
Series 9800 Desktop Computers

HP9825
Operating and Programming

Reference

rli~ HEWLETT
~~ PACKARD

FliOW HEWLETT
a!1!II PACKARD

warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada, this
warranty applies for ninety (90) days from date of delivery.*
Hewlett-Packard will, at its option, repair or replace equipment
which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any.
Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided
by Hewlett-Packard are not covered by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service Office
to determine warranty terms.

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE

STATEMENT

The Federal Communications Commission (in Subpart J of Part 15, Docket 20780) has specified that the following
notice be brought to the attention of the users of this product.

Warning: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been tested and found
to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference when operated in a commercial environment.
Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense
will be required to take whatever measures may be required to correct the interference.

HP 9825 Desktop Computer
Operating and Programming Reference

Manual Part No. 09825-90200
Microfiche No. 09825-99200

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1980

ii

Printing History
New editions of this manual will incorporate all material updated since the previous edition.

Update packages may be issued between editions and contain replacement and additional

pages to be merged into the manual by the user. Each updated page will be indicated by a

revision date at the bottom of the page. A vertical bar in the margin indicates the changes on

each page. Note that pages which are rearranged due to changes on a previous page are not

considered revised.

The manual printing date and part number indicate its current edition. The printing date

changes when a new edition is printed. (Minor corrections and updates which are incorpo

rated at reprint do not cause the date to change.) The manual part number changes when

extensive technical ch anges are incorporated.

May 1980 ... First Edition.

June 1980 ... Updated pages: 0-5, 0-6, Oisc Programming insert.

November 1980 ... Second Edition. Revised pages: v, 1-8, 1-10, B-1 thru B-23, C-1 thru C-10,

0-9,0-10.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICU
LAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated to another program language without the prior written
consent of Hewlett-Packard Company.

rev: 11/80

Your Operating and Programming Reference
This reference describes installing, operating and programming an HP 9825A or 98258 De

sktop Computer. The 98258 contains all features of its predecessor, the 9825A. In addition,

the 98258 has many optional language modules (ROMs) built-in and can be configured with

up to 62 Kbytes of read/write memory.

This reference replaces these earlier 9825A manuals:

• 9825A Operating and Programming (09825-90000)

• String Variables Programming (09825-90020)

• Advanced Programming (09825-90021)

• Systems Programming (09825-90027)

Although the information is the same, it's arranged here for easy access and allows us to

provide better documentation updating in the future. You'll find a complete index to topics in

both this reference and the I/O Control Reference at the back of each binder.

This reference also provides room for the optional language ROM manuals currently useable

with the 9825A and 98258:

• Matrix Programming (09825-90022)

• Disk Programming (09885-90000 or 09825-90220).

Since the 9825A and 98258 are often referred to as calculators, computers and desktop

computers, these terms are used interchangably throughout this reference.

We welcome your comments and suggestions for improving HP user documentation. You'll

find a card at the back of this reference. If it's missing, address your comments to:

Hewlett-Packard Company

3404 E. Harmony Road

Fort Collins, CO 80525

ATTN: PL97 User Documentation

iii

iv

Reference Preview
Chapter 1 : Installation

Covers installing your new desktop computer and describes accessories and services

available for your computer.

Chapter 2: Keyboard Operations

Introduces you to the keyboard functions including editing keys, math operations, spe

cial function keys and system command keys. If you are not familiar with the 9825, please

read this chapter before starting to program.

Chapter 3: HPL Programming

Describes the standard 9825 High-speed Programming Language (HPL). Each state

ment and function is presented, along with typical example program lines. You'll also find

a brief introduction to programming in HPL.

Chapter 4: Advanced Programming

Explains the advanced programming language: for-next loops, subprograms with

parameter passing, split and integer data storage and program cross-referencing. Each

statement and function is covered, accompanied by many example program sequences.

Chapter 5: Tape Cartridge Operations

Shows how to use the built-in tape drive for program and data storage. The statements

and commands covered here can also be used to control external 9875A Tape Drives.

Chapter 6: String Variables

Describes the statements and functions available for handling alphanumeric data, using

either simple string variables or string arrays.

Chapter 7: Systems Programming

Covers the language extensions available with the large memory (9825T), including

remote keyboard operation, terminal emulation, and program self-modification.

You'll find reference tables, a complete list of HPL syntax, all error codes and an index at the

back of the reference. For a table of contents to each chapter, look under the appropriate

tabbed divider.

98258 User Documentation

The standard set of 98258 manuals is listed here. The first three manuals can be ordered as

the 98258 Manual Kit, 09825-87901.

Operating and Programming Reference (09825-90200) - Explains installation, keyboard and

tape cartridge operations, and the HPL programming language. Additional chapters cover the

Advanced Programming, String Variables and Systems Programming language extensions.

I/O Control Reference (09825-90210) - Describes the interfacing and peripheral-control op

erations built into the 98258: General 1/0, Extended 1/0, and HP 9862A/9872A Plotter control.

the 9825 Interfacing Concepts Guide is included with this reference. Space is provided for

keeping interface manuals and interface operating notes.

9825A1B Pocket Reference (09825-90012) - Lists all HPL syntax and error codes in a handy,

pocket-size format.

9825A1B System Test Booklet (09825-90037) - Explains how to run each mainframe and

peripheral test supplied on the 9825 System Test Cartridge.

9825A1B Error Codes Booklet (09825-90015) - Error codes listed in a small booklet kept

under the computer's paper-access lid.

Matrix Programming (09825-90022) - Describes the HPL language extensions available with

the optional Matrix ROM.

Disc Programming (09825-90220) - Explains controlling HP Disc Drives via the HPL language

extensions supplied with the optional 98217 A or 98228A Disc ROM. This manual replaces the

9885 Disc Programming Manual, 09885-90000.

rev: 11/80

v

vi

Peripheral Operating Notes
Each of the following notes is shipped when you order the appropriate interface card or HP

computer peripheral. Each 98032A Interface note shows the interface wiring configuration for

a particular interface application. Most notes contain detailed programming instructions for

the system application. These operating notes are currently available:

• 9863A Tape Reader Operating Note (09825-90041)

• 9864A Digitizer Operating Note (09825-90042)

• 9866A/B Printer Operating Note (09825-90043)

• 9869A Card Reader Operating Note (09825-90044)

• 9871 A Printer Operating Note (09825-90045)

• 9883A Tape Reader Operating Note (09825-90046)

• 9884B Tape Punch Operating Note (09825-90047)

.9881 A Printer Operating Note (09825-90048)

• 6940A Multiprogrammer Operating Note (09825-90049)

• 98035A Real Time Clock Operating Note (09825-90054)

• 9875A Tape Cartridge Memory Operating Note (09825-90075)

Interface Manuals
These 9800-series interfaces and manuals are currently available:

• 98032A Parallel I/O Interface Installation and Service (98032-90000)

• 98033A BCD Interface Installation and Service (98033-90000)

• 98034A HP-IB Interface Installation and Service (98034-90000)

• 98035A Real Time Clock Installation and Service (98035-90000)

• 98036A Serial I/O Interface Installation and Service (98036-90000)

• HP 9878A I/O Expander Installation and Service (09878-90000)

A brief description of each interface is in your 9825B I/O Control Reference. More complete

information can be found in the Interfacing Concepts guide supplied with the 1/0 Control

Reference.

Chapter 1
Table of Contents

~
Installation 1-1""

Inspection Procedure .. 1-3

Power Cords .. 1-4

Power Req uirements ... 1-5

Fuses ... 1-6

Initial Turn-On Instructions .. 1-6

Computer Testing .. 1-7

Loading Printer Paper .. 1-7

Accessory ROMs .. 1-8

ROM Installation .. 1-8

Pre-recorded Programs ... 1-11

Service Contracts ... 1-11

Keyboard Magazine ... 1-12

Table Mounting ... 1-12

1-2 Insta;jation

Notes

Chapter 1

Installation

Inspection Procedure
The individual parts of your computer system were thoroughly inspected before they were

shipped to you. All equipment should be in good operating order. Carefully check the compu

ter, plug-in ROMs and peripheral equipment for any physical damage sustained in transit.

Notify HP and file a claim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any

options specified on your order have been installed. The options installed are listed on a label

under the computer's paper-access cover.

NOTE

The standard 98258 is configured with 24 Kbytes of read/

write memory and 9872 Plotter operation. If you wish to con

figure the system for 9862A Plotter operation or a larger

memory, contact your HP Service Representative for assist

ance.

Also inventory the items in the Manuals Kit (09825-87901) and the Miscellanious Kit (09825-

80003). A pack list is suppled in each kit.

If you have any difficulties with your system, if it is not operating properly, or if any items are

missing, please contact your nearest HP Sales and Service Office; addresses are supplied at

the back of this reference.

1-3

1-4 installation

Power Cords
Power cords with different plugs are available for the calculator; the part number of each cord

is shown below. Each plug has a ground connector. The cord packaged with each calculator

depends upon where that calculator is to be delivered. If your calculator has the wrong power

cord for your area, please contact your local HP sales and service office.

~"~' ~~ lL~·
8120·1351 8120-1389 ,

8120-1378'

8120-1689

~
~N

L E

8120-2104

L = Line or active Conductor (also called "live" or "hot").
N = Neutral or Identified Conductor.
E = Earth or Safety Ground.

CALCULATOR
POWER-INPUT

SOCKET

To protect operating personnel, we recommend that the computer be properly grounded. The

computer is equipped with a three-conductor power cable which, when connected to an

appropriate power receptacle, grou nds the computer. Do not operate the computer from an

ac power outlet which has no ground connection.

1 UL and CSA approved for use in the United States of America and Canada with calculators set for either 100 or 120 Vac operation.

2UL and CSA approved for use in the United States of America and Canad a with ca!culators set for either 220 or 240 Vac operation.

Power Requirements
The 9825 Computer has the following power requirements.

• Line Voltage: 100Vac+5%,-10%

120 Vac + 5%, -10%

220 Vac + 5%, -10%

240 Vac + 5%, -10%

• Line Frequency: 48 to 66 Hertz

• Power Consumption: 1 OOV @ 2.0A

120V @ 1.8A

220V @ 0.8A

240V @ 0.8A

Switch Selectable

Installation 1-5

1-6 lilstallation

Fuses
For 100 or 120 Vac operation, use a 3A fuse; for 200 or 220 Vac operation use a 1 .5A fuse.

WARNING

TO AVOID THE POSSIBILITY OF SERIOUS INJURY, DIS

CONNECT THE AC POWER CORD BEFORE REMOVING OR

INSTALLING A FUSE.

Location of Fuse

The figure shows the location of the fuse under the paper cover. To change the fuse, first

disconnect the power cord to the calculator. Then remove the fuse cap by pressing inward

while twisting it counterclockwise. Remove the fuse from the cap and insert the correct re

placement fuse (either end) into the cap. Finally, put the fuse and cap back into the fuse

holder. Press on the cap and twist it clockwise until it locks in place.

Initial Turn-On Instructions
1. With the calculator disconnected from its ac power source, check that the proper

calculator fuse has been installed for the voltage in your area (see previous section).

2. Next, ensure that the two voltage selector switches under the paper cover are set for the

correct powerline voltage. The ficure below shows the correct settings for each nominal

line Voltage. If it is necessary to alter the setting of either switch, insert the tip of a small

screwdriver into the slot on the switch. Slide the switch so that the position of the slot

corresponds to the desired voltage, as shown below.

~ ~, ~ ~, ~ ~, ~ ~,
100 vol'$ 120 VO'ts 220 vo'ts 240vo 'ts

Nominal Line Voltage Settings

Installation 1-7

3. The operating system module on the right-hand side of the 9825A calculator must be

inserted so that it is even with the side of the calculator.

4. Install the desired ROM cards and interface cards. See the next page and refer to the

appropriate manual for interface installation.

CAUTION

ALWAYS TURN OFF THE CALCULATOR WHEN INSERTING

OR REMOVING ROMS AND INTERFACES. FAILURE TO DO

SO COULD DAMAGE EQUIPMENT.

5. Connect the power cord to the power input connector on the back of the calculator.

Plug the other end of the cord into the ac power outlet.

6. Switch the calculator on using the switch on the right-hand side of the calculator.

Computer Testing
If you wish to test your calculator, or if there is any doubt that your calculator is operating

correctly, refer to the System Test Booklet for the calculator test procedure.

Loading Printer Paper
The internal printer uses special heat-sensitive (thermal) paper. When ordering paper, specify

the six-roll pack, HP part number 9270-0479.

To load a roll of paper:

1. Lift the paper cover and remove the paper spindle. Discard the old paper core and

remove any paper left in the printer using the paper advance wheel.

2. Install the new roll as shown in the following figure.

3. Insert the free end of the paper and advance it through the printer using the paper

advance wheel.

1-8 Installation

Loading Printer Paper

CAUTION

HP THERMAL PRINTER PAPERS ARE DESIGNED SPECIFI

CALLY FOR USE WITH HP DESKTOP COMPUTERS. USE

OF OTHER PAPERS MAY DAMAGE THE PRINTER. TO

MAINTAIN A VALID WARRANTY OR SERVICE CONTRACT

AND ENSURE PROPER PRINTER OPERATION, USE ONLY

HP THERMAL PAPER.

Accessory ROMs
Several ROMs (Read Only Memories) are available for your computer; each provides addi

tionallanguage capabilities to perform specific tasks such as plotting, controlling peripherals

or extending the programming capabilities. One or more ROMs are packaged in a ROM card.

ROM Installation

A ROM card can be plugged into anyone of the four ROM slots on the bottom front of the

calculator as shown below.

ROM Installation

To install a ROM, first turn off the calculator. Then slide the ROM, with the label right-side-up,

through the ROM slot door. Press it in so that it is even with the front of the calculator.

rev: 11/80

Installation 1-9

The ROMs listed below are an internal part of the 9825B Computer. They can be purchased in

various combinations for the 9825A.

String Variables ROM

This ROM enables the calculator to recognize and operate on letters and words ("strings") in

much the same way that it recognizes and operates on numbers. Some of the capabilities

which are provided include: single strings and string arrays, numeric value of a string of

digits, concatenation, and displaying or printing all special characters.

Advanced Programming ROM

This ROM extends the programming capabilities of the 9825 Calculator. For/next looping,

split and integer precision number storage, multiparameter functions and subroutines, and

the cross reference statement are the operations provided by the Advanced Programming

ROM.

9862A and 9872A Plotter ROMs

These ROMs enable the 9825 to control HP 9862A and 9872A Plotters. Axes can be drawn and

labeled; functions can be plotted; and in the "typewriter" mode, characters can be printed as

you type them from the keyboard. More than one plotter can be operated at the same time with

each ROM.

General I/O ROM

The General I/O ROM provides basic I/O capability with formatting. Most 9800 series

peripherals (not the 9862A Plotter) can be controlled using this ROM. Binary 110, status

checking, and limited control of instruments via the HP Interface Bus are also provided.

Extended I/O ROM

The Extended I/O ROM extends the I/O capability of the calculator by providing complete

HP-IB control, bit manipulation and testing, auto-starting, error trapping, and interrupt

capabilities.

1-10 installation

These ROMs are available for 9825A and 9825B Computers:

Matrix ROM

The Matrix ROM extends the language to include statements for manipulating matrices and

arrays. Addition, subtraction, multiplication, and division of arrays, as well as inversion, trans

position, and determinants of matrices are only some of the capabilities provided by this ROM.

Disk ROMs

The HP 98217A Disk ROM adds HPL language statements and functions for controlling

HP 9885M and 9885S Flexible Disk Drives. Each 9885 Drive handles a V2 megabyte flexible

disk. Both data and programs can be stored in a random-access, file-by-name structure. Up

to eight 9885M (master) drives can be accessed. Up to three 9885S (slave) drives can be

accessed via each 9885M.

The HP 98228A Disk ROM provides HPL language for controlling both HP 9885 and HP 9895

Disk Drives. Each 9895 handles one or two 1.2 megabyte flexible disks. The 98228A ROM can

be used only with a 9825T computer.

Systems Programming ROM

This ROM add capability for remote keyboard operation, program self-modification, intelligent

terminal emulation and run-time memory allocation. This ROM is available as the 98224A

plug-in card for 9825A. The ROM is added to the 9825B with the large memory option (9825T).

rev: 11/80

Installation 1-11

Prerecorded Programs
Tape cartridges containing programs for solving problems from many disciplines are availa

ble. A utility program cartridge is supplied with each calculator. For a complete list of pre

recorded programs and for pricing information, contact any HP sales office (addresses are

provided in the back of this manual).

Service Contracts
When you buy a Hewlett-Packard desk-top calculator, service is an important factor. If you are

to get maximum use from your calculator, it must be in good working order. A HP Maintenance

Agreement is the best way to keep your calculator in optimum running condition.

Consider these important advantages:

• Fixed Cost- The cost is the same regardless of the number of calls, so it is a figure that

you can budget.

• Priority Service- Your Maintenance Agreement assures that you receive priority treat

ment, within an agreed upon response time.

• On-Site Service- There is no need to package your equipment and return it to HP. Fast

and efficient modular replacement at your location saves you both time and money.

• A Complete Package- A single charge covers labor, parts, and transportation.

• Regular Maintenance - Periodic visits are included, per factory recommendations, to

keep your equipment in optimum operating condition.

• Individualized Agreements- Each Maintenance Agreement is tailored to your support

equipment configuration and your requirements.

After considering these advantages, we are sure you will agree that a Maintenance Agree

ment is an important and cost-effective investment.

For more information please contact your local HP calculator sales and service office.

1-12 ~stallation

Keyboard Magazine
Keyboard is a periodical magazine contafning general information about HP calculators and

related equipment. It includes articles and programs written by calculator users, description

of the latest equipment and prerecorded programs, programming tips, and many other items

of general interest to calculator users.

To receive your free subscription to Keyboard, merely complete the order form supplied.

Table Mounting
Your calculator can be mounted to the top of a desk or table by following these steps:

1. Drill 5 holes in the top of your desk or table to accommodate #6-32 (National Coarse)

screws according to the diagram below.

2. Remove the Phillips head #6-32NC screws that hold the rubber feet to the bottom of the

calculator.

3. Use screws that are V2 inch longer than the thickness of the table top. This V2 inch allows

for the thickness of the rubber feet and the hole for the screw in the bottom of the

calculator.

ref to rear

r11.e40~ r S
.
92O

, -.-
1.500 1.500

T
+ + + -L

10.705 (dimensions

1
in inches)

,
+ +: T 7.300

ref to front 7.300

---*- front of calculator ~
.460 .!+ 10.920 -1"1- .460

~
K 0 2-1 " eyboard pe rations

Chapter 2
Table of Contents

Before Using the Calculator ... 2-3

General Information .. 2-4

The Keyboard .. 2-4

Display and Line Length .. 2-5

Range ... 2-6

Significant Digits ... 2-6

Memory ... 2-6

Languag e ... 2-8

Error Messages .. 2-8

System Keys .. , 2-9

Keyboard Arithmetic .. 2-10

Arithmetic Hierarchy .. 2-11

Variables ... 2-11

Operating Modes ... 2-12

Basic Editi ng ... 2-13

System Command Keys ... 2-14

Display Control Keys .. 2-16

Line Editing Keys ... 2-17

Character Editing Keys .. 2-18

Calculator Control Keys ... 2-19

Special Function Keys ... 2-21

Immediate Execute Special Function Keys 2-22

Immediate Continue Special Function Keys 2-22

Keys with Multiple Statements .. 2-23

Commands ... 2-24

The Run Command (run) ... 2-24

The Continue Command (cont) ... 2-24

The Delete Line Command (del) .. 2-25

The Erase Command (erase) ... 2-26

The Fetch Command (fetch) .. 2-27

Live Keyboard .. 2-28

How Live Keyboard Works ... 2-28

Live Keyboard Math ... 2-28

Statements in Live Keyboard ... 2-28

Subroutines from Live Keyboard .. 2-29

2-2 Keyboard Operations

Special function Keys in Live Keyboard ... 2-29

The Stop Key in Live Keyboard ... 2-30

Live Keyboard Limitations .. 2-30

The Display ... 2-31

The Live Keyboard Enable Statement ,' " ... ,' , 2-32

The Live Keyboard Disable Statement .. , .. , .. , .. , , , , .. , , ... , 2-32

Chapter 2
Keyboard Operations

This chapter introduces some of the operating characteristics of the 9825 Desktop Computer.

The keyboard, display, and range are a few of the topics covered.

Before Using the Calculator
There are a few things you should check each time you turn on the calculator.

If the calculator is turned off:

• Set the power switch on the right-hand side of the calculator to the "1" position:

a

• When the following display appears, the calculator is ready for use:

If the calculator is turned on and the display is blank:

• Press 8 or 8

If the display still remains blank, first check the power connection and fuse as described in

chapter 1. If you still have a problem, call your HP sales and service office listed in the back of

this manual.

If the calculator is on and the display shows the "lazy T", you can do keyboard operations or

arithmetic or you can enter programs and run them.

2-3

2-4 Keyboard Operations

General Information

The Keyboard

r- SYSTEM COMMANDS ~ (-----LlNE----...1

8888 8888

8 GaB

(J)GJGJCDCDCDCDCDCDGJeDG
o0000080[)00c::J
@000000008GJCD
8 0 0 0 8 0 0 0(J C) CD 8

() 8 EJ
I

Alphanumeric Keys

Special Function Keys
\ ,

8@000
8·80·08
00008
rl·8·008
L!J0008

\
Numeric Keys

• Alphanumeric Keys - This area is very much like a standard typewriter keyboard. For

instance, to display a capital A, press the shift key and 0 at the same time; or to

display a percent sign, %, press the shift key and CD at the same time.

• Numeric Keys - All the keys needed to enter numbers and do simple arithmetic are

located in this block. The numeric keys in the alphanumeric section of the keyboard can

also be used to enter numbers. The exponentiation and square root key, (0, is located

in the alphanumeric key section.

• Special Function Keys - The keys in the upper right section of the keyboard, namely m
through 5], provide additional calculator abilities. These keys are explained later in

the chapter.

Keyboard Operations 2-5

Keys of the same color have similar functions. For example, all the alphanumeric keys are the

same beige color; gold colored keys are control keys used to run programs, store lines, erase

programs, etc.

Be!ow are a few more topics related to keyboard operations:

• Spacing - In general, spaces are not important. It makes no difference, for example if

you key in:
::::·:··C: or :::::

Both are interpreted the same. Spacing, however, is important when using text (charac

ters within quotes) and when printing and displaying messages.

• Repetition of Keys - When a key is held down, its operation is repeated rapidly. This is

an especially useful feature with the editing keys.

• The i···· Symbol - When the display is clear and awaiting inputs, the "lazy T" symbol

appears in the leftmost character of the display. This symbol also indicates the end of a

stored line.

• The Run Light - A small red light in the left end of the display lights when a program is

running.

Display and Line Length
The 9825 Calculator has a 5 x 7 dot matrix, 32-character display. Even though on Iy 32

characters can be displayed at one time, up to 80 characters can be keyed into the display.

After the 32nd character, additional characters which are keyed in cause the displayed line to

shift to the left. After 67 characters are keyed, a beep indicates that only thirteen more

characters can be entered. Up to 73 characters can be stored. This includes any spaces or

parentheses which the calculator may automatically insert in the line.

2-6 ~eyboard Operations

Range
The range of values which can be entered or stored is -9.99999999999 x 1099 through -1 x

10-99 ,0,1 X 10-99 through 9.99999999999 x 1099 . However, the range of calculations is from

-9.99999999999 x 10511 through -1 x 10-511 ,0, and 1 x 10 -511 through 9.99999999999 x

10511 .

Storage Range

-9.99999999999 X 1099

Calculating Range

-9.99999999999 X 10511

-1 X 10-99 0 1 X 10-99

-1 X 10-511 0 1 X 10-511

out of range [] within range D

9.99999999999 x 1099

.

9.99999999999 X 10511

The extended calculation range is useful for calculations which have intermediate results

outside of the storage range, but which have final results within the storage range. For in-

stance:

(9.2 x 1023 x 8.6 x 1 OBO)/(1 x 1024)

When the first two values are multiplied their result is:

(7.912 x 10104)

This intermediate result cannot be stored, but the final result, 7.912 x 10BO , can.

Significant Digits

All numbers are stored internally with 12 significant digits in the mantissa and a two digit

exponent. The format used to display or print numbers (such as!>;': ::,) has no effect on the

internal representation of a number.

Memory

The 9825 Calculator uses two types of memory; Read/Write Memory, and Read Only Mem

ory. Read/Write Memory is used to store programs and data. When you store a program or

data, you "Write" into the memory. When you access a line of your program or a data element,

you "Read" from memory; thus the term Read/Write.

Keyboard Operations 2-7

Read Only Memory differs in that it is permanent. When the calculator is turned off, the

contents of the Read/Write memory are lost, whereas the Read Only Memory is unaffected.

ROM (for Read Only Memory) cards can be plugged into the ROM slots on the front of the

calculator. This makes it possible to expand the language.

Programs and data in Read/Write memory can be saved for future use by recording the

information on the tape cartridge.

A small amount of memory is sometimes required by a plug-in ROM. This area is called

"working storage".

Read/Write Memory Organization

low addresses

I

This boundary is fixed at turn-on -..

r0
r1
r2
:

Permanently fixed boundary ~

high addresses

Working Storage

Special Function Key Definitions

User's program

r-variab!es

Unused area
(Used as needed)

Execution Stack
(subroutine return pOinters)

Arrays and simple variables

Loaded Binary program (if any)

Reserved for internal use (flags)

2~8 Keyboard Operations

Language
The language used by the HP 9825 Calculator is called HPL. The basic programming unit is

the statement. Statements are typed using lower case abbreviated mnemonics, such as F:>("!:.

for print. Multi-statement lines can be stored by separating statements with semicolons.

Two other characteristics of this language are implied multiplication and the assignment

operator. Implied multiplication is a standard algebraic notation, such as 5X. The assignment

operator .. :,. points to the variable being assigned a value, such as ::::: . .:,. C:.

More mnemonics can be added to the language by adding ROM cards which plug into the

ROM slots on the front of the calculator.

Error Messages
When an error occurs, the calculator beeps and displays an error number. The number

references a description that will help pinpoint the cause of the error. For example:

Indicates a syntax error.

If an error message is displayed during an attempt to run a program, the program line number

where the error occurs will also be displayed. For example:

...)LJ
~-.. -.. -'-'-.. -... -'--':'-'--... -'-'-""'------------ Indicates that a parameter is out of range in

line 3.

Pressing 8 after some error messages will bring the line containing the error into the display

with a flashing cursor indicating the location of the error.

A complete list of the error codes is at the back of this manual.

Keyboard Operations 2-9

System Keys
The following keys are used often for keyboard operations and programming,

e, ~Iears t,he display; the 1···· symbol remains to show that the calculator is ready for further

instructions:

I Performs the operation in the display. For example, to add 2 + 2:

Press: 080 _____ "'_" ._ ----D
Press: CD \0.......-,:::,,,_:::::::::: ___)]

Stores program lines in the memory. For example, to store a program line:

*
Type in: 08[0 ,-----" ---)]

Press: 8 \0.......-::::::'_'" ---D
This program line will assign the value 7 to the variable A,

• Runs the program in memory from line O.

*The [indicates that the following key is shifted.

2-10 Keyboard Operations

Keyboard Arithmetic

The six basic arithmetic operations in the 9825 are: addition (:.-), subtraction (.. -), multiplica

tion (-», division C·t exponentiation en, and square root Ul

To perform a math operation, such as 8 x 2, first you key in the expression as follows:

008 "",----::::: -':::' ;? ---)]

Then press: CD (I "",----.:. :,,_.' :: :: . .':_: . .' ---)-.-1

To raise a number to a power, such as 82 , press:

...... (I "",----:.'.' ._ . .,. :: :: . .'_:: . .' ---)-.-1

Notice that an operation such as 8-2 must appear as: :::/i·· ::;:::::: .

The value which is displayed after pressing the execute key is stored in a location called

"result". This value can be used in other calculations. For example:

808CD ---"." "'-'" ---)]
808CD ." (I ,----.:. :_:".:: :: . .'_:: . .' ---)-.-1

808CD ""'----._" ""._". ---)]

If you execute an operation involving large numbers, such as:

Keyboard Operations 2-11

the calculator displays the result in scientific notation, with 9 digits to the right of the decimal

point:

This is because the number is too large for the fixed 2 notation which is set when you switch on

the calculator.

Arithmetic Hierarchy
When an expression has more than one arithmetic operation, the order in which the operations

take place depends on the following hierarchy:

no operator

square root

exponentiation

implied multiplication

multiplication and division

addition and subtraction

performed first

j
performed last

An expression is scanned from left to right. Each operator is compared to the operator on its

right. If the operator to the right has a higher priority, then that operator is compared to the

next operator on its right. This continues until an operator of equal or lower priority is encoun

tered. The highest priority operation, or the first of the two equal operations, is performed.

Then any lower priority operations on the left are compared to the next operator to the right. If

parentheses are encountered, the expression within the parentheses is evaluated before the

left-to-right comparison continues. This comparison continues until the entire expression is

evaluated. For example:

..... .+. : .. ~ ";=;" J :::l·::+.... : ::..,: :

.....

exponentiation

implied multiplication

multipl ication

evaluate parenthesis

exponentiation

division

addition

result

Variables
A variable is a name of a location where data is stored. There are two types of variables:

numeric variables and string variables. Each data type can be stored in either simple or array

form. Numeric data can also be stored in r-variables.

2,,12 :<eyboard Operations

Simple Variables
Twenty-six simple variables, named A through Z, are used on the 9825 Calculator. Only the

upper case letters can be used for simple variable names.

To assign a value to a variable, the assignment operator is used. For instance, to assign the

value 4.5 to N, press:

8088[0CD
The number always appears on the left, and the variable appears on the right side of the

assignment operation.

Now, N can be used in calculations. For instance, to multiply N by 2, press:

'-."-" ... "'---)]
N is not changed. New values can be assigned to variables, such as:

[0888[0CD
r-Variables
r-variables are designated by a lower-case "r" followed by a number (e.g., :<i.:::::). They are

useful for one dimensional arrays and can be used in addition to the 26 simple variables.

I n the following two examples, the value 12 is assigned to r1 O. Then the value 20 is assigned to

the register designated by the value of r1 0 (this is called indirect storage).

O' _0 ••••••

:: ••• :: •• : 0' : : .:. :: •• :

The value 12 is assigned to r10 directly.

The value 20 is assigned to r12 indirectly.

For more information about variables, see the next chapter and the String Variables chapter.

Operating Modes
The calculator can operate in any of three modes: the calculator mode, the program mode,

or the live keyboard mode.

• In calculator mode, no program is running, and the calculator is awaiting inputs or

calculating keyboard entries.

Keyboard Operations 2-13

• In the program mode, a program is running.

• In live keyboard mode, you can perform many calculator operations while a program is

running.

Basic Editing
If you make a mistake while entering lines into the display, you can use the character editing

keys for changing the line.

~CHARACTEFI ~

8B88

For instance, suppose you want to type in this line:

But, instead you type:

[.
J ~:::~ n::" :::~ . ~i

To correct this, simply press 8 until a flashing cursor ~~m appears over the "a".

Then type in an i:::)' To delete a "1" in 112, press B once and press character B. The

resulting display would be:

with a flashing cursor on the "1" of 12. To execute the line, press: CD
As another example, maybe you want to execute this line:

10 + 18 + 22

But you typed this:

2~ 14 ~eyboard Operations

To insert a one in front of the 8, press the 8 key 4 times. The flashing replace cursor lim will

be positioned on the 8. Next, press the B key. This changes the replace cursor to the insert

cursor '~L Now, type in a 1. The display will be:

Note that the rest of the line shifted to the right 1 character. The insert cursor .;!! will still be

flashing over the 8 indicating that more characters could be inserted if desired. To execute the

line, press CD.

System Command Keys

r-- SYSTEM COMMANDS ~

8888

• Returns the calculator and I/O cards to the power-on state without erasing programs or

variables. 8 is executed immediately when it is pressed; it does not have to be followed by

CD. All calculator activity is halted and the line number of the current location in a program is

displayed if a program is running. The reset key should be used to reset the calculator when

no other key, such as 8 or 8 ' will bring the calculator to a ready state.

_ Sets the print-all mode on or off. When it is pressed once, the word c;(: appears in the

display. When it is pressed again, the word c;f f appears in the display. In print-all mode,

displayed results, executed lines, and stored lines are printed.

While a program is running in print all mode, all displayed messages and error messages are

printed. Print-all mode can be turned on or off while a program is running .

• Automatically rewinds the tape cartridge to its beginning. Other statements and com

mands can be executed immediately without waiting for the cartridge to completely rewind. If

B is pressed while a program is running or while a line is executing from the keyboard, the

cartridge rewinds at the end of the current line.

Keyboard Operations 2-15

• Executes a program, one line at a time. Then, the line number of the next line to be

executed is displayed. When 8 is pressed just after stopping a program, only the line

number of the next line to be executed is displayed. The next time 8 is pressed, that line is

executed.

To step from a specific line, execute a gto X, where X is the line to start stepping from. For

example, to begin stepping through your program from line 30, type in gto 30 and press OJ.
Then use the step key.

III This typing aid is used to erase all or part of the Read/Write memory.

80m
88m
80m

Erases the entire calculator memory.

Erases only the variables.

Erases all the special function keys.

Erases programs and variables.

Erases the special function key represented by

"n".

The Reset Table in the Reference Tables appendix lists things affected by the erase com

mand.

• This typing aid is used to load programs and data from the tape cartridge. For example

to load a program which is on file 3:

Loads the program from file 3 into the cal

culator.

The display shows ::. (:: f (for "load file") when this key is pressed. See the load file statement

in the Tape Cartridge chapter.

• This typing aid is used to record programs and data on the tape cartridge. Before

recording on the tape cartridge, files must be marked (see the Tape Cartridge chapter). In the

following example, it is assumed that the file has been marked:

Record the calculator program on file 6 of the

tape cartridge.

The display shows (for "record file") when this key is pressed (see the record file

statement in the Tape Cartridge chapter).

2-16 Keyboard Operations

• This typing aid is used to list programs, sections of programs, all special functions keys,

or individual special function keys. For example:

B00CD
B0080CD

Lists the entire program.

Lists all defined special function keys in numer

icalorder.

Lists special function key, fo.

Lists the program from line 20 to the end.

Lists the program from line 9 to 13, inclusive.

Display Control Keys

,DISPLAYj

8 GJ

_ Brings the line with the next higher-valued line number into the display. If there are no

more lines in the program, r + J clears the display and allows new program lines to be ap

pended to the end of the program.

_ Brings the line with the next lower-valued line number into the display. If a line number is

in the display, GJ brings that line into the display. If a stop statement is executed from a

program, GJ brings the line following the line with the stop statement into the display. After a

program error, GJ brings the line containing the error into the display for editing.

_ Moves the line in the display to the left. This allows all the characters in a line to be

moved into the display. Each time it is pressed, the displayed line moves 8 characters.

_ Moves the line in the display to the right for viewing all the characters in a line. Each

time this key is pressed the displayed line moves 8 characters.

Keyboard Operations 2-17

Line Editing Keys

(1

8888

III This typing aid is used to bring program lines into the display and to fetch special

function keys. For example:

Brings line 20 into the display.

Accesses special function key f4. If f4 is de

fined, its definition is displayed. Otherwise f'::f'

is displayed.

III Deletes the program line in the display from the program. If no program line is in the

display, the calculator beeps and the key is ignored. To delete a program line, fetch the line

into the display and press 8. When a line is deleted from a program all subsequent line

addresses and all relative and absolute go to and go sub statements are renumbered to

reflect the deletion.

This is not the same key as the character delete key explained later. To delete several program

lines, the delete (del) command can be used. The delete command is explained later.

• Inserts a line into a program. The inserted line is inserted before the fetched line. The

fetched line and higher line numbers are renumbered. The 8, 8, or GJ keys can be used

to fetch a line into the display. For example:

To insert the line: r' ::::: .. :;. C; between lines 20 and 21:

Press: 808
Type in: .: : ... : .. :;. ::::;

Press: 8

When a line is inserted into a program, the branching addresses of all relative and absolute go

to and go sub statements are adjusted to reflect the insertions as in line 22 above.

2-18 Keyboard Operations

• Brings back, into the display, one of the two previous keyboard entries. Pressing 8
once brings back the most recent keyboard entry. Pressing it twice brings back the previous

keyboard entry.

Press 8 after errors resulting from keyboard operations to recall the line containing the

error. For many errors, a flashing cursor indicates the location of an error in the line.

Character Editing Keys

r-- CHARACTER ~

BBBB

Lines which are fetched into the display using 8,8,8, orB, and lines which are typed

into the display can be edited using the character editing keys.

Two flashing cursors are associated with these keys: the replace cursor :::i: and the insert

cursor ·;fi.

III Moves the flashing replace cursor ::::l, or the flashing insert cursor ';f:, from its current

position in the line in the display, toward the beginning (left) of the line. If the cursor is not

visible, B causes the cursor to appear on the right-most character in the line.

• Moves the flashing replace cursor ~ml, or the flashing insert cursor ';i:, from its current

position in the display, towards the last character in the line. For a line which has just been

fetched or typed into the display, pressing B causes the flashing cursor to appear on the

left-most character in the display.

l1li Deletes individual characters which are under the insert or replace cursor. This is not

the same key as the line delete key explained previously.

• The insert/replace key is used to change the flashing replace cursor to a flashing insert

cursor and vice versa. Use the B or G key to position the cursor in the display. When the

insert cursor is flashing, any characters entered from the keyboard are inserted to the left of

the cursor and the characters under and to the right of the cursor shift to the right.

When the replace cursor is flashing, any character entered replaces the existing display

character at the location of the cursor and the cursor moves to the character on the right.

Calculator Control Keys

'888§8OJ6888GJGB

Keyboard Operations 2-19

•

This key is an immediate execute key which runs the program in the calculator begin

ning at line zero. All variables, flags, and subroutine return pointers are cleared when

8 is pressed. The run light at the left end of the display indicates a running program.

The Reset Table in the Reference Tables appendix lists things which are affected by pressing

G·
Stores individual program lines. Also, when a special function key is fetched and

defined, 8 is used to store the key's definition. A program line can be a single

statement or several statements separated by semicolons. When an error occurs while at

tempting to store a line, B brings that line back into the display. A flashing cursor usually

shows where the error was encountered in the line.

• •

are used to obtain shifted keyboard characters, such as ::::1, :::::, and r". When
and • § is pressed, the small light above the key lights. § locks the keyboard

for shifted characters. Press 8 to release shift lock.

•

. Stops the program at the end of the current line. The number of the next program line to

be executed is displayed. When 8 is pressed, list, tlist, and wait statements are

aborted but the rest of the I ine is executed. When 8 is pressed in an enter statement, flag 13

is set and the enter statement is terminated.

There is also a stop statement. For details, see the next chapter.

Executes the single or multi-statement line which is in the display. The two most recently

executed (or stored) keyboard entries are temporarily stored and can be recalled by

pressing B once or twice. The result of a numeric keyboard operation which is not

assigned to a variable is stored in Result (see 8 key). For example:

~"""""""-" ---)]

Pressing OJ displays and stores the result. Pressing the execute key again repeats the same

operation.

2-20 Keyboard Operations

Although multiple expressions such as:

..... .-:-. ;:::: ~: .r- <. CD
are allowed, only the result of the last expression in the line is displayed and stored in Result.

In print-all mode, both results are printed.

Automatically resumes a program from where it was stopped. When a line

number is in the display (such as after pressing 8) 8 resumes the program

from that line. However, after pressing 8, or after editing the program, the program con

tinues at line a when 8 is pressed. Pressing 8 after an error also causes the program to

continue from line O.

In an enter statement, 8 is pressed after entering data. If no data is entered and 8 is

pressed, the variable maintains its previous value and flag 13 is set. See also the continue

command on page 2-24.

•

Accesses the storage location of the result of a numeric keyboard operation which was

, not assigned to a variable. For example:

Press: 888 '---"'-'::'---)]
Press: ,--->-::::" _ ---)]

The answer, 18, is also stored in Result and can be used in other operations, such as:

Press: 880 ,-----'" _ ---)]
Press: CD

,---"-" ... "'---)]
In a program, values cannot be stored in Result; but the value in Result can be assigned to

variables or used in computations.

For example:

•
eli 2€Jfr E".:::·

\

1'; f·' e·' :=.:.+ ~~ ~~:A
This is not allowed.

This assigns the value of Result +2 to the vari

able A.

Clears the display. If the clear key is pressed during the enter statement, a question

mark appears in the display, indicating that an entry is still expected. If this key is

pressed after a special function key has been fetched, the key number (e.g., .:: :::n appears in

the display.

Keyboard Operations 2-21

•
The assignment operator is used to assign values to variables (this is not the same as

the right arrow used for display control.) For example:

Press: [C0 08 [0 CD This stores the square root of 5 in X .

• To enter the value of 1T, this key is pressed. The value entered is 3.14159265360.

•
Press:

Press:

This key enters a lower case ;:::' into the display, representing an exponent of base 10 .

The unshifted 0 key can be used in place of GB. For example:

8GB00OJ
8000CD

,--:~. '_' Cii?_CiCii?_Cii?i::_:ii?':::· _ _~J

'----<._" i?i::_:i i? C:_C:Ci ::_::::? :?_,::: _... _~J

Note that there is no difference between pressing GB and pressing 0·

Special Function Keys

There are 12 special function keys, which provide 12 unshifted functions and 12 shifted

functions. The special function keys can be used as typing aids, one line immediate execute

keys, or as immediate continue keys.

To define a special function key, press 8 and the special function key to be defined. Then

enter a line in the display. Press B to store the definition of the key and to exit key mode. For

example:

Press:

Type-in:

Press: B

f C: is displayed if the key was not previously

defined.

Enters :::>("1:. in the display.

This stores :::>:---"!:. under fo, for use as a typing

aid.

If you decide not to define a special function key after fetching one, the 8 key can also be

used to exit key mode.

To list all of the defined special function keys in numerical order, type in: k and press

CC·

2-22 Keyboard Operations

To list individual special function keys, press B and then the special function key to be

listed.

Immediate Execute Special Function Keys

If a line to be stored under a special function key is preceded by an asterisk (.:q, it is an

immediate execute key. This means that when the key is pressed, the contents of the key are

appended to the display and the line in the display is executed automatically.

For example:

Press: EJ [[9

Press: B

Accesses f23 (shifted fl1).

The asterisk makes this an immediate execute

key.

This stores the line entered in the display

under f23.

Whenever [[9 is pressed and the display is clear, the following is printed:

Immediate execute keys are useful for executing selected segments of a program. Using the

continue command followed by a line number, you can make several entry points in your

programs. For example:

Each time ~ is pressed, the program continues at line 5, or at line 10 if Q;J is pressed.

Immediate Continue Special Function Keys

If a line to be stored as a special function key is preceded by a slash (..), it is an immediate

continue key for use with the enter statement. "Immediate continue" means that when the key

is pressed, the contents of the key are appended to the display and continue is executed

automatically. Immediate continue keys are used to enter often used values in enter state

ments. For example:

Press: Beg

Press: B

Keyboard Operations 2-23

Fetches special function key f1o.

This enters the value of e, the base of the

natural logarithms, into the display.

This stores the line in the display under ho.

Whenever an enter statement is waiting for a value and the eg key is pressed, the approxi

mate value for e (i.e., 2.71828182846) is entered and the program continues (see enter

statement in the next chapter).

Keys with Multiple Statements
By separating statements with semicolons, several statements can be stored under one spe

cial function key. As an example, suppose you want to convert inches to centimeters. The

following line is stored under special function key ~.

Press: B~

Type-in:

Press: B
Then key in a number, such as 6, and press ~. The display will show:

2-24 Keyboard Operations

Commands
Five commands are explained in this section. Commands can be executed only from the

keyboard; they cannot be stored as part of a program.

The Run Command

(" ! .. ·l ("! [line number or label]

The run command clears all variables, flags, and subroutine return pointers and then starts

program execution. If a line number or label is specified, the program begins execution at the

specified line number or label. Since 3 is an immediate execute key equivalent to
(f\! h .. Ibl " ~ !, t e word '." '...1 ('! must be keyed In to run from a line number or a e.
"--LJ

Examples:

Run beginning at line O. This is the same as

pressing 8.
Run, beginning at line 20.

Run, beginning at the label "third".

The Continue Command

c· ':::' ("! t [line number or label]

The continue key (cant) command continues the program without altering variables, flags, or

subroutine return pointers. If no line number is specified, then the program continues from the

current position of the program line counter. When a line number or label is specified, the

program continues at the specified line or label. If the program has been edited or an error has

occurred since the program ran, continue without parameters causes execution to begin at
(\ ... (T\,

line O. Since \CONT"U' is an immediate execute key equivalent to ,'" :,,'1 5" the word ...
,---/ ~

must be keyed in to continue at a line number or label.

Examples:

OJ
····:w1" ", c
••••. u ,

.: : .. :: OJ

Keyboard Operations 2-25

Continue from current position of program line

counter. This is the same as pressing 8.
Continue from line 3.

Continue from the label "loop".

The Delete Line Command

':::: ,:::' ::. beginning line number [:, ending line number] [:; <-]

The delete (del) command is used to delete lines or sections of programs. When one line

number is specified, only that line is deieted. When two line numbers are specified, all lines in

the block are deleted. To delete an entire program, and leave the variables, ::/:/:::i':) can

be executed.

Examples:

':::::::::CD! :.... ~

'::::Ci CD~ :.... ~

.:. : ... ::: <.:.:.i: .. ·:.:.i::.:.:.i<.:.:.iOJu!,

Delete line 28.

Delete lines 13 through 20.

Delete program from line 18 to the end. (This

does not affect variables.)

An attempt to delete lines that are destinations of relative or absolute go to or go sub state

ments (except labels) will cause error 36. To delete these lines, the delete command with the

optional asterisk parameter can be used. When the asterisk is used, any go to or go sub

statements which reference deleted lines are adjusted to reference the first line after the

deleted section. For example to delete line 24 in this program segment:

2,2; 6·n,t. U;' iJ
Ij ;;",0 ;, ~=.ii T, 0 24

24;. F-<rt. ,"FH}:;:!"
t.1 ~;!j; '=3E' " ,:r./ E~

25;: p r t "To 1. (I. 1 .
U::;.G, '3E' a ~ T

2-26 Keyboard Operations

Type-in:

Press: CD

Press: 888088CD

The Erase Command

c· ~." ,::~. ::::. ,:::' [,} or ,.) or :.:: or special function key]

The erase command is used to erase programs, variables, and special function keys as shown

below.

Command

.... , , CGJ

Meaning

Erases program and variables.

Erases everything (like switching the calculator

off and then on again).

Erases all variables.

Erases all special function keys .

Erases the indicated special function key.

Things affected by the erase command are listed in the Reset Table (see the Reference Tables

appendix).

Keyboard Operations 2-27

The Fetch Command

+' c't C' !'''i [line number or special function key]

The fetch command brings individual program lines into the display. This is useful for editing

lines or for viewing individual program lines. Fetching a special function key displays the

definition of the key or f followed by the key number if the key is undefined. Executing fetch

alone, fetches line O.

Examples:

Fetch line 10.

Fetch special function key Q;J.

2-28 Keyboard Operations

Live Keyboard
The calculator's live keyboard mode provides additional power for executing single or multi

statement lines while a program is running. Among other things, you can perform math opera

tions, monitor program activity, and alter program flow in live keyboard mode. Two statements

described in this section permit the live keyboard mode to be turned on or off.

How Live Keyboard Works
While a program is running, a live keyboard operation is executed as follows:

• The live keyboard operation is keyed into the display and CD is pressed.

• At the end of the current program line, the live keyboard line is executed.

• The live keyboard operation is executed entirely before the program continues.

Live Keyboard Math
Any math operations can be executed from live keyboard. Thus, when a program is running

and a few calculations need to be made, key in the operation and press CD.

Statements in Live Keyboard
Math operations are just a small part of what can be done from live keyboard. If you want a

(T\

listing of the current program, press BW'

To check a variable in the program, key in the variable name, such as !:::! or ::::: :::<.::: and press

CD. The current value of the variable will be displayed.

To change a variable from live keyboard, enter the new value and assign it to the variable to be

changed. For example to reset a counter such as C: +. ::. ,,:,. C: to 0, key in C: .. :,. C: and press CLI.

Keyboard Operations 2-29

Subroutines from Live Keyboard
Parts of a program can be executed from live keyboard as subroutines using the go sub

statement. For example, the following section of a running program is used to monitor the

variables used in the program:

By executing , , ..

program.

. ... ! ... ,,::;., .. ,. " the values of the variables are printed and control returns to the

After a subroutine is finished, control returns to the main program when the return (ret) or stop

(stp) statement is executed or when a stop flag at the beginning of a line is encountered.

Special Function Keys in Live Keyboard
Although the special function keys fo through f23 cannot be defined from live keyboard, they

can be used from live keyboard. In this example, the special function keys are used to alter the

flow of the running program.

The special function keys are defined as follows:

The program is:

0·;; "~l!J.it" lcls f.:t
" i .• Jo,itin ;3"; 1.:Jo.it

1:: ':;3 t,l) "fir ::;,.1. ."
2 : ~=3 t·. C: II :S .. ·'E~ i:~··b·t"i·ij ::

4 :; " f' i r:=.t. " :; p r t
"f i (st."; 0-tF;

5; "sE'cond":Pt"t.
"sE'cond" ; (l-tF;
s 1. c u ~'l c.. i t."

6: "1.hird";prt.
"1.hird";0-tF;
·3~. (I " H 0. it."

2-30 Keyboard Operations

When the program is run, i.'.iC. :!. t :!. (i<::i is displayed until one of the immediate execute (line

preceded by <-) special function keys is pressed. Then the program branches to the line where

either f :!. (::::.t, or .::.:-.<. (0:::: is printed. Although this is a simple example, it shows

one way that special function keys can be used in live keyboard mode.

The Stop Key in Live Keyboard
If 8 is pressed during a live keyboard operation, the live keyboard operation is stopped, but

the program continues. Pressing 8 a second time will stop the program.

Live Keyboard Limitations
Operations that modify the stored program or special function keys and operations that di

rectly affect the execution of the program are not allowed in live keyboard mode. These

operations include the following:

Mnemonic Error

Commands:

run error 03

cont error 03

fetch error 03

erase error 03

del error 03

Statements:

ent error 13

end error 09

gto (allowed in a live key-

board subroutine) error 09

Idp error 64

Idk error 64

Idf (program file) error 64

In addition, the following keys cause a beep and are ignored when pressed in live keyboard

mode.

8 8 (O=.'~

Keyboard Operations 2-31

The Display
Lines which are typed in live keyboard mode will disappear from the display if the running

program uses the display. The live keyboard line is re-displayed after each keystroke so that

the line with the new character added can be seen.

If the running program continually uses the display, the live keyboard lines will not be visible

while the line is being typed. In this case, the line that is currently being typed, or the line

accessed by B can be held in the display by pressing GJ or GJ . These keys will suspend

the running program for one second and display the line. If the key is kept depressed, the

program will be halted for one second after it is released. After the line is executed, the GJ or

GJ key will not re-display the line unless B is pressed first. For example, suppose the

following program is running in the calculator:

When the following line is typed in live keyboard, it will not be visible:

Press GJ orG] and the line will be displayed for about one second. When OJ is pressed,

the line will be executed and 5 will be stored in A and printed.

Results of calculations performed in live keyboard disappear from the display if a running

program uses the display. The GJ or GJ keys only hold the live keyboard line in the display

and not the result of the execution of a line. The result can be held in the display by appending

a wait statement to the end of the line (e.g. :LC1-+- L?~~ ~_,_~u_:~_"1:. :U?Cn?).

A special function key can be defined to preserve the displayed result long enough to be

viewed as in this example:

Press: B~

Type in:

Press: '8
As you type in a calculation such as ::::>:-!:::" press ~ instead of OJ. The result of the calcula

tion will remain in the display for about one second.

2-32 Keyboard Operations

The Live Keyboard Enable Statement

The live keyboard enable (Ike) statement enables the live keyboard mode. For example:

Enable live keyboard.

Live keyboard is automatically enabled when the calculator is turned on, ;::>!"). is executed,

or 8 is pressed. To disable live keyboard, the live keyboard disable (Ikd) statement is used.

The Live Keyboard Disable Statement

The live keyboard disable (Ikd) statement disables live keyboard mode. For example:

The first line of this program disables live

keyboard.

To re-enable live keyboard during a program it is necessary to execute the live keyboard

enable (Ike) statement from the program.

8, a, and 8 are the only keys recognized while a program is running with live keyboard

disabled.

During cartridge operations, the keyboard is disabled and all keys except 8 are ignored.

Chapter 3
Table of Contents

~
Prog ramming 3-1

Programming Concepts .. 3-3

Syntax Conventions .. 3-6

Numeric Variables ... 3-6

Simple Variables ... 3-6

Array Variables ... 3-6

r-Variables ... 3-7

Variable Allocation ... 3-8

Number Formats ... 3-8

The Fixed Statement (fxd) ... 3-9

The Float Statement (fit) ... 3-10

Significant Digits .. 3-11

Rounding .. 3-11

The Display Statement (dsp) ... 3-12

The Print Statement (prt) ... 3-12

The Enter Statement (ent) .. 3-13

The Enter Print Statement (enp) .. 3-15

The Space Statement (spc) .. 3-16

The Beep Statement (beep) .. 3-16

The Wait Statement (wait) .. 3-16

The Stop Statement (stp) .. 3-17

The End Statement (end) .. 3-17

Hierarchy .. 3-18

Operators .. 3-19

Assignment Operators (~) ... 3-19

Arithmetic Operators (+, -, x, I, j, mod) .. 3-19

Relational Operators (=, >, <, =>, <=, #) 3-20

Logical Operators (and, or, xor, not) .. 3-21

Math Functions and Statements .. 3-22

General Functions(Y, abs, sgn, int, frc, prnd, drnd, min, max, rnd) 3-22

Logarithmic and Exponential Functions (In, exp, log, tnj) 3-24

Trigonometric Functions and Statements (deg, rad, grad, units, sin, cos, tan, asn, acs,

atn) .. 3-25

Math Errors ... 3-26

Flags .. 3-28

The Set Flag Statement (sfg) ... 3-28

3-2 Prog ramming

The Clear Flag Statement (cfg) ... 3-29

The Complement Flag Statement (cmf) .. 3-29

The Flag Function (fIg) ... 3-30

Branching Statements ... 3-30

Line Renumbering ... 3-30

Labels ... 3-31

The Go To Statement , 3-31

Absolute Go To (gto) .. 3-32

Relative Go To (gto+, gto-) ... 3-32

Labelled Go To (gto" ") .. 3-32

The Jump Statement (jmp) ... 3-33

The Go To Subroutine and Return Statements 3-34

Absolute Go Sub (gsb) .. 3-34

Relative Go Sub (gsb+, gsb-) ... 3-34

Labelled Go Sub (gsb ...) ... 3-35

Calculated Go Sub Branching (gsb ... ;jmp) 3-35

The If Statement (if) ... 3-36

N-Way Branching (gto ... ; if ... ; gto) .. 3-37

The Dimension Statement (dim) .. 3-37

Specifying Bounds for Dimensions .. 3-38

The Clear Simple Variables Statement (csv) ... 3-39

The List Statement (list) ... 3-39

Used and Remaining Memory .. 3-40

Program Debugging .. 3-41

Findi ng the Problem ., .,.,.,., ... ', .. , ... , .. , .. , , .. , 3-41

Fixing the Problem .. 3-41

The Debugging Statements (trc, stp, nor) ... 3-43

Programming Hints ... 3-46

Chapter 3
HPL Programming

This chapter introduces the statements, functions and operators comprising the HPL lan

guage.

Programming Concepts
There are five basic steps in creating a program:

1. Define the Problem.
2. Decide how the problem is best solved.
3. Write out the statements for the program.
4. Key the statements into the computer memory.
5. Debug (correct) and run the program.

Step 1:

As a simple example, suppose you want to print the square root of each value that you enter.

Then, if the value entered is negative, print a message and continue on.

Step 2:

A common method used to solve a problem is flowcharting*. Using a few basic flowcharting

symbols, explained at the end of this chapter, we will flowchart the problem.

Is
the value

neg?

No

Yes

Display
message

Take square
root of value

Print the
square root

* Another method suitable for simple problems is to key in a few statements and try them out.

3-3

3-4 Programming

Step 3:

From the flowchart, write down the statements for the program:

Program Comments

Note that the second line contains three statements separated by semicolons. All of the

statements used are discussed later.

Step 4:

The next step is to clear the calculator by executing ;:::' i"""C.::::·C· c .. Then type in the program

exactly as above, one line at a time. Press B at the end of each line to store that line in the

calcuiator memory. if you make a mistake before you store the iine, press 8 and type the

line over.

Step 5:

After the program is stored, press B CD to get a printed listing. Then, to run the program

press 8. Each time that ;",<> is displayed, type in a value and press 8. The calculator will

print the square root of each value.

Prog ramming 3-5

For positive values, the program runs as expected, but if you enter a negative value you won't

see the message displayed. This is because the message is displayed for a very short period

of time before another display (i .e., ;"i ,?) appears. Use a wait statement after the display

statement in line 1. This statement causes the program to pause long enough for you to see

the message. To change the program, press: HBr,-1 m. Then press the B key until it '-----../ U\....LJ
is positioned on the semicolon just before the gto statement. Press B and key in ~~ i.:) ,J :i. -::.

::::;:;::~ ~? Press 8 to store the new line at line 1. Then press 8. Here is a listing of the

completed program:

Since the program is a continuous loop, press 8 to stop the calculator. Then, to do another

program key in ,:::' (. ,J ::::. ,:::' ,J and press OJ. This clears out the calculator memory.

Commonly Used Flowchart Symbols

C ______)

D

<>

Meaning

Program beginning or end.

Program segment; usually one statement.

Decision block indicates that a decision for a

branch is made. Usually an if statement is used

for a decision.

Flowlines indicate the program flow.

Connectors indicate that the lines going to or

from them are connected.

3-6 Programming

Syntax Conventions
The statements, functions, and operators explained in this chapter are all programmable.

Most of these instructions can also be used in calculator mode.

Statements can be programmed or executed. Operators and functions must be part of a

statement in order to be programmed. This means that operations, such as 10 + 32 or v'63,
which can be executed from the keyboard, must be part of a statement in order to be prog

rammed. Thus, :LC: -+. ::::;;:::~ . .:,- ::.:: or F::'('-::' r'c,::::; are valid statements.

The instructions explained throughout this manual use the following syntax conventions. A

complete I ist of syntax is near the back of the manual.

- items within square brackets are optional.

(,: ::::. t (" ::. >:: - items in dot matrix must appear as shown.

- three dots indicate that the previous item can be duplicated.

Numeric Variables
The calculator uses two types of variables, numeric and string. Numeric data can be stored in

simples variables, array variables, and r-variables. As numeric variables are allocated, they

are initially assigned the value O. Numeric variable elements each require 8 bytes* of memory.

String variables are covered in chapter 6.

Simple Variables
There can be 26 simple variables, named A through Z. A simple variable must appear in upper

case. Each simple variable can be assigned one value. For example:

Assigns the value 12 to A.

Prints the value of A on the printer.

Array Variables
There can be 26 arrays, named A through Z. Array names are followed by square brackets

which enclose the subscripts of the array (e.g., l.... t::).

* A byte is the basic unit of data in the 9825. Eight bytes are required to store a number.

Programming 3-7

Before an array element can be used, the array must be declared in a dimension (dim)

statement. This reserves memory for the array and initializes all elements in the array to zero.

In the dimension statement, each dimension of an array can be specified either by specifying

the upper bound, in which case the lower bound is assumed to be one, or by specifying both

the lower and upper bounds. For example:

::::1 :~. (:'~ ~:::: L

Reserves memory for the 20 elements of the

two-dimensional array A.

Reserves memory for the 20 elements of the

two-dimensional array P. (Lower and upper

bounds specified.)

An array can have any size and any number of dimensions within the limits of the memory size

and line length. The bounds must be between -32767 and 32767.

An individual element of an array is accessed by specifying the subscripts of the element. For

example:

::+ .,:: "

::::~ .,::. ~:::: L :::::;= :~. ...

Another Example:

r-Variables

4 is assigned to element 1,5,4,6 of array A.

3 is assigned to element -2,1 of array P.

Reserves memory for 100 elements of array O.

0[7,1] is assigned the value 3.

The value 5 is assigned to the simple variable

O. There is no connection between the simple

variable 0 and array 0[10,10].

0[1,5] is assigned the value 2.

r-variables are specified by a lower case "r" followed by a value or expression. When an

r-variable is encountered, memory is reserved for all r-variables with smaller subscripts which

have not been allocated. As r-variables are allocated, they are assigned the value O. Thus if

ria is assigned a value, rO through r9 are also automatically allocated and assigned the value

zero if they have not been previously allocated.

3-8 Programming

Examples:

Variable Allocation

4 is assigned to r-variable O.

2 is assigned to r-variable 4. rO= 4, therefore

2 ~ r4. This is known as indirect storage.

Simple variables and r-variables are allocated when a statement containing either is exe

cuted. Array variables must be allocated using a dimension statement.

Before a variable is allocated, three cases are checked:

1. Before a variable is allocated by the dimension statement, a check is made to see if it is

already allocated. If so, an error results and execution stops.

2. When a simple variable is referenced in any other statement, a similar check is made as

to whether it has been allocated. If not, it is allocated.

3. When an array element is referenced in any other statement, a similar check is made as

to whether the array has been dimensioned. If not, an error results.

Within one statement, variables are allocated in the same left-to-right order as they occur in

the statement.

Number Formats
Numbers can be displayed or printed in floating-point format (scientific notation) or in fixed

point format. The calculator's internal representation of numbers is unaffected by number

formats, therefore, accuracy is not changed.

When the calculator is turned on, 8 is pressed, or i:::·(U.::::·i:::· i} is executed, the number format

is fixed 2 (fxd 2), and for very large numbers, the calculator temporarily prints and displays in

float 9(flt 9).

Prog ramming 3-9

The Fixed Statement

f >:: ':::\ [number of decimal places]

The fixed (fxd) statement sets the format for printing or displaying numbers. In fixed-point

format, the number of digits to appear to the right of the decimal point is specified. Fixed 0

through fixed 11 can be specified.

To set the number format from floating-point to the current fixed-point setting, >::c: without

parameters is executed.

When a number of the form:

whem: 1 =:;;; N < 10, or N = 0

is too large to fit in the fixed-point format, the number format temporarily reverts to the previ

ously set floating-point (float 9 if no other floating-point format has been set) if:

o + E ~ 14

where: 0 is the number of decimal places specified in the fixed statement.

E is the exponent of the number.

To illustrate the reversion to a previous float 9

setting, run this program.

If the value :L ;:::~::::;!:::-:L Ci is entered when ~::/:> ap

pears in the display, this is printed. ',,' ~'5 '~3'ti~3 ~Zt~3'(i €i E' 2'
,,25{100€1000e" 2

3-10 Programming

For numbers too small to fit in the fixed-point format, zeros are printed or displayed for all

decimal places, with a minus sign if the number is negative. For example:

'------.". -'" ---)]

"------"_. -"'----)]
Here are some numbers and their output format if f ::-:';"': ::::: is executed:

Number

18

-.000006

-2.7532

4.5678

5.3111e3

1234567891234.5

The Float Statement

Fixed 3 Output

-. -::: : ... : .. ··.L:::·

(float 9 previously set)

[number of decimal places]

The float (fit) statement sets floating-point format which is scientific notation. When working

with very large or very small numbers, floating-point format is most convenient. Float 0 through

float 11 can be specified. To set the number format from fixed-point to the current floating

point setting, f ::. t without parameters is executed.

A number output in floating-point format has the form:

-O.O ... Oe-OO

• The left-most non-zero digit of a number is the first digit displayed. If the number is

negative, a minus sign precedes this digit; if the number is positive or zero, a space

precedes this digit.

• A decimal point follows the first digit; except in fit O.

Programming 3-11

• Some digits may follow the decimal point; the number of digits is determined by the

specified floating-point format (e.g., in fit 5, five digits follow the decimal point).

• Then the character c appears, followed by a minus sign or space (for non-negative

exponents.) and two digits. This is the exponent, representing a positive or negative

power of ten. The exponent indicates the direction and the number of places that the

decimal point would have to be moved to express the number in fixed-point format.

Here are some numbers as they would appear if +" .: .j .. :? is executed:

Significant Digits

Number

-3.2

271

26.377

. 000004

2.482e33

Float 2 Output

: :... :: .;:::: t ::::' : :::= ::::~

..... :::: ~. ::.:

,' ... :"l':::::::::

All numbers are represented internally with 12 significant digits regardless of the number

format being used. To illustrate this, execute +"::- ':::: ':::; then key in the number:

then press CD and note the display:

': : : ,': ::::' ," : ::::::::: .'::=:"::::":::
.: : : ... ; :: ... :: :

The 13th and 14th digits, 8 and 9, are not stored and zeros are displayed for those digits.

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of

the decimal point than the number format allows. The rounding is performed as follows: the

first excess digit on the right is checked. If its value is 5 or greater, the digit to the left is

incremented (rounded-up) by one; otherwise it is unchanged. The number remains un

changed internally. For instance:

2 ; ds p 2.. 4 ~~i 4
'3: €'rld

____ : ... :_:::':+ ___ ~J

_____ ... ___ ~J

3-12 Programming

The Display Statement

':::: ::;:. :::> [any combination of text or expressions]

The display (dsp) statement displays numbers or text on the calculator display. Commas are

used to separate variables or text (e.g., ,::::::::.::::0 '>·:c'" ":, :"'::' :::::).

Quotes are used to indicate text. To display quotes within text, it is necessary to press [GJ
twice for each quote to be displayed. For example:

Type in: :: .. : .. : ; ;::::: ::

Press: OJ '----... _ .. _":"'::i._" '_'" _ _)]

Displayed lines longer than 32 characters can be viewed using the display control keys, GJ
and 8.

Numbers and text which are displayed remain in the display until another display operation

(such as enter (ent) with a prompt) clears it.

The Print Statement

::::' (. t [any combination of text or expressions]

The print (prt) statement is used to print numbers or text on the calculator printer. For example:

: ::.::
: :: .: ; :

If an expression is to be printed, such as:

the expression is evaluated and the equivalent value is printed (and also stored in X in this

case).

Programming 3-13

To print a quote within text press [GJ twice for each quote to be printed. For example:

:: :: ~;::1 :: :: ::

Press: CD
Commas are used to separate variables or text. For example:

Press: CD

:: 1-.1.···.· .. ··:· :' :.::::: : ..

When printing lines of text and values, the printout follows this format:

• Text followed by a numeric is printed on the same line if it fits; otherwise the text is

printed and the number is printed on the next line.

• Each line of text separated by commas begins on a new line and folds over on succes

sive lines if it is longer than 16 characters.

• Numerics separated by commas are printed one per line unless the format is fit 10 or fit

11 which requires two lines each.

When F::.j····j:. is specified without parameters, no operation takes place. To space one line, use

the space statement.

The Enter Statement

[prompt :' J variable [:, [prompt :' J variable ... J

The enter (ent) statement is used to assign values to variables from the keyboard during a

program. The variable can be a simple variable, array variable, or an r-variable. For example:

When an enter statement is encountered in a program, key-in a number, variable (such as

j"':?:?), or expression (such as r'::::;) and'press 8.
When many items are entered from the keyboard, it is often helpful to have a message called a

"prompt" displayed representing the variable being assigned a value. For instance:

_____ l"':(_'lC,l)_('lt ___ ~J

,,----1 '::_:' ('1 ::::: '_:::' ... _ _... __ ~J

3-14 Programming

If no prompt is given, the calculator uses the name of the variable as the prompt. For example:

,---' ._ :_. ---)]
If a null quote field is given as a prompt, such as ::.:?:: "': ::::: the calculator retains any

previously displayed message, unless a print operation is between the display statement and

the enter statement. This is useful for variable prompts using the display statement. For

example:

['----.... :_:) ::. ':_":: :-:. ') ';::'-(, --)]
You can calculate values from the keyboard while the program waits in the enter statement.

This is done simply by entering the calculation and pressing OJ. If the value to be entered is

the result of pressing OJ, press 8 or El then press B· Pressing CD immediately

before pressing B causes a default condition as if B were pressed without entering a

value.

Complex lines can be entered as the response to an enter statement. For instance, run this

program:

When the display is: '---.... -' ---)]

enter a value for B. Then when the display is:
,----" ._---)]

Type in:

Then press B. If the value that you entered for B is greater than 20, then <·C: is printed,

otherwise ;?C: is printed.

If B is pressed without entering a value, the variable maintains its previous value and flag

13 is set. When a value is entered, flag 13 is cleared. See flags later in this chapter.

To terminate a program during an enter statement, press 8. The rest of the program line is

completed before the calculator stops.

Commands, such as or are not allowed during an enter statement and cause

error 03.

Programming 3-15

The following example illustrates a unique case using the enter statement. Run the short

program:

o ; d itYi> F: [2 ~j j
1: '441'

I:tA [I]

Type in: ..

Press: 8

______ ... _. ___ ~J

: ... : :::.:.: .. ' (,
,---' '-'" _. ---)~

Notice that the value of I when the enter statement is encountered is used, not the entered

value of I. To use the entered value of I as the subscript, use another enter statement. For the

above example, change line 2 to:

Even though you can have one enter statement that enters values for several variables, only

one value can be supplied at a time. For example:

type in a value for A when a i::r? appears in the display and press 8, then do the same when

C:'::= appears in the display.

The Enter Print Statement

::::' :.,.~ ::::: [prompt ;, J variable [;: [prompt ;: J variable ... J

The enter print (enp) statement is the same as the enter statement except that prompts and the

entered values are printed and displayed as they are encountered.

For example, type in this short program to calculate the area of a circle:

:~:: E'nd

If 2 is entered for R when the program is run, the printout will be:

r 0. d i !j:::'
.-,
,::.

0. r E' 0.

3-16 ::Jrogramming

The Space Statement

-::: ;::> c· [number of blank lines]

The space (spc) statement causes the printer to output the number of blank lines indicated.

The number of I ines can be an expression with a range of 0 through 32767. If no parameter is

specified, one blank line is output.

Examples:

Space the number of lines specified by A + B.

Space 5 lines.

Space one line.

The Beep Statement

The beep statement causes the calculator to output a beep. For example, the calculator

normally beeps, displays ,::-' , and stops when the argument of the square root (T')

function is negative. In the following short program, the value entered for A is tested. If it is

negative, the calculator beeps and displays a message, but the program continues entering

values.

~3: f::-::cI 4
1 '; :; :::. t. !J. t"' t." u~": :'E·t"t t

"Ar·::HH''iE;·nt " ~ A
2: if· A <~3;'3tO

" :=. t !J.t" t ...
4: ',' E' rr or ":b6' 6'P
5: ,cI:=.P u,(of,

Eo: i;.I0. Lt.· '2~j00
7 : '3 t.o "';::' t· o. r t·:~'

The Wait Statement

: t number of milliseconds

The wait statement causes a program to pause the specified number of milliseconds

(thousandths of a second). The wait statement is often used with display or enter statements to

display a message for a specified time. The number of milliseconds can be an expression. The

maximum wait is around 33 seconds, which is specified by the value 32767.

Programming 3-17

Since the wait statement takes time to be executed, small values in the wait statement are

actually longer than a millisecond. This becomes evident in a loop which is executed many

times.

Examples:

Pauses for 2 seconds.

Pauses for 2*1 milliseconds.

In the next example, a display statement is followed by an enter statement. To preserve the

first display for one second, the wait statement is used.

The first display remains one second before

the next display.

The Stop Statement

The stop (stp) statement stops program execution at the end of the line in which it is executed.

Pressing 8 continues the program at the next program line. 8 can also be us~d to

"step" through the program one line at a time. If any editing is performed after the program

stops, 8 and 8 cause the program to continue from line O.

The stop statement can also be used for debugging. See the section on debugging state

ments for details.

The End Statement

The end statement causes the program to stop like the stop statement. However, the end

statement resets the program line counter to line 0 and resets all subroutine return pointers

(see go sub statement). The end statement is usually put at the end of a program. The end

statement cannot be executed during an enter statement, nor in live keyboard mode.

3-18 Programming

Hierarchy
In a statement containing functions, arithmetic operations, relational operations, logical opera

tions, imbedded assignments, or flag operations, there is an order in which the statement is

executed. This order is called the hierarchy, which is:

highest priority functions, flag references, r-variables

"j" (exponentiation)

implied multiply

..... (unary minus)

all relational operators (",.', ", ':- :::::, :::::)

lowest priority ::: , : ... ::

An expression is scanned from left to right. Each operator is compared to the operator on its

right. If the operator on the right has a higher priority, then that operator is compared to the

next operator on its right. This continues until an operator of equal or lower priority is encoun

tered. The highest priority operation, or the first of the two equal operations, is performed.

Then any lower priority operations on the left are compared to the next operator to the right. If

parentheses are encountered, the expression within the parentheses is evaluated before the

left-to-right comparison continues. This comparison continues until the entire expression is

evaluated. In the following example, S1, S2, S3 ... indicate intermediate results:

S1 : .. : ..

S1 :::: S2

S1 :::: S2 ~": :';:::::::.: :::: S3

S1 :::: S2 ~ ~ """, .. ~ ~ ... S4

S1 :::: S2 ~''' ... ' .. :~ S5
S1 :::: S2 S6

S1 :::: S7

Sa

implied multiplication

addition

evaluate parenthesis

exp function

implied multiplication

mod operator

su btraction

equality relation

final result

Programming 3-19

Operators
The four groups of mathematical or logical symbols, called operators, are: the assignment

operator, arithmetic operators, relational operators, and logical operators.

Assignment Operator

expression .. :,. variable

The assignment operator is used to assign values to variables. For example:

The value 1.4 is assigned to the variable A.

The value of B is assigned to the variable A.

There are other ways to assign values to variables such as the enter (ent) statement or the load

file (Idf) statement.

To assign the same value to many variables, the assignment operator can be used as in this

example.

Multiple assignments can also take the form ">:---:.1 } C: (which is the same as ;::::::::; .. :,. j"'j:, j"""j

.. ! .. " .. :,. i::::). This is called an imbedded assignment.

Arithmetic Operators
There are six arithmetic operators as follows:

Add (if unary, no operation)

Subtract (if unary, change sign)

Multiply

Divide

Exponentiate

Modulus

A+Bor+A

A-Bor-A

A*B

AlB
AB

. A mod B is the remainder of AlB when

A and B are integers. A mod B is the

same as A - int (A/B)*B.

3-20 Prog ramming

When A is much larger than B, there is a chance that a value of 0 could be returned for

: ::. This condition can be caught by examining the exponent of AlB when it is re

presented in floating point notation with one digit to the left of the decimal point. If the expo-

nent is greater than 8,:' ,:: ::: results in a value of O.

Besides the: symbol for multiplication, implied multiplication can be used. In the following

instances, implied multiplication takes place:

• Two variables together (like AB).

• A variable next to a number (like 5A).

• A variable or number next to a parenthesis [like 5(A + B)].

• A parenthesis next to a parenthesis [like (A + 8) (X + Y)].

• A variable, number, or parenthesis preceding a function name (like 32 sinA).

For example:

A times B is stored in X.

5 times 5 is stored in X.

A times the sum B + C is stored in B.

5 times the absolute value of B.

Relational Operators
There are six relational operators as shown in the following table.

Symbols

...... or

.. :: or

: or or '::.

Equal to.

Greater than.

Less than .

Meaning

Greater than or equal to (either form is acceptable).

Less than or equal to (either form is acceptable) .

Not equal to (either form is acceptable).

The result of a relational operation is either a one (if the relation is true) or a zero (if it is false).

Thus if A is less than B, then the relational expression :, is true and results in a value of

one. All comparisons are made on 12 significant digits, signs, and exponents.

Programming 3-21

The relational operators can be used in any statement which allows expressions as argu

ments. For exam pie:

......
".

".

... ..

Logical Operators

Assignment statement. If A and B are equal, a 1 is

stored in C; otherwise, a 0 is stored in C.

If statement. If A is greater than B, then continue in the

line; but if A is less than or equal to B, go to the next

line.

Jump statement. If A is greater than 3, jump 1 line,

otherwise jump to the beginning of the line (jmp 0).

Print statement. If A is greater than B, the value of A is

printed. If A is less than B, then the value of B is

printed. If A equals B, then 0 is printed.

The four logical operators, and, or, xor (exclusive or), and not are useful for evaluating Boo

lean expressions. Any value other than zero (false) is evaluated as true. The result of a logical

operation is either zero or one.

Operation Syntax Truth Table

AND expression ,:::.:.,,<::! expression A B A and B

F F 0

F T 0

T F 0

T T

OR

~I
B A or B

F 0

expression ,"~. expression

F T

T F

T T

3-22 Programming

Operation Syntax Truth Table

Exclusive OR expression ::-::'> (" expression A B A xor B

F F 0

F T

T F 1

T T 0

NOT ("<:/:' expression

:t: F 1

T 0

For example:

Program:

0:; = i -t A ; ~3 +B
1= p rt. HR, !J.nd

B II , H 'I).tid B
2: fJ. t-· t~' II A;:., r- Ei II ,

A CI r B
:3: prt. "A ::{Clt"

B" , A ::<0 r B
4: f-·rt. "not., A",
n(I~. A

5: E'nd

Printout:

A I). fI e} B
A or 8
A >::or 8
not A

~j = 0~j

1 " ~.H::1
1 • €H~i
€1" 00

Math Functions and Statements
The math functions and math statements are explained in this section.

Parentheses must enclose the argument of a function when a "+" or "-" sign precedes the

argument. In the examples, parentheses are shown only where they are required.

General Functions
Syntax

T expression

"i:<: expression

Description

Returns the square root of a non-negative

expression. For negative expressions, see

the section on math errors.

Determines the absolute value of the ex

pression.

Examples (fxd 5)

r'':::'':i, = 8.00000

rTf = 1,77245

,:<:: ': = 3,09000

<>? ,,: = 330.10000

Syntax

expression

expression

expression

: expression··

rounding specification:

: expression,

number of digits:

Description

The sign function returns a -1 for negative

expressions, a if the expression equals 0,

and 1 for a positive expression.

Returns the largest integer less than or equal

to the expression. This is often referred to as

the "floor" integer value of the expression.

Gives the fractional part of a number. It is

defined by: expression -L' ..•.. expression

Returns the value of the argument rounded

to the power-of-ten position indicated by the

rounding specification.

The digit round function rounds the argu

ment to the number of digits specified. The

leftmost significant digit is digit number 1.

list of expressions Returns the smallest value in the list. An en-

and arrays:: tire array can be specified by substituting an

asterisk for the array subscript list (such as

) .

list of expressions Returns the largest value in the list. An entire

and arrays.

[] expression

(continued)

array can be specified by substituting an as

terisk for the array subscript list (such as

).

The random number function generates a

pseudo-random number greater than or

equal to a and less than 1. When the argu

ment is positive, the starting seed is 7T/180

(which is .0174532925200). This seed is in

itialized when the calculator is turned on,

is executed, or 8 is pressed.

Each subsequent access to the rnd function

with a positive argument uses a seed based

I on the previous result of the function.

Prog ramming 3-23

Examples (fxd 5)

= -1.00000

= 0.00000

= 1.00000

= 2.00000

= -4.00000

, = 0.71800

= 0.76000

= 127.38000

127.375 is rounded to the

nearest hundredth (10- 2)

= 73.06300

= -70000.00000

= 0.06000

= 2.00000

= -3.00000

= 9.00000

= 0.67822

3-24 ;:)~ogramming

Syntax Description

To specify a starting seed other than rr/180,

use a negative argument. The fractional part

of the absolute value of the argument is used

as the seed. To obtain a good seed use a

number less than 0 and greater than -1. The

more non-zero digits in the number, the bet

ter. Last digits of 1,3,7, or 9 are preferable.

Logarithmic and Exponential Functions

Syntax

expression

expression

expression

expression

Description

The natural logarithm function calculates the

logarithm (base e) of a positive valued ex

pression.

The exponential function raises the constant,

naperian e. to the power of the computed

expression. The range of the argument is

ap prox i matel y from - 227.95 th rou g h

230.25.

The common logarithm function calculates

the logarithm (base 10) of a positive valued

expression.

The ten-to-the-power function raises the

constant, 10, to the power of the computed

expression. The range of the argument is

approximately from -99 through 99.999.

This function executes faster than: ex

pression.

Examples (fxd 5)

Note that the wait state

ment is used instead of

an assignment state

ment to initialize the

starting seed. Line 1

generates a random

number based on .31317

instead of rr/180.

Examples (fxd 5)

= 8.98732

= -5.95224

= 2.71828

= .04979

= 248458

= -2.30980

= 500.00000

= 0.00100

The math errors and default value associated with the log and In (natural log) functions are

explained in detail in the next section.

Prog ramming 3-25

Trigonometric Functions and Statements
The angular units: degrees, radians, or grads, are set by statements explained in this section.

Degrees are automatically set when the calculator is switched on,

B is pressed.

This statement sets degrees for all calculations which involve

angles. A degree is 1/360th of a circle.

This statement sets radians for all calculations which involve

angles. There are 27T radians in a circle.

This statement sets grads for all calculations which involve

angles. A grad is 1/400th of a circle.

This statement displays the current angular units.

Syntax

expression

expression

expression

expression

(continued)

Description

Determines the sine of the angle rep

resented by the expression in the current

angular units.

Determines the cosine of the angle rep

resented by the expression in the current

angular units.

Determines the tangent of the angle rep

resented by the expression in the current

angular units.

Returns the principal value of the arcsine of

the expression in the current angular units.

The range of the argument is -1 through + 1.

The range of the result is -,,/2 to +,,/2 (ra

dians), -90 to +90 (degrees), or -100 to

+100 (grads).

is executed, or

Examples (fxd 5)

= 0.70711

= 0.50000

= -0.89101

= 0.70711

= 0.86603

= 0.45399

= 1.00000

= 1.00000

= 1.00000

= 53.13010

= 0.92730

= 59.03345

3-26 Programming

Syntax Description Examples (fxd 5)

expression

expression

Returns the principal value of the arccosine

of the expression in the current angular

units. The range of the argument is -1

through + 1. The range of the result is 0 to 1T

(radians). 0 to 180 (degrees), or 0 to 200

(grads).

Calculates the principal value of the arctan

gent of the expression in the current angular

units. The range of the result is -1T12 to +1T12

(radians), -90 to +90 (degrees), or -100 to

+100 (grads).

Math Errors

= 113.57818

= 1.98231

= 126.19798

= 87.13759

= 1.52084

= 96.81955

Errors 66 through 77 are displayed when a math error occurs. In this section, the default

values of math operations which result in an error are explained. Whenever a math error

occurs, flag 15 is set automatically. If you set flag 14, math operations which normally cause

an error to be displayed, result in a default value.

When printing, displaying, or storing a default value outside the storage range, the value is

converted to an appropriate value of ±9.9999999999ge 99.

Division by zero. The default value is +9.9999999999ge 511 if the dividend is

positive and -9.9999999999ge 511 if the dividend is negative. For example:

.' :? = -9.9999999999ge 511

A mod B with B equal to zero. The default value is O. For example:

Square root of a negative number. The default value is v' (abs (argument)). For

example:

= 6.

Tangent of (n x1T12 radians);

Tangent of (n x 90 degrees);

Tangent of (n x 100 grads);

Programming 3-27

where n is an odd integer. The default value is 9.9999999999ge 511 if n is

positive; and -9.9999999999ge 511 if n is negative. For example:

..: = - 9. 9999999999ge 511

= 9.9999999999ge 511

::::: C: C: = 9. 9999999999ge 511

In or log of a negative number. The default is:

In (abs (argument)) or log (abs (argument))

respectively. For example:

. ::. :: = 5.70711

, " C~:? ::. :: = -3.00000

In or log of zero. The default value is -9.9999999999ge 511. For example:

::. ('~ C: = - 9. 9999999999ge 511

::. c -:::~ ::::: = -9.9999999999ge 511

asn or acs of a number less than -1 or greater than 1. The default value is

asn (sgn (argument)) or acs (sgn (argument))

respectively. For example (in degrees):

.: :: = -90

.:::::: :": :'" .::: :: ::. ,. ::::;:: = 0

..... Negative base to a non-integer power. The default value is

(abs (base)) i (non-integer power) For example:

=6

Zero to the zero power (C: ·r :?). The default value is 1.

Storage range overflow. The default value is 9.9999999999ge 99 or

-9.9999999999ge 99. For example:

::::::: .. ::. ::::; A will equal 9.9999999999ge 99.

C:; B will equal -9.9999999999ge 99.

'Storage range underflow. The default value is zero. For example:

.....
... ::::: ::::;:: ":=' :::::; A will equal 0

3-28 Programming

;:::-! ... j. Calculation range overflow. The default value is 9.9999999999ge 511 or

-9.9999999999ge 511. For example:

..

9.9999999999ge 51 1 ... =
..... = - 9. 9999999999ge 51 1

Calculation range underflow. The default value is zero. For example:

........ ::. C!:! .. :.. (, C! = 0

Flags
Flags are programmable indicators that can have a value of one or zero. When a flag is set, its

value is one; when it is cleared, its value is zero. There are 16 flags, numbered 0 through 15.

The following flags have special meanings:

Flag 13 - is automatically set when 6 is pressed without entering data in an enter statement

or when 8 is pressed in an enter statement. Flag 13 is automatically cleared when

data is supplied in an enter statement.

Flag 14 -when flag 14 is set, the calculator ignores math errors such as division by zero and

supplies a default value shown in the preceding Math Errors list.

Flag 15 - is automatically set whenever a math error occurs, regardless of the setting of flag

14.

The Set Flag Statement

:::: .. ::. -:::: [flag number:; ... J

The set flag (sf9) statement sets the value of the specified flags to one. The flag number can

be a value or an expression. If a non-integer flag number is specified, the value is rounded to

an integer. If :;:;.+" -::;! is executed with no flag number specified, all flags (0 through 15) are set.

For example:

Set flag 2.

Set the flag designated by A + 1.

Set flag 1 and the flag designated by X.

Programming 3-29

The Clear Flag Statement

-:::: [flag number:, ... J

The clear flag (cfg) statement clears the specified flags to zero. The flag number can be a

value or expression. If a non-integer flag number is specified, the value is rounded to an

integer. If c.f -:::! is executed with no flag numbers specified, all flags (0 through 15) are cleared.

Examples:

The Complement Flag Statement

Clear flag 14.

Clear the flag designated by the value of flag 2

(either flag one or flag zero will be cleared).

Clears all flags.

... :',: f [flag number:, ... J

The complement flag (emf) statement changes (toggles) the value of the flags specified. If a

set flag is complemented, its new value is zero. If a cleared flag is complemented, its new

value is one. A value or expression can be given for the flag number. If a non-integer flag

number is specified, the value is rounded to an integer. To complement flags 0 through 15,

,:::.(,/. is executed without paramenters.

Examples:

Complement flag 1.

Complement the flag designated by X -1.

Complement flags 3, 4, and 5.

3-30 Programming

The Flag Function

The flag (fig) function is used to check the value of a flag. The result of the flag function is zero

or one. One indicates a set flag; zero indicates a cleared flag.

Examples:

:3 If flag 2 is set, jump 5 lines.

If flag 15 is set, 1~A; if flag 15 is cleared,

O~A.

Branching Statements
Branching statements are used to alter the sequential flow of a program. Branching is used for

such operations as looping through a section of a program, executing a subroutine program,

and branching to different parts of a program based on a decision (if) statement. There are

three statements used for branching: the go to (gto) statement, the jump Ump) statement,

and the go sub (gsb) statement.

The following three types of branching may be used for both go to and go sub statements:

Absolute Branching -branch to the specified line number (such as ·:::!tc' .L!:::)

Relative Branching - branch forward or backward in the program the specified number of

lines relative to the current line (such as -:::!::::.!:::; "''':::::).

Labelled Branching - branch to the indicated label. This type of branching is generally the

most convenient to use since the programmer doesn't have to know line

numbers for a branch (such as -::<:.c' "i:::-:i. (·::::.t ").

Line Renumbering
Line numbers are automatically renumbered when a program line is inserted or deleted. As

lines are inserted or deleted in a program, the line numbers of relative or absolute go to or go

sub statements are changed as required to reflect the insertion or deletion. The address in the

jump statement is not changed. The entire program is checked before any deletion is made. If

a line being deleted is the destination of a relative or absolute go to or go sub statement, an

error is displayed and no deletion occurs, unless an asterisk «.) is used in the delete com

mand.
An error message is not displayed when the line containing a label name in a gto statement is

deleted.

Programming 3-31

If a line becomes too long due to line renumbering, the line number for that line will appear

followed by a ,) when the line is displayed or listed. For example:

Line 8 was stored with 73 characters.

Inserting a line at line 7 causes line 8 to be renumbered such that the branch is to line 100. The

line will appear as:

To view the entire line, delete an appropriate line to recover the original line numbering. The

fact that a line is too long to display or list does not affect the operation of the program when

the program is run.

More information on line renumbering is in the Program Debugging section.

Labels
Labels are characters within quotes located either at the beginning of a line, after a go to or go

sub statement, or after a run or continue command. Labels at the beginning of a line must be

followed by a colon.

Labels are used for branching and for remarks within a program. When used for branching,

the label in the go to or go sub statement is compared to the line labels in the program until a

match is found. Then, at the end of the line, a branch is made to the line containing the label.

The first time a branch is made to a label, the program is scanned beginning at line a until a

matching label is found. From then on, the branch is directly to the line with that label. When

comparing labels for branching, a comparison is made on all characters in the label, including

blanks.

Labels are often used to make remarks in a program for documentation purposes.

For exam pie:

",":f;{r
8f' :n:'~:.1':2.~Ji,

Note that a colon must follow a label even if nothing else is in the line.

The Go To Statement
The go to (9tO) statement causes program control to transfer to the location indicated. When a

line contains more than one go to statement, only the last one encountered is executed.

3-32 Programming

Absolute Go To

line number

An absolute go to statement is used to branch to the indicated line. The line number must be

an integer (such as 5 or 13).

When an absolute or labelled go to statement is executed from the keyboard in calculator

mode, the program line counter is set to the specified line number. To view the line, press the

8 key.

Relative Go To

number of lines

....... number of lines

A relative go to statement is used to branch forward (+) or backward (-) the specified number

of lines, relative to the current line. The number of lines must be an integer.

Examples:

20 " '3 t- o + 1 . Go forward 1 line.

,-. 1 '3t 0
_. -:: c.: II '-' Go back 3 lines.

22 " -3 t. (I + (1 ..
2:;: II '3 t- o

_. :-:t

" r':":
Go to the beginning of the current line.

Labelled Go To

.. : label

A labelled go to statement is used to branch to the line with the indicated label (see section on

labels). This is the most convenient type of branching since no line numbers have to be

considered.

Programming 3-33

Example:

Go to the line labelled by "Avg.".

When a labelled go to statement is executed from the keyboard in calculator mode, the

program line counter is set to the specified line number. To view the line, press the 8 key.

Multiple go to statements in a line are useful for N-way branching when used with an if

statement. N-way branching is explained later.

The Jump Statement

.j (,: :::> number of lines

The jump Omp) statement allows branching from the current line by the number of lines

specified. This statement is similar to the relative go to statement except that the number of

lines can be an expression. If the number of lines is positive, the branch is forward in the

program. If the number of lines is zero, the branch is to the beginning of the current line. If the

number of lines is negative, the branch is backward in the program. If the number of lines is

not an integer, then it is rounded to an integer.

The go to statement executes faster than the jump statement. The jump statement can only be

at the end of a line, otherwise error 07 is displayed when you try to store or execute the line.

Examples:

Jump forward 10 lines.

Jump the number of lines designated by the

value of A.

Jump forward 2 lines if Z=2; otherwise jump to

the beginning of the current line.

Increment B and jump to the next line if B is

greater than 20; otherwise jump to the begin

ning of the current line.

3-34 Prog ramming

The Go To Subroutine and Return Statements
The go to subroutine (9sb) statement allows branching to subroutine portions of a program.

Subroutines are useful when the same routine will be executed many times and called from

different places in the program. A return pointer is set up when the go sub statement is

executed. This pointer points to the next line after the line containing the go sub statement.

The return (ret) statement returns the program execution to the pointer location. The return

statement is the last statement executed in the subroutine and must be the last statement in a

line. The depth of subroutine nesting is limited only by the amount of available memory. Each

subroutine return pointer requires eight bytes of memory. Subroutines should be entered only

by a 9sb statement and should be exited only by a ret statement.

When a line contains more than one go sub statement, only the last one encountered is

executed. There are three types of go sub statements: absolute, relative, and labelled.

Absolute Go Sub

An absolute go sub statement is used to go to the subroutine at the specified line number. The

line number must be an integer.

Example:

,7: '::3 ::;.b 15

Relative Go Sub

Go to the subroutine at line 15.

End subroutine with return statement (program

returns to line 8).

.... : .. number of lines

..... number of lines

A relative go sub statement provides forward (+) or backward (-) subroutine branching the

specified number of lines, relative to the current line number. The number of lines must be an

integer.

Programming 3-35

Examples:

Go to the subroutine at line 12.

Go to the subroutine at line 5.

Labelled Go Sub
.:::~ ::::. L:; label

A labelled go sub statement is used to branch to the subroutine at the indicated label. This is

the most convenient form of subroutine branching since no line numbers need to be consi

dered.

Example:

Go to the subroutine at the line labelled by

"sub1 ".

Multiple go sub statements in a line are useful for N-way branching when used with the if

statement. N-way branching is explained later.

Calculated Gosub Branching
By using the jump statement and the go sub statement together, calculated branching to

subroutines is possible. This form of subroutine branching is called the calculated go sub and

has the form:

.: dummy location:: .. :~ ~.:~ ::::0 expression

The dummy location can be a line number, + or - a number of lines, or a label, but the

calculator branches to the subroutine designated by the computed jump expression. For

example:

2; F=; f"· t~ H ,i:. t~i .. i:l= :1

:~; ; "):: " : e'n d
4 : p r t. n::& t~, t~:.l u :;

E: .: f:~ ·t- t~ :: . ::;. t4 ti ':~; u ;'

r E·t.

If a 3 is entered for N, the program branches to the subroutine at line 4.

3-36 Prog ramming

The If Statement
::. ":" expression

The if statement is used to branch based on a logical decision. When an if statement is

encountered, the expression following it is evaluated. If the computed expression is zero

(false), program control resumes at the next program line (unless the preceding statement

was a go to or go sub statement as explained later under N-Way Branching). If the computed

expression is any other value, it is considered true, and the program continues in the same

line. The if statement is most often used with expressions containing relational operators or

flags.

Example:

:::: ; t= :z: E- rOO i:i :1 : (j ~:. f==

"A#[;"
6;: E;'nd

Enter a value for A and B.

If A= B, go to "one"; otherwise go to 'zero".

At label "one", display ~:::i :C:; then stop.

At label "zero": display

program.

then end the

Whenever A and B are equal, ~:::~ ::::: C is displayed. All other times, ~:::~ "" i::: is displayed.

The if statement can be used with other statements besides the go to statement used in the

above example. The previous example could be shortened to:

~,'{.! t'I', A·,·,<;::Ei,'
f·: i fA:;;:: B; "d::;. t-'

Note that no go to statements are used.

Programming 3-37

N-Way Branching
The if statement used with a go to or go sub statement makes it possible to branch to any of

several locations. This type of branching is referred to as n-way branching, and has the

following forms:

or

If the first if statement is false, then the branch is determined by the first go to or go sub

statement. If the first if statement is true, the second go to or go sub statement determines the

branch. Go to and go sub statements can be mixed in the same line.

When a line contains more than one go to or go sub statement, only the last one encountered

is used. An if statement whose expression is zero can abort execution of the remainder of a

line (before subsequent go to or go sub statements are encountered).

Example:

y ~ i . '-

::'~0;,9'l,!:;." ,'?4} '~t
~:.:: > ~; ~3 ; 9 t. t:i :3· 2; i f"

If X is less than or equal to 30, the program branches to line 24. If X is greater than 30 and less

than or equal to 40, the branch is to line 32. If X is greater than 40, the branch is to the line

labelled "max".

The Dimension Statement
':::: :L :':: Item ',Item" ... " . [.]

item may be: simple variable

array variable :::dimension [" dimension" ... r

The dimension (dim) statement reserves memory for simpie and array variabies, and initiaiizes

the indicated variables to zero. r-variables can not be dimensioned in a dimension statement.

3-38 Programming

In the dimension statement, the dimensions of an array can be specified by expressions. For

example:

Variables are used to specify dimensions.

Variables are allocated in the order that they appear. If a variable is allocated already, an error

results. All the variables dimensioned in anyone dimension statement are stored in a contigu

ous block of memory. This is important when recording data.

Dimension statements may appear anywhere in a program but any dimension statement can

only be executed once during a program. The number of dimension statements is limited by

memory size. The number of dimensions and the size of the dimensions of an array is limited

only by memory size and line length. For example:

Reserves 128 array elements.

Reserves 1000 array elements.

Specifying Bounds for Dimensions
A dimension may be specified by giving iower and upper bounds. The iower bound must be

specified before the upper bound. The two are separated by a colon. The bounds must be in

the range from -32767 through 32767. For example:

(f:, ,(1 i f"i~~; [";;':J: 0':" ' Reserves 12 array elements.
~ i <" ~

This statement reserves the same amount of memory as:

Reserves 12 array elements.

The elements of array 8 are referenced as:

8[-3,4] 8[-3,5] 8[-3,6]

8[-2,4] 8[-2,5] 8[-2,6]

8[-1,4] 8[-1,5] 8[-1,6]

8[0,4] 8[0,5] 8[0,6]

!f a lower bound is not specified, as in X[4,3], it is assumed to be 1, the same as X[1:4, 1 :3].

Prog ramming 3-39

The Clear Simple Variables Statement

The clear simple variables (csv) statement clears any allocated simple variables to zero. The

clear simple variables statement does not de-allocate variables. Therefore, an error results

when the following line is executed:

Not allowed. Cannot allocate A twice.

The List Statement
::. ::. ::::. -::. [beginning line number [:, ending line number]]

::. ::. ::::. -::. special function key

.: •• : •. :::' :.' !"'o

The list statement is used to obtain a printed listing of a stored program, section of a program,

or special function keys. If no parameter follows the list statement, the entire program is listed.

If one line number is specified, the program is listed from that line to the end. If two line

numbers are specified, the program segment between the two line numbers is listed. To list all

of the special function keys, execute ::. :l. :::: .. :. k (for list keys). When list is followed by pressing

an individual special function key, then only that key is listed (this is not programmable). The

list statement must be the last statement in a line.

Examples:

=+:: : .. ~.

... ~

Lists the entire program.

List lines 10 through 15.

List line 4.

List the special function keys .

List special function key f10 (not programma

ble).

At the end of a listing, a checksum is printed. This checksum is useful for detecting inter

changed or omitted lines and characters. Any difference in the programs generates a different

checksum. In the following two programs, only the characters (. ·i:. in line 1 are interchanged.

Note that the checksums are different. There is no change in checksum from machine to

machine, with different memory sizes, nor with different ROMs.

3-40 programming

_______________ 0 iff e re n t
Checksums

Used and Remaining Memory

, ,~,' r 1;.; ': i$. ;, ," '(J~ ,
, <~!:: ,E~'f1'1:f' <

After a list operation, two numbers are displayed. The first number is the total length of the

program in bytes*. This number doesn't include variables, subroutine return pointers, etc. The

second number is the unused memory in bytes. For example:

Program Length Unused Memory

(in bytes)

*A byte is the basic unit of data in the 9825,8 bits make up one byte, 8 bytes are required to store a number,

Programming 3-41

Program Debugging
Debugging is the process of refining a program by editing, correcting, and updating. Like

programming, it is a creative process. Many operations are involved such as deleting and

inserting lines and changing, inserting, and deleting characters. Selective tracing and selec

tive stopping are useful for locating lines which require changes. 8 is useful for going

through a program one line at a time. This chapter explains some of the steps in editing a

program.

Finding the Problem

The first step in debugging is to find the lines which require changes. This can be done in

several ways. One way is to step through a program by pressing 8 once for each line to be

executed. Then check the results after each executed program line.

Another way is to use the trace, stop, and normal statements, When program lines are traced,

the line number, and variables and flags which are assigned values are printed. This allows

you to monitor program activity in individual program lines. Using the stop statement, the

program can be stopped whenever a specified program line is encountered. The normal

statement is used to terminate tracing and stopping. Stop, trace,and normal statements are

explained later.

Fixing the Problem

The next step in debugging is fixing the problem. In many cases, this is as simple as changing

one character. Fixing the problem could, however, require rewriting many program lines.

To modify characters within a line, fetch the line by pressing the 8 key followed by the line

number of the line requiring the change. Then press OJ. The line will appear in the display.

Next press either 8, if the change is closer to the end of the display, or G, if the change is

closer to the front. Once a flashing cursor is over the location needing correction, you can

either insert characters, delete characters, or write over the existing characters. To insert

characters, press the B key. This changes the flashing iiiii to a flashing <. Characters that are

typed-in are inserted at the left of this cursor. To delete characters, press character ~ for

each character to be deleted. To replace characters, be sure the iii!i cursor is in the display (if

the < is in the display, press B to get ii!iO and then enter the necessary characters.

3-42 Programming

To modify lines within a program, use the 8 key or the C!J and ,~ keys to bring the line

into the display. To delete the line, press the line ~ key.

If a line being deleted has a line number referenced by a go to or go sub statement, an error 36

will occur. Either execute the delete command with the optional asterisk (.:q parameter or
adjust the line reference in the go to or go sub statement accessing that line. In the following

example, line 25 is to be deleted; but line 25 is referenced from line 27. Two alternatives are

shown.

Program section:
.' ,

,2,'5.<:;:'
,N·

26':: 'if" H=27;: :':;:'f:;p
2?>~' ' r:l-f'J ;N;'~~;\o';:':'25'

Alternative 1 :

Type in:

(T"\

Press: i 5 I
\..L)

Alternative 2:

Change line 27 to:

Then fetch line 25 and press line ~,

or execute ,:::k:,:t ;?':::;.

Deletes line 25 only. The go to statement in line

27 still addresses line 25.

To insert a line, fetch the line that the inserted line is to precede. Then type the new line into the

display and press the line B key to store it. All the lines from the fetched line on are

automatically renumbered (incremented by one). When a line is inserted, the line references

of go to or go sub statements are incremented to reflect the new line numbering. If the line

being inserted contains an absolute go to or go sub statement, it is assumed that the line

numbers reference the lines before they are renumbered. Thus, if a line inserted before line 30

contains a <;;:tc' < :::; statement, it will be renumbered to ':::i'i: C' «:" (The old line 45 is renumbered

to line 46.)

In this example, a line is inserted between lines

14 and 15 •

14=
C1f'

15:

p,t" t.:. ",t"! i.~'f·'1b€· r'
d,~I.·/ s: " '!I '[I
':;:It I) 19

First, fetch line 15, then type the line to be in

serted into the display.

Then press the line B key. The display will

Programming 3-43

[~: : (I
__ i_::>_(_._. _ .. _.,_'_::_',._"_ _,._ ... _._ .. _ .. _. _ ... _._. __ ' ... ')~

be. C_::::;_i···_· ____________ __)J

To see where the line was inserted, exe-

cute: .~. "':':: .L : ... :

Note that the line number in the go to statement in line 16 is incremented since old line 19 is

now line 20.

The branching address of the jump statement is not affected by adding or deleting lines in a

program.

The Debugging Statements

The trace, stop, and normal statements are used for debugging programs. The three state

ments have dual roles in that their action depends upon whether any parameters are

specified.

To effectively use the trace, stop, and normal statements, the internal operation should be

understood. There is one master flag which enables and disables overall tracing and stop

ping. In addition, each line has two flags. The trace flag enables and disables tracing of the

line. The stop flag enables and disables selective stopping at a line. These flags are unrelated

to flags 0 through 15 explained earlier in this chapter.

3-44 Programming

The Trace Statement
t (. c· [beginning line number [:, ending line number]]

The trace (trc) statement sets the master trace flag. If line numbers are specified in the trace

statement, then the individual line trace flags are set on the designated lines. One line number

specifies that line only and two line numbers specify the block of lines from the beginning line

number through the ending line number.

During the execution of the program, a specific line is traced if both the master trace flag and

the individual line trace flags are set. When a line is traced, the number of the line is printed as

well as information describing any variable assignments and flag operations (involving flags 0

through 15).

The Stop Statement
::::. -::. F> beginning line number [:, ending line number]

The stop (stp) statement with line numbers sets the master trace flag and stop flags on the

designated lines.

Before each program line is executed, the stop flag for that line is checked. If this flag and the

master trace flag are set, the program is stopped before the line is executed. The number of

the current program line is displayed when the program is stopped. Execution of the program

will continue from this line if 8 or B is pressed (see description of 18 and B keys).

The Normal Statement
«:' (" [beginning line number [:' ending line number]]

The normal (nor) statement clears the trace and stop flags of the lines specified by the line

numbers. If no line numbers are specified, the normal statement clears the master trace flag.

The use of a master trace flag in addition to individual line trace and stop flags makes it easy to

enable or disable selective tracing or stopping of parts of a program. This process is shown in

the following example.

Prog ramming 3-45

A 100 line program contains three sections in which critical operations are performed. These

sections can be traced by executing the following statements:

The program is run and the tracing printout indicates that line 45 contains an error. The line is

modified and (:c::'" is executed to clear the master trace flag. The program is again run, but this

time the assignments are not printed. At the conclusion of the program it becomes obvious

that the program still contains an error. The three critical sections of the program are again

traced by executing t (:::: .. This sets the master trace flag so that the lines 5-15, 40-50, and

70-85 are traced (the trace bits are still set on these lines). After the program is totally

debugged, the individual line trace flags are cleared by executing (::"."." .".

The individual line trace and stop flags are not normally stored on the cartridge when a

program is recorded by the record file statement. These flags can be recorded on the tape

cartridge along with the program by including the optional debug ("DB") parameter in the

record file statement. The master trace flag is not recorded. To have the program automati

cally trace the lines when the program is loaded back into the calculator, put trc in line 0 to set

the master flag.

3-46 Programming

Programming Hints

There are usually several ways to write a program or section of a program to perform a specific

job, and the programmer is often faced with the choice of which of several methods to use.

Usually the goal is to save program space and execution time and at the same time maintain

readability. However, these goals are sometimes conflicting and the programmer must decide

which is the overriding concern.

This appendix is not intended to discuss programming techniques in general but to describe a

collection of hints for the programmer who wishes to save space or time. While by no means

complete, this list describes some of the trade-ofts which are "machine dependent" and

therefore not necessarily obvious.

In most cases, the time savings are small and are not observable unless the statement is

executed thousands of times. The space savings usually only amount to a few bytes. To check

the amount of space used by a statement, execute ::. ::. ::::.-::.

Method A

Simple Variables

r-variables

Multiple statements per
line

gto +S

gto -S

gto "s" (one or two char
acter label)

gto +S

\IX

xx 1

Method B

r-variables

one-dimensional array
variables

One statement per line

gto S

gto S

gto S

jmp S (Note 1)

Xi·S

Xi2 (Note 2)

·····:L after storing the statement.

Method Method
Requiring With

Less Faster
Program Execution
Storage Time

A A

Same A

A A

Same Same

'Same Same

Same Same

B A

1 A 1 A

A Same

Programming 3-47

T Method T Method
Requiring With

Less Faster
Program I Execution

Method A Method B Storage Time

implied multiply explicit multiply Same Same

1T 3.14159 ... A A

ifflg2=1 if fig 2 B B

if fig 2=0 if not fig 2 B B

if A#O if A B B

if (A<B) or (B<C) if (A<B) + (B<C) Same A

if (A<B) and (B<C) if (A<B) * (B<C) Same A

J+5~K; K-3~L (J+5~K)-3~L B B

J+1~J; ifJ<5 if (J+ 1~J)<5 B B

Specify lower bounds for Use default lower bounds. B Same
array dimensions.

Use simple variable as a flag (Note 3) B
flag (as 1 ~A).

Using both tracks alter- Using one track at a time, Same A
nately. sequentially.

Note 1: For computed branching, only jump statement can be used.

Note 2: XjY is done by repeated multiplication if Y is an integer.

Note 3: If only one test is made, the flag method takes less room. If two tests are made, both methods

are the same. For more than two tests, the simple variable method takes less room.

3-48 Programming

Notes

Chapter 4
Table of Contents

For/Next Loops (for, next) ... 4-3

Subprograms ... 4-10

Su broutines (cll, ret) ... 4-10

Passing Parameters ... 4-12

Functions ... 4-13

P-numbers .. 4-16

Split and Integer Precision Storage ... 4-20

Spl it Precision Storage (fts, stf) ... 4-20

Integer Precision Storage (fti, itt) .. 4-26

Sum mary ... 4-30

Cross Reference Statement (x ref) .. 4-32

Notes

Chapter 4

Advanced Programming

The Advanced Programming statements and functions enables you to -

• Use for/next loops to repeat sections of a program

• Pass parameters to subprograms including subroutines and functions.

• Store numbers in split and integer precision formats to conserve memory.

• Generate a list of the variables used in a program and the line numbers in which they

occur using the cross reference statement.

Advanced Programming (AP) is available in a plug-in ROM card for the 9825A and S Comput

ers. The ROM card uses four bytes of read/write memory. AP is a permenent part of the 98258

Computer.

For/Next Loops
The .::. c, (' and (': ':::.: -::. statements enable you to repeat a group of statements within a program

as many times as necessary.

simple variable ::::: initial value .::. c, final value [:::., step size value]

•
•
•
•

.: .. same simple variable

The and (': ,:::. :-: .. : .. statements, including the statements between them, form a loop within

a program. The.'· ... statement defines the beginning of the loop and the number of times the

loop is to be performed. The variable that follows the ... and ,., ,::0:-:·:- statements can be

anyone of the simple variables A through Z.

The initial, final and step size values can be expressions. If the step size value is not specified,

the default value is 1.

4-3

4-4 Advanced Programming

Here's an example of a for/next loop-

This for/next loop would be executed five times - when I = 1,2,3,4 and 5. Each time the

....... ::. statement is executed, the value of I is incremented by one, the default step size value.

When the value of I exceeds the final value (when I = 6)*, the loop is finished and the

program continues at the statement following the (j ::::. >:: t statement.

The advantages of using for/next looping instead of an :: .. :> statement are shown in the follow

ing examples where the numbers 1 through 10000 are displayed in succession.

:: .. ::. statement

'(1 '17 r
1: dsf.:·

:3;:b e; e'p , .
. 4.:. E~t¥Jid .

for/next loop

The program that uses the for/next loop is easier to key in, takes less calculator memory (40

bytes) and is executed faster (25 seconds). With the... statement, the program uses 48

bytes of memory and is executed in 32 seconds.

The initial value of the variable assigned in the for/next loop does not have to be 1. The

following example totals the integers, 90 through 100, and prints the total (1045).

* This is an often overlooked aspect of for/next loops and is covered on the next page.

Advanced Prog ramming 4-5

The next example illustrates that variables can be used in the .:> ::::: (. statement. The variables B

and C are assigned values in the enter statement in line 1 and are used in the -::- C: (" statement

in line 3.

If B = 1 and C = 3, the total of 1,2 and 3 (6) is printed. If B = 5.5 and C = 8.5, the total of

5.5, 6.5, 7.5 and 8.5 (28) is printed. In either case, the value of I is incremented by one after

each loop. If the value of B is greater than the value of C, the loop is not executed and the

program continues at the first statement following (": ::::'::-:: t :::, in this example the print state

ment in line 6.

The following example illustrates an often overlooked aspect of for/next looping. After each

loop is performed, the (: ::::' >:: '1:. statement increments the value of I by 1. Then the incremented

value is compared with the final value. If the incremented value is not greater than the final

value, the loop is repeated. When the incremented value is greater than the final value (when I

= 11) the loop is no longer repeated and the statement following the (: c'::-:: t statement

(::::.:::: ::::.) is executed.* Although the final loop is performed when I = 10, the last incremented

value for I is 11 and the calculator retains this as the value of I.

t~~: ~ ~;0 ,t"l
1 tt \:' tf <~:1

'Statements following a (:,:::·::-::t statement are not executed until the entire loop is completed. If a .. C: or ::::: >::: statement
precedes a :·":C·::<:·!:· statement on the same line, the .::::::: i:J or '.:.:, ,> isn't executed until the loop is completed.

4-6 .Advanced Prog ramming

The next program shows how the for/next loop can be used to assign values to arrays. In this

example, the array variables A[1] through A[4] are assigned values.

For/next loops can be nested or located inside one another up to a depth of 26 (one for each

simple variable A through Z). However, one loop cannot overlap another. Before running the

following programs, set the print all mode by pressing 5.

Correct Nesting

[q:
c.

() (t. 0 t
_.

".
,',

Ct r -- ::1· ~, I) T

, 2; r 1..
.

~:::, 0.: r ::: ;;

.:::: : t-! Eo >:: t- . J
' • ...'i

.::j. ; >;: t.
.,.
1

.5 . E- n c~

.':; _.

t;
_.
~ .

1 = ,i?;fi
E· :: 0~j

•. '0,0
: 'f~ 0.

Advanced Prog ramming 4-7

Incorrect Nesting

In the incorrect nesting example, the I loop is activated first and then the J loop is activated.

The J loop is cancelled at the same time that (.! ,;;;. >:: t T is executed because it's an "inner

loop". When the I loop is completed and (><:<.:: : is finally accessed, ,:;:. :..... :::::::::: is

displayed. This is because the J loop was cancelled and was not reactivated after the last I

loop.

For/next loops can be written in more than one line, as previously shown, or all in one line, like

this-

When line 0 is executed, the numbers 1 through 5 are printed as I is incremented by one.

When the final value of I is reached, the last statement in the line is executed and : .. < . .:!-.<::: is

printed.

If 8 is pressed while the program is running, the program halts when the current line is

completely executed. If a for/next loop is completely contained in one line and q is pressed,
"----./

the calculator will not stop until the loop is completed. Only 8 can stop the execution of the

line containing the loop, before its normal termination. This can be avoided by putting the

and (.! ,:;> ::< -::. statements on separate lines.

4-8 Advanced Programming

Each -::. ':::' (" statement can have on Iy one associated ':'. statement. When a state-

ment is executed, and there is already an active loop using the same simple variable, then the

previous loop is cancelled and the new loop becomes active. I n the following example, the

first I loop (in line 0) is activated and then cancelled when the second I loop is activated in line

2. When line 4 is executed, control returns to the latest I loop (in line 2).

The optional step size value enables you to specify a step size other than 1, the default step

size value. For example-

~::1: 'f OT T=€1' t.
5~3"b'y' .iIl

1= 'prt,. I
2: "ne':z:t l

~3=>(H3

10 .. tf~3.
c: ;Zf .. 0{1
::::~3 ... 00
4(1, .. j.3~j
50 .. Btl'

By adding the optional step size value to the .,:. ':::':--- statement, the simple variable will be

incremented by that value each time the ('! ,:::' >:: -::. statement is executed. In the previous exam

ple, the loop is executed six times - when I = 0,10,20,30,40 and 50. As soon as the

incremented value is greater than the final value, the loop is exited.

For/next loops can be decremented by using negative values for the optional step size value.

For example-

Advanced Prog ramming 4-9

The step size value does not have to be an integer; fractional numbers are allowed. For

example-

.~. : .. .: r

The initial value, the final value and the step size value can be variables or expressions. For

example-

Once the f C: (" statement is executed, the initial, final and step size values can be changed

without affecting the number of times the loop is repeated. In the following example, the

variables A and B can be used within the loop for other purposes, but the loop itself is

repeated only six times.

:1;'; ~l£t: ,;
,'~: ~ ;:0t~; :

:; ,:' ';;7d~fJ) ,',
:::;'~~If~!l'

i~~~~;:«=~

",~~,~,~,;'; ~~, "

'4 =;:e~~i:
~J€1',

1 t1,,0~~1

-4rti0
1 t .. €'Uj

'E. a 0J)'
-5,.,00
i2=~j€:1

4-10 Advanced Programming

Subprograms
A subprogram is a programming routine that enables you to repeat an operation many times

substituting different values each time the subprogram is called. There are two types of

subprograms - subroutines* and functions.

Subroutines

A subroutine subprogram consists of one or more lines of programming which perform a

specific task. A subroutine is accessed using a call (c. ::. ::.) statement followed by the name of

the subroutine, enclosed in single quotes (apostrophes). As many parameters as needed can

be used, within the limits of line length .

. ' name .' [:: parameter 1 [" parameter 2 " ... J :: J

•
•
•

"name ,.

•
•
•

The first statement in the subprogram is its name, written as a label (enclosed in quotation

marks and followed by a colon). The last statement executed in a subprogram is always a

return ((. ,:::<:.) statement.

·Subroutine subprograms are similar to standard subroutines called by the gosub statement within a mainframe program. To
eliminate confusing the two, subroutine subprograms will be referred to as subroutine subprograms and standard subroutines will
be referred to as mainframe subroutines in this chapter.

Advanced Programming 4-11

Here's a program with a mainframe subroutine which prints the sum of two numbers-

And here's a program that uses a subroutine subprogram to do the same-

A look at both programs shows that the subroutines are identical, but the calling statements

are different. A <::! ::::. ::::' statement, followed by the name of the subroutine enclosed in quotes, is

used to access the mainframe subroutine, while a c· ::. ::. statement, followed by the name of

the subprogram enclosed in apostrophes, is used to access the subroutine subprogram.

There's another difference between the two. The subroutine subprogram is executed im

mediately, but execution of the mainframe subroutine is delayed until all other statements in

that line are executed, as shown by the following printouts.

Mainframe Subroutine Subroutine Subprogram

DOr·iE

With the mainframe subroutine, C: C: : ... : C: is printed before the routine is accessed and executed

and program control returns to the line following the one containing the <::! ::::. ::::' statement.

The subroutine subprogram is accessed and executed immediately so the sum is printed first.

Program control then returns to the statement following the call statement and C: C)·F::: is

printed.

4-12 Advanced Programming

In addition to the immediate execute feature, the call statement can pass parameters to the

subroutine. In a subprogram, parameters are represented by p-numbers (parameter num

bers). This enables you to call the subprogram repeatedly using different values for the

parameters each time. Here's an example of this based on the previous two programs-

Passing Parameters

•
•
•
:~: :

[\
" n o. f'! E' II : F,:' r t p 1 + p 2

Before covering functions, here's some general information about parameters. A detailed

explanation of parameters (p-numbers) is found later.

Parameters that follow the call statement are always enclosed in parentheses and as many

parameters as the length of the line allows can be used. These parameters can be constants,

simple variables, expressions; r-variables or single elements of an array; entire arrays,

strings, string arrays and text cannot be used as parameters. In the preceding example, p1

and p2 in line 3 correspond to parameters A and B.

Parameters can be passed back from subroutines to main programs by assigning a value to a

p-number which corresponds to a variable. For example, lines 1 and 3 in the previous program

can be changed to-

;' /' 'r'lo~,:iiI:E; "",:/~'il';+j
',r,.'~,'fi~i:3 /~',~', .0' ','

Subprograms can be nested (called by another subprogram) as deeply as the calculator

memory allows. Each call statement requires a minimum of 26 bytes of memory when exe

cuted. That memory is returned when 1""' ':::. '1:. is executed. If parameters are passed, additional

memory is required.

Advanced Prog ramming 4-13

Functions

A function subprogram consists of one or more lines of programming which perform a specific

task. A function is accessed using the name of the function enclosed in single quotes (apos

trophes) within an expression or statement in the program. As many parameters as needed

can be used, within the limits of line length.

:: name:: [:: parameter 1 [:: parameter 2:: ... J:: J
•
•
•

name
•
•
•

(" :::: .. ::. parameter

The first statement in the function itself is its name, written as a label (enclosed in quotation

marks and followed by a colon). The last statement executed in a function is always (. ::::. t

followed by a return parameter. The return parameter, like a parameter that follows call state

ments, can be a simple variable, a constant, an expression, an r-variable or an element of an

array. In addition, a return parameter can be an array, a string, a string array or text.

Here's an example of a function based on the previous programs-

When the program is run, the function is accessed as line 1 is executed. The result of the

function is automatically returned and substituted for the name of the function in the statement

(F> :""" -::. :: ("j:} :-,:::::" ::). This causes the value of A + B to be printed.

Like a subroutine, a function is executed immediately and program control returns to the

function (:: ("j:} :-'j ::::" ::). A function subprogram can be used in a program wherever an expres

sion can be used.

4-14 ,!\dvanced Prog ramming

A parameter which follows a function call can be a simple variable, a constant, an r-variable,

an expression or a single element of an array. (Entire arrays, strings, string arrays and text

can't be parameters in a function call.) Parameters following a function call are always en

closed in parentheses and as many parameters as the length of the line allows can be used.

Here's an example of a function that uses parameters-

If the return parameter is omitted from a function subprogram, '::;' :--- !'" ':::' ~." ::::: 0:::. results; if a return

parameter follows ... :'. in a subroutine subprogram or a mainframe subroutine, it's ignored

and no error is displayed.

Functions, like subroutines can be nested as deeply as the calculator memory allows. Each

function call requires a minimum of 26 bytes of memory when executed. That memory is

returned when : .. ,::: -::. is executed. If parameters are passed, additional memory is required.

Advanced Programming 4-15

A function subprogram can be used within another subprogram or within an expression. When

the function call is placed in the expression, the value returned by the function is used directly

in the expression.

Here's an example of a function subprogram that computes the factoriai of a number (lines 7

and 8) and uses it in the calculation in line 4 to find the number of combinations of N items

taken R at a time.

For 12 items taken 3 at a time the number of combinations is-

4~ 16 Advanced Prog ramming

P-Numbers

A subprogram (subroutine or function) enables you to repeat an operation using different

values each time the subprogram is called. This is accomplished by following the subprogram

call with a list of parameters. When these parameters are passed to the subprogram, a

parameter number or p-number is assigned to each parameter in the list. The p-numbers are

assigned to the parameters consecutively, starting with p1. The subprogram operation is then

performed using the values passed by the subprogram call.

In addition to passed parameters, there are local p-numbers. When allocated, a local

p-number is initialized to zero. Local p-numbers are used in a subprogram as needed. Here's

an example that uses passed parameters and a local p-number.

0: ent A'/:;
1;: p t-t ~ n(j.l'·!E·~ (A:.

2: end

When this program is run, p1 and p2 correspond to the passed parameters A and B, but p6 is

a local p-number which, when allocated, is initialized to zero. When the subprogram operation

is performed using p1 and p2, the result of the function ({' ,:::' (,) is returned and printed.

P-numbers are assigned to parameters consecutively, starting with pi. If you use a local

p-number that doesn't follow the passed p-numbers in consecutive order, all p-numbers in

between are automatically allocated as local p-numbers. When allocated, these p-numbers

are initialized to zero. In the previous example, p3, p4 and p5 are initialized when p6 is

allocated and require memory space, even though they are not used.

PO is also a local p-number but it isn't initialized to zero. Instead, when the subprogram is

called, pO is initialized to the number of parameters passed to the subprogram.

Subprograms can be nested (called by another subprogram) as deeply as the calculator

memory allows. In addition, a function subprogram can be used as the parameter for another

subprogram (function or su broutine) I ike th is-

•
•

•
•

In the line above, A and B are parameters for the function

function is the parameter for the subroutine

and the result of the

Advanced Programming 4-17

When subprograms having parameters are nested, each set of p-numbers is independent of

the p-numbers in the next subprogram or level, even though the same p-numbers may be

used in each. To illustrate independent p-numbers in nested subprograms, the following

example converts a Fahrenheit temperature to Celsius and then outputs both temperatures.

Notice that each subprogram uses p1 without affecting the value of the other.

0·; i", ~i
i;; ': L " ;. t;' [", t :: T lEo f:) P

:u.= ,
, ~ ::, <:., ~ ~ ,

When the trace mode is established (-::' , .. ,:::. C: " :::::) to monitor the activity of the running pro

gram, value assignments for each p-number used are not printed as they are for each simple

variable. Instead, as in line 7 of the following traced printout, all p-numbers are referenced by

,: .. , ::::: without indicating the specific p-number.

:-.
~ ~ --'

,·1 ::
-r •
F Go h 1"" E (! h ~::. :i. t .;;;'
c· ;~.:. J. ::~. i 1) ::::. :::

5~

.. } ~ :

4-18 Advanced Programming

If a p-number is used as a parameter in a nested subprogram call, there may be some

interaction between the p-numbers used in each subprogram. The following program uses

nested subprogram calls with parameters to illustrate what happens to p-numbers, variables,

expressions and constants in a parameter list when their values are changed in a subpro

gram.

7: "Sub-2":
8= :3p l-tF;,J
S~:: :3f:·2.-t ;::.;2; :3 r.' :::: -t p:3

; :Jp4 ;';';::.4'; :3 p 5 -t p5
'l~J,:,~~,r;t II S tJ h~·2''')i,'

pl!ip2i~.p:3 ~ f,:' 4,t-·5·;"
';··rE,t'·, '

The main program (lines 0 through 2) contains the call for ':::;~) ::::: :i. with three parameters - A,

5 and 1 x A. ':::;~) !:::: ::. (lines 3 through 6) calls ::::;~) ::::: ;? which has five parameters - A, p1 , pO,

5 and 1 x A. :::> ... ! :::::;? (lines 7 through 10) triples the value of each parameter and then prints

the values. Program control returns to line 4 C> .. ·! ::::: n and the current value of each parame

ter is doubled and printed.

Advanced Prog ramming 4-19

Here's a chart that shows the values of the parameters during program execution. The shaded

chart below duplicates the chart at the top and shows values before ;:::: is called.

Sub-1

Passed Initial Corresponding

Parameters Values p-numbers

A 2 p1

5 5 p2

1xA 2 p3

Sub-2

Passed I Initial I Corresponding

Parameters Values p-numbers

A 2 p1

p1 2 p2

pO 3 p3

5 5 p4

1xA 2 p5

Sub-1 (Results before calling Sub-2)

Values after Values after

line 8 line 9

6 18*

6* 18

3 9

5 15

2 6

Results after return from Sub-2

*Since A and p1 (in

Sub-1) and p1 and

p2(in Sub-2) are all

different names for

the same value,

when p1 (in Sub-2)

is tripled in line 8, A

and p1 (in Sub-1)

and p2 (in Sub-2)

are also tripled.

The same is true in

line 9 when p2 is

tripled.

Values after Values after Values after

Sub-2 execution line 4 line 5

18

I

36 36

5 5 10

2 2 4

4-20 Advanced Prog ramming

When program control returns to the main program, the final value of A is printed.

A=

Although p-numbers can be used only within subprograms, they can be accessed in the live

keyboard mode or by stopping execution during a subprogram. A stop statement can be used

in a subprogram to stop execution of the subprogram. The current value of any of the

p-numbers in the subprogram can be displayed or changed, but new p-numbers can't be

created.

Split and Integer Precision Storage
With the AP and String Variables ROM installed in your HP 9825, you can compactly store

values in split and integer precision formats using string variables. In stored form, the values

cannot be used directly in calculations, although they can easily be converted back to

numeric values for that purpose. This enables you to store large amounts of data using half

(split precision) or one fourth (integer precision) as much memory as full precision storage

requires.

Split Precision Storage

Using split precision format, full precision numbers (twelve digit mantissa with sign and expo

nent) are rounded to six digits and stored in string variables. Only values with exponents in the

range of ±63 can be stored using split precision format.

The full to split (-::- '1:. ::::.) function stores a value in split precision format by encoding the value

into four characters* (or bytes) which can then be stored in a previously dimensioned string

variable. The location within the string variable (first and last characters) where the encoded

value is to be stored should always be specified to eliminate truncation of the rest of the string.

The value to be stored must be enclosed in parentheses .

... -:::. !expression)

'The first character contains the exponent and sign Each of the three remaining characters contain two BCD (Binary Coded
Decimal) digits.

Advanced Prog ramming 4-21

To unpack the value, the split to full (::::. ::. -::-) function is used. The string variable must also be

enclosed in parentheses.

::::. t -::- ::string variable ::

Here's a program that uses the -::- .: .. ::::. function to store a list of ten random numbers. (The : ..

function in line 4 generates the random numbers.) The numbers are packed into a string array

consisting of ten strings, each four characters long. *

R

The rest of the program unpacks the stored values using the :::: .. ::. +" function and then prints the

numbers. The values being recovered are six digit numbers because they were rounded

before they were stored using the .:: .. : .. -:::. function.

Now press 3 to start the program and compare these printouts with yours. (Press 8
before running any of the example programs in this chapter to get printouts identical to those

shown.)

~j • i:- 4 :::~ .;~: t: ~:~ ;::~ ~::: t: ~:~ ::~

~:i :; 5 ~3 :::1 ~.:~ c~ 5 ~:1· :=~ 5 :~:~ ~J
~3" 5949:; 10~:;4,;~·4
~:i ~ 3S?~j~j2~31234
e " ;:; ;:; '3 1 :::~~:=:-:; ? '; 1. ::::

o u 3321 ;:;700t1ti t1

~~. 41'314;:;121~j00~j
~~i I 5~3~;!::57~~0titit1
~:i e ? 4 :3 ? Eo 9 0 i2U?: rH3
l? • 5 0 :~l Eo c~ 5 0 fH:'H2l ~}

[j» 3a?~i02i]0~:i0~}
~j. ;:;::;91 92000t'H}

'Normally the first and last characters of the string variable being used for storage (i.e., A$[I, 1,4]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in this program it's not needed, since each string
is only four characters long.

4-22 Advanced Programming

All values are rounded to six digits before they are stored. If you attempt to store a number with

an exponent outside the range of -63 to + 63 (and flag 14 is clear), ':::. (" (" ':::' (" ::::: ::::: is displayed

and flag 15 is set (to 1)*. To avoid this error, you can set flag 14 before the -(' t ::::' function is

executed. This causes a default value to be substituted and stored. If the exponent is less than

-63, the underflow default value is 0; if the exponent is greater than +63, the overflow default

value is ±9.9999ge63. Flag 15 is set regardless of whether flag 14 is set or not.

To illustrate what happens when the exponent is less than -63 (underflow), execute these

statements -

.. ,

.... . '.." '" . :~~ ::::' :1

And the display shows-

Then set flag 14, and the underflow value is automatically substituted. Key in and execute

these statements-

.. . ::: ~ 1

'"

~: :: ~ ::~:: : 1

1, . L :: . "': : :::L ::::; ::: : .; :::: :::: : : .. ::. ~::: ~ -: 1::

Which substitutes, stores and displays-

................. '" (I
~_ .. ,_ .. _L:_:!l:_::l_l:::l_l:::_ll:_::!l_:::l_l:::i_i::_:ii:_::i_,:::, __ ',:'_ .. '_:.' _______ J~

To illustrate what happens when the exponent is greater than +63 (overflow), execute the

following statements-

,": ,":
.. ,

: ,'j" r':;:1
.......... : .. ;,'

And the display shows-

'------' :;"'---)]
'Remember that flag 15 is set when any math error occurs,

Advanced Prog ramming 4-23

By setting flag 14 first, the overflow default value is substituted. Key in and execute these

statements-

.... . ::: ~ :L ::: ~.
. : : ,"

. . ", : .. ~: ':::: :' ,' .. ::::' ::.. '::.=)

.... : . . ':' : . i"'~ . :;: . .:

Which substitutes, stores and displays-

[
................ ,. (I

~') '_' ')')_')')')_l:::ll:::ll:::_llj;:::. _ _.)~

The next example uses split precision format to store four full precision numbers in each

simple string in a string array. As many numbers as the size of the memory and the size of the

string array allow, can be stored in split precision format. This means that you can use a string

array just like a chart or a table to store data (part numbers, temperatures, eic.) for easy

reference. This program also uses the (. «:: function in line 4, to generate the values to be

stored.

Notice that in line 5 three expressions are used to position the value in the appropriate string -

the string used for storage (I), the beginning character of the string where the value is to be

stored (4(J-1)+ 1) and the end character where the value is to be stored (4J).

To recall the numbers from split precision format, add these lines to the program and run it.

10; for L::::l to 4
11; s.t.t' (f'i$[K:.

4 (L-1.) +1 ::4.LJ) '*f'1

13;: t"lE·::<t K
14; E'nd

4-24 Advanced Programming

And the printout looks like this-

~). ::i15147~~t3;:?71
o . ~3 :~; ;:;" ::: 7 :3 ti 5 ~~ }:i t:
0. E,972;:i"2?f:"O·t ~3

(1 It :~; f:~ 2. 1 ;:; ~3 ~j ~J
i3 ,~ '~1 .~9· 1:' 4 ~.~:; '~i '~3 t3

·0 • 4 ~~1· 4· ·tt 5 5 ~~1 f1 ~}
~}. 31 ::;14 ?00fi0121

Some applications require that data be stored in a linear array. By storing data in a single

string instead of string arrays, numbers can be stored even more compactly by saving the

bytes of memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a simple string using the i"' :"i ,:::i function to generate

the values to be stored.

~3: f >:: d ':::1

1; d i (:'1 Pi ~:: r ;:; ~j :1

.-.
,: :

To recover the numbers, add these lines and run the program.

To get these printouts-

·t3 : \~··:··~3· 4":E~' 5""5 ::~. 4 .;:;
~3:·:: ". :::;. ·1·,5:,1, 4,"7: ::!" 0· 0

[~. :;. 4 :1 4· .. ::;.1. .~:;.1 4 2
O,,862057758
0,,990574867

Advanced Programming 4-25

0·.,,··4·i.9··14:::00{1
0.;5k13B570€t0

74·:~;769 0··0~3

'~~i:':: i:; :3·~9··1· 9· 2 ~J··0·~3
i3·:.~: ·!3·.1"·0" 7 ~~.1 0.0 [1
·0··= ,,·;:;::··7~·<::i::I. 2>4.··~:~(:~j::0
~~r '~'.' "-3 "7 :3"0'~? .::~ e'·",er @

0" 4J34 655 ~)~3~
;:. -:;;"' 1.' ::i '1"4 '~?' ·~3· 0<f=r

'er:: ·t:··9·· 7:: 2~ ":3 ":3 .. 0 ~j"€}
ti,,4148 i 80~30
ti" H6205;j0~3~i
0:990575000

4-26 Advanced Prog rammi ng

Integer Precision Storage

Using integer precision format, numbers in the range -32768 to +32767 can be stored as

integers in string variables even more compactly than split precision format.

The full to integer (f .::. :!.) function rounds a value to an integer and stores it in integer precision

format by encoding the value into two characters (or bytes) which can then be stored in a

previously dimensioned string variable. The location within the string variable (first and last

characters) where the encoded value is to be stored should always be specified to eliminate

truncation of the rest of the string. The value to be stored must be enclosed in parentheses.

::expression ::

To recover or unpack the value, the integer to full (:! ...) function is used. The string variable

must also be enclosed in parentheses.

:: string variable ::

The following program uses the '. t ::. function to store a list of ten random numbers. (The

i," «:! function in line 4 generates the random numbers.) The numbers are packed into a string

array consisting of ten strings, each two characters long. *

1: . d il"'1 A$ [1 (1 , 2]
p·t~f., It HT OR I r·iG::
f ':1 r I;:; 1 t. 01 ~3

C'"
• .J "

The rest of the program unpacks the stored values using the :: .. :: .. :> function and then prints the

numbers. The values being recovered are integers within the range previously stated because

they were rounded before they were stored.

'Normally the first and last characters of the string variable being used for storage (i.e., A$[I, 1,2]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in the following program it's not needed since
each string is only two characters iong.

Advanced Programming 4-27

Now press 3 to start the program and compare the listings.

If you attempt to store a number outside the range -32768 to +32767 using integer precision

format (and flag 14 is clear) ;::;' (. (. c; (. :::::::::: is displayed and flag 15 is set. *

To avoid :;::' (. ~." C: (' :::<:::, you can set flag 14 before the f t :i. function is executed. This causes

an overflow default value (-32768 or +32767) to be substituted. Flag 15 is set regardless of

whether flag 14 is set or not.

To illustrate overflow, execute these statements-

-. . :':'i ~:::~ .:~:: L ~:::: .. :
.. ..: : .. ~. -.::: :::: .. L

And the display shows-

.............. : ... !' ... ' (I
,--;:::'_!';' ;.)-; "-'" --.)~

By setting flag 14 first, the overflow default value is substituted without displaying an error.

Key in and execute these statements-

... ,', <::l.L : .. : .

..... ::::~ !:::l ~i +' .:: : ..
..

.. .

:: .,:,'

And the default value is automatically substituted, stored and displayed-

,---' _. "'-::: ---)]

*Remember that flag 15 is set when any math error occurs.

4-28 Advanced Programming

If the value to be packed is between -.5 and .5, then it is rounded to zero as shown here-

.' '. :::: ~ .L .L :: . :.

~'"-'''''-''''-''''''''-''''''''-''' -)]

Here's an example that uses integer precision format to store eight values in each simple

string of a string array. As many numbers as the size of the memory and the size of the string

array allow, can be stored in integer precision format. This means that you can use a string

array to store data in a table or chart for easy reference. This program also uses the

function to generate the values to be stored.

~j'.~ ,> . :::!yij ,2
1: eli!'! f1 :t: t :4, ::;:1
2, : f' (I r 1::;;:1 t (; :4
~: ; f .:t t- ._f ~~ 1 t« !:t· il
.il"'; 2'5~J' f.~r··i(:l'·{"!-) ,-t .. A";

5: rti (F(i.;;.fi$[I:.
2 (,j _. i) + 1 !' 2'.J J

7;; ri e ::{t. I
8 : ==~ 'f:t I: :~;

Notice that in line 5, three expressions are used to position the value in the appropriate string -

the string being used for storage (I), the beginning character where the value is to be stored

(2(J-1)+ 1) and the last character where the value is to be stored (2J).

To recall the numbers from integer precision format, add these lines to the program and run it.

'1 {i'~ . of'
,'1 1·: i~:',f' {H :t:[t::: ,-

'2: t l~, ,<:~:~ 1).': ~+~" t :, 2~ t ... J' J. '''?'': A

1::.:; n,E~::<t K
14= E'nel

And the printout looks like this-

'35.55
i [14 = 7':;;

12 =41

Advanced Programming 4-29

nEfl·~· g0·
7'SL.t·n?
10.a0

i74.·~::r0

Some applications require data storage in a string or linear array. By storing data in a singie

string instead of string arrays, numbers can be stored even more compactly by saving the

memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a single string using the (' (! ;:::: function to generate

the values to be stored.

~3"; t- }~' =:1 ~

1 ~ . eii fil R~$L 4 0]
2; f"· l:i t" I:::; 1 t ':1

:~~ :3 tf ~:l 2

4: ft.i (A)-tH$CI,
1+ i j

5; ne::(t I
6;: ::;.pc.

To recover the numbers, add these lines and run the program~

7 : f I:! f~ ~_~ ::: 1 t. !:l

:3 '3 b'/ 2
i:!; i t~ f fA:;: [.J; .. J.+.

i J) -t A ; j::: r- t. H
9 ;; n e' ::(t .J
10; end

4-30 Advanced Programming

And the printout shows-

18 .. :37

Summary

216 .. 0g
248 .. 00

18 .. 00

Full precision numbers (twelve digit mantissa plus exponent and sign) can be compactly

stored in strings or in string arrays using one of two possible storage formats. Split precision

format packs data in half the memory space that full precision storage requires and integer

precision format packs data in one fourth the memory space that full precision storage re

quires.

Storing a number using full precision format requires eight bytes of memory. Using split

precision format, only four bytes of memory are required to store a number. This is ac

complished by limiting the range and precision of the numbers that can be stored. Using split

precision format, the number is rounded to six digits before storage. In addition, the exponent

must be in the range -63 to +63. If it's not in that range, then flag 15 is set (to 1) and ,:::- (' (' ':::' ("

:::::;:::; is displayed (if -::- :i. -:::! :i. <. is clear). To avoid ,:::- (" ,. , ". :::<:::, you can set flag 14 before

executing the f -::. ::::. function, causing a default value to be substituted and stored. For an

overflow error, the default value is ±9.9999ge63; if it's an underflow error the default value is O.

Advanced Programming 4-31

The following program illustrates how the ':::: (. :.,.<:: function internally rounds the value to be

packed to six digits before storage in split precision format .

. ... €t:; ; . dj {''l :,:M,$ C4',,}
,t~; . rCU~ ,. L~ 1" l;ti
? ~. rrtd.(1)
~E~;:, f~~~~ ~ (.R) 7-..11$

" ALL ,11K

Using integer precision format, only two bytes of memory are required to store a number.

Integers in the range -32768 to +32767 can be stored using integer precision format. If you

attempt to store a number that's outside of this range using integer precision format, flag 15 is

set and '::> (. (" C' (" :::::::::: is displayed (if .:> :: .. :::: :i.,::j· is clear). To avoid ,:::' (" .' :"<:::, you can set

flag 14 before executing the .,. ·f· .. : function, causing an overflow default value (-32768 or

+32767) to be substituted and stored. If the value to be packed is between -.5 and .5, then it

is rounded to zero.

This program shows how the F:> (" (": ':::: function internally rounds the value to be packed to the

nearest integer value before storage in integer precision format.

4';' ., i 't\; 'f.·thd (R,
@) # i to' f' 1: Ii:~:i ; p r t·

,';~:,'" tiir(E'r~;;'n{': r'

. '5 ; h E'::{ t I
ALL OK

When storing numbers in a string variable using the .,:. -::. ::::. or ." ·f:. ::. functions, the locations

where storage begins and ends within the string variable must be specified; otherwise the

string may be truncated after the last character stored.

4-32 Advanced Programming

Cross Reference Statement
The cross reference (:0- ~- ,:::-::) statement prints each variable used in your program followed by

the line numbers in which it appears.

For programs with many variables, the ::0- ~--- statement aids in keeping track of these vari

ables and their locations in your program. The - - ,--- c' -::- statement can be executed from the

keyboard, in the live keyboard mode or within a program. The variables used in the program -

simple, numeric array, string and r-variables - are printed, in that order. Within each type, the

variables are arranged alphabetically.

When ::- ,--- is executed, it searches the program once for each of the 79 possible variables

(26 simple, 26 numeric array, 26 string and r-variables*). The - statement does not list

references to p-numbers or variables used in Matrix ROM statements (see the Matrix ROM

Programming Manual).

'AII r-variables are considered as one for this statement and they appear together at the end of the cross reference listing_

The fOl/owing program finds prime numbers and their logarithms Using Simple, nUmeric array,
string and r~variables.

Advanced Programming 4-33

4-34 Advanced Prog ramm rg

By executing the .. statement, these variables are listed-

Chapter 5
Table of Contents

~
Tape Cartridge Operations 5-1

Specifications ... 5-3

Tape Stru ctu re ... 5-4

Tape Cartridge .. 5-4

Inserting the Cartridge ... 5-5

Tape Care ... 5-5

The Rewind Statement (rwd) .. 5-6

The Track Statement (trk) ... 5-6

The Identify File Statement (idf) ... 5-7

The Find File Statement (fdf) .. 5-8

The Tape List Statement (tlist) ... 5-9

Marking Tapes ... 5-10

The Mark Statement (mrk) .. 5-10

Determining Size to Mark a File ... 5-11

Tape Capacity .. 5-12

Tape Capacity Calculations .. 5-12

Marking New Tapes ... 5-13

Marking Used Tapes .. 5-13

The Erase Tape Statement (ert) .. 5-15

The Record File Statement (ref) .. 5-16

Recording Programs .. 5-16

Recording Data ... 5-16

The Load Program Statement (Idp) ... 5-18

The Load File Statement (Idf) .. 5-18

Loading Programs ... 5-19

Linking Programs ... 5-20

Loading Data ... 5-21

The Record Keys Statement (rck) .. 5-22

The Load Keys Statement (Idk) ... 5-22

The Record Memory Statement .. 5-22

The Load Memory Statement ... 5-23

The Load Bi nary Program Statement .. 5-23

File Verification ... 5-24

The Auto-Verify Disable Statement (avd) .. 5-24

The Auto-Verify Enable Statement (ave) ... 5-25

The Verify Statement (vfy) .. 5-25

5-2 Tape Cartridge Operations

Tape Cartridge Errors ... 5-26

File Body Read Error .. 5-26

Loadi ng a Program File .. 5-26

Loading a Data File .. 5-26

File Header Read Error .. 5-27

Conditioning the Tape ... 5-28

Tape Life ... 5-28

Chapter 5
Tape Cartridge Operations

The tape cartridge used with 9825 Calculator is a high quality, high density, digital storage

medium. The structure, care, and use of the tape cartridge are detailed in this chapter.

Specifications
Typical data transfer rate

(the rate at which information is loaded from or

recorded on the tape cartridge) 2750 bytes per second

Typical access rate

(the rate at which information passes over the

tape head when search ing for a file) 14300 bytes per second

Typical rewind time

(from end to end)

Typical erase time

(one entire track)

Usable tape length (typical)

Number of tracks

19 seconds

40 seconds

42.67 meters (140 ft.)

2

5-3'

5-4 Tape Cartridge Operations

Tape Structure
The structure of the tape is diagrammed below:

Track 0 0

00 00 o 0 01+' -----'-'-Irr-------. ----LI'n-----'-'"rr---,.,."""-'-n--+-----I 0 0 0 0

Track 1 0

/'\IIIIII .. f------- Files -------1~~1 Beginning of Tape

An individual file has the following format:

File'
Gap File Header

D Data or Program

D Inter File Gap

File
Body

I r---------- 1 file------------', ...

D Data or Program

o Inter File Gap

Tape Cartridge

End of Tape

'File
(3ap

The tape cartridge, shown below, is used to store programs, data, and the defined special

function keys.

To record on the tape cartridge, the record

slide tab must be in the rightmost position, that

is, in the direction of the arrow (as shown).

-

.".. -

Tape Cartridge Operations 5-5

Inserting the Cartridge
I nsert the tape cartridge so that the label on the cartridge faces the back of the calculator as

shown.

Inserting the Tape Cartridge

Tape Care

Cleaning the Tape Head and Capstan

5-6 Tape Cartridge Operations

Dirt and dust are by far the greatest cause of cartridge related-errors. Several basic precau

tions can reduce such problems substantially.

• Clean the tape head and capstan (drive wheel) of the tape transport after at least every

eight hours of use, or more frequently in dirty environments.

• Rewind the cartridge after each use.

• Keep the tape transport door clean.

• Keep the cartridge in the plastic container supplied with it.

Two other factors can affect the reliability of the tape cartridge. Strong magnetic fields can

erase data and programs stored on the cartridge. Physical damage to the tape, such as

wrinkled or folded tape can also cause record and load problems. A back-up copy should be

maintained for critical programs or data on a separate tape cartridge.

I nformation on tape error recovery is at the back of this chapter.

The Rewind Statement

The rewind (rew) statement is used to rewind the tape cartridge to its beginning. This state

ment has the same function as B. Operations which do not use the tape cartridge can take

place while the tape rewinds. To stop a tape while it is rewinding, press the tape cartridge

ejection bar. The rewind statement must be executed before marking a new tape.

The Track Statement
... k track number

The (trk) statement sets track 0 or track 1 of the tape cartridge. When the track statement is

executed, any following cartridge operations are performed on that track. Track 0 is automati

cally set whenever the machine is switched on, 8 is pressed, or ;::>(C.::::,;::> ;':!, is executed. The

track does not change when the cartridge is removed nor when 1,3 is pressed.

The track number can be an expression with a value of 0 or 1, only.

Tape Cartridge Operations 5-7

CAUTION

THE TRACK IS AUTOMATICALLY SET TO a WHEN 8 IS

PRESSED, ,:::'(",::!»::' '::! IS EXECUTED, OR WHEN THE CAL

CULATOR IS SWITCHED ON. UNLESS A SUBSE~UENT

TRACK STATEMENT SPECIFIES TRACK 1, CARTRIDGE

OPERATIONS WILL BE PERFORMED ON TRACK O. IF YOU

ARE UNAWARE OF THIS, YOU COULD LOSE IMPORTANT

PROGRAMS OR DATA.

The Identify File Statement
[file number [:, file type [:, current file size [:' absolute file size [:, track number]]]]]

The identify file (idf) statement is used to load the contents of the current file header into the

return variables specified. After the identify file statement is done, the tape is positioned in

front of the file just identified. Thus, the tape is positioned for easy loading or recording of the

identified file.

All five of the parameters are optional return variables. That means that a value is returned to

the variable specified when the statement is executed. If one variable is specified, as in:

:!<::H:' i:::i, then only the file number is returned. Two variables must be specified to get the file

type; three variables to get the current file size in bytes; four variables to get the absolute file

size in bytes; and five variables to get the track number. The return variables can be any

variable type.

The file type can be one of the following:

a null* file
1 binary program
2 numeric data
3 string or string and numerics
4 memory file (from record memory statement)
5 key file
6 prog ram file
7 track dump error recovery (disk)
8 single file dump (disk)
9 entire disk dump

*A null file has an absolute size of zero.

5-8 Tape Cartridge Operations

The tape position becomes unknown when a tape cartridge is inserted into the tape drive, the

track is changed, B is pressed, or C·(C!.::::·C· ;"::. is executed. If the tape position is unknown

such as after switching tracks, at least one return variable must be specified or error 45 will

occur.

Example:

Identify the current file and return the file

number, file type, current file size, absolute file

size, and track number to A, B, C, 0, and E,

respectively.

... :::: Return the current file size to A .

The Find File Statement
[file number]

The find file (fdf) statement is used to find the specified file on the current track of the tape

cartridge. The tape is positioned at the beginning of the file specified. The file number can be

an expression. A find file statement without parameters finds file O. Other statements can be

executed while the find file statement is executing.

NOTE

If a file number which does not exist is specified, the next

cartridge statement executed (except find file or rewind) will

result in error 65.

Examples of the find file statement:

...

..... ...
Find file 8.

Find the file specified by the value of A [3].

Tape Cartridge Operations 5-9

The Tape List Statement

The tape list (tlist) statement is used to identify the files on the tape cartridge. Starting from the

tape's current position, the track, file number, file type, current file size in bytes, and absolute

file size are printed as shown below.

Track ---...,...,. ,t 1'" k ,1
File number .'ift("

", '>'_ \ .~ ,. ~ ,.,;. ~ .1'

File type --------+-•. "".1::,; .
. ~~1",'. '

5 .
. . j''!~.'

The file type can be one of the following:

o null* file
1 binary program
2 numeric data

", ,", .' '. Current file size

~~ Absolute file size

3 string or mixed string and numeric data
4 memory file (from record memory statement)
5 key file
6 program file

*A null file has an absolute size of zero.

5-10 Tape Cartridge Operations

If (~:0 is pressed while tlist is being executed, the tlist will terminate. Otherwise it will halt when

the last file (null file) is reached.

A convenient way to determine the current track setting is to execute "tlist" then press 8.
Alternately, use the identify file statement as in: :1, ':::: '(' 'r:, 'r:, 'r:, 'r:, 'r:: 'r CD.

Marking Tapes
The Mark Statement

k number of files:, file size in bytes [:, return variable]

The mark (mrk) statement reserves file space on the tape cartridge. A file must be reserved

before a program or data can be recorded. One file more than the number of files specified is

marked. This file is the null file and is used as the starting point when marking more files. The

null file has an absolute size of zero.

The file size is specified in bytes. If an odd number of bytes is specified, one more byte is

automatically marked. For example, if 111 bytes are specified, 112 bytes are marked.

In order to mark files, the position of the tape must be known. If the position is unknown,

execute a find file, or rewind statement to position the tape where you are going to start

marking. Executing a mark statement where the first two parameters are zero (e.g., mrk 0,0) is

a special case and is explained in the Tape Cartridge Errors section.

The number of files and the file size can both be expressions. If a return variable is specified,

the file number of the last usable file marked is stored in it. If the value of the return variable is

positive, all the files specified were marked. If the value is negative, an end-of-tape (eot)

condition occurred before all the requested files were marked. In either case, the absolute

value of the return parameter is the last usable file marked. The null file is one file beyond.

Example:

A tape is to be re-marked for 3 files with a length of 320 bytes each on track O. The following

short program performs this operation.

Rewind the cartridge.

Set to track O.

Mark 3 files, 320 bytes long.

Erase the rest of track O.

End the program.

Tape Cartridge Operations 5-11

The tape will be positioned at the beginning of file 3 and the resulting tape structure will be:

/,

Track 0 0 1 2 3 Erased T :i
Beginning /1 4r------Files----~.1 '- Null File

of Tape

Then, 2 files with a length of 80 bytes are to be marked. Execute:

New tape structure:

New Files

/J

Track 0 0 1 2 3 4 5

I

(
,j

j ,

Erased T

Beginning /~4f------
of Tape

Files -----~·I '- Null File

/

To mark 2 files, 300 bytes long beginning at file 4, execute:'"

Determining Size to Mark a File
Program Files

I

=-1
r I

When marking a file for a program which is currently in the calculator, execute: 'i -::'" ":l,. The

number in the left-hand portion of the display is exactly the number of bytes needed to record

the program. It is advisable to mark the file larger to accommodate any future program

changes.

Data Files

Data files require 8 bytes for each data element to be recorded. For example, to record data

which is stored in the variables A and B, mark a file 16 bytes long.

Special Function Key Files

Special function key files require 1 byte for each character under the keys, plus 2 bytes for

each defined key. If the number of bytes for each key is odd, add one byte. The sum for all

keys is the minimum size to mark the file.

5-12 Tape Cartridge Operations

Memory Files

For a memory file (using record memory statement), mark the file for the size of your compu

ter's available read/write memory. Refer to the label under the computer's paper-access lid.

Tape Capacity
Table of Typical Storage Capacities

File size Typical number of Bytes per

(bytes) files per track track

50 827 41350

100 656 65600

250 404 101000

500 239 119500
750 170 127500
1000 131 131000
2500 56 140000

5000 28 140000

7500 19 142500
10000 14 140000

Due to the overhead required by each file, the number of bytes per track is not the same for

different size files.

Tape Capacity Calculations
The number of files which can be stored on the tape cartridge depends on the size of the file.

Using the following calculations, the number of files that can be stored on the tape cartridge

can be calculated.

L = 1.278 + .209 int (A/256 + .999) + .0105A

where: A = absolute file size in bytes.

L = length of the file in inches.

a) For typical capacity per track:

Number of files per track = int (1665/L)
b) For minimum capacity per track:

Number of files per track = (1498/L)

Tape Cartridge Operations 5-13

The following program can be used to mark more files and calculate the percentage of a track

used.

Marking New Tapes
Since no files are marked on a new tape, the rewind statement must be used to position the

tape before marking files. For example, to mark 4 files 200 bytes long on a new tape, execute

the following:

Marking Used Tapes
When re-marking a used tape, it is possible that some old files may remain on the tape. These

files can be accessed accidentally by changing tracks. For example, suppose track 0 has 4

files of 1000 bytes and track 1 has 2 files of 1500 bytes:

I TmckO I~o ~2 1~3 I 4~1 ~~
. Track 1 . a > I 1

5-14 Tape Cartridge Operations

Then track 0 is re-marked from the beginning to contain 2 files of 200 bytes each:

Track 0 I 0 11 121.lii ·.· .. 1

o I 121
Track 1

o Old invalid files

If the tape is positioned at file 1 on track 1, and -::. :- :.:- :? is executed, the tape will be positioned

in an old section of tape. Accessing file 1 on track 0 will result in using old file 1.

With slightly different conditions, it is possible to have missing files rather than multiple files.

For example, suppose that track 0 has 4 files of 1000 bytes each:

Track 0 o

If the tape is rewound and (,~ , .. '

files:

2 3

.:> c: C: C: is executed, the tape would have a gap of missing

~ missing files

I TffiCk 01 ~ ~o ~I 1 I~I 4 I ~~

To remove the old files, use the erase tape (ert) statement. For the first example:

Rewind the tape on track O.

Mark 2 files, 200 bytes each.

Erase the tape starting at the null file.

CAUTION

WHEN MARKING OVER A PREVIOUSLY MARKED TAPE,

USE THE ERASE TAPE STATEMENT TO REMOVE OLD

FILES.

Tape Cartridge Operations 5-15

The Erase Tape Statement
;:::' (' -::. file number

the erase tape (ert) statement is used to erase everything on the current track starting from the

file number specified. It is usually executed after a mark statement (see Marking Used Tapes).

The erase tape statement:

1. Positions the tape in front of the file specified.

2. Marks that file as a null file.

3. Then, erases the track from the null file to the end of the track.

4. Finally the tape is positioned in the file gap in front of the null file.

The file number can be an expression.

For example, a tape has the following structure on track 1 :

J

Track 1 0 1 2 3 4 Erased Tap e or Old Files

{

J r .. ------t-Files -------,~~I ~ '- Null File

To erase everything on track 1 starting at, and including file 3, the following program is used:

G·,t,l. a
'Bt1d

After running this program, the tape's structure is:

Track 1 0 1 2 3

I I11III .. ;---- Files -----1 '-NUll File

Track 0 is not altered.

7

Erased Ta ~
(I
J)

5-16 Tape Cartridge Operations

The Record File Statement
The record file statement is used to store both data and programs. The syntax for each is

explained below.

Recording Programs
(,:::.f [file number ['i beginning line number [:i ending line number]] [:i or ;"]]

To record a program or a section of a program the record file (ref) statement is used. If no file

number is specified, the file is assumed to be file zero. If no line numbers are specified, the

entire program is recorded on the specified file. If the beginning line number is specified, then

the program from that line number to the end is recorded. If both line numbers are specified,

that program section is recorded from the first line number to the second line number, inclu

sive.

The file number and ending line number parameters can both be constants, variables, or

expressions. The beginning line number can be a constant, or expression (such as 1 A), but

must not be a variable. Using a variable as in :. c.+" :l.:i ::::: records the value of "A" as data. To

record the program beginning at the line whose value is A, use: ., ,.

If , ' (for secure) follows at the end of the statement, the program is secured when stored

on tape. When the secured program is loaded back into the calculator, the program cannot be

listed or displayed, but can be re-recorded on a tape cartridge.

When "Cl F:" (for debug) follows the end of the statement, any trace or stop flags are re

corded with the program (see Program Debugging in chapter 3).

The tape file must be marked before recording a program. The file size must be greater than or

equal to the size of the program being recorded.

Example:

Recording Data

Record the program on file 8, starting at line 3

through the end.

file number 'i data list

Tape Cartridge Operations 5-17

The record file (rcf) statement is used to record data when this syntax is used. The data list can

consist of simple variables, array variables, or r-variables. r-variables are stored in a different area

in memory which is not contiguous with array or simple variables. Due to this, r-variables

cannot be mixed with simple or array variables in the record file statement.

To record an entire array, the array name is followed by an asterisk in brackets. For example:

Record the entire array S on file 2.

Simple and array variables must appear in the data list in the same order as allocated. If the

variables appear in a dimension statement, then they must appear in the same order in the

record file statement.

Example:

The array A is allocated 100 elements (800

bytes).

The variable X is allocated 8 bytes.

Doesn't affect memory allocated to X.

The variable I is allocated 8 bytes.

The array A, and variables X and I are re

corded in the same order as allocated (con-

tiguously) on file 5 (total of 102 numbers or 816

bytes).

If one r-variable is specified in the data list, all r-variables from rO to that r-variable are

recorded. If two r-variables are specified, all r-variables from the first through the second are

recorded.

Considerations for Recording Data

When recording data on the tape cartridge, the variables being recorded must be listed in the

same order as they are allocated in memory. For example:

0; ent A
1.; c~*A+t~
2. ; (j'i: .. J!! 1:: .",.:: :~~':.'.": ~~i? ".-,2

•
•
•

i 5: r c.f A~ B;le ;I;:':; ;I

~T; ,"·Z

5~ 18 Tape Cartridge Operations

In the program, the variables A and B are allocated outside a dimension statement. Variables

C, X, Y, and Z are allocated in a dimension statement. But, if B were allocated before A in the

program, line 15 would cause error 56 to be displayed since the variables must be listed in the

same order as they are allocated. Because lines are not necessarily executed in numerical

order, it is sometimes difficult to know the order in which variables are allocated. For this

reason, when a group of simple or array variables is to be recorded on a single file, it is

recommended that they all be allocated in one dimension statement.

The Load Program Statement
.: ':::::::> [file number C, line number1 [:, line number2]]]

The load program (Idp) statement is used to load a program from the specified file on the

current track and run it automatically. The automatic run implies that all variables are erased,

all subroutine return pointers are cleared, and all flags (0 through 15) are cleared.

When the file number only is given, the program is loaded from the file, beginning at line zero,

and the program automatically runs from line zero. If the file number and the first line number

are specified, the program is loaded from that file, beginning at the specified line number and

runs from that line number. When all three parameters are specified, the program is loaded

from the specified file number beginning at the first specified line number and is run beginning

at the second specified line number. If no parameters are specified, zeros are assumed for all

three. All three parameters can be expressions.

If a program is loaded at the end of an existing program, go to and go sub branching line

numbers are not renumbered.

The load program statement can only be stored as the last statement in a line. This statement

is not allowed in live keyboard mode nor during an enter statement.

Examples:

Loads the program from file 2 beginning at line

o and runs from line O.

Loads the program from file 8 beginning at line

2 and runs from line 2.

Loads the program from file 16 beginning at

line 3 and runs from line O.

The Load File Statement
The load file (Idf) statement is used to load both data and program files into the calculator

memory.

Tape Cartridge Operations 5-19

CAUTION

THE LDF STATEMENT LOADS THE PROGRAM OR VARI

ABLE AREA OF MEMORY DEPENDING ON THE FILE TYPE

ACCESSED. BUT THE LOP AND RCF STATEMENTS LOAD

OR RECORD A SPECIFIED PART OF MEMORY DEPEND

ING ON THE STATEMENT. THUS, WITH THE LDF STATE

MENT IT IS POSSIBLE TO ACCIDENTALLY LOAD A PROG

RAM WHEN THE INTENT WAS TO LOAD VARIABLES OR

VICE VERSA.

Loading Programs
::. ':::: f [file number [" line number1 [:, line number2]]]

The load file (Idf) statement loads programs from the specified file on the current track into the

calculator memory.

This statement is like the load program (ldp) statement except that Idf can be used to continue a

program, while the Idp statement causes the program to run.

From the Keyboard

This statement is executed from the keyboard as follows: When no parameters are given, the

program on file zero is loaded, beginning at line o. If the file number is given, that file is loaded

beginning at line O. If the file number and a line number are specified, then that file is loaded

beginning at the specified line number. When all three parameters are given, the specified file

is loaded beginning at the first line number, and the program automatically continues at the

second line number (all variables are preserved whereas Idp destroys the old variables; see

The Continue Command in chapter 3.

If a program is loaded at the end of an existing program, go to and go sub branching line

numbers are not renumbered.

In a Program

The Idf statement is executed in a program as follows: When no parameters are specified,

the program on file zero is loaded beginning at line zero and continues at line zero. If the file

number is specified, then the program is loaded from the specified file beginning at line zero

and continues at line zero. When the file number and a line number are given, the specified file

is loaded beginning at the specified line number and the program continues from that line

5-20 Tape Cartridge Operations

number. When all three parameters are given, the statement is executed the same as from the

keyboard. That is, a "continue" is performed from the second line number. All three paramet

ers can be expressions.

This statement is not allowed in live keyboard mode nor during an enter statement to load a

program file. However, the Idf statement can be used to load a data file in live keyboard.

Example:

1:3: IdJ 2

Linking Programs

Load file 1 beginning at line 0 (executed from

keyboard).

Load file 2 beginning at line 0 and continue

from line O.

Programs too long to store in the calculator memory can be segmented and stored in separate

files on the tape cartridge. Each segment can be loaded as needed by the program, and,

using the Idf statement, variables, flags, and subroutine return pointers can be preserved for

each segment.

In the following basic example, three segments are used. Each segment is loaded as it is

needed by the program. The first segment loads the second and the second loads the third.

0 · p rt- 1/ f i 1 E~ (1 " a · , Program Segment on file 0 •
;i "* A

1 " ld f 1 .i..

~3 = f-' r t II f i "; I::' ~ n " · 1. .I. , Program Segment on file 1 •
F:' rt c;

S i

1 = 1 elf ::
" ,;...

Program Segment on file 2 • ~7i " P ,- ;- .. f i 1 E' 2 " -' " : :-~

J. = E'nd =

Press: file· ~J
f' i 1:::· 1

Tape Cartridge Operations 5-21

Loading Data
[file number [:; data list]]

The load file (Idf) statement loads data from the specified file on the current track. The data list

contains the names of variables separated by commas. r-variables cannot be in the same load

file statement with simple and array variables.

If no list is specified, data begins filling the r-variables from rO until all the data has been loaded. If

one r-variable is specified, then the data begins filling r-variables from that r-variable until all the

data has been loaded into higher r-variables. If two r-variables are specified, the data starts filling

from the first location specified (lower r-variable) to the second, higher, r-variable. If there is more

data than available or specified r-variables, no data is loaded.

When simple or array variables are specified, data begins filling the first variable until all

variables have assigned values. If there is more data than variables, no data is loaded. If there

is less data than variables, the data is loaded until all data is used. Variables must be contigu

ous.

Examples:

: .,;.:= ~. .. ::::: ::

Array and r-variable Recording

Load r2 through r10 from data file 4.

Load the data file designated by r12 into the

variable A and array B.

Array variables are recorded in the opposite order of r-variables. Thus, if r-variables are

recorded, then loaded back into an array, they will be in the opposite order. For example:

(I + 1,* 1:1 :> 6
t, ;' e- .t~i. cl

r1-Af5]
rO-Af6]

In line 1, r-variables 0 through 5 are recorded on file O. Then in line 3, the array A is loaded from file

O. A[6] is loaded first; A[1] is loaded last.

5-22 Tape Cartridge Operations

The Record Keys Statement
(' ,:::. k [file number]

The record keys (rck) statement is used to record all the special function keys on the specified

file on the current track. If the file number is omitted, file zero is assumed. The file number can

be an expression. The specified file must be marked before the record keys statement is

executed.

Examples:

Record the special function keys on file 2.

Record the special function keys on the file de

signated by the 12th element of array A.

The Load Keys Statement
::. ':::: k [file number]

The load keys (Idk) statement is used to load the special function keys exactly as they were

recorded from the specified file on the current track. If the file number is omitted, file zero is

assumed. The file number can be an expression. Executing the !oad keys statement from the

keyboard causes subroutine return pointers to be reset and causes the program counter to

reset to line zero.

This statement is not allowed in live keyboard nor during an enter statement.

Example:

Load the special function keys from file 4.

The Record Memory Statement
(" c· :-'! [file number]

The record memory (rcm) statement records the entire read-write memory (program, data,

keys, pointers, etc.) on the specified file on the current track of the tape cartridge.

Tape Cartridge Operations 5-23

If the file number is omitted, file 0 is assumed. The file number can be an expression.

The presence of a binary program in memory is a special case. The information supplied with

each binary program explains the calculator operation when the record memory statement is

executed.

The Load Memory Statement
::. ;:::: ;"! [file number]

The load memory (Idm) statement is used to load a previously recorded memory file. When the

load operation is complete, the calculator is in the same state it was in when memory was

recorded. If the file number is omitted, file 0 is loaded.

If a program was running when the record memory statement was executed, that program will

continue with the next statement after the record memory statement when the load memory

statement is executed.

The record memory and load memory statements can be executed from I ive keyboard or from

a special function key. The record memory statement can be used to "freeze" the state of the

system without interrupting the running program. These statements can be especially useful in

areas where frequent power interruptions occur.

The file number can be an expression.

The Load Binary Program Statement
::. ;:::: ::::; [file number]

The load binary program (Idb) statement loads binary programs * into the calculator's read/

write memory from the specified file on the current track of the tape cartridge. Binary prog

rams can be loaded over other binary programs of equal or greater length at any time.

If no file number is specified, file 0 is assumed. The file number can be an expression.

Example:

Load the binary program from file 2.

* A binary program is a machine language program which cannot be listed or displayed.

5-24 Tape Cartridge Operations

Since binary programs occupy a special place in memory, certain rules must be followed

when loading them:

1. Any binary program can be loaded at any time (from the keyboard or a running prog

ram) provided there is room in memory for it and no simple or array variables are

allocated.

2. Once simple or array variables are allocated, a binary program cannot be loaded

unless space has been allocated for it by a previous binary program load operation.

The following procedure is suggested: Before any simple or array variables are referenced,

load the largest binary program file that will be needed. Then any variables can be allocated

and other binary programs can be loaded without concern about room for the binary program.

File Verification
File verification is used to compare a tape file against the calculator memory to detect record

ing errors without losing the information in memory. If you get a verify error (error 44), try

re-recording the file. Repeated verify errors on a file may indicate- damaged tape.

File verification requires a stronger tape signal than load; thus, it increases confidence that a

file will load properly at a later time.

When the calculator is turned on, ;:::-: .. ;}::;;.;;;;. ;} is executed, or B is pressed, the calculator

automatically verifies files on all record operations. Two statements are used to control au

tomatic verification.

The Auto-Verify Disable Statement

The auto-verify disable (avd) statement turns off file verification. For example:

Turn-off automatic file verification.

Tape Cartridge Operations 5-25

The Auto-Verify Enable Statement

The auto-verify enable (ave) statement turns on automatic file verification. After Ui.),:::. is exe

cuted, all record operations are automatically followed by a verify. When the calculator is

turned on, 8 is pressed, or ,:::·(u.::::·,:::· ,} is executed, automatic file verification is again ena

bled.

Example:

Turn on Automatic file verification.

The Verify Statement
:) -::- ./ [return variable]

The verify (vfy) statement is used to compare a tape file with the calculator memory. If the

calculator memory is identical to the tape file, the value of the return variable is 0 after the

operation. If the two are different, the return variable is one. If no return variable is specified

and if the memory and tape file are not identical, error 44 occurs. The return variable can be

either a simple variable, array variable, or r-variable.

The verify statement can follow any record operation except the record memory (rcm) state

ment. The record memory statement followed by vfy will result in error 44. Memory files can

only be verified using automatic verification.

With the verify statement, you can selectively verify files. This can be useful to save time when

recording many files. Another important use is recovery from verify errors using the return

variable parameter.

This statement does not alter the calculator memory.

5-26 Tape Cartridge Operations

Tape Cartridge Errors

File Body Read Error
If a file body read error (error 46) occurs, first clean the tape head and drive wheel as

explained earlier. Then execute the statement which caused the error again. If an error still

occurs, the next step depends on the type of file being loaded.

It will be informative at this point to explain something about the file structure of the tape. A file

is made up of one or more "partitions". This structure makes it possible to recover portions of a

file even though a loading error has occured. Error 46 indicates that one or more partitions

may be erroneous.

\ File Header Partition Partition Partition File

\)
Gap Gap

I

1 ~~--------1 file -----------4 .. ~1

Loading A Program File
If error 46 occurs while loading a program file, one or more program lines may be lost. The

place where this error occured is indicated by a line of asterisks «.) inserted in the program at

the point where the program lines are missing. These lines can be replaced by referring to a

previous listing.

Note that go to and go sub statement addresses are not adjusted during this editing. Thus, it

may be necessary to re-adjust the go to and go sub addresses after inserting the lost lines.

Loading a Data File
If error 46 occurs while loading numeric data, the partition in question is marked by a single

number replaced by'? " ,:> ,) ,) '::' '? '? '? '? ,) ,) '? ,;;;' C: C: (in float 11 format). A partition in a numeric

data file always contains 32 numbers. With one entry replaced by'? " '? ':> ,:> '? ':> ':> ':> '? '? ':> ,:> ,;;:

.. there are 31 numbers remaining which may be incorrect. To determine the bounds of the

affected partition:

Tape Cartridge Operations 5-27

• For r-variables, the 31 higher numbered r-variables may be incorrect.

• For simple and array variables, determine the order in which the variables in question

were allocated (see dimension statement). From the element that is replaced by

'? " ,) '? '? '? '? '? '? '? '? '? ,) ::::' C: C:, go from right to left in the parameter list of the dimension

statement. For an array in the list, the first element in the lost partition will have the

largest subscripts. Decreasing the leftmost subscript first for an array reveals the mis

sing values. For example, a partition is lost and the dimension statement was:

The value 0[3,10] contains question marks. All questionable values can be accessed in this

order:

0[3,10], 0[2,10], 0[1,10], 0[3,9], 0[2,9],

0[1,9], 0[3,8], 0[2,8], 0[1,8], 0[3,7],

0[2,7], 0[1,7], 0[3,6], 0[2,6], 0[1,6],

0[3,5], 0[2,5], 0[1,5], 0[3,4], 0[2,4],

0[1,4], 0[3,3], 0[2,3J, 0[1,3], 0[3,2],

0[2,2], 0[1,2], 0[3,1], 0[2,1], 0[1,1]'

C, B

File Header Read Error
If a file head read error (error 47) occurs, proceed as follows:

1. Clean the tape head and drive wheel as explained in the Tape Care section. This may

solve the current read error and prevent future read errors.

2. Execute the statement that caused the error again.

CAUTION

RE-MARKING A FILE HEADER IS A "LAST RESORT" OP

ERATION, SINCE ALL INFORMATION ON A FILE WITH A

RE-MARKEO HEADER IS LOST AND THAT FILE CAN NO

LONGER BE USED. HOWEVER, THIS DOES PERMIT YOU

TO ACCESS FILES BEYOND THE BAD FILE.

3. If, after steps 1 and 2, the error still occurs, re-mark the tape-file header.

To re-mark the head of file N (file which cannot be loaded), execute:

Positions the tape.

Re-marks file header of file N.

5-28 Tape Cartridge Operations

For file 0, execute:

Positions the tape.
... Re-marks file header of file O .

After the file header has been re-marked the absolute size of the file is 2 bytes.

Conditioning the Tape
Repeated operations over a short length of tape (usually less than 4000 bytes or 5 ft.) can

cause slack. (Extreme changes in temperature can also cause this.) The outer layer of tape

can slip and rub on the cartridge, causing damage to the tape. If operation continues, the tape

may jam and be ruined.

NOTE

This condition is most likely to occur if exclusive use is made

of one file or two adjacent files near the beginning or end of

tape.

If a particular application requires such operation, this slack can be prevented by moving the

tape periodically 15 feet or more toward midtape. For example, for a tape with 80 files where

only files a and 1 are used, execute the following program segment after every 200 operations

on file a or 1 :

Tape Life

18: fdf" B€t
19: rE'v.l

The tape cartridge does not have an infinite life span. Many factors increase wear and de

crease life. A high resistance to turning and continuous use for long periods of time (V2 to 3

hours) both result in increased temperature in the cartridge. High humidity, high temperature

(above 45°C, 113°F for the cartridge itself) and a high duty cycle (percent of the time the tape

is accessed during the total time the computer is used) all increase wear.

Tape Cartridge Operations 5-29

Several things start happening to the cartridge which are danger signs:

• The tape begins to wear out and lose information.

• The capstan develops dark bumps due to slippage.

• The cartridge can stall, causing the capstan to wear a flat spot on the drive pulley.

• The cartridge sounds rattly, rather that making a constant hum when the tape moves.

• Errors 43 (indicating tape transp0rt failure), 46 and 47 occur more frequently.

If any of these occur, replace the cartridge at once. If you continue to use it, you could lose all

the information on the tape and damage the drive itself.

CAUTION

NEVER OVERRIDE ,::: , «:: IN YOUR PROGRAMS. BY

OVERRIDING A TRANSPORT ERROR, YOU CAN EASILY

DAMAGE THE TRANSPORT AND BE FORCED TO RE

PLACE IT.

Notes

Chapter 6
Table of Contents

~
String Variables 6-1

Introduction ... 6-3

Naming Strings ... 6-4

Dimensioning Strings ... 6-4

Storing Strings ... 6-5

Printing Strings ... 6-5

Substrings ... 6-6

Null String ... 6-7

String Variable Modification ... 6-8

Destination Strings without Subscripts .. 6-9

Destination Strings with One Subscript .. 6-10

Destination Strings with Two Subscripts ... 6-12

String Variable Functions .. 6-14

Length Function (len) .. 6-14

Position Function (pos) .. 6-16

Value Function (val) ... 6-17

String Function (str) ... 6-19

Character Function (char) .. 6-20

Numeric Function (num) ... 6-21

Capital Function (cap) .. 6-24

String Variable Operations ... 6-25

Relational Operators ... 6-25

Concatenation (&) Operator .. 6-26

String Input and Output ... 6-27

Enter Statement (ent) .. 6-27

Print Statement (prt) ., ... 6-29

Display Statement (dsp) ... 6-30

Write Statement (wrt) .. 6-30

Read Statement (red) .. 6-32

Loading and Recording Strings .. 6-33

Recording Data (rcf) ... 6-33

Loading Data (Idf) ... 6-34

6-2 String Variabies

Notes

Chapter 6
String Variables

Introduction
The string Variable ROM enables you to -

• Do character manipulations, such as editing portions of strings.

• Use portions of strings as variables in arithmetic calculations.

• Perform character by character comparisons of these strings.

• Use alphanumeric data in input and output operations.

The String Variable ROM is a plug-in accessory which uses 52 bytes of read/write memory

when installed in a 9825 A or S Computer. This ROM is a permanent part of the 98258

Computer.

A string is a series of characters, like ::::->. Any number of characters, within the

limits of available memory, can be stored in a string variable. Each character requires one

byte of memory and some overhead, as explained later.

6-3

6-4 String Variables

Naming Strings

String variables are given names, like A$ or Z$. The dollar sign following the string variable

name differentiates strings from numeric variables. Up to 26 string variables, one for each

letter of the alphabet, can be used in one program. There are two kinds of string variables -

simple strings and string arrays. Each string of a string array can be used in exactly the same

way as a simple string.

In the diagram below, A$ is a simple string, nine characters long and Z$ is a 4 (row) by 10

(column) string array containing four strings, Z$[1] through Z$[4]. Each of the strings in this

example can be up to ten characters long. Strings have a dimensioned length and a current or

"logical" length. The dimensioned length of Z$[1] is 10; its current length is 6.

A$\ :
2 3 4 5 6 7 8 9 10

A B C 2 3

Z$[1] K e e p e

Z$[2] F u n c 0 n

Z$[3] C a c u a 0

Z$[4]

Dimensioning Strings

Before characters can be stored in a string variable, the string variable must be dimensioned.

The , .. ! j. :.': statement defines the type of string variable and the size of the string or strings. The

.... : '.': statement also reserves storage space in memory for the string variable. To dimension

the strings shown in the previous example, execute -

The subscript 10 indicates that up to ten elements can be assigned to the simple string named

A$. The subscripts 4 and 10 indicate that up to 4 strings, each 10 characters in length, (40

elements) can be assigned to the string array named Z$. Exceeding dimensioned limits by

assigning more characters than dimensioned, results in Both string and

numeric arrays can be included in the same < .~. :' statement.

String Variables 6-5

Storing Strings

Characters in quotation marks (" t ::::' ::-:: ·t. ") are assigned to string variables in the same way

that values are assigned to numeric variables. To store the characters from the previous

example in the dimensioned strings, execute -

Text can't be stored in a string array. Executing

Printing Strings

Using the print statement, strings and portions of strings can be printed. To print the strings

just stored, execute -

Each string in the string array must be specified to be printed. To specify an entire array of

strings, a program loop of some kind must be used. Most programs in this chapter use the

Advanced Programming capability of for/next loops where needed.

Specifying a string longer than its dimensioned length results in ::::' ("

execute -

And the display shows -

For example,

~--------------------------
\J

6-6 String Variables

Substrings

A substring is one or more contiguous characters within a string. Using the previous example,

::::i C: C: is a substring of A$ starting at the second character and ending with the fourth. This

substring is indicated by -

: : .+' : .. :::' :: "':' .. :

With string arrays, an extra subscript is required to indicate which string in the array is

specified. Expressions may be used as subscripts in strings or string arrays. So :::> c· ;"', which

is a substring of i<»::' :::> c· (" from the fourth character of Z$[1] to the sixth, can be specified

by-

;? ::!:: r"; j or ;;::: :=f=: i:: :i.:; '" (::; .. ! .. ;;::: ::i where the numeric variable A has the value 4.

Since there are no characters following :::> ;:::' (' in Z$[1], this substring (from the fourth character

to the end of the current length of the string) can also be specified by -

:;: :: :: ~:: ::: .:. :: : .. ~. . ..

To specify the substring i::: in Z$[2], these subscripts are used -

," ::
: ,:,' .

.... : .. ~

The : ... ; In : ;::: ;": -::. c; (" can be specified by executing -

::::. ::l:' L ,' ':::. ::

Since a different number of subscripts are required to specify different things, it's a good idea

to keep a record of the simple strings and string arrays you're using in a program. (The

statement can be used in this way.)

String Variables 6-7

Null String

The last string, Z$[4] , in the string array is the null string, since it contains no characters. This

null string can be specified by executing -

or

or

Two quotation marks with no intervening characters are considered a null string, but a string

that is assigned spaces (".1"~A$[1, 80], where.1 represents a space) is not a null string.

The null string can be used when adding more characters to the current length of a string.

Using A$ from the previous examples, execute -

.:. :: .. : .. :

And the display shows -

The null string can also be used to clear a string. For example, to clear A$ (from the previous

example) execute -

6~8 Stri'lg Variables

String Variable Modification
A string or a substring can be modified by another string or substring. For example, a part of a

string can be changed or characters can be added or deleted. The string containing the modifica

tion is called the modifying string; the string to be modified is called the destination string. For

example, in the statement 1"1 ::1:: .. >1:::1 ::(, M$ is the modifying string and 0$ is the destination string.

The modifying string can be a string, a substring or text. * The destination string can be a string

or substring; it cannot be text.

The length and content of the destination string after modification depend not only on the

characteristics (length and content) of the modifying string, but also on the number of sub

scripts given for the destination string.

Each element or string of a string array can be used in exactly the same way as a simple

string. Therefore, the following examples show simple string modification only; string array

modifications are done in exactly the same way with an extra subscript (the first) to show

which string in the array is being modified.

(If you've just executed the statements from the previous section, press B
executing the statements that follow.)

fJ\ before
\.1.)

Any modification made to a string or substring requires a temporary storage area as large as

the modifying string.

'Text is defined as characters within quotation marks.

Stri ng Vari abies 6-9

Destination Strings without Subscripts

When the destination string has no subscript (or one subscript for string arrays) the entire

destination string is replaced by the modifying string or substring, and its length and content

after modification are the same as those of the modifying string or substring. To illustrate this,

execute these statements -

: :.":"
:.. ;'

When the destination string is longer than the modifying string, the modifying string replaces

the destination string. All characters of the destination string which are not replaced are

truncated. For example -

____ 1"'_1'1:. ~.:._~c.'1:._':::· l"' ___ \J

The current length of C$ is now 7 characters; the dimensioned length is 11 characters.

If the modifying string is longer than the dimension of the destination string, ::::' (' (' ::::: (' .. , ..

occurs. For example -

,---':_::'('_1"'C'_(' _ ___ \J

String arrays require one extra subscript to indicate which string in the array is to be modified.

6-10 String Variables

Destination Strings with One Subscript

When the destination string has one subscript (or two subscripts for string arrays) the sub

string is replaced by the modifying string or substring.

(If you've just executed the statements from the previous section, press B 0 CD before

executing the statements that follow.)

If the destination substring is equal in length to the modifying string or substring, the modifica

tion will not affect the length of the destination string. When executed, these statements

illustrate this -

.. H t k 1 n ~:. :: . .;r A $

If the destination substring is longer than the modifying string, the modification causes the

destination string to be shortened; the characters not replaced by the modifying string are

truncated. These statements, when executed, illustrate this -

•••• 00 •• 0. \J
,---'-' :.' "'-"'" -,.:::----

If the destination substring is shorter than the modifying string (or substring), the modification

causes the destination string to be lengthened (within the dimensioned length of the destina

tion string). To illustrate this, execute these statements -

i .. ,: ~: :.": : :.... lJ ,---,_, :"_"" .,._; ;.:_::-: ... :_;; ___ I

String Variables 6-11

Any attempt to lengthen a string beyond its dimensioned length causes ':::. (" ::::: '). For

example -

" kin:=. c n :=. " -;:. C $: [3 J \l
~--------------------------I~

If the destination substring is a null string (the current length plus one), the modifying string is

attached to the end of the destination string. For example -

"At kin"-tC$

" :=. en" -t C $: [t: J

,---r'_'~ :.' 1':_::1. (_~::::.c:_(~ __ \J
When characters of a modifying string (or substring) are added to a destination string (or

substring), they must be contiguous, that is, they must immediately follow the destination

string without any unassigned character spaces. If they are non-contiguous,

occurs. For example -

............ ' ..
.... : : :

" A t kin:=. en" -;:. D $ L ::: J
::::'((c:((J

'-----_ ... _ ... --)

By assigning blank characters to the string, ':::. (" :-- c' !." ::::: ::::: is avoided. (~ represents a space.)

For example, execute these statements -

String arrays require an extra subscript to indicate which string in the array is to be modified.

6-12 String Variables

Destination Strings with Two Subscripts

When the destination string has two subscripts (or three subscripts for string arrays), the

substring is replaced by the modifying string or substring. Since two subscripts define the

beginning and ending characters of the substring to be replaced, truncation of the remaining

(unreplaced) characters does not occur. Using an example from the previous section, exe

cute -

C$
:.": : :.... (J

,--,_,:.·r._ .. ,.,_,.:::-:".:_" __)

"h'::'n" ..;rCf [:3, 5J

C$
: : :.... (J ,--,-,:., ,',-,::::, -":::':"':_" --)

"kin"..;rC$ [:~:J

(:$
:... ... \J ,--,_, :.' r·_ .. ,., _, __ _

(Press B 0 OJ before executing the statements that follow.)

When the destination substring is equal in length to the modifying string or substring, the

modification won't affect the length of the destination string; the destination substring charac

ters are replaced. For example -

String Variables 6-13

When the destination string has two subscripts, its length after modification will either be

greater than before, or remain unchanged. When the value of the second subscript is greater

than the current length of the destination string, the modification results in a lengthened string

(within the dimensioned length of the string).

Here's an example that illustrates this. (~ represents a space.) Execute these statements -

:."": : :
: : !.' roo .:.: :.:::.: ... !: :

When characters of a modifying string (or substring) are added to a destination string (or

substring), they must be contiguous, that is, they must immediately follow the destination

string without any unassigned character spaces. If they are non-contiguous ;:::" (" (" ;:::; (::::; ::::;

occurs. For example -

____ ,:::_. j"" j"'_'C, 1"'_"'_'" __)]

By assigning blank characters to the string, ;:::" (" (" c; (" ::::; ::::; is avoided. (~ represents a space.)

For example, execute these statements -

............ :
~ ~ . .. :: .J

:,' ': : :
: : :." roo .:. : : .:::' : ... !: :

String arrays require an extra subscript to indicate which string in the array is to be modified.

6-14 String Variables

String Variable Functions
A string function returns a numeric or string value to an expression. String functions enable

you to determine the length and analyze the contents of a string. This is useful when strings

with different characteristics (length and content) are processed at the same time, as in

entering strings from the keyboard.

Length Function

The length (:i. ::::'l"'i) function returns the number of characters in a string or substring.

:1. ::::'l"'i (string variable or text :t

The current length of the string (or substring) is returned, which is not necessarily equal to the

length defined in the ::::: ::. i"'i statement.

The following example uses a simple string to illustrate the length function. If you've run any of

the examples from the previous chapter, press 80 CD before executing the following

statements -

A$

], E' n (" 1 E:' n '3 t l'''! .;;:. i .• ,1 i :j t
h=") 'J '---·,_·· .. ·:::_:: .. ::: .. : ___ 1

...... {J
'----.,,-.... : ::_::":::":---1

I n the following example, the last character of A$ is replaced -

:: .;::. h E" i ':;:i h t " '-:;' P $ [1 =:;' n
(Fi$) J

Here an addition to A$ is made -

:: ~.::: =.) C 1 i) (:'i =::' :: -;:. P $ [1 E' n
(fl$) +1:;

The length of a part of A$ can be found using the length function -

String Variables 6-15

~(_::: C_1C1 ___ ~J

String arrays require an extra subscript to indicate which string in the array is being used in

the function,

6-16 String Variables

Position Function

The position (::::: ':::' ::;;.) function determines the position of a substring within a string.

!: in string variable or text:, of string variable or text :!

If the second string is part of the first, the value of the function is the position of the beginning

character of the second string within the first starting from where you began searching. If the

second string is not a substring of the first string or if the second string is the null string, the

value of the function is zero.

Simple strings are used in the following example to illustrate the position function. Execute

these statements -

A$

...... l]
---: ... -::::: .. -::: .. : ---)

...... l]
---: ... -::::: .. -::: .. : ---)

...... l]
~._:'''T:_: :: .. ::_: .. : ___ 1

String arrays require an extra subscript to indicate which string in the array is being used in

the function.

String Variables 6-17

Value Function

With the value (,) ,:::. ::.) function, the numerical value of a string or a substring of digits can be

used in calculations. (Normally the elements in a string are not recognized as numeric data

and can't be used in calculations.)

.. : .. :. ::string variable or text ::

The first character to be converted in a string using the value function can be a digit, a plus or

minus sign, a decimal point or a space. Leading plus signs are ignored; leading minus signs

are counted. An odd number of minus signs is equal to a minus sign; an even number of minus

signs is equal to a plus sign.

Numerical daia entries can be combined logically with input text. All contiguous numerics are

considered a part of the number until a non-numeric* is reached in the string. This means that

a string can contain more than one number. The first character after leading spaces, plus

signs or minus signs must be a digit or a decimal point. If the leading part of a string is not

valid as a number according to the rules of the enter statement, an error occurs, unless flag 14

is set. If flag 14 is set, the default value (zero) is substituted for the number to be returned and

flag 15 is automatically set (to 1) to indicate the substitution.

The value function requires a temporary storage area equivalent to the size of the portion of

the string used. If there is not enough memory for this temporary storage area, error 40 will

result.

Simple strings are used in the examples below to illustrate the value function. The simple

string (E$) contains a name (Atkinson), a social security number (094-30-6441) and a balance

due ($250).

:: P t kin::;. en+- ~3 '3 4 :3 tl 6
441 *+25tl" ";:'E$

___ :: .. _ ::: .. _::: :::':_'::': ___ \J

"The .;:. character is recognized as the "exponent of base 10", when it follows a numeric.

6-18 String Variables

After a payment of $100, the balance due is $150, as shown below.

'---.:._ ::: .. _::: :: .. :_:: .. : ___ \J

Other operations can be performed, using the value function -

:.) G. 1 (E $: [2 0 J) * I.) c. 1 (
E$: [10:'0:=. (E$ ~ ",*.") +3
])

Alpha characters cannot be converted using the value function -

I) c. 1 ;: E$:)

~_,:._.,_::_,:._.,,_: .. : ____________________)J

,---.:_.:: _ ___ \J

String arrays require an extra subscript to indicate which string in the array is being used in

the function.

The string function, covered next, is the opposite of the value function.

String Variables 6-19

String Function

The string (::::. 'j:. (.) function converts a numeric value into an equivalent ASCII* string using the

current fixed or float setting. If the numeric value is positive, the resulting string has a leading

blank. The string function is the opposite of the value function.

:::: .. ::. (" j:expression ::

The string function is illustrated using the simple string from the value function examples on

the previous pages. The examples use E$ which contains a name (Atkinson), a social security

number (094-30-6441) and an amount due ($250). Using the value function, the amount due is

located in E$. Then a payment of $100 results in a balance due of $150. To return the $250 to

E$, the string function is used. Execute these statements -

...... :: ::: .. ::: :: .. ::: .. :

or

E·±,
-+'

......
:: : :: .. : :: :: .. : ::u:

The destination string must be dimensioned to accommodate the digits added due to the

current fit or fxd setting and for the + or - sign.

* American Standard Code for Information Interchange.

6-20 Stri ng Variables

Character Function

The character (c. j ... ! ,} (") function converts a numeric value (modulo 256) to an ASCII character.

Any of the 94 alphanumeric characters and symbols from the 9825 keyboard, and 34 other

characters which are not on the keyboard can be output by executing the character function.

(See the complete character set in the Appendix.)

c· j ... ! ,::!. (" :: expression ::

All of the 128 characters can be displayed using the following program.

4: n€::{t I

The character function can also be used to output control characters to devices like a tape

reader, 9871 A printer or a digital voltmeter.

The character function is the opposite of the numeric function, which is covered next.

String Variables 6-21

Numeric Function

The numeric C·'·! ! .. U'!) function returns the ASCII decimal value of a single character. The

numeric function is the opposite of the character function.

('!!) ('! ::single character of a string variable or text ::

For example, execute these statements -

...... (]
'---:···_:····:::_::··:::··:---1

,---: .. _.:: ... : ::_:: .. ::: .. :_--\]

...... (]
----.... _.: ::_··········---1

All 94 alphanumeric characters and symbols from the 9825 keyboard, and 34 others not on

the keyboard, have a decimal value (or code) for their binary equivalent. These decimal values

and the equivalent character or symbol are printed using the character function in the follow

ing program.

6-22 String Variables

Here's the printout of the internal character set and equivalent decimal codes. The internal

character set for decimal codes 128 through 255 is the same as for decimal codes 0 through

127, but are displayed with a flashing cursor.

i
8
n
~~I

A
d,
p.
d
tl
I:;,
(I

0

~ I::'
.!'-;.i
; .;.
J. ;::t

17
1 i:; J.

1 .:e
~" .-,

.::. ti .-.
~: 1
,2 2
~:: .. :~
.:... '-'
24
.. IWIII::E:"

;c.:.-._!

.-,

..:::. 6
2~(~,Y "'"

28.
2:9'

,~·at{:.'
::;::,1
;E~'2

., , ...
·~;:B.Y~~:,

/4'4' :,:.
,·.:1 r ·'. , " .• ~I

.. ,'~t6
;4:7

I~'

1]1

H
B
t -'
D
E
F
G
H
I
.J
t:" "

L
1'1
N
I)

;

F'

0- t-" tll:l
'69
70
71.
..., '-I
(..:::.

7:3 '
74
'"':'1::'
(._1

,16
:l?"
';;7:3, '

,i' "?I~(",

'",',:;3{tJ/
,~ ::;~~~1

~ ,."' '';- .,-.' ~

,,::/'~:~~i ~~""
, .:/;:!. 4~ '.:~'
""'85

r'/'!:l6 ';,'
u ,~':>J .:i::" Z·,- /'~".~

;' ; :;~' :;~r ,:~", ".','
, ,-,"~'

.. ~~\,.
~a.'i'·;
'9,.:1:::':

. ;q::i.:
"'--"~y

.. ··P. "
':t, '

,.·r

't
lJ
I,)

I,.,!

y<.;

',J1<3'
114
1t5,
i 1 t':'"
117
11 :::
.119
120
121.
122

124

String Variables 6-23

The character and numeric functions can be used to store and retrieve numbers in the range 0

to 255 using only 1 byte of memory per number. Each number is represented in memory by

one of the 256 characters of the internal printer character set. For example, in the following

program the five test scores on the right are stored in T$ -

Student Score

1. Andy Atkins 88

2. Tom Atwater 78
3. Jim Belcher 65

4. Jerry Hafford 100

5. Rob Rood 99

To recover a test score, the numeric function is used. For example, the last score can be

displayed by executing -

...... (J
'---._ _:: :: .. ::-: .. : ---)

The length of the string used to store the values is limited by memory size only. However, only

values between 0 and 255 can be stored in this way.

String arrays require an extra subscript to indicate which string in the array is being used in

the function.

6-24 String Variables

Capital Function

The capital (,:::. c. :::::) function converts lower case alphabetic characters to upper case without

modifying the original string. This enables you to compare strings for sorting or alphabetizing

without regard to upper or lower case characters.

,:::. ,J::::: :: string variable or text ::

Strings or substrings of string variables can be converted using the capital function. For

example -

'---._"" ____ \J

" 11 i: '0 c· C. ~:: i, '/ E' :::. ,---' """_" ____ \J

String arrays require an extra subscript to indicate which string in the array is being used in

the function.

A temporary storage area is required by the cap function equivalent in size to the portion of the

string used. If there is not enough memory for this temporary storage area, error 40 will result.

String Variables 6-25

String Variable Operations

Relational Operators

The :i. +. statement aiiows com parison of strings or substrings. All of the relational operators

allowed in numerical comparisons can be used for string comparisons.

..... equal to

greater than

less than

.> ::::: 0 r :::::.>

<: ::::: 0 r ::::: <.

::::: or <:> or :>

greater than or equal to

less than or equal to

not equal to

Here's an example that uses a relational operator to illustrate conversational programming -

When the enter statement prompt is displayed, the answer is keyed in.

Within the computers memory, each character contained in a string is represented by a

standard ASCII* decimal equivalent code (see the Reference Tables appendix). When two

string characters are compared, the smaller of the two characters is the one whose decimal

code is smaller. For example ;? (decimal code 50) is smaller than F: (decimal code 82).

" American Standard Code for Information Interchange.

6-26 String Variables

I n some cases, such as alphabetic sequencing problems, strings must be compared for

conditions other than "equal to" or "not equal to". For example, to arrange a number of strings

in alphabetical order, the following type of string comparison is used -

Strings are compared, character by character, from left to right until a difference is found. If

one string ends before a difference is found, the shorter string is considered smaller. For

example, execute these statements -

"At kin:::.cn::> ::fit ki
~.:_.:: _ ' ___ \J

Concatenation Operator

The concatenation operator (?:) links strings or substrings in order from left to right.

string variable or text ;< string variable or text U~-: ...]

The resulting string is the total number of characters in all of the strings. Strings or substrings

can be linked. Press EJ 0 CD before executing the following statements -

~ C$ [1. ~5J ~ [1$ [45J

" d A t I.I.! G. t E' r :: .-::- E: $

a: d A t k :L n :::. 0 n :: -7 C $

D$

String Variables 6-27

I n general, the concatenation of N strings requires a temporary storage area equal to

2 * (len (1 st) + len (2nd) + ...) + len (Nth - 1)) + len (Nth) strings. If insufficient memory is

available for this temporary storage, error 40 will result.

String Input and Output

Enter Statement

The enter (::::' :"'<.) statement allows string variables to be input from the calculator keyboard

during program execution. Up to 80 characters may be entered into a string at one time. To

enter a string longer than 80 characters, several substrings of up to 80 characters each may

be entered. For example -

After the first 80 characters are entered, a'second data request - i:::i ::1:: L;:::; :1.:' :1. (: :;:::::~ '? - is

displayed so the second 80 characters may be entered. A for/next loop (Advanced Program

ming) can be used to enter very long strings.

String arrays require an extra subscript to indicate the appropriate string in the array.

Strings and numeric variables can be used together in an enter statement -

6-28 String Variables

I n conversational programming, the enter statement assigns text to string variables from the

keyboard while a program is running. The destination string follows the same rules as the

destination string in string assignment and modification. For example -

When line 0 is executed, the prompt j',.j Fi j':"j C::";:: is displayed. When the user types in a name and

presses 8, that name is assigned to A$.

If a literal prompt is not given, the destination string variable is displayed as a prompt. For

example -

When the line above is executed, the display shows -

When the user types in the appropriate data and presses the:8 key, the data is assigned to

A $[3 ,3].

String Variables 6-29

Print Statement

The print (F:> (" t) statement can be used to print string characters. With the print statement, an

automatic carriage return-line feed (cr/lf) occurs when a new string is output. The string

characters are left justified when output.

Here's a program that prints out the internal printer character set using the print statement.

When executed, this is printed -

Strings, the rows of string arrays, numeric variables and constants may be included together

is a print statement, as shown in lines 6 and 7 of the following temperature conversion prog

ram. (i:::i represents the month, C; represents the day and F" represents the Fahrenheit temper

ature.)

6-30 String Variables

Display Statement

The display (;:::f ::::. ::::,) statement can be used to display a maximum of 80 characters. Only 32 of

these characters can be viewed at one time. The display control keys (8 and GJ) are used

to shift the display to the left and right to view al180 characters.

Write Statement

The write c,,) ~.' -::') statement is a General 1/0 ROM statement which allows strings to be output

to external devices, as well as to the internal printer.

The write statement works like the print statement, without automatic carriage return-line

feeds. The write statement outputs the entire string (as does :::> 1"'-::'). U sing the example from

the !::> 1"'-::' statement description, the write statement replaces print in line 5. The number

following !.''! 1"'t is the select code of the output device being used (16 is the internal printer

select code and 0 is the display select code). Compare the outputs -

~'I~'XN(f~ rnA 11.
(·t.u~'(ie·Q·6;a.~i A a.l~i 60 ijit

Characters 10 (line feed) and 13 (carriage return) cause a carriage return and line feed. When

the internal printer reaches the tenth character, a line feed occurs. Then the next 16 charac

ters are output (except the thirteenth, which is a carriage return). Since line feeds are not

automatic, the characters following the carriage return are not printed.

The write statement can be used with free-field format or with format specifications. The

following exam pie uses the write statement without format specs. Execute these statements -

String Variables 6-31

____ 1:·_:::F·1:_:;;1···1_I1 ___ J

_________ \J
j:::j E~ C: C) E: F' C; 1"'1 I j (J

---------)

When format specifications are used, the spec that sets the width of a character field is ::::.

followed by the width of the field in number of characters. (A value can precede ::::. to indicate

the number of strings to be output.) The strings are right justified when output. Execute these

statements -

f ('i t c :l :5 ~ i.:,i (t i f~: , ~~:$: L
1 ~ 5 J

~ 5 J

______ j:::jE_~ C::C_1 E:F'_C;1"'1_I1_~J

j:::j E~ C: 1:::1 E: F' C; 1"'1 I .. J (J
----------)

When the string is longer than the specified field, an overflow condition exists and dollar signs

are output.

Complete information about the write and format statements can be found in the I/O Control

Reference.

6-32 String Variables

Read Statement

The read ((" ;::>::!) statement is a General 110 ROM statement used to input data. The read

statement can be used with free-field format or with format specifications.

Here's an example using free-field format that reads A$ using an input device that responds to

select code 3 (the number following :.,. ;::>:::!), such as a tape reader. Assume this string is on

tape -
ABCDEFGHIJ@

When format specs are used, as with the write statement, parts of a string can be read. Using

the previous example, the first three characters only can be read by executing these state

ments -

'----._ _'" ____ \J
Strings, string arrays, numeric variables and constants may be used together in a read state

ment. Complete information about the read and format statements can be found in the 1/0

Control Reference.

String Variables 6-33

Loading and Recording Strings
Each character of a string requires 1 byte of memory for storage. Extra bytes of memory,

called overhead, are required to store strings and string arrays on tape. For example, to store

an array dimensioned A$[X, Y], it takes 6+2X bytes of overhead plus the data requirements of

XY bytes (plus 1 byte if XY is odd) to store X strings.

Recording Data

To store string variables on tape, first mark the number and size of the file or files required and

then use the record file ((' c· f) statement.

(' ::::. +. file number:: string variable [:: string variable ... J

When the record file statement is executed, the strings found in the list of data items are

recorded into the file number specified, on the current track. Strings in the list must be entire

simple strings or entire string arrays. For example -

When recording a list of items, such as A$, B$, X, the items must appear in the same order as

allocated in a previously encountered ::::! :i. ('i statement. For example -

6-34 String Variables

Loading Data

To load string variables into the calculator's memory from tape, the load file (::. ,::::f) statement

is used.

::. ':::: f file number:, string variable [:' string variable ...]

When the load file statement is executed, the data in the file specified from the current track is

loaded into the calculator's memory. A,:::: ::. (,: statement must be executed before the load file

statement. The list of variables in the load file statement must be in the same order as previ

ously allocated in the ':::: ::. (,: statement.

String variables can't be combined in the load file statement. For example, if A$ and B$ are

dimensioned and then linked later in a program U::: ::1:: :< C: :::;: .. > C: ::j::), they must be recorded and

loaded as dimensioned -

, .

0:: 'd·,i: i'-! :: 8,:$0[51,,, '
B·$·tr~3J.~ 'C>$'tt5J

• • •
4: R $ t: B$'* C $
5~ .ref 1,R$,B$

• • •

Chapter 7
Table of Contents

~
Systems Programming 7-1

9825NS ROM Requirements .. 7-3

Intelligent Terminals .. 7-4

Intelligent Terminal Instructions ... 7-5

Keyboard Interrupt Service Enable (on key) 7-6

Key Buffer Empty Function (key) ... 7-8

Keyboard Interrupt Routine Return (kret) ... 7-9

Keycode to ASCII Code Conversion (asc) .. 7-9

Read Transfer Buffer Function (bred) ... 7-10

End-of-Line Specification (eoi) ... 7-12

Serial Interface Control Instructions .. 7-14

Write Serial Controi Word Statement (wsc) 7-14

Write Seriai Mode Word Statement (wsm) .. 7-15

Read Serial Status Word Functon (rss) .. 7-16

Remote Keyboard Statement (rkbd) ... 7-17

Power-Up Remote Keyboard Operation ... 7-19

Systems Programming Instructions ... 7-21

Store Statement (store) .. 7-21

Next Available Line Function (nal) .. 7-24

Free Text Syntax Prefix (%) ... 7-25

Available Memory Function (avm) ... 7-27

Current Line Number Function (cln) ... 7-28

Execution Priority Diagram ... 7-29

Program Execution Flowchart ., .. 7-29

On Key Execution Flowchart ... 7-30

On Key Service Routine and Kret Flowchart ... 7-30

98036A Register Access Flowchart ... 7-31

Octal Keycode Flowchart .. 7-31

PTAPE Example Program .. 7-32

Asynchronous Data Formats ... 7-34

Mode word Finder Program .. 7-36

7-2 Systems Progra~~ing

Notes

Chapter 7
Systems Programming

The Systems Programming ROM extends the 9825 language to include capabilities for remote

keyboard operation, program self-modification, run-time read/write storage allocation, and

intelligent terminal emulation. This ROM is available as a plug-in acessory (98224A) for 9825A

and S computers. The ROM is included with the 9825T.

The Systems Programming ROM uses 160 bytes of user read/write memory when installed in

the 9825A or S. The Systems Programming ROM and the 98211A Matrix ROM cannot be used

simultaneously in a 9825A or S. If the Matrix ROM is installed, it must be removed before

installing the Systems Programming ROM. Both ROMs can be operated simultaneously with

the 9825T.

9825A/S Requirements
Several of the Systems Programming statements require the presence of other ROMs. The

relationships of the statements and their requirements are shown in the following table:

Mnemonic

Mnemonic - ROM Option Requirements
ROM Option

Description Necessary

Keyboard Interrupt Routine enable
Key Buffer Empty function
Keyboard Interrupt Routine return
Keycode to ASCII Conversion function
Read Transfer Buffer function

End-of-Line specification
Write Serial Mode Word statement
Write Serial Control Word statement
Read Serial Status Word function
Remote Keyboard Enable
Next Available Line function
Free Syntax prefix
Store String instruction
Available Memory function
Current Line Number function

None
None
None
None
Extended 1/0 1

and General I/O
General I/O
General I/O
General I/O
General I/O
General I/O
None
None
String2
None
None

1 Extended 1/0 Binary Tape can not be used.

2 The String Programming ROM is not necessary if only literals are to be stored.

7-3

7 -4 Systems Prog ramming

With the 9825A Option 003 (32K R/W memory), it is necessary to load Extended I/O as a binary

tape. The Systems Programming ROM will not operate properly if the Extended I/O binary tape

is loaded into the 9825A. Do not use the Systems Programming ROM and the Extended I/O

binary tape concurrently, as erratic and unpredictable calculator operation will result.

Intelligent Terminals
An intelligent terminal should represent a logical extension of the capabilities of a basic data

terminal. The minimum facilities of a basic data terminal usually include a keyboard for

operator entry, a printer or CRT display for data records and communications link status

information, and a serial interface to the central processor. An intelligent terminal should

include the minimum terminal functions and be user programmable.

The programmability of an intelligent terminal allows the user to define key functions, set

special formats, establish communication formatting, and in the case of the 9825, perform

off-line computing as well. Some of the features an intelligent terminal makes possible include:

• Extension of the throughput capabilities of an overloaded central processing system;

• Faster effective turnaround time with much of the data processing done locally;

• Local formatting of input and output data records;

• Local concentration of data, with high speed block data transmission;

• Local content error correction and editing;

• Appending local, variant data, such as operator code, date and security information;

• Reduction of repeated communication link transfers due to local message correction and

verification.

Use of the Systems Programming language can provide all of the features of an intelligent

terminal and additional features that aren't usually available. The 9825 contains a high speed

data cartridge for temporary off-line data storage if the communication link goes down, and an

internal printer to list operator instructions and prompt messages.

The internal printer and the display can be treated as external devices by the program, and

can be used to list two different message levels simultaneously. For example, the display

could be used to list the data as typed by the operator and the printer utilized to update the

communications link and system status.

Systems Programming 7-5

Intelligent Terminal Instructions
The Intelligent Terminal Instructions facilitate segmentation of the internal 9825 computer

"peripherals" into program controllable modules. With the three instructions "on key", "key",

and "kret" the programmer can set up the 9825 keyboard as an external peripheral input

device. The "asc" function returns the ASCII code equivalent of a 9825 keycode (which can be

output to an ASCII coded printing device such as a teletype). The "eol" specification extends

the generality of the communication format by allowing the programmer to specify output line

delimiters other than the standard carriage return/line feed.

Mnemonic

9825A/S External ROM ReqUirements

Required ROM Option

None

None

None

None

Extended I/O ROM

and General I/O ROM

General I/O ROM

Description

Keyboard interrupt directive

Key buffer empty function

Keyboard interrupt routine return

keycode to ASC II conversion

Read transfer buffer function

Line delimiter specification

7-6 Systems Programming

Keyboard Interrupt Service Enable
The "on key" statement enables the programmer to establish the 9825 keyboard as an exter

nal input device, operating on an interrupt service level.

"Routine Name" ['; Flag Number]

The routine name parameter may be either a string or a literal, and the flag number parameter

either a fixed value or an expression.

Routine Name: Specifies the label of the keyboard service routine that is to process

keyboard i nterru pts.

Flag Number: (Optional) specifies which flag to set if the key buffer overflows. If a flag

number is specified, error C5 will not be issued for a key buffer overflow.

The flag number may specify anyone of the 16 system flags, however flags

14 and 15 should not be used if any math processing is being performed.

When activated by an "on key" statement, a dedicated 16 character circular buffer is estab

lished, as well as a link to the "on key" service routine. This routine (specified in the Routine

Name parameter) changes the status of the system keyboard from calculator controller to

input device (with the exception of the RESET key).

Thereafter, when a key is pressed, the keycode is placed into the 16 character circular buffer

and end-of-line interrupt service is requested. If no other interrupts are pending, program

control is passed to the keyboard service routine for processing. If any interrupts other than a

keyboard interrupt occur before the end of the current line, they will be processed in descend

ing order by select code until all pending interrupts have been processed. (Refer to the "on

key" execution chart, execution priority block diagrams, and program execution flowchart

shown later.) The 16-character key buffer allows for execution of long program lines and

multiple interrupt processing before the key buffer overflows.

Systems Programming 7-7

A key buffer overflow results if more than 16 keys are pressed before program control trans

fers to the "on key"service routine. An overflow is indicated either by error C5 or by setting the

"on key" flag (use the optional Flag Number parameter).

The "on key" statement specified without parameters disables the on key service routine,

clears the key buffer, and returns the 9825 to normal keyboard operation. The "on key"

optional flag (if used) is not affected, and it should be noted that "on key" cannot be disabled

from live keyboard. (The "on key" statement effectively disables live keyboard.)

NOTE

Whenever the "on key" statement is executed the key buffer

is cleared and any data remaining in the buffer will be lost.

This applies to the "on key" statement with or without

parameters.

NOTE

Do not execute a branch command (::. ':::: f, ::. ':::: ::::', ' .. ' ,', ~ ... ',

... C', etc.) from within the "on key" routine if program

execution will branch from the routine without executing a

kret. The result will be that no more keys will be processed

from the keyboard.

7-8 Systems Programming

Key Buffer Empty Function

Parameters are not required for the "key" function.

The "key" function returns the earliest entered unprocessed keycode in the key buffer. When

all keycodes have been processed by the "on key" routine, k ;:::.,/ returns a value of zero and

k 1"';:::<:. execution is allowed. If an exit from the subroutine is attempted (by a "kret") with any

remaining keycodes in the key buffer, the "on key" routine will be restarted. (See the "kret"

execution flowchart later in this chapter.)

Example:

NOTE

0,1: Enable on key service routine

" k L:, ':::! ", and hang in loop.

2: on key routine label.

3: Display each consecutive keycode in

buffer.

4: When buffer is empty: return.

The "kret" will cause an immediate routine reentry unless

the key buffer has been emptied.

Systems Programming 7-9

Keyboard Interrupt Routine Return

Parameters are not requ ired for the "kret" syntax.

The "kret" statement serves to return program execution to the main program after emptying

the key buffer. The reentry point of the main program is the program line that would have been

executed before control was passed to the keyboard service routine.

If kret is executed before emptying the key buffer, control is not transferred to the main

program, and the keyboard service routine is restarted. (See the on key execution flowchart.)

Keycode to ASCII* Code Conversion Function

The "asc" function provides a single statement conversion from 9825 keycodes to an ASCI i

equivalent code. It is useful when outputting 9825 keycodes to an external ASCII device.

keycode

The keycode parameter may be either a fixed value or an expression.

The "asc" function returns the ASCII equivalent of a 9825 keycode, including the system

control keys and special function keys. The value returned by the "asc" function for the shifted

function keys will be greater than 127 decimal, and therefore out of range of the ASCII

character set. If the Extended I/O ROM is present, the "asc" function will return an octal or

decimal value depending on the oct/dec mode of the calculator. If the octal mode is set, the

value returned by "asc" will be in octal, which is an improper format for the "char" function of

the Strings ROM. (In this case use the octal-to-decimal function to restore the "asc" value to

decimal; refer to the Binary I/O chapter of the I/O Control Reference.

Example:

Typing a key on the keyboard will result in

the ASCII character and code shown in the

left of the display and the 9825 internal

character and code to the right.

* ASCII: American Standard Code for Information Interchange.

7-10 Systems Programming

Read Transfer Buffer Function

The "bred" function facilitates use of the 9825 over a high speed data link, offering a means

of reading an active interrupt input buffer without having to wait for the buffer transfer to run to

completion.

:: "Buffer Name

Buffer Name: A string or literal parameter specifying the name of the transfer buffer to be

emptied. The buffer specified must be an active*, interrupt type, byte input

buffer (type 1) as implemented by the Extended I/O ROM. An error (C4) is

displayed if "bred" is executed specifying a non-interrupt type or non-busy

buffer. If the "bred" function is used to read a transfer buffer, the General

I/O "red" statement should not be used. Using both "bred" and "red" on the

same buffer disrupts the buffer pointers and incorrect data is read from the

buffer. A more detailed discussion of the transfer buffer pointers is in the I/O

Control Reference.

Use of the "bred" function in conjunction with the Extended I/O transfer buffer facilitates

9825 data communications on a high speed data link. The "bred" function allows the pro

grammer to implement a high speed input buffer which is emptied at memory speed without

having to run the buffer transfer to completion. This input scheme presents a broader data

input window to incoming messages than does a double buffer input scheme of alternating

input transfer buffers. The double buffer input method offers only limited control over the time

window between buffer available periods, due to the necessity of completing the current

program line before acknowledging a buffer completion interrupt. If a long program line is

being executed when a buffer terminates, the time delay encountered before reenabling

another input buffer may be too large to insure reception of all incoming data when operating

at high data rates.

* The transfer operation must be in effect.

Systems Programming 7-11

When high speed data communication is implemented on the 9825, use of the "bred" buffer

read function on a frequent basis is suggested. Interrupts are disabled by "bred" for a time

span dependent upon the number of bytes in the buffer to be read out, so it is suggested that

the program be designed to execute a "bred" periodically. If a buffer overflow occurs, possi

ble alternatives are to add more "bred" instructions to the program or to executeL:: (. :;;;' ::::i within

a subroutine which is called from several program locations.

Example:

Line 1 establishes a type 1 buffer of 200

bytes (" Buff").

Line 2 enables the peripheral on select code

12 for a full buffer interrupt routine (::;:' :i. (

:l. ;;::::: <-),It also locates the proper service

rou ti ne for th i s i nte rru pt (,:::' ('~ :i. :t;;::::,
:: C, '.,.: ,;;;' ((. ~) ('~ ::).

Line 3 starts the transfer operation into

"Buff" .

Line 4-14 are program lines that process the

incoming data.

Line 15 initiates a i:::, 1"',;;;' ,:::i operation on

"Buff", specifying the contents of the buffer

to go to B$.

Line 16 returns to "loop".

Line 17 is executed on a buffer completion

interrupt. If this happens, "bred" must be

executed more frequently.

7-12 Systems Programming

End-of-Line Specification
The end-of-line sequence specification furnishes the programmer with a means of substituting

any character sequence (up to seven characters) for the General 110 carriage-return/line-feed

for tailoring output to the needs of the external device .

... ". ::. [eol Character] [" eol Character2] ... [:' eol Character?] [" eol Sequence Delay]

From zero to seven eol Characters may be specified; each may be a fixed value or an expression.

The Sequence Delay parameter (if specified) must be given as a negative value, and may be

either a fixed value or an expression.

eol Character: Is the numeric value of each character code to be output as an end-of-line

delimiter. The maximum value that may be specified for an eol character is 127

decimal, as only 7 -bit characters are transmitted. The eol characters are fixed

at the time the '::> ':::' J specification is executed, and the octal/decimal mode

setting of the calculator will determine the interpretation of the eol character

value. This value is not reevaluated when the octal/decimal mode is

switched subsequent to the ,:::' ':::' ::. specification.

eol Sequence Delay: Specifies the milliseconds of delay between output of the last character

of an eol sequence and the start of the next line of output. The maximum

possible delay is 32768 milliseconds (decimal value), allowing a flexible

approach to a peripheral's physical requirements. (For example, some tele

type printers require about 200 msec after performing a carriage return

before being ready for new characters.)

The end-of-line specification is useful for formatting output to specialized devices such as the

HP 2640 Terminal. The 2640 terminal requires specific codes in an end-of-line sequence to

keep the display in the special enhancement mode on the next display line. Since the "eol"

sequence specification may be executed at any time, it is possible to extensively reformat

output to a device by specifying tabs, spaces, double spaces, or whatever sequence is

desired, as necessary.

Systems Programming 7-13

In operation, the eol sequence is substituted for the carriage-return/line-feed delimiters of the

General 1/0 format. This substitution affects output to any device using the statements "Iist#"

and "wrt" (General 1/0), and "cat" (mass storage).

The General 1/0 format statement ("fmt") is also affected by the eol sequence specification.

The slashes (new line) will cause an eol sequence to be output to the specified device instead

of a carriage-return/line-feed, and the suppress line-feed (:::::) will suppress an eol sequence

output.

Examples:

Changes format to carriage return, line feed,

and five spaces.

This format will output two eol sequences and

a twenty character string.

7-14 Systems Programming

Serial Interface Control Instructions

9825NS External ROM Requirements

M . I
nemonlc Required ROM Option Description

General I/O
General I/O
General I/O
General I/O

Write Serial Mode Word statement
Write Serial Control Word statement
Read Serial Status Word function
Remote Keyboard Enable/Disable

Write Serial Control Word Statement

The "wsc" statement insulates the programmer from the complex control register access

sequence for the 98036A Serial Interface. A single statement is all that is necessary to access

the 98036A control word, making the implementation of specialized I/O formats a much sim

pler task with the Systems Programming ROM.

;:::. Select Code:; Control Word

Parameters specified may be either fixed values or expressions.

Select Code: Specifies a 98036A Serial Interface select code set to the range [2 ~ select

code ~ 15]. If the interface specified by the seiect code is not a 98036A, or

if no interface is set to the specified select code, error C9 is issued. Ex

tended I/O device names are disallowed.

Control Word: Specifies a bit pattern to be written into the control register (R4D) of the

98036A Serial Interface. Note that the value of the control word (mod 256)

follows the octal/decimal mode setting of the calculator (for Extended I/O

ROM only), and is interpreted accordingly. (Bit 6 is masked out to avoid

resetting the 98036A.)

Systems Programming 7-15

Write Serial Mode Word Statement

The "wsm" statement accesses the mode reg ister of the 98036A Serial I nterface with a single

statement, reducing the programming necessary to reconfigure the 98036A mode word. This

function is useful when temporarily logging on to a serial I/O link which uses a word format

different from the one set by the 98036A mode switches.

Select Code:, Mode Word [" Control Word]

Parameters specified may be either fixed values or expressions.

Select Code: Designates a 98036A select code with the same specifications and limitations

as described for the "wsc" function.

Mode Word: Specifies a bit pattern to be written into the R4C register of the 98036A Serial

Interface. Note that the value of the mode word follows the octal/decimal

mode setting of the calculator (Extended I/O ROM only), and is interpreted

accordingly.

Control Word: (Optional; default value = 5) If a value different from the default value is

desired, it can be specified as a parameter to the "wsm" syntax. See the

"wsc" syntax for the 98036A control word (R40) details.

7-16 Systems Programming

Read Serial Status Word Function

The "rss" function returns the contents of the 98036A status register, giving the programmer

easy access to the current status of the serial I/O link.

'." ::::. ::::. Select Code

Parameters may be specified as either fixed values or expressions.

Select Code: Designates a 98036A select code with the same specifications and limitations

as described for the "wsc" function.

The 98036A status word (register R4E) is accessed by the "rss" function and returned as a

value interpreted according to the octal/decimal mode setting of the calculator. The following

table describes the bit position functions of the R4E status word:

NOTE

When using the "wsc", or "wsm" commands, a parameter

error could leave the 98036A in an undefined state. Use

care when selecting the parameters for these functions, as

data loss cou Id result if the interface locks up. If this state is

encountered, it is necessary to reset the 98036A.

Systems Prog ramming 7 -17

Remote Keyboard Statement

The "rkbd" statement enables a remote keyboard to control the 9825A over a serial data link

through the 98036A interface.

(' k ::::: c: Select Code [:: Code Type]

Parameters may be either fixed values or expressions.

Select Code: Must specify the select code of a 98036A Interface, and must be in the range

[2 ~ select code ~ 7].

Code Type: Specifies the remote keyboard code interpretation as follows:

Code Type = 0: ASCII keyboard

Code Type = 1: 9825 keycode keyboard

If code type is not specified, a default value of zero is assumed (ASCII).

The "rkbd" statement operates in conjunction with the 98036A Serial interface to enable fuii

duplex remote operation of the 9825. This capability allows the 9825 to be used with a multiline

display and to be controlled remotely while the calculator is operating in a hostile or inacces

sible environment. All characters sent to the 9825 from the remote keyboard are echoed to the

remote display, allowing contiual monitoring of the data link status.

When operating with a remote keyboard, the local keyboard is not disabled and characters

generated by the 9825 keyboard are not transmitted to the remote display. Error messages

are treated as local data and are not transmitted to the remote display. To enable error

message monitoring on the remote display, the error trapping facility of the Extended I/O ROM

must be used in conjunction with the "wrt" statement. (Note that an "rkbd" interface may be

written to, but not read from, by the 9825.)

Example:

,
..... .. .'-. ~." : :

• •

7-18 Systems Programming

The error recovery routine "traperr" outputs the error number and the line it occurs in to the

remote keyboard set to select code 6.

Pressing the calculator "Reset" key will take the calculator out of the remote keyboard mode.

To prevent erroneous character transmission over the data link, the interface character format

(#of stop bits, parity, #character bits) should be identical for the remote keyboard and the

9825. When the calculator is operating in the ASCII mode, the input characters are masked

to seven bits. When operating in the 9825 keycode mode, the interface should be configured

for 8 bit characters, or the shifted special function keycodes will be inaccessible.

Some peripherals, such as the HP 2640 Terminal, have block output capability and can

transmit a line or more of characters at a time. If block transmission is to be used with a 9825

enabled for remote keyboard operation, a data rate of not higher than 110 baud should be

used. (For large block transmissions use 50-75 baud.)

NOTE

Buffered I/O operations should not be used with a 98036A

configured as a remote keyboard interface, as erratic cal

culator operation will result.

Limited editing of 9825 program lines is possible from the remote keyboard by using the

"Iist#" statement to output selected program lines to the remote terminal, however the 9825

cursor position is not accessible and it is necessary to retype the entire program line. The

remote edit sequence for line 7, interface select code 6 becomes:

(typed at remote keyboard)

(I ine-feed = "execute")

(typed at remote keyboard)

(!ine-feed = "execute")

(Retype edited version of line.) (typed at remote keyboard)

(carriage-return = "store")

Systems Programming 7-19

Although remote control of 9825 operation is possible with the "rkbd" statement, remote

keyboard editing is awkward (as demonstrated above) and not recommended for extensive

program development.

The ASCII to keyboard function chart in the appendix relates ASCI! control codes to 9825

functions, and is included for reference when using an ASCII coded remote keyboard with the

9825. ASCII control codes do not generate locally displayable characters, and it may be

difficult to keep track of calculator operations. Typing out commands is therefore recom

mended so the operator can have a record of calculator operation for reference.

Power-Up Remote Keyboard Operation
Upon power-up, the 9825 checks select codes 2 through 7 (in descending order) for a 98036A

Interface configured for remote keyboard operation. The interface with the highest select code

configured for remote keyboard operation will be used for the system remote keyboard.

To set up the 98036A Interface for power up remote keyboard operation, two jumpers must be

located and changed as described below:

1. Disassembly of the 98036A Interface:

a. Remove the four screws that hold the rear housing to the front housing.

b. Pull the rear housing off the front housing slightly, disconnect the cable connector

from the PC assembly and remove the rear housing.

c. Remove the remaining four screws in the front housing and separate the front

housing cases.

d. Carefully separate the printed circuit assemblies.

7-20 Systems Programming

2. Locate the 98036-66502 printed circuit board and orient it as shown in the figure

labeled "Component Side".

3. Locate and identify the two wire jumpers on the board corresponding to J1 and J2 in the

figure.

4. For power-up remote keyboard operation, cut jumper 2 (J2) and slightly spread the wire

pieces so no electrical contact is made.

5. If the remote keyboard is to be an ASCII coded keyboard, cut jumper 1 (J1). If the

remote keyboard is a 9825 type keyboard, leave J1 connected.

6. To reassemble the interface, reverse procedures 1 d through 1 a, being careful that the

pins on the A2 assembly are properly seated in the connectors of the A 1 assembly.

These jumpers affect only power-up remote keyboard operation. Programmable remote

keyboard using "rkbd" is independent of the jumper configuration.

Jumper I
(ASCI 1/ Keycode)

98036-66502 Diagram

Pressing the reset key of the 9825 takes the calculator out of the remote keyboard mode,

regardless of the state of the 98036A jumpers J1 and J2. Turning power off then on will put the

9825 back into remote keyboard mode (as set by jumpers J1 and J2).

Systems Programming 7-21

Systems Programming Instructions
The System Programming Instructions extend the 9825's capability to generate or modify

programs under program control. The "store", "%", and "nal" statements enable the 9825 to

handle string text (regardless of its source) and store the text at designated program lines.

The string text can be obtained from any source, such as mass memory, external systems, or

another 9825. The "avm" function returns the amount of available memory remaining in user

read/write memory, and "cln" returns the current program line number.

9825NS External ROM Requirements

Mnemonic ROM Option

None
None
String ROM*
i\lone
None

* String ROM is not required for literals,

Store Statement

Description

Next available line.
Free-text prefix.
Store string statement.
Available memory function.
Current program line number.

The "store" statement provides the capability of storing program lines from an executing

program.

:;;;, 'l:. c; (' ;;;;' String Name or "Literal" [;; Line Number]

The string name parameter may be either a string or a literal. The line number parameter may

be either a fixed value or an expression.

7 -22 Systems Prog ramming

String Name: Names a string containing any valid HPL program line, specified as a string

variable or a literal. If a string is specified, the String Programming ROM

must be present in the system. If the syntax of the line to be stored is invalid,

an error message is issued and program execution halted. It is possible,

however, to recover from this type error and disable syntax checking by

concatenating the free text prefix to the beginning of the line. A further

discussion of this concept and an example are included under the "%" free

text syntax.

Line Number: If included in the ::: .: : ... : .. statement, the line number must specify a line

number less than the last program line number plus one. If the specified line

number is greater than this value, the default (nal) value will be substituted.

(Refer to the priority list below.)

To determine which program line the "store" text will actually be stored at, consider the

following priorities:

(Highest Priority)

3. Line number* (parameter of "store" statement);
Example: :::

2. Line number* (prefix of text;)

Example:

1. .' ::~. ::. (default value if no others are specified;)

Example:

(Lowest Priority)

There are four cases to consider in determining the actual program line number where the text

is stored:

1. If the Line Number syntax parameter is not given, and no line number prefixes the

program line text - the text will be stored at the default value (next available line).

* If a line number is specified, but is a number greater than the value of the last program line number plus one. the default
value) will be substituted

Systems Programming 7-23

2. If the Line Number syntax parameter is not given, but there is a line number prefix to the

text - the text line number is compared to the value of the last program line number

plus one ("nal"). If the line number is greater than the "nal" value, the line number prefix

is stripped from the text and the text is stored at the next available program line. If the

text line number prefix is within the program line limits, the text is stored at the specified

program line.

3. If both a prefix Line Number and the line number parameter are given - the text is

stored at the program line specified by the line number parameter, conditional on the

parameter designating a line number less than or equal to the "nal" value. Otherwise,

the text is stored at the next available line and the prefix line number is stripped from the

text.

4. If there is no prefix Line Number, and the line number parameter is given - the line

number parameter is checked against the "nal" value. If the line number is within the

range of the program, it then specifies the program line at which to store the text.

Otherwise the text is stored at the next available line ("nal").

The store instruction must be the last statement of an HPL program line, and can be executed

from either an idle keyboard or a running program. It may not be executed from the live

keyboard, or error C7 is issued. (This includes a "store" within a subroutine executed from live

keyboard.)

There are some programming considerations to take into account when using the "store"

instruction, as this instruction can significantly alter the execution flow of a running program.

• When a "store" is executed and the line is stored at a lower line number than any

subroutines or interrupt routines, they will be disabled, as will any "for ... next" links.

Example:

• Interrupts are disabled for a period of several hundred milliseconds when a "store"

instruction is executing; "store" should not be used during high speed data transmis

sions.

• When storing an executable expression or a string literal, the "store" instruction will

actually store the interpreter representation of the expression or literal, and the resulting

line will have "dsp" appended to the beginning of the text.

7-24 Systems Programming

The store statement is a powerful programming tool, and should be used with discretion. The

principal use for the store statement is in conjuction with the "nal" function given as a line

number parameter. If the store statement is to be used to modify a running program, the

potential consequences as mentioned above should be carefully considered.

CAUTION

USING THE STORE INSTRUCTION TO MODIFY THE

PROGRAM AT A LINE NUMBER LOWER THAN THE CUR

RENTL Y EXECUTING PROGRAM LINE CAN CAUSE UN

PREDICTABLE PROGRAM EXECUTION.

An expanded example of the "store" capabilities is listed and explained in the appendix. The

example provides the 9825 with externally stored program loading capability. A shorter

example of the "store" statement used to input a program listing from an external source is

included here to demonstrate the basic operations necessary.

Example:

Next Available Line Function

Line 1 reads one line of text into A$.

Line 2 stores the text at the next available

line.

Line 3 returns to read a new line of input text.

The (i u. :i. function returns the value of the last program line number plus one. For example, if

the resident HPL program has lines numbered a through 54, ('i u. :i. will return the value 55.

When specified as a "store" statement parameter, the "nal" value overrides the line number

prefix (if present) of the string to be stored, and the result is to store the line after the last

program line.

Systems Programming 7-25

Examples:

Ex.1 Ex. 2

Before Execution

.-.
:::.

After Execution

Example 1 loads the specified file into program memory beginning with the next available

program line number, allowing program editing (line insertion and deletion) without requiring

modification of the load statement.

Example 2 demonstrates the use of (·1 C. ::. to override the line number prefix of the literal, and

the result is to store the literal at successive lines after the last program line.

Free Text Syntax Prefix

::.;; String or text to be stored

Any text following a "'Yo" symbol prefix is stored into program memory with no syntax checking

performed. Note however, that the percent symbol prefix eliminates all blanks in the line

except those occurring within quotation marks, and that a semicolon in the line masks all

following statements in the iine from the free text prefix protection. The semicolon specifies the

end of the program line when it is encountered in a free text syntax. Execution continues at the

next program line, not at the next statement. Use of the free text syntax prefix does not permit

storing text with unmatched quotes.

7-26 Systems Programming

Example 1:

Line 0, the literal is stored but the blanks are removed because the interpreter causes blanks

to be removed from the string.

Line 1, the blanks in the text are preserved by surrounding it with quote marks.

Example 2:

1 Enter the input line to A$.

2 Enable the error recovery routine "insert

0/0" .

3 Try to store the string.

4 Return to enter another line if no errors.

5 If an error occurred, append the free text

prefix to the front of the string and return to

line 2 to store the text. (This will not work if

the statement contained an error after a

semicolon. The example on page 7-32 re

solve this problem by replacing all semico

lons with % signs.)

Systems Programming 7-27

Example 3:

The free syntax prefix enables the programmer to write end-of-line comments for a program.

U:%!' EXAi-iJ;tE QFCOt:.n:1J:-:NTEP d:PL"
1:; ¢:,irn ,A$'fa's]', ' ",' ' ," .

'2:e·rrt· ·ii·EX/:J.h'I:::.t.N·E •. ~ .•. Jl,A$;%·\f,
3/:.<~n:etr . "lris'~r~t;. V;"i~ It'. ' •

4:. ',% It ' '.

5 ;'. ·s.tO:I;€ .A$.,.t:lct,L " . ,
,6:':9 to' 2 ;%/
iI!, ~inse'rt, .,%?,!., .• '
~:!. i II %''':'&';\$'' .. As ,:,g'1:',O J ;.,%',11.'
. *'3'9/;" ",' ",:" ',,' ,'" ' ;" "i,

Available Memory Function

,. "' .') .'~ • >. ," '.." ","

. i.nput <;>h6', :lirti€"of',bEH{'t}!· " " ""." " . , ' .
, ,Ehctble ", 'the, "e:r"i:;,ci r~:C:6v~;:'t}(., rOirtine,~! '
, '.sici,~e','t~:~' "ii~e:' ,£~', ppsstl)i,,/": " " '

,l;np,ut;,

'A',I?pe'Pd"
.,' ~. ">; ,,' ., .;:" ~..: ..: / ~'. ~

.;, -'i." ~ ~ . ,,' ;">','. • ~ :> /;'

',p"e;'rce,n1{:' 's·iqrt·' to',' Hlva'rfil' l<};t!"~s.~"
«'.., '~~'f/< >,:,:t:< ~" "/" .,,>~<;. ~=" ,..:' <"::'" ~ ,")'J} .

The "avm" function returns the number of unused bytes remaining in the 9825's read/write

memory. This feature enables a program to allocate storage based on remaining memory. For

example, a listing routine can use as much memory as possible in creating a list buffer, or an

edit program can allocate as large an edit string as is currently available in the machine.

Note

Since the 9825 system memory requirements change dur

ing program execution, the amount of available memory is

constantly changing and a several hundred byte safety fac

tor should be allowed for (to prevent an insufficient-memory

error) and subtracted from the ,J '.) ('i value. (Useable

memory = c. ;.) ('i - safety factor.)

7-28 Systems Programming

Current Line Number Function

No parameters are required for the cln function.

The "cln" function returns the value of the current line number at the point of execution. Note,

however, that the value returned by "cln" will be different when executed from within a prog

ram than when executed from live keyboard. When "cln" is executed within a program, it

returns the line number of the current program line. When executed from live keyboard, "cln"

will return the line number of the next program line to be executed. This is because "cln" is

incremented after the end of the program line and before the live keyboard statement is

executed.

The "cln" function makes possible an absolute computed gosub or go to, and a relative store.

Examples of these functions follow:

Example 1, computed gosub to absolute line number:

Example 2, "store" relative.

4

Line 6 "computes" the line number of the

desired subroutine.

Line 7 executes the computed go sub to the

line number in A.

Line 3 stores the string A$ at the program

line four lines down.

Example 1 enables a program to branch to an absolute line number that has previously been

computed and placed into a variable. It is not necessary to perform a subroutine branch, as it

is possible to simply jump to the computed location. Example 2 allows editing of the program

(inserting or deleting program lines) before the "store" program line without having to modify

the line number parameter of the "store" statement.

Execution Priority Diagram

Hardware Priorities

t Select Codes 8-15

Increasing Priority Keyboard, Select Codes 2-7

Hardware Interrupt Source

Program Execution Flowchart

on,·· 8-15
Yes Interrupt

Process
Nex1
Program
lJne

Yes

Yes

Service
Routine

ani·2·7
Interrupt
Service
Routine

on key
KeyDoard
Service
Routlne

Systems Prog ramming 7-29

Software Priorities

"oni routines" Routines, Select Codes

"oni Routines, Select Codes 2-7

"on key" Routine

Main Program

Software Interrupt Source

•

7-30 Systems Programming

"on key" Execution Flowchart

No

Request
End-of-Line
Service, Place
Keycode In
Buffer

Yes Set Flag or
Error C5

"on key" Service Routine and 'kret" Flowchart

key' (Process
Next Character
In Buffer)

98036A Register Access Flowchart

No

WClte Binary
or

Read Binary

USART
Reset

R4D Blt6
= 1

Octal Keycode Chart

Read Binary

r-- S;~;EM COMMA;g2s -------;;Ql Go DISPLAY 227l

8 8 B 8 0 8
23 2 30 20 21

235 237 236 233 216

B EJ 8 EJ 8 8
37 36 16

262 263 264 265 266 267

(211

WClte Binary
or

Read Binary
?

210

8 EJ
11 10

Go To
Start

213

8
13

234 1

EJ
34

~2;HARACTER2~

B B 8 G
24 25 27 26

270 271 260 373

Systems Programming 7-31

302 303 306

~ GJ (IJ GJ Q;J GJ
101 102 103 104 105 106

307 310 312 313 314

5J GJ 5J 5J @ GJ
107 112 113

214 222 340 250 wQmmmmmmmwwG 8@080
o"G"0·0~ 0"8""8"0 ro8"0°00"'cb 8 8 0 0 0

161 167 162 164 171 165 151 157 160 15 175 125 126 127 52

344 346 347 350 352 353 354 273 336 322 323 324 255

§00000080808 08080
163 146 150 152 153 154 73 136 75 122 123

= m _ _ _ _ _t _ _
212 320 320 253

80008000CJL)CD8
172 143 166 142 156 54 56 77

240 231

8 c:=J
8~Qq)~
l!J000G C ___ ~)

31 130

7-32 Systems Programming

"PTAPE"
This program is offered as an example of the capabilities of the "store" instruction when

augmented by the free text prefix and error recovery facilities. The program takes input from

an external source which has previously recorded a program in the "Iist#" format. It requests

a cartridge track and file number for recording the input program, or it can mark a file the size

of the input program (allowing 500 bytes for expansion) at the last unused file (null file) on the

cartridge. (If a negative file number is entered, "PTAPE" will mark its own file.) The file number

at which the program is recorded is printed out for future reference.

iO! . 'lJ?r.6~r a"m • I.oaderor .PTAP:E";
1 : en t ..." I npLlt\ Seleq~.Sod~?tI>,s; ent
2 :CiimA$[851;avrn~A;I\ab'N
3: "input":redS iA$ r if leIi{A$) <=2igt.O
4: if A$[l,ll=J1*tI;gto·.· .• "out '•
5: if num (A$[I)) =0 ;gto "input."
6: on· err· "err": store A$, nal
7: if avrn<250 i beep; dsp "INSUFfICIENT MEMQRY";stp
8: gto" input"
9: "out":A-avrn+A;trk T;if F>=Oigto".rec"
10: for' F=O to 9999
11: fdf F; idf F, Y ,C,Qi if Q ;next F
12: rnrk I,A+500,Ziif Z<O;beep;prt "Not enough tape,",A,tlbytes needed"jstp
13: "rectl:rcf F,IN;prt "PROGRAM ON FILE#",F,stp
14: "err": "%"&A$+A$
15: if not (poS{A$,";lt)+X);gto 6
16: "%"+A$[X,X}igto -1
*4328

Line 1: Input interface select code and the cartridge track and file number for storing the

program. If given a negative file number, the routine (lines 1 0-12) will search

for the last cartridge file (null file) and mark it to the correct program size

allowing 500 bytes for expansion.

Line 2: Saves the available memory and next available line values into variables A and X.

Line 3: Inputs one program line, rejects lines consisting of only carriage-return/line-feeds.

Line 4: Checks for the asterisk at the end of the program listing.

Line 5: Strips null lines from the input.

Line 6: Enables the error recovery routine "err" and attempts to store the program at the next

available line.

Systems Programming 7-33

Line 7: Checks for enough remaining memory to input more source program.

Line 8: Returns to line 3 for more input.

Line 9: Computes the source program size in bytes, and checks the file number specified for

a negative value. If negative, it proceeds to find and mark the null file.

Lines 10-12: Find the null file (last file) and mark it to the size of the source program plus 500

bytes for modification and expansion.

Line 13: Records the program on either the specified or the marked file, and prints the file

number used.

Line 14: The error recovery routine appends a "%" (free text prefix) to the beginning of the

program line.

Lines 15 and 16: Check for semicolons in the source line, substituting them with % 's, be

cause a semicolon will mask the following line statements from free text

protection. This avoids a possible loop from illegal statements after a

semicolon in the source line.

This program (with slight modification) makes possible an interesting method of program

editing using the HP 2640 terminal's block output capability. It is possible to list a program to

the HP 2640 terminal, inspect and edit it from the terminal as desired, then place the program

back on the cartridge at the specified track and file number. The necessary modification is a

write byte (wtb) statement inserted at line 3, which now becomes (assuming the 2640 set up

for single line transmission blocks, with select code 2):

The program now reads the text from the HP 2640 terminal a line at a time, beginning with the

first character after the cursor, then records it on the specified track and file of the HP 9825

data cartridge as a program.

7-3A.- Systems Programming

Technical Appendix On
Asynchronous Data Formats

Asnychronous I/O is a serial mode of communication that in its simplest form requires no

handshaking ("I'm ready, are you ready?") signals. This is made possible through special

codes that are added to each character being sent. These extra codes are the "Start Bit" and

the "Stop Bits". An additional bit, the "Parity Bit" may be added for purposes of error detec

tion.

For example, the ASCII character "T" looks like this in binary:

(most significant bit) 1 01 01 00 (least significant bit).

When the start, parity and stop bits are added, the character "u" looks like this:

(msb) 11010101000 (Isb).

The number of bits per character is not changed by adding the start, parity, and stop bits, as

these bits are not considered when looking at character bits.

The start bit is always a "0", and comes before the least significant bit of the character. The

parity bit is set to a "1" or "0" to make the sum of the" 1" bits of the character plus the parity bit

either odd or even, depending on whether odd or even parity is selected. (The "1" character

bits are added to the parity bit, yielding an odd or even sum.) The character "T" above has

odd parity. The two leftmost bits of the above character are stop bits, and the stop bits are

always a "1".

Each bit is transmitted at a specific time, controlled by an extremely accurate crystal timer.

The rate at which bits are transmitted is referred to as the bit rate, sometimes known as the

baud rate. The bits can be sent and received at the clock frequency, 1/16 the clock frequency,

or 1/64 the clock frequency. The 1/64 rate provides the highest degree of accuracy in timing,

and is used whenever error-free communications is a must.

A diagram of a single character ("T" again) being transmitted asynchronously looks like this:

I I I " I

: Start : , : I : Parity: Stop : Stop ;

~.~~~Ma~~~" ~~~i~ ~BI~t ~: ~2~O~~21~~ B. i B' ! Mark"

The start bit is the first bit transmitted, and when received means "wake up, get ready for a

new character". The next bits are the data bits of the character "T", beginning with the least

significant (20) bit and ending with the most significant (2 6) bit. The next bit is the parity bit

(odd parity), which is used for error checking. The last two bits are the stop bits, which mean

"end of this character".

Systems Programming 7-35

By using the 98036A Mode Word, we can change the format of the ASCII character, so let's

send two "T" 's, but this time with only one stop bit selected. The diagram looks like this:

"1

'0

Start: :
Bit I 2° I 2'

-----, I I
. Mark"

Tlme---

I
I

24 25

Parity Stop: Start:
26 Bit Bit I Bit II

I
I

20 I 2'
I

22 23
Parity Stop:

24 2' 26 Bit Bit

~
I

The 98036A Status Word can give us some clues about the incoming data on the serial I/O

link. These are the "framing", "parity", and the "overrun" status bits of the 98036A Status

Word. The "framing" bit will be set to a "1" if our interface doesn't find all the stop bits that it

expects. There is no way for the interface to detect too many stop bits, but if too few are

received then the framing error bit is set. (The interface looks for a "1" in the stop bit time slot.)

Some causes of framing errors are incorrect number of data bits, no parity, or too few stop

bits.

The "parity" bit of the 98036A Status Word will be set if the incoming parity bit is wrong. This

can be caused by an incorrect number of data bits, having the wrong parity selected, or no

parity bit being received.

A "overrun" error simply means that the incoming data is coming in faster than it is being taken

from the interface. If the baud rate being operated at is too high, it may not be possible to read

the data from the interface before a new character is received. A lower baud rate or buffered

I/O can alleviate this problem. (The baud rates for the sender and the receiver must always be

the same.)

Two examples showing how the same error can be generated in two completely different ways

are shown below. Assume the interface is configured to expect seven data bits, odd parity,

and two stop bits.

7-36 Systems Programming

The first example is simple: the sender is sending the wrong parity and only one stop bit.

Changing the interface parity and stop bits will clear the problem. The second example is also

simple, but wouldn't be corrected by changing the parity and stop bit format. The fewer data

bits sent (6) will always generate a framing error, and only sometimes generate a parity error.

This is a difficult problem to track down from the receiver end.

Hopefully, this discussion has served to introduce the reader to the purpose of the change

able asynchronous data format, and to the necessity of accessing the status bits of the

98036A Serial Interface. In a typical system, both sender and receiver data formats are known

and accessible, making interfacing a simple task.

A program which could be used to establish the correct number of stop bits and the correct

parity setting is included as an example of how the 98036A control statements can be used.

The program makes two assumptions for the purpose of simplification: first, an ASCII format

is assumed - that is, seven data bits per character; second, it assumes that a parity bit is part

of the character and not disabled (if no parity bit is present, this program cannot get a correct

frame count).

Mode Word Finder Program
Line 0 sets the mode variable (M) to 8 data

bits, no parity, 2 stop bits (to avoid parity

checking).

Line 1 configures the interface mode.

Line 2 inputs one byte and reads the status.

Line 3 checks for framing error.

Line 4 reconfigures the interface to 7 data

bits, odd parity.

Line 5 checks for parity error, and prints the

mode value if no error.

Line 6 sets even parity if a parity error was

detected.

Line 7 resets to 8 data bits, no parity if a

parity error still exists.

~
L::J

Systems Programming 7-37

Line 8 stops execution if all combinations

have been tried.

Line 9 sets the interface to 1 stop bit on the

first framing error.

Line 10 goes back to 8 if a framing error still

exists with only 1 stop bit.

Flowchart For Mode Word Finder

'7-38 Systems Prograr:'T'lng

Notes

This space is provided for the

MATRIX PROGRAMMING MANUAL

supplied with the option Matrix plug-in ROM.

09825-90022

rev: 6/80

This space is provided for the

DISK PROGRAMMING MANUAL

supplied with the Disk plug-in ROM.

NOTE

Flexible disks used with a 9825B/9885 system must be in

itialized with bootstraps from a Revision E 9825A/B - 9885

System Cartridge. Disks initialized with earlier system car

tridges on a 9825A are not useable with the 9825B. The

bootstraps must be rewritten from the new system cartridge

using the boot statement; see the Disk Programming Manu

al. To check the disk's bootstrap revision, insert the disk

and execute cat. If the catalog header is IE or later, the

bootstraps are compatible with the 9825B.

09825-90220

Appendix A
Table of Contents

Calculator Status Conditions .. A-3

Extended I/O Status Conditions ... A-4

ASCII Character Codes .. A-5

Octal Keycode Chart ... A-6

Keyboard/ASCII Function Chart ... A-7

ASC Conversion Values .. A-8

Keyboard/ASCII Control Codes .. A-1 0

9825 and 9820/21 Compatibility ... A-11

Entering Programs .. A-11

Running Programs ., .. A-12

A-2 Reference Tables

Notes

A-3

Appendix A
Reference Tables

Calculator Status Conditions
The following table shows the calculator status conditions when the indicated operations are

performed. For details about the status condition of modes, variables, etc., see the appro-

priate section in the manual.

Erase all I
or I Continue I

Power after
on Reset Erase Run editing Continue

Variables R X R R X X

Flags 0 through 15 R X R R X X

Result R X X X X X

Binary program R X X X X X

Subroutine return pointers R R R R R X

Print-all mode R R X X X X

Verify mode R R X X X X

Live keyboard mode R R X X X X

Secure mode R X R X X X

Cassette select code R R X X X X

Cassette track R R X X X X

Angular units for trig functions R R X X X X

Fixed/Float setting R R X X X X

Random number seed R R X X X X

Trace mode R R X X X X

R Restored to power-on value
X Unchanged

A-4 Reference Tables

Extended I/O Status Conditions
The following table shows status conditions for various Extended I/O operations and modes.

Notice that the Erase, Erase All-Power on, and Run columns from the previous table are

combined into one column here. R = restored to power-on state; X = unchanged.

Calculator Operation

Power On Reset Continue Continue

Extended I/O ROM Erase (after edit) (after Stop)

Operation or Mode Erase All

Run

Conversion and parity tables R X X X

Binary mode (reset to decimal) R X X X

I/O buffer area R X X X

Service name list R X X X

Equate name list R X X X

Buffer select code for tfr R R R X

Interrupt parameters R R R X

Error recovery routine R R R X

Timeout routine R X X X

STX 00000010 002

ETX 00000011 003

EaT 00000100 004

ENQ 00000101 005

ACK 00000110 006

BELL 00000111 007

BS 00001000 010

HT 00001001 011

LF

VT

00001010 1 012

00001011 013

FF 00001100 014

CR 00001101 015

so 00001110 016

51

DLE

DCl

DC2

DC3

DC4

NAK

ETB

CAN

EM

SUB

ESC

FS

GS

RS

00001111 017

00010000 020

00010001 021

00010010 022

00010011 023

00010100 024

00010101 025

00010110 026

00010111 027

00011000 I 030

00011001 031

00011010 032

00011011 033

000111001 034

00011101 035

00011110 036

US 00011111 037

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

ASCII Character Codes

00100010 042

00100011 043

%

&

+

<

>

00100100 044

00100101

00100110

00100111

00101000

00101001

00101010

00101011

00101100

00101101

045 I
046

047

050

051 1

052 !

053

054

055

00101110 056

00101111 I

001100001

001100011

00110010

00110011

00110100

001101011

00110110

I
00110111 i

I

057

060

061

062

063

064

065

066

067

00111000 i 070

00111001

I

00111010 1

001110111

001111001

001111011

001111101

071

072 i

073

074

075

076

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Octal Decimal:

100

A ". 000001 101

B 01000010 102

C 01000011 103

D 01000100 104

G

H

K

M

010001011 105

01000110 I

01000111

106

107

010010001

010010011111

010010101

010010111

010011001

110

112

113

114

I
01001101 ' 115

N 01001110 116

a

Q

R

T

U

v

w

x

01001111, 117

01010000 120 1

010100011, 121;

01010010 i

01010011

1

01010100

010101011

01010110

I

010101111

01011000 I

I

122

123

124

125

126

127

130

Y 010110011 131'
I

Z I 01011010 132

01011011, 133

01011100 134

01011101 135

01011110 136

01011111 137

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Reference Tables A-5

ASCII i EQUIVALENT FORMS

Char., Binary Octal Decimal

, I 011000001140

01100001' 141

01100010 142

01100011 143

01100100 144

01100101
1

145

01100110 146

01100111 147

01101000 150

011010011151

011010101

01101011 I
01101100,

152

153

154

I

011011011 155

01101110 156

o I 01101111 157

01110000 160

01110001 161

01110010 162

01110011 163

01110100 164

01110101 165

01110110 166

01110111 167

x I 0111100(170

!

0111100] 171

011110H 172

01111011 I 173

0111110C i[174 i,

01111101 175'

01111110 176

DEL 01111111 177

----- ---------

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

A-6 Reference Tables

Octal Keycode Chart*

r- S;~;eMCOMMA;~: ~ Go°ISPLAY~
(211 210 213 234) 301 302 303 304 305 306

EJ B 8 B 8 8 EJ EJ B EJ ffi C3J m 5J [E) ~
23 2 30 20 21 11 10 13 34 101 102 103 104 105 106

237 236 233 216 217 (224 22~HAAACTEA2~ 307 310 311 312 313 314

EJ B EJ B 8 8 B G B 8 ~ m (I) G ~ CGJ
35 37 36 16 24 25 27 26 107 110 112 113

262 263 264 265 266 267 270 271 260 373 222 340 250 251 257 wwwmmmmmmwwG 8@880
61 62 63 64 65 66 67 70 71 60 173 14 22 140 50 51 57

o00000808G0(s:~:E) 80808
161 167 145 162 164 171 165 151 157 160 15 175 125 126 127 52

@00G0000080~ 08080
141 163 144 146 150 152 153 154 73 136 75 122 123 124 55

372 370 343 366 342 356 355· 254 256 212 317 320 320 253

8~~~~C;)~~GJyCP8 8~~c;,Jc;J
(,.) 8B VG008

40 31 116 130 131

ASC Keycode Chart *

r- S~:TEMCOMMA~S ~ ~DISPlAY~ (9 8 11 28) 140 141 142 143 144 145

8 EJ EJ 8 8 8 8 8 B EJ m 5J m GJ Q;J ~
19 2 24 16 17 9 e 11 28 128 129 130 132 133

29 31 30 27 14 15 (20
21CHARACTEA 2~ 146 148 149 150 151

EJ B EJ B 8 8 B G B 8 ffi m (I) G ~ CGJ
29 31 30 27

"
15 20 23 22 134 135 136 137 138 139

34 35 36 64 91 93 39 124 12 18 95 40 41 47 wwwmmmmmmWwG 8@800
49 50 51 52 53 54 55 56 57 48 123 12 18 101 40 41 47

o0000880800~ 80888
113 119 101 114 116 121 117 105 111 112 13 125 55 56 57 42

65 83 68 70 71 72 74 75 76 59 92 61 52 53 54 45

@000000008Q~ 08080
97 100 102 103 104 106 107 108 59 94 61 52 53 54 45

30 M ~ 66 66 re n 50 ~ ~ 10 49 50 51 43

C~ _____ J
1 25 8 (CONTINUE)

~~~~~ 
\ ~ I 48 46 44 7 

y8008 
80008000c)c)CD8 

120 99 118 98 110 109 44 46 63 

32 48 46 44 

'" Unshifted code shown below key: shifted code shown above key 



Reference Tables A-7 

Keyboard/ASCII Function Chart 

Control* 9825A Command Octal Code Decimal Code 

erase 35 29 
!df 37 31 

i ref 36 30 

[ list 33 27 

S prt all 23 19 

B rewind 2 2 

X step 30 24 

P ~ 20 16 

0 i 21 17 

N ~ 16 14 

0 ~ 17 15 

I del 11 9 

H ins 10 8 
K recall 13 11 

\ fetch 34 28 
T h~~I/ 24 20 I UQl..d'\ 

U fwd 25 21 
W del 27 23 

V ins/rep 26 22 
L RUN 14 12 
M STORE 15 13 
Y CONTINUE 31 25 
A STOP 1 1 

J EXECUTE 12 10 
R clear 22 18 
G result 7 7 

Alternate ASCII Code Functions: 

Carriage-Return (15 Octal): Store 

Line-Feed (12 Octal): Execute 

* The Control Key and the specified character key are pressed simultaneously. 



A-8 Reference Tables 

ASC Conversion Values 

Display Key ASCII ASCII 

Char Code Dec Oct Dec Oct 

0 0 0 64 100 
1 1 1 128 200 
2 2 2 129 201 
3 3 3 130 202 
4 4 4 131 203 
5 5 5 132 204 
6 6 6 70 133 205 
7 7 7 71 134 206 
8 8 10 72 135 207 
9 9 11 73 136 210 
10 10 12 74 137 211 
11 11 13 75 138 212 
12 12 14 76 139 213 
13 13 15 77 0 0 
14 14 16 78 48 60 
15 15 17 79 49 61 
16 16 20 80 50 62 
17 17 21 81 51 63 
18 18 22 82 52 64 
19 19 23 83 53 65 
20 20 24 84 54 66 
21 21 25 85 55 67 
22 22 26 86 56 70 
23 23 27 87 57 71 
24 24 30 88 46 56 
25 25 31 89 44 54 
26 26 32 90 90 132 
27 27 33 91 91 133 
28 28 34 92 92 134 
29 29 35 93 93 135 
30 30 36 94 94 136 
31 31 37 95 95 137 
32 32 4'0 96 101 145 
33 33 41 97 97 141 
34 34 42 98 98 142 
35 35 43 99 99 143 
36 36 44 100 100 144 
37 37 45 101 101 145 
38 38 46 102 102 146 
39 39 47 103 103 147 
40 40 50 104 104 150 
41 41 51 105 105 151 
42 42 52 106 106 152 
43 43 53 107 107 153 
44 44 54 108 108 154 
45 45 55 109 109 155 
46 46 56 110 110 156 
47 47 57 111 111 157 
48 48 60 112 112 160 
49 49 61 113 113 161 
50 50 62 114 114 162 
51 51 63 115 115 163 
52 52 64 116 116 164 
53 53 65 117 117 165 
54 54 66 118 118 166 
55 55 67 119 119 167 
56 56 70 120 120 170 
57 57 71 121 121 171 
58 58 72 122 122 172 
59 59 73 123 123 173 
60 60 74 124 124 174 
6' 61 75 125 125 175 
62 62 76 126 126 176 
63 63 77 '27 127 177 



Reference Tables A-9 

ASC Conversion Values 

Display Key ASCII Display Key ASCII 
Char Code Dec Oct Char Code Dec Oct 

128 0 0 192 0 0 
129 1 1 193 140 214 
130 2 2 194 141 215 
131 3 3 195 142 216 
132 4 4 196 142 217 
133 5 5 197 144 220 
134 6 6 198 145 221 
135 7 7 199 146 222 
136 8 10 200 147 223 
137 9 11 201 148 224 
138 10 12 202 149 225 
139 11 13 203 150 226 
140 12 14 204 151 227 
141 13 15 205 0 0 
142 14 16 206 48 60 
143 15 17 207 49 61 
144 16 20 208 50 62 
145 17 21 209 51 63 
146 18 22 210 52 64 
147 19 23 211 53 65 
148 20 24 212 54 66 
149 21 25 213 55 67 
150 22 26 214 56 70 
151 23 27 215 57 71 
152 24 30 216 46 56 
153 25 31 217 44 54 
154 26 32 218 0 0 
155 27 33 219 0 0 
156 28 34 220 0 0 
157 29 35 221 0 0 
158 30 36 222 92 134 
159 31 37 223 0 0 
160 32 40 224 95 137 
161 33 41 225 65 101 
162 34 42 226 66 102 
163 35 43 227 67 103 
164 36 44 228 68 104 
165 37 45 229 69 105 
166 38 46 230 70 106 
167 39 47 231 71 107 
168 40 50 232 72 ;110 
169 41 51 233 73 111 
170 42 52 234 74 112 
171 43 53 235 75 113 
172 60 74 236 76 114 
173 45 55 237 77 115 
174 62 76 238 78 116 
175 47 57 239 79 117 
176 39 47 240 80 120 
177 33 41 241 81 121 
178 34 42 242 82 122 
179 35 43 243 83 123 
180 36 44 244 84 124 
181 37 45 245 85 125 
182 38 46 246 86 126 
183 64 100 247 87 127 
184 9;1 133 248 88 130 
185 93 135 249 89 131 
186 0 0 250 90 132 
187 59 73 251 124 174 
i88 0 0 252 92 134 
189 61 75 253 125 175 
190 0 0 254 94 136 
191 58 72 255 95 137 



A-10 Reference Tables 

Keyboard/ASCII Control Codes 

ASCII EQUIVALENT FORMS 9825A Key 

Char. Binary Octal Dec Equivalent 

NULL 00000000 000 * 
SOH 00000001 I 001 8 

00000010 I STX 002 ~ 

ETX 00000011 003 * 
EaT 00000100 004 * 
ENQ 00000101 005 * 
ACK 00000110 006 * 
BELL I 0000"," 

007 8 
BS 00001000 010 @illT) 

HT I 00001001 011 fQfLill) 

LF I 00001010 012 10 m 
VTAf-l 00001011 013 11 ~ 

FF 00001100 014 12 B 
CR 00001101 015 13 8 
so 00001110 016 14 CQ 

SI 00001111 017 15 CQ 

DLE I 00010000 020 16 CO 
I 

DC, I 000'000' 
021 17 CD 

DC, . 00010010 022 18 8 
DC3 00010011 023 19 ~ 

DC4 00010100 024 20 @£D 

NAK 00010101 025 21 ~ 

SYNC 00010110 026 22 ~ 

ETB 00010111 027 23 fQfLill) 

CAN 00011000 030 24 @ill 

1\ 
EM 00011001 031 25 ~ 
SUB 00011010 032 26 * 
ESC 00011011 033 27 @ill 

FS 00011100 034 28 ~ 

GS 00011101 035 29 ~ 

RS 00011110 036 30 [[@@) 

US 000 1 ~ " 1 " 037 3 ' QillJ 

No direct 9825A key equivalent. 



Reference Tables A-11 

9825 and 9820/9821 Compatibility 

In general, any program which is used with the HP 9820A/9821 A Calculators can be entered 

into the HP 9825 Calculator with only minor changes, such as changing E (enter exponent) 

and statement mnemonics to lower case. 

The following is a list of subtle differences between the 9820A/9821 A and the 9825 Cal

culators. The list is divided into two sections; those differences which occur when entering a 

program and those which occur when running the program. 

Entering Programs 
• A line label must be followed by a colon. The 9820A/9821 A requires a semicolon. 

• Parentheses must be used to indicate which relational operator to apply first: 

must be entered as: ~ ... : 1 on the 9825 (not the 

same as :"': .": :.·· .. ··.i l"': 

• Storing a line with an end statement does not delete higher numbered lines in memory 

on the 9825 . 

• . ..... ::::: is not allowed on the 9825; use -r-....... , , .. . 

• The enter (ent) statement is syntax checked by the 9825 Calculator. The items in an 

enter statement must be text or variables. Expressions, such as ;:::. ,.... . ..... :,. C: are not 

allowed on the 9825; the equivalent on the 9825 would be ;:::- ,... . :::; c; .. :,. ;::> 

• A string of unary operators such as ... '/ is not allowed on the 9825. 

• File sizes in the mark statement are given in bytes instead of registers. Therefore, (: ::;> j .... 

:i. :: >:: in the 9821 A becomes (:": l'" .. ~:::~ ::< in the 9825. 

• Linking programs is done differently on the 9825; 

'; >:: on the 9825. 

· .... .. ::. l . . . ~.. ':-. '/ on the 9820A/9821 A must be typed as 

9825. 

' .. ' becomes 

\' on the 



A-12 Reference Tables 

• ......... (, on the 9820A/9821 A must be written 

• The TBL function of the 9820A/9821 A Math Block has been replaced as follows: 

9820A/9821 A 9825 

Function Replacement 

TBLO units 

TBL 1 deg 

TBL2 rad 

TBL3 grad 

TBL4 no replacement 

TBL5 csv 

TBL6 cfg 

Running Programs 
• Relational comparisons are made to 12 significant digits on the 9825. The 9820AI 

9821 A rounds to 10 significant digits and then compares. The 9825 equivalent 

of: is: 

• Floating point numbers are rounded on the 9825 instead of truncated as on the 9820AI 

9821 A when an integer value is required. 

Some implications of this are shown in these examples for the 9825: 

1. r(4.9) refers to r5 

2. jmp 2.9 is the same as jmp 3. 

3. sfg 5.95 is the same as sfg 6 (and similarly for cfg, fig, and cmf). 

• A gto or gsb to a label requires an exact match in the 9825 instead of a match on the last 

4 characters as on the 9820A/9821 A. 

• The 9820A/9821 A returned a 0 for 0 t O. On the 9825, 0 t 0 results in error 73 (default 

is 1). 

• A number, expression, or statement are valid replies on the 9825. However, if ,::: ,.,. 

is the enter statement and a statement such as:::::·,::::' is entered, flag 13 is set and A 

retains its previous value. For example, no value is entered by the enter statement and 

flag 13 is set in the following. 

Print statement. 

Assignment statement. 



Reference Tables A-13 

These are valid entries: 

Expression. 

Imbedded assignment. 

• Flag 13 is cleared when a number or expression is supplied during an enter statement. 

• On the 9820A/9821 A Calculators, if the run program key is pressed without entering a 

value for: .~.<:-:: ::, the value for X would not be incremented and RX 

would not be modified. On the 9825, the expression, :: , is executed even if 

no value is entered. 

• The 9825's integer (int) function is defined as the largest whole number less than or 

equal to the argument. The 9820A!9821 A definition is the largest whole number less 

than or equal to the absolute value of the argument, with the sign of the result being the 

same as the sign of the argument. 

• On the 9825, if an error occurs during the execution of a statement, the entire line is 

aborted. On the 9820A/9821 A the rest of the statements in the line are performed. 

• Implied storage to Z is replaced by implied storage to result (res). Z is no longer 

different from other simple variables. A statement with implied storage cannot be stored 

- a variable must be given explicitly. A program can access the value of result (res), but 

the value in res cannot be altered by the program. 

• Branching to the line which is numbered one higher than the last line of the program no 

longer treats that line as if it were an end statement. 

• Flags are not cleared by the end statement on the 9825. 

• The stop (stp) statement does not destroy subroutine return information. 

• On the 9825, the identify file (idf) statement always positions the tape before the 

header of the identified file. Thus, repeated idf statements do not advance the tape. 

Also an idf statement followed by a mrk statement marks the identified file (any informa

tion on the identified file will be lost). 



Notes 



Appendix B 

HPL Syntax 

Introduction 
The following pages are a compilation of all current 9825 HPL syntax. More information on 

each operation can be found by referring to the indicated manual and page. The manual titles 

are abbreviated here: 

D Disk Programming, 09825-90220 (or 09885-90000). 

1/0 1/0 Control Reference. 

M Matrix Prog ramming. 

O&P Operating & Programming Reference. 

The HPL programming language utilizes four basic types of syntax constructions: statements, 

functions, operators and commands. Operators, such as + and mod, are used with numbers 

and variable names to construct expressions (like A +5). Expressions can be included in many 

statements and executed from the keyboard. Each statement can also be preceded by a line 

number and stored as a program line (like 10: prt A). Most functions can include expressions, 

and can be executed from the keyboard .. Functions can also be treated as expressions when 

constructing a statement (like prt sinA). Commands are operator aids that can only be exe

cuted from the keyboard; they're not programmable. 

rev: 11/80 

8-1 



8-2 HPL Syntax 

Operators 
The available operators are summarized here. For more details see the HPL Programming 

chapter, page 3-19. 

+ 

* 

/ 
i 

mod 

and 

ior 

xor 

not 

Arithmetic Relational 

Add ~ Assign 

Subtract, unary - > Greater than 

Multiply < Less than 

Divide >= or => Greater than or equal to 

Exponentiate <= or =< Less than or equal to 

Modulus # or < > or> < Not equal to 

Logical String 

& Concatenation 

inclusive OR 

exclusive OR 

Math Hierarchy 
highest priority functions, flag references, r-variables 

i (exponentiation) 

implied multiply 

- (unary minus) 

*, I, mod 

+, -
all relational operators (=,>,<,<=,>=,#,~) 

not 

and 

lowest priority or, xor 

Operators of the same level in an expression are executed from left to right. Any operations 

within parentheses, however, are performed first. For more details, see page 3-18 in your 

Operating and Programming Reference. 



HPL Syntax 8-3 

Syntax Conventions 
These terms and conventions are used in the following listing: 

bold type - a!! key words and characters appearing in bold type must appear exactly as 

shown. These items are shown in dot matrix in the referenced manuals. 

[] - elements enclosed in brackets (not key characters or parentheses) are optional. 

... - an ellipsis indicates that the preceding parameter or sequence in the syntax can be 

repeated. 

variable name - a numeric or string variable name (like A or R5 or A$). Subscripts are 

allowed (I ike A [7] ). 

array name - an array variable name, with or without subscripts. 

string variable - a string variable name (like A$ or B$ [1,4] ). 

string - either a string variable or text within quotes ("text"). 

line number - an expression from 1 through 999 referring to a program line. 

line label - a unique name assigned to a program line. It's enclosed in quotes, follows the 

line number, and is followed by a colon. For example: 5: "print": ... 

expression - a logical combination of numeric variable names, constants, operators and 

functions (including user-defined functions) grouped within parentheses as needed. The 

evaluated expression yields a numeric result. 

constant - a fixed number within the computer's range, like 2.23467. 

character - a letter, number or symbol. 

item list - a series of constants, expressions and/or strings separated by commas, for 

example: prt 5,A,"was",A+ 7 

subscripts - numbers within brackets which are attached to variable names to designate a 

particular variable element or boundary. For example: A [10,5] or B$ [1,10] 



8-4 H PL Syntax 

file number - an expression indicating the tape or disk file. 

file name - a string indicating the disk file name. 

select code - an expression indicating the device's interface select code setting (an integer 

from 0 th roug h 16). For example: wrt 6 

These select codes are assigned to internal devices: 

o Keyboard. 

1 Tape drive. 

16 Printer. 

device address - a two-digit number appended to the select code, indicating a device's 

HP-IB address. Device address range is from 01 through 31. For example: wrt 711 outputs to 

device 11 via the HP-IB interface set to select code 7. 

format no. - a number from .1 through .9 appended to the select code to reference a 

corresponding fmt statement. For example: wrt 7.3 references fmt 3. 

return variable - a simple numeric variable name (A or R4) where information is stored after 

the operation. 

flag no. - an expression from 1 through 15 indicating a programmable flag. 

A 
abs expression 

Returns the absolute value of the expression. O&P, 3-22. 

acs expression 

Returns the principal value of the arccosine of the expression in the current angular units. 

O&P, 3-25. 

add ( expression, expression) 

Returns the sum of the expressions, added in the current numeric mode, decimal (mdec) 

or octal (moct). 1/0,3-15. 

aprt array variable [ , array variable [ , ... ] ] 

Prints the specified array's elements on the internal printer. M, 8. 



HPL Syntax 8-5 

ara array variable, [ [ ~ ) array variable,] ~ array variable, 

Performs the arithmetic operation, element by element, on arrays 1 and 2. The result is 

stored in array 3. (Example: ara A+B~C). Arithmetic operations can be performed on 

arrays in place (ara A+B~A), arrays can be copied (ara A~B) and implied multiplication 

is allowed (ara AB~C). M, 11. 

asc express ion 

Returns the ASCII equivalent of the specified 9825 keycode. O&P, 7-25. 

asgn file name, file number [ , drive number [ , return variable] ] 

Assigns a number (1 through 10) to an existing disk file name and indicates optional 

drive number and a return variable (values below). D, 3-5 (or 36). 

o File available and assigned. 

1 File doesn't exist. 

2 Program file. 

3 Special function key file. 

4 File not defined by 9825. 

5 

6 

7 

8 

9 

Memory file. 

Binary program file. 

File type not defined. 

File number out of range. 

Data file, but logical records not 

256 bytes long (98228A ROM only). 
asn exp ress ion 

Returns the principal value of the arcsine of the expression in the current angular units. 

O&P, 3-26. 

expression ~ variable name 1 [~ variable name2 [~ .. , ]] 

Assigns the value of the expression to the variable(s). O&P, 3-19. 

atn expression 

avd 

ave 

avm 

Returns the principal value of the arctangent of the expression in the current angular 

units. O&P, 3-26. 

Disables automatic tape verification. O&P, 5-24. 

Enables automatic tape verification (default setting). O&P, 5-25. 

Returns the size (bytes) of unused readlwrite memory. O&P, 4-27. 

axe x coordinate, Y coordinate [ , X tic [ , Y tic] ] 

rev: 11/80 

Draws axes through the X,Y point, drawing optional tic marks at X tic and Y tic intervals. 

9862 Plotter ROM only. 110, 7-18. 



8-6 HPL Syntax 

B 
band ( expression, expression) 

Returns the 16-bit result of ANDing the expressions. I/O, 3-12. 

beep 
Sounds the computer's beeper. O&P, 3-16. 

bit ( expression 1 , expression 2 ) 

boot 

Returns the binary value of the bit position in expression 2 indicated by expression 1. I/O, 

3-15. 

Loads 98217 A Disk ROM bootstraps from a disk tape to an initialized disk. 0, 1-8 (or 67). 

bred ( buffer name) 

Returns the contents of the specified, active, interrupt buffer. O&P, 7-10. 

buf "name" [ , buffer size or string variable, buffer type] 

Sets up and names a data buffer of either type read/write (no type specified) or the 

specified type (see below). 1/0,6-6. 

cap ( string) 

Buffer Type 

interrupt 

fast read/write 

DMA 

c 

Word 

o 
2 

4 

Byte 

1 

3 

Returns an equivalent string of uppercase characters. O&P, 6-24. 

cat [ select code or buffer name] 

Prints a catalog of files on the specified disk or default drive. File types listed below. 0, 

1-16 (or 20). 

B Binary program file. 

D Data file. 

K Special function keys file. 

cfg [ flag no. [ , ... ] ] 

M 

a 
P 

Memory file. 

Other file (not created via 9825). 

Program file. 

Clears either all 15 program flags or only the specified flags. O&P, 3-29. 

rev: 11/80 



HPLSyntax 8-7 

chain file name [ ,1st line number [ ,2nd line number] ] 

Loads a program from the specified disk file. Same optional line numbers as get. D, 2-7 

(or 25). 

char (expression) 

Returns the ASCII equivalent character. O&P, 6-20. 

eli select code 

Sends the abort message to all devices on the HP-IB, 1/0,2-27. 

ell 'name' [(variable 1 [ , variable2 [ , ... J) J J 

eln 

Calis the subroutine having the specified label, passing the value of any optional vari

ables as pass-parameters. O&P, 4-10. 

Returns the current program line number. O&P, 7-28. 

elr select code 

Sends the clear message, either the all devices or to only a selected device by including 

the device address in the select code. 1/0, 2-17. 

cmd select code, "address parameters" [ , "string" J 
cmd "device name(s)" or select code [ , "string" J 

Sends the string of data characters to the specified HP-IB device. 1/0, 2-31. 

cmf [ flag no. [ , ... J J 
Complements either all 15 program flags or only the specified flags. O&P, 3-29. 

cmp ( expression) 

Returns the 16-bit binary one's complement of the expression. 1/0,3-13. 

cont [ line number or "line label" J 
This command continues program execution, either from the current point or from the 

specified point. O&P, 2-24. 

cony [ expression 1 , expression 1 [ , expression 2 , expression 2 J ... J 
Sets up a conversion table (up to 10 sets of expressions) referenced by red and wrt 

statements. Each expression represents an ASCII character. conv (no parameters) can

cels any existing table. 1/0, 1-23. 

copy [ source drive number [ , select code] , ] "to" 

rev: i i /80 

[ , destination drive number [ , select code] ] 

Duplicates the contents of the source disk to the destination disk. Disks must be the 

same type, either single-sided or double-sided. D, 4-7 (or 60). 



8-8 HPL Syntax 

copy source file name [ , drive number [ , select code] ] 

[ , destination file number [ , drive number [ , select code] ] 

Copies a file to another disk. Omitting an address accesses the default drive. D, 4-7 (or 

60). 

copy source file number, record number, 

destination file number, record number, no. of records 

Copies only the specified number of records, beginning at the specified record numbers. 

D, 4-10 (or 60). 

cos ( expression) 

Returns the cosine of the expression. O&P, 3-25. 

cplt [ character-space widths, character-space heights] 

Moves the pen the specified distance away from the current point. I/O, 7-41. 

csiz [ height [ , aspect ratio [ , paper ratio [ , angle of rotation] ] ] ] 

csv 

Specifies the size, shape and lettering direction for Ibl statements. Defaults are: 

height = 1.5% of paper height; aspect ratio = 1; paper ratio = 1; angle = 0 (left to right 

lettering). 1/0,7-38. 

Clears simple variables A through Z. O&P, 3-39. 

ctbl [ string variable] 

deg 

Sets up a conversion table; the value of each string character represents .ASCII; the 

character position represents the foreign code + 1. ctbl with no parameters cancels the 

table. 1/0,4-6. 

D 

Sets degrees units for angular calculations. O&P, 3-25. 

del line number [ ,2nd line number [ ,*]] 

This command deletes either the specified program line or all lines through the optional 

2nd line number specified. Including the * changes all remaining references to the 

deleted lines to the next remaining program line, preventing error 36. O&P, 2-25. 

dev "name" , select c9de 

Assigns a name for use in place of the select code in I/O operations. 1/0 2-9. 

dig X , y [ , return variable] 

Reads, computes and stores the current pen position in user units. Return variables: 

o = pen up; 1 = pen down. 9872 Plotter ROM only. 1/0, 7-48. 

dim variable name [ , variable name [ , ... ] ] 

Reserves memory for specified variables. Use subscripts to indicate size of each vari

able. O&P, 3-37. rev: 11/80 



dire 

HPL Syntax 8-9 

Copies the spare 9885 disk directory (default drive) to the main directory. 98217A ROM 

only. D, 4-16 (or 65). 

drive unit no. [ , select code] 

Sets the default unit (0 through 3) and, optionally, the select code for disk drives. Default 

is 0,8 for 98217A ROM and 0,707 for 98228A ROM. D, 1-14 (or 17). 

drnd ( expression, expression) 

Returns the value of the first expression, rounded to the number of digits indicated by the 

second expression. O&P, 3-22. 

dsp item list 

Displays the items listed. To display quotes use double quotes within the string (e.g., 1: 

dsp "Display""test''''in quotes."). O&P, 3-12. 

dto ( exp ression ) 

dtrk 

Returns the octal equivalent of the decimal value expressed. 1/0, 3-12 

Dumps a bad 9885 track during the disk error recovery routine. 98217A ROM only. D, 

4-15 (or 65). 

dtype 
Returns a code indicating the type of drive, disk and data format at the default disk 

address. 98228A ROM only. D, 1-15. Return values are: 

o Unable to access default disk controller. 

Drive door is open or drive not present. 

2 Drive door closed, but door was opened since last disk operation. File pointers are 

cleared. 

3 9895 drive, single-sided disk, HP format. 

4 9895 drive, double-sided disk, HP format. 

5 9895 drive, single-sided disk, unknown format. 

6 9895 drive, double-sided disk, unknown format. 

7 9895 drive, single-sided disk, IBM 3740 format. 

8 9885 drive, single-sided disk. 

dump [ file name, tape file name] [ , expression] 

rev: 11/80 

Transfers the contents of the default disk to a tape cartridge. The optional file names 

indicate to only dump a specified file. The expression can be 1 or 10, indicating the 

number of disk records to put in each tape file. A positive expression automatically marks 

the tape. A negative expression suppresses marking the tape. D, 4-12 (or 62). 



8-10 HPL Syntax 

E 
eir select code [ , byte] 

Enables an interrupt from the specified select code. Specifying byte = 0 disables the 

interrupt. I/O, 5-6. 

end 
Halts program execution and sets the program counter to O. O&P, 3-17. 

enp [ "prompt", ] string variable 

Enters and prints data entered from the keyboard. O&P, 3-15. 

ent [ "prompt", ] variable name 

Enters data from the keyboard. O&P, 3-13. 

eol code [ , [ , ... ] ] [ ,- delay in milliseconds] 

Specifies up to seven optional ASCII characters for an end-of-line sequence for wrt 

operations (replaces CR/LFs). The optional delay occurs after the last eol character in 

the sequence. O&P, 7-12. 

eor ( expression, expression) 

Returns the 16-bit binary result of the exclusive ORing of the expressions. I/O, 3-13. 

equ "name1" , "string1" [ , "name2", "string2" [ , .. , ] ] 

Equates the ASCII character string with the name, for use with cmd. 1/0,2-33. 

erase [ letter or key] 

Erases either all programs and variables or the specified areas listed below. O&P, 2-26. 

a Erase entire memory. 

k Erase all special function keys. 

v Erase all variables and flags. 

fn Erase specified key definitions. 

ert file number 

Erases the current tape track, beginning with the specified file. O&P, 5-15. 

exp ( exp ression ) 

Returns e (2.71828 ... ) raised the expressed power. O&P, 3-24. 

F 
fdf file number 

Positions the tape at the specified file on the current track. O&P, 5-9. 

fetch [ line number or key] 

Displays the specified program line or special function key definition. O&P, 2-27. 

files" file name1 " [ : unit no. ] [ , " file name2 " [ : unit no. ] [ , ... ] 

Assigns names up to 10 disk files. Substituting an * for a file name allows an asgn 

statement to assign a file name via a string variable. 0,3-3 (or 34). 
rev: 11/80 



H PL Syntax 8-11 

fig ( flag no. ) 

Returns flag status: 1 = set; 0 = clear. O&P, 3-30. 

fit expression 

Sets floating point notation; from 0 through 11 places allowed. O&P, 3-10. 

fmt [ format no. , ] [spec 1 [ , spec 2 ... ] ] 

Sets up a list of format specs for red and wrt operations. Format number can be from 0 

through 9. Format specs are listed below. Omitting specs cancels specified format. 

Omitting format no. sets format O. A repeat factor can precede each spec. 1/0, 1-8. 

b 
Cw 

ew.d 

fw.d 

fZw.d 

Single-character binary output. 

String characte-r data. 

Exponential format. 

Fixed-point. 

Fixed point with leading zeros. 

w = field width. 

d = number.of digits to right of decimal point. 

x 
z 
/ 

"text" 

Blank space. 

Suppresses auto CR/LF. 

Outputs CR/LF. 

Outputs text. 

for simple variable = initial value to value [ by step value] 

Defines start of a for-next loop. O&P, 4-3. 

frc ( expression) 

Returns the fractional part of the expression. O&P, 3-22. 

fti ( expression) 

Rounds and changes the expression to integer precision. The result can be stored in a 

two-character field. O&P, 4-26. 

fts ( expression) 

Changes the expression to split precision for storage in a four-character field. O&P, 4-20. 

fxd expression 

Sets the fixed-point format; from 0 through 11 places are allowed. O&P, 3-9. 

G 
get file name [ ,1st line no. [ ,2nd line no. ] ] 

Loads the program from the specified disk file. The lines are stored, beginning either at 

line 0 or at the optional 1 st line number. The optional 2nd line number indicates where 

program execution should begin. D, 2-4 (or 23). 

getb file name 

Loads the specified disk binary program file. D, 2-11 (or 64). 

getk file name 

Loads the special function keys disk file. D, 2-9 (or 29). 

rev: 11/80 



8-12 H PL Syntax 

getm file name 

Loads the specified disk memory file. 0, 2-10 (or 57). 

grad 
Sets the grads units for angular calculations. O&P, 3-25. 

gsb line number or line label 

Branches program execution to the specified subroutine. O&P, 3-34. 

gsb + or - no. of lines 

Branches to the subroutine beginning the number of lines relative to the current line. 

O&P, 3-34. 

gto line number or line label 

Sends program execution to the specified line. O&P, 3-31. 

gto + or - no. of lines 

Sends execution to specified line relative to the current line. O&P, 3-31. 

idf file number [ , file type [ , current size [ , absolute·size or [ , track] ] ] ] 

Returns info on the current tape file. See tlist for file types. O&P, 5-7. 

idn array name [ , array name [ , ... ] ] 

Creates identity (square) matrices .. AII elements are 0 except major diagonal elements 

which are 1. M, 22. 

if expression 1 = expression 2 

If the equation is true, the rest of the line is executed. If false, execution immediately 

branches to the next line. Any relational operator can be used ( <, #, > =, etc.). When 

both expressions are strings, the characters are compared using ASCII values. O&P, 

3-36. 

ina array variable [ : number or simple variable] 

init 

[ , array variable [ : number or simple variable] ... ] 

Initializes each element of the array to the specified value (number or variable). Omitting 

the value initializes each element to O. M, 8. 

Runs the 9885 disk initialization routine and loads bootstraps. 98217A ROM only. 0,4-2 

(or 90). 

init drive number, select code [ , interleave factor] 

Initializes disks in either 9885 or 9895 drive. 98228A ROM only. The interleave can be an 

integer from 1 thru 29. 0, 4-3. 

rev: 11/80 



HPL Syntax 8-13 

int ( expression) 

Returns the integer value of the expression. O&P, 3-22. 

inv array variable 1 ~ array variable2 [ , simple variable] 

Stores the inverse matrix of array 1 in array 2. If the simple variable is specified, the 

determinant of array 1 is returned. M, 24. 

iot select code 

Returns interface flag state: a if peripheral busy; 1 if ready. 1/0, 4-12. 

ior ( expression, expression) 

Returns the 16-bit result of the inclusive OR operation on the expression. 1/0, 3-13. 

ios select code 

Returns interface status: a if in error condition; 1 if operational. 1/0, 4-12. 

iplt X increment, Y increment [ , expression] 

iret 

Moves the pen the number of X and Y units from its current position. The expression is for 

pen control; see pit. 1/0, 7-29. 

Ends an interrupt service routine and returns to main program. 1/0,5-7. 

itt ( string variable) 

Returns a full-precision number from the packed, integer-precision number (a two

character string). O&P, 7-26. 

J 
jmp expression 

key 

Jumps program execution the relative number of lines forward (+ expression) or back 

(- expression). jmp a returns execution to the beginning of the current line. O&P, 3-33. 

K 

Returns the earliest, unprocessed keycode in the keyboard buffer. a indicates no 

keycodes in the buffer. O&P, 7-8. 

kill file name 

Purges the specified disk file from the default disk. 0,1-18 (or 27). 

killall 
Purges all disk user files. 98217 A ROM only. 0, 1-18 (or 67). 

killall drive number, select code 

Purges all user files from the specified disk. 98228A ROM only. 0, 1-18. 

kret 
Returns execution to the main program after the key buffer is emptied. O&P, 7-9. 

rev: 11/80 



8-14 H PL Syntax 

L 
Ibl expression or "string" [ , expression or "string" [ , ... ] ] 

Prints characters on the plotter. 1/0, 7-36. 

lei select code 

Sends the local message to all HP-IB devices or, if the select code includes a device 

address, sends a clear lockout/local message. 1/0, 2-20. 

Idb file number 

Loads a binary program from the specified tape file. O&P, 5-23. 

Idf [ file number [ , line number1 [ , line number2 ] ] ] 

Loads the specified tape file into the appropriate area of memory. The optional line 

numbers indicate where to start loading (line number 1) and continuing (line number 2) a 

program. Omitting the file number loads file O. O&P, 5-18. 

Idf [ file number [ , data list] ] 

Loads data from the specified tape file into the listed variables. O&P, 5-21. 

Idk [ file number] 

Loads the special function key file into memory. Omitting the file number loads tape file O. 

O&P, 5-22. 

Idp [ file number [ , line number1 [ , line number 2 ] ] 

Loads a program from either file 0 (file number omitted) or the specified file. The optional 

line numbers indicate where to start loading (line number 1) and were to start running 

(line number 2). O&P, 5-18. 

len ( string variable) 

Returns the character length of the string. O&P, 6-14. 

lim [X lower left, X upper right, Y lower left, Y upper right] 

Restricts plotter pen movement to the stated bounds in user units. If bounds are omitted, 

movement is limited to the mechanical limits. 9872 Plotter ROM only. 1/0, 7-34. 

line [ pattern number [ , pattern length] ] 

Specifies the type of line plotted with pit, iplt, xax and yax. 9872 patterns are listed below. 

Pattern length is percentage of the total line length; default is 4%,9872 Plotter ROM only. 

1/0, 7-32. 

1-

2-

3-
4-

5 - -----------

6 - ----------

omit number - ----------



HPL Syntax 8-15 

list [ # select code] [ line number [ , line number] ] 

Lists the entire program on the internal printer (no parameters) or lists the program to the 

specified select code. The line numbers indicate starting and ending lines for the listing. 

O&P, 3-39 and 1/0, 1-23. 

list 01J or listk 
Lists the special function key definition (list 01J or all definitions (list k). O&P, 3-39. 

Ikd 
Disables live keyboard mode. O&P, 2-32. 

Ike 
Enables live keyboard mode. O&P, 2-32. 

110 select code 

Sends the local lockout message to all HP-IB devices. 1/0, 2-19. 

In ( expression) 

Returns the natural log (loge) of the expression. O&P, 3-24. 

load [ disk file name, tape file number] 

Loads files previously dumped to a tape back onto the disk. Omitting all parameters 

loads the entire dump back onto the disk. Including parameters loads only selected data 

files back onto the disk. 0, 4-13 (or 63). 

log ( expression) 

Returns the common log (IOglO) of the expression. O&P, 3-24. 

Itr X coordinate, Y coordinate [ , HWD ] 

Itrk 

Moves the 9862 plotter pen to the specified point and specifies dimensions for lettering. 

Hand W can be from 1 through 9. 0 is lettering direction and can be from 1 through 4. 

9862 Plotter ROM only. 1/0,7-47. 

Returns corrected data to a reinitialized track during disk error-recovery routine. 98217 A 

ROM only. 0,4-15 (or 65). 

M 
mat array variable1 * array variabie2 ~ array variable3 

Array multiplication (arrays must have correct dimensions). M, 19. 

max ( expression [ , expression [ , ... ] ] ) 

Returns the largest value in the list. O&P, 3-22. 

rev: 11/80 



8-16 H PL Syntax 

mdee 
Sets the decimal mode (default) for binary operations. 110, 3-11. 

min ( expression [ , expression [ , ... ] ] ) 

Returns the smallest value in the list. O&P, 3-22. 

moet 
Sets the octal mode for binary operations. 110, 3-11. 

mrk number of files, file size [ , return variable] 

Marks the number of files, beginning at the tape's current position. The last file number 

marked is returned in the optional return variable. O&P, 5-10. 

nal 

N 

Returns the last program line number plus one; used with store to store strings. O&P, 

7-24. 

next simple variable 

Terminates for-next loop and tests for loop completion. O&P, 4-3. 

nor [ line number [ , line number] ] 

Clears the master program flag, either while executing a!! lines (omit all parameters) or 

only for the specified line numbers. O&P, 3-44. 

num ( "character" or substring) 

Returns the ASCII-decimal value of the character. O&P, 6-21. 

o 
ofs X coordinate, Y coordinate 

Offsets the origin (0,0) to point X,Y. 1/0,7-27. 

on end file number, line specifier 

Enables a branch to the specified line or label when a disk EOF or EOR mark is encoun

tered during read and write operations. 0, 3-19 (or 50). 

on err "line label" 

Enables an error-trapping routine. The program branches to the label and the erl, ern and 

rom functions are assigned values when an error occurs. 1/0,4-4. 

rev: 11/80 



HPL Syntax 8-17 

on key [ "line label" [ , flag no. ] ] 

Enables a keyboard interrupt routine. The program branches to the label and optionally 

sets the flag when the keyboard buffer overflows. Omitting all parameters disables the 

keyboard interrupt. O&P, 7-6. 

ani select code, "label" 

References an interrupt service routine associated with the peripheral's select code. 1/0, 

5-5. 

open file name, number of records 

Creates a disk data file of the specified size (256-byte records). 0, 3-2 (or 33). 

otd ( expression) 

Returns the decimal equivalent of the octal value expressed. 1/0,3-12. 

p 

par ( expression) 

pclr 

Sets the parity type (listed below) used for 1/0 checking. 1/0,4-9. 

o Parity disabled. 2 Even parity. 

Parity = 1. 3 Odd parity. 

Sets default plotter values except scale units, select code, P1, P2, pen location and 

pen#. 9872 Plotter ROM only. 1/0, 7-10. 

pct select code 

Passes active control to the specified HP-IB device. 1/0, 2-26. 

pen 
Raises the plotter pen. 1/0,7-22. 

pen# [ expression] 

Selects the plotter pen (1 through 4).9872 Plotter ROM only. 1/0,7-22. 

% string [ : ] 

The % free-text prefix allows storing text without syntax checking. Free text is terminated 

with a semicolon or end of line. O&P, 7-25. 

pIt X coordinate, Y coordinate [ , expression] 

rev: 11/80 

Move plotter pen to specified X,Y point. Optional expression controls pen (see below). 

1/0, 7-22. 

even lowers pen. positive action before plotting. 

odd raise pen. negative action after plotting. 



8-18 HPL Syntax 

pol select code 

Conducts a parallel poll on the HP-IB. 1/0, 2-25. 

pole select code, byte 

Sets parallel poll bits on the specified HP-IB device. 1/0,2-26. 

polu select code 

Clears parallel poll bits on the specified device. 1/0, 2-26. 

pos ( string 1 , string2 ) 

Returns the character position of the second string within the first. O&P, 6-16. 

prnd ( expression, expression) 

Returns the first expression rounded to the power of ten indicated by the second expres

sion. O&P, 3-22. 

prt expression or string [ , expression or string [ , ... ] ] 

Prints the list of items on the internal printer. To print quotes use double quotes (e.g., 

3: prt "print""text""in quotes."). O&P, 3-12. 

pse select code 

ptyp 

rad 

Sets the seleGt code for all plotter ROM operations. psc 0 causes either the program to 

ignore all pic .ter operations (9872 ROM) or the computer to suppress output to plotter 

(9862 ROM). 1/0,7-5. 

Sets a plotter lettering mode. Press STOP key to terminate mode. 1/0, 7-45. 

R 

Sets radians units for angular calculations. O&P, 3-25. 

V ( expression) 

Returns the square root of the expression. O&P, 3-22. 

ref [ file number [ , line number [ , line number] ] [ , "SE" or "DB" ] ] 
Records either all program lines onto the specified tape file (no line numbers) or only the 

specified block of lines. Including SE prevents the program from being listed or dis

played when reloaded. Including DB records all trace and stop flags with the program for 

debugging. O&P, 5-16. 



HPLSyntax 8-19 

ref file number, variable list 

Records the listed variables onto the tape file. O&P, 5-16. 

rek file number 

Records the special function key definitions on the tape file. O&P, 5-22. 

rem file number 

Records the entire computer memory on the specified tape file. O&P, 5-22. 

rdb ( select code) 

Returns one 16-bit binary character code from the specified device. 1/0, 3-4. 

rdi ( register number) 

Returns a status byte from the interface specified by wti 0.1/0,4-12. 

rdm array variable [ , array variable [ , ... ] ] 

Redimensions the array(s) to the specified dimensions. M, 16. 

rds ( select code) 

Returns the current status word from the specified interface. 1/0,3-5. 

red select code [ . format no. ] , variable list 

Reads and stores data from the specified device. 1/0, 1-5. 

rem select code 

Sends the remote message to either all HP-IB devices or only one device when its 

address is included in the select code. 1/0,2-18. 

renm old file name, new file name 

Renames a disk file on the default disk. 0, 1-17 (or 28). 

repk 
Repacks files on the default disk. 0,4-5 (or 58). 

res 
Returns the result of the last keyboard operation not stored in a variable. O&P, 2-20. 

resave file name [ ,1st line number [ , last line number] ] 

ret 

rew 

rev: 11/80 

Stores a program (or only the specified lines) in an existing disk file. 0, 2-9 (or 28). 

Ends a subroutine and returns program execution to the main program (line after gsb). 

O&P, 3-34. 

Rewinds the tape. O&P, 5-6. 



8-20 HPL Syntax 

rkbd select code [ , expression] 

Enables a remote keyboard to control the computer. The expression indicates the 

keycode interpretation: 0 = ASCII (default) or 1 = 9825 keycodes. O&P, 7-24. 

rnd ( expression) 

Returns a pseudo-random number from 0 to (less than) 1. A negative expression is used 

as a new seed. O&P, 3-22. 

rot ( expression1 , expression2 ) 

Returns the result of binary rotation of the 16-bit equivalent of expression 1, rotated the 

number of bits indicated by expression 2. 110, 3-13. 

rprt file number, record number [ , data list] [ ,"end" or "ens" ] 
Prints the list of data items on the disk file, starting at the specified record. Including 

"end" prints an EOF mark after the data. Including "ens" suppresses the automatic EOR 

mark printed after data. 0, 3-12 (or 43). 

rqs select code, byte 

Requests service from the HP-IB system controller and sends the serial status byte upon 

response to a serial poll. 110, 2-21. 

rread file number, record number [ , variable list] 

Reads data from the disk file, starting at the specified record. Omitting the variable list 

just repositions the file pointer. 0, 3-15 (or 46). 

rss ( select code) 

Returns the 98036 Interface status register byte. O&P, 7-16. 

run [ line number or "label" ] 

Begins program execution, either at line 0 or at the specified line. O&P, 2-9. 

s 
save file name [ ,1st line number [ , last line number] ] 

Creates a program file and stores either the entire program (no line numbers) or only the 

specified lines. 0, 2-2 (or 18). 

savek file name 

Creates a key file and stores all special function key definitions. 0, 2-9 (or 29). 

savem file name 

Creates a memory file and stores the computer's read/write memory. D, 2-10 (or 57). 

sci Xp1 , Xp2 , Yp1 , Yp2 

Locates the origin and specifies user units for plotting operations. 110, 7-7. 

rev: 11/80 



HPL Syntax 8-21 

sfg [flag no. [ , flag no. [ , ... ]]] 

Sets either all 15 program flags to 1 or only the specified flags. O&P, 3-28. 

sgn ( expression) 

Returns sign of expression: 0 = zero; 1 = positive; -1 = negative. O&P, 3-22. 

shf ( expression1 , expression 2) 
Returns the result of right-shifting the 16-bit binary equivalent of expression 1, the 

number of places indicated by expression 2. A negative expression 2 shifts the byte to 

the left. 1/0, 3-14. 

si n ( expression) 

Returns the sine of the expression. O&P, 3-2. 

smpy number or simple variable [*] array variable1 ~ array variable 2 

Multip!ies each element of array 1 by the scalar number. The * can be omitted. M, 13. 

spc [ expression] 

Outputs the expressed number of line feeds on the internal printer. O&P, 3-16. 

sprt file number, data list [ , "end" or "ens" ] 
Prints the list of data items on the disk file. Including "end" prints an EOF mark after the 

data. Including "ens" suppresses the automatic EOR mark printed after data. 0, 3-7 (or 

38). 

sread file number, variable list 

Reads data from the specified file into the listed variables. 0, 3-10 (or 41). 

stf ( string variable) 

Unpacks and returns a split-precision number from its four-character string. O&P, 4-20. 

store string name or "string" [ , line number] 

Stores program lines from an executing program. O&P, 7-21. 

stp [ line number1 [ , line number 2 ] ] 

Stops program execution either immediately or, optionally, at the specified line (line 1). 

Specifying both line numbers indicates a block of lines to stop at. O&P, 3-17. 

str ( expression) 

Returns the ASCII character equivalent to the expression. O&P, 6-19. 

T 
tan ( expression) 

Returns the tangent of the expression. O&P, 3-25. 

rev: 11/80 



8-22 ~PL Syntax 

tfr source name, destination name [ , expression [ , last character] ] 

Transfers data between an 1/0 buffer and a peripheral device. Optional expression 

indicates the total number of bytes to transfer. Optional last character expression is the 

decimal value of the character to terminate the transfer. 1/0,6-8. 

time ( expression) 

tinit 

tlist 

Causes an 1/0 operation to wait for a device to become ready for the specified number of 

milliseconds. 1/0, 4-4. 

Reinitializes a bad 9885 track during disk error recovery. 98217 A ROM only. D, 4-15 (or 

65). 

Catalogs tape files on the internal printer (file types below). O&P, 5-9. 

o Null file. 4 Memory file. 

1 

2 

3 

Binary program. 

Numeric data file. 

String or string/data. 

5 

6 

Special function key file. 

Program file. 

tn i ( expression) 

Returns 10 raised to the specified power. O&P, 3-24. 

trc [ 1 st line number [ , last line number] ] 

Sets the master flag and, optionally, trace flags for specified program lines. O&P, 3-44. 

trg select code 

Sends the trigger message to the specified HP-IB device. 1/0,2-17. 

trk expression 

Specifies the tape track (0 or 1) for successive operations. O&P, 5-6. 

trn array name ~ array name 

Transposes rows and columns between arrays. M, 23. 

type ( [ - ] expression) 

Returns a value indicating the next data-item type in a disk file. A positive expression 

causes any encountered EORs to be skipped (like with sread). A negative expression 

causes any EORs to be identified (like with rread). D, 3-20 (or 51). Return values are: 

o Unidentified type. Indicates string overlapping record boundaries: 

1 Full-precision number. 2.1 Start of string. 

2 String (within record). 2.2 Middle of string. 

3 EOF mark. 2.3 End of string. 

4 EOR mark. 

rev: 11/80 



HPL Syntax 8-23 

u 
units 

Returns the currently-set angular units. O&P, 3-25. 

v 
val ( string) 

Returns the numeric value of the string. O&P, 6-17. 

vfy [ return variable] 

vfyb 

voff 

von 

Verifies the contents of a tape file with the original in memory. Return variable: 0 = no 

error: 1 = error. O&P, 5-25. 

Checks 98217 A bootstraps on disk with those on the disk system cartridge. 98217 A ROM 

only. 0, 4-14 (or 67). 

Disables data-verification with disk print and copy. 0,4-6 (or 58). 

Enables the disk data verification (default). 0,4-6 (or 59). 

w 
wait expression 

The program waits for the specified time in milliseconds (from 1 to 32767). O&P, 3-16. 

wrt select code [ . format no. ] [ , item list] 

Outputs the items to the specified device. 1/0, 1-3. 

wsc select code, expression 

Outputs a control word (expression) to the specified interface. O&P, 7-14. 

wsm select code, expression [ , expression] 

Outputs a mode word and, optionally a control word (second expression) to the specified 

98036 Interface. O&P, 7-15. 

wtb select code, expression [ , expression [ , ... ] ] 

rev: 11/80 

Outputs the byte representing each number or character to the specified device. 1/0, 

3-3. 



8-24 rlPL Syntax 

wtc select code, expression 

Outputs a control byte to the specified interface. 1/0,3-9. 

wti 0, select code 

Specifies an interface for successive wti or rdi operations. 1/0, 4-11. 

wti expression 1 , expression2 

Outputs a control byte (expression 2) to a specified interface register (expression 1). 1/0, 

4-11. 

x 
xax Yoffset [ , tic interval [ , start [ , end [ , no. of ticsllabel ] ] ] ] 

xref 

Draws an X axis with optional tic marks and labels. 9872 Plotter ROM only. 1/0, 7-11. 

Prints a cross reference of program variables and line numbers, using the current pro

gram in memory. O&P, 4-32. 

y 

yax Xoffset [ , tic interval [ , start [ , end [ , no. of ticsllabel ] ] ] ] 

Draws a Y axis with optional tic marks and labels. 9872 Plotter ROM only. 1/0, 7-11. 



Appendix C 
Subject Index 

This index references subjects in these 9825 manuals: 

Title Part No. Abbreviation 

9825 Operating & Programming Reference 09825-90200 O&P 

9825 I/O Control Reference 09825-90210 I/O 

9825 Disk Programming Manual 09825-90220 D 

Matrix Programming Manual 09825-90022 M 

The index does not list subjects in the Interfacing Concepts guide or manuals supplied with 

computer peripherals or interfaces. Page references for the old 9825/9885 Disk Programming 

Manual, 09885-90000, are listed in parentheses. 

rev: 11/80 

C-1 



C-2 Index 

Subject Index 

a 
abortive interrupts ............... I/O 5-11 
abort message (cli) .............. I/O 2-27 
abs (absolute value) ............ O&P 3-22 
absolute branching ............. O&P 3-30 
accessories ..................... O&P 1-8 
acs (arccosine) ................ O&P 3-25 
ASCII codes .................... O&P A-3 
ASCII conversions ............... I/O 3-18 
add (binary add) ................. I/O 3-15 
addition (+) .................... O&P 3-19 
addresses, device ................ I/O 2-6 
Advanced Programming ROM ........... . 

O&P 1-9,4-3 
alphanumeric strings ............ O&P 6-3 
alternate plotter character sets .... I/O 7-37 
and (binary AND operator) ...... O&P 3-21 
aprt (array print) ..................... M 8 
ara (array arithmetic) ............... M 11 
arithmetic: 

hierarchy ................... O&P 3-18 
operations ................. O&P 2-10 
operators ......... . .... O&P 3-19 

arrays: 
arithmetic (ara) ................. M 11 
copying (ara) ................... M 13 
dimensioning ................ O&P 3-7 
elements ........................ M 4 
load ing .................... O&P 5-21 
matrix operations ................ M 1 
numeric ..................... O&P 3-6 
printing (aprt) ................... M 8 
recording .................. O&P 5-17 
string ....................... O&P 6-4 

asc (ASCII keycode) ............. O&P 7-9 
asgn (assign disk file name) .... D 3-5 (36) 
asn (arcsine) ................... O&P 3-26 
assignment operator (~) ........ O&P 3-19 
atn (arctangent) ................ O&P 3-26 
automatic interrupt ................ I/O 5-3 
autostart routine .................. I/O 4-3 
avd (auto-tape verification disable) ...... . 

O&P 5-24 
ave (auto-tape verification enable) ....... . 

O&P 5-25 
avm (available memory) . . O&P 7-27 
axe (plot axis) ................... I/O 7-18 

b 
BACK key .................. O&P 2-18,3-41 
band (binary AND function) '" ..... I/O 3-12 
beep ........................... O&P 3-16 
b format spec .................... I/O 1-17 
binary: 

coding and conversions ...... I/O 3-17 
notation ..................... I/O 3-10 
operations .................... I/O 3-3 
program files (disk) ........ D 2-11 (17) 
program files (tape) ......... O&P 5-23 

bit (binary bit) ................... I/O 3-15 
boot (load disk boots) .......... D 4-4 (67) 
boundaries, platen ............... I/O 7-23 
bounds, variables ............... O&P 3-7 
brackets in syntax ............... O&P 3-6 
branching: 

absolute ................... O&P 3-32 
jmp ........................ O&P 3-33 
labelled .................... O&P 3-32 
n-way ...................... O&P 3-37 
relative ..................... O&P 3-32 
subroutine . . .............. O&P 3-34 

bred (read buffer) .............. O&P 7-10 
buf (set up buffer) ................. I/O 6-6 
buffer: 

DMA ......................... I/O 6-6 
fast read/write ................. I/O 6-5 
interrupt .. , ................... I/O 6-5 
overflow ...................... I/O 6-6 
pointers ..................... I/O 6-11 
status ....................... I/O 6-10 
types ......................... I/O 6-4 
underflow ..................... I/O 6-6 

buffered I/O ...................... I/O 6-3 

c 
calculated go sub .............. O&P 3-35 
calculating range ................ O&P 2-6 
cap (uppecase string) .......... O&P 6-24 
carriage-return line-feed: 

output with fmt! .............. I/O 1-11 
suppress with fmt z ........... I/O 1-11 
with red ....................... I/O 1-7 
with wrt ....................... I/O 1-4 

rev: 11/80 



cat (disk catalog) ............. 0 1-16 (20) 
cfg (clear flag) ................. O&P 3-29 
c format spec ..................... I/O 1-9 
chain (chain disk program files) . D 2-7 (25) 
char (string character) .......... O&P 6-20 
character sets: 

display ...................... I/O 1-17 
plotter ..................... O&P 7-37 
printer (internal) .............. I/O 1-14 

CLEAR key ...................... O&P 2-9 
clear flag (cfg) ................. O&P 3-29 
clear: 

HP-I B interface (abort) ........ I/O 2-26 
message (clr) ................ I/O 2-17 
plotter ....................... I/O 7-10 
simple variables ............ O&P 3-39 

cll (call) ........................ O&P 4-10 
cln (current line number) ........ O&P 7-28 
clr(clearmessage) .............. 1/02-17 
cmd (HP-iB commands) .......... I/O 2-31 
cmf (complement flag) .......... O&P 3-29 
cmp (complement binary) ........ I/O 3-13 
commands ..................... O&P 2-24 
common log (log) ............... O&P 3-25 
compatibility (9820/21 & 9825) .. O&P A-1 0 
computer I/O scheme ............... I/O iv 
concatenation (&) .............. O&P 6-26 
cont (continue) ................. O&P 2-24 
CONTI N UE key ................. O&P 2-20 
control bits (98032A) .............. I/O 3-9 
conv (conversion) ................ I/O 1-23 
copy (copy disk file) ............ 04-7 (60) 
cos (cosine) ................... O&P 3-25 
cplt (ch aracter plot) .............. I/O 7-41 
conversion table (ctbl) ............. I/O 4-6 
cross reference (xref) ........... O&P 4-32 
csiz (character size) ............. I/O 7-38 
csv (clear simple variables) ..... O&P 3-39 
ctbl (conversion table) ............. I/O 4-6 
cursor controls (display) ........ O&P 2-16 

d 
data in put operations .......... I/O 1-5,3-4 
data I/O format ..................... I/O v 
data output operations ......... I/O 1-3,3-3 
data: 

input operations ........... I/O 2-5,3-4 
I/O format ....................... I/O v 
messages (HP-IB) ............ I/O 2-4 
ouput operations ........... I/O 1-3,3-3 

rev: 11/80 

Index C-3 

data transfer: 
input ......................... I/O 6-9 
output ........................ I/O 6-8 

debug ("DB") .................. O&P 5-16 
debug programs ............... O&P 3-41 
default: 

computer conditions ......... O&P A-3 
I/O formats ..................... I/O vii 

decimal mode (mdec) ............ I/O 3-11 
default: 
deg (degrees units) ............. O&P 3-25 
del (delete line) ................ O&P 2-25 
DELETE keys .............. O&P 2-17,2-18 
deli miters: 

input (read) ................... I/O 1-6 
buffer transfer (tfr) ............. I/O 6-8 
terminal I/O (eol) ............ O&P 7-12 
write (wrt) ..................... I/O 1-3 

determinant, array .................. M 24 
dev (device name) ................ I/O 2-9 
device address (HP-IB) ............ I/O 2-6 
dig (digitize) ..................... I/O 7-48 
digit rounding (drnd) ............ O&P 3-22 
dim (dimension variables) ....... O&P 3-37 
dimensioning strings ............. O&P 6-4 
di rc (copy disk di rectory) ...... 0 4-16 (65) 
direct memory access ............. I/O 6-6 
disk drive ....................... 0 1-1 (2) 
disk operations ................ 0 4-1 (15) 
display: 

character set ................ 1/01-17 
control keys ................ O&P 2-16 
dsp ........................ O&P 3-12 

divide (I) ....................... O&P 3-19 
division, array ...................... M 12 
DMA buffer ....................... I/O 6-6 
dot matrix in syntax .............. O&P 3-6 
drive (set disk drive) .......... 0 1-13 (17) 
drnd (digit round) .............. O&P 3-22 
dsp (d isplay) ................... O&P 3-12 
dto (decimal to octal) ............. I/O 3-12 
dtrk (dump disk track) ......... D 4-16 (65) 
d ty P e ( d is k type) . . .. . . . . . . . . . . . . . . 0 1 -1 5 
dump (dump disk to tape) ..... 04-11 (62) 

e 
e format spec ..................... I/O 1-9 
editing ......................... O&P 2-17 
edit specifications ................. I/O 1-9 
eir (enable interrupt) .............. I/O 5-6 
end ........................... O&P 3-17 



C-4 0dex 

enp (enter print) ................ O&P 3-15 fig (flag) ....................... O&P 3-30 
ent (enter) ..................... O&P 3-13 flowcharting, program ............ O&P 3-3 
ENTER EXP key ................ O&P 2-21 fit (floating-point format) ........ O&P 3-10 
enter exponent (e) .............. O&P 3-10 fmt (I/O format) ................... I/O 1-8 
EOF mark (disk) .............. D 1-10 (51) for (for ... next) ................... O&P 4-3 
eol (end-of-line sequence) ...... O&P 7-12 formats: 
EOR mark (disk) .............. D 1-10 (51) free-field .................. I/O 1-5,1-6 
eor (exclusive OR) ............... I/O 3-13 I/O ........................... I/O 1-3 
equ (equate) .................... I/O 2-33 numeric (fxd, fit) ............. O&P 3-9 
equal to (=) .................... O&P 3-20 fmt specifications .............. I/O 1-9 
equipment supplied .... (see packing lists) frc (fraction) ................... O&P 3-24 
ERASE key ..................... O&P 2-15 free text (%) .................... O&P 7-25 
erase (erase memory) .......... O&P 2-26 fti (full to integer) ............... O&P 4-26 
erl (error-line variable) ............. I/O 4-4 fts (full to short) ................ O&P 4-20 
ern (error-number variable) ........ I/O 4-4 functions, mathematical ......... O&P 3-22 
error recovery (on err) ............. I/O 4-4 fuses, power .................... O&P 1-6 
errors: f format spec ..................... I/O 1-9 

math ....................... O&P 3-26 FWD key ....................... O&P 2-18 
codes ...................... O&P 0-1 fxd (fixed-point format) ........... O&P 3-9 
tape drive .................. O&P 5-26 fz format spec .................... I/O 1-9 

ert (erase tape track) ........... O&P 5-15 
even parity ....................... I/O 4-9 
exclusive OR (xor) .............. O&P 3-21 
EXECUTE key ................... O&P 2-9 
execution times ................ O&P 3-46 
exp (exponential) ............... O&P 3-24 
exponential format ............... O&P 3-8 
exponential functions ........... O&P 3-22 
exponentiate (t) ................ O&P 3-19 
expressions, numeric ........... O&P 3-18 
extended device address .......... I/O 2-8 
Extended I/O ROM ......... O&P 1-9,1/0 iii 
extended read status (rds) ........ I/O 2-34 

9 
General I/O ROM .......... O&P 1-9, I/O iii 
get (get disk program file) ...... 0 2-4 (23) 
getb (get binary disk file) ...... D 2-11 (64) 
getk (get disk keys file) ......... D 2-9 (29) 
getm (get disk memory file) .... D 2-10 (57) 
grad (grads units) .............. O&P 3-25 
graphics language (HP-GL) ... I/O 7-3,7-50 
greater than (» ................ O&P 3-20 
greater than or equal to (>= or =» ...... . 

f 
O&P 3-20 

grounding, equipment ........... O&P 1-4 
gsb (go subroutine) ............. O&P 3-34 

fast read/write buffer .............. I/O 6-5 
gto (go to) ..................... O&P 3-31 

fdf (find tape file) ................ O&P 5-8 
FETCH key ..................... O&P 2-17 
fetch (fetch line) ................ O&P 2-27 h 
files: 

files statement (disk) ........ D 3-3 (34) hierarchy, math ................ O&P 3-18 
disk ....................... D 1-9 (11) hints, programming ............. O&P 3-43 
string ..................... 0 3-20 (51) HP-GL (graphics language) ... I/O 7-3,7-50 
tape file size ................ O&P 5-12 HP-IB: 

find file (fdf) ..................... O&P 5-8 functions .................... I/O 2-40 
fixed-point format (fxd) ........... O&P 3-9 interrupts ..................... I/O 5-8 
flags: lines ........................ I/O 2-37 

debugging ................. O&P 3-43 messages .................... I/O 2-4 
flags 13 through 15 ......... O&P 3-28 operations .................... I/O 2-1 
programmable flags ........ O&P 3-28 HPL programming ............... O&P 3-3 
status flags .................. I/O 4-12 HPL syntax ..................... O&P B-1 

rev: 11/80 



Index C-5 

• 
I k 

I/O format .......................... I/O iv key (key buffer empty) ........... O&P 7-8 
idf (identify tape file) ............. O&P 5-7 keyboard operations ............. O&P 2-1 
idn (identity matrix) ..... , .. , ........ M 22 keyboard (ASCII) ................ O&P A-7 
if (if ... then) ..................... O&P 3-36 Keyboard magazine ............ O&P 1-12 
i mmed iate execute keys ........ O&P 2-22 keycodes, decimal .............. O&P A-6 
immediate continue keys ........ O&P 2-22 key repetition .................... O&P 2-5 
implied multiplication ........... O&P 3-20 kill (pu rge disk file) ............ 0 1-18 (27) 
ina (initialize array) ................... M 8 killall (purge all disk files) ...... 0 1-18 (67) 
inclusive OR (ior) ................ I/O 3-13 kret (keyboard interrupt return) ... O&P 7-9 
incremental plotting .............. I/O 7-29 
indirect storage ................. O&P 3-8 
init (initialize disk) .......... 0 1-6, 4-3 (90) 
inspection, equipment ........... O&P 1-3 I 
int (integer) .................... O&P 3-22 
integer-precision storage ....... O&P 4-26 
interface: 

overview ....................... I/O vi 
reg isters ..................... I/O 4-10 

internal peripherals ................. I/O iv 
internal printer: 

character set ................ 1/0-1-14 

labeled branching .............. O&P 3-30 
labeling axes .................... 1/0 7-36 
labels, line ,- - - - - - - - - - - - - - - , , , , , , O&P 2-8 
lazy T (~) ....................... O&P 2-5 
Ibl (plot labels) .................. 1/0 7-36 
Icl (local message) ............... 1/0 2-19 
ldb (load binary program from tape) ..... . 

O&P 5-23 
load ing paper ............... O&P 1-8 
prt ......................... O&P 3-12 

interrupt: 
abortive ,.,., "",.,', ...... 1/0 5-11 
buffer ........................ 1/0 6-5 
end-of-line (EOL) .............. 1/0 5-4 
HP-I B ........................ 1/0 5-8 
keyboard .................... O&P 7-6 
lockouts ..................... 1/0 5-14 
peripheral .................... 1/0 5-3 
programmable ................ 1/0 5-3 
vectored (EOL) ................ I/O 5-4 

interrupt enable (eir) .............. 1/0 5-6 
interru pt return (iret) ............... I/O 5-7 
inv (inverse matrix) .................. M 24 
installation, computer ............ O&P 1-3 
1/0 bus and format .................. 1/0 iv 
iof (interface flag) ................ 1/0 4-12 
ior (inclusive OR function) ........ 1/0 3-13 
ios (interface status) ............. 1/0 4-12 
iplt (incremental plot) ............. 1/0 7-29 
iret (interrupt return) ............... 1/05-7 
itt (integer to full) ............... O&P 4-26 

Idf (load file from tape) .......... O&P 5-18 
Idk (load key file from tape) ...... O&P 5-22 
Idp (load program file from tape) . O&P 5-18 
len (string length) ............... O&P 6-14 
leading spaces, suppressing ...... I/O 1-9 
leading zeros ..................... I/O 1-9 
less than «) ................... O&P 3-20 
less than or equal to « = or = <) O&P 3-20 
lim (plotter pen limit) ............. 1/0 7-34 
line (plotter line type) ............. I/O 7-32 
line length (display) .............. O&P 2-5 
line renumbering ............... O&P 3-30 
linking programs ............... O&P 5-20 
list (list program on display) ..... O&P 3-39 
list# (I ist to device) .............. 1/0 1-23 
list fn (list function) ............. O&P 3-39 
listener (HP-IB) ................... 1/02-8 
listk (list keys) .................. O&P 3-39 
live keyboard .................. O&P 2-28 
Ikd (live keyboard disable) ...... O&P 2-32 
Ike (live keyboard enable) ....... O&P 2-32 
110 (local lockout message) ....... 1/0 2-19 
In (natural log) ................. O&P 3-24 
load data: 

• 

J 
from disk (rread, sread) 0 3-10 (41, 46) 
from tape (Idf) .............. O&P 5-21 

load keys: 

jmp (ju mp) ..................... O&P 3-33 from disk (getk) ............ 0 2-9 (29) 
from tape (Idk) .............. O&P 5-22 

rev: 11/80 



C-6 ! ndex 

load memory; null field: 
from disk (getm) ........... 0 2-10 (57) in ent ...................... O&P 3-14 
from tape (Idm) ............. O&P 5-23 in strings .................... O&P 6-7 

load program: null tape file ..................... O&P 5-7 
from disk (get) ............. 0 2-4 (22) num (string numeric value) ...... O&P 6-21 
from tape (Idp) ............. O&P 5-18 numeric formats ................. O&P 3-8 

local parameters ............... O&P 4-12 
logarith ms: 

common log (log) ........... O&P 3-24 
natural log (In) .............. O&P 3-24 o 

logical operators ............... O&P 3-21 
Itr (letter plot) .................... I/O 7-47 
Itrk (update disk track) ........ 0 4-16 (57) 

octal mode ...................... I/O 3-11 
oct (octal to decimal) ............. I/O 3-12 
odd parity ........................ I/O 4-9 
ofs (offset plot) .................. I/O 7-27 

m on end ....................... 0 3-19 (50) 
on err (on error) ................... I/O 4-4 
on key .......................... O&P 7-6 

mark tape (mrk) ................ O&P 5-10 oni (on interrupt) .................. I/O 5-5 
mat (matrix multiplication) ........... M 19 open (open disk file) ........... 03-2 (33) 
math functions ................. O&P 3-22 operating system module ........ O&P 1-7 
math hierarchy ................. O&P 3-18 operators: 
Matrix ROM ........... , .... O&P 1-10,M 1 arithmetic .................. O&P 3-19 
max (maximum) ................ O&P 3-22 assignment ................. O&P 3-19 
mdec (decimal mode) ............ I/O 3-11 logical ..................... O&P 3-21 
memory: relational ................... O&P 3-20 

organization ................. O&P 2-7 string concatenation ........ O&P 6-26 
usag e ...................... O&P 3-40 OR functions (ior, eor) ............ I/O 3-12 

messages, HP-IB control .......... I/O 2-4 OR operators (or, xor) ........... O&P 3-21 
min (minimum) ................. O&P 3-22 otd (octa! to decimal) ............. I/O 3-12 
minussign(-) .................. 0&P3-19 out-of-limits conditions (plotting) ......... . 
mod (modulus) ................. O&P 3-19 I/O 7-23 
mounting, computer ............ O&P 1-12 overflow, buffer ................... I/O 6-6 
moving the origin (plotting) ....... I/O 7-27 overhead, recording strings ..... O&P 6-33 
mrk (mark tape) ................ O&P 5-10 
multiple listeners .................. I/O 2-6 
multiply (*) ..................... O&P 3-19 
multiplication, implied ........... O&P 3-20 p 

% (free text) .................... O&P 7-25 

n par (parity check) ................. I/O 4-9 
parallel polling ................... I/O 2-25 
parity checking ................... I/O 4-9 

N-way branching ............... O&P 3-37 passing parameters ............ O&P 4-12 
natural log (In) ................. O&P 3-22 pcl r (reset plotter) ................ I/O 7-10 
nal (last program line) .......... O&P 7-24 pct (pass HP-IB control) .......... I/O 2-26 
next (for ... next) .................. O&P 4-3 pen (control pen) ................ I/O 7-22 
nesting: pen# (select pen) ............... I/O 7-22 

for ... next loops ............... O&P 4-6 peripheral: 
subprograms ............... O&P 4-16 control ......................... I/O vi 

non-active controller ............. I/O 2-26 interrupt ...................... I/O 5-3 
nor (normal) .................... O&P 3-44 status (rds) ................... I/O 3-5 
not (operator) .................. O&P 3-22 plotter operations ....... , ......... I/O 7-2 
not equal to (#, > < or > <) .... O&P 3-20 plotter ROMs ............. O&P 1-9,1/0 7-3 

rev: 11/80 



Index C-7 

pit (plot) ......................... 1/0 7-22 read binary (rdb) .................. 1/0 3-4 
plus sign (+) ................... O&P 3-19 read interface (rdi) ............... I/O 4-12 
pi ............................. O&P 2-21 read only memory (ROM) ..... O&P 1-8,2-7 
p-numbers ..................... O&P 4-16 read on Iy variables (with on err) .... I/O 4-4 
pol (parallel poll) ................. 1/0 2-25 read/write memory (RWM) ........ O&P 2-6 
polc (poll configure) .............. 1/0 2-26 RECALL key ................... O&P 2-18 
polling: RECORD key ................... O&P 2-15 

parallel ...................... 1/0 2-25 record data: 
serial ........................ 1/0 2-22 on disk (rprt, sprt) ....... d 3-7 (38, 45) 

polu (poll unconfigure) ........... I/O 2-26 on tape (rdf) ................ O&P 5-16 
pos (string position) ............ O&P 6-16 reco rd keys: 
power cords .................... O&P 1-4 on disk (savek) ............. 0 2-9 (29) 
power requirements ............. O&P 1-5 on type (rck) ................ O&P 5-22 
prerecorded programs .......... O&P 1-11 reco rd memory: 
print all ........................ O&P 2-14 on disk (savem) ........... 02-10 (57) 
print arrays (aprt) .................... M 8 on tape (rcm) ............... O&P 5-22 
print strings .................... O&P 6-29 record programs: 
printer paper .................... O&P 1-8 on disk (save) .............. D 2-2 (18) 
printer operations ................ I/O 1-14 on tape (rcf) ................ O&P 5-16 
printer (internal) status ............ i/O 3-5 RECORD tab on tape ............ O&P 5-4 
prnd (power-of-ten round) ....... O&P 3-22 red (read data) ................... I/O 1-5 
programming ................... O&P 3-3 redimensioning arrays (rdm) ......... M 16 
prompts: relational operators ............. O&P 3-20 

in ent ....................... O&P 3-13 relative branching .............. O&P 3-30 
in enp ...................... O&P 3-15 rem (remote message) ........... I/O 2-18 

prt (print) ....................... O&P 3-12 remarks (labels) ................ O&P 3-31 
psc (plotter select code) ............ I/O 7-5 ren m (rename disk file) ........ 0 1-17 (28) 
ptyp (p lotter typewriter mode) ...... 1/0 7-45 repk (repack disk) .............. 04-5 (58) 

require service message (rqs) .... I/O 2-21 

q res (result) ..................... O&P 2-20 
RESET key ..................... O&P 2-14 
res ave (re-save disk file) ........ 0 2-9 (28) 

quote marks (" "): 
in dsp ...................... O&P 3-12 
in prt ....................... O&P 3-13 
in strings .................... O&P 6-5 

RESULT key ................... O&P 2-20 
ret (return) ..................... O&P 3-34 
rew (rewind tape) ................ O&P 5-6 
REWIND key ................... O&P 2-14 
rkbd (read keyboard) ........... O&P 7-17 
rnd (random number) ........... O&P 3-22 

r rom (ROM error variable) .......... I/O 4-4 
RO Ms, overview ................. O&P 1-8 

r-variables ....................... O&P 3-7 
ROM memory usage: 

Advanced Programming ...... O&P 4-3 
rad (set radians units) ............ O&P 3-25 
radical sign (VI) ................ O&P 3-22 

Disk ........................ D1-1(3) 
Extended I/O ..... " .............. 1/0 iii 

random numbers (rnd) .......... O&P 3-23 General 1/0 ..................... I/O iii 
range, computing ................ O&P 2-6 Matrix ........................... M 3 
rcf (record file on tape) ......... O&P 5-16 
rck (record keys on tape) ....... O&P 5-22 
rcm record memo ry on tape) .... O&P 5-22 
rdb (read binary data) ............. I/O 3-4 
rdi (read interface) ............... I/O 4-12 
rdm (redimensioning arrays) ......... M 16 
rds (read status) .................. I/O 3-5 

String Variables .............. O&P 6-3 
Systems Programming ....... O&P 7-3 

rot (rotate) ....................... 1/03-13 
round ing ....................... O&P 3-22 
rprt (random disk pring) ....... 0 3-12 (43) 
rqs (request service) ............. 1/0 2-21 
rread (random disk read) ...... D 3-15 (46) 

rev: 11/80 



C-8 Index 

rss (read serial status) .......... O&P 7-16 stf (split to full) ................. O&P 4-20 
run ............................ O&P 2-24 storage range ., ................. O&P 2-6 
RUN key ........................ O&P 2-9 STORE key ...................... O&P 2-9 

store (store lins) ................ O&P 7 -21 
store programs ................. O&P 5-16 

s stp (stop) ...................... O&P 3-17 
str (string) ..................... O&P 6-19 
string operator (&) .............. O&P 6-26 

save (save program on disk) .... 0 2-2 (18) 
savek (save keys on disk) ....... 0 2-9 (59) 
savem (save memory on disk) .. 0 2-10 (57) 
scientific notation (fit) ........... O&P 3-10 
scalar multiplication (smpy) .......... M 13 
sci (scale plot) .................... I/O 7-7 
secure programs ............... O&P 5-16 
select code: 

String Variables ROM ........ O&P 1-9,6-3 
string variables operations ....... O&P 6-1 
subprograms .................. O&P 4-10 
subroutines: 

go su b ..................... O&P 3-34 
from live keyboard .......... O&P 2-29 

subscripts: 
array ........................ O&P 3-6 

recommended settings ........ I/O A-8 
syntax ......................... I/O vii 

selecting pens ................... I/O 7-25 
serial polling .................... I/O 2-22 
service contracts ............... O&P 1-11 

string ....................... O&P 6-6 
substrings ...................... O&P 6-6 
subtract ( -) .................... O&P 3-19 
suppressing leading spaces ....... I/O 1-9 
syntax: 

service requests ................. I/O 2-20 
sfg (set flag) ................... O&P 3-28 
sgn (sign) ...................... O&P 3-22 
shf (shift) ........................ I/O 3-14 

brackets [ ] ................. O&P 3-6 
conventions ................. O&P 3-6 
HPL listing .................. O&P B-1 

Systems Programming ROM ..... O&P 7-19 

SHIFT and SHIFT LOCK keys .... O&P 2-19 
significant digits ................ O&P 3-11 
sin (sine) ...................... O&P 3-25 
single character output ........... I/O 1-17 t 
smty (scalar multiply) ............... M 13 
spacing ......................... O&P 2-5 
spc (space) .................... O&P 3-16 
special function keys: 

defining and using .......... O&P 2-21 
in live keyboard ............. O&P 2-29 

split-precision storage .......... O&P 4-20 
sprt (serial disk print) ........... 0 3-7 (38) 
square root .................... O&P 3-22 
sread (serial disk read) ........ 0 3-10 (41) 
statements, HPL ................. O&P B-1 
status conditions, computer ....... O&P A-3 
status bits: 

HP-IB interface ............... I/O 2-34 
KDP (internal) ................. I/O 3-5 
98032 Interface ............... I/O 3-8 
read status (rds) .............. I/O 3-5 
tape drive (internal) ............ I/O 3-7 

status byte message: 
receiving (serial polling) ...... I/O 2-22 
sending ..................... I/O 2-22 

statu s bytes ..................... I/O 2-34 
STEP key ...................... O&P 2-15 
STOP key ...................... O&P 2-19 

tan (tangent) ................... O&P 3-25 
tape drive, internal ........ O&P 5-1,1/0 3-7 
testing the computer ............. O&P 1-7 
tfr (transfer) ....................... I/O 6-8 
tic marks, plotting ................. I/O 7-7 
time (time out) .................... I/O 4-4 
tinit .......................... 0 4-15 (65) 
tlist (tape list) .................... O&P 5-9 
tnt (ten to a power) ............. O&P 3-24 
transfer parameters ............... I/O 2-8 
transfer (tfr) ....................... I/O 6-8 
transposition (trn) ................... M 23 
trc (trace) ...................... O&P 3-44 
trg (trigger message) ............. I/O 2-16 
trig functions ................... O&P 3-25 
trk (tape track) .................. O&P 5-6 
trn (transpose) ...................... M 23 
truth tables: 

binary functions .............. I/O 3-12 
logical operators ............ O&P 3-21 

type (disk data type) .......... 03-20 (51) 
types of buffers ................... I/O 6-4 
typewriter mode (plotting) ........ I/O 7-45 

rev: 11/80 



Index C-9 

u y 
unary - ....................... O&P 3-19 yax (Y axis) ...................... I/O 7-11 
underflow ...................... O&P 3-28 
underflow, buffer .................. I/O 6-6 
unlisten command ................ 1/0 2-8 
units, scale statement ............. I/O 7-7 z 
units (trig units) ................ O&P 3-25 

z format spec .................... I/O 1-11 

v 
val (string value) ............... O&P 6-17 
variables: 

allocation ................... O&P 3-8 
array ........................ O&P 3-6 
erasing ........... O&P 2-15,2-26,3-39 
loading from tape ........... O&P 5-21 
read only (with on err) .......... I/O 4-4 
recording on tape ........... O&P 5-16 
string ....................... O&P 6-3 

vectored interrupt ................. I/O 5-4 
vectors .............................. M 3 
vfy (verify data) ................ O&P 5-25 
vfyb (verify disk binary) ......... D 4-4 (67) 
voff (disk auto-verify off) ........ D 4-6 (58) 
voltage setting, computer .... , ... O&P 1-5 
von (disk auto-verify on) ........ D 4-6 (59) 

w 
wait ........................... O&P 3-16 
word (16 bits) ..................... I/O 6-7 
wrt (write) ........................ I/O 1-3 
wsc (write serial control) ........ O&P 7-14 
wsm (write serial mode) ......... O&P 7-15 
wtb (write binary) ................. I/O 3-3 
wtc (write control) ................. I/O 3-9 
wti (write interface) ............... I/O 4-11 

x 
xax (X axis) ...................... I/O 7-11 
x format spec .................... I/O 1-11 
xor (exclusive OR) .............. O&P 3-21 
xref (cross reference) ........... O&P 4-32 

rev: 11/80 



C-10 index 

Notes 



Appendix D 
Table of Contents 

Error Codes 0-1 

Mainframe Errors (00 thru 77) ....................................................... 0-3 

Advanced Programming ROM Errors (AO thru A9) .................................... 0-7 

9885 Binary Disk Errors (BO thru B8) ................................................ 0-8 

Systems Programming ROM Errors (CO thru C9) ...................................... 0-8 

Disk ROM Errors (DO thru 09 and dO thru d9) ........................................ 0-9 

Extended I/O ROM Errors (EO thru E9) .............................................. 0-10 

9885 Disk Hardware Errors (FO thru F9) ............................................. 0-10 

General I/O ROM Errors (GO thru G9) ............................................... 0-11 

Matrix ROM errors (M1 thru M5) .................................................... 0-11 

9862A Plotter ROM Errors (P1 thru P8) .............................................. 0-12 

9872A Plotter (HP-GL) ROM Errors (P1 thru P8 and pO thru p6) ....................... 0-12 

String Variable ROM Errors (SO thru S9) ............................................ 0-14 

~ 



0-2 Error Codes 

Notes 



Appendix o 
Error Codes 

An error in a program sets the program line counter to line O. Press the continue key to 

continue the program from line O. Execute the continue command with a line number to 

continue at any desired line (such as: cont 50). 

00 

01 

02* 

03* 

04 

05 

06* 

07* 

08 

09 

10* 

11 

12* 

System error. 

Unexpected peripheral interrupt. 

Unterminated text. 

Mnemonic is unknown. 

Mnemonic not found because disk may be down. 

System is secured. 

Operation not allowed; line cannot be stored or executed with line number. 

Syntax error in number. 

Syntax error in input line. 

Internal representation of the line is too long (gives cursor sometimes). 

gto, gsb, or end statement not allowed in present context. 

Attempt to execute a next statement either from keyboard while for/next loop 

using same variable is executed in program or from program while for/next 

loop using same variable is executed from keyboard. Attempt to call function 

or su broutine from keyboard. 

gto or gsb statement requires an integer. 

Integer out of range or integer required; must be from -32768 thru +32767. 

Line cannot be stored; can only be executed. 

* Press the ~ key to position the cursor at the location of the error. 

D-3 



13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

ent statement not allowed in present context. 

Program structure destroyed. 

Printer out of paper or printer failure. 

String Variables ROM not present for the string comparison. Argument in 

relational comparison not allowed. 

Parameter out of range. 

Incorrect parameter. 

Bad line number. 

Missing ROM or binary program. The second number indicates the missing 

ROM. In the program mode, the line number is given instead of the ROM 

number. Displayed number and missing item: 

Binary Program 

4 Systems Programming ROM 

6 Strings ROM 

8 Extended I/O ROM 

9 Advanced Programming ROM 

Line is too long to store. 

Improper dimension specification. 

Simple variable already allocated. 

Array already dimensioned. 

10 Matrix ROM 

11 Plotter ROM 

12 General I/O ROM 

17 Disk ROM 

Dimensions of array disagree with number of subscripts. 

Subscript of array element out of bounds. 

P-number reference is negative. 

Undefined array. 

ret statement has no matching gsb statement. 

Cannot execute line because a ROM or binary program is missing. 

Special function key not defined. 

Non-existent program line. 

Improper data type. 

Non-numeric value in for statement or in fts or fti function. 



33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 or 52 

rev: 6/80 

Error Codes 0-5 

Data types do not match in an assignment statement. 

Display overflow due to pressing a special function key. 

Improper flag reference (no such flag). 

Attempt to delete destination of a gto or gsb statement. 

Display buffer overflow caused by dsp statement. 

Insufficient memory for subroutine return pointer. Memory overflow during 

function or subroutine call. 

Insufficient memory for variable allocation or binary program. 

Dimensioned string cannot exceed 32,766 elements. 

Insufficient memory for operation. 

Memory overflow while using for statement or while allocating local 

p-numbers. 

No cartridge in tape transport. 

Tape cartridge is write protected. (Slide record tab to right for recording.) 

Unexpected Beginning-Of-Tape (BOT) or End-Of-Tape (EaT) marker encoun-

tered. Tape transport failure. 

Verify has failed. 

Attempted execution of idf statement without parameters or mrk statement 

when tape position is unknown. 

Read error in file body. 

Read error in file head. 

End-Of-Tape (EaT) encountered before all files were marked. 

File too small. 

Idf statement for a program file must be last statement in the line. get or chain 

statement should be the last statement in a line. 

Memory configuration error for attempted Idm statement. For example, a ROM 

present when memory was recorded is now not present (see error 20), or 

attempting to load a memory file recorded on a 9825 into a 9825B. 



53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Memory files are not compatible between the 9825A and 9825B. Only the 

program portion can be recovered by loading the memory file into the original 

machine and doing a ref. This program file can then be loaded into any 9825 

with the Idf statement. 

Negative parameter in cartridge statement. 

Binary program to be loaded is larger than present binary program and vari

ables have been allocated. 

Illegal or missing parameter in a cartridge statement. 

Data list is contiguous in memory for a cartridge statement. 

Improper file type. 

Invalid parameter in rcf statement; "SE" or "DB" expected. 

Attempt to record a program or special function keys which do not exist. 

Attempt to load an empty file or the null file (type = 0). 

The line referenced in an Idf or Idp statement does not exist. If the line contain

ing the Idf or Idp statement has been overlaid by the load operation, the line 

number in the display may be incorrect. 

Specified memory space is smaller than cartridge file size. 

Cartridge load operation would overlay subroutine return address in program; 

load not executed. 

Disk load operation would overlay gsb return address; load not executed. 

Attempt to execute Idk, Idf (program file), or Idp during live keyboard state

ment. 

get, chain or getk not allowed from live keyboard mode or during an ent 

statement. 

File not found. 

File specified in the previous fdf statement does not exist. 

Default values associated with errors 66 th ru 77 when flag 14 is set are explained in the 

programming chapter of the operating and programming manual. 

66 Division by zero. 

A mod B, with B equal to zero. rev: 6/80 



67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

AO 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

Square root of negative number. 

Tan (n * Trl2 radians). 

Tan (n * 90 degrees). 

Tan (n * 100 grads). 

where n is an odd integer. 

In or log of a negative number. 

In or log of zero. 

asn or acs of number less than -1 or greater than + 1. 

Negative base to non-integer power. 

Zero to the zero power (DiD). 

Storage range overflow. 

Storage range underflow. 

Calculation range overflow. 

Calculation range underflow. 

Error Codes 0-7 

Relational operator in for statement not allowed. No closing apostrophe. 

A for statement has no matching next statement. 

A next statement encountered without a previous for statement. 

Non-numeric parameter passed as a p-number. 

No return parameter for a function call. 

No functions or subroutines running. 

Improper p-number. 

Attempt to allocate local p-numbers from the keyboard. 

Wrong number of parameters in fts, stf, fti, or itf function. stf or itf parameter 

must be a string (not a numeric). stf or itf parameter contains too few charac

ters. 

Overflow or underflow in fts function. 

Overflow in fti function. 

String Variables ROM missing for stf or itt functions. 



0-8 Error Codes 

Errors BO thru B8 may result during the binary disk initialization and disk error recovery 

routines. 

BO 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

CO 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

Wrong syntax, argument out of range or variable not properly dimensioned. 

More than six defective tracks on the disk. 

Verify error. Boots on the disk not identical to boots on the cartridge. 

dtrk or tinit not allowed because error information lost or error not d5, d6, d7 or 

d9. 

Attempt to access record for error correction which isn't part of data file. 

Improper string length (inconsistent with length given in header). 

Not enough space in computer buffer for data item. Item can't be placed in 

this part of buffer. 

Missing Disk or String ROM. 

Track still bad after tinit. 

Missing Geneml I/O Oi Extended I/O ROM. 

Incorrect number of parameters. 

Improper parameter specified. 

Wrong parameter type. 

Illegal buffer type for bred statement. 

Key buffer overflow. 

Too large or wrong sign of parameter. 

Improper execution of store statement. 

Illegal use of kret. 

Missing 98036A Interface card. 



DO 

01 

02 

03 

04 

05 

06 

07 

08 

09 

Error Codes 0-9 

Improper argument. 

Argument out of range. 

Improper file size; must be an integer from 1 thru 32767. No lines to store for 

save or savek. 

Invalid file name. 

File not found. 

Duplicate file name or attempt to copy non-data file to existing file. 

Wrong file type. 

Directory overflow. 

Insufficient storage space on disk. 

Verify error. Disk controller detected no read errors, but the data read back 

doesn't compare with the original. Reprint data. If the problem persists, ser

vice the drive, interface or the computer. 

DISK IS DOWN (98217 A ROM) 

UNABLE TO ACCESS DISC CONTROLLER (98228A ROM) 

dO 

d1 

d2 

d3 

d4 

d5 

d6 

d7 

d8 

d9 

rev: 11/80 

Computer cannot access the disk controller. If control is not restored (e.g., 

power on) press RESET or STOP to cancel operation. 

Firmware/driver out of synchronization. 

Too many defective tracks within it (press @ill). 

All drives in system not powered on. 

Door opened while disk being accessed or during dump, load or copy. 

Disk not in drive or no such drive number. 

Door open on 9895 drive. 

Write not allowed to protected disk. 

Record header error (use error recovery routine.) 

Track not found (use error recovery routine.) 

Data checkword error. (use error recovery routine.) 

Hardware failure (Press @ill). 

Verify error. Data is readable under normal margins but not under reduced 

margins. Reprint data. If problem persists, back up disk (new media) or ser

vice drive. 



0-10 Error Codes 

EO 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

FO 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

General I/O ROM missing. 

HP-IB error under interrupt. 

Wrong number of parameters. 

Improper buffer device or equate table usage. 

Multiple-listeners error. 

Buffer busy. 

Wrong parameter type. 

Timeout error. 

Buffer underflow or overflow. 

Parameter value out of range. 

Parity failure. 

Improper use of iret statement. 

Attempt to DMA with HP-IB. 

Buffer or select code is busy. 

Illegal HP-IB operation. 

File overflow when read or print executed. 

Bootstraps not found (98217 A ROM) or wrong memory configuration for 

98228A Disk ROM (9825T required). 

String read but wrong data type encountered. 

Attempt to read data item but type doesn't match. 

Availability table overflow (repack). 

Attempt on end branch from other than running program. 

Unassigned data file pointer. 

Disk is down; line cannot be reconstructed. 

Disk is down and 8 pressed. 

System error (save files individually and reinitialize). 

rev: 11/80 



G1 

G2 

G3 

G4 

G5 

G6 

G7 

G8 

G9 

M1* 

M2 

M3 

M4* 

M5 

Error Codes D-11 

Incorrect format numbers. 

Referenced format statement has an error. 

Incorrect I/O parameters. 

Incorrect select code. 

Incorrect read parameter. 

Improper conv statement parameters. 

Unacceptable input data. 

Peripheral device down. 

Interface hardware problem. 

Syntax error. 

Improper dimensions. Array dimensions incompatible with each other or im

compatible with the stated operation. 

Improper redimension specification. New number of dimensions must equal 

original number; new size cannot exceed original size. 

Operation not allowed. An array which appears to the left of ' cannot also 

appear on the right. 

Matrix cannot be inverted. Computed determinant = O. 

* Press the ~ key to position the cursor at the location of the error. 



0-12 Error Codes 

9862A Plotter ROM Error Codes 
P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

PLT 
DOWN 

Wrong state. 

Statements executed out of order. 

Wrong number of parameters. 

Wrong type of parameters. Parameters for an Ibl statement must be expres

sions, text, or string variables. 

Scale out of range. Maximum value is less than or equal to the minimum value. 

Integer out of range. Pen control parameter is out of the range -32768 thru 

+32767 or the select code is not 0 or in the range 2 thru 15. 

Character size out of range. Width or height in letter statement is zero or there 

is an integer overflow in csize calculations or results. 

Not used. 

Axes origin off-scale. X, Y specified for axis statement doesn't fall on plotter 

surface. 

Check interface connection and select code setting; be sure LINE and 

CHART HOLD are on. 

9872A Plotter ROM (HP-GL) Error Codes 
P1 

P2 

Attempt to store into constant. Occurs when one or more parameters in a dig 

statement are constants rather than variables. 

Wrong number of parameters. Occurs on instructions with numeric-only 

parameter lists (sci, ofs, pit, iptl, cplt, xax, yax, lim, dig, csiz, line, pen#, and 

psc). In certain unusual cases where a parameter list contains user-level 

function calls, an instruction having an incorrect number of parameters may 

be executed. 



P3 

P4 

P5 

P6 

P7 

P8 

pO 

p1 

p2 

p3 

p4 

pS 

p6 

Error Codes 0-13 

Wrong type of parameter or illegal parameter value. 

No HP-IB device number specified. Occurs when psc parameter is from 0 

thru 14 and an HP-IB card is at the corresponding select code. 

Pen control value not from -32768 thru 32767. Hardware transmission error 

occurs between plotter and computer. 

No HP-IB card at specified select code. 

axe or Itr statement encountered; 9872 ROM cannot execute them. 

Computer 8 key cancelled operation. Occurs when the plotter fails to re

spond for three seconds after the 8 key has been pressed. 

Transmission error. The calculator has received an illegal ASCII input from the 

plotter. 

Instruction not recognized. The plotter has received an illegal character 

sequence. 

Wrong number of parameters. Too many or too few parameters have been 

sent with an instruction. 

Bad parameter. The parameters sent to the plotter with an instruction are out 

of range for that instruction. 

Illegal character. The character specified as a parameter is not in the allowa

ble set for that instruction. 

Unknown character set. A character set out of the range 0 thru 4 has been 

designated as either the standard or alternate character set. 

Position overflow. An attempt to draw a character or perform a cplot that is 

located outside of the plotters numeric limit of -32768 thru +32767. 

Errors generated by write (wrt) and read (red) statements will typically be displayed in the next 

executed plotter ROM statement. This can be avoided by using an output error command (wrt 

select code, "OE";) followed by a read statement (red select code, variable) to check for 

errors after read or write statements that address the plotter. 



0-14 Error Codes 

so 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

SPARE 
DIR. 

Invalid set of strings in data list of Idf statement. 

Improper argument for string function or string variable. 

More parameters than expected for string function or string variable. 

Accessing or assigning to non-contiguous string, num function of null string. 

Trying to find the value of non-numeric string or null string. 

Exponent too large. 

Exponent format invalid (e.g., 1e+ +). 

Invalid destination type for string assignment. 

Parameter is zero, or negative, exceeded dimensioned size. 

Invalid sequence of parameters for string variable. 

String not yet allocated. 

String previously allocated. 

Maximum string length exceeded; additional string length must be specified 

in dim statement. 

Printed when the spare disk directory (backup track) automatically replaces 

the main directory. 



.8 
C/) 

c 
Q) 

E 
E 
o 
u 

Manual Title ____________________ _ Pub. Date _________ _ 

Is this manual serving your documentation needs: 

• Is the manual kept: 0 with the system 0 on your desk 0 other: _____________ _ 

• Does the loose-leaf, tabbed organization provide easy information access? 

Dyes 0 no (explain below) 
• Are any pages tearing out of your manual? 0 yes 0 no If so, where ___________ _ 

• Would you prefer to have a permanently bound set of manuals? 0 yes 0 no 

• Is the subject index easy to find and use? 0 yes 0 no (explain below) 

• Are the program examples (printed in dot matrix) easy to read? 0 yes 0 no 

• Is the method of expressing HPL syntax easy to follow? 0 yes 0 no (explain) 

• If a manual-updating service was available, would you subscribe? 0 yes 0 no 

What can we do to improve user documentation: 

Thank you. All comments become the property of Hewlett-Packard Company 

Manual Title ____________________ _ PUb. Date __________ _ 

Please describe your HP computer 

system and primary application: 9825: 0 A 0 B 0 SOT 

Comments (both good and bad): ___________________________ _ 

Thank you. All comments become the property of Hewlett-Packard Company. 

Manual Title ____________________ _ Pub. Date __________ _ 

Please describe your HP computer 

system and primary application: 9825: 0 A 0 B 0 SOT 

Thank you. All comments become the property of Hewlett-Packard Company. 



I II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

HEWLETT-PACKARD COMPANY 
PL 97 USER DOCUMENTATION 
3404 EAST HARMONY ROAD 
FORT COLLINS, COLORADO 80525 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

HEWLETT-PACKARD COMPANY 
PL 97 USER DOCUMENTATION 
3404 EAST HARMONY ROAD 
FORT COLLINS, COLORADO 80525 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

HEWLETT-PACKARD COMPANY 
PL 97 USER DOCUMENTATION 
3404 EAST HARMONY ROAD 
FORT COLLINS, COLORADO 80525 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 



Part No. 09825-90200 
Microfiche No. 09825-99200 

rhO- HEWLETT 
~~ PACKARD 

Printed in U.S.A. 
Second Edition, November 1980 


	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	8-01
	9-01
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	replyA
	replyB
	xBack

