HP 9000 Series 200 Computers U ordano

Shared Resource Management
HP Series 200 Workstation Manual

Shared Resource Management
HP Series 200 Workstation Manual

Manual Part No. 98619-90051

© Copyright 1984, 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1984.. First Edition

March 1985...First Edition with Updates. This manual describes SRM operating systems of 2.0 and
newer. The updates reflect the release of new SRM hardware.

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer sys-
tem products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-
Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty
includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped
freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by
Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day,
Return-to-HP warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP
Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair
any defects. The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic
programs: 1) 2 Mbyte RAM; 2) HP-compatible 3'2" or 5v4" disc drive for loading system functional tests, or a system install
device for HP-UX installations; 3) system console consisting of a keyboard and video display to allow interaction with the CPU
and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Tele-
marketing Center at (800) 835-4747 or your local HP Sales and Support office.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

98619-90051,rev: 3/85

Table of Contents

Introduction
About Revision Numbers. vii
Additional References. vii
This Manual's Contents. viii
Chapter 1: HP Series 200 BASIC Workstation Useon SRM. 1
System CoNCePLSot 1
Shared Resource Support of the BASIC Language 1
SRM’s Hierarchical Directory Structure 2
Uses of the Hierarchy: AnExample 2
Capabilities of Directories. 3
Referring to Directories and Files in the Hierarchy 3
How the SRM System Stores Remote Directories and Files. 4
Non-Contiguous Storage of Remote Files 4
Space Allocation for Remote Directoriesand Files 4
Shared Access to Remote Directoriesand Files................................... 4
Controlled Access: Password Protection 4
Exclusive Access: Locking Files. 5
How the SRM System Manages Shared Peripheral Use. 5
Using Your BASIC Workstationon SRM 6
Booting Fromthe SRM. 6
Selecting an Operating System 7
Automatic Configuration 8
Accessing the Shared Mass Storage Device 8
Creating Directoriesand Files 9
Creating Directories 9
Creating Files and Other Directories Under a Directory. 10
Copying Files. 12
Using the COPY Statement., 12
Other Uses of COPY e 13
Using LOAD and STORE 13
Copying Item-by-ltem Using ENTER and OUTPUT 13
Using a Shared Printer or Plotter. 14
Spooling Using PRINTER IS and PLOTTERIS 14
Wihiting Files to the Spooler Directories 15
Sending Program Output to a Shared Printer. 15
Appearance of Output 16
Preparing Plotters 16
Aborting Printing/Plotting In Progress L. 16
Protecting Files and Directories 16
Specifying Passwords. 18
Purging Remote Files and Directories. 19
Accessing Files Created on Non-Series 200 SRM Workstations 19
Locking and Unlocking Remote Files 20

Returning to Local Mass Storage. 20

iii

Modifying Existing Programs to Access Shared Resources. 21

Files Specifiers. 21
Composition of Files Names 21
File and Mass Storage Device Specification in String Variables. 21

Mass Storage Unit Specification 22

Allowing for Directory Paths 22

Passwords and Protect Codes 23

BASIC Language Reference for HP Series 200 Workstations 25

Syntax for Remote File and Directory Specification 26
Remote File Specifier. 26
Directory Path. 27
Remote msus 28
Directory Specifier 30

Access Capability Requirements 31
Table of Access Capabilities Required for Keyword Use 32
Using Protected Files Created on a Pascal Workstation. 33

Summary of BASIC Keyword Useon SRM. 34
ASSIGN . . 35
CAT 36
CHECKREAD 40
CONTROL . . 41
COPY . 42
CREATE ASCIL . .. 43
CREATE BDAT . . 44
CREATE DIR ... 45
ENTER. 46
GET 47
INITIALIZE . . 48
LOAD 49
LOADSUB . . 50
LOCK 51
MASS STORAGE IS (MSI) 52
ON TIMEOUT 53
OUTPUT . . 54
PLOTTER IS, .. 55
PRINTER IS . 56
PROTECT . . 57
PURGE . . 59
RENAME . . 60
RE-SAVE . . 61
RESET . . 62
RE-STORE 63
SAVE 64
SCRATCH A. .. 65
STATUS . 66
STORE 67
STORE SYSTEM . .. 68
SYSTEMS . 69
TRANSFER . . . 70
UNLOCK. . . 71

SRM BASIC Error Codes for HP Series 200 Computers. 72

Chapter 2: HP Series 200 Pascal WorkstationUseon SRM 73

System CONCEPESottt 74
How Your Workstation Connectsto SRM 74
Your Workstation’s Identification 74

The Connection to the SRM Controller. 74

The Controller’s Identification. i 74
Identification of Shared Disc(s) 74

Unit Numbers for Shared Disc(s) i 75
[dentification of Shared Peripherals P 75

SRM'’s Hierarchical Directory Structure i 76
NOtAHON . .« .ttt 76

SRM Access Rights 77
SRM Concurrent File Access 78
Dubplicating Files in More Than One Directory. 79
Using Your Pascal Workstationon SRM.o 80
Moving Up and Down the Hierarchy 80
Using the Prefix Command. 81

The Unit Directory Command. i 83
Moving Up the Hierarchical Directory Structure 85
Creating Directories. 85
Specifying Files, Directoriesand Volumes 86
Syntax of File or Directory Specification, 86
Syntax of a Volume Identifier 86
PassWordst 87
Syntax of a Directory Path.o 87

SRM File or Directory Nameso 88

File Size Specification.t 88
Allowable File or Directory Names 88
Protecting Access to Files and Directories. 89
Using Shared Printers and Plotters 90
Using Pascal Filer Commands With SRM. ... oo 91
Chapter 3: System Startup. 93
Initial System Startup From a BASIC SRM Workstation. 94
Creating Directories on the System Disc. 94
Planning the SYSTEMS Directory. e 96

If BASIC is the Predominant Operating System 97

If a Variety of Operating Systemsare Used. 98
Placing System Files in the SYSTEMS Directory. 101
System Files Important for BASICUseon SRM. 101
Example: Placing the Loader Utility in the SYSTEMS Directory 101
Creating BASIC Workstation Bootup Configuration Files 102
Creating Configuration Files for Use by the Loader Utility 102
Creating Autostart Files for Use by the BASIC 3.0 System 103

Initial System Startup From a Pascal SRM Workstation 104
Before YouBegin. 104
Prerequisites 104

Boot ROM Versionsot e e e 104

SRM Version 1.0 Operating System Parameters 105

vi

Planning Your SRM Directory Structure, 105
Overview of SRM Installation 107
Installing the SRM Driver Modules 107
Re-Configuring with TABLE 108
Creating Required Directories 108
Copying the System Filesto SRM. 109
Duplicating Links to System Files. 110
SRMasthe System Volume 111

Adding Modules to INITLIB. 111
Replacing INITLIB 112

With Boot ROMs Version 3.0 and Later 112

With Earlier Version Boot ROMs 112

Multi-Disc SRMo o 113
CTABLE Modifications 114

Appendix A: Glossary 117
Appendix B: SRM Interface STATUS Registers. 119
Appendix C: SRMand BASIC 2.0 121
System Startup From a BASIC 2.0 SRM Workstation 122
BASIC 2.0 Language Features 125
RE-STORE BIN 126

STORE BIN .. 127

Additional BASIC 2.0 Information. 128
Modifying Existing Programs to Access Shared Printers or Plotters 128
Spooling 128

Formatted Output. 129

Introduction

The Shared Resource Management (SRM) system allows several ‘‘workstation” computers to
access shared mass storage and output devices (printers and plotters). This manual describes the
use of HP Series 200 computers as SRM workstations.

Both the BASIC and Pascal language systems support use of SRM. The Pascal system incorporates
features to access shared resources, while a BASIC BIN file (SRM) accommodates access to SRM
from the BASIC language system.

About Revision Numbers
This manual contains references to the different versions of both the SRM operating system and of
the BASIC and Pascal language systems supported on the HP Series 200 workstations. To clarify:

® This manual describes the use of the latest version of the SRM system. Information for users of
version 1.0 is noted in the text where required.

® SRM works with both BASIC 2.0 and BASIC 3.0. This manual describes the use of SRM with
BASIC 3.0. The differences between uses of the two language system versions are summarized
in the “SRM and BASIC 2.0” appendix.

® SRM works with both Pascal 2.1 and Pascal 3.0. This manual’s descriptions of Pascal use with
SRM apply to either version.

Additional References
If you are using your Pascal workstation for the first time, you should first read the Pascal User’s
Guide and the Pascal Workstation System manual (previously the Pascal User’s Manual).

If you are not already familiar with the BASIC language system, you should refer to the BASIC
User’s Guide and other manuals shipped with that language system. This manual’s “BASIC Lan-
guage Reference” section supplements, but does not replace information in the BASIC Language
Reference manual.

98619-90051,rev: 3/85

vii

viii

This Manual’s Contents
This manual consists of three chapters and three appendices:

Chapter 1: HP Series 200 BASIC Workstation Use on SRM describes the use of HP Series 200
computers operating under the BASIC language system.

This chapter includes a conceptual overview of SRM, a tutorial demonstrating common uses of the
workstation on SRM, and a language reference describing BASIC commands and statements that
access shared resources.

Chapter 2: HP Series 200 Pascal Workstation Use on SRM outlines the use of HP Series 200
SRM workstations operating under the Pascal language system.

This chapter includes a conceptual overview of Pascal features that accommodate SRM use and a
section demonstrating common procedures you’ll need to use your SRM Pascal workstation.

Chapter 3: System Startup describes the procedures required to bring up HP Series 200 worksta-
tions on the SRM system for the first time. Presented for the SRM systern manager, this chapter
discusses recommended SRM directory structures for both BASIC and Pascal workstation use and
describes installation of the BASIC or Pascal operating system software that allows workstations to
access the SKRM.

Appendix A is a Glossary of SRM terms.
Appendix B lists and describes SRM Interface STATUS Registers.

Appendix C: SRM and BASIC 2.0 summarizes the differences between the use of BASIC 2.0 with
SRM and the use of BASIC 3.0 with SRM.

HP Series 200 BASIC Chapter
Workstation Use on SRM 1

This chapter describes the use of your HP Series 200 BASIC workstation with a Shared Resource
Management system. The chapter is divided into four major sections:

® The System Concepts section is an overview to help you understand how the SRM system
works.

® The Using Your BASIC Workstation on SRM section demonstrates, through the use of an
example directory structure, some of the common operations involving shared resources.

® The Modifying Existing Programs section discusses ways to change existing BASIC programs
to make them work with SRM.

e The BASIC Language Reference for HP Series 200 SRM Workstations section describes
the use of BASIC commands and statements on SRM, including the special file and directory
specification used with SRM.

System Concepts
This section presents a detailed look at some of the concepts of the SRM system, including
descriptions of the following topics:
e support of the BASIC language on SRM;
® SRM directory structure and capabilities;
® storing of remote directories and files;
® shared access to directories and files (including file locking and password protection);

® management of shared peripherals.

Shared Resource Support of the BASIC Language

With HP Series 200 workstations, you can use most BASIC statements that access local mass
storage devices to access shared mass storage devices on SRM as well. Any changes to BASIC mass
storage statements made by the SRM BIN file are described in the ‘‘BASIC Language Reference”
section of this chapter.

SRM adds three new commands to the BASIC mass storage statements used by HP Series 200
computers -- CREATE DIR, LOCK, and UNLOCK --and adds the PROTECT option for use with
the CAT statement. In addition, the PROTECT statement’s use on SRM is distinct from its use with
local files.

SRM’s Hierarchical Directory Structure

A directory is a file that is used to organize and control access to other files. The SRM operating
system uses a hierarchical directory structure to organize and control access to files on a shared
mass storage device.

As the word *‘hierarchy’ suggests, directories are arranged in a series of “‘graded levels.” Director-
ies may contain either files or other directories. A file or directory within a directory is said to be
“subordinate” to the containing directory. A directory is “‘superior” to the files and directories it
contains.

(root)
PROJECTS

Pro ject one Project two General
: — —
] R
KATHY assignments AL { -assignments ED REPORTS -Test data
|
- schedule f*- schedule
- 1 | - il
~ budget - budget Ror
- f2 -May
L 1 dir 1 dir |1 dir 2

In the illustration above, the directory named KATHY is subordinate to the directory named
Project_one, because Project_one contains the information describing KATHY. The directory
named PROJECTS is at level 1, the ‘“‘root” level. You cannot create a directory at a higher level
than the root level.

Each directory keeps information, in 24-byte fixed format records, about each file or directory
immediately subordinate to it.

Uses of the Hierarchy: An Example

Suppose you're managing several projects, each of which needs to access a shared disc. To
organize the files for each project separately, you can create a directory for each project (as shown
in the illustration). Within each project directory, you can have a subordinate directory for each
person working on the project as well as files to be shared among all users. Each person may then
construct a directory/file system for organizing their own files.

Because files at different locations in the directory structure can have the same file name, you can
use generic file names to identify similar project functions in the different projects. At the same time,
the division into separate directories isolates the projects, and thus their individual functions, from
one another. For example, Project_one’s budget file is distinct from Project_two’s budget file.

Directories also limit the number of files users must deal with at any one time. For example, people
working on Project_one (see illustration) need never see the files in Project_two and may, in fact,
confine most of their activity to within their own directories.

To maintain security, SRM provides the capability to protect access to directories and files. For
example, you may wish to allow only members of a project team to read that project’s files. Or, you
may wish to prevent other users from altering the contents of a personal file.

In the first situation, you would protect the project directory’s READ capability. By protecting a
directory, you automatically restrict access to all directories and files subordinate to that directory. In
the second situation, you would protect the file’s WRITE capability. The section on ““Shared Access
to Remote Directories and Files” discusses protection in more detail.

Capatbilities of Directories
Directories are a type of file and, as such, can be:

o created with the CREATE DIR statement. When a directory is created, its location in the
hierarchical structure is fixed.

e cataloged with the CAT statement, renamed with the RENAME statement, and protected with
the PROTECT statement.

o “filled” with subordinate files and directories using the COPY, CREATE BDAT, CREATE
ASCII, CREATE DIR, SAVE, STORE, RENAME, RE-SAVE, and RE-STORE statements. Each
subordinate file or directory is described in a 24-byte record in its superior directory.

@ opened and closed with the MASS STORAGE IS (MSI) statement. When a user’s MSI state-
ment specifies a directory, any previously opened directory of that user is closed and the new
one is opened.

@ “emptied” by removing all subordinate files and directories with the PURGE statement.
e purged with the PURGE statement. You must close and empty a directory before purging it.

Referring to Directories and Files in the Hierarchy

To access either a directory or a file, you must specify its location in the hierarchical directory
structure. This location is specified by a list of directories, called a directory path, that you must
follow to reach the desired file or directory. Directory names in the list are delimited by a slash (/).

For example, in the directory structure illustrated previously, the remote file specifier:

"/PROJECTS/Prodect_one/JOHN/f1"
defines the “path” to the file, fI, through its superior directories.

The path to a file begins either at the root level or at the current working directory. The working
directory is the directory specified by the most recent MASS STORAGE IS statement.

This chapter’s “BASIC Language Reference” section discusses the rules for specifying remote files
and directories.

How the SRM System Stores Remote Directories and Files

To most efficiently use the shared disc space, the SRM system stores files non-contiguously and
adds to space allocations for files as needed.

Non-Contiguous Storage of Remote Files

To avoid wasting disc space, the SRM system may fragment a file to fill unused disc sectors. This
process is transparent and cannot be externally controlled. By “filling the gaps’ automatically, the
system eliminates the need to pack the shared disc’s files.

Space Allocation for Remote Directories and Files
SRM files and directories grow dynamically as data is entered into them.

Rather than restricting a file’s space to that allocated when the file is created (for example, with a
CREATE statement), the SRM system determines disc space requirements when data is sent to the
file (for example, by an QUTPUT statement). If additional data placed into a file would cause the
file to overflow its current space allocation, the system automatically allocates more space for the
file.

Similarly, directories grow only as entries are added. As a file or directory is created, another
24-byte record is added to the containing directory.

Files are extended as long as there is sufficient unused disc space on the same volume. Excess data
from a file will not be placed on any other disc (volume) on the SRM system.

Shared Access to Remote Directories And Files

Because the sharing of files is a consequence of shared mass storage, the SRM system provides
features for controlling access to shared information.

Controlled Access: Password Protection

The SRM system offers three kinds of access capability for files and directories: READ, WRITE, and
MANAGER. Capabilities are either public (available to all workstations on the SRM) or protected
(available only to users who know the appropriate password).

Capabilities are protected with the PROTECT statement, which associates password(s) with one or
more access capabilities. One password can be used to protect one or more capabilities. Each file or
directory can have several password/capability pairs assigned to it.

Once assigned, the password protecting an access capability must be included with the file or
directory specifier to execute statements requiring that access. If you don’t specify the correct
password when it is required, the system will report an error and deny access to the file or directory.

READ access capability for a file allows you to execute statements that read the file. READ access
capability for a directory allows you to execute statements that read the file names in the directory,
and to “pass through” the directory when the directory’s name is included in a directory path.

For example, in the remote file specifier

"/PROJECTS/ProJect..one<READPass>/JOHN/F1"

including the assigned password <READrass: allows passage through the directory Project_one to
allow access to its subordinate directories and files.

98619-90051,rev: 3/85

WRITE access capability for a file permits you to execute statements that write to the file. WRITE
access capability for a directory allows you to execute statements that add to or delete from the
directory’s contents.

With the MANAGER access capability, public capabilities for a file or directory differ slightiy from
password-protected capabilities. Public MANAGER capability allows any SRM user to PROTECT,
PURGE or RENAME the file. The password-protected MANAGER capability provides MANAGER,
READ and WRITE access capabilities to users who include a valid password in the file or directory
specifier.

The “BASIC Language Reference” section in this chapter includes a table indicating the
access capabilities needed to use each of the supported BASIC keywords. The description of the
PROTECT keyword, also in that section, gives more details on protecting access to files and
directories.

Exclusive Access: Locking Files

Although sharing files saves disc space, allowing several users access to one copy of a file introduces
the danger of users trying to access the file at the same time, which can cause unpredictable results.
For instance, if one user tries to read part of a file while another user is writing to it, the file’s
contents may be inaccurate for the read.

To avoid problems, the SRM system adds two BASIC keywords, LOCK and UNLOCK, which you
can use to secure files during critical operations. LOCK establishes exclusive access to a file, which
means that the file can only be accessed from the workstation at which the LOCK was executed.

You may wish to LOCK a file, for example, during any procedure that writes new information to the
file.

To permit shared access to the file once again, UNLOCK must be executed from the same
workstation, or the file must be closed. Only ASCII or BDAT files that have been opened by a user
via ASSIGN may be locked explicitly by that user.

Locking and unlocking is usually done from within a program. For more information, refer to the
descriptions of the ASSIGN, LOCK and UNLOCK keywords in the ‘“BASIC Language Reference”
section of this chapter.

How the SRM System Manages Shared Peripheral Use

The SRM system not only provides shared access to printers and plotters, but also manages their
use so that workstations never need to wait for output to be generated.

To use shared peripherals, you place files to be output into a special directory where they are held
until the printer or plotter is free. The system keeps track of the order in which files arrive from the
workstations, and outputs them in the same order. This method is called ‘“‘spooling,”” and the
directory where the files are kept is called the “‘spooler directory.”” Spooler directories are created
for the SRM controller’s use when the shared peripherals are installed on the SRM system.

After a file is placed in a spooler directory, the workstation is free to do other processing. Please

note, however, that the SRM system manages output spooling only; you cannot input information
from a plotter, such as status codes or locations of the corners of paper, back to the workstation.

98619-90051,rev: 3/85

Using Your BASIC Workstation on SRM

This section describes, through examples, some of the more common procedures you’ll use when
operating your BASIC workstation on the SRM, including:

® booting from the SKRM;

® accessing the shared mass storage device;

® creating directories and files;

e listing a directory’s contents;

® copying files;

® using shared printers and plotters;

® protecting files and directories;

® purging files and directories;

® accessing files created on non-Series 200 SRM workstations;

e locking and unlocking files;

® returning to local mass storage.

This section illustrates both operations executed from the keyboard, and those executed within
programs.

Note About Key References

Throughout this section, symbols for the keys used to execute state-
ments and commands are shown with each statement or command.

The (_EXECUTE) symbol denotes the execution key on either the HP
98203A or HP 98203B keyboards (the keycap on the HP 98203A

keyboard is labeled). The symbol denotes the execution
key on the HP 46020A keyboard.

You may also use the key on these keyboards to execute
statements and commands.

Booting From the SRM

If your workstation has Boot ROM version 3.0 or later, you will be able to boot the BASIC language
system into your workstation from the SRM. Once your workstation has been installed on the SRM
system, the workstation powerup scheme your system manager has implemented on your SRM
determines the exact procedure you use. This section discusses some general aspects of booting
SRM workstations.

Note

Only HP Series 200 computers with Boot ROM version 3.0 or later can
boot automatically from SRM. Refer to the BASIC User’s Guide for
more information on how to determine which boot ROM your compu-
ter has. Boot ROM 3.0L does not support automatic booting from
SRM.

98619-90051,rev: 3/85

If your workstation’s boot ROM does not support booting from SRM, you must boot the BASIC
system from a local mass storage device and load the SRM and DCOMM BIN files to allow the
workstation to communicate with the SRM system. You may load these BIN files either from local
mass storage or, if your boot ROM supports automatic booting, from the SRM (even though the
SRM BIN file is not present in the workstation).

For example, assume the SRM and DCOMM BIN files are in the directory named SYSTEMS at the
root level of the SRM directory structure, and your workstation booted the BASIC system from the
SRM. To load the BIN files from the SRM, you would type:

LOAD BIN "/5vSTEMS/SRM" ((EXECUTE) or (Return)
then type:
LOAD BIN "/SYSTEMS/DCOMM" EXECUTE) or ((Return)

If you load the SRM and DCOMM BIN files from the SRM, you must load SRM before
DCOMM.

Selecting an Operating System

In general, when you power your workstation ON or perform a SYSBOOT while the workstation is
powered (which returns control to the boot ROM to restart the system selection and configuration
process), you can either select the BASIC system explicitly or an operating system is loaded
automatically.

If your workstation is not set up to automatically boot the BASIC system, you must explicitly select a
system for the boot ROM to load into your workstation. Because explicit selection overrides any
other method of system selection, you may choose this method over automatic selection when you
wish to use an operating system other than the BASIC system.

To explicitly select an operating system for the boot ROM to load at powerup, follow these steps:

1. If your workstation’s power is OFF, turn the power ON. To boot while the power is ON, use
the SYSBOOT command (described in the BASIC Language Reference).

Note

If your workstation is providing power to an SRM multiplexer, you
should avoid turning the power off to reboot.

2. Press any key within the first few seconds after the boot ROM's initial activity begins (the
workstation’s display begins to list the various parts of the computer for example, Kevtoa rd)
as each is recognized by the boot ROM). In response to the key press, the boot ROM then
lists all systems currently available for loading into the workstation and waits for you to select
a system.

3. To the left of each system name is a two-character identifier, such as 18. To select a system,
type the identifier and wait for the boot ROM to load the specified system.

Automatic Configuration

Besides automatic selection of the boot system, your workstation may have an automatic configura-
tion (“autostart”) file, which specifies operations to be performed by the BASIC system immediate-
ly after it is loaded. For example. your workstation’s autostart file may cause the systemn to load
certain BIN files and go directly into your directory each time you boot your system.

If an autostart file exists for your workstation, all initial configuration happens automatically, without
any extra effort from you. For information on setting up autostart files, refer to the BASIC User’s
Guide and the “Entering, Running and Storing Programs™ chapter of the BASIC Programming
Techniques manual.

Accessing the Shared Mass Storage Device

Your workstation accesses shared resources through the SRM controller, which is connected to the
workstation through an HP 98629A interface in the workstation. The remote (SRM) mass storage
device is identified by a remote mass storage unit specifier, or ‘‘remote msus’’ (similar to the local
msus), which gives information about the SRM connection. The remote msus includes the following
required and optional information:

® the device type REMOTE, which specifies the SRM system;

Note
Instead of the REMOTE device type specifier, you may use the ‘‘gener-
ic”" form of the remote msus. Refer to the description of generic remote
msus in the “BASIC Language Reference’ section of this chapter.

® (Optional) the interface select code of your workstation’s SRM interface. The default is the
select code of the interface through which the boot ROM activates your workstation. (If you do
not boot from the SRM, the default is the lowest select code of those available among the SRM
interfaces in your workstation.)

® (Optional) the controller’s node address;
® (Optional) the volume name and volume password.

The full syntax of the remote msus is described at the beginning of this chapter's “BASIC Language
Reference’ section.

In general, the first step in accessing a mass storage device is to make that device the MASS
STORAGE IS device. Typing:

MSI ":REMOTE" (_EXECUTE) or (Return)

establishes the shared mass storage device as your workstation's mass storage and causes the root
to be the working directory. The working directory is the directory specified in the most recent MSI
statement. (Refer to the section on “System Concepts’ earlier in this chapter for more information
about directories.)

The form of the MSI statement shown above assumes that you want remote mass storage estab-
lished according to the default values for your workstation’s interface select code, the controller’s
node address, and the SRM system volume.

To find out the default values for these items, and to verify that your workstation’s mass storage is
the SRM mass storage device, you can use the CAT statement to list the contents of the working
directory. Your mass storage is the remote device if, when you type:

caT (EXECUTE) or (Return)

the directory header includes the remote msus (for example, :REMOTE 21, 0). Refer to the CAT
keyword entry in this chapter’s “BASIC Language Reference’” section for an example of a remote
directory catalog listing. If, as in this example, you do not specify the optional items in your remote
msus, the default values are assumed and listed.

To specify the remote mass storage when the SRM controller’s node address is 4 and the select
code of your workstation’s interface is 15, you would type:

Ms1 ":REMOTE 15.,4" (EXECUTE) or (Return)

Creating Directories and Files

For the following examples, assume you are working with the directory structure shown in the
illustration below.

(root)
PROJECTS

[[l

Pro ject one Project two General

| l
[l [l
KATHY assignments JOHN AL assignments ED REPORTS Test _data

schedule L schedule
fl fl Roril

budget budget

[fl dir 1 dir 1 dir 2
Creating Directories

To create a directory named CHARLIE in the directory, Project_one, you could type:

fe May

Ms1 ":rREMOTE" (EXECUTE) or (Return)
CREATE DIR "/PROJECTS/Prodect_one/CHARLIE" (EXECUTE) or (Return)

The leading slash indicates that the directory path begins at the root of the SRM directory structure.

You could accomplish the same thing by typing:

CREATE DIR "PROJECTS/Prodect_one/CHARLIE:REMOTE" (EXECUTE) or (Retun)

10

Using the leading slash to begin the directory path at the root works only if you have previously
established the remote mass storage as your workstation’s mass storage (with some form of the
MSI ":REMOTE" statement).

This statement would place your newly-created directory into the directory structure as shown
below.

(root)
PROJECTS
[L
Project_one Project two General
KRTHY JOHN

Creating Files and Other Directories Under a Directory

To create files subordinate to a new directory. you may either establish the new directory as the
working directory or specify the directory path to that directory. Assuming your current working
directory is the root, you could type:

MSI "PROJECTS/Prodect_one/CHARLIE" (EXECUTE) or (Return)

to move into the directory, CHARLIE.

You could verify the new working directory with a catalog listing by typing:

caT (_EXECUTE) or (Return)

On a computer whose screen supports an 80-character line width, the resulting listing would look
something like this:

PrROJECTS/ProJect_one/CHARLIE:REMOTE 21y O

LABEL: Discl
FORMAT: SDF
AVATILABLE SPACE: 54096
SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEY TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT

To create an ASCII file within CHARLIE, which is named ASCII 1 and is initially to contain 100
records, you would type:

CREATE ASCII "AsSCII_1",t00 (EXECUTE) or (Return)

To create a BDAT file within CHARLIE, which is named BDAT_1 and is initially to contain 25
records, you would type:

CREATE BDAT "BDAT_1",25 (EXECUTE) or (Return)

(When no record size is specified in the CREATE BDAT statement, the default 256-byte record size
is assumed.)

To create another directory within CHARLIE called MEMOS, you would type:
CREATE DIR "MEMOS" ((EXECUTE) or (Retun)

The additions would make the directory structure look like this:

(root)
PROJECTS

I
[[I

Pro ject one Project two General

|
[l]

KRTHY JOHN CHARLIE

The simplest form of the CAT statement:

caT (EXECUTE) or (Return)

lists the contents of the current working directory because no directory is specifically identified. If no
directory name is shown in the directory header, the current working directory is the root.

If you wanted to list the contents of CHARLIE, but your current working directory was not
CHARLIE, you could:

® Designate CHARLIE as the working directory with the MSI statement, then use the CAT
statement’s “‘short form.” For example:

MSI "PROJECTS/ProJect_one/CHARLIE:REMOTE" (EXECUTE) or (Return)
caT (_EXECUTE) or (Return)

e In the CAT statement, specify the entire path to CHARLIE, starting at the root, by beginning
the path name with a slash (/). For example:

CAT "/PROJECTS/ProJect_one/CHARLIE" (_EXECUTE) or (Return)

11

12

This form assumes that you have already designated remote mass storage with some form of
the Ms1 ":REMOTE" statement. If you have not, use the form:

CAT "PROJECTS/Prodect_one/CHARLIE:REMOTE" (EXECUTE) or (Return)

The leading slash is not necessary, because including : REMOTE specifies the root as the begin-
ning of the path.

e [f you were in MEMOS (the directory immediately subordinate to CHARLIE), you could use

the .. " notation (explained with directory path syntax in the “BASIC Language Reference’
section of this chapter). For example:
CAT ".." (CEXECUTE) or ((Return)

For more details on specifying remote files and directories in BASIC statements, refer to the
beginning of the “BASIC Language Reference’ section in this chapter.

Copying Files
With SRM, you can copy files between local and remote mass storage devices by any of the

methods illustrated in the following examples. Again using the directory structure established for the
other examples in this section, assume that the current working directory is CHARLIE.

Using the COPY Statement

The most direct method of copying a file from local to remote mass storage is to use the COPY
statement. For example, to copy a PROG file named Test_prog that is on a local disc drive into the
directory CHARLIE on the SRM system disc, you could type:

COPY "Test_prod: INTERNAL" TO "Test_pros" (EXECUTE) or (Retun)

By including the :INTERNAL msus, you can access the local mass storage without changing the
current working directory {which is a remote directory). Refer to the “‘Data Storage and Retrieval”
chapter of the BASIC Programming Techniques manual for information on alternatives to the
: INTERNAL msus for specifying local mass storage.

(root)
PROJECTS
[' I
Project one Project two General
[l [T
KATHY JOHN CHARL IE AL - assignments £D
|
[B |
MEMOS L-F 1 dir 1

- ASCIT 1
— BDHT 1

Other Uses of COPY

The COPY statement can be used to copy files not only from local to remote mass storage but also
from remote to local mass storage and from one remote mass storage device to another. You
cannot copy directories, although you can copy files from one directory to another. Similarly, you
cannot copy an entire remote mass storage volume in a single COPY statement. (You must copy a
remote volume file by file.)

Suppose you want to copy the file BDAT_1 from the directory CHARLIE into the directory AL (see
previous illustration).

Assuming the working directory is CHARLIE, you could type:
COPY "BDAT.1" TO "/PROJECTS/Project.two/AL/BDAT_1" (EXECUTE) or (Return)

The effect of the copy on the directory structure is illustrated below:

(root)
PROJECTS
I
I | |
Pro ject one Project two General
| |
! J | 1 L l
KATHY JOHN CHARLIE AL assignments ED
[] -
MEMOS —f 1 dir 1

- ASCII |
~ BDAT 1

- Test prog

Using LOAD and STORE

You may also copy files by loading the program into your workstation from local mass storage and
then storing it in remote mass storage. For example, to copy a PROG file named Test_prog that is
on a disc in your workstation’s built-in disc drive into the directory CHARLIE on the SRM system
disc (as demonstrated earlier using COPY), you could type:

LOAD "Test_prog: INTERNAL" ((EXECUTE) or (Return)

Once the file is in your workstation’s memory, you may then store the file in the remote directory by
using a statement such as:

STORE "Test_pros" (_EXECUTE) or (Return)

Copying Item-by-Item Using ENTER and OUTPUT

You may also copy a file from local to remote mass storage an item at a time, as illustrated in the
programs that follow. These programs use the ENTER and OUTPUT statements to copy data
item-by-item from a local BDAT file to remote mass storage.

13

14

The first program creates and fills a BDAT file named BDAT_FILE.

10 CREATE BDAT "BDAT_FILE:INTERNAL" 10
20 ASSIGN @Local TO "BDAT_FILE:INTERNAL"
30 !

40 FOR Item=1 TO 30

30 OUTPUT BLocali"Strind data item"

B0 NEXT Item

70 !

80 ASSIGN @Local TO *

90 END

The second program copies the contents of BDAT_FILE item-by-item into a file (also called
BDAT_FILE) in the SRM directory named General (shown in the previous illustration).

100 DIM Strivd_item$[201]

110 CREATE BDAT "PROJECTS/General/BDAT_FILE:REMOTE" 10
120 ASSIGN BLocal TO "BDAT_FILE:INTERNAL"

130 ASSIGN BRemote TO "PROJECTS/General/BDAT_FILE:REMOTE"
140 !

150 FOR Item=1 TO S0

160 ENTER @ LocaliStrind_item$

170 OUTPUT @RemoteiString.item$

180 NEXT Item

190 !

200 ASSIGN @Local TO #*

210 ASSICGN BRemote TO #*

220 END

Using a Shared Printer or Plotter

Use of special SRM directories called “‘spooler directories” allows you to access a shared printer or
plotter. Setting up a spooler directory is explained in the ““Interfaces and Peripherals™ chapter of the
SRM Operating System Manual. The examples in this section assume that the spooler directories
LP (for “‘Line Printer’’) and PL (for "‘PLotter”’) have been created at the root of the SRM directory
structure.

Spooling Using PRINTER IS and PLOTTER IS
You can use the PRINTER IS and PLOTTER IS statements to send data to your shared printer or
plotter. The following command sequence illustrates this spooling method:

CREATE BDAT "/LP/Print_file"s!
PRINTER IS "/LP/Print_file"
LIST

KREF

PRINTER I8 CRT

PRINTER IS and PLOTTER IS work only with BDAT files. Because the SKRM 1.0 operating
system’s spooling works only with ASCII files. you cannot use PRINTER IS and PLOTTER IS for
spooling with that version of SKRM.

Note

The DUMP DEVICE IS and PRINTALL IS statements do not support
files, so cannot be used for printer spooling.

Writing Files to the Spooler Directories

You may also access the printer associated with LP by placing the data to be printed in an ASCII or
BDAT file in that spooler directory. For example, to list a program currently in memory, you could
SAVE the program in LP as the file P1_LISTING by typing either:

SAVE "LP/P1_LISTING:REMOTE" (EXECUTE) or (Return)

or

SAVE “/LP/P1_LISTING" (EXECUTE) or (Return)

The SAVE statement creates an ASCII file. Although this is the same syntax used to save programs
on a shared disc, the SRM system knows that LPis a spooler directory and prints the file as soon as
possible.

Note
When used for spooling, SAVE places a file in the spooler directory. The
file is printed, then purged. You may wish to save or create the file first,
then use the COPY statement to place the file into the spooler directory.

Sending Program Output to a Shared Printer

To spool program output to a shared printer, create an ASCII or BDAT file, assign an 1/O path
name to the file (which opens the file), and OUTPUT the data to that file. With BDAT files, you
should ASSIGN with FORMAT ON. When the file’s contents are to be printed, close the file. The
following example program segment outputs the data stored in the string array called Data$ to an
ASCII file named PERFORMANCE.

760 CREATE ASCII "/LP/PERFORMANCE" »100

770 ASSIGN BSeool TO "/LP/PERFORMANCE"

780 DUTPUT @Spooli"Performance Summary"

790 DUTPUT @SrooliData$(*)

800 ASSIGN B85p00l TO I Initiate Printing,

The system waits until the file is non-empty and closed before sending its contents to the output
device. If your file is not printed or plotted within a reasonable amount of time, you may not have
closed it. You can verify that your file is ready to be printed or plotted by cataloging the spooler
directory:

CAT "/LP" (EXECUTE) or (Return)

The open status (0PEN STAT) of the file currently being printed or plotted is listed as locked (L0OCK).
Files currently being written to the spooler directory (either printer or plotter) are listed as 0PEN. Files
that do not have a status word in the catalog are ready for printing or plotting.

15

16

The SRM 2.0 and newer operating systems allow BDAT files to be sent to the printing device as a
byte stream. (With SRM 1.0, only ASCII files can be used.)

Note
With the SRM 2.0 and newer operating systems, a BDAT file sent to the
spooler is printed exactly as the byte stream sent. Unless you set up the
BDAT file correctly,improper printer output or operation could result.
Therefore, you should ASSIGN BDAT files with FORMAT ON before
outputting data.

The spooler prints each string and numeric item on a separate line by inserting a carriage return and
line feed after each item. To put several strings on one line, concatenate them into one string before
using OUTPUT to send them to the spooler file. You may insert ASCII control characters in the data
by using the CHR$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory path to the
file, the file’s name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines), prefix your file
name with “FF”’. For example:

SAVE "/LP/FF_MYTEXT" (_EXECUTE) or (Return)

Preparing Plotters

If your plotter does not feed its paper automatically, a message appears on the SRM controller
screen indicating that the plotter needs to be set up. After you have put paper on the plotter, you
may begin the plotting by using the server’'s SPOOL CONTINUE command (described in the SRM
Operating System Manual). Plotters with automatic paper feed require no operator intervention.

Aborting Printing/Plotting in Progress

To abort an in-progress printing or plotting, use the SPOOL ABORT command from the SRM
server. The system stops sending data to the output device and closes, then purges the file. For
details on bringing the spooler UP and DOWN, see the description of the SPOOLER command in
the “Language Reference” section of the SRM Operating System Manual.

With SRM 2.0 and newer operating systems, if a printer is taken off-line while a file is being printed,
the printer stops and resumes when the printer is put back on-line. No data is lost during such an

interruption. The SRM 1.0 operating system also resumes printing, but from the beginning of the
file.

Protecting Files and Directories

When you create directories and files, their access capabilities are ‘‘public’’ (available to any user on
the SRM). You may subsequently protect a directory or file against certain types of access by other
SRM workstations, provided:

® you have MANAGER access capability on the file or directory (MANAGER access to the file is
public or you know the password protecting the capability);

98619-90051,rev: 3/85

16

The SRM 2.0 operating system allows BDAT files to be sent to the printing device as a byte stream.
(With SRM 1.0, only ASCII files can be used.)

Note
With the SRM 2.0 operating system, a BDAT file sent to the spooler is
printed exactly as the byte stream sent. Unless you set up the BDAT file
correctly, improper printer output or operation could result. Therefore,
you should ASSIGN BDAT files with FORMAT ON before outputting
data.

The spooler prints each string and numeric item on a separate line by inserting a carriage return and
line feed after each item. To put several strings on one line, concatenate them into one string before
using OUTPUT to send them to the spooler file. You may insert ASCII control characters in the data
by using the CHRS$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory path to the
file, the file’s name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines). prefix your file
name with “FF”. For example:

SAVE "/LP/FF_MYTEXT" (_EXECUTE) or (Return)

Preparing Plotters

If your plotter does not feed its paper automatically, a message appears on the SRM controller
screen indicating that the plotter needs to be set up. After you have put paper on the plotter, you
may begin the plotting by using the controller's SPOOL CONTINUE command (described in the
SKM Operating System Manual). Plotters with automatic paper feed require no operator interven-
tion.

Aborting Printing/Plotting In Progress

To abort an in-progress printing or plotting, use the SPOOL ABORT command from the SRM
controller. The system stops sending data to the output device and closes, then purges the file. For
details on bringing the spooler UP and DOWN, see the description of the SPOOLER command in
the “Language Reference” section of the SRM Operating System Manual.

With the SRM 2.0 operating system. if a printer is taken off-line while a file is being printed, the
printer stops and resumes when the printer is put back on-line. No data is lost during such an
interruption. The SRM 1.0 operating system also resumes printing, but from the beginning of the
file.

Protecting Files and Directories

When you create directories and files, their access capabilities are “public”” (available to any user on
the SRM). You may subsequently protect a directory or file against certain types of access by other
SRM workstations, provided:

® you have MANAGER access capability on the file or directory (MANAGER access to the file is
public or you know the password protecting the capability);

® you have READ access capability on the directory immediately superior to the file or directory
you wish to protect;

® you protect the file or directory either while “‘in”" its superior directory or by specifying the valid
directory path to its superior directory.

For example, using the directory structure established for other examples in this section (see
illustration) and assuming no passwords have been assigned to the files, you could:

(root)
PROJECTS
Pro ject one Project two General
KRTHY JOHN CHARL IE AL L~assignments ED
MEMOS f1 dir 1
-BDAT 1|
— ASCIT 1
— BDAT 1
— Test prog

1. Assign the password passme to protect the MANAGER and WRITE access capabilities on the
directory CHARLIE with the sequence:

MSI "/PROJECTS/Prodect_one" (_EXECUTE) or (Return)
PROTECT "CHARLIE"("rpassme":MANAGER WRITE) (EXECUTE) or (Return)

which executes the PROTECT statement after moving to the directory Project_one (im-
mediately superior to CHARLIE). As a result of this PROTECT statement, the READ access
capability on CHARLIE is still public, but any operations that require MANAGER or WRITE
capabilities must include the password.

2. Remove all public access capabilities from the file ASCII_1 by assigning the password
no_pub, using:

PROTECT "CHARLIE/ASCII_1",("no_pub":MANAGER \WRITE READ) (EXECUTE) or

or

M31 “CHARLIE" (EXECUTE) or (Return)

PROTECT "ASCII.1",("no_pub":MANAGER WRITE ,READ) (EXECUTE) or (Return)

17

18

These statements assume you are in the directory, Project_one, as if you had executed the
statements in the previous step.

The second sequence of statements makes CHARLIE the new working directory, whereas in

the first, you merely ‘“‘pass through” CHARLIE to reach ASCII_1. With the READ access
capability on CHARLIE still public, you do not need a password.

3. Protect the file, BDAT_1, so that data can be read from it but not written into it without using
the password. write. If the current working directory were CHARLIE, you would type:

PROTECT “BDAT_1",("write":MANAGER WRITE) (EXECUTE) or (Return)

4. Protect the MANAGER access capability of the directory MEMOS with the password,
mgr_pass (so that everyone can read from and write to the directory, but a password is
required to purge the directory or its contents) by typing:

PROTECT "MEMOS"(“mdr_pass":MANAGER) (EXECUTE) or (Return)

If you protected the files and directory in CHARLIE as in the steps above, a catalog listing of
CHARLIE would look something like this:

PROJECTS/Prodect-one/CHARLIE:REMOTE 21 O

LABEL: Discl
FORMAT: SDF
AVATLABLE SPACE: 54096
S¥S FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEY TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
ASCIT_1 1 ASCII 0 256 Z2-Dec-84 13:20
BDAT_1 1 9BXG BDAT 0 256 Z2-Dec-84 13:20 R
MEMOS 1 DIR 0 24 Z2-Dec-84 13:20 RMW

The letters in the column labeled PUB ACC indicate access capabilities that are public (not protected
with a password). For example. only the MANAGER (M) access capability on the directory MEMOS
has been protected. leaving the READ (r) and WRITE (W) capabilities available to any SRM
workstation user.

Specifying Passwords

When a password is required, you must include the correct password as part of the file or directory
specifier in any command or statement that requires the protected access on the file or directory.
The password must be enclosed between ** " and " : " and must immediately follow the name of
the file or directory it protects.

For example. to get the file ASCII_1, you might type:

GET "/PROJECTS/Prodect_one/CHARLIE/ASCIT_1<no_pub:" (EXECUTE) or (Return)

If the password were not included in the specifier. the system would respond with an error message
and refuse to get the file.

Purging Remote Files and Directories

The PURGE statement works the same for removing remote files as for removing files from local
mass storage. You may also remove directories using PURGE. PURGE works only with closed files
and directories. Directories must also be empty (not contain any files or directories). Refer to the
discussion on *‘Returning to Local Mass Storage” later in this section for details on closing files and
directories.

When specifying the remote file to be purged, you must include all passwords protecting access
capabilities required for the PURGE. For example, to purge the file BDAT 1 from the directory
CHARLIE (see previous examples), you could type:

PURGE ".<passme»/BDAT_l<write:" (EXECUTE) or [Return)

In this example, CHARLIE is the current working directory, as denoted in the directory path by
“+ 7. (Refer to the syntax for directory path in this chapter’s “BASIC Language Reference”
section.)

To purge a file, you must have the MANAGER access capability on that file and READ and WRITE
access capabilities on the file’s superior directory. Because passme protects the WRITE capability
on CHARLIE and write protects the MANAGER capability on BDAT_I, both passwords must be
included in the file specifier in the PURGE statement.

Although you do not normally need to specify the working directory in a directory path, you must
include the password for the PURGE operation. The READ capability on CHARLIE is not pass-
word-protected.

To purge CHARLIE, you would first need to purge the remaining files and directory in CHARLIE.
Because the MSI statement “‘opens’” a directory (making it the current working directory), you must
also “‘close” CHARLIE.

For example, if no files or directories remained in CHARLIE, you could purge CHARLIE by typing:

MS1 ":REMOTE" (EXECUTE) or (Return)
PURGE "PROJECTS/ProJect_one/CHARLIE<rassme> (EXECUTE) or (Return)

The first statement closes CHARLIE and establishes the root directory as the current working
directory. Note that, because passme protects the MANAGER access capability on CHARLIE, you
must include that password in the PURGE statement.

Accessing Files Created on
Non-Series 200 SRM Workstations

Regardless of the kind of the computer or language system, files containing ASCII data can be
shared among all workstations on the SRM.

This example shows how you can access a remote ASCII file named Prog_x, which was created
with the SAVE ASCII statement on an HP 9845 with the SAVE ASCII statement.

In this example, Prog x is in an HP 9845 workstation user’s directory called COMMON.
COMMON is located in the directory WORK 45, which is at the root of the SRM directory

structure. The password mypass protects the READ capability on WORK_45. All access capabilities
on COMMON are public.

19

20

To access Prog_x, you would type:

GET "WORK_45<mypass:/COMMON/Pros_x:REMOTE" ((EXECUTE) or ((Return)

or

CET "/WORK_45<myrass:/COMMON/Prog_x" (EXECUTE) or (Return)

The system would then put Prog x into your workstation. Keep in mind that, with GET, any lines
containing BASIC syntax that is invalid in BASIC for the Series 200 computers will be stored as
commented program lines (|).

Locking and Unlocking Remote Files

You can “lock’ a shared file with the LOCK statement, giving you sole access to that file. The same
file can be locked several times in succession. Unlocking a file requires that you cancel all locks on
that file. If you use the UNLOCK statement, you must cancel each LOCK with a corresponding
UNLOCK. Using ASSIGN to re-open a locked file unlocks the file and you must execute another
LOCK statement to lock the file again. Closing the file via ASSIGN @... TO * cancels all locks on the
file.

In this example, a critical operation must be performed on the file named File_a, and you do not
want other users accessing the file during that operation. The program might be as follows:

1000 ASSIGN @File TO "File_a:REMOTE"

1010 LOCK @FileiCONDITIONAL Result_.cade

1020 IF Result_code THEN GOTO 1010 ' Try adain
1030 ! Bedin critical Frocess

2000 ' End critical rrocess
2010 UNLOCK @File

The numeric variable called Result_code is used to determine the result of the LOCK operation. If
the LOCK operation is successful, the variable contains 0. If the LOCK is not successful, the
variable contains the numeric error code generated by attempting to lock the file.

Returning to Local Mass Storage

When you have finished accessing shared resources, you should close all of your files and director-
ies to ‘‘release’ the system resources.

Remote files are closed by ASSIGN ... TO * (see this chapter’'s “BASIC Language Reference”
section for details on ASSIGN). The SCRATCH A command closes directories and files. All remote
files except those opened with the PRINTER IS statement are also closed by pressing (RESET).

To close your current working directory, MSI to a local msus (for example, M51 " : INTERNAL").
If you booted from local mass storage, you may also execute the SCRATCH A command to

completely release your access to the system. If you booted from the SRM, executing SCRATCH A
resets the current working directory to the root.

Modifying Existing Programs
to Access Shared Resources

This section summarizes ways you can modify existing programs that access local resources to allow
those programs to access shared resources.

When modifying programs to access SRM-controlled mass storage device(s), you should be aware
that:

® [ocal and remote mass storage file specifiers may differ and string variable names that contain
file specifiers may need corresponding modification.

® References to mass storage unit specifiers (msus) throughout the program may have to be
altered.

® Allowances may have to be made for directory path specification.

® Local protect codes may differ from passwords on remote files. The syntax for protecting
remote files is different from that used for local files.

File Specifiers

Composition of File Names

All file names for local mass storage are one to 10 characters long, while remote file names contain
one to 16 characters. Remote file names can contain the period character (.) while local files
cannot. If file name compatibility between resources is required, use 10 or fewer characters and do
not use periods within remote file names.

File and Mass Storage Device Specification in String Variables

Modifying programs for use with shared resources generally requires changing the value, and often
the length. of the string variables used to specify files and mass storage devices. The statements that
assign the actual values to the string variables may have to be modified individually.

Some programs use one string variable for the entire file specifier. For instance:

100 DIM File_specifier$[32]

110 LINPUT "Enter file specifier"s File_specifiers$

120 ON ERROR GOTO 110 ! Trv adain if imProper specifier,
130 ASSIGN BPath TO File_specifier$

140 OFF ERROR

If one variable is used for all file specifiers (as in the preceding example), only the length of the
variable needs to be changed to allow for the additional characters allowed in remote file specifiers.

The maximum number of characters that can be entered into a string variable from the keyboard in
one operation is a good size for a file specifier variable. The Models 216, 220, 226 and 236 allow
up to 160 characters and the Model 237 allows 256 characters. Thus, the length of
File_seecifiers$ in the preceding example’s DIM statement would be changed from 32 to 160 or
256, accordingly.

Note that the system mass storage (the current MASS STORAGE IS device) will be accessed if no
msus is explicitly specified.

21

22

Mass Storage Unit Specification

Some programs use separate variables for the file name and mass storage unit specifier. For
example:

AGSICN BPath TO Filemame$8Msus$

If so. both variables may have to be dimensioned to greater lengths. Allowing 34 characters for the
file name variable accommodates a 16-character file name, a 16-character password, and the <"
and “>" password delimiters (for example, “ASCDEFGHIJ123456<1234567890123456>").
The remote msus may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements throughout the program instead of
including the msus in each file specifier. For instance:

MASS STORAGE 1S Left_drives
ASSIGN BFi1le TO File_mames$

Unless variable(s) are used to specify the msus and each variable is assigned a value in only one
place. you may have to modify each MASS STORAGE IS statement to specify the desired remote
mass storage device.

Allowing for Directory Paths

Suppose the following program needs to be modified to include a remote file's directory path.

100 DIM Filevname$[141:Msus$l[20]

‘

4

500 Filevname$="SLIDES"
510 Msus$=":HPIBIYS,700"

+

1000 ASSIGN BFile TO Filemame$fMsus$
1010 QUTPUT BFilesData(*:
1020 ASSIGN BFile TO +

+

2000 ASSIGN @File 7O Filename$fMsus$
2010 QUTPUT @Fileslatalx)
2020 ASSIGN E@File TO *

In this example, it is probably easiest to add another string variable for the (optional) directory path
name. For example:

100 DIM Dir_path$[1601+Filename$[BO] Msus$lBO]

+

500 Dir_path$="FRED/DATA_FILES/"

510 Filevname$="SLIDES"

320 Msus$=":REMOTE 211"

1000 ASSICN @File TO Dir_path$bFilename$8Msus$
1010 QUTPUT BFileiDatal(¥®)

1020 ASSIGN BFile TO *

If the Dir-rath$ variable is null, the statement looks exactly like it did before the modification. If the
Msus$ variable is null, the current mass storage device is accessed. The only difference is in the
allowable length of the string variables.

Passwords and Protect Codes

The PROTECT statement format for remote files is different form the format for local files. Depend-
ing on the type of mass storage is being used, you can use either of the following to decide which
syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement enabled. If an error occurs, see if it
indicates that the mass storage device is an SRM. An Error 1 occurs when the following
statement is executed on a remote file.

PROTECT file specifier:protect code

2. If the program uses a string to store the mass storage unit specifier, check for a non-zero
value of POS(Msus$,"REMOTE"). This alternative is easier to implement than alternative 1 but
will not work if the program accesses the default device when Msus$ is empty.

If the program looks for a password error (Error 62) at ASSIGN time, the program may have to be
modified because the system may not detect the password error untii an ENTER @Path or
OUTPUT @Path is attempted.

23

24

BASIC Language Reference
for HP Series 200 SRM Workstations

This section lists all BASIC keywords either used exclusively with SRM or whose use with SRM
differs from that described in the BASIC Language Reference manual.

Most keyword entries in this section describe only differences between the keyword’s normal use
and its use on SRM. Because SRM-specific keywords are not described in the BASIC Language
Reference manual, full details of their use are included in this section.

You may wish to remove this language reference section and insert it as an appendix to your
BASIC Language Reference manual. SRM-specific keywords (CREATE DIR, LOCK and
UNLOCK) are described on separate pages, so you can insert those keywords into their correct
alphabetical position in the main BASIC Language Reference manual. Be sure not to discard these
pages if you replace your BASIC Language Reference manual with a newer version.

The primary difference in keyword syntax for SRM use is in file specification. Use of supported
keywords on SRM requires you to supply a remote file specifier rather than the file specifier
described for non-SRM uses of BASIC. Some keywords also involve a directory specifier, which is
unique to SRM. Remote file specifiers and directory specifiers are described at the beginning of this
section.

In addition, you must be aware of the access capabilities required on files and directories involved
in the keyword’s use. Access capability requirements are summarized in a table included in this
section.

This section is not a complete language reference for the BASIC keywords listed. Instead, each
keyword entry shows the SRM-specific use of the keyword and supplies details relevant to that use.
The BASIC Language Reference manual completely describes the BASIC keywords.

Note
This section reflects the keywords and uses for BASIC 3.0. The “SRM
and BASIC 2.0 appendix lists differences between the BASIC 2.0 and
BASIC 3.0 uses.

25

26

Syntax for Remote File
and Directory Specification

The following syntax applies to remote file specification for BASIC keyword use on SRM. The
semantics discussion applies to all remote file specification unless otherwise noted with a specific
keyword’s description.

Remote File Specifier

n l remote I n
- Lfile name| o o
directary remote
© >

Item Description/Default Range Restrictions
directory path literal (see diagram)
remote file name literal any valid remote file

name (see Semantics)

password literal. first 16 non-blank characters are signifi- | any valid password (see
cant Semantics)
remote msus literal (see diagram)
Semantics

A valid remote file name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except

> . Spaces are ignored. Passwords are assigned by the PROTECT keyword.

If no directory path is included. the system assumes the file is in the current working directory (the
directory specified in the latest MASS STORAGE IS statement). To specify a file in a directory other
than the current working directory, specify the directory path to the desired file. (Refer to the syntax
for directory path later in this section.) The directory path may begin at the current working
directory or at the root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six identifiers can be included in a specifier -- five directories in the path and the target
file. If the target file is more than five directories away from the current working directory, move
closer by changing the working directory (with MSI).

27

Examples
“PROJECTS/WRITERS/samples<wr_pass»:REMOTE 211 iLABELVOL_TWO<master:"

illustrates the full remote file specifier syntax. For explanations of the directory path and remote
msus portions of this illustration, see the examples with those components.

“thisfile®

specifies a file that is in the current working directory. This form assumes that the SRM (remote
mass storage) has previously been “‘entered” via some form of the MST ":REMOTE" statement.

Directory Path

directory) /
name o
—O— G ©

Item Description/Default Range Restrictions
directory name literal any valid directory name
(see Semantics)
password literal, first 16 non-blank characters are signifi- | any valid password (see
cant Semantics)
Semantics

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
“ > Spaces are ignored. Passwords are assigned by the PROTECT.

A leading slash (/) in the directory path specifies that the path begins at the root. If you have not
previously established the remote mass storage (using, for example, MSI ":REMOTE"), you must
include some form of the remote msus with the file specifier. Including the remote msus also
specifies that the directory path begins at the root. Remote msus is explained later in this section.

Subsequent slashes delimit individual names in the path.

Using ‘.. in place of a directory name specifies the directory immediately superior to the current
directory position. (Note that the root’s superior directory is the root.) Using *“. " in place of a
directory name specifies the current directory position. To specify a file or directory subordinate to
the current working directory, you do not include the current working directory in the directory

path.

Examples
The directory path:

/USERS/BO/MANUAL _PLAN<mine*alone:
begins at the root.

The directory path:

vo/filel
begins at the directory immediately superior to the current working directory.

The directory path:

PROJECTS/WRITERSSwriters_onlv>/samples:REMOTE
begins at the root.

The directory path:

dir_sub/filel

begins in the current working directory. In this example, dir_sut is immediately subordinate to the
current working directory.

Remote msus

| -

Y

SRM interface .

select code g
SAM controller's
node address

LABEL "o ne” | - <
() ©
Item Description/Default Range Restrictions
SRM interface select integer constant 8 through 31
code
SRM controller's node integer constant 0 through 63
address
volume name literal any valid volume name
(see Semantics)
volume password literal any valid password (see
Semantics)

Semantics

The volume name, which is assigned at the volume’s initialization, is used to identify a mass storage
volume. Volume names consist of one to 16 characters, which may include uppercase and lower-
case letters, digits O through 9, the underbar (_) character, the period (.) character, and national
language characters (CHR$(161) through CHR$(254)).

A valid volume password consists of one to 16 characters, which may include any ASCII character
except “ > ",

The volume password allows complete access to all files on a mass storage volume, and is assigned
when the volume is initialized. The volume password supercedes all access restrictions placed on
files and directories by the PROTECT statement.

You need supply the SRM interface select code only if you wish to specify an SRM interface in
your Series 200 workstation other than that identified by the default select code. If your workstation
boots from the SRM, the default is the select code of the interface through which the boot ROM
activates your workstation. If your workstation boots from a source other than SRM, the default
select code is the lowest available SRM interface select code in the workstation. (The factory-set
default value for the HP 98629A interface’s select code is 21.)

The SRM controller’s node address is necessary only if the node address of the controller is other
than the default controller’s node address.

To determine the defaults for your workstation use the following command sequence:

MSI " :REMOTE" (EXECUTE) or (Return)
caT (EXECUTE) or (Return)

The header of the resulting catalog listing shows the default values for your workstation's SRM
interface select code and SRM controller’s node address, and the name of the default SRM system
volume.

If you include the controller’s node address, you must also include the SRM interface select code.

The LABEL secondary keyword identifies a volume, and is used mainly when more than one
shared volurne is on the SRM system. You need supply the volume label only if you are identifying
a volume other than the default SRM system volume (in an SRM system having more than one
shared disc) or if your application requires that you specify the volume password.

The Generic Remote msus

The generic msus syntax (not indicated in the syntax diagram above) bypasses the need for all
information required by the remote msus syntax except the workstation’'s SRM interface select
code. An example of this msus syntax is:

1921

29

30

Examples

The remote msus:

:REMOTE
specifies the default SRM system volume.

The remote msus:

tREMOTE 211 3LABEL VOL_TWOD<secondrass:
specifies an SRM system volume. The LABEL syntax allows inclusion of the volume password in
the remote msus. Note that, because the controller's node address is not the default and must be

specified, the SRM interface select code must also be specified, even if that select code is the
default.

Directory Specifier

" |dlr‘ectoryl
TL_name]
directory remote

Item Description/Default Range Restrictions
directory path literal (see diagram)
directory name literal any valid directory name

(see Semantics)
remote msus literal (see diagram)
Semantics

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits O through 9. the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) thrcugh CHR$(254)). Spaces are ignored.

If no directory path is included. the current working directory (the directory specified in the latest
MASS STORAGE IS statement) is assumed for the keyword’s use. To specify a directory other than
the current working directory. specify the directory path to the desired directory. (Refer to the
syntax for directory path.) The directory path may begin at the current working directory or at the
root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six directories may be included in the directory specifier. If the target directory is more
than five directories away from the current working directory, move closer by changing the working
directory (with MSI).

Examples
1l / "

specifies the root. This form assumes that the SRM (remote mass storage) has previously been
“entered” via some form of the MSI *:REMOTE" statement. (See directory path description.)

"00/0!/00”

specifies the directory three levels superior to the current working directory. (See directory path
description.)

"yiMGR_Pass "

specifies the current working directory, with a password granting an access capability different from
that currently in effect.

Access Capability Requirements

Because SRM allows password protection of files and directories, either certain access capabilities
must be public or you must supply the password protecting those capabilities when you specity the
file or directory in the keyword syntax. For more information on password protection and access
capabilities, refer to the section on “‘Shared Access to Remote Directories and Files™ earlier in this
chapter and the PROTECT keyword entry in this reference.

The following chart lists BASIC keywords discussed in this section, indicating for each:

® whether the keyword is used with remote files, directories, or can be used with either;
e the access capabilities required on the directories superior to the specified directory or file;
e the access capabilities required on the specified directory or file itself.

Access requirements do not apply to the following keywords:

CHECKREAD
CONTROL
INITIALIZE
ON TIMEOUT
RESET
SCRATCHA
STATUS
UNLOCK
SYSTEM$

Note
For all keywords listed in the table, the READ capability must be public
on all directories in the path to the target remote file or directory.
Otherwise, you must supply the password protecting the READ capabil-
ity on any such directory.

31

32

The entries in the following table indicate the access capabilities needed for use of the designated
keyword. That is, the access capability listed must either be public (not protected with a password)
or you must supply the password protecting the capability in the file or directory specifier included
with the keyword.

For example, in an OUTPUT statement, if the WRITE capability on the file to which the data is to be
written is not public, you must supply the password entitling you to write data to that file. (You
would include the password as part of the remote file specifier in the statement assigning the /O
path name for the file to which the data is directed.) If the READ capability on the directory
containing the remote file specified in the OUTPUT statement is not public, you must supply the
appropriate password with the directory name in the directory path to the remote file.

Access Capabilities Required for Keyword Use

Access Capabilities Required
Keyword Applies to Directory/ Superior
File Directory
ASSIGN file at least 1 READ
CAT either READ READ
COPY
source file READ READ
destination file - READ & WRITE
CREATE ASCII file - READ & WRITE
CREATE BDAT file - READ & WRITE
CREATE DIR directory - READ & WRITE
ENTER file READ READ
GET file READ READ
LOAD file READ READ
LOADSUB file READ READ
LOCK file at least 1 READ
MASS STORAGE IS directory — READ
OUTPUT file WRITE READ
PLOTTER IS file at least 1 READ
PRINTER IS file at least 1! READ
PROTECT either MANAGER READ
PURGE either MANAGER READ & WRITE
RENAME either MANAGER READ & WRITE
RE-SAVE file READ & WRITE READ & WRITE
RE-STORE file READ & WRITE READ & WRITE
RE-STORE KEY file READ & WRITE READ & WRITE
SAVE file - READ & WRITE
STORE file - READ & WRITE
STORE KEY file - READ & WRITE
STORE SYSTEM file — READ & WRITE
TRANSFER
inbound file READ READ
outbound file WRITE READ

Dash (—) means “does not apply.

1 The statement. however is not useful withcut WRITE access to the file

33

Using Protected Files Created on a Pascal Workstation

The password protection assigned with the Pascal Filer's Access command imposes some restric-
tions on the use of BASIC keywords with a file protected with that command.

If a Pascal file’s SEARCH capability alone is protected, the BASIC catalog listing will show the file’s
READ capability as public. The protection assigned for SEARCH, however, limits the types of
BASIC read operations that can be performed on that file without the assigned password. For
example, you can catalog a directory whose READ access capability is public and whose SEARCH
access capability is not, but you cannot access any of the files or directories within that directory.

Similarly, the MANAGER access capability in BASIC encompasses the Pascal MANAGER,
CREATELINK and PURGELINK capabilities.

BASIC vs. Pascal Protections

BASIC
Access Capability Equivalent Pascal Access Capability
MANAGER MANAGER, CREATELINK, PURGELINK
READ READ, SEARCH

WRITE WRITE

34

Summary of BASIC Keyword Use on SRM

This section lists, in alphabetical order, the BASIC keywords that can be used with SRM and those
that are unique to SRM (CREATE DIR, LOCK, PROTECT, the CAT PROTECT option,
UNLOCK). Each keyword description in this section discusses only uses or features of the keyword
that apply to its use on SRM.

Syntax diagrams appear only with those keywords requiring a different syntax for use with SRM.
Where syntax diagrams are not included, you may follow the syntax described in the BASIC
Language Reference manual, substituting remote file specifier syntax (described in the previous
section) wherever *‘file specifier” is indicated in the keyword’s syntax.

For access capability requirements, refer to the chart in the previous section.

ASSIGN

With SRM, I/O path names can be assigned to remote files, attributes can be assigned to the 1/O
path, and /O paths can be closed. The following syntax and discussion describes only the use of
ASSIGN with remote files. See the BASIC Language Reference manual for details of other uses of
ASSIGN and the description of attributes associated with ASSIGN.

ass1oN (@) /0 p2*"

X

Example Statements

ASSIGN BRemote_file TO "DIR_JOHN/dir_prod/filel"”
ASSIGN BFile TO "Pi/FredsData<pass»:REMOTE"

Semantics

Assigning an /O path name to a remote file associates the /O path with the file at the specified or
default mass storage location.

ASSIGN opens any existing ASCII or BDAT file, regardless of protection on the file except when all
access capabilites (MANAGER, READ and WRITE) are taken from the public. Attempts to use
ASSIGN with a file whose capabilities are fully protected (without supplying the necessary pass-
words) result in Error 62.

In all other instances, a file's access capabilities are not checked at ASSIGN time. The specified
operation on the file associated with the /O path name is not executed, however, unless the file has
the necessary access capability for that operation. For example, you may ASSIGN an /O path
name to a file that has only the READ capability public, but attempting to perform an OUTPUT
operation without the password protecting the WRITE access capability generates Error 62.

ASSIGN does not create a file.

ASSIGN and Locked Files

Existing ASCII or BDAT files opened via ASSIGN are opened in shared mode, which means that
several users can open a file at the same time. If you lock a file (refer to LOCK) and subsequently
open that file via ASSIGN using the same @<name> (for example, to reset the file pointer), the
ASSIGN automatically unlocks the file (refer to UNLOCK). To maintain sole access to the file, you
must LOCK it again.

Closing an I/O path via ASSIGN (ASSIGN @...TO *) unlocks as well as closes the file (regardless of
the number of LOCKs in effect for the file at the time).

35

CAT

With SRM, CAT lists all or specified portions of the contents of a directory or information regarding
a specified PROG file. SRM adds the PROTECT option to the CAT statement. For a full description
of the CAT statement syntax and CAT options. refer to the BASIC Language Reference manual.

CAT 1

directory catalog
specifier device selector

Example Statements

CAT

CAT TO #701
CAT ":REMOTE"
CAT "/ vu/y?

CAT "DIRL/DIRZ"

CAT "A/B/C:REMOTE"

CAT "Mv_File"iPROTECT

CAT ":REMOTE: LABEL Mastervol"
CATSSELECT "D" s SKIP Ten_files
CAT TO Directorvy$(*)3j NO HEADER

Semantics

To catalog remote directories, either you must include a remote msus in the CAT statement or the
latest MASS STORAGE IS statement must have specified the desired remote msus. A catalog entry
is listed for each file in the working or explicitly specified directory.

CAT to a Device
The catalog listing format used by the SRM system depends upon the line-width capacity of the
device used for display.

When cataloging a remote directory on a 50-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PROJECTS/DIRL:REMOTE 2140 line 1
LABEL: Discl line 2
FORMAT: SDF line 3
AVAILABLE SPACE: 54096 line 4
PUB FILE NUMBER RECORD OPEN lineb
FILE NAME ACC TYPE RECORDS LENGTH STAT line6
Common_data MRW ASCII 48 256 OPEN
Personal_.data BDAT 33 256 LOCK
Prodram_alprha RHW PROG a4 256
HP9845_DATA R DATA? 22 256
HP9845_STORE MRW PROG? 9 256
Pascal..file ,TEXT MRHW TEXT 37 256
Prodram_500 MRW PROG? 12 256

When cataloging a remote directory on an 80-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PROJECTS/DIRLI:REMOTE 21,0 line 1
LABEL: Discl line 2
FORMAT: SDF line 3
AVAILABLE SPACE: S4096 line 4
§YS FILE NUMBER RECCRD MODIFIED PUB OPEN line5
FILE NAME LEY TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT line6
Commor.-data 1 ASCII 48 256 Z-Dec-B83 13:20 MRW OPEN
Personal-data 1 898x6 BDAT 33 256 Z2-Dec-83 13:20 LOCK
Prodram-alrha 1 98XE PROG 44 256 3-Dec-B3 15: B KW
HP98435._DATA 1 9845 DATA 22 236 10-0ct-B3 B:d45 R
HP9845 _STORE 1 9845 PROG 8 256 10-0ct-83 B:47 MRUW
Pascal_file,TEXT 1 PSCL TEX 37 236 11-Nou-B3 12:25 MRHW
Program_300 1 9000 PROG 12 256 13-Dec-83 9:54 MRHW
The header gives you the following information:
line 1 Directory name and remote msus. The full path to the specified directory is

displayed. Passwords used in the path are not displayed.

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on catalog format) in the path specifier
are shown. An asterisk (*) as the leftmost character in the path specifier
indicates that leading characters were truncated for the display.

37

38

The system remembers a maximum of 160 characters for any directory path
specifier at a single time. If a path specifier contains more than 160 characters,
the excess characters are removed from the beginning of the specifier and are
not retained. This restriction does not affect movement within the directory

structure.
line 2 Volume label of the volume containing the directory.
line 3 Directory format, such as SDF (Structured Directory Format). See your disc’s
operating manual for details.
line 4 Number of bytes available on the volume (given in increments of 256 bytes).
lines 5 and 6 Labels for columns of information given for each file. The information pro-

vided is summarized below.
The FILE NAME column lists the names of the remote files and directories in the directory.

The LEV column (80-column format only) shows the level of the file relative to the current working
directory or specified directory. The level is always shown as 1 in directory listings for Series 200
workstations.

The pPuB acC column lists the access capabilities available to all SRM system users. The three
capabilities are READ, (k) WRITE (W) and MANAGER (n).

® Public MANAGER capability on a file or directory allows any user on the SRM system to
PURGE that file or directory and to modify or add to its passwords (with PROTECT). Pass-
word-protected MANAGER capability gives users who supply the required password both
READ and WRITE capabilities as well as MANAGER capability.

® READ capability on a directory allows you to access any file or directory in the directory. The
READ capability on a file allows you to read the contents of the file.

e WRITE capability on a directory allows you to create or delete a file or directory in thét
directory. The WRITE capability on a file allows you to write information into that file.

The svs T¥PE column (80-column format only) shows the type of system used to create the file.
The system type is not shown for ASClI files and directories. 9836 denotes a Series 200 computer. If
the SRM system does not recognize the system type. a coded identifier. obtained from the system
being identified, appears in this column.

The FILE TYPE column indicates the file's type. Directories are indicated as type DIR. In the
50-column format. a question mark is appended to the file type if the file was not created on a
Series 200 computer and was a type other than ASCII or DIR. For example. in the display
illustrated earlier, DATA and PROG files created on an HP 9845 are listed as such. but shown with
the question mark.

File types recognized by the BASIC system on SRM are: ASCII, BDAT. BIN. DIR. PROG. and
SYSTM, as well as Series 200 Pascal and Series 500 file types.

If the system does not recognize a file's type. a coded file type identifier. obtained from the system
originating the file. appears in the FILE T¥PE column.

The NUMBER OF RECORDS column indicates the number of records in the file and the RECORD LENGTH
column indicates the number of bytes constituting each of the file’s records.

The MODIFIED columns (80-column format only) show the date and time the file’s contents were last
changed.

The 0PEN 5TAT column shows whether the file is currently open (0PEN), locked (LOCK) or corrupt
(CoRrR). DPEN indicates that the file has been opened, via ASSIGN, by a user. An open file is available
for access from other workstations. L0CK means the file is accessible only from the workstation at
which the file was locked. CORF indicates that the disc lost power while accessing the file, possibly
altering the file's contents. If the entry is blank, the file is closed and available to any user.

Note
If a file's status is shown as corrupt (CORR), you should run the DSCK
Utility program to check the directory structure and its integrity on the
SRM systemn disc. Refer to the SRM Operating System Manual for
details.

CAT to a String Array
Regardless of the workstation’s display width, a CAT to a string array always produces the
80-column format.

The PROTECT Option

PROTECT is a CAT option provided by the SRM BIN file and available only on SRM. This option
also requires the MS BIN file. The PROTECT option displays the password(s) and associated access
capabilities for the specified file or directory.

For example, the statement:

CAT "Test_file<MPASS::REMOTE" sPROTECT

might produce the display:

PASSWORD CAPABILITY
MPASS MANAGER +READ sWRITE
WPASS WRITE

RPASS READ

PASSWORD MANAGER

Use of this option requires MANAGER access capability on the file or directory. If the MANAGER
capability is public, the PROTECT option may be used by any SRM user.

PROTECT must be specified separately from other CAT options, and is allowed only with SRM files

and directories. Using PROTECT with media other than SRM results in
ERROR 1 Configuration error

39

40

CHECKREAD

For SRM, CHECKREAD is implemented as a no-op, because the CHECKREAD function is already
performed for every read and write statement on the SRM. Further checking places overhead on
the system and doing so would not be accurate. With SRM, CHECKREAD may or may not cause
a true write to the disc, while its read would probably only access the buffers in the SRM system.
SRM's internal read and write checking and the automatic checking on the link make using
CHECKREAD unnecessary.

CONTROL

With SRM, CONTROL sends control information to the internal table associated with an I/O path
name assigned to an ASCII or BDAT file (see ASSIGN). Refer to the CONTROL keyword entry in
the BASIC Language Reference manual for a full explanation of CONTROL syntax.

Control registers are listed in the “1/O Path Status and Control Registers” table in the Interface
Registers section of the BASIC Language Reference manual.

o th
CONTROL 170 pa
register
number

Example Statement
CONTROL @Rand_file,73File_lendgth

41

COPY

With SRM, COPY allows copying of individual remote files. Remote directories and volumes
cannot be copied.

old remote new remote
CCOPY) 'l file specifier I '(10) II file specifier |

Example Statements

COPY "/Dir_1/File-1" 7O "Dir_3/File_1"
COPY "File:INTERNAL" TO "File:REMOTE 21,0"
COPY Dir_path$bFile$&Msusd TO "File:INTERNAL"

Semantics

The contents of the old remote file are copied to the new remote file and an entry is placed in the
destination directory. The old and new remote files may be in the same directory, but the new
remote file’s name must be unique.

Although you may include a password in the new remote file specifier, the system ignores the
password. If you wish to protect access to the new file, you must assign the password with
PROTECT.

CREATE ASCII

With SRM, CREATE ASCII creates a new remote ASCII file, placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements

CREATE ASCII "Text03"y 100
CREATE ASCII "/Dirl/Dir2/ASCIIFILE",Z5

Semantics

The name of the newly-created ASCII file must be unique within its containing directory.

CREATE ASCII does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE ASCII, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote ASCII
file’s initial space allocation. The physical records of an ASCII file have a fixed length of 256 bytes.
(Logical records have variable lengths, determined automatically when an OUTPUT, SAVE or
RE-SAVE statement is used.)

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file’s current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE ASCII statement’s remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE ASCII statement are ignored.

43

44

CREATE BDAT

With SRM, CREATE BDAT creates a new remote BDAT file, placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements

CREATE BDAT "File")RecordssRec_size
CREATE BDAT "/Diri/DirZ/BDATFILE" 25,128
CREATE BDAT "Dir/File:REMOTE" .10

Semantics
The name of the newly-created BDAT file must be unique within its containing directory.

CREATE BDAT does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE BDAT, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote BDAT
file’s initial space allocation. The length of a BDAT file’s physical records is either specified by the
record size parameter or set to 256 bytes if no record size is specified.

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file’s current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size. On SRM, CREATE
BDAT does not allocate a sector for system use, as it does with local files.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE BDAT statement’s remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE BDAT statement are ignored

The data in remote BDAT files can be accessed both serially and randomly.

CREATE DIR

Option Required SRM,DCOMM
Keyboard Executable Yes
Programmable Yes
Inan IF.. THEN... Yes

This statement creates a directory in either the current working directory or in the specified remote
directory of an SRM mass storage device.

(creaTE DIR }—={&2CESH2e!

Example Statements

CREATE DIR "Under_work_dir"

CREATE DIR “"Levell/LevelZ/New.dir:REMOTE 21,3"
CREATE DIR "/Levell/LevelZ/New_dir"

CREATE DIR "Levell<RWpassword>/New_dir"

Semantics

This statement creates a special 24-byte file of type DIR and a corresponding directory entry in the
current working directory or specified remote directory. The DIR file, or directory, keeps informa-
tion on files and directories immediately subordinate to itself.

The name of the newly-created directory must be unique within its containing directory.

Like remote data files, DIR files are extensible. Extents are added in 24-byte increments. As each
directory or data file is created within a directory, a 24-byte record identifying the addition is added
to the DIR file.

If no directory path is included in the directory specifier, the directory is created within the current
working directory (the directory specified in the latest MASS STORAGE IS statement). To specify a
target directory other than the current working directory, specify the directory path to the desired
directory.

You cannot assign passwords to a directory when you create it. Passwords are assigned only via
PROTECT. If an error occurs during execution of CREATE DIR, the directory entry in the superior
directory is not made, and the directory is not created.

DIR files are opened with the MASS STORAGE IS (MSI) statement.

Refer to the section on ‘‘Syntax for Remote File and Directory Specification” earlier in this chapter
for details on the semantics of directory specifiers.

45

46

ENTER

With SRM, ENTER is used to read data from a remote data file identified by an [/O path name and
to assign the value(s) to variable(s). (See also ASSIGN.)

The capabilities available for using ENTER with remote files are the same as those for using ENTER
with local files. Refer to the ENTER keyword entry in the BASIC Language Reference manual for a
full explanation of ENTER syntax.

enten)—(e] 170, he" | -

record
number

r
X

Example Statements

ENTER BRemote_filesREC3Alrhat Betat Gammas
ENTER EName_of 1A+B

Semantics

Entering data from remote files requires the READ access capability on the superior directory and
on the file from which the data are to be read. If this capability is not public or if a password
protecting this capability was not used at the time the file was ASSIGNed. an error is reported.

GET

With SRM, GET reads the specified remote ASCII file and attempts to store the data in memory as
program lines.

Example Statements

GET "Filename:REMOTE"
GET "/Dir1/Dir2/Dir3/filename<READPass>"

Semantics

You may use GET with any ASCII file whose data is in the format of a BASIC program (that is,
having numbered lines). Although you may also use GET with ASCII files created on non-Series
200 SRM workstations (HP 9835, HP 9845 or Model 520), any line that is not valid BASIC syntax
for Series 200 computers is stored as a commented (!) program line.

When used on SRM, GET is executed in shared mode, which means that several users can get one
file at the same time. Attempts to get a locked file (see LOCK) result in Error 453. Additionally, you
cannot get a file while it is being saved. The SAVE and RE-SAVE operations open the file in
exclusive mode (shown as LOCK in a CAT listing) and enforce that status until the SAVE or
RE-SAVE is complete. While in exclusive mode, the file is accessible only to the SRM workstation
executing the SAVE or RE-SAVE.

47

48

INITIALIZE

INITIALIZE can be used to initialize local mass storage media only. An error will result if you try to
initialize a shared system volume.

98619-90051,rev: 3/85

LOAD

With SRM, LOAD loads the contents of remote PROG or BIN files into memory, or sets the
typing-aid definitions of the softkeys according to the contents of a remote BDAT file.

Example Statements

LOAD "Program_z"
LOAD "/Dirl/Dir2/Prodg2" 300
LOAD "Dir3/Pro9_1:REMOTE"

LOAD BIN Dirs&File$dMsuss
LDAD BIN "dirl/dir2/bin_file<Readrass>:REMOTE 21,53iLABEL Disc”

LOAD KEY "KEYS:REMOTE"
LOAD KEY "/Dirl/Dir2/Kevfile"

Semantics

LOAD

LOAD can be used with remote PROG files (created with the STORE statement). LOAD is
executed in shared mode, which means that several users can load a file at the same time. Files
being stored with the STORE or RE-STORE statements are locked during that operation and
cannot be accessed for loading.

LOAD BIN
LOAD BIN can be used with remote BIN files. LOAD BIN is executed in shared mode, which
means that several users can load a BIN file at the same time.

BIN files can be loaded into a workstation from the SRM without the SRM BIN file present in the
workstation. Refer to the “Booting from SRM” section of this chapter for more details.

LOAD KEY

LOAD KEY can be used with remote BDAT files (created with the STORE KEY statement). LOAD
KEY is executed in shared mode, which means that several users can perform a LOAD KEY from a
BDAT file at the same time. Files being stored with the STORE KEY or RE-STORE KEY statements
are locked during that operation and cannot be accessed for loading.

49

50

LOADSUB

With SRM, LOADSUB allows you to load subprograms from a remote
workstation.

Example Statements

LOADSUB
LOADSUB
LOADSUB
LOADSUB
LOADSUB

FROM "APSUBS"

FNRerlace$ FROM "SUBFILE"

ALL FROM Subfiles

ALL FROM "Dir3/Prodfile<Readrass:"
ALL FROM "/Dirl/DirZ/Prog23"

Semantics

With SRM, LOADSUB is executed in shared mode, which means that several workstations can

perform a LOADSUB of a file at the same time. PROG files being stored with the STORE or
RE-STORE statement are locked during that operation and cannot be accessed for loading.

PROG file into your

LOCK

Option Required SRM,DCOMM
Keyboard Executable Yes
Programmabile Yes
In an IF... THEN... Yes

This statement prevents other SRM workstations from accessing the remote file to which the I/O
path name is currently assigned (see ASSIGN).

(e] 7052 F(; —=(connrrronar }—{ 2ten7. —~

Item Description/Default Range Restrictions

/O path name name identifying an 1/O path any valid name (See
Glossary.)

return variable name of a numeric variable any valid name (See
Glossary.)

Example Statements

LOCK BFileiCONDITIONAL Result
LOCK BAscii_13iCONDITIONAL Error_number

Semantics

This statement establishes sole access to a file that has been opened with an ASSIGN statement.
This exclusive access remains assigned to the workstation executing the LOCK statement until an
UNLOCK statement is executed by that workstation. The UNLOCK function is also a result of
SCRATCH A, and ASSIGN...TO * (explicitly closing an /O path).

A file may be locked several times. The system counts the number of LOCKs on a file, and an equal
number of UNLOCKs must be executed to unlock the file. When an /O path name is closed (for
example, by ASSIGN...TO *), all LOCKs of that [/O path name are cleared.

If the LOCK is successful, the value of the return variable will be zero. Otherwise, the return
variable’s value will be the error number corresponding to the cause of the LOCK's failure.

51

MASS STORAGE IS

With SRM, MASS STORAGE IS specifies the SRM working directory.

remote
|IIIIIIiiiiiI|III|
directory

specifier

MASS STORAGE IS

Example Statements

MSI "Diri/DirZ/Prodect_dir"
MGI v, . "

MASS STORAGE IS ".<password:"
MSI ":REMOTE"

Semantics

SRM allows directories or volumes to be assigned as system mass storage. If you specify the volume
password in an MSI statement, that password is automatically applied to all accesses that use the
default msus (that is, no remote msus is specified in the remote file specifier) until a remote msus is
included in a subsequent MSI.

ON TIMEOUT

With SRM, ON TIMEOUT defines and enables a branch resulting from an /O timeout on the
specified SRM interface. Although ON TIMEOUT is supported on SRM, its use should be avoided
because the asynchronous nature of the SRM system does not allow predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave a tempor-
ary file on the mass storage device. The file’s name is a 10-character identifier (the first character is
an alpha character, the rest are digits) derived from the value of the workstation’s real-time clock
when the TIMEOUT occurred. You may wish to check the contents of any such file before purging.

53

54

OUTPUT

With SRM, OUTPUT writes item(s) to the remote file to which the specified /O path name is
assigned (see ASSIGN). Refer to the OUTPUT keyword entry in the BASIC Language Reference
manual for a full explanation of OUTPUT syntax.

1/0 path | __ _

(outeut)——. rane | |
record output
number items

Example Statement
OUTPUT @FileiArrav(*)END

Semantics

You must have WRITE access capability on the remote file to output data to the file.If this capability
is not public or if a password protecting this capability was not used at the time the file was
ASSIGNed, Error 62 is reported.

If the data output to the file with this statement would overflow the file's space allocation, the system
allocates the additional space needed to save the file (provided the disc contains enough unused
storage space). Refer to the "System Concepts” section of this chapter for more details on the
extensible nature of remote files.

PLOTTER IS

With SRM, PLOTTER IS causes all subsequent plotter output to go to the specified remote BDAT
file. Refer to the PLOTTER IS keyword entry in the BASIC Language Reference manual for a full
explanation of PLOTTER IS syntax.

CUEED = IEETES *HPGL" J .|

Example Statements

PLOTTER IS "/PL/Plotfile"
PLOTTER IS "Plotfile:REMOTE","HPGL"+G6,25,256.,25+6.975+186.,975

Semantics

If the specified remote file is in the SRM plotter spooler directory and the file contains data, when
the file is closed the SRM system sends the data to the plotting device and then purges the file. You
may close the file by executing another PLOTTER IS statement, SCRATCH A or SCRATCH BIN,

or by pressing (RESET)

No end-of-file error occurs on SRM. If the data output to the file with this statement would overflow
the file’s space allocation, the system allocates the additional space needed to save the file (pro-
vided the disc contains enough unused storage space). Refer to the “‘System Concepts’ section of
this chapter for more details on the extensible nature of remote files.

55

56

PRINTER IS

With SRM, PRINTER IS specifies a remote BDAT file as the system printing file. Refer to the
PRINTER IS keyword entry in the BASIC Language Reference manual for a full explanation of
PRINTER IS syntax.

CUEED B J |

Example Statements

PRINTER IS "Seooler:REMOTE"
PRINTER IS "My_dir/Temp_print"3iWIDTH B8O

Semantics

The system printing file receives all data sent by the PRINT statement, all data sent by CAT and
LIST statements in which the destination is not explicitly specified, and other output generated by
the BASIC system.

If the specified remote file is in the SRM printer spooler directory and the file contains data, when
the file is closed, the SRM system sends the data to the printer and then purges the file. You may
close the file by executing another PRINTER IS statement, or a SCRATCH A or SCRATCH BIN

command.

No end-of-file error occurs on SRM. If the data output to the file with this statement would overflow
the file’s space allocation, the system allocates the additional space needed to save the file (pro-
vided the media contains enough unused storage space). Refer to the *“System Concepts™ section
of this chapter for more details on the extensible nature of remote files.

PROTECT

With SRM, this statement protects access capabilities by assigning passwords to remote files and
directories. The use of PROTECT with SRM is distinct from its use with local files (described in the
BASIC Language Reference manual).

remote file
specifier

directory
specifier

(proTECT

Example Statements

PROTECT "dir:REMOTE" »("mgr" :MANAGER) +("rw" :READ WRITE)
PROTECT "File<rw:"»("ruw"sDELETE)
Semantics

PROTECT allows you to control access to remote files and directories by protecting access capabili-
ties with password(s). Access capabilities are either public (available to all SRM users) or password-
protected (available only to users supplying the correct password with the file or directory specifier).

The three access capabilities — MANAGER, READ and WRITE - are public unless the PROTECT
statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can be exer-
cised on the file or directory only if the correct password is included in the file or directory specifier.
For instance, if a file's READ capabilities are protected, any user wishing to execute a command or
statement that reads the file must supply a password protecting the file’s READ capability.

MANAGER

Public MANAGER capability allows any SRM user to PROTECT, PURGE or RENAME a file or
directory. Password-protected MANAGER capability provides READ and WRITE, as well as MAN-
AGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access capabilities on
that file or directory. This includes adding, deleting and changing passwords.

READ

READ capability on a file allows use of commands and statements that read the contents of a file
(for example: ENTER, LOAD, GET). READ capability on a directory allows you to read the files in
the directory (CAT), or to “‘pass through” a directory by including the directory name (and
password, if assigned) in a directory path.

57

58

WRITE

WRITE capability on a file allows use of commands and statements that write to the file (for
example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory allows use of com-
mands that add or delete file names in the directory (for example: SAVE. STORE, PURGE,
CREATE, RENAME).

Use of PROTECT

Each PROTECT statement allows up to six password/capability combinations per statement. The
number of PROTECT statements that can be executed for each file or directory is unlimited,
however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To retain
previous capability assignments for a file or directory, you must include those assignments in
subsequent PROTECT statements designating the same password for that file or directory.

For example, say you protected the READ access capability on a file with the password passme
then wanted to change that assignment so that passme would protect both the READ and WRITE
access capabilities for that file. If you executed a second PROTECT statement associating passme
with the WRITE capability only. passme would no longer protect the READ capability. Instead, you
should specify the password and both the READ and WRITE capabilities in the second PROTECT
statement.

To modify the access capabilities protected by a password, execute the PROTECT with the existing
password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a file or
directory. To be effective, DELETE must be the only secondary keyword used with a password/
capability pair in the PROTECT statement. Otherwise, DELETE is ignored. MANAGER capability is
required to perform the DELETE. A DELETE executed without MANAGER capability results in a
protect code violation error.

59

PURGE

With SRM, PURGE deletes a file entry from a directory or an empty remote directory from its

superior directory.
remote file
specifier
directory

Example Statements

PURGE "File"
PURGE "Dir_a+<RWpass:/File<MGRrPass:"
PURGE "Dirl/Dir2/Dir3"

Semantics

Only remote files and directories that are closed can be purged. Remote files are closed by
ASSIGN...TO * (explicitly closes an /O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by

RESET). The current working directory is closed by an MSI to a different directory.

Once a file or directory is purged, its contents cannot be recovered.

To be purged, directories must be empty (must not contain any subordinate files or directories) as

well as closed.

60

RENAME

With SRM, RENAME changes a remote file’s name in a remote directory and performs limited file
relocation.

old remote file
specifier

0old directory
specifier

Example Statements

RENAME "Old_name" TO "New_name"
RENAME "Dirl<RWpass:/F1<MGRrass:" TO "DirZ<RWpass:/F1"
RENAME "THIS:REMOTE" TO "THAT"

new remote file
specifier

new directory
specifier .

Semantics

RENAME can be used to change the name of remote files and directories or to move files within the
directory structure. Directories cannot be moved with RENAME. Moving of files must occur within a
single volume. If you move a file with RENAME, the original file (*‘old remote file specifier’’) is
purged.

A maximum of nine names (file or directory) are allowed in the combined file/directory specifiers in
the RENAME statement. No more than six names are allowed in either specifier individually. (The
number of names in the old file/directory specifier plus the number of names in the new file/
directory specifier must not exceed nine.)

Files and directories must be closed before being renamed. Remote files are closed by
ASSIGN...TO * (explicitly closes an /O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESET). The current working directory is closed by an MSI to a different directory.

Existing passwords are retained by the renamed file or directory. The new file name must not
duplicate the name of any existing file in the destination directory.

RE-SAVE

With SRM, RE-SAVE creates a remote ASCII file and copies program lines as strings into that file.

Example Statements

RE-SAVE "File"
RE-SAVE "Dir<RWpass:/File<tRWpass:"

Semantics

RE-SAVE opens the remote file in exclusive mode (denoted as LoCk in a CAT listing) and enforces
that status on the file until the RE-SAVE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the RE-SAVE.

If the file does not already exist, RE-SAVE performs the same action as SAVE. Including a pass-
word in the RE-SAVE statement’s remote file specifier does not protect the file. Passwords are
assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-SAVE is performed on the file. If you
specify the wrong password on a protected file, the system returns an error message.

Use of RE-SAVE on SRM may leave temporary files on the mass storage media if or
is pressed or a TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a
10-character name (the first is an alpha character, others are digits) derived from the value of the
workstation’s real-time clock when the interruption occurred. You may wish to check the contents
of any such file before purging.

61

62

RESET

With SRM, this statement resets the pointers of a remote file identified by an /O path name (see
ASSIGN).

ORI

Example Statement
RESET BRemote_file

RE-STORE

With SRM, RE-STORE creates a remote file and stores the BASIC program or typing-aid key
definitions in that file.

Example Statements

RE-STORE "Prog.a"

RE-STORE "Dir<RWpass»/Prog_ziRWpass:"
RE-STORE KEY "KEYS:REMOTE"

RE-STORE KEY "TYPING®

Semantics
RE-STORE creates a remote PROG file, and RE-STORE KEY creates a remote BDAT file.

RE-STORE opens the remote file in exclusive mode (denoted as LoCK in a CAT listing) and enforces
that status on the file until the RE-STORE is complete. While in exclusive mode, the file is inaccessi-
ble to all SRM workstations other than the one executing the RE-STORE.

If the file does not already exist, RE-STORE performs the same action as STORE. Including a
password in the RE-STORE statement’s remote file specifier does not protect the file. Passwords
are assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-STORE is performed on the file. If
you specify the wrong password on a protected file, the system returns an error message.

Use of RE-STORE on SRM may leave temporary files on the mass storage media if or
is pressed or a TIMEOUT occurs during the RE-STORE. The file name of the temporary file
is a 10-character name (the first is an alpha character, others are digits) derived from the value of
the workstation’s real-time clock when the interruption occurred. You may wish to check the
contents of any such file before purging.

63

64

SAVE

With SRM, SAVE creates a remote ASCII file and copies program lines as strings into the file.

Example Statements
SAVE "THE_WHALES"®
SAVE "Dir<RWrpass:/File"
SAVE "Ascii_file:REMOTE"

Semantics

SAVE opens the remote file in exclusive mode (denoted as Lack in a CAT listing) and enforces that
status on the file until the SAVE is complete. While in exclusive mode, the file is inaccessible to all
SRM workstations other than the one executing the SAVE.

Including a password in the SAVE statement’s remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

SCRATCH A

With SRM, SCRATCH A releases the system resources allocated to the workstation executing the
SCRATCH A, making those resources available to other SRM workstations. SCRATCH A closes all
files and directories, and resets the workstation’s working directory to the default msus (the mass
storage unit from which the workstation booted).

If the workstation has Boot ROM version 3.0 or later, and booted from the SRM, SCRATCH A
resets the working directory to the root of the default system volume. If the workstation has an
earlier version boot ROM or Boot ROM 3.0L, SCRATCH A resets the working directory to the
~ device from which the workstation booted (for example, :INTERNAL if the workstation booted
from a built-in drive).

65

66

STATUS

With SRM, STATUS returns the contents of /O path name status registers (see ASSIGN). Refer to
the STATUS keyword entry in the BASIC Language Reference manual for a full explanation of
STATUS syntax. Status registers are listed in the /O Path Status and Control Registers’” table in
the Interface Registers section of the BASIC Language Reference manual.

name

O ki

O
number

Example Statement

STATUS BFile S3Record

STORE

With SRM, STORE creates a remote file and stores a program or typing-aid key definitions into it.

Example Statements

STORE "Prog32"

STORE "Dir<RWpass:/Prodram"
STORE KEY "KEYS:REMOTE"

STORE KEY "/USERS/KRIS/TYPING"

Semantics
STORE creates a remote PROG file, and STORE KEY creates a remote BDAT file.

STORE opens the remote file in exclusive mode (denoted as Lock in a CAT listing) and enforces
that status on the file until the STORE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the STORE.

Including a password in the STORE statement's remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

67

68

STORE SYSTEM

With SRM, STORE SYSTEM stores the entire BASIC operating system currently in memory
(including any BIN files) into the specified remote file.

Example Statements

STORE SYSTEM “SYSTEM_B1:REMOTE"
STORE SYSTEM "/SYSTEMS/SYSTEM_NEW"

Semantics

Including a password in the STORE SYSTEM statement’s remote file specifier does not protect the
file. Passwords are assigned only with PROTECT. You do not receive an error for including a
password with the remote file specifier. but the system ignores the password.

The READ access capability on the system file created with STORE SYSTEM must be public to
allow use of the file for booting.

69

SYSTEMS$

With SRM, this function returns a string containing system status and configuration information.

type of
svstens)—~() D

literal form of type of information:

—()7 (mss stoance 15—~)

PRINTER IS

Example Statement

SYSTEM$("MSI")
SYSTEM$("PRINTER I8")
SYSTEM®("PLOTTER IS")

Semantics

The system configuration information returned when SYSTEMS is executed on SRM includes the
full remote file specifier describing the file or directory about which the information is requested.
Passwords in the specifier are not included.

The system remembers a maximum of 160 characters for any one specifier. If a specifier contains
more than 160 characters, the excess characters are removed from the beginning of the specifier
and are not retained. An asterisk (¥) as the leftmost character in the specifier indicates that leading
characters were truncated for the function.

70

TRANSFER

With SRM, this statement initiates unformatted data transfers between the workstation and remote
mass storage devices. Either the source or destination of the transfer is specified as an /O path
name assigned to a remote BDAT file (see ASSIGN). Refer to the TRANSFER keyword entry in the
BASIC Language Reference manual for a full explanation of TRANSFER syntax.

Example Statements

TRANSFER @Buffer TO @FileiCONT

TRANSFER BDir_Path T0O EDestinaticniCOUNT Z56
TRANSFER @Source TO @BufferiDELIM "/"

TRANSFER @Path TO EBBuffer:RECORDS 12,EQR(COUNT 8)

Semantics

TRANSFER behaves the same on SRM as with local mass storage, except that inbound and
outbound transfer execution is not overlapped. Whereas the discs on the SRM may be cabable of
overlapped operation, the SRM system performs TRANSFERSs serially. This difference only matters
in applications, such as data logging, where you may want a program to be able to execute other
statements before the transfer has completed. For further details, refer to the ‘“Transfer Perform-
ance’’ section in the ““Advanced Transfer Techniques” chapter of the BASIC Interfacing Techni-
ques manual.

UNLOCK

Option Required SRM,DCOMM
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement is used to remove exclusive access (placed by the LOCK statement) to a remote file
identified by an I/O path name (see ASSIGN).

(unLock) @ 170 patn

[tem | Description/Default | Range Restrictions
/O path name name identifying an I/O path to a remote file any valid name (See
Glossary.)

Example Statements

UNLOCK EBFile
IF Done THEN UNLOCK BFile

Semantics

This statement unlocks a file previously locked with the LOCK statement. While a file is locked,
other SRM workstations cannot access the file. After UNLOCK, other users may access the file
provided they possess the proper access capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs must be executed to
unlock the file.

UNLOCK is performed automatically by SCRATCH A, and ASSIGN...TO * (explicit closing
of an I/O path).

71

72

450
451
453
454
455
456
457
458
459
460
461
462
465
466
481
482
483
484
485

SRM BASIC Error Codes
for HP Series 200 Computers

Volume not found

Volume labels do not match

File is use

Directory formats do not match
Possibly corrupt file
Unsupported directory operation
Passwords not supported
Unsupported directory format
Specified file is not a directory
Directory not empty

Duplicate passwords not allowed
Invalid password

Invalid rename across volumes
Duplicate volume entries

File locked or open exclusively
Cannot move a directory via a RENAME
System down

Password not found

[nvalid volume copy

HP Series 200 Chapter
Pascal Workstation Use on SRM 2

The Shared Resource Management system (SRM) connects several workstations (computers) to
form a network that allows sharing of files and peripherals. This network is controlled by a system
controller.

The Pascal language system incorporates features to access shared resources. This chapter outlines
the use of an HP Series 200 computer operating under Pascal as an SRM workstation.

Note
This chapter summarizes Pascal language features that support the use
of SRM and does not include a comprehensive discussion of Pascal
language system terms and concepts.

For detailed information, refer to the Pascal User’s Guide and the Pascal
Workstation System manual (previously the Pascal User’s Manual).

73

74

System Concepts
How Your Workstation Connects to SRM

To use the SRM system, you need to know how to move information from one point to another in
the system. Everything in the SRM system has a name and/or address. This section is a guided tour
of the SRM configuration.

Your Workstation’s Identification
Your workstation’s contact with the SRM system is through an HP 98629A (Resource Management
Interface) card. This card is placed in one of the Input/Output slots in the rear of your computer.

Your workstation is uniquely identified to the SRM system by its node address, assigned when the
workstation was added to the SRM system. The node address is set on the HP 98629A card by
means of switches on the card.

The HP 98629A card also has a setting called the select code, which should normally be left at 21.
All of the software shipped to you that uses your workstation’s select code expects to see 21. See
the SRM Hardware Installation Manual for information on the HP 98629A interface card.

The Connection to the SRM Server

Communication between your workstation and the SRM server can be accomplished by two
methods: the coax link configuration and the multiplexer link configuration.

The coax link uses coaxial cables and HP 50961 Resource Management Coax Adapters which plug
into each of the HP 98629A Resource Management Interfaces on the coax link. A coax cable then
connects to each coax adapter, forming a “bus” configuration between the server (or servers) and
the workstations.

The multiplexer has a cable connecting it to the SRM system controller. The controller end of the
cable attaches to another HP 98629A interface card in the controller.

The Server’s Identification
The server card’s node address setting is normally O for all HP 98629A cards in the system’s first
SRM server, 1 for the second controller, and so on.

The SRM system server may contain several HP 98629A interface cards. Unique select code
settings distinguish one HP 98629A interface in the server from another.

Identification of Shared Disc(s)

Each SRM server can have multiple shared disc drives connected to it. From your workstation’s
point of view (as shipped), only one shared disc is available. The Pascal operating system automati-
cally configures to have Pascal volume #5: assigned to the primary (first) SRM system disc.

Additional discs or servers on the SRM system are recognized only if your Pascal CTABLE program

is modified. (The procedure is discussed in the chapter on “System Startup” and is typically done
by your SRM system manager when the disc is configured to the SRM system.)

98619-90051,rev: 3/85

Unit Numbers for Shared Disc(s)

A workstation connected to an SRM normally has units #5: and #45: set up for SRM shared disc
access. The use of two units is in keeping with the idea that there are usually two special volumes
(the system volume and the default volume) through which most file accesses occur.

If the workstation is booted from SRM, unit #45: will automatically be configured to be the system
volume and unit number #5: will be available for use as the default volume. If there is local mass
storage, the system volume can be any volume you desire. To set the system and default volumes,
use the What command from the Main Command Prompt.

Here is how the Filer's Volumes display might look right after booting up a workstation connected
to the SRM and having no local mass storage:

Yolumes on-line:

1 CONSOLE:
2 SYSTERM:
3 # GRM:

6 PRINTER:

45 * SYSTEMAZ:
Prefix is - SRM:

You can see that the system starts out with #5: as the default volume (Prefix is)and #45: as the
system volume.

The names skM: and §YSTEM4Z: are names of directories in the SRM’s hierarchical directory
structure (discussed later in this section). In this example, the name of the SRM volume is SkM, the
workstation we are using is at node address 42, and a directory called SYSTEM42 exists. 5YSTEM42 :
is thus selected as the system volume (denoted by the * beside the directory’s name). All of this
selecting is done by the Pascal TABLE program as it configures the system each time you boot.

Identification of Shared Peripherals
Shared peripherals (printers and plotters) are connected to the SRM server. To manage the use of
the shared printers and plotters, the server maintains special directories called “spooler directories.”

You send information, in files, to a peripheral by placing the file name in the proper spooler
directory. The SRM server keeps track of the order in which files are sent to the directories and,
when the printer or plotter is free, sends the files to the appropriate output devices in that order.
Once you have placed a file in a spooler directory, your workstation is free to do other processing.

98619-90051,rev: 3/85

75

76

SRM’s Hierarchical Directory Structure

The SRM system uses a hierarchical directory structure to organize its files. This directory structure
looks like an inverted tree (see example below). The top level in the structure is called the ‘“‘root.”
Within the root are directories or files. Each directory may contain files or other directories. The
drawing below shows a hierarchical directory structure.

[T] (root)

SYSTEMS WORKSTATIONS USERS

| 1
| | [I |

SYSTEM SYSTEM42 808 ROGER FRED

— SYSTEM—P I—work |:work
fi

|: work MYSTUFF

The directory SYSTEMS is a special directory used by Boot ROMs version 3.0 or later to automati-
cally load operating or language systems. The SYSTEMS directory is discussed in more detail in the
“System Startup’’ chapter.

Note that, within the directory USERS, each of the three subordinate directories — ROGER, BOB
and FRED — contains a file called work. Because each file and directory is uniquely specified by the
list of directories from the root to the file, several files of the same name can exist in the directory
structure (provided they are not within the same directory).

Notation

In specifying a location within the directory structure, the root is designated by a slash (/). To refer
to a file or directory immediately under the root, for instance the directory USERS in the previous
illustration, you would write:

/USERS

To specify a level further down the hierarchy, for instance, the directory ROGER under USERS,
you would write:

/USERS/ROGER

and for yet another level:

/USERS/ROGER/work

As you can see, to specify a file, the list of directories to the target file must be specified. Directories
in the list are separated by slashes (/). The sequence of names and slash delimiters is called a
“directory path,” because it indicates the path one must follow down the hierarchy to get to a
particular file or directory.

SRM Access Rights

To control access to a file or directory, you can associate passwords with “‘attributes” that designate
the type of access to be protected. Passwords may be assigned at the time the file or directory is
created or with the Filer's Access command.

Any access right to which no password is assigned is public. Any user on the SRM may perform
operations requiring the access right that is public, whereas only users supplying a correct password
can perform operations that require the protected access.

The attributes and the access rights controlled by their association with passwords or made avail-
able to all SRM users by their remaining public are:

Attribute Access to File Access to Directory
READ operations that read from the | listing the directory’s con-
file tents
WRITE operations that write to the | adding or modifying the
file directory’s contents (also
need SEARCH to add to
directory’s contents)
SEARCH does not apply accessing the directory’s
contents
CREATELINK | creating links to the file creating links to the direc-
tory
PURGELINK removing or renaming the file | removing or renaming the
directory
MANAGER assigning, removing or chang- | assigning, removing or
ing passwords on the file changing passwords on the
directory
when password-protected, | when password-protected,
gives all other access rights as | gives all other access rights
well as well

For example, SEARCH access is required on all directories along the path to a given file or
directory. Suppose the password search_pass protects the SEARCH access on the directory
ROGER (see illustration). To reach the directory MYSTUFF from the root, a user would have to
include the password in the directory path specifier to MYSTUFF, as in:

/USERS/ROGER<search_pass>/MYSTUFF

If the SEARCH access capability on ROGER was public, any user could “‘pass through” ROGER
without supplying a password.

SRM access information is shown in the Filer's Extended directory listing under the heading
directorsy info. The one-letter identifiers (r for READ, W for WRITE, 5 for SEARCH, and so
forth) indicate the public access rights on the files listed.

The Pascal Workstation System manual discusses SRM access rights in more detail.

77

78

SRM Concurrent File Access

The Pascal system defines three modes of access to shared files: EXCLUSIVE, SHARED and
LOCKABLE.

EXCLUSIVE access mode allows only one workstation to open a file at a time. All files opened on
the SRM are, by default, opened in EXCLUSIVE mode.

A file whose access mode is SHARED may be opened by a number of SRM workstations for both
reading and writing. This mode is primarily intended for reading from files, not writing to them.
When two users write to the same file at the same time, results are unpredictable.

The LOCKABLE access mode restricts the ability to read from and write to a file to the workstation
that locks the file (using the file operations LOCK, WAITFORLOCK, and UNLOCK, as described in
the Pascal Workstation System manual). The file remains inaccessible to other workstations until it
is unlocked from the workstation at which it was locked.

Files are typically locked and unlocked from within programs. The “Filer System” chapter of the
Pascal Workstation System manual discusses concurrent file access in more detail.

The current status for SRM files is shown in the Filer's Extended directory listing under the heading
directory info. A current status of the files within the listed directory is shown as CLOSED, SHARED,
EXCLUSIVE or CORRUPT.

CORRUPT indicates that the disc lost power while accessing the file, possibly altering the file’s con-
tents.

Note

If a file’s status is shown as CORRUPT. you should run the DSCK Utility
program to check the directory structure and its integrity on the SRM
system disc. Refer to the SRM Operating System Manual for details.

Duplicating Files in More Than One Directory

To save disc space, you can use the Filer's Duplicate link command to link a file into a directory
other than its original location. Once a link has been established, the file looks to the Pascal system
as though it is in the directory to which it is linked.

For example, if you created a duplicate link from the file {1 in the directory FRED to the directory
MYSTUFF, you could specify the path to f1 as:

/USERS/ROGER/MYSTUFF/{1

even though no copy of f1 actually exists in MYSTUFF.

l L I (I‘OOI’)

SYSTEMS WORKSTATIONS USERS

BOB ROGER FRED

|‘wc.n'k kwork

ljwc'r'k MYSTUFF

This allows you to have access to files without making extra copies of them.

If a file is purged from a directory to which it was linked, only the directory from which the file was
purged loses access to that file. All other directories with links to the file can still find it. The disc
space allocated to a file is only reclaimed when no directories have links to that file.

The Duplicate link command is discussed with other Filer Commands in ‘“The Filer”” chapter of the
Pascal Workstation System manual.

79

Using Your Pascal Workstation on SRM

This section describes, through examples, some common procedures you’ll be using to operate
your Pascal workstation on the SRM, including:

® specifying locations within the hierarchical directory structure;

® creating directories;

® specifying files, directories and volumes;

® protecting access to files and directories by assigning passwords;

® using shared printers and plotters;

® using Pascal Filer commands with SRM.

Note About Key References

Throughout this section, symbols for the keys used to enter commands
are shown with each command.

The symbol denotes the key to be used on either the
HP 98203A or HP 98203B keyboard. The symbol denotes the
key to be used on the HP 46020A keyboard.

The HP 46020A keyboard is not supported by versions of the Pascal
language system prior to 3.0.

Moving Up and Down the Hierarchy

It would be tedious to type a directory path every time you wanted to access a file. To avoid this,
you can use the Filer's Prefix and Unit directory (Udir) commands to establish a directory as a
reference point from which another location in the directory structure can be specified. A directory
path to a file begins either from that reference point or from the root. To move about within the
directory structure, you specify new reference points.

The following discussion uses the directory structure illustrated below:

root)
[l | ¢
SHARED WORKSTATIONS USERS
| l
l]]]
SYSTEM SYSTEM42 BOB ROGER FRED

work twork
[1 f1

DATA REPORTS ’
w MYSTUFF

ork

Using the Prefix Command

Specifying a default volume tells the Pascal file system what volume name to use when none is
specified with a file name. With SRM, the Pascal file system considers a directory a “‘volume.”
Thus, you may designate a directory as the default volume and the system will perform file accesses
directly within that directory or use the directory as the beginning of a path to another location in
the directory structure.

All volumes recognized by your Pascal workstation are listed when you use the Filer's Volumes
command. An example Volumes display for the directory structure illustrated above is:

Yolumes on-line:

1 CONSOLE:
2 SYSTERM:
3 # ROGER:

G PRINTER:

45 % SYSTEMAZ:
46 # SHARED:

In this Volumes listing, the directory ROGER is the current default volume. You may designate as
the default volume any of the names that are shown in a Volumes listing with the # or * symbol
beside them. Because these “‘volumes’” are SRM directory names, you may also designate as the
default volume any directory whose location can be specified through one of the names shown.

For exampile, to designate the directory MYSTUFF as the default volume, you would:
1. Type (P)
The Filer prompts:

Prafix to what directory?

2. Type
MysTUFF (ENTER) or (Return)

81

82

With ROGER: as the current default volume, the system would assume the path began at ROGER.
The new Volumes listing (illustrated below) would show MYSTUFF: as the default volume and unit
#5 would now be associated with MYSTUFF:

Yolumes on-line:

1 CONSOLE:
! SYSTERM

PRINTER

45> * SYSTEMAZ:
46 # SHARED:

r T l (root)
SHARED WORKSTATIONS USERS
[I
[] l | _1
SYSTEM SYSTEM42 BOB ROGER FRED
l— work ii work
| f1

DATA REPORTS

If you then wanted to list the contents of the directory MYSTUFF, you would:
1. Type for the Filer's List directory command. The Filer prompts:

List what directory?

2. Type
ENTER) or (notation that means *‘default volume”’)

Next, if you used the Prefix command. answering the Prefix to what directorr? prompt with:

#46: (ENTER] or (Retum)

or

SHARED : or

your default volume would be at unit #46, not at unit #5.

Volumes on-line:

1 CONSOLE:
2 SYSTERM:
3 # ROGER:

B

PRINTER:

T 1 (root)
WORKSTATIONS USERS
I I
| Il l | 1
SYSTEM SYSTEM42 BOB ROGER FRED
[—work 'jwork
[] £1

DATA REPORTS l |
work MYSTUFF

If you then used the Prefix command and responded to the prompt with:

#5:/USERS/BOB or

you would not only set the default volume to BOB: but you would also change the volume association for
unit #5 from ROGER: to BOB..

Valumes on-line:
1 CONSOLE:
2 8Y IERM:

6 PRINTER:
45 % SYSTEM4Z:

The Unit Directory Command
Another way to change the unit number/volume name association is with the Filer's Unit directory
(Udir) command. This association is referred to as setting a “‘working directory.” For example,

typing:
(LU) (The Filer prompts Set unit to what directory?)

#4G:DATA or

would make DATA a working directory by associating unit #46 with that directory, but would not
affect the default volume designation (Frefix is still BOB:).

Yolumes on-line:

1 CONSOLE:
2 SYSTERM:
S # BOB:

A/

B PRINTER:
R

83

84

Now, because unit #46 is identified with the directory DATA, you would be able to use #46: and
DATA: interchangeably with Filer commands. For example, to list the contents of DATA, you could
respond to the List directory command’s List what directory? prompt with either:

#46: ENTER) or (Return)

or

DATA: or

Take care when using the Unit directory command not to assign the default volume’s associated
unit number to a name other than that of the current default volume. For example, if you were to

type:
(U) (The Filer prompts Set unit to what directory?)

#3:/USERS/ROGER

the resulting Volumes display would show:

Yolumes on-line:
1 CONSOLE:
2 SYSTERM:

6 PRINTER:

45 # SYSTEM4Z:
46 # DATA:

Even though BOB: would still be listed as the default volume, you would not be able use BOB: as
the default volume, because BOB: is no longer an “‘on-line”” volume. For instance, to list the
contents of the default volume (directory), you would normally:

1. Type (_L) (The Filer prompts List what directory?)
2. Type

(which is the notation indicating the default volume) (ENTER) or

But because. in this example, the Filer looks for a volume named B0B: that is associated with
one of the unit numbers and doesn’t find it, it does not list the directory’s contents, as
requested.

Note
You should not use the Unit directory command to change the associa-
tion of #45: from your SYSTEMnn directory (the system volume).
Doing so causes the system to lose access to the system files because the
Pascal system looks for a workstation’s system files in its SYSTEMnn
directory.

You may, however, assign any of the on-line volumes as the default
volume without affecting the system’s access to the system files.

Moving Up the Hierarchical Directory Structure

A special directory name is provided for moving up the hierarchy. Two periods (..) can be used to
denote the directory containing the current directory. For instance, if MYSTUFF: were the default
volume, you could make ROGER: the default volume by answering the Prefix command’s
Prefix to what directory? prompt with:

.+ (ENTER) or (Retum)

To go up two levels, use the double-period twice, separated by a slash. For example to change the
default volume from MYSTUFF: to USERS:, you would respond to the Prefix command’s prompt
with:

vl ENTER) or (Return

The ““ .. "’ notation can be used to move all the way up the directory structure to the root, although,
if you want to go directly to the root, using the slash (/) root identifier is easier.

Creating Directories

SRM directories are created by the Filer's Make command. For example, to create a directory called
KAREN in USERS you would:

1. Type (M)
The Filer prompts:
Make File or Directory 7* (F/D)

2. Type (D) and specify where you want the directory located:
#5: /USERS/KAREN (ENTER) or (Retum)

I J —l (fOOt)
SYSTEMS WORKSTATIONS USERS
| | I
BOB ROGER FRED
[— work ': work
f1

[work MYSTUFF

85

86

Specifying Files, Directories and Volumes

Syntax of File or Directory Specification
The syntax of a legal file_specification is given by:

file_specification:: = [volume_id] [directory_path] file_name [[‘size_spec’’]"’]
;= volume_id

In this notation, items between [" and **] * are optional and quoted items appear literally. Note
that, because a directory is a type of file, specification for directories is the same as that for files.

A file_specification may appear in one of two forms. The first form consists of an optional
volume_id followed by a colon (:), then an optional directory_path, then a file_name which is not
optional, then an optional size_spec.

An example of the first form is:

#45:5YSTEMS/FILER

The second form consists of a volume_id only. An example of the second form is:

#51

Syntax of a Volume Identifier

The volume identifier (volume_id) selects one of up to 50 logical units known to the Pascal file
system. If no volume_id is present, the volume used is the default volume (selected by the Filer's
Prefix command). Otherwise. the volume is specified in one of three ways:

66,00

volume_id:: = "'# "integer[password]

AURA]

:» =name[password]"":"’

[n the first case, integer is a two-digit number from one to 50. For example, #23: is a valid volume
identifier. The second case is a special form denoting the default volume. In the third case. name is
a sequence of characters.

If the volume name of the SRM disc is DISC_ONE, the disc could be specified as:
DISC_ONE:

For a logical unit connected to an SRM system, the volume_id takes a special meaning. The
notation #5: refers to the working directory of unit number five. The notation #5: / refers to the root
of the SRM directory structure, with which unit number five is associated. The working directory for
any SRM volume is selected by the Filer's Prefix or Unit directory commands (refer to the “*Moving
Up and Down the Hierarchy’ section earlier in this chapter), or the What command of the Main
Command Prompt.

Passwords

Passwords are sequences of up to 16 characters that govern the access rights to a file, a directory or
the SRM volume (shared disc). Passwords are assigned to a file or directory either when it is created
or by the Filer's Access command. The SRM volume password is assigned through the SRM
operating system’s RENAME or INITIALIZE commands (refer to the SRM Operating System
Manual for details).

Including the SRM disc’s volume password in a file_specification gives you unlimited access to all
directories and files on the shared disc. The volume password overrides all other passwords in the
system. Because of its power, this password is usually protected and used only with proper au-
thority.

You may use either of the forms for the volume password illustrated in the examples below:

#3<7volrPasswordr: /USERS/ROGER/work
#3:<volrassword>/USERS/ROGER/work

That is, the volume password may either immediately precede or follow the colon separator.

Syntax of a Directory Path
Directory paths are allowed in Pascal file_specification only when specifying files on SRM logical
units. The syntax for a directory_path is:

directory_path:: =[*/*] {directory_name [password]‘"/"’}
password:: = ‘<" word ‘‘>"

directory_name:: = file_name

ITEEAl

The information between *“{” and *“ } ” may occur zero or more times. As you can see, there are
two special directory names allowed with the SRM. The name ““. " (a single period) refers to the
current working directory. The name * .. 7’ refers to the directory containing the working directory.
Other names in a directory_path are directories along the path to the file or directory being
specified.

Note that a directory_path doesn’t appear by itself. It appears as part of a file_specification, with the
file_name following the directory path. Examples of directory paths are:

/i PASS13/ (denotes root, using password PASS]1)

/USERS/RDGER/ (denotes directory ROGER in USERS, where USERS is at the root)
A specifier including both the directory_path and volume_id might appear as follows:

#5:/WORKSTATIONS/SYSTEML3

87

88

SRM File or Directory Names
The SRM system allows almost any file name. The Pascal system removes blanks and control
characters from file names.

The Pascal SRM Directory Access Method interprets the *“ < character as the beginning of a
password. All characters up to the next *“ > "' character constitute the password.

File Size Specification
The last, optional part of a file_specification is the file size specifier (size_spec). Its syntax is:

size_spec:: = [integer *‘]"
= CE

This specification takes effect only if a new file is being created with REWRITE, OPEN, APPEND or
APPEND with OPEN. If the file already exists, the file system tries to make the file at least the size
specified. The size is ignored for RESET.

In the first form, the integer gives the number of 512-byte blocks to be allocated to the file. For
instance [1001 would cause allocation of 51,200 bytes.

The second form [*1 specifies that the file is to be allocated either half of the largest free space or
the second largest free space, whichever is larger. If no size is specified when space for a new file is
being allocated, the largest free area is assigned to the file.

SRM extends the space allocation for files as needed. If data added to a file would cause the file to
overflow its original space allocation, the system adds another block of memory (contiguous, if
possible) called an ‘‘extent” to the file's current space allocation. An extent’s size is equal to the
original space allocation for the file.

Allowable File or Directory Names
What file names are allowed depends on the type of directory used on the volume in which the file
resides. In other words, the directory organization determines the file name rules.

File or directory names can consist of alphabetic letters and digits and the the hyphen (-),
underscore (_), and period (.) characters. Blanks are removed from file names.

In SRM directories, uppercase and lowercase letters are distinct. (ROGER is not the same as
Roger.) You should not use the **/ ', ** < and ** > " characters, which have special meaning to
the SRM system, in file or directory names.

Protecting Access to Files and Directories

The Filer's Access command allows you to change public access rights on your SRM files and
directories.

To use the Access command,
1. Type (_A). The Filer prompts:

Access ridhts for what file?

2. Type the file or directory specification. For example:
#5:/USERS/ROGER/work

If the file’'s MANAGER access is password-protected, you must include the password in the
file/directory specification.

The Filer then prompts:

Access: Lists Makes» Remove, Attributes: Quit?

3. You may then List the existing password(s) and the attributes to which each is assigned,
Make new password/attribute assignments or Remove passwords. Attributes is a help feature
that lists the attributes options. uit returns you to the Filer prompt.

The attribute option ALL is a shortcut notation for assigning a password to protect all access rights
to a file or directory. For example, to assign the password all_rights to protect all access rights on the
file work in the directory ROGER (assume all access rights on the directories in the path to work and
on work itself are public), you would:

a. Type (_M_). The Filer prompts:
Make password:attribute?

b. Type:
all_rights:ALL (ENTER) or (Retumn)

Now, any user wishing to access work for operations requiring any of the access rights (READ,

WRITE, MANAGER, SEARCH, SEARCHLINK, PURGELINK) must include the password in the
file specifier, for example:

#5:/USERS/ROGER/work<all_rights

For more information, refer to the description of the Access command in “The Filer”” chapter of the
Pascal Workstation System manual (previously the Pascal User’s Manual).

89

90

Using Shared Printers and Plotters

Using a shared printer or plotter to output data requires you to place your data in a file in the
spooler directory. Once the file is in the directory, the SRM operating system sends the file to the
appropriate output device as soon as the device is free.

For example, to print the text file named JOB_1.TEXT located by the SRM directory path #5:/
PROJECT_1 on the printer assigned to spooler directory named LP:

1. Type (_F_) to enter the Filer from the Main Command prompt.
2. Type to enter the Filer's Translate mode.
The Filer prompts:

Translate what file?

3. Type:
#5:/PROJECT_1/J0B_1.TEXT »#5:/LP/J0B_1,ASC (ENTER) or (Return)

The file will be printed as soon as the printer is available. The .ASC ending on the file name tells the
Filer to translate the information file into ASCII format, which is best handled by the SRM and its
supported peripherals.

In contrast to the SRM 1.0 system, the SRM 2.0 and newer operating systems allow non-ASClII files
to be sent to the printing device as a byte stream.

Note

Any non-ASCII {such as . TEXT) file sent to the spooler is printed exactly
as the byte stream sent. Unless you set up your non-ASCII file correctly,
improper printer output or operation could result. Therefore, it is re-
commended that you use only ASCII type files when spooling to a
printer or plotter.

98619-90051,rev: 3/85

91

Using Pascal Filer Commands With SRM

The following table summarizes the Filer commands either used exclusively with SRM or whose use
has a special meaning for SRM. For full syntax and semantics information about these commands,

refer to “The Filer’” chapter of the Pascal Workstation System manual (previously the Pascal User’s
Manual).

Command Significance to SRM

Access Changes the access rights (passwords) on a file or
directory

Bad_secs Not valid for SRM

Durlicate Links a file or files to a directory at another location in the
directory structure

Krunch Not valid for SRM

Make Creates a directory within the SRM directory structure

Prefix Sets or changes the default volume name

Udir Changes the path specification for a unit directory

Zero Not valid for SRM

92

Chapter

3

System Startup

This chapter describes the procedures required to bring up an HP Series 200 workstation on the
SRM for the first time. The procedures described in this chapter supplement the installation proce-
dures described in the ““System Installation’” chapter of the SRM Operating System Manual and are
to be performed by a system manager.

The procedures described in this chapter are required for bringing up only the first of the language
system’s workstations on the SRM for the first time and do not apply to adding subsequent
workstations to the SRM system.

This chapter is divided into two parts that describe the startup procedures for use from a BASIC
SRM workstation and from a Pascal SRM workstation. Each part tells how to install the system
software required to access and use the SRM with the language system and discusses the SRM
directory structures recommended for use with workstations operating under that language system.

93

94

Initial System Startup
From a BASIC SRM Workstation

The following instructions describe the procedure for bringing up the SRM system on an HP Series
200 BASIC 3.0 workstation for the first time. The instructions assume that the workstation has its
own floppy disc drive.

The “‘Initial System Startup From a Pascal SRM Workstation™ section in this chapter gives instruc-
tions for bringing up the SRM system on an HP Series 200 Pascal workstation.

This section describes system setup procedures you perform from a BASIC workstation. including:

e Creating the necessary directories on the system disc;
e Copying operating system files to the system disc:
e Creating files for automatic configuration at bootup (optional).

Note
This section reflects the startup procedures valid for use with BASIC
3.0. The “SRM and BASIC 2.0’ appendix gives the startup procedures
appropriate for BASIC 2.0.

Creating Directories on the System Disc

This procedure follows initial installation of the SRM operating system on the system controller. You
must have performed steps one through eight in the first section of the “System Installation™
chapter, SRM Operating System Manual, before performing this procedure.

The following steps load the BIN files necessary for accessing the SRM from an HP Series 200
BASIC workstation and create the SYSTEMS and USERS directories on the SRM system disc. Use
of the two directories is recommended to reduce the number of directories and files at the root level
of the SRM directory structure.

Note About Key References

Throughout this section, symbols for the keys used to execute state-
ments and commands are shown with each statement or command.

The {_EXECUTE) symbol denotes the execution key on either the
HP 98203A or HP 98203B keyboards (the key on the HP 98203A

keyboard is labeled (_EXEC J). The symbol denotes the execu-
tion key on the HP 46020A keyboard.

You may also use the {ENTER) key on these keyboards to execute com-
mands.

| [| | | | frool)
SYSTEMS WORKSTATIONS USERS LP PL lost_found
(For Pascal Use) (Printer (Plotter

Spooler) Spooler)

Recommended Root-Level Directories

NOTE: For a description of the WORKSTATIONS directory, refer to the section
on “Initial System Startup From a Pascal SRM Workstation” later in this
chapter.

You create the SYSTEMS directory to hold operating system and bootup configuration files. The
procedures for placing files in the SYSTEMS directory and for creating bootup configuration files
are described in the next section.

The USERS directory allows you to group working directories for the individual users (worksta-
tions) on the SRM system.

1. With your computer’s power OFF, insert the BASIC 3.0 SYSTEM DISC into the worksta-
tion’s primary drive. Refer to the operating manual for the HP Series 200 computer or for the
disc drive to determine which is the primary drive.

Turn the computer’s power ON and allow the BASIC operating system to completely load,
then remove the disc.

2. Insert the BASIC 3.0 LANGUAGE EXTENSIONS DISC into the primary drive and type:

LOAD BIN "SkM" (EXECUTE) or (Return)

3. After the SRM BIN file is loaded, remove the LANGUAGE EXTENSIONS DISC from the
primary drive, insert the BASIC 3.0 DRIVERS DISC into the same drive, and type:

LOAD BIN "pcoMM* ((EXECUTE) or (Return)
When the binary file has finished loading, you can remove the DRIVERS DISC.
4. To establish communications with the SRM, type:

MSI ":REMOTE" (EXECUTE) or (Return)

which places you at the root of the SRM directory structure. You may wish to verify your
location within the directory structure by typing:

CAT (_EXECUTE) or (Retum)

The header for the resulting catalog listing should indicate the remote msus as shown in the
example below:

tREMOTE 214+ 0O remote msus
LABEL: SRM

FORMAT : SDF

AVAILABLE SPACE: 54096

LABEL is the name you chose for your SRM volume when the disc was initialized.
AVAILABLE SPACE varies with the type of disc used.

5. Create the SYSTEMS directory by typing:
CREATE DIR "SYSTEMS" (_EXECUTE) or (Return)

98619-90051,rev: 3/85

95

96

6. Create the USERS directory by typing:

CREATE DIR "USERS" (_EXECUTE) or (Return)
You can verify the creation of the SYSTEMS and USERS directories by typing:

caT (CEXECUTE) or (Return)

7. Leaving the workstation connected to the SRM under the BASIC operating system, return to
Step 9 in the “System Installation” chapter of the SRM Operating System Manual, and
proceed with installing the SRM operating system file, SYSTEM_SRM, in the SYSTEMS

directory.

The following discussion and examples assume that SYSTEM_SRM is the first system installed on
the system disc and in the SYSTEMS directory. Besides installing the SRM operating system on the
system disc, you may wish to:

® create the spooler directories;

e copy other operating system files into the SYSTEMS directory;

e create workstation bootup configuration files (optional);

e create individual working directories within the USERS directory.

Setting up spooler directories is discussed in the “‘System Installation” chapter of the SRM Operat-
ing System Manual. Use of the SAVE command to save the spooler configuration and node names
creates and updates the file, CONFIG_SRM in the SYSTEMS directory (also discussed in the
“System Installation” chapter of the SRM Operating System Manual).

The next sections discuss how to design and implement a bootup scheme for workstations on your
SRM system.

Planning the SYSTEMS Directory

Creating the SYSTEMS directory allows you to concentrate all operating system software and
configuration files in a single directory on the SRM system disc.

You will determine your SYSTEMS directory’s contents and structure according to the SRM
system’s application within your environment. Your decision depends upon the operating system
software your users require and upon the powerup scheme you wish to implement for the worksta-
tions on your network.

In general, environments supporting BASIC workstations fall into one of two categories:

e those in which all or most of the users operate primarily under the BASIC operating system;

® those supporting users of several operating systems.
In the first environment, you may want all workstations to boot the BASIC operating system at

powerup, whereas in the second, you may want each workstation to boot the operating system of
its user’s choice.

98619-90051,rev: 3/85

Note
Only HP Series 200 computers with Boot ROM version 3.0 or later can
boot from the SRM. Upon powerup, the computer should display
BOOTROM 3.0. If no boot ROM message is displayed, the computer has
an earlier version boot ROM. If BOGTROM 3, 0L is displayed, the compu-
ter's boot ROM is a subset of the 3.0 boot ROM and does not support
automatic booting from SRM.

The following sections help you plan your SYSTEMS directory to accommodate the workstations
capable of booting from the SRM. Workstations with ROMs that do not support automatic booting
must boot from local mass storage.

If BASIC is the Predominant Operating System

The order of the files in the SYSTEMS directory determines, to some extent, the operating system
software used by the workstation boot ROM at powerup. Unless the workstation operator interrupts
the bootup procedure to select a system, the boot ROM loads the first bootable system file (a file of
type SYSTM whose name begins with 5v5) from the SYSTEMS directory into the workstation.

If all users on your SRM system require the same basic set of BIN files, you may wish to create a
unique BASIC system file for use at powerup. Refer to the BASIC Language Reference manual for
details on creating this file (see the STORE SYSTEM keyword). Your SYSTEMS directory would
look similar to the one illustrated below:

| ! l 1] | (oot
SYSTEMS WORKSTATIONS USERS LP PL lost found
(For Pascal Use) (Printer (Plotter

S 1)])
SYSTEM SRM pooler Spooler

CONFIG SRM

where UNIQUE is the name you assign your customized BASIC system file. Note that you must
include the SRM and DCOMM BIN files in that file for the workstations to communicate with the
SRM system. Refer to the section on ‘‘Placing System Files in the SYSTEMS Directory” for more
information on which BIN files to include.

97

98

If each user requires a unique set of BIN files, you may prefer to keep separate BIN files in the
SYSTEMS directory and create autostart files for individual workstations. Your SYSTEMS directory
would look similar to the list below:

| 1 | | | {root
SYSTEMS WORKSTATIONS USERS LP PL lost found
(For Pascal Use) (Printer (Plotter
L SYSTEM SRM Spooler) Spooler)
— CONFIG SRM
— SYSTEM BAS3
— SRM
— DCOMM

other BIN files

where each AUTOSTnn is an autostart PROG file specifying the initial BASIC system operations to
be performed for a specific workstation on the network. The AUTOST file specifies the default set of
operations, used for workstations for which no unique autostart file exists.

(Note that AUTOST is at the root level of the SRM directory structure, not within SYSTEMS.) Refer
to the section on “‘Creating Autostart Files for Use by the BASIC 3.0 System” for further details.

If a Variety of Operating Systems are Used
If you want each workstation on the network to power up in the operating system of its user’s
choice, you may construct the SYSTEMS directory in either of two ways.

A workstation user can always select an operating system from among those available to the
workstation. If a user presses any key immediately after the powerup display indicates that the boot
ROM has recognized the keyboard, the ROM lists all available bootable systems and waits for the
user to select a system. Refer to the BASIC User’s Guide for further details on explicit system
selection at powerup.

[f you want to give users a choice of systems by this method, the order of the systems files in your
SYSTEMS directory is unimportant, except that the boot ROM will use the first bootable system file
listed in the directory if the user does not interrupt booting to select a system. A bootable system file
is a file of type SYSTM whose name begins with 5vs.

For example, if the files in your SYSTEMS directory were ordered as listed as below:

| 1 | | 1 | | frood
SYSTEMS AUTOST WORKSTARTIONS USERS LP PL lost_found
(For Pascal Use) (Printer (Plotter
- SYSTEM SRM Spooler) Spooler)
— CONFIG SRM

— SRM
— DCOMM

other BIN files

SYSTEM P

I

SYSTEM VC

RUTOST nn

if a workstation user on the SRM system did not specifically select an operating system at powerup,
the boot ROM would boot SYSTEM_BAS3 in the workstation, along with BIN files specified in the
appropriate AUTOST or AUTOSTnn file. Users could select another system, such as Pascal
(SYSTEM_P) instead by interrupting the booting process as described above.

To automate the process, you may use the BASIC Loader Utility (also called the “‘secondary
loader’”), which selects the operating system for the user. Use of the Loader Ultility requires you to
place the BASIC Loader Utility system file (SYSTEM_LD) in SYSTEMS as the first bootable system
file. The Loader Utility requires special configuration files specifying the system to be selected, so
you must also include those files in the SYSTEMS directory.

99

100

The next sections explain the Loader Utility method in more detail. If you use this method, your
SYSTEMS directory should look similar to the list below:

| 1] 1 1 | | (rood)

SYSTEMS AUTOST WORKSTATIONS USERS LP PL lost found

(For Pascal Use} (Printer (Plotter
L SYSTEM SRM Spooler) Spooler)
— CONFIG SRM
— SYSTEM LD
— SYSTEM BA3
— SRM
— DCOMM

other BIN files
— SYSTEM P
— SYSTEM VC

— AUTOSTnn

where each CONFIG_LDnn represents a configuration file specifying the system to be booted in a
specific workstation on the network, and CONFIG_LD is the configuration file specifying the system
to be booted in workstations for which no unique file exists. Refer to the section on “Creating
Configuration Files for Use by the Loader Utility’” for further details.

If autostart (AUTOST or AUTOSTnn) file(s) are in the directory also (as in the illustration), and the
CONFIG_LD file specifies the BASIC 3.0 system, upon being loaded, the BASIC system automati-
cally performs the procedures specified in the autostart files.

Note that, with this method. the order of all files in the SYSTEMS directory, other than
SYSTEM_LD, is unimportant.

Placing System Files in the SYSTEMS Directory

You may now place files in the SYSTEMS directory in the order required for your chosen worksta-
tion bootup scheme (as discussed in the previous section). This section lists the system files required
for BASIC use on SRM, and illustrates the procedure for copying individual files from the BASIC
discs to the SYSTEMS directory.

System Files Important for BASIC Use on SRM
The table below shows some of the operating system files you may wish to copy to the system disc,

the importance of each file to SRM use, and the disc containing the file:

System File Necessary if you wish to use: On the disc labeled:
DCOMM BIN file | Shared Resources (SRM) DRIVERS
GRAPH BIN file PLOTTER IS <remote file> LANGUAGE EXTENSIONS
SYSTEM$(“PLOTTERIS")
/O BIN file PRINTER IS (with EOL, WIDTH parameters) LANGUAGE EXTENSIONS
RESET
KBD BIN file LOAD KEY LANGUAGE EXTENSIONS
STORE KEY
RE-STORE KEY
MS BIN file CAT (with options) LANGUAGE EXTENSIONS
PDEV BIN file LOADSUB FROM LANGUAGE EXTENSIONS
SRM BIN file Shared Resources (SRM) LANGUAGE EXTENSIONS
TRANS BIN file TRANSFER LANGUAGE EXTENSIONS
SYSTEM_BA3 BASIC Operating System BASIC 3.0 SYSTEM
SYSTEM_LD BASIC Loader Utility UTILITIES LIBRARY 2

Example: Placing the Loader Utility System File

in the SYSTEMS Directory

To copy system files to the SYSTEMS directory on the SRM system disc, follow the procedure
discussed below, substituting the name of the appropriate system file in the COPY command, and
using the discs listed in the table above.

You should copy the files in the order in which they are to be placed in the SYSTEMS directory.
This order is determined by your chosen workstation powerup scheme, as discussed in the section
on “‘Planning the SYSTEMS Directory.”

Working from the BASIC workstation you used to create the SYSTEMS directory, you would copy
the BASIC Loader Utility program (shipped on the disc labeled UTILITIES LIBRARY 2) to the
SYSTEMS directory by typing:

COPY "SYSTEM_LD: <msus>" TO "SYSTEMS/SYSTEM_LD" (EXECUTE) or (Retum)

where <msus> is the mass storage unit specifier for the device from which you are copying
SYSTEM_LD. If you are copying 5YSTEM_LD from disc labeled UTILITIES LIBRARY 2, the <msus>
specifies the disc drive containing the disc.

Refer to the “‘Data Storage and Retrieval” chapter of the BASIC Programming Techniques manual
for details on msus.

101

102

Creating BASIC Workstation Bootup Configuration Files

This section describes how to create the files necessary to allow the BASIC workstations that are
capable of booting from the SRM to boot from the SRM in a specific configuration. Two types of
configuration files can be used for automatic configuration, either singly or in combination:

e Configuration file(s) for use by the Loader Utility. Using the CONFIG_LD files, the Loader
Utility selects the operating system for the boot ROM to install in the workstation.

e Autostart file(s) for use by the BASIC 3.0 operating system. The AUTOST files specify some
initial actions to be performed by the operating system, such as loading BIN files.

Creating Configuration Files for Use by the Loader Utility

If you want workstations on your SRM system to automatically boot selected systems, the BASIC
Loader Utility system file, SYSTEM_LD should be the first bootable system file stored in the
SYSTEMS directory. Use of the Loader Utility is not necessary if all workstations are to boot the
same system at powerup.

For use with the SRM, you create two kinds of bootup configuration files -- a default file and a
configuration file unique to a workstation. The Loader Utility uses the default configuration file for
any workstation for which a unique configuration file does not exist.

The Loader Utility recognizes the default configuration file as CONFIG_LD. and individual worksta-
tion configuration files as CONFIG_LDnn, where nn is the workstation’s assigned node number.

For node numbers 0 through 9. nn is specified as a single digit. The Loader looks for its configura-
tion files in the SYSTEMS directory.

Each configuration file is an ASCII file containing only the name of the operating system file to be
loaded by the boot ROM at powerup. Any further operations, such as loading BIN files, must be
specified in an autostart file.

The example program below creates the ASCII file CONFIG_LD?7 in the SYSTEMS directory to
specify the BASIC 3.0 system as the bootup system for an SRM workstation at node number 07.

10 CREATE ASCII "/SYSTEMS/CONFIG_LD7":1

20 ASSIGN BFilerame TO "/SYSTEMS/CONFIG-LD7"
30 OQOUTPUT EBFilenames’ "SYSTEM_BA3"

40 ASSIGN BFilename TO *

S0 END

For more details on creating the loader configuration files, refer to the BASIC Loader Utility
Manual.

Creating Autostart Files for Use by the BASIC 3.0 System

Any workstation booting the BASIC 3.0 system may have an autostart file instructing the system to
perform certain operations upon powerup. Autostart files are PROG files (whose names begin with
AUTOST), which the BASIC system automatically loads and executes. An autostart file may include
instructions to load BIN files (for example, LOAD BIN "SkM").

For more details on creating autostart files, refer to the BASIC User’s Guide or the ‘‘Entering,
Running and Storing Programs” chapter of the BASIC Programming Techniques manual. For use
with the SRM, you may create two kinds of autostart files -- a default file and an autostart file unique
to a workstation. The BASIC system uses the default file for any workstation for which a unique
autostart file does not exist.

When a workstation boots BASIC 3.0 from the SRM system disc, the BASIC system looks for a file
named AUTOSTnn in the SYSTEMS directory. nnis the node number assigned to the workstation,
with node numbers O though 9 designated by a single digit (for example, AUTOSTS6). If a worksta-
tion’s autostart file does not exist, the system then looks for the default file named AUTOST at the
root level of the SRM directory structure. Failing to find either, the system waits for the first
command from the keyboard.

103

104

Initial System Startup
From a Pascal SRM Workstation

This section explains how to configure workstations to access and boot Pascal from an SRM system
disc using three methods of modifying the standard configuration:

® Copying and re-naming files;

e Adding modules to INITLIB;

® Modifying the TABLE program (optional).

This section tells what to do the first time you set up the first Pascal workstation to access an SRM
system. It should not be repeated for every workstation you set up. Once this procedure is com-
plete, the SRM will be accessible to all Pascal workstations on the SRM system.

Note About Key References

Throughout this section, symbols for the keys used to enter commands
are shown with each command.

The symbol denotes the key to be used on either the
HP 98203A or HP 98203B keyboard. The symbol denotes the
key to be used on the HP 46020A keyboard.

The HP 46020A keyboard is not supported by versions of the Pascal
language system prior to 3.0.

Before You Begin

Before you begin the procedures outlined in this section, you should be aware of the following
points:

Prerequisites
This procedure assumes:

® The person designated as the “'SRM system manager’” will perform the procedure.

® Your SRM hardware has been installed and tested as prescribed in the SRM Hardware Installa-
tion Manual.

e Fach workstation in your SRM configuration has a unique node number. You will need to
know the node numbers assigned to the workstations when your SRM system was designed
and installed.

Boot ROM Versions

If you have an HP Model 216 Computer with Boot ROM 3.0L, you must boot from a local disc
drive. The SRM can be used only after normal booting is complete. Similarly, if you have an HP
Model 226 or 236 computer with a boot ROM whose version number is less than 3.0, you must
boot from the internal 5.25-inch flexible disc drive. In either case, you may want to make a backup
copy of the original BOOT: disc, as you will be modifying the INITLIB file on that disc.

Computers equipped with Boot ROM version 3.0 or later can boot directly from the SRM.

SRM Version 1.0 Operating System Parameters

Four parameters must be set when the SRM 1.0 operating system is initially configured. (With the
2.0 and newer versions of the SRM operating system, they are set automatically.) Appropriate
values for these parameters when using Pascal workstations with SRM 1.0 are:

Parameter Recommended Value

IOBUFFERS At least 5 per workstation in the
configuration (for example, 40 buf-
fers for 8 workstations)

DISC BUFFERS | 50
TASKS 2

FILES 10 or 12 open files per workstation
in the configuration

Planning Your SRM Directory Structure

The first time you access an SRM system from a workstation, you need to set up certain directories
on the SRM system disc. These directories have special functions, as described in the following
paragraphs.

[| 1 | [| (root)

SYSTEMS WORKSTATIONS USERS LP PL lost_found

(Printer (Plotter
Spooler) Spooler)

Recommended Root-Level Directories

This suggested directory structure calls for a directory named WORKSTATIONS in the root of the
SRM directory structure, which is to contain several directories for Pascal workstation system files.
These directories include:

e SYSTEM, which is to contain copies of all the Pascal system files, such as the Compiler, Filer
and Editor.

e A SYSTEMnn directory for each workstation on the SRM system, where each nn corresponds
to a workstation’s node number.

e TEMP_FILES, within which all temporary files are kept.

98619-90051,rev: 3/85

105

106

To allow each workstation in an SRM configuration to boot a unique system and have its own
system volume, you may wish to establish a unique SYSTEM directory for each node number.

I (root)
WORKSTAT IONS
|
[[1] I
SYSTEM SYSTEMBB [***| SYSTEM14 SYSTEMnn | |TEMP_FILES

Recommended Contents of the WORKSTATIONS Directory
For example, the illustration shows SYSTEM directories for workstations on nodes 08 and 14.

If a workstation has a local high-performance mass storage device, you may wish to use that device
as the workstation’s system volume. In fact, the automatic configuration process selects a high-
performance mass storage (if one is present) as the system volume. The suggested directory
structure uses separate directories for each node, with the option to copy frequently used files, such
as the Editor and Compiler, from the SRM system disc onto local high-performance system
volumes. Then, when a workstation boots the system, those files can be accessed locally with
correspondingly greater speed.

Each workstation’s SYSTEM directory should provide access to all the system files normally used
by the workstation. For some files, such as the Compiler, duplicate links to a single copy of the file is
preferable to making individual copies of the file for each workstation. The Filer’s Duplicate link
command can be used for this purpose, as described in the section, ‘‘Duplicating Links to System
Files,” later in this discussion.

A workstation’s SYSTEM directory can also contain the files that ‘‘personalize” a workstation, such
as customized copies of LIBRARY, INITLIB, AUTOSTART, and so forth.

This directory structure makes booting a smooth and automatic process. With Boot ROM version
3.0 or later (but not 3.0L), a workstation can boot from the SRM with the system to be booted
being selected by name at powerup. Thereafter, the workstation looks for the necessary files in its
SYSTEM directory (SYSTEMnn). If the workstation can’t find INITLIB in its SYSTEMnn directory,
it looks in SYSTEM.

If a workstation boots from the SRM system disc or has no local hard disc on-line, the system
volume is identified as unit #45 (prefixed to the workstation’s SYSTEMnn directory) and the
default volume is #5 (another SRM volume, prefixed to the root of the SRM directory structure).
Even if the SRM system disc is not chosen as the system volume (using the scheme above), it will
still be accessible through units #5 and #45.

The WORKSTATIONS directory should also contain at least one more special directory called
TEMP_FILES. All temporary files are created in this directory, and are removed when no longer
needed. If you don’t create this directory, the first workstation to need it will do so. Consequently
the directory WORKSTATIONS should not be write-protected unless directory TEMP_FILES has
already been created.

To provide users with a private directory to use as their default volume, you may create a directory
called USERS in the root, and within USERS, a private directory for each individual. After booting,
users may set the current working directory for their unit #5 to their private directory. A modified
TABLE program or an AUTOSTART file can be created to do this automatically. Refer to the
chapter on “Setting Up Your Environment” in the Pascal Workstation System Manual for informa-
tion on creating AUTOSTART files. This keeps the root from getting cluttered.

Overview of SRM Installation

Configuring your system to access SRM is not a hard or complicated operation, but it is important
that you follow the following procedures in exact detail.

1. Install driver modules DATA_COMM and SRM by executing them (they are programs that
install themselves automatically).

2. Execute the TABLE auto-configuration program. When TABLE is executed while the
DATA_COMM and SRM driver modules are installed, it finds the SRM system and assigns
unit #5 to the SRM system disc.

3. Ifthey are not already on the SRM system disc, create the SYSTEMS and WORKSTATIONS
directories at the root of the SRM directory structure, and the SYSTEM directory in the
WORKSTATIONS directory.

4. Copy the system boot file (SYSTEM_P) to the SYSTEMS directory. Copy the rest of the
Pascal system files to the SYSTEM directory. (The boot ROM expects to find the Pascal
system files in these directories.)

5. Use the Librarian to create (on the SRM system disc) a new INITLIB file that contains the
DATA_COMM and SRM modules, and then replace the existing INITLIB with this new one.
(If you have Boot ROM version 3.0 or later, you will be replacing the INITLIB in the
SYSTEM directory. With earlier version boot ROMs and Boot ROM 3.0L, you will be
replacing the INITLIB on the BOOT: disc.)

6. Re-boot the computer, and verify the new configuration.
7. (Optional) Modify the TABLE program to assign additional unit numbers to the SRM system.

Installing the SRM Driver Modules

First, install the DATA_COMM module. The file is on the CONFIG: disc that is supplied with your
system. Although you may have already copied the file onto another volume, such as a local hard

disc, this example assumes that you will be loading and executing DATA_COMM from the
CONFIG: disc.

Execute the file by pressing (_X) at the Main Command Level. The system prompts:

Execute what file?

Enter this file specification:

CONFIG:DATA_COMM. (ENTER) or (Retur)

Be sure to include the trailing period to suppress the “.CODE” suffix.

Install the SRM module similarly. SRM is also on the CONFIG: disc.

98619-90051,rev: 3/85

107

108

Re-Configuring with TABLE

Execute the TABLE program, which is on the BOOT: disc supplied with your system. Press (x),
then answer the Execute what file? prompt with:

BOOT:TABLE, or

Again, be sure to include the trailing period.

When the program has finished, you can use the Filer's Volumes command to see that unit #5 is
assigned to the SRM system disc. From the Main Command Level, press (F Jandthen (Vv).
Here is a typical display:

Volumes on-line:
1 CONSOLE:
SYSTERM:

BOOT:

SRM:
PRINTER:

Prefix is - SRM:

L9, B PV I o |

o

If the volume name of the SRM system disc (in this example, SkM) is not shown in the display,
re-execute the DATA_COMM, SRM, and TABLE programs. You may have done something wrong
in that process.

If the Filer's Volumes command still does not recognize the #5: volume, check to see whether the
SRM hardware is properly configured and installed. For instance, the (unmodified) TABLE prog-
ram expects the SRM interface in your computer to be set to select code 21.

If that does not work, then you should refer to the troubleshooting sections of the SRM Operating
System Manual.

Creating Required Directories
To create the directories on your SRM, follow the examples below:

To create the WORKSTATIONS directory, use the following Filer sequence:
1. Press (_M_) for the Make-directory command. The Filer responds with this prompt:

Make file or directory (F/D) 7

2. Press (D) to make a directory. The Filer responds with the prompt:
Make directory (valid only for SRM tvee units)
Make what directory?
3. Respond by typing:
#5:/WORKSTATIONS or
to which to the Filer should reply:
Directory is 'WORKSTATIONS’ correct 7 (Y/N)
4. Press (Y). The directory is created, and the following message is displayed:

Directory WORKSTATIONS made.

If the computers in the SRM configuration have Boot ROM version 3.0 or later, which allows
booting from the SRM. you will also want to create a directory called SYSTEMS at the root. For
more information about the SYSTEMS directory, refer to the section on ‘‘Planning the SYSTEMS
Directory™ earlier in this chapter.

Repeat the steps above, answering the Make what directory? prompt with:

#5:/SYSTEMS or
You may also wish to create the USERS directory at the root as you did SYSTEMS.

Next, create directory SYSTEM under WORKSTATIONS to store the master copy of all Pascal
system programs, such as the Compiler. To reduce the amount of typing involved, you can make
WORKSTATIONS the current working directory for unit #5.

5. Press (_P_) for the Prefix command. The Filer responds:

a

Prefix to what directory 7
6. Answer by typing:
#5:/WORKSTATIONS or
to which the Filer responds:

Prefix is WORKSTATIONS:

To create the SYSTEM, SYSTEMnn and TEMP_FILES directories, use the same steps you used to
create the WORKSTATIONS directory, answering the Make what directory? prompt with the
name of the directory to be created. (You need not specify #5: /WORKSTATIONS.) Note that creating
TEMP_FILES is necessary only if you plan to write-protect the WORKSTATIONS directory.

Copying the System Files to SRM
You may now place the required files into the new directories:
1. To prefix the current working directory to SYSTEM, press (_ P_) for the Prefix command.
2. Type:
#5:/WORKSTATIONS/SYSTEM or
To which the Filer responds:

Prefix is SYSTEM:

3. Insert the BOOT: disc in the drive you have been using and copy all the files on it into the
new working directory. Press (_F) for the Filecopy command. The Filer prompts:

Filecory what file?

4. Specify that you want all files on the BOOT: disc to be copied by using the = wildcard as
follows:

BOOT: =% (ENTER) or (Return)

The Filer copies the files one after another.

Repeat the above operation for each of the Pascal system discs (ACCESS:, SYSVOL:, and so
forth). After this is done, the SYSTEM directory contains the entire Pascal Workstation system.

109

110

Duplicating Links to System Files
To make the system files available in the SYSTEMnn directory of each workstation, use the Filer's
Duplicate Link command:

1. Press(D).

The Filer responds:

Duplicate link (valid enly for SRM tvpe units)
Duplicate or Mowe 7 (D/M)

2. Press(_D). The Filer prompts:
Dup_link what file?

3. Answer by typing:
2,45 /WORKSTATIONS/SvSTEMNN/$ (ENTER) or (Return)

substituting a two-digit node number for nn each time (a leading O is required for single-digit
node numbers). The “?" wildcard tells the Filer to ask if you want links to each file in the
source directory. Answer for every file except AUTOSTART and SYSTEM_P.

The Duplicate link displays each file name as the links are made.

The last detail is optional. If any of the workstations in the SRM system have Boot ROM version 3.0
or later and you want them to boot from the SRM instead of using local mass storage, you need to
put a copy of the Pascal system boot file in the SYSTEMS directory (not in the SYSTEM directory
under WORKSTATIONS). The system boot file (SYSTEM_P) is on the BOOT: disc shipped with
the system. (You may have already made a backup copy of that disc.) The Duplicate link command
links the SYSTEM_P file to the SYSTEMS directory.

1. Press (D) for the Duplicate link command.
The Filer responds with:

Dueplicate link (walid onlvy for SREM tvere units)

Duplicate or Moue 7 (D/M)

2. Press(_D).

The Filer prompts with:
Dup_link what file?

3. Respond by typing:
#5: /WORKSTATIONS/SYSTEM/SYSTEM_F,#5:/5vSTEMS/$ (ENTER) or (Return)

Once the system files are all in the appropriate directories on the SRM system disc. any workstation
using the BOOT: disc you create in the next procedure will be able to access the SRM via logical
units #5 and #45. If a workstation has high performance local mass storage such as a fixed disc,
that workstation’s system volume will be on the local mass storage. Otherwise the SRM directory
#45:/WORKSTATIONS/SYSTEMnn will be the the system volume.

You may wish to also create a working SRM directory within the USERS directory for each user in
addition to the SYSTEMnn directories for each workstation. A user may then use unit #45 for his
system volume and #5 will be prefixed to his working directory.

SRM as the System Volume

You may now designate the workstation’s SYSTEMnn directory as its system volume. You first
need to re-execute the TABLE program to assign unit #45: to this directory. Press (_X_) at the
Main Command Level, and enter this file specification:

/MORKSTATIONS/SYSTEMNN/TABLE . (ENTER) or

replacing nn with the node number of the workstation. Don’t forget the period.

Now you can execute the Newsysvol command (at the Main Command Level) and specify #45: as
the unit number. You may use the What command to verify that all of the subsystems (EDITOR,
FILER, etc.) were found in the workstation’s SYSTEMnn directory. Designating SYSTEMnn as the
system volume allows you to access the SRM copies of the Pascal subsystems from the workstation
by pressing keys such as (_E) for Editor, and so forth.

Note

You should not change the prefix on unit #45 once it is assigned to
SYSTEMnn.

Adding Modules to INITLIB

This procedure adds the DATA_COMM and SRM modules (shipped on the CONFIG: disc) to
INITLIB (shipped on the BOOT: disc), creating a new INITLIB on the SRM system disc that
includes the drivers required for the SRM.

1. At the Main Command Level, press to load the Librarian (note that the Librarian
should be loaded from the SRM system disc).

2. When you see the Librarian’s prompt line at the top of the CRT, press (0) to specify the
name of the (Output) file the Librarian will be creating (called INITNEW).

3. Type:

#5: /WORKSTATIONS/SYSTEM/ INITNEW (ENTER) or
4. Press (I Jso you can specify an Input file, then type:

#5:/WORKSTATIONS/SYSTEM/INITLIB, (ENTER) or

Be sure to type the period after the word INITLIB in this command (to suppress the .CODE
suffix). The Librarian responds by showing INITLIB as the name of the input file.

5. Near the bottom of the CRT a line appears that says:
M input Module: KERNEL

Press to transfer this module to the Output file. After a few moments, the name of a
new module (kBD) appears. Each time a new module name appears, press to move it
to the output file. You should continue copying modules until the name LAST appears. Do
not copy the module LAST yet.

6. Now you must get the required SRM and DATA_COMM drivers and include them in
INITNEW. Press (I)and type:

#5:/WORKSTATIONS/SYSTEM/DATA_COMM, (ENTER) or

Don’t forget the period after the name.

111

112

7. When the module name DATA_COMM appears near the bottom of the screen, press (A)to
tell the Librarian to transfer the module to the Output file (INITNEW).

8. Press(_I_Jand type:
#5:/WORKSTATIONS/SYSTEM/SRM, (ENTER) or (Return)

again, being sure to include the period.

9. When the module name Sk appears on the bottom of the screen, press (A) to transfer
SRM to INITNEW.

10. Press (1)and type:
#5:/WORKSTATIONS/SYSTEM/INITLIB. (ENTER) or (Return)

11. When module name KERNEL shows up near the bottom of the screen, select module LAST
instead by pressing (_M), then typing:

LAST or
12. Transfer LAST to INITNEW by typing (T).

13. You now have all the modules in your new library. “‘Keep”” INITNEW by typing (K), then
quit the Librarian by typing (_Q).

Replacing INITLIB
Where you place the new version of INITLIB depends on which boot ROM is in your machine.

e If you have Boot ROM version 3.0 or later (but not 3.0L), you will probably want to leave the
modified INITLIB in the SYSTEM directory, where it will be found automatically when work-
stations boot from the SRM.

e If you have an earlier version boot ROM or Boot ROM 3.0L, you need to replace the INITLIB
on the BOOT: disc with the new INITLIB (INITNEW) because these boot ROMs cannot boot
directly from the SRM — they must use the BOOT: disc.

With Boot ROMs Version 3.0 and Later
1. Use the Filer's Change command to re-name the existing INITLIB (in /WORKSTATIONS/
SYSTEM) to something like OLDINITLIB.

2. Use the Change command again to re-name the INITNEW file to INITLIB.
Re-boot your workstation to verify that the new INITLIB file works correctly.

4. Use the Filer's Duplicate link command to link the new INITLIB to the SYSTEMnn director-
ies of the workstations that will be booting from the SRM. (Or you may make custom
INITLIB files for each workstation.)

w

With Earlier Version Boot ROMs
1. Press (_F_) to invoke the Filer.

2. Put the spare copy of the BOOT: disc (not the original) into a drive. Press (_R_) for the
Remove command. The computer responds with:

Remove what file?

3. Answer by typing:
500T:INITLIB (ENTER) or (Retum)

Note that there is no period after the file name this time.

4. Press (_K) (Krunch) to pack all the remaining files on the disc to make the maximum
amount of room for the new INITLIB. The Filer prompts:

Crunch what directory?
5. Answer by typing:
BDOT: or
The Filer prompts:
Crunch directory BOOT 7 (Y/N)
6. Answer by pressing (_Y). The Filer then prompts:

Crunch of directory BOOT in Prodress
DO NOT DISTURB!!

Note
If you interfere with the disc before the crunch operation completes, you
will ruin the data on the disc. You will certainly have to recopy it from
the original BOOT: and you may have to re-initialize it.

After the crunch is complete, the Filer prompts:

Crunch completed

7. You may now Filecopy the INITNEW file onto the spare BOOT: disc and change the file’s
name to INITLIB. To do so, insert the spare BOOT: disc into a disc drive and press (_F_) for
the Filecopy command.

Filecory what file?

Answer:

#5: /WORKSTATIONS/SYSTEM/ INITNEW,CODE »BOOT: INITLIB (ENTER) or (Return)

When the Filecopy finishes, you have a BOOT: disc on which the INITLIB contains the SRM
drivers.
8. Verify that the new INITLIB works by re-booting your system from that disc.

Each Pascal workstation in the system with earlier (or 3.0L) boot ROMs must boot using an
INITLIB that includes the SRM driver software. You may wish to make, for each of these worksta-
tions, a copy of the disc you've just created for each workstation.

Multi-Disc and Multi-Server SRM

When an SRM system has more than one hard disc or more than one server, you need to modify,
recompile, and execute the CTABLE program to allow access to these discs and servers. This
section describes how to perform this type of configuration change. You may wish to make a copy
of the original CTABLE program before making any modifications.

When more than one shared disc is installed on the SRM system, each disc must have a
WORKSTATIONS directory. If the directory is write-protected, a TEMP_FILES directory must be
created. You may also wish to create another SYSTEMS directory. Boot ROMs version 3.0 and
later search for bootable systems on each disc containing a SYSTEMS directory.

98619-90051,rev: 3/85

113

114

CTABLE Modifications
To add servers or discs to the SRM, you must associate new unit numbers with each new entity.

The CTABLE program defaults to a configuration using unit #45 with one server at node address 0
(ba preset at 0) and one disc unit at subunit O (du preset at 0).

Near the end of the CTABLE program, just above the manual temrlates section, a small section
of code assigns Unit Table entries for the SRM.

with SRM_dav do
bedin

tea.srm{ 46 scs» bay dud)s {freel
tea_srm(45, scy ba, du)s {for pPossible use as the svstem unit?
endi {withl}

To illustrate the changes necessary for adding discs or servers to an SRM, let’s assume you have the
following system configuration:

Server 1: node address 0
Case One Disc 1: subunit number O
Case Two Disc 2: subunit number 1
Case Three Disc 3: subunit number 2

Server 2: node address 1
Case Four Disc 1: subunit number O
Case Five Disc 2: subunit number 1

CTABLE contains the program line for Case One (ba and du default to 0). Additional Pascal
program lines for Cases Two through Five would be:

Case Two: tea_srm(4B scs bas 1)3 (remove the comment
Case Three: tea_srm(474 scs bas 2)3 delimiter, (¢) from the
Case Four: tea_srm(48, sc» 1, 0)3 beginning of the line)
Case Five: tea_srm(49 scs» 1, 1)3%

To find the correct volume addresses for your disc volumes, use the VOLUMES command at the
SRM system controller. The resulting display lists the volume address of each volume configured to
the system. (With the SRM 1.0 operating system, the volume address is shown under the column
labeled unit = With SRM 2.0 and newer versions, the column is labeled vol add.)

To find the correct node addresses for your SRM servers, execute the NODES command at one of
the SRM servers.

98619-90051,rev: 3/85

115

Just below the manual “templates” section of the CTABLE program is another section pertaining
to units for the SRM.

{ prefix the primary and secondary SRM unit entries }

if not unit_Prefix_successful(‘#5:/‘) then {do nothing}}
{tries to set up uwvid for possible default unit assignment helow?}

then zap.assidgned_unit(46)3 {free}

if not unit_Pprefix_successful
if not unit_prefix_successful (’#45: '+srmsvsPrrefix+srmnode (unitable [451.5¢)) then

if not unit_Prefix_successful(‘#45: +srmsysprefix) then
zap_assigned_unit{45);

If you remove the leading comment delimiter (<) from the #45: entry and remove the question
mark from the literal ‘#46/7 *, Pascal will be able to recognize the second hard disc connected to
the first server in the above example.

If you wish to have a Unit Table entry for a particular directory, you can identify the directory by
including its path in the specification. For example:

if not unit_prefix_successful(’#4B:/USER/AL’) then zap_assidned_unit(48)3

In this example, this modification causes the system to boot with unit #46 assigned to the directory
“/USER/AL” on the SRM disc selected by the first tea_s rn statement.

Add similar program lines (if not unit_rrefix_successful...) for each additional unit
that you specified in the tea_s rm statements.

After all modifications have been made, you can compile CTABLE. Remember that you need to
enable the $search ‘CONFIG:INTERFACE’$ Compiler option at the beginning of the program and
make the INTERFACE library accessible at compile time. You will probably also want to link the
resultant TABLE object file to itself with the Librarian to conserve disc space. See the procedures in
the “Modifying the TABLE Program” section of the Pascal Workstation System manual for explicit
details.

98619-90051,rev: 3/85

116

Appendix

A

Glossary

controller (See SRM controller).

directory name A directory name is the same as a remote file name because a directory is a type
of remote file. Directory names consist of from one to 16 characters, including uppercase and
lowercase letters, the digits O through 9, the underbar { _) character, the period (.) character,
and ASCII characters decimal 161 through 254.

file name The term “file name” refers to local files, not to files on the SRM system (described
under “‘remote file name”’). A file name consists of one to 10 characters. HP Series 200 file
names can contain uppercase and lowercase letters, the digits O through 9, the underbar (_)
character, and ASCII characters decimal 161 through 254.

name With the BASIC language system, a name (used in /O path name) consists of one to 15
characters. The first character must be an uppercase ASCII letter or one of the ASCII characters
decimal 161 through 254. The remaining characters, if any, can be lowercase ASCII letters,
digits, the underbar (_), or ASCII characters decimal 161 through 254.

Names may be any combination of uppercase and lowercase letters, but may not look like a
keyword. Conflicts with keywords are resolved by mixing the letter case in the name.

node address An integer from O through 63 that identifies an SRM device (such as a workstation
or controller).

password Passwords are used to protect access to remote files and directories. Passwords consist
of one to 16 characters. All ASCII characters except *“ > " are allowed. Passwords are assigned
by the PROTECT statement in BASIC or the Pascal Filer's Access command.

remote file name A remote file name consists of one to 16 characters. HP Series 200 remote file
names can contain uppercase and lowercase letters, the digits O through 9, the underbar (_)
character, the period (.) character, and ASCII characters decimal 161 through 254.

server (See SRM controller).
SRM The acronym for Shared Resource Management.

SRM controller The HP 50960A, the HP 9920A, or the HP 9826A that controls access to the
shared resources of the Shared Resource Management system. Also referred to as “‘the server.”

SRM controller’s node address An integer in the range O through 63 that identifies the SRM
controller.

SRM interface The term used to describe the HP 98029A, the HP 98629A, or the 27123A

Resource Management Interface resident in an SRM workstation; also, the HP 98629A inter-
face in the SRM controller.

98619-90051,rev: 3/85

117

118

system disc The term used to refer to the SRM disc or discs in contrast to local mass storage
devices.

volume A named portion of mass storage media, which may contain several files. Disc drives
supported by HP Series 200 mass storage operations contain only one volume per disc.

volume name A name used to identify a mass storage volume. The volume name is assigned to
the volume at initialization. Volume names consist of one to 16 characters including uppercase
and lowercase letters, the digits O through 9, the underbar (_) character, the period (.)
character, and ASCII characters decimal 161 through 254.

volume password A ‘“‘master” password, assigned at initialization, that allows complete access to
all files on a mass storage volume. Volume passwords consist of one to 16 characters. All ASCII
characters except *“ >’ are allowed. The volume password supercedes all access restrictions
placed on files by the PROTECT statement in BASIC or the Pascal Filer's Access command.

98619-90051,rev: 3/85

SRM Interface STATUS Registers

Appendix

B

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4
Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11
Status Register 12

Card Identification

52 if the Remote Control switch (R) is set to O (closed); 180 if switch is set

to 1 (open).

Interface Interrupts

1 =interrupts enabled; 0 =interrupts disabled.

Interface Busy

1 =busy; 0=not busy.

Interface Firmware ID

Always 3 (the firmware ID of the HP 98629A interface).
Not Implemented

Data Availability

0 = receiver buffer empty;

1 =receiver data available but no control blocks buffered:
2 =receiver control blocks available but no data buffered;
3 =both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0

through 63.
CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the

interface since powerup or (RESET}.

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup

or (RESET).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESET).

119

120

Appendix

C

SRM and BASIC 2.0

This manual describes SRM support of the BASIC 3.0 language system. This appendix summarizes
the differences between use of SRM with the BASIC 2.0 language system and SRM use with
BASIC 3.0.

The primary differences lie in the startup procedures required for bringing up an HP Series 200
BASIC workstation on the SRM for the first time, and in additional language features implemented
in BASIC 3.0 (and therefore not supported with BASIC 2.0).

The first section of this appendix, System Startup From a BASIC 2.0 Workstation, describes the
initial startup procedure for use with a BASIC 2.0 workstation, and is needed only by a system
manager installing an SRM system.

The second section, BASIC 2.0 Language Features, summarizes, by keyword, aspects of BASIC
2.0 keyword use that differ from the descriptions in this manual’s “BASIC Language Reference”
section.

The final section, Additional BASIC 2.0 Information, notes all other portions of the main text of
the manual that contain information inappropriate or invalid for BASIC 2.0 use on SRM. This
section also contains information on modifications to existing programs required by BASIC 2.0 that
are additional to those required for use with BASIC 3.0.

121

122

System Startup
From a BASIC 2.0 SRM Workstation

The following instructions aid the SRM sytem manager in bringing up the SRM system on an HP
Series 200 BASIC 2.0 workstation for the first time. These instructions assume that the workstation
has its own floppy disc drive.

For more information about the directories and files discussed in this procedure, refer to the
“System Startup”’ chapter in this manual.

To bring up the first BASIC 2.0 SRM workstation on your SRM system for the first time, follow
these steps:

1.

w

Load into the workstation the BASIC operating system software required for accessing SRM.

Before proceeding, you should have installed the SRM operating system on the system
controller by completing steps one through eight in the Initial Installation section of the
“System Installation”” chapter of the SRM Operating System Manual.

a.

With the computer’s power OFF, insert the BASIC 2.0 system disc into the workstation’s
primary drive (see the operating manual for the workstation or disc drive to determine
which is the primary drive) then turn the computer’'s power ON. Allow the BASIC
operating system to completely load, then remove the disc.

Insert the Resource Management Access disc (containing the SRM2_1 BIN file) into the
primary disc drive and type:

LOAD BIN "SRMZ_1" EXECUTE

If the BIN file is on a disc in an external (non-SRM) drive, you must either ensure that the
device is the current MASS STORAGE IS device or include the appropriate mass
storage unit specifier (msus) in the file specifier. Refer to the *‘Data Storage and Retriev-
al”” chapter of the BASIC Programming Techniques manual for further information on
msus.

Establish the remote device (shared disc) as the workstation’s mass storage device by typing:

MSI ":REMOTE" EXECUTE

which establishes the root of the SRM directory structure (on the shared disc) as the worksta-
tion’s current working directory. You may verify that position within the directory structure
by using the CAT command.

Create the SYSTEMS and USERS directories on the shared disc by typing:

CREATE DIR "SYSTEMS" EXECUTE

to create the SYSTEMS directory, and:

CREATE DIR "USERS" EXECUTE

to create the USERS directory.

4

Install the SRM operating system (from the controller) in the newly-created SYSTEMS
directory:

a. Return to the “System Installation” chapter of the SRM Operating System Manual
and resume the Initial Installation procedure from step 9.

b. After completing that procedure, return to the workstation you used to create the
SYSTEMS directory and continue with the following steps.

Place BASIC operating system files into the SYSTEMS directory, following these steps:
a. Specify SYSTEMS as the current working directory by typing:

MSI "SYSTEMS" EXECUTE

b. Place the disc containing the BASIC Loader Utility into the workstation’s primary drive
and type:
COPY "SYSTEM_LD: <device specifier> TO "SYSTEM_LD" (_EXECUTE

where <device specifier> might be HP82903 ;700 ,0 on the HP Models 220 and 216 and
is usually INTERNAL on the HP Models 226 and 236.

To allow workstations to boot automatically from the SRM, SYSTEM_LD should be the
first system file stored in SYSTEMS after the SYSTEM_SRM and CONFIG_SRM files.

c. Remove the Loader Utility disc from the workstation’s primary drive and insert the disc
containing the BASIC operating system. Type:

COPY "SYSTEM_BAS: <device specifier> T0 "SYSTEM_BAS" (EXECUTE

After the copy is complete, remove the disc from the drive.

d. (Optional) You may wish to copy the AP2_1 BIN file and other BIN files from the
Extended BASIC 2.1 disc. To copy the AP2_1 BIN file, with the Extended BASIC 2.1
disc in the workstation’s primary drive, type:

COPY "APZ_1:<device specifier> T0 "APZ_1" (_EXECUTE

Use the COPY statement as illustrated above to copy other BIN files from the Extended
BASIC 2.1 disc then remove the disc from the drive.

e. With the Resource Management Access disc in the workstation’s primary drive, type:
COPY "SRMZ2_1:<device specifier> T0 "SrRM2_1" {_EXECUTE

Create configuration files for use by the BASIC Loader Utility to allow workstations to boot
automatically from the SRM. Use of the Loader Ultility allows workstations with Boot ROM
version 3.0 or later (but not Boot ROM 3.0L) to boot automatically from the SRM. For more
information, refer to the Loader Ultility Manual.

a. With SYSTEMS as the current working directory (see step 5a), type:

LDAD "CONFIGER: <device specifier> (_EXECUTE
b. Press to create the default configuration file. The screen displays the prompt:

Ernter CONFIG file name
to which you reply:
CONFIG_LD ENTER

123

124

Note

For workstations whose boot ROMs support automatic booting from
SRM, at powerup the boot ROM boots the Loader Utility (assuming
SYSTEML_LD is the first bootable system file in the SYSTEMS direc-

tory).
The Loader Utility then loads the system and BIN files specified either
by the workstation’'s CONFIG_LDnn file (where nn is the workstation’s

node address) or by the default configuration file CONFIG_LD if the
appropriate CONFIG_LDnn does not exist.

c. To specify the BASIC 2.0 operating sustem as the system to be booted into the worksta-
tion, type:

SYSTEM_BAS CONTINUE

You may also wish to add a key string to the file. The key string is described in the
Loader Utility Manual. You may continue to enter names of non-scratchable BIN files
you wish to load, the last of which should be SRM_AP2_1.

Note
If you decide to load SRM_AP2_1 via a configuration file, you must
make SRM_AP2_1 the last entry in the file. You must also follow this
entry with a blank line.

When the workstation is powered up and the SRM_AP2_1 BIN file
loads. a non-fatal error occurs. This is normal and should not affect the
operation of the SRM system or the workstation or the execution of any
key string included in the configuration file.

d. Repeat steps 6b and 6¢ above to create unique configuration files for each workstation.
When naming the file (see step 6b). include the workstation’s node address in the file
name. For example:

CONFIG_LD1O

would be the configuration file for the workstation at node address 10.

The following table lists keywords used differently on SRM with BASIC 2.0 than with BASIC 3.0
and describes any differences from the keyword’s description in this manual’s “BASIC Language
Reference’” section. If a keyword is not listed in this table, you may use that keyword with either

BASIC 2.0 Language Features

version of BASIC, exactly as described in this manual.

One major difference is in the BIN files supporting the use of several of the keywords. With BASIC
2.0, the SRM_AP2_1 (SRM Advanced Programming) BIN file provides enhancements and addi-
tions to the BASIC 2.0 command statements supported on SRM. SRM_AP2_1 requires the BASIC

2.0 AP2_1 and the SRM2_1 BIN files.

Keyword Differences

CAT Options (SELECT, SKIP, RETURN, NO HEADER, PROTECT, TO String_
array$(*), <PROG file>) require the SRM_AP2_1 BIN file.
The catalog listing header shows only the name of the directory or file being listed,
not the full path to that directory or file, as in illustrations (valid only for BASIC 3.0).

LOAD BIN BIN files cannot be loaded from an external device unless the BIN file to access that
device is already present in the workstation.

LOAD KEY Requires SRM_AP2_1 BIN file.

LOADSUB All versions of this command except LOADSUB ALL FROM ... require the
SRM_AP2_1 BIN file.

PLOTTER IS Not supported with BASIC 2.0. Cannot be used with the SRM 1.0 operating
system.

PRINTER IS Not supported with BASIC 2.0. Cannot be used with the SRM 1.0 operating
system.

RESET Requires SRM_AP2_1 BIN file.

RE-STORE BIN A valid statement in BASIC 2.0 (not in BASIC 3.0). See description on the follow-

RE-STORE KEY
STORE

STORE BIN
STORE KEY
STORE SYSTEM
SYSTEM$

TRANSFER

ing page.
Requires SRM_AP2_1 BIN file.

This statement creates a PROG file and stores the currently resident BASIC prog-
ram and all normal BIN files currently in memory.

A valid statement in BASIC 2.0 (not in BASIC 3.0). See following description.
Requires SRM_AP2_1 BIN file.
Not a valid BASIC 2.0 statement.

Only SYSTEM$(*“MSI”) is valid with BASIC 2.0. Does not return the full directory
specifier (including directory path) as with BASIC 3.0. Returns only the directory’s
name and full remote msus.

Requires SRM_AP2_1 BIN file.

125

126

RE-STORE BIN

With SRM, RE-STORE BIN creates a BIN file in a remote directory and stores all normal BIN files in
the file. For a description of RE-STORE BIN with local files, refer to the BASIC 2.0 Language
Reference.

(Re-sore BINy—] "2001% (117 |

Example Statements

RE-STORE BIN "Phvrec"
RE-STORE BIN "Dir<RWpass:/Bin_ProgskHrass:"

Semantics

READ and WRITE access capabilities are required on the directory immediately superior to that in
which the file is to be re-stored and on the BIN file (if it exists).

Attempting to use RE-STORE BIN with an existing file that is not a BIN file results in an error.
Passwords assigned to an existing file are retained when a RE-STORE BIN is performed on the file.
If you specify the wrong password on a protected file, the system returns an error message.

If the file does not already exist, RE-STORE BIN performs the same action as STORE BIN.
Including a password in the RE-STORE BIN statement’s remote file specifier does not protect the
file. Passwords are assigned only with PROTECT.

With SRM, temporary files may by left on the disc by RE-STORE BIN if (LR 10) or (RESET) are
pressed or a TIMEOUT occurs during the RE-STORE BIN operation. The name of the temporary
file is an eight-digit number derived from the value of the workstation's real-time clock when the
interruption occurred. You may wish to check the contents of any such file before purging.

STORE BIN

With SRM, STORE BIN creates a BIN file in a remote directory and stores all normal BIN files
currently resident in memory in the file. For a description of STORE BIN with local files, refer to the
BASIC 2.0 Language Reference.

(stome BIN)} "gpocs fal® =
Example Statements

STORE BIN “"FFT"
STORE BIN "Dir<RWpass:/Bivn.rrog"

Semantics

READ and WRITE access capabilities are required on the directory immediately superior to that in
which the file is to be stored.

STORE BIN opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and
enforces that status on the file until the STORE BIN is complete. While in exclusive mode, the file is
inaccessible to all SRM workstations other than the one executing the STORE BIN.

Including a password in the STORE BIN statement’s remote file specifier does not protect the file.
Passwords are assigned only with PROTECT.

127

128

Additional BASIC 2.0 Information

The following information in the main text of this manual is invalid for BASIC 2.0 use of SRM (all
section titles refer to the chapter on "“"HP Series 200 BASIC Workstation Use on SRM”):

To execute statements in BASIC 2.0, use the (_EXECUTE) key on the HP 98203B keyboard or the
key labeled on the HP 98203A keyboard. The key is not an execution key for
BASIC 2.0 commands and statements. BASIC 2.0 does not support the HP 46020A keyboard.

Throughout the section, “‘Using Your BASIC Workstation on SRM.™

® All example catalog listings show the header format used with BASIC 3.0. With BASIC 2.0, the
header lists only the name of the directory rather than the full path name to the directory.

Similarly, SYSTEM$(**MSI") returns the full directory specifier (including the path to the
directory) with BASIC 3.0, but only the current directory’s name with BASIC 2.0.

In the section, “‘Booting From the SRM,”’

® BASIC 2.0 does not allow you to load BIN files from a device into the workstation unless the
BIN file to access that device is present.

® The Loader Utility can be used to load BIN files from SRM with BASIC 2.0 but not with BASIC
3.0. You must use the Loader Utility to boot BASIC 2.0 into your workstation from SRM.

® The SYSBOOT command is not a valid BASIC 2.0 command.

® BASIC 2.0 does not recognize “‘autostart’” files if you are using the Loader Utility. All automatic
configuration is specified in the Loader Utility's configuration files (CONFIG_LD or
CONFIG_LDnn).

® [n the BASIC 2.0 remote msus, the default value for the interface select code of a workstation’s
SRM interface (HP 98629A) is 21. The default controller’s node address is O.

Modifying Existing Programs

to Access Shared Printers or Plotters

Spooling

With BASIC 2.0, programming for printer and plotter spooling requires replacing the PRINTER IS
or PLOTTER IS statements with routines that implement those functions.

For example. in BASIC 2.0, you cannot use the sequence:

PRINTER IS ":REMOTE"
PRINT The_datag%

to spool data to the shared printer. Instead, you must create a file in the spooler directory and
output strings to the file. After the file is closed, the SRM controller automatically places the file in a
“waiting list.”” The SRM controller locks the file while it is being printed, then purges the file when
printing is completed.

Sending information to a spooler file may require four main changes to a program:

® Replacing all PRINTER IS statements with a CALL to a printer-selecting subprogram that
assigns an /O path name to the designated device or file.

® Replacing all PRINT statements with OUTPUT statements to access the printer to which the
I/O path name has been assigned. For example:

500 QUTPUT BPrinteri"Final Results"

o If double-spaced output is not desired, changing all numeric values to string values with the
VALS$ function. For example:

510 FOR Place=1 T0 10
520 OUTPUT @PrinteriVAL$(Place)&” "$Name$(Place)
530 NEXT Place

(Otherwise a carriage return/line feed is sent after each item in the OUTPUT statement.)

® When a printing segment of the program is done, closing the 1/O path (using, for example,
ASSIGN @ ... TO *) to allow the SRM controller to print the file’s contents. The spooler will
not print the contents of an open file.

Formatted Output

Formatted output (OUTPUT...USING...) cannot be directed to spooler files, which are ASCII files.
However, formatting can be accomplished by declaring a string variable, outputting to the string,
and then outputting the string to the spooler file. The following program shows an example of this
technique:

100 DIM Outrut$[BO]

1500 1 Center title by usind imade specifiers,

1510 QUTPUT Outeut$ USING "#,34%XsK"3i"Final Results®
1520 OQUTPUT EPrinteriOutprut$

1530 !

1540 FOR Place-1 TO 10

1550 DUTPUT Output$ USING 15603iPlaceName$(Place)
1560 IMAGE #,DD,5X40A

1570 DUTPUT BPrinteri0utput$

1580 NEXT Place

Note

If the EOL-suppression image specifier (#) is not used, a carriage return
and line feed will be printed as the last two characters in the string
variable, causing double-spaced output.

129

130

Subject Index

access capabilities 3, 16, 25, 57
access capability requirements. 32
access, concurrent. 78
Access command (Pascal Filer) 33, 77,
87, 89,91

accessrights. 77, 89
ALL attribute option 89
ASSIGN. 5, 15, 41, 46,
51, 54, 62, 66, 70, 71

andlockedfiles, 35
attributes, password protection 77
autostart file (BASIC) 8,98, 103, 128
BASIC 2.0 (system startup) 122
BASIC language, SRM supportof.......... 1
BDAT files {sending to spooler)........... 16
bootable system file. 98
booting from SRM 6,97, 106, 110, 123
boot ROMwversions. 104
Boot ROMs 3.Qorlater........ 6, 65, 76, 97,

106, 109, 110, 112, 123

CAT 9 11, 36, 125
catalog listing (BASIC) 10, 128

formatof. 37

header 37-38, 128
CHECKREAD 40
closing remote files 20, 55, 56, 59
m 61, 63, 126, 126
CONFIG_SRM i 96
configuration file, Loader Utility 100, 102
CONTROL. ... 41
controller’s node address. 8,29, 74

defaultvalue. 9
COPY . . 42

copyingfiles............ 12
usingCOPY 12, 101
using ENTER and OUTPUT............ 13
using LOAD and STORE 13

COITUPE . ..ot 78

CREATEASCI........... 43

CREATEBDAT. ... i 44

CREATEDIR 1,45

creating files and directories 10

CTABLE program, Pascal 74, 113
modificationsto. 114-115

DATA_COMM driver module (Pascal) ... 107,

111

DCOMMBINfile 7,95, 97
default volume (Pascal) .. 75, 82, 86, 106, 107
DELETE. 58
directories. 2
capabilittesof 3
closingl 19, 20
creatingl 9, 85
OPENING . ..ottt 45
protecting. 3,16
TEMOVING . .o v voe e 19
subordinate 2
SUPEIIOL. . .\t vvveeeeeee i 2
directoryname. e 27
directorypath 3,27,76
syntax of (Pascal) 87
directory specification (Pascal)............ 86
directory specifier (BASIC) 25, 30
Duplicate link command, Pascal Filer. 79,
91, 110

duplicate links 106
ENTER. o, 46
errorcodes. 72
exclusivemode.......... 47,61, 64, 67,127

extent 43, 44, 45, 88

131

132

f

file size specification (Pascal) 88
file specification (Pascal). 86
GET 47
hierarchical directory structure 2,75,76
HP 98629A interface card 74

INITIALIZE. 48
INITLIB. 106. 107, 111, 112
/O path, closing 35. 51,59, 71, 129
[/O path name {(see ASSIGN). 35
key references. 6. 80. 94, 104, 128
LABEL. 29. 30
Librarian (Pascal) 111
List directory command. Pascal Filer. 82
LOAD. 49
Loader Utility (BASIC). 99, 123. 124, 128
LOADBIN 49, 125
LOADKEY 49,125
LOADSUB 50, 125
LOCK 1.5.20,47.51. 71

m

Make command, Pascal Filer. 85, 91,108
MANAGER access capability (BASIC) 5.

38, 57
MASS STORAGE IS (MSI)...... .. 19,45, 52
msus, local. 12, 101
msus, remote vs. local. 22

nor-contiguous storage of files. 4
node address {SRM workstation) 74,104
ONTIMEOUT......................... 53
operating system, selecting. 7
OUTPUT 54
Pascal Filer commands 91
password. 23.26,57.77.87.89
password protection 4,57.77. 87, 89
PLOTTERIS 55,125, 128
plotters, preparing. 16
Prefix command, Pascal Filer. . 80, 81, 91, 109
PRINTERIS 56. 125, 128, 129
PROTECT, CAT option. 1. 39
PROTECT statement. 1.4.57
protecting files and directories 3. 16
publicaccess 57,77
PURGE 19, 59
purging files and directories 19

1§

READ access capability (BASIC) 4, 38, 57

remotedevice 8
remote filename.................... ... 26
remote file specifier 25, 26, 34
remote msus. 8, 28, 52
remote msus, generic 29
RENAME 61
RE-SAVE. 47, 53
RESET. 62, 125
....... 20, 51, 55, 59, 61, 63, 71, 127
RE-STORE..................... 49,53, 63
RE-STOREBIN 125, 126
RE-STOREKEY................... 63, 125
root............. 2,31, 76, 86, 95, 103, 107
SAVE. 47,61, 64
SCRATCHA 20, 51, 55, 56, 65, 71
secondary loader. 99
sharedmode. 47,49, 50
shared printer, sending program output to.. 15
shared printers and plotters 14, 90

SRM managementof 5
space allocation for remote files. 4
spooler directory 5, 14, 15, 55, 56, 75, 90

writing filesto. 15
spooling........................... 5, 128

using PRINTER IS and PLOTTERIS 14
SRMBINfile 7,49, 95, 97
SRM driver module (Pascal) 107, 111
SRM interface selectcode 8,29, 74

defaultvalue. 9

SRM operating system, version 1.0 vii, 16,
90, 105, 114
SRM operating system,

version2.0andnewer. vii
SRM system controller 74
SRM_AP2_1BINfile 125
SRM2_1BINfile 122,125
STATUS. 66
STORE.................... 49, 63, 67, 125
STOREBIN 126, 127
STOREKEY...................... 67, 125
STORESYSTEM............... 68,97, 125
subordinate directory 2
superior directory. 2

98619-90051, rev: 3/85

SYSBOOT..............coi .. 7,128
SYSTEM directories (Pascal) . .. 105, 109, 112
system volume (Pascal).............. 75, 84,
106, 110, 111

SYSTEMID 99, 100
SYSTEMS directory 76, 94, 95,
96, 101, 107, 122

SYSTEM_SRM 96
SYSTEMS 69, 125, 128
TABLE program (Pascal). 108, 111
TEMP_FILES 105, 106, 109, 113
TRANSFER. 70, 125
Unit directory command, Pascal Filer. 80,
83,91

unit numbers (shared discs) 75
UNLOCK.................. 1,5, 20,51, 71
USERS directory 94, 95, 96, 109, 122
volumeaddress. 114
volume identifier, syntax of (Pascal) 86
volumename.......................... 29
volume password. 29, 52, 87
Volumes command, Pascal Filer. 81, 108
working directory (BASIC) 3,10,
11, 31, 59, 83

working directory (Pascal) 86
WORKSTATIONS directory. 95, 105,

106, 107, 108
WRITE access capability (BASIC) ... 4, 38, 58

133

134

(ﬁﬁ HEWLETT

PACKARD

Part No. 98619-90051
E 0584 Printed in U.S.A.
Microfiche No. 98619-99051 First Edition...May 1984

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016a
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	xBack

