*C 4 IF ehl="a’ THEN
40:C) BEGIN
41%C 5 chl:= ‘x’3
42%C 3 WRITE('Level 3: ‘i
43%C 5 WRITE(’ i='3i32" x='sx2d)3
44%C S WRITELN(’ chil="ychl:1)3
45:C 5 END3
4G+C 4 END 3

The Debugger

48:C 3 BEGIN

49%C 3 WRITE(‘LLevel Za:)i
SOx*C 3 WRITE(i=’,i32’ x='x:1d)3
51%C 3 WRITELN(’ chl="schl:1)3}
52#C 3 is= 13§ x:= 23 vi= 33
53*C 3 Level_33

S4x*C 3 is= 435 x:1= 535 vi= B3
35#C 3 Level. .Zb3

S6%C 3 END 3

57:8

58:C 2 BEGIN

59%C 2 is= 03 x:= 0§ vi= 03
BO*C 2 WRITE('Level 1: DR
61%C 2 WRITEC(Y i='9i224+" x='x2d)]3
GZ*C 2 WRITELN(’ chl=‘schl:1)3
B3%C 2 Level _2b3

G4x*C 2 Level 2aj

GS%C 2 END

66:8

67:C 1 BEGIN

G8*C 1 ir= 103

GO*C 1 X2z 20,0%5 y:= 30,03

70%C 1 chl:= ‘a‘s ch2:= ‘b’j

71%C 1 WRITE(‘Main: ‘Y3

72%C 1 WRITE(’ i='si22y’ x='x:2:1)3%
73%C 1 WRITELN(’ chl=’3chl:s1)}

74%C 1 Level_13

75%C i WRITE('Main: ‘)i

76%C 1 WRITEC(’ i=',i22+’ x='sx:2:1)1
77%C 1 WRITELNC(’ chl=’'schlz1)3

78%C 1 END.

79:8

No errors, No warnindgs.

Please Participate

You will learn much more about the Debugger if you participate in this sample session. Execute the
code file one time before attempting the sample session to see the program’s output.

Loading the Debugger

As previously mentioned, the Debugger is not automatically loaded as part of the standard system,
so you will need to load it into the computer. You can load the module in either of two ways:

® Execute it using the eXecute command (from the Main Command Level); the program installs
itself.

e Add the DEBUGGER module to INITLIB, and re-boot the system; the program is then
installed automatically.

Loading the Debugger with the eXecute command allows you to use it until you re-boot the system,
at which time you will have to eXecute it again to use it. By adding the module to INITLIB, you give
all users (who subsequently boot with this INITLIB file) access to the Debugger. You will not want
to use this second method unless you want to give all users access to the Debugger.

305

306 The Debugger

Executing the Debugger

First, make sure that the ASM: disc is on-line or that the file is otherwise accessible. Then, from the
Main Command Level, press the (X) key to initiate the eXecute command. The system will
prompt you with this message:

Execute what file®?

Respond by entering the specification of the DEBUGGER file; ASM: DEBUGGER » will work if you
are loading the program from the original disc (remember to type a trailing period to suppress the
» CODE suffix). The system then loads and executes the program, which installs itself in memory.

Adding the Debugger to INITLIB
Use the Librarian (from the Main Command Level) to add this module to the INITLIB file. In
general, the steps can be summarized as follows:

1. Make a back-up copy of INITLIB.

2. Edit the INITLIB file with the Librarian, adding the DEBUGGER module (supplied on the
ASM: disc) to the file. The DEBUGGER can be anywhere after the modules named KEYS,
BAT, and CLOCK; however, it must be before the module named LAST. (Editing libraries is
described in the Librarian chapter.)

3. Store the new library file (using the Keep command).
4. Remove the INITLIB file on your BOOT: disc, and add your new INITLIB file.

5. Re-boot the system.
After re-booting the system, the Debugger should be in memory.

A Note about Key Notations

Throughout this chapter, you will be shown which keys invoke certain Debugger functions. Since
you may have one of three different keyboards connected to your computer, each with a different
set of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the three different keyboards'.

Desired HP 46020A HP 98203B HP 98203A
Function Key(s) Key(s) Key(s)
Pause
Single Step ((System))
Slow Step ((System)) (CeTRL)-(15) -(ster) -(sTEp)
Continue (System))

For instance, invoke the Pause function on a 46020 keyboard by pressing the key. On a
98203B keyboard, press the key. With a 98203A keyboard, press the key.

1 This discussion only gives a few examples; the Debugger Keyboard section near the end of the chapter describes all key(s).

The Debugger

As another example, suppose that you want to invoke the Single-Step function. On both 98203A
and B keyboards, press the key; the label is on the key itself. On a 46020 keyboard it will be
the System key labeled on the key, which is labeled STEP on the screen while in the
System-key mode. (If you are not already in System-key mode, then you will need to press the
key before pressing (5)). The same notation is used for the other System keys on the
46020 keyboard; the actual System key (i.e., through (8)) is not given in text; the label is
instead given. You will need to make the association, which you can easily do by looking at the
System-key labels while the Menu is being displayed-(press the key to toggle the Menu on
and off). If you are not familiar with the (System) and ((Menu) keys, read the discussion in the Pascal
User’s Guide.

The convention used in this manual is to show the 46020 keys first (followed by the equivalent
98203B key in parentheses). For instance, the ((PAUSE)) key invokes the Pause function:
on the 46020, it is the key: on a 98203B keyboard, it is the(PAUSE) key. (The 98203A

key is not shown, because it is close enough to the label that you should be able
to easily make the connection.)

Is the Debugger Installed?

Before proceeding, you should verify that the Debugger is currently installed. On a 46020
keyboard, press ((PAUSE)) to pause the system. If a e is displayed in the lower, right-hand
corner of the screen, then the Debugger is installed. Press CONT ((CONTINUE)) to resume operation.

If the Debugger is not installed, then pressing will do nothing.

Invoking the Debugger

The Debugger is called from the Main Command Level. When the Debugger is invoked, the system
will then take steps to determine which program you want to debug. Before invoking the Debugger,
let’s look at how it determines which program to debug.

Specifying a Program

When the Debugger is invoked, the system will either look for a code file on its own or ask you for
the code file’s name, according to the following priorities. (If the Debugger is not installed, then the
D command is identical to the eXecute command.)

1. If there is currently an object-code workfile, the file is automatically loaded into computer
memory. If there is a source-code workfile (but not an object-code file), the system reports
that it cannot open the file because it was not found.

2. If there is no workfile, the second check made is for the last file compiled since power-up. If
present, that file is then loaded.

3. If neither such file exists, you are prompted for a file name.

If you plan to debug, edit, and recompile a program several times in a session, using a workfile may
be the best alternative; you will not have to keep typing in the file name, because the current
workfile is the automatic object of those subsystems.

307

308 The Debugger

For this session, we will set up a workfile. First, use the Filer's What command to see if there is
already a workfile. If it happens to be the DEBUG.CODE file, you need do nothing more (before
exiting the Filer). Otherwise, use the Get command to specify the example program as the workfile.
Here is the prompt you will see:

Get what file?

Answer by entering the file specification of the example program. Type:

DEBUG (Return) or (ENTER)

The filer responds with something like this:
Source and code file loaded.

You may now Quit the Filer. Now press the (_ D) key while at the Main Command Level to
invoke the Debugger.

Answering RESTART WITH DEBUGGER?

As mentioned earlier, this prompt is shown any time that a ““‘user’’ program generates but does not
trap an exception. Answering ‘‘Yes” to this question will also get you into the Debugger; you will
effectively be at the same point as if you had used the D command. (If the Debugger is not currently
installed or if the program was not compiled with the $DEBUG ON$ option, answering ‘‘Yes’ will
only re-execute the program.)

The Debugger Command Screen

You are now in the Debugger's command screen. This message indicates that the Debugger is
ready for further instructions:

NOW AT START

The d shown at the lower, right-hand corner of the screen also indicates that you are currently in
the Debugger.

The Debugger prompt is a ». When this screen and prompt are displayed, you can type Debugger
commands on the last line with the prompt and cursor. Enter each command by pressing the
(Return), (ENTER), or (Select) ((_EXECUTE)) key. Note that the CONT key resumes normal program execu-
tion. When execution of the program is complete, control returns to the Main Command Line.

The Debugger

Single-Stepping a Program

When the Debugger is at this starting point, it is ready to step through your Pascal program one
statement at a time; this mode is called Single-Step Mode. (It can also do many other things, which
will be discussed momentarily.) In the lower, right-hand corner of the screen, the Debugger also
conveniently displays the program line number which contains the next statement to be executed.
This line number corresponds to the line number given in the Compiler listing of the program.

For instance, when debugging our example program, line number 68 is initially displayed. This is
the line that contains the Pascal statement that will be executed the next time you press the STEP
key. Press the STEP key once and note that the line number changes to 69, which is the line number
of the next statement to be executed.

Pressing STEP a second time results in no change in line number. This response is due to the fact
that the Debugger steps through the program one statement at a time, not one line at a time.
Pressing STEP a third time changes the line number to 70.

Slow Program Execution

The Debugger also allows you to execute a program at a rate of about two statements per second.
Press (CTRL) -STEP to use this execution mode (Slow-Step Mode). Line numbers are flashed on the
screen as each is encountered. You can return to Single-Step Mode by pressing the STEP key.

Returning to the Debugger Command Screen

You may have noticed that the Debugger prompt disappeared when you began stepping through
the program. Instead, the Debugger displays the screen that will be used for the program’s output
so that you can see what the program is doing at each step of execution.

Note that any keys pressed while in this mode appear in the system’s type-ahead buffer, not in a
Debugger command line. This action allows you to type in responses to any input statements in the
program as you would normally type them in. The program reads this buffer when an input
statement is encountered and executed.

At some point in the program’s execution you may want to to return to the Debugger command
screen to execute a command. To do so, press (CTRL)-(Break) ((_CTRL)-(PAUSE)). The Debugger
restores the last Debugger command screen, which is the one that you saw before you began
single-stepping the program. You can then execute Debugger commands or return to the program
screen by stepping through the program with the STEP key.

Toggling Between Screens

While in the Debugger command mode, you can also toggle between these displays (without
changing modes) by pressing -ALPHA. For example, suppose you want to quickly check the
program screen to see last line displayed by the program. You can do so (without getting out of the
Debugger command mode) by pressing -ALPHA. When you’ve examined all you want on the

program screen and are ready to return to the Debugger’s command screen, press (_CTRL) -ALPHA
again.

309

310 The Debugger

Screen Dumps
While in the Debugger, you can dump the current contents of the alpha or graphics screens. Use

either the DMP A ((_DUMP_ALPHA)) key or DMP G ((DUMP GRAPHICS)) key, or execute a DA or DG command.

Note that this feature is only allowed when running a program in the processor’s “‘user” state®. It is
not possible while executing programs in “‘system’’ state. If attempted while disallowed, no dump is
performed and the following message is displayed:

NOT ALLOMWED NOW

A Look at the Queue

At this point, you may want to continue stepping through the program and noting the order of
execution of lines. You can also get a log of all Pascal program lines executed thus far by the
Debugger by executing the Queue command. (Actually, these are the line numbers of Pascal
statements executed thus far.) Here is an example of the results of this command (assuming that we
have only pressed the STEP key three times in our example):

»0Q

206144 69
2068160 69
206176 68
206188 B7
START

The line numbers are shown in the right column. (The six-digit numbers in the left column, each
followed by *, are memory addresses for use when debugging Assembler language programs; you
don’t usually need to be concerned with them while debugging Pascal programs.)

Note that the line numbers in the queue are in reverse order of execution: the first line executed is at
the bottom of the queue listing, the second is listed above the first, and so forth. Also note that the
line at the top of the list has not yet been executed; it will be executed the next time the STEP key is
pressed.

Note that Pascal line numbers will only be shown if the $DEBUG ON$ Compiler option was used.

Note also that when the question RESTART WITH DEBUGGER? is displayed after encountering
an exception that was not trapped, you can get a listing of the queue by pressing (CTRL)-(Break) and
then executing a Q command. You can also direct the Debugger to trap exceptions, as described in
the Exception Trapping section of this chapter.

Displaying Data
Before showing how to use many of the more powerful Debugger features, let’s look at some
simple Display operations. Execute the following command:

>D B+32
+40

1 All user programs are executed in the ‘‘user’” privilege state, while system programs, such as the Editor, Filer, and so forth, are executed in
“‘supervisor’’ privilege state. See the MC68000 User’s Manual for a more comprehensive description of these states.

The Debugger

From this example, you can deduce that the literal numbers that you entered were interpreted as
decimal integers and that the result was a signed decimal integer.

Note that you don’t need to specify the D in commands that begin with non-alphabetic characters.

»8+32
+40

Now execute this command:

*D -32768-32768
-B5536

From this result, you can see that the range of integers is at least 16 bits. In fact, it is 32 bits, which

indicates that a four-byte register could be used to store the numbers and results. The range is — 231
through 23! — 1 (or 2 147 483 648 through 2 147 483 647).

Executing these commands might help to see this range of integers more clearly:

*D 127%#256%256%256
+2130706432
*D 128%256#256%256

OVERFLOMW

Note that only integer arithmetic operations are performed. For instance, division produces the
integer portion of a quotient:

»3/3
+1

Display Formats

Since the Debugger uses the processor’s 32-bit registers for expression evaluation, most results are
formatted using four-byte quantities. Here are two equivalent examples of using the default format
of one signed (four-byte) INTEGER:

*D 285
+255
*D 255:114
+235

The format specifier is the ’:114’ appended to the literal number 255: the leading 1 indicates that
one quantity is to be generated; the I indicates that the quantity is to be displayed as a signed,
decimal Integer; the trailing 4 indicates that 4 bytes are to be formatted.

If the default format of one four-byte decimal integer is not what you’d like, you can explicitly
specify another format. For example, the following command generates four one-byte Binary
numbers (the !’s indicate binary notation):

*D 1024+255:4B1
100000000 100000000 100000100 111111111

311

312 The Debugger

Here is an example of formatting the integer into four one-byte octal numbers (the %’s indicate
Octal notation):

*D 1024+255:401

A0 L0 n4 %377
Now specify that the number is to be formatted as one four-byte hexadecimal number with either of
the equivalent commands (the $’s indicate hex notation):

*D 1024+255:1H4

$000004FF
D 1024+255:H
$000004FF

The leading 1 and trailing 4 are the defaults assumed when these parameters are omitted.

This format specification directs the Debugger to display two bytes as a hex value:
*D 1024+2533:H2
$0000

Note that 0’s were displayed because the Debugger begins with the most-significant bits of the
four-byte integer. Here is a more meaningful display format for the same data:

D 1024+255:2H2
$0000 $04FF

It is also possible to display literal strings with the data you are formatting for the display. Either
single or double quotes can be used to delimit the string. For example, this command gives a more
descriptive display:

*D -7:'-7 in Hexadecimal = ‘,H4

-7 in Hexadecimal = $FFFFFFF®

You can also disassemble machine-language instructions by using the X format specifier. Here is an
example:

*D $4E730000: X
RTS

This is usually only helpful while debugging Assembler-language programs. (Note that you must
load module REVASM into memory with the P-load command from the Main Command Level in
order to use this format.)

Another format specifier is the slash (/). When a ‘/” is encountered in a Display command, the
display is continued on the next line.

*D 23+45:/'RESULT = ‘,14/

RESULT = +68

The Debugger

Input Formats

The !, %, and $ symbols preceding numbers in the above examples were used to indicate the base
of the numbers displayed on the screen. Similarly, you can use them with literal numbers input in
the command. This feature allows number-base conversions.

For example, suppose that you want to convert the binary number 11001010 to its decimal
representation. Here is a sample command:

D 111001010:1
+202
To convert the number to hex, execute this command:
*»D 1001101103 H
$00000036

Changing the Default Display Format

The default format can be changed by giving an F (Format) command. For example, the following
command changes the default to ’: 1H4’, which instructs the Debugger to take 4 bytes and display
them as one four-byte Hexadecimal value:

FH

This command sets the default format to Octal (':104’):
FO

This command sets the default format to Binary (:1B4’):
FB

This command changes the default format to :1U4’, which directs the Debugger to display 1
four-byte Unsigned decimal integer.

FU

This command sets the default format back to signed decimal Integer (114):
FI

Now that you’ve had an introduction to the Display commands, let’s look at some more powerful
commands.

Controlling Execution with Breakpoints

A breakpoint is a point in the program where you want execution to be temporarily halted. With a
Pascal program, the point will be at a program line. Thus, when the Debugger is executing a
program and encounters a breakpoint, it halts just before executing the program line.

313

314 The Debugger

Setting Breakpoints

To set a breakpoint, use the BS command. Specify the location as an integer which follows the
letters “BS”, separated by a space. For example, to set a breakpoint at Pascal program line 74,
enter the following command:

BS 74

Press CONT (CONTINUE) and the program begins executing again. When it encounters line 74, it
pauses before executing the line and displays the message:

NOW AT LINE 74

The Debugger then prompts you for another command. At this point, you can do any of the
following:

® Step through the program one line at a time (if it was compiled with $DEBUG ON$)
® Execute other Debugger commands (such as examine memory or register contents)
e Continue the program

Once the program has finished execution, all breakpoints are automatically de-activated. You will
have to explicitly re-activate them, as described in a subsequent section.

Up to nine such breakpoints may be defined at one time. Most breakpoints remain in effect until
cleared or de-activated.

The Count Option

An optional count can be included by adding an integer after the location. The count instructs the
Debugger to stop when it reaches the location the indicated number of times. For example, enter
the following command:

Bs 31 3

This particular command instructs the Debugger to halt the program immediately before the third
execution of line 31. Press CONT, and the program executes until line 31 is reached the third time
and then halts. Note that this type of breakpoint is automatically cleared when encountered the
specified number of times.

Breakpoints with Commands

Another form of the BS command is the “BS” and the location number followed by a Debugger
command string enclosed in quotes. The command string is one or more legal Debugger com-
mands (separated by semi-colons). These commands are immediately executed when the location
is encountered. The Debugger automatically continues program execution after executing the
command string. Here is an example that will provide a visual record of how many times that line
37 was executed:

BS 37 "D ‘LINE 37 REACHED.’"

Of course, you will need to get back into the Debugger command screen to see the results of this
breakpoint being encountered. The D (Display) command is explained in detail later.

The Debugger 315

You can alternately pause the program by making the last command in the string a question mark.
This command directs the Debugger to pause and wait for input from the keyboard. For example,
enter the following command breakpoint:

BS 59 "D PCs 2"
The Debugger stops at line 59, displays the Program Counter, and waits for input.

Here is another example of using a breakpoint with a command:

BS 59 ‘IF 1=13 D "1=1"35 ELSES D "i<>1"37%§ END’

The relational expression following the IF command, in this case 1 =1, is first evaluated. If it is true,
then the command(s) between the IF and the ELSE are executed. lf it is false, then the command(s)
between the ELSE and END are executed. This type of command is useful for purposes like
checking the value of a variable and then pausing if its value is out of an expected range. The IF,
ELSE, and END commands are further explained in the reference section. Checking the value of
variables is explained later in this tutorial.

Deactivating Breakpoints
The BD command deactivates breakpoints. If a line number is included, the breakpoint is deacti-

vated for that line number. For instance, the following command deactivates the breakpoint at line
41.

BD 41

If no line number is included, all breakpoints are disabled. For example, this command disables all
breakpoints:

BD

Displaying the Breakpoint Table
The B command displays the breakpoint table or the one at the specified line number. Execute the
following command:

B

and you'’ll see a display similar to the following:

»B
BREAK POINTS

A 74 0
A 37 D ‘LINE 37 REACHED’
A 39 D 'IF 1=13D "i=1"SELSESD "1<>1"3573END

The first character on each line of the table is either “A’ for active, or “D”’ for deactivated. The
second parameter is the line number of the breakpoint. If the third entry in the table is a positive
number, then a count option is in effect for the breakpoint (execution will pause when the Debug-
ger reaches the line that number of times). If the third entry is a command string, then that
command is executed each time the line is encountered. If it is a ““0”, then it is a normal breakpoint
(i.e., no count nor command was specified with the breakpoint).

316 The Debugger

Reactivating Breakpoints

The BA command reactivates disabled breakpoints. If the line number is included, the breakpoint is
reactivated for that line number, otherwise, all breakpoints are affected. For example, the following
command reactivates the breakpoint that was deactivated in the example above:

BA 41
Try the B command to see the table again.

When a program runs to completion and is then restarted (by pressing the (_D) key), the
breakpoints are still there; they are just deactivated. Use the BA command to reactivate some or all
breakpoints.

Clearing Breakpoints

The BC command clears breakpoints by removing them from the table. If a line number is
included, the breakpoint is removed only for that line; otherwise, all breakpoints are cleared. Enter
the following command to remove only the breakpoint at line 41:

BC 41

The Pause Function and Breakpoints

If the Debugger is not installed, the ((PAUSE)) key is a no-op. The rest of this discussion
assumes that the Debugger is installed.

While not in the Debugger command mode, pressing effectively halts any program at the
current execution point. (Note that this key may not pause the program on a line boundary like the
STEP key does.)

While in the Debugger command mode, however, pressing returns you to the user program
display and pauses the program at the current execution point. Press continue to finish program
execution.

If you press after encountering an active breakpoint, it will also get you to the program’s
display. However, if you pause exactly on a currently active breakpoint (but before encountering

it), pressing will not get you into the program’s display. You would have to press
again cause the breakpoint to take immediate effect. CONT will then work as expected.

Executing a Number of Statements

Go commands set a tenth temporary breakpoint. They are one-time commands to pause execution
before a specified program instruction.

The G command tells the Debugger to Go. If you include a number after the “G”’, that number of
statements is executed, after which the Debugger halts and waits for another command. For
example, this command tells the Debugger to Go 8 statements:

G 8

If no number is given, the remaining instructions are executed (same as pressing CONT).

The Debugger

The GF (Go and Flash) command is the same as the G command except execution is slowed and
line numbers are flashed in the lower right corner of the screen.

The GT (Go 'Til) command is the same as Go except a location is specified rather than a count. For
example, this command tells the Debugger to Go "Til line 39 is reached:

GT 39

Another form of this command tells the Debugger to Go 'Til the location is reached a number of
times. For example, the following command tells the Debugger to stop before line 41 is executed
the third time.

GT 41 3

The GT statement also allows the command string option. For example, this command directs the
Debugger to do the following: execute the program until line 42 is reached, then display the
Program Counter and await further instructions.

GT 42 "D PCs§ ="

The GTF (Go ’Til and Flash) command is the same as GT except execution is slowed and line
numbers are flashed in the lower right corner of the CRT.

Tracing Program Flow through Procedures

You can also halt execution of a program as it enters and exits procedures. For instance, suppose
that you want to halt the program when the current procedure is exited. To do that, execute the PX
(Procedure eXit) command:

PX
Execution will be halted after the procedure is exited (i.e., after the last line of this procedure is

executed, but before the subsequent program line is executed). For instance, executing this com-
mand while in Level 3 results in this display:

»PX
PROC EXITED

The Debugger shows that the next line to be executed is line 31.

To halt the program at the point that the current procedure (or main program) calls another
procedure, use the PN (Procedure Next) command:

PN

When the next procedure is encountered, the Debugger reports this message:
NEXT PROC

and the program is halted before executing the first executable line of the procedure. If the current
procedure is exited before another is called, the Debugger reports this message:

PROC EXITED

and the program is halted before the next executable line of the calling procedure is executed.

317

318 The Debugger

A Look at the Stack Frame

Another handy feature to use while walking though the program on a procedure basis is the SF
(Stack Frame) command. Here is an example display of this command:

»SF

59 LEVEL_1
PROC ADDRESS -403316"
CALLED FROM -402718"

LINE 74

The first line of the display shows the first (executable) line of the program next to the procedure’s
name. The second line shows the memory address of the procedure (which is not important while
debugging Pascal programs). The third line shows the address of the procedure. The fourth line
shows the number of the line from which this procedure was called.

Examining Variables

Without the ability to check the value of program variables, debugging a program could become
more tedious than it already is. Rest assured that this Debugger does allow you to look at the
contents of any variable in computer memory. However, in order to check the contents of program
variables, you will need to know two important facts: where they are in memory, and how to format
them into an understandable form.

To see where a variable is stored in memory, it is necessary to look at the Compiler listing. Each
variable has a negative integer printed next to it on the listing. This negative value is the offset (in
bytes) from the base address where the variables are located. The base address for a procedure’s
local variables is the current stack frame pointer (SF); the main program’s variables have a base
address offset the value of the program name (here XYZ) from A5.

That’s why it’s helpful if, when writing the program, you declare each variable on a separate line so
that an offset will be printed on the listing for each variable. Alternatively, you can use the
$TABLES$ Compiler option to get a printout which tells all about each data type and variable. This
option is explained further under ““‘Structured Variable Formats”.

To format the variable’s value in memory, you will need to use the Display command. Let’s go back
to the example program and let it finish by clearing the breakpoints using “BC’’ and then press
CONT. Restart the program and then execute GT 80 command to Go Til line number 60.

To see the value of the local variable i that is declared in the procedure called Level 1, look at the
Compiler listing (line 14) to see that it has an offset of —4. This is an offset from the stack frame
pointer (SF) of that procedure. Subtract 4 from the stack frame pointer, and use “*”’ after the
expression to indicate you want the contents of the memory location referenced by the value of the
expression in parentheses. Enter the following command:

D (8F-4)":s" XK = ‘1
X =0
To see the value of y, execute:

*D (8F-8)":" ¥
\ll - c)

ER!

The Debugger

And to see the value of z, execute:

D O(SF-12)": Z = ‘]
Z =0

You may also specify that all three integer variables be displayed at the same time by executing this
command:

*D (8F-12)":3
0 0 0O

The display will show the three integer variables separated with spaces. The variable with the offset
of —12 will be the first one displayed, the one with the offset of —8 is second, then the third one
has offset —4.

When looking for local variable values, be sure that you have stopped the program in the proce-
dure that defines the variables. Each procedure that is called has a stack frame created for it even if
there are no local variables. If you have stopped the program in a procedure which is contained
inside of another procedure, you can use the walk commands to get to the stack frames of the outer
level procedures (see ‘‘Static and Dynamic Links”).

The global variables in the main program or globals declared in modules are located at offsets from
their specific global area. The respective areas have a symbol associated with each one. The symbol
has a value which is equal to the offset or distance from (A5). So when you reference these
variables, add the program or module name to A5 and then subtract the offset for the particular
variable location.

For example, if you wanted to see the value of the variable x in the main program (here it is named
XYZ), use this command:
D (AS+XYZ-4)"

To see the value of Y, execute:
D (AS+XYZ-8)"
To see the value of the two character variables in ch1 and ch2 (of program DEBUG), it is necessary

to specify a format, because the default format is integer. To see the variables ch1 and ch2, execute
this command:

D (AD+XYZ-26) " :2A1

The format specifies that 2 Alpha values are to be displayed, each having 1 byte. They are located
at an offset of -26 from the value of symbol XYZ, relative to A5.

The processor registers that can have their values displayed are listed below:

AO. A7 (the Address redisters)
AA (Al]l Address redisters)
DO..D7 (the Data registers)
DD (all Data redisters)
PC (the Prodram Counter)

SR (the Status redister)

319

320 The Debugger

To display the numeric values of the contents of address register AO and the Program Counter,
execute this command:

D AO PC

To display the numeric value at the location referenced by the the Program Counter (i.e., whose
address is stored in the PC), execute the following command:

D pPC*

To display the value at the location referenced by the Program Counter, interpreting it as an
Assembler language instruction, execute this command (remember that module REVASM must be
P-loaded to use this format):

D PC":X

The Debugger symbols and corresponding definitions are as follows:

LN (Line Number)

EC (Escarpe Code)

I0 (I/0 result code)

GB (the Globkal variable Base)

RB (the code Relocation Base)

SF (the current StacKk Frame pointer)

Examining Consecutive Memory Locations

The Open command is like the Display command except the address is displayed with the value
and you are prompted to press either the up-arrow key or the down-arrow key. This causes the
address value to increment or decrement depending on the key choice. The adjustment is 1 byte
with the OB command, 2 bytes with the OW command and 4 bytes with the OL command. When
you have seen enough, press (Return), (ENTER), or (Select) ((_EXECUTE)) to terminate Open mode and
return to the Debugger command mode. For example, to see the hex values which are the machine
codes for the current program, use this command:

FH

(See the Default Formats section for more details.)

To examine (16-bit) word pointed to by the current contents of the Program Counter, use this
command:

oW PC"
The > to the right of the display prompts for an up-arrow key ((_1)) or down-arrow key

((C_1)). To see the next word in memory, press the up-arrow key. Continue until you have seen
enough. Press (Retun) or (ENTER) to exit the Open command.

The Debugger 321

Formats for Structured Variables

There is a mechanism for displaying non sequential values also. It is necessary to specify one
memory location to set the memory pointer. Then by using special symbols, you can alter the value
in the memory pointer. You can also display the value of the memory pointer. All these symbols are
part of the format and are typed following the location specification and a colon (:).

"#" is the value of the memory pPointer

"{" preceded by a number, decrements the value of the memory
Pointer by the number

"*" Preceded by a number, increments the value of the memorvy
pointer by the number

"*" gauses the memory Pointer to taKe the value at the
location indicated by the current pointer

These mechanisms make it possible to examine different fields of structured variables.

First, a note about structured variables. When space is allocated for a structured variable, the
number of bytes needed is determined and given to the variable. The individual elements of the
structure are then assigned space at ascending locations. For example, if you had the following
Pascal record, 14 bytes are needed to store the whole record:

Pasc_Rec = RECORD
X : INTEGER]S
y = INTEGER}S
chl : CHARS
ch2 : CHAR?
pointer : “Pasc.Reci
END 3

If a variable of this type is the first variable for a procedure, then the record would occupy the first
14 bytes below the stack frame pointer (SF-14)". The elements in the record would be at positive
offsets from this location. Variable x would have an offset of 0 (SF-14)"; y has an offset of 4
(SF-14 +4)"; Ch1 has an offset of 8 (SF-14 + 8)"; etc. This information is easily obtainable when
the $TABLES$ Compiler directive is used.

The following drawing illustrates the structure of the RECORD variable in memory.

SF—
POINTER
CH2
CH1
Y
X
—14—

322 The Debugger

Rather than displaying the values of the record individually, you can use the following Debugger
command:

D (SF-14)":14:4%s2A1 " 414 %

This command tells the Debugger to go to the memory location 14 bytes below the Stack Frame
pointer (the bottom of the record), display the four-byte integer (x), go up 4 bytes and display the 2
Alpha characters, assume the value that is stored after the characters (the pointer field), then go up
4 bytes in the new record and display the four-byte integer (y), and then display the current
location. Notice that the Debugger display pointer is left at the subsequent locations after the
particular displays are made. In other words, after the display of (x), it is only necessary to move 4
bytes rather than 8, to position the display pointer to the character variables.

Changing Memory Contents

The ability to change the values in memory is, among other things, the ability to get a program back
on the right track. In one Debugger session, you can detect several problems with a program
without having to stop, edit and recompile the program for each one. Simply change the values of
the variables that are causing the problem. To change the values of variables in a Pascal program,
use the Open commands. Variables are referenced the same way they are with the Display
command.

The Open commands are as follows:

® OB - for byte values.
® OW - for word values.
e OL - for long word (four-byte) values.

Suppose you want to change the value of a variable to 8; assume that it is local to the current
procedure, that it is an integer variable, and that it has an offset of —4 from the procedure’s stack
frame pointer (SF). It is necessary to use the OL form of the Open command, since integers are 4
bytes long. Execute the following command:

oL (sF-4)" B

As another example, suppose you want to change the value of the global (main program’s) variable
chl to “x”. Because characters only use 1 byte of storage, use the OB form of the command.

0B (GB-25)" "x"

By changing the values of those variables, the sequence of execution is drastically altered.

The Debugger

Static and Dynamic Links

Each time a procedure is called in a Pascal program, a new stack frame is created. This stack frame
contains all the local variables in the procedure as well as the procedure’s static and dynamic links®.

The Debugger contains a mechanism for following these links. It is the Walk command. The Walk
command takes three forms:

o WS - follows the static link back one step.
e WD - follows the dynamic link back one step.
® WR - resets to the current stack frame.

There are no options or parameters. These commands in no way affect or influence program
execution.

Restart the Debugger by pressing the key and the (_D) key. Set a breakpoint on line 31 for
the third execution of the procedure Level 3.

BS 31 3

Press or (ENTER), and then press CONT. The program will stop the third time line 31 is reached.
The sequence of calls is as follows:

Prodram XYZ

Procedure Level_1

Procedure Level_ Zb

Procedure Level_Za

Procedure Level.3

Procedure Level.3

Procedure Level_3

Give six successive WD (Walk Dynamic) commands and you’ll get the above information pre-
sented in reverse order. The information displayed for each WD command is the stack frame
information for the current procedure and then the same for the calling procedure. The stack frame
pointer is updated to point to the calling procedure’s stack frame. You can look at those variables
and the links stored in that stack frame. Consecutive WD commands walk us back through the
entire calling sequence. We can stop anywhere along this path and examine the variables in a
procedure’s stack frame.

1 Static and dynamic links are described in detail in the section of the Compiler chapter called How Pascal Programs Use the Stack.

323

324 The Debugger

To return to the stack frame for Level_3 where you stopped the program, execute a Walk Reset
command:

WR

This command resets the Debugger stack frame pointer variable.

You can also walk the static link. This gives you the ability to examine variables whose scope
includes the current procedure. Execute:

W5

This command brings us to the Stack Frame for Level_2a which contains the variables i, x, and .

Use the Display command to examine the value of i.

D (SF-4)"

The value of i is displayed.

+2

The value of i is only affected by successive executions of Level_3. If Level_3 had local variables,
they would display different values in each stack frame. However, only one copy of the variable i
exists in the one stack frame for procedure Level_2a. The value of i is as it was when we stopped
program execution during the third invocation of Level 3. That value is 3.

Exception Trapping

It is possible to stop execution of a program at an exception to normal processing. Normally, an
escape is made by the system and successive recovery mechanisms allow termination of the
program. At the time of termination, the system displays the escape code and the line number in the
outer level recovery. The escape code is valid information, but the line number may not be the
location of the error. By re-executing the program with a trap set for the exception, we can stop
execution at the point of the error, have the actual line number of the error displayed, and examine
variables for the problem.

There are three commands for exception trapping. We can trap selected escape codes with the
Escape Trap instruction. The following command directs the Debugger to trap only escape code
100.

ET 100

When escape code 100 is encountered, control is returned to the Debugger and the following
message is displayed on the screen:

~-EXCEPTION-
ESCAPE CODE 100
SR=%0000 PC= -207332 LINE +12

We can stop at all except selected escape codes with the Escape Trap Not instruction. This
command directs the Debugger to trap every escape code except 100.

ETN 100

The Debugger

Not specifying an escape code causes the command to work for every escape code. This command
directs the Debugger to trap all escape codes.

ET

This command doesn’t trap any exceptions.
ETN

When the exception occurs, execution stops and control is transferred to the Debugger. At that
point, you can examine the state of the program.

When the Debugger is initiated, the default escape trapping command is the following:
ETN O -Z20

These are the escape codes for normal termination and the key. The Debugger will trap all
escape codes except those.

The third type of escape trap command allows you to execute command(s) when the escape is
detected. Here is an example:

ETC ‘D "ESCAPE HAS OCCURRED"3i7?’

This command displays its message and then halts the program, awaiting further Debugger com-
mands.

Generating Escapes
With the Debugger, you can also generate escapes. For instance, this command generates an
ESCAPE(10) at the current point in the program.

»EC 10

The result of this command is the same as if the program had encountered the escape at the current
location. If you have an ET command currently defined for the escape code, the Debugger will trap
it also.

A Note about Assembly Language Programs

All of the Debugger commands apply when debugging an Assembler language program as well.
The difference is that the location specification is given as an address and not a line number. An
address is specified with a *“ ~ "’ appended to the location specifier. For example, the following
command says to Go Til the address FFFF 1423 is encountered:

GT FFFF1423°

325

326 The Debugger

The Debugger knows about symbols which have been DEFed. The entry points into assembly
modules, programs, and procedures should have been defined (with DEF). You can specify an
address in an assembly routine by specifying an offset from the routine’s entry point. The offset in
the routine can be found on the Assembler output. For example, the following (equivalent) com-
mands direct the Debugger to Go Til encountering the the address 16 decimal (10 hex) memory
locations past the entry point into “‘routine’:

GT (routine+1B)"

or.

GT (routine+$10)"

Read about the particulars of each command in the subsequent Command Reference section.

The Debugger

Debugger Keyboard

This section describes the key definitions while in the Debugger. Note that once you are in the
Debugger there are two modes: Command Mode and Step Mode.

A Note about Key Notations

Throughout this section, you will be shown which keys invoke certain Debugger functions. Since
you may have one of three different keyboards connected to your computer, each with a different
set of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the three different keyboards.’

Desired HP 46020A HP 98203B HP 98203A
Function Key(s) Key(s) Key(s)
Pause
Single Step ((System))
Slow Step ((System)) (CeTRL)-(£5) -(sTep) -(sTer)
Continue ((System))

For instance, invoke the Pause function on a 46020 keyboard by pressing the key. On a
98203B keyboard, press the key. With a 98203A keyboard, press the key.

As another example, suppose that you want to invoke the Single-Step function. On both 98203A
and B keyboards, press the key; the label is on the key itself. On a 46020 keyboard it will be
the System key labeled on the key, which is labeled STEP on the screen while in the
System-key mode. (If you are not already in System-key mode, then you will need to press the
key before pressing (_5_)). The same notation is used for the other System keys on the
46020 keyboard (i.e., through (_f8_)): the actual System key is not given in text; the label is
given instead. You will need to make the association, which you can easily do by looking at the
System-key labels while the Menu is being displayed (press the key to toggle the Menu on
and off). If you are not familiar with the (System) and ((Menu) keys, read the discussion in the Pascal
User’s Guide.

The convention used in this manual is to show the 46020 keys first (followed by the equivalent
98203B key in parentheses). For instance, the ((PAUSE)) key invokes the Pause function: on

the 46020, it is the key: on a 98203B keyboard, it is the(PAUSE) key. (The 98203A key
is not shown, because it is close enough to the label that you should be able to easily make
the connection.)

Is the Debugger Installed?

Before proceeding, you should verify that the Debugger is currently installed. Press ((PAUSE))
to pause the system. If a p is displayed in the lower, right-hand corner of the screen, then the
Debugger is installed. Press CONT ((CONTINUE)) to resume operation.

If the Debugger is not installed, then pressing will do nothing.

1 This discussion only gives a few examples; the Debugger Keyboard section near the end of the chapter describes all key(s).

327

328 The Debugger

Calling the Debugger from the Main Command Level

(o) From the Main Command Level, pressing the (_D) key calls the Debugger
(if installed).

Step Modes

Here are the available operations and key definitions while in the Debugger Single-Step and

Slow-Step Mode.

Getting into the Step Modes

STEP Causes the program to halt on the next line number; or, if already halted,
execute one Pascal statement. (This key gets you into the Single-Step Mode.)

-STEP Causes program execution to be slowed (to about 2 statements per second)

and line numbers displayed. (This key gets you into the Slow-Step Mode.)

Controlling Program Execution

Program execution is paused. Note that the type-ahead buffer is still active
((PAUSE)) and immediate-execute keys still function (e.g,. DMP A).

Stops program execution.

Getting into Command Mode

(ctRL)-(Break) This key provides immediate entry into Debugger Command Mode.

(CcTRL)-(PAUSE))

Returning to the Main Command Level
CONT Causes program exection to resume with Step mode cancelled.

((CoNTINUE)

Command Mode

Here is a description of available operations and key definitions while in the Debugger Command
Mode. If it is not installed, the command is identical to the eXecute command.

Entering Commands
Alphanumeric Keys Used to enter Debugger commands. The characters generated are upper-
case; you must use to produce lowercase characters.

(Retun) or (ENTER) Terminates input and initiates execution of the command.

Terminates input and initiates execution of the command.
((_EXECUTE))

-ALPHA

(Cshitt) with

numeric-pad keys

CTRL) with
alphanumeric and
numeric-pad keys

or
((LCLRIN)or
(0EL LN))

RECALL

((Cns chR J)

(CoEL cHR)

CLR-END
(CcLR-END))

(A1)thru(18)
(ko)thru(ks))

Knob
(shift)-Knob

Left-arrow and
Right-arrow

Up-arrow and
Down-arrow

The Debugger

Alternates between the Debugger command screen and System screen

(CctRL)-(ExXEC) on the 98203A keyboard).
Undefined (keyboard is always in CAPS mode).
Produces special characters (only 46020 keyboards).

Allows entry of ASCII control characters.

Back space the cursor and blanks one character (If the cursor is in the
extreme left, this key is a no-op).

Clears the input line.

Clears the input line and recalls the last executed line.

Inserts one (1) blank character at the cursor position (does not switch to an
“insert mode,” as there is none).

Deletes the character at the cursor position.

Deletes all characters to the right of the cursor.

Typing-aid keys (explained under K commands).

Same as left/right arrow keys.
Same as up/down arrow keys.

Move the cursor in the corresponding direction.

Have meaning only with the Open commands (OL, OW, OB).

329

330 The Debugger

Screen Control

Clear display
((_CLR SCR))

ALPHA

DMP A
((CouMP ALPHA)

-ALPHA

GRAPH
((GRAPHICS)
DMP G

((DUMP GRAPHICS))

Clears the alpha raster. In Step Modes, this key clears the System screen; in
Command mode, it clears the Debugger Command screen.

Turns on the alpha raster and turns off the graphics raster ((SHIFT)-(RCL) on
the 98203A keyboard).

Performs a DUMP ALPHA function (the current alpha raster is sent to the
PRINTER: volume). ((SHIFT)-(INS C) on the 98203A keyboard).

Alternates between the Debugger and System screen images ((CTRL)-(EXEC)
on the 98203A keyboard).

Turns on the graphics raster and turns off the alpha raster. ((SHIFT)-(INS L) on
the 98203A keyboard.)

Performs a DUMP GRAPHICS function (sends the current graphics raster to
the PRINTER: volume). ((SHIFT)-(DEL C) on the 98203A keyboard.)

Controlling Program Execution

(Break)
((PAUSE))

Program execution is pauseed. Note that the type-ahead buffer is still active
and immediate-execute keys still function (e.g,. DMP A).

Stops program execution.

Getting into a Step Mode

STEP

-STEP

Causes the program to continue executing until the next line number is
encountered (i.e., gets you into Single-Step Mode).

Causes the program to continue executing slowly, and line numbers display-
ed as encountered (i.e., gets you into Slow-Step Mode).

Returning to the Main Command Level

CONT
((conTINuE)

Causes program exection to resume with Command mode cancelled.

The Debugger 331

Debugger Command Summary

This section briefly summarizes the Debugger commands for quick reference purposes. A more
complete description of each command is presented in the following Command Reference section.

Breakpoint Commands

BS — Sets a breakpoint at the specified location.
BD — Disables (but does not remove) breakpoint(s).
BA — Activates disabled breakpoint(s).

BC — Clears breakpoint(s).

B — Displays the breakpoint table.

Call Command
CALL — Calls the machine language routine at the specified memory address.

Display Commands

D - Displays the specified object(s). Objects can be specified immediately, directly, or indirectly.
Formats describe the internal representation of the data.

TD - Displays the command string which is defined by the softkey k4.

TD I — Restores the initial command string to k4.

Dump Commands

DA — Performs the DUMP ALPHA function.
DG — Performs the DUMP GRAPHICS function.

Escape Code Commands

EC — Generates the specified escape.
ET — Sets up escape trapping of specified escape codes; Debugger halts when an escape is
executed.
ETC — Sets up escape trapping of all codes; Debugger executes the specified command when
an escape is executed.
ETN — Sets up escape trapping of all codes except those specified; Debugger executes the
specified command when an escape is executed.

Format Commands

FB — Sets the default display format to Binary.

FH — Sets the default display format to Hexadecimal.

FI — Sets the default display format to signed Integer.
FO — Sets the default display format to Octal.

FU - Sets the default display format to Unsigned integer.

Go Commands

G — Causes execution to resume (same as CONTINUE).

GT — Causes execution to resume until specified location is encountered.

GTF or GFT — Same as GT except that execution is slowed and the line numbers are flashed in
the lower right-hand corner of the screen.

332 The Debugger

IF, ELSE, and END Commands

IF — Allows conditional execution of subsequent commands based on the result of evaluating
the specified expression.

ELSE — Delimits the commands that will be executed when the IF condition is FALSE.

END - Ends the IF command.

Open Memory Commands
OB, OL, and OW — Used to display (and optionally alter) the values of memory locations.

Procedure Commands

PN — Halts program execution when the next procedure is called (or when the current one is
exited, whichever occurs first).
PX, or P — Halts program execution when the current procedure is exited.

Queue Commands

Q - Displays the Queue, which is a record of which line numbers were executed (or PC values
of instructions executed).

QE — Ends recording of line number values in the Queue.

QS - Starts the recording of information in the Queue.

Register Operations
A0..A7, D0..D7, PC, SP, US, SR - Display or assign values to the corresponding processor

register(s).
Softkey Commands
k0 .. k3 — Defines the command string to be displayed when the softkey is pressed (while in the
Debugger).

System Boot Command

sb — The system boot command puts the computer in the power-up state for re-booting. (The
command must be typed in lowercase letters.)

Trace Commands

T — Causes the specified number of instructions to be executed, each followed by an implicit TD
command.
TQ — Same as the T command except that the TD command is executed only after the last
instruction.
TT — Same as TQ except that a location is specified rather than a count.

Walk Procedure Links Commands

WD - The Stack Frame pointer (SF) is moved to the stack frame of the calling procedure.
WS — The SF is moved to the stack frame of the nesting procedure.
WR — The SF is returned to the current stack frame.

The Debugger 333

Debugger Command Reference

This section contains a formal description of syntax and semantics for each Debugger command.

Debugger Expressions
With the Debugger, all expressions are integer expressions.

I binary |
{ i | operator [~ i 1
o ‘I integer I - L -

register
symbol

Y

Debugger
symbol

system
symbol

il

Y

hex
digits
octal
digits
binary
digits
[oreemn }~0)

binary
—

expression

#

_—

expression

334 The Debugger

Item

Description/Default

Range Restrictions

binary operator
register symbol

Debugger symbol

system symbol

address

size

an operator that requires two operands
a symbol representing a processor register

a symbol known to the Debugger

any symbol in the system symbol table

an integer numeric expression followed by a
«“~ which refers to the contents of the specified
memory address

integer expression that specifies the number of
bytes to be used

+ s Ty /) *1
< <=, =,>=,> <>
AQ..A7, DO..D7, PC, SP,
US, SR

LN (Line Number)
EC (Escape Code)

IO (I/O result code)
GB (the Global variable
Base)

RB (the code Relocation
Base)

SF (the current Stack
Frame pointer)

— 221 thru 23! - 1

1 thru 4

The “U” (unsigned integer) and “I”’ (signed integer) option paths indicate whether the value at the
specified address and with specified number of bytes (size) is to be treated as a signed or unsigned

integer.

Multiple Commands on a Line

Several commands may be entered on the same line. These commands are separated by a
semicolon (;).

single

Debugger command

The Debugger

Breakpoint Commands

Breakpoints are points in a program where execution may be halted. The Breakpoint commands
control program execution by setting up, activating, and clearing breakpoints in a program.

B

The “B” command causes the breakpoint table to be displayed.

line

.'

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 2'6-1
address an expression, followed by a “”, that identifies —23 thru 231 -1

a location in memory

The first column contains an “A” for an active breakpoint or a “D”’ for a deactivated breakpoint. If
no location is specified, the table displays all breakpoints.

BA

The “BA” command Activates disabled breakpoints. If a location is specified, then only that
breakpoint is re-activated; otherwise, all breakpoints are re-activated.

(Ba } - .

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 216-1
address an expression, followed by a “*”, that identifies — 231 thru 231 -1

a location in memory

335

336 The Debugger

BC

The “BC” command Clears breakpoints. If a location is specified, then only that breakpoint is
cleared; otherwise, all breakpoints are cleared.

1 BC } >]
line
. number .

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 2%6-1
address an expression, followed by a “”, that identifies —231 thru 231 -1

a location in memory

BD

The “BD”” command De-activates breakpoints. If a location is specified, then only that breakpoint is
de-activated; otherwise, all breakpoints are de-activated.

line

I.

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 2'6-1
address an expression, followed by a “*”’, that identifies - 23 thru 231 -1

a location in memory

The Debugger

BS

Setting breakpoints with the “BS” command causes the program to stop or perform some opera-
tion at a given line number or instruction address.

ol count | .
address Iﬂl
l.
command
Item Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 216-1
address an expression, followed by a “**”’, that identifies -23 thru 231 -1
a location in memory
count expression -23 thru 23 -1
Debugger command command(s) to be executed when breakpoint any legal Debugger
reached command(s)

If only a location is specified, the breakpoint is set at that location and then activated. The program
will halt just before it subsequently reaches that point.

Specifying a count sets a breakpoint that will halt the program after the count has been de-
cremented to 0. (The count is decremented each time the location is reached.) When the program
is halted, this type of breakpoint is automatically cleared. (The other two types of breakpoints set
with the BS command are not cleared when encountered.)

Adding a command string to the breakpoint causes the command to be executed each time the
point is reached. A “?”’ in the command string causes the Debugger to wait for input from the
keyboard. Otherwise, the command is executed and program execution resumes.

337

338 The Debugger

The Call Command

This command is used to call the subroutine at the specified address.

GALL)—.I address }—.|

Item I Description/Default | Range Restrictions

address an expression, followed by a *“*”", that identifies — 231 thru 23! —1
a location in memory

The effect of this command is as if a Jump to Subroutine (JSR) instruction was encountered just
before the current program counter (PC).

The CALL command can be abbreviated with the letters CA.

The Debugger 339

Display Command
D

The D command is like a print statement where the parameters are objects and formats.

X

o . .
) contiguous
expression data specifier

string
constant
softkey
symbol

address
specifier

contiguous data specifier:

X

. > 1)
contiguous
data specifier
contiguous
type Lan data specifier
string _J/
constant o
address specifier:
]
- - |

:

address
specifier

contiguous
data specifier

contiguous
data specifier

340 The Debugger

Item

Description/Default

Range Restrictions

expression

string constant

softkey symbol

address

count

contiguous data specifier

address specifier

type

size

integer expression

literal value

a symbol (not the actual key)

an expression, followed by a “””’, that identifies
a location in memory

integer constant

specifier that identifies the format of data which
is contiguous in memory (i.e., memory pointer
symbols * etc. not used)

specifier that identifies an address in memory
{memory pointer symbols such as * may be
used)

A = Alpha character

B = Binary

H = Hexadecimal

I = Integer (size = 1..4)

O = Octal (size = 1..4)

S = String type (size is declared size)

R = Real (size not allowed)

U = Unsigned integer

X = reverse assembly (size not allowed)

integer constant

Objects can be immediate, direct, or indirect.

— 23 thru 23t -1

any character delimited
with single or double
quotes

KO thru K9
— 231 thru 23t —1

1thru23! —1

see drawing
{nesting limit is 3)

see drawing
(nesting limit is 3)

— 23 thru 23! -1
(except where
noted above)

Formats describe the internal representation of the data. Non-consecutive data can be displayed
using the format options available when the address parameter is used.

If a format of type S includes a count parameter, then a size parameter must also be included.

If the output of a Display command fills the screen, a MORE prompt will be issued. A reply of (Return),

((Enter), or (Select) ((_EXECUTE)) will continue the display. (_Shit)-(Select) ((SHIFT)-(_EXECUTE)) will cancel

the display and the rest of the command string. All other responses will be ignored.

The Debugger 341

Dump Commands

These commands allow you to perform the DUMP ALPHA and DUMP GRAPHICS functions while
in the Debugger.

DA

The DA command performs the DUMP ALPHA function.

DG

The DG command performs the DUMP GRAPHICS function.

Note

These commands can only be used while executing programs in the
processor’s ‘‘user mode.” If attempted while in *‘supervisor mode,” the

following error will be reported:

NOT ALLOWED NOMW

342 The Debugger

Escape Code Commands

These commands allow you generate and trap escape codes while in the Debugger.

EC

The effect of executing this command is the same as if you had executed an ESCAPE(code) in the
program just before the current PC. If any ET, ETC, or ETN commands have been used to set up
escape code trapping, then the Debugger will be halted and the escape code displayed on the
screen.

escape

Item I Description/Default | Range Restrictions

escape code signed integer expression; negative for system — 215 thru 21°
escapes, positive for user escapes.

Here is an example display:

*EC 10

~-EXCEPTION-

ESCAPE CODE +10

Sk=%$0004 PC= -228230 LINE +9

ET

The Escape Trap command allows you to specify that either all escape codes or specified escape
codes are to be trapped by the Debugger.

N e ¥

escape
code

Item l Description/Default | Range Restrictions
-2 thru 21°-1

signed integer expression; negative for system
escapes, positive for user escapes

escape code

If an escape code that is in the list is encountered, execution stops and control is given to the
Debugger. If no escape codes are specified, then processing stops for all escape codes.

Up to 4 escape codes may be specified with the ET command.

The Debugger

ETC

The Escape Trap Command allows you to set up command(s) to be executed when an ESCAPE is
generated.

' Debugger .

command

Item | Description/Default | Range Restrictions
Debugger command command to be executed when an escape is any valid Debugger
encountered command

ETN

The Escape Trap Not command specifies that processing should stop for all excape codes except
the ones listed. If none are listed, then processing won'’t stop for any escape codes.

(emw ‘h(>]ﬁ
escape
code

Item | Description/Default | Range Restrictions

signed integer expression; negative for system — 2% thru 21°-1
escapes, positive for user escapes

escape code

If the program was started with the D command, then ETN -20 0 (which traps all except the
key and normal program termination) is in effect.

Up to 4 escape codes may be specified with the ETN command.

343

344 The Debugger

Format Commands

The format commands allow you to specify the default display format.

FB

The Format Binary command sets the default format to Binary values.

FH

The Format Hex command sets the default format to Hexadecimal values.

FI

The Format Integer command sets the default format to signed Integer values.

FO

The Format Octal command sets the default format to signed Octal values.

FU

The Format Integer command sets the default format to Unsigned integer values.

The Debugger

Go Commands

The Go commands control program execution by telling the Debugger how many lines to execute
or the line at which to halt.

G

The “G” command causes normal execution to resume. If a count option is used, that number of
statements are executed.

Item | Description/Default | Range Restrictions

count | integer expression I 1thru 2'°-1

GF

The “GF” command is the same as the ‘“G” command except execution is slowed and line
numbers are Flashed in the lower right corner of the CRT.

I count

Item I Description/Default | Range Restrictions

count | integer expression | 1thru 251

345

346 The Debugger

GT

The “GT” command causes execution to Go "Til the specified location is reached.

address

l.
command
Item Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 216 -1
address integer expression, followed by a “”*”’, that iden- ~ 23 thru 231 -1
tifies a location in memory
count integer constant 1thru 231 -1
Debugger command commandy(s) to be executed when the specified any legal Debugger
line or address is reached command(s)

If a count option is used, execution continues until the location is reached that number of times.

If the Debugger command option is used, the command(s) are executed when the location is
reached.

GTF

The “GTF”’ command is the same as the “GT” command except execution is slowed and line
numbers are flashed in the lower right corner of the CRT.

r
X

l Debugger .

command

Item Description/Default Range Restrictions

line number an expression that identifies a program line 0 thru 2'6—1

address integer expression, followed by a “*”’, that iden- ~23 thru 231 -1
tifies a location in memory

count integer constant 1 thru 231 -1

Debugger command any legal Debugger commands delimited with
single or double quotes

The Debugger

IF, ELSE, and END Commands

These commands allow conditional execution of Debugger commands.

T :(IF)——I expression }

Debugger
command (s)

Debugger command (s):

I
\:/‘)

single

> |
Debugger
command (s)
- (N y,
(o/
ELSE - -
Debugger
command (s)
- (D J
- o/
END >

Debugger
command (s)

g | »
Debugger command

Item

Description/Default

Range Restrictions

Debugger command(s)

expression

single Debugger
command

command(s) to be executed when the sense bit
is TRUE

numeric or boolean expression whose value de-
termines the state of the “‘sense bit”’

one Debugger command

see drawing

any valid Debugger
expression

any valid Debugger
command described in
this reference section

347

348 The Debugger

In order to better understand how IF, ELSE, and END statements work, you need some back-
ground information. There is a sense bit that determines whether or not Debugger commands are
executed. This sense bit is set to TRUE at the beginning of every command line. Commands on the
line are executed as long as this bit is TRUE and skipped when the sense bit is FALSE.

When an [F statement is encountered, the expression is evaluated. If it evaluates to non-zero or
TRUE, then the sense bit is set TRUE. Subsequent commands are executed while this bit is TRUE.
When an ELSE command is encountered, the sense bit is complemented (i.e., if it was TRUE, then
it is set to FALSE, and vice versa). When an END statement is encountered, the sense bit is set to
TRUE. Here is an example of this situation:

5IF 1=13D ‘NON-ZERO’3}D ‘TRUE’ELSESD ‘ZERO’5D ‘FALSE’3SEND3D ‘ALWAYS'

NON-ZERO

TRUE
ALWAYS

Here is an example of the converse situation.

»IF 035D ‘NON-ZERO’SD ‘TRUE’JELSEID ‘ZERO’IiD ‘FALSE'JENDID ‘ALWAYS’
ZERO

FALSE

ALWAYS

Notice that the commands after the END statement are always executed. Note that the IF statement
does not have to be the first command in the line.

The ELSE command can be abbreviated as EL; the END command can be abbreviated as EN.

The Debugger

Open Memory Commands

These commands allow you to examine, and optionally modify, the contents of memory locations.

OL, OW, OB

The Open Byte, Open Long, and Open Word commands are used to examine consecutive mem-
ory locations and to assign values to the locations.

address > —

expression
Item Description/Default Range Restrictions
address an expression, followed by a “*””, that identifies —231 thru 231 -1

a location in memory (with OW and OL, the
address must be an even number)

expression integer expression —23 thru 23t -1
string constant literal any character delimited
with single or double
quotes
Semantics

When no value is specified after the location, the location and the contents of the location are
displayed and followed by a special prompt. The prompt is for an up-arrow key, a down-arrow key,
or the (Return) or (_Enter) key.

e The up-arrow key causes the next higher location and value to be displayed and the special
“Open’’ prompt.

® The down-arrow key is the same except that the next lower address is displayed.

e The (Retun) or (Enter) key causes termination of the “Open” prompt and a return to the
standard Debugger prompt.

The amount of the increment/decrement is as follows:
e 1 byte for the “OB”’ command

® 2 bytes for the “OW” command
® 4 bytes for the “OL” command

When the Open memory commands are used with value options, the specified value is assigned to
the corresponding location. No attempt is made to read the corresponding memory location.

349

350 The Debugger

Procedure Commands

These commands allow you to halt the program when a procedure is called or exited. Both of these
commands will only work if the procedures were compiled with $DEBUG ONS.

PN

The PN (Procedure Next) command halts the Debugger when a procedure is called by the current
procedure or main program (or when the current procedure is exited).

When the current procedure or main program calls another procedure, the Debugger displays
NEXT PROC and halts the program before executing the first line of the called procedure.

If the current procedure is exited before another is called, the message PROC EXITED is displayed

and the Debugger is halted before executing the first line of the procedure that called the current
one.

PX

The PX (Procedure eXit) command allows you to halt program execution when the current proce-
dure is exited.

When the current procedure is exited, the message PROC EXITED is displayed and the program is
halted before executing the next line of the procedure that called the current one. Calling a
procedure while in the current one is not reported (as it is with PN).

The Debugger

Queue Commands

The Queue commands control and display the Queue, which is a record of the line numbers of
statements (or memory addresses of processor instructions) encountered during the execution of a
program.

Q

The “Q” command displays the addresses or line numbers and addresses of the most recent
statements executed since a “QS”’ command or the start of execution of the current program.

Co

“MORE” is given as a prompt when part of the Queue has been displayed and there is more to
come; a reply of (Return), (Enter), or (Select) (_EXECUTE)) will cause the next 1..21 Queue entries to
be displayed. Any other reply will be interpreted as another command.

QE

“QE” ends the recording of information in the Queue

QS

“QS” starts the recording of information in the Queue

351

352 The Debugger

Softkey Commands

The Softkey commands allow you to define System softkeys to display literal values and com-
mands, so that these keys will be used as typing aids.

“KO” thl’u “Kg”

These commands allow you to define the softkeys as typing-aid keys; when the softkey is subse-
quently pressed, it puts the string constant or the result of evaluating the integer expression into the
Debugger command-input line.

softkey -
symbol b

Y

l'
constant
numeric
Item Description/Default Range Restrictions
softkey symbol literal symbol that denotes a softkey KO thru K9
string constant literal value any characters delimited
with single or double
quotes
numeric value integer expression -23 thru 231 -1

Numeric values or command strings can be assigned to the softkey symbols K0 through kK9 by
typing the key symbol (not by pressing the actual key) and then typing the value to be assigned to
the key.

If a string constant is assigned to the softkey symbol, subsequently pressing the corresponding
softkey will cause the literal value to be placed in the Debugger command-input line. If a numeric
expression is assigned to the softkey symbol, the result of evaluating the expression is placed in the
input line.

After the command on a line is completed, pressing (Retum), (ENTER), or (Select) ((EXECUTE)) causes
the line to be interpreted.

To see the string constant or numeric value that is currently assigned to a softkey symbol, type the

symbol and press (Return).

The Debugger

Register Operations

A0...A7, DO...D7, SP, US, SR, PC

Registers can have their contents displayed or altered. If a value follows the register symbol, that
value is assigned to the register. Otherwise, the current value of the symbol is displayed. Without

the assignment, the command is the same as the D command.

'

=y
address
. string '

constant

register
symbol

P |
.

Items Description/Default

Range Restrictions

register symbol A0...A7, DO...D7, SP, US, SR, PC

AA = All Address registers
DD = All Data registers

expression integer numeric expression

string constant

quotes

“AA” and “DD” cannot be used to assign values.

any characters delimited with single or double

—2% thru 231 -1

System Boot

The ““sb” command places the computer in the “power-up” state for rebooting. The command

must be typed in lowercase.

353

354 The Debugger

Trace Commands
T

The “T” command with count specification causes that number of machine instructions to be
executed. A “TD” command is executed after each machine instruction.

Items | Description/Default | Range Restrictions

count | integer expression | 1thru 23! -1

For use with Assembly Language debugging. This command ignores address break points.

TD

The TD (Trace Dump) command displays the command string which is defined by the
(k) softkey.

o)
®

At power up, is defined to display the PC, the instruction at (PC), the status register, the SP,
and all the A (address) and D (data) registers. This display may be altered by changing the definition

of (fa).

The optional parameter I’ restores the initial definition to softkey (_f4_).

TQ

TQ (Trace Quiet) is the same as the T command except a TD command is only executed after the
last instruction.

Items I Description/Default | Range Restrictions

count | Integer expression | 1thru 23 -1

For use with Assembly Language debugging. This command ignores address break points.

The Debugger 355

TT

TT (Trace 'Til) causes machine instructions to be executed until the specified line number or
address is reached. TT is like TQ in that a TD command is executed only after the last statement or
instruction is executed.

address

command

I Debugger .

Items Description/Default Range Restrictions
line number an integer expression identifying a program line. | O thru 2161
address an integer numeric expression followed by a “~” | —23! thru3!—1
count integer expression —1thru23-1
debugger command any legal commands delimited with single or
double quotes

For use with Assembly Language debugging. This command ignores address break points.

356 The Debugger

Walk The Procedure Links
WD

Walk the Dynamic link. This command causes the stack frame pointer to move to the stack
frame of the calling procedure.

WR

Walk Reset. Brings the stack frame pointer to the stack frame of the current procedure.

WS

Walk the Static link. This command is the same as the “WD”’ command except that the stack
frame pointer takes the value of the static link. This brings you to the stack frame of the nesting
procedure as opposed to the calling procedure. Level 1 procedures have no static link.

Qe

357

Technical Reference

This appendix contains the following useful reference information.

e A “System History” section that describes the additional features provided by Pascal System
versions 2.x and 3.x

e A discussion of file interchange between the Pascal System and Series 200/300 BASIC Sys-
tems

e A list of module names used by this Operating System
® A physical memory map
® A software memory map

358 Technical Reference

System History

This section first briefly describes the 1.0 version Pascal Workstation System, and then describes
each subsequent version from the standpoint of what features have been added or changed by the
version. It is intended to help you make the transition from earlier versions of the system to the 3.0
system.

Pascal 1.0

Here is a brief description of the Pascal 1.0 System. It is put here in order to give you a reference
point from which to begin the comparison of later systems.

System Discs
The Pascal 1.0 Workstation System was distributed on a set of four mini-floppy discs, plus one
additional disc for documentation. Here are the disc names:

BOOT:
SYSVOL:
ACCESS:
COMPASM:
DOC:

The SYSVOL:SYSTEM.LIBRARY file contained the entire complement of 10, GRAPHICS, and
INTERFACE modules. The unmodified BOOT:SYSTEM.INITLIB contained device-driver software
for all peripheral devices supported by the 1.0 system.

Documentation
Documentation for the 1.0 system included the following five manuals.

Problem Solving and Programming with Pascal — This is the textbook from which you can learn
about Pascal programming, if you don’t already know how to program in this language.

Pascal Language System User’s Manual — This manual described booting the system and using
each of the subsystems, such as the Editor, Compiler, and Assembler.

Pascal Procedure Library User’s Manual — This manual described using the libraries supplied with
the system. The libraries consisted of I/O, graphics, LIF-ASCII Filer, Heap Management, and other
procedures (etc.) provided with the system.

MC 68000 User’s Manual — This manual described MC68000 processor hardware and instruction
set.

The Pascal Handbook — This manual described the Pascal language and extensions supported by
the Series 200 Computers.

Computers Supported by 1.0
Pascal 1.0 supported only the 9826 and 9836, since they were the only Series 200 computers in
production at the introduction of the Pascal 1.0 Workstation System.

Technical Reference 359

Peripheral Devices Supported by 1.0
Pascal 1.0 supported the following mass storage devices:

@ Internal 5.25-inch flexible disc drive
e HP 9885 and 9895 8-inch Flexible Disc Drives
¢ HP 9134 Hard Disc Drives

Pascal 2.0 and 2.1

Here are the additions to the 1.0 system and differences between the 2.1, 2.0, and 1.0 versions of
the system.

System Discs
Pascal 2.0 and 2.1 Systems were distributed on six system discs, plus one documentation disc.
Here are the names of the discs.

BOOT:
SYSuoL:
ACCESS:
CMPASM:
LIB:
CONFIG:
DOC:

In contrast to the 1.0 file, the 2.x SYSVOL:LIBRARY was almost empty; the IO, GRAPHICS, and
INTERFACE libraries were supplied on separate discs. The user could put just the ones he wanted
into his System Library (usually the LIBRARY file). In addition, the Pascal 2.1 GRAPHICS library
was re-structured internally and at the user-procedure level.

The Initialization Library (BOOT:INITLIB) supplied contained device-driver software for the most
common peripherals but not for all; this was done to conserve memory for the average user, since
Pascal 2.x supported many more peripheral devices. The less commonly needed drivers were
supplied on the separate CONFIG: disc. Thus, to configure a system to use certain peripherals, the
Librarian needed to be used to install the required driver software in INITLIB. Documentation was
provided which explained how and when to add optional modules to the INITLIB file.

Documentation
Documentation for the 2.0 system consisted of the five manuals supplied with the 1.0 system, plus
the additional System Internals Documentation set. This set consisted of these three manuals:

Pascal 2.0 System Designer’s Guide — This manual described much of the inner workings of the
Pascal system. It contained enough detail to allow you to use many of the *‘kernel” modules, and it
also provided a fairly detailed description of Boot ROM contents and internal computer (hardware
and software) architecture.

Pascal 2.0 Source Code Listings (Volume I) — This manual consisted of a cross reference of Pascal
procedure names used in the system, and listings of Assembler language modules in the system.

Pascal 2.0 Source Code Listings (Volume II) — This manual consisted of the listings of many Pascal
modules used in the system.

360 Technical Reference

File System

HP’s Logical Interchange Format (LIF) directory structure was made the primary disc organization
for 2.0 and later versions. (LIF ASCI! files are intended for interchangability with other HP pro-
ducts.) The 1.0 file system was only able to cleanly handle UCSD directory organizations. HP
provided a library of routines to access LIF discs, but they were not integrated into the File System.

The LIF library is not present in the 2.0 and later versions, since it is no longer necessary. The Lfiler
(LIF Filer) is also unnecessary and has gone away, since the standard system Filer can now do the
job. The 2.0 and later Filers are completely revised programs, although their behaviors are as
similar as possible to the 1.0 Filer.

If you were using the 1.0 version and are switching to a later release, don’t panic! This does not
mean that Pascal 1.0 discs are inaccessible, or even that you need to convert them. See the Special
Configurations section of the Technical Reference Appendix for details.

The 2.0 and later File Systems are completely reorganized in comparison to the 1.0 File System.
The File System is now broken into levels called File Support (FS), Directory Access Method
(DAM), Access Method (AM), and Transfer Method (TM). This organization allows the system to
handle any number of different directory formats, and separates out the processing of each type of
file structure which is supported. In fact, a customer can invent a new directory format or file type
and bind it into the system so it can be used by all programs.

The Directory Access Methods now supported are as follows:

® HP Logical Interchange Format (LIF)
® Shared Resource Manager hierarchical “‘structured” format (SDF)
® UCSD-compatible (same format as Pascal 1.0)

All these directory organizations are available through normal Pascal file operations. Files generated
under Pascal 1.0 are all still fully usable. However, the newer systems can generate files and discs
which cannot be properly interpreted by the 1.0 File System.

System File Names
The names of system files were changed with the 2.0 system. They were changed because their
length was longer than allowed by the LIF directory format. The name changes are as follows:

Old 1.0 File Name New Name
SYSTEM.LINKER LIBRARIAN
SYSTEM.EDITOR EDITOR
SYSTEM,FILER FILER
SYSTEM.COMPILER COMPILER
SYSTEM.,ASSMBLER ASSEMBLER
SYSTEM.LIBRARY LIBRARY
SYSTEM.TABLE TABLE
SYSTEM,INITLIB INITLIB
SYSTEM.MISCINFO MISCINFO

SYSTEM.STARTUP STARTUP

Technical Reference 361

Object Code Compatibility

Several internal File System changes were made with Pascal 2.0. These changes resulted in
corresponding changes in the internal representation of object code files. In general, when a version
of the system is not compatible with other versions, the leading digit of the version number will be

changed. For instance, versions 2.0 and 1.0 are not object-code compatible, while versions 2.1 and
2.0 are.

While it is regrettable, there really is no alternative to these compatibility restrictions. On the positive
side, Pascal application programs which don’t ‘‘fiddle around” in the operating system are forward
compatible to 2.x, so recompilation is all that’s necessary.

Supervisor Vs. User State

In versions 2.0 and later, user programs run in the 68000’s ‘‘user’ privilege mode, using the user
stack pointer (USP). Interrupts run in ‘‘supervisor’’ privilege mode, using the system stack pointer
(SSP). This has implications for calling Boot ROM routines, etc. See the MC60000 User’s Manual
for further details regarding these states.

Additional Computer Supported by 2.0
® Model 16 (HP 9816)

Additional Computer Supported by 2.1
® Model 20 (HP 9920)

Peripheral Configuration

The Pascal 2.x BOOT:TABLE auto-configuration program scanned interfaces for various peripher-
als and automatically assigned File System unit numbers to devices found (if possible). That was a
considerable improvement over the 1.0 version of TABLE.

A source-code version (CTABLE.TEXT) was provided with the system. You could look at the
program and read the corresponding commentary in the Special Configurations section of the
Technical Reference Appendix to see exactly how the auto-configuration program works. You
could also modify certain portions of it to make your own special configurations.

Additional Peripherals Supported by 2.0
Here are changes to the list of disc peripherals supported by Pascal 2.0.
® The CS/80 discs (7908 family)
® The Shared Resource Management system
® The HP 8920x 5.25-inch Flexible Disc Drives
e The HP 9121 3.5-inch (Single-Sided) Flexible Disc Drives

® Several new versions of the HP 913x Hard Disc Drives (they appear as one large volume
instead of four smaller ones)

o Certain less obvious features were also added. For instance, the 2.0 system could be fairly
easily configured to run from a terminal instead of the built-in CRT and keyboard.

362 Technical Reference

Miscellaneous

Up to 65 Kbytes of Global space has been made available with 2.0 and later versions. This change
involved a redefinition of the use of register A5, which now points to an address 32 Kbytes below
the start of Globals rather than above the first global variable. Consequently, routines in the Boot
ROM cannot any longer be called directly; a small interfacing routine is now required to set up the
registers and fool the TRY-RECOVER mechanism when calling Boot ROM routines.

Pascal 3.0

Here are the differences and additional features provided by the 3.0 version of the system.

System Discs
The Pascal 3.0 System is distributed on 8 discs, plus two for documentation. Here are the names of
the discs.

BOOT:
SYSWOL =
ACCESS:
CMP:
ASM:
LIB:
FLTLIB:
CONFIG:
DOC:
DGLPRG:

The BOOT:INITLIB file contains a more complete set of device-driver modules; for instance, it now
contains module CS80 so that these discs will be recognized by the standard system. See the
“Adding Modules to INITLIB” section of the ‘‘Special Configurations” chapter for a complete list of
modules and descriptions of each.

Note that the Assembler and Compiler were put on separate discs due to size. The CMP: disc
contains the Compiler. The ASM: disc contains the DEBUGGER program (formerly in BOOT:INIT-
LIB) and the new REVASM (reverse assembler) module.

There are two versions of the GRAPHICS library. The FLTLIB:FGRAPHICS library contains
modules optimized for using the HP 98635 Floating-Point Math card; they were compiled with the
$FLOAT_HDW ON$ Compiler option, and use the 98635 card, if present. The LIB:GRAPHICS
library uses routines in the REALS operating system module; these routines also access the Float-
ing-Point Math card, if present, but the overhead in calling the routines decreases execution speed.
The 98635 card can be used with all Pascal 3.0 programs, as long as the REALS module is installed
(via INITLIB, etc.).

The DGLPRG: disc provides magnetic copy of the example programs given in the new Pascal 3.0
Graphics Techniques manual.

Technical Reference 363

Documentation
Here are the documents shipped with the Pascal 3.0 system.

Pascal 3.0 User’s Guide — This is a new manual that takes you from booting your system through
setting up your “‘environment.” It provides a “‘guided tour” of several subsystems, such as the
Editor and Filer. You will see all of the steps required to enter, store, compile, and run a simple
Pascal program.

Problem Solving and Programming with Pascal — This is the textbook from which you can learn
about Pascal programming, if you don’t already know how to program in this language.

Pascal 3.0 Workstation System — This manual describes in detail all of the subsystems, such as the
Editor, Filer, and Compiler. It also describes such topics as how the computer configures itself to
access File System peripherals and how to add new peripherals. This manual was formerly the
Pascal 2.0 User’s Manual. The ‘‘Getting Started’” information (Chapter 1 of the former manual) has
been moved to the new Pascal 3.0 User’s Guide. Two new chapters have been added: Special
Configurations and Non-Disc Mass Storage.

Pascal 3.0 Procedure Library — This manual was formerly the Pascal Procedure Library User’s
Manual. It is basically the same as the former manual, except for the removal of the LIF Procedures
and Graphics chapters (graphics is now covered in its own separate manual), and the addition of
the System Devices and Segmentation Procedures chapters.

Pascal 3.0 Graphics Techniques — This manual is an expanded version of the Graphics chapter of
the former Pascal Procedure Library User’s Manual. It provides several useful techniques that you
can use in writing Pascal graphics programs.

HP Pascal Language Reference for Series 200 Computers — This manual describes the HP Stan-
dard Pascal language, as well as the implementation dependencies of the Workstation Pascal
language.

MC 68000 User’s Manual — This manual describes MC68000 processor hardware and instruction
set. It is the same manual as shipped with the 2.x Pascal systems. It also covers the 68008 and
68010 processors.

System Devices Procedural Interface

The procedural interface to “‘system devices’ (such as the keyboard, clock, screen, etc.) has been
modified. These changes will not affect the way the system looks at the level of standard HP Pascal
procedures. However, if any of your programs use procedures below this uppermost level (such as
procedures in an operating system module), then you may have to make some changes. See the
System Devices chapter of the Pascal 3.0 Procedure Library for complete details.

364 Technical Reference

Additional Computers and Hardware Features Supported by 3.0
® Model 217 (HP 9817)

® Model 237 (HP 9837)

Both Model 217 and Model 237 have a new type of keyboard which requires Pascal 3.0. The
keyboard model number is the HP 46020, which uses the HP Human-Interface Link (HP-HIL) to
communicate with the computer.

Pascal 3.0 also supports an optional, “mouse” input device, which can be connected to the
computer through the HP Human Interface Link (HP-HIL). The driver (provided on the CONFIG:
disc) supports using the mouse for cursor-movement input in both horizontal and vertical direc-
tions; it also defines the buttons on the mouse as (Retumn) or (ENTER) and (Select) ((_EXECUTE)) keys.
You also can access the mouse from your own applications programs; see the System Devices
chapter of the Pascal Procedure Library manual for details.

Both Models 217 and 237 may also have processor boards with Memory-Management Unit
(MMU) hardware; if so, the product numbers have 'U’ suffixes (such as HP 9817U and 9837U). If
the cache-memory feature is also present, then the MMU hardware increases the execution speed
of programs (because the cache-memory feature is automatically enabled by Pascal 3.0).

The Model 237 implements a new type of display hardware: a bit-mapped combined alpha/
graphics display with a raster size of 1024 by 768 pixels on a 19-inch diagonal CRT screen.

Additional Peripherals Supported by 3.0
® The new Command Set/80 (CS80) discs, including the HP 7914, 7933, and 7935 Disc Drives
® New stand-alone DC600 (CS80) Tape Drives; right now this category only includes the HP
9144 Tape Drive
® New Sub-Set/’80 (SS80) floppy discs; right now this category only includes the HP 9122
3.5-inch Double-Sided Floppy discs

® Several new versions of the 913x Hard Discs (V and XV suffix drives)

Additional Cards Supported by 3.0
Here are the new cards that are supported by Pascal 3.0

e HP 98255 EPROM and HP 98253 EPROM Programmer cards, which can be used as mass
storage devices (see the Non-Disc Mass Storage chapter of this manual for details)

e HP 98259 Magnetic Bubble Memory cards, which can also be used as mass storage devices
(see the Non-Disc Mass Storage chapter of this manual for details)

o HP 98635 Floating-Point Math card (see the description of the FLOAT_HDW Compiler option
in the Compiler chapter for details)

o HP 98257 1-Megabyte Memory card, which features parity-checking hardware

Peripheral Configuration

How the system boots and auto-configures itself is fully discussed in the Special Configurations
chapter. The Pascal 3.0 TABLE program has even more capabilities than the 2.x version: it
automatically configures up to 3 floppy disc drives (dual or single) and at least the first hard disc in
the system (up to 10 are potentially possible).

Technical Reference

A source-code version of the 3.0 TABLE program (CONFIG:CTABLE.TEXT) is also provided with
the 3.0 system. You can look at the program and read the corresponding commentary in the
Special Configurations chapter to see exactly how the auto-configuration process works, and you
can modify certain portions of it to make your own special configurations. A major change with the
3.0 TABLE is that now you can “coalesce” logical volumes on hard discs without the need to
modify and re-compile the TABLE source program.

The TABLE program can now easily support printers with RS-232C interfaces by making one small
change in the program and re-compiling. See the Special Configurations chapter of this manual for
details.

Object Code Compatibility

Several internal changes were made with Pascal 3.0. These changes resulted in corresponding
changes in the internal representation of object code files. In general, when a version of the system
is not compatible with other versions, the leading digit of the version number will be changed. For
instance, versions 3.0 and 2.0 are not object-code compatible, while versions 2.1 and 2.0 are.

While it is regrettable, there really is no alternative to these compatibility restrictions. On the positive
side, Pascal application programs which don’t “‘fiddle around” in the operating system are source-
code compatible with 3.0, so recompilation is usually all that’s necessary.

General System Features Added by 3.0

Stream Files: Stream files on read-only devices are now allowed; adding the [*1 specifier to the
stream file name allows this usage by disabling the prompt feature. This same mechanism also
allows the use of a stream file called AUTOKEYS to provide ‘‘autostart” capabilities with read-only
system volumes. See the description of the Stream command in the Overview chapter of this
manual for details.

Filer: The Filer can now perform a Translate operation to the CONSOLE: volume, with the ability
to view the translated file one screen at a time. See the Filer chapter of this manual for details.

Compiler: The following Compiler options were added. The WARN option allows you to disable
warning messages. The FLT_HDW option allows you to specify one of three actions: ON specifies
that the Compiler is to emit code that assumes a 98635 Floating-Point Math card is installed in the
computer; TEST specifies that the emitted code is to test for the presence of the card; OFF specifies
that emitted code always uses floating-point library routines. See the Compiler chapter of this
manual for details.

Assembler: The Assembler has been modified to allow use of the new op codes provided by the
68010 processor (such as the MOVES and RTD instructions).

365

366 Technical Reference

Librarian: A special “edit” mode was added to the Librarian. It allows you to add modules to an
existing library more easily. The Librarian can also unassemble the new instructions for the 680xx
processors (such as the MOVES and RTD instructions). See the Librarian chapter of this manual for
details.

Debugger: These are the new commands that have been added to the Debugger: ‘X’ format for
reverse assembly; “R’’ format for displaying REAL numbers; “O” format and FO default format for
octal numbers; added repeat counts on format specifiers; ““!”’ input format for binary numbers; “%”
input format for octal numbers; relational operators can now be used in expressions; DA and DG
commands for DUMP ALPHA and DUMP GRAPHICS functions, and also the ability to use the
corresponding keys; four more softkeys now available (10 total); five more breakpoints now
available (9 total); PN and PX commands (PX is an alternate syntax for the existing P command);
IF, ELSE, and END commands for conditional execution of Debugger commands added; CALL
command added; EC and ETC commands added; key definition changed. See the Debug-
ger chapter of this manual for details.

Segmentation Procedures: Several procedures that add the capability of run-time program seg-
mentation have been added to the system. See the Segmentation Procedures chapter of the Pascal
3.0 Procedure Library manual for details.

Pascal 3.01

The purpose of this revision is to fix bugs in version 3.0 of the Pascal system. The 3.01 BOOT: and
ASM: discs contain software which corrects the bugs. (Note that other discs have not been revised.)

Note

These revisions do not add any features to the system; they only fix
bugs in existing features.

Documentation Changes
Since the 3.01 software does not add any features to the system, you may replace references to the
3.0 BOOT: and ASM: discs with references to the 3.01 discs.

Disposition of 3.0 BOOT: and ASM: Discs
If you have version 3.0 BOOT: and ASM: discs, replace them with the 3.01 discs. Do not use the
old discs any longer.

List of Bugs Fixed
Here are the areas in which bugs have been fixed by the 3.01 revisions:

e Flexible disc initialization on Model 226 and 236 Computers equipped with an HP-UX Mem-
ory Management processor board and the 3.0 Boot ROM.

® Softkeys and bus errors while using the Debugger.

e Disassembly of shift and rotate instructions with the REVASM module.

® Model 237 display driver module (CRTB).

e Non-advancing characters on some foreign language keyboards.

Technical Reference 367

Pascal 3.1

The main purpose of this version of the system is to add support of Series 300 computers. It also
adds support of a few new peripherals, as well as fixes miscellaneous system bugs discovered since
the release of Pascal 3.01.

New Computer Hardware Supported by 3.1
New features of the Series 300 computers include the following:

® Many choices of processor, display, and human interface boards:

¢ Five new displays (including a separate, high-speed display controller)

® Two new processors: MC68010, and MC68020 (with MC68881 math co-processor)
o Battery-backed, real-time clock

@ RS-232C serial interface (similar to the 98644 serial interface)

@ 46020 HP-HIL keyboard (similar to keyboards used with Models 217 and 237, but diffe-
rent from other Series 200 models)

e Support of two new foreign keyboards (Swiss-German and Swiss French).

For a more complete description of the Series 300 enhancements to Series 200 hardware, see the
“Porting to Series 300" chapter of the Pascal Workstation System manual.

New Peripherals Supported by 3.1
The 3.1 DGL (Device-independent Graphics Library) provides support for the following new
HP-HIL (Hewlett-Packard Human Interface Link) devices:

e HP 46087 and 46088 Graphics Tablets (‘‘absolute’ graphics input devices)

o HP 35723 TouchScreen (also an “‘absolute’”” input device), which attaches to HP 35731 and
35741 Medium-Resolution, 12-inch monitors

Object Code Compatibility

Pascal 3.1 is generally object-code compatible with Pascal 3.0 and 3.01 programs; i.e., programs
compiled on the 3.0 or 3.01 systems will generally run on the 3.1 system (with no re-compilation
required). However, you should not use 3.0 or 3.01 libraries on the 3.1 system. See the “‘Porting to
Series 300" chapter of this manual for further information on how to determine object-code
compatibility.

Backward compatibility (i.e., running 3.1-compiled programs on a 3.0 or 3.01 system) is not
generally supported. This incompatibility is the result of new run-time support modules that were
added for the increases in sizes of SET variables (see the description of new Compiler features
below for details regarding the increase in SET size) as well as changes in the interface to the
SYSDEVS operating system module.

General System Features Added by 3.1

In general, the new system features provided by Pascal 3.1 are related to the support of the new
Series 300 computer hardware, or to new HIL peripherals. Here is a brief list of the features,
organized according to subsystem.

368 Technical Reference

Compiler: The new COMPILE20 compiler generates MC68020 instructions, and with the FLOAT_
HDW Compiler option supports the use of the MC68881 floating-point co-processor. See the
“Compiler”’ chapter of this manual for details.

A larger SET variable size limit is supported (was 256 elements; is now 262 000 elements). The
COMPILER was also modified to fully conform to the HP Pascal Standard (the new COMPILE20
compiler also fully conforms):

e Conformant arrays are now supported.

® Passing elements of packed arrays or records as VAR parameters to procedures or functions is
now disallowed (preceding Compiler versions allowed it, although the HP Pascal Language
Reference showed it as disallowed). You must now use the $ALLOW_PACKED ON$ compiler
option if you want to pass this type of parameter.

® You cannot assign values to the index of a FOR loop within the loop (previous versions
allowed it).

See the HP Pascal Language Reference for details.

Assembler: The Assembler was upgraded to assemble MC68020 and MC68881 instructions. It
also supports a new operand syntax which is required to assemble these instructions. See “Instruc-
tion Syntax” in the “‘Assembler’”’ chapter of this manual.

Librarian: The Librarian was upgraded to dis-assemble all MC68020 and MC68881 instructions.

Debugger: The REVASM module was also upgraded to dis-assemble all MC68020 and MC68881
instructions. Since the MC68020 processor has a 32-bit address bus, all addresses specified in the
Debugger command line must contain all 32 bits if located in RAM space (see the subsequent
“Physical Memory Map”’ section for details on RAM space bounds).

Error numbers: ESCAPECODE values 30 (arcsin or arccos argument is greater than 1) and 31
(illegal real number) have been added to report MC68881 floating-point math co-processor errors.

IO Library: The IO library has added two registers for the built-in 98644 RS-232C serial interface
in Series 300 computers. They allow you to simulate the configuration switches of the built-in
98626 serial interface of the Series 200 Models 216 and 217 computers. See the ‘“RS-232 Serial
Interface” chapter of the Pascal Procedure Library manual for details.

SYSDEVS interface: This operating system interface module has been modified in the way that
highlight characters (130, 131, and 134 thru 143) are displayed in ‘“‘debugger windows.” The
variable debushishlisht indicates which highlight(s) should be applied to characters put in a
debugger window using the dbrut operation. The dthishl operation is a no-op for Series 300 and
HP 98700 displays. See the ‘‘System Devices” chapter of the Pascal Procedure Library manual for
details.

Graphics Library: Another version of the Device-independent Graphics Library (DGL) is provided
with the system (FLT20:FGRAPHZ20). It utilizes the MC68020 processor and MC68881 co-
processor. (The FGRAPHICS library utilizes the HP 98635 Floating-Point Math Card; the
GRAPHICS library uses math libraries.)

Technical Reference

System Discs
Two new discs have been added to the 3.1 set (single-sided media options), making a total of 14
discs:

e The BOOTZ2: disc contains the drivers for the Series 300 displays and for the HP 98700
Display Controller. (The BOOT: disc is provided for Series 200 displays and for the HP 98546
Compatibility Video Card Set; see the “‘Porting to Series 300" chapter for details of using the
Compatibility Card.)

e The CMP20: disc contains a compiler that generates object code for the Series 300 computers
that feature an MC68020 processor.

e The FLT20: disc contains a new version of the Device-independent Graphics Library (DGL);
the file is named FGRAPHZ20. The set of procedures it provides is the same as the GRAPHICS
and FGRAPHICS libraries, but this library contains code that utilizes the MC68020 processor
and MC68881 co-processor (instead of the HP 98635 Floating-Point Math Card).

The contents of the following 3.1 discs have changed slightly from their 3.0 counterparts:

e The LIB: disc has only the IO library.

e The CONFIG: disc has a new file containing the new DGL._ABS module (support for the new
HP-HIL graphics tablets and TouchScreen, which are “‘absolute’” input devices).

The rest of the 3.1 discs contain the same files as the 3.0 and 3.01 systems:

BOOT:
SYSVOL:
ACCESS:
CMP:
ASM:
GRAPH:
FLTLIB:
DOC:
DGLPRG:

Furthermore, the Workstation Pascal System is now available on double-sided, double-density,
3V%-inch, flexible micro-disc media. With this media option, only eight discs are shipped:

Double-Sided Corresponding Single-Sided Disc(s)

Disc

BOOT: Same files as single-sided BOOT: disc.

BOOTZ: Same files as single-sided BOOT2: disc.

SYSVOL.: Contains files on single-sided SYSVOL.:, LIB:, and GRAPH: discs.
ACCESS: Contains files on single-sided ACCESS: and CONFIG: discs.
CMP: Contains files on single-sided CMP: and CMPZ20: discs.

ASM: Same files as single-sided ASM: disc.

FLTLIB: Contains files on single-sided FLTLIB: and FLLT20: discs.

DOC: Contains files on single-sided DOC: and DGLPRG: discs.

369

370 Technical Reference

Documentation
Manuals for the MC68020 processor and MC68881 co-processor have been added to the docu-
mentation set.

Pascal User’s Guide: This manual has been updated to parallel the structure of the new Series
200/300 Peripheral Installation Guide, as well as to discuss adding new peripherals supported by
the 3.1 system.

Workstation Pascal System: The ‘“Compiler” chapter describes the new ALLOW_PACKED
option, as well as the addition to the FLOAT_HDW option. The “Assembler’ chapter has been
revised to describe the new addressing modes available with the MC68020 processor. Chapters 10
through 17 were added to describe Pascal programming topics specific to the Workstation System.
Chapter 20 describes the considerations you must take in porting existing Pascal programs for
Series 200 computers to run on Series 300 computers.

Pascal Procedure Library: The ‘“‘RS-232C Serial Interface’” chapter describes the new registers for
the built-in 98644 serial interface in Series 300 computers. The “System Devices”’ chapter de-
scribes the changes to the SYSDEVS interface.

Pascal Graphics Techniques: The “Interactive Graphics™ chapter describes the new HIL input
devices (graphics tablets and TouchScreen). The “Color Graphics’” chapter describes the use of the
new color displays. The ‘‘Procedure Reference’’ section has been updated accordingly.

HP Pascal Language Reference: The ‘“‘Compiler Options’ section of the ‘“‘Workstation Imple-
mentation’’ appendix describes the new ALLOW_PACKED option, as well as the addition to the
FLOAT_HDW option.

All Pascal manuals have new part numbers with this revision of the system.

Technical Reference 371

File Interchange Between Pascal and BASIC

You may wish to exchange data on file between the Pascal and BASIC environments. There are a
few rules you should follow.

o Pascal and BASIC treat LIF directories on flexible discs similarly. ASCII text files are intended
to be used as the interchange mechanism.

e [t was mentioned earlier that Pascal compresses the suffix of user file names in order to
effectively allow longer file names. BASIC doesn’t know about compressed names, so the
BASIC program needs to invert the compression algorithm. This inversion is very simple, and
is described in the section of the File System chapter called Programming with Files. Essential-
ly, Pascal chops off the dot and the suffix (such as .ASC), then appends the first letter of the
suffix and enough trailing “_”’ characters to make a 10-character name. Thus “ABC.ASC”
becomes “ABCA____”, which is the name BASIC will see.

® BASIC can’t deal with more than one LIF directory on a hard disc; Pascal, unless told other-
wise, wants to divide large hard discs into several volumes each with its own directory. Hard
disc partitioning is described in the Special Configurations chapter.

If a disc is initialized by BASIC, Pascal and BASIC will both see the disc as one very large volume.
Pascal’s preference to partition the disc is overridden by what BASIC actually did.

If a disc is initialized by Pascal and partitioned into multiple volumes, BASIC will only see the first
volume and will not be able to access any part of the disc beyond the first volume. Pascal will see all
the volumes.

See the Special Configurations chapter for information on forcing Pascal to treat a partitionable disc
as a single volume.

372 Technical Reference

Notes

Technical Reference 373

Module Names Used by the Operating System

Here are the names of modules that are present in the system as it is shipped from the factory. They
are provided so that you will not name a module using any of these names, unless you definitely
want to override the system module’s function.

Note that many of these module names do not show up in the system symbol table (for example,
they may have been removed by linking). However, you should not use them, because HP
reserves the right to use them in the future.

A complete list of symbol names actually used in the system is provided on the DOC: disc in the file
named SYMBOLS.

A804XDVR DATA_COMM ERR_INFO GLE_STROKE
A804XINIT DC_INITIALIZE EVALGVR GLE_TYPES
ABORT_IO DEBUGGER EXCP GLE_UTLS
ALLREALSTUFF DELAY_TIMER EXTDC GP

ALPHAFLAG DGL_ABS EXTDI_EDI GPIO
ALPHALIST DGL_ARAS EXTG_EG GPIO_INITIALIZE
AMIGO DGL_ATEXT EXTH_EH GRAPHICSBASE
AMIGODVR DGL_AUTL F9885 GRAPHICSFLAG
AMIGOINIT DGL_CONFG_IN F9885DVR G_DOLLAR
ASC_AM DGL_CONFG_OUT F9885INIT HPHIL

ASM DGL_GEN FGATOR HPIB

BAT DGL_HPGL FLTPTHDW HPIB_0

BKGND DGL_HPGLI FS HPIB_1

BOOT DGL_IBODY GENERAL_O HPIB_2
BOOTDAMMODULE DGL_INQ GENERAL_1 HPIB_3

BUBBLE DGL_KNOB GENERAL_2 HPIB_INITIALIZE
BUBBLES DGL_LIB GENERAL_3 HPM

BUB_DVR DGL_POLY GENERAL_4 HV50
CHECK_TFR DGL_RAS GETDMA HV52
CHECK_TIMER DGL_RASTER GLE_ARAS_OUT INITBAT
CHOOK DGL_TOOLS GLE_ASCLIP INITBKGND

Cl DGL_TYPES GLE_ASTEXT INITCRT

CLOCK DGL_VAR GLE_AUTL INITKBD

CMD DGL_VARS GLE_FILE_IO INITLOAD
CONVERT DISCHPIB GLE_GEN INITUNITS
CONVERT_TEXT DISCINT_INITIALIZE =~ GLE_GENI INIT_BKGND
CRT DISC_INTF GLE_HPGL_IN INIT_DC

CRTB DMA GLE_HPGL_OUT INIT_DISCINT
CS80 DMA_INITIALIZE GLE_HPIB_IO INIT_DMA
CS80DSR DMA_STBSY GLE_KNOB_IN INIT_GPIO
CS80DVR DROPDMA GLE_RAS_OUT INIT_HPIB
CSS80INIT DRVASM GLE_SCLIP INIT_RS
CS80_CHAN_INDEP_CLR EDRIVER GLE_SMARK INIT_SRM
CSAMIGO EPROMS GLE_STEXT INIT_TIMER

374 Technical Reference

INSTALL_UCSD_DAM
INSTLIFDAM
INST_LEPROM

INTDC

IOCOMASM
IODECLARATIONS
IOLIBRARY_KERNEL
ISR

ITXFR

KATA

KBD

KERNEL

KEYS

LAST

LDR

LIFMODULE
LIF_DAM

LOADER

LOCKMODULE
LOGEOT
LOGINT
M68KTYPE
MATCHDEFEXT
MFS

MINI

MISC
MSYSFLAGS
NONUSKBD1
NONUSKBD2
PRINTER
PRINTSYMS
PRTDVR

RAND
RANDOM
REALS

RELOCATE
RESETX
REVASM
REVASM_MOD
RND

ROMAN

RS

RS232
RS_INITIALIZE
SEGMENTER
SERIAL_O
SERIAL_3
SETUPSYS

SRM
SRMAMMODULE
SRMDAMMODULE
STACKFUDGE

STBSY

STCLR
SWAPS
SWAPK
SYSDEVICES
SYSDEVS
SYSGLOBALS
TAPEBUF
TESTDMA
TEXT_AM
TIMED_OUT
TIMEREXISTS
UCSDMODULE
UCSD_AM
UIO
WAIT_TFR
WS1.0_DAM

Technical Reference

Physical Memory Map

The first part of this section describes the physical hardware memory map of your Series 200/300
computer with regard to ROM space, I/O space and RAM space. This section begins with an
overview of the hardware memory layout, followed by a more detailed memory map of each major
section of memory.

Register addresses and descriptions are included for the internal I/O devices.

Full 16 Megabyte Addressing Range FFFF FFFFiq
There are 23 address lines (BA1..BA23)

providing 16 megabyte addressing on RAM
WORD boundaries. For byte operations,
two control lines BUDS (Buffered Upper

Data Strobe) and BLDS (Buffered Lower FF80 0000

Data Strobe) indicate whether the upper 007F FFFF L SR
data byte (BD8 through BD15), the lower — /o —_—
data byte (BDO through BD7), or both 0040 0000

bytes are involved in the communication. 003F FFFF'

Note: When BAO = 0, the high byte is ROM
requested. When BAO = 1, the lower byte 0000 0000

is requested.

Note

For a complete description of the HP Series 200 computers’ physical
memory maps, see the Pascal System Internals documentation.

1 On machines with Memory Management Units, the upper limit of ROM address is $1FFFFF.

375

376 Technical Reference

A Hypothetical RAM Configuration

RAM is located in the top half of the 16 megabyte addressing range. The bank select switches on
the boards must be set so that the boards are mapped contiguously from highest memory progres-
sing down. Any 1M boards should be set to the highest memory addresses. Any 256K boards

should be mapped in next. Any 64K boards are mapped below those. The 64K on the CPU board
automatically maps into the first available address below the plug-in boards.

l J FFFF FFFF,q

4 ™
T FFFO 00006
FFFF FFFFq l FFEF FFFF,q
T 256K =
RAM FFEC 0000
»‘ FFEB FFFF
\ 256K 1
* FFE8 0000
FFE7 FFFF
64K
FFE7 0000
FFE6 FFFF
4
64K
!
FF80 0000 \ FFE6 0000
\ FFE5 FFFF
|| eak-cpu
\
: FFES 0000

The 1M memory boards have a 4-bit, user-changeable, bank-select switch. The 4 bits of the switch
correspond to the 4 MSBs of the address bus. For example, the 1M board above has its switches set
as follows:

Msb Lsb
1111

The 256K memory boards have a 6-bit, user-changeable, bank-select switch. The 6 bits of the
switch correspond to the 6 MSBs of the address bus. For example, the two 256K boards above
have their switches set:

Msb Lsb
111011
111010

respectively.

Technical Reference 377

After all the 256K memory boards have been set in high memory, the 64K boards should then be
mapped in. It is necessary to set 8 switches, corresponding to the 8 MSBs of the address bus. For
example two 64K boards mapped under the 256K boards above would have their switches set:

Msb Lsb
11100111
11100110

respectively. The 64K on the CPU board automatically maps into the first available memory space
down:

Msb Lsb
11100101

Note
If the memory boards are not mapped contiguously, the auto-locating
memory on the CPU board, if any, maps into the first hole left by the
memory boards, and those mapped below the hole are not used.

Note

Setting the switches on two memory boards to the same code could
cause damage to the memory boards.

The Overall ROM Memory Map

003F FFFF 16
R
OM) 0001 FFFFye
///
//
- OPERATING ;oL UNUSED 1
SYSTEMS /
/
* LANGUAGE /
!
EXTENSIONS | 0000 4000
/
/ * BOOT PROGRAM 0000 3FFF
/ « SYSTEM ROUTINES
ooo0s ———— * EXCEPTION VECTORS| 4000 0000

The boot program, exception vectors, and some system routines reside on ROM chips starting at
$000000 and extending to $003FFF. The space between $004000 and $O1FFFF is unused. (The
BOOTROM 3.0 consists of approximately 48 Kbytes of code, starting at $000000). The boot
program checks for system ROMs and language extension ROMs on 16K boundries beginning at
$020000 and continuing up to $3FC000. These ROMs are recognized by their appropriate header
information.

378 Technical Reference

Memory Mapped 1/0

/O memory space is divided into three sec-
tions. External 1/O is that section which cor-
responds to the backplane of the Series
200/300 computers. The select codes on
the backplane /O cards correspond to
address bits BA16 through BAZ0.

External 1/0

All I/O cards available for the Series 200/
300 computers are mapped into the exter-
nal /O space on 64K boundaries (except
the DMA card which maps with synchro-
nous internal I/O). There are 32 such spaces
between $600000 and $7FFFFF. User de-
signed cards must also map into one of
these spaces. The select codes correspond
to address lines BA16 through BA20. HP
cards have been assigned default select
codes but can be reset by the user to map
into any configuration.

007F FFFF,q

0060 0000
005F FFFF

0050 0000
004F FFFF

0040 0000

007F FFFF,g

007F 0000
007E FFFF

007E 0000
007D FFFF

0062 0000
0061 FFFF

0061 0000
0060 FFFF

0060 0000

EXTERNAL
/0

INTERNAL
ASYNCHRONOUS
e}

INTERNAL
SYNCHRONOUS
110

SELECT CODE 31

SELECT CODE 30

4

SELECT CODE 1

SELECT CODE 0

Internal I/O

005F FFFFq
RESERVED
0054 0000
0053 FFFF
GRAPHICS
0053 0000
0052 FFFF
RESERVED
0052 0000
0051 FFFF
CRT-ALPHA
0051 0000
0050 FFFF
DMA
0050 0000
Synchronous

Technical Reference 379

004F FFFF,e
T RESERVED Jf

0048 0000
0047 FFFF

STD. HP-IB
0047 0000
0046 FFFF

RESERVED
0046 0000
0045 FFFF

BATTERY
BACKUP
0045 0000
0044 FFFF
INTERNAL DISC

0044 0000
0043 FFFF

RESERVED
0043 0000
0042 FFFF

KEYBOARD
0042 0000
0041 FFFF

RESERVED
0040 0000

Asynchronous

Internal I/O functions are doubly mapped, once between $400000 and $4FFFFF, and again
between $500000 and $5FFFFF. That is why much of the internal I/O space is reserved. Those
[/O functions can be addressed in either range. The difference is that the low range generates a
DTACK (Data Acknowledge) automatically, whether the card has actually responded to the
data or not. If the synchronous cards are addressed in the high range, there will be no DTACK

generated at all.

380 Technical Reference

Notes

Technical Reference

The Software Memory Map

This software memory map shows the symbolic locations of global variables, local variables, the

stack, the heap and the code relocation base.

If you’ll look at the directory of the boot
disk, you'll see the files that are loaded
into RAM at power-up. SYSTEM is loaded
first. It shows as SYSTEM CODE on the
map. It sets up the EXCEPTION
VECTORS, MISCelaneous DATA,
SYSTEM GLOBALS, SYSTEM STACK,

INITLIB GLOBALS and SYSTEM HEAP. -

TABLE is loaded and it modifies some of
the data in SYSTEM GLOBALS and
SYSTEM HEAP.

INITLIB is then loaded. It contains the I/O
drivers and the Debugger.

Finally, STARTUP is loaded. When you
receive a Pascal Language System from
HP, STARTUP is the Main Command
Level command interpreter. It handles
P-loading files, loading subsystem files,
and loading user programs. You may use
the Filer to change any file you want to
STARTUP and that file will execute at
power-up. A copy of the BOOT disc
should be created before the change is
made because you won’t be able to
change the file back to the original
configuration.

High RAM

A5 —

Gbase(A5) —

A6 —
SP —

Sysglobals-14 (A5) —

Rbase —

Low RAM

EXECPTION VECTORS

MISC. DATA

SYSTEM CODE

SYSTEM STACK

SYSTEM GLOBALS

INITLIB GLOBALS

COMMAND INTERPRETER GLOBALS

P-LOADED GLOBALS

USER PROGRAM GLOBALS

USER PROGRAM STACK

|

MEMAVAIL
(UCSD extension function)

USER PROGRAM HEAP

USER PROGRAM CODE

P-LOADED CODE

COMMAND INT.HEAP

COMMAND INT. CODE

INITLIB HEAP

INITLIB CODE

SYSTEM HEAP

Note

For a complete description of the HP Series 200 Workstation Pascal’s
software memory map, see the Pascal System Internals documentation.

381

382 Technical Reference

Notes

383

Character Sets

This section provides tables for the following charater sets:

e U.S. ASCII character set

e U.S./European display characters (for Models 216, 220, 226, and 236 Computers)
e U.S./European display characters (for Models 217 and 237 Computers)

e U.S./European display characters (for all Series 300 Computers)

® Katakana display characters (for all Series 200 Computers)

® Monochrome highlight characters

® Color highlight characters

384

Character Sets

STD-LL-60182

U.S. ASCII Character Set

EQUIVALENT FORMS

EQUIVALENT FORMS

ASCll HP-1B
Char.| Dec Binary Oct | Hex
NUL 0 00000000 | 000 00
SOH 1 00000001 | 001 01 GTL
STX 2 00000010 | 002 | 02
ETX 3 00000011 | 003 | 03
EOT 4 00000100 | 004 04 sDC
ENQ 5 00000101 | 005 | 05 PPC
ACK 6 00000110 | 006 06
BEL 7 00000111 | 007 07
BS 8 00001000 | 010 | 08 | GET
HT 9 00001001 | 011 09 TCT
LF 10 00001010 | 012 0A
vT 11 00001011 | 013 0B
FF 12 | 00001100 | 014 oC
CR 13 | 00001101 | 015 oD
SO 14 00001110 | 016 0E
Sl 15 00001111 | 017 OoF
DLE 16 | 00010000 | 020 10
DC1 17 | 00010001 | 021 1 LLO
DC2 18 | 00010010 | 022 12
DC3 19 | 00010011 | 023 13
DC4 20 | 00010100 | 024 14 DCL
NAK 21 00010101 | 025 15 PPU
SYNC| 22 | 00010110 | 026 16
ETB 23 | 00010111 | 027 17
CAN 24 | 00011000 | 030 18 SPE
EM 25 | 00011001 { 031 19 | SPD
suB 26 | 00011010 | 032 1A
ESC | 27 | 00011011 | 033 1B
FS 28 | 00011100 | 034 1C
GS 29 | 00011101 | 035 1D
RS 30 | 00011110 | 036 1E
us 31 00011111 | 037 1F

ASCII HP-1B
Char.| Dec Binary Oct | Hex
space] 32 | 00100000 | 040 | 20 | LAO
! 33 | 00100001 | 041 | 21 LA1
” 34 | 00100010 | 042 | 22 | LA2
35 | 00100011 | 043 | 23 | LA3
$ 36 | 00100100 | 044 | 24 | LA4
% 37 | 00100101 | 045 | 25 | LAS
& 38 | 00100110 | 046 | 26 | LA6
’ 39 | 00100111 | 047 | 27 | LA7
(40 | 00101000 | 050 | 28 | LA8
) 41 | 00101001 | 051 29 LA9
* 42 | oo101010 | 052 | 2A | LA10
+ 43 | 00101011 | 053 | 2B | LA11
, 44 | oo101100 | 054 | 2C | LA12
- 45 | 00101101 | 055 | 2D | LA13
46 | 00101110 | 056 | 2E | LA14
/ 47 | 00101111 | 057 | 2F | LA1s
0 48 | 00110000 | 060 | 30 | LA16
1 49 | oo110001 | 061 | 31 | LA17
2 50 | oo110010 | 062 | 32 | LA18
3 51 | 00110011 | 063 | 33 | LA19
4 52 | 00110100 | 064 | 34 | LA20
5 53 | 00110101 | 065 | 35 | LA21
6 54 | oo110110 | 066 | 36 | LA22
7 55 | 00110111 | 067 | 37 | LA23
8 56 | 00111000 | 070 | 38 | LA24
9 57 | 00111001 [071 | 39 | LA25
. 58 | 00111010 | 072 | 3A | LA26
’ 59 | oo111011 | 073 | 3B | LA27
< 60 | 00111100 | 074 | 3C | LA28
= 61 | 00111101 | 075 | 3D | LA29
> 62 | oo111110 | 076 | 3E | LA30
? 63 | 00111111 | 077 | 3F | UNL

U.S. ASCII Character Set

Character Sets 385

EQUIVALENT FORMS

EQUIVALENT FORMS

ASCII HP-IB

Char.| Dec Binary Oct | Hex
@ 64 01000000 | 100 40 TAO
A 65 | 01000001 | 101 41 TA1
B 66 | 01000010 | 102 42 TA2
o] 67 01000011 | 103 43 TA3
D 68 01000100 | 104 44 TA4
E 69 | 01000101 | 105 | 45 | TA5
F 70 | 01000110 | 106 46 TA6
G 71 01000111 | 107 47 TA7
H 72 | 01001000 | 110 | 48 | TA8
! 73 | 01001001 | 111 49 | TA9
J 74 01001010 | 112 4A TA10
K 75 01001011 | 113 4B TA11
L 76 | 01001100 | 114 | 4C | TA12
M 77 | 01001101] 115 | 4D | TA13
N 78 01001110 | 116 4E TA14
(o] 79 01001111 | 117 4F TA15
P 80 01010000 | 120 50 TA16
Q 81 01010001 | 121 51 TA17
R 82 01010010 | 122 52 TA18
S 83 | 01010011 | 123 | 53 | TA19
T 84 01010100 | 124 54 TA20
u 85 | 01010101 | 125 | 55 | TA21
\ 86 01010110 | 126 56 TA22
w 87 | 01010111 | 127 | 57 | TA23
X 88 01011000 | 130 58 TA24
Y 89 | 01011001 | 131 59 | TA25
z 90 01011010 | 132 5A TA26
[91 01011011 | 133 5B TA27
N\ 92 01011100 | 134 5C TA28
] 93 | 01011101 | 135 | 5D | TA29
~ 94 01011110 | 136 5E TA30
—_ 95 01011111 | 137 5F UNT

ASCll HP-1B

Char.| Dec Binary Oct | Hex
N 96 | 01100000 | 140 | 60 sCo
a 97 | 01100001 | 141 61 SC1
b 98 | 01100010 | 142 62 SC2
[99 | 01100011 | 143 63 SC3
d 100 | 01100100 | 144 64 SC4
e 101 | 01100101 | 145 65 SC5
f 102 | 01100110 | 146 66 SCé
g 103 | 01100111 | 147 67 SC7
h 104 | 01101000 | 150 68 SC8
i 105 | 01101001 | 151 69 SC9
i 106 | 01101010 | 152 6A | SC10
k 107 | 01101011 | 153 6B | SC11
| 108 | 01101100 | 154 6C | SC12
m 109 | 01101101 155 6D SC13
n 110 | 01101110 | 156 6E SC14
[+] 111 | 01101111 157 6F SC15
[112 | 01110000 | 160 70 SC16
q 113 | 01110001 | 161 71 SC17
r 114 | 01110010 | 162 72 SC18
s 115 | 01110011 | 163 73 SC19
t 116 | 01110100 | 164 74 SC20
u 117 | 0111010t 165 75 sC21
v 118 | 01110110 | 166 76 §C22
w 119 | 01110111 167 77 SC23
X 120 | 01111000 | 170 78 SC24
y 121 | 01111001 171 79 SC25
z 122 | 01111010 | 172 7A SC26
{ 123 | 01111011 173 7B SCc27
| 124 | 01111100 | 174 7C SC28
} 125 | 01111101 | 175 7D | SC29
ad 126 | 01111110 | 176 7E SC30

DEL 127 | 01111111 177 7F SC31

386 Character Sets

U.S./European Display Characters

These characters can be displayed on the alpha screens of Models 216, 220, 226, and 236

Computers.
ascn| EQUIVALENT FORMS asci| EQUIVALENT FORMS ascii| EQUIVALENT FORMS ascii| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
i 0 00000000 32 00100000 @ 64 01000000 96 01100000
e 1 00000001 ! 33 00100001 H 65 01000001 A, 97 01100001
2 00000010 i 34 00100010 E 66 01000010 b 98 01100010
E 3 00000011 # 35 00100011 N 67 01000011 o 99 01100011
E 4 00000100 ¥ 36 00100100 It 68 01000100 o 100 01100100
g 5 00000101 “. 37 00100101 E 69 01000101 i 101 01100101
R 6 00000110 38 00100110 F 70 01000110 £ 102 01100110
i 7 00000111 39 00100111 G 71 01000111] 103 01100111
B 8 00001000 L 40 00101000 H 72 01001000 by 104 01101000
i 9 00001001 K 41 00101001 I 73 01001001 i 105 01101001
i 10 00001010 # 42 00101010 74 01001010 106 01101010
E 11 00001011 + 43 00101011 K 75 01001011 b 107 01101011
fr 12 00001100 s 44 00101100 I 76 01001100 i 108 01101100
& 13 00001101 45 00101101 iy 77 01001101 i 109 01101101
A 14 00001110 . 46 00101110 I 78 01001110 ry 110 01101110
I 15 00001111 47 00101111 i 79 01001111 o 111 01101111
L 16 00010000 5] 48 00110000 F 80 01010000 Tl 112 01110000
5 17 00010001 1 49 00110001 G 81 01010001 7 113 01110001
b 18 00010010 Z 50 00110010 R 82 01010010 114 01110010
i 19 00010011] 51 00110011 S 83 01010011 = 115 01110011
By 20 00010100 4 52 00110100 T 84 01010100 * 116 01110100
i 21 00010101 g 53 00110101 L 85 01010101 i 117 01110101
% 22 00010110 = 54 00110110 L 86 01010110 L 118 01110110
B 23 00010111 v 55 00110111 I 87 01010111 w 119 01110111
i 24 00011000 o 56 00111000 s 88 01011000 S 120 01111000
Es 25 00011001 E 57 00111001 by 89 01011001 L 121 01111001
£ 26 00011010 H 58 00111010 & 90 01011010 = 122 01111010
Ex 27 00011011 H 59 00111011 L 91 01011011 1 123 01111011
Fz 28 00011100 i 60 00111100 92 01011100 ; 124 01111100
5 29 00011101 = 61 00111101 1 93 01011101 ¥ 125 01111101

§ F 30 00011110 F 62 00111110 94 01011110 126 01111110

% b 31 00011111 i 63 00111111 - 95 01011111 127 01111111

28109-17-Q1S

U.S./European Display Characters
These characters can be displayed on the alpha screens of Models 216, 220, 226, and 236

Character Sets 387

Computers.
asci| EQUIVALENT FORMS Asci| EQUIVALENT FORMS Ascii| EQUIVALENT FORMS Ascil| EQUIVALENT FORMS
Char.| Dec Binary Char.| Dec Binary Char.| Dec Binary Char.| Dec Binary
NOTE| 128 | 10000000 f 160 | 10100000 A 192 | 11000000 i3 224 | 11100000
NOTE| 129 | 10000001 e 161 10100001 & 193 | 11000001 b 225 | 11100001
NOTE! 130 | 10000010 e 162 10100010 & 194 | 11000010 3 226 | 11100010
NOTE| 131 10000011 e 163 10100011 i 195 | 11000011 . 227 11100011
NOTE| 132 | 10000100 e 164 | 10100100 & 196 | 11000100 3 228 | 11100100
NOTE| 133 | 10000101 b 165 | 10100101 & 197 | 11000101 . 229 | 11100101
NOTE| 134 | 10000110 i3 166 | 10100110 bl 198 | 11000110 3 230 | 11100110
NOTE| 135 10000111 b 167 10100111 0 199 | 11000111 b 231 11100111
NOTE| 136 | 10001000 168 10101000 Y 200 | 11001000 42 232 | 11101000
NOTE| 137 | 10001001 169 | 10101001 & 201 11001001 b 233 11101001
NOTE| 138 | 10001010 170 | 10101010 & 202 | 11001010 e 234 | 11101010
NOTE| 139 10001011 171 10101011 ¥ 203 | 11001011 ¥ 235 | 11101011
NOTE| 140 | 10001100 172 | 10101100 Y 204 | 11001100 *P 236 | 11101100
NOTE| 141 10001101 fe 173 | 10101101 & 205 | 11001101 B 237 11101101
NoTE| 142 | 10001110 k3 174 | 10101110 & 206 | 11001110 3 238 | 11101110
NOTE| 143 10001111 £ 175 10101111 i 207 11001111 e 239 11101111
3 144 | 10010000 B 176 | 10110000 A 208 | 11010000 b 240 | 11110000
b 145 10010001 Fe 177 10110001 i 209 11010001 b 241 11110001
b 146 | 10010010 b 178 | 10110010 [210 | 11010010 e 242 | 11110010
fe 147 | 10010011 179 | 10110011 £ 211 11010011 42 243 11110011
e 148 | 10010100 b 180 | 10110100 £ 212 | 11010100 b 244 | 11110100
b 149 10010101 g 181 10110101 i 213 11010101 e 245 11110101
e 150 | 10010110 H 182 | 10110110 @ 214 | 11010110 e 246 | 11110110
i 151 10010111 Fi 183 | 10110111 ® 215 | 11010111 b 247 | 11110111
e 152 | 10011000 i 184 | 10111000 A 216 | 11011000 i3 248 11111000
3 153 | 10011001 i 185 | 10111001 T 217 | 11011001 b 249 11111001
154 10011010 i 186 10111010] 218 11011010 e 250 11111010
e 155 | 10011011 £ 187 | 10111011 i 219 | 11011011 I 251 | 11111011
e 156 10011100 b 188 10111100 £ 220 11011100 fe 252 11111100
k3 157 | 10011101 188 | 10111101 i 221 11011101 3 253 | 11111101
b 158 10011110 e 190 10111110 3 222 11011110 b 254 11111110
. 159 [10011111 ke 191 10111111 b 223 11011111 el 255 | 11111111

NOTE: ignored by the 9826; see “Monochrome Highlight Characters.”

388 Character Sets

U.S./European Display Characters

These characters can be displayed on the alpha screen of the Model 217 computer and on the
bit-mapped graphics screen of the Model 237 computer.

ASCII
Num, Chr, Num, Chr, Num, Chr, Nums Chr,
0 N 32 64 @ 96 *
1 % 33 4 65 A 97 a
2 % 34 " 66 B 98 b
3 € 35 # 67 C 99 c
4 & 36 $ 68 D 100 d
5 g 37 % 69 E 101 e
6 b} 38 & 70 F 102 f
7 i1} 39 ! 71 G 103 g
8 L 3 40 (72 H 104 h
9 4 41) 73 I 105 i
10 L 42 * 74 J 106 j
11 % 43 + 75 K 107 k
12 fe 44 , 76 L 108 1
13 % 45 - 77 M 109 n
14 £ 46 . 78 N 110 n
15 5 47 / 79 (0] 111 o
16 e 48 0 80 P 112 P
17 o, 49 1 81 Q 113 q
18 b 50 2 82 R 114 r
19 8 51 3 83 S 115 s
20 9 52 4 84 T 116 t
21 N 53 5 85 U 117 u
22 g 54 6 86 \Y 118 \'4
23 3 55 7 87 W 119 w
24 & 56 8 88 X 120 X
25 £ 57 9 89 Y 121 y
26 £ 58 : 90 YA 122 z
27 & 59 ; 91 { 123 {
28 & 60 < 92 \ 124 |
29 3 61 = 93] 125 }
30 ! 62 > 94 ~ 126 -
31 2 63 ? 95 _ 127

Character Sets 389

U.S./European Display Characters

These characters can be displayed on the alpha screen of the Model 217 computer and on the
bit-mapped graphics screen of the Model 237 computer.

ASCII

Num+ Chr, Num, Chr, Num. Chr, Num+ Chr,
128 ¢ 160 192 a 224 A
129 U 161 A 193 é 225 X
130 % 162 A 194 (o] 226 a
131 b 163 B 195 Q 227 b
132 164 ¢ 196 4 228 d
133 b 165 E 197 é 229 £
134 % 166 z 198 6 230 I
135 L 167 I 199 a 231 é
136 W 168 : 200 a 232 (w]
137 ') 169 * 201 e 233 &
138 4 170 ° 202 (o] 234 te)
139 % 171 N 203 u 235 S
140 % 172 ~ 204 a 236 -3
141 B 173 U 205 é 237 U
142 " 174 0 206 6 238 b4
143 & 175 £ 207 Q 239 y
144 2 176 - 208 A 240 P
145 9 177 B 209 i 241 o]
146 g 178 g 210 (1/] 242 5
147 9 179 : 211 A 243 5
148 9 180 ¢ 212 a 244 b
149 g 181 ¢ 213 i 245 b
150 2 182)] 214 2 246 -
151 9 183 A 215 & 247 3+
152 2 184 i 216 A 248
153 9 185 é 217 1 249 a
154 2 186 o] 218 (] 250 e
155) 187 £ 219 8] 251 «
156) 188 ¥ 220 E 252]
157 2 189 § 221 i 253 »
158 2 190 f 222 f 254 E 4
159 g 191 ¢ 223 (] 255 K]

390 Character Sets

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers.

ASCII
Num. Chr. Nums+ Chr, Nums Chr, Nums Chr,
0 b 32 64 e 96 *
1 % 33 ! 65 A 97 a
2 % 34 " 66 B 98 b
3 € 35 # 67 C 99 c
4 g 36 $ 68 D 100 d
5 g 37 % 69 E 101 e
6 ~ 38 & 70 F 102 f
7 4 39 ! 71 G 103 g
8 3 40 (72 H 104 h
9 q 41) 73 I 105 i
10 L 42 * 74 J 106 j
11 % 43 + 75 K 107 k
12 e 44 , 76 L 108 1
13 & 45 - 77 M 109 1]
14 % 46 . 78 N 110 n
15 £ 47 / 79 (0] 111 o
16 e 48 0 80 P 112 p
17 9 49 1 81 Q 113 q
18 8 50 2 82 R 114 r
19 o 51 3 83 S 115 s
20 2 52 4 84 T 116 t
21 N 53 5 85 U 117 u
22 g 54 6 86 v 118 v
23 55 7 87 W 119 w
24 % 56 8 88 X 120 X
25 % 57 9 89 Y 121 y
26 % 58 : 90 Z 122 4
27 3 59 ; 91 [123 {
28 & 60 < 92 \ 124 |
29 % 61 = 93] 125 }
30 % 62 > 94 ~ 126 -
31 g 63 ? 95 - 127]

Character Sets 391

U.S./European Display Characters

These characters can be displayed on the screen of Series 300 computers.

ASCII

Num, Chr, Num. Chr, Num, Chr, Num. Chr,
128 ¢ 160 192 a 224 A
129 L 161 A 193 é 225 X
130 % 162 A 194 o] 226 a
131 5 163 E 195 a 227 b
132 % 164) 196 a 228 d
133 L 165 E 197 é 229 b o
134 & 166 3 198 6 230 I
135 b 167 b g 199 a 231 é
136 W 168 ’ 200 a 232 (]
137 % 169) 201 e 233 (]
138 % 170 - 202 o 234 3
139 % 171 N 203 u 235 S
140 % 172 ~ 204 a 236 §
141 & 173 ¥} 205 é 237 0
142 b 174 0 206 6 238 Y
143 & 175 £ 207 a 239 y
144 % 176 - 208 A 240 P
145 8 177 ¥ 209 i 241 b
146 g 178 ¥ 210 1/} 242 :
147 g 179 ’ 211 A 243 B
148 5 180 ¢ 212 a 244 L
149 £} 181 ¢ 213 i 245 b
150 2 182 N 214 (] 246 -
151 g 183 fi 215 & 247 3+
152 % 184 i 216 A 248 %
153 9 185 é 217 1 249 a
154 2 186 g | 218 (=] 250 e
155 8 187 £ 219 8] 251 «
156 2 188 ¥ 220 E 252 []
157 2 189 § 221 i 253 »
158 2 190 f 222) 254 *
159 2 191 ¢ 223 (m] 255 K]

392

Character Sets

28109-11-41S

Katakana Display Characters

These characters can be displayed on all Series 200 Computers (while in Katakana mode).

Ascli| EQUIVALENT FORMS Ascii| EQUIVALENT FORMS Asci| EQUIVALENT FORMS asci| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
) 0 00000000 32 00100000 i 64 01000000 96 01100000
N 1 00000001 i 33 00100001 F 65 01000001 97 01100001
k2 2 00000010 34 00100010 66 01000010 98 01100010
E; 3 00000011 # 35 00100011 { 67 01000011 99 01100011
£ 4 00000100 36 00100100 68 01000100 100 01100100
By 5 00000101 5 37 00100101 i 69 01000101 & 101 01100101
i 6 00000110 B2 38 00100110 i 70 01000110 ¥ 102 01100110
7 00000111 39 00100111 0 71 01000111 o 103 01100111
Bz 8 00001000 40 00101000 72 01001000 104 01101000
b 9 00001001 N 41 00101001 73 01001001 105 01101001
i 10 00001010 * 42 00101010 74 01001010 106 01101010
i 1 00001011 + 43 00101011 75 01001011 107 01101011
fr 12 00001100 . 44 00101100 L 76 01001100 108 01101100
2 13 oooo1101 | | - 45 00101101 77 01001101 109 01101101
iy 14 00001110 46 00101110 78 01001110 110 01101110
i 15 00001111 47 00101111 i 79 01001111 1M 01101111
Eh 16 00010000 £ 48 00110000 F 80 01010000 £ 112 01110000
B 17 00010001 49 00110001 i 81 01010001 13 01110001
3 18 00010010 = 50 00110010 F 82 01010010 i 114 01110010
By 19 00010011 5 51 00110011 g2 83 01010011 115 01110011
By 20 00010100 < 52 00110100 T 84 01010100 116 01110100
i 21 00010101 I 53 00110101 L 85 01010101 L 117 01110101
S 22 00010110) 54 00110110 i 86 01010110 118 01110110
B 23 00010111 v 55 00110111 i 87 01010111 L 119 01110111
i 24 00011000 = 56 00111000 i 88 01011000 120 01111000
£ 25 00011001 E 57 00111001 i 89 01011001 L 121 01111001
£ 26 00011010 H 58 00111010 90 01011010 z 122 01111010
27 00011011 59 00111011 91 01011011 i 123 01111011
28 00011100 60 00111100 i 92 01011100 124 01111100
3 29 00011101 = 61 00111101 93 01011101 125 01111101
30 00011110 62 00111110 94 01011110 126 01111110
i 31 00011111 3 63 oot11111 | | .. . 95 01011111 127 01111111

28109-11-01S

Katakana Display Characters

Character Sets 393

These characters can be displayed on all Series 200 Computers (while in Katakana mode).

Asci| EQUIVALENT FORMS ascii | EQUIVALENT FORMS Ascii| EQUIVALENT FORMS Ascii| EQUIVALENT FORMS
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary
NOTE| 128 10000000 b 160 10100000 & 192 11000000 b 224 11100000
NOTE| 129 10000001 6 161 10100001 F 193 11000001 e 225 11100001
NOTE| 130 10000010 r 162 10100010 1 194 11000010 e 226 11100010
NOTE| 131 10000011 J 163 10100011 i 195 11000011 b 227 11100011
NOTE| 132 10000100 164 10100100 3 196 11000100 e 228 11100100
NOTE| 133 10000101 . 165 10100101 ¥ 197 11000101 e 229 11100101
NOTE| 134 10000110 = 166 10100110 z 198 11000110 i 230 11100110
NOTE| 135 10000111 w 167 10100111 = 199 11000111 3 231 11100111
NOTE| 136 10001000 ks 168 10101000 T 200 11001000 e 232 11101000
NOTE| 137 10001001 = 169 10101001 A 201 11001001 e 233 11101001
NOTE| 138 10001010 I 170 10101010 i 202 11001010 e 234 11101010
NOTE| 139 10001011 ot 171 10101011 I 203 11001011 42 235 11101011
NOTE| 140 10001100 1 172 10101100 o 204 11001100 3 236 11101100
NOTE| 141 10001101 = 173 10101101 205 11001101 e 237 11101101
NOTE| 142 10001110 # 174 10101110 i 206 11001110 b 238 11101110
NOTE| 143 10001111 175 10101111 3 207 11001111 b 239 11101111
NOTE| 144 10010000 | | - 176 10110000 z 208 11010000 e 240 11110000
NOTE| 145 10010001 177 10110001 & 209 11010001 3 241 11110001
NOTE| 146 10010010 178 10110010 ! 210 11010010 ke 242 11110010
NOTE| 147 10010011 o 179 10110011 £ 211 11010011 e 243 11110011
NOTE| 148 10010100 x 180 10110100 212 11010100 244 11110100
NOTE| 149 10010101 181 10110101 a 213 11010101 43 245 11110101
NOTE 150 10010110 182 10110110 : 214 11010110 e 246 11110110
NOTE| 151 10010111 # 183 10110111 135* 215 11010111 e 247 11110111
NOTE| 152 10011000 7 184 10111000 i 216 11011000 3 248 11111000
NOTE 153 10011001 185 10111001 the 217 11011001 3 249 11111001
NOTE| 154 10011010 A 186 10111010 L 218 11011010 i3 250 11111010
NOTE 155 10011011 i 187 10111011 a 219 11011011 te 251 11111011
NOTE| 156 10011100 188 10111100 7 220 11011100 252 11111100
NOTE| 157 10011101 7 189 10111101 221 11011101 b 253 11111101
NOTE| 158 10011110 L 190 10111110 222 11011110 254 11111110
NOTE] 159 10011111 ‘;f 191 10111111 = 223 11011111) 255 11111111

NOTE: These are the same as the U.S./European characters.

394 Character Sets

Monochrome Highlight Characters

These characters affect the highlight mode on all subsequently displayed characters on
monochrome displays (not implemented on some Model 216 and 220 displays). Note that bit-
mapped alpha displays have no blinking or half-bright modes (Model 237 and all Series 300

displays).

ASCII inverse
code | halfbright | underline blinking video
128
129 X
130 X
131 X X
132 X
133 X X
134 X X
135 X X X
136 X
137 X X
138 X X
139 X X X
140 X X
141 X X X
142 X X X
143 X X X X

“X" means that this highlight is enabled by displaying the character.

Color Highlight Characters

These characters change the color of subsequently displayed characters on the alpha screen of
color displays.

ASCII
code Resultant Color

136 white (pen 1)
137 red (pen 2)

138 yellow (pen 3)
139 green (pen 4)
140 cyan (pen 5)
141 blue (pen 6)
142 magenta (pen 7)
143 black (pen 0)

Note that the colors shown in this table are the default colors for the corresponding pen number.
On Series 300 displays, changing one of these pen colors also affects the color corresponding to the
character. However, on the Model 236C, changing one of these pen colors has no effect on the
alpha display character’s color.

Command Summaries

Main Command Level Summary

Assembler—Run the Assembler.
Compiler—Run the Pascal Compiler.
Debugger—Run the Debugger subsystem
Editor—Run the Editor subsystem.
eXecute—Execute a specified object file.

Filer—Run the Filer subsystem.

Initialize—Places all current blocked devices online.

Librarian—Run the Librarian subsystem.
Memvol-Create a memory resident volume.

Newsys—Select a new System Volume.

Permanent—Move an object file from a mass stor-
age medium into internal read/write memory.

Run—Compile and execute the workfile or execute
the last file compiled.

Stream-Stream a text file to be processed as
keyboard commands.

User restart—Run the last program executed.

Version—Display version information about the Pas-
cal Operating System.

What-Display the complete file specifier of each
Pascal subsystem.

?-Display alternate command prompt.

395

396 Command Summaries

Editor Command Summary

Text Modifying Commands

Copy — Insert text from the copy buffer or an
external file in front of the current cursor
location.

Delete — Remove text from the current cursor
location to the location of the cursor when
((Select) ((EXECUTE)) is pressed.

Insert — Inserts text in front of the current cursor
location.

Replace — Replace the specified target string
with the specified substitute string.

eXchange — Replace the text at the cursor with
text typed from the keyboard, on a
character-by-character basis.

Zap — Delete all text between the anchor and
the current cursor location. (The anchor is set
at the location of the latest Adjust, Find, Insert,
or Replace command.)

Text Formatting Commands
Adjust — Adjust the column in which a line (or lines)
start.

Margin — Format the paragraph the cursor is lo-
cated to the margins in the current environment.

Miscellaneous Commands

Quit — Leave the Editor in an orderly manner. Pro-
vides various ways for saving the text currently in
memory.

(stoP) ((SHIFT)-(CLR I10)) — terminates the Editor
subsystem, but the text is lost.

Set — Modify the environment or set markers in the
text.

Verify — Update the displayed text to reflect the text
stored in memory.

Cursor Keys

— Move cursor to next tab position (fixed
tabs) in the current direction.

or (ENTER) — Move cursor in current direc-

tion to the leftmost character in the next line.

Space Bar — Move cursor one character in the
current direction.

Arrow Keys — Move cursor in the direction speci-
fied by the key.

Cursor Wheel — Moves the cursor like the arrow
keys. Without (SHIFT), works like right and left
arrows; with (SHIFT), works like the up and
down arrows.

Cursor Positioning Commands

@ — Typing E] positions the cursor at
the anchor. (The anchor is set at the location of
the latest Adjust, Find, Insert, or Replace com-
mand.)

Find — Position the cursor after the specified target
string.

dJump — Position the cursor at the beginning, the
end, or the specified marker.

Page — Position the cursor + 23 lines from the
current location.

Command Summaries

Filer Command Summary

Volume Related Commands
Bad sectors — Scans a volume and searches for un-
reliable (bad) storage areas.

Extended Directory — Lists directory information
about a specified volume or set of files.

Krunch — Consolidates all unused space on a
volume in a single area by packing the existing
files together. (Not valid for SRM)

List Directory — Lists directory information about a
specified volume or set of files.

Prefix — Specifies a new default volume.
Volumes — Lists the volumes currently on line.
Udir — Sets the default unit directory. (SRM only)

Zero — Creates an empty directory on the specified
volume. (Not valid for SRM)

Exit Commands

Quit — Provides an orderly exit from the filer.

STOP — Pressing the key unconditional-

ly exits the Filer Subsystem. The current I/O
operation is completed before exiting.

File Related Commands
Access — Change the access rights (passwords) on
a file or directory. (SRM only)

Change — Change the name of a file, set of files, or
volume.

Duplicate link — Duplicates links to a file or set of
files. (SRM only)

Filecopy — Copies a file, set of files, or a volume to
a specified destination.

Make — Create a directory (SRM) or a file on a
volume.

Remove — Remove a directory entry or a set of
directory entries.

Translate — Translates text files of types TEXT,
ASCII, and DATA to other text file representations
or to unblocked volumes.

Workfile Related Commands

Get — Specifies a file as the workfile.
New — Specifies that no file is the current workfile.

Save — Saves the current workfile(s) with the speci-
fied name.

What — Lists the name and current state (saved or
not saved) of the workfile(s).

397

398 Command Summaries

Librarian Command Summary

General Commands

Boot — creates “‘system Boot files.”

Edit — gets you into Edit mode, for either Copying
or Linking,

File — sends the File directory (all module names) to
the current Printout file.

Header — allows you to specify the Header size for
the Output file.

Input — allows you to specify the Input file.

Keep — makes a permanent copy of the current
Output file.

Output - allows you to specify the Output file.

Printout — turns the Printout option ON or OFF, or
allows you to specify a Printout file.

Quit — quits the Librarian and returns you to the
Main Command Level.

Unassemble — gets you into the Unassemble mode.

Verify — gets you into the Verify mode, and shows
the name of the first module in the Input.

Copy Mode Commands
All — transfers All modules from the Input file to the
Output file.

Link — gets you into Link mode.

Module - allows you to specify the next Module to
be copied from the Input file.

Transfer — Transfers the current object module to
the Output file.

Edit Mode Commands
Append — Appends modules to the Output file.

Copy — Copies the First module up to {but not
including) the Until module to the Output file.

First — allows you to specify the First module to be
transferred to the Output file.

Stop — Stops the Edit session and returns to the
Librarian’s main prompt.

Transfer — Transfers the current object module to
the Output file.

Until — allows you to specify the Until module.

Link Mode Commands
All - transfers All modules from the Input file to the
Output file.

Copy — returns you to Copy mode.

Def — controls whether or not the DEF table is in-
cluded in the Output file.

Global — allows you to change the Global base
address of the module.

Link — finishes Linking.

Module — allows you to specify the next Module to
be copied from the Input file.

New — allows you to name the New object module
being created.

Relocation — designate the Relocation base address
to be used.

Space — assigns Space for patches.
Transfer — Transfers the current object module to
the Output file.

X — allows you to enter a copyright notice as part of
the Output file.

Unassemble Commands
Assembler — directs the Librarian to unassemble
the Input file using Assembler conventions.

Compiler — unassembiles all lines of the Input file
according to Compiler conventions.

Def — sends the DEF table to the Printout file.

Ext — sends the EXT table to the Printout file.

Line range — unassemble (using Compiler conven-
tions) a section of code defined by two Line
values.

PC range — unassemble (using Assembler conven-
tions) a section of code defined by two location
counter range values.

Stop — Stops the unassemble session and returns to
the Librarian’s main prompt.

Text — sends the interface Text (DEFINE SOURCE)
of the current Input module to the Printout file.

Command Summaries

Debugger Command Summary

Register Operations
A0..A7, D0..D7, PC, SP, US, SR - Display or
assign values to the processor registers.

Breakpoint Commands

BS — Set a breakpoint at the specified location.
BD — Disable (but don’t remove) breakpoints.
BA — Activate disabled breakpoints.

BC — Clear and remove breakpoints.

B — Display the breakpoint table

Call Command

CALL - Calls the machine-language routine at the
specified address.

Display Command
D — Display the specified object(s) immediately,
directly, or indirectly.

Dump Commands
DA — Performs a DUMP ALPHA function.

DG - Performs a DUMP ALPHA function.

Escape Commands
EC — Generates the specified escape code.

ET — Specify escape codes to be trapped by the
Debugger.

ETC — Sets up trapping of all escape codes; the
Debugger executes specified command(s) when
an escape is encountered.

ETN — Specify that all escape codes except the
ones listed are to be trapped by the Debugger.

Format Commands
FB — Sets the default display format to Binary.

FH — Sets default format to hex values.

FI — Sets default format to signed integer values.

FO — Sets the default display format to Octal.

FU - Sets default format to unsigned integer
values.

Go Commands

G — Resume execution.

GT — Resume execution at a specified location.

GTF or GFT — Same as GT except execution is
slowed and the line numbers are flashed in the
lower right corner of the CRT.

IF, ELSE, and END Commands
IF, ELSE, END — Allow conditional execution of
Debugger command(s).

Open Memory Commands
OB, OW, OL - Display or alter memory locations.

Procedure Commands

PN — Continues the program, but halts program
execution when the next procedure is called (or
current one is exited, whichever occurs first).

PX, or P — Continues the program, but halts pro-
gram execution when the current procedure is ex-
ited.

Queue Commands

Q — List the most recent line numbers (or PC values
if Trace commands were used with machine
code).

QE — Terminate recording of line number values in
the queue.

QS - Start recording the information in the queue.

Softkey Commands
— Define softkeys as typing-aid

keys.

System Boot Command
sb — The system boot command puts the computer
in the power-up state for rebooting.

Trace Commands
T — Execute the specified number of instructions,
each followed by a TD command.

TD — Display the command string defined by the
softkey

TD I — Restores the initial command string to
ke).

TQ — Same as the T command except the TD
command is executed only after the last in-
struction.

TT — Same as the TQ command except a loca-
tion is specified rather than a count.

Walk Procedure Links Commands
WD — Move the stack frame pointer to the stack
frame of the calling procedure.

WS — Move the stack frame pointer to the stack
frame of the nesting procedure.

WR — Return the stack frame pointer to the current
stack frame.

399

400 Command Summaries

Notes

Glossary

ASCII character Any of the 8-bit characters in Hewlett-Packard’s extended ASCII (American
Standard Code for Information Interchange) set. The characters include letters, numerals,
punctuation, control characters and foreign character sets. A table of these characters and their
code values can be found in the “‘Character Sets’”” appendix.

anchor An internal pointer used by the Editor's Zap command as a starting point for removing
text. The anchor is set at the cursor position of the most recent Adjust, Find, Insert or Replace
command. The cursor is moved to the anchor location by the Equals command.

bit An abbreviation for the term “‘binary digit”’, a bit is a single digit in base 2 that must be either a
Ooral.

block A block is a 512-byte unit of storage area on a WS1.0 volume and a 256-byte sector on a
LIF volume. The Pascal system allocates storage space for files on the WS1.0 and LIF volumes
in block increments.

block-structured An attribute of a device which structures its memory allocation in block units;
examples are flexible or hard discs. Devices such as printers and screens (CRTs) are not
block-structured.

boot device The peripheral where the Boot ROM found and loaded the Pascal operating system.
The Boot ROM has a search pattern which allows booting from just about any drive in any HP
mass storage product, including the Shared Resource Manager.

bus address When several peripherals are connected to the same HP-IB interface, a bus address
is required (in addition to the select code) to designate the particular peripheral referenced by
an /O transaction.

byte A group of eight bits processed as a unit.

control character Any ASCII character whose value is either 127 or in the range of 0 thru 31.
Use of control characters in the Editor and Filer is discouraged, because they may have
undesirable effects.

cursor The flashing underline (_) symbol on the screen. The cursor functions as a reference point
for Editor commands which manipulate text and as a reference for prompts in other Pascal
subsystems.

cursor wheel The wheel (also called the knob) on the upper left area of the non-ITF keyboard
whose action duplicates that of the four arrow keys. When used in the Editor with the (SHIFT)
key pressed, turning the wheel produces up or down cursor movement; unshifted, it pro-
duces left or right cursor movement.

401

402 Glossary

device selector By convention in the Pascal, BASIC and HPL systems, when select code and
bus address are used together to address a peripheral, they are concatenated into a single
number. Thus the device at address 1 on select code seven is referenced as 701, which is
derived by multiplying the select code by 100 and adding the address. Some HP products
contain, within a single package, several peripheral devices which must are addressed
separately.

directory Contains information about the files an a volume. This information includes the
volume name and the following information about each file on the medium: the file name,
the file size (in number of blocks), the date of last modification to the file, its starting block
address, and the file type (which reflects the file’s attributes). Directory information can be
seen by using the Filer’s List Directory and Extended Directory commands. The directory is
initialized with the Filer's Zero command.

Directory Access Method or DAM Each mass storage unit has a directory describing the files
it contains, the type of each file and so forth. Many different directory organizations are used
within HP, and data on a disc can’t be interpreted properly unless it is accessed using the
correct Directory Access Method. Pascal 2.0 and later versions support three DAMs: the
“Workstation”” format compatible with Pascal 1.0 systems; HP’s “‘Logical Interchange For-
mat’’ or LIF directory; and the Shared Resource Manager’s hierarchical directory.

dollar sign This character “‘$” is used in the Filer as a convenience in specifying file names.
When used in place of a destination file name, it means that the file is to have the same
name as the source file.

entry point The place where a program or subroutine begins. Before a routine is executed,
the address of the entry point must be obtained from a symbol table and that address is put
in the program counter.

environment The conditions or parameters which affect how text in the Editor is Adjusted,
Inserted, and Margined. These parameters may be changed with the Editor’s Set command.

file A discrete collection of information designated by a file name and residing on a mass
storage medium.

file name An entry in a directory which identifies a particular file.

file specification Completely identifies a file and may include both a volume specification
and a file name. A volume specification can be one of many items, but it is always part of a
file specification. If a volume ID is given, it must be separated from the file name by a colon
(:). If not, the default volume is assumed.

Glossary 403

file types Several file types are recognized by the Pascal System. Files generally (but not
always) have a suffix as part of the file name which indicates their type. The file type is
established at the time of the file’s creation and cannot be changed just by changing the
suffix. The types and their associated suffixes are:

o TEXT files - (suffix is . TEXT) Contain ASCII characters and Editor environment information.

® ASCII files - (suffix is .ASC) Are similar to TEXT files. The format is slightly different and there
is no Editor environment information.

e CODE files - (suffix is .CODE) Contain code generated by the Pascal Assembler, Compiler or
Librarian.

e Data files - (no specific suffix) Are files which can be created by any subsystem but are used
primarily as INPUT and OUPUT files in Pascal programs. They do not have suffixes.

e System files - (suffix is .SYSTM) Are files created with the Librarian’s Boot command. They are
loadable by the boot ROM.

e Bad files - (suffix is .BAD) are a type of file created by the user to isolate unreliable or worn-out
areas on a mass storage medium. Once created, BAD files will not be moved by subsequent
crunches of the volume.

interface The electronic circuitry which connects the computer’s high-speed internal bus to lower
speed physical peripheral devices. Interfaces are either built-in, like the standard HP-IB port at
the back of your computer, or plug into the I/O backplane. Most of the peripherals supported by
the Series 200/300 computers are designed to connect through an HP-IB interface.

knob The rotary-pulse generator that is used as an input device on the built-in keyboards of the
9826 and 9836, on optional HP 98203B keyboards, and on the HP46083 HIL knob optional
on computers with HIL keyboards. It is used in the Editor for moving the cursor (in that context,
it is referred to as the “‘cursor wheel”’). You can use it in programs for any purpose that you like.

library A file that contains object modules. Libraries are the object of the compiler, Assembler, or
Librarian.

Librarian A Pascal subsystem designed to manage object modules. It can link or just collect
object modules together into object files. The Librarian is the file named LIBRARIAN in the
operating system and is accessed by pressing from the Main Command Level.

LIBRARY A special library included with the Pascal operating system. This file is usually
designated as the System Library at power-up. (The System Library is a special library file
automatically accessed by the compiler and loader.) The System file should be kept on-line
so that object modules stored in it are automatically available to any program importing
them.

Main Command Level The level from which all the subsystems of the Pascal System are
entered. The prompt displayed at this level looks like:

Command: Compiler Editor Filer Initialize Librarian Run eXecute VYersion 7

404

Glossary

module See ‘‘object module’’.

mouse A small, rodent-like input device, consisting of a roller ball and buttons. Rolling the
device on any surface generates two-dimensional movement information that is transmitted
through its tail to the computer. Pushing the buttons also generates information that is sent
to the computer. The mice available with Series 200/300 equipment are connected to the
computer through the HP Human-Interface Link (HP-HIL).

object file An object file is a unit of binary code managed by the Librarian. It is made up of a
Library directory and one or more object modules. The Assembler and Compiler generate
one object file per source file. The Compiler’s object file can contain one or more object
modules depending upon the source file’s construction. If the source file contains a number
of compilable modules, that number of object modules will be created in the object file.

object module Contains the interface information necessary to link and run the module and
the machine code.

on-line Any object (device, volume or file) currently accessible by the Pascal System.

opcode A word that stands for one of the operations of the microprocessor. The Assembler
translates these words into actual binary codes which the microprocessor understands.

operand The symbol which stands for the object on which microprocessor operations are
performed.

Pascal module HP Pascal allows program modules to be compiled separately into object
modules. The modules are generally not executable, but are parts of Pascal programs. The
sections of a module are:

MODULE s EXPORTs IMPORT s IMPLEMENT

pass by reference The address of a parameter variable is given to the called routine. Using
that address, the routine can alter the value of the variable.

pass by value The current value of a variable is given to the called routine. In this way the
value can be used but the routine does not alter the actual variable.

peripheral An /O device such as a printer or disc.

prompt Generally, any request for information from the system. The different Pascal subsys-
tems have primary prompts (the Editor Prompt, Filer Prompt, etc.) and many subsystem
commands have prompts of their own which are displayed at the top of the screen when the
command is entered.

Glossary 405

pterodactyl A large flying reptile, presumed extinct.

relative addressing An addressing mode where the location of a routine or variable is given
as an offset from the current location rather than an absolute address. In this way, the code
can be placed at different places in memory without having to change the addresses of
variables and entry points.

select code A number between 0 and 31, the ‘‘address’’ or name by which an interface is
identified and referenced. When a peripheral operation is performed, it takes place through
an interface which is said to be ‘‘on a select code’’. Most interface cards which plug into the
I/O backplane have switches which can be set to indicate the select code to which the
interface will respond. The built-in interfaces have fixed select codes.

string A contiguous series of non-control ASCII characters.
structured constant A constant that has more than a single value, such as a record or array.
structured variable A variable that has more than a single value, such as a record or array.

symbol table A table containing the address locations of the variables and routine entry
points.

system volume or system unit The Pascal system distinguishes one mass storage unit to be
used for special purposes. This ‘‘system volume” is where the date and any AUTOSTART
(or AUTOKEYS) file are found at boot time. It is where the system looks first for system files
such as the Compiler and Editor, where workfiles are stored, and where an intermediate file
is stored during interpretation of a Stream (command) file.

text file A file created and/or used by the Editor which contains ASCII or selected foreign
characters. The Editor automatically appends . TEXT to a file name unless it either already

contains a suffix or the last character in the file name is a period. A text file may be of type
TEXT, ASCII or DATA.

unit An entry in the Unit Table.

Unit Table The Pascal system provides for up to 50 units, designated #1 through #50. They
are represented by a 50-entry array called the Unit Table or “Unitable’”. Each entry fully
specifies the association of one logical unit to a physical peripheral, with such information as
the device selector and driver procedures to be used for I/O operations to the unit.

unit number An integer in the range from 1 through 50 representing the volume having the
corresponding entry in the unit table.

406 Glossary

volume A volume refers to any I/O device such as a printer, keyboard, screen, or mass
storage device. The name of a mass storage volume is found in its directory; the name of an
unblocked device is found in its Unit Table entry. There may be several volumes on one
physical storage medium. Hard discs typically contain multiple volumes, but flexible discs
generally have only a single volume. The volume may be mounted (in a disc drive) or not.
The syntax of a volume name depends on its type (for example, LIF volume names may
contain 6 characters, WS1.0 may contain 7).

wildcard Both of the characters = and 7 can be used in the Filer as wildcards in place of parts
of a file specification.

workfile [f the workfile exists, it is the automatic file used by the Editor, Compiler, Assembler,
Debugger and the Run command. It is designated when quitting the Editor using the Update
option or the Filer's Get command.

Exror Messages

This appendix contains all of the error messages and conditions that you are likely to encounter
while using the Pascal system. They can be placed into the following categories; each category is
discussed in a subsequent section.

® Unreported errors — certain errors do not get reported by this implementation of Pascal.

® Boot-time errors — These are errors that occur while the Pascal system is booting (they are
reported by the system loader).

® Run-time errors — These are general errors which may occur while you are using the system.
Run-time errors — 10, —26, and — 27 have special meanings, as described below.
I/O System errors — When run-time error — 10 occurs, there has been a problem with the I/O
system. The operating system then prints an error message from the list of I/O system errors.

I/O Library errors — When run-time error —26 occurs, there has been a problem in an 10
library procedure.

Graphics Library errors — When run-time error —27 occurs, there has been a problem in a
GRAPHICS library procedure.

e Compiler syntax errors.

e Editor, Filer, and Debugger errors and conditions.

Unreported Exrors

The following errors in Pascal programs are not reported by this implementation of the language.

® Disposing a pointer while in the scope of a WITH referencing the variable to which it points.
® Disposing a pointer while the variable it points to is being used as a VAR parameter.

o Disposing an uninitialized or NIL pointer.

® Disposing a pointer to a variant record using the wrong tagfield list.

® Assignment to a FOR-loop control variable while inside the loop.

® GOTO into a conditional or structured statement.

e Exiting a function before a result value has been assigned.

¢ Changing the tagfield of a dynamic variable to a value other than was specified in the call to
NEW.

® Accessing a variant field when the tagfield indicates a different variant.
® Negative field width parameters in a WRITE statement.

o9y

® The underscore character ““_" is allowed in identifiers. This is permitted in HP Pascal, but is not
reported as an error when compiling with $ANS1$ specified.

¢ Value range error is not always reported when an illegal value is assigned to a variable of type
SET.

407

408 Error Messages

Boot-Time Errors

Errors that occur while your system is booting will report a message like this:
IORESULT» ERROR: O, 112

The value of 10RESULT is shown first (O in the above display). See the [/O System Errors section for
descriptions of those error numbers.

The value of ERROR is shown second (112 in the above display). See the Loader/SEGMENTER
Errors section for a description of those error numbers.

Run-Time Errors

Errors detected by the operating system during the execution of a program generate one of the
error messages listed on this page (unless you trap it with a TRY..RECOVER construct).

Note

Note that error — 10 occurs, the error message listed here will not be
shown; the message on the next page (in /O System Errors) will be
shown instead.

When using a TRY..RECOVER construct (which requires the $SYSPROG ON$ Compiler option),
the following numbers correspond to the value returned by the ESCAPECODE function.

0 Normal termination. —15 Bad argument - SIN/COS.

— 1 Abnormal termination. —16 Bad argument - Natural Log.
— 2 Not enough memory. —17 Bad argument - SQRT. (Square root.)
— 3 Reference to NIL pointer. — 18 Bad argument - real/BCD conversion.
— 4 Integer overflow. —19 Bad argument - BCD/real conversion.
— 5 Divide by zero. — 20 Stopped by user.
— 6 Real math overflow. (The number was too —21 Unassigned CPU trap.

large.) — 22 Reserved
— 7 Real math underflow. (The number was too _ 23 Reserved

small.)

— 8 Value range error. — 24 Macro Parameter not 0..9 or a..z.

— 9 Case value range error. — 25 Undefined Macro parameter.

—10 Non-zero IORESULT. (Note that the corres- =26 Error in /O subsystem.

ponding message on the next page, not this — 27 Graphics routine error.
message, will be shown.)

—11 CPU word access to odd address.
—12 CPU bus error.

— 13 lllegal CPU instruction.

— 14 CPU privilege violation.

— 28 Parity error in memory.
—29 Misc. floating-point hardware error.
— 30 Arcsin, arccos argument > 1.

— 31 lllegal real number.

O 00 NGl W= O

NN N N N N DN e o e ek ek et ek ek ek b
NGB W N = O OV 0NN e = O

Error Messages

I/O System Errors

These error messages are automatically printed by the system unless you have enclosed the
error-producing statement in a TRY..RECOVER construct. Within the RECOVER block, the
ESCAPECODE function returning a value of — 10 indicates that one of the following errors has
occurred; you can determine which error has occurred by using the IORESULT function.

No /O error reported.
Parity (CRC) incorrect.
lllegal unit number.
lllegal I/O request.
Device timeout.

Volume went off-line.
File lost in directory.

Bad file name.

No room on volume.
Volume not found.

File not found.

Duplicate directory entry.
File already open.

File not open.

Bad input format.

Disc block out of range.
Device absent or unaccessible.
Media initialization failed.
Media is write protected.
Unexpected interrupt.
Hardware/media failure.
Unrecognized error state.

DMA absent or unavailable.

File size not compatible with type.

File not opened for reading.
File not opened for writing.

File not opened for direct access.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49

50
51
52

No room in directory.

String subscript out of range.

Bad file close string parameter.
Attempt to read or write past end-of-file mark.
Media not initialized.

Block not found.

Device not ready or medium absent.
Media absent.

No directory on volume.

File type illegal or does not match request.
Parameter illegal or out of range.
File cannot be extended.

Undefined operation for file.

File not lockable.

File already locked.

File not locked.

Directory not empty.

Too many files open on device.
Access to file not allowed.

Invalid password.

File is not a directory.

Operation not allowed on directory.

Cannot create /WORKSTATIONS/TEMP_
FILES.

Unrecognized SRM error.
Medium may have been changed.

IO result was 52.

409

410 Error Messages

I/O Library Errors

When run-time error —26 occurs, there has been a problem in an [/O library procedure.

By importing the IODECLARATIONS module, you can use the IOE_RESULT and
IOERROR_MESSAGE functions to get a textual error description. For example:

$SYSPROG ON$%
import I0DECLARATIONS: GENERAL_33
begin
try
recover
if ESCAPECODE = IOESCAPECODE
then writeln (IOERROR_-MESSAGE(IODE_RESULT))
ESCAPE(ESCAPECODE) 3
end.,

IOESCAPECODE is a constant (= —26) which you can import from the IODECLARATIONS
module. ESCAPE is a procedure and ESCAPECODE is a function; both are accessible when you
use the $SYSPROG ON$ Compiler option.

0 Noerror. 17 A timeout has occurred.
1 No card at select code. 18 Not system controller.
2 Interface should be HP-IB. 19 Bad status or control.
3 Not active controller. 20 Bad set/clear/test operations.
4 Should be device address, 21 Interface card is dead.
not select code. 22 End/eod has occurred.
5 No space left in buffer. 23 Miscellaneous - value of parameter error.
6 No dataleft in buffer. 306 Data-Comm interface failure.
7 Improper transfer attempted. 313 USART receive buffer overflow.
8 The select code is busy. 314 Receive buffer overflow.
9 The buffer is busy.

315 Missing clock.
316 CTS false too long.

317 Lost carrier disconnect.

10 Improper transfer count.
11 Bad timeout value.

12 No driver for this card.
13 NoDMa. 319 Connection not established.
14 Word operations not allowed. 395
15 Not addressed as talker.

318 No activity disconnect.

Bad data bits/parity combination.

326 Bad status/control register.

16 Not addressed as listener. 327 Control value out of range.

Error Messages

Graphics Errors

When run-time error —27 occurs, there has been an error in a GRAPHICS library routine.

By importing the DGL_LIB module, you can call the GRAPHICSERROR function which returns an
INTEGER value you can cross reference with the numbered list of graphics errors.

$SYSPROG ON$

import DGL.LIBS

L)

bedin
try
recover
if ESCAPECODE = -27
then writeln (‘Grarhics error #’, GRAPHICSERROR
‘ has occurred’)

else ESCAPE(ESCAPECODE) S

end.

You may wish to write a procedure which takes the INTEGER value from GRAPHICSERROR and
prints the description of the error on the CRT. You could keep this procedure with your program or,
for more global use, in the System Library (normally SYSVOL:LIBRARY).

O 0 NNt R W N = O

[y
(=]

11
12
13

No error. {Since last call to GRAPHICSERROR or GRAPHICS_INIT.}
The graphics system is not initialized.

The graphics display is not enabled.

The locator device is not enabled.

ECHO value requires a graphic display to be enabled.

The graphics system is already enabled.

lllegal aspect ratio specified.

lllegal parameters specified.

The parameters specified are outside the physical display limits.

The parameters specified are outside the limits of the window.

The logical locator and the logical display use the same physical device. {The logical locator limits
cannot be redefined explicitly. They must correspond to the logical view surface limits.}

The parameters specified are outside the current virtual coordinate system boundary.
The escape function requested is not supported by the graphics display device.

The parameters specified are outside of the physical locator limits.

411

412 Error Messages

Loader/'SEGMENTER Errors

Here is a list of errors that can be generated by a program that uses the SEGMENTER module (or
by the loader; see Boot-Time Errors):

Error Meaning
100..105 | field overflow trying to link or relocate something
110 circular or too deeply nested symbol definitions
111 improper link info format
112 not enough memory
116 file was not a code file
117 not enough space in the explicit global area
118 incorrect version number
119 unresolved external references
120 generated by the dummy procedure returned by find_proc
121 unload_segment called when there are no more segments to unload
122 not enough space in the explicit code area
SEGMENTER Errors

When one of these errors occurs while using the SEGMENTER module procedures, you can
determine which has occurred by using a TRY..RECOVER construct and calling the
ESCAPECODE function in the RECOVER block.

Loader Boot-Time Errors
When an error occurs while booting, a message such as the following will be reported:

IORESULT, ERROR = 0y 112
The second number indicates which loader error has occurred. (The first number indicates which

I/O system error has occurred; see the preceding /O System Errors section for descriptions of each
error.)

Error Messages

Pascal Compiler Errors

The following errors may occur during the compilation of a HP Pascal program.

ANSI/ISO Pascal Errors

1 Erroneous declaration of simple type
Expected an identifier

Expected a right parenthesis “)”
Expected a colon ““:”

Symbol is not valid in this context
Error in parameter list

Expected the keyword OF

O 0 N SN v e N

Expected a left parenthesis “‘(*
10 Erroneous type declaration

11 Expected a left bracket “[”

12 Expected a right bracket]”
13 Expected the keyword END
14 Expected a semicolon ;"

15 Expected an integer

16 Expected an equal sign “="
17 Expected the keyword BEGIN
18 Expected a digit following **.”

19 Error in field list of a record declaration

20 Expected a comma *,

21 Expected a period ““.”

22 Expected a range specification symbol “..”

23 Expected an end of comment delimiter
24 Expected a dollar sign “$”

50 Error in constant specification

51 Expected an assignment operator *: ="
52 Expected the keyword THEN

53 Expected the keyword UNTIL

54 Expected the keyword DO

55 Expected the keyword TO or DOWNTO
56 Variable expected

58 Erroneous factor in expression

59 Erroneous symbol following a variable

98
99

100

101
102

103
104
105
106
107

108
110
111

113
115
117
121
123

125

126

127

129
130
131

132

lllegal character in source text

End of source text reached before end of pro-
gram

End of program reached before end of source
text

Identifier was already declared

Low bound > high bound in range of con-
stants

Identifier is not of the appropriate class
Identifier was not declared

Non-numeric expressions cannot be signed
Expected a numeric constant here

Endpoint values of range must be compatible
and ordinal

NIL may not be redeclared
Tagfield type in a variant record is not ordinal

Variant case label is not compatible with tag-
field

Array dimension type is not ordinal

Set base type is not ordinal

An unsatisfied forward reference remains
Pass by value parameter cannot be type FILE
Type of function result is missing from declara-
tion

Erroneous type of argument for built-in
routine

Number of arguments different from number
of formal parameters

Argument is not compatible with correspond-
ing parameter

Operands in expression are not compatible
Second operand of IN is not a set

Only equality tests { =, <>) allowed on this
type

Tests for strict inclusion (<, >) not allowed
on sets

413

414 Error Messages

133

134

135

136
137

138
139

140
141
143

144
145

147
149
150

152
154

156
158
160
163
164

165
166
167
168
169
171

Relational comparison not allowed on this
type

Operand(s) are not proper type for this opera-
tion

Expression does not evaluate to a boolean re-
sult

Set elements are not of ordinal type

Set elements are not compatible with set base

type
Variable is not an ARRAY structure

Array index is not compatible with declared
subscript

Variable is not a RECORD structure
Variable is not a pointer or FILE structure

FOR loop control variable is not of ordinal

type
CASE selector is not of ordinal type

Limit values not compatible with loop control
variable

Case label is not compatible with selector
Array dimension is not bounded

lllegal to assign value to built-in function
identifier

No field of that name in the pertinent record

lllegal argument to match pass by reference
parameter

Case label has already been used
Structure is not a variant record
Previous declaration was not forward
Statement label not in range 0..9999

Target of nonlocal GOTO not in outermost
compound statement

Statement label has already been used
Statement label was already declared
Statement label was not declared
Undefined statement label

Set base type is not bounded

Parameter list conflicts with forward declara-
tion

177

181

182
183
184
185
190

300
301
302
303
304
400
401

403..

409

Cannot assign value to function outside its
body

Function must contain assignment to function
result

Set element is not in range of set base type
File has illegal element type

File parameter must be of type TEXT
Undeclared external file or no file parameter

Attempt to use type identifier in its own dec-
laration

Division by zero

Overflow in constant expression
Index expression out of bounds
Value out of range

Element expression out of range
Unable to open list file

File or volume not found

Compiler error

Compiler options

600
601
602
604
605
606

607
608

609
610

611
612
613
614

Directive is not at beginning of the program
Indentation too large for SPAGEWIDTH
Directive not valid in executable code

Too many parameters to $SEARCH
Conditional compilation directives out of order

Feature not in Standard PASCAL flagged by
$ANSI ON

Feature only allowed when $UCSD enabled

$INCLUDE exceeds maximum allowed depth
of files

Cannot access this $INCLUDE file

$INCLUDE or IMPORT nesting too deep to
IMPORT <module-name>

Error in accessing library file
Language extension not enabled

Imported module does not have interface text
LINENUM must be in the range 0..65535

620

621
646
647
648
649

Only first instance of routine may have
$ALIAS

$ALIAS not in procedure or function header
Directive not allowed in EXPORT section
lllegal file name

Illegal operand in compiler directive

Unrecognized compiler directive

Implementation restrictions

651

652

653

655

657
658

659

660
661

662

663

665

667
668
671
672
673

674
675
676

Reference to a standard routine that is not im-
plemented

Illegal assignment or CALL involving a stan-
dard procedure

Routine cannot be followed by
CONST, TYPE, VAR, or MODULE

Record or array constructor not allowed in ex-
ecutable statement

Loop control variable must be local variable

Sets are restricted to the ordinal range O ..
261999

Cannot blank pad literal to more than 255
characters

String constant cannot extend past text line

Integer constant exceeds the range im-
plemented

Nesting level of identifier scopes exceeds max-
imum (20)

Nesting level of declared routines exceeds
maximum (15)

CASE statement must contain a non-
OTHERWISE clause

Routine was already declared forward
Forward routine may not be external
Procedure too long

Structure is too large to be allocated

File component size must be in range
1..32766

Field in record constructor improper or missing
Array element too large

Structured constant has been discarded (cf.
$SAVE_CONST)

677
678
679
680
681
682
683
684
685

686
687

688

689
696
697
698
699

Error Messages

Constant overflow

Allowable string length is 1..255 characters
Range of case labels too large

Real constant has too many digits

Real number not allowed

Error in structured constant

More than 32767 bytes of data

Expression too complex

Variable in READ or WRITE list exceeds
32767 bytes

Field width parameter must be in range 0..255

Cannot IMPORT module name in its EXPORT
section

Structured constant not allowed in FOR-
WARD module

Module name may not exceed 15 characters
Array elements are not packed

Array lower bound is too large

File parameter required

32-bit arithmetic overflow

Non-ISO Language Features

701

702

704
705
706
707

708
709
710
711
712
714
715

Cannot dereference (™) variable of type
anyptr

Cannot make an assignment to this type of
variable

lllegal use of module name
Too many concrete modules
Concrete or external instance required

Variable is of type not allowed in variant re-
cords

Integer following # is greater than 255
lllegal character in a “‘sharp” string
lllegal item in EXPORT section
Expected the keyword IMPLEMENT
Expected the keyword RECOVER
Expected the keyword EXPORT
Expected the keyword MODULE

415

416 Error Messages

716
717
718
719

720
730

731

732
733
750
751
900
901
902
903
904
905
906
907
908

Structured constant has erroneous type
lllegal item in IMPORT section
CALL to other than a procedural variable

Module already implemented (duplicate con-
crete module)

Concrete module not allowed here

Structured constant component incompatible
with corresponding type

Array constant has incorrect number of ele-
ments

Length specification required
Type identifier required

Error in constant expression
Function result type must be assignable
Insufficient space to open code file
Insufficient space to open ref file
Insufficient space to open def file
Error in opening code file

Error in opening ref file

Error in opening def file

Code file full

Ref file full

Det file full

Error Messages 417

Assembler Errors

Error messages are listed under the line in which they occur. At the completion of the assembly, the
number of errors will be displayed. If there are errors, there will be a directive for you to check the
location of the last error in the program. At that location there will be a description of the error. Also
listed will be the location of the error above it if one exists. In this manner, all errors can be located
without having to search the whole listing.

Error Messages
Address Register Expected.

Attempt to Nest Included Files.

Blank or EOL Expected.

Comma Expected.

Code Segment Starts at Odd Address.
Duplicate Definition of Symbol.

Error Reading Code File.

Error Reading Source File.

Error Writing Code File.

Error Writing Source File.

Error Reading Code File.

Expression is Improper Mode.
External Reference Not Allowed.
Failed to Open Included File. File could not be found.

Field Overflow. A specification of the assembly instruction will not fit within the appropriate field
of the machine instruction.

Hllegal Constant.

Illegal Expression.

Illegal Operand Size for this Instruction.
Illegal Syntax.

Improper Addressing Mode

Improper Use of Mode Declaration. Symbol already has mode or declaration appears after first
use of symbol.

418 Error Messages

Improper Use of Size Suffix.
Invalid Opcode.
Label Required. For some pseudo-ops.

Module Directory Overflow. Too many ORG or RORG statements in assembly or Non-
Contiguous DS statements.

More Than One COM Statement.

More Than One MNAME Statement.

More Than One START Statement.

Phase Error. A symbol value is not equal in both passes.
Register or Register List Expected.

Right Parenthesis Expected.

Symbol Expected.

Undefined Symbol.

Error Messages

Debugger
Error Messages/Conditions

WHAT?
The first characters of a command are not recognized.
SYNTAX ERROR
Somewhere in the current command, the syntax rules for the command have been violated.
OVERFLOW
A number entered or the result of an arithmetic operation cannot be represented in 32 bits.
BUSERROR
An address has been accessed which does not exist in the machine’s configuration.
INPUT OVERFLOW
An internal input stack has overflowed.
ADDRESS ERROR
An odd address has been referenced when an even address is required.
TOO MANY CODES
Too many escape codes in the ET or ETN list.
SIZE ERROR
An entered value does not fit in the required space, e.g., registers.
TYPE ERROR

The parameter entered for a command is not the correct type; e.g., an alpha value when a line
number or address is required.

EXPRESSION TOO COMPLEX
The expression requires too much stack space to execute; e.g., more than three levels of
parentheses.

DIVIDE BY ZERO
The value to the right of the / symbol is zero.

UNDEFINED SYMBOL
An expression contains a reference to a symbol which the DEBUGGER does not recognize.

SIZE FIELD TOO BIG
In a format, the size field is too large for the object being dumped or the format spec being used;
e.g., the size field for [and U is 1..4. The default size for string data is the length of the string.

FORMAT REQUIRES MORE DATA
An attempt has been made to display more bytes than the object contains.

ADDRESS FORMAT NOT ALLOWED
The *, < > and " format codes are only allowed if the object is type address.

PC/SP HAS ODD ADDRESS
An attempt to return to the user code has been made under the above conditions.

DUPLICATE BREAK
GT orTT has specified a location which already has a break point defined.

419

420 Error Messages

Notes

Subject Index

Absolute symbols 243
Access command (Filer) 126
Accessrights (SRM)................. 46,110
Adding modules to System Library....... 280
Addresses (heap). 381
Addresses (of /O) 378-9
Addresses (of RAM) 375-6
Addresses (of ROM) 377
Addresses (stack). 381
Addresses (used by system) 381
Addressing modes, Assembler. 245
Addressingrange. 375
Adjust command (Editor) 74
ALIAS (Compiler option). 180
ALLOW_PACKED (Compiler option) 181
ANSI (Compiler option) 182
Assembler pseudo ops:
COM. ... 250
DC . 251
DECIMALt 251
DEF ... 252
DS 252
END.......... 253
EQU........ ... 253
INCLUDEot 253
LIST 254
LLEN ... 254
LMODE......... .. ccciiiiiaeat. 255
LPRINT 255
MNAME. 256
NOLIST ... 256
NOOBJ ... 257
NOSYMS. 257
ORG. ... 258
PAGE......... 258
REFA 259
REFR 259
RMODE............ccoiiit. 260
RORG 260
SMODE............cccoiviieiian.. 261
SPC ... 261
SPRINT 261
SRC ..o 262
START i, 262

Assembler syntax (diagram)............. 237
Assembler:
Addressingmodes. 245
Comment...................... 237,247
Declaring global variables. 229
Declaring module name 228
DEFtable.......................... 226
Errorrecovery.................... .. 233
Errors.l 417
Examplemodules 263
Exceptioncoding. 235
Expressions 244
EXTTable......................... 227
EXTERNAL procedures.............. 236
Generalsyntax 237
IMPORT text..........cccovvuvnnnn. 226
Instruction fields 238
Introduction. 221
Invoking.cooit 222
Lettercase.............ccovvvinn.. 238
Linelabel....................... ... 238
Listing.ccooviinn... 222,224
Localvariables. 230
Module initialization 233
Modules.............coovvviiiat. 225
Objectfile. 223
Opcode size suffix................... 240
Operand(s)..................... 237,241
Passing Parameters.................. 228
Pseudoopsl 250
Sourcefile, 222
Support of co-processor. 249
Syntax ... 237
Useofthestack..................... 235
Assembly language instructions.......... 237
Available memory (MEMAVAIL). 381
Backingupvolumes 113
Bad sector command (Filer)............. 128
Blocked and unblocked Units 25
Boot-timeerrors 408
Breakpoints (Debugger) 313

C

CALLABS (Compiler option) 183
Change command (Filer) 119,129
Changing memory contents. 322
Chapter Previews 234
Charactersets 383
Co-processor support 249
Co-processor:
688B81........ . . 237
Co-processors 239
CODE (Compiler option). 184
CODE_OFFSETS (Compiler option) 185
Color highlight characters. 394
Command reference:
Debugger.......................... 333
Editor 72
Filer. 122
Librarian. 293-5
Command summary:
Debugger 73,331,399
Editor........ 396
Filer. 397
Librarian. 398
Main Command Level 395
Command:
Krunch (Filer)...................... 140
Access (Filer) 126
Adjust (Editor) 74
Bad sector (Filer). 128
Change (Filer) 129
Copy (Editor). 76
Debugger (summary) 331
Delete (Editor) 78
Duplicate (Filer). 131
Equals (=) (Editor). 80
Exchange (Editor) 100
eXecute (Mainlevel) 8
Extended directory (Filer)............. 132
Filecopy (Filer). 81
Find (Editor). 81
Get(Filer). 139
Initialize (Main Level)................. 8,9
Insert (Editor). 84
Jump (Editor). 87
Librarian (Summary)............... 293-5
List directory (Filer). 142
MainLevel 56
Make (Filer) 144
Margin (Editor) 88
Memory volume (Main Level) 9
New (Filer)........ 146

New sysvol (Main Level). 12

Page (Editor) &89
Permanent (Main Level)............... 13
Prefix (Filer). 147
Quit (Editor). 90
Quit (Filer) 149
Remove (Filer). 150
Replace (Editor). 92
Run (MainlLevel) 14
Save (Filer) 152
Set (Editor). 95
Stream (Main Level).................. 15
Syntax diagram 7
Translate (Filer) 153
Unit directory (Filer) 155
User restart (Main Level) 18
Verify (Editor) 99
Version (Main Level). 19
Volumes (Filer) 157
What (Filer) B 158
What (Main Level) 21
Zap (Editor) 102
Zero(Filer)...................... ... 159
Comments, Assembler 237,247
Compiler option:
ALIAS. 180
ALLOW_PACKED 181
ANSL ..., 182
CALLABS 182
CODE.......... 184
CODE_OFFSETS 184
COPYRIGHT 186
DEBUG........................... 187
DEBUGON........................ 212
DEF 188
FLOAT_HDW...................... 189
General 179
HEAP_DISPOSE 190
IF 191
INCLUDE 192
IOCHECK 193
LINENUM 194
LINES. 195
LIST. 196
OVFLCHECK 197
PAGE......... 198
PAGEWIDTH 199
PARTIAL_EVAL 200
RANGE 201
REF. 202
SAVE_CONST 203
SEARCH 204
SEARCH.SIZE 205
STACKCHECK............. 206,212,213

SWITCH_STRPOS. 207

SYSPROG. ... 208
TABLES.o 209
UCSD. ... 210
WARN 211
Compiler:
Exrorsoviii e 177,413
Functioncalls. 214
Functionresults..................... 215
Global variables. 212
INCLUDE files.ccvvvnnnnnn. 176
Introduction.t 161
Invoking.t 162
Listng. 163
Modules..........cooviiiiiint. 167
Parameter passing. 214
Procedurecalls 213
Running the program 165
SEARCHoptioncocoviiieeent 173
Separate module compilation 172
Stack USAGE . . v 212
Staticlinks 217
Strategy for compiling modules.. 276
UCSDoptions.c.ovvvnnnnnnnn. 161
Workfile 165
Compilingmodules. 275
Constants, Assembler. 241
Copy command (Editor). 76
Copying:
DiSCS. .ot 113
Files ... i 116
COPYRIGHT (Compiler option). 186
Creating an SRM Directory 115
Cursorwheel 54,68
DEBUG ON {Compiler option) 212,304
Debugger commands:
B 335
BA ... 335
BC . 336
BD .. 336
BS. 337
CALL i 338
D 339
DA 341
DG . 341
EC . 342
ET. . 342

ETN .. 343
FB. . 344
FH ... 344
Fl o 344
FO .. 344
FU. . 344
G 345
GF 345
GT 346
GTFE .. 346
IF,ELSE,END 347
OLOWOB..............iit. 349
PN 350
PX. 350
Q. 351
QE ... 351
QS . 351
Register operations 353
Sb 353
Softkey commands. 352
T 354
TD 354
TQ o 354
T 355
WD. . . 356
WR. .. 356
WS 356
Debugger:
Breakpoint Table. 315
Breakpoints 313
Changing memory contents. 322
Clearing Breakpoints 316
Code file specification. 306
Command reference. 333
Commandscreen 308
Command summary. 331,399
DEBUG Compiler option. 304
Default display formats............... 313
Display formats 310
Displayingdata 310
Errors.......... i 419
Examining consecutive memory 320
Examining variables 318
Example program 304
Exception trapping 324
Executing a number of statements 316
Expressions 333
Formats for structured variables. 321
Generating Escapes 325
Inputformats....................... 313
Introduction. 303
Invoking.............c.oiiii i 306

Isitinstalled? 306,327

Key notation 306
Keyboard........................ .. 327
Loading 303,305
Pause function...................... 316
Prompt............................ 308
Queue 310
Sample session 304
Screendumps...................... 310
Single-stepping 308
Slow program execution. 309
Stackframe 317
Static and dynamic links. 323
Tracing program flow 317
DEF (Compiler option). 188
DEFtable........................ 226,296
DEF table command (Librarian) 287
Default display formats (Debugger). 313
Default volume. 22,26,106
Define Source 296
Delete command (Editor)................ 78
Deletingfiles 120
Directory access methods (DAMs) 10,34
Directory pathsyntax 30
Disassembly of amodule 265,288-91
Discdrives............................ 24
Display formats (Debugger) 311
Displaying data (with Debugger) 310
Drivenumbers......................... 25
Duplicate command (Filer). 129

Editor:
Anchor.................. 68
Backingup yourfile 67
Changingtext 57
Command summary:Editor 396
Confirming or aborting commands 53
Copying text from other files 52
Creatingatextfile.................... 49
Creatingtext...................... 50,51
Cursor.............................. 68
Deletingtext......................... 55
Duplicatingtext 56

Enteringthe......................... 48

Exiting the Editor. 66
Filesize............................. 69
Finding text patterns 62
Formattingtext 62
IOerrors........................... 71
Introduction......................... 47
Marginingtext 64
Movingtext 56
Movingthecursor.................... 54
Recovering deleted text 56
Setting the environment 64,65
Storingyourfile................... 51,66
StreamFiles......................... 71
Textfiles............................ 68
Usingworkfiles. 70
Window 68
Equals (=) command (Editor)............ 80
Errormessages 407
Errorrecovery...................... .. 233
Errors:
Assembler 417
Boot-time.......................... 408
Compiler 413
Debugger.......................... 419
Graphicserrors 411
I/Olibrary. 410
/Osystem 409
Loader/SEGMENTER. 412
Messages 407
Run-time 408
Syntax 163
Unreported 407
Examining consecutive memory
(Debugger). 320
Examining variables (Debugger) 318
Exceptioncoding. 235
Exception trapping (Debugger) 324
eXchange command (Editor)............ 100
eXecute Command (Main Level)........... 8
EXPORT 298
Expressions (Debugger) 333
Expressions, Assembler 244
EXTtable........................ 227,297
EXT table command (Librarian) 287
Extended directory command (Filer). . 109,132
EXTERNAL procedures................ 236
External symbols. 244

Filedirectory 272
File specification 29
File system:
Introduction.............., 23
Filetypescoovvieiiiiiiiiiinn 34
Filecopy command (Filer). 115,116,135
Filer:
Accesscommand 126
Bad sectorcommand 128
Change command............... 119,129
Command summary. 397
Confirming or aborting commands.. 104
Creating a Directory (SRM) 115
Deletingfiles 120
Duplicate command 131
Enteringthe Filer.................... 104
Extended directory command 109,132
Filecopy command 113,116,135
Getcommand 139
Introduction........................ 103
Krunchcommand................... 140
LeavingtheFiler.................... 121
List directory command 108,142
Makecommand 144
Newcommand 146
Prefix command 27,147
Prompt............ ...t 104
Quitcommand 149
Removecommand 150
RemovingFiles 120
Savecommand..................... 152
SRMaccessRights 110
Translate command. 36,111,153
Unit directory command. 155
Volume back-up 113
Volumescommand 24,157
Whatcommand. 158
What devices are accessible? 105
Wildcards.t 111
Workfile 121
Zerocommand 159
Files:
Creatingatextfile.................... 49
Deleting.................cooiitt. 120
File specification (syntax) 124
General Discussion 27
Interchange between BASIC and Pascal 371
LIFfilenames 32
Namestoavoid...................... 39

Naming Conventions 28

Object (definitionof). 272
Objectmodules. 165
Removing. ...t 120
Renaming.......................... 119
Size specification 33
Specification. 29
SRM concurrent file access. 46
SRMnames..............cccovvvvinn. 33
Stream 15
StreamFiles................... 71
Structure of textfiles.................. 70
Suffixes. i 34
Suppressing the suffix................. 35
Syntaxofname...................... 31
Translating between Data Types 36
Typeso 31,34
Wildcards 37,111
Workfile 70,121,165
WS1O0filenames 33
Find command (Editor) 81
Flags............. .. i, 298
FLOAT_HDW (Compiler option) 189
Formats for structured variables (Debugger) 321
Functioncalls. 214
Functionresults....................... 215

General Value or Address Record (GVR) 299

Generating Escapes (Debugger) 325
Get command (Filer) 139
Globalbase.......................... 212
Globalspacecovevvvenn. 20
Global variables 13,18,212,229,230
Glossaryc.covvviviininn. 401-6
Glossary (Librarian) 295
Graphicserrors 411
Heap (addresses) 381
HEAP_DISPOSE (Compiler option). 190
Hierarchical directories (SRM)............ 41
Highlight characters 394

/O addresses
/O library errors
I/O system errors
/O, memory map
IF (Compiler option)
IMPLEMENT

IMPORT text command (Librarian)
INCLUDE (Compiler option)
INCLUDE files (Compiler)
Initialize Command (Main Level)
Initializing modules
Input formats (Debugger)
Insert command (Editor)
Instruction syntax, Assembler
Interchange of files
Interface text

Katakana display characters
Key notations
Keyboard notation (Debugger)

Letter case;

Adding modules to System Library
Command summary

Creatinga Boot file 292

Creating libraries. 280
DEFtable.......................... 296
DEF table command 287
Define Source 296
Detailed file information.............. 286
EXPORT 298
EXTtable.......................... 297
EXT table command 287
Flags............ 298
General Value or Address Record (GVR) 299
Glossary........................... 296
IMPLEMENT. 299
IMPORT........................... 299
IMPORT text command.............. 287
Introduction........................ 271
Invoking........................... 278
Libraries. 272
Linking object files together. 283
Making your own library 282
Mass storage setup 279
Objectfile.......................... 300
Objectmodule. 300
REFtables......................... 301
Reference Pointer 301
TextRecord........................ 302
Unassemble commands 288-91
Whatitdoes 272
LIBRARY......., 277
Library:
Definiton of. 272
Overview 272
System........... 302
LIFfilenames 32
Line label, Assembler.................. 238
LINENUM (Compiler option) 194
LINES (Compiler option). 195
LINK instruction 213,231
Linking object files 283
LIST (Compiler option) 196
List directory command (Filer) 108,142
Listing files:
OnPRINTER. 112
Onscreen 112
Loader/SEGMENTER errors 412
Localvariables 230
Location counter symbol 242
Logical units. e 25

m

Main Command Level 5
Main Level command summary 395
Main Level commands................... 6
Make command (Filer). 144
Manual Overview. 1,2
Margin command (Editor) 88
Mass storage:
Introduction 23
Volumes..............cooiiiii. 24
MC68881.............ccivvinn. 239,249
MEMAVAIL function 381
Memory (RAM)........... 23
Memory characteristics. 23
Memory map (physical)................ 375
Memory map (RAM). 375-6
Memory map (ROM) 377
Memory map (software). 381
Memory volume command (Main Level). .. 10
Memory-mapped /O 3789
Modules:
Assembler 225
Developing and testing............... 170
Examples. 169,170,174,263-270,272
How the Compiler finds them. 275
How the loader finds them 277
Importing 273-7
Initialization, 233
Names used by operating system. 373
Object (definition of) 272
Pascal............. ... oo 300
Separate compilation 172
Strategy for compiling 170
Structure of 167
Monochrome highlight characters. 394
Mouse........... ..., 54,68
Movingfiles.......................... 116

New command (Filer) 146
New sysvol Command (Main Level) 12

Objectfile............ 300
Objectmodule. 300
Object module (definition of) 272
On-Line devices 9
Opcode:
Assembler. 237,239
Co-processor.oovvvineennn.. 239
Processor................ 239
Size suffixes................. 240
Operand components, Assembler. 246
Operand(s):
Componentso.oun 241
Constants.ccovvunn.n 241
Description. 237,241
Location counter symbol 242
Symboltype 243
Symbols.................. il 242
Othermanuals 1,2
OVFLCHECK (Compiler option) 197
PAGE (Compiler option) 198
Page command (Editor)................. 89
PAGEWIDTH (Compiler option) 199
Parameter passing. 214
PARTIAL_EVAL (Compiler option) 200
Pascal 1.0 (description) 357
Pascal 2.0 (description) 359
Pascal 3.0 (description) 362
Pascal 3.01 (description) 366
Pascal 3.1 (description) 367
Pascal stack.................... R 212
Pascal system history 357
Pascal:
Description of extensions............. 161
Module............................ 300
Source programc...... 186
Volumes........................... 24
Passing parameters.................... 228
Passwords (SRM files) 46
Permanent Command (Main Level). 13
Physical memory map 375
Prefix command (Filer).............. 27,147

Prefixvolume 26

Problems:
Compiler 177
File namesto avoid 39
Insufficient global space.............. 178
Noroomonvolume.................. 40
Not Enough Memory 178
Syntax errors. 163
Procedure calls (effects on stack) 213
Procedures, EXTERNAL 236
Processor, 68020 237
Programming system 225
Prompts:
Date 20
Debugger.......................... 308
Editor, 49
Filler......... 104
MainLevel........................... 5
Time............................... 20
Queue (Debugger) 310
Quit command (Editor) 90
Quit command (Filer). 149
RAMmemory 23
RAM memorymap.................. 375-6
RANGE (Compiler option) 201
Range of addresses. 375
REF (Compiler option). 202
REFtables........................... 301
Reference Pointer. 301
Register symbols. 242
Relative symbols...................... 244
Remove command (Filer) 150
RemovingFiles 120
Renaming files. 119
Renaming volumes.................. .. 119
Replace command (Editor) 92
ROMaddresses....................... 377
ROM memorymap 377
Run Command (Main Level)............. 14
Run-timeerrors....................... 408

S

Save command (Filer) 152
SAVE_CONST (Compiler option) 203
Screen dumps (Debugger).............. 310
SEARCH (Compiler option) 204
SEARCH_SIZE (Compiler option) 205
Set command (Editor) 95
Single stepping a program.............. 309
Size suffixes of opcodes................ 240
Slow program execution 309
Software memory map 381
Source program 162
SRM:
Accessrights. 46,110
Concurrent file access. 46
Creating a Directory 115
Current working volume 43
Default volume 45
Directories 41
Directory structure. 41
Filenames.......................... 33
File notation. 42
Passwords 46
Unit numbers. 42
Volumes............................ 42
Stack (addresses) 381
Stack (How Pascal usesiit).............. 212
Stack frame (Debugger)................ 318

STACKCHECK (Compiler option) . .. 206,212
STACKCHECK ON (Compiler option) ... 213

Static and dynamic links (Debugger) 323
Static links (Compiler) 217
Stream Command (Main Level) 15
Streamfiles 71
Subsystems 5
Suffix Suppression 35
Suffixes. 34
Summary:
Debugger commands................ 331
Editor commands 72
Filer Commands 122
Librarian commands............... 293-5

SWITCH_STRPOS (Compiler option). ... 207
Symbol types:

Absolute........................... 243
External 244
Register 243
Relative 244

User-defined 243

Symbols. ... 242
Syntax diagram (explanation) 7
SYSPROG (Compiler option) 208
System addresses 381
System File Table 12,21
System files 12,21
System history. 357
System Library 8,12,22,277,302
System version 19
Systemn volume:

General 12,22,107

Purposeofl 26

TABLE program:

General.t 9
TABLES (Compiler option)............. 209
Text files:

Creatingcovvvviiiininn. 50,51

Structure of 70
TextRecord. 302
Translate command (Filer) 36,111,153
TRAP instruction. 213,231
U.S. ASCll characters. 384-5
U.S./European display characters 386-91
UCSD (Compiler option). 210
Unassemble commands (Librarian) ... 288-91
Unit directory command (Filer).......... 155
Unit numbers:

Defined..............ccoiiiiiin.. 25

General 910,12
UnitTable. 910,25
Units (blocked vs unblocked) 25
UNLK instruction 214
Unreported errors. 407
User restart Command (Main Level) 18
User-defined symbols. 243

Usingthestack 235

Variables, global 18,20
Variables, zeroing 18
Variables:
Global. ... 13
ZOYOMNG. . o oov et e et 13
Verify command (Editor) 99
Version Command (Main Level).......... 19
VolumeID.......... ... i, 29
Volumes command (Filer) 24,105,157
Volumes:
Backingup.........ccovviiiii... 113
Default Volume. 26
Defined................ciiiiiit, 24
General. 24
Pascal........... ...t 24
Prefix Volume 26
Renaming................ovivint. 119
Specification (syntax) 125
Syntax of identifier 29
System Volume. 26

WARN (Compiler option) 211
What command (Filer)................. 158
What Command (Main Level)............ 21
Wildecardscoiiii 37,111
Workfile 121,165
Workfiles i 70
WS10filenames...................... 33

Zap command (Editor)................. 102
Zero command (Filer) 159

Manual Comment Sheet Instruction

If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

98615-90022

Name:

MANUAL COMMENT SHEET

Pascal 3.1 Workstation System
for the HP 9000 Series 200/300

Update No.
(See the Printing History in the front of the manual)

May 1985

Company:

Address:

Phone No:

Programming Experience:

System Configuration:

Comments:

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Reorder Number
98615-90022
Printed in U.S.A. 5/85

()

HEWLETT
PACKARD

il

98615-90621

Mfg. No. Only

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB
	replyC
	xBack

