HP 9000 Series 200/300 Computers Y packanD

Pascal 3.1 Workstation System

Vol. [I: Programming and Configuration Topics

Pascal 3.1 Workstation System

Vol. II: Programming and Configuration Topics
for the HP 9000 Series 200/300 Computers

Manual Reorder No. 98615-90022

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1985...Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Table of Contents

Chapter 10: Overview of Workstation Software Features. 1
INtrodUCHON 1
Chapter Contentsttt e e e 1

The Big Picture. 2
The Series 200 Implementation of Pascal. i 4
ANSIISO Pascalo 4

UCSD Pascal Features 7

HP Pascal Features i e 8

Series 200 Workstation Pascal Compiler Options, .. 9

HP Systems Programming Extensions il 10

A Final Word Concerning Language Extensions. 10

HP Series 200 Software Librariesttt 11
Library Modules e 12
User-Designed Modules 13
Chapter 11: Data Structures ittt 15
Data T DS . . . vt e 15
Scalar TYPeS . .\ttt 15

HP Pascal Features i e e e 16
Packing Variables. 18
Determining the Size of Variablesand Types............. i ... 19
Absolute Addressingof Variables. 20
Setting a Variable’s Absolute Address. i 20
Determining a Variable’s Absolute Address 20
Conformant ArTaysottt 21
Chapter 12: Program Flow. 27
IntrodUcCHON e 27
Standard Branching. 27
CASE/OF . . o 27
Procedures and Functions i 28
Relaxed Typechecking of VAR Parameters 28

Procedure Variables and the Standard Procedure CALL 30

iii

iv

Chapter 13: Numeric Computationooiiiiiiiiiiiiiiiiiian... 31
IntrodUuctiono 31
Numeric Data Types.ottt 31
Evaluating Scalar Expressions i 35
The Hierarchy 35

(@) 0123 c=Y (o) -3 S P 37
Numerical FUNCHONS e 42
Dealing with Anglesand Such........ i i i 43
Range Limits 47
Truncating Real Numbers Qutside the Integer Range. 47
Rounding 49
Logarithms and Powers 52
Calendar FUNCHONS 54
Thedulian Day 54
Number Base Conversion.ttt 57
Random NUmbers 60
Workstation Support of Pseudo-Random Numbers 60
Using the Pseudo-Random Number Generator. 61
Chapter 14: String Manipulation. 67
IntrodUucCton 67
Special Cases of String Assignment 67
Declaring String Variables. 69
StringLength. 69
String Storage iNn Memory 69
SHING AITAYSottt 69
Evaluating Expressions Containing Strings. 70
Evaluation Hierarchy 70
String Concatenation it 70
Relational Operations. it 71
String Functions. 72
SUDSHINGS. . . . v\ttt 72
CurrentLengthofaString. 73
Maximum Lengthof aString. 73
Substring POSIiono 73
String-to-Numeric Conversions 75
Character-to-Numeric Conversions. 77
Numeric-to-String Conversions 78
Numeric-to-Character Conversions.ouittrie .. 78
String Repeat. 79
Trimming a String 79
Combining Strings. o i 79
Reducing Stringso oot 81
User-Defined String Functions 82
Case CONVEISION. . ..ottt et e e e e 82
String Reverse 82
Search-and-Replace Operations 83

Sectons of StNGS.ttt 84

Chapter 15: Programming With Files 85

INtrodUCHONo e 85
Overview Of Fles e 86
Primary versus Secondary Storage i 86
WhatIsa File?. 86
Classifications of Fileso it 89
Item-Oriented Files e 90
Creating and Writing to an Item-Oriented File. 90
Reading Sequentially FromaFile...........o oL 91
Detectingthe EndoftheFile o o i i i il 92
Line-Oriented (Text) Files. i e 94
Creatinga File............ i 94
Writingtoa File.o 95
Reading a Text File with the Editor. o o o L. 96
Reading a Text File withaProgramo oo i i .. 96
Detectingthe EndoftheFile........... o o 98
Detectingthe Endofaline.......... o i i 98
Other Typesof Text Files. e 99
More Details on Programming With Files. 103
Pascal Primitive File Operations 103
CreatingNew Filesoo i 103
File POSItiONot e 104
TheBuffer Variable 105
File States. 105
Restrictions on APPEND 107
Disposing of Filest 107
Opening Existing Files 107
Sequential File Operations. 108
Direct Access (Random Access) Files 110
Text Files INPUT and OUTPUT o e 112
Representationsof a TextFile. 113
Formatted Inputand Qutputttt 114
Reading a STRING or PAC froma TextFile................................ ... 115
RESET, REWRITE, OPEN, and APPEND. 116
Debugging Programs Which Use Files 117
SRM Concurrent File ACCeSSottt et e e 118
SRM Access Rights o 120
How Magnetic Discs Work o 121
Chapter 16: Dynamic Variables and Heap Management. 125
Stack/Heap Architecture 125
Dynamic Variables and Pointerso i i 125
Heap Managementttt 126
MARK and RELEASE 126

Mixing DISPOSE and RELEASE e 128

Chapter 17: Error Trapping and Simulation. 129

Introduction 129
Error Trapping and Simulation 129
The IORESULT Function 131
$IOCHECKS and IORESULT. i, 132
Extended Error Information. 133
Determininga File’'s Existence. 134
Error Simulation 136
Chapter 18: Special Configurations. 137
Introduction 137
Chapter Organization. vt 137
The Booting Process. 139
The Boot ROM. 139
The Pascal System Discs........... .. o 139
The System Boot File (SYSTEM_P) 140
The Initialization Library (INITLIB) 140
The Command Interpreter (STARTUP) 141
The Auto-Configuration Program (TABLE) 141
The AUTOSTART and AUTOKEYS Stream Files. 142
Libraries. 142
The Auto-Configuration Process. i, 143
The Unit Table 143
How Unit Numbers Are Assigned 144
Unblocked Devices. i 144
Blocked Devices 144
Choosing the System Volume 148
Failure of the TABLE Program. 148
Example Special Configurations 0 i, 149
Hard Disc Partitioning 149
Multiple On-Line Systems i, 149
Adding Interfaces and Peripherals 150
SettingUpan SRM System i 153
Changing the System Printer 153
Using Bubbles and EPROM 154
Using Alternate DAMS 155
Modifying the Configuration 159
Coalescing Hard Disc Volumes. 159
Copying System Files and Changing Their Names 167
AUTOSTART and AUTOKEYS Stream Files. 170
Adding Modules to INITLIB i, 170
Modifying the TABLE Program i, 179
Commentary on the CTABLE Program 180
Modifying Module OPTIONS 181
About Module CTR 191
About Module BRSTUFF 192
About Module SCANSTUFF. 192

vii

Editing CTABLE 196
Compiling and Running CTABLE 197
Verifying the New Configuration i i, 197
Making the New Configuration Permanent. 198
Example SRM Configuration.ttt 201
Prerequisites e 201
Overview of SRM Installation 202
Installing the SRM Driver Modules. 203
Re-Configuring with TABLE 203
Creating the Required Directoriesand Files 204
Copying the System Filesto SRM 207
Adding Modules to INITLIB 210
Replacing INITLIB e 211
Multi-Disc SRM 213
Chapter 19: Non-Disc Mass Storage.ttt 215
Introduction 215
Summary of Configuration Modifications 215
Mass Storage CompariSOn.ttt e 216
Using Bubble Cards 217
Power Constraints.ot 217
Bubble Card Configuration. 217
INITLIB Driver Modules i 219
CTABLE Modificationsiiitii it 221
Compiling CTABLE e 222
Linking CTABLE 222
Bubble Cards in the File System 223
Initialization 225
Interrupts and Overlapped VO 225
Using EPROM Memory e 226
OVeIVIEW . . . oo 226
Configuration Changes Required 226
INITLIB Driver Modules i i 227
Programmer Card Installation. 227
EPROM Card Installation 229
The Programming Utility 232
Transferring Volumes to EPROM. 232
Transferring Files to EPROM 233
The EPROM Transfer Utility o e 235
Loading the EPROMS Module. 241
CTABLE Modificationscouitiiii e i 244
EPROM Cards in the File System 246
Using DCO00 Tapest e 247
Tape Drives Supported 247
Tape Access Methods i 247
Using the Tape Backup Utility 248

Using the File System for Direct Tape Accessccoviiiiirennnnnn.. 253

viii

Chapter 20: Porting to Series 300 255
Introduction 255
Who Needs this Information? 255
Methods of Porting. 255
Chapter Organization.ouiiuii it 255
Description of Series 300 Enhancements. 256
Areas of Change. 256
Areasthat Did Not Change. 256
Displays 256
Processor Boards i 257
Battery-Backed Real-Time Clock 258
Built-In Interfaces 258

ID PROM. ... 260
Just Loading and Running Programs.. 261
Should Problems Arise 261
Using a Configuration Program. 262
Example of Serial Interface Configuration. 262
Using Compatibility Hardware. 264
Hardware Description 264
Steps in Using this Card Set.......... 266
Modifying the Source Program 267
Programs Compiled on Pascal 2.1 (or Earlier Versions)......................... 267
HP 98203 Specific Key Codes. 267
Linked-In, Incompatible Modules. 268
Use of Low-Level Procedures. 268
Full Utilization of Series 300 Hardware Features............................... 268

EXror MeSSages.ooooo et e e e 269

Overview of Workstation Chapter
Software Features 10

Introduction

This chapter briefly lists the features of the Pascal language implemented on the Series 200
Workstation System. It also briefly describes the Procedure Library supplied with the system.

Chapter Contents
e Constituents of the HP Series 200 Pascal language implementation
® ANSI/ISO Pascal features
® UCSD Pascal! extensions
e HP Pascal extensions
® HP Series 200 Pascal Compiler options
® HP Series 200 Systems Programming extensions
® Overview of HP Series 200 Workstation software libraries

1 UCSD Pascal is a trademark of the Regents of the University of California.

2 Software Overview

The Big Picture

The software supplied with the HP Series 200 Workstation Pascal system can be divided into
several constituent parts, as shown in the following diagrams:

Constituents of the Series 200 Implementation of Pascal

ANSI/ISO Pascal

UCSD Pascal

HP Pascal

HP Series 200 Compiler Options

HP Series 200 Systems Programming Extensions

Software Qverview 3

The HP Series 200 Software Libraries

Standard Library
Heap Management
Pseudo—Random Number Generator
USCD Unit 1/0
SRM Concurrent File Access

Input/Output (1/0) Library

Segmentation Library

Device—independent Graphics Library (DGL)

Interfaces to Selected Operating System Modules

Device Driver Modules

Subsequent sections of this chapter further describe each part of the drawings.

4 Software Overview

The Series 200 Implementation of Pascal

The HP Series 200 Workstation implementation of the Pascal language contains a full complement
of features. This section describes the constituents of this implementation of the Pascal language.

ANSV/ISO Pascal

ANSI/ISO Pascal

The term “ANSI/ISO” is an abbreviation of for two different Pascal standards. The “ANSI”’ portion
stands for the Pascal standard adopted jointly by ANSI (the American National Standards Institute)
and IEEE (the Institute of Electronics and Electrical Engineers). The “ISO” portion stands for the
Pascal “Level 1"’ standard adopted by ISO (the International Standards Organization).

The HP Series 200 Workstation Pascal implementation contains all of the features of both the
ANSI/IEEE and the ISO Pascal standards. Programming in ANSI/ISO Pascal is described in the
Programming and Problem Solving with Pascal textbook supplied with the Workstation Pascal
system.

Software Overview

Here is a list of the keywords in ANSI/ISO Pascal, which are all supported in this implementation.

Declarative Statements

prodram
const
label
tvee

var
procedure
function

Program Parameters

inpPut
outpPut

Program-Flow Control
bedins.oend
casesss0f
ifsesethenssvelse
doto
forsisto

veodownto
rerpeat e euntil
whilessdo

Standard Procedures
get
new
rachk
rade
PUL
read
readln
reset
rewrite
unprack
Wwrite
writeln

Data Types

arravy
boolean
char
file
inteder
packed
real
record
set
text
with

Numeric Functions

abs
arctan
cos
exp
In
odd
round
sin
sqr
sqrt
trunc

Set Operators

+

*
in

Pre-defined Constants

false
true
nil
maxint

Ordinal Functions

chr
ord
pred
SUCC

File Functions

eof
eoln

Assignment Operator

Arithmetic Operators

+

*
/
div
mod

Comparison Operators

[BN
n

"

P
Logical Operators

and
not
or

6 Software Qverview

Extending *“‘Standard” Pascal’s Capabilities

Pascal is a general-purpose programming language. It was originally designed as a language to
teach structured programming, and it has since gained widespread use due to this orientation.
However, as with all languages, the Pascal programming language cannot satisfy every program-
mer’s needs; in such cases, the feature set can be “‘extended’ to fit certain applications.

There are two general ways to extend the capabilities of a programming language:

® Add extensions to the language itself.
e Write “library” routines that can be called from the language.

The Pascal Workstation designers have used both methods to add capabilities to this system.
Language extensions are described in the following sections, followed by libraries in later sections.

Language Extensions
Adding extensions to a language requires that the designers add to the list of ‘keywords” that the
Compiler will recognize. This Pascal implementation contains four general categories of extensions:

® UCSD Pascal’® extensions

o HP Pascal extensions

® Series 200 Workstation Pascal Compiler options
® HP Series 200 Systems Programming extensions

Each category is further described in subsequent sections.

1 UCSD Pascal is a trademark of the Regents of the University of California.

UCSD Pascal Features

UCSD Pascal

Software Overview 7

UCSD Pascal adds many useful features to the “‘standard” Pascal language. The UCSD Pascal
features which this Pascal implementation supports are fully described in ‘‘Supported Features of
UCSD Pascal” in the ‘“Workstation Implementation” appendix of the HP Pascal Language Refer-
ence. Here is a brief summary, showing the various levels of support for UCSD features.

Fully Supported

blockread
blockwrite
close

Compiler options
external

Files

fillchar

Heap Management
moveleft
moveridht
Reals

scan

set

sizeof

Special Program Heading

Standard Units
Strings
unitbusy
unitclear
unitread
unitwrite

Untyped Files
Unsupported Features

log

Long integers
Multi-word comparisons
pwroften

Slight Differences

CASE
Comments
Compilation Units
exit

gotoxy

halt

16-bit Integers
interactive
ioresult
memavail
seek

time

Type Checking
unit

8 Software Overview

HP Pascal Features

HP Pascal

HP Pascal includes many of the UCSD extensions to ANSI/ISO Pascal, plus some of its own. The
HP Pascal extensions to ANSI/ISO Pascal are briefly summarized in this section, and more fully
described at the beginning of the HP Pascal Language Reference. Complete, detailed descriptions
of individual procedures, reserved words, etc., are provided in the body of the same reference.
Examples of using many of these HP Pascal extensions are provided in the subsequent ‘‘Program-
ming Topics” chapters of this manual. Here is a brief summary of the areas in which HP Pascal has
extensions:

HP Pascal Features
Compiler Options
Conformant Arrays
Constant Expressions
Early Program Termination
Extended Variable Assignment Compatibility
Full File-l/O Feature Set
Functions May Return Any Structured Type
Heap Management Capabilities
Identifiers May Contain ““-”’Character
Intermixing of Declaration Parts of Programs
Longreal Data Type
minint Pre-defined Constant
Modules
Numeric-to-String Conversions
OTHERWISE in CASE Statement
Record List in WITH May Include Function Calls
Record Variants May Be Subranges
String Literals May Contain Control Characters
String Data Type
Structured Constants

Series 200 Workstation Pascal Compiler Options

HP Series 200 Compiler Options

Software Overview 9

Some Compiler options affect the way that the Compiler emits object code, while others allow the
use of UCSD and HP Series 200 Systems Programming extensions. For a description of each
option, refer to the ‘“Series 200 Compiler Options’ section of the ‘“Workstation Implementation”
appendix of the HP Pascal Language Reference.

Code-Generation Control

callabs

code
code_offsets
debug
float.hdw
heapr.disprose
if

iocheck
ouflcheck
partial_eval
range
stackcheck

Compiler Listing Control

Linenum
lines
list

pade
padgewidth
tables

Message Control

ansi
coPyright
warn

Use of External Files

def

include

ref

search
search.size

Language Feature Control

alias
allow_Packed
save_const
switch_strpros
sysprod

ucsd

10 Software Overview

HP Systems Programming Extensions

HP Series 200 Systems Programming Extensions

The HP Series 200 Systems Programming extensions are briefly described in the following list.
Programming examples of most features are given in the ‘‘Programming Topics” chapters of this
manual. Complete descriptions of all features are provided in the ‘“‘Systems Programming Exten-
sions” section in the ‘“Workstation Implementation” appendix of the HP Pascal Language Refer-
ence.

Error Trapping and Simulation Determining Size of Variables and Types

escape sizeof
escarecode
ioresult

Relaxed Type-Checking

try/recaver anyprtr
. anvvar
Absolute Address of Variables ‘
4 Special Procedure Calls
a T
var syntax call

Variables of type rrocedure

With the power of these System Programming features, however, comes the restriction that prog-
rams that use them will probably be dependent upon the Workstation Operating System and
possibly the hardware on which the programs are executed (which may include its specific con-
figuration).

A Final Word Concerning Language Extensions

Although these extensions provide many additional capabilities to the Pascal language, they do not
provide a full set of tools for accessing Workstation computer capabilities. That tool set is provided
by software libraries.

Software Overview 11

HP Series 200 Software Libraries

Standard Library
Heap Management
Pseudo—Random Number Generator
Usch Unit 1/0
SRM Concurrent File Access

Input/Output (1/0) Library

Segmentation Library

Device—independent Graphics Library (DGL)

Interfaces to Selected Operating System Modules

Device Driver Modules

The second way to “‘extend” a language’s capabilities is to place commonly used procedures,
functions, data types, and so forth into “libraries” which are accessible to all programmers on the
system. In this system, these libraries consist of object-code “modules” produced by the Compiler,
Assembler, or Librarian. Each module is an independent program fragment that contains data and
procedures which are usable by other programs (and other modules). The general topic of modules
is discussed in the Compiler, Assembler, and Librarian chapters of this manual.

12 Software Overview

Library Modules

The following list of libraries is organized according to the file in which they are shipped with the
system. A list of the discs and files upon each is provided in the Pascal User’s Guide; you may also
want to generate your own list by using the Filer’s List (or Extended_list) command.

The L1BRARY file provides the following four modules:

® The HPM (Heap Management) module provides the new and disrose procedures that can be
used to allocate and reclaim memory used by dynamic variables. See the ‘“Dynamic Variables
and Heap Management’’ chapter for examples.

® The rRND (Random Numbers) provides the random procedure and the rand function that are
used for generating pseudo-random numbers. See the “Numeric Computation” chapter for
examples.

® The u1o (UCSD Unit I/O) module provides the tlockread, blockwrite, unitbusy, unitclear,
unitread, unitwait, unitwrite procedures that are used for “low-level” input and output
(I/O) operations with mass storage ‘‘blocks”’. See ‘‘Supported Features of UCSD Pascal” in
the ‘“Workstation Implementation” appendix of the HP Pascal Language Reference.

® The Lock module provides features that support concurrent file access on the Shared Resource
Manager (SRM) “‘file server’” system. The lock function and the unlock and waitforlock
procedures are used to lock and unlock shared files. See the ‘‘Programming with Files”
chapter for examples.

The 10 (Input/Output) file provides several modules which provide constants, types, variables,
procedures, and functions used for communicating through HP Series 200 interfaces. These proce-
dures are described in several chapters of the Pascal Procedure Library manual. A functionally
grouped list of all procedure and functions is also provided at the beginning of the ‘“Procedure
Reference” section of that manual.

The “DGL” (Device-independent Graphics Library) files contain the modules that provide proce-
dures and functions for drawing and labeling graphics images on both raster and physical-pen
plotting devices. They also contain procedures and functions for graphics input devices, such as a
graphics tablet, mouse, knob, and TouchScreen™. See the Pascal Graphics Techniques manual for
examples.

Software Overview 13

The INTERFACE file provides an interface to selected Operating System modules. Here are the
modules which are documented in the manuals:

® I10DECLARATIONS and various other modules provide many useful data structures that are used
by various parts of the system and by many procedure libraries. See the “Introduction to I/O”
chapter of the Pascal Procedure Library manual for details on the I10DECLARATIONS module.

® The sYsDEVS (System Devices) module provides procedures and functions for using the built-in
displays, keyboards, and timers of Series 200 machines. These procedures are described in the
“Systemn Devices” chapter of the Pascal Procedure Library manual.

e The SEGMENTER module provides procedures and functions for executing small segments of
larger programs, in order to decrease memory requirements. These procedures are described
in the “‘Segmentation” chapter of the Pascal Procedure Library manual.

Note
Of these Operating System modules with interfaces in the INTERFACE
module, only the use of the IODECLARATIONS, SYSDEVS, and SEGMEN-
TER modules are documented in the Pascal Procedure Library manual.
Descriptions of the other Pascal 3.0 Operating System modules are
given in the Pascal System Internals Document (version 3.0 or later).

Other files on the ConF1G: disc provide device driver modules which contain code that the system
uses to communicate with interfaces and devices. For instance, the GP10 file (which contains a
module of the same name) provides driver routines that are used to communicate through an HP
98622 General-Purpose Input/Output (GPIO) interface. Note that these device driver files contain
no ‘“‘export text’’ that describes the procedures, etc. in the modules, because the drivers don’t need
it.

The most commonly used modules are automatically loaded into your system during the booting
process, because they are in the INITLIB file on the B0OT: disc. For instance, the CS80 module
provides routines which communicate with CS/80 and SS/80 type disc drives. The “Special Con-
figurations’ chapter of this manual describes the booting process and all driver modules shipped
with the system.

You may have had to install other driver modules yourself while configuring your system. The
description of this process is in the “Adding Peripherals’ section of the Pascal User’s Guide.

User-Designed Modules

One of the most powerful capabilities of this system is that you can design your own specialized
libraries using the HP Pascal module construct. That subject is discussed in the ‘‘Compiler,”
“Assembler,” and ‘‘Librarian’’ chapters of this manual, as well as in the “Overview” chapter of the
Pascal Procedure Library manual.

14 Software Querview

Notes

Chapter

11

Data Structures

One of the most powerful features in Pascal is the ability to create data structures. A data structure is
an arrangement of types of data in such a way that it most accurately represents the model you are
trying to represent.

Data Types
Hewlett-Packard Workstation Pascal supports all standard Pascal data types. This section briefly

summarizes these types and how they are used. Extensions to standard Pascal provided by Work-
station Pascal will be noted in the text.

Scalar Types

The word *‘scalar”’ in the phrase ‘‘scalar types” means single-valued; that is, variables of these types
each contain only one piece of data. This is opposed to the concept of “‘structured” types, a kind of
do-it-yourself data type. Structured types are covered later in the chapter.

Standard Data Types
The simplest data structures are those simple, standard types provided by the Pascal language.
These are:

integer A 32-bit signed integer number.

real A 64-bit signed floating-point number.
char An 8-bit ASCII character.

boolean True or false values.

Note that the first three types above are implementation-dependent in the areas of number of bits,
format of bits, etc.

15

16 Data Structures

HP Pascal Features

Array Constants

To make a constant which is of an array type, you specify the type, a “‘t”’, the values, separated by
commas, and a ‘“‘1”’. The base type must be declared before the constant declaration; e.g., in the
sample code below, you must declare a type ManthsTrre before you can declare the 12-element
constant array DavsPerMonth. For example:

[T R2)
[

tyrPe
MonthsTypes= array [1+4+12] of intederi
const
DavsPerMonth= MonthsTvpel31.,28,31,30,31,30,31,31,30,31,30,3113
tvpe
LineTrre= array [1.,+4]1 of reali
MatrixTvpes= array [1..4]1 of LineTvres
const
Identity= MatrixTyrellLineTyrell4s0y 0,0 0,0, 0,01,

[LineTyprelQ.0y 1,0y 0,0y 0,07,
[LineTvpel0.,0y 0.0y 1,04 0,01,
[LineTypel0,0y 0,0y 0,0, 1,0113

Note
When making a structured constant of a multidimensional array, it must
be declared one dimension at a time; e.g., a vector of vectors, rather
than a 2D array.

When declaring an array constant and there are several identical values in consecutive places, you
can declare them something like this:

type
VectorType= array [1.,1001 of intedersi
const
Yectors= VectorTyrell14+2+396 of 0,:7+90 of 013

This results in an array, none of whose elements’ values can be changed, in which there are these
values:

1, 2, 3, six zeroes, 7, and ninety more zeroes.

Data Structures

Record Constants
When declaring a constant of some record type, you must specify the field name before the
corresponding value. For example:

tvre
DateTvpe= record
Month: 1v4123%
Day: 1+,31%
Year: inteders’
endi
MaritalStatusTvre= (Sindley Married,» SeraratedDivorceds Widowed)s
IntervieweeType= record
Name: strindg[3013
BirthDate: DateTvpresi
MaritalStatus: MaritalStatusTyres
NumberOfChildren: 1.,,201%
Education: set of (HighSchools BAs BSs MA,
MS+ PhD,y DD)
endi
const
ThisPerson= IntervieweeTyrPel[Names: ‘John Q. Public’
BirthDate: DateTyrelMonth: 10,
Dav: 20
Year: 189551,
MaritalStatus: Married,
NumberOfChildren: 14
Education: [HighSchool s BS5115

Set Constants
Set constants can be made. In a set constant, the elements must be surrounded by brackets, so the
compiler knows that it is a set constant. No base type is required in order to declare a set constant:

const
Yowels= [‘a’+'e’+’i"+'0"+’u’1i7 {set constant}

17

18 Data Structures

Packing Variables

In the discussion of arrays, there was some mention of PACs, or packed arrays of characters. Arrays
of (type) are different than packed arrays of (type), no matter what (type) is.

Probably the most common reason for packing a data structure is that it takes less memory to
contain the data. However, you pay for the reduced memory demands in increased time required
to access the variables. There is a way, though, to get the best of both worlds: the lower memory
consumption of packed variables and the high speed of unpacked variables. The rack and unrack
procedures allow you to do this.

Suppose you have an array of packed variables. They are packed to save file space and memory
space. You can unpack an element, process it at the higher speed afforded by unpacked variables,
and repack it.

One precaution: when packing variables, you may not get exactly what you wanted. The compiler
may do some field justification to byte- or nybble boundaries in order to make processing faster.

$tables$
tvype
NotReallvPackedRec= packed record
case inteder of
1+ (RealNumber: real)s

2: (SidgnBit: booleansi
Exponent: packed array [1,+11) of booleans
Mantissa: packed array [1.,,52] of booleans)

endsi

One would think that this is a convenient way to deal with the various subfields in a real number.
However, although you specify “‘racked”, it is not really packed; it's no more compact than if you
hadn’t specified racked. You can verify this by specifying the compiler option $tables$, which
causes the following information (among other things) to be printed in the listing:

NOTREALLYPACKEDREC tvre
record unpacksize=11 align=2

EXPONENT field offset=2
MANTISSA field offset=4
REALNUMBER field offset=0

SIGNBIT field offset=0 bitoffset=0

Data Structures 19

The reason that the above example is not any more compact than the unpacked version is that
there are some constraints on packing. While an attempt is made by the compiler to use less space,
there are also some requirements for efficient access; both packing and alignment are considera-
tions:

® Nothing whose size is a long word or more is packed. Thus, integers, pointers, and reals are not
packed. Also, if a record contains other records, the internal records are not packed with
respect to the record which contains them.

® Everything that is packed must be accessible with one long-word access, and long-word
accesses must take place on even-byte boundaries. For example, it is conceivable that a 17-bit
field would not be accessible by a single 32-bit access. Thus, this field would not be packed in
this way.

® Arrays are packed along 1, 2, 4, 8, or 16-bit boundaries. Thus, an array of 5-bit fields would be
packed only to 8-bit boundaries.

In addition to the optional keyword racked in front of array, record, set, and file type specifiers,
there are two routines, rpack and unrack, which convert an array of (type) to a
packed arrav of (type)and vice versa. See the HP Pascal Language Reference for details on rack
and unrack.

Determining the Size of Variables and Types

The size (in bytes) of a data type or variable can be determined by the Systems Programming
function! sizeof. To use this feature, you must use the $svserog$ or the $ucsds Compiler option.
Here are examples of usage:

$5ysProgs

UBrytesi=sizeof(Variable)i

TBrtes:i=sizeof(TrreName)}

If the variable or type is a record with variants, optional tagfield constant(s) may follow the variable
name parameter. Syntactically, it is similar to a call to the standard Pascal procedure new:

NBrtes:=sizeof(RecWarsTrueFieldsBlueField)i

1 Although sizeaf looks like a function, it really is not one; it is actually a form of compile-time constant.

20 Data Structures

Absolute Addressing of Variables

Systems Programming extensions also provide the capability of programmatically setting and deter-
mining the absolute address of variables. This capability requires $svserods.

Setting a Variable’s Absolute Address
A variable may be declared as located at an absolute or symbolically named address:

var
SysFlaglhex(/FFFED2')1: charsi
AssemblerSvymboll‘external_name’]: inteder}

Each variable named in a declaration may be followed by a bracketed address specifier. An integer
constant gives the absolute address of the variable. A quoted string literal gives the name of a
load-time symbol which will be taken as the location of the variable; such a symbol must be present
in RAM when the program is run. These symbols are not accessed as globals and do not count
against the 32K-byte limit per module.

Determining a Variable’s Absolute Address

The addr function returns the address of a variable in memory as a value of type anvrtr. This also
requires $svsprogs.

tyre
SomeTvpe= (type_declaration)
var
PointerlsPointer2: anyrtri
Variablel: inteders
Variable2: SomeTvyres

Pointerl:=addr(VYariablel)$
Pointer2:=addr(Variable2,0ffset)’

The addr function accepts, as an optional second parameter, an integer “‘offset”” expression which
will be added to the address; this has the effect of pointing “offset” bytes away from where the
variable begins in memory. A positive offset addresses bytes higher in memory, and a negative
offset addresses bytes lower in memory.

The addr function is primarily used for building or scanning data structures whose shapes are
defined at run-time rather than by normal Pascal declarations.

Note

Programs using this feature must be very carefully debugged. Careless
use of the pointers returned by addr can crash your system.

The addr function has the same dangers described above for anvrtrs, in addition to some of its
own. Use of the “offset”” can produce a pointer to almost anywhere, with concomitant dangers to
the integrity of system memory.

Never use addr to create pointers to the local variables of a procedure or function. Storage for local
variables is recovered when the routine exits, so the value returned by ad4r is ephemeral.

Data Structures 21

Conformant Arrays

Conformant arrays are arrays in a called routine which automatically conform to the size of the
array which was passed to the routine. The conformant array feature allows arrays of various sizes
to be passed to a single formal parameter of a routine. It also provides a mechanism for determining
at runtime the indices with which the actual parameter was declared.

Conformant arrays are defined within the formal parameter list of a procedure or function. They
may be passed by value or by reference.

Conformant arrays may be packed or unpacked. Their organizations, or representations are de-
fined by “‘schemas.” Unpacked schemas may have any number of indices, whereas packed sche-
mas are limited to one index. In a schema with multiple indices, the final array definition may be
either packed or unpacked. Conformant arrays may not be packed arrays of characters (PAC)

types.

An abbreviated syntax is allowed for specifying multi-dimensional conformant arrays. The schema:

arrar [(index type)1 of
array [{index type)l of

arrar [(index type)] of (type id)

can be written as:

arrav [(index type);
(index type)

+ + +

(index type)1 of (type id)

The bound identifiers (the low bound identifier and the high bound identifier in the index type
specification) are used to determine the indices of the actual parameter passed to the formal
conformant array. Their values are set when the routine is entered, and they remain constant
throughout that activation of the routine.

Bound identifiers are special objects. They are not constants and they are not variables; thus, they
cannot be used in const or tyre definitions, and may not be assigned to, or used in any other
context in which a variable is assigned to (actual var parameter, for-loop control variable, etc).

Conformability

An actual array parameter must “‘conform’ to the corresponding formal parameter. That is, an
array variable may be passed to a routine with a corresponding formal conformant array parameter
if the array variable’s type ‘‘conforms with” the schema of the formal parameter.

An informal way of describing conformability is to say that the array variable’s type conforms with
schema if, for each dimension of array type and schema, the index types and component types of
array type and schema ‘‘match.”

22 Data Structures

For instance, given the following types and conformant array schemas:

Types:
type
Index= 1..20%
Ti= packed arrav [1,,10] of integders
T2= array [1++5y 1.,,10]1 of intederi
T3= array [1,+50] of inteders

Conformant Array Schemas:

Schema 1: array [lo..hi: Index] of arrav [smallest..lardest: Index] of integers
Schema 2: packed array [little,.hid: Index] of inteder;
Schema 3: array [least..d9reatest: Index] of inteders

Schema 4: array [lo..hi: Indexi lo2..hiZ: Index] of intederj

The following relationships are true:

® Type T1 conforms with Schema 2 only.
® Type T2 conforms with Schemas 1 and 4 only.
® Type 73 does not conform with any of the schemas.

Equivalence
Two conformant array schemas are ‘‘equivalent’” if all of the following are true:

® The ordinal type identifier in each corresponding index type specification denotes the same

type.
e Either:
e the type identifier of the two schemas denotes the same type, or
e the component conformant array schemas of both schemas are equivalent.

Congruency
An actual array parameter of an actual procedure or function parameter must be ‘“‘congruent” with
the corresponding formal parameter. Two conformant array schemas are “‘congruent” if all of the
following are true:

® The two schemas are both packed or unpacked.

® The two schemas are both by-value or by-reference schemas.

® The two schemas are equivalent.

Data Structures

An example of where you would be able to use conformant arrays to your advantage is shown
below. Suppose you need a vector (a one-dimensional array) where the first element of the array
equals 1, the second element equals 2, etc. With a procedure which uses conformant arrays, this
might look like this:

var
Yectorl: array [1,,3] of inteders
Yector2: array [1,,101 of intederi
Yector3: array [7+,9] of intederi
procedure DefineVector(var Yector: array [Los,+Hi: inteder] of inteder)i
var
I: inteders
begin
for I:i=Lo to Hi do
Yector[Il:i=I3
endji
4 + +
DefineVYector(Vectorl)i
DefineVYector(Vector2)i
DefineYector(Vectord)s

Any of the arrays, regardless of size, can be sent to the procedure DefineVector. In passing the
array to the procedure, the bounds identifiers (“‘Lo’”’ and “Hi’’) are defined. Inside the procedure,
Lo and Hi can be used anywhere a variable or constant can be used, except in declaration
statements. That is, you cannot declare another variable such as:

var
NewArrav: array [Lo..Hi] of intedersi { Illegal! %
Nor can you ‘‘redimension’’—change the size of—an array by assigning a value to a bounds identi-
fier:
Lo:=33 { Illegal! }
Hi:=43 { Illegal! }

Nor can you do anything else to try to change such a value; such as pass it by reference to a
procedure.
Another example of using conformant arrays is in multi-dimensional arrays. As usual in Pascal,

array [(range), (range)l of (type)

is equivalent to

array [{range)l of arrav [{range)l of (type)

Suppose you have defined a matrix thus:

type

Mdx4= array [1..4y 1,,4] of inteder;
var

Mi: Mdxds

23

24 Data Structures

You could define a procedure, using conformant arrays, to define the identity matrix:

array [RowMin,.RowMax:
ColMin,.ColMax:

procedure Identitv(var Matrix:

var
Rows Cols
bedin
for Row:=RowMin to RowMax do
for Col:=ColMin to ColMax do
Matrix[Rows» Coll:=ord(Row=Col)}
ends

intedersi

inteders
inteder] of inteder)s

An additional legality check could be made to ensure that the matrix is square; a non-square

identity matrix is a contradiction.

To send multiple conformant arrays to a procedure (or function; all these statements about confor-
mant arrays can be applied to function parameters, too), you just separate them by semicolons in
the usual way. Also, you can intermix conformant arrays passed by value and conformant arrays

passed by reference?:

procedure MatMult(Left: arrav[LRowMin, .LRowMax:
LColMin,.LColMax:
Right: arravy[RRowMin..RRowMax:

RColMin..RColMax:
array[ARowMin, .ARowMax:
AColMin..AColMax:

var Answer:

var
Row: Cols Sum: inteders
Iy Jy K: inteders
bedin
if (LColMax-LColMin+l)<>(RRowMax-RRowMin+1) then

bedin
writeln(‘For a matrix multirlys the
writeln{‘must eaual the number of columns

inteders
intederl
inteders
intederl]
intedersi
intederl] of

of inteders

of intederi

inteder)i

number of rows in the left matrix’)3i
in the ridht matrix,

The') s

writeln(‘'matrices passed to the matrix multiply routine failed this’)3

writeln{‘test’ resultant matrix zeroed,’);
for Row:=ARowMin to ARowMax do
for Col:=AColMin to AColMax do
Answer[Row:Coll:=03

end
else

if (RRowMax-RRowMin+1)<>(RColMax-RCoiMin+l)
bedin

then

writeln(‘For a matrix multiplys the right matrix must be square,

The’) s

writeln{‘right matrix passed to the matrix multirly routine failed this’);j

writeln(‘testd resultant matrix zeroed,’);j
for Row:=ARowMin to ARowMax do
for Col:=AColMin to AColMax do
Answer[Row:Coll:=03
end

2 you pass a conformant array to a procedure, and, from that procedure, you wish to pass the array to another procedure, you must pass it

(the second time) by reference.

Data Structures 25

else
bedin
for I:=LRowMin to LRowMax do
for J:=LColMin to LColMax do
bedin
Sumz=03
for Ki=LColMin to LColMax do
Sumi:=Sum+Left[I/KI*¥Right[Ks+J1}

AnswerllsJls=8ums
endsj

endi

endi

26 Data Structures

Notes

27

Chapter

12

Program Flow

Introduction

This chapter contains information on how you can alter the standard direction of program flow,
which is normally one statement after another in sequential order. There are several different areas
included in this chapter. They are:

o Standard Pascal branching,

® Procedure and function calls, and

® Procedure variables.

Standard Branching

All of the branching constructs available in standard Pascal are implemented in Workstation Pascal.
The following list describes these constructs:

® if/then/else
® for/do

® repeat/until
® yhile/do
®case/of

® goto

These are described in the Programming and Problem Solving With Pascal book.
CASE/OF

HP Pascal supports these two extensions to the standard Pascal case statement.

@ Subranges for case constant lists. For example, if you want the values 4, 5, 6, and 7 to cause
the same action, you could type 4..7: in the case constant list.

o The otherwise case. If none of the case constants match the value coming into the case
statement, the othe rwise clause, if it exists, will be executed. The otherwise clause consists of
the word otheruise and one statement which may be compound. Note that there is no colon
between the word “otherwise’ and its statement.

See the Pascal Language Reference for more details on these extensions.

28 Program Flow

Procedures and Functions
HP Pascal incorporates all the standard parameter-passing rules which are in effect for standard
Pascal. The following sections document only the HP extensions, and all require the compiler
option $svsrrog$ to be in effect.

Relaxed Typechecking of VAR Parameters

The anvvar parameter specifier in a function or procedure heading relaxes type compatibility
checking when the routine is compiled. This is sometimes useful to allow routines to act on a
general class of objects. For instance, an 1/O routine may be able to enter or output an array of
arbitrary size.

$sysprod$ {required}
tyre
Buffer= array [O..maxint] of chars
var
Arrl: array [2+.50]1 of charj
Arr2: array [0,,99] of charj
procedure Qutput_HPIB(anvyvar Arv: Buffers LoBound, HiBound: inteder)’
(procedure body)

L)

Outrput _HPIB(Arrl1,2,:50)3
Output _HPIB(Arr2,0,99);

Arnvuar parameters are passed by reference, not by value; that is, the address of the variable is
passed. Within the procedure, the variable is treated as being of the type specified in the heading.

For instance, if an array of 10 elements is passed as an anvvar parameter which was declared to be
an array of 100 elements, an error may very well occur. The called routine has no way of knowing
what you actually passed, except perhaps by means of other parameters as in the example above.
Anvvar should only be used when it’s absolutely required, since it defeats the Compiler’s normal
type-safety rules.

Note

Programs calling routines with anvvar parameters should be very thor-
oughly debugged! Careless use of this feature can crash your system.

Program Flow 29

The ANYPTR Type

Another way to defeat type checking is with the non-standard type anvetr. This is a pointer type
which is assignment-compatible with all other pointers, just like the constant nil. However, vari-
ables of type anvetr are not bound to a base type, so they cannot be de-referenced (i.e.,
anvptr_var” is not permitted). They may only be assigned or compared to other pointers. Passing
as a value parameter is a form of assignment.

$sysprods {required?
+ + +
tyre
Pointerl= “inteder?
Pointer2= “record
Ris RZ: reals
endi
var
VisWias Pointerls
va: Pointer2s
Anvys anyPLr}i
Which: (TyrpelsTyrPe2) i
bedin
new(Wi)s
new(Wz) s

+ + +

if + + + then
bedin
AnvVe=Ulj
Which:=Tyrel
end

else
bedin
AnyYi=V23
Which:=Tyre2
ends

if Which=Typel then
bedin
Vias=AnyYs
Yia“i=Wla"+1}
end}

endi

The compiler has no way to know if an¥ et r tricks were used to put a value into a normal pointer. If
a pointer type which is bound to a small object has its value tricked into a pointer bound to a large
object, subsequent assignment statements which dereference the tricked pointer may destroy the
contents of adjacent memory locations.

Note

Routines that use the anv et r feature should be very thoroughly debug-
ged! Careless use of this feature can crash your system.

30 Program Flow

Procedure Variables
and the Standard Procedure CALL

Sometimes it is desirable to store in a variable the name of a procedure, and then later to call that
procedure. For instance, the File System’s *‘Unit Table” is an array which contains (among other
things) the name of the driver to be called to perform I/O on each logical unit.

A variable of this sort is called a “procedure variable,” or “procvar,” for short. The “type” of a
procedure variable is a description of the parameter list it requires. That is, a procedure variable is
bound to a particular procedure heading.

$svsprodé {REQUIRED for procvars and CALLZ

L)

tvre
ProcVar= procedure(0OpP: inteder)s
var
P: ProcVari
I: inteders
procedure Q(0OpP: inteder)s {identically structured Pparameter list}
1] [+
Pe=Q3 {P dets the name of Qi in effecty P points to Q2
call(P+I)3 {name of procvars then arpropriate parameter list}

A procedure variable is invoked by the standard procedure call, which takes the procedure
variable as its first parameter, and a further list of parameters just as they would normally be passed
to the procedure having the corresponding specification.

It is not possible to create a “‘function variable”, that is, a variable which can hold the name of a
function.

Don’t assign the name of an inner (non-global) procedure to a procedure variable which isn’t
declared in the same block as the procedure being assigned. Such a variable might be called later,
after exiting the scope in which the procedure was declared. The stack (local variables, etc.)
assumed by the procedure will have been released, giving unpredictable operation, possibly fatal to
the system.

Chapter

13

Numeric Computation

Introduction

When people think about computers, the first thing that they often think of is number-crunching,
the giant calculator with a brain. Whether this is an accurate impression or not, numeric computa-
tions are an important part of computer programming.

Numeric computations deal exclusively with numeric values. Thus, adding two numbers or finding
a sine or a logarithm are all numeric operations, while converting a number to a string or a string to
a number are not. (Converting numbers to strings and strings to numbers is covered in the ““String
Manipulation” chapter.)

The most fundamental numeric operation is the assignment operation, achieved with the ““:="
assignment operator. Thus the following statements are assignment statements:

Ar=1
Sine := sin(Theta)?
Hez¥+ls

Numeric Data Types

There are two numeric data types in Pascal, INTEGER and REAL. The valid range for REAL
numbers is approximately:

—1.797 073 134 862 315 x 103* through 1.797 073 134 862 315 x 10°%
The smallest non-zero REAL value allowed is approximately:

+2.225 073 858 507 202 x 107°%®

A REAL can also have the value of zero.

An INTEGER can have any whole-number value from:

—2 147 483 648 through +2 147 483 647

31

32 Numeric Computation

Internal Numeric Formats

WORD A WORD A+1 WORD A+2 WORD A +3
, — - . . - .
15 41; 0 15 0 15 0 15 0
EXPONENT MANTISSA
(BIASED + 1023) 52 BITS
11 BITS

MANTISSA SIGN BINARY POINT

mantissa sign exponent — 1023

X 1 . mantissa

-1 X2
Storage Format for REAL Variables

INTEGER
(2's COMPLEMENT)

T
SIGN

Storage Format for INTEGER Variables

Note

These formats are hardware dependent and operating system depen-
dent. Other computers which support Pascal may have very different

internal formats.

Declarations

In Pascal, you must declare all variables before using them, and both INTEGER and REAL data

types are provided for declaring numeric variables:

var
Iy J: inteders
Davs: array [1,+5] of intederi
Weeks: array [1+,5] of array [1+417] of intederi
Ky Y reals
Yoltagde: array [1++4] of reals
Hours: array {1,435 844131 of reals

The above statements declare, both for integers and reals, the following:

® Two scalars,
® A one-dimensional array, and
® A two-dimensional array.

Numeric Computation

A scalar is a variable which can, at any given time, represent a single value. An array is a subscripted
variable, and can contain multiple values, accessed by subscripts. You must specify both the lower
and upper bounds of an array. Details on declarations of arrays and how to use them are provided
in the “Data Types” chapter of this manual.

Type Conversions

The computer will automatically convert integers to real numbers in assignment statements and
when parameters are passed by value in function and procedure calls. When parameters are passed
by reference the conversion will not be made and a type-mismatch error will be reported. The
computer will not automatically convert a real number to an integer; you must explicitly tell the
computer to do it, and how to do it. There are two ways to convert a real number to an integer:

® The round function, which rounds the real value to the closest integer (n.5 rounds up to
n+1)and

e The t runc function, which truncates the real value to the next integer toward 0.

For both of these functions, the sign (positive or negative) is not taken into account during the
operation. You could think of them as doing these three operations:

1. Take the absolute value of the argument,
2. Do the operation,
3. Re-attach the original sign to the result.

An example of where this is significant is in the t runc function. It rounds toward 0, not toward — .
That is, trunc(1.7) vields 1, as expected, but trunc(-1.7) yields —1, not —2. It very literally
truncates, it does not round to the next integer less than or equal to the argument.

Whenever numbers are converted from REAL to INTEGER representations, information can be
lost. There are two potential problem areas in this conversion: rounding errors and range errors.

The computer may automatically convert between types when an assignment is made, and this
presents no problem when an INTEGER is converted to a REAL. However, when you convert a
REAL to an INTEGER, the REAL is modified (in whatever way you specified) to the closest
INTEGER value. When this is done, all information about the value to the right of the radix
(decimal point) is lost. If the fractional information is truly not needed, there is no problem, but
converting back to a REAL will not reconstruct the lost information—it stays lost.

Another potential problem with REAL to INTEGER conversions is the difference in ranges. While
REAL values range from approximately —103% to +10%%, the INTEGER range is only from
minint through maxint, or —2 147 483 648 through +2 147 483 647 (approximately — 10° thru
+10%). Obviously, not all REAL values can be rounded into an equivalent INTEGER value. This
problem can generate integer overflow errors.

While the rounding problem is important, it does not generate an execution error. The range
problem can generate an execution error, and you should protect yourself from crashing the
program by either testing values before assignments are made, or by using trv/recover to trap the
error!, and making corrections after the fact.

1 see the chapter on ‘‘Error Trapping and Simulation”’ for details on error recovery.

33

34 Numeric Computation

The following fragment shows a method to protect against INTEGER overflow errors, although be
aware that this method imposes minimum and maximum limits on the value?:

if Ximinint then X:i=minint
else
if Xemaxint then X:=maxint
else
Ki=trune {or round} (X)3

Both these methods limit the excursion, but lose the fact that the values were originally out of range.
If out-of-range is a meaningful condition, an error handling trap is more appropriate.

if (X<minint) or (Ximaxint) then
OutOfRande:=true

else
Ki=round {or trunct (X)i

Precision and Accuracy: The Machine Limits
Your computer stores all REAL variables with a sign, approximately 15 significant digits, and the
exponent value. For most applications, this resolution is well beyond actual program needs.
However, when high-resolution numerical analysis requires accuracy approaching the limits of the
computer, round-off errors must be considered.

For many engineering and other applications, rounding errors are not a problem because the
resolution of the computer is well beyond the limitations of most scientific measuring devices.

Rounding errors should be considered when conversions are made between decimal digits and
binary form. Input/output operations are one time when this occurs. Given the format used for
REALs, the conversion REAL—decimal—=REAL will yield an identity only if the REAL—decimal
conversion produces a 17-decimal-digit mantissa and the calculations for the conversions are done
in extra precision. This is not the case on the Workstation Pascal. Therefore, several things can be
said about these conversions on the Workstations:

e Up to and including 16 decimal digits are allowed when storing a number in internal form. If
there are more digits, they are ignored.

e Up to and including 15 decimal digits may be output when converting a REAL for printing,
display, etc. A full 16-digit conversion is not allowed because there are not 16 full digits of
precision.

e |t is possible for two distinct decimal numbers to map onto the same REAL number because
the binary mantissa does not have enough bits to represent all 16 decimal digits. This can
happen only if the decimal numbers are specified to 16-digits.

e |t is possible for two distinct REAL numbers to convert to the same decimal number even if the
conversion is done to 15-decimal-digit accuracy. Therefore, you cannot use a comparison of
the digits in printed or displayed numbers to check for equality.

e All distinct 15 digit decimal strings have a correct distinct REAL representation, but it is not
always possible to map them onto their correct representation because REAL multiplies are not
done in extra precision, and the table entries are only 64 bits. In other words, the
decimal—=REAL conversion may produce a REAL that differs from the true representation by a
maximum of two bits.

There are references at the end of this chapter to documents that contain further information on the
subject of representing real numbers.

2 Later in this chapter, a method which truncates numbers outside the minint..maxint range is shown.

Numeric Computation

Evaluating Scalar Expressions
The Hierarchy

If you look at the expression 2 +4/2 + 6, it can be interpreted several ways:
e2+(4/2)+6 = 10
®(2+4)2+6 =9
e2+4/(2+6) = 25
®(2+4)/(2+6) =.75

Computers do not deal well with ambiguity, so an arbitrary hierarchy is used for evaluating
expressions to eliminate any questions about the meaning of an expression. When the computer
encounters a mathematical expression, an expression evaluator is called. If you do not understand
the expression evaluator, you can easily be surprised by the value returned for a given expression.
In order to understand the expression evaluator, it is necessary to understand the valid elements in
an expression and the evaluation hierarchy (the order of evaluation of the elements).

Six items can appear in a numeric expression; operators, constants, variables, intrinsic functions,
user-defined functions and parenthesis. Operators modify other elements of the expression. Con-
stants and variables represent numeric values in the system. Functions, both intrinsic and user-
defined, return a value which replaces them in the evaluation of the expression. Parenthesis are
used to modify the evaluation hierarchy.

The following table defines the hierarchy used by the computer in evaluating numeric expressions.
Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation
Functions, both user-defined and machine-resident
Multiplication and division: #, /, mod, div.
Addition, subtraction, monadic plus and minus: +, -.

Lowest Relational and Boolean operators: =, <3, <, », <=, »=, NOT, AND, OR.

The boolean operators, NOT, AND, and OR, are included because of their utility in creating step
functions (see the section ““Step Functions” later in this chapter).

35

36 Numeric Computation

When an expression is being evaluated, it is read from left to right and operations are performed as
encountered, unless a higher precedence operation is encountered immediately to the right of the
operation encountered, or unless the hierarchy is modified by parentheses. If the computer cannot
deal immediately with the operation, it is stacked, and the evaluator continues to read until it
encounters an operation it can perform. It is easier to understand if you see how an expression is
actually handled. The following expression is complex enough to demonstrate most of what goes
on in expression evaluation.

Ar=0+3%(4+2) /5in OO +X*ord (1xX)+Nedl*ord ((X<{1.5) and (X:0,0))}

In order to evaluate this expression, it is necessary to have some historical data. Since trigonometric
functions in Pascal deal only with radians, we will assume that ¥ =m/2, and that the user-defined
function Ne g1 returns — 1. Evaluation proceeds as follows:

SH3*(A4+2) /sin) +X*ord (12X)+Negl*¥ord ((X<1.3) and (X:0,0))
S+3*8/5in(X)+X*ord(1:X)+Nedl®ord((X<1.5) and (X:0.0))
S+1B/sin(X)+X*¥ord (1) +Negl*ord ((X<1.3) and (X:0.0))

S+1B/1+X*ord(1>X)+Negl*ord ((X<1,5) and (X:0,0))
S+1B8+X#ord(1:X)+Nedgl¥ord ((X<1,3) and (X>0.,0))
23+R*ord (1) +Negl*ord((X<1.5) and (X>0.0))

23+X*ord(false)+Negl*ord ((X<1,3) and (X>0,0))
23+X*¥0+Negli*ord ((X<1,5) and (X>0,0))
23+0+Nedli*¥ord((X<1.5) and (X:0.,0))
23+Negl*¥ord{(X<1.5) and (X:0,0))
23+-1%0rd ((X<145) and (K:0,0))
23+-1*ord(false and (X:0.0))

23+-1%ord(false and true)

23+-1%ord{false)

Numeric Computation

The Delayed Binding Surprise

The computer delays binding of a variable to its value as long as possible. In the actual evaluation, a
pointer to the location of a variable is what is stacked. This means that if a variable exists in an area
of memory accessible to both the main program and a user-defined function, is used in an express-
ion that also calls the user-defined function, and is modified in the function, the value of the
expression can be surprising, although not unpredictable. For example, if we define a function Ne 41
that returns a negative 1, we would expect the following lines to print 2.

Ki=31%
Yi=X+Negl}
writeln(Y)i

However, if the these lines are in the following environment:

prodram DBindind(inPut, outrput)i
var
Ky Y intedersi

function Nedl: inteders
bedin

K1=5003

Negl:=-13

ends

bedin

Ki1=31
Yi=K+Negls
writeln(Y)s
end.

The actual result will be 499—surprising, but not unpredictable. The same thing will happen if the
variable is passed by reference and modified in the user-defined function. Therefore, be careful
when you use a user-defined function to modify values of global variables. They are designed for
returning a single value, and are best reserved for that.

Operators
There are two types of numeric operators in Pascal: monadic and dyadic:
® A monadic operator performs its operation on the expression immediately to its right; e.g., +,
-, not.
® A dyadic operator performs its operation on the two values it is between; e.g., *, *, 7, mod, div,
-, =5, Lk 4k 4=, k=) and, or

A comparison operator returns true or false, based on the result of a relational test of the
operands it separates. The comparison operators are a subset of the dyadic operators that
produce boolean results; e.g., ¢, », <=, »=, =, {3,

While the use of most operators is obvious from the descriptions in the language reference, some of
the operators have uses and side-effects that are not always apparent.

37

38 Numeric Computation

Expressions, Calls, and Functions

Numeric expressions can be passed by value to, procedures and functions, if the corresponding
formal parameter does not have the keyword var before the parameter name (assume for the
moment it does not). Thus 5+X is obviously passed by value. Not quite so obviously, +X is also
passed by value. The monadic operator makes it an expression.

Step Functions

The comparison operators are obviously useful for conditional branching (IF/THEN statements), but
are also valuable for creating numeric expressions representing step-functions. For example, let’s
try to represent the function:

oif Select <O
then Result = 0

0if 0 <= Select <1
then Result equals the square root of A + BZ

eif Select >= 1 (any other value)
then Result = 15

It is possible to generate the required response through a series of IF/THEN statements, but it can
also be done with the following expression:

Results=0 *ord(Select<0)+
sart(sar(A)+sar(B))*ord((Select>=0) and (Select<l))+
15 *ord{(Selects=1)3

While the technique may not please the purist, it actually represents the step function very well. The
boolean expressions cause the ord function to return a 1 or O which is then multiplied by the
accompanying expression. Expressions not matching the selection return 0, and are not included in
the result. The value assigned to Select before the expression is evaluated determines the com-
putation placed in the result.

Numeric Computation

This technique can be used to represent a cyclicity as well; every time through a particular set of
statements, the “‘next” of a list of variables is selected. At the end of the list, the list is repeated from
the beginning, ad infinitum. Boolean expressions, constants, and variables can be included in
numeric expressions if they are ‘“‘converted” to numeric by the intrinsic function ord. What we
haven’t seen yet is that the boolean expressions can be generated by comparing anything that is
comparable; e.g., numbers, characters, strings, etc. Note in the following examples, % and a, b, c,
and d can be any of the type mentioned (numbers, characters, strings), as long as they are all of the
same type. For example:

Kizord(X=0) 3 This expression alternates the value of ¥ between 0 and 1.

Xi=axord(X=b)+bxard(X=a)i This expression alternates between the arbitrary values of a and b,
as long as a# b. Note that this algorithm can be extended to cycle
through any number of values, as the next example shows.

Yiza*ord (¥=d)+ This expression cycles through the four values a, b, ¢, and d. Make
brord(x=a)+ sure a# b# c# d+.., because if any value equals any other value,
crord(X=b)+ the process will loop without completing the series. As mentioned,
dxord(X=c+ this algorithm can be extended to any number of values, but it

quickly gets cumbersome. The algorithm fills the need best when
the values being cycled through exhibit no discernible pattern.

Another way of cycling through n unpatterned values is to make
an array going from 1 to n, define the elements of the array to your
numbers, and then cycle through the subscripts 1—n.

Again: if, as in the above examples, ¥ is a number, you could cycle through 14, 23, 4, —45, and 0.
If, in the above examples, ¥ is a character, you could cycle through ‘x, ‘&’, 'aA’, and ‘f".
However, you cannot “multiply’”’ a character by a number, but you can convert between characters
and numbers easily. For example, assume 4, B, C, D and X are of type char:

%3

‘53

‘A’i

i

LLI L £ B 1}

oW D

~e
1

o=

-

{or B or C or Duss’}
Ki=chr{ord(A)*ord(X=D)+
ord (B)*ord(X=A)+
ord (C)*ord(X=B)+
ord(D)*ord(X=C))3J

39

40 Numeric Computation

If you want to cycle through strings, for example, ‘Artichoke’, ‘I bought a centirede’, ‘quark’,
and ‘Oh.‘, you could use the function strret for to do the “multiplication” (see the “String
Manipulation”” chapter for more on strret). For example (assume A, B, €, D and X are strings):

A:='ArtichoKe '}

B:='I houdht a centipede’}

Ci='quark’}

Di='0h, '3

Ki=Aj {or B or C or Dess?

Xi=strrpt(Asord(X=D))+
strrrt(Brord(X=A))+
strrpt(Crord(X=B))+
strrrt(Dsord(X=C)) i

If you want to cycle through enumerated-type values, there is no easy way to do it other than
putting the values in an array, and cycling through the subscripts.

Making Comparisons Work

If you are comparing integers, no special precautions are necessary. However, if you are comparing
real values, especially those which are the results of calculations and functions, it is possible to run
into problems due to rounding and other limits inherent in the system. For example, consider the
use of comparison operators in if/then statements to check for equality in any situation resembling
the following:

A:=2,537654773

if sin(A)“2+cos(A)"2=1.,0 then
writeln(‘Equal’)

else
writeln(‘Not Equal ‘)i

You may find that the equality test fails due to rounding errors or other errors caused by the
inherent limitations of finite machines. A repeating decimal or irrational number cannot be repre-
sented exactly in any finite machine.

Numeric Computation 41

A good example of equality error occurs when multiplying or dividing data values. A product of two
non-integer values nearly always results in more digits beyond the decimal point than exists in
cither of the two numbers being multiplied. Any tests for equality must consider the exact variable
value to its greatest resolution. If you cannot guarantee that all digits beyond the required resolution
are zero, there are two techniques that can be used to eliminate equality errors:

e Use the absolute value of the difference between the two values, and test for the difference less
than a specified limit. Here is an example of the absolute value method of testing equality. In
this case, a difference of less than 0.001 is assumed to be evidence of adequate equality.

if abs(C-F)<0,001 then
Wwriteln(’C is eaual to F within 0.,0017)
else
writeln(’C is not esual to F within 0,0017)3

e Use the absolute value of the relative difference between two values, and test for the difference
less than a specified limit:

if abs((C-F)/C)<10E-B then

writeln(’Relative difference between C and F less than 10E-87)
else

writeln(/Relative difference between C and F dreater than 10E-87)3

This technique has the advantage that no additional statements are invested in overhead while
preparing the data for evaluation. It also enables you to easily establish tolerance limits in making
value comparisons, a capability that is useful in production and testing applications.

42 Numeric Computation

Numerical Functions

The resident functions are the functions that are part of the Pascal language (also called intrinsic).
The following functions are available:

Function
ahs
arctan

Binary

cos
exXpP

hex

In

octal

odd

round

sin
s9r
sqrt

trunc

Description
Returns the absolute value of an expression.
Returns the arctangent of an expression.

Returns the whole number value of a binary 32-bit integer. The argument is a
string.

Returns the cosine of the angle represented by the expression.
Raise the Napierian e to a power. e=2.718 281 828 459 (5.

Returns the whole number value of a hexadecimal 32-bit integer. The argument
is a string.

Returns the natural logarithm (Napierian base e) of an expression.

Returns the whole number value of a octal 32-bit integer. The argument is a
string.

Takes an integer argument and returns a boolean result: true if and only if the
integer argument is odd (the least significant bit is the opposite of the sign bit).

Returns the closest integer to the real argument.

round (X = sign(X)*trunclabs(X)+0,5) where sign(y) =
ord(X:0,0) - ord(X<0,0).

The result is of type INTEGER.

Returns the sine of the angle represented by an expression.
Returns the square of an expression.
Returns the square root of an expression.

Returns the integer part of the real argument; the fractional part is removed. The
result is of type INTEGER.

Also, we should mention d4iv and mod, although they are operators and not functions. The div
operator does an integer divide; that is, it does a division and discards any fractional part. The nod
operator returns the remainder of an integer division. z:=% mod Y is equivalent to:

Zr=X-Y*(X
i

div Y)3

f 240 then Z:i=Z2+Y}

Numeric Computation 43

Dealing with Angles and Such

Before we get into the functions that deal with angles, let’s discuss the angles themselves.

The Units
In Pascal, angles are always considered to be in radians, but people often want to deal with angles
in degrees, or grads. Here are definitions of these units of angular measure:

e Radians: A radian is the unit of angular measure subtended by a piece of circumference of a
circle whose length is equal to the radius of the circle. That is, if you take a line whose length is
the radius of a circle, and bend that line around the circumference, the angle subtended by the
bent radius is one radian.

e Degrees: A degree is Yoo of a right angle. Thus, there are 360 degrees in a complete revolution.
e Grads: A grad is 1% of a right angle. Thus, there are 400 grads in a complete revolution.

In a nutshell, these are the relationships between these units of angular measure:

radians = degreesxqg; ~ degreesx0.017453292 5199433
radians = grads X4 ~ grads x0.015707 9632679490
degrees = radiansx13 ~ radians x57.2957795130823
degrees = grads X 19—0 = grads x0.9
grads = radians X 22—0 ~ radians x63.661977 236 758 1
grads = degreesx¥ ~ degreesx1.1111111111111111
The Functions

There are three functions which HP Pascal provides for dealing with functions: sin, cos, and
arctan. However, since the default mode for all angular measure is radians, there needs to be a
conversion from the units used in the program to radians. Assume, for example, that the program is
considering all angles to be in degrees, and that the variable Theta holds the angle. The sine of
Theta (which is in degrees) is:

Sine:=sin(Theta*0,017453292532) 3

When going the other direction, divide by the constant rather than multiply®. For example, say we
want to calculate the arctangent of %, and have the answer in degrees:

Theta:=arctan{X)/0,017453292523

Pascal traditionally is somewhat weak in the area of numerical functions, and HP Pascal is no
different. A person can do hardly any trigonometric calculations from only the three functions
provided, unless he knows some of the trigonometric relationships with which to derive the other
needed functions. It is beyond the scope of this manual to provide very high speed algorithms to
directly calculate the other trig functions; see a math book for those. However, it is within the scope
of this manual to provide equations with which you can derive the appropriate functions from
combinations of others. In the equations that follow, radians are assumed. If you wish to work in
other units of angular measure apply the formulae above to convert to and from the desired unit of
measure. Here are some of the trigonometric relationships.

3 Speed can be increased by multiplying by the reciprocal of the degree-to-radian number, rather than dividing by it. The computer does a
multiply by 57.295 779 51 faster than a divide by 0.017 453 292 52.

44 Numeric Computation

Perhaps the best-known of the trig relationships is the following:

This shows that to calculate the tangent of an angle; take the sine of that angle and divide it by the
cosine of that same angle. Note, however, that for odd multiples of /2 (90°) the cosine is zero, so
you must take appropriate measures to avoid dividing by zero in these cases.

A little less well-known are the arcsine and arccosine identities: The arcsine is defined thus:

. x
arcsin r = arctan < ——)
V1 —z2
In Pascal:
Thetar=arctan(X/sart(l-sar(})))}
Here also, there is some danger of dividing by zero. When x =1, the denominator evaluates to

zero. This divide by zero can be avoided in either of two ways. You could test for x =1 and branch
to a separate place to give the value, or a less cluttered way is the following:

x
arcsin z = arctan (————)
V1i—z2+e¢

where € is some very small number e.g., 1071%. Then, when x =1, the denominator will not
evaluate to zero, but a small number. The whole expression then evaluates to a very large (for all
practical purposes, infinite) number. This is consistent with the desired behavior of the expression,
because the argument for the arctangent function can range from — to + .

Similar to the arcsine function is the arccosine function:

\/1—3:2)

arccos r = arctan (
T

But again, the divide-by-zero threat still exists; this time, when x = 0. The resolution of this problem
is similar to that of the arcsine function above:

V1 —a:2)

arccos r = arctan
T+ €

or

Thetas=arctan(sart{l-sar(¥))/(X+Eps))

Numeric Computation 45

The reciprocals of the three main trig functions are the secant, cosecant, and cotangent:

1
sec = —
¢ cosf
1
0 =
e8¢ sin @
1
t0 =
€0 tan @

This gives us the main three trigonometric functions sin, cos, and tan; their inverses arcsin,
arccos, and arctan; and their reciprocals sec, ¢sc, and cot.

The arctangent function supplied by the Pascal language is fine for many applications, but for
others, it doesn’t show you enough information. For example, say you have a point which has the
Cartesian coordinates (3,4) and you want to determine its angle from the origin. This is quite
simple: evaluate the arctangent of (Ay/Ax), or arctan(4/3); it comes to about 0.93 radians, or
about 53.13 degrees. This is the correct answer.

But here’s the problem. Suppose that the point was (—3, —4). Calculating arctan(Ay/Ax), or
arctan{-4/-3) still results in 0.93 radians, or about 53 degrees, but this answer is off by 180
degrees! The problem arises from the fact that a negative number divided by a negative number
gives the same answer as a positive number divided by a positive number.

Another problem arises when the point of interest lies on the Y-axis. This means x is zero, and again
we’re faced with a divide-by-zero problem.

The resolution of this requires that we pass both x and y to the new arctangent function; do not do
the division beforehand, because then the signs are lost.

Let’s look at every possibility of x and y. They both can be negative, zero, or positive.

arctan(y/z) + 7 if £ <0and y <0;
arctan(y/z) + 7 (=7) ifz<0and y=0;
arctan(y/z) + « if z <0 and y > 0;
%w ifr=0and y < 0;
arctan(y,z) = { 0 (by definition) ifr=0and y=0;
%w ifz=0and y > 0;
arctan(y/z) ifz>0and y <0
arctan(y/z) (= 0) ifz>0andy=0;
arctan(y/z) ifz>0andy>0;

As you can see, there is a pattern that emerges. If x>0, the normal arctangent function does well. If
x<0, the normal arctangent function is consistently off by one-half revolution; we could just add =
radians (180°) to the result. If x =0, we need to check the sign of y and deal with it accordingly. If x
and y are both zero, the arctangent is undefined; you’re asking the computer to calculate the

direction of a point. But, to keep the computer happy, let’s define (somewhat arbitrarily) the result
to be 0.

46 Numeric Computation

Taking the above information and translating it into Pascal, you come up with an arctangent
function that goes something like the following (note that we’re using one of the tricks we learned in
the “Step Functions” section):

const
Pi= 3.1415826535B979323843

4

]

if X=0.,0 then

Atan:=(Pi/2
+Pi*ord(Y<0,0))
*ord (Y20, 0)
else

Atan:=arctan(Y/X)
+Pi*®ord (X{0.,0)
+2%Pi%ord ((X:0,0) and (Y<0,0))1

The “then’ clause of the if statement says this:
1. We've already determined that x =0; thus, the point is on the Y-axis. Therefore, assume
/2, or 90° (straight up).
2. Now, if y<0, add 7 (180°) to make the angle straight down.
3. One final check: if x and y are both zero, return zero.

The “else’”’ clause of the if statement says this:

1. Take the arctangent of y/x.
2. 1f x<0, add = (180°).

3. If x>0 and y<O0 (if the point is in the fourth quadrant), add 2 (360°). This ensures that the
result ranges from 0O to 2, rather than —w/4 to +3m/4.

Another class of trigonometric operations is the hyperbolic functions. Although we won’t go into
detail on how to use them, they are provided for your reference here.

Z -z

e —e
inh » =
sinh z 5
sinh™! 2z =In(z + V22 + 1)
1
hz =
sz sinh z
y4 -z
cosh z = %@_
cosh™ z=In(z4+ V22 - 1)
1
hz =
sech = cosh z
Z _ o7
tanhz = ———
62 _+_ e_Z
1 14z
tanh™ !z = -1 ()
an z 5 n T
cothz =

tanh z

Numeric Computation 47

Range Limits

It is sometimes necessary to limit the range of excursion of a variable (as in the discussion of REAL
to INTEGER conversions mentioned in the introduction to this chapter). It is possible to do this with
if/then statements:

if HrMaxx then ¥:=Maxxi
if HaMinx then X:=Minxi

It is more convenient to use nax and min functions which can be defined thus:

function min(¥Xy» Y: real): reali

bedin {function "min"}
if H<Y then min:=X

else min:s=Y3

ends {function "min"}

function max(X, Y: real): reals

bedin {function "max"}
if X:Y then max:=X

else max:=Y3

end) {function "max"}

For example:

Keizmintmax (XsMinx) sMaxx)

Note that max is used to establish the lower bound, and min is used to establish the upper bound. If
you think about it a minute, it makes sense.

Truncating Real Numbers Outside the Integer Range

At the beginning of the chapter, a diagram was presented which showed the structure of the 64-bit
REAL number in Workstation Pascal. In the 64 bits, there was a mantissa sign bit, an 11-bit
exponent (biased by +1023), followed by 52 bits of mantissa. We will need to know this structure
in order to implement the truncation algorithm.

What is necessary to truncate, at the decimal point, a real number is to zero out all the bits to the
right of where the decimal point would be. These two steps are all that is involved:

® Determine the binary exponent. That is, look at the binary number represented by the 11 bits
of exponent and subtract the 1023 bias. What is left is the exponent in base 2. This is how
many bits of the mantissa to leave alone, because they represent digits to the left of the decimal
point.

® Zero out all remaining bits of the mantissa. These bits being zeroed represent the digits to the
right of the decimal point.

Implementing this algorithm is not quite so straightforward. As an example, let’s walk through the
algorithm, truncating 5.25. The exponent bits are 100 0000 0001 or 1025. Subtracting the bias of
1023, the actual exponent is found to be 2. The mantissa is the implicit “1.”, followed by 0101,
followed by all zeroes, which evaluatesto 1 x 2° + 0 x 27! + 1 x 27240x23%4+1x27%
or 1 + Va + Vie. This must be multiplied by 2 taken to the power of the exponent; thus, the
representation of 5.25 is 1.0101 (in binary) x 2.

48 Numeric Computation

Since the exponent is two, we leave the first two bits of the mantissa alone, and zero out the rest.

This results in 1v4 x 22, which is 5.

The following is a section of code which accomplishes the above task. As with all the code segments
in this manual, it is written to be instructive, and not necessarily the most efficient spacewise or

speedwise. Assume ¥ is the variable being rounded.

There are two places where type coercion is necessary. Type coercion is the practice of interpreting
the same set of bits in more than one way. In this case, we must take both a real value and an

integer value and be able to set or clear individual bits within them.

type
RealCoerce= record

inteder of

(RealVal:

(Bits:

packed
case
1:
2:
ends
IntederCoerce=pracked
case
1.

:
-
3

record
inteder of
(Int¥al:
(Bits:
ends:

real)s
packed arravy [1,.,84] of 0..1)3

-32768,.32767) 3
racked array [1,,1681 of 0,.1)3

A few variables are needed just for routine housekeeping:

var
RCoerce: RealCoercel
ICoerce: IntederCoerces
Exronent: inteders
I: inteders
Nedative: booleans

And here are the guts of the procedure:

Negdative:=(X<0,0)}
Ki=zabs(X)1
RCoerce+.Real¥al:i=X3
ICoerce,.IntVal:=03
for I:=2 to 12 do
if RCoercesBits[IJ=1 then
ICoerce .BitsfI+d4]:=13
Exponent:=ICoerce,IntVal-10233
if Exponent<0 then X:=0.,0
else
begin
if Exponent<=352 then
for I:=Exponent+13 to B4 do
RCoerce Bits[I]:=03
Xi=RCoerce.RealVali
ends {Exponent>=0}
if Nedative then
X

e= W

i]

2
-

{real variable which is interpreted
{16-bit inteder which is interpreted 2
{unbiased binary exponentl}

{utility variable (loop counter) 1}

{was the oridinal number nedative?}

Wways}
ways}

{remember if it was nedative?l

{let’s Just deal with Positive numbers}
{Put real value into coercion variablel}
{inmitialize spare exponent variable}
{for all exponent bits..,}

{+oein the real value that are set...}
{evsset a bit in the spare.}

{det rid of bias}

{if X140y 0.0 -3 X}

{roundable?}

{all bits that should be cleareds.. }
{+vvare cleared.,?

{change X}

{was oridinal number nedative?}
{ veri Put sidgn back}

Numeric Computation 49

Note

The above procedure is hardware dependent and operating system
dependent and may not work on other Pascal systems.

Note that this algorithm truncates toward O, as the Pascal t runc function does.

Rounding

Rounding occurs frequently in computer operations. The most common rounding occurs in print-
outs and displays, where it can be handled effectively with the formatting numbers (the numbers
after the colons) in the output operation.

Sometimes it is necessary to round a number in a calculation, to eliminate unwanted resolution.
There are three basic types of rounding:

® Rounding to a number of decimal places (limiting fractional information);

® Rounding up, down or to the nearest x, where x is any number, real, or integer, except zero;
and

® Rounding to a total number of significant digits.

All three types of rounding have their own applications in programming.

Rounding to a Number of Decimal Places

The first, and most basic form of rounding is a special case of the first method above—that of
rounding to a number of decimal places—but rounding always takes place to the nearest 10°, or 1.
The function to do this is called round, and it is part of the Pascal language. It was covered earlier in
this chapter, with a reference to a subsequent function with which you could round real numbers
outside the range of the integers. That function comes here.

In the previous section, an algorithm for truncating real numbers outside the range of minint to
maxint was discussed. Using this same algorithm, rounding is only trivially more involved.

Rounding to the nearest integer (to the nearest 10°) is merely a matter of truncating after adding
0.5. Imagine rounding 3.2 to the nearest integer; it rounds to 3. If we add 0.5 to 3.2, and then
truncate, we again get 3. Imagine rounding 3.8 to the nearest integer; it rounds to 4. If we add 0.5
to 3.8, and then truncate, we get 4.

The only deviation from this algorithm is for negative numbers. What is often done is that the
number is made positive, the rounding operation is done, and then the original sign is re-applied.
For example, for rounding — 3.2, you would note that it is negative, do the rounding operation on
the absolute value of the argument, and re-apply the original sign to the result.

Note

In the rounding examples that follow, the range of numbers to be
rounded is assumed to be in the minint..maxint range; thus, the
standard Pascal function round will be used. If the numbers to be
rounded are outside of this range, use the same algorithms stated, but
do the rounding by adding 0.5 and then truncating with the ‘‘big num-
ber truncator’” mentioned in the previous section.

50 Numeric Computation

The next logical step is to allow rounding to any power of ten, not just 10°, as above. The idea is to
eliminate decimal representation beyond a specific power of ten. A simple approach to it is to push
the desired decimal information to the left of the radix, use round to get rid of the undesired decimal
information, then reposition the radix correctly.

What must be done is this:

® Divide the number by the appropriate power of 10 to move the digit which will be the
rightmost significant digit to just left of the decimal point.

® Round to 10°, as usual.

® Multiply by the same appropriate power of ten to put the number back into the original order
of magnitude.

For example, suppose you want to round 3.14159265 to the nearest 1072, or hundredth. First, you
divide it by 1072, to get 314.159265. Next, round in the usual way, resulting in 314. Finally,
multiply by 1072, to return the number to the original order of magnitude: 3.14.

Rounding to the Nearest X

All rounding applications don't fit nicely into the ‘““power of 10" pattern mentioned above. What if
you wanted to round to the nearest 25?7 Or 37? Or 0.123 or %4? Some applications require
rounding to the nearest multiple of some pretty unusual numbers.

This, again, is a logical extension of the previous method where we were dealing with powers of 10.
Say, for example, that we want to round 19.2 to the nearest dozen. The method is simply:

Rounded:=round(19,2/12)%12}

Or, more generically, if N is the number to be rounded, and # is the number to be rounded to:

Rounded:=round (N/M)*MJ

Rounding to N Significant Digits

There is a tendency for the number of decimal places to grow as calculations are performed on the
results of other calculations. One of the first things covered in training for engineering and the
sciences is how to handle the growth of the number of decimal places in a calculation. If the initial
measurements from an experiment produced three digits of information per reading, it is very
misleading to produce a seven-digit number as the result of a long series of calculations. Rounding
to a specific number of significant digits allows you to eliminate the unwanted digits, to produce
more realistic calculations and answers.

Numeric Computation 51

In the process of rounding to a certain number of significant digits, you must address than fact that
you don’t know where the decimal point is going to be, and the algorithm shouldn’t care anyway.
Taking this factor into account requires one more step than the previously mentioned rounding
methods. The step is: Find out how far the decimal point has to be moved in order to position the
number such that a regular rounding operation can be done. In all, the steps are as follows. Assume
¥ is the number to be rounded, and Di ¢its is the number of significant digits the result is to exhibit.

1.

2.

3.
4.
5.

To find out how far the number is to be shifted, make a number which is the next larger order
of magnitude; i.e., 1 x 10®. This is accomplished by taking the logarithm? to the base 10,
rounding it up to the next integer, and taking 10 to that power.

Shift the number again by dividing it by an appropriate power of 10 in order to take into
account the number of digits to which to round.

Round in the usual way.
Shift back the number of digits found in Step 2.
Shift back the number of digits found in Step 1.

Implementing this in Pascal is not too difficult. Following is a section of code which would go into a
function named DRound, which rounds to a certain number of digits. There are several ways to
combine steps in this code segment to increase speed, but they were left out to maintain readability.
Assume the functions TenToThe and Lo 910 exist and calculate a power of ten, and the common log,
respectively.

var

DigitPowers» MadnitudePower: reals
+
+

+

if Digits:=15 then

DRound:=¥

else

if Didits<=0 then
DRounds:=X

else
bedin
MagnitudePower:=TenToThe(trunc({Logl0(abs(X)))+1)}
DiditPower:=TenToThe(-Digits)}
Ki=X/MagnitudePower3
Xi=round{(¥/DiditPower)#DigitPower;
Ki=X*MagnitudePower}
DRound:=X3
endi

4 Assume for the moment that functions exist whereby the common logarithm (log;¢x) common antilogarithm (10% can be obtained. The next
section in this chapter illustrates how to implement these in Pascal.

52 Numeric Computation

Logarithms and Powers

There are two functions resident in Pascal which deal with logarithms: 1n, which takes the natural
log®, and exp, which takes the natural antilog, or takes e to a power. With these two functions, we
can do quite a bit.

X to the Yth Power
One of the logarithmic identities is

¥ = pylogyz

where b is any non-zero number base. Since this works with any number base, e will work nicely:

7V = e¥Inz,

Knowing this, it is straightforward to take any number to any power. For example, to find out how
many cubic feet in a cubic mile, you take 5280, or

CubicFeet:i=exp(3%1In(3280))1
When x, above, is a commonly used number, you can save computer time by calculating the
natural log of it once, and than hard-coding it. The increase in speed can be significant, because
both exr and 1n are complex, relatively slow functions to calculate.
For example, to calculate 10 to a power, you could execute this statement every time:

Yizexp{(X*ln(10))}

However, 1n(10) is not going to change, so speed can be increased by converting this to an
equivalent value: 2.302 585 092 994 05.

Ye=exp(X#2,30238509299405)
This approach can be taken with any number base.

The Xth Root of Y
Another logarithmic identity comes into play here:

w — yl /z
This says that the x th root of v is obtained merely by taking v to the power of the reciprocal of x.
After taking the reciprocal—just dividing the number into 1—use the approach immediately above for

taking a number to a power.

In Pascal, to take the cube root of 27, it would be:

Yezexp(1/3*%In(27)) 3

5 The “natural logarithm’’ is a logarithm based on the Napierian number e, which equals approximately 2.718 281 828 459 045.

Numeric Computation

Log to Any Base

So far, we have been looking at logarithms to the base e exclusively, with a minor excursion into
base 10. But logarithms exist in any base, so how can you figure a log to any user-specified base?
The following derivation illustrates what can be done.

The definition of logarithms: logyz =y

". (apply a logarithmic identity) b=z

.". (take natural log of both sides) InbY =Inz

.". (apply logarithmic identity to left side) ylnb=Inz

.". (divide both sides by Inb) y=1Inz/Inb

What this means is that we can calculate the logarithm to any base of a number by dividing the log
of the number by the log of the base. For example, to determine how many bits in a computer are
required to represent a certain number—say 500—you need to take the log to the base 2, since bits
deal in base 2.

Bits:=trunc(1ln(300)/In(2))+13

53

54 Numeric Computation

Calendar Functions

A very useful capability for a computer to have is that of dealing with time. The Pascal operating
system has some capabilities of dealing with time through the interface to the system clock.
However, the clock is more designed to deal with centiseconds, seconds, minutes, and hours, than
it is to deal with days, months, and years (although it can do some of this).

This section of the chapter deals with a broader area of timekeeping capabilities, ranging up to time
spans of thousands of years.

The Julian Day

The Julian day, named in honor of Julius Caesar, is an astronomical convention representing the
number of days that have elapsed since January 1, 4713 B.C. It is nothing more than an arbitrary
“‘zero point” from which dates can be calculated. Since every month/day/year date has a Julian
Day number, it becomes quite easy to determine how many days apart events are.

Converting Between Julian Day and Month/Day/Year
The formulae for determining the Julian Day number are these:

Day juiian = 1365.25y'| — [3//100] + |y'/400] + [30.6001m’| + day +1720997

where

+ _ Jyear—1 if month <2
Y = year if month > 2

m = month +13 if month < 2
" 1l month+1 if month > 2

This algorithm is valid only for dates after October 15, 1582, since a 10-day calendar correction was
done at that time. If you include the 10-day correction, this October 15, 1582 limit no longer
applies.

If an invalid date is sent to the routine, there will be no indication that the number coming back is
wrong; you must check for out-or-range conditions yourself.

Yri=Year-ord(Month<=2)1

Mo:=Month+l+12%ord(Month{=2)3

Julian:=trunc(365,25%Yr)-trunc(Yr/100)+trunc(Yr/400)+trunc(30,6001%Mo)+
Dav+17209973

Numeric Computation 55

After converting a month/day/year into a Julian Day number and doing some desired operation,
you’ll need to convert a Julian Day number back into a month/day/year. These are the formulae
you’ll need:

dl =DayJulian — 1720997

,_[d’— 121.5J

Y = 17365.2425

o _{d’ — |365.25¢'| + |y//100| — |y’ /400] J
N 30.6001

day =d' — [365.25y'| + |y'/100] — |y'/400] — |30.6001m’|

_fm =13 ifm' > 14
month_{m’—l it m' < 14

p .
]y if month > 2
year = { Yy +1 if month <2

In Pascal:

Di=Julian-1720997;

Yi=trunc((D-121,5)/363,2425)1
Temp:=D-trunc (365 ,25%Y)+trunc(Y¥/100)-trunc(Y/400);
Mi=trunc(Tempr/30.6001)1
Dav:=Temp-trunc(30,8001%M)3
Temp:=M-1-12%0rd(M>=14)3

Month:=Temp}

Year:=Y+ord(Tempr<=2)3

These two functions allow you to do many desirable things (assume you have a function Julian
which calculates the Julian day number, and a function mmddrv»» which calculates month/day/
year):

® How many days apart were Event A and Event B?

DavsArart:=Julian((Event B date))-Julian({(Event A date)) i
e What day of the year is June 18, 19857

DavOfYear:=Julian((June 18, 1985))-Julian({(January 1, 1985))+11
® What will be the date 200 days from today?

Date:=Mmddyyyy (Julian((today))+200) }
Day of the Week

The Julian Day number also lends itself nicely to finding out which day of the week on which a
particular date fell.

DavOfWeek:=(Julian{Months Davy Year)+1) mod 7+13

This algorithm returns a number in the range 1 —7, meaning Sunday — Saturday, respectively.

56 Numeric Computation

Leap Year

As mentioned, a leap year is a year in which an extra day is placed at the end of February. The
current algorithm, instituted along with the Gregorian Calendar, is this: A year is not a leap year
unless it is a multiple of 4, in which case it is, unless it is a multiple of 100, in which case it is not,
unless it is a multiple of 400, in which case it is®.

In Pascal, this is:

if Year mod 4430 then
LearYears=false
else
if Year mod 100<{30 then
LearYear:=true
else
if Year mod 400<:0 then
LearYear:=false
else
LearYear:=truei

6 Got that?

Numeric Computation

Number Base Conversion

Utility functions are available with the Pascal language to simplify some of the conversions between
number bases. The three functions binarv, octal, and hex convert strings representing numbers in
base 2, 8, and 16, respectively, to integers. There are no standard Pascal functions which convert
integers to these bases.

For those applications where you must deal with number bases other than 2, 8, or 16, you must
create your own conversion routines.

To refresh your memory on conversion of a number in another base to base 10, consider the
following. You want to convert 1432 in base 5 to base 10. This is 1 X 53 +4 x5 +3 x5! +2 x 5°,
or 125+100+15+2, or 242.

To convert 242 back to base 5, you take successive powers of 5 until the first time a power of five is
greater than the original number, then back off one, and this is where you start. For example:

50=1 1<242, so increment the exponent.

51=5 5<242, so increment the exponent.

52=25 25<242, so increment the exponent.

53=125 125<242, so increment the exponent.

5%=625 625>242, so decrement the exponent; we’ve found where to start.

Thus, the power of 3 is where we are to start subtracting:

How many 5% can be taken from 242? One; write 1, do the subtraction.
How many 5%s can be taken from 117? Four; write 4, do the subtraction.
How many 5's can be taken from 17? Three; write 3, do the subtraction.
How many 5% can be taken from 2? Two; write 2, do the subtraction.

At this point, the iterations stop, because the original number has been reduced to zero. We've
successfully converted 242 in base 10 to base 5; we've written 1432, which is the original number.

The following code segments illustrate what must be done to convert between base 10 and base n.
Note that the numbers which are in base 10 are regular integers, and the numbers in other bases
are represented as strings, because any base greater than 10 requires letters for the other digits.

57

58 Numeric Computation

Here is an algorithm for converting an integer (N) into a string (St rn¢) representing a number in
base n (Base).

const

Chars= "0123456789ABCDEFGHIJKLMNOPORSTUVKHKYZ '35 {base 36 max}
tvre

Str32= strind[3213
var

Power: inteders

StrindexsCharsIndex: inteders

Strng: Str323

4

4

+

Power:=13 {\ Find out what }

repeat { N\ number to start }
Power:=Power*Bases { * dividing the }

until Power:Nj { / input Parameter }

Powers=Power div Basej {/ by }

Strndi=strret(’ ‘432)1 {initialize the result string}

Strindex:=03 {where are we in the string?}

rereat
CharsIndex:=N div Power: {9et madgnitude of "digit" in base n}
StrIndex:=S8trindex+l3 {increment character Pointer}
StrnglStrIndex]:=Chars{CharsIndex+113 {place "digdit" in arPpropriate pPosition}
N:=N mod Power? {subtract digit*Power from N}
Power:=Power div Base} {decrement exponent}

until Power=03 {until number does to O}

Numeric Computation 59

Here is an algorithm for converting a string representing an number in base n to an integer:

const
Zero= ord(‘0’) 3
var
I» Pos» TempP: inteders
StrChar: stringl1l3
BadChar: booleansi

if (Base<2) or (Base>3B) then
begin
writeln(‘Error: Base='sBase:()}
halt(-1)3
endj
BadChar:=false}
for I:=1 to strlen(Strnyg) do
bedin
StrChar:=str(StrngsI+1)3
Pos:=strros(CharssStrChar)i
if (Pos<l) or (Pos:Base) then
BadChar:=true}
endi
if BadChar then
(error message)
else
bedin
Temp:=03
for I:=1 to strlen{(Strng) do
bedin
StrChar:=str(StrndsIs1)3
Pos:=strrpos(Charss+StrChar)i
Temp:=Temp*Base+Pos-13
endj
(function name):=Tenpi
endi

60 Numeric Computation

Random Numbers

In many mathematical and statistical fields of study, there is a need to simulate random events. A
random event is an event which does not produce the same outcome every time it occurs under
identical circumstances. And, since many events and processes can be mathematically modeled, a
computer should be able to model random events.

Technically, a computer is hard-pressed to generate real random numbers, because the one of the
requirements of a sequence of random numbers is that the value of any particular number is
completely unrelated to its previous and succeeding neighbor. Most computerized random number
generators generate random numbers algorithmically, that is, the value of each number is somehow
derived from the previous one (or n numbers).

Since the definition of ‘‘random number sequence’ requires that neighboring numbers be unre-
lated, algorithmic random number generators do not really generate random numbers. On the
other hand, the sequence of numbers generated by a good algorithmic random number generator
passes batteries of randomness tests, therefore the numbers can be considered random. To remove
the apparent paradox here-random or not random—computer scientists have called the numbers
generated by algorithmic random number generators ‘‘pseudo-random’ numbers.

Workstation Support of Pseudo-Random Numbers

Your computer has two routines which deal with random numbers. Both of them are exported from
module rnd (in SYSVOL:LIBRARY):

random This procedure generates a random number ‘“‘seed.” The seed of a pseudo-random
number generator is a number from which the next value in a sequence of pseudo-
random numbers is generated. Typically, this routine is called once per sequence of
random numbers. Its declaration is:

procedure random(var seed: inteder)i

The random-number seed ‘‘seed’” must be initialized prior to use. A good initial
value for Seed is one with several digits, where the least significant digitisa 1, 3, or a
7.

rand This function takes the pseudo-random number seed generated by random and
returns a pseudo-random integer in a user-definable range, as well as updating the
seed for the next iteration. This routine is called every time a pseudo-random
number is needed; not just once per sequence, as random was. Its declaration is:

function rand{var seed: inteder’i rande: shortint): shortints

The type shortint indicates a signed, two’s complement, 16-bit integer. It is ex-
ported from the s¥sglobals module (in CONFIG: INTERFACE):

tryre
shortint= -32768B,.327673

The parameter called range allows you to specify the integer range within which the
returned pseudo-random integer will be. That is, if you invoke this function with
range equal to n, the returned integer will be in the range 0 through n—1, inclusive.
Obviously, you can add 1 to the function result if you wish the range to be 1 through
n.

Note that the parameter Seed will be changed by a call to either random or rand.

Numeric Computation

Using the Pseudo-Random Number Generator

Generating a sequence of pseudo-random numbers between 0 and n—1 or between 1 and n is
trivial, if repetition—having the same number more than once—is permitted. It is as easy as:

Ii=rand(Seed(n))} {Range: 0,.(n—1) inclusive}

Ii=rand(Seed(n))+13 {Rande: 1..(n)s inclusive}
If an arbitrary set of limits is desired, say, you want pseudo-random integers between m and n
(m=n), this is as easy as:

I:=rand(Seed (n)-(m)+1)+(m)i {Range: (M)..(nN)s inclusive}
The following program does just that: it generates 100 pseudo-random integers in a user-defined
range:

prodram Randoms{(inPutsoutpPut)i

imPort rndj {get the random number routines}
var
Seeds Rmins Rmaxs I: inteders
begin
Seed:=12345; {initialize the random number seed}
write(’Rande for randem numbers: ‘)3 {ask for.ss
readln(RminsRmax) i {+vsand receive the range limits.,?}
for I:=1 to 100 do {100 times.,+}
write{rand(Seed Rmax-Rmin+1)+Rminz04s’ /)3 {evvwrite a number between,. ..}

{+ssRmin and Rmax.}
end.

If repetition is not allowed, it is not quite as straightforward, although it is not difficult.

An example of generating a random sequence without repetition is shuffling a deck of cards. No
matter how poorly or how well the randomness is applied, there will never be more than one ace of
spades’, or seven of clubs, etc.

The following example concerns generating a pseudo-random number sequence of arbitrary size
without repetition. The routine in this example generates n pseudo-random integers between 1 and
n, although it could easily be modified to generate fewer than n integers in the range 1 to n, or to
generate integers between m and n.

7 We are dealing with a regular deck of cards here, not a pinochle deck. Our deck has Ace through King of each suit.

61

62 Numeric Computation

A Shuffling Algorithm

Generating a list of non-repeating pseudo-random numbers is not difficult. Let's go through the
algorithm by hand to generate a list of 3 pseudo-random numbers. There needs to be a vector—-a
one-dimensional array—3 elements long, through which the shuffled integers will be returned to the
calling routine. In addition to this, we need a temporary storage area of type integer. There also
needs to be a variable called Ran e which specifies the maximum value the random number can be
when selecting elements from the array.

1. Define vectorl13:=1. The setup looks like this:

VECTOR RANGE
1 3
2
3

2. Pick a pseudo-random number, (rnd), in the range 1 through Range, which is currently 3.
Let's say {rnd) is 2.

3. Switch the values of VectorRangel and Vector[{rnd)1. We have now defined the pseudo-
random number in the element of Vector specified by Range (now 3). Decrement Range. The
setup now looks like this:

VECTOR RANGE
1 2
3
2

4. Pick a pseudo-random number in the range 1 through Ranse, which is currently 2. Let's say
(rnd)is 1.

Numeric Computation

5. Switch the values of vectoriRansel and Vectori(md)1. We have now defined the pseudo-
random number in the element of Vect o r specified by Range (now 2). Decrement Range. The
setup now looks like this:

VECTOR RANGE
3 1
1
2

6. The final step of this algorithm is virtually a no-op. It is driven by ‘Pick an integer between 1
and 1, inclusive.” However, for the sake of completeness, we will go through it.

Pick a pseudo-random integer in the range 1 through Ran ge, which is currently 1. Obviously,
(rnd) must have the value of 1.

7. The switching of the values in VectorlRansel and Vectorl{rnd)1 doesn’t change anything
this time. Decrement rRange. The setup looks like this:

VECTOR RANGE
3 0
1
2

8. Range has been reduced to 0, so we are done. Return the array to the calling routine.

63

64 Numeric Computation

The Shuffling Routine
Putting the above algorithm into Pascal is quite simple, as the following example shows:

$svsProds
prodgram Shuffle_(output)s

import rndj {get RANDOM and RAND}
var
Vectorl: array [1..101 of intederi
Vector2: array [1.,,20] of inteders
I: inteder?
$Paded {REERFEEERFERERRRRREE RN RRRRRERRRRF RN RN RN RN RN RRR NN)
procedure Shuffle(var Yector: array [Lo..Hi: inteder] of inteder)i
uvar
Temr: inteders {temporary storade area}l
Seed: intederi {pseudo-random number seed’}
Rande: inteders {maximum random number}
Iy Je intederi
bedin
Seed:=12345G67) {initialize the random number seed}
for I:=Lo to Hi do {initialize the temPorary arrav}
YectorlIJl:=I3
Range:=Hii {pick from whole thing the first time}l
for I:=Lo to Hi do

bedin
Ji=rand(Seed Rande)+1}
Temp:=Vector[Rangel}
Yector[Rangel:=VectorlJ1}
YectorlJl:i=TempPs
Rande:=Rande-11
endi
ends
$rade$
bedin
Shuffle{Vectorl)i
write(‘Shuffled vector: ‘#13#10° ‘)3
for I:=1 to 10 do write(Vectorl[Il:0,
writelns
writelns
Shuffle(Vector2)}
write(’Shuffled vector: ‘#13#10’

‘)i

for I:=1 to 20 do write(WectorZ2[Il:Osstrrrt(',

writelns
end.,

{where does next element do?}

{ \ ©GSwitch locations %
{ » of Vector[Randel 1}
{ / and VectorlJl. ¥

{reduce the choice randgel}

{ ERERAEERRREREREERAE R R EER R RFERRREE R RRERRHRERE RN ERERREEERRRHEEREREN ¥

strrpt (‘s ‘rord(I<10)))3

“y0rd(I<20))) 3

Numeric Computation 65

There are several features of note in the above example:

e The array to be filled with non-repetitive pseudo-random numbers is passed to the shuffling
routine as a conformant array. The routine automatically adjusts its behavior to deal with
whatever size array was passed to it. Note that since the array is passed as a conformant array,
it may not be portable to other Pascal systems. (See the chapter “Data Structures’ for more
information on conformant arrays.)

e Using control characters (carriage-return and line-feed) in a string being printed. (See the
chapter ‘‘String Manipulation” for more information on strings.)

o Using the step-function capability provided by using o rd ({boolean value)) as a number. (See
the section “‘Step Functions’ in this chapter for more information on these.)

The following are references which contain further information on numeric computation.

Coonen, Jerome T.; “An Implementation Guide to the Proposed Floating Point Standard”’, Com-
puter Magazine, Jan. 1980.

Cody, William J. Jr. and William Waite; Software Manual for the Elementary Functions, Prentice
Hall, 1980.

Sterbenz, Pat H.; Floating Point Computation, Prentice Hall, 1974.

Signum Newsletter, Oct 1979.

66 Numeric Computation

Notes

Chapter

14

String Manipulation

Introduction

It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters, both displayable
and non-displayable, may be used in a string. Apostrophes (‘), or single quote marks, are used to
delimit the beginning and end of the string. The following are valid string variable assignments.

A:='COMPUTER '3

Fail:='The test has failed,'#7% {the "#7" is a CTRL-G (bell) ¥
File_name:="INVENTORY 'S

TEST:=str(Fails5:4) 3

The variable name (the left-hand side of the assignment) is assigned to the string value specified by
the right-hand side of the assignment.

The length of a string is the number of characters in the string. In the previous example, the length
of A is 8 since there are eight characters in the literal ‘COMPUTER /; you don’t count the quotes, since
they are only used to delimit the beginning and end of the string value.

Pascal allows the dimensioned length of a string to range from 1 to 255 characters. The current
length (number of characters in the string) may range from zero to the dimensioned length. A string
of zero characters is called a “‘null string”” or an “‘empty string”’. An error results whenever you try to
assign a string variable more characters than its dimensioned length.

Special Cases of String Assignment

A string may contain any character. There are three special cases:
® The quote mark itself,
e Control characters (0 rd<32), and
® The upper half of the character set (o rd>=128).

67

68 String Manipulation

Getting a Quote Into the String
To get the quote mark (or “‘apostrophe”) itself into the string requires two quotes in succession:

Quoted:='The time is ' 'NOW’’,’}
Arastrorhes="'"""}
writeln{(Quoted):
writeln(Arostrorhe)i

Produces:
The time is ‘NOW’.,

7

Getting a Control Character Into a String

To get control characters whose ordinal value is less than 32 into a string, you put a character or an
integer’ after a pound sign (a “‘#”). Say that you wanted a string to contain an “A”, a carriage
return, and a “B”. You could type:

Strngi='A'#M'B "’

The pound sign and the character following are converted into chr(ord({character) mod 32). An
ASCII table will provide information on what values to use.

Note that these characters cannot be inside quote marks, or you will end up with just those
characters. For example, if the two inner quote marks in the above example were removed, the
string would consist of an “A”, a “#’’, an “M”, and a “B”’.

In the same way as a non-numeric character can follow a pound sign, a number can, too. To get the
same string as the above example, you could type:

Strnd:=‘A'#13'B"'
Again, notice that the pound sign and its number must be outside of quotes.

Getting “Other” Characters Into a String
The “pound-sign-character’” method mentioned above is limited to creating characters whose o rd
is less than 32. The ‘‘pound-sign-integer’’ method has no such restriction; it can create any charac-
ter between chr(0) and chr(255), inclusive.

For example, if your machine supports underlining text, you can cause a string to contain its own
underline on/off characters:

Strng:=#132'This is underlined, #1283

1 if you put an integer after the #, you are not limited to characters whose o rd is less than 32. See the next section.

String Manipulation 69

Declaring String Variables

The following statements may be used to declare a string:

type
Str20= strind[2013
var
MyStringd: Str203
or
var
MyString: stringl20]13

String Length

A string may be declared (dimensioned) to any length between 1 and 255 characters, inclusive. The
var statement declares and reserves storage for string variables.

const
ShortStrindlendgth= 43
tvre
ShortStrindTypPes= string[ShortStrindlLendthls
var
ShortString: ShortStringTyres
LongString: stringl25511%

Strings that have been allocated but not assigned can contain anything; there is no automatic
housekeeping done. Therefore, we highly recommend initializing string variables to some known
state before use.

String Storage in Memory

Strings, as all other Pascal variables, must have space reserved before assignment. That space
reserved consists of one length byte, followed by as many characters as specified in the declaration
(the length byte is a one-byte area at the beginning of every string which indicates, in its eight bits,
the current length of the string). The storage area is aligned along an even-byte boundary. Thus, a
variable declared as string[51 will consume 8 bytes: the six bytes desired, the length byte, and
another byte for padding to an even-byte boundary.

String Arrays

Strings, like any other data type in Pascal, can be incorporated in arrays and records. Large
amounts of text are easily handled in arrays. For example:

var
BigArrar: array[1,,1000] of string[BOIJ
This statement reserves storage for 1000 lines of 80 characters per line. Each string in the array can
be accessed by an index. For example:

writeln(BigArrav[271)3

Prints the 27th element in the array.

70 String Manipulation

Since each character in a string uses one byte of memory and each string in the array requires as
many bytes as the length of the string (plus one, for the current length, plus possibly another one for
the even-byte-boundary pad character), string arrays can quickly use a lot of memory.

As an example of using a string array, a source program saved on a disc file can be entered into a
string array, manipulated, and written back out to disc.

Evaluating Expressions Containing Strings
Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The two
allowed operations are concatenation and parenthesization. The evaluation hierarchy is presented
in the following table.

Order Operation

High Parentheses (functions, which require parenthesized parameters, are included
here).

Low Concatenation

String Concatenation

Two separate strings are joined together by using the concatenation operator “+”’. The following
program segment combines two strings into one.

Ones="WRIST’;

Two:='WATCH'

Concat:=0One+Two}

writeln(Ones’ “»Twor’ ‘Concat)i

Prints:

WRIST WATCH WRISTWATCH

The concatenation operation, in the third line, appends the second string to the end of the first
string. The result is assigned to a third string. An error results if the concatenation operation
produces a string value that is longer than the dimensioned length of the string variable to which it is
being assigned.

To increase the readability of certain programs, parentheses can be used to force concatenation in a
particular order. Note that the outcome result will be the same with or without parentheses, since all
string operators (there is only the one) have the same priority. This is different from numeric
expression evaluation, where there are several different operations, having different priorities.

CombinedString:=Strndl+(S5trnd2+5trng3)3

String Manipulation

Relational Operations

The relational operators used for numeric expression evaluation can also be used for the evaluation
of strings. Testing begins with the first character in the string and proceeds, character by character,
until the relationship has been determined.

The following examples show some of the possible tests.

'ABC‘ = ‘ABC’ True
'ABC’ = ‘ ABC’ False
‘ABC’ < ‘AbC’ True
By 17! False
‘B0 77 False
‘lond’ <= ‘longer’ True
'RE-SAVE’ »= ’RESAVE’ False
Any of these relational operators may be used: <, », <=, »=, =, {>.

The outcome of a relational test is based first on the characters in the strings and, second, on the
length of the strings. For example:

'BRONTOSAURUS ' « 'CAT’

This relationship is true since the letter “C”’ is higher in ASCII (or ordinal) value than the letter “B”".
However, in the following example, the string length is taken into account:

'HIPPO‘ <« 'HIPPOPOTAMUS’

In this case, all the characters match up through the point at which one string ends. At this point, the
shorter string is considered the lesser.

71

72 String Manipulation

String Functions

Several intrinsic functions are available in HP Pascal for the manipulation of strings. These functions

include:

® Extracting substrings

® Determining string length and maximum string length

® [_ocating substrings within strings

® Conversion between string and numeric values

e Conversion between strings and packed arrays of characters

® Trimming off leading and/or trailing blanks

® Repeating strings zero or more times

Substrings

Using the string function str, you can extract a portion of a string, called a substring, from the
source string. A substring may comprise all or just part of the original string. The str function

requires three parameters:

® The source string expression
® The starting index of the substring

® The substring length

For example, assuming St rn ¢ is a string variable dimensioned to a maximum length of 20, and that
it currently has the 16-character value of ’atcdefghiklmnar

str{Strnd,3.4)

str{Strngs16+1)

str{(Strngd,3,0)

str{Strng,39.+4)

str{Strnd,B60,0)

specifies a substring of 5t rn¢ starting at the third character and extend-
ing for 4 characters: ‘cdef ‘.

specifies a substring of Strny starting at the sixteenth character and
extending for 1 character: ‘e ".

specifies a substring of St rny starting at the third character and extend-
ing for zero characters: ‘.

specifies a substring of St rng¢ starting at the thirty-ninth character and
extending for 4 characters: Error!

specifies a substring of St rny starting at the sixtieth character and ex-
tending for zero characters: No error.

Except for null substrings, the integer expression specifying the starting position of the substring
must be in the range 1 to the current length of the string.

Substrings may appear only on the right side of an assignment statement.

String Manipulation 73

Current Length of a String

The “length” of a string is the number of characters in the string. The st rlen function returns an
integer whose value is equal to the string length. The range is from O (given by the null string)
through 255. For example:

write(strlen(‘HELP ME’))3
Strng:='Greetings!‘}
writeln(strlen{Strng))i

Prints: 7 10

Maximum Length of a String

This function returns the maximum length a string can legally be. This is its length as specified in its
declaration, e.g., string[B801.

The st rmax function can be used to avoid run-time errors which would occur from string overflows.
For example:

if strlen(Strng)+strlen(Addendum)>strmax(Strng) then

writeln(’String would overflow. Append oreration not performed.,’)
else

Strngi=Strng+Addendums

Substring Position

The “position”” of a substring within a string is determined by the strros function. The function
returns the value of the starting position of the first occurrence of the substring or zero if the entire
substring was not found. For instance:

writeln(strros('APPEAR’'DISAPPEARANCE’))

prints 4, because the string ‘APPEAR’ is found in the string ‘DISAPPEARANCE‘, and it starts in fourth
character position.

The compiler option $switch_strros$ reverses the interpretation of the argumentsina strros call.
This brings the order of arguments into agreement with the HP Pascal Standard (which is also in
agreement with the HP BASIC definition of p0s). That is, if $switch_strros$ is in effect, the above
example would have been coded:

writeln{strros('DISAPPEARANCE ' APPEAR'))}

If strros returns a non-zero value, the entire substring occurs in the first string and the value
specifies the starting position of the substring.

The $switch_strros$ directive, if it is used, must appear at the beginning of the program. It sets (it
doesn’t complement) an internal flag which specifies that the interpretation order of st rros para-
meters should conform to the HP standard; thus, multiple occurrences of $switch_strros$ do not
keep toggling the interpretation order.

74 String Manipulation

Sometimes, you may not care where a substring is in a string, you need to find out only ifit is in the
string. Again, the strros function avails itself:

$switch_strros$
+
+

+

var
MasterList: string[23511%
Item: stringl10]13
Found: tooleans

]
+

Found:=(strrpos(MasterList sItem)>0)}
if Found then ..

Note that strros returns only the first occurrence of a substring within a string. By extracting a
substring, and indexing through it, the strros function can be used to find any occurrence or all
occurrences of a substring. The following algorithm uses this technique to find any specified
substring from a source string.

Assume that the source string—that string to be searched-is called Source, and that the substring
you are looking for is called Patte rn. Further, assume that the occurrence of the substring you are
looking for is an integer called 0ccurrence. In other words, if you are looking for the third occurr-
ence of ‘“is’’ in the string ““This is the Mississirpi’’, you would set Source to
“This is the Mississippi’’, Patternto “‘is”’, and Occurrence to 3.

Note that in this algorithm, we are not permitting overlapping occurrences of the pattern sought.
Thus, there is only one occurrence of “issi”” in ‘“Mississippi’’; it starts in character 2. The occurrence
starting at character 5 is not considered because the search resumes at character 6.

The following steps are required:

1. Find, in the whole of Source, the position of the first occurrence of Patte rn. Place this value
in the integer Pos.

2. If Pattern exists in the section of Source scanned (and if we haven’t found the one we'’re
looking for yet), do the following:

a. Make note of the fact that you've found an(other) occurrence of Pattern.

b. If we've found the one we're looking for, return the location of Pattern within the
section of Source we just searched. If we haven’t found the one we’re looking for, search
Source from the first point another occurrence of Pattern could exist, and, if it exists,
note its position in Pos. What is meant by “from the first point another occurrence could
exist’”’ is this: the second occurrence of a string cannot occur (by our rules) until after the
first occurrence ends. Thus, skip over the part of the string occupied by the characters
before Pos, as well as the entire length of the first occurrence of the pattern.

c. Go to Step 2.

3. We got out of the Step 2 loop because either (1) no more occurrences were found, or (2) we
found the occurrence we were looking for. If we found the one we’re looking for, return the
location of Pattern within the whole of Source. If we didn’t find the one we’re looking for,
return zero; the specified occurrence does not exist.

String Manipulation

In Pascal, the following code segment accomplishes the desired task. Assume that this is part of a
string function whose declaration looks like this:

function strrpos2(Sources Pattern: Str2553 Occurrence: inteder): S5tr2553

where St 1255 is a type specifying st ring[2551.

if Occurrence=1 then {if looKing for the first ones. s}
strros2:=strros{(SourcesPattern) {vsiuse the system routine.}
else
bedin {otherwise. s}
Start:=11 {where to start search in Sourcel}
Found:=03 {how many have we found?}
Plendgth:=strlen{(Pattern)’ {lendgth of pattern searched for}
Done:=falses {done vet?
Pos:=strros(SourcesPattern)s {search for Pattern in Sourcel}
while (Pos*0) and not Done do {if we're still doind...
bedin
Found:=Found+1} {eureka! another one!}
if Found=Occurrence then {the one we're looKing for?}
Done:=true {vesi quit}
else
bedin {noese}
Start:=Start+Pos+Plength-13 {update search starting position}

Pos:=strros{str(Source:5tartsstrlen(Source)-Start+l) Pattern)s
{where in THIS PART is Pattern?}
endi {elsel
endi {while)

if Found<Occurrence then {did we exit loop for failure?}
strrpos2:=0 {verPsss}

else
strrpos2:=58tart+Pos-11 {nos we found the one sought}

endi A{Occurrencexl}

As each occurrence is found, the new value of Start specifies the remaining portion of the string to
be searched.

String-to-Numeric Conversions

The st rread function converts a string expression into any type. A strread can do anything with a
string that a read can do with a file with the exception of end-of-line-related operations. When
reading an integer or an enumerated-type item, the string must evaluate to a valid value or error
— 10 will result?. Note that enumerated types include the boolean type, because boolean is just an
enumerated type, defined toolean=(falsetrue), which “comes with the system.”

error -10: bad input format

The strread procedure requires at least four parameters. They are:

strread ((string to read from) ,(starting position) \{next character to read)
(variable 1), ... i(variable n))

2 The system reports escarecode = — 10, but technically, this only means that some kind of I/O error took place, and thus ioresult is
nonzero. At this point, ioresult is examined by the system (it equals 14) in order for the system to print the ‘‘bad input format’” message.

75

76 String Manipulation

A description of these parameters follows:

1. The string expression in which certain characters are to be converted into a number (either
integer or real values can be read), an enumerated type, etc.

2. The starting index. This integer expression specifies where in the source string read should
begin. It must be in the range from 1 to the current length of the source string.

3. The “next” character. Upon completion of the strread procedure, this integer variable
contains the next character to be read after all the variables (see Step 4, below) have been
assigned.

For example, if you were reading the string ‘123 456" into a single variable, and the starting
index was 1, this integer, specifying the “‘next” character would be 4. This is because after
reading the characters '123' and converting them to the integer 123, character 4 is the next
one to process. So, the next time through the loop, the second parameter would be set to 4,
reading started there, and “next”” would be assigned 8. Observe:

prodram StrindRead(outpPut)s

var
Strnyg: string[BO13
Starts Next: inteder?
Number: integers
Color: (Reds Greeny Blue)s
Truth: booleans
bedin
Strng:='123 red true 45 dreen true B789 blue false '3
Start:=13
while Start<>strlen(S5trng) do
bedin
strread(Strng, Starts Nexts Numbers Colors Truth)j

writeln(Numbers ¢ ‘s Colors * “» Truth)i

Start:=Nexti
endi
end.,

This program prints:
123 RED TRUE

45 GREEN TRUE
6789 BLUE FALSE

4. After the first three parameters specified above, there must exist one or more variable names,
into which the st rread procedure places values converted from the string.

A number returned by the st rread function will be converted to and from scientific notation when
necessary. For example:

strread(/123.4E3' 1 NextChar NumValueRead) 3
writeln(NumYalueRead)}

Prints: 123400

String Manipulation

The following program converts a fraction into its equivalent decimal value.

$switch_.strross$
prodram YalFrac(inputs outpPut)s

var
Fraction: string[25513
Delimiters, Numerators Denominator: intedersi
NextChar: intederi
begin

write{’Enter a fraction (e.d.sy 3/4): ')}
readln(Fraction)i
Delimiter:=strros(Fractions’/ ')}

Fraction[Delimiterl:=' /3§ {remove slash so STRREAD will work}
strread(FractionslsNextCharsNumerators» Denominator)i
Fraction[Delimiterle='/"} {Put it back so the fraction looks right}
writeln(Fractions’ = ‘sNumerator/Denominator:30:15)1

end.,

Similar techniques can be used for converting feet and inches to decimal feet, or hours and minutes
to decimal hours.

Character-to-Numeric Conversions

The ord function converts a single character into its equivalent numeric value; that is, its ASCII
value. The number returned is in the range 0 to 255. For example:

writeln(ord(‘A’))3
Prints; 65

The next program prints the value of each character in a name.

program Ord_(inPut, output)si

var
Strng: strind[25511
I: inteders
bedin

write(/'Text: ‘)3

readln(Strnd);

for I:=1 to strlen(Strnd) do
write(ord(StrnglI1):0," ")}

writelnsi

end.,

Entering the name “JOHN” will produce the following.
74 79 72 78

77

78 String Manipulation

Numeric-to-String Conversions

The st rwrite function converts the value of a numeric or enumerated-type expression into a string
of characters (again, ‘‘enumerated type” includes toolean). A string representing a number con-
tains the same numeric characters (digits, decimal point, and/or exponent) that appear when the
numeric variable is printed. For example:

struwrite(Sterng 111000000, ‘strue)s
writeln (1000000’ ‘strues’ ‘»5trng)

Prints: 1000000 TRUE 1000000 TRUE

A function could be defined which takes a real number as an argument (that way, integers could be
passed to it, too) and returns an appropriate-looking string. You probably would strurite the
number into the string with a large enough format specifier so as to avoid scientific notation until
absolutely necessary. For example:

strwrite{(Strngs1+Next RealNumber:31:13)3
After the number (which can have up to 15 digits on each side of the decimal point before resorting

to scientific notation) is in the string, you could then remove the leading spaces, trailing zeroes, and
possibly a trailing decimal point from the string, and you’re done.

Numeric-to-Character Conversions

The chr function converts a number into an ASCII character. The number must be an integer, and
the value must be in the range 0 through 255. For example:

writeln(chr(97),chr(98)schr(88))3
Prints: abec

The next program converts the numeric values in an array constant to characters.

program Chars(inpPutoutPut)s

tyrPe
CharArrayTyee=arrav[1,,15] of 0,.2585)
const
CharArravs= CharArrarTrere
[34+130:89,1114+117+32+1034+111,116+32,105,116+33+128,:3413
var
I: inteders
bedin

for I:=1 to 15 do
write(chr(CharArrav[lI1))i

writelni

end,

String Manipulation

String Repeat

The strret function returns a string created by repeating the specified string a given number of
times.

writeln{(strrrt(’'* */,10))}

Prints: FOEE OEE KR KX KX KX KX XX XK ¥

This function can be used when centering titles. The algorithm is:

1. Subtract the length of the title from the width of the printer/display device to find out how
much space is not taken up by the title.

2. Divide this amount by two to find the amount of space which should be on the left side of the
title.

3. Print that amount of space, followed by the title. The title will be centered.

For example:

Title:='(any text, as long as it'’s narrower than the printer) ' ;
writeln(strrpt(’ ‘y(PrinterWidth-strlen(Title)) div 2)Title)}

Note that this will work in the intuitive way for all titles shorter than the printer is wide, as long as
there are no unprintable characters in it (for example, underlining the title requires a chr(132) at the
beginning and a chr(128) at the end). To take care of this case, just subtract 1 from the length of
the title for every character not in therange * *..’#’, orchr(32),.,chr(127).

Trimming a String
The strltrim and strrtrim functions return string with all left (leading) and right (trailing) blanks
(ASCII spaces) removed, respectively.

writeln(/'#/ystrltrim(’ 1,23 I EE AR

writeln(‘*/ystrrtrim(’ 1,23 Y '%1)

writeln(/#/ystrltrim(strrtrim(’ 1.23 1)y %)

writeln(/#/ystrrtrim(strltrim(’ 1.23 IR IFER AD]
Prints:

¥1,23 %
* 1,23%
*1,23%
*1,23%
Combining Strings

There are several ways to combine multiple strings into a single string:

Concatenation This operator works with any number of string expressions.
strappend This procedure appends one string expression to a string.

strinsert This procedure inserts one string into another at any point.

79

80 String Manipulation

Concatenation

Note that the concatenation operator is just that—an operator-which means that it is placed be-
tween the operands it is to combine (infix order). As mentioned, it can combine any number of
string expressions:

Concatenation:='String 1/+/String 2’3
All:=A+’another’/+(strrpt(’ ‘sWidth div 2)+str(Strng:2+3))+‘and '#7+8trnd})

Appending Strings

This procedure requires a string variable as the first parameter; the second parameter may be any
kind of a string expression. Upon completion, the string variable has the value it had before with the
string expression concatenated to it at the right end.

I

Strind:=‘Pascal '’}
strappend(Strnd,’strings ‘)i
writeln(Strng)i

Prints: Pascal strings.

Inserting in the Middle
This procedure requires a string variable, a string expression, and an index into the string variable.
The procedure causes the string expression to be inserted into the string variable at the specified
(index) point.

Strng:='Thus '}

strinsert(Strnds’‘esau’s3)3

strinsert{(Strnd,’'r’y7)3
writeln(Strng)i

Prints; Thesaurus.

Replacing/Appending and Conversion Between Strings and PACs
There is another string-related procedure called strmove which allows several operations to take

place:

@ You can append characters to the end of a string (e.g., “bring”’—“bringing’’);

e You can replace characters in a string one-for-one with other characters (e.g.,
“inside”—=“in the’);

e Both of the above-replacing characters and extending the string—simultaneously (e.g.,
“sheaf’’—>‘“‘sheaves’’);

e Convert a PAC variable® to a string, and vice versa, without having to move the characters one
at a time.

3 A “PAC” variableisa packed array [1..n] of char. Note that the-array must be packed, and the first subscript of the array must be 1.

String Manipulation

The procedure st rmove takes five parameters. First, the number of characters to move from the
source to the destination. Next, for both the source and the destination, the entity and the index
into the entity. For example:

strmove(Nchars SourceExprsSourcePossDestVar:DestPos) i
strmove(d+A+34B:+6) 3 { Move 4 characters, starting with A[S]: into %
{ By starting at position B, }

Si='pal’}
strmove(ls’that+4+5:2)% {Move 1 character, startind with the 4th character}
{of ‘that’s into § (’‘pal’)s starting at pPosition 2}

Reducing Strings
You can delete characters in a string in any one of several ways:
o Deleting one or more characters from the “middle” (the ‘“‘middle” could extend to either end,
or conceivably to both ends, deleting the whole thing),

e Deleting one or both ends of the string simultaneously (the deleted portions could conceivably
touch, deleting the whole thing),

e Trimming leading or trailing blanks (we saw this before).

Deleting Characters from the Middle

The strdelete procedure deletes a specified number of characters from the middle of a string. You
specify the string to be reduced, where to start deleting characters, and how many characters to
delete:

Strng:=‘strings’3 {Strnd now equals ‘stringds’,}

strdelete(Strndg»7:1)1 {Strnd now equals ‘string’,}

strdelete(Strng 24+2) % {Strnd now eauals ‘sing’,}

strdelete(Strngsstrlen{Strng)1)3 {Strnd now eauals ‘sin’.}

strdelete(Strnd 1413 mod 4)3 {Strnd now eauals ‘in‘.}

strdelete(Strngs242)1 {Strnd now esuals ‘‘+}
Deleting Both Ends

In order to delete zero or more characters from both ends of a string simultaneously, you have to
get a trifle cagey. You don'’t really delete the ends, you retain the middle; that is, you assign the
variable the value of a substring from the middle:

Strnd:=‘antidisestablishmentarianism’s
Strng:=str(Strnd 8,9} 3 {8trnd now equals ‘establish’.}

Trimming Blanks
We discussed these functions before (see ‘‘Trimming a String”’, above). The functions strltrim
and strrtrin remove leading and trailing blanks, respectively.

81

82 String Manipulation

User-Defined String Functions

Although there are several string functions available in Series 200 Pascal, there are several more
which are not supplied with the language which can be very useful.

Note
When creating special string functions, testing should include passing
the null string (‘ *) to the function. The null string is a valid string and
may get passed to the function.

Case Conversion

Often, you may want to convert the letters in a string—keyboard input, for example—to uppercase or
lowercase letters. This is quite an easy thing to do, since the ASCII values (the ‘““ord’’) of uppercase
letters differ from the ASCII values of the corresponding lowercase letters by 32. Below is the
algorithm for converting to uppercase:

for I:=1 to strlen(Strng) do
bedin
Character:=Strng[I1} {avoid subscripting multirle times?}
if (Character»='a’) and (Character<='z’) then
Strnglll:=chr(ord(Character)-32)1
endy {for I}

The algorithm for converting to lowercase is very similar; you just add 32, rather than subtracting

32:
for I:=1 to strlen(Strng) do
bedin
Character:=8StrnglI]} {avoid subscrirpting multirle times?}

if (Character>=‘A’) and (Character<='2’) then
StrnglIl:=chr(ord{(Character)+32)3
endi {for [}

Note: both of these algorithms can be sped up having the compiler option $¢rartial_evals in effect.

String Reverse

A string reversal function returns a string created by reversing the sequence of characters in the
given string. For example, reversing ‘abc‘ results in ‘cba’. Again, the algorithm is elementary:

Lendth:=strlen(Strng)}

LendthPlusl:=Length+l} {avoid adding 1 every iteration...,}
for I:=1 to Lendgth div 2 do
bedin

Temp:=8trnglIl}
RightChar:=LendthPlusi-I3
StrnglIl:=Strnd[RightCharlsi
StrnglRightCharl:=TempPi
endj

Note that when the string has an even number of characters in it, all appropriate pairs of characters
are switched in position, but when the string has an odd number of characters in it, the middle
character is never addressed. This is fine; it doesn’t need to be addressed, because the middle
character is the middle character, regardless of which end you start from.

String Manipulation

If you incorporated the above algorithm into a function called st rrev, the following statement:

writeln{strrev(’Straw? No: too stupid a fad, I Put soot on warts.’))s

would print:

ystraw no toos tup I ,daf a diputs oot soN PwartS

A common (but inefficient) use for the string reversal function is to find the last occurrence of an
item in a string. Assume again that a function strrev is defined which returns the reversed argu-
ment.

$switch_strros$

+*

var
Strngs LastItem: string[BO1S
Delimiter: stringl113 {must be a stringi STRPOS doesn’t like CHAR}
LastDelim: inteders

+
+

+

Strng:='Now is the time for all dood men to come to the aid of their country.’s

A

Delimiter:=‘' '}
LastDelim:=strlen(Strnd)-strrpos(strrev(Strnd) Delimiter)+1}
LastItem:=str(Strng:LastDelim+lsstrlen{Strng)-(LastDelim+l)+1)3}
writeln(’The last item is "‘sLastltems’"s’)}

Displays: The last item is "country.",

Search-and-Replace Operations

A commonly used operation when dealing with strings is this: “I want to replace each one of these
in this string with one of those.” This very useful function entails several sub-operations:

1. Find, in the main string, the first occurrence of the “‘old” string (that string which is to be
replaced, hereafter called (old)).

2. Delete that occurrence of {old), and insert one occurrence of the string which is to replace it
(hereafter called (new)). Note that this must be a deletion followed by an insertion; it cannot
be a ““direct replacement’’, because {new) may be a different length than {old).

3. Starting from the first character after the end of the newly-inserted {new), search for another
occurrence of (old). You cannot just start searching again from the beginning of the main
string, because it is perfectly legal for (new) to contain one or more occurrences of (old). If
this was the case, searching from the beginning of the main string would result in either (1) an
infinite loop, if {(new) =(old), or (2) a string overflow error if st rlen({new)) >strlen({old)).

4. Repeat steps 2 through 3 until there are no more occurrences of (old) in the searchable
section of the main string.

83

84 String Manipulation

Taking these things into account, the following code segment accomplishes the desired task.
Assume that the type 5tr255 has been defined as stringl2551, and that $switch_strros$ is in
effect. 5t rn s is the main string in which the replacements take place; 014 and New have their intuitive
meanings.

$switch_.strros$
+
+

+

var
LendgthDfStrng: intedersi
LendthOf0ld: intedersi
LendthOfNew: inteders
Poss Temp: inteders

if (Strng='") or (Dld='') then {do nothingd}
else begin
LengthOfStrndg:=strlen(Strnd)} {
LengthOf0lds=strlen(0ld)3 {
LendthOfNews=strlen(New)3 {
Pos:=strros(Strngs01d)s
while Pos»0 do bedin
Strnds=str(Strndsl+Pos-1)+New+
str(StrngsPos+Lendth0f0ldsLendthOfStrnd-(Pos+LendthQf0ld)+1)3
LendthOfStrng:=Lendth0fStrng-Length0f0ld+LendthOfNew:
Temp:=Pos+LendthDfNew:
Pos:=strros(str(StrngsTempsstrlen(Strng)-Temp+l) . 01d)3
if Pos:0 then Pos:=Pos+Temp-13
endi A{while}
endi {else bedin}

\ }
» Things do faster this wave.s
/ }

Sections of Strings
This section just discusses how to get the more common parts of strings in the easiest way.

Left Part

To get the left part of a string, up to and including character n, do the following:
Strnge=str(Strng,1.n)i

Right Part

To get the right part of a string, from character n to the end, do the following:
Strnde=str(Strngs,nsstrlen(Strng)-n+l);

Middle Part: Point A through Point B

To get the middle part of a string when you know the starting and ending positions (start and finish,
respectively), but do not know how many characters this includes, do the following:

Btrnd:=str(5trng,start,finish-start+1) }

Chapter

Programming With Files

15

Introduction

The File System of your Pascal system organizes and accesses information which is stored in files on
mass storage devices. This section describes how the information is organized and accessed. It
consists of the following major discussions:

e Overview of mass storage, including descriptions of files and volumes.

® Techniques for using item-oriented files.

® Techniques for using line-oriented files.

® More details of Pascal Workstation files.

If you are already familiar with files and volumes, you may want to just scan the drawings in the
overview section. The ‘‘techniques” sections give several examples and some good advice about
using Workstation files. The ‘““More Details”” section is a more in-depth look at the facts about the
Workstation File System.

85

86 Programming with Files

Overview of Files

This section describes several concepts relating to the use of mass storage files.

Primary versus Secondary Storage

Your computer has built into it a substantial amount of very high-speed memory called random-
access memory, or RAM. This memory is called primary storage to distinguish it from mass storage,
which is called secondary storage. Normally, data processed by the computer must be first placed in
primary storage. (The term ‘‘data’ is used here broadly to signify any information processed by the
computer; thus, programs are data, too.)

Information not immediately needed by the computer is kept in secondary storage. Mass storage
devices are typically less expensive to maintain, are non-volatile (information is not lost when
power is removed), and have much greater capacities (hence the term “mass’’).

What Is a File?

Good question. A file is a logically defined storage area set aside for the temporary or permanent
storage of a collection of similar data items. Files consist of two main parts:

® A description (a name, type, size, etc. in a mass storage directory).
® Some data (the actual information it contains).

Here is a conceptual drawing of the data part of a file, showing its sequential nature.

1st record 2nd record e nth record

1 T
Beginning of file End of file (EOF)

Structure of the Data Portion of a File

In a nutshell, mass storage access consists of the Pascal file system creating a file on a particular
volume, and then writing to or reading from individual records in that file. Before showing examples
of that, however, let's complete an overall picture of mass storage by looking at directories and
volumes.

Programming with Files 87

Mass Storage Organization (Non-Hierarchical Directories)

Mass storage is organized into volumes, each of which may contain several files. Here is a pictorial
representation of the relationship between volumes and files.

Mass Storage Media

Volume Volume
Directory ’ Directory
File
File
File
File
File File

Mass Storage Device Organization

(Hard Discs, Flexible Discs, Cartridge Tapes, etc.)

88 Programming with Files

Volume Structure

The term ‘“‘volume” was chosen by analogy to a book. A book contains a table of contents and
information. Similarly, volumes contain a directory of the files in them, as well as the information in

each file. Here is a graphic representation of how volumes are organized.

Volume

File_Xyz’s description

Info. TEXT’s description

Report.ASC’s description

DataFile’'s description

File_Xyz's data

Info.TEXT’s data

Report.ASC’s data

DataFile’s data

Directory
(All entries the same size)

Data
(Entries may differ in size)

Directory entries usually contain such information as:

¢ File name
o File type

e Start location of file (offset from beginning of volume)

o Number of blocks allocated to file
e Current length of file (in bytes)

e Date created

e Date last modified

However, the information contained in directory entries varies with the type of directory (e.g., LIF,

WS1.0, SRM).

Programming with Files

Classifications of Files
There are two main classes of files that the Pascal system can deal with:

® [tem-oriented, or ‘‘fixed-record” files.
e Line-oriented, or “text’ files.

Item-Oriented Files

As the term “item-oriented” suggests, this type of file consists of data “‘items”, each of which has a
fixed size. Because of this, the name ‘‘fixed-record files” is often used. Records in these files can be
any Pascal tvre, such as pre-defined simple types (e.g., char, integer) or structured types (e.g.,
record, array), and only data of that type can be put on the file.

data data data data data

item item item o item item
1 7
Beginning of file End of file (EOF)

Structure of Item-Oriented (“Fixed-Record”) Files

When data is placed onto an item-oriented file, it is written in internal format; bit for bit, the same
structure as memory.

Line-Oriented Files
As the term ‘“line-oriented” implies, this type of file consists of records which are lines of text.
Another common name for this type of file is “text files.” Lines in such a file may vary in length
(Length 1, Length 2, etc., in drawing below), so they are terminated by a unique ‘‘end-of-record”
(EOR) marker. (Note that .asc files have no explicit EOR mark; see ‘‘Other Types of Text Files”
later in this chapter).

Record #1 Record #2 Record #3 Record #n
|—— Length #1 ——|— Length #2 —|— Length #3 —| | ——— Length #n
textual EOR| textual |EOR| textual |EOR textual EOR
data mrkr. data mrkr. data mrkr.| data mrkr.
T T
Beginning of file End of file (EOF)

Structure of Line-Oriented “Text’’ Files

You can write or read either an entire record or part of a record at a time. And when reading, you
can determine if you are at the end of a line or at the end of the file.

When data is placed onto an line-oriented file, it is not written in internal format; it is formatted to be
readable by humans.

In a nutshell, the Pascal system locates a file on a particular volume, and then can write to or read
from that file, one record at a time.

89

90 Programming with Files

Item-Oriented Files

In the previous section, a very brief mention was made of a “file of (type).” Here we will delve
further into what they are and why they are useful.

In past examples, the text files were opened for writing with rewrite, and opened for reading with
reset. Since text files are line-oriented, they were written to with writeln and read from with
readln (although write and read could have been used in addition).

With item-oriented files, writeln, and readln won’t work. To open a file, you use an oren, arrend,
rewrite Or reset statement. To write to and read from a file, you use write and read. Here is one
advantage to item-oriented files: they can be random-access files (another term is direct-access).
That is, to read or write item 54, you don’t need to read or write items 1 through 53.

Creating and Writing to an Item-Oriented File

It is as simple to create a file of some type of data-type entries as it is to create text files. One slight
difference, though, between text filesand file of (type) filesisthat file of (type) files must have
(type) defined by the user if it is not a standard Pascal tvre. The declaration text is a standard
Pascal type, and so the user doesn’t need to worry about defining it.

Inatile of (type), (fype) can be any valid Pascal tvre constructor, except those containing files;
files cannot be nested. For example, you can use predefined data types to define the items for a file:

var
FirstFile: file of chari
SecondFile: file of inteders’
ThirdFile: file of realj

You can also define your own data items with which to define a file:

tyre
GI= record
Name : strind[3011%
Ranks: (Privatey Lieutenant, Captain)s
SerialNumber: stringl131}
ends
Squad= array [1,4111 of GI3
var
GIfile:s file of GIj
SquadFile: file of Squadi

Write the following small program and execute it':

prodram Ones

var
Test: file of inteders
I: inteders

bedin

rewrite(Test, '#3:Test ')}

for I:=1 to 10 do
write(Test sI*1)3

close(Testy’'save’)

end,

1 This and the following examples assume that you have a mass storage device at unit #3. If this is not the case for your system, modify the
example appropriately for your hardware. (The Filer’s Yolumes command shows you the units that are on-line.)

Programming with Files 91

The variable Test is a file all of whose entries are of type inteser. This means that whenever the
program uses the variable Test, it is referring to a file which is accessed as integers being written to
and read from it.

In the actual execution of the program, the rewrite statement causes a file called “Test” to be
created on unit #3 (if it does not already exist). Since the file variable used in that statement is Test,
and since the file variable Test is declared in the program to be of type file of integer, the
computer assumes that the file called Test is of type file of inteser. Integers are then written,
one at a time, to the file.

Now enter the Filer and type

:(Return)

You should get something like the following:

V3: Directory type= LIF level 1
created 23-Jan-85 10.,43.,41 block size=256
Storade order

veefile mamessss # hlks # bvtes last chng

Test 1 40 14-Mar-85
FILES shown=1 allocated=1 unallocated=79
BLOCKS (256 bytes) used=1 unused=1043 lardest srace=1043

The file size is 40 bytes, as indicated by the Filer. This is as it should be, since integers are four bytes
(these are 32-bit integers) apiece, and we wrote 10 integers to the file. Note that there is no need for
anything like the EOR markers (length headers or carriage returns) in this type of file, as there is in
text files. The reason for this is that all the items in the file are the same size, so a simple multiply of
the item number sought minus one (because the first item is record 1) by the size of the item gives
the location of an item in the file. In text files, the lines can vary in length, so there needs to be some
kind of delimiter separating them.

Reading Sequentially From a File

Now that we've written something to the file, let’s read it back. Enter this next program into your
computer, then compile and run it.

prodram Twol{outPut)s

var
Test: file of inteders
RecNumber: inteders
Yalue: intedery

bedin

reset(Test, '#3:Test’) i
for RecNumber:=1 to 10 do
bedin
read(Test»Walue)i
writeln(‘'Record number ‘sRecNumber:0:’ contains ‘sValue:Qy’, ")}
endi
close(Test)
end,

When the program runs, it reads and prints sequential records on the file.

92 Programming with Files

Detecting the End of the File

The end-of-file condition may be a bit anti-intuitive when dealing with this type of files, where items
can be read in any order, because you’re may not necessarily be done with the file just because you
read the last record. But you can read a random-access file sequentially, in which case the eof
function works the normal way. Suppose you want to read the file like this:

prodram Three(outprut)s

var
Test: file of inteders’
RecNumber: inteder}
Value: inteder)

bedin

reset(Test, '#3:Test ')
RecNumber:=03
rereat
read(Test Value) i
RecNumber:=RecNumber+13
writeln{’Record number ’'sRecNumber:0:s’ contains ‘sValue:Q,y’,’)}

until eof(Test)i
close(Test) i
end.

This program will read the file from start to finish. Record #10 is the last record, so when that is
read, eof (Test) goes t rue and the program finishes. (Note thata while not eof loop is a bit better
than a rereat until eof loop, because the former can also handle an empty file.)

Now consider the following program. It reads the file, but in a user-specified order.

program Four(input, outpPut)i

var
Test: file of inteders
RecNumber: inteder;
Yalue: integder)

bedin

oren(Test, '#3:Test ')}
rereat

write(’Record number to read: ‘)i
readln(RecNumber) 3
seek(Test sRecNumber) s
read(Test Value)i
writeln{(’Record number ‘s RecNumber:Q,’ contains ‘sYalue:Qs’,’)]J
until eof(Test):
close(Test)
end.,

The eof function still goes true when record #10 is read, even if it is the first one you read. This is
probably not what you want. Thus, you will probably want to determine the exit-the-loop condition
on something other than actual end-of-file, since the “‘end of processing”” may occur anywhere.

Programming with Files

Also note that the above program crashes if you specify a record number outside the range of 1
through 10. This is certainly not user-friendly. You can put in a check for this by using the function
maxpros, which tells you what is the highest-numbered record in the data file (this does not work for
text files).

prodgram Five(inPut, outPut)s

var
Test: file of inteders
RecNumber: inteders
Value: inteders’

bedin

open{Test, ' #3:Test ')
repeat

write{'Record number to read: ')3
readln(RecNumber) i
if (RecNumber»=1) and (RecNumber<{=maxpos(Test)) then
bedin
seek(Test RecNumber) s
read(Test Value) s
writeln(‘Record number ‘sRecNumber:0:’ contains ‘:Value:O:’,’)3
end
else
writeln(#7’Illedal record number specified,’)s
until eof(Test)i
close(Test) s
end.

After being satisfied that you understand the above examples, remove any leftover files that remain
from their execution from the disc now, so they won'’t clutter the Filer listings for future examples.

In the next section, line-oriented files, or text files, are discussed.

93

94 Programming with Files

Line-Oriented (Text) Files

This section deals with files whose organization is oriented toward lines of text. These lines of text
have different maximum lengths, depending on the file type:

JTEXT 1023 characters.
ASC 32 767 characters.
Data No limit.

See the section “‘Other Types of Text Files,” later in the chapter for more information.

Since the items in line-oriented files need not be the same length, some mechanism must exist
whereby each line’s length is determined at the time of reading or writing. This concept is different
from item-oriented files, wherein all the items are the same structure and size. That type of file was
discussed earlier in this chapter.

Creating a File

It is a simple thing to create a file on a mass storage device. Write the following small program and
execute it:

program Sixs
var

Test: texts
bedin
rewrite(Test, ' #3:Test2 , TEXT)
close(Tests’save’)}
end.,

The variable Test, as you can see from the declaration, is of type text. This means that whenever
the program uses the variable Test, it is referring to a file which can be accessed as ‘‘lines’ of text.
The rewrite statement associates the variable Test with the file named TestZ.TEXT. (Note that if
Test2.TEXT does not already exist, the file system creates it automatically.)

In the actual execution of the program, the rewrite statement creates a file called “Test2,TEXT” on
unit #3. Since the file variable used in that statement is Test, and since the file variable Test is of
type text (as per the declaration part of the program), the computer knows that the file called
Test2,TEXT can contain text.

Files are sometimes used as temporary entities, existing only for the duration of the program. This is
what the Pascal system assumes, unless you tell it otherwise. For this reason, the close statement is
included in the program. The close tells the computer to “close” the file; that is, disassociate the
actual file from the program currently executing, and the program disavows any knowledge of the
file's actions or attributes. The file to be closed is specified by the first parameter. What is done with
the file at its closure is specified by the second parameter; ‘save’ in this case (note that ‘save’ is a
string parameter), which makes the file ‘‘permanent’”’ on the mass storage device.

Programming with Files 95

If the c10se statement doesn’t have a second parameter, the file is closed with the same attributes as
it had before the opening of the file with the rewrite. This file didn’t exist before the rewrite; thus,
if you closed the file without the second parameter, it would be gone at the end of the program.
Again, the “save’ string® as the second parameter causes the file to remain in existence after the
program ends.

Now enter the Filer and type
: (Retum)

which tells the computer to list (“L”") the directory of the default (“:”’) volume. You should get
something like the following:

Y3 Directory tvepe= LIF level 1
created 23-Jan-85 11,11+ 9 block size=256
Storade order

veafile namesvevs # blKs # brtes last chng

TestZ2 TEXT 0 0 12-Mar-85
FILES shown=1 allocated=1 unallocated=79
BLOCKS (256 bvtes) used=0 unused=1044 lardest space=1044

You may have more entries listed on your screen, but let’s only deal with the Test2, TEXT file. Note
that its name, size (in both blocks and bytes), and date of last change are listed. This confirms it: you
did create a file with your program.

Writing to a File

Go back into the Editor and modify your program. Place these two statements immediately after
the reset statement:

writeln(Test»'Printing one linesss ')}
writeln(Tests’,+vvand another,’)s

This tells the program to write, to the file indicated by file variable Test, the two strings
“Printing one line...” and “+..and another.”’. Note that the single quote marks are merely
delimiters of the strings; they just specify where the strings start and stop. They are not considered
part of the strings, and thus are not written to the file.

Now compile and execute the new version of the program. After it finishes, enter the Filer again and

look at the volume listing (do the :(Return) command again).

Y3: Directory tvee= LIF level 1
created 23-Jan-85 11,11, 9 block size=256
Storade order

seafile namevss # blks # bytes last chng

Test2.TEX 8 2048 12-Mar-85
FILES shown=1 allocated=1 unallocated=79
BLOCKS (256 bvtes) used=8 unused=1036 lardest srace=1036

2 The second parameter on the ¢ 1 ose statement may be uppercase or lowercase; letter case is completely ignored. The string ‘lock * does the
same action as ‘save’.

96 Programming with Files

The file is a different size this time. This is not surprising, considering we put nothing in the file the
first time, and thirty-five characters in it the second time. But why did the file size increase so
dramatically? We put thirty-five characters into the file, and the file size increases by more than two
thousand bytes?

The answer lies in the definition of . TEXT files. . TEXT files have these two characteristics:

e A file whose name at creation time ends in . TEXT contains a ‘“‘header’—a 1K-byte area which
does not contain text, but is an area for carrying information about the file. For example, when
you create a . TEXT file with the Editor, margin information, markers, and all the other environ-
ment information are stored in this area.

e A .TEXT file takes up space only in increments of 1K bytes. Therefore, when we wrote the
thirty-five bytes into the file, it took 1024 bytes. If we added more and more bytes to this file, its
size would not increase until more than 1024 bytes (excluding the 1K-byte header) were
written, at which time another 1024 bytes would be appropriated.

Reading a Text File with the Editor

Did the characters actually make it to the file the way we wanted them to?

To see if the two lines of text actually made it onto the file, let’s try to read the file into the Editor and
see if the text is there. (Make sure you store program Six first so you don'’t lose it.) When you enter
the Editor, specify Test.TEXT as the file name to edit. Sure enough, the Editor displays:

Printing one lines..

vevand another,

This file can be edited in the usual way, re-stored, etc., just like a file which was created by the
Editor. In fact, you cannot tell by looking at any particular . TEXT-type file with the Editor whether it
was created programmatically, as above, or with the Editor.

Reading a Text File with a Program

Now that you’ve written something in the file, how do you read it back later? This is also an easy
task. Enter this next program into your computer, then compile and run it.

prodram Seven(output)i

var

Test: texti

Line: string(B8013
begin

reset(Test) '#3:Test2,TEXT)]
readln(Test:Line)}
writeln(Line)i

close(Test)

end,

When the program runs, it prints:

Printing one lines..

Programming with Files 97

It only read and printed the first line of the file; that’s all we told it to do. To read and print the
second line, merely add the following two lines right before the c1ose statement:

readln(TestLine)s
writeln(Line)s

With this modification, the program will read the first line from the file, print it, read the second line
from the file, and print it. But now add a third pair of statements:

readln{Test+Linels
writeln(Line) i

Now the program will attempt to read and print three lines from the file. But the file only contains
two lines! What will happen when the program attempts to read the “third” one? Let’s run the
program and find out.

The computer displays the following:

Restart with debudder 7
Printing one lines..
vesand another,

error ~-10: tried to read or write past eof
PC value: -1390528

What happened was this:

1. The computer successfully reads the first line of text from the file and prints it out.
2. The computer successfully reads the second line of text from the file and prints it out.

3. The computer tries to read the (nonexistent) third line of text from the file. However, there is
no third line of text, so the statement is impossible to carry out. The computer considers this
an error, and informs you by doing the following things:

a. If your computer has a beeper, it beeps at you.
b. A row of minus signs is printed to draw your attention to the error message to follow.

¢. The error message is printed. The “error -10” part of the message indicates that the
problem was an /O error. However, the message printed is not “1/0 error”’; the next
part of the message tells you what kind of I/O error occurred: you
tried to read or write past eof. The “eof’” means “end of file”.

d. The PC (program counter) value is printed. This can be used for debugging, but we will
not address that here.

e. You get the option of restarting the program from the Debugger. The Debugger allows
you to execute the program piece by piece, look at variables’ values, etc. See the
Debugger chapter of the Pascal Workstation System manual for more information on
this.

Fine. Now we know what happened, but how can we stop it from happening again? And if we are
trying to read a file someone else created, or even one that we created, we may not know how
many records we’ll have to read. There could be any number of records in a file (within the size limit
of the physical volume).

98 Programming with Files

Detecting the End of the File

The boolean function called eof, which tells you when the end of the file has been reached, also
works with line-oriented files. Modify your second program so that it looks like the following:

prodram Seven(output)}

var
Tesgt: texts
Line: strind[BO13

bedin

reset{(Test» ' #3:Test2,TEXT)3

while not eof(Test) do {new}
bedin {new}

readln(TestLine) s
writeln(Line)s
endj {new}
close(Test) s
end.

The while statement checks every time through the loop (before executing the loop) whether or
not the end of the file has been reached. The loop is only executed if the end of the file has not been
reached. The following steps are executed:

1. Open the file.
2. The file is not a completely empty file, so eof (Test) is initially false.

3. Test for EOF. Read the first line (“‘Printing one line...”’) and print it. The end of the file
has not been reached yet

4. The loop iterates, since the end of the file was not found in step 3.

5. Test for EOF. Read the second line (*‘++.and another,”’) The end of the file is found. Print
the line.

6. The loop does not iterate again because the end of the file was found at the end of the
second line of text.

7. Close the file.
Detecting the End of a Line

In addition to using the eof function, you can also use the function eoln in conjunction with text
files. Obviously, and end-of-line function makes no sense in files which are not line-oriented.

If you read text from a Text file into a string or a packed array of characters, the variable will be filled
until either:

® An EOLN is reached
® The variable is filled to capacity

Programming with Files

To read a line from a text file which is longer than the string you are putting it in, you can read the
line in pieces, using read. When you get to the end of a line, use readln to go to the next line.
Outside this loop, you use an EOF loop like before. Thus, you need an EOLN loop inside an EOF
loop:

program Eight(outrPut)}

var
Test: texti
Lines stringld413
I: inteder}
bedin

reset{Tests ' #3:Test2 , TEXT ')}
while not eof(Test) do
bedin
while not eoln(Test) do
bedin
read(TestsLine) s
write(Line)s
for I:=1 to 100000 doi {make a noticeable wait?}
ends
readln{Test)}
writelnsi
ends
close(Test)?
end,

When you run this program, notice that four-character (or less) pieces of the lines are read and
printed. When the end of the line is reached, it is caught by the eo1n function.

Other Types of Text Files

In case there is a contradiction/ambiguity starting to loom in your mind, let us define more precisely
the two definitions of the phrase “‘text file.”” Here are the two definitions:

1. The Pascal language’s definition of “text file”’ is any file which is declared as type text, as
opposed to file of {type), in the declaration section of a routine. This type of file can be
written to with writeln statements, and read with read1n statements, whereas file of (type)
files cannot. Also, these files can deal with end-of-line conditions, and data is formatted
before writing to the file.

2. Pascal’s files which are declared text can be created as any of three types (the rest of this
section of the chapter elaborates on these various file types):

o [f a text file whose name ends with . TEXT is created, it will be what is called a TEXT file.
o If a text file whose name ends with . ASC is created, it will be an ASCII file.
o [f a text file whose name ends with anything else is created, it will be a Data file.

Note that the file types are only determined by the file name at the time of creation. You can change
the name of an existent file to anything you want, so conceivably, you could have an ASCII file
called Fred,TEXT, or a Text-type file called Data, or a Data-type file called TEXT.ASC.

In this section, we’ll be exploring the different types of physical files, all of which are declared of
type text in a Pascal program.

99

100 Programming with Files

Creating ASCII and Data Files
After storing program Seven, get program Six again. Modify the file-opening line such that it looks
like this:

rewrite(Test, '#3:Test2,ASC")1

Run the program again, and then modify the line again so that it looks like this:

rewrite{Test ,»'#3:Test2’);
Run the program again, then enter the Filer and list the directory of unit #3: :(Return).

The Filer listing now looks like this (there may be other entries also, depending on what you’ve put
on your disc):

V3: Directory type= LIF level |
created 23-Jan-85 10.43.41 block size=256
Storade order

veefile namesens ¥ blKs # bytes last chnd
Test2 TEXT 8 2048 13-Mar-85
TestZ2,ASC i 256 13-Mar-85
TestZ i 37 13-Mar-83

FILES shown=3 allocated=3 unallocated=77
BLOCKS (256 bvtes) used=10 unused=1034 lardest srpace=1034

Note that although the same text was written to all three files, every one’s file size is different. The
reason is that the other file types—ASCII, indicated by a . ASC suffix at creation, and Data, indicated
by no suffix at creation—have their special characteristics, just as the . TEXT files, mentioned before.

TEXT-type Files
Files of type . TEXT have the following characteristics:

e A file whose name at creation time ends in .TEXT contains the ‘‘header’” area for carrying
information about the file.

® Line-endings are noted by carriage-returns.

e A . TEXT file takes up space only in increments of 1K bytes, and any unused space is zeroed.

® [ogical end-of-file is specified by the first character in a line being chr(0).

Note that you cannot reliably put characters whose ord is less than 32 into a . TEXT file, because
some of these characters are used in the file and have special meanings.

In our . TEXT file, the actual bytes placed in the file, excluding the header, are:

1. The characters “Printing one line...” .

A carriage-return (chr(13)), indicating the end of a line of text.
The characters ““,+and another.”.

Another carriage-return, indicating the end of another line of text.
ASCII nulls (chr(0)) for the remainder of the 1K-byte block.

SANE ST

Programming with Files

ASCII Files
Files of type .AsC have the following characteristics:

e Lines are specified by two-byte length headers specifying actual length, and lines (in the file
only) are padded to an even length.
e A ,Asc file takes up space only in increments of 256 bytes.

@ End-of-file is specified by two consecutive chr(255)s, which is equivalent to a 16-bit, twos-
complement value of —1.

In our ASCII file, the actual bytes placed in the file are:

1. A two-byte (16-bit) length header, indicating the length of the upcoming line. Since our first
line has 20 characters, the length header is 00000000 00010100, or an ASCII null, followed by
an ASCII “DC4”’ character (chr(20)).

2. The characters “Printing one line..." .

3. Another two-byte length header. Since our next line has 15 characters, the length header is
00000000 00001111, or an ASCII null (chr(0)), followed by an ASCII “shift-in” character

(chri15)).

4. The characters ““...and ancther.”.

5. A pad character (ASCII blank; chr(32)) to cause the next length header (if any) to start on an
even byte.

6. Another ‘length header.” However, since there are no more lines—the end of the file has
been reached-there is a special flag value of this length header. Its value of —1 (two
consecutive chr(255)s) tells the computer not to interpret the two bytes as a length header,
but as an end-of-file marker.

7. ASCII nulls (chr(0)) for the remainder of the 256-byte hinck.

Data-type Files
Files of type Data have the following characteristics:
e Line-endings are specified by carriage-returns (chr(13)).

® A Data file takes up only the amount of space it needs, rounded up to the nearest block. That
is, it is allocated in blocks, and its physical size remains an integer number of blocks. At file
closure, however, the logical size is cut back to logical end-of-file, which can occur at any byte
in the file.

® End-of-file is specified in the directory.

In our Data file, the actual bytes placed in the file are:

1. The characters “Printing ane line...” .

2. A carriage-return (chr(13)), indicating the end of a line of text.

3. Thecharacters ““/,.and another.”.

4. Another carriage-return, indicating the end of another line of text.

There are intrinsic differences in these file types, and the Pascal operating system keeps track of
them in ways other than just their names. As mentioned previously, you can change the name of an
existing file to something that can be quite misleading.

101

102 Programming with Files

To see some of the other ways that Pascal differentiates between file types, go into the Filer and
press (_E_):(Return). This makes an extended listing. Our volume will look like this:

W3: Directory type= LIF level 1

created 2Z3-Jan-85 10.,43.41 block size=256

Storade order

veefile namessos # blKks # hvtes start bIK +evelast chande..s extensionl
type t-code ,,directory info.es +osocreate date.,, extension2

Test . TEXT 8 2048 12 13-Mar-85 15.,49.38 0
Text -3370 1
Test,ASC 1 236 20 13-Mar-85 16.,21.28 0
Ascii 1 1
Test 1 37 21 13-Mar-85 16.21.41 37
Data -9622 1
< UNUSED > 1034 22

FILES shown=3 allocated=3 unallocated=77
BLOCKS (256 bytes) used=10 unused=1034 lardest space=1034

As you can see from the second column, the file type is noted elsewhere than just the name of the
file.

Also note that the logical file size of the Data file is indicated in the extension 1 field.

In the next section, the rest of the file-manipulation routines are discussed.

Programming with Files

More Details on Programming With Files

This section describes the operation of the Pascal file operations. It discusses the creation and
disposition of files, and the basic operations on file data.

Pascal Primitive File Operations
® The following operations put the file into WRITE Mode:

REWRITE

OPEN

APPEND

SEEK

PUT

WRITE

WRITEDIR

WRITELN {see the section on TEXT files}

F* {if the file is already in WRITE Model}

® The following operations put the file into READ Mode:

RESET

GET

READ

READDIR

READLN {see the section on TEXT files}

® The following operations put the file in LOOKAHEAD Mode:

F* {unless the file was in WRITE Mode}

EOF {unless the file is open for random access?

EOLN {see the section on TEXT files}

READ {of multi-character obdects from TEXT files: such
as strindsy PACsy inteders, realsy enumerated tvrPes:
and booleans.}

Creating New Files

A file is initially created by the rewrite, oren, or arrend operations. However, oren and arrend are
usually applied to existing files.

These standard procedures each may take one, two or three parameters:

rewrite ({file_var))
rewrite ((file_var) (file_spec))
rewrite ({file_var) i{file_spec) ,(shared_access))

Here, (file_var) is the name of a Pascal file variable (for instance, a variable of type text,
file of inteder, etc.).

The “(file_spec)” parameter is the file specification. This parameter’s type must be a string or a
packed array of characters. The (file_spec) parameter may include volume specification (such as a
volume name, unit number, or SRM directory path) and size specification (such as [1001 or [#1).

The “(shared_access)”’ parameter is an optional parameter which is used with Shared Resource
Manager files to control shared access to the file. See subsequent sections of this chapter called
RESET, REWRITE, OPEN, and APPEND, SRM Concurrent File Access, and SRM Access Rights.

103

104 Programming with Files

Temporary Files

We saw in one of the examples earlier in the chapter that when a new file is first created, it is
considered ‘‘temporary,”” and it will remain so until it is closed with a specification that it be saved
permanently. Such temporary files don’t conflict with other files of the same name. A new file
created by rewrite, oren, or arrend will be thrown away when the program terminates unless the
program takes explicit action.

Size Specification Parameter

The allowable file name syntax depends on the Directory Access Method (DAM) being used,; this
subject is discussed in a section later in the chapter called File Naming Conventions. However, all
file names may have appended to them a specification of the size of the file, which the DAM may
use at file creation time to allocate space. The size specification may take the following forms.

® Not present. The file will be allocated the largest available block of space for contiguous-file
DAMs (LIF and Workstation 1.0 directory organizations), or an indeterminate amount of space
for the SRM. Example: ‘CHARLIE.TEXT".

e [+1 on the end of the file name. The file will be allocated the greater of these two quantities: 1)
the second largest free block, or 2) half of the largest free block for contiguous-file DAMs (LIF
and WS1.0); on the SRM, an indeterminate amount of space will be allocated. Example:
SUSANNAHL *1

® [n1 on end of file name, where n is a positive integer. The file will be allocated n blocks of 512
bytes each for contiguous-file DAMs, or an indeterminate amount by the SRM. Example:
EXACTLYL 10001 is allocated 512 000 bytes.

Anonymous Files

It is permissible to create anonymous files by creating a file without specifying a file name, for
example rewrite(F). Such files will always be placed on the system volume. Note however that
there is no way to request a specific file size for an anonymous file; rewrite(F,’[5001") is not
acceptable because there is no file name preceding the size specifier.

The rewrite, oren, and arrend primitives do not necessarily create a new file. Whether they do
depends on whether a file already exists with the given name, and whether the file variable is
already associated with some physical file by virtue of a previous opening operation.

File Position

In order to understand the three modes a file can be in, we need to take some time to discuss the file
pointer and the file buffer, denoted as the value pointed to by a file variable: F“.

A file pointer is associated with each open file. This pointer can be thought of as a marker indicating
how much the file has been read or written. For example, the file pointer is initially pointing at the
beginning of the file when the file is opened with reset, rewrite, or oren. On the other hand, the
file pointer is set to the end of the file if the file is opened with arrend. The file element pointed at by
the file pointer is called the current component. Each time you read from a file, the current
component is fetched. Each time you write to a file, the new information becomes the current
component.

Programming with Files

1 2 3 4 5 6
P r i n t i S
FILE POSITION

The components of a file are numbered sequentially from 1 to n, where n is the number of
components in the file. The file position is a number from 1 to n + 1, which usually corresponds to
the position of the file pointer.

The Buffer Variable

Each file has associated with it a special variable called the buffer variable or the file window. This is
a variable of the same type as the components of the file. It is referred to as F* where F is the file
identifier. For example, if Fisa file of integer, then F* is an integer variable. The buffer variable
is usually associated with the current component of the file.

File States

Every file which is open is in one of three states or modes at any given time depending on what was
the most recent operation on that file. The file state has to do with whether you are reading or
writing the file and whether you have referenced the buffer variable, F. The three states are as
follows:

® Write mode

® Read mode

e [ookahead mode

If the file is in write mode, F* has no special meaning other than as a variable, and referencing it
causes no /O to take place. This is the mode in which you normally assign to F*; for instance:

F*:=(data item);

in preparation for a rut statement. If you assign from F*; for instance:

(data item):= F" i
in this mode you will get unpredictable results.

The read mode is also called the “‘lazy /O’ state, because in this mode the buffer variable refers to
the current component of the file, but the File System does not fill it until the first time it is

referenced. In this mode you normally assign from F* in order to read the next component of the
file.

If the file is in read mode, referencing F* causes the current component to be fetched from the file
and placed in the buffer variable. When this is done, the buffer variable is full and the file goes into
the lookahead mode. Once the file is in the 1ookahead mode, F* may be referenced as many more
times as desired but no more [/O will be done.

105

106 Programming with Files

The lookahead mode is so called because we have ‘‘peeked’ at the current component without
having advanced completely past it. In actuality, the current component has been read into F* and
the file pointer has advanced to the following component. However, the file system pretends that
the current component hasn’t been fetched yet. In this state the rosition function returns a value
corresponding to the component in the file buffer, which is 1 less than that corresponding to the
true file pointer. Also, in this state, read (F V) will assign the value of F* to ¥ instead of reading the
next component of the file. On the other hand, if a write were done in this state, it would write the
component at the true file pointer, and the rosition function would appear to advance by 2
instead of 1!

REWRITE(F) [with optional 2nd and 3rd parameters]

If F was already open at the time of rewrite and no file name is specified, the same physical file is
referenced. If a file name is specified, the current file is closed and the physical file specified by the
second parameter is referenced. This implicit close is actually a close(Fs‘normal ‘), and so the file
will not necessarily be saved. The file is positioned to its beginning, and any data it contained is
discarded. Thus, one way to overwrite the content of an existing file is to open it for reading via
reset, then rewrite it.

If the file variable F is not already associated with a physical file (that is, F is not presently open), a
new file is created and opened for writing. If a file name and size are specified, they will be applied.
The new file created is temporary until it is closed, and in fact is distinct from any existing file of the
same name.

OPEN(F) [with optional parameters]
Opens a file for random (direct) access, allowing both reading and writing. The file pointer is
positioned to the file’s beginning.

If F was already open at the time of oren and no file name is specified, the same physical file is
referenced. If a file name is specified, the current file is closed and the physical file specified by the
second parameter is referenced. This implicit close is actually a close(Fs‘normal /) and so the file
will not necessarily be saved.

If F is not open and no file name is given, an anonymous file is created. If a file name is given
matching an existing file, that file is used; otherwise a new file is created.

APPEND(F) [with optional parameters]

If F was already open at the time of arrend and no file name is specified, the same phuysical file is
referenced. The procedure arrend positions to the end of the file and re-opens it for writing. If a file
name is specified, the current file is closed and the physical file specified by the second parameter is
referenced. This implicit close is actually a close(F‘normal’), and so the file will not necessarily
be saved. Any data written will get tacked onto the file; the original content remains valid.

If F is not already open and no file name is given, an anonymous file is created and the behavior is
like rewrite command.

If F is not open and a file name is given, arrend searches for an existing file of that name. If one is
found, it positions to the end and prepares for writing; if none is found, it creates a new temporary
file.

Programming with Files

Restrictions on APPEND

Doing an arrend to text files is not allowed in the Series 200 Pascal Workstation implementation. It
only works for Data files (file of (type)).

If the file is in a volume with a WS1.0 directory organization, it may not be possible to arrend. For
this directory type, arrend is only allowed if there happens to be free space on the disc immediately
following the current end of the file.

Disposing of Files

A program terminates the association between a file variable and a physical file with the close
procedure. For example, the call may specify that the file is to be deleted from the directory or
made permanent. Here are some specific examples:

close(Fs‘save’)} Both do the same thing; the file is made permanent in the volume
close(Fs'lock’); directory. If the file is anonymous (has no name), then the file is closed
and purged. Letter case is ignored.
close(F)3j Both do the same thing. If the file is already permanent, it remains in the
close(Fy'normal ‘)3 directory. If it is temporary, it is removed. Letter case is ignored.
close(Fys/purge’)} The file is removed from the directory whether or not it was permanent.
Letter case is ignored.
close(Fy‘crunch’) The end-of-file (EOF) marker is set at the current file position; data
beyond this position is lost. Otherwise like ‘lock’. Letter case is
ignored.

Opening Existing Files

To open an existing file, you must give a file specification to the cren, arrend or reset standard
procedures.

RESET(F,’{file_spec)’)

Opens an existing file for reading, and positions F to the beginning. If F was already open and no file
name is specified, the file to be read is the one which was open. Otherwise, the file system searches
for an existing file of the specified name and reports an error if none is found.

The statement reset (F) with no file specification will fail unless F is already open.

OPEN(F, (file_spec)’)

APPEND(F,’(file_spec)’)

oren and arrend search for the specified file. If one is found, then the association will be with that
physical file. But note that if no file is found, then a new temporary file will be created (see the
comments about file creation shown above).

Note that oren(F) and arrend(F) without a file specification will create new files unless F was
already open.

107

108 Programming with Files

REWRITE(F,’ {file_spec)’)

When rewrite specifies the name of a file which already exists, a new temporary file is created. All
output data goes to this new file instead of the old one. At the time the file is closed using
close(F,s‘lock’) orclose(F,’‘crunch’), the old one is purged and the temporary file is renamed.
Both close(Fy‘normal’) and close(F‘purde’) will purge the new file, leaving the old file intact.
This prevents destruction of the old file in case the program terminates prematurely.

To get rid of the old file first, open it with reset and then do a close(F, 'purge ‘).

Sequential File Operations

In Pascal there are two classes of files: text, or line-oriented file, and Data, or item-oriented files.
Files of type text are so declared in the Pascal program:

var
F: texts

Text, or line-oriented, files are best thought of as lines of characters, separated by end-of-line
designators of some sort. They are intended to represent humanly readable text material such as
documents.

Data, or item-oriented, files are files of some component type. They are ordered sequences of
variables, all of the same type. The type may be a predeclared type like inteser, or some user-

declared type:
tyre
Rec= record
Name: strind[3013
SocialSecurity: inteders
endi
var
85: file of Reci

A file of char is not the same thing as a text file, because no lines are distinguished in the
file aof char.

This section is about Data files; the discussion of text files is below. In the discussion, F denotes a file
variable; T is the type of its components; and v, V1, v2, etc., are variables of type T.

READ(F,V)

If F is open for reading (by reset or oren), then this standard procedure will store into variable V the
current component of F and advance to the next component. Note that read(F,v1,v2,v3) is
equivalent to three reads in a row. In the lookahead mode, read(F,V) assigns the value of F* to v
instead of fetching the next component of the file (i.e., no I/O is done).

Programming with Files

WRITE(F,V)
If F is open for writing (by rewrite, arrend, or oren), then the value of v is written as the current
component of F, and F is advanced to the next component. write(F,V1,v2,V3) is allowed.

The file variable name can be referenced as a pointer. It points to the “current” component of the
file; that is, if F is a file of T, then F* is a variable of type T. F " is called the “‘buffer variable’” of . (This
logical buffer is distinct from the physical device buffer!)

HP Pascal specifies the use of “‘lazy evaluation”, which simply means that the buffer variable is not
filled until the program references it.

PUT(F)
The rut and write operations are related. To output data using rut, first store into the buffer
variable the value to be written, then call rut:

Fri=V;
Put(F) 3
This sequence is equivalent to:

write(F)i

Note that it isn’t enough to just store into F *; you must also rut the value. For instance:

Fre=zUty
Fra=023
PUL(F)3

will store into the file the single value v2. Also, if you fail to rut the last component before closing
the file, the last component will be lost.

The rut(F) operation writes the buffer variable, F*, to the current component of the file. That
means that these two statements:

Fri=ys
Put{F)j

are equivalent to this statement:
write(F V)3

GET(F)

This is the complementary operation to rut, used for input. It throws away the current component
value and advances the file to the next component.

In write mode, set changes the state of the file to read mode, but does not change the file position
or do any I/O. For example:

open(Fy’file_spec’)i {pPuts file in write model}
det(F)i {puts file in read model}
YezF" 3§ {fetches first file component into YV}

109

110 Programming with Files

In read mode, et causes one component to be fetched from the file, which advances the file
position by 1, but that component is discarded. For example:

reset(F,'file_spec’)i {pPuts file in read model
dget(F)i {reads and discards one comPonent}’
YezF" 3 {fetches second file comPonent into Y}

In 1ookahead mode, set discards the component in the file buffer, F*, and changes the state of the
file to read mode. This causes the file position to reflect the true file pointer, thus appearing to
advance it by 1. For example, this sequence of statements:

reset(Fy’filename’)} {puts file in read mode}
ViF"3 {fetches first file component into YV}
det (F)i {discards F*y advances position}

Direct Access (Random Access) Files

Files of type Data (item-oriented files) may be accessed directly; that is, a program can specify that it
wants to read or write the nth record in the file without scanning through the records in sequence. A
file must be opened with the oren procedure to allow direct access.

The components of a direct access file are numbered sequentially, with the first being number 1.
(Note that there is no acknowledged standard in this area; for instance, UCSD Pascal numbers the
first component of a direct access file as record 0. However, all HP Pascal implementations work as
described herein.)

When a file is opened, it is positioned at the first component. If sequential /O operations are
performed, the file components will be accessed in ascending order. There are several ways to
randomly access the nth record.

READDIR(F,N,V)

The read-direct standard procedure positions F to component N of the file, and then reads the value
into variable v. Subsequent read calls would receive records n +1, n +2 and so on.
readdir(F,N,V1,U2,U3) is equivalent to the following sequence:

readdir(F ,N,V1)j

read (F,U2) 3

read (F,V3) 3
Also:

readdir(FsNV) 3

is equivalent to:
seek(Fys N)3J
read(Fs N)i

WRITEDIR(F,N,V)
The write-direct procedure positions F* to component n of the file, and then writes value V.
Subsequent writes will place values in components n+ 1, n+2 and so on. For example:

writedir(FNsY14V2,V3)5

Programming with Files 111

is equivalent to:

writedir(F NsU1)3
write(FV2)3
write(F¥3)3

Also:

writedir(F)NV

is equivalent to:

seekK({FsN) i}
write(F V)3

SEEK(F,N)
As with the other direct-access procedures, file F must be opened (for both read and write). The
procedure seek positions F* so that the next call to read or write will fetch or place component N.

open{F,'CHARLIE ")}
seekK{F100)3
get(F)i

Y100:=F"3

This definition is certainly counter-intuitive in that the program must not do an initial set after
opening the file, but must after the seek command.

The procedure seek works most smoothly (in the most natural fashion) if used with read and write:
seek(FN) 3§

read (F V) 3§

Remember that seek leaves the file in write mode, so that in order to read the current component
by referencing F* you must first do a set command. That means that the following sequence:

seek(FiN) 3
write(F V)i

is the same as this sequence:

seekK{FN) 3
Fra=U3
Put{F)3i

However, this sequence:
seak(FN) i
read(F V)3

is equivalent to the following sequence:

seek(FsN) 1§
get(F)i
Yi=F":
get(F)3

112 Programming with Files

POSITION(F)
This function returns an integer value which is the number of the next component which will be
read or written. If the buffer variable F - is full, rosition returns the number of that component.

Please be cautious with this function if the file is in the leckahead mode (i.e., if you have read the
current component by referencing F*). In this mode, rosition is correct for reading, but it is 1 less
that the correct value for writing.

MAXPOS(F)

This function returns an integer value which is the number of the last component which has ever
been written into the file. Note that the component must have been written; merely seek ing out to
some far component is not enough to cause the maximum position limit to be extended.

Text Files INPUT and OUTPUT

A text file is composed of variable-length lines of characters. It differs from file of char in that the
lines are separated by end-of-line marks. As mentioned at the beginning of the chapter, the Pascal
Workstation File System supports three different text file representations. Text files are the basis of
human-legible input and output. This means that they are used for “formatted” I/O, such as
printouts.

Declaring a Text File
A text file must normally be declared in the following way:

var
F: texts

All text files must be declared, except the two standard files inrut (corresponding to keyboard) and
outrut (which sends its output to the CRT). These two files, if used, must be listed in the main
program header as follows:

program A{inPutsouteut)s
However, they must not be declared in the body of the program.

In addition, there are two other “‘standard” system files which may be used, called kevboard and
listing. If these two files are used, they must appear both in the program heading and in a var
declaration, as follows:

prodram X(inPutsoutrputsKevboardslisting)i
var

Kevboardslisting: texts
bedin

+ + +

end,

Don’t worry about why input and outrut must not be declared yet kevtoard and 1isting must be;
that’s how it is. Note also that the four standard files are automatically opened by the Operating
System before the program runs. The standard files do not generally appear in reset or rewrite
statements, although they may be closed and re-opened if necessary. Closing and re-opening
standard files is not recommended.

Programming with Files

The files kevboard and input both take characters from the keyboard; the difference is that
characters read from inrut are echoed to the CRT, while those read from keyboard are not. The file
listing is opened to PRINTER:1isting.ASC which is the standard system printer. (Note that since
PRINTER: is normally an unblocked volume, the file name part of the specifier is ignored. On the
other hand, if PRINTER: is a mass storage volume, the file name is significant. It's a good habit to
include a file name even when going to unblocked volumes.)

Representations of a Text File

The way lines of characters will be represented in a text file depends on the file fype, which is
determined when the file is originally created. The three file types are as follows:

o Text (suffix .TEXT)
o ASCII (suffix .ASC)
e Data (no suffix)

If the file name given in the rewrite statement which creates the file ends in the suffix ‘.AsC’, the
file representation used is LIF (Logical Interchange Format) ASCIL. In this representation, each line
is preceded by a signed, 16-bit length field telling how many characters are in the line. In this
representation, there is no restriction on what characters may appear in the line. (However, note
that ASCII control characters will cause problems with the EDITOR subsystem.)

If the creation file name ends in the suffix *.TEXT’, the representation used is known as ‘“Worksta-
tion 1.0” (or WS1.0) format. This format is compatible with the UCSD Pascal P-system textfile
representation, and may be used as an non-HP interchange format.

The WS1.0 format precedes lines with an optional leading-blank compression indication, and
terminates each line with an ASCII carriage-return character. Leading blank compression occurs
when a line is written, and the compressed blanks are expanded when the line is read. When using
this format, don’t write the characters NUL (chr(0)), CR (chr(13)) or DLE (chr(18)). Moreover,
note that tabs (chr(9)) are not expanded! Generally it is wise to avoid writing any characters with
ordinal value less than 32 into WS1.0 textfiles.

If the text file is created anonymously (no file name given) or without a known suffix, the “‘Data’ file
representation is chosen. In this case, a carriage-return denotes end-of-line, and all other characters
are passed through uninterpreted.

Note

If a file is to be used by the Editor, then you should not store control
characters (characters with ordinal values less than 32) in it. These
characters may cause erroneous cursor placement, which results in data
being inserted or deleted in the file at the wrong place.

Note
The representation of a text file is not a function of the directory format
being used. A LIF ASCII file may be present in a WS1.0 directory, or a
+ TEXT file in a LIF directory.

113

114 Programming with Files

The LIF ASCII representation can only be used if the LIF ASCII Access Method module (ASC_AM) is
installed in your system’s B00T: INITLIB file. The WS1.0 format can only be used if the UCSD Text
Access Method (TEXT_AM) module is installed in INITLIB. These modules are present in INITLIB
when the Pascal system is shipped, but can be removed if not needed.

If the required Access Method is not installed, the system will choose the “Data” file representation
regardless of file name suffix.

Formatted Input and Output

The use of write, writeln, read, and readln to write formatted output to text files is described in
many Pascal reference documents and will not be repeated here, except to take note of the
behavior when reading and writing character strings.

HP Pascal supports two forms of character strings, generically referred to as PAC (for
packed arrav [1..n] of char) and string. A PAC is a variable whose type specification is of the
form

type
T= packed array [1.,.n] of charj

where n is some integer constant. The lower bound of a PAC subscript must be 1 in HP Pascal,
although Series 200 Workstation Pascal allows any arbitrary lower bound if the $ucsps Compiler
option is used.

When a string literal value is assigned to a PAC, and the string is shorter than the declared PAC
length, then the literal string is blank-padded to the declared PAC length before it is placed in the
PAC. Thus, if a 5-character literal is assigned to a 10-character PAC, the last 5 characters of the
PAC will get blanks. This same behavior occurs on input of a PAC value (see below).

When a PAC is written to a text file, all n characters are put out unless a shorter field specification is
given in the write statement:

type

PAC= packed array [1,.,101 of chari
var

S: PACH

4

S:='abcde’} {pad with 5 trailing blanks}
write(F8)3 {write 10 characters?}
write(F,8:3)% {write first 5 chars}

write(F,8:153)3 {write 5 blankss then all 10 chars of PAC}

Programming with Files 115

A string is a variable whose type specification is of the general form:

tyre
8= stringlnli

where nis a constant between 1 and 255 giving the maximum allowable length of the string. Strings
differ from PACs in having an implicit variable “‘current” length. Usually the length of a string is the
length of the last string value assigned to it, although string length can be explicitly manipulated by
the standard procedure setstrien.

When a string variable is read from a text file, its length is set to the length of the incoming string
(see below). When written, a string takes the number of characters specified by its current length.

Reading a STRING or PAC from a Text File

When a string is read from a text file, its length is usually determined by an end-of-line marker.

If the entire string is filled before end-of-line is reached, the read operation ceases, as we saw in the
example program earlier. No error is reported, and the next character read will be the one following
the last one read.

When reading strings, an end-of-line must be explicitly passed by readin. If you repeatedly read
into a string while positioned at an end-of-line marker, you will keep getting back an empty string or
a PAC of all blanks. The approved way to read long lines into short strings is:

while not eof(F) do
bedin
repeat
read(F5)3
(process the piece of string)
until eoln(F)3
readln(F)3
(any other desired processing)
endi

You should be aware of one other fact about end-of-line handling in reads: reading strings or PACs
is the only situation in which end-of-line is not automatically ‘‘swallowed”’. The Standard states that
when eoln(F) is true, the value of F* is a blank. When reading a number, for instance, end-of-line is
not treated differently from any other blank in the character stream of the input text file.

116 Programming with Files

RESET, REWRITE, OPEN, and APPEND

The optional third parameter ((shared_access)) to the standard file opening procedures is used at
the time of file creation to control concurrent access to files and to specify file access rights via
passwords. This parameter is a character string whose syntax conforms to the following definition:

shared.access ::= [concurrency.word 1]
1:= [password_list 1
t:= goncurrency.word "'
"SHARED"
"EXCLUSIVE"
"LOCKABLE"

concurrency_word ::

password_.list

password_list ::= capability ["3" capability 1

capability ::= password ":" access_right_list

access_right_list ::= access.right { "," access_right

"READ"
"write"
"PURGELINK"
"CREATELINK"
"SEARCH"
"MANAGER"

1:= YALL"

access..right ::

Note that in the passwords themselves, uppercase and lowercase letters are distinct. Examples of

(shared_access) are as follows:

'SHARED’

'EXCLUSIVE yMYSECRET :MANAGER’
‘LOCKABLE sR:READW:WRITE"
‘CharlevsALL’

Programming with Files

Debugging Programs Which Use Files

The File System uses the trv/recover and escare mechanisms (two System Programming exten-
sions) in its normal internal operations. For instance, when opening a file, several escapes may
occur internal to the File System or driver calls. However, these “errors’ don’t get passed on to the
user program.

However, if the Debugger is used on such a program and error trapping is enabled, the Debugger
will stop the computer on each internal escape. This behavior can be very confusing unless you
understand what is happening. The telltale clue that this is happening is that the line number
displayed by the Debugger (lower, right corner of the screen) doesn’t change during the File
System call.

The most common escape codes generated in this fashion are —10, 2080, and —26. You can
suppress the Debugger’s activity on these codes with the following ‘‘Escape Trap Not”’ Debugger
command:

ETN -26 2080 -10

117

118 Programming with Files

SRM Concurrent File Access

Three modes of access to shared files are allowed;

EXCLUSIVE No concurrency. Only one workstation may open the file at one time. This is the
default for all files opened on the SRM.

SHARED No controls. The file may be opened by any number of workstations for both
reading and writing. This is particularly dangerous for multiple writers since, for
performance reasons, some local buffering is done in each workstation. Different
buffers may overlap parts of the same file, and may not contain identical data!
Shared file users will not be aware of changes in actual end-of-file induced by the
actions of other users.

LOCKABLE This mode provides for strict concurrency interlocking by means of the 1lock,
waitforlock, and unlock file operations. The file must be locked to perform any
operation on it; only one reader/writer may access the file at a time. A series of
operations or a single operation may be performed while it is locked. The initial
lock obtains the necessary phuysical file status information from the SRM, and
unlocking updates all the information on the SRM as well as flushes its buffers.
Thus, when the file is unlocked, its contents are always complete and consistent.

The user-callable routines which support locking are provided in the library module called 1ockmao-
dule, which is in the standard L1BRARY file (on the sYsvoL: disc). To use them, the program must
import lockmodule. These specifications for these routines are as follows:

® function lock (anvvar F: file): booleans

This function returns t rue if the lock succeeded, or false if the lock failed because the file was
already locked. Other [/O errors, such as File not oren, generate an error condition which
may be trapped by using trv/recover (see the System Programming Language Extensions
section of the Pascal Language Reference.)

® procedure waitforlock{anvvar F: file)sj

This procedure sends the SRM a request to lock the file, and then waits until it is confirmed.

® procedure unlock(anvvar F: file)s

This procedure releases the file so that another workstation can lock it.

Programming with Files

File locking capabilities are primarily intended for data files (Pascal file of (type)) which are
opened for random access using the standard procedure aren. Suppose that F is a file which is not
already open. The cases are as follows:

® oren(F . ‘(file_spec)’) i

The existing file is opened for exclusive access. The open will fail if the file is already open by
some other workstation. This is the default.

® oren (F) ‘(file_spec)’ » 'EXCLUSIVE)}

The existing file is opened for exclusive access. The oren will fail if the file is already open by
some other workstation. There are three ways to fix this, and they are presented in the order to
attempt them: 1) Press (_1_) (for Initialize) from the main command prompt. This usually
closes files opened by your workstation. 2) Rerun the configuration table program (TABLE).
You can do this either by executing it like any other program ((_X) from the main command
level), or rebooting. 3) Shut down the workstation activity from the SRM console.

® oren(F, ‘(file_spec)’ + 'SHARED ‘)

The file is opened for shared access. Any number of workstations may have the file open
SHARED at the same time. They may read or write—there is no synchronization.

® oren(F, ‘{file_spec)’ +'LOCKABLE ')

The file is opened in such a way that no access is permitted unless the file is first put in the
locked state. Any number of workstations may have a file open lockable at a time, but only
one workstation may have the file locked.

A rewrite, to a file which is already open within the program performing the rewrite, simply
repositions the file to it beginning and sets it up for writing.

If rewrite specifies the name of a file which does not exist, a new file of that name is created and
used.

If a physical file name is given and a file of that name exists, the existing file is opened with whatever
concurrency specification (SHARED, EXCLUSIVE) was given in the rewrite. If no physical file
exists, one of the given name is created and opened with the requested concurrency specification.
This action is in addition to the creation of the temporary file, and helps prevent interference by
other workstations.

Surprising effects may occur if two workstations rewrite the same physical file concurrently. The
one closed last will remain in the SRM directory.

Note that rewrite(F,’LOCKABLE)} is probably not a sensible operation. However, it does not
generate an error.

119

120 Programming with Files

SRM Access Rights

Passwords can be used to restrict the types of access allowed to a file (on the SRM, a directory is
also a file). They can be set by the Filer's Access command, or at the time that a file is created.
Passwords can control the following six types of access:

e READ

e WRITE

e SEARCH

e CREATELINK
e PURGELINK
¢ MANAGER

e ALL

Any access rights for which no password is specified belong to the set of public capabilities which
are granted to any workstation opening the file without specifying passwords.

The word aLL denotes the six access types collectively. When an ALL password exists, there are no
public capabilities. The ALL password allows any file operation to be performed.

SEARCH capability is required on all directories along the directory path to a given file.
The reset operation requires READ access to the file.
Both READ and WRITE capability are required if the file is opened by calls to oren or arpend.

To rewrite an existing file, any passwords in the file specification (second parameter to rewrite)
are used only to purge the old file. However, one of the three capabilities READ, WRITE, or MANAGER
must also be granted to open the file before purging it. The new file created by rewrite will have
the passwords specified in the third parameter; until this new file is closed, any operations may be
performed on it.

The WRITE capability on the directory in which it resides is required to close-with-‘rurge a file, in
addition to the SEARCH capability needed to open the file and PURGELINK capability on the file.

To close-with-“1ock a file, WRITE capability is required for the parent directory, in addition to the
SEARCH capability needed to open the file.

If a password with MANAGER capability is used to open a file, any file operations may be performed,
since the manager password would allow access types to be changed. For example, the following
statement gives no public capabilities:

rewrite(Fy'FILEL+'AsALL’)

rewrite(F,»'FILELl’+'M:MANAGER)3

This statement keeps all capabilities except MANAGER public. This method allows any file operations
to be performed, but the manager password ‘M’ is required to change or set passwords.

Programming with Files

How Magnetic Discs Work

Now that the “‘theoretical” groundwork has been laid and we know how Pascal uses mass storage
devices, how do they really work? How do bits stick to that little piece of plastic or aluminum?

Discs come in two types: “flexible” and “‘hard.” Flexible discs are also known as “floppy discs”
since they are light, thin, and can be bent slightly. Hard discs are sometimes called “fixed,” since
the disc is not removable from most hard disc drives.

Both types of discs work in essentially the same way. The disc is a platter similar to a phonograph
record made of plastic or metal. The disc is coated with a smooth layer of microscopic, magnetiz-
able particles similar to that used in tape recorders. When the disc is in a disc drive, it spins very fast.
As it spins, a magnetic sensor similar to the record/playback head in a tape recorder is held over the
disc’s surface. The disc drive has a mechanism used to move this head over various parts of the
disc’s surface.

The recording groove in a phonograph record is a continuous spiral from the outer edge to the
middle. By contrast, magnetic discs are organized into a sequence of concentric but unconnected
circular tracks. The computer must tell the disc drive where to place the head over a particular track
in order to read or write data. The tracks themselves are logically broken up into blocks of data
called sectors. Discs are often referred to as ‘“‘blocked devices” because of this structure.

The smallest amount of data that can be read from or written to a disc is a single sector. The
computer may read or write several sectors in immediate succession. Since the disc is spinning, the
computer must usually wait until the desired sector rotates into position under the head once the
recording head is positioned over the correct track. By processing one sector after another as fast as
the disc is rotating, the time delay caused by waiting for the sector to get into the correct position
can be effectively eliminated.

For various reasons, the computer may, after processing a sector, not be ready for the next one as it
spins into position. By staggering the sectors on the disc it is possible to insure that the next logical
sector rotates into place just when the computer is ready for it. This staggering technique is called
interleaving, and it can greatly improve your system’s performance. Using the wrong interleave
factor can likewise drastically reduce your system’s performance.

121

122 Programming with Files

For example, imagine a track that has 16 sectors of data numbered O through 15. If the disc has an
interleave factor of 1, the sectors are simply accessed in order of occurrence on the disc:

A track of a disc with
interleave factor of 1.

After reading sector 0, the computer must immediately be ready for sector 1. If the computer isn’t
ready for sector 1, it will be missed and sectors 2 through 15 and O will pass under the head before
sector 1 is again accessible. Thus, only one sector would be read on each disc rotation, not fifteen,
which is highly inefficient.

Now suppose the computer’s busy period after reading a sector is just a little less than the time that
elapses while the next sector passes under the head. By placing sectors out of order on the disc as

7

W

A track of a disc with
interleave factor of 2.

4

Programming with Files

the computer can access sector 0, skip sector 8, access sector 1, skip 9, and so forth. It is not
necessary to wait for an entire disc rotation between each pair of sectors. The numbering scheme
shown is said to have interleave 2, since looking at every other sector accesses them in logical
sequence.

The interleave factor for flexible discs is established by a process called initializing (some manufac-
turers use the term ‘‘formatting’’), which must be done before the disc is used. Initializing is done by
a utility program called MEDIAINIT supplied with your Pascal system. MEDIAINIT knows the
appropriate interleave factor to use with various models of disc drives. The default interleave for the
disc you are initializing is shown in one of MEDIAINIT’s prompts. This default is generally the best
interleave factor for that particular device. For example, an HP 8290X defaults to an interleave
factor of 3.

For hard discs, the interleave factor is established at the factory, and cannot be changed. Thus,
initialization of hard discs serves mainly to find bad tracks and force the use of spare tracks, if
necessary, not to change the disc’s interleave.

123

124 Programming with Files

Notes

Dynamic Variables and Chapter

Heap Management 16

Stack/Heap Architecture

The stack and the heap are two data structures inside your Pascal operating system which are used
when procedures are called, variables are allocated, etc. The “heap” is the area of memory from
which so-called dynamic variables are allocated by the standard procedure “new”’. When a program
begins running, it has available one area of memory for data. The program’s stack begins at the
high-address end of this area and grows downward; the heap begins at the low-address end and
grows upward. If the stack and heap collide, a Stack Overflow error (escarecode = —2) is reported.

Conceptually, they look like this:

-¢—— Top of avcilable memory
Stock Grows downward
Top of stack —P= +
-+ . o
Top of heap —P= f
Grows upward
Heap

«—— Bottom of avallable memory

Dynamic Variables and Pointers

In more elementary Pascal programs, most variables are static variables; that is, their storage space
is allocated at the beginning of the program, and it remains allocated for the duration. This is
adequate for many applications, but can cause problems at other times.

For example, when dealing with large arrays, often you do not know how big the array must be.
When you run the program, the program may crash because the array is not big enough for this
particular run. So, you increase the array size and, the next time, you get a memory overflow error;
the machine does not have enough memory to allocate space for the entire array.

One way to deal with this problem is to let the program figure out—while it's running—how many
elements it has to deal with. This means that the program allocates memory as processing takes
place, and the memory used for one execution of the program is not necessarily the same as for
another execution of the program.

125

126 Dynamic Variables and Heap Management

Another example of where static variables are insufficient for the task is when your data items are
very large—records or arrays of a kilobyte or more apiece—and you want to sort them. If you sort in
such a way that you move the kilobyte-sized pieces around, the sort will take much longer than it
needs to. The alternate method of just moving pointers is must faster for the machine to carry out,
as pointers are four bytes apiece, regardless of the size of the object they point to.

Heap Management

Two disciplines are available for the recovery of the memory used by heap variables after they
become unwanted:; the new/disrose method, and the mark/release method. The first is more
general; the second is simpler and faster.

We saw the new function being used in the example programs earlier in the chapter, but in those
applications, the data was being used until the end of the program, so there was no need for the
selective removal of individual data items that disrose affords.

Calls to disrase will have no effect (the freed storage will not be reused) unless the main program
and the modules containing the new and disrose calls are compiled with the Compiler option
$heap_dispose on$

MARK and RELEASE

This method uses two standard procedures to manage the heap in a purely stack-like fashion. The
mark procedure is called to set a pointer to the next available byte at the top of the heap. Subse-
quent calls to new will all take space from above this point. When the program finishes with all the
variables above the mark, release is called to move the top of the heap (the next available space)
back to the value saved by mark.

prodram markreleasel

tvee
Ptr = “ reci
rec = record
f1,f2: inteders
ends
var

toPsP: Pt}
i1 inteders

bedin
mark(topr)i (¥ remember the base of the hear *)
rereat
for i := 1 to 5000 do
begin
new(p)i (# allocate from next hidhest heap address ¥)
endi
release(tor)s (% cut back the heari recover all srpace *)
until falsesd (# program will run forever #%)
end,

When using this method, the computer does not prevent you from making the mistake of releasing
to a point above the current top-of-heap!

Dynamic Variables and Heap Management 127

DISPOSE

Alternatively, the standard procedure disrose can be used to return each unwanted dynamic
variable back to a pool of free space.

Again, calls to dispose will have no effect (the freed storage will not be reused) unless the main
program and the modules containing the new and disrose calls are compiled with the Compiler
option $heap_dispose on$.

prodram disposali
tvre
Ptr= "Reci
Rec= record
Next: Ptrs
Fi, F2: inteders
end3’
var
Torsy Py Root: Ptri
I: inteders
bedin
mark(Tor) i {remember the base of the hear}
repeat
Rooti=nili
for I:=1 to S000 do
bedin
new(P)j {after disposess will allocate from free list}
P*yNext:=Root}
Ronts:=P3i {chain all cells todether}
(do whatever other processing is desired)
endj
(do whatever other processing is desired)
rereat {give bacKk all cells one at a time}
P:=Root}
Root:=Root”“ . Next} {follow the chain}
dispose(P)i {memory manader Puts on a free list}
until Root=nili
until falseld {program will run forever}
end.

The recycling algorithm takes advantage of the fact that programs which use the heap operate on a
great many variables of just a few types. Each type has a characteristic size. When a variable is
disposed, it is saved at the front of a list of other variables of the same size. When a variable is
allocated, the new routine first looks on the list corresponding to the size required; if there is a free
object there, it can be allocated immediately. Usually there will be very little computational over-
head for either new or disrose.

The memory manager maintains free lists for objects of sizes 4, 6, 8, through 32 bytes, and one
more list for all larger objects. Objects are allocated from this last list on a first-fit basis. No dynamic
variable is ever allocated an odd number of bytes.

It is possible for the program to behave so that the heap becomes fragmented (broken into many
small pieces). If a request then arrives to allocate space for a large variable, the memory manager
will try to recombine the fragments to make a piece big enough to satisfy the request. The fragments
must be sorted by address and adjacent ones merged.

128 Dynamic Variables and Heap Management

The recombination process takes much longer than a simple allocation. Consequently, in real-time
applications it is important to analyze the dynamic behavior of programs which use disrose.

Mixing DISPOSE and RELEASE

It is also possible to mix the regimes in a well-behaved manner. However, not all implementations
of HP Pascal allow mixing these methods in a program. A program which does so may not run
properly on other implementations.

If you release a properly marked pointer after some calls to disrose, the memory manager will
leave on the free lists all disposed objects whose addresses are below the released location. All the
space above the released location becomes free, whether or not it was disposed.

During this process the memory manager also recombines any adjacent free fragments, so release
can also be used to reduce fragmentation. Just mark the current top of the heap, then immediately
release to the same spot.

With the information given in this chapter, you should be more prepared to deal effectively with
dynamic variables and their capabilities.

Chapter

17

Error Trapping and Simulation

Introduction

The Systems Programming extensions to HP Series 200 Workstation Pascal have been provided to
support error trapping and recovery. In order to use this mechanism, you will need to include the
$svysprogs (Or $svserog ons) compiler directive at the beginning of the source program text.

Error Trapping and Simulation

The trv/recover statement and the standard function escarecode have been added to the Pascal
language to allow programmatic trapping of errors. The standard procedure escare has been
added to allow the generation of soft (simulated) errors.

try
(statement)
(statement)

oo

(statement)
recover
(single, possibly compound, statement)

When trv is executed, certain information about the state of the program is recorded in a marker
called the recover block, which is pushed on the program’s stack. The recover block includes the
location of the corresponding recoue r statement, the top of the program stack, and the location of
the previous recover block if one is active. The address of the recover block is saved, then the
statements following t r» are executed in sequence. If none of them causes an error, the recover is
reached, its statement is skipped, and the recover block is popped off the stack.

But if an error occurs, the stack is restored to the state indicated by the most recent recover block.
Files may be closed, and other cleanup takes place during this process. If the ¢ r» was itself nested
within another one, or within procedures called while a t r» was active, that previous recover-block
becomes the active one. Then the statement following recove r is executed. Thus, the nesting of t r»
statements is dynamic, according to calling sequence, not statically structured like nonlocal sotos
which can only reach labels declared in containing scopes.

129

130 Error Trapping and Simulation

The recovery process does not ‘“‘undo” the computational effects of statements executed between
trv and the error. The error simply aborts the computation, and the program continues with the
recover statement.

When an error has been caught, the function escarecode can be called to get the number of the
error. There are no parameters to escarecode. It returns an integer error number selected from the
error code table (see the ‘“‘Error Messages” appendix of the Pascal Workstation System manual).
System error numbers are always negative.

The programmer can simulate errors by calling the standard procedure escare (n), which sets the
error code to n and starts the error sequence. By convention, programmed errors have numbers
greater than zero. If an escare is not caught by a user recover-block within the program, it will be
reported as an error by the operating system. Negative values are reported as standard system error
messages, and positive values are reported as a halt code value. Note that halt(n) is exactly the
same as escare(n).

Trv/recover statements are usually structured in the following fashion:

try
(some operation)
recover
it escarecode=(whatever you want to catch) then
(recovery operation)
else
escare(escarecode)’

This has the effect of ensuring that errors you don’t want to handle get passed on out to the next
recover-block, and possibly eventually all the way out to the system. All programs which are
executed are first surrounded by the Command Interpreter with a try/recover sequence. The
recovery action for the system is to display an error message.

Error Trapping and Simulation

The IORESULT Function

Normally the Compiler emits instructions after each I/O statement to verify that the transaction
completed properly. If it fails, the program is terminated with an error report.

It is possible to trap 1/O errors programmatically, using the trv/recover statement. The System
Programming function ioresult can then be called to discover what went wrong with the transac-
tion.

Both the escarecode function and the ioresult function are needed for the following problem.
Suppose, for example, you want to be able to enter values of an enumerated type into a program.
This is easily done in HP Pascal, but if there is a misspelling, or an invalid token entered, the
program bombs on “error -10: bad input format’. How can this be avoided?

Put the read statement in the t r» section, and an error message in the recover section. If an error
occurs during the read operation, escarecode and ioresult are checked. If they indicate that an
illegal token was entered, print an appropriate error message, and ask for the same input again. Put
the whole thing in a rereat/until loop so it continues until a correct answer is given.

$sysprodsd
prodram TryRecover{inPut, output)si

var
Color: {xxxs+ Red, Orandes Yellow: Greens Blues Indidos Yiolet)s
I0error: inteders
bedin .
Colori=xxxi {Just a place holders to see if a valid color was specified?}
rereat
try
writeln{‘Enter a color of the spectrums then press RETURN or ENTER:)}
readln(Color)?
recover
bedin
I0error:=ioresults
reset{inpPut)i {clear the file svstem flags}

if escarecode=-10 then
if IDerror=14 {bad input format} then
writeln{’ (color invalid or misspelled)’)
else
writeln{’Escare code: ‘sescarecode:0s’ dioresult: ‘sIDerror:0)
else
if escarecode=-20 then
escare{escaprecode)
else
writeln(’Escare code: ‘rescarecode:0)}
ends
until Color<ixuxi
writeln{’You specified "/sColors’"s")3
end.,

131

132 Error Trapping and Simulation

$10CHECK$ and IORESULT

Normally the Compiler emits instructions after each file system I/O transaction to verify that the
transaction completed properly. If it didn’t, the program is terminated with an error report. The
error code for all file system /O errors is —10.

You may wish to intercept /O errors programmatically rather than have them terminate the
program. This can be done two different ways. The program or module must be compiled with the
$syserogs or sucsd$ Compiler option at the front of the source text. Both these options make
available a system programming function called ioresult, which returns an integer value reporting
on the success of the most recent I/O transaction. A result of zero indicates a successful transaction;
other values are given in the ‘“‘Error Messages” appendix.

Method 1
This method is the preferred one, and is the one used in the previous example. Compile the
program or module with $svsprog$ enabled, and use the trv/recover statement to trap the errors.

$svsProd$
prodram TrarMethodl(inPuts outprut)i
var
Name : string(BOTS
F: texts
I0error: inteders
bedin
rereat

write('Open what " ,TEXT" file ?)i
readln(Name) i

try
reset (FyName+' ,TEXT ')}
I0error:=04 {If we det heres the RESET didn’t fail,}
writeln(’ File successfully opened,’)}
recover
if escarecode=-10 then {It’'s an I/0 Svstem error.}
bedin
I0error:=ioresults {Save it (IORESULT affected by WRITELN).}
writeln(’ Can’‘t open that file, IOresult: ‘+I0error:0);}
end
else
escare{escarecode) {Pass non-I/0 errors back to svstems}

until IO0error=03
end.,

Error Trapping and Simulation

Method 2
This method is used in UCSD Pascal programs. In order for it to work properly, you must also
suppress the error checks normally emitted by the Combpiler.

$ucsd$
prodram UCSD.TrapMethod(inpPutsoutpPut)i
var
Name: string[BO1j
F: texti
I0error: inteders
bedin
repeat

write('Open what ",TEXT" file ? ')}
readin(Name)}
$iocheck off$
reset (F)Name+ ', TEXT')
$iocheck on%$
I0error:i=ioresults {Save it (IDRESULT affected by WRITELN).}
if IO0error=0 then
writeln{’ File successfully orened.’)
else
writeln(’ Can’’t opren that file, IOresult: ‘sI0error:0);}
until IO0error=03
end.,

Note that $iocheck off$ before the reset statement inhibits escape during the statement. Howev-
er, ioresult will still be set correctly.

Extended Error Information
There are three types of run-time errors where your error-trapping will require the examination of
extended error information. They are:

o [/O errors (escarecode = —10), and

@ |/O library errors (escarecode = —26), and

e DGL (graphics) errors (escarecode = —27).

These are different than other, simpler, run-time errors, in that two values need to be checked in
order to ascertain the error that occurred. This is different than, for example, an integer overflow
error. In this case, escarecode = —4, and the error listings in the back of the Workstation System
Manual states that —4 means “‘Integer overflow’.

133

134 Error Trapping and Simulation

Get the “extended”’ error information in the following way. A “file not found” error results in
escarecode = — 10. However, an escarecode of — 10 does not indicate by itself that some file was
not found. The value of —10 only says, “‘Go look at ioresult for the rest of the definition of the
error.” Looking at the ioresult tells you that a file was not found. (Accessing the ioresult function
requires either $svsprod$ or $ucsds.)

Similarly, for I/O library errors, you need to check two different places. When you get an error
escarecode = — 26, all that tells you is that some /O library error occurred. Now you need to check
the I/O library’s counterpart to /O’s ioresult, called ice_error. (By the way, ice_error and
grarhicserror, in the next section, are variables, unlike ioresult. Therefore, you do not need
$svsprod$ Or $ucsd$ to access them.) The value of ice_error tells you what kind of error occurred.
In addition to this, there is a function called “icerror_message’” (imported from iodeclarations)
which converts an integer to an appropriate error message:

writeln{ioerror_messade({ioe.result))i

Similarly, for graphics errors you need to check two different places. When you get an error
escarecode = — 27, all that tells you is that some graphics error occurred. Now you need to check
the graphics counterpart to I/O’s ioresult, called srarhicserror. The value of srarhicserror tells
you what kind of graphics error occurred.

Determining a File’s Existence

This section contains a program segment which is both a commonly needed capability and an
instructive example. In many software packs, the user is allowed to store some kind of data, often
specifying his own file names. Two things can happen at this point:

o A file by the specified name does not exist. Fine; create the file, store the data, and go on.

e A file by the specified name does exist. The computer should not automatically erase the old
file and create the new one; there might be some valuable data lost. The computer should give
the user the option of deleting the old file by that name, or specifying another name for the
new file. At this point, another question must be asked; basically: “That file already exists;
should I purge it?”’ If the user says yes, purge the file, create the new one, and go on. If the user
says no, ask him for another file name.

Error Trapping and Simulation

Note that the second option above can happen repeatedly. That is, a user, upon being told that a
file by that name already exists, can give another file name which already exists. Thus, the routine

should repeat infinitely, if necessary, until a satisfactory file name is given.

var

MyFile: texts
MyFileName: string[BOI3
Answer: chari
I0error: inteders
NoFile: boolean}s

+

+
repeat

write(’File name to create: ')}
readln(MyFileName) 3
NoFile:=truesi
try
reset(MyFiley MyFileName)} {can‘t use REWRITE here}
close(MyFile)s
repeat
write(’File "’ MyFileName,»’" already existsi shall I Purde it? ‘)i
read(Answer) i
writelns
if not (Answer in [/n/s'N’' 'y »'¥']1) then
writeln(’Please answer "Y" or "N".')3§
until Answer in [/'n/+/'N7 'y’ 'Y '13
if Answer in [‘¥'»'Y’] then
bedin
rewrite(MyFilesMyFileName)3
close{(MyFiles‘Purde’)s
writeln(’0ld file "’/ MyFileName,»’" purded,’);
NoFiles=trues
end
else
NoFile:=falsel
recover
if (escapecode=-10) and (ioresult=10) then
{do nothingi we’ve determined that the file is not found}
else
kedin
I0error:=ioresulti
writeln(’escapecode: ‘sescapecode:(,y’ ioresult: ‘»I0error:0)3
halti
endi
until NoFilei
rewrite{(MyFilesMyFileName) 3
close(MyFile:’'save’)}
writeln(’File "‘yMvyFileName,’'" created,’)i
(continue processing)

Note that $svsrro4% must be activated in order to use trv/recaver.

135

136 Error Trapping and Simulation

Error Simulation

Here are two different facets to error simulation:

e Having your own set of errors, peculiar to a particular software package. For example, errors
1000 through 1050. These do not interfere or intermingle with any Pascal system errors, so
when certain illegal operations in your software pack are attempted, you can cause one of your
own errors to happen:

prodram MyProdrami
(some error condition is detected)
halt{(1000)3

DR)

or

$sysprod$
prodram MvyProdrams

L)

(some error condition is detected)
escare(1000)3

D)

(Again, halt and escare are the same thing.)

® The second facet of error simulation is: you don’t really have an error, but you want the
computer to temporarily think so, in order for it to take appropriate action. For example,
suppose you set some conditions in the course of a program. If an error occurs during the
condition-setting, you want to put things back in order. If an error doesn’t occur, you want to
do some processing, and then put things back in order. The point is: either way, you want to
do the same return-to-normal code.

Using escare(0) , JOU Can Ccause a recover block to be entered, but the “error’ number, 0
y ? b
means ‘‘no error.”

try
(attempt something which, if failure, goes to recover block)
(do processing)
escape(0)i {cause control to do0 to the RECOVER block}
recover

(put things back in order)

Note that the escare (0) causes control to enter the recouve r block in a nice, controlled manner.

137

Chapter

18

Special Configurations

Introduction

Workstation Pascal System is self-configuring. As it boots, interface/device driver modules in the
Initialization Library (BOOT:INITLIB or BOOT2:INITLIB) are loaded into memory and initialized.
Then, the TABLE program determines what peripheral devices are connected to the computer
(such as local and remote mass storage devices, printers, and so forth); if the driver module(s) for a
particular interface or device are in memory, then the TABLE program can usually assign to it a
logical unit number which makes it accessible to the File System.

The term “‘standard configuration” is defined to be any combination of computer and peripheral
devices that will be configured by the Pascal system as it is shipped. This chapter describes how to
change this “‘standard’ system configuration.

Chapter Organization

This chapter contains many sections; however, they can be essentially split into three categories.

o A description of how the system boots and auto-configures itself.
o Brief descriptions of several possible configurations.
e Procedures for making changes to the “‘standard” configuration.

The System Booting Process
You will probably want to read about how the system boots and auto-configures itself, regardless of
whether you want to change your system’s configuration.

Example Special Configurations
Next, you will probably want to scan the possible “‘non-standard’” ways that you can configure your
system. The following sections briefly describe several common configurations:

e Changing hard-disc volume sizes

e Setting up several bootable system configurations
® Adding interfaces and peripheral devices

@ Setting up the SRM System

e Changing system printers

e Adding Bubble and EPROM cards

e Using alternate directory access methods (DAMs)

138 Special Configurations

Modifying the Configuration

Then, when you know which configuration change(s) you want and which of the procedures you
will need to use to make the changes, you can follow the procedures in the third major section of
the chapter. These procedures are as follows:

® Coalescing logical volumes on hard discs into larger volumes
® Copying system files and changing their names

® Making an AUTOSTART or AUTOKEYS stream file

® Adding driver modules to INITLIB

® Modifying the auto-configuration program (CTABLE)

® An example SRM configuration

As an example of the first category, suppose you want to connect one HP 9133V Hard Disc Drive
and one HP 7912 Disc Drive to your workstation. The standard TABLE program assumes that it
should assign 4 unit numbers to the 9133V hard-disc drive and 30 to the 7912. However, since it
reserves only 30 unit numbers for all hard-disc volumes, the standard TABLE will not be able to
access all 34 volumes (if that is the way that these discs have been or will be partitioned); it will
either recognize all 4 volumes on the 9133V and only the first 26 on the 7912, or all 30 on the 7912
and none on the 9133V. Probably the easiest way to make all parts of both discs accessible is as
follows: first, “coalesce’ the Jast 5 logical volumes on the 7912 into one larger volume (to change
the number of logical volumes to 26); second, set up the hardware so that the 9133V gets the lower
unit numbers (11-14) and the 7912 gets higher numbers (15-40). The alternative way to make all
parts of both discs accessible is to modify the the standard TABLE program; the source program is
called CTABLE.TEXT, and it is supplied to you on the CONFIG: disc.

An example of the second category was given in the Pascal User’s Guide. The system files (such as
EDITOR, FILER, and so forth) were copied to a hard disc (913x family). No file names were
changed. An example AUTOSTART file (the third category) was given in the same guide. It
P-loaded some system files.

As an example of the fourth category, suppose you want to use an HP 98625 High-Speed Disc
interface and an HP 98620 DMA Controller card with a CS80 disc drive. First, add module
DISC_INTF to the INITLIB file (modules DMA and CS80 are in the INITLIB file supplied with your
system). Then when the system is subsequently booted, the standard TABLE program will, barring
other restrictions, automatically recognize the disc and make it accessible. (An alternate but less
“permanent” way would be to eXecute module DISC_INTF after booting the system and then
eXecute TABLE again.) You will then probably want to copy most system files to the CS80 disc,
which is another example of the first category.

As an example of the fifth category, suppose you want to connect two HP 7912 Disc Drives to your
workstation. The standard TABLE program will not make both drives accessible, since it assumes
that each disc needs to be allocated 30 unit numbers and assigns all 30 units available for hard discs
to the 7912 with the highest priority. In order to access both drives with the File System, you will
need to modify the standard TABLE program (“‘coalescing” will not work in this case). In this type
of situation, you may want to change the default number of logical volumes that the system creates
on each drive. After re-compiling and then running the properly modified program, the system will
recognize and allow you to access all parts of each drive. You will probably want to replace the
original TABLE program with the new version so that this configuration will automatically be made
at the next power-up and system boot time.

Special Configurations

The Booting Process

This section explains what is going on within the machine as the Pascal System is loaded. It is
intended to give you a few more insights into how the system works. It does not, however, describe
how to boot your Pascal system; that topic is covered in the Pascal User’s Guide provided with your
computer. Neither does it describe modules; that topic is covered in the Compiler chapter.

The Boot ROM

Inside the computer is a ROM (Read-Only Memory) that contains the information needed to begin
loading an operating system. The loading process is often called “‘booting” because it is the
computer’s way of “‘pulling itself up by its own bootstraps.” This ROM is therefore called the “Boot
ROM’”. The Boot ROM is a non-volatile storage device; its contents are not lost when power is
removed.

There are currently several different versions of the boot ROM. Thus, the booting process is slightly
different depending on which version of boot ROM is in your computer. However, all perform the
general steps outlined in this section.

When you power-up, the computer’s central processing unit (CPU, which is a 68000-family proces-
sor) reads the first few bytes of this ROM, which begins at address 0. These bytes contain such
information as the address of the first executable machine-language instruction and initial value of
the stack pointer. After loading these values, the processor continues executing routines in the Boot
ROM.

The processor next executes routines that perform a self-test and then displays the amount of
memory installed in the computer. You may not see the amount of memory displayed if the CRT is
just warming up. After self-test, the processor executes another Boot ROM routine that searches
various mass storage devices (such as disc drives) for an operating system; the Boot ROM recog-
nizes files of type “Systm” and with name beginning with the letters “SYSTEM_” (or “SYS” with
Boot ROM 3.0 and later) as being operating systems. It also searches system ROM for ROM-based
systems (such as BASIC).

Depending on its version and how many systems it finds, the Boot ROM will either choose a system
or let you choose one (for instance, Boot ROM 3.0 and later versions allow you to choose one if
you intervene in the boot process). With Pascal, this “Systm” type file is called “SYSTEM_P” and it
will be discussed momentarily.

The Pascal System Discs

The Pascal system is delivered on either 5.25-inch (mini-floppy) or 3.5-inch (micro-floppy) flexible
discs. The discs contain the operating system, subsystems like the Editor and Compiler, and several
libraries and utility programs. The discs that you received are listed in the Pascal User’s Guide. You
will have to boot Pascal from these discs at each power-up unless you reconfigure your system. The
disc called BOOT: contains the SYSTEM_P file that will be loaded into memory first.

139

140 Special Configurations

The System Boot File (SYSTEM_P)

The BOOT:SYSTEM_P program is an absolute-addressed program that contains the bare mini-
mum Pascal operating system ‘‘kernel.” (It was created using the Librarian’s Boot command.) It is
absolute-addressed so that the Boot ROM can use a simple loading routine.

The SYSTEM_P file consists of a linking loader (more elaborate than the loader found in the Boot
ROM) and a few support routines. This kernel is loaded into volatile read/write memory (also called
random-access memory, or RAM) from non-volatile memory (usually discs). The linking loader
then loads the rest of the system.

In this system, there is no “kernel” in the closed sense of the term, such as a closed system like
HP-UX. The system has an open design which allows modules to be added to the system — while
the system is running. However, the term ‘kernel” will still be used in this text to describe the
minimum working environment.

The loader then continues by completing construction of the operating system by loading the
“Initialization Library” called INITLIB, which is also on the BOOT: disc.

The Initialization Library (INITLIB)

This BOOT: library file consists of modules that complete the kernel of the Pascal operating system.
(Some of the modules are programs.) These modules mainly provide access methods (or device
“drivers”) for internal interfaces and peripheral devices.

Installing INITLIB Modules

As each INITLIB module is loaded into memory, it is bound to the operating system by a linking
process. After the loading is complete, each program is executed once. The programs in INITLIB
are referred to as “‘installation code;” their purpose is to properly initialize variables or allocate
storage that will be used by these modules. Many interface-driver modules check to see if the
interface they are to drive is there, and if not they don’t install themselves.

Once INITLIB is loaded and the installation code has been executed, the system has found and
identified all interface cards installed in the machine; however, no scan has been made for peripher-
al devices.

Auto-configuration of a peripheral device requires the device’s driver(s) to be in memory at the time
that the TABLE program is run (TABLE will be discussed in the next section). The HPIB module is
an example of a driver for HP-IB interfaces. If the driver is part of the INITLIB file, then the device
can be interrogated at a later time by TABLE (unless other conditions restrict). If the driver is not in
INITLIB, then you must add it to the file (or alternately load the driver into memory by executing
the installation program that contains the driver module).

Special Configurations

Adding and Removing INITLIB Modules

Since the operating system is an ‘‘open kernel,” you can add, replace, or delete modules within this
library; more details regarding these operations are described in the Adding Modules to INITLIB
section of this chapter. You must not change the order of modules in this library; neither should you
link them together (with the Librarian), which would result in rendering the programs non-
executable.

Module LAST

The last piece of installation code in INITLIB is the program named LAST, which attempts to
execute the BOOT: files named STARTUP and TABLE. Here is the algorithm used to load and
execute these two files; each file’s function is described in a subsequent section.

1. If STARTUP is found on the ‘Boot volume” (i.e., the same volume on which the Systm file,
such as SYSTEM_P, was found), then that program is loaded (but not executed).

2. LAST then looks for TABLE on the Boot volume. If TABLE is found there, then it is loaded
and executed; it makes File System volumes accessible. If TABLE is not found, then only the
keyboard, screen, and Boot volume will be accessible (see the brief description in the
subsequent section called Failure of the TABLE Program).

3. If STARTUP was not found on the Boot volume, then the Boot ROM looks for it on the
current system volume (at this point it might not be the Boot volume, because TABLE may
have re-defined it).

4. STARTUP is then executed.

The Command Interpreter (STARTUP)

With the Pascal system delivered to you, the BOOT:STARTUP file is the Command Interpreter (or
Main Command Level) program. However, you can write any program, optionally Link it with the
Librarian, name it STARTUP, and with it replace the existing STARTUP file. It will then be loaded
at power-up, instead of the Command Interpreter program.

If you use your own STARTUP program, be careful not to destroy the original STARTUP program.
The recommended method is to use the Filer's Filecopy command to make a copy of the BOOT:
disc on a blank initialized disc and then replace the STARTUP program with your new STARTUP
program on that disc. Use the disc with the new STARTUP to boot the computer and your program
will start running instead of the Pascal operating system.

The Auto-Configuration Program (TABLE)

The purpose of the TABLE program is to make devices accessible to the File System. Since this is
one of the principle topics of this chapter, the subsequent section called Auto-Configuration is
devoted to the intricate details of how this program works. For now, let’s assume that it has already
chosen the system volume and finish this overview of how the system boots.

141

142 Special Configurations

The AUTOSTART and AUTOKEYS Stream Files

If present on the system volume and if data can be written on the volume (i.e., it is not a read-only
volume), the AUTOSTART file is automatically streamed by the system at power-up; if the volume
does not permit write operations (such as EPROM cards), then the AUTOKEYS file is streamed, if
present. These files must be “‘stream” files, which are sequences of characters that are used by the
system just as if they were commands typed from the keyboard (a ‘‘command stream’). Stream
files are formally described in the “Main Command Level” chapter.

The AUTOSTART or AUTOKEYS file must be located on the volume designated as the system
volume at the point that the TABLE program has finished execution. There is an AUTOSTART file
on the BOOT: or BOOTZ: disc. Here are the contents of the AUTOSTART file provided with your
system.

1MAROD

xSWVOL
SYSVOL

3
wsSYSYOL:
qu

If you use the original BOOT: disc on a single drive system, it is the AUTOSTART file which causes
you to be instructed to place SYSVOL.: in the drive and then press the (X) key. This AUTO-
START file then changes the system volume to “SYSVOL.:”. But because BOOT: is initially the
system volume, the AUTOSTART file is found and executed. On dual-drive systems, the media in
the second disc (nominally SYSVOL.:) will usually become the system volume.

Libraries

The Pascal system is shipped with many library modules. Some are device drivers (in INITLIB or on
the CONFIG: disc), while others provide procedures, etc. for applications such as device I/O and
graphics (on the SYSVOL.:, LIB:, and FLTLIB: discs). Once the system has booted successfully,
you can use these libraries. INITLIB modules are described in the Adding Modules to INITLIB
section of this chapter. Application libraries are fully discussed in the Pascal Procedure Library and
Pascal Graphics Techniques manuals. You can also write your own libraries, as described in the
description of Modules in the Compiler chapter.

Special Configurations

The Auto-Configuration Process

A device is only accessible to the File System if it has been assigned a logical unit number. You may
be familiar with the Filer's Volumes command, which shows the correspondence between logical
unit numbers and volumes. Here is a typical display:

Yolumes on-line:
i CONSOLE:
2 SYSTERM:
3 # BOOT:
4 % SYSVOL:
8 PRINTER:
Prefix is - BOOT:

The Unit Table

To make devices accessible to the File System, TABLE fills in entries of the Unit Table so as to
correctly associate logical unit numbers with logical volumes (and the software required to access
the devices on which those volumes exist). The Unit Table is actually a global system pointer
variable called “Unitable,” which points to a table that contains 50 entries — one for each logical
unit (and potential volume). The Unit Table variable is accessed by many parts of the system, such
as the Filer, Editor, and Compiler, when they want to use one of the devices.

This section describes how the standard TABLE program assigns Unit Table entries. To see the
exact algorithms implemented in Pascal code, refer to the TABLE program called CTABLE. TEXT
and corresponding commentary later in this chapter.

Standard Auto-Configuration
The results of a typical auto-configuration process performed by the standard TABLE program are
shown in the following table. Each entry is further discussed in subsequent text:

Standard Unit Table

Unit Nominal Assignment

System CRT Screen (CONSOLE:)

System Keyboard (SYSTERM:)

1st priority floppy (drive O, primary DAM)

1st priority floppy (drive 1, primary DAM)
Shared Resource Manager (remote mass storage)
System Printer (PRINTER:)

2nd priority floppy (drive O, primary DAM)

2nd priority floppy (drive 1, primary DAM)

3rd priority floppy (drive 0, primary DAM)

3rd priority floppy (drive 1, primary DAM)

50000 U A W

11-40 | Hard discs (highest to lowest priority)

41 1st priority cartridge tape (LIF DAM)
42 2nd priority cartridge tape (LIF DAM)

43,44 | 1st priority floppy (same volume as 3 & 4, but alternate DAM)
45 SRM system volume, if appropriate

47,48 | 2nd priority floppy (alternate DAM for 7 and 8)

49,50 | 3rd priority floppy (alternate DAM for 9 and 10)

143

144 Special Configurations

How Unit Numbers Are Assigned

In the Unit Table, certain unit numbers are preferentially assigned to particular classes of devices.
Here are the general classes of devices:

® Unblocked devices (i.e., ‘‘byte stream’ devices that do not have directories) like the keyboard,
screen, and local printers

® Floppy disc drives (including 5.25-inch, 3.5-inch, and 8-inch)
e Hard disc drives

® SRM systems

® DC600 cartridge tape drives

The floppy and hard disc drives and tape drives are all ‘‘blocked” devices.

Unblocked Devices

To fill the Unit Table, the TABLE program assumes that ‘“‘unblocked’” devices, such as the screen
(CONSOLE:), the keyboard (SYSTERM:), and system printer (PRINTER:) are always present and
assigns them to units #1, #2, and #6, respectively. However, it must scan for the presence of
“blocked’” devices (i.e., mass storage devices with directories). Once these devices are found, their
locations (select code, HP-IB address, etc.) and attributes (type of disc drive, capacity, etc.) are put
in the table entry corresponding to the logical unit number.

Blocked Devices

Here are the steps that the standard TABLE program goes through in assigning unit numbers to
blocked devices.

Interfaces and Devices Scanned

In order to find mass storage (blocked) devices, the TABLE program first scans interface select
codes 7, 8, and 14 for the presence of an HP-IB type interface: select code 7 is the built-in HP-IB
interface; select code 8 is the factory default setting for optional HP-IB interfaces; 14 is the factory
default setting for HP 98625 High-Speed Disc interface (a fast HP-IB interface).

If an HP-IB interface is found, addresses O thru 7 are interrogated for the presence of blocked
devices. (Most HP-IB peripherals identify themselves when asked politely.) The purpose of this
interrogation is to determine what type of device (such as what family of disc drive, capacity of
drive, etc.) is present at each location.

Special Configurations

Device Classes and Unit Numbers
The TABLE program makes a list of the devices found in each of these classes:

o Floppy discs — this class includes all 5.25-inch, 3.5-inch, and 8-inch floppy disc drives, and all
CS80 or SS80 devices that have a single physical volume with capacity less than 10 Mega-
bytes.

e Hard discs — this class includes all 913x hard discs, and all CS80 or SS80 devices that have
either multiple physical volumes or a single physical volume with capacity greater than or equal
to 10 Megabytes.

@ Tape drives — this class includes all DC600 cartridge tape drives, such as the HP 9144 Tape
Drive as well as tape drives integrated into the CS80 Disc/Tape Drives.

Up to 10 devices can be on the list for each class. If more than 10 devices are found in a class, then
only the Jast 10 found are maintained in the list.

As shown in the preceding Standard Unit Table diagram, groups of unit numbers have been
reserved for each particular class of devices. For instance, unit numbers 3 and 4, and 7 through 10
are reserved for floppy discs. Unit numbers 11 through 40 are reserved for hard discs. Unit
numbers 41 and 42 are reserved for tape drives.

Device Priority

The “priority”” of a device is generally as follows: the later in the scanning sequence a device is
found, the higher its priority is. Remember that interfaces are scanned in the order of select codes 7,
8 and 14; and on each HP-IB interface, addresses O through 7 are interrogated. Thus, a device at
702 has higher priority than a device at 700 but lower priority than one at 800. However, if a device
was used to boot the system, then that device will have the highest priority in its category.

Assigning Unit Numbers to Floppy Disc Drives

Units are assigned to floppy discs in pairs, according to device priority. For instance, if two dual-
drive floppies are found, then the highest priority floppy device will be assigned unit numbers 3 and
4 and the lower priority device assigned unit numbers 7 and 8. However, if two single-drive floppy
devices are found, then the highest priority device will be assigned unit 3 and the lower priority
device assigned unit number 7. Up to three floppy drives (and thus pairs of floppy volumes) can be
assigned unit numbers.

Assigning Unit Numbers to Hard Disc Volumes

Hard discs are also assigned unit numbers according to device priority; however, there is also
another consideration. Since all hard discs currently supported by this system have capacities of
several millions of bytes, the standard TABLE prefers to “‘partition” the physical volumes into
smaller logical volumes. (Some hard discs are also organized to be accessed as four separate
physical volumes, rather than one large physical volume; see the subsequent Volume Sizes table for
further information).

TABLE sets up Unit Table entries for hard discs according to two factors: the priority of each device,
and the number of logical volumes it is assumed to have. Here are the number of units that the
standard TABLE will reserve for each hard disc drive, and the corresponding size of each volume.

145

146 Special Configurations

Standard Hard Discs Volume Sizes

Number of | Volume Size
Product Number Volumes (in bytes) Volume Size (in sectors)
913x!Aand V 4 1152 000 4 500 (all are same size)
(Not Option 10)?
913xAorV 4 1206 272 4 712 (all are same size)
(Option 010)®
913x B 9 1 071 360 4 185 (except last =4340)
913x XV 14 1 031 680 4 030 (except last =4340)
7908 16 1 030 400 4 025 (except last =4375)
7911 27 1032 192 4 032 (except last =4992)
7912 30 2179072 8 512 (except last =9408)
7914 30 4390912 17 152 (except last = 18688)
7933 and 7935 30 13471 744 52 624 (except last =53820)

The logical partitioning of hard discs is made by the standard TABLE with the following algorithm.
For each device on the list (of up to 10 devices), it calculates the number of volumes required by the
device, assuming that the disc is now or will be partitioned; the default number of logical volumes
assumed to be on each disc and the size of each volume are shown above. It then begins assigning
unit numbers according to device priority; each device is assigned unit numbers according to the
number of logical volumes assumed to be on the device, regardless of the number of volumes
actually on that device. TABLE begins with 11, and continues either until all volumes have been
assigned numbers or unit number 40 is reached, whichever occurs first.

At the point that it assigns unit numbers to a device, TABLE has not yet determined whether the
disc has actually been partitioned. In fact, the disc may not have been initialized yet, or it may have
been initialized but not partitioned as assumed. In the second stage of the assignment algorithm,
TABLE looks on the disc for each volume’s directory. Since these are logical volumes, each
directory is assumed to be at an “offset’”’ from the beginning of the disc.

If a valid directory is found at the expected location on the disc (i.e., at the assumed offset), then the
corresponding unit number is assigned to the volume. For instance, if a valid directory is found in
the first location, then it is assigned the first unit number for that disc (e.g., unit #11 will be assigned
to the first directory on the highest priority hard disc device). As each subsequent directory is found,
it is assigned the corresponding unit number. For example, if the only hard disc in a system is an HP
9133XV Hard Disc which has been partitioned and initialized according to the standard TABLE
volume sizes for this disc, then it will be assigned 14 unit numbers (11-24).

! The “x” used here signifies either 9133, 9134, or 9135 products.

2 The 913x A and V drives {Not Option 10) look like 4 separate devices, because they are accessed as 4 separate *‘disc
units” or ‘‘drive numbers.”’

3 The 913x A and V Option 10 drives are like the B and XV suffix drives; they are accessed as 1 single *‘disc unit” or
“‘drive number.”

Special Configurations

If a subsequent directory is not found at its expected offset, then that area of the disc is assumed to
be part of the last valid directory that preceded this one. For instance, if valid directories are found
only in the 1st and 4th expected directory locations on an HP 9133V Hard Disc (assumed to have 4
volumes), then the first volume is assumed to be a coalition of the first three volumes (of the default
size) on the disc.

If the first directory is the only valid one found, then the disc is assumed to be one single logical
volume. For instance, if the only hard disc in a system is an HP 7911 Hard Disc which has been
initialized and partitioned according to the standard TABLE volume sizes for this disc, then it will be
assigned 27 unit numbers (11-37). However, if the disc was initialized by the Series 200/300
BASIC system (or coalesced into one volume using the procedure shown later in this chapter), then
it will appear as one single, large volume and assigned only unit number 11. In this case, the last 26
unit numbers allocated for the device (12-37) are not usable. If another hard disc (with lower
priority) were added to this hypothetical system, then it would be assigned unit numbers beginning
with 38, not 12.

Note
The only place that this logical partitioning information is kept is in the
Unit Table entries for each volume; however, the information in the
Unit Table is used by other parts of the system, such as the MEDIAINIT
program that initializes (formats) the disc. The disc drive itself has no
knowledge whatsoever of this partitioning scheme.

As another example of device priorities, suppose that you had an HP 9133XV drive and an HP
7908 drive in your system. Suppose also that the 9133 is at 702 and the 7908 is at 700. The 9133
is at the higher bus address (and is therefore found after the 7908 is found during the scan
sequence), so it has the higher priority (assuming that the 7908 was not the boot device). The
standard TABLE presumes that the 9133 is partitioned into 14 logical volumes, so it allocates 14
unit numbers (11-24) for the device. It then allocates 16 unit numbers (25-40) for the 7908 for
analogous reasons.

As you might guess from the preceding discussion, even though there may be up to 10 devices in
the list of hard discs, not all of the volumes they contain will necessarily be assigned unit numbers
and thereby made accessible. Only the volumes to which unit numbers are assigned will be
accessible. For instance, if the preceding example would have been two 7908 drives, then the
highest priority device will be assigned 16 unit numbers (11-26), while the lower priority drive will
only be assigned 14 unit numbers (27-40). If this disc had actually been partitioned into 16 logical
volumes, then its last 2 volumes would not be accessible.

Note
If you plan to use your hard disc with BASIC, you should set up the disc
as one logical volume. See the File Interchange Between Pascal and
BASIC section of the Technical Reference appendix.

147

148 Special Configurations

Choosing the System Volume

The final step made by the standard TABLE is to choose the system volume. The operating system
makes use of this volume for several purposes. For instance, after the system volume is designated
at boot time, it is then inspected for system files (such as the EDITOR, FILER, and COMPILER). Itis
where the autostart file (AUTOSTART or AUTOKEYS) is assumed to be. It is also used by the
system for storing temporary files that it creates for processes such as expanding Stream files. The
system volume should remain on-line at all times if possible.

Here is the algorithm used by the standard TABLE program to determine which volume will be
designated as the system volume; the “Boot volume” is the volume from which the BOOT: files
named SYSTEM_P, INITLIB, and TABLE were loaded:

1. If a Boot volume was assigned a unit number and its capacity is greater than 300 Kbytes,
then this device is designated as the system volume.

2. If step 1 did not designate a system volume, then search all volumes in the sysunit_list (a
structure declared in TABLE). If a logical volume with a valid directory is found during this
search, then it will be designated as the system volume.

3. If neither step 1 or 2 designated a system volume, then use the Boot volume as the system
volume.

Failure of the TABLE Program

By the way, if the TABLE auto-configuration program ever fails during the boot process, unit
number 6 (normally the standard PRINTER: volume) is assigned to the screen, and unit number 3
is assigned to the ‘“Boot device.” You can only execute programs off of unit number 3 (with the
Main Level eXecute command); it is otherwise inaccessible to the File System.

If TABLE is executed again but fails during this subsequent execution, then the Unit Table reverts
back to its state before this unsuccessful try was attempted. (This is true every time that TABLE is
subsequently executed.)

Special Configurations

Example Special Configurations

This section describes several common types of special configurations. It outlines the general
procedures required to implement them. The subsequent section called Modifying the Configura-
tion provides the details of the procedures.

Hard Disc Partitioning

The way that the standard TABLE program prefers to partition hard discs was explained in the
preceding discussion of Auto-Configuration. This section briefly describes the two methods of
changing this default partitioning.

® “Coalesce’’ adjacent directories into one larger volume

® Modify the CTABLE program to partition the discs differently

The procedure for coalescing logical hard disc volume is given in the subsequent Modifying the
Configuration section.

Coalescing adjacent volumes will work well under these general circumstances:

o The total number of volumes that TABLE assumes it will find on all discs is less than 30.

® The sizes of volumes that you can make by coalescing an integral number of logical volumes is
acceptable (i.e., the “‘resolution” of the default volume sizes is good enough).

If the desired configuration cannot be made by merely coalescing volumes, then you will have to
modify the standard TABLE program (CTABLE.TEXT source file). Modifying the standard TABLE
is also described in Modifying the Configuration.

Multiple On-Line Systems

If requested by operator intervention at power-up, computers equipped with Boot ROM 3.0 and
later versions find all the on-line system Boot files (for example, SYSTEM_P) and display their
names. You can choose the one you want to be booted. For instance, if you have a Pascal and a
BASIC system on-line, you can choose which you want to boot.

Note

The term “‘system Boot file” is used to identify a file that is found and
loaded by the Boot ROM, such as SYSTEM_P; this file then loads the
corresponding operating system.

The term “BOOT: file” is used to identify a file used during the boot
process; these files are on the BOOT: or BOOT2: disc shipped with
your system.

By modifying certain BOOT: files (usually INITLIB and TABLE only) and uniquely re-naming each
different set, you can give yourself the option of choosing different Pascal system configurations at
power-up. (This is not possible with the earlier Boot ROMs.)

149

150 Special Configurations

For instance, suppose you want to have one system version that sets up SRM as the default volume
and another that does not allow access of the SRM system. In such a case, you can create two
systems, each of which is tuned for the desired usage; you can choose the one you want at
power-up. To configure your system as such, you need to make duplicate copies of some system
files and change some of their names. (You also need to set up the SRM system, as described in a
later section of this chapter.)

This type of configuration usually requires only the following type of modification to the standard
configuration:

e Change file names and copy them to different volumes

You can optionally make this type of configuration change, depending on the hardware available
and the desired use of it by the different systems you want to have on-line:

e Add module(s) to INITLIB
This type of change does not usually require changes to the TABLE program.

See the discussion of Copying System Files and Changing Their Names in the Modifying the
Configuration section for further details.

Adding Interfaces and Peripherals

Here is a brief summary of how to add several interfaces and peripheral devices to your system.

Hardware Configuration

You should configure each interface according to the instructions given in its installation manual.
Most switches can be set to their factory defaults; however, the Pascal documentation will tell you
when you will need to change the switch settings from the defaults.

Software Configuration
Using a peripheral device (and the corresponding interface) for File System operations may require
this type of change to the standard configuration:

e Add module(s) to INITLIB

You may need to (or optionally want to) perform this type of configuration change:
e Modify the TABLE program

Here is a list of interfaces and peripheral devices and corresponding configuration modifications
you will need to make in order to use each one. See the discussion of the type of change that you
will make in the Modifying the Configuration section.

o HP 98620 Direct Memory Access (DMA) Interface
The driver for this interface is module DMA, which is present in the original INITLIB. The
interface is always used in conjunction with other cards.

e HP 98622 GPIO (16-bit parallel) Interface
To drive this interface with the IO Library, add module GPIO. (GPIO is not required if you use
the interface only for the HP 9885 disc; however, F9885 is required.) See the Pascal Proce-
dure Library manual for further details regarding I/O applications.

Special Configurations

e HP 98624 HP-IB Interface
Using this HP-IB interface requires module HPIB, which is already present in supplied IN-
ITLIB. See the Pascal Procedure Library manual for further details regarding I/O applications.

e HP 98625 High-speed Disc Interface
This is a form of HP-IB interface, but it is only for use with discs and, oddly enough, printers.
Modules DMA (already present in the standard INITLIB file) and DISC_INTF (not in the
standard INITLIB) are required to use this interface.

o HP 98626 Serial RS-232 Interface
To drive this interface, install module RS232. See the Pascal Procedure Library manual for
further details regarding I/O applications.

e HP 98627 Color Output Interface
Using this interface is described in the Pascal Graphics Techniques manual for further details
regarding I/O applications.

e HP 98628 Data Communication Interface
To drive this interface, install module DATA_COMM. See the Pascal Procedure Library manu-
al for further details regarding I/O applications.

e HP 98629 SRM Interface
Using this interface requires that you set-up an SRM system. See the Setting Up the SRM
System and the Example SRM Configuration sections of this chapter for further details.

o HP 98630 Breadboard Card
This interface is intended for use only by system designers. See the Pascal System Internal
Document for details.

e HP 98635 Floating-Point Math Card
No additional modules are required to use this card. However, you will need to use one of the
FLOAT_HDW Compiler options; see the Compiler chapter for further details. The
FLTLIB:FGRAPHICS module is optimized for use with this card.

e HP 98644 Serial RS-232 Interface
To drive this interface, install module RS232. See the Pascal Procedure Library manual for
further details regarding I/O applications.

o Printers
Module PRINTER (already present in standard INITLIB) is required to drive all printers (“‘loc-
al”’ printers, not those on SRM), regardless of the type of interface being used. Additionally,
module HPIB (already present in INITLIB) is required for HP-IB printers. Printers with RS-
232C interfaces can be used with the HP 98626 RS-232C Serial interfaces if module RS232 is
added to INITLIB. To drive a printer with an HP 98628 Datacomm interface, you will need to
add module DATA_COMM.

If a printer with an RS232C interface is to be recognized by the File System (for example,
volume PRINTER:), then you will need to modify the TABLE program. See the Changing the
System Printer section for further details.

151

152 Special Configurations

® Graphics Output and Input Devices

To talk to “local” (i.e., non-SRM) HP plotters via HP-IB requires module HPIB (already
present in the supplied INITLIB). Modules DATA_COMM and SRM are required if you are
using the plotter spoolers on an SRM system. In addition, you will need to use modules in the
GRAPHICS library. Normally, you will not access any local plotter through the File System
(i.e., you will not access it through a logical unit number); thus, you will not need to add
modules to INITLIB or modify the TABLE program. See the Pascal Graphics Techniques
manual for further details.

® Mass Storage Devices
You will almost always access mass storage devices (such as disc and tape drives, EPROM, and
Magnetic Bubble memory) from the File System. The TABLE auto-configuration program
finds most ‘‘common’’ disc peripheral devices; however, to use ‘“‘non-standard” devices like
EPROM and Bubble cards, you will need to modify the program. See the corresponding
sections of this chapter for further details.

HP-IB Disc Performance Considerations

Disc performance is primarily determined by the device itself, but it may also be affected by the
hardware used to interface the disc to the computer. Three common interface usages and their
relative performance is given in the table below.

Lowest Internal HP-IB or HP 98624 HP-IB interface (without a DMA card)

Higher Internal HP-IB or HP 98624 HP-IB interface (with a DMA card)

Highest HP 98625 High-Speed Disc interface and an HP 98620 DMA card (the 98625
card requires a DMA card)

The 913xA Hard Discs Drives (excluding the V, B, and XV suffix drives) show an increase in
performance when a DMA card is used.

Although it is not required, you should use an HP 98625 High-Speed Disc interface with CS80
discs for optimal performance.

While the HP 9121, 9895, 9133 and 9134 discs can be used with the HP 98625 High-Speed Disc
interface, they do not realize any increase in performance.

Note

Never use the HP 98625 High-Speed Disc Interface with an HP 82901,
82902, or 9135 disc drive.

Special Configurations

Setting Up an SRM System

The Shared Resource Management (SRM) System is a “file server” system that allows several
workstation computers to share file-oriented devices like disc drives, printer spoolers, and plotter
spoolers. Also, the SRM may be the only mass storage device for a machine with no local disc
drives.

This section only briefly explains what is required to configure Pascal workstations in order to access
an SRM system. Here are the main steps:

1. Add modules DATA_COMM and SRM to INITLIB and re-boot, or execute them and re-
execute TABLE; this step provides minimal access to the SRM through unit #5:

2. Copy files to certain SRM directories, and optionally re-name files; this step allows you to use
unit #45: as the system volume and to boot from an SRM (if your computer is equipped with
Boot ROM 3.0 or later)

3. Modify the TABLE program, and re-execute it; this step allows you to assign additional unit
numbers to the SRM system

Because configuring a Pascal workstation to access an SRM system is not a trivial task, it is used as
the example special configuration. See the subsequent section called An Example SRM Configura-
tion (near the end of the chapter) for further details.

Changing the System Printer

Normally, the TABLE program assumes that the *‘system printer”” (the PRINTER: volume, unit #6)
is an HP-IB device at select code 7 with primary address 01. This section tells what is required to
override this assumption. Here are the general changes you will need to make:

e [f the printer is not an HP-IB device, you may need to add the corresponding driver module(s)
to INITLIB. See the Adding Modules to INITLIB discussion in the subsequent Modifying the
Configuration section.

® Modify the TABLE program so that it sets up the printer as the system printer (volume
PRINTER:). See the Local Printer Type Option discussion in Modifying the TABLE Program.

Setting Up Printers with RS-232C Interfaces
The TABLE source program provides a very clean way to set up an RS-232C printer as the
PRINTER: volume. Here are the conditions required:

® The RS-232C interface can be an HP 98626 or 98644 RS-232C Serial, a built-in RS-232C
Serial, or an HP 98628 Datacomm interface. The default select code is 9, but you can change
the dauv variable (device address vector) to use another select code.

o In order to use the 98626, 98644, or built-in serial interfaces, you will need to add module
RS232 to INITLIB

o In order to use the 98628 interface, you will need to add module DATA_COMM to INITLIB.

153

154 Special Configurations

® The factory default switch settings' for these interfaces are as follows:

Interrupt level set for level 3
Baud rate set for 2400 baud
Stop bits switch set for 1 stop bit
Bits/char. switch set for 8 bits
Protocol set for XON/XOFF
Parity set to off

If your printer uses other parameter(s), then set the interface card? to match your printer. See the
interface’s installation manual for switch locations and settings.

The select code of the interface is assumed to be 9; either set the interface to this select code or
modify the sc parameter in CTABLE to match the select code of your interface.

You may also need to change the local_rrinter_timeout variable to match your printer’s charac-
teristics. See the Local Printer Options section in the discussion of the CTABLE program.

Using Bubbles and EPROM

Magnetic bubble memory and EPROM (erasable programmable read-only memory) are both types
of non-volatile memory. The Pascal Workstation system allows you to use HP 98259 Magnetic
Bubble Memory and HP 98255 EPROM cards as mass storage devices. This section briefly outlines
what is required to configure your system to use these Series 200/300 cards. The Non-Disc Mass
Storage chapter gives further instructions.

You will normally be accessing these cards as mass storage devices. Here are the general steps
required to make these devices accessible to the File System:

® Add the appropriate driver module(s) to INITLIB:

To use a Bubble card, add the BUBBLE module to INITLIB. This module adds both
read and write capabilities for Bubble cards to the system.

To read EPROM cards (which have already been written), add the EPROMS module to
INITLIB. (To program EPROMs requires an extra step, described below.)

® Modify the TABLE program so that it assigns a logical unit number to the device(s). See the
discussion of Table Entry Assignment Templates in the Modifying the TABLE Program section.

See the the Non-Disc Mass Storage chapter for the complete description of using these cards.

1 The 98644 card has no baud rate or line control switches, so the Pascal system sets these default paramters.

2 With the 98644 card, you may need to write a short application program to set the parameters. See the Pascal Procedure Library manual for
details.

Special Configurations

Using Alternate DAMs

The files on a disc are found and accessed by means of a directory which describes where the files
are located, how big they are, what types of data they contain, etc. The directory is stored on the
disc itself. There are many reasonable ways to organize discs, depending on one’s purposes. The
methods of accessing these alternative organizations are called ‘‘Directory Access Methods”, or
DAMs. A mass storage volume can be read or written by the File System only if the correct DAM is
used.

Pascal 2.0 and later versions support three mass storage directory organizations: the Workstation
Pascal 1.0 format (WS1.0, similar to UCSD format); HP’s Logical Interchange Format (LIF); and
the Shared Resource Manager’s (SRM) hierarchical, or “‘structured,” directory format (SDF).

In the case of Shared Resource Management discs, the DAM is supported in the SRM itself; what
Pascal supports is the communication of DAM requests to the SRM. The SRM method can only be
used with remote mass storage over an SRM hookup. The other two methods can be used with any
local mass storage device.

The DAM used for each logical unit is selected by the TABLE configuration program. The standard
TABLE selects LIF as the “primary” DAM, and UCSD (Workstation 1.0 compatible) as “‘secon-
dary”. (Sometimes the word ‘‘alternate’ is used instead of “‘secondary’’.) The primary DAM is the
one used for blocked units in the range of #1 through #40 (except #5, auto-configured as the
SRM unit). The secondary DAM is. used by blocked units in the range of #43 through #50 (with
these exceptions: #45 is auto-configured as the SRM system unit, if appropriate; memory volumes
always use the primary DAM).

This secondary DAM is available to allow discs with the secondary directory format to be used by
Pascal programs and the Filer utility. The secondary DAM is in no way restricted from normal use
by the File System; discs in the secondary DAM units can be read and written directly by Pascal
programs.

If Pascal 3.0 is booted up just as shipped, the primary DAM will be LIF. In this case, Pascal 1.0 discs
must be accessed through the alternate DAM units. To make the Pascal 1.0 format the primary
DAM, you will need to change the TABLE program. See the section called Modifying the Con-
figuration Table later in this chapter for further details.

CAUTION

DO NOT MAINTAIN BOTH LIF AND UCSD DIRECTORIES ON ONE
LOGICAL VOLUME. THE DIRECTORIES HAVE NO KNOWLEDGE
ABOUT THE OTHER’S EXISTENCE, SO EACH CAN READILY
DESTROY DATA IN THE OTHER DIRECTORY.

155

156 Special Configurations

Comparison of LIF and WS1.0 DAMs.

In both DAMs, all the space allocated to a single file is contiguous. Consequently, if the free disc
space is fragmented, either DAM may be unable to create a new file of a specified size even though
there is enough total free space on the disc.

In either DAM, it may not be possible to extend (append to) an existing file even if the disc volume
has some free space. A file in either DAM can only be extended if there happens to be free space
immediately following the file. Appending to files was not allowed in Pascal 1.0.

Letter case is significant in LIF file identifiers; for instance, the file called ‘‘Charlie”’ is not the same as
“charlie”. Letter case is not significant under the Workstation DAM (more precisely, file names are
automatically converted to upper case in Workstation disc directories). The same comments apply
to volume names in the two DAMs.

Workstation DAM file names may be up to 15 characters long. LIF names are restricted to 10
characters. In many cases this difference need not be a problem. Most file names used by the Pascal
system end in a five-character suffix such as “. TEXT” and ‘. CODE”’; hence the useful part of such
names is 10 or fewer characters. The LIF DAM implementation encodes recognized standard
suffixes into the suffix of a LIF file name, so that nine characters are available for the significant part
of the name. This encoding is transparent, as is the decoding back into the full suffix when
necessary.

Recommendations For Selecting Primary DAM.

If you are a new user and have no existing discs in the WS1.0 format, we recommend that you use
the system as supplied, with LIF as the primary DAM. LIF is an HP standard for information
interchange among computer systems. For instance, the BASIC and HPL systems that run on your
Series 200 computer use LIF directories. The boot device must have a LIF directory unless you are
booting from SRM.

If Pascal 2.0 or later system version is booted as shipped, the primary DAM will be LIF. If you have
discs generated by Pascal 1.0 you have three choices.

® Change the primary DAM to the Pascal 1.0 directory.

® Adopt LIF for new volumes but access your Pascal 1.0 directories through the limited number
of alternate DAM units.

® Transfer your old files on Pascal 1.0 volumes to new LIF volumes.

The choice is primarily one of convenience, although in the long run there may be some advan-
tages to LIF. Since Pascal programs which ran under the 1.0 release must be recompiled to run
under Pascal 3.0, you may choose to convert your discs as well.

Special Configurations

Moving Files Between WS1.0 and LIF Volumes.
The following steps outline the method of moving files from one directory type to another.
1. Put the ACCESS: disc in a disc drive and press (_F_) to run the Filer.

2. Put the source disc in a drive configured for its type of DAM, and the destination disc in a
drive configured for its DAM. (See below)

3. Use the Filer's Filecopy command to move files from one disc to the other. The Filer
commands will work with either DAM.

Note that the alternate DAM units allow either DAM to be used in the same drive. For instance, you
can copy a file from #43 to #3, both of which are assigned to the right-hand flexible disc drive in a
Model 236 or 226 computer. For example:

Press (_F_) (for Filecopy), then enter:
#43:CHARLIE TEXT +#3:%

The Filer will tell you to when to swap discs.

Remember that the name of a file in a WS1.0 directory may be too long for a LIF directory. You
may have to invent a shorter name.

By the way, it's a good idea to develop the habit of using uppercase letters in the names of LIF files,
because some other systems will not allow or recognize file names with lowercase letters.

Note that directories created by Pascal 1.0 have either 77 or 233 entries, whereas WS1.0 director-
ies created by Pascal 2.0 and later versions have a variable number of entries specified by the user.
Thus you can use Pascal 2.0 and later versions to create WS1.0 format directories which aren’t
readable by Pascal 1.0; whereas all Pascal 1.0 directories are readable by Pascal 2.0 and later
versions.

157

158 Special Configurations

Notes

Special Configurations

Modifying the Configuration

This section describes the mechanics of modifying the “‘standard” configuration methods of the
system as it was shipped to you. Here are the general methods of modifying the standard configura-
tion:

o Coalescing adjacent hard disc volumes

e Copying system files and changing their names

e Using AUTOSTART and AUTOKEYS Stream files

e Adding driver modules to INITLIB

® Modifying the standard TABLE program

Coalescing Hard Disc Volumes

As discussed previously, you can manually coalesce adjacent logical volumes on hard discs. For
instance, suppose that you have an HP 9133V hard disc drive which is partitioned into the standard
4 logical volumes; the standard volume size is approximately 1 Megabyte. However, you want to
increase the size of the first logical volume. You can easily coalesce the second volume with the first
to double the size of the first. (This type of change is only possible with Option 10 machines;
machines without this option cannot be logically partitioned.)

Overview of the Example Procedure
To coalesce the two logical volumes in this example, here are the steps you will take.

1. If the disc has not been initialized, then you will need to do so before continuing with this
procedure.

2. Invalidate the directory of the second volume by overwriting it with the data in a file. (Since
the purpose of this step is to invalidate the directory, this file must not resemble a directory.)

3. Change the Unit Table by running the standard TABLE program. TABLE will find the invalid
second directory, invalidate the corresponding Unit Table entry, and enlarge the volume size
parameter of the preceding Unit Table entry (the first volume’s Unit Table entry). This step
sets up the Unit Table in preparation for coalescing the two volumes. Note that the first
volume’s directory on the disc has not been changed at this point; it is still the original size.

4. Create a new directory on the disc for the first volume; this directory will reflect its new size.
To do this, you will need to destroy the first directory on the disc and then use the Filer’s Zero
command to zero it. The Zero command will read the size for the first volume from the Unit
Table, since it will not have found a valid directory on the disc. The two volumes will then be
“coalesced” on the disc when the first directory is enlarged as it is zeroed.

Prerequisites

You should perform this operation before placing any valuable data in the volumes to be coalesced;
however, if you have already used the volume, then you can back-up these files on another volume
(such as a floppy disc or another hard disc drive). Once a volume has been coalesced with another,
any data in it cannot be accessed.

159

160 Special Configurations

The Example

The following procedure is an example of coalescing the second volume of an HP 9133V hard disc
with the first volume, which results in approximately a 2-Megabyte first volume; the original third
and fourth volumes will be left at the default size of approximately 1 Megabyte.

1.

If the disc to be partitioned (here, the 9133V) has not already been installed with switches set
properly, do so now. Set the drive’s HP-IB address to a value that will ensure that it has a
high enough priority to be assigned unit numbers. (Device Priority is fully discussed in The
Booting Process at the beginning of this chapter.) For this example, we will assume that it will
be assigned unit numbers 11 through 14.

If the disc has not already been assigned unit numbers (such as during a previous boot
sequence), then use the eXecute command to run the standard TABLE program. If this
program is not currently on an on-line volume or P-loaded into memory, then you will need
to insert the BOOT: disc into a drive. Press (_X) at the Main Command Level. The system
prompts with this question:

Execute what file?

Enter the file specification of TABLE; the following specification indicates that it is on the
BOOT: volume:

BOOT:TABLE.

The trailing period is required to suppress the otherwise automatic ““. CODE” suffix, since this
file’s name on the disc has no suffix.

When TABLE has finished, the disc should have been found and assigned unit numbers (we
will assume 11 through 14). However, if it has not been previously initialized and directories
zeroed, then unit numbers assigned to it will not show up in a Filer's Volumes command
(they are invalid because the corresponding directories were found to be invalid).

At this point there are two main situations possible: the disc either has or has not been
initialized.
a. lfit has not been initialized, do so now; proceed with step 4.
b. If it has already been initialized, you have two more alternatives.
If volumes have been coalesced and you want to split them (or if it is a disc initialized as

one large volume), then you will need to first partition it into smaller volumes. Proceed
with step 5.

If it is has already been initialized but is still partitioned into the default number of
volumes (with default sizes), or if it has volumes which have been coalesced and you
don’t need to split them, then you can proceed to step 6.

4.

Special Configurations

If the disc has not yet been initialized, then you will need to initialize it now.

Since the disc has not been initialized, the standard TABLE program will not have found any
valid directories at expected locations on the disc, and therefore will assume that it is to be
partitioned into the default number of volumes (shown in the discussion of partitioning given
in The Booting Process early in this chapter). It will build the Unit Table accordingly.

a. Put the ACCESS:MEDIAINIT.CODE program on-line, and press (_X) to execute it.
The system responds:

Execute what file?
If the program is on the ACCESS: disc, enter:

ACCESS:MEDIAINIT
The “.CODE” suffix will automatically be appended to the file name.
The program prompts for a unit number:

Yolume ID?Y

Enter the unit number of the first volume on the disc that is to be initialized. In this case,
enter:

#11:
The program asks for verification:

Device: 913xA series hard discs» 707, 0O
Lodgical unit #11 - < no directory

WARNING: the initialization will also destrov:

#12: < no dir
#13: < no dir >
#1d4: < nwo dirp »

Are vou SURE vou want to proceed? (Y/N)

The 913xA corresponds to the 913x “V’ suffix drives. The select code and HP-IB
address (707), and drive number (0) should also correspond to the disc to be initialized. If
not, then answer (_N_) and correct the problem. If this is the disc you want to initialize,
then answer affirmatively by pressing (_Y). The program then displays:

Medium initialization in Prodress
The program takes about 15 minutes to initialize this type of disc.
After the program has finished, it displays this message:
Medium initialization completed
Each volume’s directory is then ‘‘zeroed” (cleared, named, and validated):
Yolume zeroind in prodgress
Here is the message that indicates the entire initialization and zeroing is successful:

Yolume zeroind completed

161

162 Special Configurations

b. Verify that the volumes are have been zeroed and are accessible by using the Filer’s
Volumes command. Press (_V_), and the Filer shows you the volumes currently on-
line:

Yolumes on-line:

1 CONSOLE:
2 SYSTERM:
3 % BOOT:

6 PRINTER:

11 # Uil:
12 & U12:
13 # U13:

14 = Vi4:
Prefix is - BOOT:

b. If all volumes have been initialized and directories zeroed properly, proceed to step 6.

5. If volumes on the disc have been coalesced and you want to split them (or if the disc was
initialized as one large volume), then you will need to restore part or all of the default
partitioning structure now.

To do this, you will need to destroy the existing directories on the disc which are to be split.
For instance, if your disc is one large logical volume, then you merely need to destroy the first
directory, since it is the only directory that currently exists on the disc.

a. To destroy a directory on the disc, you will overwrite the directory with a file (the
MEDIAINIT.CODE file will work for this purpose). Make sure “hat the Filer is on-line and
then invoke it by pressing (_F_) from the Main Level. Then use the Filecopy command
to overwrite the directory with the file; press (_F_) and thz following prompt is dis-
played:

Filecopy what file?
Enter:
ACCESS:MEDIAINIT.CODE
It then asks:
Filecopy to what?
You will answer:
#11:
The Filer verifies with this prompt:
Destroy directory V1t 7
Affirm that you want to destroy the directory by pressing (Y).
The Filer then shows that it has made the requested copy:
ACCESS:MEDIAINIT.CODE == #11:

b.

Special Configurations

If other existing directories on the disc are to be split, then destroy each by repeating this
process.

After destroying all directories to be split, run TABLE again to restore the Unit Table to
set up the default partitioning. This step does not partition the disc; it ‘‘partitions’ the
Unit Table in anticipation of the subsequent disc partitioning.

Now partition the disc by zeroing volumes #11, #13, and #14. If you are not still in the
Filer, put it on-line and press (_F_). Use the Zero command to zero the first volume on
the disc. Press (_Z). The Filer responds with this prompt:

Zero directory (NOT valid for SRM tvyrpe units)
Zero what volume?

Enter thé unit number of the first volume:
#11:

The Filer then responds:
Destroy Vi1 ? (Y/N)

Press to confirm the command. The Filer then prompts for the number of file
entries to be contained in the directory:

Number of directory entries?

If you want a number other than the default (80), then enter it now; otherwise, press
(Return) or (ENTER) to accept the default.

The Filer next prompts for the volume size. The number shown in parentheses is the
default:

Number of bytes (1208272) 7

Accept the default by pressing (Retun) or (ENTER).

Finally, you will be prompted for the new volume name:
New directory name 7

Enter any valid volume name of up to 6 characters. For this example, enter:
Uit:

The Filer verifies that it has the name you requested:
Uitl: correct 7 (Y/N)

Press to confirm the name, if it is correct. If is not, then answer (_N_); you will
need to start the Zero command again.

If you confirmed the name, the Filer shows that the directory was created:

Yolume U1l zeroed

Repeat this process for each unit number to Zero all directories which you want to
remain on the disc; you need not Zero those that will be coalesced later in this proce-
dure.

163

164 Special Configurations

6.

If the second directory exists (unit #12), then destroy it. If it does not exist, then proceed to
step 7.

To destroy a directory, use the Filer's Filecopy command to copy a file into the directory (the
MEDIAINIT.CODE file will work just fine for this purpose). Make sure the Filer is on-line, and
press (_F_) to enter the Filer. Invoke the Filecopy command by pressing (_F_). It prompts:

Filecory what file?

Enter the specification of the MEDIAINIT file:
ACCESS:MEDIAINIT.CODE

The system promts:
Filecary to what?

Enter the specification of the second directory:
#121

Since a directory already exists on this volume, the Filer prompts to see if you really want to
proceed and destroy this directory:

Destroy directory V12 7 (¥/N)
Type to enter an affirmative response. The Filer then shows that it completed the
operation by displaying this message:

ACCESS:MEDIAINIT.CODE == 121

Now you should execute TABLE again. This execution of the program will find no second
directory, and consequently will make the Unit Table entry for the first directory reflect the
size of both first and second volumes (about 2 Megabytes). No changes to the disc will be
made by this step, however.

Now destroy the first directory and then Zero the volume. Destroying this directory is neces-
sary in order for the Zero command to read the size of the volume from the Unit Table. If it is
not destroyed, then the volume size will be read from the disc and the volumes will not be
coalesced; the first directory will retain its original size.

a. Use the Filecopy command to overwrite the first directory. While in the Filer, press
(_F_). The Filer prompts:

Filecopy what file?
Answer:

ACCESS:MEDIAINIT.CODE » #11:
The Filer then asks:

Destrovy directory Wil 7 (Y/N)

Answer to affirm that you do want to destroy it.

Special Configurations 165

b. Finally, Zero unit #11’s directory. Press (_Z), and the Filer prompts:

Zero directory (NOT valid for SRM tvpe units)
Zero what volume?

Answer:
#11:

The Filer then responds:
Destrovy Y11 ? (Y/N)

Press to confirm the command. The Filer then prompts for the number of file
entries to be contained in the directory:

Number of directory entries?

If you want a number other than the default (80), then enter it now; otherwise, press
(Return) or (ENTER) to accept the default.

The Filer next prompts for the volume size. The number shown in parentheses is the
default (note that it is now twice its former size):

Number of bvtes (2412544) 7

Accept the default by pressing (Retumn) or (ENTER).

Finally, you will be prompted for the new volume name:
New directory name 7

Enter any valid volume name of up to 6 characters. For this example, enter:
Uils

The Filer verifies that it has the name you requested:
Uil: correct 7 (Y/N)

Press to confirm the name, if it is correct. If is not, then answer (_N_); you will
need to start the Zero command sequence again.

If you confirmed the name, the Filer shows that the directory was zeroed:

Volume Y1l zeroced

166 Special Configurations

9. After zeroing has completed, verify that the disc is as partitioned as desired.

a. Use the Filer's Volumes command to verify that there are only volumes #11, #13:, and
#14: on the disc.

Yolumes on-line:
1 CONSOLE:
2 SYSTERM:
3 * BOOT:
B PRINTER:
11 # Ull:
13 # U13:
14 = Vi4:
Prefix is - BOOT:

If you don’t have the partiticning scheme that you want, you may have a mistake during
the procedure. You may need to repeat the appropriate part(s) of the procedure.

b. Use the Filer's List_directory command to verify that volume #11: is now larger. Look
for the number of available sectors (it should be approximately as shown below).

Yil: Directory type= LIF level 1
created 15-Mav-84 1.,31.24 block size=256
Storade order

veefile namesss # blKks # bvtes last chng

FILES shown=0 allocated=0 unallocated=80
BLOCKS (256 bvtes) used=0 unused=941Z lardest srace=8412

Note that the number of entries you specified for the directory will affect the number of
sectors usable for files. This example shows the number of sectors left after allocating
space for 80 directory entries (files). You will have fewer sectors usable for files if you
specified a greater number of entries.

If the size is not what you expected, then you may have made a mistake during the
procedure. If so, you will need to repeat the appropriate part(s) of the procedure.

Special Configurations

Copying System Files and Changing Their Names

One of the easiest ways to change the configuration of your system is to copy files from the flexible
discs on which it is shipped to discs with better performance (such as local hard discs or SRM discs).
This section describes several things to consider while making this type of modification to your
system.

Copying Files to the System Volume

If you have a system with one hard disc (such as a CS80 or 913x hard disc), an SS80 flexible disc
(such as the 9122), or an eight-inch flexible disc (such as the 9895), then that device may be
selected as the system volume during the boot process. (The system volume and its uses are
described in the Pascal User’s Guide and in the File System and Filer chapters of this manual.) It is
often useful to copy the most-used of the following *‘system files”” to this system volume to increase
performance.

EDITOR
FILER
COMPILER
LIBRARY
LIBRARIAN
ASSEMBLER

If you P-load these files, then you may not want them to take up room on your system volume; you
may want to put them on another less-used volume.

As mentioned at the beginning of this chapter, the following files are used during the boot process.
They are on the standard BOOT: disc shipped with your system.

SYSTEM_P
INITLIB
TABLE

If you have Boot ROM 3.0 or later versions (and not 3.0L), these BOOT: files may be placed
together on any volume you choose, provided it has a LIF or Shared Resource Management (SRM)
directory. They can also be renamed; the purposes of and conventions for renaming these BOOT:
files will be described later in this section. If you do not have Boot ROM 3.0 or later version (which
is only possible with earlier 9826 and 9836 computers), these files must all be on the right-hand
internal disc drive. (The method of determining which Boot ROM you have is described in the
Pascal User’s Guide.)

The STARTUP file is also used during the boot process, but it can either be on the boot volume or
on the system volume. You might leave it on the boot volume if there isn’t room on the system
volume. However, if possible, put it on the system volume so that it loads faster.

If you have an HP 9885 8-inch disc drive as the system device, not all the system files will fit on it.

Using the above procedure, copy onto it those system files which are used most frequently (such as
EDITOR, FILER, and COMPILER).

167

168 Special Configurations

Default BOOT: File Names
On the BOOT: discs shipped from the factory, the files used during the boot process are named as
follows:

SYSTEM_P
TABLE
INITLIB
STARTUP

If these files are copied to another local (non-SRM) mass storage volume and the names are
retained, they will boot normailly.

Re-Naming the BOOT: Files

If you change the name of SYSTEM_P (the system Boot file), then you must also change the names
of some other files on the BOOT: disc. The advantage is that the same Boot file (with different
names) can load specialized BOOT: files for unique hardware configurations.

Note

The term “BOOT: file” is used to identify a file used during the boot
process; these files are on the standard BOOT: or BOOT?2: disc shipped
with your system.

The term “‘system Boot file” is used to identify a file that is found and
loaded by the Boot ROM, such as SYSTEM_P; this file then loads the
corresponding operating system.

The Boot ROM 3.0 and later versions also recognize system Boot files if the file name begins with
“SYS”. If you rename the Pascal system Boot file (SYSTEM_P), there are file naming rules you
must follow so the system Boot file can identify the other BOOT: files. The rules for BOOT: file
names are as follows:

o If the complete string “SYSTEM_” is used in the system Boot file name, up to the next three
letters of the file name are added to the base of the other BOOT: file names (INIT, TABLE,
START).

o [f only “SYS” is used in the system Boot file name, up to the next seven letters of the file name
are added to the base of the other boot file names (possible only with Boot ROM 3.0 and later
versions).

For example, if you change the system Boot file’s name from SYSTEM_P to SYSTEM_P3 (for
Pascal 3.0), then the Boot file will look for the following files:

INITP3
TABLEP3
STARTP3

Keep in mind that file names on a LIF directory must be 10 characters or less.

Special Configurations 169

If you change the name to Boot file’s name SYS_SRM_P3,; it will look for the following files:

INIT_SRM_P3
TABLE_SRM_P3
START.SRM_P3

File names on SRM directories can be up to 16 characters.

In general, SYSTEM_P could be the Pascal Boot file that loads the standard Pascal BOOT: files.
SYSTEM_P3 is the same Boot file, but INITP3 and TABLEP3 could support the hard discs.
SYS_SRM_P3 is the same Boot file, but INIT_SRM_P3 and TABLE_SRM_P3 could support SRM.

Normally, a special TABLE is not required for hard discs or SRM systems, although you may wish
to create one for a special application.

SRM users needing a special TABLE should use the “‘private” system volume based on the node
address mechanism to keep their own custom TABLE and INITLIB (i.e., the default system volume
when booting a workstation from SRM is the /WORKSTATIONS/SYSTEMnn directory, in which
nn is the node address of the workstation). See the subsequent Example SRM Configuration
section for further details.

170 Special Configurations

AUTOSTART and AUTOKEYS Stream Files

As discussed in a previous section, Stream files allow execution of commands just as if you had
entered them from the keyboard. When you put a Stream file named AUTOSTART on your
system volume, the keyboard commands the file contains are automatically executed during the
booting process; if the volume is a read-only device, such as EPROM, then you should call the
stream file AUTOKEYS. (The Stream command is fully described in the “Main Command Level”
chapter.)

You can use autostart files to perform such functions as the following: load drivers; use the What
command to change the system files, system library, default or system volume; re-execute the
TABLE program (or execute another like it). Be aware that there are also other ways to perform this
type of configuration; however, this method can be used to quickly or temporarily change the
configuration by creating different stream files, renaming the one you want to be used as the
autostart file to AUTOSTART (or AUTOKEYS), and then re-booting.

In order to configure your system to access an HP 98626 RS-232C Serial interface, for instance,
you can install the driver module with an autostart file. Here is an example stream file that performs
this installation (this example assumes that the file named RS232 is on the volume that is chosen as
the system volume at power-up):

“blankK linel

“blank linel

Xx*#RS232,

U

The two blank lines which occur first are two carriage returns in the file which are “null”’ responses
to the Time and Date prompts at power-up. These null responses get you to the Main Command
Level.

The “x” in the first column of the third line is an eXecute command. The period at the end of the
file name prevents the system from appending ‘. CODE” to the file name. The “‘v”’ at the end of the
file is the Version command. It gives you another chance to type in the time and date.

After you've created your AUTOSTART file, be sure that you store it on the system volume. This is
done by Quitting the Editor, selecting the Write option, and entering this file specification:

*AUTOSTART,

The period at the end of the file name prevents . TEXT" from being added to the file name. If you
were a Pascal 1.0 user, the file was called AUTOSTART.TEXT. With Pascal 2.0 and later versions,
it is called AUTOSTART. Notice that uppercase characters must be used.

Adding Modules to INITLIB

As mentioned previously, the INITLIB supplied on your original BOOT: or BOOTZ: disc contains a
reasonably complete set of peripheral driver software. You may wish to install other drivers, which
are supplied on the CONFIG: disc; or to conserve memory you may wish to remove items you
don’t need.

Unlike the System Library, modules in INITLIB are order sensitive. Certain modules, if present,
must precede others in INITLIB. The list which follows shows the recommended order of all the
“driver” modules supplied with Pascal 3.1. If you add or delete INITLIB modules, all the modules
which are present in the resulting INITLIB should appear in the order listed.

Special Configurations 171

Required Order of Modules in INITLIB

The table lists the importance of each module. Items marked ‘“‘Required” are essentially required in
INITLIB. Items marked ‘‘Almost”’ are almost always required. These modules should not be
removed unless you have determined for sure they aren’t needed, because they are part of the
normal functioning of the system. Items marked ‘‘Development”’ are usually needed in a software
development environment. Items marked “Optional”’ are optional unless required by a particular
system configuration.

Required Order of Modules

Module Where found Importance
KERNEL BOOT:INITLIB Required
SYSDEVS BOOT:INITLIB Required
CRT BOOT:INITLIB Required
CRTB BOOT:INITLIB Required
CRTC BOOT2:INITLIB Required
CRTD BOOT2:INITLIB Required
A804XDVR BOOT:INITLIB Required
KEYS BOOT:INITLIB Required
NONUSKBD1 BOOT:INITLIB Required
NONUSKBD2 BOOT:INITLIB Required
BAT BOOT:INITLIB Required
CLOCK BOOT:INITLIB Required
PRINTER BOOT:INITLIB Development
DISCHPIB BOOT:INITLIB Development
AMIGO BOOT:INITLIB Optional
CS80 BOOT:INITLIB Optional
IODECLARATIONS BOOT:INITLIB Required
HPIB BOOT:INITLIB Almost
DMA BOOT:INITLIB Development
REALS BOOT:INITLIB Required
ASC_AM BOOT:INITLIB Development
WS1.0_DAM BOOT:INITLIB Development
TEXT_AM BOOT:INITLIB Almost
CONVERT_TEXT BOOT:INITLIB Almost
LIF_DAM BOOT:INITLIB Almost
CHOOK BOOT:INITLIB Optional
DEBUGGER ASM:DEBUGGER Development
DISC_INTF CONFIG:DISC_INTF Optional
DATA_COMM CONFIG:DATA_COMM Optional
GPIO CONFIG:GPIO Optional
RS232 CONFIG:RS232 Optional
SRM CONFIG:SRM Optional
F9885 CONFIG:F9885 Optional
BUBBLE CONFIG:BUBBLE Optional
EPROMS CONFIG:EPROMS Optional
EDRIVER CONFIG:EDRIVER Optional
SEGMENTER CONFIG:SEGMENTER Optional
HPHIL CONFIG:HPHIL Optional
MOUSE CONFIG:MOUSE Optional
DGL_ABS CONFIG:DGL_ABS Optional
LAST BOOT:INITLIB Required

exceptions are the CRT, CRTB, CHOOK, and BAT modules).

Note: The BOOTZ2:INITLIB file contains most of the modules in the BOOT:INITLIB files (the only

172 Special Configurations

Individual Module Descriptions
Here are brief descriptions of each of the above modules.

e KERNEL is the ‘“‘core’ of the system, containing the Library facility for the Linking Loader and
basic File System support. It is always required.

e SYSDEVS, CRT, CRTB, A804XDVR, KEYS, NONUSKBD1, NONUSKBD2, BAT, and
CLOCK are responsible for the CRT display, keyboard, foreign character set, battery backup,
and clock. They are broken out into several small modules so they may be replaced individual-
ly if desired.

Module CRT is only needed if your computer has an alphanumeric display that is separate
from the graphics display (this is the case for most Series 200 computers). Module CRTB is
only required in computers with Series 200 bit-mapped graphics displays (such as the HP
9837). Module CRTC is required in all Series 300 computers. Module CRTD is also required in
Series 300 computers when the 98700 Display Controller is used.

Modules NONUSKBD1 and NONUSKBDZ2 need only be present or replaced by code with
equivalent function if foreign keyboards are used.

Module CLOCK is only required for programmability of the battery back-up hardware (this
hardware is optional in Series 200 computers; a battery-backed, real-time clock is standard in
Series 300 computers).

Note
You can also IMPORT the SYSDEVS module (i.e., use data objects and
code declared in it), which is described in the Procedure Library manu-
al. This is the only system module that is described fully enough in this
manual set to use in this fashion.

o PRINTER is required to drive all printers, regardless of the type of interface electronics being
used. It supports serial as well as HP-IB printers; however, you will have to use the RS232
driver module in order to use printers with RS-232C interfaces. You may also have to modify
the variable named local_rrinter_timeout in the CTABLE program; see the discussion of
modifying CTABLE later in this chapter.

e DISCHPIB, AMIGO, and CS80 modules are related. To use any external disc drive connected
via HP-IB you must use the following modules:

DISCHPIB and AMIGO for these disc models:

9895 (8-inch flexible disc)

9121 (single-sided 3.5-inch flexible disc)
913x (small hard discs)

8290x (5.25-inch flexible disc)

DISCHPIB and CS80 for fixed discs of the Command-Set/80 (CS80) and Sub-Set/80
(SS80) disc drives, and DC600 tape drives, including these models:

79xx (large hard discs; optional integrated DC600 tapes)
9122 (double-sided 3.5-inch flexible disc)
9144 (stand-alone DC600 tape drive)

Special Configurations

o [ODECLARATIONS is the lowest level of device IO support. Although it is possible to con-
struct loadable systems without this module, only the internal disc drives on the Model 226 and
Model 236 can be accessed.

e HPIB is the lowest level support for the Hewlett-Packard Interface Bus, which is HP’s imple-
mentation of the IEEE-488 Standard. HP-IB interfaces include the built-in HP-IB and HP
98624 cards. Most HP peripherals have HP-IB interfaces, so you will rarely remove this
module.

e DMA is the module which runs the HP 98620 Direct Memory Access interface card. DMA
provides very high speed data transfers. It is also required in order to use the HP 98625 Disc
Interface.

o REALS is the floating-point mathematics support package. It also supports the HP 98635A
Floating-Point Math card.

o ASC_AM is the Access Method responsible for blocking and unblocking text files with the
LIF-ASCII structure (.ASC files). LIF stands for Logical Interchange Format, a common file
interchange structure supported by many HP computers. Since this is one of the formats used
by the BASIC language system, it is a good thing to have around. It is also the format used by
the SRM for spooled printer files.

e WS1.0_DAM is the Directory Access Method used by the Pascal 1.0 system, a predecessor to
the one you are using. This module lets the system read and write discs in that format. Note
that the WS1.0 disc organization is compatible with discs written by UCSD Pascal systems; but
to read discs written by non-HP computers, a special disc driver is usually required. This DAM
can be removed if you have no need to read or write discs compatible with the Pascal 1.0
system.

o TEXT_AM is the Access Method used to block and unblock text files created with the “. TEXT”’
suffix. These are the files normally created by the Editor (unless the user specifies otherwise).
The “.TEXT” file structure is compatible with text files generated by UCSD Pascal systems.

e CONVERT_TEXT is a module used by the Compiler and other subsystems to convert among
the various representations of text files. It should be present in INITLIB.

e LIF_DAM is the Directory Access Method required to read and write HP Logical Interchange
Format disc directories. LIF is the primary directory organization used with Pascal 2.0 and later
system versions, so this module is normally present. If you configure your system to use WS1.0
as the primary directory method (as described in the Special Configurations chapter), you may
remove LIF_DAM.

e CHOOK is the display driver for the HP 9836C.

o DEBUGGER is the interactive debugging tool. It is not part of INITLIB (as in pre-3.0 system
versions) due to disc space and because it is a particularly dangerous thing to put in the hands
of non-programmers. Module REVASM is also a handy tool to have while debugging prog-
rams; it allows you to display the contents of memory locations as Assembler language instruc-
tions (i.e., ‘“‘reverse assemble’’ them).

o DISC_INTF and DMA modules are required in order to use the HP 98625 High-Speed Disc
interface.

® DATA_COMM is the module required to drive HP 98628 Data Comm and HP 98629 SRM
interfaces.

® GPIO is the module required to drive the HP 98622 GPIO (16-bit parallel) interface.

173

174 Special Configurations

@ RS232 is the module required to drive the HP 98626 and 98644 RS-232C Serial interfaces,
and the built-in serial interface in the Model 216 (HP 9816) computer.

@ SRM is required to drive the HP 98629 SRM interface. Module DATA_COMM is also required
when using SRM.

® F9885 is required for model 9885 flexible disc drives. These discs also require the DMA
module, HP 98620 DMA card, and HP 98622 GPIO interface.

e BUBBLE is the module that drives HP 98259 Magnetic Bubble Memory cards. In order to use
these cards for mass storage, you will need to add this module to INITLIB and then modify the
TABLE program. See the Using Bubbles and EPROMs section for further details.

® EPROMS is required to access the HP 98255 EPROM cards. In order to use these cards for
mass storage, you will need to add this module to INITLIB, modify the TABLE program, and
program the EPROMs using the HP 98253 EPROM Programmer card (which requires the
EDRIVER module). See the Using Bubbles and EPROMs section for further details.

e EDRIVER is the module required to program EPROMs using the HP 98253 EPROM Program-
mer card. In order to use EPROM cards for mass storage, you will need to add this module to
INITLIB and then modify the TABLE program. See the Using Bubbles and EPROMs section
for further details.

e SEGMENTER provides the ability to segment programs and run each separately. See the
Segmentation Procedures chapter of the Pascal Procedure Library manual for further details.

e HPHIL provides the drivers for HP Human Interface Link devices; it is an extension to the
A804XDVR module. You can remove it if your computer does have not one of these devices
(for example, a 46020 keyboard or a mouse input device).

® MOUSE provides a driver for the optional “‘mouse’” input device, which can be connected to
the computer through the HP Human Interface Link (HP-HIL). The driver supports using the
mouse for cursor-movement input in both horizontal and vertical directions; it also defines the
buttons on the mouse as (Return) or (ENTER) and (Select) ((EXECUTE)). You can access the mouse
from your own applications programs; see the Interactive Graphics chapter of the Pascal
Graphics Techniques manual for details.

e DGL_ABS provides DGL support for the 46087 and 46088 graphics tablets and 35723
TouchScreen input devices.

® LAST is required in every case, and must be the last module in INITLIB. The purpose of
this module is to actually start the system running after the contents of INITLAB have been
loaded and installed in memory. LAST principally does two things: it loads and executes
the configuration file called TABLE; and it loads and executes a file called STARTUP,
which is usually the Command Interpreter but may be a user program.

A Note About CONFIG:INTERFACE File

INTERFACE contains only the interface text of operating system modules in INITLIB (the code was
loaded at boot time). You will need to make this interface text available to the Compiler when you
import any of the modules in INITLIB; you can do this by copying the module to be imported from
CONFIG:INTERFACE to the System Library or using a SEARCH Compiler option that specifies
the INTERFACE file. A good example is importing the SYSGLOBALS module, which requires that
INTERFACE be accessed by the Compiler. See the Pascal Procedure Library manual for further
details.

Special Configurations

Note
INTERFACE also contains the interface text of the SYSDEVS module.
Using procedures, etc. from this module is described in the Pascal
Procedure Library manual. Access to most other modules in INTER-
FACE is not described in the current Pascal documentation set.

Steps for Adding Modules to INITLIB
For this example, we will add module RS232 (on the CONFIG: disc) to the INITLIB file that you are
now using to boot your system (possibly on the BOOT: disc); actually, you will create a new

INITLIB that includes all existing drivers plus these additional driver modules. These are the
modules required to access the HP 98626 and 98644 RS-232C Serial interface cards.

Here is an outline of the procedure that you can use for adding driver modules to the INITLIB
library file. It is a straight-forward usage of the Librarian.

1. Set up mass storage. You will need enough on-line mass storage to store two copies of the
INITLIB file: one for the source (existing) copy, and one for the destination (new) copy. This
requirement is made because the new copy of the INITLIB file must not be taken off-line
during the whole process.

To satisfy this requirement, you will need one of the following configurations: one disc large
enough to store both (such as a hard disc or SS80 flexible disc); two flexible disc drives; a
flexible disc drive and a memory volume.

2. Copy all modules except LAST from the source INITLIB file onto the destination disc. (You
may also remove modules from it as it is copied, if desired.)

3. Add the RS232 module to the INITLIB file on the destination disc.
4. Copy the module named LAST from the source INITLIB to the destination file.
5. Replace the existing INITLIB with the new file.

Mass Storage Requirements

As shipped, the INITLIB file requires about 750 sectors (190 Kbytes) of disc space. Since you will
have two copies of this file on-line, and one cannot be removed during the process of adding
modules to it, here are the mass storage requirements:

o If you are using small-capacity flexible disc drives (approximately 270 Kbytes per disc), then
you will need either two drives or one drive and a memory volume.

o If you are using an SRM shared disc, or have a local hard disc (all have volumes with capacities
of 1 Mbyte or greater) or an SS80 flexible disc (approximately 630 Kbytes per disc), then you
will need only one disc.

You may also need to initialize one or two blank discs (with the MEDIAINIT. CODE utility) then
label them. Disc initialization is discussed in the Pascal User’s Guide. Write the name on a label
before applying the label to the disc; sharp instruments are likely to damage the disc. You will
probably also want to make a back-up copy of the BOOT: disc on which the INITLIB file resides.

175

176 Special Configurations

Making a Memory Volume

If you only have one small-capacity flexible disc drive, then you will need to make sure that you
have enough memory to make a memory volume of sufficient size. Here is how to determine the
amount of memory in your computer. If the machine is on, turn it off, along with any disc drives to
which it is connected. Open the doors of any built-in flexible disc drives. If the SRM is already
connected, remove the cable connected to the 98629A Resource Management interface in the
back. Now turn the computer on. After going through self-test, the CRT will display the amount of
available memory. If you have at least 524 000 bytes, there is “‘enough” memory to proceed with
only one small-capacity disc drive. After turning off computer power, you can reconnect cables and
then turn on any peripherals connected to your computer.

If you determined that you have “‘enough” memory and must use some memory for mass storage,
the following steps are necessary.
1. At the Main Command Level, press (_M). The computer responds:
**¥* CREATING A MEMORY VYOLUME *%+
What unit number?
2. Enter:
#50
The computer then asks:
How many 512 brte BLOCKS?
3. Enter:
520
The computer asks:
How many entries in directory?
4. You answer:
B
The computer finishes:

#50: (RAM:) zeroed

5. Use the Filer's Change command to re-name the memory volume from RAM: to DEST:
(which is the volume name assumed in the following procedure).

This has reserved 266 240 (520*512) bytes of memory to use as a mass storage device. It is like
having a 5.25-inch disc drive with a disc named DEST: inserted in it.

Special Configurations

Assumptions Made During this Procedure
Now you are ready to start the process of making the new INITLIB file. This procedure makes the
following assumptions:

® The existing INITLIB file is on the BOOT: disc.
® The destination volume is called DEST:.
e The RS232 driver module is on the CONFIG: disc.

The Procedure

1.

2.

Make sure that the Librarian is on-line (or insert the ACCESS: disc into the drive you have
been using) and press (_L) to load it.

When you see the Librarian’s prompt line at the top of the CRT, press (0) to specify the
name of the (Output) file the Librarian will be creating. Enter this name as the destination
(new library’s) file name:

DEST:INITNEW

Note

If you are using a flexible drive, you must not remove the Output disc
until the end of this procedure, after you have Quit the Librarian.

Press (_1_)so you can specify an Input file, then enter:
BOOT:INITLIB.

If the file is not on the BOOT: volume, then you will need to change the leading volume
specification. Be sure to type the period after the word INITLIB in this command (to suppress
the otherwise automatic .CODE suffix). The Librarian will respond by showing INITLIB as
the name of the Input file.

Near the bottom of the screen you will see a line which says:
M input Module: KERNEL

Press to transfer this module to the output file. After a few moments, the name of the
next module will appear (probably SYSDEVS). Each time a new module name appears,
press to transfer it to the Output file. You should continue copying modules until the
name LAST appears. Don’t copy module LAST yet.

Now you must get the required RS232 drivers from the CONFIG: disc and transfer them to
the Output file. If the CONFIG: disc (or a disc containing the RS232 module) is not currently
on-line, then put it on-line. Press (_1__)for an Input file and enter this file specification:

CONFIG:RS5232,
(If you are not copying the module from the CONFIG: disc, then use the volume specifica-
tion of your source disc.) Don’t forget the period after the file name.

When the module name RS$232 shows up near the bottom of the screen, press (_A) which
tells the Librarian to transfer All the modules in the file. Remove the CONFIG: disc after the
module has been transferred.

177

178 Special Configurations

10.

11.

12.

13.

Put in BOOT: once more, press (_1_)for Input, and enter the file specification of the original
INITLIB file:

BOOT:INITLIB.
When module KERNEL shows up near the bottom of the screen, select module LAST
instead by pressing (_M_) for module and enter:

LAST

Then transfer LAST to the Output file by typing (_ T).
You now have all the modules in your new library. “Keep” it by typing (_K).
You may want to verify that these modules are in the new library. Press (_1_)and specify
the new library as the Input file:

DEST: INITNEMW
(The .CODE will automatically be appended to the file name.) Step through the file with the
space bar. If all modules are present, then Quit the Librarian by typing (@).

Remove the old copy of INITLIB from the BOOT: disc with the Filer's Remove command (if
the Filer is not on-line, you will need to put it on-line before trying to invoke it). Then Krunch
the BOOT: disc so that you will have enough room on the disc to store the new, larger copy
of the INITLIB file (INITNEW.CODE).

Use the Filer’s Filecopy command to copy the new library file (DEST:INITNEW.CODE) onto
the BOOT: disc, changing the name INITNEW.CODE to INITLIB as you copy it.

The next time that you boot your system with this new INITLIB, module RS232 will auto-
matically be installed.

Special Configurations

Modifying the TABLE Program

This section first describes the structure of the TABLE program. If you want to change something
that it does, you will need to edit and re-compile the CTABLE.TEXT source program on the
CONFIG: disc.

Overview of General Steps
Here are the general steps you should take to modify TABLE:

1. The Pascal source of TABLE, called CTABLE.TEXT, is provided on the CONFIG: disc
distributed with every copy of the system. Read the commentary on the CTABLE source
program in this section. You should follow along in the source program as you read the
corresponding commentary.

2. Make your modifications to a copy of the program — not the original.

3. Compile this modified program, which yields an object code file (for instance,
MYTABLE.CODE).

3. Execute the modified program to see if the results are correct. In fact, the Unit Table can be
reconfigured any time by executing a version of TABLE.

4. When you are quite sure the new TABLE program is correct, use the Filer to copy
the compiled code to your BOOT: disc. The name of the copy must be TABLE (not
TABLE.CODE) in order to be recognized during boot-up (with Boot ROM 3.0 and later, it
may begin with the letters TABLE and end with letters that match the other BOOT: file
names; see the discussion of Renaming the BOOT: Files earlier in this section).

CAUTION

BE CAREFUL HERE! IF THERE IS NO BACKUP COPY OF THE
BOOT: DISC CONTAINING THE ORIGINAL TABLE, AND THERE IS
SOMETHING WRONG WITH THE MODIFIED TABLE, YOU MAY
NOT EVEN BE ABLE TO USE YOUR SYSTEM.

5. Depending on the size of INITLIB, there may not be much room on the BOOT: disc. You
may need to Krunch the disc with the Filer to make space. The modified TABLE can also be
made considerably smaller by linking it to itself. This combines all the internal modules into a
single module, and gets rid of module interface text and internal reference information. The
procedure for linking the modules of a file is presented later in this section.

179

180 Special Configurations

Commentary on the CTABLE Program

CTABLE is a long program; for ease of study, here is a summary of its structure. You will probably
want to print out the source code and examine it in detail.

prodram ctables
module orPtionssi
{Contains declarations which MAY BE EDITED to override
many of the system defaults.}
module ctrj {DON‘T MODIFY THIS MODULE.}
{Exports the table entry assidgnment routiness which contain

information highly specific to HP perirheral devices.}

module BRstuffsi {DON‘T MODIFY THIS MODULE.}
{Fidures out which device was the boot device.}

module scanstuffi {DON’'T MODIFY THIS MODULE.}
{Contains code which asks each device to identify itself.}

begin
initialize hardware (interfacess etc.).
assign default ‘device address wvectors’,
scan for devices on various HPIB addresses.
scan for an internal mini-floppy drive,
determine the nature of the boot device.
create temporary unit table.

make ‘standard’ assidnments #1:-#B:
(in temporary Unit Table).

assidgn units #7:-#10: (to 2nd and 3rd priority floppies).

assign units #11:-#40: (to local hard discs).

assign units #41:,#42: (to tape drives).

assign units #43:-#44: (as alternate DAMs for #3:-#4: florries).

assign unit #45: as additional entrv for SRM
(note the template for #4G6).

assidn units #47:-#50: (as alternate DAMs for #7:-#10: flopries).

make optional templates for ‘manually’ overriding preceding defaults
[hard-disc partitioning, tare drives, EPROM and Bubbles: etc.1.

copy temporary Unit Table to actual svstem Unit Table.

Special Configurations

prefix directory on SRM for #3: (default) and #45: (svstem).
remove extraneous local hard disc entries if necessary,
assign unit for svstem volume,

set prefix of SRM default velume.

re-oren the ‘standard’ svstem files (#1:y #2:, and #B:).

end.,

Note
You may want to read through the following discussion of the standard
TABLE in its entirety before editing the CTABLE. TEXT source file. On
the other hand, you may want to edit it as you read the discussion.

The general recommendation is that you should edit the main program
only if the desired result cannot be obtained by modifying the declara-
tions in module ortions.

Modifying Module OPTIONS

This module consists only of declarations of exported types and constants. The constants are used
by the main program,; each section describes their effects and how to modify them.

Power-Up System Volume
The following constant selects the system volume at power-up.

{Power-up system unitl}
const
specified_system_unit =
03 { <»0 gverrides auto-assidnment?

When srecified_svstem_unit is zero (the default), the program makes its own choice according to
the algorithm described in the preceding discussion of The Booting Process.

If you change this constant to a non-zero value, then it indicates which of the 50 units is to be the
system volume. For instance, if you change this constant to 3, then drive #3: will become the
system volume. This explicit choice overrides any units specified in the subsequent
{ svstem unit auto-search declarations } section of this module.

181

182 Special Configurations

Primary Directory Access Method (DAM)
The following constant selects the primary Directory Access Method for local (i.e., non-SRM) mass
storage devices.

{local mass storade directory access method}
type
Ims_dam_tvyrpe = {local mass storade dam}
(LIF, UCSD)i
const
primary._lms_dam =
LIF3

L1F selects HP’s Logical Interchange Format directory; UCSD specifies the default format used in
Pascal 1.0. The standard TABLE expects that remote mass storage devices will use the Shared
Resource Manager’s hierarchical (structured) directory format (SDF), so no constant declaration is
needed.

Floppy Disc Unit Pairs

The standard TABLE program is set up to assign unit numbers to up to three dual floppy disc
drives. They will normally occupy units in pairs (#3: and #4:, #7: and #8:, and #9: and #10:).
Hard discs usually begin at unit #11: and can be assigned up to 30 unit numbers (up to unit #40:).

{floppy/harddisc unit number slot tradeoff’s?}
const

floppy_unit_pairs = {[1.,,10]}
31

harddisc_first.lun = {do not edit!}
7+(floppy_unit_Pairs-1)%23

harddisc.last_.lun =
403

In order for the TABLE program to assign unit numbers to other than three floppy-disc pairs, you
will need to change the f1orey_unit_rairs variable accordingly. Note that changes to this constant
affect the beginning unit assigned to the highest priority hard disc in the system. For instance,
changing the constant to 2 causes hard discs to begin at #9, while changing it to 4 causes hard discs
to begin at unit #13.

Local Printer Type Option
This constant determines the type of the local printer; it can be either HPIB or RS232.

{local printer tvPe ortion}
type
local_printer_tvee = (HPIB)y» RS232)3
const
local.printer_ortion = HPIBI

Local printers with RS-232C interfaces will not be recognized by the standard TABLE program. If
option R5232 is chosen, you must have an HP 98626 or 98644 RS-232C Serial interface or an HP
98628 Datacomm interface present. In order to use one of these Serial interfaces, module RS232
must be installed; using the Datacomm interface requires module DATA_COMM.

Special Configurations 183

Here are the default interface switch settings:

Select code 9

Interrupt Level set to 3
Baud rate set for 2400 baud
Stop bits set for 1 stop bit
Bits/character set for 8 bits
Protocol set for XON/XOFF
Parity set to off

If your printer uses a different parameter, then you should change the interface switch setting!
accordingly; see the interface’s installation manual for switch locations and settings. If you want to
use another select code, then you will need to modify the local _RS232_rFrinter_default_dav
parameter accordingly; see the subsequent discussion of Default Device Address Vectors.

Local Printer Timeouts
This constant determines the timeout parameter for local printers:

const
local_printer_timeout =
$IF local_printer_oprtion=HPIB%
120005 {milliseconds?}
$IF local_printer_ortion=RS5232%
0 3 {infinite}

This governs the byte-transfer timeout used by the local printer driver. The timeout, expressed in
milliseconds, specifies the maximum time allowed for each byte handshake to complete. A value of
zero is a special case, specifying an infinite timeout. See the commentary above this constant
declaration in the CTABLE.TEXT source program for recommended values.

The policy of enforcing a timeout on each individual byte works quite well with most HP-IB
printers, since they tend not to hold off bus handshakes much longer than the time it takes them to
print a single character. However, with printers on other interfaces (notably serial interfaces) we
have a different matter. Some serial printers will “‘buffer up” bytes at high speed until their internal
buffer is full, but then will not allow any more tranfers until their internal buffer is almost empty.
Thus, depending upon the printer’s internal buffer size, the maxmimum time between two bytes
being transferred may be the time it takes to print hundreds or even thousands of characters! For
these printers, you might consider a timeout of several minutes, or even an infinite timeout.

In general, most HP-IB printers accept hundreds of bytes per second, so you might think that the
default 12 second timeout is excessive. We were forced to use this large a number since some
low-cost HP-IB printers take 8-10 seconds to execute a full-page formfeed. If you are using a faster
printer, you might consider reducing the timeout to 2-3 seconds, so that a real timeout condition
will be detected more quickly.

1 With the 98644 card, you may need to write a short application program to set the parameters. See the Pascal Procedure Library manual for
details.

184 Special Configurations

Default Device Address Vectors
Here are the default ‘‘device address vectors” for devices that cannot be found by interrogation.

{default dav’s for devices not found by scanning}
tvepe dav.tvee = {device address vector}
packed record
scs bay duyr dus -12B,.1273%
ends
const
HP9B885 default._dav =
dav_typelsc:l2y baz-1y dus0, dv:-113%
SRM_.default_dav =
dav_tyrelsc: 21+ ba: {node} 0O,
‘ dus {unit} 8y dus -133
BUBBLE_default.dav =
dav_tveelsc: 30 ba: 0y dur Oy dur 013
local _HPIB_printer_default_dav =
dav_typelsc: 7y ba: 1y dus -1,y dur -113
local _RS232_printer_default_dav =
dav_typelsc: 9 ba: 1y dus -1 duv: =113

The device address vector, or dav, is the data type which describes how a peripheral device is
addressed. These constants set up the addressing which is normally used to talk to some standard
peripheral devices (some of the information will be overridden if the peripheral is found at a
different address).

® 5 is the interface select code. Select code 7 corresponds to the built-in HP-IB port at the back
of Series 200 computers. The HP 9885 disc is connected using a 16-bit parallel interface on
select code 12, and a DMA card. The SRM interface is normally set to select code 21.

® ba is the HP-IB primary address of the peripheral. Usually an 8290x is addressed as device 0;
so is a 9895. The 913x family of hard discs are expected (though not required) to be at primary
address 3, and printers at address 1.

For the SRM only, ba indicates the node number of the SRM interface in a cluster (as opposed
to the node number of the Workstation itself).

® 4u selects the disc unit in a multi-drive machine. For instance, a 9121D has drives O and 1. With
SRM systems that contain multiple disc drives, this parameter selects which disc is to be
accessed.

® 4u selects a particular volume in a multi-volume CS80 (7908 family) disc.

Special Configurations

Hard Disc Partitioning

The next section that you will come to in the CTABLE.TEXT source program concerns hard disc
partitioning. However, in order to be able to wisely decide whether or not you will need to modify
any of these parameters (and, if so, to choose which parameter you want), you need to fully
understand how partitioning works.

Note

If you haven’t read the discussion of hard disc partitioning in The Boot-
ing Process discussion, you should do so now.

The standard TABLE program assumes that local hard discs are to be partitioned into several
“logical volumes,” each of which is to be assigned a unit number. The following equation concep-
tually describes how TABLE determines the number of volumes into which the disc is to be logically
divided (the actual equation actually used is slightly more complex, because it partitions on track
boundaries):

nvols = disc capacity DIV nus

The values of nvals for each type of hard disc, as calculated by this equation, are shown near the
end of the main part of the CTABLE program, following the comment:

{ templates for "manually" specifrving mass storade table entry assidnments X

The mus parameter is a constant in the ortions module.

{local hard disc partitioning Parameters}

tyre
pp_tyre = {partitionind parameters}
record
mus: inteders {min vol size in bvtes}
mnv: shortinti {max number of volumes}
end}

<Comments in program about values and effects of mnv parameter.>

const
min_size = {in bvtes [l.ymaxintld
10000003
max_vols = {[-30,,301% <0 means auto-coalescel
-303

HPO13X_A_PP =

pp_tvrpelmus: min_size» mnu: max_volsli
HPS13X_B_prp =

pp_tvrpelmus: min_sizes mnv: max_volsls
HP913X_C_pp =

pP_typelmus: min_.sizes mnv: max_volsl}
CSBOdisc.PPp =

pp_tyrelmus: min.sizes mnv: max_volsls

185

186 Special Configurations

The constant min_size indicates that no logical volume is to be smaller than one million bytes. The
constant max.vols indicates that no device is ever to be partitioned into more than 30 logical
volumes; the negative value of max_vols indicates that logical volumes that do not have valid
directories are to be “coalesced’” with the last preceding volume found to have a valid directory.
These constants are assigned to the mvs and mnv constants for each class of device. You can change
them if desired; the values and corresponding effects of nnv are described in the comments in the
CTABLE program.

Note
The constant max_vols must not be greater than 30.

The HP913%_A corresponds to all 5-Mbyte HP 913x Option 10 “A”
drives and “‘V” drives with a single ‘‘disc unit” or ‘‘drive number’’ (as
opposed to non-Option 10 “A” drives which have 4 drive numbers).

The HP913X_C corresponds to all 15-Mbyte HP 913X “XV"” drives.

Example of Standard Partitioning

In order to better understand partitioning, let’s look at how the standard TABLE program partitions
an HP 7908 hard disc. You can see most of the default parameters by looking in the temelates
section of the main program that begins with this comment:

{ current C5/B0O discs "soft" partitioned by the host I}
These discs have a capacity of about 16 Mbytes, so nvals is 16 for this type of disc.

The size of each logical volume is given by this equation:

tem DIV nuols % brt

I

vol.bvtes
in which:

vol_brtes = size of volume (in bytes)

tem = number of tracks per disc media (device-dependent)
nuols = number of volumes expected on the disc (device-dependent)
bet = bytes per track (device-dependent)

The last volume on the disc may contain some additional bytes according to the remainder of the
above integer division:

Last volume = uvol_bvtes + (tpm MOD nuols) * bet

Special Configurations

Here are the values of the preceding parameters for an HP 7908 disc drive (they are contained in
the main body of the program, near the end):

= 5 * 370 { 5 surfaces with 370 tracks/surface }
nvols = 16
= 35 * 256 { 35 sectors/track with 256 bytes/sector }

tPm

bept

Therefore:

vol_bytes = ((5* 370) DIV 16) * 35 * 256
= 1 030 400 (bytes)

The tem, brt, and nvols parameters for 913x hard discs are found in the medium_rarameters
function in module ctr.

Here is a diagram of how the TABLE program partitions hard discs:

First volume
vol_bvtes

Second volume
vol_bvtes

Third volume
vol_.brtes

!
Direcj
turyl

Files

Direcj
toryl

Files

1

Direcj
tory |

Files

Beginning Beginning
of disc: of 2nd volume:
vol_offset= vol_offset=

0 1*vol_bvtes

Beginning
of 3rd volume:
vol_offset=
2%vol_bvtes

Beginning
of 4th volume:
vol_offset=
3*vol_bvtes

The first directory is placed at the ‘‘beginning’’ of the disc (at an offset of 0 bytes on track 0). The
data area used for files immediately follows the directory.

The next directory is placed so as to just follow the end of the first volume. The size of the first
volume determines the actual location where the second logical volume will begin. This rule is also
followed by each successive logical volume on the disc.

The last volume on the disc looks as follows:

Last volume
Average vol_bvtes
+tpmMOD nvols *brt

P —

T
Direc- Files
tory I
]
Beginning End of
of last volume: disc

vol_offset=
(nvols—1)*vol_brtes

187

188 Special Configurations

When TABLE attempts to validate unit numbers, it looks at these logical volume boundaries in
search of valid directories. As each valid directory is found, the corresponding volume is assigned a
unit number. If a valid directory is not found at its expected location, then the corresponding unit is
invalid; the amount of disc space normally occupied by this volume can be coalesced with the last
preceding logical volume found to have a valid directory, if desired.

Partitioning Recommendations
Here are the general recommendations as to how you can change the standard partitioning of hard
discs:

1. The simplest method of changing the partitioning on your hard discs is to “‘coalesce’”” adja-
cent logical volumes. You should try to use this solution if possible.

2. If coalescing does not provide you with an adequate solution, you can also set up your own
logical volume structure on the disc by modifying the parameters in the CTABLE source
program.

a. The easiest changes might be to change the nvols parameter in the tenrlates section
that corresponds to your disc. For instance, changing this constant from 30 to 15 for the
7912 allows you to have two 7912 drives automatically assigned unit numbers by
CTABLE. The size of the logical volumes will be doubled, and partitioning will still be
made on track boundaries.

b. If the above methods still do not provide an adequate solution, read the subsequent
discussion in Designing Your Own Partitioning Schemes.

Coalescing adjacent hard disc volumes was discussed earlier. Modifying the TABLE Program is
discussed momentarily.

Note
If you do modify the standard TABLE program, keep in mind that you
must use a version of the program that uses the same partitioning
scheme in order for all logical volumes to be recognized properly.

Designing Your Own Partitioning Schemes
The most highly recommended method is the standard TABLE partitioning method. Here is the
section of the tenrlate (toward the end of the main CTABLE program) that performs the standard
partitioning:
for i := 0 to nvols-1 do
tea.CSBO_mu(1l1+i,y Primarvy_damy» {sc}t 7 {ba} 0y {du} 0y {du} O,
vol.offset(isy nuolsy mp)
{devid} C580id;,
vol.bvtes(iy nvolsy mp))3

Special Configurations

The vol_offset and vol_brtes functions calculate the offset and size of each of your directories
according to the nvols and me values; you can use the standard values, provided in this same
template, or specify your own. If, for example, you wanted to change only the value of nvols for a
7908 disc to 8, you could change this line in the template (just a few lines before the standard
partitioning algorithm shown above):

CSBOid := 79083 wnvols := 163 mp.tpm := 5% 3703 mp.bpt := 35#236F {790B}}
to this:
CSB0id := 79083 nvols := B3I mp.tem := 5% 3703 mp.brt := 35#2563% {7908}

The vol_offset and vol_brtes functions would then make the volume offset and size calculations
for you.

While the standard method is the most highly recommended, there is nothing that prevents you
from using your own. If you like, you may remove the for statement, duplicate the tea procedure
call n times, and specify volume offsets and sizes of your choosing for each logical volume. Here is
an example of one for unit 11 (you will have to supply actual values of the example parameters
offset_for_unit_i11 and bvtes_for_unit_11 shown below):

tea_CSB0_mv(ils primary_dams 79 O O
offset_for_unit_11,
CSBOid
brvtes_for.unit_11)3

The tea procedure checks to ensure that your logical volumes each lie inside the media boundaries.
Unfortunately, the tea procedure doesn’t check to see if any of them overlap!

In those templates capable of partitioning media, you will find the following line:

{ mp 1= block_boundaries{(mp)i {override track boundary partitioning}

This allows you to use the standard partitioning method, except that the partitioning will occur on
512-byte block boundaries — not necessarily on track boundaries. The “{" character at the begin-
ning of the line makes the line a comment; enable compilation of the line by deleting the “{"
character. Depending upon the media parameters and the number of logical volumes, this may or
may not make a difference in how your media actually gets partitioned. This feature is provided
solely for compatibility with discs used with Pascal 1.0. If you don’t need it for this reason, don’t use
it!

All parameters in the templates have typical values for your convenience. If you get a “‘value range
error” when you execute your modified version of CTABLE, it probably means that one or more of
your parameters is out of range. Don’t worry about your system configuration; the old configuration
will still be in effect. You can immediately go back to the Editor to try to determine the problem with
your new CTABLE.

To find where the value range error occurred, usually the quickest way is to examine the tea
procedure calls you just modified, and then examine the tea procedure itself to see what range it
checks the parameters for. However, unless you are a certified wizard, don’t modify the tea
procedure itself!

189

190 Special Configurations

If you still can’t find the source of the error, you can re-compile CTABLE with $DEBUG ON$. Get
a listing from the Compiler, too. Then execute CTABLE again. When it terminates with the error
again, use the queue (Q) command in the Debugger to determine the line numbers of the state-
ments leading up to the error. Also, when you examine the queue, you may need to trace back
several line numbers to actually locate the offending statement.

System Unit Auto-Search Declarations
These constants determine the order of devices searched while trying to find a system volume.

{gvstem unit auto-search declarations}
const
sysunit_list.length =
73
type

sysunit_list_tvpe =
array [lvesysunit_list_lendthl of unitrums
const
sysunit.list =
sysunit_list_tvpel
harddisc_first_luns {first hard disec lodical unit number}
45, {srm» Prefixed to user’s svsuol}

4, {floppy unit 1y primary dam?
44, {floppy unit 1, secondary dam}
3 {floPpy unit 0y Primary dam?}

43 {floppy unit O, secondary dam}
4213 A{bubbles?}

If a valid directory is not found on any of these units, then the system volume is determined by the
normal algorithm (described in The System Volume section of The Booting Process discussion
presented earlier this chapter).

If a system unit was expilcitly specified by modifying the constant called srecified_svstem_unit at
the beginning of the module called ortians, then this search will not override the specified system
unit.

HP-IB Select Codes Searched
These constants determine the select codes scanned in search of an HP-IB type interface, including
98625 High Speed Disc interfaces.

{HP-IB select code scanning declarations)}
const
sc_list.length =
33
tvpe
sc.list_tvpre =
array [lsvsc_list_lendth] of shortints

const
sc.list =
sc.list_type [
7 {internal HP-IB}
8, {default sc for HPOBBZ4 HP-IB}

1415 {default s¢ for HP9BBZ5 HP-IB}

Special Configurations 191

The select codes are searched in the order they appear in the list (7 first). On each select code,
addresses O through 7 are polled in succession for devices. In the case of multiple devices contend-
ing for an assignment class, say multiple local hard discs where the total capacity of all is greater
than 30 Mbytes, generally the last one polled will be the one assigned a logical unit number.

About Module CTR

This module should not be modified!

Built into it is a lot of knowledge about the supported HP mass storage products, and provides a
general structure into which can be inserted information about new peripherals as they are intro-
duced.

Each peripheral is assigned a letter designator; these are listed in the export section of module ¢t r.
In addition there is descriptive information about the size of each type of device, expressed in bytes
per track and tracks per medium. The routines in ¢t r avoid partitioning across track boundaries,
which would cause very inefficient disc access patterns.

Most of the procedures exported from ctr are given a name prefixed with tea. . These are the
Table Entry Assignment routines. There are tea routines for all the supported mass storage pro-
ducts. Some tea routines are appropriate for an entire family of related mass-storage products.

There are also some utility routines. The create_temr_unitable procedure allocates in the heap a
temporary structure like the real system Unit Table. CTABLE makes its assignments to this tempor-
ary structure, then uses assign_temr_unitable to copy the final result into the actual system table.
Note that assign_temp_unitable will not overwrite any RAM volumes which have been created in
the system unit table. This feature is provided so that if you execute a CTABLE while the system is
running, you won't lose files in memory.

The sysunit_ok function checks to see if a particular unit is blocked, on-line, and has a valid
directory; if so, it is a legal candidate for the system unit.

If you look at the assignments to the various fields of a Unit Table entry, you will be aware that two
of them are procedure variables which must be initialized to the names of the DAM (Directory
Access Method) and TM (Transfer Method or driver) appropriate to the volume and physical
device. DAMs and TMs are not part of CTABLE and so would ordinarily be linked to modules
already in RAM by the linking loader when CTABLE is loaded.

However, there is no guarantee that the DAMs and TMs for a device are present, since they may
have been removed from INITLIB or never even installed. Consequently, CTABLE has been
programmed to examine the symbol tables kept in memory by the linking loader. If a driver’s name
is found, it can be used; otherwise, the program avoids references to absent drivers. The routine
which searches for link symbols at run-time is called value and is exported from module ctr.

192 Special Configurations

About Module BRSTUFF

This is another module which shouldn’t be modified!

It exports two routines. The function internal_nini_rresent determines if there are any internal
flexible disc drives in your computer. The function get_tootdevice_rarns determines what type of
device was used for booting and returns the dav (device address vector) for that device.

About Module SCANSTUFF

This module shouldn’t be modified!

Its purpose is to interrogate certain disc drives about their size and identification. To do this, the
value routine (see module ¢t r) is used to find routines which are present only if the driver modules
supporting these discs are installed.

Discussion of the Main Body of CTABLE

A lot of details of the behavior of CTABLE can be modified by changing declarations such as the
select code list from the options module. If you want to force some particular assignment, this may
be achieved by modifications to the code in the body of CTABLE.

Default DAV Assignments
The program first assigns default device address vectors (DAVs) for devices that cannot be found by
scanning (such as printers and HP 9885 8-inch disc drives).

HP-IB Interfaces Scanned

After various initializations, CTABLE scans the select codes listed in module options. For each
HP-IB interface found, and for bus addresses O through 7 on each interface, the program inquires
to see if a device is present. A letter designating the device is returned. You can see the definitions of
these letters in the constant declaration at the beginning of the ¢t r module.

Boot Device Info
The information about the boot device is obtained. This may be used later in selecting the system
unit.

Temporary Unit Table

A temporary Unit Table is then created in the heap. The assignments made as CTABLE executes
will be made to elements of this temporary table; only at the end will the real system Unit Table be
updated.

Special Configurations

Standard Assignments
Next, “standard” unit number assignments are made. It is wise not to change these assignments,
since programs tend to depend on them.

e Unit #1 is assigned to the screen (CONSOLE:)
e Unit #2 is assigned to the keyboard (SYSTERM:)

e Units #3 and #4 will be assigned to the highest priority flexible disc drive. If both internal
drive(s) and an external flexible disc drive are present, the internal drive(s) will be used for #3
and #4 unless the external disc was the boot device. This policy gives preference to the
higher-performance internal floppy disc drives.

o If an SRM interface is present, it is assigned unit #5. (It may also be assigned unit #45 later in
the program.)

® Unit #6 is assigned to the local printer (PRINTER:). This assignment is made whether or not a
printer is actually connected to the computer, because there is no way to interrogate every
possible type of printer.

Additional Floppy Unit Pairs
Next, the second and third pair of flexible disc drives are assigned unit numbers. Units 7 and 8 are
assigned to the second highest priority floppy drive pair, and 9 and 10 to the third priority pair.

Multiple Local Hard Discs

With auto-configuration, CTABLE can deal with several local hard discs found during the HP-IB
scanning process (previous versions of this program, without modification, could only find one).
This code is surrounded by conditional Compiler options, because you may wish to not compile it
and instead force particular assignments.

CTABLE will break a hard disc (which has not previously been initialized to a single volume) into
multiple volumes. As things are arranged (see module ortions), no volume will be less than one
million bytes and no disc will be divided into more than 30 volumes. The units assigned to these
volumes begin with #11 and can use up through #40, depending on the number required for each
disc.

DC600 Tape Drives

If there are any DC600 stand-alone tape drives present, or any CS80 disc drives with integrated
tape drives present, then the program also finds them. The highest priority tape is assigned unit
number 41, and the second priority tape is assigned unit number 42.

Alternate DAMs

Next, the alternate-DAM entries are assigned. This allows all flexible discs to be used regardless of
the resident directory type. Units #43: and #44: are alternates for #3: and #4:. For instance, if LIF
is the primary DAM, then units #43: and #44: will use the alternate UCSD DAM to access units
#3: and #4:. (Alternates for units #7:-#10: are a few lines later in the program.)

193

194 Special Configurations

Duplicate SRM Unit Entries

The ““duplicate entries for prefixing down the SRM” section provides templates that you can use to
assign additional unit numbers to SRM directories. For instance, suppose you want to have unit
#46: assigned to the directory called /SPECIAL/USER10/FRED. Enable the first template by deleting
the { comment brace preceding it. Then scroll down until you find the comment
{ prefix the primarvy and secondary SRM unit entries }. (It may be easier to use the Editor’s
Find command, since these templates are a couple of pages away from the first templates.) Enable
the template for #46: by deleting the { comment brace, and replace the ? with the desired directory
path SPECIAL/USER10/FRED.

#45 is not really an alternate; it is another SRM volume, and may be assigned as the system
volume later. If this happens, the operating system will have two units on the SRM: one for the
“system volume,”” which is used for temporary system files, work files, stream files etc.; and another
for the “‘default” working directory. This avoids any possible need to prefix an SRM system volume
away from an SRM default volume.

More Alternate DAMs

Next, units #47: and #48: are assigned as alternate DAM units for #7: and #8: (second priority
floppy disc pair). Units #49 and #50 are alternates for #9: and #10: (third priority floppy disc
pair).

Templates

Next are the ‘“‘templates” for overriding the mass storage table entry assignments made by the
standard TABLE. These templates are surrounded by conditional $if false$ Compiler options
which cause them to be skipped. Thus, the tea procedure calls have no effect until you change the
$if false$ to $if true$. The tea procedures themselves, are defined in the module ctr. They
actually perform the Table Entry Assignments.

There are templates for the following disc drives: internal; 8290x (Amigo); 9895; 913xA, B, V, and
XV; SS80 flexible discs (such as the 9122) and CS80 hard discs (HP 7908, 7911, 7912, 7914,
7933, and 7935); CS80 tapes; EPROM cards; Magnetic Bubble memory cards. Each template
gives the opportunity to specify the following:

e directory access method (DAM)

® select code

® bus address (HP-IB interfaces)

® drive unit

e offset in bytes from beginning of volume to this unit’s directory (for multi-volume discs)

e drive type (the variable named letter in a constant declaration of module ctr)

® size of volume

For multiple-volume drives, the templates include a for loop which calculates how to break up the
disc space in the preferred fashion.

Special Configurations

If you want to change the default for an HP 9121 drive, you will need to use the HP8290X tea
procedure. The reason for this is that the HP 9121 drives behave just like the HP 8290X drives.
You might also note that you would also use the HP8290X tea procedures for the 5.25-inch drive
in the HP 9135 and the 3.5-inch drive in the HP 9133.

The first parameter in the tea procedures specifies the unit number you wish to assign. It must be in
the range from 1 thru 50. The second parameter specifies the directory access method, or DAM.
The DAM specifier is of emumerated type “‘ds_type”. Exported from module ¢t r, ds_type is shown
here.

tyre
ds_tvpe = {Directorr access method Specifier for local mass storage}
{ Primary_dam {either LIF or UCSD,» as specified in ortions}
secondary_.dam, {the one not selected as primarv}
LIF_dam., {LIF, redardless of primarv/secondary choice}?
uUcsbD_dam)3 {UCSDs regardless of primary/secondary choicel

A tea procedure has parameters only for those items which are applicable to the device. Furth-
ermore, all parameters are range-checked by the tea procedure. While the range-checking cannot
guarantee the correctness of your parameters, it can nearly guarantee that your parameters won'’t
ruin the system.

The remaining parameters for all the local mass storage tea procedures are device-specific. Most
devices will need addressing information such as select code (s¢), HP-IB bus address (ta), and disc
unit number (du). :

You may leave the templates where they are, or you may move them. However, all tea procedure
calls must take place between these two statements:

{ Create a temporary table & fill it with dummvy entries }
create_temp_unitablel

Place all tea procedure calls here.

{ assidn the new unitable and unitclear all units 3}
assidgn_temp_unitables

You may assign and re-assign logical units as many times as desired between the two statements
above. When the same logical unit is assigned multiple times, the last assignment performed will be
the one that remains in effect.

Temporary Unit Table Copied
Next, the temporary unit table is copied into the system’s unit table (except that RAM volume
entries are not overwritten).

195

196 Special Configurations

SRM Prefix Directories

The SRM unit entries are then prefixed to the appropriate directories. Each workstation in an SRM
system has an identification number called its “‘node number”, and it is strongly recommended
that the system be configured so that every workstation’s node number is unique.

CTABLE tries to prefix #45 to a directory called /WORKSTATIONS/SYSTEMnn, where nn is the
node number. If no such directory exists, it tries to use directory /WORKSTATIONS/SYSTEM (with
no node number). If that one doesn’t exist, entry #45 is nullified. This is a rather key mechanism. It
allows the workstations in an SRM system to have unique configurations. For the normal function-
ing of the Pascal system, a system volume is required to hold the system library and various system
files. If all workstations shared the same system volume, file name collisions would be a real

nuisance. CTABLE supports this partitioning, and so does the overall booting process, allowing for
instance a different INITLIB and TABLE for each workstation.

Remove Extraneous Hard Disc Volumes

When a valid directory is not found at the expected location on the disc, then the corresponding
unit number is not valid. This service is performed by the section of code in the main part of
CTABLE that follows the comment:

{ remove extraneous local hard disc entries if necessary }.

If desired, the volumes which don’t have valid directories may be “‘coalesced” with the last valid
directory found which precedes this invalid directory.

System Unit Selected
The system unit is then selected according to the priorities set in the constant called sysunit_list,
exported from module ortions.

SRM System Unit Selected

Finally, if the system unit is #45: (SRM system volume), then unit #5 is also an SRM volume. In
that case, #5 is prefixed back to the root SRM directory (#5:/) so the root is the initial default
volume for the system right after it boots up. You can change the working directory to your own
directory by adding the directory path to the slash (/).

System Files Re-Opened
This procedure re-opens the standard unblocked system ’files’:

e #1: is assigned to SYSTERM:
® #2: is assigned to CONSOLE:
® #6: is assigned to PRINTER:

Editing CTABLE

If you have just read through the preceding discussion the first time, you will need to go back and
read the relevant sections and make the desired changes.

If you have already edited the CTABLE source program, you are ready to store your new file. Quit
editing and Write the edited CTABLE in a new file, such as NEWCTABLE (or use the Save option if
you are using a backup copy of the file). Exit the Editor by typing (_E).

Special Configurations

Compiling and Running CTABLE

1. The modules in CTABLE.TEXT import modules from INITLIB. However, the interface text
for these modules is not available unless you enable the $search ‘CONFIG:INTERFACE'$
Compiler option at the beginning of the source program (by removing the comments from
the line). You must also be sure that this disc is on-line during the compilation of the
CTABLE program; you could also copy the file onto another on-line disc and change the
volume specification in the program accordingly.

2. Load the Compiler by typing (_€) (you may need to put the CMP: disc on-line). Answer
the Compiler’s Comrile what text ? prompt by entering:
NEWCTABLE
3. Answer the “‘Printer listing ?”’ prompt with:

for a listing.
(N) for no listing.

(_E) for an “errors only” listing (if you have a printer).
for a listing file.

4. Press (Retum) or (ENTER) to say that the default output file name of “SYSVOL:NEWCTABLE-
.CODE” is fine.

If you followed the example, you shouldn’t have any compilation errors.
5. Press(_R) or (RUN) to execute the new CTABLE.

Verifying the New Configuration

Generally, the Filer provides the quickest way to verify your configuration. The Volumes command
provides a quick sweep of all units. The List command provides a way to test individual units.

Remember that the Volumes command shows only those units which are on-line and which have
valid directories. It won’t show units with media containing either no directory or the wrong type of
directory.

If the first attempt to List the directory of a unit fails, the Filer displays:

Please mount unit #9
'C’ conminuesy <sh_exc> aborts

Type (_C). The Filer will then give the reason for failure. A key result is “no directory on
volume”, which means that the device and medium are accessible, but no directory was found.

Other results such as ‘‘device absent or unaccessible”’, “‘medium absent”, or ‘“device not ready”
mean that the attempt to read from the device failed.

If you get ““device absent or unaccessible”’, there may be several possible reasons. A good trick at
this point is to eXecute ACCESS:MEDIAINIT on the unit number of interest. For those device types
MEDIAINIT recognizes, it will print out the expected device type, plus the addressing information.
This is an excellent way to verify the expected configuration, even if the device itself is unaccessible.
Don’t worry about specifying a device that you really don’t want to initialize; MEDIAINIT always
prompts for your confirmation before it begins initializing.

197

198 Special Configurations

Making the New Configuration Permanent

Once you are satisfied with your new configuration and wish to make it permanent (i.e., it will
remain unless you change it again), copy the code file to your BOOT: disc. First, however, you
should link the new file to itself in order to conserve disc space.

Link the Modules Together

1. Invoke the Librarian by inserting the ACCESS: disc and pressing (L).
Insert the SYSVOL.: disc, press (_1__) (for Input) and enter:
NEWCTABLE

3. To conserve space on the disc, you can specify a header size smaller than the default (38).
Press (_H), and enter: 1. The header size is then changed to the minimum (18).

4. Press (0) (for Output) and enter:
NEWCTABLE

Press (for Link).

Press (_D_) (to remove the file’s Def table).
Press (_A) (to link All the modules).

Press (to finish Linking).

Press (_K) (to Keep the file).

10. Press (@) (for Quit).

o 0 N oo

Now you are ready to perform the final operations.

Special Configurations

Install the New TABLE
1. Insert the ACCESS: disc and type (_F_) (for Filer).
2. Remove the original TABLE file. Insert the BOOT: disc, press (_R_) (for Remove) and
enter:
BOOT:TABLE
3. Krunch the BOOT: disc, since your new TABLE file may be larger than the old one. Press
(K) (for Krunch) and enter:
BOOT:
4. Respondto Crunch directory BOOT: 7 (v/N) with (Y).
5. Now copy the new code file from SYSVOL.: to BOOT:, giving it the required name. Insert the
SYSVOL. disc, press (_F_) (for Filecopy) and enter:
NEWCTABLE ., CODE »BOOT: TABLE
6. Swap discs as directed by the Filer.
7. Save your new source file on the CONFIG: disc too. Insert the SYSVOL. disc, press (_F_)
and enter:
NEWCTABLE . TEXT sCONFIG:$
8. Swap discs as directed by the FILER.
9. Clean up the SYSVOL: disc by removing all the files you put there. Use wildcards to save
typing. Insert the SYSVOL.: disc, press (R), and enter the ? wildcard.

10. Respond (_N_) to the prompt to remove LIBRARY, and respond to the prompts to
remove INTERFACE, NEWCTABLE.TEXT, and NEWCTABLE.CODE. Respond to
the confirmation prompt.

11. Exit the FILER by typing (@).

199

200 Special Configurations

Notes

Special Configurations

Example SRM Configuration
The Shared Resource Management (SRM) System is a “file server” system that allows several

workstation computers to share file-oriented devices like discs, printers, and plotters. Also, the SRM
may be the only mass storage device for a machine with no local disc drives.

This section explains how to configure workstations to access and boot Pascal from an SRM system.
It is used as the example “‘custom” configuration because it can employ three methods of mod-
ifying the standard configuration:

e Copying and re-naming files
o Adding modules to INITLIB
® Modifying the TABLE program (optional).

This section tells what to do the first time you set up the first Pascal workstation to access an SKRM
system. It should not be repeated for every workstation you set up. Once this procedure is com-
plete, the SRM will be accessible any time you boot up your workstation.

Prerequisites
Here are the assumptions made by this set-up procedure.

Who Should Set Up the SRM
The person who is designated as the “SRM system administrator’” should perform the process
described in the next few pages.

SRM Hardware

It is assumed that your SRM hardware has been installed and tested as prescribed in the SRM
documentation. In order for your system to work with the SRM, every workstation in the SRM
configuration must have a unique node number (see the SRM System Manual to learn about node
numbers). You will also need the wiring chart and node number assignments which were prepared
when designing and installing your SRM system.

SRM 1.0 Operating System Parameters

There are four parameters which are set when the SRM 1.0 Operating System is initially configured.
(These are only needed if you are using version 1.0 of the SRM Operating System; with SRM 2.0,
they are set automatically.) Appropriate values for these parameters when using Pascal Worksta-
tions with the SRM 1.0 are as follows:

e IOBUFFERS: At least five per workstation in the cluster — for example, 40 buffers for 8
workstations.

e DISC BUFFERS: Fifty is a good choice.

e TASKS: Two is enough.

e FILES: Allow for ten or twelve open files per workstation in the cluster; one hundred is a nice
round number. .

201

202 Special Configurations

Boot ROM Versions

If you have an HP 9816 Computer with a Boot ROM 3.0L, then you must boot from a local disc
drive. The SRM can only be used after normal booting is complete. Similarly, if you have an HP
9826 or 9836 Computer with a Boot ROM with version number less than 3.0, then you must boot
from the internal 5.25-inch flexible disc drive. In both of these cases, you will probably want to
make a back-up copy of the original BOOT: disc, as you will be modifying the INITLIB file on that
disc.

If your computer is equipped with Boot ROM 3.0 or later version, it is possible to boot directly from
the SRM. System Boot files are found on the SRM system in the /SYSTEMS root directory; they
have names like SYSTEM_P. The other files used at boot time (INITLIB, STARTUP, and TABLE)

are found in the /WORKSTATIONS/SYSTEM directory. This too is explained in the SRM System
Manual.

Overview of SRM Installation

Configuring your system to access SRM is not a hard or complicated operation, but it is important
that you follow the subsequent procedures in exact detail. Since you are less likely to make
mistakes if you understand what’s going on, here is an outline of what you will do.

1. Install driver modules DATA_COMM and SRM by executing them (they are actually prog-
rams that install themselves automatically).

2. Execute the TABLE auto-configuration program. When it is executed while the
DATA_COMM and SRM driver modules are installed, it will find the SRM system and assign
unit #5 to the SRM.

3. If they are not already on the SRM system, create directories /SYSTEMS and
/WORKSTATIONS/SYSTEM.

4. Copy the system Boot file (SYSTEM_P) to the /SYSTEMS directory. Copy the rest of the
Pascal system files to the /WORKSTATIONS/SYSTEM directory. (The Boot ROM expects to
find the Pascal system in these directories.)

5. Use the Librarian to create (on the SRM) a new INITLIB file that contains
modules DATA_COMM and SRM, and then replace the existing INITLIB with this new
one. (If you have Boot ROM 3.0 or later, then you will be replacing the INITLIB in the
/WORKSTATIONS/SYSTEM directory; with earlier Boot ROMs and Boot ROM 3.0L, you
will be replacing the INITLIB on the BOOT: disc.)

6. Re-boot the computer, and verify the new configuration.

7. You can also optionally modify the TABLE program to assign additional unit numbers to the
SRM system.

Special Configurations

Installing the SRM Driver Modules

First, install module DATA_COMM. The file is on the CONFIG: disc that is supplied with your
system. Although you may have already copied the file onto another volume, such as a local hard
disc, this example assumes that you will be loading and executing it from the CONFIG: disc.

Execute the file by pressing (_X) at the Main Command Level. The system prompts:

Execute what file?

Enter this file specification:

CONFIG:DATA_COMM.
Be sure to include the trailing period to suppress the “.CODE” suffix.

Install the SRM module similarly; it is also on the CONFIG: disc as shipped to you.

Re-Configuring with TABLE

Use the eXecute command to execute the TABLE program; it is on the BOOT: disc supplied with
your system. Press (_X_), and then answer the Execute what tile? prompt with this file specifica-
tion:

BOOT:TABLE.
Again, be sure to include the trailing period.

When the program has finished, you can use the Filer's Volumes command to see that unit #5 is
assigned to the SRM system. From the Main Command Level, press (_F_) and then (_V_). Here
is a typical display:

Yolumes on-line:
1 CONSOLE:
2 SYSTERM:
3 # BOOT:
5 # ROOTL:
B PRINTER:

If the name of the SRM’s root directory is not shown in the display, re-execute all three programs
(DATA_COMM, SRM, and TABLE). You may have done something wrong in that process.

If the Filer's Volumes command still does not recognize the #5: volume, check to see whether the
SRM hardware is properly configured and installed. For instance, the (unmodified) TABLE prog-
ram expects that the SRM interface in your computer is set to select code 21.

If that does not work, then you should refer to the troubleshooting sections of the SRM System
Manual.

203

204 Special Configurations

Creating the Required Directories and Files

The first time that a workstation is set-up to access an SRM system, you will need to set up certain
directories on the SRM. These directories have special functions, as described in the following
paragraphs.

A Sketch of Normal SRM Directory Configuration
In order to allow each Workstation in an SRM configuration to boot up a unique system and have
its own system volume, a private directory is established for each node number.

Strictly speaking, this is not always necessary. If a workstation has a local high-performance mass
storage device, then it may be desirable to use that device as the system volume. In fact, the
automatic configuration process will select a high-performance mass storage as the system volume,
if one is present. However, it doesn’t hurt anything to set up unique directories for each worksta-
tion. The following discussion explains how to do so. If things are first set up as explained below,
you then have the option to copy frequently used files such as the Editor and Compiler from the
SRM onto your local high-performance system volume. Then when you boot the system, those files
will be found locally and accessed with correspondingly greater speed.

In the SRM’s root directory there should be another directory called WORKSTATIONS. Under this
there should be a directory called SYSTEM, and for each node number “nn” there should also be a
directory called SYSTEMnn. For instance, if there are three Workstations on nodes 08, 14, and 15,
then the following directories should exist in the root:

WORKSTATIONS/SYSTEM

WORKSTATIONS/SYSTEMOB
WORKSTATIONS/SYSTEM14
WORKSTATIONS/SYSTEMIS

Under WORKSTATIONS/SYSTEM should be copies of all the system files, such as the Compiler,
Filer, and Editor.

Under the private directory for each node should be accessible all the files normally used by the
Workstation. For files which don’t change, such as the Compiler, it is sufficient to simply have a
duplicate link to WORKSTATIONS/SYSTEM/COMPILER,; there is no need to actually copy such
invariant files. The Filer's Duplicate link command can be used for this purpose.

Also in a node’s private system directory can be the files which “personalize” a Workstation:
customized copies of LIBRARY, INITLIB, AUTOSTART, and so forth.

Special Configurations 205

Once this set-up is created, booting is a smooth and automatic process. With Boot ROM 3.0 and
later versions (but not 3.0L), you can boot from the SRM; the particular system to be booted is
selected by name at power-up. Thereafter, the Workstation looks for the necessary files in the
directory with its node number. If INITLIB can’t be found in the /WORKSTATIONS/SYSTEMnn
directory, default is taken to /IWORKSTATIONS/SYSTEM,; if something crucial is still missing, the
boot may fail. (The computer will complain to the operator.)

If you boot from the SRM or if you have no local hard disc on-line, your system volume will be unit
#45 (prefixed to your private directory /WORKSTATIONS/SYSTEMnn) and your default volume
will be #5 (another SRM volume, prefixed to the SRM root directory). Even if the SRM is not
chosen as your system volume (using the scheme above), it will still be accessible through units #5
and #45.

In order to run properly, there must be one more special directory called TEMP_FILES under
/WORKSTATIONS. All temporary files are created in this directory, and are removed when no
longer needed. If you don’t create this directory, the first workstation to need it will do so. Should
the create fail, an error is reported. Consequently the directory /WORKSTATIONS should not be
write-protected unless directory TEMP_FILES has already been created.

Most users will also want a private directory for their default volume. Typically one creates a
directory called USERS under the root, and within USERS a private directory for each individual.
After booting, use the Filer to set the current working directory for your unit #5 to your private
directory (you can modify the TABLE program or create an AUTOSTART file to do this for you).
This keeps the root directory from getting cluttered.

Setting Up SRM Directories
Insert the ACCESS: disc in drive #3 and press (_F_) to execute the Filer. When the Filer prompt
appears, press (_V_) to list the volumes on-line.

If the SRM has already been running with some other systems connected, such as an HP 9845 or
9836 running BASIC, some of these directories may already exist. To see the directories which
already exist, press for the List directory command, and enter the root-level directory
specification:

#35:/

206 Special Configurations

In following the steps below, obviously you should skip the steps which create directories which
already exist on your SRM.

To create directory /WORKSTATIONS, use the following Filer sequence.
1. Press (M _) for the Make-directory command. The Filer responds with this prompt:
Make file or directory (F/D) 7
2. You want to make a directory, so type (_D_). The Filer responds with this prompt:

Make directory (valid only for SRM type units)

Make what directorv?

3. You enter this response:
#5: /WORKSTATIONS

Be sure to type this name in capital letters! If the root directory was protected with one or
more passwords, the Filer would report: *Error: invalid password’ at this point. In such a case,
you need to find out the required passwords from whoever initialized the SRM disc or
installed the passwords. To create this directory, you need Write access rights in the root
directory, and possibly Manager rights if they were specified. For instance, if the password for
Write access is PLEASE, you would specify:

#5:/,<PLEASE»/WORKSTATIONS

Alternatively, you might use the main volume password by specifying:
#5<V0L_PASS»:/WORKSTATIONS

The Filer should reply:

Directory is ‘WORKSTATIONS’ correct ® (Y/N)
4. You answer (_Y_). The directory is created, then the Filer announces:

Directory WORKSTATIONS made.

If the computers in the SRM configuration have Boot ROM 3.0 (or later version) which is able to
boot from the SRM, you will also want to create a directory called SYSTEMS in the root. Repeat the
steps just given, but instead specify that you want to create directory #5:/SYSTEMS.

Next, create directory SYSTEM under /WORKSTATIONS. This is where the master copy of all
system programs such as the Compiler will be stored. To reduce the amount of typing involved, we
will make the current working directory for unit #5 be the newly created /WORKSTATIONS
directory.

5. Type (_P_) for the Prefix command. The Filer responds:

)

Prefix to what directory 7

6. Enter:
#35:/WORKSTATIONS
The Filer will respond:
Prefix is WORKSTATIONS:

Special Configurations 207

Now if you don’t specify a unit number in Filer operations, the system will assume you are referring
to directory IWORKSTATIONS. To create SYSTEM, the sequence is as follows:

1. Press(_ M)

Make file or directory (F/D) 7 D

Make what directorv? SYSTEM

Directory is ‘SYSTEM’ correct? (Y/N) Y
Directory SYSTEM made

AN S

Also under WORKSTATIONS create directories called SYSTEMnn, where nn is the node number
for each workstation in the system. You can see why we said each node number should be unique!
For example, create SYSTEMO5 for the workstation at node 5. Note that two digits are always
required, even if the first digit is zero.

Finally, under 'WORKSTATIONS you should create a directory called TEMP_FILES. This is only
necessary if you plan to write-protect WORKSTATIONS.

Copying the System Files to SRM
You are now at the last stage! It is time to move the required files out into the new directories.
1. First prefix the current working directory to SYSTEM. Press (_P_) for the Prefix command.
2. Enter this directory specification:
#5: /WORKSTATIONS/SYSTEM
The Filer responds with this message:
Prefix is SYBTEM:

3. Then insert the BOOT: disc in the drive you have been using and copy all the files on it into
the new working directory. Press (_F_) for the Filecopy command. The Filer gives this
prompt:

Filecopy what file?

4. Specify that you want all files on the BOOT: disc to be copied by using the = wildcard as
follows:

BOOT:=»%
The Filer will copy the files one after another.
Then repeat the above operation for each of the Pascal system discs (ACCESS:, SYSVOL., etc).

After this is done, the \WWORKSTATION/SYSTEM directory contains the entire Pascal Workstation
system.

208 Special Configurations

Duplicating Links to System Files
Now you need to make these files available in the private SYSTEMnn directory of each worksta-
tion. For each such system directory, use the Filer's Duplicate Link command.

1. Press(_D).

Duplicate link (valid only for SRM tvepe units)
Durlicate or Move 7 (D/M)

2. You want to duplicate links rather than move links. Press (_D_). The Filer will ask:
Dup_link what file?

3. Answer:
?#5: /WORKSTATIONS/SYSTEMnn/$

Of course you should substitute a two-digit node number for nn each time (a leading O is
required for single-digit node numbers). The *?”” wildcard tells the Filer to ask if you want
links each file in the source directory. Answer for every file except AUTOSTART and
SYSTEM_P.

The Dup_link operation is very fast. It displays each file name as the links are made.

The last detail is optional. If any of the workstations in the SRM system have Boot ROM revisions
3.0 or later and will be expected to boot from the SRM instead of using local mass storage, you
need to put a copy of the system Boot file in directory /SSYSTEMS (not in /WORKSTATIONS/
SYSTEM). The system Boot file (SYSTEM_P) is on the BOOT: disc shipped with the system; you
probably have already made a copy of it in an earlier procedure. The Dup_link command can
duplicate the file in a different directory.

1. Type (_D) for the Duplicate link command.
The Filer responds with this prompt:

Duplicate link (valid only for SRM tvepe units)
Durlicate or Move 7 (D/M)

Respond with (_ D).
2. The Filer prompts with this question:
Dup_link what file?
Respond with:
#5:/WORKSTATIONS/SYSTEM/SYSTEM_P»#5: /SYSTEMS/$

Special Configurations

That concludes the required SRM software setup. Now any workstation using the BOOT disc you
have created will be able to access the SRM via logical units #5 and #45. If a workstation has high
performance local mass storage such as a fixed disc, that workstation’s system volume will be on the
local mass storage; otherwise the SRM directory #45:/WORKSTATIONS/SYSTEMnn will be the
the system volume.

It is advisable to also create a private working SRM directory for each user, in addition to the
SYSTEMnn directories for each workstation. Typically a user will then use unit #45 for his system
volume and #5 will be prefixed to his working directory. A good way to set this up is to create a
directory such as the following one in the root directory:

USERS

Then you can add subordinate directories like the following for each user:

USERS/TOM
USERS/DICK
USERS/HARRIET

SRM as the System Volume

At this point, you can make the IWORKSTATIONS/SYSTEMnn the system volume. You will first
need to re-execute the TABLE program in order for unit #45: to be assigned to this directory. Press
(_X_) at the Main Command Level, and enter this file specification:

/WORKSTATIONS/SYSTEMnn/TABLE,

Of course you will need to replace the nn with the node number of your workstation. Don’t forget
the period.

Now you can execute the Newsysvol command (at the Main Command Level) and specify #45: as
the unit number. Then use the What command to verify that all of the subsystems (EDITOR,
FILER, etc.) were found in the /WORKSTATIONS/SYSTEMnn directory. Changing the system
volume will allow you to access the SRM copies of these subsystems by pressing keys such as
(_E) for Editor, and so forth.

Note

You should not prefix the working directory of unit #45: away from this
directory.

209

210 Special Configurations

Adding Modules to INITLIB

Now we will add modules DATA_COMM and SRM (on the CONFIG: disc) to INITLIB (on the
BOOT: disc); actually, you will make a new INITLIB on the SRM that includes the drivers required

for the SRM.
1. At the Main Command Level, press to load the Librarian (note that the Librarian
should be loaded from the SRM).
2. When you see the Librarian’s prompt line at the top of the CRT, press (0) to specify the
name of the (Output) file the Librarian will be creating.
3. Enter this file specification:
#5: /WORKSTATIONS/SYSTEM/INITNENW
4. Press (_I_)so you can specify an Input file, then enter:
#5: /WORKSTATIONS/SYSTEM/INITLIB,
Be sure to type the period after the word INITLIB in this command (to suppress the other-
wise automatic .CODE suffix). The Librarian will respond by showing INITLIB as the name
of the input file.
5. Near the bottom of the CRT you will see a line which says:
M input Module: KERNEL
Press to transfer this module to the output file. After a few moments, the name of a
new module (KBD) will appear. Each time a new module name appears, press T to move it
to the output file. You should continue copying modules until the name LAST appears;
Don’t copy the module LAST yet.
6. Now you must get the required SRM drivers and include them in the Output file. First close
the Input file by typing an (_|__)and then entering a null response.
7. Press (_1_)for an Input file and enter this file specification:
#5:/WORKSTATIONS/SYSTEM/DATA_COMM,
Don’t forget the period after the name.
8. When the module name DATA_COMM shows up near the bottom of the screen, press
(_A) which tells the Librarian to transfer all the modules in the file.
9. Then use the [command again to pick up the SRM input file, again being sure to type the

period after the file name:

#5:/WORKSTATIONS/SYSTEM/SRM.

10.

Special Configurations

Again transfer All by typing (_A_).

11. Enter an (_I_)(Input file) command with null response. This closes the SRM file.
12. Press (_1_)for Input and enter the file specification of the original INITLIB file:
#3:/WORKSTATIONS/SYSTEM/INITLIB,
13. When module KERNEL shows up near the bottom of the screen, select module LAST
instead by pressing (_M_) for module and enter:
LAST
Then transfer it by typing (_T_).
14. You now have all the modules in your new library. “Keep’ it by typing (_K_). Then quit the
Librarian by typing (@).
Replacing INITLIB

Where you place the new version of INITLIB depends on which Boot ROM is in your machine.

o [f you have Boot ROM 3.0 or later (but not 3.0L), then you will probably want to leave it in the

/WORKSTATIONS/SYSTEM directory; it will be found there automatically when you boot
from the SRM system.

e [f you have an earlier Boot ROM or Boot ROM 3.0L, then you will need to replace the INITLIB

on the BOOT: disc with the new INITLIB; this is required because these Boot ROMs cannot
boot directly from SRM — they must use the BOOT: disc.

With Boot ROMs 3.0 and Later

w

Use the Filer's Change command to re-name the existing INITLIB (in /WORKSTATIONS/
SYSTEM) to something like OLDINITLIB.

Use the Change command again to re-name the INITNEW file to INITLIB.

Re-boot your workstation to verify that the new INITLIB file works correctly.

Use the Filer's Dup-link command to link the new INITLIB to all /WORKSTATIONS/

SYSTEMnn directories for the workstations that will be booting from the SRM. (You can
alternately make custom INITLIB files for each workstation, if desired.)

211

212 Special Configurations

With Earlier Boot ROMs

1. Press (_F_) to invoke the Filer.

Put in the spare copy of the BOOT: disc (not the original) into a drive. Press (R) for the
Remove command. The computer responds with this prompt:

Remove what file?
3. Answer:
BOOT:INITLIB

Note that there is no period after the file name this time.

4. Press (_K_) (Krunch) to pack all the remaining files on the disc to make the maximum
amount of room for the new INITLIB. The Filer answers:

Crunch what directorr?

5. Answer:
BOOT:
Don't fail to type the colon after the volume name!
The Filer will then say:

Crunch directory BOOT 7 (Y/N)
6. Answer (_Y). The computer then prompts:

Crunch of directory BOOT in Prodress
DO NOT DISTURB!!

Note
If you interfere with the disc before the Crunch operation completes,
you will ruin the data on the disc. You will certainly have to recopy it
from the original BOOT: and you may have to re-initialize it.

After the Krunch is complete, the filer prompts:
Crunch completed

7. Now when the Crunch is finished, you can Filecopy the INITNEW library file onto the new
BOOT: disc. At the same time, you can re-name it INITLIB.

Insert disc NEWLIB and press (_F) for the Filecopy command.
Filecory what file?

Answer:
#5/WORKSTATIONS/SYSTEM/INITNEW,CODE »BOOT: INITLIB

When the Filecopy finishes, you have a BOOT:INITLIB disc which contains the SRM drivers.
8. Verify that the new INITLIB works by re-booting your system.

Special Configurations

Each Pascal workstation in the system with earlier (or 3.0L) Boot ROMs must boot using an
INITLIB which has the SRM driver software installed. You may wish to make copies of the disc
you’ve just created for each workstation. The disc can be copied using this Filer command sequ-
ence: (_F_) #3,#3. (You can alternately make custom INITLIB files for each workstation, if you
want.)

Multi-Disc SRM

When an SRM system has more that one hard disc, you will need to modify, recompile, and
execute the CTABLE program to allow access to these discs. This section describes how to perform
this type of configuration change.

When more than one hard disc is installed on the SRM system, each disc must have a
/WORKSTATIONS directory. If the directory is write-protected, then a /WORKSTATIONS/
TEMP_FILES directory must be created. You may also wish to create another /SYSTEMS
directory. Boot ROM 3.0 and later versions will search for bootable systems on each disc containing
a /SYSTEMS directory.

CTABLE Modifications
Near the end of the CTABLE program, just above the manual temelates section, a small section of
code assigns Unit Table entries for the SRM.

with SRM_dav do
bedin
{ tea.srm(46+ scy bay du)i {freel}
tea_srm{ 45+ scs bay du)i {for Possible use as the syvstem unit}
end’ {with}

The first tea entry provides a template for assigning unit #46: to the second hard disc connected to
the SRM. You should change the d4u parameter to du+1 to specify the second disc.

Just below the manual “‘templates’ section of the CTABLE program is another section pertaining
to units for the SRM.

{ prefix the primary and secondary SRM unit entries 1}

if not unit_prefix_successful(’#5:/’) then {do nothind};
{tries to set up uvid for possible default unit assignment below}

{ if not unit_prefix_successful(/#4G:/7') then zap.assidned_unit(d4B6)3 <{freel

if not unit_prefix.successful (/#45: +srmsysprefix+srmnode{unitable*[45],5¢c)) then
if not unit_prefix_successful(/#45: +srmsvsprefix) then
zap.assigned_unit(43)3

If you remove the leading comment delimiter ({) from the #46: entry and remove the question

mark from the literal '#46/7‘, then Pascal will be able to recognize the second hard disc connected
to the SRM.

If you wish to have a Unit Table entry for a particular directory path name, you can include the path
name in the specification. For example:

if not unit_prefix_successful(‘#4G:/USER/AL’) then zapr_assigned_unit(46);

213

214 Special Configurations

If you make this modification be sure to activate its accompanying tea_s rn procedure by removing
the curly brace.

tea_srm(46+ scy bas du)i {freel}

With this modification, the system will boot with unit #46 assigned to the directory *‘/USER/AL” on
the first SRM disc.

After all modifications have been made, you can compile CTABLE. Remember that you need to
enable the $search ‘CONFIG:INTERFACE’$ Compiler option at the beginning of the program and
make the INTERFACE library accessible at compile time. You will probably also want to link the
resultant TABLE object file to itself with the Librarian to conserve disc space. See the procedures in
the preceding section called Modifying the TABLE Program for explicit details.

Chapter

19

Non-Disc Mass Storage

Introduction

Pascal 3.0 and later versions support several types of ‘“non-disc”’ mass storage:

¢ Internal memory (RAM)

e HP 98259A Magnetic Bubble Memory cards

e HP 98255A EPROM (Erasable Programmable Read-Only Memory) cards
e DC600 Tape Drives (found in CS80-type disc drive units)

The Bubble and EPROM cards and tape drives provide non-volatile mass storage of programs and
data; internal memory is volatile. All of them can be accessed through the File System. However,
Pascal will not recognize either Bubble or EPROM cards until a few modifications are made.

This chapter describes configuring and accessing Bubbles, EPROMs, and tapes. Using internal
memory for mass storage is covered in the Pascal User’s Guide and in the description of the
Memvol command in the ‘“Main Command Level”’ chapter of this manual.

Summary of Configuration Modifications
In order for the File System to recognize either the Bubble Card or the EPROM card, you need to
make the following configuration changes:

o Add the appropriate driver-module to INITLIB

® Modify the TABLE auto-configuration program. The source program (CTABLE) already con-
tains the necessary templates; you only need to make a few simple changes to enable them.

Tape drives will be recognized without changes to INITLIB or the TABLE auto-configuration
program.

215

216 Non-Disc Mass Storage

Mass Storage Comparison
The operating characteristics for various mass storage devices are compared in the following table.

Characteristics Storage Device
Mini-Floppy Bubble EPROM Memory DC600
Discs Cards Cards Volumes Tapes
Storage 270 336 131072 | 131 072! variable? 16 000 000
Capacity or or
262 144 67 000 000
Relative moderate slow fast fast slow
Access Speed
Read/Write yes yes no’ yes yes
Capability
Usable as a yes yes? yes® no no
Boot Device
Removable yes no no no ves
Media
Multiple no no yes® no yes
Volumes
Data poor good good moderate’ good
Integrity
Relative Cost low high moderate moderate low

1 Size depends on EPROM device type. Sixteen 2764-type devices provide 131 072 bytes while sixteen 27128-type devices provide 262 144
bytes.

2 Size is limited by available memory.
3 EPROMs can be read just like RAM memory but must be programmed (written) with the HP 98253 EPROM Programmer Card.
4 The CTABLE program must be modified to allow this boot device to be the default system volume.

5 This device can be allowed as a boot device; however, there are several restrictions that apply. See the discussion of Booting from EDISCS for
further information.

6 Multiple volumes can be programmed into one EPROM Card, on 16 Kbyte boundaries.
7 RAM memory reliability is dependent on power-source stability.

Non-Disc Mass Storage

Using Bubble Cards

This section provides all of the information you will need to configure and access Bubble memory
cards from the File System.

Power Constraints

Due to the amount of power consumed by a Bubble card when data is being transferred, no more
than two Bubble cards can operate at the same time without exceeding the capacity of the power
supply in the existing Series 200/300 Computers. It is further recommended that only one Bubble
card be operating at the same time as any other ‘‘high-power” card (such as the HP 98620 DMA
card).

Bubble Card Configuration

If you have not already installed the Bubble card, see its installation note for complete details. Some
of the installation information is repeated below for convenience.

CAUTION

ALWAYS TURN THE COMPUTER OFF BEFORE INSTALLING OR
REMOVING INTERFACES.

The Bubble card has two banks of switches. The large switch bank sets the select code while the
small one controls the interrupt priority.

i

DEPRESS THIS SIDE FOR 1 \'!u!L
§
o

/D
SELECT CODE MSB DEPRESS THIS SIDE FOR 0

SELECT CODE LSB

—— INTERRUPT LEVEL LSB
— INTERRUPT LEVEL MSB

]

o
v N,
GRey €N

GRE

Bubble Card Switch Locator

217

218 Non-Disc Mass Storage

Select Code

The Bubble card’s select code is preset at the factory to select code 30. If this select code conflicts
with any another interface present in the system, change it to some unused value from 8 through
31. Note the select code setting; it will be needed for the changes to the TABLE program.

Note

If you change the select code of the Bubble card from its factory default
setting, you must also change the CTABLE program accordingly.

Select Code Switch Settings

Switch Settings Switch Settings

MSB 43210 LSB | Select Code MSB 43210 LSB | Select Code
01000 8 10100 20
01001 9 10101 21
01010 10 10110 22
01011 11 10111 23
01100 12 11000 24
01101 13 11001 25
01110 14 11010 26
01111 15 11011 27
10000 16 11100 28
10001 17 11101 29
10010 18 11110 30
10011 19 11111 31

Interrupt Priority

The interrupt priority switches have been preset to level 5. Each Bubble card should be set to a
unique interrupt priority since the Bubble card may lose data if interrupts are not serviced quickly.
This is especially true if you plan to make calls directly to the driver procedure or use the overlapped
I/O capability.

Interrupt Priority Switch Settings

Interrupt Setting
Level MSB LSB
3 0 O
4 0 1
5 1 0
6 1 1

If other interfaces have been installed which use interrupt level 5, change the switches on the
Bubble card to the highest unused interrupt level in the range 3 through 6.

The Bubble card should now be ready to install in the computer. With the power turned off, install
the card in the backplane. See the installation note if you have any difficulties.

Non-Disc Mass Storage 219

INITLIB Driver Modules

The BUBBLE module is supplied on the Pascal 3.0 CONFIG: disc. The Pascal 3.0 IODECLARA-
TIONS module recognizes Bubble cards as CARD_TYPE =8 (a field of the ISC_TABLE array in
IODECLARATIONS). This same version also recognizes the EPROM cards.

Loading the BUBBLE Module
As with other driver modules, there are two ways to load the BUBBLE module:

e Execute it (with the Main Command Level eXecute command)
e Add it to INITLIB

Executing the module ‘‘permanently’”’ loads the module, but must be performed every time the
system is booted. Adding the module to INITLIB eliminates having to load the module each time
and allows the Bubble card to be a candidate for use as the system volume.

Adding BUBBLE to INITLIB

If you have two disc drives, the creation of the new INITLIB is relatively simple. If you only have
one disc drive, you will need to create a memory volume large enough to hold the new library
(about 200 Kbytes).

To create a memory volume, press (_M_) from the Main Command Level. You will be prompted
for the number of 512 byte blocks (answer 400) and the number of directory entries (answer 8). If
you are not familiar with memory volumes, see the Memory volume command in the “Main
Command Level” chapter of this manual.

1. Initialize a disc, and then use the Filer's Filecopy command to copy the BOOT: disc onto this
disc. Since you will be storing the new INITLIB on this new BOOT: disc, you can Remove
the existing INITLIB file from the disc. Since the old INITLIB was probably not the last file on
the disc (and the new INITLIB will probably be bigger than the old), you should Krunch the
disc.

(It is a very good practice to create a new BOOT: disc rather than modifying your present
BOOT: disc. That way you can always return to where you are, no matter what happens to
the new disc.)

2. Invoke the Librarian. This is done by pressing from the Main Command Level. If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.

3. Insert the old BOOT: disc into Unit #3 and the new BOOT: disc into Unit #4. (If you are

using a memory volume, the memory volume will be the “blank disc”. Use whatever unit
number you assigned to the memory volume instead of Unit #4 for the remaining steps.)

220

Non-Disc Mass Storage

4. Now use the Librarian to create the new INITLIB.
a. Press (I)and then enter the file specification by typing #3: INITLIB . and or

ENTER). You must include a trailing period to prevent the Librarian from appending the
» CODE suffix.

When the Librarian finds the input file, the display will show the name of the first module
in the file. You should see the module named KERNEL. If you have a printer, you can
press (_F_) to list all of the modules in INITLIB.

The BUBBLE module can be inserted anywhere after the IODECLARATIONS module
but before the module named LAST. (LAST must be the last module in INITLIB.)

. Press (_0) and enter #4:BUBLIB. as the Output file. Again, a trailing period pre-

vents the . CODE suffix from being appended to the file name.

(This disc must not be removed until you have finished creating the new BUBLIB file.) If
you are using a memory volume, use the unit number of the memory volume.

. Press (_E_) to enter the Edit mode. You should now see this prompt (in the middle of

the screen):

F First module: KERNEL
U Until module: (end of file)

. Press(_U_) and enter LAST as the Until module. You can now transfer all modules in

the file up to (but not including) module LAST by pressing (_C_).

. When the preceding transfer is complete, press (_A_) to append a module to the

BUBLIB Output file. The Librarian prompts with Inrut file:. Put the CONFIG:
disc, or whichever disc now contains the BUBBLE module, in Unit #3 (not #4, which
must not be removed). Enter this file specification: #3: BUBBLE ..

. The Librarian now prompts with Enter list of modules or = for all. En-

ter =. After the BUBBLE module has been transferred to the BUBLIB library, the
Librarian prompts with Arrend dones <space to continue. If you removed
the BOOT: disc (or the one that contains the INITLIB Input file) to put in the CONFIG:
disc, replace the BOOT: disc now before pressing the spacebar to answer the prompt.

(If you removed the BOOT: disc in #3: and did not replace it before pressing the
spacebar, you get the following message:

cannot oren ‘#3:INITLIB’s ioresult = 10

In such case, don’t worry. Remove the CONFIG: disc and insert the BOOT: disc, then
press (_|_Jand enter #3: INITLIB. as the Input file. Press (_E_) to return to Edit
mode, and return to where you were previously by pressing (_F_) and entering LAST
as the First module. Proceed with step g below.)

. Press to transfer module LAST to the BUBLIB file (if you got the error described

in the preceding step, press (_€) instead of (_T_)). Then press (_S_) to stop editing
and (_K_) to keep the file.

h. You should now verify that the BUBBLE module was indeed copied to the Output file.

Press(_1_)and enter #4:BUBLIB . as the new Input file. Press the spacebar repeated-
ly to scan through the modules in the new library file. If you have a printer, press (_F_)
to get a File Directory listing.

i. If all modules are present, then press (_Q) to Quit the Librarian.

~ Non-Disc Mass Storage 221

5. If you have been using two discs, use the Filer to Change the file named BUBLIB (on the
new BOOT: disc) to INITLIB. If you used a memory volume, remove the old BOOT: disc
from Unit #3 and insert the new BOOT: disc; then use the Filer to Filecopy BUBLIB from the
memory volume to the new disc, changing the file name to INITLIB in the process.

6. Re-boot the computer, which installs the new INITLIB containing the BUBBLE module.

Once the BUBBLE module has been installed, the Bubble card can be accessed by procedure calls.
(The procedure calls will be discussed later.) To make the Bubble card available to the file system as
a mass storage unit, the CTABLE program must be modified to reserve an entry in the Unit Table.

CTABLE Modifications

The Pascal 3.0 CTABLE program, supplied on the CONFIG: disc, contains a “‘template” for the
Bubble card. You can either use the Editor's Find command to search through all occurrences of
BUBBLE until you find the template, or Jump to the end of the program and scroll up until you see
the BUBBLE template shown below.

$if false$ { BUBBLE memory 1}
{watch for conflicting uses of unit 42%
{BUBBLE_DAV,.,8C default is 30 but may have been chanded to boot SC}
tea_BUBBLE(42,primary_dam;BUBBLE_dav.SC) 3

$ends$

Change $if falsesto$if trues.

$if true ¢ { BUBBLE memorvy 1}
{watch for conflicting uses of unit 42}
{BUBBLE_DAV.SC default is 30 but mavy have been chanded to boot SC»
tea_BUBBLE(42)primary_damsBUBBLE_dav.SC) 3§

end

This is the only modification that must be made to CTABLE for the system to recognize the Bubble
card. It assigns unit number 42 to the Bubble card. If you are already using unit number 42, change
the unit number to one that you are not using.

If you have more than one Bubble card or wish to have the Bubble card as a possible system
volume, you should consider the following modifications.

Multiple Bubble Cards
If you install more than one Bubble card, a separate “‘tea’” procedure must be executed for each
card. An example is shown below.

$if true $ { BUBBLE memory 1}
{watch for conflicting uses of unit 427}
{BUBBLE_DAV.S5C default is 30 but may have been chanded to boot SC}
tea_BUBBLE(4Zsprimarvy_dam,BUBBLE_dav.SC) 3
tea_BUBBLE(20sprimarv_dam,28)3
tea.BUBBLE(21spPrimary_dam,29) 3
{ tea.BUBBLE(3sprimarv_dams+30)3i {This would override #3}

$ends

222

Non-Disc Mass Storage

For each tea_BUBBLE procedure called, you should specify an unused unit table entry, the type of
directory access method (the LIF DAM is recommended), and the select code (switch setting) of the
Bubble card. Since these templates override the auto-configuration, the last entry in the above
example would have overridden the device otherwise assigned to unit #3.

You can use the Filer's Volumes command to determine what units are being used. However,
remember that some devices have a second unit number assigned for an alternate DAM that the
Volumes command does not display. For example, the device which has the unit #3 (LIF DAM)
entry also has the unit #43 (UCSD DAM) entry.

Bubbles as the System Volume

The Pascal 3.0 TABLE program already contains code to support BUBBLE memory as a default
system volume. This support is declared in the {svystem unit auto-search
declarations? constants near the end of the “options’” module. This constant tells TABLE to
search through 7 possible system volumes. Note that unit number 42 (the default for the Bubble
card) is included in the list. If you used a unit number other than 42 for the Bubble card, be sure to
change the unit number in the search list above.

Compiling CTABLE

After all modifications have been made to the CTABLE program, the program must be compiled. If
you do not know how to compile a Pascal program, see the Compiler chapter for details.

The resulting code file will be linked and stored as TABLE on the new BOOT: disc. Since CTABLE
imports several operating system modules, you will need to make the CONFIG:INTERFACE file
accessible to the compiler (this file contains the interface text for the operating system modules). To
do so, you can either ‘“‘un-comment” the following compiler option (near the beginning of

CTABLE.TEXT):
$Search 'CONFIG:INTERFACE'$

or add the CONFIG:INTERFACE file to the current System Library file. The linking procedure is
described next.

Linking CTABLE

Once CTABLE.TEXT has been compiled to CTABLE.CODE, the Librarian can be used to create a
linked version of CTABLE that will easily fit on the new BOOT: disc.

The following steps assume the program has been compiled and resides in unit #3 as CTABLE-
.CODE. Since the linked version of CTABLE is usually less than 15K bytes, it will be put on the
same disc that contains the original CTABLE.CODE file (probably CONFIG:) and will later be
copied to the new BOOT: disc. If you have two drives, you may wish to put the linked (Output) file
directly onto the new BOOT: disc.

1. Press to invoke the Librarian. You may have to temporarily swap discs if the Librarian
is not on-line.

2. Press(_1_)andenter #3: CTABLE as the Input file. The Librarian will add the . CODE suffix.

3. Press (_H) to specify a new Header size; enter a size of 18. (Setting the header size is
similar to specifying the directory size of a disc).

4. Press (0) and enter #3: TABLE. as the Output file name. The trailing period will sup-
press the . CODE suffix.

Non-Disc Mass Storage 223

5. Perform the actual linking.Syntax:

a. — to Link. This will update the display.

b. (D) — to toggle the Define source (export text) to NO.
¢. (A) —to transfer All modules.

d. — to finish Linking.

e. (K) —to Keep the Output file.

f. (_@_) — to Quit the Librarian.

6. Copy the linked TABLE to the new BOOT: disc created earlier. Also copy SYSTEM_P and
STARTUP to the new BOOT: disc. The new INITLIB that you created earlier should already
be on the new BOOT: disc.

If you did not include the BUBBLE module in the INITLIB, the File System will not recognize
the Bubble card until you execute the BUBBLE module.

7. Re-boot the system using the new BOOT: disc. Pascal will now recognize the Bubble card.

Bubble Cards in the File System

After the BUBBLE module is installed and an appropriate TABLE program is executed, the Bubble
card appears to the File System as a non-removable blocked device (mass storage volume). Any of
the local mass storage directory access methods (DAMs) may be used, however the LIF DAM is
recommended to allow use of the unit as a boot device.

Executing the Filer's Volumes command will now show that a unit number has been assigned to the
Bubble card. For example:

Yolumes on line:
CONSOLE:
SYSTERM:

ACCESS:

* SYSYOL:
PRINTER:

42 & YBUB:
Prefix is - ACCESS:

[I = % B LN g

Unlike discs, Bubble memory units are initialized with the LIF DAM before being shipped. This
means there is already a directory on the Bubble media. Use the Filer's List command to see the
directory. For example, from the Main Command Level, press (_F_) to access the Filer, and then
use the List directory command by pressing (_L). Specify #42 (or whatever unit number is
assigned to Bubbles). Here is a typical display:

UBUB: Directory tyrpe= LIF level 1
created 14-Apr-84 168.21.25 block size=256
Storade order

veefile names s # blKks # hytes last chnd

FILES shown=0 allocated=0 unallocated=8
BLOCKS (256 bvtes) used=0 unused=509 lardest srace=308

224

Non-Disc Mass Storage

You can now use the Bubble card as you would any other LIF mass storage volume. It can be
zeroed (all files removed) by the Filer's Zero command and it can be initialized by the MEDIAINIT
program supplied with the system.

The Bubble Memory cards have access and timing characteristics similar to the HP 9826/36
Computers’ internal mini-floppy mass storage drives.

Your Bubble card should provide years of reliable, error-free operation. If you ever have cause to
suspect the reliability of the Bubble card, make a back-up copy and and then try re-initializing the
card before contacting your Sales and Service Office.

Error Correction

The Bubble Memory unit shipped to you has automatic error correction enabled. If some other
memory unit (the hardware package containing the magnetic bubbles) is ever installed in the
Bubble card, it should first be initialized by MEDIAINIT to ensure that automatic error correction is
enabled.

The Bubble Device

The Bubble Memory unit installed in the Bubble card is a very stable non-volatile storage system. It
is not easily damaged by external magnetic fields or mechanical abuse. It is, however, strongly
recommended that the memory unit not be removed from the card. Removal of the memory unit
from the card may damage the ‘‘boot loop” or the ‘‘seed bubbles’.

The boot loop of a Bubble card is equivalent to the spared tracks record of a disc. If the boot loop is
damaged, the memory will not function properly. A damaged boot loop may appear as permanent
read/write errors, or more likely it will be detected by the TM (Transfer Method) when a UN-
ITCLEAR operation is performed and reported as bad hardware. UNITCLEAR is performed on all
units by the TABLE program and by a CLEAR /O operation initiated from the keyboard (using the

key).

The memory of a Bubble unit is organized in tracks similar to a disc. Since a bit of information is
indicated by the presence or absence of a bubble, information is written to a track by destroying or
creating magnetic bubbles.

A magnetic bubble is created by spliting a seed bubble. If the bubble unit is removed or improperly
installed a seed bubble may be destroyed or lost. This condition will appear as permanent read/
write errors. If you suspect your bubble unit has been damaged in this way, contact your HP Sales
and Service Office.

Non-Disc Mass Storage 225

Initialization

The MEDIAINIT program on the ACCESS: disc is capable of initializing a BUBBLE device. The
initialization process writes blanks to every location on the media, then writes a default directory to
the unit. The only time MEDIAINIT should have to be used is when a Bubble Memory device not
supplied by HP is placed on the card.

The Filer's Zero command can be used to remove all the files in the Bubble card. The procedure is
similar to the Zero operation of discs. You can change the volume name and the number of
directory entries but you should accept the default value for the size of the media.

If you do choose to initialize the Bubble card, execute the MEDIAINIT program and supply the
appropriate unit number. Use the default value for all questions.

Interrupts and Overlapped 1/0O

Bubble devices require immediate interrupt service of relatively short duration. Since the Pascal
Workstation File System performs only serial 1/O, the problem of interrupt priority selection is
reduced to ensuring that the BUBBLE module is placed in INITLIB after all other driver modules
(but before module LAST). This will ensure that Bubble cards are checked before any other devices
(on the same interrupt level) and therefore minimize the time required to service an interrupt.

When performing overlapped Bubble-card-to-Bubble-card transfers, best results are achieved
when the destination priority is lower than, or the same as, the source priority. A priority configura-
tion other than this will result in even poorer performance than if non-overlapped /O is used
because the two devices interfere with each other and cause several re-tries per transfer. This is not
a problem on machines equipped with cache-memory hardware.

226

Non-Disc Mass Storage

Using EPROM Memory

This section introduces you to the programming and operating characteristics of the HP 98255
EPROM card and the HP 98253 Programmer card. With these cards and Pascal 3.0 (or later
versions), you can copy files and volumes into EPROMs.

Overview

EPROMs are high-speed memory devices used for storing programs or other information. The HP
98255 EPROM card and the HP 98253 Programming card support 2764, 27128, and equivalent
types of EPROMs.

The EPROM devices are not supplied with the EPROM card. You will have to purchase them
separately through an electronic-supply vendor or other source. You probably will also need to
purchase an ultra-violet (UV) light source to erase the EPROMs.

The storage capacity of an EPROM can be determined by the final digits of the part number. For
example, a 2764-type device contains 64 Kbits (65 536 bits) while a 27128-type device contains
128 Kbits (131 072 bits). Up to 16 EPROMs can be placed on one card; this means that one card
provides 131 072 bytes of storage using the 2764-type EPROMs or 262 144 bytes using 27128-
type EPROMs.

The data in an EPROM can be read just like RAM memory, however, a special process is needed to
program (write) the data into EPROMs. The HP 98253 Programmer card is used for this purpose.
An EPROM is programmed by applying a short “‘burn” pulse while the data being programmed is
applied to the output pins. The timing and control of this operation is handled by the Programmer
card. Once the EPROMs have been programmed, the Programmer card is no longer needed in the
system and can be removed. (With the power turned-off of course!)

An EPROM can be erased (all bits set to *“1”’) by exposing it to a high level of ultra-violet light. Once
erased, the EPROMs can be reprogrammed with new data. Check the EPROM manufacturer’s
specifications for details on the type of UV light source needed and the recommended exposure
time.

Configuration Changes Required

There are two changes you need to make to the “‘standard” configuration in order to use EPROMs:

e Add module(s) to INITLIB.
e Modify the TABLE source program (CTABLE. TEXT)

You may also need to set switches on the cards and install EPROM devices.

Non-Disc Mass Storage 227

INITLIB Driver Modules

In addition to supporting the operations of the HP 98255 EPROM card and the HP 98253
Programmer card, Pascal 3.0 supports the use of EPROMs as a mass storage volume. Transferring
a volume into EPROMs would create what could be called an “Eprom-DISC” or “EDISC”.

The support modules include:

® The EPROMS module is included on the CONFIG: disc. The module may be installed by
either executing it or by using the Librarian to include it in INITLIB.

e The EDRIVER module, also included on the CONFIG: disc, provides read/write capability for
performing various operations with an EPROM and Programmer card pair. The EDRIVER
module can be “‘P-loaded” or linked to an application program when read/write capability is
needed.

e The EPROM Transfer Utility (ETU.CODE) included on the ACCESS: disc allows mass storage
volumes to be transferred to EPROMs. When environmental conditions limit the reliability of
floppy discs, or when it is desirable to have quick access to commonly used programs or data, a

copy of a mass storage volume can be transferred to EPROMs. Transferring a volume to
EPROMs creates an “EDISC”.

ETU can also be used to transfer DATA, ASC, and TEXT files to EPROMs. This capability
allows arbitrary bit-patterns to be transferred to EPROMs.

e The CTABLE.TEXT file on the CONFIG: disc contains a ‘“‘template” section to assign unit
numbers to EDISCs.

e The Pascal 3.0 IODECLARATIONS module recognizes a Programmer card as CARD_

TYPE =9 (a field of the ISC_TABLE array). This same version also recognizes Bubble memory
cards.

You do not have to load any modules before using the ETU program since it already has the
necessary drivers included in its code. When you are finished programming the EPROMs, the
EPROM module should be added to INITLIB to provide access to EPROMs. This process is
described later in this chapter.

Programmer Card Installation

If you have not already installed the Programmer card, see its installation manual for complete
details. Some of the installation information is repeated here for convenience.

The purpose of the HP 98253 Programmer card is to program (write) information into the EPROMs
on the HP 98255 EPROM card. Once the information has been programmed, the Programmer
card can be removed from the computer’s backplane.

CAUTION

ALWAYS TURN THE COMPUTER OFF BEFORE INSTALLING OR
REMOVING INTERFACES.

228

Non-Disc Mass Storage

Perform the following steps to install the Programmer card:

1. Check the select code switch on the Programmer card. The HP 98253 Programmer card’s
select code has been preset to 27 at the factory. If this conflicts with any other I/O card in the
system then change it to an unused select code. If more than one Programmer card is
installed, set each card to a unique select code.

NI I

| SW1
Ml N
500000 ©
0
Q O

Programmer Card Switch Location

Select Code Switch Settings

Switch Settings Switch Settings

MSB 43210 LSB | Select Code MSB 43210 LSB | Select Code
01000 8 10100 20
01001 9 10101 21
01010 10 10110 22
01011 11 10111 23
01100 12 11000 24
01101 13 11001 25
01110 14 11010 26
01111 15 11011 27
10000 16 11100 28
10001 17 11101 29
10010 18 11110 30
10011 19 11111 31

2. With the computer power turned off, install the Programmer card in the computer’s back-
plane. The Programmer card’s ribbon cable will be connected to an EPROM card later.

When more than one Programmer card or EPROM card is installed at the same time, the ribbon
cable can be connected to different EPROM cards without turning off system power. Be sure that
no read or write operation is taking place when the cable is exchanged.

Non-Disc Mass Storage

CAUTION

THE PROGRAMMER CARD’S CABLE MUST NOT BE REMOVED
OR CONNECTED WHEN THE EPROM CARD IS IN USE.

A small light-emitting diode (LED) on the Programmer card indicates when system power is on. (It
does not indicate when the card is in use.)

EPROM Card Installation

If you have not already installed the EPROM card, see its installation manual for complete details.
Some of the installation information is repeated here for convenience.

Before installing an EPROM card in the computer’s backplane, you need to check and set the card
switches. There are three sets of switched on the card.

e EPROM-type switch (SW1)
® Address-response switch (SW2)
® Address switch (SW3)

The position of these switches is shown in the following illustration:
FJ 1 I IL

SW3 SW2

27128 [ALL FORWARD]

I
S

2764 [ALL BACK] SW1

o)
L7 ° °
GIPEEN GREEN

EPROM Card Switch Locations

229

230 Non-Disc Mass Storage

The largest switch is the “EPROM-type” switch. It tells the card’s hardware what capacity of
EPROM to expect. All segments of this switch are ‘“‘ganged’ together to configure all 16 sockets for
either 2764-type or 27128-type EPROMs. You cannot mix two different types of EPROMs on one
card, but you do not need to completely fill all 16 sockets with EPROMs. If you only partially fill the
card, use pairs of EPROMs (upper and lower byte socket-pairs) and fill the lowest numbered
sockets first.

The smallest switch on the card is the “DTACK’’ switch and it controls the card’s response when it is
addressed (i.e. whether it should respond like ROM or RAM memory). This switch, which can be
set for AD (Automatic DTACK) or GD (Generate DTACK), must be set to AD for the EPROM card
to appear in the computer’'s ROM memory space.

Note
The modules provided with Pascal 3.0 only support EPROM cards
which are addressed in the ROM address space. Set the “DTACK”
switch to AD (Auto-DTACK).

The third switch determines the base memory address of the card. Special care must be taken to
ensure that the address space selected does not overlap another EPROM card or ROM card. The
EPROMs on the card are ‘“‘memory mapped’ (in pairs) by ascending socket number. For example,
byte 0 is the first location in socket OU, byte 1 is the first location in socket OL, byte 2 is the second
location in socket OU, byte 3 is the second location in socket OL, and so on.

Note

If you have a ROM-based language system, do not set the EPROM
card’s switches to the same address space used by the ROM Language.
For instance, the ROM version of the HPL. Language System is addres-
sed at $10 0000 and extends up to $12 0000. The ROM 1.0 version of
the BASIC Language is addressed at $2 0000 and extends to $2 4000,
while the ROM 2.x versions begin at $8 0000 and vary in size.

To see where these ROM-based systems reside, you can check for the
presence of “‘ROM headers” (contents $FOFF) which are located on 16
Kbyte boundaries, beginning at $2 0000 and extending through the
Auto-DTACK range of addresses. Auto-DTACK extends to $20 0000
for cache-memory processor boards (i.e., machines with “U” suffix
such as the HP 9836U) and $40 0000 for non-cache-memory proces-
sor boards (such as the HP 9836A).

Although the switches can be set to make the EPROM card appear almost anywhere in the
computer’s address space, the following table shows the recommended settings. When the smaller
capacity EPROMs are used, multiple cards can be addressed 128 Kbytes apart; cards filled with the
larger capacity devices must be addressed 256 Kbytes apart.

Non-Disc Mass Storage 231

Address Switch Settings
Switch Settings EPROM Card’s Base Address for Programming
Hex Start Decimal Address Decimal Address

MSB LSB | Address (2764-type devices) (27128-type devices)
0000001 $2 0000 131 072

0000010 $4 0000 262 144 262 144
0000011 $6 0000 393 216

0000100 $8 0000 524 288 524 288
0000101 $A 0000 655 360

0000110 $C 0000 786 432 786 432
0000111 $E 0000 917 504

0001000 | $100000 1048 576 1048 576
0001001 $12 0000 1179 648

0001010 | $140000 1310720 1310720
0001011 $16 0000 1441 792

0001100 | $180000 1572 864 1572 864
0001101 | $1A 0000 1 703 936

0001110 | $1C0000 1 835 008 1 835 008
0001111 $1E 0000 1 966 080

0010000 | $200000 2 097 152 2097 152
0010001 $22 0000 2 228 224

0010010 | $240000 2 359 296 2 359 296
0010011 $26 0000 2 490 368

0010100 | $280000 2 621 440 2 621 440
0010101 | $2A0000 2752512

0010110 | $2C 0000 2 883 584 2 883584
0010111 $2E 0000 3014 656

0011000 | $300000 3145728 3145 728
0011001 $32 0000 3276 800

0011010 | $340000 3407 872 3407 872
0011011 $36 0000 3538 944

0011100 | $380000 3670016 3670016
0011101 | $3A0000 3 801 088

0011110 | $3C0000 3932 160 3932 160
0011111 $3E 0000 4 063 232

Once the EPROM card’s switches have been set, install the EPROM devices on the HP 98255
EPROM card. Be very careful when installing the EPROMs on the card, since the pins are easily
bent. Both the EPROMs and the sockets have notches to indicate the proper orientation. See the

installation manual for details.

With the power switched off, install the EPROM card in the computer’s backplane.

232 Non-Disc Mass Storage

Multiple EPROM Cards

If more than one blank EPROM card is installed in the computer’s backplane at the same time, be
sure each EPROM card is addressed to different memory locations. The lowest addressed card
should be programmed first. Blank EPROM cards can not be detected by the Pascal system unless
they are connected to the Programmer card.

Cable Connections

When you have finished installing the Programmer and EPROM cards, you can connect the ribbon
cable from the Programmer card to the desired EPROM card. The cable connection defines and
establishes the “‘card-pair’” for programming operations.

The Programming Utility
The ETU program supplied with Pascal 3.0 supports the following operations for an EPROM and
Programmer card-pair:

¢ Display current Programmer and EPROM card information

® Check for blank space on the EPROM card

® Transfer a mass storage volume to EPROM (EDISC creation)

o Transfer DATA, TEXT, or ASC files to EPROM (user-defined patterns)

The exact action taken in a transfer operation depends on the type of file involved. All transfers are
done in two passes through the data. The two passes perform the same actions except that the data
is actually programmed (written) only during the second pass.

Note
All file types other than TEXT and ASC are treated as DATA files.

Transferring Volumes to EPROM

When you specify that a volume is to be transferred to EPROM, the ETU program assumes that an
EDISC is to be created. The EDISC will appear to the File System as a mass storage volume not
unlike a floppy disc, but with much faster access. The maximum size of the volume depends on the
capacity of the EPROMs installed in the card. The largest EDISC that can be created contains 256K
bytes, since EDISCs can not cross EPROM card boundaries.

Once an EDISC has been created, you should not copy the EDISC to any other mass storage
volume.

Booting from EDISC

Boot ROM 3.0 and later versions can boot from an EDISC. Booting from these devices is like
booting from any other mass storage media; the system is copied into RAM and executed from
there rather than from the EDISC (unlike ROM-based systems which execute from ROM).

EDISC as the System Volume

Pascal can also recognize an EDISC volume as the system volume; however, since the system
volume is used by the system to store all temporary files, [/O error 18 (*‘Device is write-protected’’)
will be reported whenever the system attempts to write to this “‘write-protected’ device.

Non-Disc Mass Storage 233

AUTOSTART and other normal stream files will not work if the system volume is an EDISC.
(Normally, when a file is Streamed, the file is copied to the file named STREAM on the current
systemn volume; this is not possible with EDISCS, since they are effectively ‘‘write-protected.””) You
should use the AUTOKEYS file to perform autostart functions from these devices. Other stream file
names must contain a [*1 specifier which indicates that the stream-file prompt feature is disabled.
See the description of the Stream command in the Overview chapter for further details of using
prompts in Stream files.

EDISC Headers

When a volume is transferred to EPROMs, an EDISC ‘‘header” is first generated and programmed
into the EPROMs. The Boot ROM can detect the header and make that information available to the
file system. In other words, if a volume is transferred to EPROMs, special information is added that
allows the Boot ROM to detect and possibly boot from the EDISC.

Boot ROM 3.0 and later versions check for EDISC headers (and other types of headers) on 16
Kbyte boundaries, starting at 128 Kbytes ($2 0000) and continuing through the Auto-DTACK
range of addresses; this range extends to $20 0000 for machines with cache-memory processor
boards (i.e., computers with “U” suffix such as the HP 9836U), and $40 0000 for machines
without cache-memory processor boards (such as the HP 9836A). This searching operation effec-
tively divides the address space into 16 Kbyte “blocks”.

Since the Boot ROM will check for an EDISC header on every 16 Kbyte block boundary, more
than one EDISC can be programmed onto a single EPROM card. There are 8 blocks (numbered
0..7) on an EPROM card using the small capacity EPROMs and 16 blocks (numbered 0..15) using
the large capacity EPROMs.

To prevent the Boot ROM from accidentally interpreting the contents of a block boundary as an
EDISC header, the utility program writes binary zeros (hexadecimal pattern $0000) into the bound-
ary locations searched by the Boot ROM. The volume’s data is appropriately mapped around the
block boundaries. The mapping operation is completely handled by the system, but this does mean
the EDISC volume will be a few bytes larger than the original volume.

The total number of bytes needed to program a volume can be computed by taking the source
volume’s size and adding 18 bytes for the EDISC header and 2 bytes for each 16 Kbyte boundary
crossed. If the last sector of the volume is unused, the extra bytes can be truncated without loss of
data.

Transferring Files to EPROM

The ETU program can be used to transfer DATA, TEXT, or ASC type files to EPROMs. If the file
type is not TEXT or ASC, the files will be programmed into EPROMs so as to create an exact bit for
bit copy. If the file type is TEXT or ASC then only the data parts are programmed into EPROM (not
the data separators and other *“‘overhead”; this is equivalent to reading a line from the file into a
string with a READLN statement and then “‘burning” the contents of the string.)

Unlike volumes, individual files transferred to EPROMs without the “‘directory’” information of a
volume cannot be detected by the file system. If you write a program to access a file that was
programmed into EPROMs, you will have to tell your program where to find it. Even if only one file
is to be transferred to EPROMs, you might consider putting the file in a volume and transferring the
volume.

234 Non-Disc Mass Storage

Not only do you have to keep track of the location of individual files transferred to EPROM, you
must be sure that the data does not accidentally appear to the Boot ROM as a “‘ROM header”. The
Boot ROM searches for a two-byte header pattern (FOFF hexadecimal) at 16K byte intervals in the
Series 200 Computer’s ROM space.

The header pattern is not likely to occur in TEXT or ASCII files, however, a DATA file programmed
into EPROMs may contain such a bit-pattern, and if the pattern occurs on a 16 Kbyte ‘‘block”
boundary, unpredictable results may occur. The ETU program does not check for this condition.

Preparing a Transfer
Before starting the utility to transfer a volume or file to EPROMs, you must decide what you want to
transfer. There are some restrictions that may influence your decision.

® The total number of bytes transferred must be less than the total capacity of the EPROMs.
Excess bytes will be truncated. It is unlikely that a truncated file will be very useful.

e If the “source” volume is larger than the current available space on the EPROM card, the
volume will be truncated. Since LIF volumes contain all of their directory information at the
beginning of the volume, you can truncate the unused sectors at the end of a volume with
relative impunity.

For the purposes of this discussion, it has been decided to transfer the Pascal Editor and Filer to
EPROMs. This will allow fast access to the programs without requiring as much RAM memory as is
necessary to “‘P-load’”” both of them. The number of bytes required for both the Editor and Filer is
less than 120K bytes so both programs will easily fit on the EPROM card even if the smaller capacity
EPROMs are installed.

Note that programs are not usually executed in EPROMs; rather, a copy of the program is made in
RAM memory and then the copy is executed. When you quit the program, and the copy is no
longer needed, the RAM memory used for the copy is free to be used by other programs. This has
advantages over a program that is ‘“‘P-loaded” since a ‘‘P-loaded” program remains in RAM
memory until the next boot operation.

The volume containing the programs to be transferred to EPROMs should not be any larger than
necessary since the entire volume will be transferred, including any unused sectors. Once the
volume has been transferred to EPROMs, there is no way to go back and fill the unused sectors in
the volume. Therefore, for our example, the best approach will be to create a memory volume just
large enough to hold both the Editor and Filer. This will be the volume that is transferred to
EPROMs,

Creating a Memory Volume

A memory volume needs two (2) “‘system” sectors, one (1) sector for directory information, and
enough sectors to hold the files. The size of the Filer is about 228 sectors (58368 bytes), and the size
of the Editor is about 232 sectors (59392 bytes). Thus, in our example, we need 3 + 1 + 460
sectors, or a total of 464 sectors.

The Memvol command ‘‘thinks”” in 512-byte blocks not in 256-byte sectors. Therefore, to create
the correct size memory volume, we need an even number of sectors (round-up). The total number

of blocks is then 460/2 or 230 blocks.

Non-Disc Mass Storage 235

From Pascal’s Main Command Level, press (_M_) to create a memory volume. Answer 230 to the
“Number of Blocks” question, and answer 8 to the ‘“Number of Directory Entries”” question.

When you have created the memory volume, Filecopy the Editor and Filer from the ACCESS: disc.
Then use the Filer to Change the volume name from RAM: to ESYS: (the volume name will also be
transferred to EPROMs).

The “Empty sockets” command of the transfer utility can be used to protect EPROMs from being
programmed if there are a large number of unused sectors in the volume being transferred to
EPROMs. The ETU program will then detect that the volume being transferred is larger than the
available space and allow you to truncate the unused bytes. Be sure that it does not truncate part of
a file!

The EPROM Transfer Utility

The EPROM Transfer Utility program (ETU.CODE) is included on the ACCESS: disc. This utility
provides a convenient method of programming the EPROMs on a HP 98255 card. Either single
files or entire volumes can be transferred to EPROMs with this utility.

If you haven'’t already executed ETU.CODE, do so now. When the utility is executed, it automati-
cally searches for the Programmer card connected to an EPROM card. If a card is missing or
incorrectly installed, you will get one of the following messages.

*%#% NO PROGRAMMER CARD IN SYSTEM *%#*

NO EPROM CARD ATTACHED TO PROGRAMMER CARD
If the system does not recognize the Programmer card, turn power off and check the select code
switch settings. You should check that each switch segment is toggled correctly and that no other
interface card is set to the same select code.
When the Programmer and EPROM cards have been correctly installed and connected to each

other by the Programmer card’s cable, the main menu is displayed. (Note: the space-bar was
pressed to remove the release date and copyright notice from the following display.)

4)
ETU: Transfer Configure BlanKchecKk Quit 7

Programmer card(s) at 27

Active pProgrammer card at select code 27
Burn rate SLOW

Erprom at address 3932160 for 131072 bvtes
Eprom tvre XXGB4

SocKet status (UL means eProm Pair Ppresent)

ouL 4uL
1uUL SUL
2UL BUL
3UL 7UL

There are four functions available from the main menu: Transfer, Configure, Blank check, and
Quit. Each of these functions will be explained on the following pages.

236 Non-Disc Mass Storage

Your display may differ depending on the select code setting of the Programmer card and the
capacity of EPROMs installed in the EPROM card. If more than one Programmer card is installed in
the system, all operations will use the “‘active” Programmer card. If more than one EPROM card is
installed in the system, all ETU operations will affect only the EPROM card connected to the (active)
Programmer card’s cable.

The various functions are activated by typing the first letter of the appropriate operation (for
example, (_C) for Configure). Lettercase does not matter. Incorrect letters are ignored except if
the program is under stream control. When streaming, incorrect letters will abort the program and
the stream file.

All operations can be aborted by typing (_Shitt)-(Select) ((SHIFT)-(EXECUTE)) for single character
answers or (_shift)-(Select) and then (Return) or ((Enter) ((SHIFT)-(_EXECUTE) and then (ENTER)) for multi-

character answers.

In stream file operations, answers to optional questions are automatic and are the first option given
in the prompt. For example:

® For a YES/NO question ending with “(Y/N) ?”’ — The stream answer is ‘YY"’
e For an ABORT/TRUNCATE question ending with “‘(A/T) ?’ — The stream answer is “A”

Configuration

From the main menu, press to display the configuration sub-menu. The main menu is
replaced with a sub-menu which lets you change the select code, the burn rate, and specify any
empty EPROM sockets.

()
CONFIGURE: Selectcode Burnrate EmptvysocKets Qt 7

Prodrammer card{(s) at 27

Active pProgrammer card at select code 27
Burn rate SLOW

Erprom at address 3932160 for 131072 bvtes
Errom tvyre XKXB4

Socket status (UL means eprom Pair Present)

ouL 4quL
1UL SuUL
2UL GUL
3UL 7UL

The configuration functions are explained next. Pressing (_Q) will return you to the main menu.

Select Code
When only one Programmer card is in the system, it is automatically chosen as the active Program-
mer card and the select code is properly set.

If you have more than one Programmer card installed in the system and wish to change operations
to a different Programmer card, press (_§) for Select code. The following prompt will appear at
the bottom of the display:

7

New select code (27)

Non-Disc Mass Storage 237

The number in parentheses indicates the select code of the currently selected Programmer card.
You may either press or to accept the current select code or type the select code of a
different Programmer card. If the select code you type is valid, the display will be updated with the
new information. An error message will be displayed if the new select code does not correspond to
a Programmer card.

Burn Rate
Pressing will cause the Burn rate to change from SLOW to FAST or from FAST to SLOW
(the display is automatically updated).

Note
All EPROMs may be programmed at the slow burn rate. Some
EPROMs are not guaranteed to retain the pattern if the faster rate is
used. Check the EPROM manufacturer’s specifications before using the
faster programming rate.

If the FAST burn rate is specified and a location fails to accept the data, the burn rate will
automatically be switched to SLOW.

The FAST burn rate programs at 13.1 ms/byte while the SLOW burn rate programs at 52.3
ms/byte. The card circuitry can program both upper (even address) and lower (odd address) bytes
in parallel so the effective rate is 13.1 or 52.3 ms/word. Therefore, programming every location in a
full set of large capacity EPROMs using the FAST burn rate will take about an hour.

Note that the Burn rate is a global attribute not associated with a particular Programmer or EPROM
card.

Empty Sockets
An empty EPROM socket appears to be an erased (blank) EPROM. This condition can not be
detected until an attempt is made to program a pattern into such a location.

Pressing (_E_) allows you to specify which sockets of an EPROM card do not contain EPROMS;
the information is used in the calculation of the capacity of an EPROM card. EPROMs must be used
in pairs and up to 8 pairs of EPROMs may be used in one card.

()
CONFIGURE: Selectcode Burnrate EmptvsocKets Qt 7 E

Programmer card(s) at 27

Active prodrammer card at select code 27
Burn rate SLOW

Eprom at address 3932160 for 131072 brtes
Errom tvyre XKB4

Socket status (UL means errom pPair Present)

ouL 4auL
1uL SUL
2UL BUL
3UL 7UL

SOCKET (PAIR) NUMBER 7

238 Non-Disc Mass Storage

For example, if you answered *‘7” to this question, the display would be updated as follows:

Socket status (UL means eprom Pair Ppresent)

OUL 4uL
1uUL SUL
2UL BUL
3uUL 7 empPtvy

In this manner, you can specify all of the empty sockets. If you make a mistake, re-execute the
command with the same socket number; the program will again mark the socket pair as usable.

An error message is displayed if the socket pair number is out of range.

Quitting the Sub-Menu
Quitting the Configure sub-menu will return you to the main menu. Once you have completed the
configuration for the active card-pair, the next step is to check for available space in the EPROMs.

Blank Check

Pressing from the main menu will show the used and unused space (according to how many
EPROMs you've told the program are on the EPROM card connected to the active Programmer
card). A blank EPROM has all of its bits set to binary 1’s. Thus, a blank byte would contain the
hexadecimal pattern FF.

Unused space will be shown at the bottom of the display. For example:

()
ETU: Transfer Configure Blankcheck Quit 7 B

Prodgrammer card(s) at 27

Active Prodrammer card at select code 27
Burn rate SLOW

Eprom at address 3932160 for 131072 bytes
Eprom tvype XXB4

SocKet status (UL means eprom Pair present)

ouL 4uL
1uL SuUL
2UL GUL
3uUL 7UL

BLANK CHECK
O - 131071 (131072)

The number in parenthesis indicates the size of the unused space (in bytes). The two numbers
separated by a hyphen indicate the relative address of the unused space within the active card.

The above display indicates that the entire EPROM card is unused. Bytes O through 131 071 are
blank and the total number of contiguous blank bytes is 131 072.

If no blank bytes can be found on the current EPROM card, the following error message will be
displayed:

NO BLANK SPACE FOUND

Non-Disc Mass Storage 239

Typically, after an EPROM has been programmed, there will be some bytes containing the hexade-
cimal pattern: FF. These bytes will appear to the program as “blank” and the Blank Check option
will list them as follows:

address - address (size in brtes)
address - address (size in bvtes)

The above lines are repeated as many times as required, in groups of 6, with a prompt to press the
spacebar to continue between each group. The addresses given are relative to the base address of
the EPROM card. The size is likely to be only a few bytes for addresses that actually contain data. (A
hexadecimal FF programmed into EPROM looks like a “‘blank” location.) The last entry is likely to
indicate any truly “blank” space. The sockets you’ve specified as empty are not counted.

Now that the available space has been determined, you are ready to transfer a file or a volume to
EPROMs.

Transfer
Pressing from the main menu will prompt you for information about the transfer operation.
ETU makes some assumptions to try to help you.

The display will show the following:

()
ETU: Transfer Confidure Blankcheck Quit 7 T

Programmer card(s) at 27

Active Pprogrammer card at select code Z7
Burn rate SLOW

Erprom at address 3932160 for 131072 bvtes
Eprom tvepe XXG4

Socket status (UL means eprom Pair pPresent)

ouL 4utb
iuL sSuL
2UL BUL
3uUL 7UL

TRANSFER OPERATION
Source {(ESYS:) 7

The ETU program assumes that a volume will be transferred to EPROMs. The volume name in
parenthesis is the current prefixed volume. You may accept the volume name by pressing or
you may type another volume name. If you specify both a volume name and a file name then ETU
assumes that a single file is to be transferred to EPROMs. If you do specify a different volume or a
file, the display will be updated accordingly.

When transferring a volume to an EPROM card, if no “blank” block is found on the EPROM card
the following message is given:

*%% ND BLANK BLOCK ON THIS EPROM CARD *#*#%

240 Non-Disc Mass Storage

The program will then display:
Start at eprom block offset (0) 7

The value in parenthesis indicates the lowest numbered ‘blank” block. (If every block has been
programmed, a zero is displayed.)

Or if a file was specified:
Start at eprom bvte offset (0) 7
For a file, the value in parenthesis is always zero.
If the default value in parenthesis is acceptable, press to begin the transfer operation.
Optionally, you may specify a different block offset or byte offset. See the previous sections on

Transferring Volumes and Files for the details about offsets.

If there is insufficient space on the EPROM card for the transfer, the ETU program will prompt:

DATA EXCEEDS EPROM SPACE BY xxxx BYTES
Abort transfer or Truncate file (A/T) 7

Where x x x x represents the number of excess bytes.

A reply of (_A) or (_shit)-(Select) ((SHIFT)-(_EXECUTE)) will cancel the operation. A reply of
will cause the transfer of only as much data as will fit on the EPROM card. If this happens during the
execution of a stream file, the transfer operation will abort and the stream file will be terminated.

A transfer is a two-pass operation. The first pass checks the data and the EPROMs. The second pass
actually programs the data into the EPROMs and verifies that it has been stored correctly.

Unless an error occurs, the transfer is automatic from here on.

Check Failure

Check failure is detected during the first pass. The byte to be programmed is matched against the
byte on the EPROM card. If the EPROM can not be made to contain the new pattern then a
CHECK FAIL results. (An EPROM’s “0” bits can not be changed to ‘1" bits.)

CHECK FAIL AT ABSOLUTE ADDRESS aaa
BYTE POSITION bbb FROM START LOCATION
EPROM SOCKET un BYTE nn

Where ‘““aaa” is the absolute machine address of the byte which will not program or did not
program. The position “bbb’ is the byte index (from 0) of the byte in the file. The position is also
identified by EPROM (“‘un” is socket identifier: for example, U1 or L4) and “nn’ is the byte offset
(from 0) within the identified EPROM.

Non-Disc Mass Storage 241

Burn Failure
If an EPROM fails to accept a byte of data using the FAST burn rate, the utility automatically
switches to the SLOW burn rate, updates the display, and attempts to continue.

If the burn rate is already SLOW when a byte fails to program properly, then a “BURN FAIL”
occurs. The utility is aborted and a message is displayed. For example:

BURN FAIL AT ABSOLUTE ADDRESS 3997696
BYTE POSITION 855368 FROM START LOCATION
EPROM SOCKET 4U BYTE ©

If the programming fails exactly on a socket boundary (“BYTE 0" in the example above) check to
see if the socket is empty or if the EPROM is improperly installed (bent pins).

Quitting ETU
Pressing (_Q@) from the main menu will quit the utility and exit to the Pascal Main Command
Level.

This concludes the operations of the ETU program. Once the EPROMs in an EPROM card have
been programmed, the Programmer card can be removed from the system. (With the power
switched off of course!)

Before the File System can recognize an EDISC, a Transfer Method (TM) module must be loaded
into the system and a modified version of the CTABLE program must be compiled and executed.
(The ETU program has its own driver module and could locate the EPROM card since it was
connected to the Programmer card.)

Loading the EPROMS Module
The EPROMS module is supplied on the Pascal 3.0 CONFIG: disc. As with other driver modules,
there are two ways to load the module:

® Execute it (with the eXecute command at the Main Level)

e Add it to INITLIB and re-boot

Executing the module “permanently” loads the module, but must be performed every time the
system is booted. Adding the module to INITLIB eliminates having to load the module each time
you re-boot the system.

242 Non-Disc Mass Storage

Adding the EPROMS Module to INITLIB

If you have two disc drives, the creation of the new INITLIB is relatively simple. If you only have
one disc drive, you will need to create a memory volume large enough to hold the new library
(about 200 Kbytes).

To create a memory volume, press (_M_) from the Main Command Level. You will be prompted
for the number of 512 byte blocks (answer 400) and the number of directory entries (answer 8). If
you are not familiar with memory volumes, see the Memory volume command in the “Main
Command Level” chapter of this manual.

1.

Initialize a disc, and then use the Filer’s Filecopy command to copy the BOOT: disc onto this
disc. Since you will be storing the new INITLIB on this new BOOT: disc, you can Remove
the existing INITLIB file from the disc. Since the old INITLIB was probably not the last file on
the disc (and the new INITLIB will probably be bigger than the old), you should Krunch the
disc.

(It is a very good practice to create a new BOOT: disc rather than modifying your present
BOOT: disc. That way you can always return to where you are, no matter what happens to
the new disc.)

Invoke the Librarian. This is done by pressing from the Main Command Level. If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.

Insert the old BOOT: disc into Unit #3 and the new BOOT: disc into Unit #4. (If you are
using a memory volume, the memory volume will be the “blank disc”. Use whatever unit
number you assigned to the memory volume instead of Unit #4 for the remaining steps.)

4. Now use the Librarian to create the new INITLIB.

a. Press(_ | Jandtype #3: INITLIB, and or (ENTER) to enter the Input file. You

must include a trailing period to prevent the Librarian from appending the . CODE suffix.

When the Librarian finds the input file, the display will show the name of the first module
in the file. You should see the module named KERNEL. If you have a printer, you can
press (_F_) to list all of the modules in INITLIB.

The EPROMS module can be inserted anywhere after the IODECLARATIONS module
but before the module named LAST (it must also precede module BUBBLE, if that
module is present). In this example, the module will be included as the next-to-last
module in the new INITLIB.

b. Press(_0) and enter #4:EPLIB. as the Output file. Again, a trailing period prevents
the . CODE suffix from being appended to the file name.

(This disc must not be removed until you have finished creating the new EPLIB file.) If
you are using a memory volume, use the unit number of the memory volume.

Non-Disc Mass Storage 243

c. Press (_E_) to enter the Edit mode. You should now see this prompt (in the middle of
the screen):

F First module: KERNEL
U Until module: (end of file)

d. Press (_U_) enter LAST as the Until module. You can now transfer all modules in the
file up to (but not including) module LAST by pressing (¢).

e. When the preceding transfer is complete, press (_A) to append a module to the
EPLIB Output file. The Librarian prompts with Input file:. Putthe CONFIG: disc,
or whichever disc now contains the EPROMS module, in Unit #3 (not #4, which must
not be removed). Enter #3: EPROMS . as the Input file specification.

f. The Librarian now prompts with Enter list of modules or = for all.
Enter = to specify all modules. After the EPROMS module has been
transferred to the EPLIB library, the Librarian prompts with
Arrpend dones <spacer to continue. If you removed the BOOT: disc (or the
one that contains the INITLIB Input file) to put in the CONFIG: disc, replace the BOOT:
disc now before pressing the spacebar to answer the prompt.

(If you removed the BOOT: disc in #3: and did not replace it before
pressing the spacebar, you get the following message:
cannot open ‘#3:INITLIB’, ioresult = 10, Insuch case, don’t worry. Re-
move the CONFIG: disc and insert the BOOT: disc, then press (_I_) and enter
#3:INITLIB. as the Input file. Press (_E) to return to Edit mode, and go back to
where you were previously by pressing (_F) and entering LAST as the First module.
Proceed with step g below.)

g. Press to transfer module LAST to the EPLIB file (if you got the error described in
the preceding step, press (_C_) instead of (_T_)). Then press (_S§) to stop editing
and (_K_) to keep the file.

h. You should now verify that the EPROMS module was indeed copied to the Output file.
Press (_I_)and enter #4:EPLIB. as the Input file. Press the spacebar repeatedly to
scan through the modules in the new library file. If you have a printer, press (_F) to
get a File Directory listing.

i. If all modules are present, then press (_Q) to Quit the Librarian.

5. If you have been using two discs, use the Filer to Change the file named EPLIB (on the new
BOOT: disc) to INITLIB. If you used a memory volume, remove the old BOOT: disc from
Unit #3 and insert the new BOOT: disc; then use the Filer to Filecopy EPLIB from the
memory volume to the new disc, changing the file name to INITLIB in the process.

6. Re-boot the computer, which installs the new INITLIB containing the EPROMS module.

To make the EPROM card(s) available to the File System as mass storage units, the CTABLE
program must be modified to reserve an entry in the Unit Table.

244 Non-Disc Mass Storage

CTABLE Modifications

The Pascal 3.0 CTABLE program, supplied on the CONFIG: disc, contains a ‘‘template” for
EPROM cards. You can either use the Editor's Find command to search through all occurrences of
the EPROM token until you find the template, or Jump to the end of the program and scroll up until
you see the EPROM template shown below.

$if false$ { EPROM DISC ¥
{watch for conflicting uses of unit 42}
tea_EPROM(42yprimary.dams{ seauence number } 03}
$ends$

To activate the template, change $if false$to $if true$ asshown in the following example:

$if true $ { EPROM DISC
{watch for conflicting uses of unit 423
tea_EPROM(42sprimarv_dams:{ seaquence number > 0)3
fends$

The template assigns the lowest addressed EDISC to Unit 42. It should be noted that this unit
number is also the default for Bubble cards and may have to be changed to some other unit
number more appropriate to your peripheral configuration.

EDISCs are recognized according to their relative addresses in the ROM address space of the
system. The EDISC with the lowest address is assigned sequence number 0, the second lowest is
assigned sequence number 1, and so on.

If you have more than one EDISC, your template might appear as follows:

$if true % { EPROM DISC 2>
{watch for conflicting uses of unit 42%

tea_EPROM(4Z2sprimary_.dams{ seaquence number } 03}
tea.EPROM(27sprimarv_dams+{ seauence number } 1)}
tea_EPROM(Z28Bsprimarvy._.dam+{ seauence number » 2)3
teaEPROM(31sprimarv_.dam+{ seauence number } 3)3

fend$

To force recognition of an EDISC (or multiple EDISCs), call the procedure TEA_EPROM with the
appropriate unit number, DAM identifier, and sequence number.

The connection between unit number and address is made when a CLEARUNIT call is made to the
TM. This implies that if the address switches of the EPROM cards are changed, the cards may be
assigned different Unit Table entries.

In the Unit Table, the SC field is -1 and the sequence number is stored in the DV field.

Non-Disc Mass Storage 245

Compiling CTABLE

Once the necessary modifications have been made to the CTABLE program, the program should
be compiled. (If you do not know how to compile a program, see the Compiler chapter.) Since
CTABLE imports several operating system modules, you will need to make the CONFIG:INTER-
FACE file accessible to the compiler (this file contains the interface text for the operating system
modules). To do so, you can either ‘“‘un-comment” the following compiler option (near the begin-
ning of CTABLE.TEXT):

$Search ‘CONFIG:INTERFACE'$

1

or add the CONFIG:INTERFACE file to the current System Library file. The linking operation is
described next.

Linking CTABLE
Once CTABLE.TEXT has been compiled to CTABLE.CODE, the Librarian can be used to create a
linked version of CTABLE that will easily fit on the new BOOT: disc.

The following steps assume the program has been compiled as CTABLE.CODE on unit #3. Since
the linked version of CTABLE is usually less than 15K bytes, it will be put on the same disc that
contains the CTABLE.CODE file and will later be copied to the new BOOT: disc. If you have two
drives, you may wish to put the linked (output) file directly onto the new BOOT: disc.

1. Press to invoke the Librarian. You may have to temporarily swap discs if the Librarian
is not on-line.
2. Press(_1_)and enter #3: CTABLE as the Input file. The Librarian will add the . CODE suffix.

3. Press(__H_) to specify a new header size. Enter a size of 18. (Setting the header size is similar
to specifying the directory size of a disc).

4. Press(_ 0) and enter #3: TABLE. as the Output file. The trailing period will suppress the
+ CODE suffix.

5. Perform the actual linking. Syntax:
a. — to Link. This will update the display.
b. (D) - to toggle the define source (export text) to NO.
(A) — to transfer all modules.
(L) — to finish linking.
(CK_) — to keep the output file.
f. (_@_) —to quit the Librarian.

® Ao

6. Copy the linked TABLE to the new BOOT: disc created earlier. Also copy SYSTEM_P and
STARTUP to the new BOOT: disc. The new INITLIB that you created earlier should already
be on the new BOOT: disc.

If you did not include the EPROMS module in the INITLIB, the Pascal file system will not
recognize the EPROM card until you install the EPROMS module.

7. Re-boot the system using the new BOOT: disc. The File System will now recognize the
EPROM card.

246 Non-Disc Mass Storage

EPROM Cards in the File System

After the necessary modifications have been made, and the system re-booted, you can use the
Filer's Volumes command to see an EDISC.

For example:

Volumes on line:
CONSOLE:
SYSTERM:

ACCESS:

* S5YSUOL:
PRINTER:

42 # ESYS:
Prefix is - ACCESS:

JO WM -

Use the Filer’s List command to see the directory. For example:

()
ESYS: Directory tvyepe= LIF lewel 1
created 7-Jun-82 9,59.37 blockK size=2306
Storade order

veefile namessos # bhlKs # bvtes last chnd
EDITOR 228 58368 7-Jun-82
FILER 224 57344 7-Jun-82
FILES shown=2 allocated=2 unallocated=6

BLOCKS (256 bvtes) used=452 unused=1 lardest space=1

You may now use EPROMs as you would any other write-protected mass storage volume. Remem-
ber, an EDISC should not be copied to another mass storage volume.

This concludes the EPROM installation and programming information. The remainder of this
chapter covers the support modules for EPROMs.

Non-Disc Mass Storage 247

Using DC600 Tapes

This section describes use of the DC600 Streaming Tape Drives, such as the HP 9144, for mass
storage operations. If you have one of the Command Set ’80 Series Disc Drives, you may also have
a DC600 tape cartridge drive integrated into the machine for backup.

Tape Drives Supported
The currently supported DC600 Tape and CS80 Disc/Tape Drives include the following HP
products:

e HP 9144

e HP 7908

e HP 7911

e HP 7912

e HP 7914

Tape Lengths
There are two lengths of DC600 tapes: 150 feet and 600 feet; these tapes have capacities of 17 and
67 Mbytes, respectively. Both tapes can be directly accessed by the Pascal File System.

Tape Access Methods

The Pascal system provides two methods of computer-controlled tape access. The first is a utility
program with capabilities similar to the integrated disc/tape product’s ““switch”” backup. The Oper-
ating and Installation Manual that came with the product describes a method of off-line *‘switch”
backup, involving the use of save and restore switches located on the tape drive itself. While these
switches do provide full-volume image backup capability, they are intended for service-personnel
usage only.

The second method is “‘direct” access to the tape with the Pascal File System, a method which can
be used for selective backup of files and logical volumes, even those not on a CS80 disc.

CAUTION

THE DC600 TAPE DRIVES ARE INTENDED FOR USE AS STREAM-
ING DEVICES. THUS, USING THESE TAPES FOR DIRECT AC-
CESS AND SELECTIVE BACK-UP, ALTHOUGH SUPPORTED,
MAY CAUSE ACCELERATED WEAR OR DAMAGE TO THE TAPE
DRIVE AND TAPE. IN OTHER WORDS, USE THESE TAPES ONLY
FOR LIMITED BACK-UP AND EMERGENCY PURPOSES, NOT FOR
NORMAL FILE SYSTEM CALLS IN USER PROGRAMS OR AS PART
OF A BOOT SEQUENCE.

248 Non-Disc Mass Storage

Using the Tape Backup Utility

The Tape Backup Utility (TAPEBKUP.CODE) is a program that enables you to copy the complete
image of a disc onto a tape, or vice-versa. The utility also provides operations for certifying tapes
and verifying the readability of either discs or tapes.

It is important to note that the utility only provides for complete image backup; it does not provide
for selective file or volume backup. A limited amount of selective backup is available by using the
Pascal file system for ‘‘direct’” access to the tape.

Concepts and Terminology

Single and Dual Controllers: With the CS80 integrated disc/tape products, the standard option is
for the disc and tape drives to share a common controller. The disc is unit 0; the tape is unit 1. One
of the features of the shared-controller product is its ability to transfer data directly from unit O to
unit 1 or vice-versa, without having the data travel through the host computer. This utility was
written specifically to support this mode of operation, as it is the most efficient method for complete
backup.

There is an option for the integrated disc/tape products where the disc and tape drives each have
their own dedicated controller. Each controller has a separate HP-IB port and bus address, and no
logical association with the other one. As a result, the ‘“‘switch” backup capability is not available
with this option. Likewise, this utility does not support the dual controller option.

Source and Destination Mis-matches: To be consistant with the product’s built-in “‘switch”
backup capability, the utility’s Medium-copy operation allows all combinations of source and
destination sizes, even those which might seem illogical. Thus, if you have more than one of the disc
drives in this family, be sure to mark the type of drive which is backed up on each tape. For
instance, if you were to restore a tape backup of a 7908 onto a 7911, much of the 7911 would be
inaccessible until you re-Zero’ed it appropriately.

Tape Certification: Tape certification is a procedure very similar to hard disc initialization. Even
though the tape comes pre-formatted from the manufacturer, it needs thorough testing, with a
possible sparing of bad blocks, before it is ready for use. The addresses of spared blocks are entered
into a sparing table and those blocks are never used again. While the tape certification process is
somewhat lengthy, tapes usually need to be certified only once during their lifetime. Tapes can be
purchased that are already certified.

Tape Auto-sparing: Any time problems occur in the reading of a tape block, the tape controller will
record this fact on the tape’s permanent log, and then automatically spare out the troublesome
block during the next write operation to it. This way, the tape actually tends to get better with usage;
slightly marginal blocks that may have escaped detection during certification can be spared later.
Note, however, that if a tape is re-certified, the previous sparing information is lost, and all defective
blocks will have to be re-discovered.

The utility may in certain instances print “Tape certification in progress’, and then almost im-
mediately print ‘‘Tape certification completed”. In this case, the tape was determined to already be
certified, so it was not re-certified; it merely went through an optimization of its sparing tables.

Non-Disc Mass Storage 249

Tape Unload Sequence: A loaded tape must go through a logical unload sequence before the tape
drive will allow you to physically eject it. A tape unload sequence can be initiated either by the front
panel UNLOAD switch or by the utility. Either way, the tape will then go busy for some period of
time, to position it for unloading and to update its permanent logs. A minute or two later, you may
hear a buzzing noise made by the tape drive heads as the sequence completes and the busy light
extinguishes. You may now physically eject the tape.

When the utility prints ‘Tape unload request completed”, it means that the request to the tape
drive to initiate the unload sequence has completed. You will have to wait for the unload sequence
itself to complete before you will be able to eject the tape.

Verification: Verification is a read without the transmission of data back to the host. The device still
does its internal data integrity checks, although it usually inhibits the automatic retry mechanism
employed by normal reads. In a verify, the data is not actually compared to anything; the device
merely verifies that it can read the data correctly.

To Verify or Not Verify a Tape: Explicit verification of a tape takes as much time to do as normal
reads or writes. Thus, in deciding whether to verify or not, you must weigh the time it takes to do
the verify versus the extra assurance provided by it. With the present series of integrated disc/tape
drives (i.e., 7908, 7911, 7912, and 7914), tape verification is recommended.

With the stand-alone HP 9144 Tape Drive, however, the drive incorporates a special read-after-
write head, which allows verification of the readability of the data as it is being written. With these
drives, explicit verification is not recommended, although it can still be performed.

If a Disc Doesn’t Verify: If a disc gives trouble verifying, the recommended procedure is to save its
contents to a tape if desired, then re-initialize it using MEDIAINIT.CODE found on the ACCESS:
disc. MEDIAINIT will perform a two-pass error rate test on the entire disc, and then intensively test
further any blocks with which the disc controller “‘remembers” having had trouble. All bad blocks
will be spared. After MEDIAINIT completes, the saved contents of the disc can be restored from the
tape if need be.

In performing a save of the contents of the troublesome disc mentioned above, the utility may
report bad blocks on the source, although not necessarily, since a verify inhibits read retries while a
copy does not. In such a case, a best guess of the bad blocks” data would be sent to the tape, and
the copy operation would complete. The tape would now contain one or more blocks with cor-
rupted data, but it would “verify” correctly, assuming that it and the tape drive were good.
Likewise, after restoring the data back to the freshly-initialized disc, the disc would have the tape’s
identically corrupted data, and it too would now “‘verify” correctly.

If a Tape Doesn’t Verify: If a tape gives trouble verifying, do not re-certify it, merely repeat the
write operation to the tape again. The utility always uses the tape in auto-sparing mode.

250 Non-Disc Mass Storage

Specifics on 7914 Backup: To be consistant and fully compatible with the 7914’s “switch’’ backup
behavior, the utility

® Always requests two tapes
® Doesn’t complain if they are not long tapes
® Doesn’t complain if the two tapes do not correspond to each other

Even though rigerous checking is not provided, if you exercise moderate caution you shouldn’t
have any problems.

With a save, the utility always writes the “first half” tape first, followed by the “second half’ tape.
With a restore, the utility allows you to insert the tapes in either order; an internal “copy start
address” field on the tape specifies which area to the disc to restore it to. The utility also prints out
the source and destination start addresses for each copy segment, so that you can detect it if you
accidentally restore two “first half” tapes or two “‘second half”’ tapes.

How to Invoke the Utility: The utility is quite simple to use. Its user interface is similar to the other
Pascal subsystems. The TAPEBKUP,CODE utility is delivered on the ACCESS: disc. Like any other
program, have the code file on-line and use the eXecute command from the Main Command Level
to run the utility. When prompted: “‘Execute what file ?”, type:

ACCESS: TAPEBKUP (Return) or (ENTER)

The following prompt appears on your CRT.

TarebKur: Medium-copy Verify Certifv-tare Quit 7

Typing the appropriate letter (_ M_), (_V), (_C), or (_Q) selects the corresponding opera-
tion.

The Medium-copy Operation

The Medium-copy operation prompts for source and destination media. You specify the source
media by entering the volume specification of one of the logical volumes on the media. For
instance, #11: is often first logical volume on a multi-volume hard disc. After one of the disc
volumes has been specified, you are shown a listing of all the other logical volumes that will be
affected. The specification for the tape media is typically #41:

Medium-copy confirms that you have not specified the same media twice, and that the two
associated drives are on a shared controller. If not, it aborts the operation.

Medium-copy also checks the medium sizes and gives one of two informative messages for the
situations where the destination is a tape, and the tape is not large enough to hold the entire source
image. If the source is a 7914 disc, in which case the only method of complete backup is with two
long tapes and appropriate swapping, you are reminded of the fact. If the source is not a 7914 disc,
in which case a complete backup cannot be performed, you are advised of this situation, one which
you should normally avoid!

Non-Disc Mass Storage 251

At this point, the utility will ask:

Are vou SURE vou want to proceed? (Y¥/N)

Confirm your selections, and respond with (_Y J or (_N_J.

If the destination is a tape, you are given the option to automatically verify it after the copy
completes. As usual, respond with (_Y Jor(_N)

If the destination is the tape and it has never been certified, it will now go through that process.
Tapes must be certified in order to support auto-sparing. Note that the “switch” save operation
does not automatically certify tapes before writing to them.

The copy now takes place under control of the device itself. It proceeds at a rate of about 35 Kbytes
per second, or roughly two Megabytes per minute. At this rate, copies with a 7908 take about eight
minutes, a 7911: about 14 minutes, a 7912: a little over 30 minutes, and a 7914: also a little over
30 minutes per tape, or about 65 minutes total. All errors are reported to the CRT. If the destination
is a tape and it is not completely filled by the copy, an end-of-file mark is appended to the valid
data.

If the destination is a tape and you opted for auto-verification, the verify occurs at this point. Only
the data actually written to the tape is verified, so that time will not be consumed verifying the entire
tape if data was copied to only a fraction of it.

The utility allows you several options if some error occurs in the above certify/copy/verify segment.
This is primarily motivated by the 7914’s two tape backup sequence, but it is also a nice feature for
the single tape sequences. Specifically, if an error does occur, you may elect to:

® Retry the same segment on the same tape

® Manually change tapes and retry the same segment with a different, supposably better tape
e Ignore the error and proceed, usually to the next segment of a 7914 two-tape sequence

e Abort the entire sequence

Once a segment attempt has been completed, either because there were no errors or because you
elected to ignore them, the utility automatically initiates the tape unioad sequence. If you have a
7914, the utility then prompts you to change tapes, and proceeds with the second tape’s certify/
copy/verify segment.

Finally, if the destination is a disc, an automatic full-volume verification is performed.

The Verify Operation
The Verify operation prompts for a media specification, which may be either tape or disc. Like the
Media-copy operation, you specify the media by giving the volume ID for one of the volumes on
the media. The utility then prints out all associated volumes, and asks for confirmation to proceed.
Type (Y Jor(_N).

If the device is a tape, you are also given the option for the utility to automatically initiate the tape
unload sequence after the verify. Respond with (Y) or (N).

252 Non-Disc Mass Storage

The verify performed here always covers the entire medium, even if the medium is a tape with file
marks embedded in it. In contrast, the optional verify of a destination tape during the Medium-copy
operation verifies only the data just copied to the tape.

As the verify proceeds, the addresses of all unreadable blocks are printed to the screen. The verify is
considered to have failed if any are encountered.

If you requested the auto-unload option for a tape, and the verify fails, the utility will not unload the
tape, in anticipation that you will want to take further action with the tape.

The Certify-tape Operation

Providing this operation separately may seem unnecessary since the Medium-copy operation
automatically certifies uncertified tapes before it writes to them. However, it has been included in
the utility in case you want to certify one or more tapes without having to copy a disc image to each
one at this time.

Another use of this operation is to force re-certification of previously-certified tapes. You would
want to do this only if you suspect that blocks on the tape had somehow been spared when they
were really OK. This might have happened on a tape drive with dirty heads.

The Certify operation prompts for media specification, confirmation of your choice, and the tape
auto-unload option, in the same manner as with the Verify operation. In addition it asks:

Re-certify if alreadr certified? (Y/N)
Normally, you will want to type (_N), so that that certification will be done only if the tape has
never been certified before. However, if you really want to force a re-certification of the tape, with

the resultant loss of any previous sparing information, type (_Y).

Quitting the Utility
Simply terminates the utility program.

Non-Disc Mass Storage

Using the File System for Direct Tape Access

Pascal 3.0 (and later versions) provide you with the capability of directly accessing the tape like you
would with any other mass storage device. If one DC600 tape drive is present, it will be assigned as
a single LIF volume, unit #41; a second drive will be assigned #42:. The intent of this capability is
to allow you to initialize the tape using MEDIAINIT, then using the Filer, transfer files or volume
images to it, list its directory, change its volume name, etc.

You can also use the File System to access the first volume of a multi-volume disc image that has
been backed-up on tape using TAPEBACKUP. You will not be able to access subsequent logical
volumes, nor in general access the second tape of a 7914 backup, without first restoring the image
to the disc.

CAUTION

THE DC600 TAPE DRIVES ARE INTENDED FOR USE AS STREAM-
ING DEVICES. THUS, USING THESE TAPES FOR DIRECT AC-
CESS AND SELECTIVE BACK-UP, ALTHOUGH SUPPORTED,
MAY CAUSE ACCELERATED WEAR OR DAMAGE TO THE TAPE
DRIVE AND TAPE. IN OTHER WORDS, USE THESE TAPES ONLY
FOR LIMITED BACK-UP AND EMERGENCY PURPOSES, NOT FOR
NORMAL FILE SYSTEM CALLS IN USER PROGRAMS OR AS PART
OF A BOOT SEQUENCE.

When you want to use the tape for selective backup/retrieval versus complete backup/retrieval, you
have to be careful how you do it, in order to avoid a couple of common pitfalls. These pitfalls are
associated with the inherent characteristics of a streaming tape drive, namely its slow seek times and
its inability to start and stop rapidly.

For each file written to the tape the following sequence occurs:

1. A seek is performed to the very beginning of the tape to scan the directory

2. The entire directory is scanned, one block at a time

3. A seek is performed somewhere “out in the middle” of the tape to write out the file body
4. A seek is performed back to the beginning of the tape to update the directory

With this information at hand we now discuss two general rules.

Avoid Large Directories on the Tape

Considering that streaming tapes like these can’t stop and start between blocks, but actually coast to
a stop, back up, and take a running start at the next block, you can see that scanning a large
directory one block at a time will be a painfully slow process. In addition, it accelerates wear on both
the tape and the tape drive.

What constitutes a ‘‘large” directory? You’ll ultimately have to decide, but the following data should
aid you in making your decision. On a tape with a LIF directory, the first block will contain the LIF
volume label and sixteen directory entries. Each block thereafter can contain thirty-two directory
entries. Thus, the logical breakpoints in directry sizes are 16, 48, 80, ... 16 + 32N. MEDIAINIT and
the Filer’'s zero command default to 80 directory entries; it is generally recommended that you not
go above this size.

253

254 Non-Disc Mass Storage

Avoid Transferring Numerous Small Files

Considering that each seek on the tape may take up to tens of seconds, you can see that if you
transfer numerous small files, you will probably spend a high percentage of your time seeking back
and forth on the tape, and a very small percentage of your time actually transferring data.

Volume Backup

An excellent way to efficiently backup numerous small files is to keep all of them on a single logical
volume of the disc, and then backup the entire logical volume in one operation. Two previously
seldom-used capabilities of the Filer are volume-to-file and file-to-volume transfers; they provide
the key mechanism.

A volume-to-file transfer uses an entire logical volume as the source and saves its complete image
as a single file on the destination volume. For example, from the Filer you type (_F_) to specify a
file copy, then type:

Ui1l:,#41 :VOLBACKUP (Retum) or (ENTER)

to save the entire image of V11: to a file named VOLBACKUP on volume #41, the tape. While a
volume image is in a file, the files within the volume are inaccessible, at least to the average user. To
make the files within the volume accessible again, you have to transfer the volume image back to a
suitable volume, which is usually the one it originally came from, but need not be as long as it has
enough room.

A file-to-volume transfer uses a single file as the source and restores it as a logical volume on the
destination volume. For example, from the Filer you type (_F_) to specify a file copy, then type:

#41:VOLBACKUP »#113 or (ENTER

to restore the file VOLBACKUP, which we assume is a volume image, to its original place. Note thet
whatever was on #11 is about to be completely overwritten, so the Filer warns you of this, and asks
for your confirmation before proceeding.

Advantages to Selective Backup and Retrieval
Even considering the known pitfalls, selective backup/retrieval to the tape with the Filer is an
extremely valuable capability. Here are some advantages:

® You can backup only the files/volumes which changed since the last backup, possibly saving
time and the amount of media required for backup.

® You can use the CS80 tape to backup files/volumes from any and all Pascal-supported mass
storage devices, and not just the associated CS80 disc.

® You can interchange data with other HP machines that support LIF on DC600 tapes.

® A single tape can hold may many revisions of the same file/'volume, for instance during
program development. All revisions of the file/volume must be named uniquely, of course.

255

Chapter

20

Porting to Series 300

Introduction

This chapter focuses on one objective: making Pascal programs written for Series 200 computers
run on Series 300 computers. This process is known as “porting”’ programs.

Who Needs this Information?

This chapter is directed toward you if you have existing software for Series 200 machines —
programs developed by either someone else or yourself. Therefore, it will be of little or no use to
you if you are just beginning to develop software for a Series 300 computer.

Methods of Porting

Here are several methods of porting Series 200 software to Series 300 machines:

® Just load it into a Series 300 computer — with no modifications — and run it.
® Write and run a program that properly configures the Series 300 computer for the program.

® Make your Series 300 computer emulate a Series 200 Model 217 computer (by installing a HP
98546A Compeatibility Video Card Set), and then run your unmodified Series 200 object code
on it.

® Modify your Series 200 Pascal source code, re-compile it on the Pascal 3.1 system, and then
run it on a Series 300 computer.

Each method has a slightly different set of requirements for its use, as described subsequently.

Chapter Organization

This chapter is organized according to the above strategies. It consists of the following sections:

® Description of enhancements provided by Series 300 computer hardware
® When and how to just load and run the program

® When and how to use a configuration program

® When and how to use the compatibility card set

® When and how to modify the program’s source code

256 Porting to Series 300

Description of Series 300 Enhancements

Acquiring a general understanding of the enhancements to Series 200 computers provided by
Series 300 computers will help you to choose a porting method.

Areas of Change

Series 300 computers have enhancements in the following areas:
e Many choices of processor, display, and human interface boards:

o Five new displays (including a separate, high-speed display controller)

® Two new processors: MC68010, and MC68020 (with MC68881 math co-processor)

e Battery-backed, real-time clock

® RS-232C serial interface (similar to the 98644 serial interface)

® 46020 HP-HIL keyboard (similar to keyboards used with Models 217 and 237, but
different from other Series 200 models)

e No ID PROM (not all Series 200 Models had this feature)
Areas that Did Not Change

It will probably be comforting to know that if a feature is not listed above (and discussed in this
chapter), then it is the same for Series 300 computers as for Series 200 computers.

It may also be comforting to note that Series 300 computers can use most of the Series 200
accessories and peripheral devices. See the HP 9000 Series 300 Configuration Reference Manual
for a complete list.

Displays

Series 300 display technology is the most visible area of change from Series 200 computers.

All Series 300 computers utilize bit-mapped alpha display technology, which combines alpha and
graphics. (Only the Series 200 Model 237 has a bit-mapped alpha display; all other models have
separate alpha and graphics planes.)

The main difference between ‘‘non-bit-mapped’”’ and ‘“‘bit-mapped” alpha displays is most easily
described in terms of whether the alpha and graphics planes are on independent planes or are on
the same plane.

e With “non-bit-mapped” alpha displays, the alpha plane is separate from the graphics plane.
You can use the (ALPHA) and ((GRAPHICS) keys to turn each plane on. When the alpha display is
already on, pressing the key turns off the graphics display. Similarly, pressing the
key while the graphics display is on turns off the alpha plane.

e With “bit-mapped” alpha displays, alpha and graphics are displayed on the same plane; there
are no separate alpha and graphics planes.

An effect of bit-mapped alpha is that both alpha and graphics are dominant. In other words,
displaying a character on the screen overwrites all pixels within the character cell; the previous
contents of those pixels are lost (which may have been graphics). Also, any scrolling/clearing of the
alpha screen will scroll/clear the graphics information on the screen, since they share the same
display plane.

Porting to Series 300 257

With Series 300 computers, you may choose from one of five displays: both monochrome and
color, each available in both medium- and high-resolution versions. Each of these displays requires
a different monitor. (Series 200 computers have only one display available for each model.)

® Medium-resolution graphics displays have a default resolution of 512! horizontal by 3852
vertical pixels with DGL (many of the Series 200 graphics displays had 512 x 390-pixel
graphics displays).

Alpha capabilities of these medium-resolution displays are 26 lines by 80 characters (as
opposed to the 25 x 80-character alpha displays of many Series 200 computers). The charac-
ter font for medium-resolution Series 300 displays is a 10 x 10-pixel character in a 12 x 15-
pixel cell. These displays have no blinking mode (except for the alpha cursor), and no half-
bright mode.

e High-resolution displays have a default resolution of 1 024 horizontal by 7522 vertical pixels
with DGL.

Alpha capabilities of high-resolution displays are 48 lines of 128 characters, just the same as on
the Model 237. The characters are 6 X 10-pixel characters in an 8 X 16-pixel cell. These dis-
plays also have no blinking mode (except for the alpha cursor), and no half-bright mode.

Processor Boards
Two processor boards are available with Series 300 computers:

® Medium-performance boards, which feature an MC68010 processor (10 MHz clock rate).

e Higher-performance boards, which feature an MC68020 processor (16 MHz clock rate) and
an MC68881 floating-point math co-processor.

(Series 200 computers have an MC68000 processor with an 8 MHz clock, or a 12.5 MHz clock and
“HP-UX memory-management hardware” in products with a ‘“U” suffix, such as an ‘“HP
9836U.”)

The 68010 is a 16-bit virtual memory microprocessor with a 32-bit internal architecture, and a 16
Mbyte (24-bit) address space. The treatment of virtual memory and the virtual machine of the
MC68010 is extended in the MC68020, a 32-bit microprocessor with cache, 32-bit data and
address buses, 32-bit data paths, and a 4 Gbyte (32-bit) linear address space. (Note that only 16
Mbytes of address space are available with the Series 200 and 300 systems, because the virtual
memory feature is not implemented in the computer’s backplane.)

The MC68020 contains an internal 256-byte instruction cache. Each time the microprocessor goes
off-chip to fetch opcodes and data, the cache retains the information. Should the need arise to
re-execute a recent instruction sequence, the sequence within the cache may still be valid. In this
case, the processor reads the instruction information out of the cache without accessing off-chip
resources, thus speeding execution. While the MC68020 is executing from the cache, any other bus
masters, such as DMA controllers, are free to use the external buses without halting the processor.

1 All Series 300 displays actually have 1 024 horizontal pixels. However, on medium-resolution displays, pairs of contiguous, non-square pixels
are treated by the graphics library (DGL) as one unit in order to make square dots on the screen.

2 Medium-resolution Series 300 displays have 400 vertical pixels, of which only 385 are used as a default by DGL. You can also have up to 400
by disabling the on-screen echo of the type-ahead buffer (set bit 8 of the DISPLAY_INIT procedure’s ‘‘control’’ parameter).

3 High-resolution Series 300 displays have 1 024 vertical pixels, of which only 752 are used as a default by DGL. You can also have up to 768
by disabling the on-screen echo of the type-ahead buffer (set bit 8 of the DISPLAY_INIT procedure’s ‘‘control’”’ parameter).

258 Porting to Series 300

The MC68020 also has a flexible co-processor interface that allows close coupling between the
main processor and co-processors such as the MC68881. The MC68881, which provides full IEEE
floating-point math support, can execute concurrently with the MC68020 and usually overlaps its
processing with the 68020’s processing to achieve higher performance. The MC68881 provides
increased performance for floating-point operations, in both speed and accuracy, particularly for
the evaluation of transcendental functions.

Battery-Backed Real-Time Clock

The Model 310’s processor board and the Model 320’s Human Interface board have a built-in,
battery-backed, real-time clock. This clock, however, has a limited range compared to the Series
200 real-time clock; its range is March 1, 1900 through February 29, 2000. (Only Series 200
Models 226 and 236 could have optionally installed battery-backed, real-time clocks. This hard-
ware was included with the HP 98270 Powerfail Option, whose main purpose was to provide
power during brown-out or black-out situations.)

If your program uses the battery-backed, real-time clock, you may need to modify and re-compile
the program’s source as described in the subsequent ‘“‘Modifying a Program’s Source Code”
section.

Built-In Interfaces

All Series 300 computers have a built-in HP-IB interface, which is the same as the built-in HP-IB
interface of all Series 200 computers.

Series 300 computers also feature the following built-in interfaces, which differ slightly from some of
their Series 200 counterparts:

o RS-232C serial interface (like the HP 98644 low-cost serial interface).
® HP-HIL keyboard interface (like the one in Models 217 and 237)

Serial Interface

All Series 300 computers have a built-in serial interface. As with Series 200 Models 216 and 217
built-in serial interfaces, this interface is permanently set to select code 9. However, this interface
differs slightly from versions of the Series 200 built-in serial interface (which are like the optional HP
98626 serial interface).

Since the goal of the built-in 98644 is to provide a low-cost serial interface, there are no hardware
switches that allow you to specify default values for the following parameters:

® Select code (hard-wired to 9)

e Interrupt level (hard-wired to 5)

® Default baud rate (Pascal system sets default to 2400 baud)

® Default line control parameters (Pascal system sets defaults to 8 bits/character, 1 stop bit, parity
disabled).

If your program expects any other values for the baud rate and line control parameters, you will
have to change them programatically (select code and interrupt level cannot be modified program-
matically). See the subsequent “Using a Configuration Program’ section of this chapter for further
information.

Porting to Series 300 259

HP-HIL Keyboard Interface
Like the Series 200 Models 217 and 237 computers, Series 300 computers use the HP 46020A
HP-HIL (Hewlett-Packard Human Interface Link) keyboard.

If you are porting existing Series 200 software to Series 300 and have already modified it to run on
a Model 217 or 237 computer, then you have already made the adjustments necessary for this
keyboard. If not, then continue reading this section.

The major human-interface differences between the 98203B keyboard (Models 216, 220, 226,
and 236) and the HP-HIL keyboard are in the number and layout of function and system keys.

)

K ko 9 v Iy & I e
* K - - > 1 'R
] . f
3 8 n ¥
Sooooooooaen|a
” >
SooooaoooooeaEn
C R-A-B-N-B-H-R-N B N QN Q-

N

HP 98203A Keyboard

13 ¥
[N | I | (TN | YRS | [| | | TR | T e |

o1 | | e

HP 98203B Keyboard

260 Porting to Series 300

el

OO0 HEB0E) 88
EOVNOOO0OUOaaDDU 388
Wlalalaialalalaimla)a)n)]ing)
OOa0COOba0e 83
= &l 85 OO0

HP 46020A Keyboard

Note that the Series 300 (46020) keyboard has only eight “‘function keys,” and lacks some of the
systemn keys on the 98203 keyboard. However, the 46020 has all of the functionality of the 98203

function and system keys by providing definitions for keys through (_f8). (Press
and then on the 46020 keyboard to display the system-key labels on the bottom of
the monitor screen; default user-key labels are not provided.)

The key mapping is as follows:

098203 function keys (_ki_) through map into 46020 function keys
through (_f8_). (The shifted function keys map similarly.)

® 98203 function keys and (_k) map into 46020 function keys and
(f8).

e Other 98203 system keys map into 46020 keys (see the key labels by pressing
and then (Menu) or (_shift) (Menu)).

Also note that the 98203 keyboards can produce some keycodes that cannot be produced with the
46020 keyboard. These key codes are produced by pressing the (EpiT) and ((RUN) keys. Thus if
the Series 200 program depends upon these keys, the source code must be modified and re-
compiled. The topic of trapping key codes with a program is described in the “System Devices”
chapter of the Pascal Procedure Library manual.

ID PROM

Note that there is no ID PROM available with Series 300 computers, as was the case with many
models of Series 200 computers.

Porting to Series 300

Just Loading and Running Programs

This is the most desirable method, since it requires the least amount of work — just load the program
into the Series 300 computer, and run it. This section describes when and how to use this method
or porting programs.

You can probably port most of your 3.0 or 3.01 progr]ams this way.

There are three different actions you can take, depending on who developed your program:

o If HP developed the program, look in the ““Operating Systems and Applications’ section of the
HP 9000 Series 300 Configuration Reference Manual. The manual shows which 3.0 or 3.01
applications will run on a Series 300 computer using the 3.1 system.

o [f another software vendor developed the program, then that vendor should be able to tell you
whether or not it will run on a Series 300 computer. (You can also take one of the two actions
listed below.)

e If you developed the program, you can do one of two things:
® Read through the following sections to see whether it requires another porting method.
® Try running it.

Should Problems Arise

If your program will not run on your Series 300 system, then you may want to consider the
following:

® Does it meet all of the criteria listed in the subsequent sections?

o [s there sufficient memory in the computer?

e Are all the necessary devices and corresponding device drivers installed?
e Have you fulfilled all other requirements listed by the software developer?

If the program still doesn’t run, then you may want to call the organization responsible for support-
ing the program (the programmer, the software vendor, or HP).

261

262 Porting to Series 300

Using a Configuration Program

This method involves writing a program that configures the system for your program. This section
describes when and how to use this method of porting.

Example of Serial Interface Configuration

Here is an example situation for which you could use this method. Suppose your program depends
on reading the following parameters from the configuration switches on the 98626-like, built-in
serial interface in a Model 217:

¢ 4800 baud
® 7 bits per character (with 1 stop bit) and odd parity.

However, there are no such switches on the built-in 98644-like interface in Series 300 computers;
instead, the Pascal System gives them the following default values:

e 2400 baud
e 8 bits/character (with 1 stop bit), and parity disabled

One solution is to write and run a short program that selects the desired ‘‘non-default” baud rate
(4800) and line-control parameters (7 bits, odd parity), and then run the program before running
the your application program.

This example program changes the ‘‘default’” parameters by writing to IOCONTROL registers 21
(baud rate) and 22 (line control).

prodgram Serial(inPut,outrPut)i
import deneral_Osdgeneral_li

begin
ioinitializes
iocontrol(9,21,4800)3 { Baud rate., }
iocontrol(9,22:binary('110010107))5 { No handshake (bits 7:8)

0dd Parity (bits 5-3)
1 storp bit (bit 2)
7 bits/char (bits 1:0)

iouninitializes
end,

Porting to Series 300 263

You could compile and run this program on the 3.1 system (making sure that the 3.1 IO library is
accessible during both compilation and loading'). If the RS232 module is not installed, you should
install it (with the eXecute command). Then Run the application program, and the serial card will be
properly configured.

Another solution is to modify the source program to select these parameters. In such case, you
could change the “‘current” parameters by writing to IOCONTROL registers 3 (baud rate) and 4
(line control). However, if the program later resets the interface with any of the following opera-
tions:

o [OINITIALIZE

¢ JOUNINITIALIZE

o [ORESET

o [OCONTROL of registers 1 or 14

or if you press the key (or on the 98203 keyboards), then the values in these registers
will be restored to the ““‘default” values currently in registers 21 and 22. See the Pascal Procedure
Library manual for details on the serial interface registers.

1 The easiest way to ensure this accessibility is to put the LIBRARY: disc on-line and then use the Main Level ‘‘What”’ command to specify the
LIBRARY: 10 file as the System Library (with double-sided media, this is the SYSVOL.:IO file).

264 Porting to Series 300

Using Compatibility Hardware

This method involves installing an HP 98546 Compatibility Video Card Set, which essentially
contains the separate graphics and alpha planes of the Series 200 Model 217 computer. You can
then direct the system to use the compeatibility display, enabling you to run some existing Series 200
programs on your Series 300 computer. This section describes when and how to use this method of
porting.

This card set remedies the following situations.

® The program depends on having separate alpha and graphics memory planes.

® The program directly accesses alpha or graphics hardware of a Model 217 or 236A computer
(by writing directly into the screen’s memory addresses, rather than through a higher-level
Pascal or DGL procedure or function).

e The program depends on blinking or half-bright alpha display highlights (characters with codes
130, 131, and 134 through 143).

® The program depends on the Model 217’s specific graphics resolution (512 x 390 pixels),
alpha display size (80 x 25 characters), or on the registration of alpha and graphics pixels.

This method is required if any of the above statements is true and you cannot modify a program’s
source code (or don’t want to). If you have the program’s source ccde, then you may want to
instead make the necessary changes in it.

Hardware Description
The card set consists of these two hardware pieces:

The Compatibility Video Card Set

o The alpha display card is like the existing 98204B display controller card, except for a relay and
an additional BNC video connector on the rear panel.

® The graphics card which is identical to the Model 217’s graphics card.

Porting to Series 300

The Relay and BNC Video Connectors
The relay on the alpha card is used to switch between using the Series 300’s display signal and
using the compatibility display’s signal.

SERIES 300 COMPUTER

RELAY
(CONTROLLED BY SOFTWARE) ~]

" VIDEO SIGNAL
rTThET T /7 COMPATIBILITY
! /_‘_, , VIDEO CARD SET
!
! X 7
_________ 4

ﬁuomron @ VIDEO IN SERIES 300

VIDEO BOARD

é ;’/ // VIDEO

TO MONITOR /SlGNAL
((ﬁwoso ouT
h .3

{OR 'GREEN' CONNECTOR FOR COLOR VIDEO BOARDS)

A Relay Governs Which Display Signal Is Used

Compatibility Video Card Set Capabilities

Capabilities of this card are identical to those of the Model 217. The alpha display is an 80 x 25-
character screen with half-bright, blinking, underline, and inverse-video display enhancements. The
graphics display is 512 x 390 monochrome pixels.

Configurations Possible
Here are the video-interface/monitor configurations possible:

e Shared monitor: The Compatibility Video Card Set and the Series 300 Video Board can
share a medium-resolution monitor (monochrome or color).

o Separate monitors: The Compatibility Video Card Set can use a medium-resolution monitor,
and the Series 300 High-Resolution Video Board can a separate high-resolution monitor
(monochrome or color).

¢ Single monitor: The Compatibility Video Card Set can use a medium-resolution monitor
(with no Series 300 video board or monitor).

265

266 Porting to Series 300

Steps in Using this Card Set

Here are the steps you will take with this method:

1.
2.

3.

Turn off the computer.

Configure and install the Compatibility Video Card Set according to the instructions in its
Installation Note. Also connect the monitor(s) as described in that note.

Boot the system with the disc that uses the desired display hardware.

a. If you want to use the Compatibility Video Card Set’s display hardware, boot the Pascal
system using the BOOT: disc. (It is similar to the BOOT: disc supplied with Pascal 3.0
and 3.01, as it contains the same driver modules as in the INITLIB file.)

b. If you want to use the Series 300’s display, boot the Pascal System using the BOOT2:
disc. (The INITLIB file on BOOTZ2: contains the modules CRTC and CRTD, which are
the alpha driver for the Series 300 displays and the 98700 Display Controller, respec-
tively. It does not contain the CRT, CRTB, CHOOK, or BAT modules required for
Series 200 display hardware.)

Note

Since you are using one monitor for two different displays, a small
amount of time is required for the monitor to synchronize with the new
display whenever you switch from one display to the other. This will
sometimes cause the screen to flicker at power-up or after a soft re-boot.
This normally occurs after the Loading ‘INITLIB’ message but be-
fore the Loading ‘STARTUP ' message appears on the screen.

Porting to Series 300 267

Modifying the Source Program

This method involves modifying the program’s source code and re-compiling it using the 3.1
system. This section describes when and how to use this method of porting programs.

This method is required for the following situations:

® Programs compiled on the 2.1 or earlier versions of the system.

e The program’s object! file contains a linked-in 3.0 or 3.01 module that is incompatible with
either the 3.1 system or Series 300 hardware (such as Device-independent Graphics, DGL,
modules).

e The program uses any procedures below the level of Workstation Pascal or Procedure Library
features (such as the “clock” procedures described in the ‘“‘System Devices” chapter of the
Pascal Procedure Library manual).

o The program uses HP 98203 (EDIT) or (_RUN) key codes, which cannot be generated by the
HP-HIL (HP 46020) keyboard.

e You want to fully utilize Series 300 hardware features which were not present on Series 200
computers (such as use features of the MC68020 processor or MC68881 co-processor).

® The program depends on an ID PROM (this is a memory location that permanently stores the
computer’s serial number).

If any of the above statements is true, then you probably need to modify and re-compile the
program on the 3.1 system. If you do not have access to the source code (or separate object
module in the case of the linked modules), then you cannot port it — you will have to buy a Series
300 version of the program, if it is available.

Programs Compiled on Pascal 2.1 (or Earlier Versions)

If your program was compiled on the Pascal 2.1 system (or an earlier version), then it will not run
on the 3.1 system. You will have to re-compile the source code on the 3.1 system.

If your “pre-3.0” program uses any of the “internal”’ operating system modules (such as KBD or
BAT), you will probably need to re-write the corresponding section of code since these operating
system modules were re-designed with the 3.0 system. See the “System Devices” chapter of the
Pascal Procedure Library manual for details on the new SYSDEVS operating system module.

HP 98203 Specific Key Codes

The 98203 keyboards can generate (_EDIT) and (_RUN) key codes which cannot be generated by a
46020 keyboard. If your program depends on trapping these key codes, you will need to modify it
to use 46020 keys instead. See the ‘“‘System Devices” chapter of the Pascal Procedure Library
manual for examples of trapping keystokes with a Pascal program.

1 In this situation, you may not need to modify the source program. You may only need the program’s separate object file (i.e., the program
without the modules linked to it).

268 Porting to Series 300

Linked-In, Incompatible Modules

An example of this situation is a program that requires 3.0 DGL (Device-independent Graphics)
module(s), and the required module(s) are linked to the program (i.e., the modules have been put
into the program’s object file and linked to it using the Librarian’s Link command). Even though
you may try to make the program use the 3.1 DGL modules by P-loading them and then running
the program, the program will still access the linked-in 3.0 modules. Neither can you remove the
linked-in 3.0 modules, since you cannot separate modules in an object file once they have been
linked.

To remedy this situation, you will need to have the program’s object code and use the Librarian to
re-link to it the corresponding 3.1 module(s) that it requires.

Use of Low-Level Procedures

If your program uses any low-level operating system modules, such as SYSDEVS for clock access,
then you should probably re-compile it. The reason for this recommendation is that the interface
text of these modules may have been modified slightly (and the system does not report any warning
message for this type of situation).

Full Utilization of Series 300 Hardware Features

An example of this situation is that programs compiled on a 3.0 or 3.01 system will not make use of
MC68881 floating-point math co-processor available on some Series 300 computers.

You can re-compile the program with the COMPILE20 compiler, and the program will make use of
this hardware (if installed).

©ONOU DN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
50
51
52
53
54
55
56
58
59
98
99

100
101
102
103
104
105
106
107
108
110
111
13
15
17
121
123
125
126
127
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
147
149
150
152
154
156
158
160
163
164
165
166
167
168
169
171
177
181
182
183
184
185
190
300
301
302
303
304
400
401
403-409

Pascal Compiler Syntax Errors
ANSI/ISO Pascal Errors

Erroneous declaration of simple type.

Expected an identifier.

Expected a right parenthesis ")".

Expected a colon ":".

Symbol is not valid in this context.

Error in parameter list.

Expected the keyword OF.

Expected a left parenthesis *(".

Erroneous type dec:aration.

Expected a left bracket “{".

Expected a right bracket “]".

Expected the keyword END.

Expected a semicolon ;"

Expected an integer.

Expected an equal sign “=".

Expected the keyword BEGIN

Expected a digit following ".".

Error in field list of a record declaration.
Expected a comma *,".

Expected a period “.".

Expected a range specification symbol “..".
Expected an end-of-comment delimiter.
Expected a dollar sign “$".

Error in constant specification.

Expected an assignment operator " =".
Expected the keyword THEN.

Expected the keyword UNTIL.

Expected the keyword DO.

Expected the keyword TO or DOWNTO.
Variable expected.

Erroneous factor in expression.

Erroneous symbol following a variable.

llegal character in source text.

End of source text reached before end of program.
End of program reached before end of source text.
Identifier was already declared.

Low bound greater than high bound in range of constants.
Identifier is not of the appropriate class.
Identifier was not declared.

Non-numeric expressions cannot be signed.
Expected a numeric constant here.

Endpoint values of range must be compatible and ordinal.
NIL may not be redeclared.

Tagfield type in a variant record is not ordinal.
Variant case label is not compatible with tagfield.
Array dimension type is not ordinal.

Set base type is nct ordinal.

An unsatisfied forward reference remains.

Pass by value parameter cannot be type FILE.
Type of function result is missing from declaration.
Erroneous type of argument for built-in routine.

Number of arguments different from number of formal parameters.

Argument is not compatible with corresponding parameter.
Operands in expression are not compatible.

Second operand of IN is not a set.

Only equality tests (= and <>) allowed on this type-
Tests for strict inclusion (< or >) not allowed on sets.
Relational comparison not allowed on this type.
Operand(s) are not proper type for this operation.
Expression does not evaluate to a boolean result.

Set elements are not of ordinal type.

Set elements are not compatible with set base type
Variable is not an ARRAY structure

Array index is not compatible with declared subscript.
Variable is not a RECORD structure.

Variable is not a pointer or FILE structure.

Packing allowed orly on last dimension of conformant array.
FOR loop control variable is not of ordinal type.

CASE selecter is not of ordinal type.

Limit values not compatible with loop control variable.
Case label is not compatible with selector.

Array dimension is not bounded.

llegal to assign value to built-in function identifier.

No field of that name in the pertinent record.

llegal argument to match pass-by-reference parameter.
Case label has already been used.

Structure is not a variant record.

Previous declaration was not FORWARD.

Statement label not in range 0..9999.

Target of nonlocal GOTO not in outermost compound statement.

Statement label has already been used.
Statement label was already declared.
Statement label was not declared.

Undefined statement iabel.

Set base type is not bounded.

Parameter list contlicts with forward declaration.
Cannot assign value to function outside its body.
Function must contain assignment to function result.
Set element is not in range of set base type.
File has illegal element type.

File parameter must be of type TEXT.
Undeclared external file or no file parameter.
Attempt to use type identifier in its own declaration.
Division by zero.

Overflow in constant expression.

Index expression out of bounds.

Value out of range.

Element expression out of range.

Unable to open lis: file.

File or volume not found.

Compiler errors.

600
601
602
604
605
606
607
608
609
610
611
612
613
614
620
621
646
647
648
649

651
652
653
655
657
658
659
660
661
662
663
665
667
668
671
672
673
674
676
677
678
679
680
681
682
683
684
685
686
687
688
689
696
697
698
699

701
702
704
705
706
707
708
709
710
71
712
714
715
716
77
718
719
720
730
731
732
733
750
751
900
901
902
903
904
905
906
907
908

Compiler Options

Directive is not at beginning of the program.
Indentation too large for PAGEWIDTH.

Directive not valid in executable code.

Too many parameters to SEARCH.

Conditional compitation directives out of order.
Feature not in standard Pascal flagged by ANSI ON.
Feature only allowed when UCSD enabled.
INCLUDE exceeds maximum allowed depth of files.
Cannot access this INCLUDE file.

INCLUDE or IMPORT nesting too deep.

Error in accessing library file.

Language extension not enabled.

Imported module does not have interface text.
LINENUM must be in the range 0..65535.

Only first instance of routine may have ALIAS.
ALIAS not in procedure or function header.
Directive not allowed in EXPORT section.

llegat file name.

llegal operand in compiler directive.

Unrecognized compiler directive.

Implementation Restrictions

Reference to a standard routine that is not implemented.

llegal assignment or CALL involving a standard procedure.
CONST, TYPE, VAR, or MODULE cannot follow routine.

Record or array constructor not allowed in executable statement
Loop control variable must be local variable.

Sets are restricted to the ordinal range 0..8175 (default) or 0..261999 (max).

Cannot blank pad literal to more than 255 characters.
String constant cannot extend past text line.

Integer constant exceeds the range implemented.
Nesting level of identifier scopes exceeds maximum (20).
Nesting level of declared routines exceeds maximum (15).
CASE statement must have non-OTHERWISE clause
Routine was already declared FORWARD.

FORWARD routine may not be EXTERNAL.

Procedure too long.

Structure is too large to be allocated.

File component size must be in range 1..32766

Field in record contructor improper or missing.
Structured constant has been discarded (cf. SAVE__CONST).
Constant overflow.

Allowable string length is 1..255 characters.

Range of case labels too large

Real constant has too many digits.

Real number not aliowed.

Error in structured constant.

More than 32767 bytes of data.

Expression too complex.

Variable in READ or WRITE list exceeds 32767 bytes.
Field width parameter must be in range 0..255.

Cannot IMPORT module name in its EXPORT section.
Structured constant not allowed in FORWARD module.
Module name may not exceed 15 characters.

Array elements are not packed.

Array lower bound is too large.

File parameter required.

32-bit arithmetic overflow.

Non-ISO Language Features

Cannot dereference variable of type ANYPTR.
Cannot make an assignment to this type of variable.
llegal use of module name.

Too many concrete modules.

Concrete or external instance required.

Variable is of type not allowed in variant records.
Integer following “#" is greater than 255.

llegal character in a “#" string.

lilegal item in EXPORT section.

Expected the keyword IMPLEMENT.

Expected the keyword RECOVER.

Expected the keyword EXPORT.

Expected the keyword MODULE.

Structured constant has erroneous type.

llegal item in IMPORT section.

CALL to other than a procedural variable.
Module already implemented (duplicate module).
Concrete moduie not allowed here.

Structured constant component incompatible with corresponding type.
Array constant has incorrect number of elements.
Length specification required

Type identifier required.

Error in constant expression.

Function result type must be assignable.
Insufficient space to open code file.

Insufficient space to open REF file.

Insufficient space to open DEF file

Error in opening code file.

Error in opening REF file.

Error in opening DEF file.

Code file full.

REF file full.

DEF file full.

caflbpeeAany INIIY

Operating System Runtime Error Messages

Errors detected by the operating system during the execution of a pro-
gram generate one of the following error messages. The numbers cor-
respond to the value of ESCAPECODE.

0
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
~11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31

Normal termination

Abnormal terminaticn

Not enough memory.

reference to NIL pomnter

Integer overflow

Divide by zero.

Real math overflow. The number was too ‘arge.
Real math underflow. The number was too small.
Value range error

Case value range error.

Non-zero IORESULT. (See “I/O System Errors™)
CPU word access to odd address.

CPU bus error.

llegal CPU instruction.

CPU privilege violation.

Bad argument—SIN/COS.

Bad argument—LN (natural log).

Bad argument—SQRT (square root)

Bad argument—real/BCD conversion.

Bad argument—BCD/real conversion.

Stopped by user.

Unassigned CPU trap.

Reserved.

Reserved.

Macro parameter not 0..9 or a..z.

Undefined macro parameter.

Non-zero IOE_RESULT. (See "I/O Library Errors”)
Non-zero GRAPHICSERROR. (See “Graphics System Errors™.)
Parity error in memory.

Miscellaneous hardware floating-point error.
Bad argument—arcsine/arccosine. Argument>1
lllegal real number.

I/O System Errors

These are the values found in the system variable IORESULT and the
corresponding error message which the system prints out automatically

for you.

WONDOAOHWN = O

No I/O error reported.

Parity (CRC) wrong. 1/O driver will do several retries
lllegal unit number—valid range is 1..50.
lllegal I/O request (e.g., read from printer).
Device timeout.

Volume went off-line.

File lost in directory.

Bad file name.

No room on volume.

Volume not found.

File not found.

Duplicate directory entry.

File already open.

File not open.

Bad input format.

Disc block out of range.

Device absent or inaccessible.

Media initialization failed.

Media is write-protected.

Unexpected interrupt
Hardware/media failure.
Unrecognized error state

DMA absent or unavailable.

File size not compatable with type.
File not opened for reading

File not opened for writing.

File not opened for direct access.

No room in directory

String subscript out of range

Bad string parameter on close of file
Attempt to read past end-of-file mark.
Media not initialized

Block not found.

Device not ready or media absent.
Media absent

No directory on volume.

File type illegal or does not match request.
Parameter illegal or out of range.

File cannot be extended.

Undefined operation for file.

File not lockable.

File already locked.

File not locked.

Directory not empty.

Too many files open on device.
Access to file not allowed

Invalid password.

File is not a directory.

Operation not allowed on a directory.
Cannot create /WORKSTATIONS/TEMP_FILES.
Unrecognized SRM error.

Medium may have been changed.
IORESULT was 52.

I/O Library Errors

These are the values and corresponding error messages that may de-
velop when using the I/O library. A call to IOERROR_MESSAGE will
generate the appropriate message.

QOWONGC NHEWN=O

4t
WOONDODU A WN =

ISESESEN
WA -

306
313
314
315
316
317
318
319
325
326
327

No error.

No card at select code.

Interface should be HP-IB.

Not active controller/commands not supported.
Should be device address. not select code.
No space left in buffer.

No data left in buffer.

improper transfer attempted.

The select code is busy.

The buffer is busy

Improper transfer count.

Bad timeout value/timeout not supported.
No driver for this card.

No DMA.

Word operations not allowed.

Not addressed as talker/write not allowed.
Not addressed as listener/read not aliowed
A timeout has occurred/no device

Not system controller.

Bad status or contro!.

Bad set/clear/test operation.

Interface card is dead.

End/eod has occurred.
Miscelianeous—-value of parameter error.
Datacomm interface failure.

USART receive buffer overflow.

Receive buffer overflow.

Missing clock.

CTS talse too long.

Lost carrier disconnect.

No activity disconnect.

Connection not established.

Bad data bits/parity combination.

Bad status/control register

Control value out of range

Graphics System Errors

When writing graphics programs, it will be helpful to enclose the main

body of the program in a TRY block.

In the RECOVER block, test

the value of ESCAPECODE. If ESCAPECODE =-27, invoke a graphics
function called GRAPHICSERROR. This will return a number which can
be cross-referenced with the following list of error messages.

NGB WN=O

No errors since last call to GRAPHICSERROR or INIT_GRAPHICS.
Graphics system not initialized.

Graphics display is not enabled.

Locator device not enabled.

ECHO value requires a graphic display to be enabled.

Graphics system is already enabled.

llegal aspect ratio specified.

llegal parameters specified.

Parameters specified are outside physical display limits.

Parameters specified are outside limits of window.

Logical locator and logical display use same device.

Parameters specified are outside virtual coordinate system boundary.
Escape function requested not supported by display device
Parameters specified are outside physical locator limits.

Loader/SEGMENTER Errors

Here is a list of errors that can be generated by the loader or by a
program that uses the SEGMENTER module.

100-105
110
111
112
116
17
118
119
120
121
122

Field overflow trying to link or relocate something.

Circular or too deeply nested symbol definitions.

Improper link infomation format.

Not enough memory.

File was not a code file.

Not enough space in explicit global area.

Incorrect version number.

Unresolved external references.

Generated by the dummy procedure returned by FIND_PROC.
UNLOAD_SEGMENT called when there are no more segments to unload
Not enough space in explicit code area.

Subject Index

ABS (function)........... 42
Absolute addressing (of variables)......... 20
Accessrights (SRM) 120
ACCUIACY. . oottt 34
ADDR (function) 20
Alpha displays, Series 300.............. 257
Alternate DAMs. 155
Angles. 43
Anonymousfiles.............. 104
ANSI/ISOPascal 4
ANYPTRl 29
ANYVARl 28
APPEND (file) 106,116
AICCOS. . oot 44
Arcsin. 44
Arctan. 44
ARCTAN (function) 42
Array constants 16
Arrays, conformant 21
Arrays, passing., 21
Arrays, string 69
ASClIlfiles.t 99,101
Assignment, string. 67
Auto-configuration:

Program (TABLE)............... 140,141

Standard 143

Verifying modifications. 197
AUTOKEYSfiles.................. 142,170
AUTOSTART files. 142,170
Base (logarithms). 53
BINARY (function) 42
Binding of variable values 37
Bit-mapped displays 256
Blocked devices. 121,144
Booleandatatype...................... 15
BootROM.......... 139
Boot volume (defined) 141
Booting from EPROM 232

Bootingprocess. 139

Boundsidentifier....................... 23
Branching, standard Pascal 27
BRSTUFF module (CTABLE)........... 192
Bubble cards:
Configuration. 217
Drivermodule................... ... 219
Error correction. 224
File System accessof 223
Hardware device.................... 224
Initializing. 225
Interrupts 225
Bubble memory............... 154,215,217
" Buffer(file).......... 104,105

Cache memory (MC68020)............. 257
Calendar functions 54
CALL procedure....................... 30
Cartridge tape drives. 215
Case conversion (string) 82
CASE/OF....... 27
Chardatatype...............ccooven.. 15
Character-to-numeric conversions. 77
Classesoffiles......................... 88
Clocks (Series 300). 258
CLOSEffile)ccovviinnn 90,106
Coalescing hard-disc volumes 138,146,147,159
Combiningstrings 79
Command Interpreter file (STARTUP). ... 141
Comparisons, numeric 40
Comparisons, string 71
Compatibility Display Interface 264
Compatibility, object-code 267
COMPILE20 compiler 268
Compiler option:

HEAP_DISPOSE 126

IOCHECK 132

UCSD. ... 132
Compiler options, overview 9
Computation, numeric 31
Concatenating strings 70,80
Concurrent fileaccess. 116,118

CONFIG:
disc 13
Configuration:
Bubblesand EPROM 154
CS80discs.cooi 172
Example of SRM.................... 201
Interfaces 150
Mcditying the standard. 159
Multi-discSRM 213
Printers............................ 153
Verifying changesto................. 197
Configuring serial interface. 262
Conformantarrays 21
Constants, inarrays. 16
Constants, inrecords 17
Constants, insets. 17
Control characters (in strings). 68
Controlling program flow 27
Conversion, number-base 57
Conversions, character-to-numeric 77
Conversions, lettercase 82
Conversions, numeric-to-character 78
Conversions, numeric-to-string 78
Conversions, string-to-numeric 75
Conversions, STRING-to-PAC 80
Conversions, type 33
Copyingfiles (to SRM) 207
Copyingsystemfiles................... 167
COS (function) 42
Cosecant 44
Cotangent 44
Creatingfiles. 90,94,103
CS80 discs (configuration) 138
CTABLE source program:
Commentary....................... 192
Compiling 197
Editng, 196
CTR module (CTABLE)................ 191

Current component (file) 104

DAMs (CTABLE) 182
Datafiles. 99,101
Data structures. 15
Data types, numeric 31
Data types, standard 15
Data types, standard scalar. 15
Dayoftheweek 55
DC600 tape drives 215,247
Debuggingfiles 117
Declaring numeric variables 32
Declaring string variables 69
Default device address vectors (CTABLE) 184
Degrees 43
Delayed binding 37
Determining existence of files. 134
Device classes (TABLE program) 144
Devicedrivers 150
Device priority (while booting). 145
Device-driver modules 140
Devices, blocked 121
Direct (random) access files 110
Directory (of volume) 88
Directory access methods (DAMs). 155
Disc initialization 123
Discinterleave........................ 121
Disc performance 152
Discs, magnetic....................... 121
Discs, system 139
DISPOSE.................... 126,127,128
DIV (operator) 42
DMA card (configuration). 138
DO ... 27
Dyadic numeric operators. 37
Dynamic variables. 125

ELSE 27
End-of-file detection 92,98
End-of-line detection (files). 98
EOF. 92,98
EOLN..... e 98
EPROM cards:
As the System Volume 232
Blankcheck........................ 238
Bumnfailure 241
Bumrate 237
Checkfailure 240
Configuration changes 226
Configuration modifications........... 244
Drivermodules 227,241
Emptysockets...................... 237
File systemaccess 246
Headers........................... 233
Memory addresses 231
Memory card installation 229
Overviewofusing................... 226
Programmer card installation.......... 227
Programmer card select code. 228
Programmer selectcode.............. 236
Programming utility. 232
Transfer utility 235
Transferring files 233
Transferring volumes. 232,239
EPROMmemory.............. 154,215,226
Errormessages 269
Error simulation. 136
Errortrapping 129
Errorswithfiles 97
Errors, extended information............ 133
Errors,overflow................ 34
ESCAPE..................... 117,130,136
ESCAPECODE................... 130,133
ETN ... 117
Evaluating expressions 35
Evaluating string expressions 70
Exclusivefiles. 116
Existence of files, determining 134
EXP (function) 42 52
Exponentiation 52
Expressions, evaluating. 35
Expressions, string. 70
Extended error information 133
ExtensionstoPascal 6

Extensions, Systems Programming 10,129

f

Failure of TABLE program.............. 148
Fiebuffer............................ 104
Filename............................. 88
Filepointer. 104
Filestates............................ 105
Filetype 88
Filetypes il 114
Filewindow 104,105
Filer:

Duplicate_link 208
Files, introductonto.................... 85
Files:

Anonymous.coeienn... 104

APPEND 106,116

Classificationsof 88

CLOSE........ ... 106

Concurrentaccess............... 116,118

Creatingoouin. 90,94

Current component 104

Currentlength....................... 88

Data portionof 86

Debugging......................... 117

Detecting end-of-line. 98

Determining the existence of 134

Direct (random) access. 110

Directory. 88

Errors 97

Exclusive 116

Fixed-record......................... 88

GET ... 109

INPUT ... 112

Item-oriented 88,90

KEYBOARD 112

Line-oriented {text) 88,94

LISTING 112

LOCK. ... 118

LOCKABLE........................ 118

Locking 118

LOOKAHEAD mode 103,105

MAXPOS.......................... 112

OPEN..................... 106,107,116

OUTPUTl 112

Qverviewof......................... 86

Passwords 116

Position 104

POSITION. 112

PUT ... 109

READ. ..., 108

READmode.................... 103,105
READDIR.......................... 110
Reading...................... 91,96,115
Records 86
RESET 107,116
REWRITE.................. 106,108,116
SEEK 111
Sequential operations. 108
SHARED 118
Size specification. 104
States i 105
Systm 139,149
Temporary......................... 104
Text ..o 113
Types ... 88,94
Typesoftext 99
Volume directory. 88
Whatarethey? 86
WRITE............................ 109
WRITEmode. 103,105
WRITEDIR. 110
Writing 90,95
Fixed-recordfiles....................... 88
Floppy discs (CTABLE) 182
Floppy drives (in the Unit Table)......... 145
Flowof programs 27
FORDO. 27
Formats, internal numeric. 32
Formatted /O 114
Formattingdiscs 123
Functions............................. 28
Functions, numeric 42
Functions, step. 38
Functions, string 72
GET(file)............. ... 109
GOTO ... 27
Grads.......... i 43
Graphics inputand output. 152

Graphics, Series 300. 257-8

HALT....... .. . 136
Hard disc (coalescing volumes) 146,147
Hard disc drives (in Unit Table).......... 145
Hard disc partitioning 145,146,149,185
Hard disc volumes (coalescing) 159
Heap 125
Heap management.................... 126
HEAP_DISPOSE (compiler option) 126
HEX (function) 42
Hierarchy of math operations. 35
High-speed disc interface (configuration) .. 138
HIL keyboard interface. 259
HP 98203 keycodes 267
HP 98253 EPROM programmer

card. 154,226,227
HP 98255 EPROMcard. 154,226,228
HP 98259 Bubble memory card. 217
HP 98620 DMA interface. 150
HP 98622 GPIO interface 150
HP 98624 HP-IB interface.............. 151
HP 98625 High-speed disc (HP-IB)

interfface 151,152
HP 98625 interface (configuration). 138
HP 98626 RS-232 serial interface. 151
HP 98627 Color output interface 151
HP 98628 Datacomm interface.......... 151
HP 98629 SRM interface. 151
HP 98630 Breadboard interface 151
HP 98635 Floating-point math card 151
HP 98644 RS232 serial interface 151
HP Standard Pascal 8
HP Systems Programming extensions. 10
HP-Human Interface Link (HP-HIL). 174
HPMmodule. 12
Hyperbolic trig functions. 46

IDPROM. i 260
IF/THEN/ELSE 27
Implementation of Pascal 4
Initialization Library file (INITLIB)........ 140
Initializing discs 159
INITLIB file, module descriptions 171
INITLIB file:
Adding modules for SRM........... .. 210
Addingmodulesto 170
Descriptionof 140
Renaming. 168
Required order of modules 171
INPUT (file)t 112
Inserting substrings 80
Instruction cache (MC68020) 257
Integerdatatype....................... 15
INTEGERnumbers..................... 31
INTEGER-to-REAL conversions 33
Interface drivers. 150
INTERFACEmodule 13
Interface, Display Compatibility. 264
Interfaces, built-in (Series 300) 258
Interleave, of discs. 121
Internal numeric formats. 32
IOCHECK (compiler option) 132
[ODECLARATIONS module 13
IORESULTt 131
Item-oriented files 88,90
]
Julianday.................. 54
Kernel (operating system) 140
KEYBOARD (file)..................... 112
Keyboard interface (HIL)............... 259
Keywords, Pascal 5

Leapyear..............cciiiiinn. 56
Lengthof string. 73
Lengthofstrings....................... 67
Letter-case conversions 82
Librarian:

Mass storage requirements. 175
Libraries................. ...t 142
Libraries, Pascal. 3
Libraries, Pascal Workstation. 11
LIBRARY file.............c..ooitt. 12
Library modules, overview. 12
Limits of INTEGER values. 31
Limits of REAL values 31
Limits, numeric 47
Line-oriented (text) files 88,94
LISTING (file) 112
LN (function) 4252
Loadingasystem 139
Local printer timeouts (CTABLE)........ 183
Local printers (CTABLE)............... 182
LOCK(file) 118
LOCKmodule......................... 12
LOCKABLE (file) 118
Lockingfiles.......................... 118
Logarithms............................ 52
Logicalunits 143
Logical volumes (hard discs) 145,146
LOOKAHEAD mode (files) 103,105
Magneticdises. 121
Main Command Level................. 141
Managing the heap.................... 126
MARK. 126
Mass storage (organization) 87
Mass storage:

Comparison.cooeevneeen... 216

Configuration. 152
Math hierarchy 35
Maximum (function) 47
MAXPOS (file) 112
MC68010........... .o 257
MC68020........... ... 257
MC68881 co-processor 268
MEDIAINIT 123

Memory volumes 176

Memory, Bubble. 154
Memory, EPROM..................... 154
Minimum (function) 47
MOD (operator) 42
Modules, incompatible 268
Modules:
Device drivers 140
INITLIB 140
INITLIB module descriptions. 171
LAST (in INITLIB) 141
PRINTER.......................... 151
Required order in INITLIB. 171
Monadic numeric operators. 37
Mouse............................... 174
Multiple on-line systems. 149

NEW. 126
Non-disc mass storage 215
Number-base (logarithms) 53
Number-base conversion. 57
Numbers, random. 60
Numeric comparisons. 40
Numeric computation................... 31
Numeric data types. 31
Numeric formats, internal. 32
Numeric operators 37
Numeric variable declarations 32
Numeric-to-character conversions. 78
Numeric-to-string conversions 78
Numerical functions 42
Object-code compatibility. 267
OCTAL (function). 42
ODD (function) 42
Offset (in ADDR function) 20
OPEN (file). 106,107,116
Operating system kernel. 140
Operators, numeric. 37
OPTIONS module (CTABLE)........... 181
OTHERWISE. 27
OUTPUT (file). 112
Overflowerrors. 34
Overview of files 86

P

PAC, reading from files 115
Packed variables 18
Parameter passing. 38
Parameters, passing 28
Partitioning, hard discs 145,146,149,185

Partitioning, hard discs (designing your own) 188
Partitioning, hard discs (recommendations) 188

Partitioning, hard-discs................. 159
Pascal compiler options 9
Pascal extensions. 6
Pascal implementation 1
Pascal keywords 5
Pascal Workstation libraries 3,11
Pascal, ANSI/ISO 4
Pascal, HP Standard. 8
Passingarrays 21
Passing parameters 28,38
Passwords (on files) 116
Peripheral drivers 151
Pointer (file). 104
Pointers 125
Porting to Series 300 255
POSITION f(file) 112
Position (instring)...................... 73
Positionoffile 104
Precedence of math operations. 35
Precision and accuracy. 34
Primary DAMs. 155
Primary storage (RAM). 86
Printers:

Changing the System Printer. 153

General 151

Serial devices. 153
Problems:

TABLE program 148
Procedure CALL....................... 30
Procedure variables 30
Procedures......................... ... 28
Processor boards, Series 300 257
Program flow.......................... 27
Programming with files. 85
PROM,ID 260
Pseudo-random numbers. 60
PUT (file)............................ 109

Quotes (instrings). 68

RAND (function)
RANDOM (procedure)
Random numbers
Range limits
Range of INTEGER numbers
Range of REAL numbers

READ mode (files)
READDIR (file)
Reading files
Real data type
REAL numbers
REAL numbers, truncating
REAL.-to-INTEGER conversions
Record constants
Records, in files

Renaming BOOT files
REPEAT/UNTIL
Reserved words, Pascal
RESET (file)
Reversing strings
REWRITE (file)
RND module
Root (numeric)
ROUND (function)

Scalar data types
SCANSTUFF module (CTABLE)
Schema (for conformant array)
Search-and-replace operations

Secondary kfnass) storage
Secondary DAMs

SEGMENTER module
Self test (during boot)
Sequential file operations
Serial interface configuration
Serial printers

Series 200/300 Pascal implementation. 4

Series 300 computers. 256
Setconstants.......................... 17
SHARED (file)........................ 118
Shared file access 116,118
Shuffling algorithm 62
Simulating errors. 136
SIN (function) R 42
Sizeoftypes 19
Size of variables 19
Size specificatin (files).................. 104
Sizeof (function) 19
Software libraries. 11
Software overview. 1
Special configurations:
Definitionof. 137
Examples 137,149
Introduction........................ 137
SQR (function) 42
SQRT (function) 42
SRM access rights (on files). 120
SRM concurrent files 118
SRM:
Configuration requirements........... 153
Directory configuration............... 204
Example configuration............... 201
Hardware setup..................... 201
Installing driver modules 203
Multi-disc.......................... 213
Multiple unit numbers. 194
Overview of installation 202
Stack ... 125
Standard auto-configuration 143
Standard configurations (definition of).... 137
Standard partitioning, hard discs. 186
Standard scalar types 15
STARTUPfile 141,168
States of files......................... 105
Static variables 125
Step functions 38
Storage requirements (strings)............ 69
STR (function). 72
STRAPPEND (function)................. 79
Streamfiles 142,170
Stringarrays. 69
String assignment 67
String comparisons 71
String concatenation. 70
String functions 72
String functions, user-defined 82
Stringlength. 67,73
Stringrepeat 79

Stringreverse. 82

String storage requirements.............. 69
Stringtrim o 79
String variables 67
String variables, declaring 69
String, search-and-replace 83
String-to-numeric conversions. 75
STRING-to-PAC conversions 80
Strings, combining 79
Strings, contatenating. 80
Strings, inserting, 80
Strings, reducing.o 81
Strings, tdimming. 81
STRINSERT (function).................. 79
STRLTRIM (function)................... 79
STRMOVE (function)................... 81
STRPOS (function)..................... 73
STRREAD (function) 75
STRRPT (function) 79
STRRTRIM (function). 79
Substring position 73
Substrings. 72
SWITCH_STRPOS (compiler option) 73
SYSDEVS module 13
System Boot file 140,149
System BOOT files, renaming. 168
System discso 139
Systemfiles.......................... 167
Systern volume:
Bubblecardsas..................... 222
EPROMsas..........covvviiunonn 232
Howchosen 148
Search algorithm. 190
SRM ... 209
Systems Programming extensions. 10,129
SYSTEM Pfile 140,149,168
Systmfiles.............. ...l 139

TABLE program:

BRSTUFF module 192
CTABLE sourcefile 180
CTRmodule 191
Failuresof 148
General........................ 138,141
Modifying.l 179
OPTIONS module 181
Renaming.......................... 168

SCANSTUFF module. 192

Tape drives:

Accessmethods. 247
Backup utility. 248
Certify. ..ot 252
File System access 253
Introduction. 247
List of supported devices............. 247
Media-copyo 250
Selective backup. 254
Terminology 248
Verify ... 251
Volume backup. 254
Temporary files. 104
Textfiles.................. 99,100,112,113
THEN. 27
Trapping errors. 129
Trig functions. 43
Trig functions, hyperbolic. 46
Trimming strings 79,81
TRUNC (function). 42
Truncating REAL numbers 47
TRY . 129
TRY/RECOVER 117,135
Type conversions 33
Typechecking (of VAR parameters) 28
Typesoffiles....................... ... 94
Types, data ... 15
Types, determining size of............... 19
Types, numericcooann.. 31

UCSD (compiler option) 132
UCSDPascal............cccvvveiin... 7
UlOmodule. 12
Unblocked devices 144
Unitnumbers. 143
Unit numbers:

How assigned 144

Standard assignments. 143
UnitTable 143
UNTIL ... 27
User-defined string functions............. 82
User-designed modules 13

VAR parameters 28
Variables of type PROCEDURE 30
Variables, absolute address of 20
Variables, declaring numeric 32
Variables, determiningsizeof 19
Variables, dynamic.................... 125
Variables, packed 18
Variables, static....................... 125
Variables, string. 67
Volume directory. 88
Volumes:

General......................... 87,143

WHILEDOt 27
WRITE (file)....................... 90,109
WRITE mode (files) 103,105
WRITEDIR ffile) 110
WRITELN f(file)........................ 94
Writingfiles 90
Writingtoafile........................ 95

Manual Comment Sheet Instruction

If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

MANUAL COMMENT SHEET

Pascal 3.1 Workstation System
for the HP 9000 Series 200/300

98615-90022 May 1985
Update No.

{See the Printing History in the front of the manual)

Name:

Company:

Address:

Phone No:

Programming Experience:

Systemn Configuration:

Comments:

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Coliins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

(ﬁﬁ HEWLETT

PACKARD

98615-90022 98615-90621
Printed in U.S.A. 5/85 . Mfg. No. Only

IV

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB
	replyC
	xBack

